
Fully Decentralized Planner-Guided
Robot Swarms

Michael Schader(B) and Sean Luke

George Mason University, Fairfax, VA 22030, USA
{mschader,sean}@gmu.edu

Abstract. Robot swarms hold great potential for accomplishing mis-
sions in a robust, scalable, and flexible manner. However, determin-
ing what low-level agent behavior to implement in order to meet high-
level objectives is an unsolved inverse problem. Building on previous
work on partially-centralized planner-guided robot swarms, we present
an approach that achieves total decentralization of executive and delib-
erator functions, adds robustness and performance optimization through
dynamic task switching, and employs agent-initiated superrational plan-
ning to coordinate agent activity while responding to changes in the
environment. We demonstrate the effectiveness of the technique with
three swarm robotics scenarios.

Keywords: Coordination and control models for multi-agent systems ·
Knowledge representation and reasoning in robotic systems · Swarm
behavior

1 Introduction

Since Beni [3] first developed the idea of robot swarms in 2004, researchers have
tried to control large groups of robots in ways that accomplish complex tasks
while preserving swarm virtues such as redundancy, parallelism, and decentral-
ization. Despite years of effort since then, Dorigo et al. [11] observed in 2020,
“[T]he deployment of large groups of robots, or robot swarms, that coordinate
and cooperatively solve a problem or perform a task, remains a challenge”. Most
existing solutions to this challenge either rely on some degree of centralization,
which introduces single points of failure and limits scalability, or address only
basic missions such as area coverage and shape formation, which are far short
of the complex tasks that swarm engineers aspire to perform.

Dorigo predicted that “Hybrid systems mixing model-free and model-based
approaches will likely provide additional power”. In previous work [25], we
employed that philosophy in creating planner-guided robot swarms, a hybrid
deliberative/reactive approach to swarm management. A central automated
planner produced plans for each group of agents within the swarm. At run-
time, an orchestrator existing outside the swarm issued the plans to the agents,

c© Springer Nature Switzerland AG 2021
F. Dignum et al. (Eds.): PAAMS 2021, LNAI 12946, pp. 241–254, 2021.
https://doi.org/10.1007/978-3-030-85739-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85739-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-85739-4_20

242 M. Schader and S. Luke

collected success reports, monitored sensor data, determined when actions were
complete, and instructed the agents when to advance to the next plan step.

That architecture enabled a human programmer to specify complex missions
in a high-level planning language for a swarm to execute. However, the cen-
tralized deliberator and executive components were potential single points of
runtime failure, reducing the benefits of swarm decentralization. Here we build
on that work by modifying the architecture to push the deliberative and exec-
utive functions down into the swarm agents themselves. This involves solving
problems with action synchronization, task allocation, and replanning without
resorting to outside entities or differentiated swarm members. Ultimately our dis-
tributed executive accomplishes the same missions that the centralized version
can, preserving scalability and robustness without any single points of failure.

In this paper we first review the work done by other researchers on swarm
control, showing that no one else has integrated classical planning into a swarm
or induced a swarm to accomplish complex actions without central direction
or an agent hierarchy. Next, we explain our approach with a formal definition
of the system, descriptions of the components of the architecture, and back-
ground on the design philosophy behind it. Finally, we report the results of three
experiments performed on different scenarios: decentralized shape formation,
swarm recovery from loss of agents, and agent-initiated replanning in response
to changes in the environment. We demonstrate the fully decentralized swarm’s
robustness and scalability, validating the effectiveness of our method.

2 Previous Work

Published research touching upon our work can be organized into three groups,
based on the degree of decentralization and on whether or not there are separate
layers specifying the mission goals and the individual agent behaviors:

Partially Centralized. These methods lead to hub and spoke or hierarchical archi-
tectures. Becker et al. [2] explored how a single signal broadcast to all agents
in a massive swarm could be used to guide them to collectively accomplish a
task. Kominis et al. [15] translated uncertain, multi-agent planning problems
into classical, single-agent ones that could be centrally solved and then given to
the agents. Corah et al. [10], Nissim et al. [20], and Torreño et al. [28] imple-
mented methods to break preliminary plans into parts and have agents refine
them through multiple planning rounds. Choudhury et al. [8] and Riyaz et al.
[24] created hybrid systems, with a centralized task planner to assign tasks to
individual robots combined with an onboard control system enabling each robot
to refine and execute its task. All these methods rely on some central component,
which represents a single point of failure and a limiting factor on scalability.

Decentralized Single-Layer. These approaches amount to control laws which must
be developed prior to runtime. Atay et al. [1], Li et al. [16], and Sheth [26] cre-
ated emergent task allocation methods in which each robot only used information

Fully Decentralized Planner-Guided Robot Swarms 243

from its neighbors to select tasks, then sent coordination messages to resolve con-
flicts, possibly including adversarial interactions. Chaimowicz et al. [7], Ghassemi
et al. [12], and Michael et al. [19] used combinations of bidding and recruitment to
determine role assignments and when they should be changed. Each of these meth-
ods involves designing integrated high- and low-level activities, limiting flexibility
when developing solutions matching swarm platforms to specific problems.

Decentralized Multi-Layer. Such systems combine the elimination of single
points of failure with the relative ease of separately addressing domain-level
and behavior-level concerns. Birattari et al. [4] and Bozhinoski et al. [5] pro-
posed “automatic offline design”: enumerating likely missions within a problem
domain, using reinforcement learning or evolutionary computing to generate suit-
able low-level behaviors in simulation, and deploying the best solution available
for the problem at hand when needed. Coppola [9] explored this approach exten-
sively. Although promising, this family of solutions requires the development of
a large library of pre-generated behaviors to match to missions when needed.
Our method falls into the same decentralized multi-layer category, but does not
depend on having prebuilt solutions to new mission requirements.

3 Method

In our earlier work, we introduced a novel approach to swarm control: framing
the high-level domain and problem using Planning Domain Definition Language
(PDDL) [18], generating a plan to achieve the goal state with an automated plan-
ner, and having a central executive orchestrate the agents’ activities by adjusting
their behavioral parameters and synchronizing their plan step advances. In this
new work, we move the executive and deliberative functions into the swarm agents
themselves, thus eliminating all single points of failure and enabling truly decen-
tralized operations. We add dynamic task switching based on action completion
information shared by neighbors, enhancing robustness. Finally, we incorporate
agent-initiated replanning to allow the swarm to respond to changes in the envi-
ronment.

In our revised formulation, a planner-guided swarm scenario definition can
be represented by a tuple:

Sdef = 〈A, domain,Mact,Mpred〉 (1)

where the agent class A = 〈sensors, behaviors〉 represents the capabilities of a
swarm robot platform, the domain = 〈predicates, actions〉 is the PDDL rep-
resentation of the planning domain, the action mapping Mact : actions →
〈behaviors, parameters, criteria〉 translates each PDDL action to a specific
parameterized agent behavior with success criteria, and the predicate mapping
Mpred : predicates → 〈sensors, parameters, criteria〉 ties predicates needed for
replanning to observed states (Fig. 1).

A specific run of a scenario starts with scenario definition Sdef and adds three
items:

Srun = 〈Sdef, problem, n, g〉 (2)

244 M. Schader and S. Luke

Fig. 1. (a) Fully decentralized planner-guided robot swarm architecture with optional
global sensors. (b) Comparison of robot swarm management approaches per Brambilla
et al. [6].

which are the PDDL expression of the planning problem, the count of agents
n, and the number of groups g. If g is set to zero, the group count decision is
delegated to each agent’s deliberator, which will attempt to generate plans with
various numbers of groups, choosing the smallest g that produces a minimum-
length sound plan.

3.1 Definitions

Domain and Problem. The PDDL domain defines how the world works from
the swarm’s top-level perspective: what constants will always be present, what
predicates can be true or false, and what actions can be performed in terms
of their preconditions and effects. The PDDL problem specifies the objects to
consider, the initial conditions of the situation, and the goal state to be achieved.
The scenario designer creates these two files to control the swarm.

Agent Class. The agent class defines the capabilities of the agents as they relate
to other parts of the scenario in terms of sensors and behaviors. All agents of
the swarm belong to this single class. The sensors include all the ways an agent
can receive information from the world around it: its own local readings, data
it receives from global sensors, and information exchanged with other agents in
its neighborhood. The behaviors are the micro-behaviors that each swarm agent
performs (e.g. “find item A”, “discover site B”, “deposit item A at site B”), which
lead to emergent phenomena such as coverage and foraging. A given agent class
can be used in multiple scenarios, with different domains and problems.

Each instantiated agent has its own planner, which takes PDDL domain
and problem files as input and produces PDDL plans as output. The specific
planner implementation can be changed at scenario start time, but it must be
identical for all agents, be able to process the domain file constructs, and be
deterministic (always producing the same output for given inputs). We employ
parallel planning to generate plans with multiple simultaneous actions that are

Fully Decentralized Planner-Guided Robot Swarms 245

assigned to virtual agents, groups of real agents within the swarm. Note that this
is not multi-agent planning in the sense of generating joint actions or violating
classical planning assumptions; rather, we achieve parallelism by taking advan-
tage of partially ordered plans in which the actions at each given plan step are
independent.

An agent’s executive manages its specific movements, manipulations, and
communications. Our own software uses a state machine with states EXPLOR-
ING, CARRYING, and DONE, but this is just an implementation detail that
is not demanded by the planner-guided swarm framework. The executive also
determines when sensor inputs should drive replanning based on an updated set
of initial conditions in the problem statement.

Action and Predicate Mappings. The bridge between the high-level view of the
world in the planning domain and the low-level configuration of the swarm agents’
micro-behaviors is the mapping layer. When an agent class is paired with a domain
file, the programmer builds two mappings. The first mapping translates domain
actions (e.g. “pick up block A”) into parameterized agent behaviors that will lead
to the desired effect (“use the foraging behavior with the target item set to bricks of
type A”). Bundled with this are the success criteria that must be met to infer that
the action has been completed. The second mapping translates grounded domain
predicates (“site D is full”) into sensor conditions that will reveal its truth or false-
hood (“check if the count of bricks deposited in site D equals the size of site D”, or
“determine if a sensor indicates site D is full”).

The action mapping is critical in that it translates the abstract actions of a
plan into the configuration of each agent’s behaviors. The predicate mapping is
not needed if the scenario designer specifies all initial conditions and there is no
need for replanning; however, if the agents will need to assess conditions to plan
or replan, then the relevant predicates do indeed need to be mapped to sensor
readings and shared knowledge.

3.2 Decentralized Plan Monitoring

The agents keep track of their individual successes executing behaviors tied to
plan actions, generating a success token each time they finish a granular activity
(e.g. “remove item A from site B”, “discover site C”). By exchanging these
success tokens with each other in the course of their local interactions, sometimes
along with factoring in data from their own sensors or global ones, the agents can
determine when the plan action assigned to their group is complete. In addition,
they keep track of other groups’ progress toward task completion. When an
agent learns that all groups have finished the current plan step, it advances to
the next plan step. As the same knowledge spreads, other agents will make the
same decision, ending up with all agents on the same next step.

3.3 Dynamic Task Switching

Since each agent knows the action completion status of its own group as well
as that of the other groups, it can choose to temporarily switch groups when

246 M. Schader and S. Luke

certain criteria are met. If an agent’s current action is complete, and it is not in
a state that precludes switching tasks (e.g. already carrying a certain item), it
can identify other groups that have not finished their actions. If there is such a
group, then the agent will switch to it based on a configured probability (0.1 in
our experiments; the exact value has little effect on performance as long as it is
positive). This task switching serves both to optimize the swarm’s allocation of
agents to actions, as well as to provide a fallback capability in case a portion of
the swarm is destroyed or disabled.

3.4 Agent-Initiated Replanning

Hofstadter [13] named and refined the notion of superrational groups in 1983:
when participants in an interaction know that all the others think the same way
as they do, and that each recursively knows that the others know this, then they
should independently arrive at identical conclusions aimed at maximizing joint
benefit. In 2019, Tohmé et al. [27] developed a formal analysis of the concept and
determined it to be sound. In our situation of building homogeneous swarms in
which all the agents have the same software and goals, the necessary conditions
for superrationality do indeed hold, given enough time for the agents in the
swarm to converge on the same knowledge of the state of the world. With a
deterministic planner, we can be sure that subject to information propagation
delay, the agents will produce the same updated plans as each other.

4 Experiments

We conducted three experiments designed to test the novel aspects of our fully
decentralized planner-guided robot swarm implementation, seeking to verify that
the new mechanisms succeeded reliably while scaling efficiently as agents were
added to the swarm. First, we exercised basic operations with all centralized
components eliminated. Second, we tested agent-initiated task switching to see
if it led to robust recovery from agent failures. Third, we evaluated the effective-
ness of decentralized replanning spurred by detected changes in the world state.

Fig. 2. Mean steps to completion of scenario for various swarm sizes.

Fully Decentralized Planner-Guided Robot Swarms 247

All of our experiments were conducted in the MASON multiagent simulation
toolkit [17], in which we modeled non-point robots, each exclusively occupying
a nonzero area, so as to reduce the reality gap with actual robots. Agents navi-
gated using virtual pheromone trails, an established swarm mechanism [21] that
was just one of several methods with which they could find their way.

4.1 Letters: Runtime-Decentralized Planning, Coordination, and
Monitoring

The Letters scenario is a straightforward mission to have robots arrange them-
selves to spell out a three-letter sequence (Fig. 3). The locations of the pixels of
each letter are marked in advance, and the agents know when they have entered
such a designated region. The purpose of the experiment is to show the effective-
ness and scalability of a completely decentralized planner-guided swarm. Once
the robots are launched, they have no special base to which to return or overseer
with which to communicate. They have only the domain and problem presented
by the operator to the swarm.

This experiment used the PDDL4J sequential planner [22] with the fast-
forward heuristic search option. We varied the number of agents from 40 up to
135 to observe the effect on the average number of steps needed to reach the goal
state (Fig. 2a). We performed 1000 runs of each treatment with 100% success
and verified for statistical significance using the two-tailed t-test at p = 0.05
with the Bonferroni correction.

A minimum of 39 agents was necessary to finish this mission, 13 for each of
the three letters. The first treatment with 40 agents took an average of 4809
steps to complete. With 60 agents, that dropped dramatically to 1422, since
there were more available to find and remain in the designated areas, especially
for the later spaces to be filled in. With 90 and 135 agents, the steps needed
were further reduced to 828 and 573; the speedup from more agents leveled off
due to physical interference with each other as well as diminishing returns from
having many potential fillers for each needed position.

Fig. 3. Stages of the Letters scenario.

248 M. Schader and S. Luke

4.2 Refineries: Dynamic Task Switching in Response to Group
Failure

Refineries is a stress test of agent task-switching (Fig. 4). There are three square
piles of bricks, each consisting of three different layers. One group of agents
is assigned to disassemble each pile. The agents need to bring the bricks to a
refinery area, where they will be processed and removed from the environment.
The outer bricks must all be processed first, then the middle ones, and finally the
central bricks. Partway through the first step, however, all the agents initially
assigned to one of the groups are disabled: rendered permanently immobile. The
only way for the swarm to succeed is for the agents to determine via their short-
range interactions that one task group is not succeeding, and to choose to switch
into that group in order to accomplish the mission.

This experiment used the Blackbox parallel planner [14] with its Graphplan
solver ensuring deterministic output. We varied the number of agents from 64
up to 98 to observe the effect on the average number of steps needed to reach the
goal state (Fig. 2b). We performed 1000 runs of each treatment with 100% success
and verified for statistical significance using the two-tailed t-test at p = 0.05 with
the Bonferroni correction.

A minimum of 64 agents was needed to complete this assignment: 16 in
each of three groups to gather the outermost layers, plus another 16 in the
spare group. With the minimum number it took an average of 17,744 steps to
finish. Using 80 agents reduced that to 13,444, and with 85 it took 10,957; the
additional workers allowed the swarm to perform the discovery and moving jobs
more quickly. 98 agents only improved the step count to 9807. The limited space
around the pickup and dropoff sites placed an upper bound on the scalability
of the swarm, as too many agents on the field blocked each other from moving
around as needed.

The ability of the agents to temporarily switch task groups was critical to
the swarm’s recovery from the externally-imposed disaster, the disabling of all
the agents in Group 3. Figure 5 shows the number of agents working in each
group through one run of the simulation. Early on, members of the unassigned
Group 4 switched to Group 2, which had the job of collecting bricks from the site
farthest from the launch point and so needed the help. At step 3000, the Group 3
members were immobilized and their numbers disappeared from the graph. Soon
after step 5000, some Group 2 members switched to Group 3 to make up for the
lost effort. Around step 7000, the numbers in each group equalized, then from
step 11,000 onward the numbers fluctuated based on which groups had completed
their assigned actions at the time. The low-level task switching behavior made
the swarm robust and able to finish its job even when an entire task group was
lost.

Fully Decentralized Planner-Guided Robot Swarms 249

Fig. 4. Stages of the Refineries scenario.

4.3 Smart Sorting: Self-initiated Replanning to Handle Changed
Situation

The Smart Sorting scenario exercises the agents’ coordinated replanning abilities
(Fig. 6). The swarm starts with the mission of gathering four different kinds
of randomly scattered bricks and assembling them in order into blocks in a
walled area. As soon as they finish the first two layers (A and B), though, the
A block is teleported outside to a different location. The agents continue with
their planned actions, but upon checking sensor readings, they determine that
conditions have changed, so they replan and begin taking apart the outer blocks
so as to reassemble the correct structure.

This experiment used the Madagascar parallel planner [23], specifically its
MpC implementation. We varied the number of agents from 10 up to 80 to
observe the effect on the average number of steps needed to reach the goal state
(Fig. 2c). We performed 1000 runs of each treatment with 100% success and
verified for statistical significance using the two-tailed t-test at p = 0.05 with
the Bonferroni correction.

250 M. Schader and S. Luke

0 5000 10000 15000 20000

10
15

20
25

30

Step

A
ge

nt
s

Group 1
Group 2
Group 3
Group 4

Group 3
destroyed Some Group 2 members

switch to Group 3

Fig. 5. Number of agents working in each task group as time advances in a single run
of the Refineries scenario. At step 3000, all the agents in Group 3 were disabled; soon
after, members of other groups switched in order to finish Group 3’s assigned tasks.

Fig. 6. Stages of the Smart Sorting scenario.

The minimum number of agents needed to complete this scenario with two
groups was ten, enough for each group to collect all five bricks of a single type.
With that smallest possible population, the swarm took 48,230 steps on average
to finish. With 20 agents, that was slashed to 20,018; with 40 it dropped to

Fully Decentralized Planner-Guided Robot Swarms 251

11,686; and with 80 it was 7766. This excellent scalability was due to more
agents being available to explore and move bricks around, along with faster
information dissemination caused by increased agent density in the simulation
work area.

5 Conclusions and Future Work

Modifying our previously published planner-guided robot swarm architecture
to achieve complete decentralization was a success. Each scenario explored in
our experiments showed a different area of improvement. Eliminating all central
components ensured there were no single points of failure. Introducing dynamic
task switching provided robustness against agent failure. Superrational planning
enabled the swarm to incorporate flexibility into swarm behavior. We conducted
all the experiments using the same agent code, further demonstrating the gen-
erality of our method.

In future work, we will attack the problem of retrograde behavior (agents get-
ting out of sync with each other’s plan steps), quantify aspects of the speed of
communications in a swarm environment, and implement different agent classes
with varying navigation and sensing mechanisms. We will also conduct a large-
scale demonstration using real robots. This work will show for the first time
a widely-applicable approach to building robot swarms that can collectively
accomplish complex tasks.

6 Appendix: PDDL Files

Letters domain, problem, and plan

(define (domain LETTERS) (:requirements :strips :typing) (:types group site)
(:constants site-g site-m site-u - site) (:predicates (visited ?s - site) (dummy))
(:action visit-g :parameters (?g - group) :precondition () :e ect (visited site-g))
(:action visit-m :parameters (?g - group) :precondition (visited site-g) :e ect (visited site-m))
(:action visit-u :parameters (?g - group) :precondition (visited site-m) :e ect (visited site-u)))

(define (problem GMU) (:domain LETTERS) (:objects group1 - group) (:init (dummy))
(:goal (and (visited site-g) (visited site-m) (visited site-u))))

;;;; Plan for one group
1 ((visit-g group1)) 2 ((visit-m group1)) 3 ((visit-u group1))

Refineries domain, problem, and plan

(define (domain REFINERIES) (:requirements :strips :typing) (:types group item site)
(:constants site-1a site-1b site-1c site-2a site-2b site-2c site-3a site-3b site-3c refinery - site
item-1a item-1b item-1c item-2a item-2b item-2c item-3a item-3b item-3c - item)

(:predicates (empty ?s - site) (all-at ?i - item ?s - site) (uncarrying ?g - group) (carrying ?g - group ?i - item))
(:action collect-from-1a :parameters (?g - group) :precondition (and (uncarrying ?g) (all-at item-1a site-1a)
(empty site-1b) (empty site-1c)) :e ect (and (not (uncarrying ?g)) (carrying ?g item-1a) (empty site-1a)))

(:action deposit-at :parameters (?g - group ?i - item ?s - site) :precondition (and (carrying ?g ?i))
:e ect (and (uncarrying ?g) (not (carrying ?g ?i)) (all-at ?i ?s)))) ;; actions repeated for all sites and items

(define (problem DISPOSE) (:domain REFINERIES) (:objects group1 group2 - group group3 - group)
(:init (uncarrying group1) (uncarrying group2) (uncarrying group3)
(all-at item-1a site-1a) (all-at item-1b site-1b) (all-at item-1c site-1c)) ;; predicates repeated for all

(:goal (and (all-at item-1a refinery) (all-at item-1b refinery) (all-at item-1c refinery)))) ;; predicates repeated for all

;;;; Plan for four groups (three groups would be optimal, one is added for redundancy)

252 M. Schader and S. Luke

1 ((collect-from-3c group1) (collect-from-1c group2) (collect-from-2c group3) nil)
2 ((deposit-at group1 item-3c refinery) (deposit-at group2 item-1c refinery) (deposit-at group3 item-2c refinery) nil)
3 ((collect-from-3b group1) (collect-from-1b group2) (collect-from-2b group3) nil)
4 ((deposit-at group1 item-3b refinery) (deposit-at group2 item-1b refinery) (deposit-at group3 item-2b refinery) nil)
5 ((collect-from-3a group1) (collect-from-1a group2) (collect-from-2a group3) nil)
6 ((deposit-at group1 item-3a refinery) (deposit-at group2 item-1a refinery) (deposit-at group3 item-2a refinery) nil)

Smart Sorting domain, problem, initial plan, and revised plan

(define (domain SMART-SORTING) (:requirements :strips :typing :equality :disjunctive-preconditions)
(:types group item site) (:constants site-a site-b site-c site-d - site item-a item-b item-c item-d - item)
(:predicates (empty ?s - site) (all-at ?i - item ?s - site) (some-at ?i - item ?s - site)
(uncarrying ?g - group) (carrying ?g - group ?i - item))

(:action collect :parameters (?g - group ?i - item) :precondition (and (uncarrying ?g))
:e ect (and (not (uncarrying ?g)) (carrying ?g ?i)))

(:action clear-out :parameters (?g - group ?s - site) :precondition (and (uncarrying ?g)
(or (= ?s site-d) (and (= ?s site-c) (empty site-d)) (and (= ?s site-b) (empty site-d) (empty site-c))
(and (= ?s site-a) (empty site-d) (empty site-c) (empty site-b))))

:e ect (and (not (all-at item-a ?s)) (not (all-at item-b ?s)) (not (all-at item-c ?s)) (not (all-at item-d ?s))
(not (some-at item-a ?s)) (not (some-at item-b ?s)) (not (some-at item-c ?s)) (not (some-at item-d ?s))
(empty ?s) (uncarrying ?g)))

(:action deposit :parameters (?g - group ?i - item ?s - site) :precondition (and (carrying ?g ?i) (empty ?s)
(or (= ?s site-d) (and (= ?s site-c) (empty site-d)) (and (= ?s site-b) (empty site-d) (empty site-c))
(and (= ?s site-a) (empty site-d) (empty site-c) (empty site-b))))

:e ect (and (uncarrying ?g) (not (carrying ?g ?i)) (all-at ?i ?s) (some-at ?i ?s) (not (empty ?s)))))
(define (problem REPLAN) (:domain SMART-SORTING) (:objects group1 group2 - group)
(:init (uncarrying group1) (uncarrying group2) (empty site-a) (empty site-b) (empty site-c) (empty site-d))
(:goal (and (all-at item-a site-a) (all-at item-b site-b) (all-at item-c site-c) (all-at item-d site-d))))

;;;; Initial plan for two groups
1 ((collect group1 item-a) (collect group2 item-b)) 2 ((deposit group1 item-a site-a) nil)
3 (nil (deposit group2 item-b site-b)) 4 ((collect group1 item-d) (collect group2 item-c))
5 (nil (deposit group2 item-c site-c)) 6 ((deposit group1 item-d site-d) nil)
;;;; Revised plan for two groups (after item-a moved out of correct position)
1 ((clear-out group1 site-d) nil) 2 ((collect group1 item-a) (clear-out group2 site-c))
3 (nil (clear-out group2 site-b)) 4 ((deposit group1 item-a site-a) (collect group2 item-b))
5 ((collect group1 item-c) (deposit group2 item-b site-b)) 6 ((deposit group1 item-c site-c) (collect group2 item-d))
7 (nil (deposit group2 item-d site-d))

References

1. Atay, N., Bayazit, B.: Emergent task allocation for mobile robots. In: Proceedings
of Robotics: Science and Systems. Atlanta, June 2007

2. Becker, A., Demaine, E.D., Fekete, S.P., Habibi, G., McLurkin, J.: Reconfiguring
massive particle swarms with limited, global control. In: Flocchini, P., Gao, J.,
Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol.
8243, pp. 51–66. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
45346-5 5

3. Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W.M.
(eds.) SR 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30552-1 1

4. Birattari, M., et al.: Automatic off-line design of robot swarms: a manifesto. Front.
Robot. AI 6, 59 (2019)

5. Bozhinoski, D., Birattari, M.: Designing control software for robot swarms: Soft-
ware engineering for the development of automatic design methods. In: 2018
IEEE/ACM 1st International Workshop on Robotics Software Engineering (RoSE),
pp. 33–35 (2018)

6. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

https://doi.org/10.1007/978-3-642-45346-5_5
https://doi.org/10.1007/978-3-642-45346-5_5
https://doi.org/10.1007/978-3-540-30552-1_1
https://doi.org/10.1007/978-3-540-30552-1_1

Fully Decentralized Planner-Guided Robot Swarms 253

7. Chaimowicz, L., Campos, M.F.M., Kumar, V.: Dynamic role assignment for coop-
erative robots. In: Proceedings 2002 IEEE International Conference on Robotics
and Automation (Cat. No.02CH37292). vol. 1, pp. 293–298 (2002)

8. Choudhury, S., Gupta, J., Kochenderfer, M., Sadigh, D., Bohg, J.: Dynamic multi-
robot task allocation under uncertainty and temporal constraints. In: Proceedings
of Robotics: Science and Systems, July 2020

9. Coppola, M.: Automatic design of verifiable robot swarms. Ph.D. thesis, Delft
University of Technology (2021)

10. Corah, M., Michael, N.: Efficient online multi-robot exploration via distributed
sequential greedy assignment. In: Proceedings of Robotics: Science and Systems,
July 2017

11. Dorigo, M., Theraulaz, G., Trianni, V.: Reflections on the future of swarm robotics.
Sci. Robot. 5(49), eabe4385 (2020)

12. Ghassemi, P., Chowdhury, S.: Decentralized task allocation in multi-robot sys-
tems via bipartite graph matching augmented with fuzzy clustering. In: Inter-
national Design Engineering Technical Conferences and Computers and Informa-
tion in Engineering Conference. vol. 51753, V02AT03A014. American Society of
Mechanical Engineers (2018)

13. Hofstadter, D.R.: Dilemmas for superrational thinkers, leading up to a luring lot-
tery. Sci. Am. 248(6), 739–755 (1983)

14. Kautz, H., Selman, B.: Blackbox: A new approach to the application of theorem
proving to problem solving. In: AIPS98 Workshop on Planning as Combinatorial
Search. vol. 58260, pp. 58–60 (1998)

15. Kominis, F., Geffner, H.: Beliefs in multiagent planning: From one agent to many.
In: Proceedings of the International Conference on Automated Planning and
Scheduling. vol. 25 (2015)

16. Li, J., Abbas, W., Shabbir, M., Koutsoukos, X.: Resilient Distributed Diffusion for
Multi-Robot Systems Using Centerpoint. In: Proceedings of Robotics: Science and
Systems, July 2020

17. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multi-
agent simulation environment. Simulation 81(7), 517–527 (2005)

18. McDermott, D., et al..: PDDL: the planning domain definition language (1998)
19. Michael, N., Zavlanos, M., Kumar, V., Pappas, G.: Distributed multi-robot task

assignment and formation control. In: 2008 IEEE International Conference on
Robotics and Automatio (2008)

20. Nissim, R., Brafman, R.I., Domshlak, C.: A general, fully distributed multi-
agent planning algorithm. In: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: vol. 1, pp. 1323–1330 (2010)

21. Panait, L., Luke, S.: A pheromone-based utility model for collaborative foraging.
In: Proceedings of the Third International Joint Conference on Autonomous Agents
and Multiagent Systems, 2004 (AAMAS 2004), pp. 36–43. IEEE (2004)

22. Pellier, D., Fiorino, H.: PDDL4J: a planning domain description library for Java.
J. Exp. Theor. Artif. Intell. 30(1), 143–176 (2018)

23. Rintanen, J.: Madagascar: Scalable planning with sat. In: Proceedings of the 8th
International Planning Competition (IPC-2014), vol. 21 (2014)

24. Riyaz, S.H., Basir, O.: Intelligent planning and execution of tasks using hybrid
agents. In: 2009 International Conference on Artificial Intelligence and Computa-
tional Intelligence. vol. 1, pp. 277–282 (2009)

254 M. Schader and S. Luke

25. Schader, M., Luke, S.: Planner-guided robot swarms. In: Demazeau, Y., Holvoet,
T., Corchado, J.M., Costantini, S. (eds.) Advances in Practical Applications of
Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection 18th
International Conference, PAAMS 2020, October 7–9, 2020, LNCS, vol. 12092, pp.
224–237. Springer (2020)

26. Sheth, R.S.: A decentralized strategy for swarm robots to manage spatially dis-
tributed tasks. Ph.D. thesis, Worcester Polytechnic Institute (2017)

27. Tohmé, F.A., Viglizzo, I.D.: Superrational types. Logic J. IGPL 27(6), 847–864
(2019)

28. Torreño, A., Onaindia, E., Sapena, O.: An approach to multi-agent planning with
incomplete information (2015). arXiv preprint arXiv:1501.07256

http://arxiv.org/abs/1501.07256

	Fully Decentralized Planner-Guided Robot Swarms
	1 Introduction
	2 Previous Work
	3 Method
	3.1 Definitions
	3.2 Decentralized Plan Monitoring
	3.3 Dynamic Task Switching
	3.4 Agent-Initiated Replanning

	4 Experiments
	4.1 Letters: Runtime-Decentralized Planning, Coordination, and Monitoring
	4.2 Refineries: Dynamic Task Switching in Response to Group Failure
	4.3 Smart Sorting: Self-initiated Replanning to Handle Changed Situation

	5 Conclusions and Future Work
	6 Appendix: PDDL Files
	References

