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Abstract. The worldwide COVID-19 pandemic has had a tremendous impact on
the aviation industry, with a reduction in passenger demand never seen before. To
minimize the spread of the virus and to gain trust from the public in the airport oper-
ations’ safety, airports implemented measures, e.g., physical distancing, entry/exit
temperature screening andmore.However, airports do not knowwhat the impact of
these measures will be on the operations’ performance and the passengers’ safety
when passenger demand increases back. The goal of this research is twofold.
Firstly, to analyze the impact of current (COVID-19) and future pandemic-related
measures on airport terminal operations. Secondly, to identify plans that airport
management agents can take to control passengers’ flow in a safe, efficient, secure
and resilient way. Tomodel and simulate airport operations, an agent-based model
was developed. The proposed model covers the main airport’s handling processes
and simulates local interactions, such as physical distancing between passengers.
The obtained results show that COVID-19 measures can significantly affect the
passenger throughput of the handling processes and the average time passengers
are in contact with each other. For instance, a 20% increase in check-in time (due
to additional COVID-19 related paperwork at the check-in desk) can decrease
passenger throughput by 16% and increase the time that passengers are in contact
by 23%.

Keywords: Multi-agent system · Airport operations · COVID-19 · Physical
distancing · Walking behavior

1 Introduction

The outbreak of the COVID-19 pandemic has led to a worldwide crisis and presents
us today unprecedented challenges in our life. The aviation industry has been impacted
like no other industrial sector. When in March 2020 large clusters of COVID-19 cases
were identified in Europe, many countries started to impose travel restrictions. As a
result, the travel demand dropped and global air traffic decreased by 80% compared to
the preceding year [1]. The aviation industry has never faced a challenge this large. To
minimize the spread of the COVID-19 virus and regain the public’s trust in the avia-
tion industry’s safety, airports needed to be made safe. Since at airports passengers are
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often exposed to many interactions with other people, airport operators implemented
measures. Some examples of measures are physical distancing, entry/exit temperature
screening, prevention of queuing, use of personal protective equipment. To help airports
implement measures, the European Aviation Safety Agency released in June 2020 their
“COVID-19 Aviation Health Safety Protocol” [2]. This report lists measures that air-
port operators can take for safe operations to guarantee the passengers’ safety. These
measures, for instance social distancing, are widely considered as a new part of our life.
These recommended measures from EASA already helped many airports in providing
safe operations. However, many airports still do not know the impact of these mea-
sures on their operations when passenger demand will increase. For example, Charleroi
Airport faced a sudden increase in passenger demand during the Christmas Holiday of
2020. As a result, the airport was too crowded and passengers could not perform physi-
cal distancing [3]. Also, airports are very complex because they involve many processes
(e.g., check-in, security, boarding) and many stakeholders (airlines, airport operators),
resulting in conflicting objectives. On the one hand, airports operators have the financial
intent to increase revenue and decrease costs. On the other hand, they also need to make
sure that operations are safe for the passengers. While airports are now under financial
pressure, it is hard for them to make decisions primarily since they do not understand the
impact of thesemeasures. To address this problem agent-basedmodelling and simulation
was used in this research. These emergent properties can be translated into system-wide
key performance indicators (KPIs), for example passenger throughput, and can be used
to asses, e.g., the system’s performance and safety. Altogether, agent-based modelling
is a suitable paradigm to model airport terminal operations.

This paper is organized as follows. In Sect. 2 the related work is discussed. The
agent-based model is discussed in Sect. 3. The different case studies and the results are
given in Sect. 4. Finally, Sect. 5 is Discussion and Conclusion.

2 Related Work

Related works should at least cover two main categories namely, different pedestrian
dynamics models to simulate passenger walking behavior, and pandemic modeling and
analysis. We will briefly go through each of them.

In general pedestrian dynamics models can be categorized into microscopic models
and macroscopic models [4]. In microscopic models, every pedestrian is treated as an
individual unit and is given a certain amount of characteristics, for instance direction
and speed. The changes in movement of each pedestrian is influenced by other pedes-
trians and by the environment. Gips et al. proposed the benefit-cost cellular model for
modelling pedestrian flows [5]. Blue et al. proposed cellular automata microsimulation
for modeling bi-directional pedestrian walkways [6]. These two models are cellular
automata-based models which means that the environment of the model is discretized
in a grid. The downside of this type of models is that the simulation does not reflect the
real behavior of pedestrians because updates in the grid are done heuristically [4, 7].
The queueing network model was introduced in [8]. In this model the environment is
discretized into links and nodes. Pedestrians move from one node to another node. The
movement is stochastic because it uses Monte Carlo simulations. This model has sev-
eral drawbacks. Firstly, movement is unidimensional and therefore it is not so realistic
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because pedestrians walk bi-dimensional. Secondly, the model cannot not deal with high
density environments, like airport terminals. Thirdly, because of the discretized envi-
ronment, the model lacks the ability to analyze local interactions between the different
agents. Okazaki introduced a magnetic force model for pedestrian movement simula-
tion with evacuation and queueing [9]. This model is based on the magnetic field theory
to simulate pedestrian movement. Helbing et al. came up with the social force model
[10]. The social-force model uses psychological forces that drive pedestrians to move
towards their goal as well as keep a proper distance from other pedestrians and objects.
The values of the parameters of the social forces have a physical meaning and therefore
calibrating these parameters for social distancing is easier.

The second category investigates the studies which used agent-based models to
analyze the impact of COVID-19 on the performance of airport terminal operations
and on the associated passenger health safety. Kierzkowski et al. uses a discrete event
simulationmodel for different security lane configurations to analyze the impact of social
distancing on the performance of the security [11]. However, this model lacks the ability
to model local interactions between passengers because it is a discrete event simulation
model. Furthermore, they only evaluate the performance of the security lanes and not the
associated health safety of the passengers. Schultz et al. used a cellular automatamodel to
simulate different aircraft boarding strategies under COVID-19 related restrictions [12].
He assessed for each boarding strategy the impact on total boarding time, the feasibility
of the procedure and the associated risk of virus transmission. Schultz et al. used a
transmissionmodelwhichwas based on thework of [13]. The study of Schultz et al. lacks
to analysis of other processes and activities at the airport such as check-in or security.
Ronchi et al. developed a model-agnostic approach to perform a quantitative assessment
of pedestrian exposure using the outputs of existing microscopic crowd models, namely
the trajectories of pedestrians over time [14]. The model uses a general formulation
insteadof relyingon a specificdisease transmission. For instance, the quantificationof the
pedestrian exposure is based on the distances between pedestrians, the time pedestrians
are exposed and reference points (e.g. pedestrian face each other). It is therefore universal
and can be tailored to new pandemics when there is no compelling understanding in the
transmission of the pandemic.

3 The Agent-Based Model

The model used in this paper is an extension of the baseline “Airport And Terminal
OperationsModel” (AATOM)with features to simulate passengers adhering to COVID-
19 measures and to analyze passengers health safety [15]. In this model, passengers and
airport operators are represented as autonomous intelligent entities, called agents. These
agents are modelled with a particular behavior approximating humans and placed in
a partially observable airport environment. An overview of the agent-based system is
provided in Fig. 1.
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Fig. 1. Overview of the multi-agent system including the different types of agents and their
interactions with each other and the environment.

3.1 Specification of the Environment, and the Agents

The model’s environment represents an airport terminal under COVID-19 conditions,
as seen in Fig. 2. It resembles an existing regional airport from the Netherlands. The
environment consists of three main areas: the check-in area, the security checkpoint area
and the gate area. The check-in area consists of four sets of check-in desks, each with
three desks and one designated queue. There is a check-in operator (red dot), which
checks-in passengers, behind each check-in desk. Three check-ins are using a common
zig-zag queue. One check-in is using three single straight queues. There are four types of
security operators (A, B, C, D) as indicated in the lower part of Fig. 2. Operators A assist
passengers in their luggage drop activity. Operators B perform the x-ray scan activity.
Operators C perform the luggage check-activity and operators D perform a physical
check when a passenger is suspicious. The black dots represent the luggage divest and
luggage collect positions. Figure 2 shows three divest and three collect positions per
lane, respectively. The number of divest and collect positions can vary depending on the
input to the model. The model contains three types of agents: passenger agents adhering
to COVID-19 rules, passenger agents not adhering to COVID-19 rules and operator
agents. These three types all share the AATOM cognitive architecture described by [15]
and shown in Fig. 3. The shaded blocks of Fig. 3 show the extensions and improvements
made to the baseline AATOM model. The security checkpoint area consists of four
security lanes and one large common queue. The checkpoint lanes have a luggage belt,
an X-ray sensor and a walk-through metal detector.

Fig. 2. The environment of the agent-based model.
(Color figure online)

Fig. 3. Cognitive architecture of
AATOM.
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3.2 Specification of the Interactions Between Passenger Agents

Physical distancing has an impact on the interaction between passengers. For this study,
the movement module and the activity module of the baseline AATOM model were
revised to include physical distancing between the agents when they are walking and
when they are queuing. The Helbing social force model handles the movement of pas-
senger agents [10]. It is performed in the actuation module of the cognitive architecture
presented in Fig. 3. The model assumes that the passengers’ movement is guided by
a superposition of attractive and repulsive forces, determining the passengers’ walking
behavior. The pushing force and a friction force refer to the forces when passengers col-
lide with each other. These forces are not important for the model because passengers
are not allowed to touch each other; they need to keep their distance. The social repul-
sion force �fsocial rep, on the other hand, is important for simulating physical distancing.
The social repulsion force �fsocial rep is modelled by Eq. 1 and was calibrated in order to
simulate physical distancing between the agents. It models the psychological tendency
of two pedestrians i and j to stay away from each other. rij is the sum of the radii of
pedestrian i with radius ri and pedestrian j with radius j. dij is the absolute distance
between the pedestrians i and j (taken from their center of mass). �nij is the normalized

vector from pedestrian j to i and is calculated by: �nij =
(
n1ij, n

2
ij

)
= (�ri − �rj

)
/dij. Ai

and Bi are the “Helbing” constants [10]. These Helbing constants define the distance
between passengers and are therefore crucial in modelling physical distancing.

�fsocial rep. = Aie(
rij−dij)/Bi �nij (1)

In the baseline AATOMmodel, no difference was made between the social repulsion
force of two agents and the social repulsion force of an agent and an object. The values
of A and B for both scenarios were taken 250 [N] and 0.1 [m], respectively. The values
of A and B for both scenarios were taken 250 [N] and 0.1 [m], respectively. However, in
the model for this research study, the distinction is made between both. In this model,
every passenger agent that performs physical distancing is given two sets of Helbing
parameters. One set of parameters to simulate the social repulsion force of a passenger
agent with the environment. Another set of parameters to simulate the social repulsion
force of a passenger agent with other passenger agents. For the first set, the values of
A and B were taken to be equal to the original values 250 [N] and 0.1 [m] such that
emergence of the interactions is similar to the baseline AATOM model. For the second
set, the B value was calibrated to represent physical distancing between agents. In Fig. 4
one can see the impact of parameter B on the social repulsion force. The higher the B
value, the earlier the social repulsion force is activated. The B was increased to 0.5 m
(while A remains 250 [N]). It was visually inspected by simulation that a B value 0.5
m guarantees a physical distancing between passengers while still representing correct
walking behavior.

The agent-based model is able to identify at each time point which passenger agents
are not performing physical distancing, this will be referred to as using “agents that are
in contact”. One analyzer was implemented in the model that represents the number of
passengers that are in contact at every time step. This is shown in Fig. 5(a). This analyzer
is used to determine the contact locations. A second analyzer, presented in Fig. 5(b),
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Fig. 4. Plot of social repulsion force fsocial repulsion [N] vs distance between the passengers dij
[m]. The blue graph is the social repulsion force of the baseline AATOM model (when agents
are not physically distancing). The orange graph is the social repulsion force for the extended
AATOM model where agents are physically distancing. (Color figure online)

integrates the first and represents the total time of all passengers that were in contact.
This analyzer is used as a metric for results of the case studies presented in Sect. 4.
A third analyzer, in Fig. 5(c), shows the summed contact time but with a distinction
between ‘face-to-face’ contacts and’everything-back contacts’.

Fig. 5. The passenger contact analyzers. (a) Analyzer showing the amount of agents that are in
contact at every time step and at which location. Case study 1: scenario 5. (b) Analyzer showing
summed time of all passengers that were in contact. The amount of contacts (figure on the left)
are integrated over time. Case study 1: scenario 5. (c) Analyzer showing summed time of all
passengers that were in contact. Case study 1: scenario 5.

4 Case Studies

For this research, three different case studies are performed. The check-in process is
analyzed in Sect. 4.1. The security process is analyzed in Sect. 4.2 and finally, the
boarding process is analyzed in Sect. 4.3. In each case study, different hypotheses are
answered by simulating various scenarios in which different COVID-19 measures are
modelled. Every scenario is simulated 450 times. These three case studies all share
a common goal: they aim to analyze the impact of the COVID-19 measures on the
performance of the process and the passengers’ health safety. The model set-up and the
used metrics are explained in the following three sections.
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4.1 Case Study 1: Check-In

In this case study only the check-in is considered, as presented in Fig. 2. This case study
aims to analyze the impact of three COVID-19 measures: Firstly, the impact of physical
distancing between passengers. Secondly, the impact of longer waiting times at the desk
due to additional paperwork related to COVID-19. Thirdly, the impact of a different
queue lay out, for instance three straight queues instead of one common zig-zag queue.
The following three metrics are developed to analyze the effect of these measures on the
system’s performance and the associated health safety of the passengers: 1. Check-in
throughput TC , calculated in passengers per hour. Check-in throughput is defined as the
number of passengers that were served by a check-in area in a specific time period. Note a
check-in area consists out of three check-in desks. 2. Average contact time per passenger
Cpax, calculated in seconds. Contact time per passenger is defined as the time duration for
which a passenger agent is not able to perform at least 1.5 m physical distancing. For the
check-in case study, two variants of this metric were designed. Namely, A) the average
contact time per passenger in the check-in queue CpaxCQ . This metric only considers the
contact time of a passenger for which the passenger was in the queue during the check-in
process. B) The average contact time per passenger at the check-in desk CpaxCD . This
metric is thus only calculated for the passengers that are at the desk. These two variants
were implemented to understand at which location the passenger is exposed the most:
in the queue or at the desk. Using these metrics, five different hypotheses were found to
be the most interesting to analyze:

• Hypothesis 1: Physical distancing decreases check-in throughput TC .
• Hypothesis 2: Physical distancing decreases average contact time per passenger in
the queue CpaxCQ .• Hypothesis 3:A 20% increase in check-in time tCi increases the average contact time
per passenger in the queue CpaxCQ .• Hypothesis 4: Three single straight queues (instead of one common zig-zag queue)
result in a higher check-in throughput TC .

• Hypothesis 5: Three single straight queues (instead of one common zig-zag queue)
result in a lower average contact time per passenger CpaxCQ .

These four hypotheses are tested by simulating five different scenarios. Passenger
agents are generated in front of check-in queue and they only perform the check-in activ-
ity and the queue activity. The inputs to the model for each scenario are given in Table 1.
Scenario 1 models a pre-COVID-19 situation. No COVID-19 measures are modelled
in this scenario. Thus, passenger agents do not perform physical distancing. No extra
paperwork is required. Therefore, the check-in time tCi follows a normal distribution
with a mean of 60 min and a variance of 6 min. This is based on data that is gathered
before COVID-19 [16, 17]. Passenger agents are using a common zig-zag queue. In
scenario 2, the 1.5-m physical distancing measure is modelled. Scenario 1 and 2 are
used to test hypotheses 1 and 2. In scenario 3, a 20% increase in check-in time tCi is
modelled, thus N(72,6), in order to account for additional health questions and more
paperwork related to COVID-19. This scenario is used to test hypothesis 3. In scenario
4, the measures of scenario 2 and 3 are modelled together. Lastly, in scenario 5 passenger
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agents use a straight check-in queue instead of a common zig-zag queue. This scenario
is used to test hypotheses 4 and 5.

Results for Check-In
Table 1 presents the results of the check-in case study, Sect. 4.1. For hypothesis 1, Table 1
shows that scenario 1 and 2 result in the same check-in throughput TC , namely 167
passengers per hour. This means that physical distancing PD does not influence the
check-in throughput TC . This was confirmed by the coefficient of correlation ρPD, TC

= −0.11 with p-value = 0. Since the ρPD, TC < 0.4 (rule of thumb) we can say there
is no significant correlation between these two variables. Thus, we can reject hypothesis
1. For hypothesis 2, Table 1 shows that in scenario 1 a passenger is on average 4 s in
contact at the desk CpaxCD and 1 min and 25 s in contact with other passengers in the
queue CpaxCQ . For scenario 2, CpaxCD is the same but CpaxCQ reduced with 41%. This
means that physical distancing does decrease CpaxCQ . This is confirmed by the strong
negative correlation coefficient: ρPD,CpaxCQ = −0.9 with p-value = 0. Therefore, we
can support hypothesis 2. For hypothesis 3, it can be deduced from scenario 3 in Table
1 that an extra 20% more check-in time tci (due to e.g., extra COVID-19 related paper
work) increases the average contact time per passenger in the queue CpaxCQ by 23%.
The coefficient of correlation ρtci, CpaxCQ = +0.72 with p = 0. This means there is
a significant positive correlation between tci and CpaxCQ . Therefore, we can support
hypothesis 3. This is reasonable because tci also reduces the check-in throughputTC with
16% which results in longer waiting times for passengers in the queue. For hypothesis
4 and 5, three single queues were implemented in scenario 5 instead of one common
zig-zag queue. Table 1 reveals that straight queues increase passenger throughput with a
small 3%. The coefficient of correlation ρQT, TC equals 0.24, which is lower than 0.4,
meaning there is no significant correlation. We can reject hypothesis 4. The introduction
of three single queues also reduced CpaxCD by 50% and CpaxCQ by 42%. The coefficients
of correlation ρQT, CpaxCD and ρQT, CpaxCQ are −0.86 and −0.74. This confirms that
single queues reduce the average contact time per passenger Cpax. Hypothesis 5 can be
supported. The reason for this reduction is threefold: 1. Due to the three straight queues,
the passenger flow from the end of the queue towards the check-in desk is more efficient.
Fewer passengers interfere with each other because there are three queue exits instead of
one. 2. The absence of corners in a straight queue. Figure 6 shows that in a zig-zag most
contacts occur in the corners (dark blue dots). In a straight queue, Passengers do not need
to turn while queuing. When passengers are turning, they focus less on other passengers
than when they walk in a straight line. 3. The model implementation: a passenger agent
is programmed to stop when observing other passenger agents that are in queueing mode
and are at 1.5 m distance. At corners, the passenger’s observation can be blocked by a
wall which causes that other passenger agents are observed too late (when the passengers
are already closer than 1.5 m).

4.2 Case Study 2: Security Check Point

Case study 2 only considers the security process. This case study’s environment is the
security checkpoint area, as shown in Fig. 2. This case study aims to analyze the impact
of the COVID-19 measures on the performance of the security checkpoints and the
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Fig. 6. Heatmap scenario 2. The dark blue areas represent the hot spots of passenger contacts.
(Color figure online)

Table 1. Results of case study 1: check-in. PD means physical distancing, tci means time to
check-in. Note that percentages are given w.r.t. the baseline scenario 1. For every scenario 450
simulations were performed.

associated passenger health safety. Similar metrics as for the check-in case study are
used, namely: 1. Average security throughput TS , calculated in passengers per hour.
Security throughput is defined as the number of passengers that were served by two
security lanes in a specific time period. 2. Average contact time per passenger Cpax,
calculated in seconds. Two variants of this metric were designed to identify at which
location most contacts occur. Namely, A) the average contact time per passenger in the
security queue CpaxSQ . B) The average contact time per passenger at the security lane
CpaxSL . Also, for this case study some hypotheses were found interesting to be analyzed:

• Hypothesis 6:An increase in luggage divest time td and luggage collect time tc result
in a lower security throughput TS.

• Hypothesis 7:An increase in luggage divest time td and luggage collect time tc result
a higher average contact time per passenger CpaxSL and CpaxSQ .• Hypothesis 8: Less luggage divest nd and luggage collect nc positions result in a
lower average contact time per passenger CpaxSL and CpaxSQ .

To test these hypotheses seven different scenarios were designed. In each scenario,
only two security lanes are open. Passenger agents are generated in front of the queue of
the security checkpoint. They only perform the queue activity and the security checkpoint
activity. The inputs to the model for each scenario are given in Table 2. Scenario 1
is the baseline scenario with parameters simulating the pre-COVID19 situation, thus
without any COVID-19 measures. Three luggage divest nd and three luggage collect nc
positions are implemented per lane. Thus, passenger agents are standing there close to
each other. Scenario 2 considers an increase of 20% in divest time td and collection time
tc. From interviews with airport stakeholders it was revealed that security operators do
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not actively support passengers anymore during divesting which results in more time
needed for passengers. When passengers place items incorrectly in the trays, operators
try to minimize contact with the passengers’ belongings. Therefore, they let passengers
rather reorganize their items themselves which results in additional time. This scenario
is used to test hypothesis 6 and 7. Scenario 4, 5, 6 and 7 consider different number
divest nd and collect positions nc. Since the divesting and collection area is generally
very crowded, pre-COVID-19 configurationswith three divest positions and three collect
positions per lane do not correspond to physical distance regulations any longer. These
scenarios are used to test hypothesis 8.

Results for Security Check Point
Table 2 presents the results for this case study. In the baseline scenario, where the
parameters from [19] were used, the throughout for the 2 lanes TS is 230 passengers
per hour. This is equal to 1.92 passengers per minute per lane, which is in line with
the findings of [19]. As for the check-in case study, we observe from scenario 3 that
physical distancingPD does not influence the security’s throughput.Because the physical
distancing is already analyzed in the previous case study, no further analysis is needed.
For hypotheses 6 and 7, scenario 1 and 2 can be compared. In scenario 2, a 20% increase
in divest td and collect tc time was implemented (because operators do not actively
support passengers to diminish the interactions). From Fig. 7, it was observed that most
contacts happen at the luggage divest and collect area of the security system, therefore
different number of luggage divest nd and collect nc positions were implemented.

Fig. 7. Heatmap scenario 3. The dark blue areas represent the hot spots of passenger contacts.
(Color figure online)

Table 2 shows that an increase in td and tc has a negative influence on the through-
put TS . Throughput reduces by 10%. This reduction is supported by the coefficient of
correlation ρtd , TS = ρtc, TS = −0.51 with a p-value of 0. Therefore hypothesis 6 can
be supported. The average contact time per passenger at the security lane CpaxSL and
in the queue CpaxSQ increased by around 13% and 15%. The coefficients of correlation
are 0.42 and 0.39. Since this is lower than 0.4 (rule of thumb), we can’t say there is a
significant correlation. Therefore, we need to reject hypothesis 7. For hypothesis 8 we
can compare scenario 4, 5, 6 and 7 in Table 2. Table 2 shows that a reduction in nd and nc
lowers the average contact time per passenger at the security lane CpaxSL . This correla-
tion is confirmed by the coefficients: ρnd ,CpaxSL = 0.9 and ρnc,CpaxSL = 0.76 (both with
p = 0).



224 G. Sanders et al.

Table 2. Results of case study 2: security. PD means physical distancing, td luggage drop time,
tc luggage collect time, nd number of divest positions per lane and nc number of collect positions
per lane. Note that percentages are given w.r.t. the baseline scenario 1.

Hypothesis 8 can be supported. However, Table 2 also shows that a reduction in
nd and nc lowers the security throughput TS . To find an optimal between the positive
influence of nd and nc on the Cpax and the negative influence on TS , some more analysis
of the scenarios is needed: Comparing scenario 4with scenario 5 shows that a “one divest
position less” measure improves the CpaxSL better than “one collect position less”. From
this, we can conclude in the luggage divest area more passenger contacts happen than
in the collect area. Both measures have almost the same impact on security throughput
TS , around 160 passengers per hour. In scenario 6, one divest position less (scenario
4) and one collect position less (scenario 5) were implemented together. Table 2 shows
that throughput reduces to 137 passengers per hour. The contact time at the security
lane is reduced to 9 s per passenger, which means that almost no contacts occur at the
security lane. Lastly, in scenario 7 only 1 divest position and 1 collect position per lane
was implemented. For this scenario, the throughput TS dropped even further to only 69
passengers per hour. The average contact time per passenger at the security lane dropped
to 2 s per passenger while the contact time in the queue increased to 4 min and 20 s.

4.3 Case Study 3: Boarding

For case study 3, only boarding is considered. One gate area is considered and shown
in Fig. 2. This case study aims to analyze the impact of the COVID-19 measures on
the boarding procedure. For this case study, 50 passengers are considered representing
a regional flight with a B737 with a load-factor of 1/3, based on expert knowledge. It
is assumed that 50 passengers are all sitting at the start of the simulation. For this case
study two metrics are considered, namely:1. The average time to board 50 passengers
TB, calculated in minutes. Note: the time starts when the first passenger agent starts the
boarding process (when the passenger agent leaves the seat) and it ends when the last
(50th) passenger agent is boarded. 2. The average contact time per passenger Cpax, cal-
culated inminutes. Using thesemetrics, four different hypotheses were found interesting
to be analyzed:

• Hypothesis 9: Physical distancing increases the total time to board 50 passengers TB.
• Hypothesis 10: Boarding in smaller groups increases the total time to board 50
passengers TB.

• Hypothesis 11: Boarding in smaller groups decreases the average time passengers
are in contact Cpax.
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• Hypothesis 12: A higher average boarding pass check-time tbc increases the average
time passengers are in contact Cpax.

These hypotheses are tested by simulating four different scenarios. The inputs to
the model for each scenario are given in Table 3. Scenario 1 is the baseline scenario in
which passengers do notmaintain physical distance, they board in groups of 10 and the tbc
follows a normal distribution with mean 10 s and variance 1 s. In scenario 2, passengers
board in smaller groups of 5 passengers. This scenario is used to test hypotheses 10
and 11. In scenario 3 physical distancing is modelled to test hypothesis 9. Lastly, for
hypothesis 12 scenario 4 simulates the impact of a higher tbc because airlines often ask
health questions before checking the boarding pass.

Results for Boarding
In case study, 3 different boarding strategies were analyzed. In total 5 scenarios were
simulated. The results are shown in Table 3. For hypothesis 9, scenario 2 and 3 are
compared. Scenario 2 in Table 3 shows that when passengers are not performing physical
distancing PD, the time to board 50 passengers TB is 4 min and 49 s. When passengers
are performing physical distancing the time to board 50 passengers is 4% higher. This
is also confirmed by the coefficient of correlation ρPD,TB equal to 0.61 and the p-value
equal to 0 which means there is a significant positive correlation. Thus hypothesis 9
can be supported. This makes sense because passengers need more time to organize
themselves in the queue, especially at the beginning of the queue.

For hypotheses 10 and 11, scenario 1 and 2 are compared. Scenario 2 shows thatwhen
passengers are boarding in smaller groups GS (five passengers instead of ten) the time to
board 50 passengers TB increases by 12%. The average contact time per passengerCpax
decreases by 52%. This is also reflected by the coefficients of correlation which are ρGS,
TB = −0.8 (p-value of 0) and ρGS, Cpax = 0.9 (p-value of 0). Therefore hypothesis 10
and 11 can be supported. We can conclude that splitting a boarding group in two does
not imply that the total boarding time doubles. This finding is important for airports
with limited space at gates for queueing. Since some airlines ask additional questions
related to COVID-19 during scanning of the boarding pass, passengers need to wait
longer at the gate counter. Therefore, an increase of 10 s in boarding pass check time
tbc was implemented in scenario 4. To check hypothesis 12, scenario 3 and scenario 4
can be compared. Scenario 4 in Table 3 shows that an in increase in boarding check time
tbc increases the average time a passenger is in contact Cpax with 4 s. The coefficient
of correlation ρtbc, Cpax = 0.6 with a p-value of 0. Therefore, hypothesis 12 can be
supported. Moreover, it can also be seen from Table 3 that the total boarding time TB

significantly increases. Thus, the waiting time at the gate counter should be minimized
as much as possible because it significantly influences the total boarding time and the
average contact time per passenger. We can recommend that administrative questions
should be asked in advance, for example, during online check-in.
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Table 3. Results of case study 3: boarding. GS means boarding group size, PD means physical
distancing and tbc means boarding pass check time.

5 Discussion and Conclusion

The proposed agent-based model simulates the main airport handling processes of pas-
sengers at an airport under COVID-19 circumstances. This study can help airport oper-
ators in their decision-making and make airports more resilient for future crises. The
results from the three case studies are airport specific because the parameters used were
specific to a particular regional airport. Data was taken from [16, 17] to calibrate the
parameters for the case studies done with the model. As every airport has different distri-
butions of passenger types and different infrastructure and personal, the used parameters
can thus not per se be copied to represent other airports. Also, since there is not much
work done in the field of agent-based models used for both the analysis of the airport
operations performance and for the associated passenger health safety, it is difficult to
compare the results with other studies. Although this study has proven to be useful in ana-
lyzing the impact of the COVID-19 measures, this study also made some assumptions.
The contact time metric used in this research study takes into account distance (a contact
happens when passengers are closer than 1.5 m from each other) and time (the time of a
contact). However, the model does not distinguish between contacts that happen at 1 m
and contacts that happen at 1.4m. Lastly, themodel only considers check-in desks staffed
with operators. However, in reality many airports have self-check-in desks as these can
spread over the passenger demand and decrease costs. This research study does not
consider how self-check-in desks can contribute to safer operations for passengers.

This study aimed to analyze the impact of COVID-19 restrictions on airport opera-
tions’ performance and the associated health safety of the passengers. The agent-based
model was used to explore three different case studies to analyze the impact of these
measures on the check-in, the security and the boarding process, respectively. The mea-
sures’ effects were all tested in different scenarios for each case study by analyzing
the maximum throughput and the average contact time per passenger for check-in and
security. The results show that physical distancing during queueing does not affect the
throughput of the check-in and the security process. Physical distancing does lead to
passengers being less in contact with each other, and it also decreases the capacity of
queues. The implementation of single queues instead of one common queue had a posi-
tive impact on the throughput of the check-in and the passengers’ health safety. The flow
towards desks is more efficient (with less interfering flows of passengers), and it is easier
for physical distancing in single queues because no turning is required. Furthermore, it
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was shown that in a pre-COVID-19 security lane set-up many passengers are too close
at the luggage divest and collect area. The case study results showed that a decrease
from three luggage divest and collect positions per lane to two positions of each per lane
leads to a significant positive impact on passenger health safety while the throughput
is still acceptable. However, to obtain the same throughput with one drop off and one
collect position less it is advised to open an extra security lane. Implementing only one
divest and one collect position per lane is unnecessary because it does not appropri-
ately improve passenger health safety. Thus, two passengers per divest area and two
per collect area is perfectly possible. Then, passengers can move without being closer
than 1.5 m from each other. The boarding case study results showed that boarding in
smaller groups positively impacts the average contact time per passenger. In contrast, it
negatively affects the total boarding time. The results also showed that physical distance
has a relatively small impact on the total boarding time because the organization of the
passengers lining up during queueing takes a bit more time.
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