
Formal Specification of Fault-Tolerant
Multi-agent Systems

Elena Troubitsyna(B)

KTH – Royal Institute of Technology, Stockholm, Sweden
elenatro@kth.se

Abstract. Multi-agent systems (MAS) are increasingly used in critical
applications. To ensure dependability of MAS, we need to formally spec-
ify and verify their fault tolerance, i.e., to ensure that collaborative agent
activities are performed correctly despite agent failure. In this paper, we
present a formalisation of fault tolerant MAS and use it to define speci-
fication and refinement patterns for modelling MAS in Event-B.

Keywords: Formal modelling · MAS · Fault tolerance · Event-B

1 Introduction

Mobile multi-agent systems (MAS) are complex decentralised distributed sys-
tems composed of agents asynchronously communicating with each other. Agents
are computer programs acting autonomously on behalf of a person or organ-
isation, while coordinating their activities by communication [8,14]. MAS are
increasingly used in various critical applications such as factories, hospitals, res-
cue operations in disaster areas etc. [1,6,7,9]. However, widespread use of MAS
is currently hindered by the lack of methods for ensuring their dependability,
and in particular, fault tolerance.

In this paper we focus on studying fault tolerance of agent cooperative activ-
ities. However, ensuring correctness of complex cooperative activities is a chal-
lenging issue due to faults caused by agent disconnections, dynamic role alloca-
tion and autonomy of the agent behaviour [4,5,10,11]. To address these chal-
lenges, we need the system-level modelling approaches that would support formal
verification of correctness and facilitate discovery of restrictions that should be
imposed on the system to guarantee its safety.

In this paper we propose a formalisation of properties of fault tolerant MAS
and then demonstrate how to specify and verify them in Event-B [3]. The main
development technique of Event-B is refinement. It is a top-down approach to for-
mal development of systems that are correct by construction. The system devel-
opment starts from an abstract specification which defines the main behaviour
and properties of the system. The abstract specification is gradually transformed
(refined) into a more concrete specification directly translatable into a sys-
tem implementation. Correctness of each refinement step is verified by proofs.
c© Springer Nature Switzerland AG 2021
F. Dignum et al. (Eds.): PAAMS 2021, LNAI 12946, pp. 291–302, 2021.
https://doi.org/10.1007/978-3-030-85739-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85739-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-85739-4_24


292 E. Troubitsyna

These proofs establish system safety (via preservation of safety invariant prop-
erties expressed at different levels of abstraction) and liveness (via the provable
absence of undesirable system deadlocks). Transitivity of the refinement relation
allows us to guarantee that the system implementation adheres to the abstract
and intermediate models. The Rodin platform [15] provides the developers with
automated tool support for constructing and verifying system models in Event-B.

Our reliance of abstraction and stepwise refinement allows us to rigorously
define and verify correctness of agent cooperative activities in presence of agent
failure. We consider a hierarchical agent system, i.e., distinguish between the
supervisor and subordinate agents. This introduces intricate details into handling
the failures of different kinds and performing cooperative error recovery. Event-
B allowed us to consider fault tolerance as a system-level property that can be
verified by proofs. Hence,we argue that Event-B offers a useful formalisation
framework for specification and verification of complex fault tolerant MAS.

2 Fault Tolerant MAS

2.1 Fault Tolerance

The main aim of fault tolerance is to ensure that the system continues to provide
its services even in presence of faults [13]. Typically, fault occurrence leads to a
certain service degradation. However, it is important to ensure that the system
behaves in a predictable deterministic way even in presence of faults.

The main techniques to achieve fault tolerance are error processing and fault
treatment [13]. Fault treatment is usually performed while the system is not
operational, i.e., during the scheduled maintenance. In this paper, we focus on
error processing part of fault tolerance.

Error processing comprises the fault tolerance measures applied while the
system is operational. The purpose of error processing is to eliminate an error
from the computational state and preclude failure occurrence. Error processing
is usually implemented in three steps: error detection, error diagnosis, and error
recovery. Error detection determines the presence of error. Error diagnosis eval-
uates the amount of damage caused by the detected error. Error recovery aims
at replacing an erroneous system state with the error-free state.

There are three types of error recovery methods: backward recovery, forward
recovery and compensation. Backward recovery tries to return the system to
some previous error-free state. Typically, backward recovery is implemented by
checkpointing, i.e., periodically, during the normal system operation, the state
of the system is stored in the memory. In case of a failure, the system retrieves
the information about the error-free state from the memory and resumes its
functioning from this states. When implementing forward recovery, upon detec-
tion of an error, the system makes a transition to a new error-free state from
which it continues to operate. Exception handling is a typical example of for-
ward error recovery. Compensation, typical for complex transactions, is used
when the erroneous state contains enough redundancy to enable its transforma-
tion to error-free state.



Formal Specification of Fault-Tolerant Multi-agent Systems 293

To implement fault tolerance, it is important to understand the types of faults
that might occur in the system. A fault can be characterized by their nature,
duration or extent [13]. When considering the nature of a fault, we distinguish
between random, e.g., hardware failures and systematic faults, e.g., design errors.

Faults can also be classified in terms of their duration into permanent and
transient faults. Once permanent fault has occurred, it remain in the system
during its entire operational life, if no corrective actions are performed. Transient
faults can appear and then disappear after a short time. Moreover, faults can be
categorised according to their effect on the system as localized and global ones.
Localized faults affect only a single agent. Global faults permeate throughout
the system and typically affect some set of agents.

2.2 Fault Tolerant MAS

To achieve fault tolerance while developing MAS, we formally define MAS and
the properties that its design should ensure.

Definition 1. A multi-agent system MAS is a tuple (A, µ, E ,R), where A is
a collection of different classes of agents, µ is the system middleware, E is a
collection of system events and R is a set of dynamic relationships between
agents in a MAS.

Each agent belongs to a particular class or type of agents Ai, i ∈ 1..n such
that Ai ∈ A. An agent aij ∈ Ai is characterised by its local state that consists of
variables determining its behaviour and static attributes. Since agent might fail
and be replaced by other agents, the set of agents in each class is dynamic. An
agent might experience a transient failure and hence spontaneously disappear
from the class and reappear again. Moreover, an agent might fail permanently,
i.e., permanently disappear from its class. In a system with redundancy, a failed
agent can be replaced by another agent, i.e., a new agent can appear in a class
instead of the failed one. An agent might also leave a class in a normal predefined
way when its function in the system is completed.

The system middleware µ can be considered as an agent of a special kind that
is always present in the system and belongs to its own class. Middleware is fault
free, i.e., it always provides its services. The responsibility of the middleware is
to maintain the communication between the agents and provide some basic fault
tolerance. For instance, middleware is responsible for detecting agent failures.
Initially, a failure is considered to be transient. However, if an agent does not
recover within a certain deadline then the middleware considers this agent to be
failed permanently. When a new agent appears in the system, e.g., to replace
the failed agent, middleware provides it with the connectivity with the rest of
the agents.

Often some agents in MAS experience a transient loss of connectivity. In this
case, middleware maintains their status and state to resume normal operation
when the connection is re-established, i.e., provides a backward recovery service.

The system events E include all internal and external system reactions.
An execution of an event may change the state of the middleware or agents.



294 E. Troubitsyna

Usually, a failure of an agent affects it capability to perform its functions, i.e., it
might prevent a progress in some collaborative activities with the other agents.
Each collaborative activity between different agents (or an agent and the mid-
dleware) is composed of a set of events. Hence, an agent failure might disable
some events. Therefore, while modelling the behaviour of a MAS, we should also
define the functions of the middleware as a set of events and reactions specify-
ing the behaviour in case of transient and permanent faults, as well as explicitly
specify the events representing error detection and recovery. Moreover, we should
represent the impact of failures on collaborative activities via constraining the
set of enabled events. Now we are ready to introduce the first property that a
fault tolerant MAS should preserve.

The collaborative actions of fault tolerant MAS should preserve the following
enabledness property:

Property 1. Let Aact and Aina be sets of active and inactive agents corre-
spondingly, where A = Aact ∪ Aina and Aact ∩ Aina = ∅. Let EAA and EAµ
be all the collaborative activities (sets of events) between agents and agents and
between agents and middleware respectively. Moreover, for each A ∈ A, let EA
be a set of events in which the agent A is involved. Then

∀A · A ∈ Aact ⇒ EA ∈ EAA
and

∀A · A ∈ Aina ⇒ EA ∈ EAµ

This property defines the restrictions on agent behaviour in presence of failures.
Essentially, it postulates that if an agent failed, i.e., has become inactive then it
cannot participate in any collaborative activities until it recovers, i.e., becomes
active. This property can be ensured by checking the status attributes of each
agent that should be involved into a collaborative activity.

A collection of system events R consists of dynamic relationships or connec-
tions between active agents of the same or different classes. An agent relationship
is modelled as a mathematical relation

R(a1, a2, ..., am) ⊆ C∗
1 × C∗

2 ... × C∗
m,

where C∗
j = Cj ∪{?}. A relationship can be pending, i.e., incomplete. This is indi-

cated by question marks in the corresponding places of R, e.g., R(a1, a2, ?, a4, ?).
Pending relationships are typically occur during the error recovery. If an agent
fails then the middleware detects it, saves the status of an agent and actives the
timer bounding the time of error recovery. If an agent recovers before the time-
out then the relationships become complete, i.e., all the corresponding events
become enabled. However, if an agent fails to recover, its failure is considered
to be permanent. Then the middleware tries to replace the failed agent by a
healthy one. If it succeeds in doing this then the relationships become complete.

Property 2. Let Aact be a set of active agents. Let EAA be all the collaborative
activities in which these active agents are involved. Moreover, for each agent A ∈



Formal Specification of Fault-Tolerant Multi-agent Systems 295

Aact, let RA be all the relationships it is involved. Finally, for each collaborative
activity CA ∈ EAA, let ACA be a set of the involved agents in this activity.
Then, for each CA ∈ EAA and A1, A2 ∈ ACA,

RA1 ∩ RA2 �= ∅

This property restricts the interactions between the agents – only the agents
that are linked by relationships (some of which may be pending) can be involved
into cooperative activities.

The system middleware µ keeps a track of pending relationships and tries to
resolve them by enquiring suitable agents to confirm their willingness to enter
into a particular relationships. Additional data structure PrefR associated with
a relationship R ∈ R can be used to express a specific preference of one agents
over other ones. The middleware then enforces this preference by enquiring the
preferred agents first. Formally, PrefR is an ordering relation over the involved
agent classes. Thus, for R ⊆ C∗

1 × ... × C∗
m,

PrefR ∈ C1 × ... × Cm ↔ C1 × ... × Cm.

A responsibility of the middleware is detect situations when some of the estab-
lished or to be established relationships become pending and guarantee “fair-
ness”, i.e., no pending request will be ignored forever, as well as try to enforce
the given preferences, if possible.

While developing a critical MAS, we should ensure that certain cooperative
activities once initiated are successfully completed. These are the activities that
implement safety requirements. The ensure safety we have to verify the following
property:

Property 3. Let EAAcrit, where EAAcrit ⊆ EAA, be a subset containing crit-
ical collaborative activities. Moreover, let Rpen and Rres, where Rpen ⊆ R and
Rres ⊆ R, be subsets of pending and resolved relationships defined for these
activities. Finally, let RCA, where CA ∈ EAA and RCA ⊆ R, be all the rela-
tionships the activity CA can affect. Then, for each activity CA ∈ EAAcrit and
relationship R ∈ RCA,

�((R ∈ Rpen) � (R ∈ Rres))

where � designates “always” and � denotes “leads to”.

This property postulates that eventually all pending relationships should be
resolved for each critical cooperative activity. It guarantees that error recovery
terminates (either successfully or not).

“The system state p always leads to the state q” or, using the temporal logic
notation, “�(p � q)”.

3 Formal Specification in Event B

We start by briefly describing our formal development framework. The Event-
B formalism is a variation of the B Method [2], a state-based formal approach



296 E. Troubitsyna

that promotes the correct-by-construction development paradigm and formal
verification by theorem proving. Event-B has been specifically designed to model
and reason about parallel, distributed and reactive systems.

Modelling in Event-B. In Event-B, a system specification (model) is defined
using the notion of an abstract state machine [3]. An abstract state machine
encapsulates the model state represented as a collection of model variables, and
defines operations on this state, i.e., it describes the dynamic part (behaviour) of
the modelled system. A machine may also have the accompanying component,
called context, which contains the static part of the system. In particular, a
context can include user-defined carrier sets, constants and their properties,
which are given as a list of model axioms.

The machine is uniquely identified by its name M . The state variables, v, are
declared in the Variables clause and initialised in the Init event. The variables
are strongly typed by the constraining predicates I given in the Invariants
clause. The invariant clause might also contain other predicates defining prop-
erties that should be preserved during system execution.

The dynamic behaviour of the system is defined by the set of atomic events
specified in the Events clause. Generally, an event can be defined as follows:

evt =̂ any vl where g then S end

where vl is a list of new local variables (parameters), the guard g is a state
predicate, and the action S is a statement (assignment). In case when vl is
empty, the event syntax becomes when g then S end. If g is always true, the
syntax can be further simplified to begin S end.

The occurrence of events represents the observable behaviour of the system.
The guard defines the conditions under which the action can be executed, i.e.,
when the event is enabled. If several events are enabled at the same time, any of
them can be chosen for execution non-deterministically. If none of the events is
enabled then the system deadlocks.

In general, the action of an event is a parallel composition of assignments.
The assignments can be either deterministic or non-deterministic. A determin-
istic assignment, x := E(x, y), has the standard syntax and meaning. A non-
deterministic assignment is denoted either as x :∈ Set, where Set is a set of
values, or x :| P (x, y, x′), where P is a predicate relating initial values of x, y to
some final value of x′. As a result of such a non-deterministic assignment, x can
get any value belonging to Set or according to P .

Event-B Semantics. The semantics of an Event-B model is formulated as a
collection of proof obligations – logical sequents. Below we describe only the most
important proof obligations that should be verified (proved) for the initial and
refined models. The full list of proof obligations can be found in [3].

The semantics of Event-B actions is defined using so called before-after (BA)
predicates [3]. A before-after predicate describes a relationship between the sys-
tem states before and after execution of an event, as shown in Fig. 1. Here x and
y are disjoint lists (partitions) of state variables, and x′, y′ represent their values
in the after-state.



Formal Specification of Fault-Tolerant Multi-agent Systems 297

Action (S) BA(S)

x := E(x, y) x = E(x, y) ∧ y = y

x :∈ Set ∃z · (z ∈ Set ∧ x = z) ∧ y = y

x :| P (x, y, x ) ∃z · (P (x, z, y) ∧ x = z) ∧ y = y

Fig. 1. Before-after predicates

The initial Event-B model should satisfy the event feasibility and invari-
ant preservation properties. For each event of the model, evti, its feasibility
means that, whenever the event is enabled, its before-after predicate (BA) is
well-defined, i.e., exists some reachable after-state:

A(d, c), I(d, c, v), gi(d, c, v) � ∃v′ ·BAi(d, c, v, v
′) (FIS)

where A is model axioms, I is the model invariant, gi is the event guard, d are
model sets, c are model constants, and v, v′ are the variable values before and
after the event execution.

Each event evti of the initial Event-B model should also preserve the given
model invariant:

A(d, c), I(d, c, v), gi(d, c, v), BAi(d, c, v, v
′) � I(d, c, v′) (INV)

Since the initialisation event has no initial state and guard, its proof obligation
is simpler:

A(d, c), BAInit(d, c, v
′) � I(d, c, v′) (INIT)

Event-B employs a top-down refinement-based approach to system development.
Development starts from an abstract system specification that models the most
essential functional requirements. While capturing more detailed requirements,
each refinement step typically introduces new events and variables into the
abstract specification. These new events correspond to stuttering steps that are
not visible at the abstract level. Moreover, Event-B formal development sup-
ports data refinement, allowing us to replace some abstract variables with their
concrete counterparts. In that case, the invariant of the refined machine formally
defines the relationship between the abstract and concrete variables.

To verify correctness of a refinement step, we need to prove a number of
proof obligations for a refined model. The Event-B refinement process allows us
to gradually introduce implementation details, while preserving functional cor-
rectness. The verification efforts, in particular, automatic generation and prov-
ing of the required proof obligations, are significantly facilitated by the Rodin
platform [15]. Proof-based verification as well as reliance on abstraction and
decomposition adopted in Event-B offers the designers a scalable support for
the development of such complex distributed systems as multi-agent systems.



298 E. Troubitsyna

In the next section, we outline main principles of formal reasoning about
MAS and their properties.

4 Specification of Fault Tolerant MAS in Event-B

In the Event-B specification of fault tolerant MAS, we are interested in verifying
the properties related to convergence and correctness of fault tolerance:

– all pending relationships are eventually resolved;
– the given relationship preferences are enforced.

Properties of the first kind, i.e., eventuality properties, are especially impor-
tant for multi-agent systems. Such properties are often of the form “The sys-
tem state p always leads to the state q” or, using the temporal logic notation,
“�(p � q)”.

Often we are interested in formulating the properties similar to the examples
below:

– �(new subordinate agent � assigned supervisor agent);
– �(an agent leaves the system � all its relationships are removed);
– �(a supervisor agent leaves the system � all its subordinates are re-assigned);
– �(a supervisor agent fails � all its subordinate agents are re-assigned).

The responsibility of the middleware is detect situations when some of the
established/ or to be established relationships become pending due to failres and
guarantee “fairness”, i.e., no pending request for collaboration will be ignored
forever.

Next we present modelling patterns that allow us to express properties
described above in the Event-B framework. The abstract machine MAS (omit-
ted for brevity) defines two general types of agents defined by sets ATY PE1 and
ATY PE2, which are subsets of the generic type AGENT . The status of agents
(i.e., whether they active or not, i.e., failed) is stored in a function variables
status1 and status2, which for agents of different types returns a value of the enu-
merated set STATUS = {active, inactive}. We encapsulate the other variables
of the machine by the abstract variable state. The machine models recovery of the
agents in the location, i.e. the operating system, and non-deterministic changes
of their statuses due to failure or recovery. In Fig. 2 we define a machine MAS1.
Essentially, the specification MAS1 introduces a new event CooperativeActivity
in the machine MAS. The we can define the following proposition:

Proposition 1. The machine MAS1 refines MAS and preserves Property 1,
where
Aact = {a | a ∈ a t1 ∧ status1(a) = active) ∨ (a ∈ a t2 ∧ status2(a) = active}
and Aina = {a | (a1 ∈ a t1 ∧ status1(a1) = inactive) ∨ (a ∈ a t2 ∧ status2(a) =
inactive)} and EAA = {CooperativeActivity}
and EAµ = {Status1, Status2}



Formal Specification of Fault-Tolerant Multi-agent Systems 299

Proof: The proof of the proposition follows from two facts:

1. The rules REF INV, REF GRD and REF SIM defined in Sect. 2 are
satisfied

2. The event CooperativeActivity is enabled only for active, i.e., healthy agents,
i.e., the agents whose status evaluates to TRUE

In a MAS, the agents often fail only for a short period of time. After the
recovery, the agent should be able to continue its operations. Therefore, after
detecting an agent failure, the middleware should not immediately disengage
the disconnected agent but rather set a deadline before which the agent should
recover. If the failed agent recovers before the deadline then it can continue
its normal activities. However, if the agent fails to do so, the location should
permanently disengage the agent.

In the refined specification we define the variable failed representing the sub-
set of active agents that are detected as transiently failed failed ⊆ coop agents.

Moreover, to model a timeout mechanism, we define the variable timer of
the enumerated type {inactive, active, timeout}. Initially, for every active agent,
the timer value is set to inactive. As soon as active agent fails, its id is added
to the set failed and its timer value becomes active. This behaviour is specified
in the new event FailedAgent.

An agent experiencing a transient failure can succeed or fail to recover, as
modelled by the events RecoverySuccessful and RecovertFailed respectively. If
the agent recovers before the value of timer becomes timeout, the timer value is
changed to inactive and the agent continues its activities virtually uninterrupted.
Otherwise, the agent is removed from the set of active agents. The following
invariant ensures that any disconnected agent is considered to be inactive:

∀a·(a ∈ coop agents ∧ timer(a) �= inactive ⇔ a ∈ disconnected)

The introduction of an agent failure allows us to make a distinction between
two reasons behind leaving the system by a supervisory agent – because its
duties are completed or due to the disconnection timeout. To model these two
cases, we split the event AgentLeaving into two events NormalAgentLeaving and
DetectFailedFreeAgent respectively.

While modelling failure of a supervisory agent, we should again have to deal
with the property stating that if a supervisory agent fails then all its subordinate
agents are re-assigned. In a similar way as above, the event ReassignSupervisor is
decomposed into two events NormalReassignSupervisor and DetectFailedAgent.
The second refinement step resulted in a specification ensuring that no subor-
dinate agent is left unattached to the supervisor neither because of its normal
termination or failure.

The second refinement step resulted in a specification ensuring that no sub-
ordinate agent is left unattached to the supervisor neither because of its normal
termination or failure.



300 E. Troubitsyna

5 Related Work

Formal modelling of MAS has been undertaken by [6,8,10–12]. Our approach
builds on these work. It is different from numerous process-algebraic approaches
used for modelling MAS. Firstly, we have relied on proof-based verification that
does not impose restrictions on the size of the model, number of agents etc. Sec-
ondly, we have adopted a system’s approach, i.e., we modelled the entire system
and extracted specifications of its individual components by decomposition. Such
an approach allows us to express and formally verify correctness of the overall

Machine MAS1
Variables a t1, a t2, status1, status2, state
Invariants

inv1 : a t1 ⊆ ATY PE1
inv2 : a t2 ⊆ ATY PE1
inv3 : status1 ∈ a t1 → STATUS
inv4 : status2 ∈ a t2 → STATUS
inv5 : state : STATE

Events
Initialisation =

begin
a t1 := ∅

a t2 := ∅

status1 := ∅

status2 := ∅

state :: STATE
end

Populate1 =
any a1
when

a1 ∈ ATY PE1
a1 /∈ a t1

then
a t1 := a t1 ∪ {a1}
status1(a1) := active

end

Status1 =
any a1
when

a1 ∈ a t1
then

status1(a1) :∈ STATUS
state :∈ STATE

end

CooperativeActivity =
any a1, a2
when

a1 ∈ a t1
a2 ∈ a t2
status(a1) = active
status(a2) = active

then
state :∈ STATE

end
END

Fig. 2. Specification of a MAS with cooperative activity



Formal Specification of Fault-Tolerant Multi-agent Systems 301

FailedAgent =
any a
when
a ∈ coop agents ∧ a /∈ failed

then
failed := failed ∪ {a}
timer(a) := active

end

RecoveryFailed =
any a
when
a ∈ failed ∧ timer(a) = active

then
timer(a) := timeout

end

Fig. 3. Failed agent and recovery failed events

DetectFailedAgent =̂
Refines ReassignSupervisor
any a, a new
when

a ∈ ran(assigned supervisor) ∧ a /∈ last cooperated[cooperated]∧
a new ∈ coop agents ∧ a new �= a∧
a ∈ disconnected ∧ timer(a) = timeout∧
a new /∈ disconnected ∨ (a new ∈ disconnected ∧ timer(a new) = active)

then
coop agents := coop agents \ {a}
assigned supervisor := assigned supervisor�−

(dom(assigned supervisor � {a}) × {a new})
disconnected := disconnected{a}
timer := {a} �− timer

end
DetectFailedFreeAgent =̂

Refines AgentLeaving
any a
when

a ∈ coop agents ∧ a /∈ ran(assigned supervisor)∧
a /∈ last cooperated[cooperated] ∧ a ∈ disconnected ∧ timer(a) = timeout

then
coop agents := coop agents \ {a}
disconnected := disconnected{a}
timer := {a} �− timer

end

system, i.e., we indeed achieve verification of fault tolerance as a system level
property. Finally, the adopted top-down development paradigm has allowed us
to efficiently cope not only with complexity of requirements but also with com-
plexity of verification. We have build a large formal model of a complex system
by a number of rather small increments. As a result, verification efforts have
been manageable because we merely needed to prove refinement between each
two adjacent levels of abstraction.

6 Conclusion

In this paper, we have presented an approach to formal specification of fault
tolerant MAS. We formalised the main properties of fault tolerant MAS that
perform cooperative activities and supported by the middleware to achieve fault
tolerance. We defined the specification and refinment patterns for the formal
development of fault tolerant MAS in Event-N.



302 E. Troubitsyna

In our development we have explicitly modelled the fault tolerance mecha-
nism that ensures correct system functioning in the presence of agent failures.
We have verified by proofs the correctness and termination of error recovery.
Formal verification process has not only allowed us to systematically capture
the complex error detection and recovery but also facilitated derivation of the
constraints that should be imposed on the behaviour of the agents of different
types to guarantee a correct implementation of fault tolerant. As a future work,
we are planning to apply the proposed approach to modelling interaction of
autonomous agents that are subject of malicious rather than random faults.

References

1. Majd, A., Ashraf, A., Troubitsyna, E.: Online path generation and navigation for
swarms of UAVs. In: Scientific Computing, pp. 1–12 (2020)

2. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

3. Abrial, J.-R.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
4. Majd, A., Troubitsyna, E.: Data-driven approach to ensuring fault tolerance and

efficiency of swarm systems. In: Proceedings of Big Data, vol. 2017, pp. 4792–4794
(2017)

5. Majd, A., Troubitsyna, E.: Towards a realtime, collision-free motion coordination
and navigation system for a UAV fleet. In: Proceedings of ECBS, vol. 2017, pp.
111–119 (2017)

6. Troubitsyna, E., Pereverzeva, I., Laibinis, L.: Formal development of critical multi-
agent systems: a refinement approach. In: Proceedings of European Dependable
Computing Conference, pp. 156–161 (2015)

7. Vistbakka, I., Troubitsyna, E.: Modelling autonomous resilient multi-robotic sys-
tems. In: Calinescu, R., Di Giandomenico, F. (eds.) SERENE 2019. LNCS, vol.
11732, pp. 29–45. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30856-8 3

8. Vistbakka, I., Troubitsyna, E.: Modelling resilient collaborative multi-agent sys-
tems. J. Comput. 103(4), 1–23 (2020)

9. Vistbakka, I., Troubitsyna, E.: Pattern-based goal-oriented development of fault-
tolerant MAS in Event-B. In: Proceedings of International Conference on Practical
Applications of Agents and Multi-Agent Systems, pp. 327–339 (2020)

10. Vistbakka, I., Majd, A., Troubitsyna, E.: Deriving mode logic for autonomous
resilient systems. In: Sun, J., Sun, M. (eds.) ICFEM 2018. LNCS, vol. 11232, pp.
320–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02450-5 19

11. Majd, A., Vistbakka, I., Troubitsyna, E.: Formal reasoning about resilient goal-
oriented multi-agent systems. Sci. Comput. Program. 148, 66–87 (2019)

12. Majd, A., Vistbakka, I., Troubitsyna, E.: Multi-layered safety architecture of
autonomous systems: formalising coordination perspective. In: Proceedings of 9th
International Symposium on High Assurance Systems Engineering (HASE), pp.
58–65 (2019)

13. Laprie, J.C.: From dependability to resilience. In: 38th IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. G8–G9 (2008)

14. OMG Mobile Agents Facility (MASIF). www.omg.org
15. Rigorous Open Development Environment for Complex Systems (RODIN). IST

FP6 STREP project. http://rodin.cs.ncl.ac.uk/

https://doi.org/10.1007/978-3-030-30856-8_3
https://doi.org/10.1007/978-3-030-30856-8_3
https://doi.org/10.1007/978-3-030-02450-5_19
www.omg.org
http://rodin.cs.ncl.ac.uk/

	Formal Specification of Fault-Tolerant Multi-agent Systems
	1 Introduction
	2 Fault Tolerant MAS
	2.1 Fault Tolerance
	2.2 Fault Tolerant MAS

	3 Formal Specification in Event B
	4 Specification of Fault Tolerant MAS in Event-B
	5 Related Work
	6 Conclusion
	References




