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Abstract. We propose a new oblique decision tree algorithm based on
support vector machines. Our algorithm produces a single model for a
multi-class target variable. On the contrary to previous works that man-
age the multi-class problem by using clustering at each split, we test all
the one-vs-rest labels at each split, choosing the one which minimizes
an impurity measure. The experimental evaluation carried out over 49
datasets shows that our algorithm is ranked before those used for com-
parison, and significantly outperforms all of them when the SVM hyper-
parameters are carefully tuned.
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1 Introduction

Decision trees (DT) [12] are one of the most used classification models in data
mining, with recent success stories such as its use by Microsoft Kinect for real-
time human pose estimation [19]. This is due, among other advantages, to their
high performance and structural simplicity, which make them easily understand-
able by humans, increasing in this way the confidence to use them in real world
applications.

In this work we focus on supervised classification, where the goal is to induce
a function or classifier f : X1 × · · · × Xn → Y , where X1, . . . , Xn are the
predictive attributes that define the object to be classified and Y is the target
variable or class, which takes values in a set of finite and disjoint categories (or
labels), Y = {y1, . . . , yk}. When a DT is used as classification function (f), it is
a tree-shaped data structure where each leaf node is labeled with a value of Y
and the inner nodes contain tests related to the predictive attributes. Branches
coming out from an inner node represent the different answers to its associated
test. An object (instance) is classified by following the path from the root to a
leaf, using its attribute values to answer the tests at inner nodes. The object is
classified with the label associated to the reached leaf.

The standard or most known model of DT is the one which uses univariate
tests, usually by comparing the selected attribute with a threshold (e.g. Xi ≤ θ).
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This type of DT is known as orthogonal or axis-parallel DT because of the
partition of the input (attribute) space it generates. Due to the success of axis-
parallel DTs there exists a plethora of machine learning algorithms to learn
them from data, being C4.5 [17] and CART [5] two of the most used (both were
included in the selection of the top ten algorithms in data mining [21]). However,
this type of DTs cannot (directly) capture decision boundaries non parallel to
the axes, having to approximate them by using several consecutive tests, which
leads to complex (DT size) and, probably, less accurate models.

Oblique decision trees (ODT) [15] allow the use of multivariate tests in the
inner nodes, obtaining in this way more compact models and, usually, better per-
formance, at the expense of a higher time cost. Originally, a linear combination
of (some of) the input variables was used as test function, g(X1, . . . , Xn) ≤ θ,
but later more powerful machine learning techniques as support vector machines
(SVM) or neural networks (NN) [3] have also been used.

In this work we focus on the use of SVM to obtain the test in the inner nodes,
with the goal of producing an accurate single-model ODT able to manage multi-
class (k > 2) variables. Although DTs (ODTs) are successfully used as base
classifiers to build ensembles, e.g. Random Forest [6], in this first attempt we
limit our study to the base ODT classifier. Our main contributions are:

– We introduce STree, a new SVM-based ODT. The method is able to deal
with a multi-class target variable by producing a single model. The main idea
behind the method is to guide the splitting process by obtaining a partition
which allows to properly classifying one of the class labels with respect to
(all) the remaining labels.

– An extensive experimental evaluation is carried out over a benchmark which
contains 49 datasets and 5 competing algorithms. In the experiments we
tested two configurations for STree, one by using a default parameterization,
whose results are clearly competitive with respect to the included competing
approaches, and other, with fine-tuned hyperparameters, which significantly
outperforms the tested algorithms.

Our study is organized in four sections apart from this introduction. In Sect. 2
we briefly review the closer proposals to our approach, which is described in detail
in Sect. 3. Section 4 contains the extensive experimental evaluation carried out
over a significant benchmark, as well as its analysis. Finally in Sect. 5 we present
our concluding remarks and outline future research lines.

2 Related Work

Growing a DT from data is (usually) a recursive partitioning process that splits
the data into several subsets according to the test selected at each inner node. The
recursive partitioning method stops when the data received by a node (mostly)
belongs to the same label, then, this node becomes a leaf. Therefore, the key point
in the DT learning process is how to select the test or split for an inner node.
In axis-parallel DTs, information or statistical measures have been considered
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to decide which test reduces most the uncertainty of the class variable. Shannon
entropy (C4.5 [17]) or Gini index (CART [5]) are usual choices.

In oblique DTs more powerful multivariate tests are used, which leads to more
compact and (usually) accurate models. However, deciding the test for a given
inner node is also more computationally expensive. In most ODT algorithms the
test is a linear combination of the input attributes, that is, β0 + β1X1 + · · · +
βnXn > 0. Then, the goal is to search for the β parameters which define the
hyperplane producing the binary partition that most reduces the uncertainty
of the class variable. In CART-LC [5] a coordinate descent method is used to
optimize those parameters, while in OC1 [15] the method is improved by using
multiple restarts and random perturbations to escape from local optima. Both,
CART-LC and OC1 initialize the search with the best axis-parallel partition. In
WODT [22] the optimization problem is transformed to consider the continuous
and differentiable function of weighted information entropy as objective, thus,
gradient descent can be used as optimization method. Furthermore, in WODT a
random hyperplane is used as initialization. Metaheuristic algorithms have also
been used to escape from local optima [18].

Apart from linear functions, more powerful machine learning models like
neural networks or support vector machines have also been considered as split
criteria [2,11], allowing in this way multivariate linear and non-linear tests. In
this paper we focus on the use of support vector machines (SVM) [4,20] to
build the test associated to inner nodes. The standard SVM algorithm looks for
the optimal separating hyperplane which maximizes the margin of the training
data regarding a binary class variable. To be able of doing this in non-linearly
separable problems, we could transform the input vectors into a high dimensional
feature space, where a linear classification problem is solved. These two steps
can be joined in a direct computation method by using the so-called kernel trick,
where different types of kernel can be used (linear, polynomial, etc.).

In the literature we can find several ODT approaches based on SVMs. Thus,
standard SVMs with linear [2], radial-basis function [24] and polynomial [14]
kernels have been used to learn the hyperplane at each inner node. More complex
SVM algorithms like multisurface proximal SVM (MPSVM) are used in [13]
and [23], while a twin bounded SVM (TBSVM) is used in [9]. Both, MPSVM
and TBSVM learn two hyperplanes, each one being the closer to the data samples
of one class and the farthest from the data samples of the other class; instances
are then classified by using their distance to both hyperplanes.

The algorithms in [9,13,14,23] are able to manage multi-class problems.
In [14] k, one per class, one vs rest binary problems are considered and so k
SVM models learnt. Then, a vector of length k is built for each instance, where
dimension i is its distance to the i-th hyperplane. Instances are then clustered
in r groups by using the X-means algorithm [16]. The number of clusters, r,
is determined by the X-means algorithm and is the number of branches com-
ing out from that inner node. In [9] and [23], at each inner node, class labels
are clustered into two groups by using the Bhattacharyya distance, then, these
two groups are used to solve the binary classification problem by MPSVM and
TBSVM respectively. Finally, in [13] at each inner node the multi-class problem
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is transformed into a binary one by facing the class label with more instances
against the group formed by the rest of labels.

3 Proposed Method: STree

Our goal is to design a flexible SVM Oblique Decision Tree (STree) able to cope
with a multi-class target variable, Y = {y1, . . . , yk}, by producing a single DT.
Different SVM-ODT algorithms have been presented previously in the literature
(see Sect. 2), although most of them have been directly used as base classifiers
for ensemble models, without testing them as individual classifiers. The main
features of our algorithm are:

– A binary tree is obtained, as in [9,13,23], but on the contrary to [14].
– The binary split or classification problem set in each inner node is not obtained

by using clustering as in [9,14,23], but facing one class label against the rest
(as in [13]). However, instead of always selecting the majority class label, we
try the k one vs rest cases and choose the best one according to an impurity
score, being more flexible at the expense of extra computational cost.

– As there is no agreement about which kernel is better or worse for a specific
domain, we allow the use of different kernels (linear, polynomial and Gaussian
radial basis function).

Our method works recursively and at each (recursive) call the algorithm
receives a set of instances T . Then, the method proceeds as follows:

1. If the stopping condition (max depth, almost only one class label, etc.) is met,
a leaf node is created with outcome equals to the more frequent label in T .

2. Otherwise, we have to split T into two groups, T+ and T−, in order to create
the two branches for this inner node. To do this, we have to transform the
multi-class problem into a binary one. Let k′ ≤ k the number of different
class labels appearing in T (notice that as the tree grows in depth, not all the
labels will be present in the received set T ).

– If k′ = 2 we already have a binary classification problem. We apply the
SVM algorithm to learn the maximum margin hyperplane H and split
the instances of T in T+ and T− accordingly to its distance to H. The
hyperplane H is stored in the node.

– If k′ > 2 we use the well known one-vs-the-rest (OVR) strategy [3, pg.
339] and define k′ binary classification problems: {y1} vs {y2, . . . , yk′},
{y2} vs {y1, y3, . . . , yk′}, etc. Let Hi be the hyperplane learnt by the
SVM algorithm for the i-th binary classification problem, T+

i and T−
i be

the partition of T it generates, and impurity(Y, T ) be a measure which
evaluates the impurity of the class variable Y in T . Then, we select the
hyperplane H∗ such that

H∗ = arg min
i=1,..,k′

|T+
i |

|T | impurity(Y, T+
i ) +

|T−
i |

|T | impurity(Y, T−
i ),

which is stored in the node.
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3. Once the hyperplane and the corresponding partition (T+, T−) have been
selected, two branches are created for this node: positive, for those instances
having positive distance to the hyperplane, and, negative, for those instances
having negative distance to the hyperplane. Two recursive calls are then
launched with T+ and T− as set of input instances respectively.

In our implementation Shannon entropy has been used as impurity measure.
No pruning stage has been already designed for STree, however a pre-pruning is
allowed by setting a maximum depth for the tree.

Regarding inference, for a given instance the tree must be traversed from
the root to a leaf node, whose associated label is returned as outcome. At each
inner node the stored hyperplane H is used and the distance of the instance to
it computed. If the obtained value is ≥0 then the instance goes on by following
the positive branch, otherwise it goes on by following the negative one.

4 Experimental Evaluation

In this Section we describe the comprehensive experiments carried out to evalu-
ate our proposal.

4.1 Benchmark

As benchmark we have selected the same 49 datasets used in [9]: 45 of them are
from the UCI machine learning repository [8] while the other 4 correspond to
a problem about fecundity estimation for fisheries (see [9] for the details). The
first four columns of Table 1 report the name, number of instances, attributes
and class labels for each dataset.

4.2 Algorithms

The following algorithms have been included in the comparison:

– STree∗. Our proposal with a fine tuned parameterization, done by using a
grid search method. As mentioned in Sect. 3 our goal is to design a flexible
classifier, so different hyperparameters, most of them related to the SVM
learning algorithm, can be varied. In particular, in this study we have tuned
the following hyperparameters:

• Kernel. Can be linear, polynomial or Gaussian radial basis function
(RBF). Default is linear.

* Kernel coefficient gamma is optimized for polynomial and RBF ker-
nels. Default value is 1

n×data.variance .
* Degree is optimized for polynomial kernel. Default is 3.

• C. Regularization hyperparameter. Default is 1.
• Max number of iterations for the SVM (optimization) learning algorithm.

Default is 105.



STree: A Single Multi-class Oblique Decision Tree Based on SVM 59

• Max features. Number of features used to build the hyperplane. Default
is all.
In https://git.io/JYpff we show the hyperparameter values used for each
dataset. When empty, the default value is selected.

– STree-default. Our proposal without fine-tuning, i.e. using the default param-
eterization for the SVM algorithm: kernel=linear, C = 1.0, max iterations =
105, and max features = all.

– TBSVM-ODT1. Algorithm to learn a multi-class oblique DTs by using Bhat-
tacharyya distance-based clustering and Twin Bounded SVMs [9].

– J48SVM-ODT(See Footnote 1). Algorithm to learn a multi-class oblique DTs
by using X-means clustering and SVM algorithm [14].

– WODT. Recent algorithm to learn oblique DTs based on using weighted
entropy and continuous optimization [22].

– OC1. Classical algorithm to learn oblique DTs [15].
– CART. Classical algorithm to learn axis-parallel DTs [5].

In both STree∗ and STree-default entropy has been used as impurity measure
and no maximum depth has been set, the tree grows until all the instances
received in a node belong to the same class label or the hyperplane learnt by the
SVM cannot separate the instances.

STree has been implemented in python as a scikit-learn classifier2. Pub-
licly available versions of CART (python/scikit-learn) and OC1 (C) have been
used. The code for WODT (python), J48SVM-ODT (java/Weka) and TBSVM-
ODT (Matlab) have been provided by their authors. All the experiments have
been run in a 3.8 GHz 8-core 10th-generation Intel Core i7 running macOS Big
Sur operating system.

4.3 Results and Analysis

To evaluate the performance of each pair (algorithm, dataset), we have run a
five fold cross validation 10 times (10×5cv). The same 10 seeds have been used
in all the pairs to randomize the data before the cross validation. As no severe
imbalance is presented in any dataset (see [9, Table A1]), accuracy is used to
compare the tested algorithms performance. The mean and standard deviation
over the 50 runs of the 10×5cv are reported in Table 1.

To properly analyze the results we have carried out a standard machine
learning statistical analysis procedure [7,10] using the exreport tool [1]. First,
a Friedman test (α = 0.05) is performed to decide if all the algorithms are
equivalent. If this hypothesis is rejected, a post hoc test is performed by using
Holm’s procedure (α = 0.05) by using as control the algorithm ranked first by
Friedman test.

1 In [9] and [14] ensemble methods are proposed. In this paper we compare against
the proposed base ODT classifiers.

2 The code can be found in https://git.io/J3jkQ.

https://git.io/JYpff
https://git.io/J3jkQ
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We carried out two statistical analysis, including or not algorithm STree∗.
When all the algorithms are included, Friedman test reports a p-value of
4.9919e−27, thus rejecting the null hypothesis that all the algorithms are equiv-
alent. The results of the post hoc Holm’s tests are shown in Table 2(a) by using
STree∗ as control. The columns rank and p-value represent the ranking obtained
by the Friedman test and the p-value adjusted by Holm’s procedure, respectively.
The columns win, tie and loss contain the number of times that the control algo-
rithm wins, ties and loses with respect to the row-wise algorithm. The p-values
for the non-rejected null hypothesis are boldfaced. As can be observed (finely
tuned) STree∗ algorithm significantly outperforms the remaining algorithms. In
order to compare our proposal without tuning the hyperparameters we have
repeated the statistical analysis excluding STree∗. Again Friedman test rejects
the hypothesis of all the algorithms being equivalent (p-value 2.8244e−16). The
post hoc analysis is shown in Table 2(b), where STree-default is taken as control,
as it is now the algorithm ranked first by Friedman test. As we can observe,
when the hyperparameters are not tuned for STree, STree-default significantly
outperforms all the algorithms but J48SVM-ODT, there being no statistically
significant difference in this case.

Table 2. Results of the post-hoc test for the mean accuracy of the algorithms.

Method rank p-value win tie loss

STree* 1.65 – – – –

STree default 2.83 7.172e−03 28 21 0

J48SVM-ODT 3.49 5.142e−05 41 0 8

TBSVM-ODT 4.34 2.338e−09 46 1 2

WODT 4.37 1.999e−09 43 0 6

CART 5.45 1.696e−17 45 0 4

OC1 5.88 2.211e−21 48 0 1

(a) With STree∗

Method rank p-value win tie loss

STree default 2.04 – – – –

J48SVM-ODT 2.65 1.053e−01 34 0 15

TBSVM-ODT 3.39 7.314e−04 40 0 9

WODT 3.49 3.788e−04 34 0 15

CART 4.53 1.791e−10 41 0 8

OC1 4.90 2.026e−13 45 0 4

(b) Without STree∗

Finally, we have also analyzed the complexity (size) of the obtained trees (see
https://git.io/J3jI6) and also the training time of the different algorithms (see
https://git.io/J3jI9). Table 3 shows the results on average over the 49 datasets
once we normalize them by using STree-default as control. Regarding size we
can observe that STree obtains the smallest trees, while J48SVM-ODT and
WODT, which are the closer algorithms to STree, obtain trees with twice the
nodes of STree-default. Regarding time, although this is not a fair comparison
because of the different implementations, we can observe that apart from axis-
parallel CART, STree algorithms are strongly competitive, with only TBSVM-
ODT being faster than STree-default, but that algorithm is so far in accuracy.

https://git.io/J3jI6
https://git.io/J3jI9


STree: A Single Multi-class Oblique Decision Tree Based on SVM 63

Table 3. Datasets used during the experimentation

STree* STree-default WODT J48SVM-ODT OC1 CART TBSVM-ODT

Size 0.87 1.00 19.18 2.17 2.00 8.58 3.52

CPU time 0.85 1.00 7.96 3.61 7.13 0.09 0.88

5 Conclusion

A new algorithm to build oblique DT able to directly manage a multi-class tar-
get variable has been presented. The algorithm produces a binary DT that needs
to learn several hyperplanes at each split, although only one is stored for infer-
ence. The experiments show that the proposal works well over a great range of
domains (49 datasets) and its performance is remarkable when compared against
5 competing algorithms. We also observe that tuning the hyperparameters of the
SVM algorithm for each dataset is key to obtain better results, leading to an
STree version that significantly outperforms all the competing tested methods.

As future research we plan to work with sub-spaces (few variables) instead
of considering all the features at each node of the ODT. These variables can be
selected by using some univariate or multivariate filter feature selection algo-
rithm, or randomly following the random-subspace principle [6]. Aggregating
this weaker classifiers by using ensemble-based techniques is also of interest,
as has been done in [9,14]. Finally, the advantage of a fine tuning of the SVM
hyperparameters has revealed to be key in the performance of the proposed algo-
rithm, at the expense of a high computational CPU time requirement. As future
research we plan to study some type of light auto-tuning that can be carried out
embedded in the STree algorithm.
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