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Abstract. Machine Learning (ML) techniques and algorithms, which
are emerging technologies in Industry 4.0, present new possibilities for
complex scheduling methods. Since different rules can be applied to dif-
ferent circumstances, it can be difficult for the decision-maker to choose
the right rule at any given time. The purpose of the paper is to build an
“intelligent” tool that adapts its choices in response to changes in the
state of the production line. A Deep Q-Network (DQN), a typical Deep
Reinforcement Learning (DRL) method, is proposed for creating a self-
optimizing scheduling policy. The system has a set of known dispatching
rules for each machine’s queue, from which the best one is dynamically
chosen, according to the system state. The novelty of the paper is how
the reward function, state, and action space are modelled. A series of
experiments were conducted to determine the best DQN network size
and the most influential hyperparameters for training.
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1 Introduction

The Industry 4.0 and emerging technologies offer new possibilities for dynamic
scheduling strategies using Machine Learning (ML) techniques and algorithms
[19]. This brings with it a number of significant new challenges and planning
opportunities. Since different rules can be applied to different situations, it can
be difficult for the decision-maker to select the best rule at any given time.
Moreover, dispatch rules are limited to their local information horizons, so, there
is no rule that exceeds others by different goals, scenarios and conditions of the
system [15]. Many approaches have been taken in the literature to address the
problem of scheduling and production optimal control, and [3] presents a very
comprehensive literature review. In the literature [7] suggests that real-time
knowledge of the production system can lead to significant improvements in
dynamic scheduling performance. Even a decentralized scheduling approach can
bring benefits to the performances of a production line [4]. To overcome problems
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that might occur when dealing with problems in which there is no complete
knowledge of the system dynamics the methods and the algorithms of the ML,
the deep learning (DL) [8] and reinforcement learning (RL) [9] can be exploited.
In [10] convolutional and generative adversarial neural networks are employed
in manufacturing and in dynamic scheduling, also Heger in [5] proposes a ML
method that adjusts the parameters of the dispatching rule based on the system
state. The method of Deep Reinforcement Learning (DRL) is the proper way to
produce a self optimization scheduling policy, so that the accurate simulation
and high performance data provided by a simulation tool can be used. DRL
has recently been studied and used in the manufacturing systems because its
characteristics allow it to address decision-making problems that can be difficult
in today’s complex and changing manufacturing systems environment [21]. A
RL-based task-assigning strategy to enable multi-project scheduling in the Cloud
Manufacturing perspective is addressed in [2]. The aim of the present paper is to
create an “intelligent” tool that updates its choices in response to changes in the
production line’s situation. It can have a potential practical use because the data
from the production line can be sent to a controller as inputs, and a decision
can be made in the event of a disruption or a sudden change in the line. In [11]
there is a similar approach to the one here proposed, but their goals are different
(minimize the makespan), and even the design of the RL model, as in their case
is implemented with Petri Net. In [12] there is the implementation of the RL
using DQN combined with edge computing framework, for the scheduling of a
job shop. Otherwise the approach proposed here is validated with a flow shop
and a series of experiments is carried out to evaluate the best hyperparameters
and network structure to be used by the DQN to achieve the best performance
values. Besides the manner in which state, reward function, and action space are
modelled is what distinguishes this approach from other presented in literature.

2 Problem Formulation

In this section we will discuss about the problem of scheduling in a flow shop
with DRL as the paper focuses on the construction of an DRL-supported method
that employs the DQN to choose the best rule for scheduling jobs on machines
of a flow shop production line. Reinforcement Learning (RL) is a mathematical
formalization of a problem involving decision-making. Since it focuses on goal-
directed learning from feedback, RL is distinct from other Machine Learning
approaches. Instead of being told what actions to take, the learning agent must
find out for itself which actions result in the greatest reward, by putting them to
the test by “trial and error”. The learning agent refers to the entity that acts and
learns from the environment (simulation model) through observations, performs
specific actions, and receives a reward. The virtual environment is the world
in which the learner works. The observation is state-related: the learning agent
receives knowledge about the current state of the system. Every piece of informa-
tion contained in a system is almost impossible to know, therefore only a selected
subset of real information is provided for the learning agent in the form of an
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observation. Deep Reinforcement Learning (DRL) is a method of Reinforcement
Learning that employs Deep Neural Networks (DNN) to approximate the value
function and the representation of the state and the action space. The issue is
that dispatching rules are not always the best ones; depending on the configu-
ration of the problem and the conditions, one rule may be superior to another.
In the literature the decision making problem related to the best dispatching
option to choose in a flow shop has been assessed by [14]. The authors consider
as a point of strength not to require training but only the optimization of the
network’s weights to achieve good performances. Otherwise, we investigate how
develop the network of a suitable dimension with certain values of hyperparame-
ters to accomplish this task. Simulation has been extensively used to investigate
the performance of dispatching rules. Aside from some general and common find-
ings, one widely accepted conclusion is that on a global scale, no dispatching rule
is superior to the others. Certain ones, such as shortest processing time (SPT),
perform well on some performance measures, such as mean flow time (the amount
of time jobs spend in the system), but poorly on others, such as maximum job
lateness. As a result, their performance is highly dependent on the studied sys-
tem’s configuration, operating conditions, and the performance criterion used to
test the rules. As a result, decision-makers can have difficulty determining which
dispatching rules are best suited to their problem. Simulation samples are used
as training sets in the learning approaches that have been proposed. These sets
provide examples of dispatching rule choices that have resulted in good or poor
results, allowing an automated system to learn. The production line simulated
is based on the work of Hoop and Sperman. The authors in [6] investigated the
behavior of a CONWIP production line under various conditions. The scenar-
ios depict the best and worst possible performance of a CONWIP production
line, respectively. They studied the action of a production line in a real-world
scenario (the Practical Worst Case, PWC) in which the processing times of job
are exponentially distributed through the workstations, in a balanced line (the
average working time is the same for each phase of work). Since system entities
do not respond autonomously to environmental changes in a CONWIP [1] we
propose a system/model that dynamically identifies, with the use of DQN, the
best rule to use for job processing according to the system condition.

3 The Proposed Method

In recent years, a new algorithm known as deep Q-network (DQN) has been
designed; it combines a classic RL algorithm known as Q-Learning with a
deep neural network (DNN). Mnih in [13] proposed this algorithm. DQN is
an RL tool and an extension of the Q-learning approach in which a deep
neural network replaces the state-action tables. The DQN’s learning of the
value function is affected by weight changes based on the loss function: L; =
(Elr + v mazq Q(s(t41), ar)] — Q(s¢,a;))? in which Efr + maz, Q(s(t4+1), ar )]
represents the optimum predicted reward associated with the transition to the
state s(;41); r is the reward associated with the action a; and the state s;; is the
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discount factor used to balance immediate and potential reward; and Q(s¢, az )
is the network’s approximate value. Back-propagation is used in the network to
propagate the errors calculated by the loss function, which fits the principle of
gradient descent. The policy’s behaviour is determined by a € -greedy approach
to strike a balance between exploring new states and manipulating existing good
policies. Regarding the method proposed, the reward function is formulated in
accordance with the work of Hoop and Sperman, so the function will be linked
to the throughput (TH) of the line. The function have its intersection with the
x-axis, representing the T H,,opiie Of the line, at the TH relative to the PWC,
T Hpw; it is asymptotic to zero, because the TH is a quantity that cannot take
negative values; and it has its maximum in the TH relative to the best case sce-
nario. The TH corresponding to the best case is compensated with the highest
reward, and values greater than this are evenly and equally weighted.
log(% THmobite) . )
reward = 10g((1’o+v“;v—1)m)’ if  THmobite € [057] (1)
SCOTEmaz, if  THmopile € [rp; o0

In (1), THopite is the throughput calculated in a time window of 240 min, wg
is the critical WIP of the production line, W is the amount of the WIP set
constant in our CONWIP flow shop and r is the rate of the workstation that
has the highest long-term utilization that is the TH in the best case (Hopp and
Sperman in [6]). The scoremq, in the (1) is the max reward that the system
can achieve and in this work we chose to set it at 100 in order to balance the
penalization and/or rewarding and the generalization of the learning. Shi et al. in
[20] looked into the issue of how to model the state in an RL approach. The aim
of [20] is to schedule tasks in the production line avoiding conflicts. In this paper,
we have modelled the state that takes into account the jobs’ characteristics as
well as the line’s current parameter. The vector of observations (Si, ..., S20 in

job_enter job_exit
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Fig. 1. The representation of the approach proposed
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Fig. 1) that the DQN algorithm uses as input for training consists of the number
of jobs in the queue, the sum of the processing times in the queue on each
machine, the standard deviation of the processing times in the queue, and the
predicted utilization on each machine. The learning agent selects the rule to
use for each machine and schedules jobs for this delta T based on the chosen
rule for an interval of time equal to the raw time of the line. The space of
possible actions that the system can execute is linked to the scheduling rule
chosen; each machine can choose between three different rules. The first rule is
First In First Out (FIFO). The second is SPT, which schedules jobs with the
shortest processing times. The third is longest processing time LPT. Each action
represents a possible combination of rules for the five machines, e.g. [SPT, SPT,
FIFO, LPT]. The number of potential choices would be 3°, that is 243, using
three rules for each of the five machines (see Fig. 1).

4 Experimental Approach

The most important aspect of this work is the development of a system, which
allows us to dynamically select the processing rule for each machine and the eval-
uation of the DQN network’s characteristics. We used Anylogic, a multi-method
simulation software, and a framework called Reinforcement Learning for Java
(rl4j), which is built into the DeepLearning4J library. The model is a flow shop
made up of 5 workstations/machines that is simulated using Anylogic’s discrete
event simulation (DES) tool. At the beginning of the simulation an initial num-
ber of jobs are injected in the line, as the production system is a CONWIP, this
number will be kept constant in the system. The jobs that are processed in the
system are modeled as agents using a simple state-chart (queue-working-final
state), and their processing times are determined by an exponential distribu-
tion with a mean of 10 min, which has a high degree of variability and is more
reflective of a real manufacturing system. The required functions are added to
the simulation model to enable communication between the model and the RL
system. In this paper, an experimental campaign was built to determine the
best network configuration in terms of size and hyperparameters. The hyper-
parameter’s values used were chosen based on the scientific literature and the
characteristics of our problem. The learning rate has been set to 0,001, which
is an acceptable value since a high coefficient (e.g., 1) causes parameters to
leap, while a small one (e.g., 0.00001) causes them to inch along steadily [18].
Regularization is a technique for avoiding overfitting. The “L2” regularization
algorithm is used, which adds a term to the objective function that decreases
squared weights. L2 improves generalization, smoothes model output as input
moves, and assists the network in ignoring weights it does not need [18]. As
n [16], RMSProp (for Root Mean Square Propagation) is used as a gradient-
ascent algorithm, and it is a process in which the learning rate is adapted for
each parameter in the network. The hyperparameter -, that is the discount fac-
tor, is set to 0.99. The parameter defines how valuable future rewards are. This
aids in demonstrating the convergence of specific algorithms. We also compare
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the performance using Adam (a more recently developed updating technique)
as in [17], it derives learning rates from estimates of first and second moments
of the gradients. We have investigated 8 training experiments: 2 different size of
the network (1 hidden layer-150 nodes and 2 hidden layers-300 nodes); 2 values
of the L2 regularization (0-0.001); and 2 types of updating technique RMSProp
and Adam. The L2 regularization is what makes the learning process more gen-
eral, allowing the learning agent to complete its task without overfitting. Since
we want to see how the structure affects the results, we aggregate the data and
look at the pattern of the performance parameters, in terms of rule chosen, when
changing the number of layers and the values of hyperparameter. The learning
agent frequently chooses the SPT (see Fig.2), rule for which we have perfor-
mance of high TH almost equal to the TH of the best case studied by Hopp and
Sperman in [6], since the reward function is modeled in optics of maximization
of the TH. Discussing the results, we can say that when the process of learn-
ing is more generic (L2 = 0.001), the policy resulting learns to achieve a good
combination of throughput (TH) and cycle time due to the choice of the SPT
rule which is known to be one of the better rule to solve the scheduling problem
when maximise the TH. Instead, when the regularization is set to 0, the system
returns a policy that chooses even the other two rules (FIFO and LPT). Overall,
we can say that since we have set the goal of maximize the TH, the proposed
tool has learnt how to schedule a good combination of DR. Considering the per-
formance linked to the dimension of DNN, since the number of time the SPT
rule is chosen by the learning agent is greater in the case the DNN is smaller
(1 hidden layer and 150 nodes), we can say that we can also have smaller training
time. Discussing the learning process it converges in the 100 epochs considered.
It is true in most of the setting in terms of mean reward, as it increase over time
until it reaches a maximum (Fig. 3).

FIFO

000 100 200 300 400 500 600 700 800 900 1000 11,00 000 100 200 300 400 500 600 700 800 900 10,00

Fig. 2. Frequency of the DR choice. On the left, 1 Hidden Layer 150 nodes. On the
right, 2 Hidden Layers 300 nodes.
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Fig. 3. The average reward per epoch (1 Hidden Layer 150 nodes, 12=0, Adam).

5 Conclusion

In this paper we presented an intelligent system consisting of machines and a
learning agent developed with DQN that have decision-making autonomy and
intelligence to learn about rapidly changing environments. What is new about
the approach proposed is how the state, the action space and the reward are
formulated. We modeled the state by taking into account the characteristics of
the jobs in the queues of the working station. The action space is the rule chosen
by each machine and the reward function is modelled considering the maximiza-
tion of the throughput and the work of [6]. The simulation model is a flow shop
made up of 5 machines. The learning agent chooses a rule for each machine.
We have investigated 8 training experiments changing the size of the network,
and two of the hyperparameters of the training. The method proposed is vali-
dated considering the results of the simulation, according to which, for a reward
function focused to maximize the throughput, the system chooses for the most
of time the SPT rule in any scenario. These results can put the foundation for
a wider research, considering more complex production systems and also other
dispatching rules that are much more feasible in a real manufacturing environ-
ment. In order to make the proposed tool more generic and applicable in every
manufacturing configuration, it would be possible to modify some parameters
and scenarios. In a practitioner point of view, this approach will generally pro-
vide managers with a method for decision-making to optimize production system
control in highly complex and dynamic environments.
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