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Chapter 12
Robot Path-Planning Research 
Applications in Static and Dynamic 
Environments

Firas A. Raheem, Safanah M. Raafat, and Shaymaa M. Mahdi

Abstract The purpose of path planning is primarily to find a set of continuous 
motions for moving robots from an initial point and ending at the goal point in 
Cartesian or configuration space. Solving the robot arm path-planning problem can 
be considered as one of the most significant aspects of robot navigation to guarantee 
the best path free of obstacle collisions before tracking. The complexity of the robot 
environment is one of the most important characteristics of robots, especially in 
environments that contain static and/or dynamic obstacles such as robots, human 
operators, and other moving objects. The problem of path planning is subjected to 
the constraints of finding the possible path. The constructed path satisfies specific 
optimization criteria if the environment is known or has a property of intelligence if 
the environment is unknown. Many recent path-planning approaches have optimiza-
tion and intelligent properties when the robot environment is partially unknown. In 
addition to intelligent methods that are used for planning a successful path, recent 
advances in path-planning methodologies involve using both heuristic and meta-
heuristic with artificial intelligence concepts with relevance across various field 
types with great application in calculated optimization of sustainability and 
resource use.
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12.1  Introduction to Path Planning

In any robot workspace, the solution of the motion control problem includes firstly 
finding a suitable path which can be indicated as computing the movement of any 
robot joint continuously, which enables a collision-free robot motion with all located 
obstacles in its environment from the start point or configuration to the goal point or 
goal configuration at any chosen point of its motion path.

Planning a path requires a map depicting the robot and its surrounding environ-
ment, so that the robot knows its position on the map and can determine its location 
using the map to avoid transitory obstacles on its path. How to find the robot loca-
tion and how to take into consideration the undefined location information will be 
the core of the rest of this chapter.

In a cluttered and crowded environment with obstacles, path-planning solutions 
for manipulators and autonomous robots and the determination of optimum path are 
considered to be attractive research topics. Most research focuses on the working 
conditions of the robot and the application of path-finding steps in fully known 
static or dynamic environments. In fractionally known or totally undiscovered, 
uncharted, unexplored environments, the steps of planning a path are difficult and 
cannot be applied directly. The robot encounters uncertainties, reflected in how it 
makes decisions to continue moving through unexplored and explored areas of the 
robot workspace. These types of planning methods are related to known areas and 
operate in a work zone where the target point is placed. Moreover, we will discuss 
the type of data structure required to support outstanding algorithms for path 
planning.

Before considering path-planning research, it is useful to resolve the problem of 
solving path-planning issues from a human perspective – how people plan paths.

From the perspective of investigating path-planning issues, it should be noted 
that the robot path planner must obtain knowledge of the strategy used and the 
related features that must be considered when adjusting the route-planning algo-
rithm (Hameed 2019).

12.2  Path-Planning Concept with Obstacle Avoidance

Planning a path is a subtask of general motion planning tasks. Finding a collision- 
free path from the initial configuration to the target configuration is a purely geo-
metric challenge. Obstacle avoidance means that the robot moves in its workspace 
with its diverse mobility and controllability without colliding with environmental 
obstacles. The task of planning paths and avoiding obstacles is more difficult for 
manipulators than for mobile robots; the problem is not only to find the path of the 
end effector but also to avoid collisions with manipulator links. Path planning 
requires information of the size of the robot, first and final robot configurations, 
work environment, and static stationary obstacles.

F. A. Raheem et al.
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Planning a trajectory can be considered independently from path planning. 
Trajectory planning is defined as the problem of determining the path as a function 
of time, which means determining the velocity and the acceleration of the robot at 
each point (Hussain 2017).

12.3  Path-Planning Classifications

The solution of robot path-planning task can be divided into five categories: (i) plan-
ning type, (ii) planning time, (iii) environment type, (iv) obstacle motion behavior, 
and (v) according to the robot space used for trajectory computations. Category (i) 
includes global path planning and local path planning. Through global path plan-
ning, the robot knows all the information in the work area prior to planning and can 
directly determine its path without collision. Global path planning is sometimes 
referred to as a deliberative method. Planning based on robot sensors’ information 
measured at each sample of motion is referred to as local path planning where the 
environment is incomplete or unknown and the robot uses feedback from sensors to 
find the path. Category (ii) includes planning a path depending on the time to exe-
cute the robot motion and can be divided into online planning and offline planning. 
Online real-time planning affects robot movement in systematic environments. 
Offline planning provides a complete path before the robot’s motion. Category (iii) 
includes path planning subject to the environment type and can be classified into 
known, totally unknown, and partially known environments. Category (iv) depends 
on the obstacle motion behavior and can be divided into static stationary obstacles 
and dynamic or movable obstacles (Hussain 2017). Category (v) divides the robot 
path and trajectory computations according to Cartesian space, joint space, and con-
figuration space.

In robotics, trajectory planning strategies are computed and combined together 
according to the different situations of the robot and its environment that match the 
above classifications (Hameed 2019); these classifications are described in detail in 
the rest of this section.

12.3.1  Path Planning According to Obstacles

• Static obstacles
• Moving or dynamic obstacles

12 Robot Path-Planning Research Applications in Static and Dynamic Environments
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12.3.2  Path Planning Depends on Environment 
and Obstacle Types

• Known static environment
• Known dynamic environment
• Partially known static and dynamic environment
• Unknown static environment
• Unknown dynamic environment

12.3.3  Types of Planning Methodologies

• Global planning: This methodology assumes that the total information that rep-
resents the robot environment is known and available.

• Local planning: This methodology uses only a part of the global model to find 
the robotic path and control the motion, which is a disadvantage due to the loss 
of path optimization cases. The local plan is effectively suffering from 
local minima.

A preferred key point of the local and global methods is that local planning 
calculations are not as complex as global calculations. This is especially important 
when the world model is updated with each sample due to sensor collision data 
measurements which pose a known problem to autonomous robots.

12.3.4  Path Planning According to Robot Space

• Cartesian space
• Joint space
• Configuration space (C-space)

12.3.5  Path According to Planning Time

• Online planning
• Offline planning

Path-planning schema of classifications and approaches is shown in Fig. 12.1.

F. A. Raheem et al.
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12.4  Cartesian Space Path Planning

Robot workspace or Cartesian space is the space in which the robot operates. 
Generally, the work area is the part of the environment in which the robot executes 
a motion plan. The planning problem in Cartesian workspace is the movement of an 
end effector of the manipulator on a specific path and specific trajectory. The advan-
tage of path planning in Cartesian workspace is that it is conceptually straightfor-
ward, and the required configuration of the end effector is easy to sense and 
understand. Moreover, it is easy to imagine, define, and determine the motion of the 
manipulator end effector. Inverse kinematics is applied multiple times at each point 
along the trajectory to obtain values of robot joints. Commonly, when using 
Cartesian planning algorithms, the planned path passes through singular configura-
tions of the robot manipulator, or it may override the manipulator’s reachable work-
space. In practice, in order to kinematically avoid the singularity problem of the 
manipulator, it is necessary to provide a sufficient number of via points inside the 
workable area. Cartesian trajectory planning is ordinarily used for precise local 
motion (Hussain 2017).

12.5  Path Planning Using Configuration Space

The main problem of planning a robotic path is finding a continuous, collision-free 
path for the robot from start to target configuration. Configuration space (C-space) 
can be considered an important tool for finding and formulating the path solution. 
C-space points are computed mathematically, disregarding all singular points so 
that the planned path represents a unique inverse kinematic solution, without redun-
dancy or undefined states. Another benefit of using C-space for path planning is that 
a final path can be summarized easily in a unified method of finding the appropriate 
map that converts the robot’s complex geometry to a single C-space point. The main 
difficulty of using C-space planning is that the intricacy of the path-planning 

Path planning 

Environment Time Type 

Dynamic Static Of-LineOn-LineGlobal Local 

Known Unknown Partially 
known Known Unknown 

Fig. 12.1 Classifications and approaches of path planning
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difficulties raises exponentially with increasing number of degrees of freedom 
(DOF), which leads to increasing the C-space dimensions and the required param-
eters to specify the robot configuration.

The first contribution to precise C-space path planning was made by Lozano- 
Perez. Lozano-Perez and Wesley proposed simplification of complex robot geome-
try shape to a defined point in “configuration space” (C-space). In his path-planning 
method, two sub-problems were specified: (i) finding the C-space map and (ii) find-
ing the appropriate collision-free path. Configuration space requires intensive com-
putations and is often overlooked by researchers (Hussain 2017), though is a useful 
tool for finding path solutions.

12.6  Heuristic Methods

12.6.1  A* Algorithm

The A* algorithm is the most commonly used search algorithm for finding the short-
est path. It represents an extension of Dijkstra’s algorithm. The usage of the heuris-
tic process is what makes the A* different from other graph search algorithms. The 
heuristic provides an estimated distance from a current node to the goal node, 
denoted by h(n). The A* takes into account the cost from the start node to the cur-
rent node, denoted as g(n). The cost function is determined as follows (Raheem and 
Hussain 2017a, b):

 
f n g n h n� � � � � � � �  (12.1)

Each C-space node in the total map is represented by a joint angle pair, n : (θ1, θ2). 
The A* algorithm includes two lists: open list (O_List) and closed list (C_List). It 
chooses the nodes that have minimum cost functions to create a path from the start 
node to the goal node.

12.6.2  D* Algorithm

Algorithm D* or “dynamic algorithm A*” behaves similarly to algorithm A*. The 
cost of the arc changes dynamically during the execution of the algorithm. The D* 
algorithm uses a Cartesian grid made up of eight-connected nodes to attain the robot 
position. The D* algorithm can be used to solve the path-planning problem based 
on the assumption that the robot must move in free space from the start point and 
continue exploring the area in order to find the minimum-cost path until reaching 
the destination point. The D* algorithm analyzes the robot’s environment and 
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expresses the problem space as a series of cells that indicate the position of the robot 
with the corresponding arcs or connections (Choset 2007; Nosrati et al. 2012).

Each cell in the D* algorithm contains an estimated cost of the path to the desti-
nation point and a back-pointer to one of its neighbor cells as an indicator of the 
destination direction. The arc’s direction (connections) between a pair of neighbor-
ing cells is assigned with a positive scalar value of the motion cost (Choset 2007; 
Nosrati et al. 2012).

Algorithm D* uses a reverse direction search strategy, in which the D* algorithm 
forces the robot to start searching from the target cell and moves backward to other 
cells along arcs until it reaches the starting cell by repeatedly selecting a cell from 
the open list to evaluate and calculate the path cost to the goal. The D* algorithm 
moves from cell to cell along arcs and repeatedly selects a cell from the open list to 
evaluate and calculate the cost to the target cell. Finally, eight minimum cost neigh-
boring cells are put on the open list (Raheem et al. 2019).

The D* algorithm sets conditions that specify when all alterations are made, 
either to find a new path or to continue using an old optimal path that has been cho-
sen previously. D* is computationally efficacious and memory active and can be 
applied in unrestrained areas. Formulating the conditions for repeating the optimal 
search path problem in a directed graph includes marking the arcs by the transition 
cost values   to prepare a cost range on the continuum. The arc cost corrections that 
are normally measured by sensors can be saved for a little time, while the well- 
known, approximately evaluated and calculated arc costs are the elements that make 
the environment map. The D* algorithm ensures keeping a closed list to save the 
path nodes and obstacles nodes and opens an expansion list for further path compu-
tations. In the D* algorithm, the arc cost parameter changes dynamically at each 
iteration. The D* algorithm sense is dynamic, and the path traverse cost can be 
minimized or maximized dynamically. This strategy can be used for any plan com-
putation, including visibility graphs and grid-cell structures (Hameed 2019; Stentz 
1994). The objective function (F) D* can be illustrated by A*:

 F g h� �  (12.2)

where the cost estimated from the initial point is g while h is the motion cost to the 
target point.

Cost changes to neighbors are propagated as shown in Fig. 12.2a, b.

 
N x x1 2 1,� � �  

 
N x x1 3 1 414, .� � �  

 
N x x in case of x has an obstacle and x is a fr1 4 100000 4 1, ,� � � eee cell.

 

 
N x x in case of x has an obstacle and x is a f1 5 100000 4 5 1, . ,� � � rree cell
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The initial node has an arc cost equal to (0.0), and the arc cost of the vertical and 
horizontal nodes can be computed as:

 
Fromx tox1 2 0 0 0 1 1

2 2
� �� � � �� � �

 

 
Fromx tox1 4 0 1 0 0 1

2 2
� �� � � �� � �

 

In case of a diagonal nodes calculation, the arc cost is:

 
Fromx tox andsoon.1 3 0 1 0 1 2 1 414

2 2
� �� � � �� � � � .

 

12.7  Theory of Particle Swarm Optimization (PSO)

PSO is an optimization method that is considered a stochastic onerous technique 
akin to the intelligent flying motion of birds. PSO was inspired by natural social and 
dynamic motion behavior, as well as the communication of fish, insects, or birds. 
Convergence speed and quality of solutions are advantages of the technique 
(Raheem and Hameed 2018; Boonyaritdachochai et al. 2010).

The principle of PSO relies on generating a fixed number of particles at random 
positions in a certain workspace, with velocity of particles specified randomly. Each 
particle has a memory that stores all the best cell locations that have been visited 
prior to the current cell location; and stores the improved fitness over time (Poli 
et al. 2007). In each PSO method iteration, the posij and veli j

t
, vectors of particle i 

Fig. 12.2 Node expansion and calculation. (a) Node expansion, (b) node expansion calculation
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are adjusted for each j dimension to make the particle i toward either the previous 
best vector pbestij or toward the best vector that represent the swarm’s (gbestij).

 
vel w vel c r pbest pos c r gbesti j

t
i j
t

j ij ij j i, , , ,
� � � � � � �� � � � �1

1 1 2 2 jj ijpos�� �
 (12.3)

Each particle (the point that is chosen from D* path) has an updated position 
according to the equation below, using the new velocity for that particle:

 
pos pos velij

t
ij
t

ij
t� �� �1 1

 (12.4)

where the cognitive coefficients c1and c2 are applicable under the condition 
(c1 + c2 ≤ 4) and r1, j and r2, j are real numbers that can take a value between [0, 1] 
randomly, while controlling the momentum of the particle can be done by the weight 
of inertia w. The velocity velij can take a value inside the range [−velmax, velmax] to 
decrease leaving chance of being out of the search space by the particle. Given a 
space of search that can be identified within the bounds [−posmax, posmax], then the 
velmax value setting is usually velmax = k * posmax , where 0.1 ≤ k ≤ 1.0.

A weight (w) that represents large inertia has two cases when its value is small, 
making the global search easier. A large w value simplifies localization (Poli 
et al. 2007).

12.8  Research Case Studies

12.8.1  Heuristic Path-Planning Enhancement Based on Free 
Cartesian Space Analysis

In heuristic path planning, when free Cartesian space analysis is known, the shortest 
path and trajectory planning of the two-link robot arm with 2 DOF in the 2D static 
known environment can be analyzed. The analysis deals with three main problems. 
The first concern regards the construction of free Cartesian space by analyzing the 
inverse kinematic solutions, which guarantees collision-free path planning. The sec-
ond problem focuses on generating the shortest path that satisfies the aims of motion 
and applies the D* algorithm. The third problem is the selection of the specified 
number of intermediate via points and attaining the corresponding smooth trajec-
tory through using fifth-order polynomial equations. Results illustrate that free 
Cartesian space ensures a collision-free path and trajectory planning (Raheem 
et al. 2019).

12 Robot Path-Planning Research Applications in Static and Dynamic Environments
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12.8.2  Implementation of D* Algorithm for Path Planning

The modification of the D* algorithm is proposed for solving the problem of gener-
ating the shortest collision-free path for a 2-DOF planar robotic arm in a known 
stationary (static) environment. The primary principle of applying the D* algorithm 
in proposed robot arm path planning makes use of navigation and environment and 
analyzes criteria to construct the short path of the arm end effector subject to certain 
constraints regarding safety and smoothness.

The proposed method is composed of three stages: free Cartesian space analysis 
followed by path construction and smooth trajectory generation. In the first stage, 
the proposed system is initialized by selecting a robot arm environment where the 
D* algorithm plans the shortest path. Subsequently, the analysis of the correspond-
ing free Cartesian space has been made according to the free Cartesian space analy-
sis procedure in order to reveal free space, ensuring a collision-free path planning 
(Raheem et al. 2019).

In the second stage of path construction, the D* algorithm is applied to generate 
the shortest path from start to goal points by avoiding all the obstacles. The principle 
of operation of the proposed D* algorithm is local planning for the shortest path 
within the free Cartesian space until it reaches the goal point. Moreover, the D* 
algorithm is initialized by placing the start “current” node on the open list, which is 
inserted into the currently planned path. Subsequently, the current node is expanded 
to eight connected neighborhood nodes for determining the next arm movement or 
the “candidate next node.” However, only nodes that belong to the free Cartesian 
space are used. Ultimately, this iterative process of node expansion and selection is 
terminated as soon as the goal point is appended to the closed list (Raheem 
et al. 2019).

In the third stage of the method, fifth-order polynomial equations are applied for 
smooth trajectory generation based on the generated path of the D* algorithm. 
Initially, several intermediate points are randomly selected from the shortest path 
generated by the D* algorithm to be added to the initial and goal points. Then quin-
tic fifth-order polynomial equations are used to add the required smoothness action 
and guarantee generating a smooth trajectory at a specific time according to equa-
tions (Raheem et al. 2019; Sreenivasulu 2012), after transforming the intermediate 
points to a joint angle using an inverse kinematics function. Consequently, a check-
ing function is applied for checking and testing the generated segments within the 
free Cartesian space. In the case of being outside the free Cartesian space, the pro-
cess iteratively selects and generates another point and corresponding trajectory 
until achieving a possible trajectory whose segments belong to the free Cartesian 
space. Subsequently, the cost value is calculated for the trajectory according to the 
following equation:

 
Trajectory Cost� � � �� � � �� �

�
� �

i

k

i i i ix x y y
1

1

2

1

2

 (12.5)
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where k is the number of the configuration that is equal to the amount of specific 
time along the trajectory, (xi, yi) representing the current coordinate of ith points of 
the trajectory.

12.8.3  Simulation Result

Environment maps with various difficulties were used to test and verify the pro-
posed method. The dimension limits of the environments from −50 to 50 cm for 
both x and y contain various shapes of static obstacles. Moreover, both robot arm 
links have an equal length of 25 cm. In addition, the suggested joint variable limita-
tions are specified as 0 ≤ θ1  ≤ 360 and 0 ≤ θ2  ≤ 360. Initially, the procedure of 
the free Cartesian space analysis has been applied to verify the required analysis for 
the environments (as shown in Fig. 12.3), in order to discover the free space and 
ensure finding a collision-free planning path. Accordingly, inverse kinematics func-
tions are applied to construct offline planning both of the free elbow-up solution 
area and free elbow-down solution area in the Cartesian space (Raheem et al. 2019).

The final smooth trajectory of the robot is shown in Fig. 12.3 which is the result 
of applying the equations of the quintic polynomial trajectory. This clarifies the dif-
ference between the planned path of the D* algorithm and the smoothed generated 
final trajectory; green points indicate the intermediate via points that have been 
selected from the planned D* path (Raheem et al. 2019).

Figure 12.4 demonstrates the movements of the arm that follow the shortest path, 
where the red line indicates the first link of the robot arm and the blue line indicates 
the second link of the robot arm.

Fig. 12.3 The planned D* 
path and generated 
trajectory. (Raheem et al. 
2019).
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12.9  Artificial Potential Field (APF) Based on PSO 
for Factor Optimization

An improved and comprehensive hybrid method for robot path planning is pro-
posed, which firstly uses PSO for determining the best value for each factor of the 
artificial potential field (APF) and makes a progressive improvement in the resultant 
path in an iterative process until the shortest path is found. A spline equation was 
used for smoothing the path and producing a final smoothed trajectory. The results 
clearly show the strength and the efficiency of the hybrid PSO and APF method 
(Raheem and Badr 2017).

12.9.1  Artificial Potential Field Theory

In a mass point path-planning case, q refers to the position coordinate of the robot 
moving in a 2D environment. The current position coordinate of the robot is referred 
to as q = [x y], while the obstacle position coordinate is referred to as qobs = (xobs, yobs); 
similarly the coordinate of the goal position is denoted by qgoal = (xgoal, ygoal). The 
parabolic shape is the general style of the artificial potential field function, where 
Fig.  12.5a shows the attractive potential, which increases quadratically with the 
distance to the target point (Raheem and Badr 2017).

U q k d q qatt a goal� � � � �1

2
2 ,

 
(12.6)

where ka refers to the relative factor that constructs the attractive potential surface, 
d(q, qgoal), which is the Euclidean distance from the current position of the robot to 

Fig. 12.4 Two-link robot arm movements. (Raheem et al. 2019).
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Fig. 12.5 Potential artificial fields, (a) attractive surface, (b) repulsive surface

12 Robot Path-Planning Research Applications in Static and Dynamic Environments
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the goal point (target) qgoal. The attractive force can be calculated as the attractive 
potential field negative gradient (Raheem and Badr 2017):

 
F q U q k d q qatt att a goal� � � �� � � � � � �,

 (12.7)

There is a relative relationship between the repulsive force and the obstacle distance 
to the robot position. The surface of the potential repulsive was constructed using 
the repulsive forces produced from all obstacles located within the environment. 
The repulsive potential function can be represented by Eqs. (12.3) and (12.4), while 
Fig. 12.5b represents the corresponding repulsive surface (Raheem and Badr 2017).

 
U q U qrep

i
repi� � � � � �

 (12.8)

where Urepi(q) denotes the repulsive potential field which is constructed by the 
obstacles and i represents obstacle number.

 

U q K
d q q d

d q q if d q qrep rep
obs
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�
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�
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�
�� � � �1

2

1 1

0
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,
, , �� �

�
�
�

��
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d

if d q q dobs

0

00 ,
 (12.9)

The variable q represents the current position of the robot, n refers to a real integer 
number, the obstacle position is qobs, and d0 refers to a positive number, which rep-
resents the distance to the efficacious obstacle; a distance that measured between all 
obstacles and the robot can be denoted as d (q, qobs), while the repulsive potential 
surface factor which is an adaptable constant is represented in Eq. (12.9) as Krep. The 
overall repulsive force has a negative slope due to its nature as explained in Eq. 
(12.10) (Gue et al. 2013):

 

F q U q K
d q q d

q q
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obs
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q qob
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00
 (12.10)

The two surfaces, the attractive potential surface Uatt  and the repulsive potential 
surface Urep , can be combined into the total potential field as shown in Eq. (12.11):

 
U q U q U qatt rep� � � � � � � �  (12.11)

The applied forces toward the robot are produced from the negatively gradient that 
utilizes a well-known method called a steepest descent to drive the direction of the 
robot to its desired target value.
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F q U q U q Uatt rep� � � �� � � � �� � � ��  (12.12)

where ∇U represents the gradient vector of U, while the total impact force that 
affects the robot work can be calculated as the two components’ summation, the 
attractive vector force and the repulsive vector force, Fatt and Frep, respectively (Li 
et al. 2000):

 
F q F q F qatt rep� � � � � � � �  (12.13)

12.9.1.1  Proposed Method

The optimization of the artificial potential field factor (APF) uses the PSO tech-
nique. Two modifications have been carried out. The force and its direction in the 
ordinary artificial potential field will be initially modified. The environment can be 
represented and converted to a grid of points. Each point on the grid has a force that 
is computed from two sources: the attractive force due to the goal point and the 
repulsive force due to the obstacle (if the range of influence covers these points). 
Each point can be affected by two forces, firstly toward the x-axis direction and 
secondly toward the y-axis direction. Some researchers change these forces to 
impose the path of the robot according to Eqs. (12.14), (12.15), (12.16), and (12.17) 
(Raheem and Badr 2017):

 
F F F Fx total x att x rep y rep_ _ _ _� � �

 (12.14)

 
F F F Fy total y att y rep x rep_ _ _ _� � �

 (12.15)

 
F F F Fx total x att x rep y rep_ _ _ _� � �

 (12.16)

 
F F F Fy total y att y rep x rep_ _ _ _� � �

 (12.17)

The results of Eqs. (12.14) and (12.15) (Fig. 12.6) and Eqs. (12.16) and (12.17) 
(Fig. 12.7) clarify that all forces have one direction usually surrounding the obstacle.

In this work, the third term in Eqs. (12.14) through (12.17) has been removed; 
another term has been added, which was found by a trial and error tuning process to 
be appropriate to specific cases; and this was added to each term in the equation 
making the overall force in the coordinates of x-axis and y-axis going toward the 
target point and simultaneously ensuring a collision-free path as presented in Eqs. 
(12.18) and (12.19) and Fig. 12.8:

 
F F Fx total x att x rep_ _ _ .� � � 0 75

 (12.18)

 
F F Fy total y att y rep_ _ _ .� � � 0 5

 (12.19)
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The second modification includes focusing on the APF attractive force factor (ka) 
and repulsive force factor (kr). This modification plays a significant function in this 
proposed work. In case the value of the attractive force is very high, only its effec-
tiveness will be considered. Furthermore, if it has a small value, then its effect can 
be disregarded. PSO is applied to determine the forces; the repulsive force factor 
will affect a certain particular area, which indicates the APF influence around obsta-
cles that need to be optimized. The mathematical application of the PSO algorithm 
is according to Raheem and Badr (2017).

The details of the proposed method include the computation of the factors of 
both attractive and repulsive forces and can be listed in accordance with the follow-
ing ten steps:

Fig. 12.6 The forces’ 
direction according to Eqs. 
(12.14) and (12.15). 
(Raheem and Badr 2017)

Fig. 12.7 The forces’ 
direction according to Eqs. 
(12.16) and (12.17). 
(Raheem and Badr 2017)

F. A. Raheem et al.
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 1. Initialize the PSO parameters and specify the APF factors ( Ka, Krep ) and their 
suitable ranges.

 2. Initiate the generation APF factors randomly according to the suggested extents.
 3. Perform the algorithm APF method instantly by using the factors that are ran-

domly generated after the construction of the APF, and then find a possible path 
with the calculations of the cost function.

 4. Update the PSO algorithm factors which include the local and the best global 
factors in accordance with the acceptable path.

 5. Repeat the previous three steps, (step 2 to step 4) for the chosen particle number.
 6. Update the values of position and velocity according to the mathematical equa-

tions below for the following APF factor calculation:

 

v k w v k c rand P k x k

c rand P k

i i iatt iatt

gatt

�� � � � � � � � � � � � � �� �
� � �

1 1

2 �� � � � �� �x kiattL  (12.20)

 
x k x k v ki i i�� � � � � � �� �1 1

 (12.21)

 

v k w v k c rand P k x k

c rand P k

i i irep irep

grep

�� � � � � � � � � � � � � �� �
� � �

1 1

2 �� � � � �� �x kirepL  (12.22)

 
x k x k v ki i i�� � � � � � �� �1 1

 (12.23)

where rand is a random real number between [0, 1], Piatt is the best position for the 
𝑖𝑎tt particle for finding the attractive factors, xia is the current existing position, and 
xiaLis the best local position where the letters (att) indicate the attractive factors, a 
similar definition to the Eqs. (12.20) through (12.23) where the letters (rep) indicate 
the repulsive factor.

Fig. 12.8 The forces’ 
direction according to Eqs. 
(12.18) and (12.19). 
(Raheem and Badr 2017)
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 7. Apply the APF method using the updated values of the repulsive and the attrac-
tive factors, then compute the cost objective function. 

 8. Update the APF values locally and globally to determine the factors’ best 
global values.

 9. Repeat the previous three steps (step 6 to step 8) using the updated factors 
according to the selected population number and the number of iterations.

 10. After finding the best value globally for each factor, the related route generated 
will be the best computed path.

12.9.2  Simulation Result

12.9.2.1  The First Proposed Environment

Figure 12.9 shows the first robot navigation environment using the proposed method 
of APF-based PSO as a planning algorithm to find an optimal path, while the 
smoothed path after using the spline method is shown in Fig. 12.10. In this sug-
gested test environment, the robot moves from the start point (2, 4) and reaches the 
target point (−1, −6), in which seven static obstacles are included in a test environ-
ment of dimensions [−7 to 7] for both x and y coordinates.

12.9.2.2  The Second Environment

Figure 12.11 represents the first resultant path of APF-based PSO, but Fig. 12.12 is 
the final smoothed path after applying the spline equations for smoothness. In this 
environment, seven stationary (static) obstacles are included, and the starting point 

Fig. 12.9 Robot path 
planning for the first 
environment after 
employing the APF 
method. (Raheem and Badr 
2017)
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is at (−6,6) while the target point is at (6,−6); the environment has the same 
dimensions.

12.10  Dynamic Environment Path Planning Using D* 
Heuristic Method Based on PSO

This method is used for robots to find a safe and short route of planning in a dynamic 
moving obstacle environment. These moving obstacles can be various objects, peo-
ple, animals, or other moving robots. Hybrid robotic path-planning methods use the 

Fig. 12.10 Robot path 
planning for the first 
environment after 
employing the spline 
method. (Raheem and Badr 
2017).

Fig. 12.11 Robot path 
planning for the second 
environment after 
employing the APF 
method. (Raheem and Badr 
2017)
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combination of heuristic calculations and an optimization algorithm. The D* heu-
ristic method was used again to determine the shortest path. In addition, the method 
of particle swarm optimization (PSO) can be applied after the D* algorithm for 
further improvement of the path and to provide the final optimal path. Computations 
of this hybrid method in a dynamic environment consider complete changes at the 
domain of each sample of motion. The effectiveness of this hybrid proposed method 
was verified through simulation results (Raheem and Hameed 2018).

12.10.1  Proposed Method: Hybridization of D* Heuristic 
Method Based on PSO

The heuristic D* algorithm is used as an algorithm for path planning, which relies 
on node expansion in a test environment with dynamic moving objects. The creation 
of the test environment comprises defining the limitation of the map and starting 
and ending points in addition to the obstacles’ location and size (Raheem and 
Hameed 2018).

After the creation of an environment, the execution of the algorithm includes 
standing the robot at the goal node; it starts moving virtually with an initial expan-
sion to its eight connected neighbors. Each node has an initial cost function, and the 
robot selects the node with the lowest cost function for moving and places it in the 
D* closed list; further nodes will be placed into the open list. The huge cost- function 
dynamic obstacles that were sorted from the beginning of the procedure in the 
closed list and until reaching back to the starting node are taken into account (the D* 
method is called a reverse searching method). Upon completion of the heuristic D* 
search, the robot moves from the previously saved starting node in the closed list to 

Fig. 12.12 Robot path 
planning for the second 
environment after 
employing the spline 
method. (Raheem and Badr 
2017)
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the goal node averting all the obstacle nodes, current node, and the node of the next 
step of motion.

The moving obstacles have a constant velocity, while the mass point (a virtual 
point that represents a robotic object and can be considered as either a mobile robot 
center or after some modifications as a robot manipulator end effector) velocity is 
changing with time (MS × 𝑇𝑠) during navigation and can be determined by (Raheem 
and Hameed 2018):

 
v t

x t

MS Tx
s

� � � � �
�

�

 (12.24)

 
v t

y t

MS Ty
s

� � � � �
�

�

 (12.25)

where Δ𝑥 is the change in x-axis distance, Δ𝑦 is the change in y-axis distance, MS 
refers to the sample of motion, and Ts is the time of the sample at 0.01 s intervals.

After determining the path using the heuristic D* method, a path improvement 
stage requires applying the PSO optimization method for further path enhancement 
by eliminating the sharp edges and shortening the path. The path produced from the 
D* algorithm generally takes a stair shape. The stages of the proposed mass point 
path planning in a known dynamic environment are presented in Fig. 12.13.

12.10.2  Simulation Result

12.10.2.1  Test Environment Number One

A non-interactive path solution dynamic environment has been tested to verify the 
proposed method of path planning by finding a collision-free and shortest path solu-
tion based on the combination of the D* heuristic method and PSO optimization 
technique among the moving obstacles and the robot. In this environment, many 
obstacles have different sizes and different behaviors of motion. The environment 
contains eight obstacles, six moving obstacles with different styles of movement, 
and two static obstacles. In this critical case, only a few possible paths exist that can 
maintain the shortest route length (Raheem and Hameed 2018).

The use of the PSO and D* algorithm ensures finding the shortest path avoiding 
collisions with dynamic and static obstacles, as shown in Fig. 12.14a. The hybrid 

Fig. 12.13 Mass point proposed path-planning stages in a dynamic environment. (Raheem and 
Hameed 2018)
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approach of the D*-based PSO enhanced the path to 102.6672 cm, as presented in 
Fig. 12.14b. The cost function reaches a 3.9013 cm minimum value after 300 motion 
samples (Raheem and Hameed 2018).

12.10.2.2  Test Environment Number Two

Non-interactive path solutions in a known dynamic environment that has been tested 
to verify the proposed method of path planning by finding a collision-free and short-
est path solution based on the combination of the D* heuristic method and PSO 
optimization technique are provided here. In this environment, many dynamic 
obstacles have different sizes and different and difficult behaviors of motion. The 
environment contains six moving obstacles with different sizes and difficult styles 
of movement.

The use of the PSO and D* algorithm ensures finding the shortest path avoiding 
collisions with dynamic obstacles, as shown in Fig. 12.15a. The hybrid approach of 
the D*-based PSO enhanced the path to 106.6039 cm, as presented in Fig. 12.15b. 
The cost function reaches a 4.0651 cm minimum value after 300 motion samples 
(Raheem and Hameed 2018).

12.11  Interactive Path Solution Using Heuristic D* Method 
and PSO in Known Dynamic Environment

A new methodology is presented here for finding an interactive robot path-planning 
solution in a fully known dynamic environment. This methodology includes the use 
of the PSO technique together with an improved and modified D* heuristic method 
which is applied to the total analysis of the free Cartesian space at each sample of 
motion. The essential D* method has been modified to meet the requirements of the 

Fig. 12.14 Non-interactive path planning using D* algorithm based on PSO: (a) shows D* and 
D*-based PSO paths, (b) shows the curve of the path cost function using PSO

F. A. Raheem et al.
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known dynamic environment by considering the addition of two cases, a motion 
stop and a return backward case. These cases are not covered in the original theory 
of the D* heuristic method (Raheem and Hameed 2019).

12.11.1  Proposed Method: Hybridization of Modified D* 
Heuristic Method and PSO

After applying the D* heuristic method and studying the final path solution which 
was a non-interactive path in a well-known environment that contains movable 
obstacles, an enhancement by finding an interactive path solution method has been 
proposed for finding an enhanced path by taking into consideration the full dynamic 
behavior of the obstacles, including spatial and temporal information. Finding the 
robot interactive path solution by applying the heuristic D* method in case of known 
obstacle time and position dynamic environment requires a map with all task infor-
mation and limitations, start and goal positions, and the position, shape, and size of 
the obstacles. This method was used with a 2-DOF planar robotic arm as presented 
in Fig. 12.16. The interactive path solution includes the free Cartesian space calcu-
lations (FCS) in each motion sample of the robot and from node to node. In this 
case, the motion range of the robot can be described accurately. It is more intelligent 
to analyze and calculate multiple and changeable FCS maps for each motion sam-
ple. A new calculated FCS map will indicate the feasible area for the robot to move. 
Although this is a time-consuming process, it produces an accurate decision for the 
right motion step with high robot motion accuracy. Since this calculation process is 
an offline search method that starts after constructing the environment, the method 
will start when the robot is located at the goal node first and then expanded initially 
to its eight connected neighbors. Each node has an initial value of the cost objective 

Fig. 12.15 Non-interactive path planning using D* algorithm based on PSO: (a) shows D* and 
D*-based PSO paths, (b) shows the curve of the path cost function using PSO
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function, where the robot selects the node that has the minimum cost to continue 
moving on and then save it in the closed list, at the same time further remaining 
nodes will be saved in the open list. In the same way, keep in mind the obstacles that 
have big or huge values of the cost function, sorting these values and storing the 
initial starting positions in the closed list. At each sample of motion, the D* closed 
list is updated, to know the new locations of the obstacles, and the closed list will be 
dynamically changing at each motion sample and storing the nodes representing the 
obstacle at the current motion sample. The process will complete an offline iterative 
process only in case of reaching the start node. In case of search completed, the 
robot moves interactively from the initial node considering the closed list immedi-
ately to have required information about the free nodes prior to move on toward the 
goal node. The heuristic D* function f = g + h, where f is the objective function and 
g is the estimated cost function value from the start point while h is the cost to the 
goal (Raheem and Hameed 2019).

12.11.2  Simulation Results

12.11.2.1  First Environment

As a robot example, a 2-DOF planar robotic arm is used here. The arm length is 
assumed to be equal to half of the environment length, and each robot-link length is 
equal to 50 cm. The arm joints can theoretically rotate 360 degrees. Figure 12.17 
presents the path of the D* algorithm for the 2-DOF planar robotic arm, where part 
(a) shows the end effector located at the start point at the beginning of the planning 
process. Part (b) shows the arm configuration after eight samples of motion. The 
arm at motion sample 15 was returned backward to avoid collision as shown in part 
(c). Parts (d) and (e) show the motion planning of the arm after 21 and 36 samples. 
At the sample of motion number 38, the arm was returned backward to avoid colli-
sion with a moving obstacle, while two samples later, the arm safely reached the 
target point as shown in parts (g) and (h) (Raheem and Hameed 2019).

Since this is an offline interactive path solution approach, optimizing the D* by 
applying the PSO algorithm has been done offline to remove the sharp edges and to 
shorten the D* path. Figure 12.18a shows the blue line of the D* path, and the black 
line is the final D*-based PSO path solution. Moreover, Fig. 12.18b explains that the 
length of the D*-based PSO path solution was reduced by 3.2846 cm compared 
with the original D* path (Raheem and Hameed 2019).

Fig. 12.16 Proposed interactive path-planning method in a dynamic environment for 2-DOF pla-
nar robotic arm

F. A. Raheem et al.
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The motion style of this path solution is clearly featured as an interactive path 
movement, where the robot must make a decision under certain circumstances and 
may be stopped or returned backward in such a way that the stopping state and 
backward movement reduce the time and ensure getting a shorter collision-free path.

Fig. 12.17 2-DOF planar robot path results after applying the D* algorithm. (Raheem and 
Hameed 2019)
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12.11.2.2  Second Environment

For further testing, this method was proposed and verified by a second more com-
plicated environment setup where four dynamic obstacles move closer to the links 
of the robot and two of these obstacles have a square path behavior of motion. The 
robot can make an appropriate decision for choosing the next points freely and intel-
ligently within an allowable area. Figure 12.19 presents the D* path of the 2-DOF 
planar robotic arm, where part (a) indicates the start of planning (the robotic end 
effector located on the initial starting point), part (b) presents the robot motion at the 
end of 11 samples, part (c) presents the robot in a return backward state at sample 
21 of motion, parts (d) and (e) present the robot motion configuration after 33 and 
42 samples of motion, respectively, and parts (g) and (h) clarify the robot motion 
after 46 samples of motion; the robot was returned backward to avoid collision with 
the closest moving obstacle before reaching the target point of destination safely 
(Raheem and Hameed 2019).

Since the location and time behavior of the moving obstacles are known, finding 
a path solution as a process can be performed offline, so PSO plays an important 
role in completing the process and finding the final applicable best, shortest, and 
optimal path with removing the sharp edges of the heuristic D* original path. 
Figure 12.20a shows both of these paths, D* path and D* based on PSO path, where 
the blue line indicates the path of D*, while the black line indicates the D* based on 
PSO path. Figure 12.20b plots the cost progress of the objective function optimiza-
tion and verifies that the last definitive optimized path utilizes heuristic D* based on 
optimization technique (PSO); the length of the path was shorter than the original 
D* path by 4.3724 cm (Raheem and Hameed 2019).

In comparison, Cubero (2007) tried to use the heuristic D* method to solve the 
same problem for a mobile robot path-planning case. The proposed method intro-
duced here differs because of its new characteristic of the modification added to the 

Fig. 12.18 Interactive path planning using D* algorithm based on PSO: (a) final D* and D*-based 
PSO paths and (b) cost function of the path
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Fig. 12.19 The two-link robot arm result for the D* path for the second environment. (Raheem 
and Hameed 2019)
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D* heuristic method which is suggested in our work. This modification ensures the 
safety, interactivity, and finesses of the final PSO-optimized path.

12.12  Heuristic A* Path Solution Based on C-Space Analysis

In this method, a configuration space (C-space)-based path-planning approach for a 
2-DOF planar robotic arm was presented. The analysis of the constructed C-space 
map makes the process of finding a feasible, safe, and successful path solution much 
easier. After constructing and analyzing the C-space map for the planar robot which 
comprises all the possible collision situations between the obstacles and the robot 
links and joints from the base till the end effector, the heuristic A* method has been 
applied to find an optimal path in the C-space map that represents a successful heu-
ristic path in the Cartesian workspace. A modification on the original heuristic A* 
method equations and calculations has been carried out to make this method appli-
cable in the C-space. Moreover, further modifications are required to apply the 
A*-based C-space methodology for robotic manipulators with high degrees of free-
dom (more than 2 DOF). The method was verified by simulation results and proved 
the overall C-space map construction accuracy. These results were efficient and 
successful and guarantee a collision-free path from the start point to the target point 
by priorly eliminating all the probabilities of collisions with any robot point that 
appeared clearly in the C-space map (Raheem and Hussain 2017a, b).

12.12.1  C-Space Derivation

For a robotic arm, C-space is the space that can be expressed by the joint’s variable 
parameters, whether it is a linear positioning joint or a rotational positioning joint. 
C-space map can be divided into two main areas, C-obstacle area which indicates 

Fig. 12.20 (a) Final D* and PSO path and (b) the path cost function for the second environment
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the robot configurations in which collisions between the robot links and obstacles 
definitely occur and C-free area which represents the free allowable area for plan-
ning the path (Raheem and Hussain 2017a, b; Pan and Mancha 2015). The obstacle(s) 
can be represented geometrically and indicated as B in the equations below, so the 
C-space of the obstacles (Cobs) is as follows (Althoefer 1996):

 
C q A q Bobs � � �� � �� �:

 
(12.26)

while the C-space free (C-free) area can be referred to as below (Pan and 
Mancha 2015):

 
C q A q Bfree � � �� � �� �:

 (12.27)

where Cobs is C-space obstacles, q is robot configuration, and A(q) are the set of 
points that are included in an area confined by configuration q of the robot. The 
overall C-space map can be represented as (Pan and Mancha 2015):

 
C C Cspace obs free� �

 (12.28)

The mathematical study of the surface properties, which do not change if this sur-
face has deformations, such as bending or stretching, is called the topology of space. 
The topology for robot arms with two revolute joints can be described as (Lynch and 
Park 2017):

 S S T1 1 2� �  (12.29)

The above equation means that the C-space for two revolute joint robot arms is a 
torus (with no joint limits for the joints), where S1 is the circle description and T2is 
the two-dimensional torus surface (Lynch and Park 2017). Each joint angle pair cor-
responds with a unique point on the torus, as shown in Fig. 12.21.

To find the mapping of C-space, basic shapes of obstacle(s) will be detailed.

12.12.1.1  Point Obstacle C-Space Construction

Mathematically, the simplest and essential for the beginning of C-space calculations 
which can be located in a robot workspace is the point obstacle. Herein, a modified 
derivation for C-space analysis will be discussed, in which collision checking is 
based on geometrical analysis. In the case of a point obstacle and according to the 
calculations of all probabilities of collisions, it can be noted that the collision area 
with the first link contains straight lines, while the collision between the point obsta-
cle and the second link appears as a curved shape. As the point obstacle approaches 
the end effector of the planar robotic arm, the points of the C-space obstacle will be 
reduced, as presented in Fig. 12.22 (Raheem and Hussain 2017a, b).
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12.12.1.2  Line Obstacle C-Space Construction

Robot links can be handled as two lines, regardless of their width. Here, the deriva-
tion of C-space analysis comprises two analyses for collision testing; the same 
C-space curved map of the point obstacle can be applicable for each line(s) point. 
Thus, these compact form curves will represent the C-space of the line or polygonal 
obstacles, as illustrated in Fig. 12.23 (Raheem and Hussain 2017a, b).

A C-space map for any 2D shape formed by three or more straight lines will be 
considered a C-space map for a polygon. In case of a triangle (three lines), square, 
rectangle, rhombic (four lines), or more than four lines, the same method of 

Fig. 12.21 Topological representation of the two-dimensional C-space. (a) 2R robot arm; (b) 
2Torus; (c) sample representation. (Lynch and Park 2017)

Fig. 12.22 C-space mass point analysis for (a) point obstacle collides with the second link only; 
(b) C-space curve where the curve points decrease as the point is nearest to the end effector
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calculations and analysis for constructing the C-space map will be applied here as 
the method used for line obstacle (Bloch 2015).

In case the obstacle in the Cartesian workspace approaches closer to the first link, 
then the number of points on the C-space map increases. Besides that, the con-
structed Cfree space will be on both sides of the constructed Cobs space. For that rea-
son, finding a feasible path solution from one side of the C-space map to the other 
side requires choosing a suitable range of changing θ1 for better unification of both 
regions which leads to finding a Cfree path planning much easier, as presented in 
Fig. 12.24 (Raheem and Hussain 2017a, b).

12.12.1.3  Circle Obstacle C-Space Construction

A circle obstacle can be defined by a radius (rad) and center (xc, yc); the collision can 
be analyzed and tested by the derivation of C-space analysis.

Two main parts of edges of the C-space map constructed for a circular obstacle 
are presented in Fig. 12.25. Part (a) includes the collision between the circle obsta-
cle circumference and the first link, which denote the vertical straight lines with all 
the probabilities of θ2 values, while part (b) comprises the outer lower and outer 
upper curved shapes denoting the collision between the circle obstacle circumfer-
ence and the second link (Raheem and Hussain 2017a, b).

Fig. 12.23 C-space line obstacle analysis for (a) robot arm with line obstacle in the workspace, 
(b) corresponding C-space map
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12.12.2  Results of Applying A* Algorithm 
on Modified C-Space

Two environments have different obstacle shapes and tasks. First, we apply all the 
steps of C-space analysis and then perform the construction to get the exact map, 
which includes the collision and free areas. Second, the start and goal configuration, 
which are represented by the dot and the star shapes, respectively, have been com-
puted by inverse kinematic equations. For the given test environment, the start and 
goal point are represented by the dot and the star shapes, respectively, as shown in 
Figs. 12.26 and 12.27 (Raheem and Hussain 2017a, b).

Fig. 12.24 C-space polygon obstacle analysis for (a) 2-DOF planar robotic arm Cartesian work-
space contains octagonal obstacle. (b) Equivalent constructed C-space map

Fig. 12.25 C-space circle obstacle analysis for (a) 2-DOF planar robotic arm Cartesian workspace 
contains circle obstacle. (b) Equivalent constructed C-space map
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Fig. 12.26 A* path solution in the constructed C-space map according to the given environ-
ment task

Fig. 12.27 2-DOF planar robotic motion from start to goal point for given environment task
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12.13  Summary and Conclusion

Usually, finding the shortest feasible path is considered an optimization problem to 
determine the shortest path length from the start to the target points without collid-
ing with obstacles. We included different robot path-planning applications and 
methodologies of their solutions depending on environment type, robot space, and 
the required calculations; we also showed the theory used to find a suitable path 
solution. The path-planning problem has been solved in both Cartesian and configu-
ration spaces.

The analysis of the free Cartesian space for a 2-DOF planar robotic arm repre-
sents a significant task when complete information about the static robot arm envi-
ronment is available and the path is globally offline, planned prior to the robot 
motion. While in the configuration space, a specific configuration of the robot can 
be represented by the values of joint angles as a point in the C-space map. Moreover, 
heuristic, A*, and D* methods are used to compute the best path solution in both 
known static and known dynamic environment.

The particle swarm optimization (PSO) technique has been used to make the 
smoothest, shortest path. The artificial potential field (APF) was coupled with PSO 
to tune the factors of the field construction to find the best mass point path solution. 
The results of these path-planning applications are simulated, analyzed, and com-
pared to prove the effectiveness of the solutions. The techniques and solutions pre-
sented in this chapter have numerous “real-life” applications as the use of robotics 
increases to ensure unnecessary resource loss is not incurred in both static and 
dynamic environments in chemical, biological, geological, and temporal fields.
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