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Preface

This volume contains a selected and peer-reviewed set of papers explicitly submit-
ted to CAEPIA 20/21, the XIX Conference of the Spanish Association for Artificial
Intelligence, held in Málaga, Spain, during September 22–24, 2021. This series of
conferences is a well-established biennial Spanish event on Artificial Intelligence (AI)
that started back in 1985. Previous editions took place in Alicante, Málaga, Murcia,
Gijón, San Sebastián, Santiago de Compostela, Sevilla, La Laguna, Madrid, Albacete,
Salamanca, and Granada.

CAEPIA is a national forum open to researchers from all over the world to present
and discuss their latest scientific and technological advances in AI. Authors were kindly
requested to submit unpublished original papers describing relevant achievements on
AI topics for evaluation to appear in this volume. The conference welcomed theoretical,
methodological, technical, and applied research.

Several federated congresses and workshops related to relevant AI tracks took place
within CAEPIA: XX Spanish Congress on Fuzzy Logic and Technologies (ESTYLF);
XIV Spanish Congress on Metaheuristics, Evolutionary and Bioinspired Algorithms
(MAEB); X Symposium of Theory and Applications of Data Mining (TAMIDA); and
six workshops.

Within CAEPIA 20/21 we also had a Doctoral Consortium (DC) for students. This is
a forum for doctoral students to interact with other researchers by discussing their PhD
advances and working plans. As an additional AI activity, we ran the 4th Competition on
MobileAppswithAITechniques, side by sidewith a new edition of theAIDissemination
Videos Competition.

All the above activities endorse AI, and we strove to reach a high quality in the
scientific papers, the DC, and the competitions. The scientific program of CAEPIA
20/21 also offered a track to disseminate outstanding recently published papers (Key
Works: KW) appearing in renowned journals and fora. CAEPIA has always aimed to be
recognized as a flagship conference in AI, and thus the peer reviewed papers, especially
for this LNAI volume, went through a strict evaluation process. The total number of sub-
missions to CAEPIA 20/21 was 186 (neither DC nor competitions nor KW submissions
(83 additional contributions) were included in this number, since they went through a
different evaluation process). Only 25 outstanding manuscripts were selected for this
volume after a thorough double-blind review process that involved at least three reviews
per submission, forwhichwe are grateful to the area experts and the ProgramCommittee.
The reviewers judged the overall quality of the submitted manuscripts, together with the
quality of the methodology employed, the soundness of the conclusions, the significance
of the topic, the clarity, and the organization, among other evaluation criteria. On the
basis of these reviews, the area experts proposed a final number of articles that were
analyzed and approved by the editors of this LNAI volume.

CAEPIA 20/21 invited two internationally renowned researchers for a plenary talk.
Our conference was held as a big event within the still larger Spanish Conference on
Computer Science (CEDI), itself having very interesting plenary talks too. Our two



vi Preface

plenary speakers were Óscar Cordón (Artificial Intelligence for Forensic Anthropology
and Human Identification) and Yaochu Jin (Data-Driven Evolutionary Optimization).

AEPIA and the organizers of CAEPIA 20/21 recognized the best PhD theses and all
the original articles in federated events written by both, seniors and students. CAEPIA
20/21 also aimed to promote the presence of women in AI research. As in previous
editions, the Frances Allen award recognized the two best PhD theses defended by a
woman during the last two years.

The editors of this volumewould like to thank themany people that contributed to the
success of CAEPIA 20/21: authors, members of the Scientific and ProgramCommittees,
invited speakers, event organizers, electronic media managers, etc. We would like to
especially thank the tireless work of the Organizing Committee, our sponsors (like
VRAIN in Valencia), the Springer team, and AEPIA for their support.

Last but not least, on behalf of theCAEPIA20/21participants, EnriqueAlba (General
Chair), and Gabriel Luque (LNAI volume responsible) really thank the University of
Malaga (local premises for the conference) and the whole Spanish community working
in AI (and their many foreign collaborators) for making this event a real success.

July 2021 Enrique Alba
Gabriel Luque

Francisco Chicano
Carlos Cotta

David Camacho
Manuel Ojeda-Aciego

Susana Montes
Alicia Troncoso
José Riquelme

Rodrigo Gil-Merino
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Prediction of Epiretinal Membrane from
Retinal Fundus Images Using

Deep Learning

Ángela Casado-Garćıa1, Manuel Garćıa-Domı́nguez1, Jónathan Heras1(B),
Adrián Inés1, Didac Royo2, and Miguel Ángel Zapata2,3

1 Department of Mathematics and Computer Science, Universidad de La Rioja,
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Abstract. An epiretinal membrane (ERM) is an eye disease that can
lead to visual distortion and, in some cases, to loss of vision. Screen-
ing retinal fundus images allows ophthalmologists to early detect and
diagnose this disease; however, the manual interpretation of images is a
time-consuming task. In spite of the existence of several computer vision
tools for analysing retinal fundus images, they are mainly focused on the
diagnosis of diabetic retinopathy and glaucoma. In this work, we have
conducted a thorough study of several deep learning architectures, and
a variety of techniques to train them, in order to build a model for auto-
matically diagnosing ERM. As a result, we have built several models that
can be ensembled to achieve a F1-score of 86.82%. The lessons learned
in this work can serve as a basis for the construction of deep learning
models for diagnosing other eye diseases.

Keywords: Epiretinal membrane · Fundus · Image classification ·
Deep learning · Ensemble.

1 Introduction

An expert observation of retinal fundus features not only provides information
about eye diseases, but also might indicate long-term conditions, such as dia-
betes, hypertension, or cardiovascular diseases [12]. Therefore, screening eyes,
together with a timely consultation and treatment, is instrumental for early
detection and diagnosis of ocular pathologies and systemic issues that need atten-
tion. Unfortunately, the manual interpretation of images is a time-consuming

This work was partially supported by Ministerio de Economı́a y Competitividad
[MTM2017-88804-P].
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task for ophthalmologists, and this has led to the development of computer-
aided diagnosis systems based on computer vision techniques [3].

As in many other medical fields, deep learning techniques have revolutionised
the automatic analysis of fundus images, and these methods have achieved a
performance that is comparable with the assessment of ophthalmologists [6].
Most deep learning models in this area have focused on the diagnosis of diabetic
retinopathy [6], glaucoma [16], and age-related macular degeneration [26]; but,
patients may also suffer from other pathologies, and, hence, it is instrumental
the development of techniques and methods for automatically diagnosing other
diseases such as epiretinal membrane.

An epiretinal membrane (ERM) is a fibrocellular tissue found on the inner
surface of the retina that is associated with loss of central vision and decreased
visual acuity [5]. In spite of being one of the main causes for vitreoretinal surgery
and having a high prevalence [27], it does not exist a screening procedure for diag-
nosing epiretinal membranes. Currently, the gold standard for diagnosing ERM
is based on the exploration of the fundus by an ophthalmologist, and the confir-
mation via the analysis of optical coherence tomography images (OCT) [10,17].
However, acquiring OCT images is an expensive procedure that is not avail-
able for all patients. On the contrary, acquiring fundus images is cheaper, and
most medical centres have the resources to acquire them. In this work, we have
focused on building a classification model for diagnosing ERM in retinal fundus
images; this can be seen as a first step towards designing a screening procedure
for diagnosing this disease.

The main contribution of this paper is a thorough study of deep learning
architectures for detecting ERM from fundus images using the dataset presented
in Sect. 2—the study was approved by a institutional ethics review board. In
such a study, we have tested several approaches for training deep learning archi-
tectures (see Sect. 3) including data augmentation using Generative Adversial
Networks, transfer learning from two different datasets, or ensemble methods.
The results presented in Sect. 4 show that the best approach to tackle the diag-
nosis of ERM consists in ensembling a variety of models (both convolutional and
transformer-based) that were pre-trained on a multi-disease detection dataset for
fundus images [14], and then fine-tuned in our ERM dataset. Such an approach
achieved a F1-score of 86.82%. Finally, we demonstrate, see Sect. 5, the usage of
occlusion based attribution to interpret the outputs produced by our models.

2 Dataset

The ERM dataset employed in this work was created from retinal images of a
private database, a nationwide database that collected retinal information from
patients attending to optometrists. Images of the database were acquired using
different non-mydriatic fundus cameras, all of them approved by the National
Health Service for Diabetic Screening in the UK [2]. Optometrists were instructed
to perform posterior pole retinal photography, centred on the macula and includ-
ing the optic disc and vascular arcades [28]. The patients’ information from the
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images was anonymised before sending them to the reading centre where 12
retina specialists characterised the images for changes in the macula, retina, and
optic disc.

The ERM dataset consists of 4081 images (2108 positive samples, and 1973
negative samples ) with a size of 299 × 299, and it was randomly split using an
80% of the images for training, and a 20% for testing. Furthermore, a 10% of the
training dataset was employed for validation in order to adjust the hyperparame-
ters of the models. This dataset has been employed to train several deep learning
architectures using different approaches presented in the following section.

3 Training Procedures

We have conducted a thorough study of several families of deep learning archi-
tectures for diagnosing ERM—all the necessary code and models to run our
experiments is available at https://github.com/CoVUR/ERM. The studied
architectures, summarised in Table 1, included 3 manually designed convolu-
tional neural networks (namely, ResNet [7], ResNeSt [32] and HRnet [25]), 2
architectures found by neural architecture search (EfficientNet [22] and Nas-
Net [35]); and 2 transformer-based architectures that are ViT [4], and its train-
ing efficient version, Deit [24]. All the networks used in our experiments were
implemented in Pytorch [15], and have been trained thanks to the functionality
of the Fastai library [8] using a GPU Nvidia RTX 2080 Ti, and using the cross
entropy loss function. In order to train the different models, we considered 4
approaches: baseline models, CycleGAN augmentation, state-of-the-art bag of
tricks, and transfer learning from a close domain.

First of all, and in order to establish a baseline for our models, we have used
the transfer-learning method presented in [8]. This is a two-stage procedure
that starts from a model pretrained in the ImageNet challenge, and can be
summarised as follows. In the first stage, we replaced the head of the model
(that is, the layers that give us the classification of the images), with a new head
adapted to the number of classes of each particular dataset. Then, we trained
these new layers (the rest of the layers stayed frozen) with the data of each
particular dataset for two epochs. In the second stage, we unfreezed the whole
model and retrained all the layers of the model with the new data for 50 epochs.
In order to find a suitable learning rate for both the first and second stage, we
used cyclical learning rates for optimisation [20]. Moreover, we employed early
stopping based on monitoring the validation loss, and data augmentation [18]
(using vertical and horizontal flips, rotations from –180◦ to 180◦, zooms and
lighting transformations) to prevent overfitting.

In addition to the classical data augmentation techniques employed for train-
ing our baseline models, we have also studied an approach that consists in using
a Generative Adversarial Network (GAN) to synthesise new retinal images [23].
In particular, we trained a CycleGAN model [34] that allowed us to synthesise
ERM images from healthy images and viceversa (1652 healthy images, and 1622
ERM images were generated using this procedure). The CycleGAN model was

https://github.com/CoVUR/ERM
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Table 1. Architectures and backbones employed in our study

Architecture Backbones

Resnet 34, 50, 101

Resnest 26, 50, 50 4s2x40, 101

EfficientNet B0–B3

ViT ViT-B/16-244, ViT-B/16-R50-384

Deit ViT-B/16-384

NasNet 050

HRnet w32, w40, w44, w48, w64

trained using the UPIT library1 for 15 epochs and using the learning rate sug-
gested by the algorithm presented in [20]. The generated images were combined
with the original dataset and used for training the models by employing the
same procedure presented in the previous paragraph.

In the third set of experiments, we employed a bag of “tricks” that have
been successfully employed in the literature to improve the performance of deep
classification models. First of all, we replaced the Adam optimisation algorithm,
the by-default optimiser used in Fastai, with the Ranger algorithm, which com-
bines ideas from the RAdam optimisation algorithm [9] and the Lookahead
optimiser [33]. Moreover, we used two regularisation techniques that are Label
Smoothing [21] and MixUp [31]. Finally, we applied the cyclical learning rate pol-
icy for convergence proposed in [11]. In order to identify the benefits provided
by each trick, an ablation study was conducted.

The last approach that we explored to train our models was based on the
fact that transfer learning produces better results when there is a close relation
between the source and target task. Hence, we started by training the models
with the RIADD dataset [13] (a dataset of 8289 images for multi-disease detec-
tion on retinal images); and, subsequently, we fine-tuned the models for our ERM
dataset. It is worth mentioning that the models trained for the RIADD dataset
did not aim to detect the multiple diseases, but we simplified the problem to
determine whether the retinal images were healthy. The RIADD’s models were
trained using the procedure presented for the baseline approach.

Finally, and in order to further improve the performance of our models, we
employed ensemble methods. Namely, we tested the ensemble of several mod-
els [30] (that is, given an image, we averaged the predictions produced by multiple
models to obtain a final output), the application of test-time augmentation [19]
(that is, given an image, we created random modifications of such an image,
performed predictions on them using a model, and, finally, returned the average
of those predictions), and the combination of these two techniques. As we will
show in the following section, these ensemble techniques considerably improved
the performance of individual models.

1 https://github.com/tmabraham/UPIT.

https://github.com/tmabraham/UPIT
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4 Results and Discussion

The models trained with the different approaches presented throughout the pre-
vious section were evaluated on the testing set using the F1-score as metric, see
Table 2 for a summary of the results. The rest of this section is devoted to discuss
the advantages and disadvantages of each training approach.

Table 2. F1-score achieved by the studied architectures using the baseline procedure,
the CycleGAN dataset, the bag-of-tricks, and transfer learning from a close domain.
Moreover, we include the results obtained by applying test-time augmentation (TTA)
to the models fine-tuned from a close domain, and the results for the RIADD dataset.
In italics the best model for each approach, and in bold face the best overall model
without TTA.

Architecture Baseline CycleGAN Tricks Transfer TTA RIADD

Resnet-34 55.22 55.18 72.21 59.09 65.69 75.04

Resnet-50 49.53 58.04 75.23 72.18 72.63 73.93

Resnet-101 53.04 46.53 71.85 72.20 72.20 68.38

Resnest-26 55.18 53.59 73.62 62.68 66.36 75.57

Resnest-50 56.02 56.22 76.72 49.22 55.57 75.76

Resnest50d 4s2x40d 56.12 61.99 78.36 63.38 68.10 73.05

Resnest101 59.03 49.63 76.31 56.92 64.00 76.07

EfficientNet-B0 51.16 60.47 73.83 67.43 65.05 78.87

EfficientNet-B1 48.62 47.26 70.14 66.09 71.16 79.05

EfficientNet-B2 60.20 49.94 71.98 61.82 65.30 79.19

EfficientNet-B3 56.68 50.20 73.41 66.96 65.67 79.45

VIT-B/16-244 69.41 62.80 72.21 73.13 76.25 83.01

ViT-B/16-R50-384 81.29 62.91 67.39 83.86 84.23 87.44

Deit-B/16-384 74.85 72.11 81.52 76.46 76.77 87.01

Nasnet-050 55.55 49.76 71.30 55.23 50.66 52.65

HRNet-w32 73.74 67.15 80.50 79.22 81.17 87.98

HRNet-w40 71.09 52.53 70.76 84.00 85.52 87.30

HRNet-w44 72.33 60.79 71.30 82.61 83.27 87.50

HRNet-w48 70.60 76.12 73.95 82.17 84.59 86.32

HRNet-w64 73.78 50.27 77.88 83.70 84.35 87.59

We start by analysing the baseline models. As we can notice from the first
column of Table 2, the F1-score of most models is under 70%. The exceptions are
the family of HRNet models, and the two transformer-based architectures. The
most plausible explanation for those results is the high-resolution representation
learned by those models in the ImageNet dataset, which is better transferred
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Table 3. Ablation study of the bag of tricks using F1-score as metric. Each column
represents a technique (B: baseline, R: Ranger optimiser, F: Flat cosine annealing,
L: Label Smoothing, M: MixUp; and the rest of columns are combinations of the
previous techniques). Each row represents an architecture (R: Resnet, RS: ResNeSt, E:
EfficientNet, ViT: ViT, Deit: Deit, N: Nasnet, H: HRNet).

B R F L M RF RM FM RL FL LM RFL RFM RFLM
R-34 55.22 59.54 72.21 59.92 66.02 66.96 58.27 0.00 57.04 71.30 65.33 60.02 54.29 61.03
R-50 49.53 60.86 1.29 75.23 74.55 52.83 59.57 72.21 48.59 11.62 74.09 59.85 67.97 65.35

R-101 53.04 57.30 49.82 68.10 54.48 54.42 51.42 33.06 50.82 0.00 71.85 67.35 43.18 45.60
RS-26 55.18 58.54 0.42 66.67 64.85 72.43 62.60 72.21 57.52 72.21 71.48 73.62 60.92 72.17
RS-50 56.02 62.01 71.81 76.72 73.59 54.81 47.53 72.21 57.65 0.00 74.19 60.40 65.61 59.68

RS-50d 56.12 61.67 1.30 75.81 78.36 65.10 67.13 0.00 65.44 72.19 69.90 64.06 69.31 70.49
RS-101 59.03 60.64 39.11 74.35 76.31 58.37 49.34 2.98 59.93 7.49 70.49 59.68 68.33 62.07

E-0 51.16 55.89 0.00 72.10 69.60 68.81 62.65 68.25 55.60 25.54 67.27 66.75 73.83 73.83
E-1 48.62 55.84 56.43 69.03 67.28 66.67 55.13 0.00 63.96 0.00 68.41 70.14 66.49 66.58
E-2 60.20 63.49 71.98 67.42 66.92 69.21 55.93 58.75 58.69 0.00 65.82 71.14 70.49 65.59
E-3 56.68 61.20 71.22 72.81 57.55 68.91 57.52 69.22 60.09 64.04 67.88 73.41 64.65 68.26

ViT-244 69.41 68.40 0.00 72.21 70.92 0.00 67.20 72.21 72.21 72.21 72.21 0.00 72.21 0.00
ViT-384 81.29 67.39 67.74 60.84 59.74 65.14 66.28 2.17 38.07 62.15 57.28 66.21 66.13 66.27
Deit-384 74.85 70.73 72.21 80.39 81.52 63.86 76.94 72.21 72.21 72.18 77.77 72.66 77.51 76.40

N-050 55.55 59.72 27.19 58.63 50.18 54.38 52.55 71.30 54.45 70.60 54.17 52.73 52.22 52.96
H-32 73.74 55.23 77.51 77.51 80.50 79.82 53.81 78.27 76.74 70.34 74.27 79.26 54.30 50.75
H-40 71.09 54.00 58.89 69.76 70.76 58.93 60.99 24.38 61.92 70.11 65.04 64.56 66.59 62.06
H-44 72.33 55.33 62.57 63.85 69.96 67.32 66.16 70.28 71.30 64.17 70.46 69.59 68.29 67.33
H-48 70.60 49.42 70.53 73.95 73.49 72.34 73.90 67.68 67.74 67.69 69.58 72.26 73.55 72.86
H-64 73.78 55.02 71.24 76.56 77.88 61.89 72.01 0.00 0.85 69.60 70.34 66.75 72.70 74.47

F1-score colour scale: 0 18 36 54 72 90

to this particular context of diagnosing ERM. It is specially remarkable the
ViT-B/16-R50-384 model that achieved a F1-score of 81.29%.

We focus now on the results achieved when training the models with the
dataset augmented with the images generated with the CycleGAN model. As
we can notice from Table 2, the results highly vary among models ranging from
an improvement of 9% in the Efficientnet-B1 model, to a 23% decay in the
HRNet-w64 model. In general, in most models, augmenting the dataset with the
images generated by the CycleGAN had a negative impact. This might occur
due to the challenge of producing realistic images with the GAN models [1];
therefore, this approach needs further investigation to be successfully applied.

On the contrary to the results achieved with the augmented CycleGAN
dataset, a clear benefit is obtained with the bag of tricks. Thanks to the set
of applied tricks, all the architectures were able to achieve a performance over
70%—the exception is the ViT-B/16-R50-384 architecture whose performance
considerably decayed from the baseline models. From the ablation study, see
Table 3, we can notice that there is not a single technique, or combination of
techniques, that always produce the best results. However, the usage of Label
Smoothing and MixUp as regularisation techniques consistently produced good
results. It is also worth mentioning that the benefits obtained with each individ-
ual technique did not stack when combined with other techniques. This hinders
the applicability of this bag of tricks since lots of experiments must be con-
ducted to find which methods should be applied to produce the best result for
each architecture.
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An approach that served to improve most base models, and did not require so
many experiments as the bag of tricks, is the application of transfer learning from
the RIADD dataset. Pretraining the models with such a dataset, and then fine-
tuning them for the ERM dataset achieved a mean improvement of 7.57%. There
were only 3 models which performance decayed using this approach, and some
models improved more than a 20%. The architectures that took more advantage
of this approach were those from the HRNet family, since all of them reached a
performance close or even higher than 80%. In fact, the best overall individual
model was obtained with the HRNet-w40 architecture with a F1-score of 84%.

We also analysed how the performance of the individual models could be
improved thanks to the application of ensemble methods. The ensemble of the
5 best models achieved a F1-score of 84.76%; that is an improvement of 0.76%
regarding the best individual model. Since, 4 out of 5 of the best models belonged
to the same family, we also tested the ensemble of the best individual model of
each family; however, the F1-score obtained by such an ensemble was 81.01%,
worse than the best individual model. Moreover, we analysed the impact of test-
time-augmentation. This technique was applied to each individual model built
using the close transfer approach, and, as we can notice in Table 2, the majority
of models improved thanks to it (namely, a mean improvement of 3%, and only
the performance of 3 models decayed). The best result was again obtained with
the HRNet-w40 model with an improvement of 1.52%. Finally, we combined the
ensemble of the output produced by the test-time augmentation of the 5 best
models, and this produced a F1-score of 86.82%, the best overall result.

As a summary of this section, we can conclude that transformer based archi-
tectures (that is, ViT and Deit) are a sensible alternative to convolutional neural
networks when applying transfer-learning from natural images to retinal fundus
images. Moreover, the performance of most models can be boost by applying
techniques like LabelSmoothing or MixUp, but this requires the conduction of
lots of experiments. A similar enhancement, but that does not require so many
adjustments, can be achieved by applying transfer learning from the RIADD
dataset, and, therefore, this is a sensible approach when the amount of compu-
tational resources is limited. Last but not least, the performance of models can
be further improved thanks to the application of ensemble techniques.

Up to now, we have mainly focused on producing the best possible perfor-
mance model, in the next section, we try to shed light on how those models take
their decisions.

5 Interpretability Considerations

One of the main drawbacks of deep classification models is their black-box
nature, which hinders the usage and trust of these models. An approach to tackle
this issue is the application of model interpretability techniques. Among the
available techniques, we employed the occlusion-based attribution algorithm [29]
supported by the Captum library2. Using this algorithm, we estimated which
2 https://captum.ai.

https://captum.ai
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Fig. 1. Sample of occlusion-based attribution confusion matrix on the HRNet-w40
model. The red pixels in the heatmap indicate a negative attribution region (areas
whose absence increases the score), whereas the green pixels indicate a positive attri-
bution region (areas whose presence increase the prediction score)

areas of the image were critical for the classifiers’ decision by occluding them
and quantifying how the decision changed. We run a sliding window of size
15 × 15 with a stride of 8 along both image dimensions; and, at each location,
we occluded the image with a baseline value of 0 which corresponds to a grey
patch.

In Fig. 1, we have depicted the result of applying the occlusion-based attri-
bution algorithm to a true positive, a true negative, a false positive, and a false
negative. It is worth noting that in the correct predictions, positive attribu-
tion regions (areas whose presence increase the prediction score) clearly surpass
negative attribution regions (areas whose absence increase the score); whereas
in those images where the model fails, there is a considerable mix of positive
and negative attribution regions. Moreover, it is also worth mentioning that the

Fig. 2. Occlusion-based attribution heatmaps for the three best individual models



Prediction of Epiretinal Membrane from Retinal Fundus Images 11

relevant regions are not the same for all the models, see Fig. 2. This gives an
interpretation to the boost provided by ensemble methods, since different mod-
els take into account different features, and their combination can be the key for
outputting the correct result.

6 Conclusions and Further Work

In this paper, we have thoroughly studied several approaches to build deep
learning models for diagnosing epiretinal membrane. The best results, with a
F1-score of 86.82%, was achieved by using the HRNet and transformer-based
architectures, and combining 3 techniques (transfer learning from the RIADD
dataset, test-time augmentation and model ensemble). As further work, we plan
to extend our work to other retinal diseases, and improve the quality of images
generated by GAN models since this can be helpful when images of a disease are
scarce.
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Abstract. Deep learning algorithms for object detection on images have
been successfully applied in several fields; however, non-expert users
might find difficult to adopt these techniques due to several reasons.
First of all, using detection models requires some knowledge about the
library employed to built them; and, in general, it is not usually possi-
ble to interact with the predictions produced by the models. In addition,
training custom models is also challenging because there are several algo-
rithms implemented in different libraries, and each of them uses its own
annotation format, and is configured in a particular way. In this paper,
we face all those challenges by developing LabelDetection, a graphical
tool that allows non-expert users to employ models trained with differ-
ent algorithms and libraries. Moreover, LabelDetection is an end-to-end
application that provides the necessary features to annotate a dataset of
images, and train a variety of object detection models. Finally, LabelDe-
tection simplifies the use of advance techniques like test-time augmen-
tation, that improves the accuracy of detection models; and data dis-
tillation, that reduces the number of images that must be annotated to
train a model. LabelDetection is freely available at https://github.com/
ancasag/LabelDetection.

Keywords: Deep learning · Object detection · Test time
augmentation · Data distillation

1 Introduction

Object detection is a fundamental task in computer vision since it is a key
step in many real-world applications such as security [2], satellite imagery [11]
or healthcare [21]. Over the last few years, a lot of progress has been made
in this field thanks to the use of deep convolutional neural networks [32], and
deep detectors have achieved impressive results in large datasets such as Pascal
VOC [12] and MS COCO [17].
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However, the process of creating and using detection models poses several
challenges. First of all, for both the creation and use of those models, it is
necessary to have some programming skills, and know how to use the detection
algorithms and the libraries that implement them. Another problem that arises
when building detection models is that they need a large number of annotated
images, and this is a tedious and time-consuming task that may require expert
knowledge [14]. Moreover, the use of detection models is not trivial since most of
them can only be used within the library where they were built; and, therefore, it
is necessary to have the necessary dependencies installed in the users computers,
and know how the specific library works. Finally, it is usually not possible to
interact with model predictions due to the lack of a simple and intuitive graphical
interface designed for that purpose.

In this work, we address the aforementioned problems with the development
of LabelDetection, a graphical application that guides the user in the process of
building object detection models, facilitates the use of those models to detect
objects in new images, and also allows the interaction with the generated pre-
dictions. Specifically, the main features of LabelDetection are:

– LabelDetection is a graphical tool that helps the user in all the steps required
to train a variety of object detection algorithms based on deep learning tech-
niques. This is achieved by wrapping several libraries and frameworks that
provide different object detection architectures.

– LabelDetection can be used as the interface for a wide variety of object detec-
tion models trained using different libraries. In addition, this interface allows
users to interact with the predictions generated by them.

– LabelDetection can be employed to train object detection models not only
from fully annotated datasets but also from partially annotated datasets
thanks to a semi-supervised technique known as data distillation.

– LabelDetection users can improve the accuracy of their models thanks to a
technique known as test-time augmentation, and without writing a single line
of code.

The rest of the paper is organised as follows. First, we provide the necessary
background to contextualise our work. Subsequently, we introduce the main fea-
tures of LabelDetection and apply it to the detection of wheat heads to show
the feasibility and benefits of using our tool. We end the paper with some con-
clusions and further work. LabelDetection is an open-source tool that can be
downloaded from https://github.com/ancasag/LabelDetection.

2 Background

In this section, we briefly introduce object detection libraries, their limitations,
and two techniques that, in general, improve object detection models and are
not directly included in any existing object detection library.

https://github.com/ancasag/LabelDetection
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2.1 Object Detection Libraries

Deep learning for object detection is a growing field where new architectures and
algorithms are publicly released [15]. However, in their initial form, most new
architectures are released as research artefacts that are not prepared for using
them in custom datasets. This problem has been solved with the development
of several object detection libraries, see Table 1, that provide a common pipeline
to train different detection models. The outstanding work conducted by the
developers of object detection libraries might be enhanced by including two
features that are missed in all those libraries.

The first feature that is missing is a simple way of producing the input dataset
that will be used for training the algorithms. Each library requires images anno-
tated in a particular format (being Pascal VOC and COCO the most common
formats), and structured in a particular way (split of training and test set, and
configuration files). This hinders the usage of the libraries since the task of anno-
tating the images must be conducted in an external tool, such as LabelImg1 or
YOLO mark2; and the output produced by those tools must be manually organ-
ised, and in some cases transformed to the correct format.

The second issue with object detection libraries is the lack of an interface to
interact with the predictions produced by the trained models. Object detection
models can only be employed within the library that was used for producing
them and, hence, require some programming skills. Moreover, the predictions
produced by the models in a given image are usually drawn on the image; and,
hence, it is not possible to interact with them (that is, add, remove or edit the
predicted bounding boxes), a task that is necessary when using the detection
models for analysing images.

Table 1. General features of libraries for object detection

library Language Year Underlying library

Darknet detection [24] C++ 2018 Darknet

Detectron [31] Python 2019 PyTorch

IceVision [29] Python 2020 PyTorch

MaskRCNN-benchmark [19] Python 2018 PyTorch

MXNet Detection [7] Python 2019 MXNet

MMDetection [5] Python 2019 PyTorch

SimpleDet [8] Python 2019 MXNet

Tensorflow Detection API [13] Python 2019 Tensorflow

Tensorpack [30] Python 2019 Tensorflow

1 https://github.com/tzutalin/labelImg.
2 https://github.com/AlexeyAB/Yolo mark.

https://github.com/tzutalin/labelImg
https://github.com/AlexeyAB/Yolo_mark
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In addition to these usability features, developers of object detection models
might improve the performance of their models by applying two techniques that
have been successfully used in the literature, but that are not directly supported
by any library: test-time augmentation and data-distillation.

2.2 Test-Time Augmentation

Data augmentation [25] is a technique widely employed to train deep learning
models. This technique consists in generating new training samples from the
original training dataset by applying transformations that do not alter the class
of the data. There is a variant of data augmentation for the test dataset known
as test-time augmentation [26]. This technique creates random modifications of
the test images, performs predictions on them, and, finally, returns an ensemble
of those predictions. This technique is widely employed in the context of image
classification [26]; and, even if it can be applied for object detectors, some trans-
formations, like flips or rotations, change the position of the objects in the image
and this issue must be taken into account when ensembling the predictions. A
procedure to tackle this issue was presented in [4]. Test-Time augmentation is
the basis for a semi-supervised learning technique known as data-distillation that
allows us to train detection models using both labelled and unlabelled data.

2.3 Data Distillation

Deep learning methods are data demanding, and acquiring and annotating the
necessary amount of images for constructing object detection models is a tedious
and time-consuming process that might require specialised knowledge [14]. This
has led to the development of semi-supervised learning techniques [34], a suite of
methods that use unlabelled data to improve the performance of models trained
with small dataset of annotated images. Data distillation [20] is a semi-supervised
learning procedure that applies a trained model on manually labelled data to
multiple transformations of unlabelled data, ensembles the multiple predictions,
and, finally, retrains the model on the union of manually and automatically
labelled data.

In this section, we have presented some features that can facilitate the con-
struction and use of deep detection models, and also improve their performance.
In this work, instead of proposing a new library that incorporates the afore-
mentioned features, we have developed a wrapper that can be adapted for any
existing object detection library; and, hence, it can take advantage of the efforts
of different communities bringing to the table the best of each of them.

3 LabelDetection

LabelDetection is a graphical tool implemented in Python, and developed using,
as a basis, LabelImg, a widely used image annotation application. LabelDetec-
tion helps non-expert users in the annotation of datasets, the process to train
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a model, and the use of such a trained model. The functionality to annotate
datasets included in LabelDetection is provided by LabelImg, so we will focus
on presenting the features included in LabelDetection for training and using
different detection models.

3.1 LabelDetection for Training Models

The annotation produced by LabelDetection follows the PascalVOC format, that
can be employed to train most object detection algorithms. In order to use an
annotated dataset to train an algorithm, the dataset must be split into a training
and testing set; however, the algorithms are sensitive to the folder structure con-
taining the training and testing files, and such an organisation depends on the
concrete algorithm and library. Moreover, object detection algorithms require
several configuration files, that also depend on the particular algorithm and
library implementing it. LabelDetection solves these issues by generating a zip
file containing the dataset annotated with the structure and format required
by different algorithms and also the necessary configuration files. In addition,
LabelDetection generates a Jupyter notebook [16] that configures the environ-
ment, installs the necessary libraries, trains a model with the training set using
transfer learning [22], and finally evaluates the model against the testing set—
the Jupyter notebooks generated by LabelDetection can be run either locally,
provided the users have a GPU, or using cloud services like Google Colabora-
tory [9].

LabelDetection can currently generate Jupyter notebooks for the following
algorithms and libraries: several versions of the YOLO algorithm [24], based
on the Darknet library [23]; SSD [18], using the MxNet library [6]; and several
algorithms implemented in Keras, namely, Mask R-CNN [1], EfficientDet [27],
FSAF [33] and FCOS [28]. In addition, LabelDetection has been designed to eas-
ily include this functionality for other algorithms and object detection libraries.
LabelDetection also offers the possibility of including the data distillation pro-
cedure in the Jupyter notebooks. To this aim, the user must have a set of images
that are not annotated, and select the transformation techniques that will be
applied to the images for data distillation, see Fig. 1.

3.2 LabelDetection for Object Detection

LabelDetection can be employed not only to train object detection models, but
also use them—this facilitates the dissemination of such models and avoids the
development of new graphical interfaces for each new model, a task that is almost
an art [3]. LabelDetection can apply models trained with any of the previously
mentioned algorithms (as in the case of model creation, this functionality can
be easily extended to other algorithms and libraries), and it only requires the
weights and configuration files of those models; that is, users do not need to
install any additional library or write a single line of code. In addition, LabelDe-
tection allows users to apply test-time augmentation to all the supported models
in order to improve their accuracy by selecting the set of transformations to
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Fig. 1. LabelDetection interface

apply. Finally, the bounding boxes produced by a model can be visualised and
modified from the LabelDetection interface; and, a summary of the detected
objects can be exported to an Excel file.

In the next section, we illustrate the feasibility of using LabelDetection for
training different models, and the benefits of applying both data distillation and
test-time augmentation to those models.

4 Case Study

In this section, we employ the different algorithms and methods included in
LabeDetection for creating models for detecting wheat heads. To this aim, we
have used the Global WHEAT Dataset [10], a large-scale dataset for wheat head
detection from field optical images. This dataset includes very large range of
cultivars. All images share a common format of 1024× 1024 px with a resolution
of 0.1–0.3 mm per pixel. The dataset contains 4700 high-resolution RGB images
(4578 were used for training, and 422 for testing) and 190000 labelled wheat
heads collected from several countries around the world at different growth stages
with a wide range of genotypes.

Using LabelDetection, we have built detection models for this dataset in the
Google Colaboratory environment3. Namely, we have trained the models using
only the labelled data, and also applying data distillation. Moreover, we studied
the impact of applying test-time augmentation in all the models. The results,
in terms of precision, recall and F1-score, of our study are presented in Table 2,

3 https://colab.research.google.com.

https://colab.research.google.com
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that is divided into three blocks. The first block contains the results obtained
from the models trained using only the labelled data, the second block contains
the results obtained by applying test-time augmentation, and in the last block
we include the results of the models trained using data distillation. Using the
labelled data, we have trained the v3, v4, and csresnet versions of the YOLO
algorithm; and FSAF, FCOS, and EfficientDet algorithms. All the models were
trained for 50 epochs and using the default parameters of each algorithm. The
model that offers best trade-off between precision and recall is the v4 version
of the YOLO algorithm, and the other 2 versions of the YOLO algorithm also
achieve a F1-score over 0.80. This is also the case for the FSAF algorithm,
whereas FCOS achieves a F1-score of 0.6 and EfficientDet is the worse model.

The performance of all the aforementioned models, but FSAF and the v4
version of YOLO, can be improved thanks to the application of the test-time
augmentation. As transformations, we applied both vertical and horizontal flips,
a rotation of 90◦, gamma correction, and histogram normalisation. Moreover,
we considered the predictions on the images without transforming them. Using
this approach, we achieved an improvement ranging from 1% (in the v3 version
of YOLO) to 50% (in the EfficientDet model).

Finally, we applied data distillation by using 1578 unlabelled images that
were pseudo labelled by transforming them (using vertical and horizontal flips)
and ensembling the predictions obtained by each model. All architectures but
the v4 version of YOLO an FSAF improved their performance between a 3%
and a 51%.

This case study allows us to illustrate that LabelDetection can be employed
to construct a variety of detection models and easily compare them without
having experience working on deep learning. Moreover, those models can be
considerably improved thanks to data distillation and test-time augmentation.
The advantage of the former technique is that it is faster in inference time, but
it takes longer to train the models.

Table 2. Results for the Global Wheat dataset using the different networks and meth-
ods available in LabelDetection

Normal TTA Data distillation

Algorithm Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Csresnet 0.94 0.69 0.80 0.93 0.73 0.82 0.93 0.76 0.84

EfficientDet 0.40 0.31 0.35 0.93 0.79 0.85 0.93 0.80 0.86

FCOS 0.67 0.54 0.60 0.89 0.80 0.84 0.92 0.85 0.89

FSAF 0.93 0.85 0.89 0.81 0.81 0.81 0.83 0.87 0.85

YOLO v3 0.95 0.79 0.86 0.91 0.83 0.87 0.92 0.87 0.89

YOLO v4 0.89 0.92 0.91 0.90 0.81 0.90 0.90 0.91 0.91
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5 Conclusions and Further Work

LabelDetection is an end-to-end graphical application that aims to facilitate the
construction and usage of robust object detection models by providing access
to state-of-the-art detection algorithms, and also simplifying the application of
advance techniques like data distillation and test-time augmentation. In the
future, we plan to extend LabelDetection with new object detection algorithms
and libraries. Moreover, and since it is possible to train different models with
LabelDetection, we will explore how to include the functionality to ensemble
those models.
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4. Casado-Garćıa, A., Heras, J.: Ensemble methods for object detection. In: Pro-
ceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020)
(2020)

5. Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark.
CoRR abs/1906.07155 (2019), http://arxiv.org/abs/1906.07155

6. Chen, T., Li, M., Li, Y., et al.: MxNet: A Flexible and Efficient Machine Learning
Library for Heterogeneous Distributed Systems. CoRR abs/1512.01274 (2015)

7. Chen, T., Li, M., Li, Y., et al.: Mxnet object detection. https://gluon-
cv.mxnet.io/build/examples detection/index.html (2019)

8. Chen, Y., Han, C., Li, Y., et al.: Simpledet: a simple and versatile distributed
framework for object detection and instance recognition. CoRR abs/1903.05831
(2019), http://arxiv.org/abs/1903.05831

9. Colaboratory team: Google colaboratory (2017). https://colab.research.google.com
10. David, E., et al.: Global Wheat Head Detection (GWHD) dataset: a large and

diverse dataset of high-resolution RGB-Labelled images to develop and benchmark
wheat head detection methods. Plant Phenom. 3521852 (2020)

11. Etten, A.V.: You only look twice: rapid multi-scale object detection in satellite
imagery. CoRR abs/1805.09512 (2018)

12. Everingham, M., Gool, L.V., Williams, C.K.I., et al.: The Pascal visual object
classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

13. Huang, J., Rathod, V., Sun, C., et al.: Speed/accuracy trade-offs for modern con-
volutional object detectors. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2017), pp. 3296–3305 (2017)

14. Irvin, J., Rajpurkar, P., Ko, M., et al.: Chexpert: A large chest radiograph dataset
with uncertainty labels and expert comparison. In: The Thirty-Third AAAI Con-
ference on Artificial Intelligence (AAAI 2019) 33, 590–597 (2019)

15. Jiao, L., Zhang, F., Liu, F., et al.: A survey of deep learning-based object detection.
IEEE Access 7, 128837–128868 (2019)

https://github.com/matterport/Mask_RCNN
http://arxiv.org/abs/1906.07155
http://arxiv.org/abs/1903.05831
https://colab.research.google.com


22 Á. Casado-Garćıa and J. Heras

16. Kluyver, T., Ragan-Kelley, B., Perez, F., et al.: Jupyter notebooks—a publishing
format for reproducible computational workflows. In: Proceedings of the 20th Inter-
national Conference on Electronic Publishing, pp. 87–90. IOS Press, Amsterdam
(2016)

17. Lin, T.Y., Maire, M., Belongie, S., et al.: Microsoft COCO: common objects in
context. In: Proceedings of the European Conference on Computer Vision (ECCV
2014), vol. 8693, pp. 740–755 (2014)

18. Liu, W., Anguelov, D., Erhan, D., et al.: Ssd: single shot multibox detector. In:
Proceedings of the European Conference on Computer Vision (ECCV 2016), vol.
9905, pp. 21–37 (2016)

19. Massa, F., Girshick, R.: maskrcnn-benchmark: Fast, modular reference implemen-
tation of Instance Segmentation and Object Detection algorithms in PyTorch.
https://github.com/facebookresearch/maskrcnn-benchmark (2018)

20. Radosavovic, I., Dollár, P., Girshick, R., et al.: Data Distillation: Towards Omni-
Supervised Learning. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 4119–4128. CVPR’18 (2018)

21. Ramachandran, S., George, J., Skaria, S., et al.: Using YOLO based deep learning
network for real time detection and localization of lung nodules from low dose CT
scans. In: Proceedings of Medical Imaging 2018: Computer-Aided Diagnosis, p. 53
(2018)

22. Razavian, A.S., Azizpour, H., Sullivan, J., et al.: CNN features off-the-shelf: an
astounding baseline for recognition. In: Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW 2014), pp. 512–519 (2014)

23. Redmon, J.: Darknet: Open Source Neural Networks in C (2016). http://pjreddie.
com/darknet/

24. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement (2018). CoRR
abs/1804.02767

25. Simard, P., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural
networks applied to visual document analysis. In: Proceedings of the International
Conference on Document Analysis and Recognition (ICDAR 2003), vol. 2, pp.
958–964 (2003)

26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proceedings of the 3rd International Conference on Learning
Representations (ICLR 2015) (2015). http://arxiv.org/abs/1409.1556

27. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection
(2019). CoRR abs/1911.09070

28. Tian, Z., Shen, C., Chen, H., et al.: Fcos: fully convolutional one-stage object
detection (2019). CoRR abs/1904.01355

29. Track, A.F.: Icevision: an agnostic object detection framework (2020). https://
github.com/airctic/icevision

30. Wu, Y.: Tensorpack (2016). https://github.com/tensorpack/
31. Wu, Y., Kirillov, A., Massa, F., et al.: Detectron2 (2019). https://github.com/

facebookresearch/detectron2
32. Zhao, Z.Q., Zheng, P., Xu, S., et al.: Object detection with deep learning: a review.

In: IEEE Trans. Neural Netw. Learn. Syst. 30, 1–21 (2019). https://doi.org/10.
1109/TNNLS.2018.2876865

33. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot
object detection (2019). CoRR abs/1903.00621

34. Zhu, X., Goldberg, A.B. (eds.): Introduction to Semi-Supervised Learning. Morgan
& Claypool Publishers, San Rafael (2009)

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
http://arxiv.org/abs/1409.1556
https://github.com/airctic/icevision
https://github.com/airctic/icevision
https://github.com/tensorpack/
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/TNNLS.2018.2876865


A Proposal to Integrate Deep Q-Learning
with Automated Planning to Improve the
Performance of a Planning-Based Agent
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Abstract. In this work we propose an architecture which learns to select
subgoals with Deep Q-Learning in order to decrease the load of a plan-
ner when faced with scenarios with tight time restrictions, such as online
execution systems. We have trained this architecture on a video game
environment used as a standard testbed for intelligent systems applica-
tions. We experiment with different values of the discount rate γ and
show the importance of long-term thinking when selecting subgoals. We
also compare our approach against a classical planner and show how it is
able to greatly reduce time requirements, although obtaining plans with
25% more actions on average. We conclude our approach is competitive
with a classical planner and presents better generalization properties
than most Reinforcement Learning algorithms when applied to new lev-
els of the same game.

Keywords: Automated planning · Goal reasoning · Deep Q-learning

1 Introduction

Automated Planning [4] is a subfield of Artificial Intelligence devoted to pro-
viding goal-oriented, deliberative behaviour to both physical and virtual agents,
e.g., robots or video game automated players. An automated planner takes as
input a planning domain, an initial state and a goal and searches for a plan
(sequence of actions) which allows the agent to reach the goal from the initial
state. Despite great advances in the integration of Automated Planning into
online execution systems [11,12], real-time requirements still hinder the general-
ized adoption of Automated Planning in such scenarios. One main issue is that
in most real-world problems the search space grows exponentially with problem
size so, even with heuristics, finding a suitable plan can take very long.
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Regarding online execution, architectures which rely on Machine Learning
(ML) and Reinforcement Learning (RL) present some advantages over planning:
they usually require very little prior knowledge (they do not need a planning
domain) and, once trained, they act quickly. Nevertheless, they also present
some drawbacks. Firstly, they are very sample inefficient and require a lot of
data to learn [17]. Secondly, they usually present bad generalization properties
when applied to new levels of the same game they have been trained on [20].

Since both Automated Planning and Reinforcement Learning have their own
pros and cons, it seems natural to try to combine them as part of the same
agent architecture, which would ideally possess the best of both worlds. Aligned
with that purpose, the main contribution of this paper is the proposal of a Goal
Selection Module based on Deep Q-Learning [9] and its integration into a plan-
ning and acting architecture to control the behaviour of an agent, in a real-time
environment. We have tested our approach on the tile-based video game known
as Boulder Dash, present in the GVGAI video game framework [13], training
and testing on different levels of the same game to measure its generalization
abilities. We conduct experiments to show that, when training on enough data,
a Deep Q-Learning model which carries out long-term thinking when selecting
subgoals performs better than one which does not. We also compare the perfor-
mance of a planning and acting architecture endowed with our Goal Selection
Module against a classical planner, and show that selecting goals with Deep Q-
Learning drastically improves time performance, although obtaining plans with
a 25% decrease in quality (measured as plan length). Moreover, we also show
that in several cases, the planning and acting architecture can efficiently solve
problems that cannot be addressed with a classical planner alone.

In the following sections we explain the GVGAI framework and provide a
background on both the language to represent planning knowledge (PDDL) and
Deep Q-Learning. We then present an overview of the architecture and show
how the Goal Selection Module learns. After that, we present the results of our
empirical study. We then compare our approach with related work, and finish
by presenting our conclusions and future work.

2 Background

GVGAI. To test our planning and acting architecture we have used the Gen-
eral Video Game AI (GVGAI) Framework [13]. This framework provides a game
environment with a large quantity of tile-based games which are also very dif-
ferent in kind. For example, it comprises purely reactive games, such as Space
Invaders, and also games which require long-term planning in order to be solved
successfully, such as Sokoban. In this work we have used a deterministic version
of the GVGAI game known as Boulder Dash, which is shown in Fig. 1. In our
version, the agent must traverse the level (up, down, right or left, one tile at a
time), collect nine gems (by simply getting to tiles containing them) and then go
to the exit, all of this while minimizing the number of actions used. The agent
can’t pass through walls and needs two turns to pass through a boulder (the
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first one to break it and the second one to walk through). This game is used to
extract the episodes of planning and acting our Goal Selection Module is trained
on. We have chosen GVGAI because game levels are represented as simple text
files (known as level description files), enabling us to quickly create many levels
to train and test our architecture on.

Fig. 1. A snapshot of a level of Boulder Dash (left) and the content of its level descrip-
tion file (right). This file is written in the Video Game Description Language, VGDL
[13], where each type of object has a different ASCII character associated (e.g., w for
walls).

PDDL. To encode the inputs for our Planner Module, we have used PDDL [3],
the standard language used in Automated Planning for representing planning
domains and problems. A PDDL domain file contains a description of both,
the predicates used to represent a problem state, and the preconditions and
effects of every action an agent can execute. A PDDL problem file contains a
representation of the problem: its initial state and the goal to achieve. A planner
receives as inputs these two files and returns a plan, which is constituted by an
ordered sequence of instantiated PDDL actions. Given a GVGAI game, we can
create its associated planning domain by encoding in PDDL the different objects
of the game and their dynamics. Each game level will have a different planning
problem associated, representing its initial state and the goal to achieve. For
instance, in Boulder Dash a goal corresponds to getting a gem present at the
level.

Deep Q-Learning. Q-Learning [19] is one of the most widely used techniques
in Reinforcement Learning [15]. As every RL technique, it learns a policy π that,
in every state s, selects the best action a from the set of available actions A in
order to maximize the expected cumulative reward R. It does so by associating a
value to each (s, a) pair, known as the Q-value Q(s, a). This value represents the
expected cumulative reward R associated with executing action a in state s, i.e.,
how good a is when applied in s. One of the main problems Q-Learning has is
that it needs to learn the Q-value for each of the (s, a) pairs independently, which
together constitute the Q-table. If the action or state space are too large, the Q-
table grows and the learning problem becomes intractable. Deep Q-Learning [9]
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solves this problem, since it makes use of a Deep Neural Network to approximate
the Q-values. For this reason, we use Deep Q-Learning in pursuit of the good
generalization abilities shown in [9].

3 The Planning and Acting Architecture

Fig. 2. An overview of the planning and acting architecture.

An overview of the planning and acting architecture can be seen on Fig. 2.
The Execution Monitoring Module communicates with the GVGAI environ-
ment, receiving the current state s of the game. It also supervises the state of the
current plan. If it is not empty, it returns the next action a. If it is empty, the
architecture needs to find a new plan. The Goal Formulation Module receives
s and generates the compound subgoal G, which is a list of single subgoals
{g1, g2, ..., gn}. The Subgoal Pattern contains the prior information about the
domain needed to automatically generate G given s. We have limited the scope
of this work to subgoals of the type (goto tileX ). In Boulder Dash each g ∈ G
corresponds to either getting one of the available gems in s or getting to the
exit of the level (this is the final goal gf of the game). The Goal Selection
Module receives G and selects the best subgoal ĝ ∈ G given s. The PDDL
Parser encodes ĝ as a PDDL Single Goal, i.e., (goto tile13 ), and s as a PDDL
Initial State, which together constitute the PDDL Problem. The Planner Mod-
ule receives the PDDL Problem along with the PDDL Domain, provided by a
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human expert, and generates a plan p(s, ĝ) which achieves ĝ starting from s. In
case ĝ cannot be reached from s (in Boulder Dash this happens when ĝ = gf and
the agent has not got nine gems or more), the Planner Module returns an empty
plan and the Goal Selection Module must select a new subgoal. This situation
corresponds to a prediction mistake by the Goal Selection Module. Finally, the
Execution Monitoring Module receives p(s, ĝ) and the cycle completes.

4 Goal Selection Learning

In order to select the best subgoal ĝ ∈ G for a given s, the Goal Selection
Module iterates over every g ∈ G and predicts the length lP (s,g) of its associated
plan P (s, g), selecting the subgoal ĝ with the plan of minimum length. This
length lP (s,g) corresponds to the length lp(s,g) of the plan p(s, g) which achieves
g starting from s plus the length of the plan which, after obtaining g, reaches the
final goal gf by achieving the required subgoals in the order predicted as optimal
by the Goal Selection Module. This way, the Goal Selection Module conducts
long-term thinking and selects subgoals in a non-greedy way.

The Goal Selection Module uses a Convolutional Neural Network (CNN)
[8] that receives s and a g ∈ G and outputs the predicted plan length lP (s,g).
The state s is represented as a one-hot matrix, i.e., a matrix where each cell
contains a one-hot vector associated with a tile of the level, which encodes the
objects present in that tile. Each position of the one-hot vector correponds to
a different type of object. The subgoal g is also encoded in the one-hot vector
of its corresponding tile. The CNN does not receive any information about s or
g in addition to this one-hot matrix. This type of representation allows us to
encode both s and g in the same data structure, which is suitable for applying
convolutions on.

The architecture of the CNN is heavily inspired by the one used in the original
DQN paper [9]. It is constituted by three convolutional layers, the first one with
32 filters and the other two with 64 filters each, and one fully-connected layer
with 128 units. We have applied Batch Normalization after each convolutional
layer and before the first one. In order to train the CNN, we have decided to
apply the methodology followed by Deep Q-Learning [9]. To do so, we establish
a correspondence between our problem and Reinforcement Learning (RL), but
considering that our objective is to minimize the length lP (s,g) of the entire plan
P (s, g). An action a in RL corresponds in our work to achieving a subgoal g,
the reward r obtained by executing a at s corresponds to −lp(s,g) (the negative
length of the plan p(s, g) that starts at s and achieves a subgoal g), the expected
cumulative reward R associated with (s, a) corresponds to −lP (s,g), and max-
imizing R corresponds to maximizing −lP (s,g) (i.e. minimizing lP (s,g)). Table 1
shows this correspondence.

The CNN of the Goal Selection Module predicts lP (s,g), which in Deep Q-
Learning corresponds to the Q-value Q(s, a). Since its correct value Q∗(s, a) is
unknown, we need to utilize the Bellman Equation, which recursively defines the
optimal Q-values using other Q-values Q(s′, a′). The loss L function incorporates
this to define the error to be minimized:
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Table 1. Correspondence between RL and our problem.

RL Our work

Action a Subgoal g

Reward r −lp(s,g)

Cumulative reward R −lP (s,g)

Maximize R Maximize −lP (s,g) = Minimize lP (s,g)

L = (Q(s, a) − Q∗(s, a))2 = (Q(s, a) − (r + γ min
a′∈A′

Q(s′, a′)))2 (1)

where s′ is the next state (after applying a in s), A′ is the set of applicable
actions in s′ and γ is the discount factor.

We train the CNN on static datasets, using one dataset per level. Every
sample (s, ĝ, r, s′) in a dataset is obtained by running a planning episode that
starts at a state s (representing a state of the corresponding game level), achieves
one single goal ĝ, returns a plan p(s, ĝ) of length r and reaches a final state s′. The
planning domain for all the episodes is a representation of the player’s actions
in the Boulder Dash game. The datasets are populated by performing random
exploration on the training levels, i.e., by selecting the subgoal ĝ at random,
collecting a maximum of 500 distinct samples per level.

5 Experiments and Analysis of Results

We have chosen the Fast-Forward (FF) Planning System [5] for our Planner
Module because it is compatible with PDDL2.1 features such as conditional
effects and PDDL functions, which are expressive enough to represent domains
such as those of video games. FF carries out a best-first search and in our
experiments we have observed it is unable to find the shortest plan for all the
game levels. Nevertheless, it is able to find plans of sub-optimal length, so we
have used the evaluation function f = g + 5 ∗ h, where g is the current plan
length and h is an estimation of the plan length.

In our first experiment we tried to compare the performance of our model for
differents values of the discount factor γ. We tested different values and obtained
the best results for γ = 0.7. We then trained our model using γ = 0.7 (the best
value) and γ = 0 (which corresponds to the extreme case where the Q-value is
equal to lp(s,g)) on datasets of different sizes and evaluated the trained models on
11 test levels, averaging the results obtained across 5 repetitions. The training
and test levels are different in order to measure the generalization ability of our
model. All the levels used, for both train and test, share the same size and can
be further grouped into easy and hard levels. Hard levels are simply those FF
needs a lot of time to solve. For instance, we found that in Boulder Dash this
happens with levels that contain a lot of boulders. We trained each model for
100000 iterations (using a batch size of 32) independently of the dataset size,
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which translated into a training time of approximately one hour per model on a
machine with a Ryzen 5 3600X CPU and a RTX 2060 GPU. For each model we
obtained its action coefficient, calculated as the geometric mean of the quotients
between the length of the plan obtained by the model for each level and the one
obtained by a baseline model, which we call the Random Model. This model
selects subgoals g ∈ G completely at random, so it represents a way of selecting
subgoals without making use of the information present at the state of the game.
Figure 3 shows the results obtained.

Fig. 3. A plot comparing the performance of our model for two different values of γ.
The X axis represents the size of the training dataset: 5, 25, 50, 75 and 100 levels. The
Y axis represents the action coefficient of each model (lower is better).

When the discount rate γ is 0, the Q-value is equal to lp(s,g) and, thus, the
model does not consider the total plan P (s, g) but only the first section of it
(p(s, g)), i.e., it selects subgoals in a greedy way. This model is simpler than the
one with γ = 0.7 so, for small datasets (5, 25 and 50 levels), it obtains better
results since it is able to generalize better to new levels. However, for bigger
datasets (75 and 100 levels), the model with γ = 0.7 performs better. This
shows that, when trained on enough data, a model which conducts long-term
thinking when selecting subgoals is superior to one which does not.

In our second experiment we evaluated our model (with γ = 0.7) against the
Random Model and a classical planner (the same one we use for our Planner
Module) which solves the levels directly, i.e., without performing any goal selec-
tion. We trained our model on 100 training levels (again using 100000 training
iterations) and evaluated it on 11 test levels (5 easy levels and 6 hard levels),
obtaining the average time spent and plan length for each level. The results of
our experiment can be seen in Table 2.
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Table 2. Results of the executions of our model (GS), the Random Model (RM ) and
a classical planner (CP) on 11 test levels. We used 15 repetitions for our Goal Selection
Model and the Random Model and one repetition for the classical planner (since it is
deterministic). A value of − means the corresponding model could not solve the level
after 1 h of execution (timeout). Each cell shows the average number of actions/time
spent and the standard deviation.

Models Plan length (Number of actions)

Easy levels Hard levels

0 1 2 3 4 5 6 7 8 9 10

GS 85 ±
5

62 ±
20

66 ±
10

93 ±
19

71 ±
16

100 ±
21

128 ±
15

156 ±
28

112 ±
22

88 ±
17

103 ±
25

RM 207 ±
47

188 ±
59

144 ±
32

177 ±
45

190 ±
46

214 ±
67

302 ±
90

456 ±
101

235 ±
91

239 ±
55

262 ±
74

CP 80 51 42 74 41 − − − − − 114

Models Time (seconds)

Easy levels Hard levels

0 1 2 3 4 5 6 7 8 9 10

GS 1.3 ±
0.08

0.53 ±
0.1

1.23 ±
0.07

0.59 ±
0.09

1.22 ±
0.07

0.66 ±
0.12

1.33 ±
0.05

0.99 ±
0.19

1.46 ±
0.17

0.6 ±
0.09

1.32 ±
0.11

RM 0.47 ±
0.1

0.43 ±
0.12

0.32 ±
0.06

0.39 ±
0.1

0.45 ±
0.1

0.55 ±
0.12

0.61 ±
0.16

0.97 ±
0.2

0.58 ±
0.2

0.53 ±
0.11

0.52 ±
0.12

CP 92.44 0.41 0.04 279.76 0.05 − − − − − 54.55

If we compare the lengths of the plans obtained we can observe that the Goal
Selection Model finds plans which, on (geometric) average, contain 59% fewer
actions than the ones obtained by the Random Model but 25% more actions
than the ones obtained by the classical planner. If we now compare the times of
each model, we can see that the fastest one is the Random Model. This was to
be expected since the Random Model does not spend time selecting subgoals (it
selects them at random). Then, the Goal Selection Model spends, on (geometric)
average, 30% of the time the classical planner needs. This time accounts for both
goal selection and planning times. In addition, it has 100% coverage, whereas
the classical planner can only solve one out of the six hard levels before the
one-hour timeout. Even for those levels it can solve, the planner spends more
than 50 s in three of them, while the Goal Selection Module is able to solve all
the 11 levels under 1.5 s, with no significant difference in time between the easy
and hard levels. Therefore, we can conclude that, although our model obtains
plans which are 25% worse (longer) than those obtained by a classical planner, it
greatly reduces time requirements and can quickly solve levels of any complexity,
even those the classical planner cannot solve.

6 Related Work

The use of Neural Networks (NN) in Automated Planning has been a topic of
great interest in recent years. Some works have applied Deep Q-Learning to solve
planning and scheduling problems as a substitute for online search algorithms
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[10,14]. In our work, we also employ Deep Q-Learning but, instead of using it as
a substitute for classical planning, we integrate it along with planning into our
planning and acting architecture, which we hypothesize it is generalizable across
a wide range of game domains.

Other works train a NN so that it learns to perform an explicit planning
process [16,18], showing better generalization abilities than most RL algorithms.
[16] argues that this happens because, in order to generalize well, NNs need to
learn an explicit planning process, which most RL techniques do not. Although
our architecture does not learn to plan it does incorporate an off-the-shelf planner
which performs explicit planning. We believe this is why our approach shows
good generalization abilities.

There exist several works which incorporate Goal Selection into planning and
acting architectures, such as [7] and [2]. Jaidee et al. propose a Goal Reasoning
architecture which combines Case-Based Reasoning with Q-Learning [6]. In our
work, we have focused on learning to select subgoals, using Deep Q-Learning
instead of traditional Q-Learning in order to give our architecture the ability
to generalize to new states. [1] makes use of a CNN which learns to select sub-
goals from images. Unlike our work, the CNN is trained by a hard-coded expert
procedure in a supervised fashion and the set of eligible subgoals is always the
same, regardless of the state of the game.

7 Conclusions and Future Work

We have proposed an architecture which learns to select goals with Deep Q-
Learning in order to interleave planning and acting. We have tested our architec-
ture on the GVGAI game known as Boulder Dash, using different levels for train-
ing and testing in order to measure its generalization abilities. We have observed
how, for big datasets (more than 35000 samples), the model with γ = 0.7 outper-
forms the one with γ = 0, showing the importance of long-term thinking when
selecting goals.

Our approach is competitive with a classical planner. Although it obtains
plans which are 25% longer on average, it greatly reduces time requirements
and can quickly solve levels of any complexity, even those the classical planner
cannot tackle. In addition, our approach presents better generalization prop-
erties than most RL algorithms when applied to new levels of the same game
[20], but requires more domain-specific knowledge. In future work, we intend
to conduct experiments on different GVGAI games and apply our architecture
to non-deterministic environments, making use of Deep Q-Learning to manage
uncertainty.
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Abstract. Activation functions are used in neural networks as a tool to
introduce non-linear transformations into the model and, thus, enhance
its representation capabilities. They also determine the output range of
the hidden layers and the final output. Traditionally, artificial neural net-
works mainly used the sigmoid activation function as the depth of the
network was limited. Nevertheless, this function tends to saturate the
gradients when the number of hidden layers increases. For that reason,
in the last years, most of the works published related to deep learning and
convolutional networks use the Rectified Linear Unit (ReLU), given that
it provides good convergence properties and speeds up the training pro-
cess thanks to the simplicity of its derivative. However, this function has
some known drawbacks that gave rise to new proposals of alternatives
activation functions based on ReLU. In this work, we describe, anal-
yse and compare different recently proposed alternatives to test whether
these functions improve the performance of deep learning models regard-
ing the standard ReLU.

Keywords: Activation functions · Deep learning · Convolutional
neural networks

1 Introduction

In the last decade, the number of works that propose to use models based on
deep learning methods have significantly increased. Deep learning models can
learn high level representations of complex problems related to multiple areas
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like supervised learning (classification or regression) [5], object localization [11],
or image retrieval [2], among others. In most cases, these kind of models are
used when the datasets that we want to learn from are composed of images
or sequences. For the latter case, the Recurrent Neural Networks (RNN) or
Long Short Term Memory Networks (LSTM) have demonstrated to obtain good
performance. On the other hand, for image data, the most common alternative
is to use Convolutional Neural Networks (CNN) as they can convert the low level
features (image pixels) to high level abstract features (lines or shapes), which
then can be used to train a traditional artificial neural network model.

The CNNs are commonly formed up of several parts or steps: (1) Convolu-
tional layers operate over the pixels of the images using a convolution operation
with a given kernel shape in order to extract higher level features from that
image. Each element of that kernel is a parameter of the model and must be
learned from the training data. (2) Batch normalisation layers were proposed [8]
as a tool to improve the convergence speed of the model and mitigate trai-
ning stagnation problems by normalising the outputs of the convolutional layer.
(3) The activation function introduces non-linearities in the model in order to
achieve more complex representations and defines the output range for any given
input. The traditional activation functions used in shallow artificial neural net-
works have been replaced by simpler alternatives on deep learning models. (4)
Pooling layers are used to reduce the dimensionality of the features extracted
by the convolutional layers. This operation is done by taking the minimum,
maximum or average value of groups of adjacent features.

Regarding activation functions, recently, multiple alternatives have been pro-
posed. The traditional sigmoid function was discarded as it was proved that using
this kind of exponential functions with deep models does not lead to a good con-
vergence, saturating the gradients easily. That is the main reason why some
simple activation functions were proposed. Nowadays, the most commonly used
activation function for deep networks is the Rectified Linear Unit (ReLU) [14].
The root cause of this popularity relies on its simplicity and the simplicity of its
first derivative, which enhances the training process by allowing faster gradients
computation and suppressing problems related to gradients saturation. However,
as it is described in Sect. 2, some problems related to the negative part of this
activation arises in some cases, and, therefore, some recent works proposed dif-
ferent alternatives to solve these issues while taking profit of the good properties
of the ReLU function.

In this work, we analyse the ReLU function together with some recently
proposed alternatives and perform an experimental and statistical analysis of the
performance of all these functions to check whether they provide a significant
improvement concerning the original proposal. The rest of this paper is organised
as follows: in Sect. 2, the ReLU function and its alternatives are described, in
Sect. 3 we describe the experimental design and the datasets used as benchmark
to evaluate the activation functions, in Sect. 4 we present and analyse the results
from a descriptive point of view and from a statistical view, and, finally, in Sect. 5
we present the conclusions of this work.
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2 ReLU-Based Activation Functions

The Rectified Linear Unit (ReLU) has been widely used as activation function
for deep learning models since it was proposed for the first time in [14]. It
was presented as an alternative to the sigmoid function, which is commonly
used on shallow neural networks. The ReLU function is easily implemented by
thresholding an activation map at zero [1]. Also, its gradients are computed in
a straight-forward way, as it is the unit when the input value is positive and
zero in the rest of the domain. Therefore, only a subset of neurons will be active
for a given input, thus improving the computational cost as the output is a
linear function of the input. This linearity causes the successive gradients to be
calculated in a faster way, since it is not necessary to calculate an exponential
function such as the one required by the sigmoid. The function is defined as:

fReLU(x) = max(0, x). (1)

The ReLU activation has demonstrated to accelerate the convergence of
stochastic gradient descent compared to previous alternatives used in shallow
networks. In this way, multiple recent works [4] used this function for deep
learning.

Nevertheless, the sparsity introduced by having zero values in the negative
part can reduce the predictive performance, reducing the generalisation capabi-
lity of the model. Also, the fact that the output of the function is zero when the
input is negative can hinder learning negative values [6].

Following these limitations of the ReLU activation, many recents works have
proposed alternatives that try to exploit the good characteristics of the ReLU
at the same time that they fix the flaws of this function. In most cases, they are
non-saturating nonlinear functions which are parametrics extensions thereof. In
the rest of this Section, some of these alternatives are described.

2.1 Leaky Rectified Linear Unit

The Leaky ReLU function (LReLU) [12] is a parametric alternative of the ReLU
that was proposed with the purpose of alleviating the problems caused by the
hard zero activation of the ReLU. It is defined as:

fLReLU(x) =

{
x, x > 0,

αx, x ≤ 0,
(2)

where the α fixed parameter defines the slope of the negative part and is often
pre-assigned with a small value like 0.01.
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2.2 Parametric Rectified Linear Unit

The Parametric Rectified Linear Unit (PReLU) [6] was proposed as another
generalisation of the ReLU function. The main idea behind this function is simi-
lar to the one described in the LReLU activation. However, in this case, the slope
of the negative part, i.e. the α value, is a free parameter learned from data. The
authors of that work stated that the PReLU improves model fitting with nearly
zero extra computational cost. The function is defined as:

fPReLU(x) =

{
x, x > 0,

αx, x ≤ 0,
(3)

where α represents a channel-shared or channel-wise free parameter. Channel-
shared parameters have only one value for all the channels while channel-wise
parameters have one value for each channel.

2.3 Elastic Rectified Linear Unit

The Elastic Rectified Linear Unit (EReLU) function [9] only modifies the positive
part of the function and does not include any extra parameters. The negative
part remains as zero, then it does not correct one of the main drawbacks of the
original ReLU function, which is the one caused by the hard zero activation. The
function was defined in its original work as Eq. 4.

fEReLU(x) =

{
kx, x > 0,

0, x ≤ 0,
(4) fEPReLU(x) =

{
kx, x > 0,

βx, x ≤ 0,
(5)

In Eq. 4 k is a coefficient randomly selected from a uniform distribution
for each element of the feature maps, k ∼ U(1 − α, 1 + α), with α ∈ (0, 1). α
is a parameter representing the degree of response fluctuation. The value of k
changes in each iteration of the training stage when using the stochastic gradient
descent algorithm. At test time, this parameter is replaced with E[k] = 1 (the
expectation of k). Thus, at test time, EReLU behaves exactly like ReLU.

The authors of [9], also proposed the parametric form of the function descri-
bed. The Elastic Parametric Rectified Linear Unit (EPReLU) joins EReLU and
PReLU activations and fixes the issue of the zero output in the negative part by
treating the positive and negative domain separately. The function is defined as
Eq. 5. In this equation, k is the same parameter introduced in EReLU, and β is
a free parameter which needs to be learned from training data. Each parameter
controls the slope of the positive and negative domain respectively.

2.4 Randomised Leaky Rectified Linear Unit

The Randomised Leaky Rectified Linear Unit (RReLU) [19] introduces a random
component in the negative part of the function by sampling its slope from a
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uniform distribution instead of using a constant value or learning it from the
data. The function can be defined as:

fRReLU(x) =

{
x, x > 0,

αx, x ≤ 0,
(6)

where α is a channel-wise parameter, α ∼ U(a, b) and a, b ∈ [0, 1], a < b.
When evaluating, the slope (α) is set to its expectation to achieve determi-

nistic results. Therefore, α̂ = E[α] = a+b
2 during the test phase.

2.5 Sloped Rectified Linear Unit

The Sloped ReLU [15] is another alternative to the standard ReLU function
that introduces a learnable parameter that modifies the slope of the positive
part. However, it does not change the negative part, thus it preserves the same
problem caused by the zero activation. The Sloped ReLU is defined as:

fSlopedReLU(x) = max(0, αx), (7)

where α denotes a trainable slope parameter (α > 0).

2.6 Paired Rectified Linear Unit

The Paired ReLUs [17] tries to correct the problem caused by the zero activation
by concatenating two ReLU-like functions. The first has a non-zero activation
when the inputs are in the positive domain while the second one is active when
the input is negative. In this way, the function always takes values different from
zero, but the main drawback of this function is that it converts an input of shape
S to 2S, which leads to a higher computational cost and use of memory. The
activation scheme is defined as:

fPaired(x) = (max(sx − θ, 0),max(spx − θp, 0)), (8)

where s and sp are two scale parameters that are initialised to 0.5 and −0.5,
respectively, and θ and θp are a pair of trainable parameters. Hence, fPaired(x)
represents the concatenation of the output of two parts of the function.

2.7 Randomly Translational Rectified Linear Unit

The Randomly Translational Rectified Linear Unit (RTReLU) [3] introduces a
random term a in the positive part. The authors stated that it compensates the
jitter of the input. The negative part remains unchanged, and, therefore, the
problems related to having no activation for the negative part are still present.
The function expression is shown in Eq. 9.

fRTReLU(x) =

{
x + a, x + a > 0,

0, x + a ≤ 0,
(9) fRTPReLU(x) =

{
x + a, x + a > 0,

k(x + a), x + a ≤ 0,
(10)
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In Eq. 9, a is a channel-wise parameter sampled from a Gaussian distribution,
that defines the offset on the horizontal axis.

This transformation which was applied to the standard ReLU function, can
be applied to other functions like the PReLU. In this way, in the same work,
the authors proposed the Randomly Translation PReLU (RTPReLU) too. The
expression of this function is obtained in a similar way and is defined in Eq. 10.
In this equation, a is the same parameter described in the previous alternative
and k is a channel-wise parameter that denotes the slope of the negative part.

3 Design of the Experiments

In this Section, the design of the experiments along with the datasets considered
and the validation scheme are described.

3.1 Datasets

The activation functions described in Sect. 2 were mainly proposed to be used
on CNNs which are intended to be used with images. Therefore, to evaluate
and compare the performance of these functions, we are using three well-known
benchmark image datasets: CIFAR-10, CIFAR-100 and Fashion-MNIST.

CIFAR-10 and CIFAR-100. The CIFAR-10 dataset is composed of a trai-
ning set with 50,000 images and a test set with 10,000 images. Each image is
categorised in one of ten different classes. All of them are RGB images rescaled
to 32 × 32. The partitions described along with that image size are standard and
used to evaluate the performance of multiple proposals in the literature [7,10].
Some images extracted from the training set are shown in Fig. 1.

The CIFAR-100 dataset is similar to the aforementioned CIFAR-10 dataset
as it has the same number of samples and train/test partitions. However, in this
case, the samples are separated into 100 different classes, which are grouped into
20 superclasses. This class hierarchy gives birth to a fine label or real class and a
coarse label associated with the superclass. In this work, we used the fine labels.

Fig. 1. CIFAR-10 images belonging to the training set.

Fashion-MNIST. Fashion-MNIST is a dataset composed of images of different
types of clothes products and accessories obtained from Zalando. The training
set is composed of 60,000 grayscale images and the test set contains 10,000.
These images are associated with one of 10 labels and resized to 28 × 28.
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3.2 Model and Training Process

The model proposed to be used along with the datasets described is a CNN with
the VGG16 architecture [16], that has demonstrated to achieve good performance
in several classification problems including large datasets like ImageNet [10].
The model contains around 15.0M parameters. The standard model uses ReLU
activations after every convolutional block. In our case, we have modified the
activation to use each of the functions described in Sect. 2. At the output of the
network, we added a dense layer with 512 units and, after that, another dense
layer with N − 1 units, being N the number of classes, followed by the softmax
function that determines the probability for each class.

The model described could be improved depending on the problem considered
but, as we will focus on comparing each of the activation functions considered,
we used the same architecture for all the experiments.

Concerning the training process and the validation scheme, the model descri-
bed was trained with each of the datasets detailed in this Section. A validation
set was obtained from the training set by randomly extracting 5% of the sam-
ples. The loss of the validation set was used as a metric for the early stopping
strategy, in a way that we can stop the training process when the best stage
has been reached. In order to mitigate the random effects, the experiments have
been repeated five times with five different seeds.

The Stochastic Gradient Descent (SGD) algorithm with decay and Nesterov
momentum has been used to optimise the model. The loss function considered
was the standard categorical cross-entropy, which is the standard loss function
for classification problems. The initial learning rate (η0) of the optimiser was
set to 0.1, the decay factor to 10−6 and the Nesterov momentum to 0.9. More-
over, the actual learning rate is determined by the initial learning rate and the
epoch number following the expression: η = η0 · 0.5

epoch
20 . These parameters were

validated using a 5-fold cross-validation scheme.

4 Results and Analysis

This Section presents the results of the experiments that were described in
Sect. 3. Table 1 shows the mean accuracy score of the five executions for each of
the activation functions and datasets as well as the mean accuracy for each of
the functions across all the datasets. The best result is in bold font.

As can be deduced from the results presented in Table 1, the Parametric
ReLU obtained the best average results. However, it is necessary to do an statis-
tical analysis in order to demonstrate that the differences in average accuracy are
statistically significant. In this way, we first performed a Kolmogorov-Smirnov
test to check whether the accuracy values follow a normal distribution. Then,
an ANOVA II test [13] taking as factors the activation function and the dataset
was done to check if these factors have a significant impact on the accuracy. The
results of this statistical test are shown in Table 2. This table shows, for each
factor or interaction, the sum of the squares (SS), the degrees of freedom (DF),
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Table 1. Accuracy mean results for test set.

Activation VGG-16 accuracy

CIFAR-10 CIFAR-100 Fashion Mean

ReLU 0.91768 0.64586 0.94022 0.83459

LReLU 0.91766 0.66278 0.93912 0.83985

PReLU 0.91920 0.66122 0.94108 0.84050

EReLU 0.91126 0.64478 0.94016 0.83207

EPReLU 0.90586 0.62896 0.93742 0.82408

RReLU 0.89708 0.58316 0.93508 0.80511

SlopedReLU 0.91852 0.65628 0.94000 0.83827

Paired 0.91168 0.61634 0.93420 0.82074

RTReLU 0.91506 0.65808 0.94126 0.83813

RTPReLU 0.91634 0.65898 0.93570 0.83701

the mean of the squares (MS), the value of the F statistic and its significance
level (p-value). If the latter is smaller than 0.05, then the factor is statistically
significant. These results show that both factors, the dataset and the activation
function have a significant impact on the accuracy obtained (p-values < 0.001)
and, also, there is an interaction between them (p-value < 0.001). This latter
statement means that an activation function can achieve good performance on
some datasets while the accuracy obtained for others can be poor.

Table 2. ANOVA II results.

Source SS DF MS F -ratio p-value

Model 106.331 30 3.544 92957.142 <0.001

Dataset factor 106.299 3 35.433 929293.289 <0.001

Activation factor 0.017 9 0.002 50.094 <0.001

Dataset × Activation 0.015 18 0.001 21.308 <0.001

Error 0.005 120 0.0004

Total 106.335 150

In order to complete the statistical analysis and given that there are signi-
ficant differences depending on both factors, a posthoc Tukey’s HSD test [18]
has been performed to compare the different activation functions. The results
of the aforementioned test, which are shown in Table 3, divided the activation
functions in four different groups, meaning that the functions that belong to the
same group have no significant differences between them while the functions in
different groups are significantly different in terms of accuracy. Also, the groups
are denoted in ascending order of accuracy. In this way, the RReLU obtained
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the worst performance as it is alone in the first group. The Paired ReLU and
the EPReLU are in the second group, thus, they have the second worst results.
In group 4, we can find most of the functions, including the ReLU. The main
conclusion that we can extract from these results is that the functions derived
from the standard ReLU, did not improve the performance in terms of accu-
racy. Most of the alternatives are similar to the standard ReLU and some others
obtain worst average results than ReLU.

Table 3. Post-hoc HSD Tukey’s Test for accuracy metric (15 samples for each function)

Activation Subsets

1 2 3 4

RReLU 0.80511

PairedReLU 0.82074

EPReLU 0.82408

EReLU 0.83207

ReLU 0.83459 0.83459

RTPReLU 0.83701 0.83701

RTReLU 0.83813 0.83813

SlopedReLU 0.83827 0.83827

LReLU 0.83985

PReLU 0.84050

p-values 1.000 0.897 0.166 0.219

5 Conclusions

In this work, we have described and analysed the Rectified Linear Unit together
with nine alternatives that were proposed in the recent years based on it. We
performed an experimental comparison between all of them using a convolutional
neural network model and three separate benchmark datasets. The results of this
experimental analysis regarding the accuracy metric were shown, and the func-
tions were compared in a descriptive form as well as in a statistical form. The
results of the statistical tests performed reported that the activation function is
a significant factor affecting the accuracy obtained. Also, the posthoc test shown
that there are some functions based on the ReLU that perform worse than the
original proposal, but there is not any ReLU alternative that performs signifi-
cantly better than the base function. Given these results, we can conclude that
the alternatives presented to mitigate the problems of the ReLU were not the
ideal alternative and, in some cases, they came with an increased computational
cost that is not justified. In this way, future research works focused on improving
the activation functions for deep learning, should try to explore different alter-
natives not based on the ReLU function, having activation in the negative part
as well as in the positive domain.
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Abstract. Time Series Ordinal Classification (TSOC) is yet an unex-
plored field of machine learning consisting in the classification of time
series whose labels follow a natural order relationship between them. In
this context, a well-known approach for time series nominal classification
was previously used: the Shapelet Transform (ST). The exploitation of
the ordinal information was included in two steps of the ST algorithm:
1) by using the Pearson’s determination coefficient (R2) for computing
the quality of the shapelets, which favours shapelets with better order-
ing, and 2) by applying an ordinal classifier instead of a nominal one to
the transformed dataset. For this, the distance between labels was repre-
sented by the absolute value of the difference between the corresponding
ranks, i.e. by the L1 norm. In this paper, we study the behaviour of differ-
ent Lp norms for representing class distances in ordinal regression, eval-
uating 9 different Lp norms with 7 ordinal time series datasets from the
UEA-UCR time series classification repository and 10 different ordinal
classifiers. The results achieved demonstrate that the Pearson’s determi-
nation coefficient using the L1.9 norm in the computation of the differ-
ence between the shapelet and the time series labels achieves a signifi-
cantly better performance when compared to the rest of the approaches,
in terms of both Correct Classification Rate (CCR) and Average Mean
Absolute Error (AMAE).
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1 Introduction

Time Series Ordinal Classification (TSOC) is the machine learning field focusing
on the classification of time series in which the associated discrete target values
present a natural order relationship between them [9]. An example of this type
of problems could be classifying people’s heart rate by the age’s group they
belong, in which the labels could be baby, child, teenager, adult or elderly.
Note that severe misclassification errors, such as classifying a baby as adult,
should be far more penalised than misclassifying a baby as child. More examples
of these problems could be found in the meteorological field [7] or in wave height
prediction [8], among others.

There are three main ways to tackle these problems: 1) as nominal classifi-
cation problems, nevertheless, it ignores the natural order between the labels;
2) as regression problems, implying the assignment of a numerical value to each
label (assuming a distance between labels that can hinder the performance of
the regressor); and 3) considering them as ordinal classification problems, which
is the most appropriate approach given that it takes the natural order between
the labels into account and does not assume a distance between values. This
third strategy is the one we are considering for this study.

On the other hand, one of the most common techniques for time series nom-
inal classification is the use of shapelets [24] in several ways. Shapelets are sub-
sequences of the original time series that allow the comparison of similarity by
considering shape. The first approach [24] considered the use of a decision tree
with the Information Gain (IG) measure to assess the shapelet candidates and
keep the best. Nowadays, there are a huge variety of methods using shapelets
from different perspectives, among which the Shapelet Transform (ST) [13] is
one of most powerful techniques. It builds a transform of the original dataset by
computing the distances from the shapelets extracted to the original time series,
in such a way that any classifier could be built on this transformed dataset.

The ordinal information of the labels can be exploited in two different steps of
the ST as described in [9]: 1) in the computation of the shapelet quality measure
and 2) by using an ordinal classifier over the transform. The results achieved
in [9] demonstrated that the best shapelet quality measure when tackling ordi-
nal time series datasets is the Pearson’s determination coefficient (R2), which
outperformed the IG (the quality measure used by the original ST).

In this work, the main objective is to improve this shapelet quality measure
by analysing the effect that the Lp norm has on the computation of the label
distances. For this, we have considered the same set of ordinal time series datasets
from the UEA-UCR time series classification repository as in [9], 10 ordinal
classifiers and a wide range of p values for the Lp norm, where 1 ≤ p ≤ 2.

The rest of the paper is organised as follows. Section 2 has a twofold objective:
Sect. 2.1 details the fundamental notions regarding time series and shapelets,
whereas Sect. 2.2 shows the study of the Lp norm behaviour when applied to the
shapelet quality measure. Section 3 presents the experimental settings (Sect. 3.1)
and the experimental results, statistical tests and discussion (Sect. 3.2). Finally,
Sect. 4 closes the paper with the main conclusions of this work.
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2 Background

This section includes the basic notions of time series, along with the idea of time
series shapelets and the study of the effect produced by using different Lp norms
in the shapelet quality measurement.

2.1 Time Series

Time series classification is defined as the task of building a classifier from a
set of labelled training time series. A time series xi is defined as a set of time-
ordered values {xi1, xi2, . . . , xim} of length m and can be assigned a label Ci.
Note that in this study we have focused on time series with the same number of
observations (i.e. m is constant). In this sense, a time series classification dataset
D is formally defined as D = {t1, t2, . . . , tn}, in such a way that ti = 〈xi, Ci〉.
Hence, the time series classification task mainly consists in learning an accurate
mapping function from the set of input attributes xi to the output Ci.

Ordinal Time Series. When considering ordinal time series, the label asso-
ciated to each time series, Ci, belongs to a set of categories following an
order relationship, i.e. Ci ∈ Y = {C1, C2, . . . , Cq}, where q is the number of
categories and {C1, C2, . . . , Cq} are the ordinal labels satisfying the constraint
C1 ≺ C2 ≺ . . . ≺ Cq (note that the operator ≺ represents the order relationship).
Focusing on the UEA-UCR time series classification repository [3], a subset of 7
ordinal time series datasets satisfying the previous constraint was identified in
[9], where specific information regarding this set of ordinal time series datasets
is detailed.

Shapelets. It is well known that time series commonly have subsequences with
specific features that could characterise the time series and, therefore, could be
representative not only of the time series from which they are extracted but
also of the class to which the time series belongs. These subsequences are known
as shapelets and were firstly proposed by Ye and Keogh in [24]. In this first
approach, the shapelets were embedded into a decision tree in which the splits
were performed according to a single shapelet and its quality, measured by means
of the Information Gain (IG) [21]. Nevertheless, due to its outstanding merit on
time series data mining, novel approaches have been proposed to the literature
[6,10,13]. Most of them consider the creation of a transformation of the original
time series dataset [13], known as Shapelet Transform (ST). The attributes of
this new representation are the distances from the shapelets to the time series
being evaluated. The main advantages of building this new representation are the
possibility of applying any classifier and the lack of need of searching for shapelets
sequentially at each node of the tree, which is computationally intensive.
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More formally, a shapelet s = {s1, s2, . . . , sl} is a subsequence of a time series
tj = 〈xj , Cj〉 with xj = {xj1, xj2, . . . , xjm}, where l ≤ m. Note that Cj is the
class of both the shapelet s and the time series tj due to the fact the shapelet s is
an exact subsequence of tj . The procedure for extracting the shapelets is divided
in three main steps [13], which are performed iteratively until all the shapelets
have been extracted (which is known as enumerative search) or until satisfying
a given time constraint (known as contracted search): 1) Candidate generation:
from all possible subsequences satisfying the previous length constraint, one
random shapelet is kept. 2) Similarity measurement: the similarity between the
shapelet and all the time series is computed by means of the Euclidean distance.
This distance is computed by keeping the minimum of all the distances between
the shapelet and all the subsequences with the same length as the shapelet. 3)
Shapelet quality measurement: depending on the previous similarity measure-
ment and the strategy or metric followed, each shapelet is given a quality with
the purpose of retaining only high quality shapelets.

As can be imagined, the number of shapelets that could be extracted from
a time series dataset is extremely large depending on the length of the subse-
quences, the number of training time series and the search strategy considered
(enumerative or contracted). In this sense, the use of a shapelet quality measure
is required in order to retain only those shapelets with a high quality, this is,
those which are more representative of a class and, thus, enable us to differ-
entiate better between classes. So far, this task has been performed using the
IG, which has been proved to be excellent and is used in one of the state-of-
the-art techniques in time series nominal classification, the HIVE-COTE [2].
Nevertheless, given that we are focusing on TSOC, it is better to select the best
shapelets exploiting the ordinal information present in them. For this, in a previ-
ous paper [9], several shapelet quality measures considering ordinal information
of the dataset were compared against the standard IG, being the one based on
the Pearson’s determination coefficient (R2), the one achieving the best results.
This shapelet quality measure is based on the correlation between the distances
obtained from the shapelet s to the time series ti (here represented as ds,ti) and
the difference of the class indices (i.e. the label of the shapelet and the label of
ti), which is the cost of misclassification associated to the pair of labels being
compared (here represented as cs,ti). In this way:

ds,ti = min

⎧
⎨

⎩

l∑

j=1

(sj − rj)2, ∀r ∈ ti

⎫
⎬

⎭
, (1)

where r is a subsequence of the time series ti with the same length that the
shapelet s (sliding window of l elements). On the other hand, the cost associated
to the misclassification of two labels is defined as follows:

cs,ti = |O(Cj) − O(Ci)|, (2)

where Ci is the class of the time series ti and Cj is the class of the time series
tj to which the shapelet s belongs to. Besides, O(Ck) = k, k ∈ {1, . . . , q}, i.e.
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O(Ck) is the position of the category in the ordinal scale and cs,ti is the number
of categories between Ci and Cj .

The Pearson’s determination coefficient (R2) is expressed as:

R2(s) =
S2(ds,ti , cs,ti)

S2
ds,ti

S2
cs,ti

, (3)

where S(ds,ti , cs,ti) is the covariance between ds,ti and cs,ti . S2
ds,ti

and S2
cs,ti

are
the variances of ds,ti and cs,ti , respectively.

The following section shows the effect of using different Lp norms when com-
puting the difference between the class indices of the shapelet s and the time
series ti, cs,ti (Eq. 2), which so far has been computed using the L1 norm, i.e.
the absolute value of the difference of the ranks.

2.2 Effect of the Lp Norm

The use of different Lp norms in optimisation algorithms has been a hot topic in
several field, including binary classification [5] or feature selection [25], among
others. Moreover, in [19], the Lp norms are used to provide a specific type of push.
Depending on the value, the objective varies: e.g. setting a large p makes the
objective to focus on the top of the ranked list. In [17], the authors demonstrated
that L2 norm methods tend to “expand” or “bleed out” over natural boundaries.
Therefore, using a Lp norm where 1 < p < 2 should provide a more appropriate
alternative when able to be optimised efficiently. In [15], the authors present an
Lp norm alternative to Least Squares Support Vector Machine (LSSVM) [22],
paying special attention to their behaviour: 1) the edge points may be ignored by
using the L2 norm in the classification error measurement, whereas they could
be the most important samples and special attention should be given to them
(such is the case of anomaly detection [14]); 2) if the sample size is smaller than
the number of features, it would be an ill condition or singularity, which means
that LSSVM is not suitable for small sample size problems. The use of this type
of generalized norms has drawn a huge attention in different applications, such
as 3D medical image super-resolution [23].

In linear regression problems, calculating the coefficient of determination for
the accuracy of the models and its prediction, using the mean and variance of
the involved variables, is common and these statistics are typically based on
the Euclidean norm (L2 norm). However, for some of these tasks, the Lp norms
have raised a huge attention. Bregman divergences is one of the standard tools
for analysing online machine learning algorithms [16], allowing a generalisation
of the least mean squared algorithm. In this sense, the loss bounds for these
so-called Lp norm algorithms involve others than the standard L2 norm [5].

Given the above considerations, in this work, the Lp norm with 1 ≤ p ≤ 2 is
proposed as an alternative to the distance between the classes of the shapelet s
and the time series ti. In this sense, Eq. 2 is redefined as follows:

cp
s,ti

= |O(Cj) − O(Ci)|p, 1 ≤ p ≤ 2. (4)
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And therefore, the new Pearson’s determination coefficient (R2
p(s), previously

defined in Eq. 3) can be expressed as:

R2
p(s) =

S2(ds,ti , c
p
s,ti

)
S2

ds,ti
S2

cps,ti

, 1 ≤ p ≤ 2. (5)

To give a visual idea of the effect of the Lp-norm, Fig. 1 shows an example of
6 values of p, specifically the 6 values resulting in the best performance in the
experiments of Sect. 3. In Fig. 1, the x-axis represents class differences from −5
to 5, whereas the y-axis depicts the Lp norm values (Eq. 4).

Fig. 1. Geometric interpretation of the best 6 Lp norms on one-dimensional vector.

3 Experimental Results and Discussion

This section includes the experimental settings for the 10 different ordinal clas-
sifiers chosen for this study, as well as a discussion of the results obtained1.

3.1 Experimental Settings

The code for the Shapelet Transform (ST) has been obtained from the sktime
toolkit [18]2. As mentioned in Sect. 2.1, there are two types of search for the ST.
In this paper, we focus on the contracted one, fixing the contracted time to one
hour. The standard train and test splits given in the time series classification
1 Code used in this paper and results achieved are available in the website https://

github.com/dguijo/TSOC/releases/tag/1.0.1.
2 Code is available in the website https://github.com/alan-turing-institute/sktime.

https://github.com/dguijo/TSOC/releases/tag/1.0.1
https://github.com/dguijo/TSOC/releases/tag/1.0.1
https://github.com/alan-turing-institute/sktime
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repository are used. Regarding the ordinal classifiers, in this work, the following
10 methods are used: SVR, SVC1VA, CSSVC, SVORIM, SVOREX, SVORIM-
LIN, OPBE, HPOLD, ORBOOSTALL and KDLOR. Further details about these
methods can be found in [12,20]3. All of them have been run once, given they
are deterministic. The ordinal classifiers have been evaluated using the Correct
Classification Rate (CCR) and the Average Mean Absolute Error (AMAE) [1].
The CCR is computed as the percentage of correctly classified patterns over the
total number of patterns, whereas AMAE is defined as:

AMAE =
1
q

q∑

i=1

1
ni

ni∑

j=1

|O(Cj) − O(ŷj)|, (6)

where ni is the number of patterns belonging to class i. It is worthy of mention
that CCR measures the global performance of the classifier, whereas AMAE mea-
sures the ordinal classification errors individually analised for each class. Due to
the fact that this work is focused on ordinal time series, it is not advisable to rely
only on CCR as it ignores order information. AMAE is better suited considering
order information of the labels and assuring that all classes contribute to the
final error.

Regarding the hyperparameters of the ordinal classifiers, a nested 10-fold
cross-validation procedure with AMAE as the parameter selection criteria has
been used. In this sense, the cost parameter and the kernel width are adjusted in
the range {10−3, 10−2, . . . , 103}. Besides, for KDLOR, the values {10−6, 10−2}
are used in order to avoid singularities in the covariance matrices, and, for SVR,
the values {10−3, 100} are used for defining the margin of tolerance where no
penalty is given to errors.

3.2 Experimental Results

The results achieved by the 10 ordinal classifiers, applied to the 7 ordinal time
series datasets using the 9 different Lp norms when computing the Pearson’s
determination coefficient (R2

p) are summarised in Table 1, where the mean rank-
ing results for both performance metrics (AMAE and CCR) are included. For
this, first of all, we have computed the average performance of each ordinal clas-
sifier over the different datasets. After that, the ranks in terms of AMAE and
CCR are computed, in such a way that, for each classifier, a ranking of 1 is given
to the best method (based on the average of the 7 datasets) and a 9 is given
to the worst one. As can be seen, using the L1.9 norm (R2

1.9) achieves the best
results, not only in terms of AMAE, but also in terms of CCR, with a huge
difference with the nearest methods, R2

1.0 and R2
1.5, respectively. In this way,

our results show that p = 2 involves an excessive penalisation of errors, whereas
p = 1 behaves quite good for AMAE (note that the L1 norm is implicit in the

3 These classifiers are available in the website https://github.com/ayrna/orca.

https://github.com/ayrna/orca
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Table 1. Mean ranking results in AMAE and CCR obtained by computing the average
of each ordinal classifier over the 7 datasets.

Ranking R2
1.0 R2

1.1 R2
1.25 R2

1.4 R2
1.5 R2

1.6 R2
1.75 R2

1.9 R2
2.0

AMAE 3 .60 5.35 4.05 7.25 4.75 6.45 6.05 1.15 6.35

CCR 4.75 6.10 4.65 7.65 3 .85 6.05 4.80 1.60 5.55

The best result is in bold face and the second one in italics.

definition of this metric) but is not able to obtain so good results for CCR. An
intermediate value (p = 1.5) leads to good accuracy but worse AMAE values,
concluding that the best balance is obtained by p = 1.9.

Table 2. Results of the Holm’s test using R2
1.9 shapelet quality measure as control

method: corrected α values, compared method and p-values, ordered by the number of
comparison, i.

Control alg.: R2
1.9 AMAE CCR

i α∗
0.05 Method pi Method pi

1 0.00625 R2
1.4 0.00000+ R2

1.4 0.00000+

2 0.00714 R2
1.6 0.00002+ R2

1.1 0.00024+

3 0.00833 R2
2.0 0.00002+ R2

1.6 0.00028+

4 0.01000 R2
1.75 0.00006+ R2

2.0 0.00126+

5 0.01250 R2
1.1 0.00061+ R2

1.75 0.00898+

6 0.01667 R2
1.5 0.00329+ R2

1.0 0.01011+

7 0.02500 R2
1.25 0.01789+ R2

1.25 0.01276+

8 0.05000 R2
1.0 0.04546+ R2

1.5 0.06619

Subscript + represents a statistical significant win for α = 0.05.

In order to determine whether the previous differences are achieved by
chance, a set of non-parametric statistical tests have been applied. First of
all, the Friedman’s test has been applied to the AMAE and CCR evaluation
metrics, with a significance level of α = 0.05, where the confidence interval
is C0 = (0, Fα=0.05 = 2.070). The null-hypothesis (all the algorithms perform
similarly in mean ranking) is rejected for both performance metrics, given that
F -val.AMAE = 7.854 /∈ C0 and F -val.CCR = 5.495 /∈ C0. Moreover, following the
guidelines in [4] and given that the null-hypothesis in Friedman’s test is rejected,
the Holm’s test has been carried out using the approach with the shapelet quality
measure R2

1.9 as control method, as it achieved the best mean ranks in Table 1.
In this way, Table 2 shows the results of the Holm’s test. As can be seen, using
the L1.9 norm significantly outperforms the rest of methods in terms of AMAE.
Regarding CCR, R2

1.9 also finds significant differences with respect to all of the
norms except R2

1.5.



52 D. Guijo-Rubio et al.

4 Conclusions

This paper presents an analysis of the effect of using different Lp norms for the
computation of the shapelet quality measure in the Shapelet Transform (ST)
when applied to Time Series Ordinal Classification (TSOC). For this, 9 different
Lp norms with 1 ≤ p ≤ 2 have been evaluated to be used along with the Pearson’s
determination coefficient (R2) for the computation of the shapelet quality. An
experimental comparison of these 9 values for the Lp norm has been performed
using 7 ordinal datasets and 10 ordinal classifiers. The results obtained and the
statistical tests carried out demonstrated that R2

1.9 (i.e. R2 using the L1.9 norm
for computing the difference between the shapelet and the time series labels)
achieves significantly better results than the rest of the Lp norms in terms of
both AMAE and CCR (for the latter, all the differences were significant except
against R2

1.5). Nevertheless, due to CCR does not bear in mind the ordinal scale,
lower attention should be drawn. The results obtained in this work outperform
a previous study [11], where the L1 was used.

As future work, it would be interesting to include an updated comparison
against the state-of-the-art techniques in time series nominal classification, in
order to demonstrate that, when dealing with ordinal time series datasets, the
use of a specific Lp norm can further improve the results of [11].
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4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

5. Gentile, C.: The robustness of the p-norm algorithms. Mach. Learn. 53(3), 265–299
(2003)

6. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series
shapelets. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2014)

7. Guijo-Rubio, D., et al.: Ordinal regression algorithms for the analysis of convective
situations over Madrid-Barajas airport. Atmos. Res. 236, 104798 (2020)

8. Guijo-Rubio, D., Durán-Rosal, A.M., Gómez-Orellana, A.M., Gutiérrez, P.A.,
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Abstract. We propose a new oblique decision tree algorithm based on
support vector machines. Our algorithm produces a single model for a
multi-class target variable. On the contrary to previous works that man-
age the multi-class problem by using clustering at each split, we test all
the one-vs-rest labels at each split, choosing the one which minimizes
an impurity measure. The experimental evaluation carried out over 49
datasets shows that our algorithm is ranked before those used for com-
parison, and significantly outperforms all of them when the SVM hyper-
parameters are carefully tuned.

Keywords: Oblique decision trees · Supervised classification · SVM

1 Introduction

Decision trees (DT) [12] are one of the most used classification models in data
mining, with recent success stories such as its use by Microsoft Kinect for real-
time human pose estimation [19]. This is due, among other advantages, to their
high performance and structural simplicity, which make them easily understand-
able by humans, increasing in this way the confidence to use them in real world
applications.

In this work we focus on supervised classification, where the goal is to induce
a function or classifier f : X1 × · · · × Xn → Y , where X1, . . . , Xn are the
predictive attributes that define the object to be classified and Y is the target
variable or class, which takes values in a set of finite and disjoint categories (or
labels), Y = {y1, . . . , yk}. When a DT is used as classification function (f), it is
a tree-shaped data structure where each leaf node is labeled with a value of Y
and the inner nodes contain tests related to the predictive attributes. Branches
coming out from an inner node represent the different answers to its associated
test. An object (instance) is classified by following the path from the root to a
leaf, using its attribute values to answer the tests at inner nodes. The object is
classified with the label associated to the reached leaf.

The standard or most known model of DT is the one which uses univariate
tests, usually by comparing the selected attribute with a threshold (e.g. Xi ≤ θ).
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This type of DT is known as orthogonal or axis-parallel DT because of the
partition of the input (attribute) space it generates. Due to the success of axis-
parallel DTs there exists a plethora of machine learning algorithms to learn
them from data, being C4.5 [17] and CART [5] two of the most used (both were
included in the selection of the top ten algorithms in data mining [21]). However,
this type of DTs cannot (directly) capture decision boundaries non parallel to
the axes, having to approximate them by using several consecutive tests, which
leads to complex (DT size) and, probably, less accurate models.

Oblique decision trees (ODT) [15] allow the use of multivariate tests in the
inner nodes, obtaining in this way more compact models and, usually, better per-
formance, at the expense of a higher time cost. Originally, a linear combination
of (some of) the input variables was used as test function, g(X1, . . . , Xn) ≤ θ,
but later more powerful machine learning techniques as support vector machines
(SVM) or neural networks (NN) [3] have also been used.

In this work we focus on the use of SVM to obtain the test in the inner nodes,
with the goal of producing an accurate single-model ODT able to manage multi-
class (k > 2) variables. Although DTs (ODTs) are successfully used as base
classifiers to build ensembles, e.g. Random Forest [6], in this first attempt we
limit our study to the base ODT classifier. Our main contributions are:

– We introduce STree, a new SVM-based ODT. The method is able to deal
with a multi-class target variable by producing a single model. The main idea
behind the method is to guide the splitting process by obtaining a partition
which allows to properly classifying one of the class labels with respect to
(all) the remaining labels.

– An extensive experimental evaluation is carried out over a benchmark which
contains 49 datasets and 5 competing algorithms. In the experiments we
tested two configurations for STree, one by using a default parameterization,
whose results are clearly competitive with respect to the included competing
approaches, and other, with fine-tuned hyperparameters, which significantly
outperforms the tested algorithms.

Our study is organized in four sections apart from this introduction. In Sect. 2
we briefly review the closer proposals to our approach, which is described in detail
in Sect. 3. Section 4 contains the extensive experimental evaluation carried out
over a significant benchmark, as well as its analysis. Finally in Sect. 5 we present
our concluding remarks and outline future research lines.

2 Related Work

Growing a DT from data is (usually) a recursive partitioning process that splits
the data into several subsets according to the test selected at each inner node. The
recursive partitioning method stops when the data received by a node (mostly)
belongs to the same label, then, this node becomes a leaf. Therefore, the key point
in the DT learning process is how to select the test or split for an inner node.
In axis-parallel DTs, information or statistical measures have been considered
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to decide which test reduces most the uncertainty of the class variable. Shannon
entropy (C4.5 [17]) or Gini index (CART [5]) are usual choices.

In oblique DTs more powerful multivariate tests are used, which leads to more
compact and (usually) accurate models. However, deciding the test for a given
inner node is also more computationally expensive. In most ODT algorithms the
test is a linear combination of the input attributes, that is, β0 + β1X1 + · · · +
βnXn > 0. Then, the goal is to search for the β parameters which define the
hyperplane producing the binary partition that most reduces the uncertainty
of the class variable. In CART-LC [5] a coordinate descent method is used to
optimize those parameters, while in OC1 [15] the method is improved by using
multiple restarts and random perturbations to escape from local optima. Both,
CART-LC and OC1 initialize the search with the best axis-parallel partition. In
WODT [22] the optimization problem is transformed to consider the continuous
and differentiable function of weighted information entropy as objective, thus,
gradient descent can be used as optimization method. Furthermore, in WODT a
random hyperplane is used as initialization. Metaheuristic algorithms have also
been used to escape from local optima [18].

Apart from linear functions, more powerful machine learning models like
neural networks or support vector machines have also been considered as split
criteria [2,11], allowing in this way multivariate linear and non-linear tests. In
this paper we focus on the use of support vector machines (SVM) [4,20] to
build the test associated to inner nodes. The standard SVM algorithm looks for
the optimal separating hyperplane which maximizes the margin of the training
data regarding a binary class variable. To be able of doing this in non-linearly
separable problems, we could transform the input vectors into a high dimensional
feature space, where a linear classification problem is solved. These two steps
can be joined in a direct computation method by using the so-called kernel trick,
where different types of kernel can be used (linear, polynomial, etc.).

In the literature we can find several ODT approaches based on SVMs. Thus,
standard SVMs with linear [2], radial-basis function [24] and polynomial [14]
kernels have been used to learn the hyperplane at each inner node. More complex
SVM algorithms like multisurface proximal SVM (MPSVM) are used in [13]
and [23], while a twin bounded SVM (TBSVM) is used in [9]. Both, MPSVM
and TBSVM learn two hyperplanes, each one being the closer to the data samples
of one class and the farthest from the data samples of the other class; instances
are then classified by using their distance to both hyperplanes.

The algorithms in [9,13,14,23] are able to manage multi-class problems.
In [14] k, one per class, one vs rest binary problems are considered and so k
SVM models learnt. Then, a vector of length k is built for each instance, where
dimension i is its distance to the i-th hyperplane. Instances are then clustered
in r groups by using the X-means algorithm [16]. The number of clusters, r,
is determined by the X-means algorithm and is the number of branches com-
ing out from that inner node. In [9] and [23], at each inner node, class labels
are clustered into two groups by using the Bhattacharyya distance, then, these
two groups are used to solve the binary classification problem by MPSVM and
TBSVM respectively. Finally, in [13] at each inner node the multi-class problem
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is transformed into a binary one by facing the class label with more instances
against the group formed by the rest of labels.

3 Proposed Method: STree

Our goal is to design a flexible SVM Oblique Decision Tree (STree) able to cope
with a multi-class target variable, Y = {y1, . . . , yk}, by producing a single DT.
Different SVM-ODT algorithms have been presented previously in the literature
(see Sect. 2), although most of them have been directly used as base classifiers
for ensemble models, without testing them as individual classifiers. The main
features of our algorithm are:

– A binary tree is obtained, as in [9,13,23], but on the contrary to [14].
– The binary split or classification problem set in each inner node is not obtained

by using clustering as in [9,14,23], but facing one class label against the rest
(as in [13]). However, instead of always selecting the majority class label, we
try the k one vs rest cases and choose the best one according to an impurity
score, being more flexible at the expense of extra computational cost.

– As there is no agreement about which kernel is better or worse for a specific
domain, we allow the use of different kernels (linear, polynomial and Gaussian
radial basis function).

Our method works recursively and at each (recursive) call the algorithm
receives a set of instances T . Then, the method proceeds as follows:

1. If the stopping condition (max depth, almost only one class label, etc.) is met,
a leaf node is created with outcome equals to the more frequent label in T .

2. Otherwise, we have to split T into two groups, T+ and T−, in order to create
the two branches for this inner node. To do this, we have to transform the
multi-class problem into a binary one. Let k′ ≤ k the number of different
class labels appearing in T (notice that as the tree grows in depth, not all the
labels will be present in the received set T ).

– If k′ = 2 we already have a binary classification problem. We apply the
SVM algorithm to learn the maximum margin hyperplane H and split
the instances of T in T+ and T− accordingly to its distance to H. The
hyperplane H is stored in the node.

– If k′ > 2 we use the well known one-vs-the-rest (OVR) strategy [3, pg.
339] and define k′ binary classification problems: {y1} vs {y2, . . . , yk′},
{y2} vs {y1, y3, . . . , yk′}, etc. Let Hi be the hyperplane learnt by the
SVM algorithm for the i-th binary classification problem, T+

i and T−
i be

the partition of T it generates, and impurity(Y, T ) be a measure which
evaluates the impurity of the class variable Y in T . Then, we select the
hyperplane H∗ such that

H∗ = arg min
i=1,..,k′

|T+
i |

|T | impurity(Y, T+
i ) +

|T−
i |

|T | impurity(Y, T−
i ),

which is stored in the node.
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3. Once the hyperplane and the corresponding partition (T+, T−) have been
selected, two branches are created for this node: positive, for those instances
having positive distance to the hyperplane, and, negative, for those instances
having negative distance to the hyperplane. Two recursive calls are then
launched with T+ and T− as set of input instances respectively.

In our implementation Shannon entropy has been used as impurity measure.
No pruning stage has been already designed for STree, however a pre-pruning is
allowed by setting a maximum depth for the tree.

Regarding inference, for a given instance the tree must be traversed from
the root to a leaf node, whose associated label is returned as outcome. At each
inner node the stored hyperplane H is used and the distance of the instance to
it computed. If the obtained value is ≥0 then the instance goes on by following
the positive branch, otherwise it goes on by following the negative one.

4 Experimental Evaluation

In this Section we describe the comprehensive experiments carried out to evalu-
ate our proposal.

4.1 Benchmark

As benchmark we have selected the same 49 datasets used in [9]: 45 of them are
from the UCI machine learning repository [8] while the other 4 correspond to
a problem about fecundity estimation for fisheries (see [9] for the details). The
first four columns of Table 1 report the name, number of instances, attributes
and class labels for each dataset.

4.2 Algorithms

The following algorithms have been included in the comparison:

– STree∗. Our proposal with a fine tuned parameterization, done by using a
grid search method. As mentioned in Sect. 3 our goal is to design a flexible
classifier, so different hyperparameters, most of them related to the SVM
learning algorithm, can be varied. In particular, in this study we have tuned
the following hyperparameters:

• Kernel. Can be linear, polynomial or Gaussian radial basis function
(RBF). Default is linear.

* Kernel coefficient gamma is optimized for polynomial and RBF ker-
nels. Default value is 1

n×data.variance .
* Degree is optimized for polynomial kernel. Default is 3.

• C. Regularization hyperparameter. Default is 1.
• Max number of iterations for the SVM (optimization) learning algorithm.

Default is 105.
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• Max features. Number of features used to build the hyperplane. Default
is all.
In https://git.io/JYpff we show the hyperparameter values used for each
dataset. When empty, the default value is selected.

– STree-default. Our proposal without fine-tuning, i.e. using the default param-
eterization for the SVM algorithm: kernel=linear, C = 1.0, max iterations =
105, and max features = all.

– TBSVM-ODT1. Algorithm to learn a multi-class oblique DTs by using Bhat-
tacharyya distance-based clustering and Twin Bounded SVMs [9].

– J48SVM-ODT(See Footnote 1). Algorithm to learn a multi-class oblique DTs
by using X-means clustering and SVM algorithm [14].

– WODT. Recent algorithm to learn oblique DTs based on using weighted
entropy and continuous optimization [22].

– OC1. Classical algorithm to learn oblique DTs [15].
– CART. Classical algorithm to learn axis-parallel DTs [5].

In both STree∗ and STree-default entropy has been used as impurity measure
and no maximum depth has been set, the tree grows until all the instances
received in a node belong to the same class label or the hyperplane learnt by the
SVM cannot separate the instances.

STree has been implemented in python as a scikit-learn classifier2. Pub-
licly available versions of CART (python/scikit-learn) and OC1 (C) have been
used. The code for WODT (python), J48SVM-ODT (java/Weka) and TBSVM-
ODT (Matlab) have been provided by their authors. All the experiments have
been run in a 3.8 GHz 8-core 10th-generation Intel Core i7 running macOS Big
Sur operating system.

4.3 Results and Analysis

To evaluate the performance of each pair (algorithm, dataset), we have run a
five fold cross validation 10 times (10×5cv). The same 10 seeds have been used
in all the pairs to randomize the data before the cross validation. As no severe
imbalance is presented in any dataset (see [9, Table A1]), accuracy is used to
compare the tested algorithms performance. The mean and standard deviation
over the 50 runs of the 10×5cv are reported in Table 1.

To properly analyze the results we have carried out a standard machine
learning statistical analysis procedure [7,10] using the exreport tool [1]. First,
a Friedman test (α = 0.05) is performed to decide if all the algorithms are
equivalent. If this hypothesis is rejected, a post hoc test is performed by using
Holm’s procedure (α = 0.05) by using as control the algorithm ranked first by
Friedman test.

1 In [9] and [14] ensemble methods are proposed. In this paper we compare against
the proposed base ODT classifiers.

2 The code can be found in https://git.io/J3jkQ.

https://git.io/JYpff
https://git.io/J3jkQ
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We carried out two statistical analysis, including or not algorithm STree∗.
When all the algorithms are included, Friedman test reports a p-value of
4.9919e−27, thus rejecting the null hypothesis that all the algorithms are equiv-
alent. The results of the post hoc Holm’s tests are shown in Table 2(a) by using
STree∗ as control. The columns rank and p-value represent the ranking obtained
by the Friedman test and the p-value adjusted by Holm’s procedure, respectively.
The columns win, tie and loss contain the number of times that the control algo-
rithm wins, ties and loses with respect to the row-wise algorithm. The p-values
for the non-rejected null hypothesis are boldfaced. As can be observed (finely
tuned) STree∗ algorithm significantly outperforms the remaining algorithms. In
order to compare our proposal without tuning the hyperparameters we have
repeated the statistical analysis excluding STree∗. Again Friedman test rejects
the hypothesis of all the algorithms being equivalent (p-value 2.8244e−16). The
post hoc analysis is shown in Table 2(b), where STree-default is taken as control,
as it is now the algorithm ranked first by Friedman test. As we can observe,
when the hyperparameters are not tuned for STree, STree-default significantly
outperforms all the algorithms but J48SVM-ODT, there being no statistically
significant difference in this case.

Table 2. Results of the post-hoc test for the mean accuracy of the algorithms.

Method rank p-value win tie loss

STree* 1.65 – – – –

STree default 2.83 7.172e−03 28 21 0

J48SVM-ODT 3.49 5.142e−05 41 0 8

TBSVM-ODT 4.34 2.338e−09 46 1 2

WODT 4.37 1.999e−09 43 0 6

CART 5.45 1.696e−17 45 0 4

OC1 5.88 2.211e−21 48 0 1

(a) With STree∗

Method rank p-value win tie loss

STree default 2.04 – – – –

J48SVM-ODT 2.65 1.053e−01 34 0 15

TBSVM-ODT 3.39 7.314e−04 40 0 9

WODT 3.49 3.788e−04 34 0 15

CART 4.53 1.791e−10 41 0 8

OC1 4.90 2.026e−13 45 0 4

(b) Without STree∗

Finally, we have also analyzed the complexity (size) of the obtained trees (see
https://git.io/J3jI6) and also the training time of the different algorithms (see
https://git.io/J3jI9). Table 3 shows the results on average over the 49 datasets
once we normalize them by using STree-default as control. Regarding size we
can observe that STree obtains the smallest trees, while J48SVM-ODT and
WODT, which are the closer algorithms to STree, obtain trees with twice the
nodes of STree-default. Regarding time, although this is not a fair comparison
because of the different implementations, we can observe that apart from axis-
parallel CART, STree algorithms are strongly competitive, with only TBSVM-
ODT being faster than STree-default, but that algorithm is so far in accuracy.

https://git.io/J3jI6
https://git.io/J3jI9
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Table 3. Datasets used during the experimentation

STree* STree-default WODT J48SVM-ODT OC1 CART TBSVM-ODT

Size 0.87 1.00 19.18 2.17 2.00 8.58 3.52

CPU time 0.85 1.00 7.96 3.61 7.13 0.09 0.88

5 Conclusion

A new algorithm to build oblique DT able to directly manage a multi-class tar-
get variable has been presented. The algorithm produces a binary DT that needs
to learn several hyperplanes at each split, although only one is stored for infer-
ence. The experiments show that the proposal works well over a great range of
domains (49 datasets) and its performance is remarkable when compared against
5 competing algorithms. We also observe that tuning the hyperparameters of the
SVM algorithm for each dataset is key to obtain better results, leading to an
STree version that significantly outperforms all the competing tested methods.

As future research we plan to work with sub-spaces (few variables) instead
of considering all the features at each node of the ODT. These variables can be
selected by using some univariate or multivariate filter feature selection algo-
rithm, or randomly following the random-subspace principle [6]. Aggregating
this weaker classifiers by using ensemble-based techniques is also of interest,
as has been done in [9,14]. Finally, the advantage of a fine tuning of the SVM
hyperparameters has revealed to be key in the performance of the proposed algo-
rithm, at the expense of a high computational CPU time requirement. As future
research we plan to study some type of light auto-tuning that can be carried out
embedded in the STree algorithm.

Acknowledgements. We are indebted to the authors of [9,14] and [22] because of
providing us with the code of their implementations. This work has been partially
funded by FEDER funds, the JCCM Government and the Spanish Goverment through
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forests (2015)

12. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39(4), 261–283
(2013). https://doi.org/10.1007/s10462-011-9272-4

13. Manwani, N., Sastry, P.S.: Geometric decision tree. IEEE Trans. Syst. Man Cybern.
Part B 42(1), 181–192 (2012)

14. Menkovski, V., Christou, I.T., Efremidis, S.: Oblique decision trees using embedded
support vector machines in classifier ensembles (2008)

15. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision
trees. J. Artif. Intell. Res. 2(1), 1–32 (1994)

16. Pelleg, D., Moore, A.W.: X-means: extending k-means with efficient estimation of
the number of clusters. In: Proceedings of the Seventeenth International Conference
on Machine Learning (ICML 2000), pp. 727–734 (2000)

17. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993)
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Abstract. In this paper we train four different deep reinforcement and
imitation learning agents on two self-driving tasks. The environment is a
driving simulator in which the car is virtually equipped with a monocular
RGB-D camera in the windshield, has a sensor in the speedometer and
actuators in the brakes, accelerator and steering wheel. In the imitation
learning framework, the human expert sees a photorealistic road and the
speedometer, and acts with pedals and steering wheel. To be efficient,
the state is a representation in the feature space extracted from the RGB
images with a variational autoencoder, which is trained before running
any simulation with a loss that attempts to reconstruct three images,
the same RGB input, the depth image and the segmented image.

Keywords: Self-driving · Imitation learning · Reinforcement learning

1 Introduction

Self-driving cars are one of the medium/long-term goals attracting more atten-
tion from many different fields of research, ranging from artificial intelligence, to
automation, sensing or traffic management, to mention only a few. According to
the Society of Automotive Engineers (SAE) J3016 standard, there are five lev-
els of automation in driving: 1) assisted driver, 2) partly automated, 3) highly
automated, 4) fully automated, 5) driver-less [15]. Currently, level 2 is available
to some extent in many commercial cars as lane keep assistant and automated
parking; whereas level 3 can only be found in top-of-the-range cars. Companies
such as Waymo, Uber, Tesla, Baidu, Wayve, BMW or Audi, among many oth-
ers, are boosting and leading the research. Their prototypes include a battery
of sensors, mainly cameras, but also proximity sensors, LIDAR, GPS, etc.; and
proprietary algorithms. However, we, as human drivers, lack of all these data.
Instead, we only see what we are looking at; moreover, according to findings in
psychology, we are indeed only aware of the small window we are focusing on
at a given time. We also have to learn driving taking lessons from a teacher.
Ideally, then, the goal to attain should be a fully automated car equipped with
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one or more cameras providing it with stereoscopic vision (this requirement is
not necessarily satisfied by all human drivers), and a learning method able to
mimic the human expert.

The problem, stated in this way, fits into the reinforcement learning (RL)
paradigm; in which an agent learns to make decisions in an environment that
evolves according to a state machine. The agent gets a reward for positive actions
and its goal is to accumulate as much, and as soon, as possible. Moreover, the
idea of learning from an expert is better captured by Imitation learning methods.
From that point of view, one option is Behaviour Cloning (BC), where we have a
data set of situations paired with actions taken, and the agent is trained to match
them, as in any supervised problem. The other option is Inverse Reinforcement
Learning (IRL), where the goal is to get the reward function out of the expert
actions and then use that reward function to train our RL agent.

In this paper, we present a comparison of four agents in order to assess
different approaches to teach driving. Specifically we test a pure RL agent, an
agent trained with Behaviour Cloning (BC) [12], a Vanilla Deep IRL [1] agent
and a Generative Adversarial Imitation Learning (GAIL) [8] agent.

Since RL is intrinsically trial-and-error, we run all the experiments on the
simulated environment CARLA (Car Learning to Act) [6], in which the only
sensor is a single camera on the windshield aiming at the front. Notice that
most of the self-driving algorithms make an internal virtual representation of
its environment out of the sensed information, and it is in that representation
where they plan their actions. Hence, using CARLA to train the decision making
process does not make any difference with respect to running the same algorithm
in a true testing car.

2 Background

In this section we briefly recap the most relevant facts about Reinforcement and
Imitation Learning (RL and IL respectively).

The RL framework consists of three components: the Agent is the artificial
intelligent that makes decisions and selects the actions at to take given the
state st, the Environment is a finite state machine which states transition
in time as the agent acts, and the Reward function that is shaped by the
expert to lead the agent’s learning process. Formally, it is expressed as a tuple
(S,A, P (st, at, st+1), R(st, at, st+1)) where S is the set of possible states that can
be observed by the agent, A is the set of actions the agent can take, P (st, at, st+1)
is the probability function that models the transition from state st ∈ S to state
st+1 ∈ S given the action at ∈ A, and R(st, at, st+1) is the reward function that
measures how good it was to take the action at in state st and move to the next
state st+1. During the RL training, the objective of the agent is to learn a policy
π that produces a trajectory of states s0, s1, ..., st−1 ∈ S such that the expected
reward function is maximised.

On the other hand, Imitation Learning (IL) is an approach that explodes the
knowledge from an expert in an specific task to teach the agent how to do that
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task, in some way it is very similar to how humans learn from a teacher. We
split this approach in two main groups: 1) Behavioral Cloning (BC), which is
a supervised learning approach to the problem, so we need a paired data set of
states and actions; and 2) Inverse Reinforcement Learning (IRL), which aims to
extract a reward function from the expert demonstrations to train a RL agent.
Clearly, IRL framework includes the components of RL, and incorporates two:
Expert data containing demonstrations of how the agent should solve in such a
environment, and a Discriminator that is trained to distinguish between expert
demonstrations and agent actions. The latter is a key component for obtaining
the reward function.

Self-driving cars have been of interest to the RL community for long time.
Early approaches are due to BC [12], and more recently using neural networks
in PilotNet [3] and [4]. An RL approach based on real measures from different
sensors like GPS, proximity sensors or speedometer was used in a RL solution
in [13] and [9] uses a DDPG agent for mapping images directly into steering
degrees. Within the framework of IRL, [2] aims at learning to predict the steer-
ing, acceleration and braking values of a self-driving car directly from the raw
images. High level orders such as go forward, turn right/left and stop have been
incorporated in [5,11] and [7].

In this paper we have selected a Proximal Policy Optimization (PPO)
agent [14] that is used three times: as the pure RL and as the agent in an
Imitation learning framework in two solutions. We also use a BC agent, which
consists of a neural network for regression with tanh activation so the outputs
are bounded to [−1, 1]. Additionally to the neural networks implemented in each
agent, we have trained a Variational AutoEncoder (VAE) [10], which transforms
RGB images to the feature space.

3 Setup

A common approach of many solutions for designing systems that must make
decisions in real environments, such as self-driving cars, is to perceive the sur-
roundings and make a representation in a virtual world where the next steps
are simulated to plan the actions. This real-to-virtual transformation is out of
the scope of this paper, as we focus on learning the decision-making process of
steering, braking and accelerating to successfully travel from the start to the end
of a road.

Since our goal is to use imitation learning to train the driver agent, it is
necessary to have demonstrations of (state, action) pairs; but the state is an
abstraction of what the human expert sees. For this reason, we use a photoreal-
istic driving simulator in which the human can act as in the real world. In this
section we present the virtual environment as well as what and how is sensed
from it, what kind of demonstrations we produce with it and the type of agents
we train.
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Fig. 1. (Left) Scenario with two-lane road with traffic lines. (Right) Scenario with
two-lane residential street without traffic lines.

3.1 Simulation and Sensors

We use two scenarios generated with CARLA, SCN1 and SCN2, described below,
and each one can be travelled in both directions.

SCN1 consists of a two-lane road of 660 m approx., with well defined traffic
lines and gentle combination of curves (Fig. 1, Left).

SCN2 consists of a residential street of 300 m approx., wide enough for two
lanes, but without any traffic lanes except for the shoulders (Fig. 1, Right).

The car is controlled with the accelerator, the brake and the steering wheel.
Thus, the actions taken at time t are given by the tuple at = (At, Bt, St), where
At, Bt ∈ [0, 1] are how much the accelerator and brake are pushed, and St ∈
[−1, 1] is a mapping of how many degrees the steering wheel has been turned, in
the range [−270, 270].

The sensors in the car are a speedometer and a RGB-D camera, with res-
olution 128 × 128, on the windshield aiming at the front that provides both
image and depth information of the road ahead. This information is obviously
obtained from the simulator and recorded as images to mimic what the human
senses when recording the demonstrations. On the other hand, the human expert
sees the road as if he was sitting behind the wheel and also sees a speedometer
in the screen.

3.2 Computer Vision System

Images are not observed directly by the agent, as they are by the human expert.
Instead, they are processed to extract a feature map in a much lower dimen-
sionality space [9]. To this end, we use a Variational Auto-Encoder (VAE) [10].
The encoder is a convolutional network that transforms each image into vectors
μ, σ ∈ R

128, where μ is the mean and σ is the elements of the diagonal covari-
ance matrix of a multivariate normal (MVN) distribution. In other words, the
encoder maps the RGB image, that the human expert can see in the screen, into
a probability distribution of the feature space. During training, such a MVN is
sampled to obtain a feature map that is decoded in three images: the same RGB
input image, the depth image of the input and the segmented image of the input,
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Fig. 2. Architecture of VAE trained for encoding the images from the embedded
camera.

as depicted in Fig. 2. The loss of each decoder is the cross entropy, and the loss
of the VAE is the sum of each decoder loss plus the Kullback-Leibler divergence
between the MVN obtained and the standard MVN. Once trained, the feature
map of an image is only the vector μ. Details of the VAE layers are given in
Appendix.

The VAE is trained with 20,000 RGB images from the simulator, paired with
its depth and segmentation images, before any driving learning; and then used
to produce the feature map of each image as the car advances when the agent is
commanding it.

3.3 Human Expert Demonstrations

Imitation learning algorithms need a data set of demonstrations of an expert
performing the task that we want the agent to learn, in our experiments the
expert is a human driver. For recording demonstrations we used a video game
steering wheel with two pedals for accelerating and braking as input device. Each
demonstration spans over 6,000 time steps, and in each one of them we store
the feature map produced by the VAE out of each image, as well as the actions
taken along with the speed of the car. These demonstrations will also serve as a
reference for measuring the performance of each trained agent.

3.4 AI Agents

We have trained four agents. The first one is just a reinforcement agent trained
via Proximal Policy Optimization (PPO). Then we use the same agent but
trained with two different Inverse Reinforcement Learning (IRL) methods,
namely Vanilla Deep IRL (DeepIRL) and Generative Adversarial Imitation
Learning (GAIL). Finally, we use Behaviour Cloning (BC) to produce the last
agent. A brief recap about each one of them is given below.
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The state observed by the agent is a stack of 10 arrays, corresponding with
the last 10 time steps. Each array consists of the feature map together with the
speed and the action taken.

PPO. The agent trained with reinforcement learning via Proximal Policy Opti-
mization consists of an Actor and a Critic; both being LSTM-based neural net-
works. The actor aims to select the actions to perform in each time step given
an state. The critic evaluate how good is to be in the current state compared to
the others. The reward will be +1 when the car is moving forward and less than
1.75 m away from the centre of the right lane of the road and −1 otherwise.

DeepIRL. We train the same PPO agent with the reward function obtained
from a Vanilla Deep Inverse Reinforcement Learning algorithm given the set of
demonstrations.

For learning the reward function this method uses a Discriminator network
that is trained to distinguish between actions collected in the demonstrations
and actions taken by the agent. Specifically, we implement the Apprenticeship
Learning proposal in [1] replacing the original SVM with the Discriminator neu-
ral network. The algorithm mainly consist of a loop with three steps:

1. Collecting agent experiences. We let the agent to act on the environment in
exploitation mode recording the (state, action) pairs. As a result we have a
data set of agent experiences.

2. Training the discriminator. We merge in a single, labelled, data set agent
experiences and the data set created by the expert and train the discriminator
to predict a score of similarity.

3. Running the agent on RL. We let the agent to explore the environment using
the reward function shaped by the score of the discriminator.

GAIL. As in the previous case, we use the same PPO agent, but now with
the reward function obtained from Generative Adversarial Imitation Learning
(GAIL). In this case the loop consists of four steps.

1. Collecting agent experiences. We let the agent to act exploring the environ-
ment. The states visited due to the actions taken are collected as experiences.

2. Training the discriminator. Just as in DeepIRL, the discriminator network is
trained with a labelled data set created with the experiences from step 1 and
from the expert.

3. Update rewards. We append a reward to each tuple (st, at, st+a) collected in
step 1. This reward rt is obtained with the discriminator trained in step 2.

4. Train the agent. Train the actor and critic networks in PPO agent with the
tuples (st, at, st+a, rt), i.e. with the experiences collected in step 1 and the
corresponding rewards computed in step 3 for each one of them.

BC. Behaviour cloning is the agent trained by supervised learning on the expert
experiences. Since this IL algorithm is not based on RL, it does not make any
sense using a PPO agent. Instead, we use an unique neural network similar to
the actor network used by the other algorithms. The loss function is the mean
square error between the expert’s actions and the output of the network.



Deep Reinforcement and Imitation Learning for Self-driving Tasks 71

4 Experiments

We carry out two experiments, with the following common elements in them.
First, the goal in both is to finish the route keeping the car on the right lane or
side, depending on the scenario, without going off the road or colliding; and the
four agents are tested on both experiments. Second, the car is placed randomly
within the right line or side of the road when starting a run. Third, agents PPO,
DeepIRL and GAIL are trained for 150 episodes. We denote as an episode the
learning process that starts when the agent begins to move the car from the
start until it stops, which can occur when 1) the car reaches the end, 2) the car
collides with the guardrail or another car, or 3) 60 s after beginning to move in
the scenario 1 and 40 s in scenario 2 (about 50% of extra time with respect to
the expert to reach the end). On the other hand, the BC agent is trained for 10
epochs, where an epoch is completed every time the training set is completely
used. Finally, the metrics we collect on each episode are: Path is the total length
travelled by the car, Speed is the average speed during the travel, Off is the
number of times the car went off the right lane of the road and Coll (Collision)
is the number of collisions that happened, these two last metrics have to be very
low to be good. Notice that all the metrics are averaged across 20 episodes for
each test.

4.1 Experiment 1

In this experiment we want the agent to learn to move forward on the right lane
of scenario 1 and the right side of the road in scenario 2.

Table 1 shows the performance of the human expert in scenario 1 in terms
of the metrics described above, both in absolute values and the increment with
respect to the first row. BC agent is not able to reach the end. This leads us
to think that the supervised approach for learning to drive is not appropriate.
The purely reinforcement learning approach is not appropriate neither because
the whole process depends on the reward shaping, which can barely capture the
complexity of driving when it is done by humans. On the other hand, the two
IRL approaches almost attain the whole route with a smooth driving. Moreover,
the agent learns to take more risks as he drives faster but at the cost of driving
off the road more often. The table also shows the ability to redirect the car when
going off to avoid colliding. Thus, with BC and RL, every time the car goes off
the lane, it crashes; while with DeepIRL and GAIL agents are able to adjust the
direction, returning to the lane and avoid colliding.

Table 2 shows the results, on the same metrics with respect to the human,
in scenario 2. The lack of traffic lanes apparently degrades the performance of
DeepIRL and GAIL. Quantitatively, the Path increment is comparable to the
same metric in the first scenario, about 8% of the total path length with GAIL
and about 15% with DeepIRL, so rather than a degradation, the effect can be
seen as an improvement on RL and BC agents. A reason for the improvement of
BC is that its speed is slower than the expert and much slower than DeepIRL
and GAIL. This conservative driving is less prone to make errors; in fact, the
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Table 1. Results of experiment 1 on scenario 1. The horizontal bars represent the
difference with respect to expert’s performance.

Table 2. Results of experiment 1 on scenario 2. The horizontal bars represent the
difference with respect to expert’s performance

car never goes off. The improvement on RL may be due to the simplicity of the
road. With no traffic lines, the reconstruction tasks on the VAE are simpler and
the feature maps more expressive.

For the sake of clarity we include a visualization with bars of the difference
with respect to the expert. Positive values have bars growing rightwards, and
negative values leftwards.

4.2 Experiment 2

In this experiment we add an extra goal: to stop the car when an obstacle
appears. We use the scenario 1, in which there are a few cars stopped on the left
lane, and one car in our lane randomly located along the road within an interval
around half-way. This makes this task more challenging since the agent needs to
learn to discard all the cars in the opposite direction and take care only of the
one in its way. We have tried several reward shapes for the RL agent, but none
of them was satisfactory so it is not reported. The rest of results are shown in
Table 3.

The most noticeable fact is the positive path increment with DeepIRL, which
means that the agent manages to avoid the obstacle and keep on running until
it goes off and collides. GAIL, on the contrary, performs much worse. We have
noticed that this agent is continuously braking from the very beginning, which
is also reflected in the drop of speed. In this case, BC performs reasonably well,
probably because it focuses on stopping at the same distance than the expert
does.
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Table 3. Results of experiment 2. The horizontal bars represent the difference with
respect to expert’s performance

5 Conclusions

In this paper we use a driving simulation as the digital representation that a
self-driving car might produce from its surrounding by means of its sensors.
Then we use a variational autoencoder that combines three losses for extracting
a representation in the feature space. Finally, we have tested four algorithms for
teaching a RL agent to carry out two self-driving tasks. We highlight that the
reward shaping prevents from using purely RL agents because of the diversity
of situations that it should model; while Imitation learning seems to be a better
approach because all the agents tested under this paradigm have shown good
performances.

Appendix

Here, we include additional information about the network architectures we have
used for this paper.

Actor. An input layer of 256 LSTM neurons with hyperbolic-tangent activation,
followed by three hidden dense layers of 1024, 1024 ans 128 neurons respectively,
all of them with ReLU activation, and an output layer of 3 dense neurons with
hyperbolic tangent activation function.

Critic. The same layer organization than the Actor but the output layer has a
single neuron with linear activation function.

Discriminator. An input layer of 256 LSTM neurons with hyperbolic-tangent
activation, followed by two hidden dense layers of 256 and 128 neurons respec-
tively, both with ReLU activation, and an output layer of a single dense neuron
with sigmoid activation.

VAE Encoder. The input layer simply admits the images. Then, there are
four convolutional layers of 16, 16, 16 and 32 filters respectively, all of them
of size 3 × 3 and stride of 2, followed by a dense layer of 2048 neurons with
ReLU activation. There are two output headers that produce the mean and the
standard deviation vectors, μ and σ, respectively. This layers have a single layer
with 128 dense neurons and linear activation.

VAE Decoder. Recall that the VAE proposed has three decoders that recon-
struct different representations of the input image. However, they all have the
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same architecture that begins with an input layer of 128 neurons, followed by a
dense layer of 2048 dense neurons with ReLU activation, then four transposed
convolutional layers of 32, 16, 16 and 16 filters respectively, all of them with size
3×3 and ReLU activation, and an output layer which is a transposed convolution
with 3 filters of size 3 × 3 and sigmoid activation.
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Abstract. Human activity recognition is a challenging problem, where
deep learning methods are showing to be very efficient. In this paper we
propose the use of capsule networks. This type of networks have proved to
generalize better to novel viewpoints than convolutional neural networks.
We show that the use of capsule networks into a straightforward archi-
tecture, between a convolutional preprocessing stage to extract visual
features and a header for carrying out the task, is able to attain com-
petitive results with spatio-temporal data without the use of any kind of
recurrent neural network. Moreover, an analysis of the obtained results
shows that our architecture is capable of learning the properties that
encode the spatio-temporal dynamics of the movements that character-
ize each activity.

Keywords: Capsule network · Human Activity Recognition · Skeleton
based action recognition · Image embedding

1 Introduction

Broadly speaking, Human Activity Recognition (HAR) is the task of assign-
ing the correct activity label at the end of a sequence of video frames. Attain-
ing a good HAR performance enables the development of many applications in
Human-Computer Interaction (HCI) [7] such as industrial machinery operating
without a dashboard, assisting elderly or people with disabilities in everyday
tasks [5] as well as at work or developing natural and immersive interfaces.

HAR presents many challenges. If the video sequence has been taken from
a single monocular camera it is frequent to have auto-occlusions, there is no
direct information of the depth dimension, and obviously it is necessary to rely
on computer vision techniques to extract the features out of each frame. On the
other hand, when having multiple views another extra challenge is to match and
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fuse all the information collected. Some devices provide a sequence of skeletons,
i.e. a tree representing a series of joints in the human body, in which each node
represents 2D or 3D coordinates of the corresponding joint (depending on the
device). In this case the challenge is to distinguish tasks that are similar when
the information provided by the image is missing, such as combing and waving.
Background information is usually irrelevant to the activity being performed.
Using 3D skeletons results in more robust models because all the background
information or illumination changes present in images are ignored. It is also a
less ambiguous representation than its 2D counterpart.

In this paper we present a capsule network (Capsnet) for HAR based on 3D
skeletons. As [17] claims, one of the drawbacks of capsule networks is that they
try to model every entity found in an image; thus, working on skeletons we get
over this problem. Specifically, we use Tree Structure Skeleton Image (TSSI) to
convert a sequence of 3D joint arrays into an image. Then, this image is fed into
the capsule network. Our hypothesis is that the benefits of capsule networks are
able to extract and relate the time dependencies from the TSSI without using
any kind of Recurrent Neural Network mechanisms such as Long-Short Term
Memories (LSTM) or Gated Recurrent Units (GRU).

2 Related Work

HAR is a field of research that has attracted great interest over the last decade.
Early approaches consist of hand-crafted features and classifiers trained to recog-
nize the activities. Among the variety of hand-crafted features proposed are the
camera motion corrected descriptors [21], saliency-aware matching kernels [14],
simplified Fisher kernel representations [25] or part-based multiple features [11].
However, due to the decreasing price of motion-capture devices in recent years,
and the rise of their availability [2], the accessibility to skeletal-based data has
increased. Thus, research in the field has recently shifted towards fully automatic
methods based on deep learning.

Skeleton-Based Deep Learning HAR. Early works focused on the use of
recurrent neural networks (RNN) to model the long-term spatial and temporal
relationship between joints. Wang et al. [22] propose a two-stream RNN architec-
ture that analyzes both the contextual dependence in the time domain and the
spatial configuration of the skeletons to then fuse the result for action recogni-
tion. Song et al. [20] employ a spatio-temporal attention model based on LSTM
networks to focus on the most relevant frames and joints for a given action.

Given the success of convolutional neural networks in image-based tasks, they
have also been used in the HAR domain. Wang et al. [23] propose a convolution-
based architecture where they use Joint Trajectory Maps as encoding, represent-
ing the spatial configuration of the joints and their trajectory in three images
through color coding. The resulting maps graphically represent the joint tra-
jectory, motion direction, body parts and motion magnitude. Caetano et al. [4]
propose an image encoding of the information regarding joint motion over time.
Unlike previous works, Núñez et al. [15] do not use a graphical representation of
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the skeletons. In their work they apply a CNN directly on the 3D skeleton data
and use the obtained features to feed a LSTM layer.

The most recent works focus on modeling skeletons as graphs. Following this
representation, Yan et al. [24] applies a Graph Convolutional Neural Network
(GCN). They extend this representation to the temporal domain by linking joints
between consecutive skeletons. In this line, Huang et al. [9] presents a learnable
approach to capture body parts information. Their work manages to highlight
important body parts in the skeleton and combines this information with joint-
level information for activity recognition. Si et al. [19] propose a LSTM unit
that applies graph convolutions to work with graph-structured skeletal data.
They state that their approach is able to learn the co-occurrence relationship
between spatio-temporal features in addition to those features.

Capsule Networks for HAR. The idea of capsules was first proposed by
Hinton et al. [8], however the breakthrough is due to Sabour et al. [17] with their
trainable approach to these units. In their work they prove that capsule networks
are more robust to affine transformations than convolutional counterparts.

Algamdi et al. [1] builds up on the work of Sabour et al. to adapt it to the
HAR domain. To do so, they use a deeper CNN to create features from which the
capsules are created. This enables the extraction of more complex patterns as
the input of the model is a video sequence that includes unnecessary background
information for action recognition. Moreover, they implement a weight pooling
step on the previous features to reduce the number of created capsules. This
results in a reduction of the computational cost of this model.

Jayasundara et al. [10] apply capsule networks to estimate the optical flow
between pairs of images. They use three consecutive layers of capsules to calcu-
late the motion features that are then fed to an autoencoder network to retrieve
the final motion image, which is subsequently used for action recognition. The
authors remark that capsules are capable of preserving the structure of entities
and therefore they don’t need to use a multi-scale approach nor other additional
tools to estimate optical flow.

The previously discussed works apply capsule networks on RGB video frames
from action sequences. We take advantage of the similarity between the capsule
architecture and the CNNs and use an image representation of skeletal data as
input to our network. To the best of our knowledge, we are the first approach to
use capsule networks on image encoded skeletal data.

3 HAR Capsules

Capsule networks were proposed to solve the shortcomings of CNNs for image-
based problem as described in Sect. 2. In this work, the human activities are
defined by a sequence of joint positions. In order to apply a capsule network
architecture we encode the data into images following the Tree Structure Skele-
ton Image (TSSI), introduced in [26].
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3.1 Sequence Cutting

The input data of our model is a sequence composed of skeletons, one skeleton per
video frame. Each skeleton consists of 25 joints where each joint is a position in a
three-dimensional space. Since not all activities last the same time, the sequences
will contain a variable number of skeletons. The first step to be carried out in the
preprocessing stage is creating sequences of fixed length. To this end, we create
sub-sequences form each sequence by selecting quasi-equally spaced skeletons.

We start by defining the number of sub-sequences that can be derived from
a sequence as b = |S|

l ; where |S| is the length of a sequence of skeletons and l is
the network input sequence length. Since the number of sub-sequences can be a
real value, the last sub-sequence will contain repeated skeletons from the other
sub-sequences.

The list of indices for each sub-sequence is the set I = {�s + i · b�}; where
s ∈ {1, . . . , �b+1�}, and i ∈ {0, . . . , l−1} for each s. Applying this list of indices
I to a sequence S generates the set of sub-sequences S′ = {Ji | i ∈ I, Ji ∈ S}.

3.2 Image Embedding

Capsule networks focus on extracting properties that represent entities from
images and on putting them together to create the entities that represent the
classes sought in a classification problem. The first two layers of our capsule archi-
tecture make use of convolutions for the aforementioned extraction. Therefore,
to use this type networks it is necessary to convert the skeletal data into images.
This problem has already been addressed in the HAR domain by approaches
that have had this same issue, such as CNNs.

In order to convert the three-dimensional positions of the joints into an image
representation we use the Tree Structure Skeleton Image codification [26]. It
starts with an arrangement of the joints along the columns of an image and
the skeletons along the rows. According to [26], this distribution ensures that
a convolution operation will only establish relationships between connected or
temporally adjacent joints. Since the position of each joint is three-dimensional,
three grayscale images are obtained, which are used as the channels of an image
representation of the sequence.

The arrangement that avoids unconnected joints in contiguous columns is
obtained by traversing the graph; i.e. the skeleton tree where the root node
is the spine joint. This ordering is applied to the joints of each skeleton in a
sequence, as shown in Fig. 1.

Finally, values are normalized to the unit interval. Additionally, for this task
we propose the use of a bone normalization and scaling process. First, we set
the origin point of each joint to their parent joint. Next, we normalize the length
of each bone. This process removes inter-subject variability from the data set
and makes this representation rotation and translation invariant. In addition,
it emphasizes the movement performed by a joint without depending on its
predecessors. After this normalization, all the bones of the skeleton share the
same motion range, a three-dimensional sphere.
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Fig. 1. TSSI encoding process. On the left, the skeleton graph where joints are the
numbered nodes. On the right, the result of the depth-first search on the skeleton
employed to encode the first column of the TSSI image. The color of each pixel is due
to (x, y, z) coordinates used as RBG channels.

3.3 Capsule Network

The architecture used in this work is similar to the one proposed in [17], and
depicted in Fig. 2. It can be divided in the following components:

Base Feature Extraction. The input image is first processed by a convolu-
tional layer with 236 kernels of size 3 × 3 pixels, stride of 1 and ReLU activation.
The output of this layer is a set of 236 feature maps of 21 × 47 pixels.

Low Level Capsules. The next layer applies 18 groups of 11 convolutional
kernels of 13 × 13 pixels and stride 2 on the previous feature maps. The results
are 18 groups of 11 feature maps of size 5 × 18 pixels. Each group is split along
the rows and columns into 90 vectors of length 11, resulting a total of 1620
vectors in R11. Each one of those vectors di is then processed by the squash
function to rescale its module to the unit interval in a non-linear fashion,

squash(di) =
‖di‖2

1 + ‖di‖2
di

‖di‖ (1)

The result are denoted low level capsules ui ∈ [0, 1]11.

High Level Capsules. The 18 groups of low level capsules represent 18 patterns
of motion throughout the image. In this architecture, those patterns are used
to establish part-whole relationships with the high level capsules. In this work
there is a high level capsule for each class in the data set.

First, the properties of each high level capsule are predicted from the low
level ones. This is done by a transformation matrix Wi,j of size 11 × 21 for
each pair of low level capsules and high level capsules. As a result we obtain a
predicted high-level capsule ûi. There are 11×21×1620×C trainable parameters
in this layer, where C is the number of classes of the data set.

After each capsule has been transformed we use the dynamic routing algo-
rithm proposed in [17] to cluster together the predictions and to create higher
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Fig. 2. Diagram illustrating the different phases that compose the capsule network
presented in this work. First, a sequence of skeletons is encoded into a TSSI [26]
image. Then feature vectors are extracted and squashed in order to obtain low level
capsules. These capsules are transformed and clustered together to generate high level
capsules. Finally, the encoded image is reconstructed and the probability for each class
is obtained.

level capsule properties. This clustering is done iteratively based on the similar-
ity between all the predictions for a high level capsule. The obtained values are
then processed by the squash function (1) to generate each high level capsule,
vj . The module ‖vj‖ of each high level capsule is used as its class probability.

Reconstruction Network. To regularize the training of the capsule network
we use a fully connected network to reconstruct the input image from the high
level capsules, as suggested in [17]. Only the high level capsule corresponding to
the true class is taken into account. This is done by setting all high level capsules
to zeros except the one corresponding to the true class. This network has two
hidden layers with sizes of 3072 and 6144, respectively.

Loss. The total loss of the architecture is computed from the loss of the capsule
network and the reconstruction network, Lcap and Lreco respectively. For the
capsule network, the margin loss proposed in [17] is used, with m+ = 0.7, m− =
0.3 and λ = 2. For the reconstruction network, the loss is the mean squared error
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between the input image and the reconstructed image. In order to balance these
two losses we use two trainable coefficients scap and sreco. These coefficients are
also summed to the total loss to self-balance their influence as detailed in [16]:

L = e−scapLcap + scap + e−srecoLreco + sreco (2)

4 Experiments

In this section we describe the data sets used for the evaluation of our proposal
and the setting of our experiments. We analyze the results obtained and perform
a comparison against works from the state of the art in skeleton based HAR.

The experiments were conducted on a Intel Xeon E5-2698v4, 2.20 GHz CPU
and a NVIDIA Tesla V100 GPU with 32 GB of RAM. We trained our network for
100 epochs with a learning rate of 10−5 using the Adam optimization algorithm
and batch size of 36. At epoch 50 we decreased the learning rate by a factor
of 0.1. All of the hyperparameters have been selected by a constrained random
search that ensured the best network accuracy on the validation phase of the
training.

4.1 Data Sets

The proposed architecture has been evaluated on two widely used activity recog-
nition data sets. The first one, NTU RGB+D [18], is a data set composed of
56880 sequences representing 60 actions performed by 40 subjects and captured
by Kinect V2 cameras from 80 viewpoints. The actions are captured simultane-
ously by 3 cameras. Each sequence is composed of a variable number of skeletons
and each skeleton is composed of 25 joints. For actions involving two subjects we
have only used the skeleton of the main actor, as described in [18]. The authors of
this data set propose two evaluation protocols. In the first protocol, 20 subjects
are used for training and another 20 for evaluation (Cross-Subject). The second
protocol uses the sequences captured by camera 2 and 3 for training and those
of camera 1 for evaluation (Cross-View). The second data set, NTU RGB+D
120 [12], is an extension of the previous set. The size of the data set increases
to 114480 sequences representing 120 actions performed by 106 subjects and
captured from 155 viewpoints. As before, the authors propose two evaluation
protocols: Cross-Subject and Cross-Setup. For the Cross-Subject protocol, 53
specific subjects should be used for training and 53 for evaluation. On the other
hand, for the Cross-Setup protocol, 16 setups are used for training and 16 setups
for evaluation.

4.2 Results and Discussion

The results obtained for the above data sets using their evaluation protocols,
together with state-of-the-art works are shown in Table 1. Our architecture is
not using either recurrent neurons nor graph neural network, and yet our results
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Table 1. Results of the proposed architecture and state-of-the-art works. The Cross-
Subject (CS60) and Cross-View (CV60) protocols from the NTU RGB+D were used.
For the NTU RGB+D 120 the Cross-Subject (CS120) and Cross-Setup (CST120) pro-
tocols were used. These results are reported by their respective authors. The results of
the work marked with * are reported in [26].

Model CS60 (%) CV60 (%) CS120 (%) CST120 (%)

Deep RNN [18] 56.2 64.0 – –

HBRNN* [6] 59.1 64.0 – –

Deep P-LSTM [18] 62.9 70.2 – –

Trust Gate LSTM [13] 69.2 77.7 – –

TSSI [26] 73.1 76.5 – –

TSRJI [3] 73.3 80.3 65.5 59.7

SkeleMotion [4] 76.5 84.7 67.7 66.9

Ours 74.2 77.1 63.2 64.6

are competitive with respect to the state of the art. The most similar proposal is
TSSI [26], which consist of a ResNet-50. Moreover, our results also outperform
works that include recurrent networks. We noticed a significant number of false
positives between actions that have a similar spatial configuration. In addition,
the network is also able to distinguish between actions where the subject per-
forms the same movements in a different order. This leads us to think that our
proposal is able to capture spatial-temporal relationships. However these similar
activities degrade the overall performance of the classifier.

In the proposed architecture, a fully connected network is used to reconstruct
the input image from the high level capsules generated by the capsule network.
The output capsule generated by the network for an input sequence contains the
properties that define the action performed in it. We can visualize its effect by
modifying the values of these properties and depicting the reconstructed skeleton
to see which characteristic of the subject’s movement each one encodes. We do
this modification by adding values from an interval [−0.25, 0.25] with a 0.1 step.
Figure 3 shows the result of modifying the values of one property of an output
capsule. This modified property characterizes the right and left forearms move-
ment. As the value of this property increases, the forearms movement becomes
wider.

Fig. 3. Reconstructed input skeleton modifying the third high level capsule property
of the action “take off jacket”. Wider limbs are the most affected by the previous
modification.
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5 Conclusions

In the present work, a capsule network architecture for activity recognition based
on skeletal data has been presented. The results of our proposal are better than
other works employing methods based on CNNs. In the analysis performed using
the reconstruction network, it can be observed that the capsule network is able
to isolate the properties that define the motion of the human body. This sug-
gests that this type of network has potential in the field of activity recognition
and it’s able to model spatio-temporal relationships between joints. To further
our research we intend to develop a new routing algorithm that models human
movement dynamics and to introduce attention mechanisms.
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3. Caetano, C., Brémond, F., Schwartz, W.R.: Skeleton image representation for 3D
action recognition based on tree structure and reference joints. In: 32nd SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 16–23 (2019).
https://doi.org/10.1109/SIBGRAPI.2019.00011
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Abstract. It is said that with great power comes great responsibility.
Nowadays, we rely on machine learning systems to make decisions. Unfor-
tunately these systems suffer from algorithmic biases; they often produce
results that are systemically prejudiced due to erroneous assumptions
in the machine learning process. Consequently these systems can con-
tribute to increase biases in society and this is something we should
avoid undoubtedly. The importance of the topic and the effect it has in
the society has made it become an important research topic during the
last years giving rise to different solutions. In this work, we selected three
state-of-the-art techniques, decoupled classifiers, fairness constraints and
adversarial learning, that claim to reduce bias in machine learning algo-
rithms and compared their performance over different databases and
fairness evaluation metrics. The obtained results show that there is no
system performing the best in all aspects and databases but gives some
hints to select the best option according to the objective.

Keywords: Machine learning · Algorithmic bias · Fairness · Evaluation

1 Introduction

Artificial Intelligence (AI) is having an increasing impact on our lives. Not only
do AI systems predict the weather or perform spam filtering [12], but also they
are able to evaluate the risk of recidivism in individuals [4] or decide whether
a person is worth lending credits [5]. These systems are backed up by machine
learning algorithms trained over large databases where biased databases entail
biased systems, as well-trained models will reflect those biases [13]. Without
proper identification and reduction of such correlations, models will inadver-
tently magnify stereotypes [15].

Fortunately, solutions are already being proposed in different classification
tasks ranging from creating new “neutral” databases [3] or placing an adversary
to the classifier that penalises the predictability of gender/race based on the
outcome of the classifier [13]. Experts in the Natural Language Processing (NLP)
field have also shown a deep concern because word embeddings have produced
relationships like “man is to programmer what woman is to homemaker” [2].
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In addition, a debate resides in the community of fairness in classification on
whether sensitive data such as gender, race, or religion should be used along-
side other data at the training and classification stages. Moreover, the legality
and ethics of using those attributes vary depending on country, jurisdiction,
etc. [5]. This sense of “fairness through unawareness” is ineffective due to redun-
dancy and correlation between attributes, enabling the classifier predict sensitive
attributes through other pieces of information [8].

In this context, we considered important to evaluate the impact of differ-
ent state-of-the-art debiasing techniques to reduce gender bias in classification
tasks. We selected three techniques that rely on different foundations from one
another and analysed how they can improve fairness to different classifiers. Some
of these techniques, will not only incorporate the sensitive attribute to the clas-
sification data, but they will treat them as special values, crucial for the correct
performance of the models.

The paper proceeds summarising the background in Sect. 2 and describing
the methods selected for comparison and the metrics used to compare them
in Sects. 3 and 4. Then the experiments carried out are described in Sect. 5 to
continue with the description of the results in Sect. 6 and finish with conclusions
and further work in Sect. 7.

2 Background

An increasing concern about fairness (or lack thereof) on multiple fields has risen
[12] due to a higher academic interest in machine learning [10], which led to an
emergence of multiple distinct approaches for sorting out the consequent issues.

Buolamwini and Gebru [3] worry about the disparity in accuracy of classifiers
with respect to gender and skin colour and point out how urgently attention is
needed on this matter if companies want to rely on fair systems. They blame
the underrepresentation of minorities in databases and introduce a collection
balanced both in gender and skin colour. Dwork et al. [5] sustain that machine
learning systems face a trade-off between fairness and accuracy. They present the
notion of Decoupled Classifiers, training separate classifiers for each group, and
extend their work by using transfer learning to address underrepresentation of
minority groups. Slack et al. [10] propose two algorithms: (a) A model-agnostic
algorithm that provides interpretable conditions for when a model is behaving
fairly. (b) A meta-learning algorithm that intends to efficiently train models with
few samples at hand while maintaining balanced fairness and accuracy.

Zafar et al. [12] introduce a mechanism to control the degree of fairness
relatively precisely and apply the mechanism to two classifiers: logistic regression
and support vector machines. The same authors also introduce a new notion of
unfairness in another paper called disparate mistreatment [11], defined in terms of
misclassification rates. They then provide measures of disparate mistreatment for
decision boundary-based classifiers. Beutel et al. [1] use an adversarial training
procedure to remove information about the sensitive attribute and observe the
effects on fairness properties. They find out that a small database is enough
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for their models and that data itself guides a notion of fairness to the model.
Zhang et al. [13], frequently citing and comparing [1], present a framework using
adversarial learning for mitigating bias. Their objective is to maximise the ability
of the predictor to correctly output the class while minimising the adversary’s
ability to predict the protected attribute.

Zhao et al. [15] focus on bias on visual recognition problems with supported
captions sourced from web corpora. They (a) identify and quantify bias on those
databases, (b) evaluate how models amplify that bias and (c) propose a calibra-
tion algorithm that introduces corpus-level constraints to classifiers for reducing
bias. Garg et al. [6] show that word embeddings used in Natural Language Pro-
cessing (NLP) convey 100 years of gender and ethnic stereotypes and demon-
strate how dynamics of embeddings reflect the change of stereotipical attitudes
towards women and ethnic minorities. Zhao et al. [14] perform a thorough anal-
ysis on the gender bias on ELMo embeddings (deep contextualized word repre-
sentations [9]) and explore two methods for mitigating the disparity. Bolukbasi
et al. [2] also present a similar concern over the discrimination of embeddings
trained on Google News and provide a methodology for removing that bias. Nev-
ertheless, a countering criticism of debiased embeddings has already emerged.
Gonen and Goldberg [7] argue that although bias is reduced by definition, the
actual effect is hidden instead of removed, making the debiasing superficial.

3 Selected Methods

In this work we analysed the behaviour of regular binary classifiers working with
one sensitive attribute with binary values comparing and contrasting the per-
formances of Decoupled Classifiers [5], Fairness Constrains [12] and Adversarial
Learning [13].

3.1 Decoupled Classifiers

The core concept resides in training a separate classifier for each group and it
can be applied on top of any type of machine learning model [5]. In addition it
allows deducing how the relevance of each attribute varies from group to group.
The decoupling procedure introduces fairness using a loss function that takes
into account the outputs from both classifiers and penalises differences across
the predictions in each group (see Eq. 1).

λ

n

n∑

i=1

|yi − zi| +
1 − λ

n

K∑

k=1

∣∣∣∣∣
∑

i:ai=k

zi − 1
K

∑

i

zi

∣∣∣∣∣ , (1)

where z is the outcome of the model, y the true class, a the sensitive attribute
and K the number of groups. The left term in the outermost sum computes
the mean absolute error (MAE) and the right term calculates the difference
in positives across groups, which can be summarised as adding accuracy and
fairness, respectively. λ ∈ [0, 1] is used as an interpolating value for weighing the
relevance of accuracy and fairness in the loss, which makes the relation between
them explicit.
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3.2 Fairness Constraints

Two different approaches for balancing accuracy and fairness were proposed: the
first one aims to maximise accuracy under fairness constraints and the second
aims to maximise fairness under accuracy constraints. The former and selected
method enables a granular control over the strictness of fairness requisites and
does not use the sensitive attribute for training the model. Zafar et al. [12] pro-
pose to measure unfairness as the covariance (Eq. 2) between the users’ sensitive
attribute a and the signed distance from the users’ data to the decision boundary
wTx.

1
n

n∑

i=1

(ai − ā)wTxi (2)

The goal of this method is to find the parameters w that minimise cross
entropy loss function under the following constraints:

min L(w)

s.t.
1
n

n∑

i=1

(ai − ā)wTxi ≤ c

1
n

n∑

i=1

(ai − ā)wTxi ≥ −c

(3)

where L is the loss function and c ≥ 0 is the covariance threshold. Lowering c
towards 0 will introduce stricter constraints, whilst potentially sacrificing loss.

3.3 Adversarial Learning

Based on the concept of Generative Adversarial Networks (GANs), Zhang et
al. [13] adapted the model so that the generative model acts as a predictor by
determining z given x and the adversary tries to guess a based on z and y. The
objective is to minimise the ability to predict a based on z. Figure 1 illustrates
the structure of the GAN.

Fig. 1. Schema of the proposed adversarial learning system



90 M. Martinez-Eguiluz et al.

The predictor will be a regular logistic regression of the form z = σ(wT
1 x+ b)

and the adversary will calculate â = wT
2 [s, sy, s(1 − y)] + b, where s = σ((1 +

|c|)σ−1(z)), w2 is a three weight vector and â denotes the prediction of the
sensitive attribute a. 1 is added to |c| to keep the adversary away from ignoring
y by setting c = 0, which can be a tough local minimum to escape. We chose
MSE (Mean Square Error) as loss function for both models. Parameter w1 of
the predictor is modified according to the losses of the predictor and adversary
(Lp and La). w1 (represented as w for conciseness) is modified according to the
following expression:

∇wLp − proj∇wLa
∇wLp − α∇wLa (4)

For example, SGD (Stochastic Gradient Descent) would update the param-
eters under the learning rate lr the following way:

w′ = w − lr(∇wLp − proj∇wLa
∇wLp − α∇wLa) (5)

Ignoring the central term in Eq. 4, we can see that the weights for the pre-
dictor need to be adjusted according to the gradients of both loss functions. The
loss regarding the adversary is allegedly scaled by α to avoid getting stuck on
local minima. The authors propose to dynamically set α for the Adult database.
However, our experiments showed a value of 0.1 to work overall well.

4 Fairness Metrics

Since an inherent trade-off between accuracy and fairness is reported [10], we
also selected other metrics.

Demographic parity, also known as the lack of disparate impact [10], is the
ratio between positives in the minority and majority group (Eq. 6). A value closer
to 1 indicates that the proportion of positives in both groups is similar, achieving
demographic parity when the ratio equals 1. Reaching demographic parity is
desirable in situations where changes are needed to give more opportunities to
minorities.

P (z = 1|a = 0)
P (z = 1|a = 1)

(6)

Equal opportunity is met when the true positive rates (TPR) are equal
across the sensitive groups. This metric only requires non-discrimination in the
positive group [8], often allowing for a higher accuracy [10]. It can be written as:

P (z = 1|a = 0, y = 1)
P (z = 1|a = 1, y = 1)

(7)

Bias score evaluates the correlation between a sensitive attribute and
another non-sensitive attribute by computing Eq. 8 where c(z = i, a = j) counts
the number of appearances of z = i and a = j altogether [15]. Thus, the pro-
portion of each group in the positively classified examples is observed. A value
closer to 0.5 indicates less bias.
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c(z = 1, a = 0)
c(z = 1, a = 0) + c(z = 1, a = 1)

(8)

Reaching the optimal value can be of great use when the equality in the
number of positives between groups is required instead of the equality in the
proportion. For example, in 50/50 campaigns that demand parity in the number
of men and women.

5 Experimental Setup

We gathered different databases and transformed them in order to follow a com-
mon standard and implemented the fairness metrics and the techniques chosen to
mitigate bias. Finally, we tested the techniques and evaluated the performances
over the transformed databases using a 10-fold cross-validation strategy.

5.1 Databases

5 databases were used for experiments, two of them used in the referenced papers
(Adult ([4,12,13]) and COMPAS ([4,10,11]), other two, Credit and Hepatitis,
publicly available at https://openml.org and a private database from our envi-
ronment, Infor. Adult is used to predict whether an individual’s income is greater
than $50,000 per year based on census data. The goal in COMPAS database is
predicting the risk of recidivism of a jail inmate (we discarded some attributes
of the original database due to their high number of missing values). Credit
database is used to predict whether a requester is worth lending a credit. Hep-
atitis database (3 attributes discarded due to missing values) is used to predict
whether a patient diagnosed with hepatitis will survive. Finally the aim of Infor
database is to predict whether kids around 10 to 12 years depict a computer
programmer as a woman.

All databases were processed so that in the case of the sensitive attribute, the
minority group was assigned with the value a = 0 and the majority held a = 1.
Regarding the class, the value that corresponds to the positive outcome was set
to y = 1 and negative to y = 0. Continuous values were normalised in the range
[0, 1], discrete attributes with less than 10 unique values were one-hot encoded
and, on the contrary, in discrete attributes with 10 or more unique values we
replaced the most common with 1 and the rest with 0, in order to avoid excessive
dimensionality. Their characteristics can be found in Table 1.

5.2 Classifier Implementation

The whole project was coded in Python, mostly using scikit-learn library. In
the case of decoupled classifiers, our experiments compared the results of decou-
pling on top of logistic regression (LR) (optimal parameters found using the
lbfgs algorithm proposed by default in scikit-learn), multilayer perceptron (MLP)
(2 hidden layers with 30 neurons, maximum iterations for convergence 10,000

https://openml.org
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and by default values for the rest of parameters) and support vector machine
(SVM) (using the Radial Basis Function kernel (RBF)) in order to observe the
impact of decoupling in different classifiers. For Fairness Constraints we used the
implementation provided by the authors. For each database, we ran two tests:
one without the fairness constraints and the other with maximum constraints
by setting the covariance threshold c = 0. Finally, the adversarial model was
developed using the pytorch library. The most delicate part of the process was
implementing Eq. 4, as no method in the library would make such calculation.

Table 1. Characteristics of the databases used for experiments

Database Feat. Protected Examples Bias Score Dem. Parity

y = 0 y = 1 Total

a = 0 a = 1 a = 0 a = 1

Adult 14 sex 9592 15128 1179 6662 32561 0.15 0.36

COMPAS 12 race 3326 4009 2175 1528 11038 0.59 1.43

Credit 20 gender 191 109 499 201 1000 0.71 1.12

Hepatitis 16 sex 0 32 16 107 155 0.13 1.30

Infor 20 sex 214 31 243 378 866 0.39 0.58

5.3 Performance Measuring

To asses fairness, the performance of an algorithm cannot be measured with a
single metric. In this work, for each of the implemented options, we calculated
the next five metrics: accuracy, joint loss (calculated using Eq. 1), demographic
parity, equal opportunity and bias score. Demographic parity and the bias score
were also calculated as baseline for the databases (see Table 1).

6 Results

The results of the experiments are summarised in Table 2. The best values for
each of the metrics and databases appear marked in bold.

Overall, decoupling results in an increase in both accuracy and fairness as the
majority of accuracies (Adult-LR and Hepatitis-MLP are the exceptions) grow
while equal opportunity tends to converge towards 1, MLP being the best per-
forming model among the three. However, demographic parity seems to improve
as often as it worsens. On the other hand, fairness constraints almost consistently
improves fairness metrics while slightly sacrificing accuracy. Finally, the adver-
sarial model scores the worst accuracies although sometimes achieving the best
fairness scores. In addition the comparison of the obtained demographic parity
and bias score values to the ones calculated in the original databases shows that
the methods tend to improve them generally. Remember that underrepresenta-
tion can impact on bias scores and make it fall in contradiction with other scores
if the database presents a large disproportion of men and women (or whichever
values the sensitive attribute may hold), as stated in Sect. 4.
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Table 2. Summary of the results obtained for the experiments.

Decoupled classifiers Fairness constraints Adversarial

LR MLP SVM

Coup Decoup Coup Decoup Coup Decoup Unconstr Constr

Adult

Accuracy 0.850 0.849 0.845 0.855 0.840 0.840 0.851 0.852 0.815

Joint loss 0.149 0.150 0.154 0.149 0.156 0.155 0.148 0.148 0.159

Dem. parity 0.285 0.286 0.344 0.339 0.263 0.269 0.299 0.304 0.438

Equal opp 0.789 0.787 0.872 1.073 0.732 0.788 0.826 0.835 1.082

Bias Score 0.123 0.124 0.145 0.143 0.115 0.117 0.129 0.130 0.178

COMPAS

Accuracy 0.757 0.757 0.756 0.759 0.749 0.750 0.757 0.753 0.678

Joint loss 0.198 0.196 0.199 0.199 0.196 0.197 0.198 0.189 0.242

Dem. parity 2.379 2.205 2.289 2.357 2.005 2.199 2.375 1.222 1.429

Equal opp 1.483 1.432 1.488 1.571 1.304 1.384 1.477 0.962 0.997

Bias Score 0.703 0.687 0.695 0.701 0.666 0.686 0.702 0.548 0.587

Credit

Accuracy 0.754 0.768 0.706 0.843 0.755 0.793 0.760 0.753 0.702

Joint loss 0.269 0.261 0.298 0.191 0.275 0.246 0.266 0.259 0.317

Dem. parity 1.146 1.186 1.145 1.087 1.165 1.177 0.868 0.998 0.991

Equal opp 1.052 1.097 1.033 1.153 1.085 1.107 0.934 1.030 0.996

Bias Score 0.718 0.725 0.718 0.708 0.722 0.724 0.281 0.310 0.688

Hepatitis

Accuracy 0.839 0.845 0.806 0.800 0.852 0.852 0.858 0.826 0.394

Joint loss 0.279 0.273 0.302 0.308 0.276 0.273 0.263 0.295 0.518

Dem. parity 1.153 1.230 1.164 1.219 1.114 1.198 1.230 1.048 0.808

Equal opp 1.024 1.092 1.056 1.126 0.993 1.070 1.081 0.946 0.787

Bias Score 0.117 0.124 0.118 0.123 0.114 0.121 0.124 0.108 0.085

Infor

Accuracy 0.722 0.739 0.714 0.898 0.730 0.767 0.721 0.709 0.717

Joint loss 0.247 0.202 0.256 0.118 0.224 0.177 0.252 0.232 0.227

Dem. parity 0.602 0.845 0.565 0.563 0.735 0.880 0.573 0.999 1.005

Equal opp 0.634 0.895 0.624 0.944 0.774 0.975 0.605 0.994 1.003

Bias Score 0.402 0.485 0.387 0.386 0.451 0.496 0.390 0.527 0.529

7 Conclusions

In this paper, we incorporated state-of-the-art bias reducing techniques to different
supervised classifiers. Their impact was evaluated using several metrics that mea-
sure fairness in classification tasks in five databases with different characteristics
to evaluate how well the various models adapt to different circumstances. Having
said that, we consider that from a fairness point of view the constrained classifier
is the most appropriate method closely followed by the decoupled classifiers.
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The biggest negative aspect of decoupled classifiers is the inconsistency with
demographic parity. The difference with respect to their coupled respectives
does not seem to have any clear tendency if we compare results from different
databases. For instance in Credit, some models improve the metric while others
do not. If we were to choose one decoupled classifier, it would be the decoupled
multilayer perceptron (MLP) as it scores the best accuracy amongst all classi-
fiers in all experiments except for Hepatitis. On the contrary, the constrained
logistic regression seems to always improve fairness at a small cost of accuracy
with respect to its unconstrained variant. Moreover, the results are competing
with the ones of decoupled classifiers and are sometimes significantly better as
in the case of demographic parity in many databases. Adversarial models fall
into the third place because they showed to be rather inconsistent in their per-
formance. For example, the adversarial model gets almost perfect fairness scores
with the Credit database but it has the worst scores in Hepatitis. We believe
this is a hyperparameter issue, as the authors of the technique propose a custom
hyperparameter tuning for their experiment over Adult database. In fact, our
results on that database are relatively acceptable.

All in all, we believe that fairness constraints are the most appropriate tech-
nique for mitigating binary bias, where gender takes part, due to its adaptability
to several databases where the shape of data is not uniform or balanced or where
the training set is limited in size. For example: the Hepatitis database has only
155 samples.

Although some concluding remarks could be done, this work opens a wide
field to explore. One of the main assumptions we made was binarising both;
the class and the sensitive attribute. However, key information might be lost
by grouping different values together. For example, how should we group men,
women and non-binary people? On the other hand, there are many more pro-
posals of new techniques that could be analysed and probably some are being
developed at this moment. Also, techniques may be fused together to form hybrid
models that could improve our goal.
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Abstract. Robust model estimation is a recurring problem in appli-
cation areas such as robotics and computer vision. Taking inspiration
from a notion of distance that arises in a natural way in fuzzy logic, this
paper modifies the well-known robust estimator RANSAC making use of
a Fuzzy Metric (FM) within the estimator main loop to encode the com-
patibility of each sample to the current model/hypothesis. Further, once
a number of hypotheses have been explored, this FM-based RANSAC
makes use of the same fuzzy metric to refine the winning model. The
incorporation of this fuzzy metric permits us to express the distance
between two points as a kind of degree of nearness measured with respect
to a parameter, which is very appropriate in the presence of the vagueness
or imprecision inherent to noisy data. By way of illustration of the per-
formance of the approach, we report on the estimation accuracy achieved
by FM-based RANSAC and other RANSAC variants for a benchmark
comprising a large number of noisy datasets with varying proportion
of outliers and different levels of noise. As it will be shown, FM-based
RANSAC outperforms the classical counterparts considered.

Keywords: Model estimation · RANSAC · Fuzzy metric · 2D straight
line estimation

1 Introduction

Solving model estimation problems is a fundamental component of numerous
applications in robotics, specially when addressing perception tasks. Nowadays,
facing this kind of problem requires to cope with new challenges due to an
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increased use of potentially poor, low-cost sensors, and the ever growing deploy-
ment of robotic devices which may operate in potentially unknown environments.
In general terms, the underlying algorithms need to be capable of being robust
against, in particular, strong uncertainty levels. In this regard, a robust estimator
is able to correctly find the original model that supposedly the input data fits to,
even when the data is noisy and contains outliers, i.e. data items which are not
consistent with the original model due to an arbitrary bias affecting them (For
the interested reader, [7] details the concepts, techniques and technical issues
surrounding robust estimation).

The Random Sample Consensus algorithm (RANSAC) [4] is one of these
robust estimation techniques. Given a dataset comprising both inliers and out-
liers, the most distinctive feature of RANSAC is the use of random sampling
and a voting scheme to find the optimal set of model parameters. RANSAC is
widely used nowadays, so much that it has become common in fields such as
robotics and computer vision.

Fuzzy methodologies (together with other soft computing paradigms, such
as probabilistic methods, machine learning, evolutionary computing and swarm
intelligence) have been used since their birth to deal with imprecise data, tar-
geting on the design of systems that are able to cope with uncertainty one way
or another and even degrade gracefully if needed [8]. As already mentioned,
robotics, and in general perception, is one of the areas where this capability
achieves more relevance, particularly when autonomy is a distinctive feature.

In this work, we propose a variant of RANSAC which avoids discriminating
between inliers and outliers by means of the use of a Fuzzy Metric (FM) in the
sense of I. Kramosil and J. Michalek [10] that provides a degree of compatibility
for each data sample with regard to the current model. The aforesaid fuzzy
metric is besides used in a final model refinement step that is incorporated after
the main hypothesis selection loop.

In the following, Sect. 2 overviews RANSAC, Sect. 3 introduces a fuzzy metric
for RANSAC, Sect. 4 describes our approach based on the previous fuzzy metric,
while Sect. 5 reports on a number of experiments to illustrate the performance
achieved, and Sect. 6 concludes the paper.

2 Overview of RANSAC and Some Variants

Regarding model estimation, a common measure of estimation robustness is the
breakdown point (BDP), defined as a percentage threshold on the outlier rate
beyond which the technique under consideration is no longer robust to outliers.
RANSAC is one of those robust estimators with BDP higher than fifty per-
cent. Fifty percent is the limit of the Least Median of Squares (LMedS) [18],
another robust estimator that has also enjoyed high popularity as a high BDP
technique. Least Trimmed Squares (LTS) and Minimum Probability of Random-
ness (MINPRAN) are other high-BDP algorithms [Olu16], although less popular
than RANSAC and LMedS. The BDP for others, such as the M-estimators family
[HR11], is below 50%. Applications in statistics typically require less than fifty
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percent BDP, since outliers in this context are anomalies or exceptions in the
data. However, the case is often different in robotics and computer vision appli-
cations, where outliers are defined with respect to the best among competing
models, each describing well a fraction of the input data.

By randomly generating hypotheses on the model parameters, RANSAC tries
to achieve a maximum consensus in the input dataset in order to deduce the
inliers. Once the inliers are discriminated, they are used to estimate the parame-
ters of the underlying model by regression. In more detail, instead of using every
sample in the dataset to perform the estimation as in traditional regression tech-
niques, RANSAC tests in turn many random sets of samples. Since picking an
extra point decreases exponentially the probability of selecting an outlier-free
sample [3], RANSAC takes the Minimum Sample Set size (MSS) to determine a
unique candidate model, thus increasing its chances of finding an all-inlier sam-
ple set. This model is assigned a score based on the cardinality of its consensus
set. Finally, RANSAC returns the hypothesis that has achieved the highest con-
sensus, and the corresponding model is refined through a last minimization step
that only involves the inliers found.

Searching for an all-inlier sample, RANSAC typically runs for N iterations:

N =
log (1 − ρ)

log (1 − (1 − ω)s)
(1)

where ρ is the desired probability of success, i.e. at least one of the considered
random sets is outlier-free, s is the size of the MSS for the problem at hand and
ω is the ratio of outliers (see [4] for the details on Eq. (1)).

There have been a number of efforts aiming at enhancing the standard
RANSAC algorithm, e.g. MSAC, MLESAC, MAPSAC, PROSAC, R-RANSAC,
LO-RANSAC and U-RANSAC [2], since it, while robust, has its drawbacks
regarding accuracy, efficiency, stability and response time [16,17]. Among these
variants, there is a very reduced set adopting fuzzy methodologies [11,20]. In
both cases, the authors address a homography fitting problem, which, in [11], is
solved by discriminating data samples into the good, bad and vague fuzzy sets
using a fuzzy classifier, while [20] defines a triangle-type membership function
for the set of inliers and combines this with a Monte Carlo method for sam-
ple selection. It must be pointed out that the two aforementioned variants of
RANSAC differ significantly from the one described in this paper.

3 On Fuzzy Metrics and RANSAC

In [10], a notion of fuzzy metric was introduced by adapting to the fuzzy approach
the concept of statistical metric due to Menger. From now on, we assume that
the reader is familiar with the basic notions of fuzzy sets and t-norms (we refer
the reader to [9] for a deep treatment on them).

Nowadays, by a fuzzy metric space, in the sense of Kramosil and Michalek
(see [12]), we are referring to a triple (X,M, ∗) where X is a non-empty set, ∗ is
a continuous t-norm and M is a fuzzy set on X × X×]0,∞[ satisfying, for each
x, y, z ∈ X and θ, μ ∈]0,∞[, the axioms below:
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(KM1) M(x, y, θ) = 1 for each θ ∈]0,∞[ if and only if x = y.
(KM2) M(x, y, θ) = M(y, x, θ).
(KM3) M(x, z, θ + μ) ≥ M(x, y, θ) ∗ M(y, z, μ).
(KM4) The assignment Mx,y :]0,∞[→ [0, 1] is a left-continuous function,
where Mx,y(θ) = M(x, y, θ) for each θ ∈]0,∞[.

On account of the previous concept, the value M(x, y, θ) can be interpreted
as a degree of nearness between two points x, y ∈ X with respect to a parameter
θ ∈]0,∞[. The larger the value of M(x, y, θ), the closer the points x and y are,
with respect to θ. Observe that, for two distinct points x, y ∈ X, the degree of
nearness can be 1 for some θ0 ∈]0,∞[, but such a degree can only be 1 for all
θ ∈]0, 1[ whenever x and y are the same point.

This notion of fuzzy metric has been studied extensively from a mathematical
point of view in the literature. Besides, it is worth mentioning that such a kind
of measurement has been shown to be useful, for instance, in image filtering and
in problems related to perceptual colour difference. For a thorough treatment,
we refer the reader to [1,6,13–15] and references therein.

A celebrated example of fuzzy metric is the so-called standard fuzzy met-
ric [5], which is induced from a classical metric. Let us recall that, given a met-
ric space (X, d), the triple (X,Md,min) constitutes the standard fuzzy metric
space, where min denotes the minimum t-norm and Md is the fuzzy set defined
on X × X×]0,∞[ given by

Md(x, y, θ) =
θ

θ + d(x, y)
, for each x, y ∈ X, θ ∈]0,∞[.

Note that for the standard fuzzy metric, the degree of nearness between two
points x, y ∈ X only can be 1, for some θ0 ∈]0,∞[, whenever x and y are the
same point. Moreover, the degree of nearness between two points can never be 0.

With the aim of proposing a fuzzy metric that can be a useful tool for
RANSAC, and that is to encode the compatibility of each sample to the current
model/hypothesis, we introduce, in Theorem 1, a general technique to generate
fuzzy metrics from classical metrics. To this end, let us denote by N the set
of positive integer numbers and let us recall that the family of Yager t-norms
(∗λ

Y )λ∈[0,∞] is given as follows [9]:

x ∗λ
Y y =

⎧
⎪⎨

⎪⎩

x ∗D y, if λ = 0;
min{x, y}, if λ = ∞;

max
{

1 − (
(1 − x)λ + (1 − y)λ

) 1
λ , 0

}
, otherwise.

Theorem 1. Let (X, d) be a metric space and let n ∈ N. Then (X,Mn
d , ∗ 1

n

Y ) is

a fuzzy metric space, where ∗ 1
n

Y denotes the Yager t-norm for λ = 1
n and Mn

d is
defined by

Mn
d (x, y, θ) =

{
1 − dn(x,y)

θn , if x, y ∈ X, θ ∈]0,∞[ such that d(x, y) ≤ θ;
0, otherwise.

(2)
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Proof. Next we show that axioms (KM1)-(KM4) are satisfied, for each x, y, z ∈
X and θ, μ ∈]0,∞[.

(KM1) Let x, y ∈ X and suppose that Md(x, y, θ) = 1 for all θ ∈]0,∞[. We have
that d(x, y) ≤ θ and dn(x,y)

θn = 0 for all θ ∈]0,∞[. It follows that d(x, y) = 0.
The fact that d is a metric on X gives that x = y. Contrarily, assume that
x = y. Since d is a metric on X, we obtain that d(x, y) = 0, whence d(x, y) ≤ θ
for all θ ∈]0,∞[. Moreover, Mn

d (x, y, θ) = 1 − 0
θn = 1 for all θ ∈]0,∞[.

(KM2) It is obvious due to the symmetry of d, i.e. d(x, y) = d(y, x) for all
x, y ∈ X.

(KM3) Let x, y, z ∈ X and θ, μ ∈]0,∞[. We are going to prove that

Mn
d (x, z, θ + μ) ≥ M(x, y, θ) ∗ 1

n

Y M(y, z, μ).

To this end, observe that d(x, z) ≤ d(x, y) + d(y, z) for all x, y ∈ X.
We distinguish two possible cases:

Case 1. Suppose that d(x, z) ≤ θ + μ. Observe that Mn
d (x, y) ≤ 1 − dn(x,y)

θn ≤
1 − dn(x,y)

(θ+μ)n and Mn
d (y, z) ≤ 1 − dn(y,z)

μn ≤ 1 − dn(x,y)
(θ+μ)n . Moreover, we have that

Mn
d (x, z, θ + μ) = 1 − dn(x,z)

(θ+μ)n . Therefore,

Mn
d (x, z, θ + μ) ≥ 1 − (d(x, y) + d(y, z))n

(θ + μ)n
≥

1 −
((

1 −
(

1 − dn(x, y)
(θ + μ)n

)) 1
n

+
(

1 −
(

1 − dn(y, z)
(θ + μ)n

)) 1
n

)n

=
(

1 − dn(x, y)
(θ + μ)n

)

∗ 1
n

Y

(

1 − dn(y, z)
(θ + μ)n

)

≥ Mn
d (x, y, θ) ∗ 1

n

Y Md(y, z, μ).

Case 2. Suppose that d(x, z) > θ+μ. In such a case, observe that Md(x, z, θ+
μ) = 0 Moreover, either d(x, y) > θ or d(y, z) > μ. Indeed, if d(x, y) ≤ θ
and d(y, z) ≤ μ, then d(x, z) ≤ d(x, y) + d(y, z) ≤ θ + μ < d(x, z), which
is a contradiction. Therefore, either Mn

d (x, y) = 0 or Md(y, z) = 0. Thus

0 = Mn
d (x, y, θ)∗ 1

n

Y Md(y, z, μ). So Md(x, z, θ+μ) = Mn
d (x, y, θ)∗ 1

n

Y Md(y, z, μ).
(KM4) Let x, y ∈ X. Then, the assignment (Mn

d )x,y :]0,∞[→ [0, 1] given by
(Mn

d )x,y (θ) = Mn
d (x, y, θ), for each θ ∈]0,∞[, is defined as follows

(Mn
d )x,y (θ) =

{
0, if θ < d(x, y)
1 − dn(x,y)

θn , if θ ≥ d(x, y)
,

which, obviously, is (left-)continuous on ]0,∞[.

We conclude that (X,Mn
d , ∗ 1

n

Y ) is a fuzzy metric space, as claimed. �	
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It must be stressed that one can find particular cases of metric spaces in
which the degree of nearness between two points provided by the fuzzy metric
in Eq. (2) can be 0. This is a relevant fact, as mentioned before, because the
standard fuzzy metric is not able to achieve it.

4 FM-Based RANSAC

As already described, RANSAC adopts a hypothesize-and-verify approach to
fit a model to data contaminated by random noise and outliers: i.e. for every
hypothesis/model considered, data samples are classified into inliers and outliers
by comparing the fitting error with a threshold τI related to data noise, and that
model accumulating the largest number of inliers is the one finally chosen as
solution of the estimation problem. This simple approach has been systematically
used for robust estimation of model parameters in the presence of arbitrary noise,
although, along the years, alternative implementations have been proposed to
counteract the misbehaviours and shortcomings that have been detected.

In this work, we focus on three facets of RANSAC: (1) samples classification
into inliers and outliers, which we avoid to prevent the estimator from explicitly,
and prematurely, deciding which samples are relevant; (2) model scoring, for
which we replace the pure cardinality of the inlier set of plain RANSAC by an
expression involving the individual fitting errors, similarly to what MSAC and
MLESAC do [19]; and (3) model refinement once the main hypothesis-checking
loop has finished, for which we adopt an iterative re-weighting scheme that
makes use of all the available data samples without any distinction between
inliers and outliers, contrarily to plain RANSAC, and other variants, that adopt
least squares regression for the set of inliers (notice that the distinction between
inliers and outliers depends on the current model under consideration, and thus
changes with every model).

Algorithm 1 describes formally the RANSAC variant that is proposed in this
work. The details regarding points (1)–(3) above can be found next:

1. Samples classification. As already mentioned, no distinction is made
between inliers and outliers, but we make use of the fuzzy metric introduced
in Theorem 1 to obtain a compatibility value φ ∈ [0, 1] between each sample
xi and the current model M

̂Θk
, given the fitting error ε(xi;M̂Θk

). Although
the compatibility value is obtained by means of the aforesaid metric and, thus,
it depends on the set of parameters (d, Φ) with Φ = (n, θ), in the following
we will denote it by φ(ε;Φ) in order to make clear that such a value refers to
the fitting error ε.

2. Model scoring. The individual compatibility values φ(ε;Φ) are aggregated
by simple summation to obtain the model score (step 6 in Algorithm 1) and
hence the so-far-the-best-model is given by the maximum score found up to
the current iteration (steps 7–9 of Algorithm 1).

3. Model refinement. Once a sufficient number of hypotheses/models have
been considered, we re-estimate the winning model using iterative weighted
least squares, where the compatibility values φ(ε;Φ), calculated for the fitting
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Algorithm 1. FM-based RANSAC

Input: D - dataset comprising samples {xi}
φ(ε ; Φ) - FM compatibility value for fitting error ε and parameters Φ
kmax - maximum number of iterations of the main loop, as given by Eq. (1)
tmax - maximum number of iterations of the refinement stage

Output: M
̂Θ - estimated model, whose parameters are compactly represented by ̂Θ

1: k := 0, ϕmax := −∞
2: for k := 1 to kmax do � find maximum consensus model M

̂Θ

3: select randomly a minimal sample set Sk of size s from D
4: estimate model M

̂Θk
from Sk

5: calculate fitting errors ε(xi; M̂Θk
), ∀xi ∈ D

6: find model score ϕk :=
∑

xi∈D φ( ε(xi; M̂Θk
) ; Φ )

7: if ϕk > ϕmax then
8: ϕmax := ϕk, M0

̂Θ
:= M

̂Θk

9: end if
10: end for
11: t := 0
12: repeat � refine model M

̂Θ

13: calculate fitting errors ε(xi; M
t
̂Θ
), ∀xi ∈ D

14: estimate model Mt+1
̂Θ

using weights φ(ε(xi; M
t
̂Θ
) ; Φ )

15: t := t + 1
16: until convergence or t ≥ tmax

17: return Mt
̂Θ

errors resulting from the current model, are used as weights for the new,
refined model (steps 12–16 of Algorithm 1). The loop iterates until changes
in Θ are negligible (or after a maximum number of iterations).

5 Experimental Results

In this section, we report on the performance of FM-based RANSAC for a num-
ber of experiments that include a comparison with plain RANSAC and MSAC
(their computational requirements are similar to ours). For illustration purposes,
all experiments involve the estimation of 2D lines described by Θ = (a, b, c), cor-
responding to a straight line in general form ax + by + c = 0.

5.1 Experimental Setup

For testing purposes, we generate synthetic datasets with points stemming from
2D lines in different orientations and positions. Each dataset contains a total of
300 points which comprise both inliers and outliers, the latter in a proportion
equal to ω. Given a random point p over a line Θ = (a, b, c), i.e. apx+bpy +c = 0,
whose normal vector is n, an inlier pI of the dataset is generated by shifting p
along n using a 0-mean Gaussian distribution with standard deviation σ, i.e.
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Table 1. Estimation accuracy and number of iterations of the refinement stage for (a)
different outlier ratios ω, (b) different noise magnitudes σ and (c) different settings for
τI , θ = κ · σ. Whenever they are kept constant, σ = 1, ω = 0.4 and κ = 3. Lighter
background means higher performance.

(a)

μ[ε] (◦)
ω RANSAC MSAC ours

n=1
ours
n=2

0.60 4.43 3.14 1.51 1.55
0.50 3.03 2.33 1.02 1.07
0.40 2.13 1.81 0.86 0.88
0.20 1.58 1.53 0.67 0.66

μ[t]
ω ours

n=1
ours
n=2

0.60 11.83 10.81
0.50 9.63 8.43
0.40 8.55 7.23
0.20 7.64 6.12

(b)

σ RANSAC MSAC ours
n=1

ours
n=2

2.00 6.76 6.87 3.76 3.78
1.00 2.13 1.81 0.86 0.88
0.50 1.32 0.89 0.39 0.44
0.25 1.05 0.62 0.23 0.29

σ ours
n=1

ours
n=2

2.00 21.02 17.68
1.00 8.55 7.23
0.50 5.65 5.04
0.25 4.60 4.31

(c)

κ RANSAC MSAC ours
n=1

ours
n=2

4.00 2.85 2.09 1.01 1.10
3.00 2.13 1.81 0.86 0.88
2.50 2.03 1.88 0.82 0.81
2.00 2.18 2.18 0.85 0.82
1.00 3.60 3.58 1.82 1.82

κ ours
n=1

ours
n=2

4.00 7.75 6.88
3.00 8.55 7.23
2.50 9.56 7.91
2.00 12.22 10.04
1.00 33.16 27.79

pI = p + N (0, σ) · n. Outliers pO are uniformly generated within a rectangular
area containing the straight line, ensuring that they lie out of a ±3σ stripe along
the line. For every combination (σ, ω), we generate a total of 500 datasets.

Regarding hypothesis generation within the main loop, in all experiments, the
size of the MSS is always s = 2 points. Besides, the number of iterations kmax

is calculated according to Eq. (1), with ρ = 99%. The parameters of φ(ε;Φ),
Φ = (θ, n), are set as follows: θ = κ · σ, as well as τI for RANSAC/MSAC,
considering different values for κ; n = 1 or 2, as indicated for each experiment.
Finally, to compare properly RANSAC, MSAC and the FM-based RANSAC, we
make use of the same sequence of MSS’s to avoid the effect of randomness.

5.2 Results and Discussion

In the following, to measure the estimation accuracy, we make use of the average
μ[ε] of the angle ε between the true and the estimated normal vector; we as well
report on the average number of iterations spent during model refinement μ[t].

On the one hand, Table 1 shows performance results for several outlier ratios
ω and Gaussian noise magnitudes σ. In sight of these results, it is worth noting
that: (1) the estimation accuracy of the FM-based RANSAC is above that of
plain RANSAC and MSAC in all cases; (2) the most substantial differences are
found for higher values of ω and σ; (3) the value of θ in φ does not seem to
be critical, since very similar errors result for κ = 2–4; (4) estimation accuracy
does not differ significantly between n = 1 and n = 2; (5) as for the number of
iterations of the refinement stage t, it tends to be lower for n = 2 with regard to
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Fig. 1. (a) Best and (b) worst estimations found in 500 datasets for FM-based
RANSAC in comparison with MSAC. The true models MΘ∗ are (a) 0.15x − 0.99y +
0.00 = 0 and (b) 0.60x − 0.80y + 0.00 = 0. The noise parameters in both cases are
(σ, ω) = (1, 0.4) and κ = 3. The colour code is as follows: true/estimated model
as gray/black lines, MSAC: inliers/outliers as blue/red dots, FM-based RANSAC:
φ(ε(xi; M̂Θ) ; Φ ) coded in gray scale. (Color figure online)

n = 1, and the difference becomes larger when the magnitude of noise is higher,
i.e. σ = 2; (6) a correct setting of κ also reduces t.

On the other hand, Fig. 1 reports on the best- and the worst-case estimations
for the FM-based RANSAC in comparison with MSAC for 500 datasets; that
is to say, the best case is the case for which FM-based RANSAC outperforms
MSAC the most, and the worst case is the case in which MSAC outperforms
FM-based RANSAC the most. As can be observed, in both cases, data samples
are correctly scored by the FM-based RANSAC, and the estimated and true
models are almost identical even for the worst case.

6 Conclusions

In this paper, we have introduced a new Fuzzy Metric (FM) and proposed a variant
of RANSAC which avoids discriminating between inliers and outliers by means of
the use of such an FM, which provides a compatibility value for each data sample
with respect to the current model. These compatibility values are aggregated next
to score the model against other hypotheses generated inside the main RANSAC
loop. The output model is refined at the latest stage by means of an iterated re-
weighting least-squares scheme making use of the same FM. Experimental results
show good performance for the FM-based RANSAC against other implementa-
tions of RANSAC, actually outperforming its classical counterparts.
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Pedro Lara-Beńıtez(B), Luis Gallego-Ledesma, Manuel Carranza-Garćıa,
and José M. Luna-Romera

Division of Computer Science, University of Sevilla, 41012 Seville, Spain
plbenitez@us.es

Abstract. The attention-based Transformer architecture is earning
increasing popularity for many machine learning tasks. In this study,
we aim to explore the suitability of Transformers for time series fore-
casting, which is a crucial problem in different domains. We perform an
extensive experimental study of the Transformer with different architec-
ture and hyper-parameter configurations over 12 datasets with more than
50,000 time series. The forecasting accuracy and computational efficiency
of Transformers are compared with state-of-the-art deep learning net-
works such as LSTM and CNN. The obtained results demonstrate that
Transformers can outperform traditional recurrent or convolutional mod-
els due to their capacity to capture long-term dependencies, obtaining the
most accurate forecasts in five out of twelve datasets. However, Transform-
ers are generally more difficult to parametrize and show higher variabil-
ity of results. In terms of efficiency, Transformer models proved to be less
competitive in inference time and similar to the LSTM in training time.

Keywords: Time series · Forecasting · Attention · Transformers ·
Deep learning

1 Introduction

Time series forecasting (TSF) is an important problem in machine learning with
many practical applications in different domains such as energy demand [7],
finance [19], or retail industries [5]. In recent years, deep learning (DL) models
have become the most popular approach for TSF [20]. Architectures such as
recurrent or convolutional networks have been specifically designed to deal with
time series data, outperforming traditional statistical methods. DL models can
automatically learn complex patterns without any prior assumptions on the data,
achieving superior forecasting performance and being more scalable.

Long Short-Term Memory (LSTM) and convolutional (CNN) networks are
among the most widely used architectures for TSF over the past years. More
recently, Transformer models are gaining attention as a powerful alternative for
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time series processing. Unlike recurrent models, this architecture does not deal
with the data in sequential order. Transformers can access any part of the history
of the sequence using self-attention mechanisms, which makes them a potentially
better solution to model long-term dependencies in the data.

This work presents an extension of the study conducted in [8], which pro-
vides the most extensive review of traditional deep learning techniques for TSF.
In this study, we evaluate the performance of Transformer models under the
same conditions and compare it with the best performing architectures that
were LSTM and CNN. The experimental study uses 12 datasets with more than
50,000 time series from different fields to evaluate the forecasting precision and
computational efficiency of the models. More than 200 architecture configura-
tions of Transformer models are tested on each dataset, and the suitability of
different hyperparameter choices is analyzed in-depth.

In summary, the main contributions of the study are the following:

– An extensive experimental study on Transformers models for univariate TSF.
– A comparative analysis with traditional state-of-the-art DL models
– A thorough evaluation of different architecture and hyperparameter configu-

rations of attention-based models for TSF.

The rest of the paper is organized as follows. Section 2 presents related stud-
ies. Section 3 describes the methodology and the materials used. Section 4 reports
the experimental results. Section 5 presents the conclusions and future work.

2 Related Work

Deep learning architectures have become the most effective alternative for fore-
casting across related time series, since they allow building accurate global mod-
els that can learn shared features and dynamics. The study presented in [8]
reviews the advantages and limitations of several DL models that have been
proposed for TSF such as Long Short-Term Memory Networks (LSTM), Gated
Recurrent Units (GRU), Echo State Networks (ESN), or Temporal Convolu-
tional Networks (TCN). This study concludes that LSTM and CNNs provide
the most robust performance across all the studied databases.

Very recently, attention-based models have also been applied to TSF with
success. Some works have aimed to improve recurrent DL techniques using atten-
tion. For instance, in [3], an attention mechanism is used to enhance the selec-
tion of relevant timesteps in the past history for an encoder-decoder architecture
using LSTMs. However, the Transformer architecture, which is purely based on
self-attention mechanisms is recently earning more popularity. Transformers were
first presented for machine translation in [21], showing since then an outstanding
capacity to generalize to other tasks such as computer vision or sequence model-
ing. A self-attention model for capturing information across several dimensions
(time, location, and measurements) was proposed in [14] for forecasting over
geo-tagged time series. Later, an enhanced version of Transformer was presented
in [10], which introduced causal convolution in the self-attention module in order
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to make the model more sensitive to the local context. Furthermore, they also
provide some modifications to reduce the memory cost of Transformers, mak-
ing it more feasible to deal with long time series. A novel Temporal Fusion
Transformer was proposed in [12], combining recurrent and attention layers to
learn temporal dependencies at different scales over several real-world datasets.
A deep Transformer model for influenza-like illness forecasting is presented in
[23], which outperforms LSTM and Seq2Seq models. The self-attention of Trans-
formers showed better forecasting performance than the linear attention used in
Seq2Seq architectures.

3 Materials and Methods

This section describes the Transformer architecture for time series forecasting
and the experimental setup. For reproducibility purposes, the complete imple-
mentation of the experiments is published at [9].

3.1 Attention-Based Deep Neural Network

The Transformer is a deep learning architecture based on attention mechanisms.
The Scaled Dot-Product Attention algorithm, introduced in [21], aimed to give
the models the capacity to focus on the most relevant elements of long sequences.
This is achieved by computing a weighted sum of the values (V ), where the weights
are computed applying the softmax function to the dot products of the queries (Q)
with the keys (K), scaled by the square root of the dimension of the keys (dk).

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

A variant of this algorithm, called Multi-Head attention, is used in the Trans-
former. This version applies h learnable linear projections to the queries, keys,
and values before applying attention individually over each projection. Then,
the results of each attention are concatenated before the last linear projection.

The original Transformer consisted of an encoder and a decoder. However, in
this study, we consider a decoder-only architecture introduced in recent works
as a more problem-agnostic model [10]. As can be seen in Fig. 1, the Trans-
former consists of several stacked decoder blocks that pass the encoding from
the previous decoder as the input to the following blocks.

Each decoder block is composed of a first masked self-attention layer followed
by a multi-head attention layer and a feed-forward block. Furthermore, all the
sub-layers use a residual connection followed by dropout and batch normalization
layers, to improve the capacity of generalization of the network [13]. In addition,
to model the sequential information of the time series, a positional encoded
vector, generated with sine and cosine functions, is added to the input sequences.

The network is fed with a time series of fixed size (forecast horizon) and
the target output is the same sequence right shifted. In order to prevent the
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Fig. 1. Transformer architecture. In this example, the past history and forecasting
horizon are 6 and 4 respectively.

model from paying attention to values in the future, a mask is used before
the softmax function. The mask sets all upper triangular elements to −∞ so
that future information has no importance in the attention layer. Hence, the
network will learn to predict the next value of the input sequence based only on
the previous values. Afterwards, the multi-head attention is performed over the
previous past history elements of the sequence.

For multi-step-ahead forecasting problems, the inference is carried out by
calling the model iteratively forecast horizon times. Hence, the last prediction
is included in the input to compute the next value. As this method propagates the
error along the prediction sequence, to help model convergence during training,
the teacher forcing scheme [22] is used, including the actual value at each new
prediction.

3.2 Experimental Study

In this subsection, we present the design of the experimental study carried out
to evaluate the Transformer architecture. The results obtained from the dif-
ferent architecture configurations over 12 datasets are analyzed and compared
statistically with the state-of-the-art deep learning models.
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Table 1. Description of datasets. Columns N, FH, M and m refer to number of time
series, forecast horizon, maximum length and minimum length respectively.

# Datasets N FH M m Description Ref.

1 CIF2016o12 57 12 108 48 Financial and artificially generated [24]

2 CIF2016o6 15 6 69 22

3 ExchangeRate 8 6 7588 7588 Exchange rates of 8 countries [6]

4 M3 1428 18 126 48 Monthly time series of different domains [15]

5 M4 48000 18 2794 42 [16]

6 NN5 111 56 735 735 Daily ATMs cash withdrawals [17]

7 SolarEnergy 137 6 52560 52560 Solar power production records [18]

8 Tourism 336 24 309 67 Tourism data from Australia, Hong
Kong, and New Zealand

[1]

9 Traffic 862 24 17544 17544 Occupancy rates of California
Department of Transportation

[2]

10 Traffic-metr-la 207 12 34272 34272 Traffic speed of the highways of Los
Angeles and the Bay area

[11]

11 Traffic-perms-bay 325 12 52116 52116

12 WikiWebTraffic 997 59 550 550 Web traffic of Wikipedia pages [4]

Table 2. Parameter grid search.

(a) Model architecture parameters.

Transformer LSTM CNN

dmodel 16, 128, 256 Units 32, 64, 128 Filters 16, 32, 64

Layers 2, 3, 4 Layers 1, 2, 4 Layers 1, 2, 4

h 4, 8 Return Seq True, False Pool size 0, 2

(b) Training parameters.

Past history 1.25, 2, 3

Batch size 32, 64

Epochs 5

Optimizer Adam

Learning rate Same as [21]

Normalization minmax, zscore

3.2.1 Datasets
For the experimental study, we have used the same 12 publicly available datasets
selected in [8], each of them with multiple related time series. These datasets,
described in Table 1, present a wide diversity of characteristics in terms of length,
domains, complexity, and seasonality.

3.2.2 Model Parametrization
This study aims to evaluate the performance of the Transformer model for TSF
problems, in terms of both accuracy and efficiency. To this end, we have con-
ducted an exhaustive grid search for both the architecture and training hyper-
parameters. As a result, a total of 216 Transformer models with different con-
figurations have been trained and evaluated over each dataset. Furthermore, we
compare the Transformer with the LSTM and CNN networks, as they achieved
the best results in the previous study [8].

Table 2 presents the parameter search carried out for each architecture. For
the Transformer, the dimension of the model (dmodel), the number of stacked
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decoders (layers), and the number of linear projections in the multi-head atten-
tion (h) are fine-tuned. The possible values have been chosen based on what is
commonly used in the literature, while also ensuring a fair comparison between
architectures. Therefore, the same training hyper-parameters as in [8] are used,
except for the learning rate, which is varied along the training process as indi-
cated in the original study [21].

3.2.3 Evaluation Procedure
For evaluating the models, the last part of each individual time series (forecast
horizon) is used as the test set, while the rest is used as training data. The same
preprocessing steps as in [8] are applied, using the Multi-Input Multi-Output
(MIMO) strategy to transform the time series into training instances that can
feed the DL models.

This study analyses the best results obtained with each type of network,
as well as the distribution of results of the different parameter configurations.
The efficiency of the models is compared in terms of both training and infer-
ence time. The weighted absolute percentage error (WAPE) and the mean
absolute error (MAE) metrics are used to measure the predictive performance:

WAPE =
1
n

∑n
i=1 |yi − oi|

1
n

∑n
i=1 yi

×100% (2) MAE =
1
n

n∑

i=1

|yi − oi|, (3)

With the obtained results, a statistical analysis is carried out. Hommel’s post-
hoc analysis is conducted to find if there are significant differences between the
performance of the models. Furthermore, we perform a paired Wilcoxon signed-
rank test in order to study the statistical differences among the architecture
configurations of each type of model.

4 Results and Discussion

This section presents the experimental results, which have been carried out using
a computer with an NVIDIA RTX 2080 Ti 12GB GPU and an Intel i7-8700 CPU.
An appendix with the full report of the results can be found at [9].

4.1 Forecasting Accuracy

Table 3 reports the best WAPE and MAE results obtained by the Transformer,
LSTM, and CNN networks for each time series dataset. Overall, the three archi-
tectures achieved similar results. Specifically, the LSTM lead the ranking 5 out
of 12 datasets for both metrics, the Transformer achieves the top results 4 times,
while the CNN wins only in 3 datasets for each metrics. It is important to men-
tion that Transformers obtain the most accurate predictions in popular forecast-
ing competitions such as M3 or M4, which are also the two largest datasets.
On average, the LSTM obtains the first position in the ranking, closely followed
by the Transformer. In fact, Hommel’s post-hoc analysis carried out determines
that there are no significant differences between the Transformer and the LSTM,
while they are both significantly better than the CNN.
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Table 3. Best WAPE and MAE results obtained with each type of architecture for all
datasets.

Datasets WAPE MAE

Transformer LSTM CNN Transformer LSTM CNN

1 CIF2016o12 11.207 12.475 12.479 12,564.18 11,732.31 12,762.73

2 CIF2016o6 16.157 15.352 17.143 2,182,435.2 3,636,929.7 2,833,131.5

3 ExchangeRate 0.303 0.300 0.335 0.0021 0.0019 0.0020

4 M3 12.490 15.282 15.612 659.18 700.25 709.44

5 M4 13.587 14.281 14.256 588.38 597.54 593.71

6 NN5 18.637 18.589 18.852 3.570 3.538 3.572

7 SolarEnergy 13.550 12.452 11.717 2.246 2.066 1.977

8 Tourism 18.68 19.081 18.497 2,202.11 2,280.09 1,969.58

9 Traffic 33.541 31.960 34.406 0.0121 0.0114 0.0124

10 Traffic-metr-la 3.418 3.359 3.337 2.029 2.009 1.991

11 Traffic-perms-bay 1.333 1.314 1.433 0.885 0.870 0.946

12 WikiWebTraffic 46.110 46.477 46.914 11.796 12.063 12.106

Mean ranking 1.833 1.750 2.416 1.916 1.833 2.250

Fig. 2. Distribution of WAPE results obtained by each model architecture for each
dataset.

Table 4. Architecture configuration analisys.

(a) Training hyper-parameters.

LSTM CNN TR

Batch size 32** 64** =

Past History factor 1.25** 1.25** 1.25**

Normalization Method minmax** zscore** =

(b) Model architecture.

TR

Layers 2**, 3*

dmodel 16**, 128*

h 4*

Figure 2 presents the distributions of WAPE obtained by each model for
each dataset. In general, we can observe that the Transformer is more sensitive
to the model parametrization than the other architectures, as it presents a wider
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distribution. In order to analyze the results obtained with the different architec-
ture parameters and training hyper-parameters, we use the Wilcoxon statistical
test. The results of this test are reported in Table 4, where ** indicates that it
is the best value with a significant statistical difference compared to the rest
(p < 0.05), the * indicates that there is a certain tendency suggesting that it is
better to choose that parameter (p < 0.2), and = means there are no significant
differences between choosing any of the possible parameters.

4.2 Computation Time

We have also evaluated the different architectures in terms of computational effi-
ciency. Figure 3 reports the distribution of training and inference time measured
for each architecture. It is worth noting that the Transformer differs significantly
from the other models in terms of inference time. This is due to the particular-
ity of the Transformer architecture, which iterates generating single-step pre-
dictions for multi-step-ahead forecasting problems. Therefore, while CNN and
LSTM compute a multiple steps prediction with a single call, the transformer
will have to be called several times, specifically forecasting horizon times. This
behaviour is illustrated in Fig. 4, where we can see how the inference time is
directly proportional to the prediction horizon. More precisely, on average, the
transformer generates a single prediction in 3.2 milliseconds. However, as it has
to be called for each prediction horizon, the inference time increases to almost
200 when the horizon reaches 59 time steps.

Fig. 3. Distribution of training and inference
time by instance measured in milliseconds.

Fig. 4. Inference time of the trans-
former versus forecasting horizon.

In terms of training time, the Transformer is faster than the LSTM but
not as fast as the CNN. The results show that in terms of the speed/accuracy
trade-off, the CNN is the best one in terms of computation efficiency but with
lower accuracy while, LSTM and Transformer behave similarly, achieving good
forecasting accuracy but having a significantly slower training process compared
to the CNN.
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5 Conclusions

In this paper, we evaluated the performance of the Transformer architecture for
time series forecasting in terms of accuracy and computational efficiency. An
extensive experimental study over 12 datasets and different architecture config-
urations was carried out. The results are compared with long-short term memory
(LSTM) and convolutional (CNN) networks, which are considered the state of
the art in the field. The conclusion obtained from the analysis of the results of
these experiments are summarized below:

– The Transformer architecture achieves state-of-the-art forecasting accuracy,
obtaining similar results to the LSTM and outperforming CNNs.

– Transformers provide a better accuracy/speed trade-off than LSTM in train-
ing time. However, the Transformer training process is significantly slower
compared to the CNN.

– The inference time of the Transformer architecture is severely influenced by
the single-step prediction scheme used, which makes it slower than the other
architectures.

– Finding the best architecture configuration for Transformers is a complex
task as it presents a wider WAPE distribution than the other models.

In summary, the conclusions obtained from analyzing the results establish
the Transformer architecture at the level of the state-of-the-art deep learning
techniques for univariate time series forecasting. In future studies, alternative
architecture variations such as convolutional attention or sparse attention should
be considered. Another future study should work on non-auto-regressive models
to reduce the inference time of the Transformers. Furthermore, we aim to study
the use of multi-dimensional Transformers for dealing with spatio-temporal grid
data.
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Abstract. This article presents a novel method for generating multiple
species of organisms on virtual environments, with interrelated behaviors.
The proposed system (AGIO) strives to keep a balance between the explo-
ration of diverse species, the evolution of interesting and connected behav-
iors, and the control of the user over the generated organisms. Experimen-
tal results of a C++ implementation proves that AGIO is capable of gener-
ating different species and basic animal conducts, while keeping behaviors
of the organisms interrelated. Multiple relations between different species
were observed on the generated organisms. Furthermore, the performance
of the organisms was comparable to that of a human player.

Keywords: Neuroevolution · A-Life · Video games

1 Introduction

Many articles in the field of artificial life (A-Life) have focused on how artificial
systems can mimic behaviors found on natural living systems [9]. However, few
proposals have focused on the applicability of those methods into industry sectors
that deal with interactive simulations, such as the video game industry, where
there are design restrictions imposed on the system.

Background agents with simple behaviors (e.g., animals), are commonly used
to improve player experience on video games. These agents demand considerable
work to be designed, modeled, and programmed. Specific techniques are needed
to handle the animals behavior or graphical representation [7]. A-Life models are
able to generate many organisms with rich behaviors [12], but they do not usu-
ally provide a way to control the resulting organisms, making their use into video
games impractical. A system that combines an A-Life model with a control mech-
anism would be useful to reduce the work required to create background agents.

This article proposes Automatic Generation of Interrelated Organisms
(AGIO), a framework for generating diverse organisms with interrelated behav-
iors using Evolutionary Algorithms (EAs) and Artificial neural networks (ANNs)
along with a morphology model that allows the user to restrict and control the
generated organisms. The main contributions include: i) a system that can gen-
erate tens of different species with interrelated behaviors, while providing the
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user with control over the generated organisms, ii) a user controllable morphol-
ogy model, and iii) the decoupling of the organisms generation from the in-world
representation.

2 Related Works

Animal generation within the A-Life has been based on the framework by
Sims [12]. Creatures were defined as a hierarchy of rigid joints with ANNs used
to control the forces applied on each joint, and for communication. The sys-
tem was able to generate organisms with different morphological structures and
behaviors, capable of different tasks such as swimming, running, jumping, and
following a light source.

The ERO framework [8] extended Sims’s work by using historical markers for
a less destructive recombination. ERO proved to be a powerful tool for A-Life
research [4,11], but it does not allow controlling the morphology or behavior of
the organisms. Furthermore, ERO is tightly coupled to scenarios with a specific
morphology semantic and physics motor, thus limiting its applicability on general
interactive simulations, like video games, where a system design is provided
beforehand.

Deep reinforcement learning has been applied for agent control in video
games, even outperforming humans in complex games [2,14]. While useful, these
models require a significantly larger computation power than the available on
current consumer hardware. Moreover, they are commonly used from the point
of view of the player, which is not compatible with background agents [3].

AGIO provides a new framework for organism generation that offers more
control on both morphology and behaviour of organisms, thus making it more
suitable to be used on interactive simulations with predetermined restrictions.

3 Automatic Generation of Interrelated Organisms

This section describes the proposed method for organism and behavior
generation.

3.1 Overall Description

AGIO was conceived to provide control over the generated organisms by applying
a restrictive morphology model. The user is responsible of defining the actions
the organisms can perform, the information (sensors) they have, and how those
actions and sensors can combine.

Unlike ERO and other related algorithms, AGIO decouples the logical rep-
resentation of the organisms from the in-world representation. Organisms are
abstractly defined as a set of components and parameters, with the in-world
representation left to the user. The action policy for the organisms is stochastic,
to encourage exploration [6]. The probabilities of each action are computed from
the sensors values by a single ANN on each organism.
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The NEAT neuroevolutionary framework [13] is used to generate the topol-
ogy and train the ANNs, defined as an arbitrary weighted directed graph with
input, output and internal nodes. NEAT includes a speciation model that pre-
serves innovation on new ANNs and the use of historical markers to preserve
semantic during recombination. Each species on AGIO has an associated NEAT
population which evolves the networks for the organisms of that species. NEAT
was chosen as optimizer for the proposed model mainly due to four reasons: i)
it has proved to be useful on this context [4,5,8], ii) it does not require hand-
crafting ANN architectures, iii) it can generate recurrent ANNs, and iv) it finds
small networks, leading to low memory consumption and decision time.

3.2 Representation: Morphology and Parameters

In AGIO, a species is a set of representations of solutions that share a morphol-
ogy and interact in the evolutionary process. Organisms are represented by a
morphology, a set of numerical values (parameters) and an ANN. Parameters
are either required (they exist on all organisms), or optional.

Actions and sensors of organisms are aggregated into components, which are
joined into different groups. Groups have a minimum and maximum number of
components to pick when creating the organisms. The morphology is defined as a
set of components, determining the actions and sensors each organism has. In turn,
organism parameters are continuous numeric values over a user-defined range,
evolved alongside the behavior. Parameters allow to model arbitrary features of
the organisms, such as movement speed or skin hue. They are incorporated into a
NEAT genome, so that behavior and parameter evolution remains coupled.

Figure 1 presents an example representation, including its ANN, for a possible
jumping herbivore organism with a parameter defining the jump distance.

ANNParametersMorphology

«Component»
Jumping

«Component»
Movement

«Component»
Plant Eating

«Parameter»
Jump Distance

Value = 2«Component»
Plants Sensor

Fig. 1. Example organism representation. On the ANN squares are sensors (inputs),
circles are hidden nodes and triangles actions (outputs)

3.3 Evolutionary Operators

Initialization. The number of species evolved is defined by the population size and
the minimum number of organisms per species. The initialization operator gener-
ates morphologies by randomly selecting components from groups. Each morphol-
ogy corresponds to one different species. A NEAT population (population mem-
bers are named individuals, to differentiate them from AGIO organisms) is created
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for each species, using the standard NEAT initialization. Optional parameters are
included with 0.5 probability according to a uniform distribution. Both required
and optional parameters are initialized with a random value drawn from a uniform
distribution on the corresponding range. Then, AGIO organisms of each species
are created by pairing a morphology with a random NEAT individual, which con-
tains the ANN of the organism and the parameters values.

Selection. The selection operator applied is Stochastic Universal Sampling, which
provides an appropriate selection pressure to guide the search.

Recombination. The recombination operator is a variant of the semantic-driven
operator applied in NEAT, extended to handle organism parameters. A standard
arithmetic crossover is applied (i.e., the offspring value is the average of the values
from both parents) for all parameters of the second parent that are also present
in the first. Crossover is only performed within each AGIO species.

Mutation. A traditional mutation operator based on modifying existing connec-
tions or adding a new structure to the underlying ANN is applied. The muta-
tion operator in NEAT was extended to consider parameters. Two mutations were
implemented, applied equiprobably: i) destructive mutation, which randomly sets
a parameter value according to a uniform distribution in the parameter range,
assigning the individual a new historical marker; and ii)Gaussianmutation, which
adds to the parameter a random value drawn from a Gaussian distribution N(0, σ)
multiplied by the length of the parameter range. The sum is restricted to the cor-
responding parameter range. Gaussian mutation does not modify markers.

Evolution Model, Replacement, and Stopping Criterion. A traditional genera-
tional evolution model is applied: after the fitness evaluation process, all NEAT
populations advance to their next generation; new NEAT individuals are gen-
erated, which replace the ones from the previous generation. AGIO organisms
are assigned randomly selected NEAT individuals and the iterative evolutionary
process continues for a fixed number of generations.

3.4 Fitness Evaluation

Organisms are evaluated on batches randomly selected from the AGIO popula-
tion. The size of the batches is equal to the simulation size, that is, the number
of organisms in the simulation, which is separated from the population size. This
separation is needed because the simulation size can affect the expected behavior
(i.e., the competition between organisms) but the population size is a param-
eter to be adjusted for the evolutionary search and as such should not affect
the expected behavior. A user defined simulation function is executed multiple
times for each batch. The returned fitness value is the average of the fitness
values obtained on each simulation.

3.5 Species Exploration

Evolving all possible species simultaneously is not feasible, since there is an arbi-
trary number of possible species as components and groups are user defined.
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Therefore, a fixed number of species is evolved at the same time, replacing
as needed.

Species to be replaced are selected considering their evolutionary progress
(pt), defined by Eq. 1, where t is the number of generations since the creation of
the species, f̂t is the average fitness of the k top individuals of the species, and
st is a double smoothed average fitness defined by Eq. 2, in order to reduce the
influence of random variations caused by differences in the evaluation from one
generation to the next (λ ∈ [0, 1] is the smoothing factor).

p0 = 0; pt = (1 − αt) · pt−1 + αt
st − st−1

st−1
(1)

s0 = f̂0; st = (1 − αt) · st−1 + αt · f̂t, where αt =
λ · t + 1
t + 1

(2)

Replacement occurs when the species progress is below a threshold (β) for a
certain number of consecutive generations. When replaced, the top k individuals
of the species for the current generation, and the best individual since t = 0, are
stored into a registry [10]. Then, the initialization operator is applied, trying to
create a new species. If a new species is created, new AGIO organisms are gen-
erated for that species. Otherwise the current species is considered as if it where
new (species reset) for the following process. Then, a new NEAT population is
created, but instead of starting from a default ANN, the registry is queried for
entries corresponding to the new species, and the ANNs of the best individuals
are used as initialization if found. After creating the new NEAT population, the
AGIO organisms are reassigned random NEAT individuals.

3.6 Output

The output consists on the registry entries for all found species, where each
entry contains a set of fit organisms, as described on Sect. 3.5. Only the ANN
and parameters values are stored for each organism, as the morphology (set of
selected components) is implicitly defined by the species it belongs to. During
evolution the ANN are defined by the reference NEAT implementation, but to
improve performance and encapsulate the algorithm ANNs for the final organ-
isms are converted to a directed graph stored on a linear array, where each node
has an array of incoming and outgoing connections which index the linear node
array, alongside storing the connection weight. The activation function is an
exponential sigmoid as in NEAT. Activation values are propagated from incom-
ing to outgoing connections, starting with the input (sensor) nodes, until all the
outputs have received at least one incoming value. This optimized implementa-
tion is functionally equivalent to the internal NEAT representation, so that the
evolved weights can be used directly.

4 Experimental Evaluation

This section describes the experiments performed to evaluate AGIO.
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4.1 Methodology and Experiments

Overall Description. Three experiments were performed, evaluating the capabil-
ities of AGIO to generate basic animal behaviors, keep species interrelated, and
compare to a human player.

Two test systems were considered over a cyclic discrete 2D environment and
a set of components groups. The simulations performed 300 steps. On each step,
each organism decided an action to perform. Fifty independent executions of
each simulation were executed on a C++ implementation with multi-threaded
population evaluation running on a Razer Blade 15 (2019). Source code of the
implementation and the complete results of the experimental analysis is available
on the project website [1].

Basic Animal Behavior. Two species (prey-predator) were evolved in a square
of 55 × 55 cells. One species mimics herbivores, having an action to eat plants
(uniformly distributed in the environment, with a 0.01 probability of occurrence
in each cell). The other species mimics carnivores, with an action to eat herbi-
vores. 20 organisms were simulated (10 of each species). Two sensors report the
distance to the nearest plant or herbivore on each axis. The eat action is only
valid if the L1 norm distance to the nearest plant is 1 or less for herbivores, or
2 or less for carnivores, otherwise it is considered a failed action and ignored.

On each simulation, the fitness of all individuals started at 0 and increased
by 1 for each successful eat action. Two relevant metrics were studied for both
species: the number of times the organisms fed and the proportion of successful
feeding actions with respect to the attempted feeding actions.

Species Interrelations. The capability of AGIO to generate interrelations between
species was evaluated on a complex scenario with 50 organisms of up to 24 species
(herbivores, carnivores, and omnivores). Optional components, such as detecting
competitors or jumping (according to a range parameter) were also included.

The fitness function was computed as the accumulated value of the health of
organisms. Health started at a fixed positive value; reduced with failed feeding
actions, and increased with successful ones. When health reached 0, the organism
was considered dead, unable to perform actions and assigned a low fitness value. A
dead organism was not retired from the simulation until it was eaten by another.

The experiment consisted on obtaining a baseline fitness for each species
and comparing it to the fitness when another species was not present on the
simulation. If those species are related, then the fitness values should vary. First
100 simulations were executed, recording the fitness values of each species. Then
for each species 100 simulations were performed removing that species from the
simulation. The species (namely, A and B) were analysed in a pairwise fashion.
The baseline fitness values of A where compared to the fitness values of A when
B was not on the simulation using a two sample Kolmogorov–Smirnov test. A
was said to be related with B if the test p-value was 0.05 or less.

Simulations used an environment of 50 × 32 cells of three types: ground (with
no special effect); water, which reduce the health of organisms with the walker
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component, but not those with a walker/swimmer component; and wall cells,
which block the movement of the organisms, but can be jumped by organisms
with a jump component. Five scenarios were considered in the environment,
varying the number and location of water and wall cells.

Comparison with a Human Player. Since the organisms generated by AGIO are
expected to interact with players in the context of video games, an experiment
was developed where a person interacted by controlling one of the organisms
from a randomly selected omnivore species evolved on the complex system.

Two tests were carried out, changing the amount of information provided to
the player. On the first test, only the numerical values of the sensors were shown
and the player was asked to decide an action to execute by typing the index. The
second test built on the first, adding a short explanatory text for the displayed
information. The current fitness and ranking inside the species individuals was
shown on both to provide the player with a guideline of his performance.

4.2 Parameters Setting

Parameters setting experiments were performed to adjust AGIO parameters,
while default values were used for NEAT parameters [13]. A sensitivity anal-
ysis detected the parameters that most impacted the number of species and
mean fitness: the minimum number of organisms per species (me), the smooth-
ing parameter λ, and the progress threshold β. These three paramenters and two
relevant parameters of the evolutionary search, the population size as a factor of
the simulation size (pop mul) and the generations count (#gen), were adjusted
by testing all possible combinations of three candidate values per parameter.
Two evaluation metrics were considered: the number of species found and the
(normalized) fitness. The best results were obtained using the configuration
me = 50, λ = 0.025, β = 0.001, pop mul = 30, #gen = 400.

4.3 Results

Basic Animal Behavior. Figure 2 presents the number of successful feeding actions
for each species using AGIO (black) and the proportion of successful feeding
actions (red). Vertical dashed blue lines mark the species reset due to stagnancy.

Carnivores showed a steep improvement on successful feeding actions and
proportion during the first 100 generations, and then became stagnant which
caused several resets on subsequent generations. Herbivores showed a steep
improvement on successful feeding actions, reaching a mean of 12 on the first
30 generations, with no significant progress on the following generations. While
species reset on the carnivores provided no improvement, the herbivores reset
on generation 224 was followed by a quick and significant improvement on the
successful actions proportion.

Regarding the computational efficiency, the execution of the experiment took
729 s. Overall, this experiment validated the capability of AGIO to generate
organisms with basic animal behavior and showed that the reset mechanism can
aid by efficiently finding new and better behaviors.
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Fig. 2. Feeding actions for organisms of each species ( count, proportion) (Color
figure online)

Species Interrelations. Table 1 reports species considered to be related and the
mean fitness difference (Δf ) expressed as a percentage of the baseline. Experi-
ment execution took 2986 s.

Table 1. Relations between species and mean fitness difference.

Species 1 Species 2 Δf Species 1 Species 2 Δf

Id Type Id Type Id Type Id Type

16 Carnivore 0 Herbivore −11.99% 18 Omnivore 10 Herbivore −11.48%

16 Carnivore 2 Omnivore −12.69% 7 Herbivore 11 Carnivore −4.47%

0 Herbivore 6 Carnivore 10.18% 18 Omnivore 13 Herbivore −7.80%

16 Carnivore 6 Carnivore −11.83% 0 Herbivore 14 Carnivore 10.71%

15 Carnivore 7 Herbivore −6.91% 16 Carnivore 15 Carnivore −13.87%

2 Omnivore 8 Omnivore 5.18% 2 Omnivore 16 Carnivore 6.66%

13 Herbivore 9 Omnivore −5.50% 15 Carnivore 16 Carnivore −2.75%

1 Omnivore 10 Herbivore −4.27% 7 Herbivore 17 Carnivore 5.29%

12 Omnivore 10 Herbivore 1.56% 13 Herbivore 17 Carnivore −6.80%

16 Carnivore 10 Herbivore −10.89% 16 Carnivore 19 Carnivore −9.87%

Multiple relations were observed, including long chains of relations (16 →
15 → 7 → 17), transitive relations (16 → 0 → 6, 16 → 6) and symmetric
relations (15 → 16, 16 → 15). Herbivores presenting relations to other herbivores
or being negatively impacted by the absence of carnivores and omnivores shows
that relations other than direct prey-predator dependencies were formed too.

This experiment demonstrated that AGIO is able to generate species having
interrelated behaviors and can present complex graphs of relations.

Human Comparison. Figure 3 presents the fitness of the organism controlled by
the player and three randomly selected organisms of the same species controlled
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by AGIO. Graphs (a) and (b) correspond to different species meaning the fitness
values are not comparable.

Fig. 3. Random AGIO organisms ( ) vs. player controlled organism ( )

The first experiment consisted in only giving the player the numeric val-
ues of the sensors. Under this condition, the player showed worse performance
than the AGIO organisms, as shown on Fig. 3a. The best organism generated
by AGIO reached a fitness of 656, compared to 595 of the best organism by
the player. Adding the descriptions notably improved the player performance
(Fig. 3b), allowing him to quickly surpass all AGIO organisms. In that case, the
human player obtained a 10% advantage over the best of the selected organisms
at the end of the simulation.

The results of the experiment that compared the proposed method with a
human player showed that the behavior of the individuals generated by AGIO
compares favorably to what a human player can achieve when presented with
similar conditions.

5 Conclusions and Future Work

This article presented AGIO, a new method for multiple agent generation on
interactive simulations. The proposed method builds upon previous ideas from
evolutionary approaches for A-Life by defining a general algorithm that pro-
vides user control over the generated organisms. Furthermore, AGIO does not
depend on the in-world representation and is able to develop relations between
the organisms. These features differentiates AGIO from previous evolutionary
methods in the related literature.

Experimental results showed AGIO to be capable of generating tens of diverse
species with basic animal behavior and a complex graph of relations between
them. The behavior of the generated organisms proved to be comparable to the
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one achieved by a human player, an important accomplishment considering that
player interaction is a critical component for interactive simulations, like the
ones needed in video games.

The performance of the system proved to be adequate for its use on real time
simulations executing on consumer hardware such as the one employed for the
experimental evaluation.

The main lines for future work include extending the proposed framework
for considering continuous action spaces, exploring alternative neuroevolution
algorithms to improve the generated ANNs, and dynamically tuning algorithmic
parameters per species.
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Abstract. This paper presents new algorithms to solve Multi-Objective Markov
Decision Processes (MOMDPs). Namely, we present Multi-objective Dynamic
Programming variants of Value Iteration such that the values for every state are
updated in some heuristic order. The performance of these algorithms is evaluated
applying them to benchmark problems with two and three objectives.

1 Introduction

Multi-objective Markov decision processes (MOMDPs) are Markov decision processes
in which rewards given to the agent are not scalar values, but numerical vectors. In
recent years there has been a growing interest in considering theory and applications of
multi-objective Markov decision processes and multi-objective Reinforcement Learn-
ing, e.g. see [6], and [3]. In this paper we define and study several algorithms for finding
solutions to MOMDP problems with finite and discrete state and action spaces. These
algorithms are multi-objective variants of the Dynamic Programming vector iteration
procedure, differing in the order in which state vectors are updated.

The paper is structured as follows: in Sect. 2 necessary concepts about MOMDPs,
Dynamic Programming and (single-objective) Value Iteration are summary presented.
Then we describe the new algorithms (Sect. 3) and present and discuss the results
obtained in a set of experiments (Sect. 4). Finally some conclusions are drawn.

2 Antecedents

A MOMDP is defined by a tuple (S,A, p, r, γ), where: S is a finite set of states; A(s)
is the finite set of actions available at s ∈ S; p is a probability distribution such that
p(s, a, s′) is the probability of reaching state s′ immediately after taking action a in state
s; r is a function such that r(s, a, s′) ∈ R

q is the reward obtained after taking action a
in state s and immediately transitioning to state s′; and γ ∈ (0, 1] denotes the current
value of future rewards. We consider MOMDPs with a set of goal states Sgoal ⊂ S.
Goal states have no actions available. We will also consider MOMDPs with an initial
state sinit. The agent is assumed to begin the interaction starting from this state.
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A MOMDP can model the interaction of an agent with an environment at discrete
time steps. The goal is to maximize the expected accumulated (additive) discounted
reward (EADR) over time. A policy π determines the action to take in state s at time
step i. Let random variables St, Rt denote the state, and the vector reward received at
time step t. The vector value vπ is the EADR starting at state s and applying policy π,

vπ(s) = E

[ ∞∑
k=0

γkRt+k+1 | St = s
]

(1)

Vector values define a partial order dominance relation. Given two vectors u =
(u1, . . . uq),v = (v1, . . . vq), we define the following relations: (a) Dominates or
equals, u � v iff for all i, ui ≥ vi; (b) Dominates, u � v iff u � v and u �= v; Given
a set of vectors X ⊂ R

q, we define the subset of nondominated, or Pareto-optimal,
vectors as ND(X) = {u ∈ X | �v ∈ X, v � u}. The solution to a MOMDP is given
by the V(s) sets of all states, which denote the values of all nondominated policies.

The solution of a scalar MDP can be computed by Dynamic Programming meth-
ods like Value Iteration (VI). The core of VI is the so called Bellman update, i.e., the
computation of a new value Vt(s) for a state s from the old values of neighbor states,

Vt(s) = maxa∈A[
∑
s′

P (s′|a, s)[R(s′|a, s) + γVt−1(s′)]]. (2)

The residual Res(s) is defined as |Vt(s)−Vt−1(s)|. In basic VI, updates are carried
out synchronously, i.e., considering all states in some arbitrary order and updating all of
them with the values of the prior iteration. This has some potential inefficiencies, and
several asynchronous variants have been proposed [5] and compared experimentally [2].
In these variants: (i) subscript t refers to steps of execution, not complete updates; and
(ii) some non arbitrary order of updating is defined, in the hope of achieving better effi-
ciency. For instance, in Forwards VI a depth-first search of the state space is performed
beginning from the start state sinit. On the contrary, in Backwards VI the state space is
updated beginning from the goal states. Finally, in Improved Prioritized Sweeping VI
state updates are ordered according to the ratio of their residuals to the new values.

Considering again MOMDP, VI was adapted by White to the multi-objective setting
[8] and proved to converge. The main modification is due to the fact that for each state
s′, V(s′) is a set of vector values, so the update for V(s′) is now a set arising from all
suitable combinations of vectors of V(s′

1),. . . , V(s′
n) where s′

1, . . . , s
′
n are the states

reachable by a certain action a. More concretely, let us denote by T (a) the Cartesian
product V(s′

1)× . . .×V(s′
n). Let σ = (σ1, . . . , σn) ∈ T (s) be a tuple of vector values.

We will denote the updated value by WBB(s, V) where s is the updated state, and V is
the set of vectors giving the values V(s′) of the neighboring states. Then

WBB(s, V) = ND[∪a∈A ∪σ∈T (a)

∑
i

P (si|a, s)[R(si|a, s) + γσi)]]. (3)

Additionally, since the algorithm approximates the solution, a convergence check is
needed to avoid infinite computations. This could be just the number of steps done, or
perhaps some function of the residuals. Algorithm 1 is the basic VI for MOMDPs.
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Algorithm 1. Synchronous Multi-Objective Vector Iteration Algorithm
Output V, the set of non-dominated vector values of every state

1: Initialize V (mandatory V(s) = {0} ∀s ∈ Sgoal)
2: converged = False
3: while not converged do
4: Vold ← V

5: for ∀ s ∈ S \ Sgoal do
6: V(s) = WBB(s, Vold)
7: end for
8: converged = checkConvergence()
9: end while

3 Algorithms

In this section we will present the three algorithms defined in this research. These algo-
rithms are the result of adapting the idea of asynchronous updating to the basic VI
(Algorithm 1).

The first algorithm is Forwards Multi-Objective Vector Iteration Algorithm or FWVI
(Algorithm 2). After initialization, the main loop (lines 5–9) is executed while the con-
vergence condition is not satisfied. In each execution of the loop the agent starts at the
initial state sinit and throws a depth-first forwards search (procedure DFS) in the graph
(line 7). DFS first updates the visited value of the state passed as argument (line 11) and
then makes further calls to DFS with all possible successor states such that their visited
value is smaller that the current iteration count (lines 12–15), i.e. each reachable state
is visited by DFS only once at each iteration. When finally DFS reaches a goal state,
nothing needs to be done and recursively returns to its callers. Otherwise, after all suc-
cessors of state s have been parsed the update rule given by procedure WBB is executed
for s (line 17) before returning. Notice that WBB has the current updated values V as
argument.

Given a pair of states s, s′, if there exists an action a such that P (s′|a, s) > 0,
then FWVI considers that s′ is a successor of s and s′ is taken into account in line
12. Notice that in the single objective version of Forwards VI the successors taken into
account are just those connected by the action determined by a greedy policy. However,
that restriction makes little sense in the multi-objective case, where there are many
nondominated values and hence many possible “greedy” policies. We also assume goal
nodes have no successors.

The second algorithm is Backwards Multi-Objective Vector Iteration Algorithm or
BWVI (Algorithm 3). After initialization, the main loop (lines 5–21) is executed while
the convergence condition is not satisfied. In each execution of the loop, the set of
states to be updated is stored in a list Queue initially containing all goal states (line 7).
While Queue is not empty, BWVI extracts a state s from it (line 9) and appends all the
predecessors of s not yet considered in the present execution of the loop at the end of
the Queue (lines 13–18). We have considered two variants of BWVI, depending of the
criterion followed in the extraction (FIFO or LIFO). Unless s is a goal state, its value is
updated (line 11), and the procedure is repeated on the new content of Queue.
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Algorithm 2. Forwards Multi-Objective Vector Iteration Algorithm
Output V, the set of non-dominated vector values of every state

1: iter ← 0
2: visited[s] ← 0 ∀s ∈ S
3: Initialize V (mandatory V(s) ← {0} ∀s ∈ Sgoal)
4: converged = False
5: while not converged do
6: iter ← iter + 1
7: DFS(sinit, iter)
8: converged = checkConvergence()
9: end while

10: procedure DFS(s, iter)
11: visited[s] ← iter
12: for ssucc ∈ Ssucc(s) do
13: if visited[ssucc] < iter then DFS(ssucc, iter)
14: end if
15: end for
16: if s �∈ Sgoal then
17: V(s) ← WBB(s, V)
18: end if
19: end procedure

Given a pair of states s, s′, if there exists an action a such that P (s|a, s′) > 0, then
BWVI considers that s′ is a predecessor of s and s′ is appended to Queue. In order to get
the set of predecessors (and even that of goal states), a certain amount to preprocessing
is needed; we assume that it can be easily done. Such is the case of the MOMDPs
considered in Sect. 4. Notice again that in the single objective version of Backwards VI
the predecessors taken into account are just those connected by the action determined
by a certain policy.

The definition of the predicate converged is not explicit in the code of Algorithms
2 and 3. The condition implemented in our experiments (see Sect. 4) is that the value
V(sinit) has not been modified in the last C executions of the main loop. Notice that
due to the limited precision of the computations, it is not enough to check that V(sinit)
has not changed in the last execution. A value of C = 3 has been selected for our
experiments.

The third and last algorithm is Improved Prioritized Sweeping-Based Multi-
Objective Vector Iteration Algorithm or IPS (Algorithm 4). Like in BWVI, states are
updated backwards along the state space, starting at goal states. On the other hand, IPS
uses a priority queue to decide which state gets updated next. In the single-objective
version of this algorithm the priority of each state is the quotient between the state
value difference of the last two adjacent iterations and the current state value. However,
things are a little more complex for IPS.

First at all, a suitable definition must be provided for the residual, i.e., for a scalar
representing the change done by the last update to the value V(s) of a state (remember
that V(s) is now a set of vectors). The residual will be given by a function Res(V, W)
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Algorithm 3. Backwards Multi-Objective Vector Iteration Algorithm
Output V, the set of non-dominated vector values of every state

1: iter ← 0;
2: visited[s] ← 0 ∀s ∈ S
3: Initialize V (mandatory V(s) ← {0} ∀s ∈ Sgoal)
4: converged = False
5: while not converged do
6: iter ← iter + 1
7: Queue ← Sgoal

8: while Queue is not empty do
9: s ← Queue.popNext() � first element if FIFO, last if LIFO

10: if s �∈ Sgoal then
11: V(s) ← WBB(s, V)
12: end if
13: for spred ∈ Spred do
14: if visited[spred] < iter then
15: Queue.append(spred)
16: visited[spred] ← iter
17: end if
18: end for
19: end while
20: converged ← checkConvergence()
21: end while

that takes into account all values in two sets V, W and all components of the vectors
(objectives). We define the residual as,

Res(V, W) =

{
∞, if size(V) �= size(W)
maxV ∈V,W∈W‖V − W‖∞ otherwise

(4)

where ‖X‖∞ is the value of the maximum norm of X , given by maxi|Xi|. Additionally,
IPS uses the updated value updtd to define the priority of every state, that is given by
the ratio residual/updated value. The most direct option is to define updtd as Vj where
j is the index for which ‖V − W‖ reaches the maximum, where V and W are given by
argmaxV ∈V,W∈W

‖V − W‖∞. To simplify notation, we will assume that Res(V, W)
returns updtd as a second value.

After initialization, the main loop (lines 5–31) is executed while the priority queue
is not empty. When all priorities are 0, IPS will remove all states from the queue and
finally halt. That could imply nontermination; however, we use a limited precision
implementation of the algorithm as described in [4], so finally all residuals and pri-
orities will be 0.

In the main loop the first state s is extracted from the queue (line 6), which is ordered
in decreasing order of priority. If s is nongoal and its the residual value is zero (line 7),
then nothing is done; otherwise, IPS selects all predecessors spred of s and updates
the values V(spred) of each of them (line 10), keeping a copy of old values, residual
and priority. The new residual and priority of spred are then calculated (lines 12–18),
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Algorithm 4. Improved Prioritized Sweeping-Based Vector Iteration Algorithm
Output V, the set of non-dominated vector values of every state

1: Initialize V (mandatory V(s) ← {0} ∀s ∈ Sgoal)
2: priority[s] ← 0 ∀s ∈ S
3: residual[s] ← 0 ∀s ∈ S
4: Queue ← Sgoal

5: while Queue is not empty do
6: s ← Queue.pop(0) � pop the first element
7: if residual[s] > 0 or s ∈ Sgoal then
8: for spred ∈ Spred do
9: Vold ← V(spred)

10: V(spred) ← WBB(spred, V)
11: oldPrio, oldResidual ← priority[spred], ← residual[spred]
12: res, v ← Res(V(spred), Vold)
13: residual[spred] ← res
14: if v �= 0 then
15: priority[spred] ← |res/v|
16: else
17: priority[spred] ← 0
18: end if
19: if oldPrio < priority[spred] and spred ∈ Queue then
20: remove all spred instances from Queue
21: else if oldPrio > priority[spred] and spred ∈ Queue then
22: priority[spred] ← oldPrio
23: residual[spred] ← oldResidual
24: continue
25: else if oldPrio = priority[spred] and spred ∈ Queue then
26: continue
27: end if
28: insert spred into Queue keeping Queue in decreasing order of priority
29: end for
30: end if
31: end while

and finally spred is inserted in the priority queue according to the value calculated (line
28). However, some care must be taken for this operation, because there can be other
occurrences of spred in the queue; so some checks must be done (lines 19–27).

4 Experimental Results and Discussion

This section describes the evaluation of the algorithms introduced in Sect. 3 over dif-
ferent environments: several variants of the biobjective Deep Sea Treasure environment
[7], and the three objective Resource Gathering environment [1].

All our variants of the Deep Sea Treasure environment define their state spaces using
the grid depicted in Fig. 1(left), but differ in the sets of available actions. A submarine
(the agent) has its initial state at the top left corner. Its goal is to find treasures that
lie on the bottom of the sea which are also the absorbing states. The rewards of the
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treasures can be seen in the picture while the black squares denote the sea ground which
is inaccessible to the agent.

There are two objectives the agent takes into account. First, the time criterion: for
every movement inside the grid the agent is rewarded with a value of −1. The second
objective is the treasure reward: the agent receives it when it transitions to one of the
absorbing states, for all other transitions the value is 0. The goal is to maximize both
rewards.

We consider several versions of this environment. The first one is DST-Right-Down
(DSTRD). It is an environment with deterministic dynamics and the action space con-
sisting of only two actions: right and down. This feature makes DSTRD non-cyclic.
Another variant is the deterministic cyclic DST. Its action space includes moves to the
right, down, left and up. Finally, we take DSTRD with stochastic dynamics into con-
sideration. Being in state s ∈ S and taking action a ∈ A, the agent has an 80% chance
of moving in the intended direction, and with a 20% probability it moves in another
(randomly chosen) allowed direction. In case only one action is possible in state s, it
moves in the only available direction in 100% of the cases. In all versions γ = 1.

Fig. 1. Environments for the experiments

To compare the performance metrics for these environment settings, we consider
various DST configurations. By configuration we imply a state space defined only over a
subset of the grid’s columns. For example, configuration 6 means that we only consider
the first 6 columns of the DST grid while configuration 17 means we consider the whole
grid (see Fig. 1(left)).

The Resource Gathering (RG) environment [1] is probabilistic and has three objec-
tives. An agent moves in a grid depicted in Fig. 1(right). The agent starts in its home
location (cell (3, 5)) and can collect one item for each of two kinds of resources: gold
(cell (3, 1)), and gems (cell (5, 2)). There are also two enemy states in cells (4, 1) and (3,
2). If the agent steps into one of them, there is a 10% chance it gets attacked and returns
home losing all resources it has gathered in previous steps. The agent receives its three
rewards (gold, gem, attack) as soon as it returns back to the home location which is also
considered as the final state.
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The action space consists of 4 actions: up, down, left, right. The objective space has
three dimensions. The first one represents the enemy attack: along this dimension the
agent gets the value of −1 if it gets attacked, otherwise the value stays zero. The second
objective is the reward for gathering gold. Its value is 1 for the transition to the final
state if the gold has been successfully gathered in the past, and zero in all other cases.
The third objective is the reward for gathering gems, and is updated by the same rules
as the gold objective. We set γ = 0.9 for this environment.

Fig. 2. Performance of the multi-objective algorithms for DST environments
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Fig. 3. Performance of the multi-objective algorithms for the RG environment

Algorithms were implemented in Python. Experiments were carried out on a
general-use personal computer with Intel Core i5-CPU, at 1.3-GHz, 3 MB cache, 2
cores and 4 threads.

Figure 2 shows the results of the algorithms when applied to the different variants
of the DST environment. The horizontal axis displays the size (or configuration) of
the problem, i.e. the number of columns in the environment. The vertical axis displays
performance metrics, given by total number of state backups (left) and total time in
seconds (right) until convergence. Precision (see [4]) was set to 0.1.

As expected, all algorithms and environments show exponential growth both in time
and number of backups with the size of the problem. The worst performance is always
that of the synchronous multi-objective algorithm (VI). For DSTRD, the best perfor-
mance is by far that of BWVI-LIFO, being that of FWIV approximately the same.
BWVI-FIFO is not so good, and it is outperformed by IPS. For cyclic DST, execution
time is greater. The best performance is again that of BWVI-LIFO, being that of FWIV
approximately the same. But now BWVI-FIFO outperforms IPS. Finally, for stochastic
DSTRD, execution time is two orders of magnitude greater. FWVI is the best algorithm,
and both versions of BWVI show little improvement over synchronous VI.

Figure 3 shows the results of the algorithms when applied to the RG environment.
Precision (see [4]) was set to 1e − 6. Total number of state backups and total time
until convergence are shown for the different algorithms. Best performance is shown by
FWVI with little difference over BWVI.

Globally, these results are consistent with those found by [2] for the scalar case.
In their experiments IPS also showed worse performance in complex cases when com-
pared to forwards and backwards VI.

5 Conclusions and Future Work

We have presented some new variants of Value Iteration algorithms for multi-objective
MDPs. In these variants states are updated asynchronously following a certain order
(forwards, backwards, or according to a priority heuristics). In the standard grid envi-
ronments used as benchmarks, all variants present some improvement over basic Value
Iteration. However, there are great differences among them. In our experiments the best
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results in “difficult” environments (stochastic DST and 3-objective RG) are given by
forwards exploration, which also performs well in simpler environments. Future work
includes more extensive evaluations of the algorithms over different problems.
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Abstract. The quality of the solutions to a combinatorial optimiza-
tion problem is usually measured using a mathematical function, named
objective function. This function is also used to guide heuristic proce-
dures through the solution space, helping to detect promising search
directions (i.e., it helps to compare the quality of different solutions).
However, this task becomes very hard when many solutions are evalu-
ated with the same value by the objective function. This fact commonly
occurs in either max-min/min-max optimization problems. In those sit-
uations, a key strategy relies on the introduction of an alternative objec-
tive function. This function helps to determine which solution is more
promising when the compared ones achieve the same value of the original
objective function. In this paper we study the Cyclic Cutwidth Minimiza-
tion Problem (CCMP), which is an example of a min-max optimization
problem. Particularly, we analyze the influence in the search of using
alternative objective functions within local search procedures. Also, we
propose two alternative objective functions for the CCMP and compare
its performance against a previously introduced one. Finally, we explored
the combination of more than one alternative function.

Keywords: Cyclic cutwidth · Graph layout problem · Combinatorial
optimization · Flat landscape

1 Introduction

In this work, we analyze the influence in the search of using multiple objective
functions for a min-max optimization problem, the Cyclic Cutwidth Minimiza-
tion Problem (CCMP). The CCMP has been widely used to model and formulate
a variety of real-world applications. Particularly, the applications of the CCMP
can be found in circuit design, migration of telecommunication networks, or
graph drawing, among others [5,15].
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The CCMP belongs to a family of optimization problems, usually denoted
as Graph Layout Problems (GLP), where the objective consists of defining an
embedding of a graph (known as the input graph) into another graph (known
as the host graph). Given an input graph G = (VG , EG) and a host graph H =
(VH, EH), where VG and VH represent the set of vertices of the input and host
graphs, and EG and EH represent the set of edges of the input and host graphs
respectively, we formally define an embedding with two functions: the first one, ϕ,
assigns each vertex of the input graph to a vertex of the host graph, ϕ : VG → VH;
the second one assigns each edge of the input graph to a path of the host graph,
ψ : EG → PH, being PH the set of all feasible paths of H. Let us remember that
a path in a connected graph between two vertices, u and v, denoted as p(u, v),
is defined as a sequence of edges which join them.

The most studied problems within the GLP family are those in which the host
graph has a regular structure, such as paths, cycles, or trees [6,18]. The CCMP
is a particular Graph Layout Problem where the host graph is restricted to be a
cycle. Therefore, in this case, H is a 2-regular, Eulerian, Hamiltonian, and unit-
distance graph which satisfies that |VH| = |EH| = |VG |. Given an embedding ϕ
and an edge (u, v) ∈ EG , the function ψ assigns the edge (u, v) to a path of H
with an ending in ϕ(u) and another ending in ϕ(v). Notice, that when the host
graph is a cycle, there are only two possible paths (avoiding loops) between each
pair of vertices. Furthermore, in this specific problem, ψ assigns the shortest
path to (u, v) ∈ EG . More formally:

ψ((u, v)) = arg min
p(ϕ(u),ϕ(v))∈PH

{|p(ϕ(u), ϕ(v))|} ∀ (u, v) ∈ EG . (1)

However, since ψ can be derived from ϕ, to ease the notation we use only ϕ
in the rest of the document to denote an embedding.

Let us illustrate these concepts with an example. In Fig. 1a we depict an
example of an input graph G with |VG | = 5 and |EG | = 5, and with vertices
labeled alphabetically (A,B,C,D,E). In Fig. 1b we show a possible embedding of
G in a host-cycle graph H, such that |VH| = |VG | = 5. The host graph is depicted
in dashed black lines, and its vertices have been labeled with numbers from 1
to 5. In this example, the specific function ϕ′ is defined as follows: ϕ′(A) =
1, ϕ′(B) = 2, ϕ′(C) = 3, ϕ′(D) = 4, and ϕ′(F) = 5. Finally, in Fig. 1c we
represent the two possible paths between a pair of vertices 1 and 3, which are
currently hosting the vertices A and C. In particular, p1 = {(1, 2), (2, 3)} and
p2 = {(3, 4), (4, 5), (5, 1)}. According to Eq. 1, the path p1 is assigned to the edge
(A,C) since it achieves to have the minimum cardinality.

With the previous definitions at hand, we next introduce the CCMP. Let
us start by defining the “cut” of an edge of the host graph, (w, z) ∈ EH, for a
particular embedding ϕ as the number of edges of the input graph which have
associated a path which contains the edge (w, z). More formally:

cut((w, z), ϕ) = |{(u, v) ∈ EG : (w, z) ∈ ψ((u, v)}|. (2)
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Fig. 1. (a) Input graph G. (b) A possible embedding, ϕ′ of G. (c) The two possible
paths (p1 and p2) between 1 and 3.

Given an input graph G and a particular embedding ϕ, the objective function
of the CCMP (denoted as ccw) is calculated as follows:

ccw(G, ϕ) = max(w,z)∈EH{cut((w, z), ϕ)}. (3)

The purpose of the CCMP (defined in Eq. 4) is to find an embedding ϕ�

among all possible embedding, Φ, that minimizes the Eq. 3:

ϕ� ← arg min
ϕ∈Φ

{ccw(G,ϕ)}. (4)

Let us illustrate the evaluation of a solution with an example. In Fig. 2 we depict
the evaluation of two possible embeddings ϕ′ and ϕ′′, of the input graph presented
in Fig. 1a. We have represented in bold lines outside the cycle, the paths in the
host graph associated with each of the edges of the input graph. Then, the “cut”
of each edge of the host graph is calculated as the number of paths that contain
that edge (see Eq. 2). For example, in Fig. 2a, the edge (1,2) is contained in the
paths p(ϕ(B), ϕ(E)) and p(ϕ(A), ϕ(C)). Therefore, cut((1, 2), ϕ′) = 2. Similarly,
cut((2, 3), ϕ′) = 2 and so on. Finally, the cyclic cutwidth, ccw, of the embedding
ϕ′ of graph G in a cycle is ccw(G, ϕ′) = max{2, 2, 1, 1, 1} = 2. Similarly, the ccw,
of the embedding ϕ′′ of graph G in a cycle is ccw(G, ϕ′′) = max{1, 2, 1, 1, 1} = 2.

The CCMP was introduced as a variant of the Cutwidth Minimization Prob-
lem (CMP) since both share the same objective function. Therefore, both prob-
lems share some properties. However, the host graph for the CMP is a path
graph [5]. The CMP belongs to the NP-hard class [10], but it has been exactly
solved for some types of graphs with regular structure [11,23,28]. Moreover, it
has been tackled from a heuristic perspective for general graphs [5,7,17,19,24].
The relationship between the CCMP and the CMP was formalized in [14] in
terms of lower and upper bounds.

In the case of the CCMP, it has been widely studied for regular-structured
input graphs, from both exact and asymptotic perspectives [1–4,9,13,14,20,25–
27]. On the other hand, the CCMP has been tackled using heuristic approaches,
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a Memetic Algorithm [12], and a Multistart Tabu Search [4]. The last one is
currently the best proposal in the literature, being able to find the best solutions
for most of the studied instances.

Fig. 2. Evaluation of two possible embedding of G in H.

In this paper we study the impact of the use of alternative objective functions
in local search procedures, when dealing with flat landscapes associated with
the CCMP. Particularly, we propose two alternative objective functions for the
CCMP and compare its performance against a previously introduced one.

The rest of the paper is organized as follows. In Sect. 2, we introduce the three
alternative functions studied for the CCMP. Then, in Sect. 3, we describe the
algorithmic strategy used to evaluate the alternative functions. Next, in Sect. 4,
we compare and analyze the methods. Finally, in Sect. 5, we provide the overall
conclusions as well as relevant directions for future research.

2 Alternative Evaluation Functions for the CCMP

The CCMP is a min-max optimization problem, where the objective function
consists of minimizing a maximum value. These kinds of problems usually present
flat landscapes or fitness landscapes [7,19,21], which means that many solutions
are qualified with the same value of the objective function, although they are
structurally different. In this context, the search presents additional challenges
for search procedures, since determining the search direction is harder. This is
because many times, when comparing two solutions, it is not possible to distin-
guish which one is more promising. This is the case of local search procedures,
which usually determine the search direction based on the changes produced in
the objective function during the search.

Some studies which handle problems with flat landscapes have proposed the
use of alternative objective functions as a strategy to differentiate solutions qual-
ified equally to the original objective function. In this context, the choice of
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an objective function should be done considering, first, the computational cost
required to calculate it; second, the capacity to locate promising solutions that
guide the heuristic procedure; and finally, the consistency, a solution should
always be evaluated in the same way [21]. This strategy has also been used in
the context of the CCMP [4] by proposing an alternative objective function for
the problem. In this research, we describe this function and compare its per-
formance with two new alternative objective functions proposed here for the
CCMP.

Next, we describe each of the aforementioned functions. Let fk be the num-
ber of edges of the host graph which have an associated “cut” equal to k. In
mathematically terms:

fk = |{(w, z) ∈ EH : cut((w, z), ϕ) = k}|. (5)

In order to simplify the notation, we also refer to kmax as the value of the
original objective function for a particular solution (i.e., kmax = ccw(G, ϕ)).

The first alternative function studied, denoted as ccw1, was introduced in [4]
for the CCMP. However, some variations of this objective function can be found
for other related problems such as the CMP [19] or the Cyclic Bandwidth Sum
Problem (CBS) [21]. The rationale behind ccw1 is to penalize those solutions with
many edges with a “cut” value close to kmax. Considering that n is the number of
vertices of the input graph (n = |VH|) this function is calculated as follows:

ccw1(G, ϕ) =
kmax∑

k=1

nk · fk. (6)

The second alternative objective function, denoted as ccw2, is proposed for
the first time in this paper in the context of the CCMP. However, it has been
also related to other optimization problems, such as the CBS [21] or the Mini-
mum Linear Arrangement [16]. The rationale of this function is to favor those
embeddings with a sum of the “cut” associated with each edge of the host graph,
as small as possible. This function is calculated as follows:

ccw2(G, ϕ) =
kmax∑

k=1

k · fk. (7)

Finally, the third objective function is also proposed here for the first time in
the context of the CCMP. It is inspired by the ideas proposed for the CBS prob-
lem [21,22]. The rationale behind this function is to penalize the occurrence of
edges with a small “cut” value associated. This function is calculated as follows:

ccw3(G, ϕ) =
kmax∑

k=1

nkmax−k+1 · fk. (8)

Notice that, when comparing two solutions to any of the previous functions,
we consider that the one which minimizes the particular alternative function is
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more promising. Despite the fact that the previous functions are not equivalent
to minimize the CCMP, they are useful as a tie-break criterion.

The cost of the three objective functions previously introduced, in terms of
computational complexity is O(n), since all of them include a sum from 1 to
kmax, which, in the worst case, could have a value of �n/2�.

Let us illustrate the use of the alternative objective functions with an exam-
ple. As the reader might have noticed, the two solutions depicted in Fig. 2
are equal in terms of the original objective function value (i.e., ccw(G, ϕ′) =
ccw(G, ϕ′′) = 2). However, we can find differences between them when eval-
uating the solutions with the alternative objective functions previously intro-
duced (i.e., ccw1(G, ϕ′) = 65, while ccw1(G, ϕ′′) = 45; ccw2(G, ϕ′) = 7, while
ccw2(G, ϕ′′) = 6; and ccw3(G, ϕ′) = 85, while ccw3(G, ϕ′′) = 105).

3 Algorithmic Evaluation Strategy

To analyze the performance of the different alternative objective functions pre-
sented in Sect. 2, we propose the use of a random constructive procedure com-
bined with a local search procedure based on the insert move. A local search is
a heuristic procedure that follows an intensification strategy that aims to find a
local optimal solution in a particular neighborhood. The insert move is a classic
operator in GLP problems [4,17], and it consists of unassigning a vertex of the
input graph and then assigning it to another vertex of the host graph. We for-
mally denote N (ϕ) as the neighborhood associated to the insert move, i.e., the
set of embeddings that can be reached from ϕ, by applying the insert operator.
In mathematical terms:

N (ϕ)= {Insert(ϕ, u,w) : ∀ u ∈ VG ,∀ w ∈ VH, w �= ϕ(u)}. (9)

Therefore, for an input graph with n vertices, the size of the neighborhood is
n · (n − 1). Notice that we propose the use of a best improvement strategy. This
strategy consists of taking into account all possible movements of a solution,
before choosing the best one. The rationale of using this procedure to test the
alternative objective functions is to let the functions the chance of comparing as
many solutions as possible during the search.

Algorithm 1 summarizes the steps followed by our local search procedure.
Given G, an input graph, and ϕ, an initial solution generated by the random
constructive procedure, all possible solutions of N (ϕ�) are visited (steps 6–13),
where ϕ� is the best solution found so far (which is initially equal to ϕ). If a
solution of N (ϕ�) is better than the current one (step 9), it becomes the best
new solution found (steps 9–12). If there is no solution that improves the current
one, the procedure ends (step 4), and the best solution is returned (step 17).

To determine which solution is better after a move, we use the procedure
isBetter described in Algorithm 2. Particularly, it compares two solutions con-
sidering the original objective function ccw and, if a tie is found, the tie is broken
using one of the alternative objective functions defined in Sect. 2 (i ∈ {1, 2, 3}).
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Algorithm 1. Local search procedure.
1: Procedure LocalSearch (G, ϕ)
2: improve ← True
3: ϕ� ← ϕ
4: while improve do
5: improve ← False
6: for all u ∈ VG do
7: for all w ∈ VH do
8: ϕ′ ← Insert(ϕ�, u, w)
9: if isBetter(ϕ′, ϕ) then

10: ϕ ← ϕ′

11: improve ← True
12: end if
13: end for
14: end for
15: ϕ� ← ϕ
16: end while
17: return ϕ�

Algorithm 2. Procedure to compare two solutions.
1: Procedure isBetter (ϕ′, ϕ)
2: if ccw(ϕ′) < ccw(ϕ) then
3: return True
4: else if (ccw(ϕ′) == ccw(ϕ)) and (ccwi(ϕ

′) < ccwi(ϕ)) then
5: return True
6: else
7: return False
8: end if

4 Experimental Results

In this section, we evaluate the performance of the three alternative objective
functions for the CCMP introduced in Sect. 2 and also, the combination of each
of them. The experimentation has been carried out over 19 instances obtained
from the Harwell-Boeing collection [8]. These instances represent problems from
scientific and engineering disciplines. The algorithms have been coded in Java,
and all experiments have been executed on an Intel(R) Core(TM) i7-1065G7
CPU at 1.30 GHz with a Windows 10 operating system.

In all the experiments we run each algorithm 50 times for any of the 19
instances considered and we collect the best values found per instance. Particu-
larly, we report the average of the best solutions found (Avg.), the deviation to
the best solution found in the experiment (Dev. (%)), the CPU time in seconds
(CPUt(s)), and the number of best solutions found in the experiment (# Best).

In Table 1 we compare the performance of using the original objective func-
tion ccw in isolation in the Local Search procedure (LS), and its combination
with an alternative objective function for tie-breaking purposes: ccw1 (LS1),
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Table 1. Influence of the alternative objective function in the local search.

C C+LS C+LS1 C+LS2 C+LS3

Avg. 62.21 52.68 20.79 21.05 20.58

Dev. (%) 322.25 254.56 3.85 8.85 3.82

CPUt(s) 0.01 52.35 138.98 122.59 81.55

# Best 0 0 12 9 12

ccw2 (LS2), and ccw3 (LS3). Notice that, all local search procedures start from
the same initial solution generated by a random constructive procedure (C).

As expected, C+LS is able to improve considerably the solutions generated
by C, although it quickly reaches a local optimum due to the flat landscape of
the problem. When the main objective function is supported by any of the three
alternative objective functions (whatever the alternative objective function is)
the Avg. is considerably reduced. Moreover, C+LS is not able to achieve any
of the best solutions found, which are distributed among C+LS1, C+LS2 and
C+LS3. Despite the small differences among the methods C+LS3 seems to be
the best one, since it achieves the smallest deviation and the largest number
of best solutions in a shorter amount of time. To complement this experiment,
we have used Wilcoxon’s signed rank test to compare the differences between
the objective function values of the best solutions found for each pair of proce-
dures. When comparing C+LS with either C+LS1, C+LS2 or C+LS3 the p-value
obtained is 0.00014 (the three comparisons obtained the same p-value), which
indicates significant differences between procedures. Therefore, we can conclude
that the use of an alternative function produces significant better results than
using only the original objective function for the CCMP. However, we did not
find significant differences among the results obtained with any of them. As an
additional experiment, since the constructive procedure is a very fast method,
we let it run for up to 150 s, verifying that the obtained results (with an average
deviation of 264.76% and 0 best solutions found) are far from the values obtained
by the rest of the methods.

Despite the fact that the three proposed alternative objective functions
obtained very good results, the tested methods performed differently when
observing the results obtained for each instance separately. In the next experi-
ment, we study whether the combination of more than one alternative objective
function allows us to find a better and robust procedure. Particularly, since we
used a multi-start procedure to compare the methods, we now propose to change
the alternative objective function used in each iteration. For instance, we have
combined C+LS1 and C+LS2 in the procedure C+LS12 by executing alterna-
tively C+LS1 and C+LS2, until 50 executions are reached. Similarly, C+LS13

combines C+LS1 with C+LS3. C+LS23 combines C+LS2 and C + LS3. Finally,
all procedures are combined in C+LS123 by executing alternatively C+LS1,
C+LS2 and C+LS3 until 50 executions are reached. The results obtained are
reported in Table 2. At a first glance, the combination of the procedures allowed
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Table 2. Combination of the proposed procedures.

C+LS1 C+LS2 C+LS3 C+LS12 C+LS13 C+LS23 C+LS123

Avg. 20.79 21.05 20.58 20.84 20.42 20.58 20.42

Dev. (%) 3.85 8.85 3.82 4.99 0.86 3.83 0.59

CPUt(s) 138.98 122.59 81.55 130.78 110.27 102.07 115.03

# Best 12 9 12 10 14 12 15

us find higher quality solutions. Particularly, we observed that C+LS123 is able
to decrease the Avg. and Dev. (%), while it found the largest number of best
solutions. However, the statistical tests performed indicate that the differences
found are not significant for the instances tested.

5 Conclusions

In this paper we have studied the effect of flat landscapes that usually arises
in min-max/max-min optimization problems in search procedures. Particularly,
we have focused on the study of the Cyclic Cutwidth Minimization Problem,
consisting of embedding an input graph into a host-cycle graph while minimizing
the maximum cut in the host graph. To handle with this problem, we introduced
the use of an alternative objective function. Particularly, we compiled a previous
function used in the context of the problem and proposed two new functions.

The experiments carried out demonstrated that the use of an alternative
objective function with tie-breaking purposes, in combination with the original
one, showed a better performance for the CCMP, since the method avoids getting
stuck in flat landscapes. We have also revealed an insight about the advantage
obtained when more than one alternative objective function is combined within
the same procedure, since the methods follow different search directions. Future
work should be focused on a deeper analysis of this strategy.
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26. Schröder, H., Sỳkora, O., Vrt’o, I.: Cyclic cutwidths of the two-dimensional ordi-
nary and cylindrical meshes. Discrete Appl. Math. 143(1-3), 123–129 (2004)

27. Sciortino, V., Chavez, J., Trapp, R.: The cyclic cutwidth of a p2 × p2 × pn mesh.
Cal State University, San Bernardino, REU Project (2002)

28. Thilikos, D.M., Serna, M., Bodlaender, H.L.: Cutwidth II: algorithms for partial
w-trees of bounded degree. J. Algorithms 56(1), 25–49 (2005)



A Similarity Measure of Gaussian Process
Predictive Distributions

Lucia Asencio Mart́ın and Eduardo C. Garrido-Merchán(B)

Universidad Autónoma de Madrid, Madrid, Spain
lucia.asencio@estudiante.uam.es, eduardo.garrido@uam.es

Abstract. Some scenarios require the computation of a predictive dis-
tribution of a new value evaluated on an objective function conditioned
on previous observations. We are interested on using a model that makes
valid assumptions on the objective function whose values we are trying
to predict. Some of these assumptions may be smoothness or stationar-
ity. Gaussian process (GPs) are probabilistic models that can be inter-
preted as flexible distributions over functions. They encode the assump-
tions through covariance functions, making hypotheses about new data
through a predictive distribution by being fitted to old observations. We
can face the case where several GPs are used to model different objective
functions. GPs are non-parametric models whose complexity is cubic on
the number of observations. A measure that represents how similar is
one GP predictive distribution with respect to another would be useful
to stop using one GP when they are modelling functions of the same
input space. We are really inferring that two objective functions are cor-
related, so one GP is enough to model both of them by performing a
transformation of the prediction of the other function in case of inverse
correlation. We show empirical evidence in a set of synthetic and bench-
mark experiments that GPs predictive distributions can be compared
and that one of them is enough to predict two correlated functions in
the same input space. This similarity metric could be extremely useful
used to discard objectives in Bayesian many-objective optimization.

1 Introduction

Regression problems involve the prediction of the value y associated with the
evaluation of a point x ∈ R

d in an objective function or unknown ground truth
f(x), where d is the number of dimensions of x [1,14]. Let X be a subset of
R

d called the input space. Supervised learning finds the values of the machine
learning (ML) algorithm hyper-parameters θ that make the algorithm calcu-
late an accurate prediction of f(x) via fitting the algorithm with a dataset
D = {(xi, yi)|i = 1, ..., n}, where xi are points labelled with values yi. ML algo-
rithms then perform predictions y� of new points x�. If the ML algorithm does
not compute an uncertainty σ(x) of its predictions y, the user of the regres-
sion will not know the degree of certainty of the predictions done by the ML
algorithm. This is the case of Deep neural networks, that do not provide uncer-
tainty. Gaussian processes (GPs) [12] and Bayesian neural networks compute
c© Springer Nature Switzerland AG 2021
E. Alba et al. (Eds.): CAEPIA 2021, LNAI 12882, pp. 150–159, 2021.
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uncertainties of its predictions. A GP model is equivalent to a fully connected
deep neural network with infinite number of hidden units in each layer [11]. GPs
have successfully been used for regression problems where the uncertainty σ(x)
of the predictions y is important [15].

GPs have also been used as probabilistic surrogate models in Bayesian opti-
mization (BO) [16]. BO deals with the optimization of black-box functions. A
black-box is a function whose analytical expression is unknown. Hence, its gra-
dients are not accessible. It is very expensive to evaluate and the function eval-
uations are potentially noisy. The estimation of the generalization error of ML
algorithms is considered to be a black-box function. We find other applications in
structure learning of probabilistic graphical models [2] or even subjective tasks
as suggesting better recipes [4]. When not only one but several black-boxes are
optimized, we deal with the Multi-objective BO scenario [9]. If these objectives
need to be optimized under the presence of constraints, we deal with the con-
strained multi-objective scenario [5]. BO suggest one point per evaluation, but
it also can suggest several points in the constrained multi-objective scenario
[6]. Typically, these problems involve the optimization of less than 4 objectives.
Many objective optimization has dealt with the optimization of more than 4
objectives [3]. This scenario has not been targeted by BO. An approach to solve
this scenario is to get rid of objectives that can be explained through the other
objectives. In BO, these objectives are modelled by GPs. If we had a similarity
measure of the predictive distribution computed by a GP over an input space X ,
we could use it to propose an approach for the many objective BO scenario. This
is precisely the motivation for this paper: proposing a specialist GP predictive
distribution similarity metric to be used in the many objective BO scenario.

The purpose of our measure is to detect a GP that is so similar to another GP
that we can stop fitting it in many objective BO. Hence, we cannot just apply the
KL divergence, as it is just a similarity measure of probability distributions. Let
θ represent the set of parameters of a distribution P. The KL divergence between
two probability density functions p(θ) and q(θ) over continuous variables is given
by the following expression:

KL(p(θ)||q(θ)) =
∫ ∞

−∞
p(θ)log(

p(θ)
q(θ)

)dθ . (1)

As we can see, KL is not focused on things like the importance of the point
and its neighbourhood that maximizes the objective function f(x) but in all the
probability distribution support. Our measure differs from KL divergence in the
fact that we focus on particular characteristics of the GP predictive distribution
that are relevant for discarding a GP in a hypothetical many objective BO
scenario.

In this work, we focus on comparing GP predictive distributions, as it is the
arguably most widely used model in BO [16]. Nevertheless, our measure could
also be applied to the predictive distributions of Bayesian neural networks or
Random forests, widening its applicability.
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The paper is organized as follows. First, we briefly review the fundamental
concepts of GPs. These concepts will be useful to better understand the purpose
of our proposed measure. Then, we include a section describing our proposed
similarity measure. We add empirical evidence of the practical use of this measure
in an experiments section. Lastly, we illustrate conclusions about this work and
further lines of research.

2 Gaussian Processes

A Gaussian Process (GP) is a collection of random variables (of potentially
infinite size), any finite number of which have (consistent) joint Gaussian distri-
butions [15]. We can also think of GPs as defining a distribution over functions
where inference takes place directly in the space of functions [15]. A GP can be
used for regression of a function f(x).

Let X = (x1, ...xN )T be the training matrix and y = (y1, ..., yN )T be a vector
of labels to predict. We define as a dataset D = {(xi, yi)|i = 1, ..., n} the set of
labeled instances. A GP is fully characterized by a zero mean and a covariance
function k(x,x′), that is, f(x) ∼ GP(0, k(x,x′)).

Given a set of observed data D = {(xi, yi)|i = 1, ..., n}, where yi = f(xi)+ εi

with εi some additive Gaussian noise, a GP builds a predictive distribution
for the potential values of f(x) at a new input point x�. This distribution
is Gaussian. The GP mean, μ(x), is usually set to 0. Namely, p(f(x�)|y) =
N (f(x�)|μ(x�), v(x�)), where the mean μ(x�) and variance v(x�) are respec-
tively given by:

μ(x�) = kT
� (K + σ2I)−1y , (2)

v(x�) = k(x�,x�) − kT
� (K + σ2I)−1k� , (3)

where y = (y1, . . . , yN )T is a vector with the observations collected so far; σ2 is
the variance of the additive Gaussian noise εi; k� = k(x∗) is a N -dimensional
vector with the prior covariances between the test point f(x�) and each of the
training points f(xi); and K is a N ×N matrix with the prior covariances among
each f(xi), for i = 1, . . . , N . Each element Kij = k(xi,xj) of the matrix K is
given by the covariance function between each of the training points xi and xj

where i, j = 1, ..., N and N is the total number of training points. The particular
characteristics assumed for f(x) (e.g., level of smoothness, additive noise, etc.)
are specified by the covariance function k(x,x′) of the GP. A popular example
of covariance function is the squared exponential, given by:

k(x,x′) = σ2
f exp

(
− r2

2�2

)
+ σ2

nδpq , (4)

where r is the Euclidean distance between x and x′, � is a hyper-parameter
known as length-scale that controls the smoothness of the functions generated
from the GP, σ2

f is the amplitude parameter or signal variance that controls the
range of variability of the GP samples and σ2

nδpq is the noise variance that applies
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when the covariance function is computed to the same point k(x,x). Those are
hyper-parameters of the GP. Let θ be the set of all those hyper-parameters. We
can find point estimates for the hyper-parameters θ of the GP via optimizing
the log marginal likelihood. The marginal likelihood is given by the following
expression:

log p(y|X ,θ) = −1
2
yT (K + σ2

nI)−1y − 1
2

log |K + σ2
nI| − n

2
log 2π . (5)

The previous analytical expression can be optimized to obtain a point esti-
mate θ� for the hyper-parameters θ. We can optimize it through a local opti-
mizer such as L-BFGS-B [19] and via the analytical expression of the marginal
likelihood gradient ∇θ log(y|X,θ) = (∂ log(y|X,θ/∂θ1, ..., ∂ log(y|X,θ)/∂θM )T

whose partial derivatives are given by:

∂

∂θj
log(y|X,θ) =

1
2
yTK−1 ∂K

∂θj
K−1y − 1

2
tr(K−1 ∂K

∂θj
)

=
1
2
tr((ααT − K−1)

∂K
∂θj

) , (6)

where α = K−1y and M is the number of hyper-parameters.

3 The Similarity Measure

Let f(x), g(x) be two GPs. Let us work under the assumption that their covari-
ance functions k(x,x) have similar analytical expressions (e.g., both are squared
exponential functions). Given a set X� of input points, we can compute μf (X�)
and μg(X�), the predicted mean vectors for each process, as well as vf (X�(X�)
and vg(X�), their covariance matrices.

We now define a notion of distance between these two processes, firstly pre-
senting its mathematical expression:

d(f(x), g(x)) = ε1d1 (T (μf (X�)), μg(X�), δ)
+ ε2d2 (vf (X�), vg(X�)) +
(1 − ε1 − ε2) (1 − ρ (μf (X�), μg(X�))) . (7)

As it can be seen, the measure is given following a weighted sum model (WSM
[18]). The WSM contains three components to which we will refer as

s1 = ε1d1 (T (μf (X�)), μg(X�)δ) ,

s2 = ε2d2 (vf (X�), vg(X�)) ,

s3 = (1 − ε1 − ε2) (1 − ρ (μf (X�), μg(X�))) . (8)

The objective of s1 and s3 is to describe the distance between both mean vectors,
while s2 aims to reflect the distance between the covariance matrices. We will
now analyze each of these components and their respective parameters.
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The first one, s1, is given in terms of a tolerance δ, a transformation function
T and a distance function d1 between the mean vectors.

The election of T describes when two mean vectors μf (X�) �= μg(X�) should
be considered equal. For example, since we will be optimizing these vectors, if
μf (X�) = 2μg(X�), their critical points will be the exact same and we might
want to consider them as a single vector. Although T can be chosen by the
user depending on their needs, the proposed implementation provides a function
T (μf (X�)) = aμf (X�) + b1, where a > 0 and b are scalars chosen with the least
squares method to give the best fit of μf (X�) onto μg(X�). This transformation
reflects the fact that two vectors that are proportional and whose difference is
constant behave in the same way in terms of optimization.

With function d1(·), the user is able to choose in which way they want to
measure the distance between T (μf (X�)) and μg(X�). Several options are given
to the user in our implementation, each of them being convenient depending
on the nature of the problem modeled by the GP. Some of these options are to
define d1 as the number (or percentage) of points where T (μf (X�)) �= μg(X�),
or as a p-norm (d1 = ‖μg(X�) − T (μf (X�))‖p) which includes euclidean norm,
infinity norm, etc.

Lastly, with δ the user is allowed to change the desired level of toler-
ance given to d1, i.e. the distance is calculated only among the vectors’
elements where the chosen d1 is greater than δ in its element-wise opera-
tions. For example, if we chose a 1-norm as d1, s1 would be computed as∑

|μg−T (μf )|>δ |μg(X�) − T (μf (X�))|.
The other weighted sum term used to compare the two mean vectors is s3.

It is the only fixed term in the sum, and it represents the Pearson correlation
coefficient between the GP means.

This coefficient is defined as

ρ(μf (X�), μg(X�)) =
E[(μf (X�) − μf (X�))(μg(X�) − μy(X�)))]

σμf
σμg

, (9)

where μ(·) denotes the mean value of a vector μ and σμ is its standard deviation.
The reason we were first interested in this operator is because of its inter-

pretation. The coefficient ρ(μf (X�), μg(X�)) ranges from −1 to 1. If it equals 1,
there is a (positive) linear equation describing μg(X�) in terms of μf (X�); if it
equals −1, this linear equation has a negative slope and, when it is 0, no linear
correlation between μf (X�) and μg(X�) exists.

Moreover, following Eq. (9), ρ increases whenever μf (X�) and μg(X�) both
increase or decrease. It decreases when their growth behaviour is different. This
is very valuable for our problem, since we need to identify whether two vectors
are increasing and decreasing in a similar fashion, i.e., their maximums and
minimums lie around the same positions.
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We found this to be the most accurate way of detecting similar processes,
since it detects that sample vectors of functions like x6 and x2, which would
a priori seem very different using any conventional vector distance (one grows
much faster than the other) behave essentially the same: they both decrease from
−∞ to 0, have a minimum in 0 and increase towards ∞.

Lastly, the addend s2 is intended to measure the distance between both pre-
dictive variances, and therefore any matrix norm could be used for this purpose.

We have not found the matrices distance to be significant when it comes
to deciding whether two GPs should be optimized analogously, although this
might be because of working under the assumption that f(X�) and g(X�) have
similar covariance functions. In case the user wants to make use of the matrices
similarity, note that entrywise matrix norms should be preferred over the ones
induced by vector norms because of their lower computational cost [8].

As future work, these matrices could be used to measure the uncertainty of
the distance between two GPs, since they represent the uncertainty of the GPs’
predictions.

4 Experiments

For all the experiments, we have set the parameter δ = 0 and, since we didn’t
found the covariance matrices distance to be significant under our hypothesis, we
used ε1 = 0.25 and ε2 = 0 (therefore ρ’s weight is 0.75). For the transformation
T , the previously explained linear transformation using the least squares method
was used. We have chosen d1 to be the average relative distance between the
points in the two mean vectors, i.e., the mean of the vector given by |T (μf (X�))−
μg(X�)| divided by the subtraction of the greatest element found in the two
vectors minus the smallest.

For the following examples, various GPs were fitted taking sample vectors
from benchmark functions. We will now discuss some of the results obtained by
applying our measure to find the distance between them.

We will start with some uni-dimensional toy functions. We have chosen to
compare three GPs from which we know that two of them are very similar
and that the third one behaves differently from the other two. A plot of their
mean vectors can be seen in Fig. 1. The first one models a Michalewictz function

(defines as f1(x) = − sin x
(
sin x2

π

)2m

) with parameter m = 50, the second one

a Michalewictz function with m = 100 and the third one models a parabola x2.
The correlation between the predicted means of the two Michalwicz GPs is 0.97,
and the average relative distance between them is 0.02. In total, the distance
calculated by our measure is 0.02 over 1, i.e., these GPs are very similar according
to our function. On the other hand, when comparing the Michalewictz GP that
has m = 100 with the parabola, we obtain a correlation of 0.12, which reflects
how different their growth behaviour is, and an average relative distance of 0.27.
In total a distance of 0.72 over 1.
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Fig. 1. Toy functions for one dimension

Fig. 2. Bowl-shaped functions

We now compare three 2D bowl-shaped processes: one of them modelling a
Styblinski-Tang function, another one an ellipsoid and the third one a sphere.

The Syblinski-Tang function is given by f2(x) = 1
2

∑2
i=1

(
x4

i − 16x2
i + 5xi

)
,

the ellipsoid is f3(x) =
∑2

i=1

∑i
j=1 x2

j and the sphere function is f4(x) = x2
1+x2

2

Since the three are bowl shaped, they are somewhat similar, but from Fig. 2 we
can tell that Styblinski-Tang is slightly different from the others. Indeed, when
we compare the sphere and the ellipsoid processes we obtain a 0.94 correlation
between their predicted mean vectors, and 0.06 is their average relative distance.
Overall, the distance is 0.05 which means these two functions are very similar.
In contrast, when we compare the ellipsoid with the Styblinski-Tang process, we
obtain a correlation of 0.74: a value which is close to 1, reflecting the fact that
both shapes are similar in a way, but not as close as in the previous comparison
because the Styblinski-Tang bowl is different from the ellipsoid. The average
relative distance is 0.13 (again a value which is greater than before) and the
total distance of 0.22 over 1, which shows that these processes are similar, but
not as much as the previous ones.

We will now compare two processes modelling two functions that we know
are not similar, illustrated in Fig. 3. The first one is a Griewank function f5(x) =

1
4000

(
x2
1 + x2

2

)−cos(x1) cos
(

x2√
2

)
+1, and the second one a levy function f6(x) =

sin2(πw1)+ (w1 − 1)2
(
1 + 10 sin2(πw1 + 1)

)
+(w2 − 1)2

(
1 + sin2(2πw2)

)
where

wi = 1 + (xi − 1) 14 .



A Similarity Measure of Gaussian Process Predictive Distributions 157

Fig. 3. Griewank and Levy functions

Because of how different their shapes are, the correlation between the pre-
dicted mean is 0.04, almost no correlation at all. Their average relative distance
is 0.16, and the distance between the processes is 0.75 over 1.

Finally, we will be comparing some Ackley functions. Recall that an ackley
function depending on parameters a, b and c is given by

f7(x) = −a exp

⎛
⎝−b

√√√√1
d

2∑
i=1

x2
i

⎞
⎠ − exp

(
−1

2

2∑
i=1

cos (cxi)

)
+ a + e

We first compare two processes with fixed a = 20 and b = 0.2. The parameter
c equals π for one process and 6π for the other, which results in unsimilar
predicted means plots as can be seen in Fig. 4. The correlation between them is
0.31, and the average relative distance 0.15, giving an overall distance of 0.55
over 1. Lastly, we compare two Ackley processes which, despite having different
a values, have a very similar shape (Fig. 4). We chose b = 0.2, c = 2π and a = 70
for one process and a = 100 for the other. Their correlation is very close to 1,
0.98, and their average relative distance is 0.01. A total distance of 0.01, which
means these processes are indeed very similar in their shape.

Fig. 4. Ackley functions
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5 Conclusions

In this paper, we have proposed a similarity metric for GP predictive distribu-
tions in order to be used in a many objective BO scenario [10]. Thanks to this
metric, we are able to measure how similar are the predictions given by two
GP predictive distributions. We have illustrated the results of this measure in a
set of synthetic and benchmark functions. This measure will be used in multi-
objective BO, that could be parallel or constrained, when there are more than
3 objectives.

The metric can also incorporate the uncertainty of the GP prediction mean.
The intuition is that the areas whose uncertainty on the prediction is low need to
add more weight that unexplored areas. Suppose that two GP predictive distri-
butions differ in their predictions in an unexplored area. It is fair to assume that
they may be more similar than if they differ on an explored area. We intend to
incorporate this property to the GP similarity measure in future work. Another
possible use of this metric is its application for the cognitive architectures of brain
inspired autonomous robots [7]. In this architecture, every objective can model a
particular emotion, that conditions the policy of the robot. The robot wants to
simultaneously optimize conflicting emotions like happiness, social contacts or
being full of energy. As human beings are only phenomenally conscious of a small
set of emotions in every moment, we can imitate that behavior by discarding
redundant emotions through this metric and making the global workspace only
aware of the most relevant emotions [13,17].
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Abstract. Bayesian Optimization (BO) is the state of the art tech-
nique for the optimization of black boxes, i.e., functions where we do not
have access to their analytical expression nor its gradients, are expensive
to evaluate and its evaluation is noisy. A BO application is automatic
hyperparameter tuning of machine learning algorithms. BO methodolo-
gies have hyperparameters that need to be configured such as the sur-
rogate model or the acquisition function (AF). Bad decisions over the
configuration of these hyperparameters implies obtaining bad results.
Typically, these hyperparameters are tuned by making assumptions of
the objective function that we want to evaluate but there are scenarios
where we do not have any prior information. In this paper, we propose an
attempt of automatic BO by exploring several heuristics that automati-
cally tune the BO AF. We illustrate the effectiveness of these heurisitcs
in a set of benchmark problems and a hyperparameter tuning problem.

1 Introduction

Optimization problems, which task assuming minimization is to retrieve the min-
imizer x∗ = arg max f(x) | f : Rn → R, x∗,x ∈ X ∈ R

n, are often solved
easily when we have access to the gradient of the function that we want to opti-
mize. Nevertheless, there exist a plethora of scenarios where we do not have
access to these gradients. Typically, metaheuristics [12] like genetic algorithms
[5] are used in this setting. Genetic algorithms and metaheuristics in general are
useful when the evaluation of the function is cheap whether the cheap defini-
ton refers to computational time or other resources such as the budget of the
optimization process. This is not always the case. For example, we may consider
an scenario when the function to optimize requires to configure a robot [3] or
training a deep neural network [9]. We can not afford in these scenarios a high
number of evaluations. Ideally, we would like to consider a method that suggest
as an approximation x̂∗ ≈ x∗ of the optimum of the problem in the least number
of evaluations as possible. An approximated solution to the true minimizer of the
problem would be one with low absolute regret at the end of the optimization
process r = |f(x̂) − f(x)|, i.e. a local optima, not necessarily close, w.r.t. some
distance metric in R

n, in the input space to the minimizer.
c© Springer Nature Switzerland AG 2021
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Moreover, we can even consider a more complicated scenario that the one
described if the function that we want to optimize f(·) is modelled as a latent
variable that we cannot observed as it has been contaminated by some random
variable, for example, a gaussian random variable, hence observing y = f(·) +
N (0, σ) where σ is i.i.d. ∀x ∈ X . In other words, for any two similar points of
the input space we observe a, without loss of generality, gaussian distribution
N (0, σ). Functions whose analytical expression is unknown, the evaluations are
costly and the observation is contaminated with noise are often referred to as
black boxes. Non convex Black box optimization has been dealt with success by
BO methodologies [2], being the current state of the art approach.

The most popular example of such an optimization is the task of automatic
Machine Learning tuning of the hyperparameters or the hyperparameter problem
of machine learning algorithms [20], such as the PC algorithm [4], but also all
kinds of subjective tasks like Suggesting Cooking Recipes [7] or other applications
belonging to robotics, renewable energies and more [19].

Automatic Hyperparameter Tuning of Machine Learning algorithms is a
desirable process that BO can tackle, but the BO procedure also have hyperpa-
rameters that need to be fixed a priori. As we are going to see in more detail in
the next section, BO needs to fit a probabilistic surrogate model M , such as a
Gaussian Process (GP) [18], in every iteration to the observations. This GP or
other model have a set of hyperparameters θ associated with it. An Acquisition
Function (AF) α(·) : R

n → R
n is then built in every iteration from the GP,

or other model, that tries to represent an optimal tradeoff between the uncer-
tainty given by the probabilistic model in every point of the input space and
its prediction. The AF is a free hyperparameter of BO and it could be a bad
choice depending on the problem. There are an infinite number of AFs α ∈ A,
being A the functional space of possible AFs. There is no single AF that is the
best for every problem. A bad choice on these and other hyperparameters of BO
lead to bad results in the optimization process. Hence, we ideally need a process
that performs automatic BO without the need of also hyperparametrize the BO
algorithm. This work tries to attempt this problem and starts dealing with the
automatic decision of which AF should we use by performing different heuristics.
We hypothesize that an automatic BO algorithm will deliver better results than
having to manually tune the hyperparameters of BO in problems where we do
not have prior information about them.

This paper is organized as follows, in Sect. 2 we introduce the fundamental
theory of BO and GP. Then, in Sect. 3, we exhibit our proposed approaches for
BO. We introduce a set of benchmark experiments and a real experiment to show
the utility of our approach in an experiments section. Finally, a conclusions and
further work section summarizes the paper.

2 BO Issues for Automatic Optimization

The BO algorithm is executed in an iterative fashion, where it uses a probabilistic
surrogate model M(θ) as a prior over functions p(F ) which functional space F
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contains all the hypotheses about the objective function f(·) that we want to
get the maximum of x∗ = arg max f(x). This model M , hyperparametrized by a
set θ, is typically a GP [18], but other models such as Bayesian Neural Networks
[21] and Random Forests [15] are also used. In order for BO to work, we need to
assume that the function f can be sampled from it p(F ). Hence, depending on
the problem, different models may be optimal and even some of them may led to
bad result, being hence the model and its hyperparameters a hyperparameter of
BO. For example, if we consider the popular GP for a problem, if the objective
function is not stationary and we do not do any transformation of the input
space to treat this property of the objective function, the GP does not serve as
a prior for that function and independently of the other hyperparameters of the
BO algorithm and of the number of evaluations, we are going to retrieve bad
results.

Even by choosing the same probabilistic surrogate model M we need to define
the correct hyperparameters θ ∈ Θ for that model. In the typical case of a GP, a
wrong choice of kernel can imply that the function that we want to optimize is no
longer on the functional space that the GP defines. Even by optimizing the rest
of the GP hyperparameters by a maximum likelihood procedure or taking an
ensemble of different GPs with hyperparameters sampled from a hyperparmeter
distribution, as they depend on the choice of kernel, that optimization procedure
would be useless, leading again the BO algorithm to bad results.

BO uses the predictive distribution of the model in every point x of the
input space X to build an AF α(M(X|θ)). This AF represents the utility of
evaluating every point x ∈ X in order to retrieve the optimum of the objective
function in the, in the standard BO algorithm, next step of the iteration, being
a myopic optimization procedure. The literature contains different AFs that try
to represent the optimal trade off between exploration of the space areas that
have not been yet explored and the exploitation of previously good evaluated
results. Some of these AFs are the following ones:

Probability of Improvement: PI(x) = Φ(
f(xbest) − μ(x)

σ(x)
). This AF basically

represents, for each point of the space, the probability of this point to be better
if evaluated than the best observed value retrieved so far.

Expected Improvement: EI(x) = σ(x)(γ(x)Φ(γ(x))+φ(γ(x))). The previous
function does not take into account, for every point and sample function of
the probabilistic model, how much does the point improve the maximum value
found. Expected improvement represents a theoretical improvement over the
probability of improvement by considering this quantity.

Lower Confidence Bound: LCB(x) = μ(x) − κσ(x). This AF is representing
a tradeoff between the prediction of the probabilistic model in each point of the
space μ(x) and exploration over unknown areas given by the uncertainty of the
model in each point of the space σ(x). The κ parameter assigns a weight for
each quantity.

But there are a lot more, in fact, we could generate an infinite number of
possible AFs. As in the case of the probablistic surrogate model, the decision
of the chosen AF conditions the optimization. For example, if the function is
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monotonic, we do not need a heavy exploratory based AF. On the other way, if
the objective function is contaminated by a high level of noise, the exploitation
criterion is practically useless. There is no single best AF for every scenario, as
the no free lunch theorem states [14].

for t = 1, 2, 3, . . . ,max steps do
1: Find the next point to evaluate by optimizing the AF:
xt = arg max

x
α(x|D1:t−1).

2: Evaluate the black-box objective f(·) at xt: yt = f(xt) + εt.
3: Augment the observed data D1:t = D1:t−1

⋃{xt, yt}.
4: Update the GP model using D1:t.

end
Result: Optimize the mean of the GP to find the solution.

Algorithm 1: BO of a black-box objective function.
BO have more hyperparameters, as for example the optimization algorithm of

the AF, typically a grid search over the space of the AF and a local optimization
procedure such as the L-BFGS algorithm [6]. The sampling procedure for the
hyperparameter distribution of the probabilistic surrogate model, the number of
samples and more. Varying the values of those hyperparameters condition the
quality of the final recommendation. We have observed that despite the fact that
BO is an excellent optimization procedure, it is not automatic and we need to
choose wisefully the hyperparameters. This is possible if we have prior knowledge
about the objective function, but this is not a scenario that always happens.

Hence, we ideally need a procedure to search for the best BO hyperparame-
ters, concretely the model and the acquisition, as the function is being optimized.
This work is a first step towards this goal. We explore different simple heuristics
to determine if they affect to the optimization behaviour. We have only focused
on the AFs, but the selection of a particular probabilistic surrogate model while
the optimization is being performed is also an essential issue to deliver automatic
BO.

The next section will illustrate the first possible methods that we can execute
to perform a simple search of the possible AFs belonging to the set A of all
possible AFs to build from a probabilistic surrogate model.

3 Heuristic Driven Bayesian Optimization

In this work, we begin to explore the possibilities of combining AFs in order to
build criteria that satisfies the majority of the problems or that it adapts to the
optimization process.

Formally, if we have a set A of AFs, we are going to build criteria that
combines these AFs.

We hypothesize that different GP states of an underlying objective function
need different AFs in order to discover which is the optimum of the underlying
function. Which is in contrast to the typical BO algorithm that just uses the
same AF for all the iterations.



164 L. C. Jariego Pérez and E. C. Garrido Merchán

We propose, given the same probabilistic surrogate model, using different
AFs or linear combinations between AFs in the same BO algorithm. For every
iteration, a different AF will be used, defining now for BO problems not an AF
as in standard BO but an AF generator G that generates for every iteration
t = 1..N a different AF αt(·) ∈ A. These generators can use any possible AF
as seeds for the generation of AFs in every iteration. We illustrate different
approaches for an AF generator that are basically heuristics that search the best
possible AF.

In practice, we have explored combinations of Standard AFs used in the BO
literature. We formulate the hyperparameter tuning of AFs for BO as a search
problem and start tackling it with heuristics to observe how the global behaviour
of BO is conditioned.

We propose the following approaches over the AFs described in the previ-
ous section. As it has been described, we could use an extended set of AFs
like including PES [13], MES [22] or any other. We also hypothesize that the
behaviour of the heuristics will improve with the addition of more and more
diverse AFs to the seed set of AFs that we consider. The heuristics that we
propose are, in first place, the Random criteria, basically defined by placing un
uniform distribution U over the functional set of AFs A and sampling from it in
every iteration. For every iteration a different AF α(·)t is going to be executed.
We hypothesize that the optimization process will be enriched by the random
execution of different criteria, obtaining good results. In our case, as we only
consider the EI, LCB and PI acquisitions, the criterion will be given by the fol-
lowing expression: Rand(x) = U(PI(x),EI(x),LCB(x))., but in the general case
it would be: Rand(x) = U(A).

We could perform the same logic as in the Random case but performing
a Sequential criterion. Seq(x, niter) = Cands(x)[nitermod(ncands)]. We model
here all the acquisitions in an ordered list and sample them sequentially, one
acquisition for every iteration. We have proposed this two initial strategies in
an analogy with respect to the grid search and random search, hypothesizing
that they fully explore the set of seed AFs and enriching the optimizing process
results.

If we assume that all the AFs can be valid in any time of the opti-
mization process and retrieve different but interested results, then, a logical
suggestion will be to consider a linear combination over all the considered
AFs, that is the weighted AF criterion, defined by the following expression:
αw(x|A,w) =

∑|A|
i=1 wiαi(x) :

∑|A|
i=1 wi = 1. In our particular case the weighted

criterion function would be αw(x) = κPIPI(x) + κEIEI(x) + κLCBLCB(x).
Lastly, lots of metaheuristics and machine learning algorithms include mech-

anisms such as the mutation probability in genetic algorithms or dropout in deep
neural networks that act as regularizers, enforcing exploration and preventing
from overfitting, improving the results. We hypothesize that we can establish an
analogy for the AF search so we introduce a noised criterion, that basically trans-
forms the acquisition in a latent functional variable and contaminates it with i.i.d
gaussian noise to enforce exploration: f(x) = g(x) + acquisition noiseN (0, I).
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All these approaches are heuristic but explore a space defined by the set A.
Our procedure combines AFs like this: The weighted AF criterion contains a
weight for each AF to measure its the importance. This is a generalization of
common BO but does not solve the automatic BO scenario. If, instead of being
hardcoded by the user, these weights were adapted as the problem is being
optimized or in function of the problem, the optimization would be automatic.
As a first attempt towards automatic BO, we propose to use a Metaoptimization
of the weights w using BO over the weight space R|A| ∈ [0, 1]|A|. We define a
search space of |A| weights that are associated with their respective AFs. Then,
we execute a standard BO procedure that gives us the weights that minimize
the predicted error by the underlying BO algorithm. By performing this double
loop, the weights are optimized and the underlying BO algorithm is automatic.
Nevertheless, the upper BO algorithm still needs to be tuned but we can study
several problems to adjust a reasonable prior over the weight space.

4 Experiments

We carry out several experiments to evaluate the performance of the described
heuristics in the previous section. We also compare the approaches to a pure
exploration method based on Random Search [1]. The set of seeds AFs and
the proposed ones have been implemented in SkOpt [16]. In each experiment
carried out in this section we report average results and the corresponding stan-
dard deviations. The results reported are averages over 100 repetitions of the
corresponding experiment. Means and standard deviations are estimated using
200 bootstrap samples. The hyperparameters of the underlying GPs are maxi-
mized through maximum likelihood in the optimization process. The AF of each
method is maximized through a grid search.

4.1 Benchmark Experiments

We test the proposed AFs and compare with GP-Hedge over a set of benchmark
problems, namely, the Branin, 3-dimensional Hartmann and 3-dimensional Ras-
trigin functions. We plot the results in Figs. 1, 2 and 3.

We can observe that, for the Branin function, the best method is the weighted
AF optimized by the metaoptimization process. GP-Hedge method also delivers
good results, tying at the end with the weighted AF. We hypothesize that the
good behaviour of the ensemble AFs (weighted and hedge) is a consequence
given by the fact that every seed adds some value in the problem. Separated,
although, they do not provide good results.

We observe a different behaviour in the Hartmann function, where only the
pure exploitation AFs (EI and PI) report a good result. This happens due to the
shape of Hartmann, where exploration is a bad strategy as with pure exploitation
we can reach to the optimum. We can observe empirically that EI is better than
PI as it considers the amount of improvement over the incumbent. Ensemble
AFs, as they consider exploration or other criteria rather than EI and PI lose
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Fig. 1. Means and standard deviations of the log difference w.r.t the absolute regret
of the maximizer of the different considered AFs in the Branin Function.
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Fig. 2. Means and standard deviations of the log difference w.r.t the absolute regret
of the maximizer of the different considered AFs in the Hartmann Function.

performance, but they are not as bad as LCB, which is not a good strategy here.
This property of ensemble AFs guarantees that they are not as bad as the worst
case in any scenario.

In the Rastrigin function, we can observe that the random methods do not
perform well but the others tie, performing a better result. No AF seems to
govern, maybe all locating just local optima of Rastrigin. The large standard
deviations of the Rastrigin function may be explained for different reasons, first
is the shape of the function with lots of local optima, each repetition may end in
different points and hence the deviation is big. Other explanations are the opti-
mization of the AF being done with a grid search. We need to perform a L-BGFS
optimization of the maximum valued point retrieved by this search to discard
the hypothesis that the large deviations are happening for local optima. Another
important fact is to consider a hyperparameter distribution of the GPs to sample
from it with an algorithm such as slice sampling instead of simply optimizing
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Fig. 3. Means and standard deviations of the log difference w.r.t the absolute regret
of the maximizer of the different considered AFs in the Rastrigin Function.

the hyperparameters through maximum likelihood, incurring in overfitting of the
model as BO performs a small number of evaluations.

4.2 Real Experiment

In this section we perform a hyperparameter tuning problem of the learning rate,
minimum samples split and maximum tree depth of a Gradient Boosting Ensem-
ble classifier on the Digits Dataset. We do not find the issues of the Rastrigin
function in this problem as, typically, the shape of the estimation of the gener-
alization error function for machine learning algorithms is smooth, so we expect
that the retrieved results by BO in this case will not contain a high standard
deviation and favour the weighted criterion. The results can be seen in Fig. 4.
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Fig. 4. Means and standard deviations of the log difference w.r.t a perfect classification
error of the different considered AFs in the Hyperparameter Tuning of a Gradient
Boosting Ensemble.
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As we can see, the weighted criterion is the best one in this problem, that
might contain some local optima and irregularities as the random search also
work pretty well. Maybe due to certain combinations of parameters that gen-
erates good results. There is a lot more to do for automatic BO but the first
necessary step towards that goal is to explore the set of all possible AF through,
as in this case, generators of linear combinations of AFs that, in average, produce
great results.

5 Conclusions and Further Work

The proposed approaches provide alternatives for Hyperparameter Tuning prob-
lems with respect to the standard AFs. There is still a lot of work to do for
automatic BO, such as doing a similar approach as this one but with probabilis-
tic graphical models and AF optimizers. In future work, we would like to build
a dataset from a plethora of GP states and try to train a deep neural network
that learns to predict which is the best AF to use or even the best point to
consider given the dataset and the state of the current GP. We would like to
test whether if the transformations made in the input space to deal with inte-
ger [8] and categorical-valued variables [10] change the behaviour of the given
AF heuristics. The final purpose of this research is to employ automatic BO
for the optimization of the hyperparameters of the machine learning architec-
ture of the creative robots that exhibit human behaviour [11,17] to test machine
consciousness hypotheses.
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Abstract. In this paper a problem of job sequences in a workshop is presented,
taking into account non-unit demands for these and whose objective is to obtain
manufacturing sequences satisfying the Quota property with a minimum total
completion time for all the jobs (Cmax). Two procedures are proposed to solve the
problem:Mixed Integer Linear Programming and aMetaheuristic based onMulti-
start and Local Search. The two proposed procedures are tested using instance set
Nissan-9Eng.I, in both cases giving rise to highly satisfactory performance both
in quality of solutions obtained and in the CPU times required.

Keywords: Flow Shop Scheduling Problem · Overall demand · Heijunka ·
Mixed Integer Linear Programming · Multi-start · Local search

1 Preliminaries

The Flow Shop Scheduling Problem (FSP) is a sequencing problem that has received
considerable attention from professionals and researchers in recent decades due in part
to the wide range of production environments it can model [1].

A recent version of FSP is the Fm/β/γ /di family of sequencing problems ([2, 3]),
which is to establish an application between the elements of a set T of ordinals (T ele-
ments) corresponding to the positions in the production sequence:π(T ) = (π1, . . . , πT ),
and the elements of a set J of jobs or products (D elements, with D = T ).

The jobs or products in group J are classified into exclusive types or classes, Ji, sat-
isfying the following properties: J = ⋃

i∈I Ji and Ji ∩ Ji′ = ∅,∀{
i, i′

} ∈ I , where I is
the set of job types (i = 1, . . . , n).

In Fm/β/γ /di problems, the β parameter can take the permutation (prmu) or block-
ing (block) values, while the γ parameter corresponds the efficiency metrics to opti-
mize (Cmax, Cmed , etc.), vector �d represents the demand plan for the considered job
types, and di symbolizes the number of jobs of type i ∈ I within J ; di = |Ji|∀i ∈ I ,
satisfying:

∑

∀i
di = D = T .
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The units of J travel in order through a set K of m stations on an assembly line
arranged in series and the production of a job of type i ∈ I requires a heterogeneous
processing time pi,k in workstation k ∈ K (k = 1, . . . , m).

The purpose of problems Fm/β/γ /di is to obtain a sequence of replicated jobs or
products (di), in a linewithmmachines, with the possibility of blocking or not, according
to the β parameter, and with the objective of optimizing the efficiencymetric represented
by the γ parameter.

Therefore, using the notation proposed by Graham et al. [4], both the Fm/prmu/γ

problems ([5–7]) as theFm/block/γ problems ([8–10]) are particular cases of the family
Fm/β/γ /di, when di = 1 for all i ∈ I .

On the other hand, completing all jobs in the shortest time possible (min Cmax) is
not the only desirable objective when establishing a product manufacturing sequence.
In production environments that are governed by the Just-in-Time manufacturing ideals
([11]), the production sequences must have properties that are linked to the Heijunka
concept [12], whose meaning is to achieve regularity of production. The incorporation
of Heijunka in production sequence problems can be characterized by three methods:

a. Restrictions: Imposing minimum and maximum manufacturing levels on the job
types or products (i = 1, . . . , n) in each manufacturing cycle (t = 1, . . . , T ).

b. Objective function: Maximizing the constancy of the product manufacturing rates
and/or the component consumption rates.

c. Mixed characterization: There is also the possibility of establishing a mixed charac-
terization ofHeijunka, which incorporates into the sequencemodels the two previous
methods [13]: (a) restrictions and (b) an objective function.

In this work, the first characterization has been added to the genuine
Fm/prmu/Cmax/di problem to achieve sequences with minimummakespan (Cmax: time
that elapses from the start of work to the end) and with some properties that propitiate
the regularity of production through restrictions.

The remaining text has the following structure. Section 2 is dedicated to presenting
the problem under study. Section 3 describes the algorithm that was designed. In Sect. 4,
a case study with its data is shown, as well as the procedures used and their results.
Finally, Sect. 5 offers some conclusions about this work.

2 Heijunka Fm/prmu/Cmax/di

To incorporate Heijunka, we will indicate that the sequence π(T ) = (π1, . . . , πT ),
which is composed of T units of jobs, has the property of preservation of the production
mix if the set of restrictions (1) is satisfied. We also call this property Quota property:

λit ≤ Xi,t ≤ λit ⇔ ∣
∣Xi,t − λit

∣
∣ < 1∀i∀t, andXi,T = di ∀i (1)
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where:

– I : set of product types, i = 1, . . . , |I |
– T: set of manufacturing cycles in every demand plan, t = 1, . . . , |T|; T ≡ |T|
– di : demand for units of type i ∈ I in an arbitrary demand plan
– λi : proportion of units of type i ∈ I : λi = di/T ∀i ∈ I
– Xi,t : number of units of type i ∈ I in the partial sequence π(t) ⊆ π(T ): Actual
production associated with the partial sequence π(t).

TheQuota property (1) impose that the actual production Xi,t , for every product i ∈ I
and every manufacturing cycle t ∈ T, must be an integer as close as possible to its ideal
production λit. The ideal production (λit) is defined as the quota of manufacturing time
given to a product (i ∈ I) until the end of each production cycle (t = 1, . . . , |T|).

Under such conditions, we can present a model for the Fm/prmu/Cmax/di that
accounts for two types of aspects:

A.1 Technical-productive in JIT manufacturing context: Quota property to enforce
preservation of the production mix in the Heijunka manufacturing sequence π(T ).

A.21Processing time efficiency: objective function tominimize themaskespanCmax .
Effectively, assuming the following data is known:

– The set of job types (I : i = 1, . . . , |I |) and the set of stations (K : k = 1, . . . , |K |).
– The processing times pi,k(i ∈ I�k ∈ K) of the operations.
– The demand vectors �d = (

d1, . . . , d|I |
)
and production mix �λ = (

λ1, . . . , λ|I |
)
.

The problem is finding a Quota sequence of T jobs π(T ) = (π1, . . . , πT ) with
minimum makespan Cmax that satisfies the demand plan represented by the vector �d .
The formulation of the model is as follows:

min Z =
T∑

t=1

n∑

i=1

zi,t ≺ min Cmax = max
∀k∀t

[
Ck,t

] ≡ Cm,T (2)

Ck,t = Sk,t + pπt ,k∀k ∈ K∀t = 1, . . . , T (3)

Sk,t = max
(
Ck,t−1(πt−1), Ck−1,t(πt)

)∀k ∈ K∀t = 1, . . . , T (4)

Xi,t = |{πτ ∈ π(t) ⊆ π(T ) : πτ = i ∈ I}|∀i ∈ I∀t = 1, . . . , T (5)
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∣
∣Xi,t − λit

∣
∣ < 1 + di × zi,t∀i ∈ I∀t = 1, . . . , T (6)

Xi,T = di∀i ∈ I (7)

Ck,0 = 0 ∀k ∈ K (8)

C0,t = 0 ∀t = 1, . . . , T (9)

zi,t ∈ {0, 1}∀i ∈ I∀t = 1, . . . , T (10)

In the model, the function (2) is composed of two hierarchical objectives: the first
is oriented to find a sequence π(T ) that satisfies the Quota property (Z = 0) and the
second expresses the minimization of the time of completion of the last job or product
πT of the production sequence π(T ) in the last machine (k = m); that is: Cmax ≡ Cm,T .
The equality (3) determines the minimum time of completion of the t-th job πt in
machinek ∈ K : Ck,t(πt). The equality (4) determines the minimum star time Sk,t of
the t-th job πt in π(T ) in machinek ∈ K .Formula (5) serves to count the number of
jobs of type i ∈ I in the partial sequence π(t) ⊆ π(T ). Conditions (6) are used to count
the number of violations of the Quota property in the sequence π(T ) using the binary
variables zi,t . The equalities (7) impose the satisfaction of the demand plan (di∀i ∈ I).
Conditions (8) and (9) set the start of completion times. Finally, conditions (10) force
the zi,t variables to be binary.

3 MS-LS: A metaheuristic for Heijunka Fm/prmu/Cmax/di

Similar to [13] the proposedmetaheuristic, MS-LS, consists of a first constructive phase,
which provides an initial solution through a randomized greedy procedure, and a second
phase, called the improvement phase, which uses local search procedures to reach the
local optima in one or more specific neighborhoods.

After setting a prefixed number of iterations (construction plus improvement), the
proposed metaheuristic obtains a manufacturing sequence π(T ) = (π1, . . . , πT ) that
satisfies the Quota property and also serves the objective of minimizing the completion
time of the last job in the last workstation: Cmax.
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3.1 Phase 1: Multi-start for the Construction of a Quota Sequence

Formally, a Quota sequence is any solution according to model MQS that follows.
MQS: Maxsat-Quota-SequenceModel

min Zsum =
T∑

t=1

n∑

i=1

zi,t ⇔ max Z ′
sum =

T∑

t=1

n∑

i=1

(1 − zi,t) (11)

∑n

i=1
xi,t = 1∀t = 1, . . . , T (12)

∑T

t=1
xi,t = di ∀i ∈ I (13)

Xi,t −
∑t

τ=1
xi,τ = 0 ∀i ∈ I ∀t = 1, . . . , T (14)

xi,t =
{
1 ⇔ π̂t = i
0 ⇔ π̂t = i

}

∀i ∈ I ∀t = 1, . . . , T (15)

zi,t =
{
1 ⇔ ∣

∣Xi,t − λit
∣
∣ ≥ 1

0 ⇔ ∣
∣Xi,t − λit

∣
∣ < 1

}

∀i ∈ I ∀t = 1, . . . , T (16)

Where zi,t (∀i∀t) is a binary variable equal to 1 if and only if
∣
∣Xi,t − λit

∣
∣ ≥ 1, and

xi,t (∀i∀t) is a binary variable that equals 1 if and only if a unit of type of product i ∈ I
occupies position t of the manufacturing sequence π(T ). Obviously, the goal is to obtain
sequences with Zsum = 0.

Attending to (16), we can construct Quota sequences (or closed to them) minimizing
the sum of absolute deviations

∣
∣Xi,t − λit

∣
∣; this is:

minG =
T∑

t=1

n∑

i=1

∣
∣Xi,t − λit

∣
∣ (17)

Taking into account (17), we construct a sequence of jobs π(T ) = (π1, . . . , πT ),
which assign progressively at each stage t(t = 1, . . . , T )a job from the CL(t) list of
candidates that can be drawn to occupy the position t of the manufacturing sequence.
So, when stage t is reached, it is added to the sequence consolidated in the previous
stage, π(t − 1), a job i ∈ CL(t) (see Algorithm A1).

For a job type i ∈ I to enter the list CL(t) of stage t, it must meet the following two
conditions (line 7 from A1):

(a) The job type does not have its demand fulfilled: ni = Xi,t−1 < di.
(b) The job type must not violate the Upper Quota Property: ni + 1 ≤ λit.
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Once the CL(t) list is built, we order the candidate jobs i ∈ CL(t) according to the
following priority index:

g(t)
i = |ni + 1 − λit| +

∑

∀j∈I :j =i

∣
∣nj − λjt

∣
∣∀i ∈ CL(t) (18)

With the help of the g(t)
i index, the jobs from the list CL(t) are ordered increasing

order and the CL(t) is constructed (line 13 from A1).

A1: Algorithm 1 for the constructive phase of the sequence of jobs: 
1: // Initialization
2: input
3: initialize 
4: // Create the candidate set
5: while ( do
6: set 
7: set 
8: // Evaluate alternative
9: for all do
10: set
11: end for
12: // Sort alternatives

13: sort : set  as the ordered list from  according the  values. 
14: // Select alternative
15: set
16: set
17: // Update
18: set
19: set
20: end while 
21: // End Algorithm 1 

After this ordering, the listCL(t)is reduced through amechanism that is a function of
the admission factor � (percentage of candidate jobs), with this operation, the restricted
listRCL(t,�) is obtained (line 15 inA1),which coincideswithCL(t)when� = 100% =
1, while if � = 1/|I |, the best candidate job from such lists is selected at each stage t.

Algorithm A1 does not always provide a sequence π(T ) that satisfies the Lower
Quota Property: λit ≤ Xi,t,∀i∀t; So, after running it, Algorithm 2 starts up.
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A2: Algorithm 2 for the constructive phase of the Quota sequence of jobs: 
1: // Initialization
2: input
3: initialize 
4: // Quota Property
5: while do
6: set 
7: for all do
8: set
9: if then
10: set 
11: else
12: set 
13: exit while
14: end if
15: end for
16: set  
17: end while
18: if then
19: solve :  set 
20: end if
21: // End Algorithm 2 

TheMAXSAT procedure (Line 19 fromA2) is an exchange procedure that solves the
problem of maximum satisfaction of restrictions MQS:

[∣
∣Xi,t − λit

∣
∣ < 1,∀i∀t

]
, which

provides as a solution a sequence π̂(T ) that does satisfy the Quota property in all of the
manufacturing cycles.

3.2 Phase 2: Improvement of the Quota Sequence Through Local Search

The improvement phase start with a Quota sequence π̂(T ) in which four descent algo-
rithms are run consecutively and repetitively in 4 neighborhoods (2 exchange and 2
insertion) until none of them improves the best solution that is achieved during the iter-
ation. From two Quota sequences, the one that offers the least total completion time
(Cmax) is selected. The descent algorithms are based on the exchange and insertion of
jobs, and they are oriented to the exploration of sequence cycles in both increasing and
decreasing order. The four descent algorithms are:

(i) Forward exchange: for all t position of the current sequence, π̂(T ), it is determined
the job type that is in that position and it is searched the next closest locus, t′ > t,
that is occupied by the same type (i.e. π̂t = π̂t′ ); if no such locus exists, then its
value is set by making .t′ = T + 1 Just after, the tentative exchange between π̂t

and the jobs located in the range
[
t + 1, t′ − 1

]
of the sequence is made. The first
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exchange that reduces the total completion time Cmax is consolidated as long as
the resulting sequence satisfies the Quota property. While there is improvement
this algorithm is repeated.

(ii) Backward exchange: this procedure is similar to the previous one, but in this case
the search is performed for t = T to 1 step -1. Obviously, if the previous closest
locus, t′(t′ < t), with the same job type

(
π̂t = π̂t′

)
does not exist, it is considered

t′ = 0. This action is repeated while there is improvement.
(iii) Forward insertion: for all t position of the current sequence, π̂(T ), the job type in

the t position is detected and it is searched the next closest locus t′(t′ > t) that is
occupied by the same type (π̂t = π̂t′); if these locus does not exist, it is considered
t′ = T + 1. Following, the π̂t job is inserted in the range of sequence positions[
t + 1, t′ − 1

]
. Then, the first insertion that leads to reduce Cmax is done as long

as the resulting sequence satisfies the Quota property. This procedure is repeated
while there is improvement.

(iv) Backward insertion: this insertion procedure is similar to (iii) with respect to the
neighbourhood, and analogous in the search for types of jobs to (ii). Also, this
action is repeated while there is improvement.

4 Case Study: Nissan BCN Engine Plant

The computational experience proposed here is focused on comparing the MS-LS (pro-
posed metaheuristic) and MILP (Mixed Integer Linear Programming) procedures in
terms of the quality of the solutions and the CPU times. As in [2] and [3], the analysis is
related to a case study of the Nissan plant in Barcelona: an assembly line of nine types
of engines grouped into three families (SUVs, Vans and Trucks).

The production line under study employs 42 operators work in shifts of 8 h. The
significant data of this case are the following: 21 workstations |K | = 21, 9 job types
|I | = 9, processing times pi,k(∀i ∈ I ,∀k ∈ K) with values between 89s and 185s, 23
engine demand plans |E| = 23 (corresponding to the Nissan-9Eng.I instances) and daily
demand of 270 jobs for all demand plans: T ≡ Dε = 270jobs(∀ε ∈ E).

The compiled codes of the procedures that we have selected in this work are MILP
and MS-LS.

Table 1 shows the best results with respect to Cmax and CPU Time from MILP and
MS-LS, and for the 23 datasets of the problem ε ∈ E. In the Table 1, the column headings
represent the following characteristics:

ε ∈ E. Identification number of the instances for Plan#1 to Plan#23
Cmax. Best makespan value obtained for procedure MILP or MS-LS
LB. Cmax lower limit for the Heijunka Fm/block/Cmax/di problem obtained for MILP
Gap. Relative gap between Cmax andLB.
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The relative gap values between Cmax are calculated using (19).

Gap(ε) = (Cmax(ε) − LB(ε))/LB(ε)∀ε ∈ E (19)

The characteristics of the two procedures are:

– MILP: Heijunka Fm/prmu/Cmax/di Model: (i) Objective function for minimizing
the Cmax value of the Quota production sequence; (ii) implementation for IBM ILOG
CPLEX solver (Optimization Studio v.12.2, win-x86-64); (iii) maximum CPU time
of 900 s allowed for solving each instance (23 instances). The average CPU time used
by each demand plan to find the best solution is equal to 213.82 s.

– MS-LS: Is a Multi-start algorithm with Local search focused on minimizing the total
completion time Cmax in Quota manufacturing sequences. The maximum number of
iterations for each demand plan from Nissan-9Eng.I instances is equal to 10 with 5
candidate admission factors � = (1/|I |, 0.25, 0.5, 0, 75, 1), which generates in the
constructive phase 1150 solutions and 7060 improved solutions (improvement phase)
in 115 executions. MS-LS uses on average a CPU time equal to 56.55 s to find the
best solution for each demand plan.

An analysis of Table 1 reveals the following:

– Procedure MILP obtains and ensures optimal solutions in 19 of the 23 instances with
270 jobs (23 instancesNissan-9Eng.I)when theHeijunkaFm/prmu/Cmax/di problem
is solved.

– Procedure MS-LS obtains optimal solutions in 10 of the 23 instances with 270 jobs
when the Heijunka Fm/prmu/Cmax/di problem is solved.

– The average value of the relative gap between Cmax andLB achieved by MILP is
0.001% in a range of values between 0.000% and 0.012%.

– The average value of the relative gap between Cmax andLB achieved by MS-LS is
0.005% in a range of values between 0.000% and 0.018%.

– The average CPU times used byMILP are approximately 213.82 s for each instance of
270 jobs in a range of values between 6.51 and 900.38 s, when a maximum CPU time
equal to 900 s is imposed on CPLEX to solve each instance.

– The average CPU time used by MS-LS is equal to 56.55 s within a range of values
between 3.91 and 251.38 s, when 10 iterations are performed with the algorithm.

– Considering that the cost of production loss is 137.14 euros per production minute
[14] and that the current production time available tomanufacture 270 engines is equal
to 50770 s, transforming the original assembly line into a Heijunka Permutation Flow
Shop would save an average of 1161.12 euros a day.
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Table 1. Results for Nissan-9Eng.I instances using procedures MILP andMS-LS. CPU columns
show the CPU time (in seconds) spent solving each instance.

ε ∈ E MILP MS-LS

LB Cmax Gap CPU Cmax Gap CPU

1 50100 50100 0.000% 150.98 50104 0.008% 5.50

2 50180 50180 0.000% 391.35 50188 0.016% 46.70

3 50303 50303 0.000% 46.08 50303 0.000% 15.34

4 50170 50170 0.000% 55.08 50170 0.000% 251.38

5 50385 50385 0.000% 25.81 50394 0.018% 123.41

6 50202 50202 0.000% 11.76 50204 0.004% 3.91

7 50397 50397 0.000% 32.38 50397 0.000% 196.16

8 50126 50128 0.004% 900.30 50131 0.010% 23.57

9 50378 50378 0.000% 11.06 50378 0.000% 5.82

10 50625 50625 0.000% 7.16 50625 0.000% 12.64

11 50084 50085 0.002% 900.31 50088 0.008% 30.16

12 50196 50196 0.000% 55.65 50196 0.000% 211.54

13 50129 50135 0.012% 900.27 50136 0.014% 12.69

14 50223 50223 0.000% 233.21 50224 0.002% 123.73

15 50242 50242 0.000% 16.58 50243 0.002% 13.13

16 50123 50126 0.006% 900.38 50131 0.016% 12.41

17 50273 50273 0.000% 75.83 50275 0.004% 4.29

18 50273 50273 0.000% 41.66 50275 0.004% 8.95

19 50481 50481 0.000% 6.51 50481 0.000% 23.91

20 50100 50100 0.000% 111.85 50100 0.000% 52.20

21 50307 50307 0.000% 10.12 50307 0.000% 5.99

22 50545 50545 0.000% 7.58 50545 0.000% 83.46

23 50157 50157 0.000% 25.85 50158 0.002% 33.69

Av 50260.80 50261.35 0.001% 213.82 50263.17 0.005% 56.55

Max 50625 50625 0.012% 900.38 50625 0.018% 251.38

Min 50084 50085 0.000% 6.51 50088 0.000% 3.91

5 Conclusions

In this work, a manufacturing sequence model is presented which incorporates the
Heijunka concept into the Fm/prmu/Cmax/di problem.

Two methods have been used to solve the problem. The first of them is based on
Mixed Integer Linear Programming and the CPLEX solver (a commercial Software from
IBM) has been used solving all 23 instances from the Nissan-9Eng.I set. The second
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method, with which the same instances have been solved, is MS-LS algorithm in whose
constructive phase initial solutions are generated satisfying the Quota property, while in
the second phase the solutions are improved using 4 neighborhood (exchange, insertion)
and attending to the criterion of minimum total completion time (Cmax).

Both procedures have been highly competitive with the problem, since they have
been able to optimally solve a high percentage of the instances using reasonable CPU
times. Specifically, procedure MILP (CPLEX) obtains and ensures optimal solutions in
19 of the 23 instances with 270 using an average CPU time equal to 213.82 s for each
instance with an average value of the relative gap between Cmax and the lower bound
equal to 0.001%. For its part, MS-LS has been able to obtain 10 optimum within 23
instances using an average CPU time equal to 56.55 s for each instance with an average
Gap equal to 0.005%. Therefore, it can concluded that both procedures are valid to solve
the Heijunka Fm/prmu/Cmax/di problem.

In view of the results, it can be concluded that there has been a technical tie in the
quality of the solutions offered by MILP and MS-LS. However, MS-LS has been shown
3.78 times faster than MILP (IBM CPLEX solver) in the proposed experiment, while
MILP has also served to calculate lower bounds for the purpose of comparing the two
procedures.
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Abstract. This paper presents a new forecasting algorithm for time
series in streaming named StreamWNN. The methodology has two well-
differentiated stages: the algorithm searches for the nearest neighbors to
generate an initial prediction model in the batch phase. Then, an online
phase is carried out when the time series arrives in streaming. In par-
ticular, the nearest neighbor of the streaming data from the training
set is computed and the nearest neighbors, previously computed in the
batch phase, of this nearest neighbor are used to obtain the predictions.
Results using the electricity consumption time series are reported, show-
ing a remarkable performance of the proposed algorithm in terms of fore-
casting errors when compared to a nearest neighbors-based benchmark
algorithm. The running times for the predictions are also remarkable.

Keywords: Forecasting · Nearest neighbors · Streaming time series ·
Electricity demand

1 Introduction

The explosive increase of global data, based on technology improvements, has
led to the gathering of information as an automatic and relatively inexpensive
task [16], taking us to the big data era. Data science offers a solution to gain
knowledge from these enormous amounts of data, by means of adapting the
existing models to the big data paradigm. This adaptation is a challenge for the
research community.

There are several fields in which the application of the new big data anal-
ysis techniques represent a great improvement in problem solving, such as the
energy consumption forecasting [17,25]. Governments and private companies are
focusing on this topic as the improvement in the prediction levels will have both
economic and environmental positive consequences [22]. In this sense, some clas-
sifiers have already been successfully applied to electricity consumption forecast
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[24], such as the weighted k-nearest neighbors classifier (WKNN). The WKNN
[4] is a generalization of the k-nearest neighbors method (KNN) [2] that assigns
weights to the neighbors based on their distance from the element to predict.

The direct application of these methods to the big data domain is not feasible
due to the computational needs, in terms of time and memory. Several proposals
have adapted nearest neighbor proposals to the big data paradigm using the
Apache Spark distributed computation framework [16,21,22].

Data streams are generated in many practical applications as temporally
ordered, fast changing and massive flows of data [13]. Mining these data streams
is concerned with extracting knowledge structures represented in models and
patterns in non-stopping streams of information [6], and the research on this
area has gained a high attraction. In this proposal, we go a step further and
propose a general purpose forecasting algorithm based on nearest neighbors for
big volumes of streams of data, to create a method capable to be integrated in
real-world systems in which data are constantly generated as streams, such as
the demand prediction in the electricity market.

In this work, we propose the StreamWNN algorithm for streaming time series
forecasting based on nearest neighbors. This algorithm consists of two phases: a
batch phase to generate an initial model, and an online phase for forecasting in
real time by using the model previously created in the batch phase. The proposal
has been applied to a dataset of 497,832 samples of electrical energy consumption
in Spain.

The rest of the paper is structured as follows. Section 2 describes a review of
the state of the art approaches related to data streaming and forecasting analysis
int the electricity market. Section 3 presents the methodology applied for time
series forecasting in streaming. The experimental setup along with the results
obtained using electricity demand time series can be found in Sect. 4. Finally, in
Sect. 5, the final considerations extracted from this work are presented.

2 Related Works

A wide range of approaches for data streaming analysis is currently emerging.
The primary trend of this research field is the development of machine learning
methodologies to the streaming environments. From this perspective, the authors
in [26] presented an online version of the support vector machine model to predict
air pollutant levels from the monitored air pollutant in Hong Kong. An online
version of the linear discriminant analysis algorithm for dimension reduction
was presented in [14]. On the other hand, it has carried out research efforts
to develop frameworks for adaptation of standard machine learning methods to
streaming [10]. Another streaming framework is SAMOA presented in [1], where
the authors developed an API to apply machine learning algorithms to streams
of data in a big data context. Different algorithms to analyze data streams from
the Internet of Things (IoT) networks are also currently being developed. In [5],
the authors presented a streaming linear regression method to forecast streams
data generated by IoT networks. Finally, several surveys have been published



Nearest Neighbors-Based Forecasting for Electricity Time Series in Streaming 187

about the streaming analysis. In this sense, the authors in [20] analyzed the
difference between the real-time processing and the stream processing of big
data, and by contrast, a survey of the open-source technologies that support big
data in a real-time/near real-time environments was introduced in [15].

Concerning researches focused on forecasting for the electricity demand time
series data, in addition to the nearest neighbors for a big data environment pro-
posed in [22] and the new big data-based multivariate and multi-output forecast-
ing approach in [21], other approaches have been published. In [7], the authors
applied decision gradient boosted trees and random forest ensemble methods to
the electricity demand problem. Also, deep learning techniques have been applied
to predict energy power consumption in big data environments [23]. A Temporal
Convolutional Network has been used in [11] for demand energy forecasting. A
complete review of deep learning architectures for time series forecasting was
published in [12]. On the other hand, several streaming techniques have been
applied to this problem. In [3], the authors presented an incremental pattern
characterization algorithm to mine data streams from smart meters of RMIT
University for the purpose of applying it to electricity consumption analysis
and forecasting. The authors in [8] proposed a complete data streaming analysis
system combining an online clustering model and neural-networks to predict in
real-time the electricity load demand from sensor networks.

Besides the forecasting, other problems related to energy have been
addressed. The authors in [19] presented a methodology to extract electric energy
consumption patterns in big data time series based on the application of the dis-
tributed version of the k-means algorithm. In [9] the authors presented a big
data system to classify fraudulent behaviors of the leading electricity company
in Spain. Regarding the streaming environment, an incremental ensemble learn-
ing method is developed for the on-line classification of the electricity pricing in
Australia in [18]. Furthermore, in [27], the authors presented the DStreamEPK
algorithm, a new streaming clustering method applied to electric power data.

3 Methodology

This Section presents the proposed algorithm, named StreamWNN, for stream-
ing time series forecasting based on nearest neighbors.

The time series forecasting problem consists in predicting the next h values
from the historical past values. The StreamWNN forecasting algorithm has of
two phases: a batch phase to generate an initial model, and an online phase for
forecasting in real time by using the model created in the batch phase.

A time series Xt is defined as a set of ordered chronologically values
{x1, ..., xt} and can be always transformed into N instances formed by features
and class as follows:

Xt = {(x1, y1), ..., (xN , yN )} xi ∈ R
w yi ∈ R

h (1)

where xi are the features of the i− th instance, representing the past w values to
the class yi formed by the next h values. For the batch phase, the time series Xt
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from Eq. (1) is divided into training set and test set. Then, the prediction method
based on nearest neighbors searches for the k closest neighbors to a window
composed of the past w values to the h values to be predicted. Afterwards, a
weight is calculated for each neighbor depending on its distance to the past
values window. Thus, the initial model M consists of the pairs of the features
of the instances from the test set and a list of the classes corresponding to the
neighbors of theses features from the training set. That is:

M = <xi, <y(n1(xi)), ..., y(nK(xi))>> (2)

where K is the number of neighbors, xi are the w features of the i− th instance
of the test set, nj(xi) is the j − th neighbor of the xi and y(nj(xi)) is the class
corresponding to the j − th neighbor.

When a time series is received in streaming, a temporal data stream dst can
be a chunk of the time series of length w, that is, dst = <xt, xt+1, ..., xt+w−1>.
For the online phase, once the dst data stream is received, the nearest neighbor
of the dst from test set is obtaining by this equation:

x∗ = arg min
xi∈Test

d(xi, dst) (3)

Then, the prediction is obtained using the K neighbors of x∗ and weights already
computed in the M model from Eq. (2). In particular, the prediction is made by
applying a weighted average of the h samples following those k closest neighbors.
Thus, the StreamWNN algorithm predicts by means of the following equation:

ŷ(dst) =
1

∑K
j=1 w

∗
j

K
∑

j=1

w∗
j y(nj(x∗)) (4)

where nj(x∗) is the j− th neighbor of x∗, y(nj(x∗)) is the class corresponding to
the j− th neighbor, and w∗

j is the weight associated to the j− th neighbor. This
weight depends on the distance, with a greater weight to the closest neighbors
and a smaller weight to the farthest neighbors according to a distance d. In this
work, the Euclidean distance has been chosen, and the weights are defined by:

w∗
j =

1
d2(x∗, nj(x∗))

(5)

Consequently, it is possible to obtain forecasts in real time as the prediction
consists of making an average with neighbors and weights previously computed
in the batch phase using the historical data.

4 Experimental Results

This section specifies the dataset used in the experimentation and reports the
results obtained after the application of the proposed streaming algorithm. In
particular, Sect. 4.1 describes the dataset and the experiments carried out, speci-
fying in each case the parameters of the algorithm. Finally, in Sect. 4.2 the results
of the experimentation are shown and discussed.
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4.1 Dataset and Experimental Setup

The experimentation uses a dataset of 497,832 samples of electrical energy con-
sumption in Spain. Each sample has 12 attributes related to electricity. For this
work, only two attributes are used: the energy demand in megawatt (MW) and
the date and time of the measured value.

In particular, the dataset contains 1 sample for every 10 min during 9 years
and 6 months, starting the 1 January 1st 2007 and finishing June 21st 2016.
The whole dataset is chronologically divided into 3 sets of data: training, test
and streaming sets. The training and test sets are approximately a 70% of the
dataset: the training set contains data from January 1st 2007 to August 23rd

2011 and the test set contains data from August 24th 2011 to August 19th 2013.
The algorithm predicts almost 3 years, i.e., the streaming set is from August
20th 2013 to June 21st 2016.

In this study, the experiments are carried out with the same parameters
and prediction horizons established in [22]. Each of the four experiments has a
different horizon: 4, 8, 12 and 24 hours. As the dataset contains 1 sample each
10 min, the prediction horizons are 24, 48, 72 and 144 samples, respectively. The
goal is to analyze the behaviour of the algorithm for different prediction horizons
considering the optimal parameters of [22].

The parameters for each experiment are listed below, where h is the predic-
tion horizon, w corresponds to the number of past values used for predicting the
next h values and K is the number of nearest neighbors of the training set to
consider when creating the M model, as defined in Sect. 3:

– For the prediction horizon h = 24, optimal parameters are w = 144 and K = 4.
– For the prediction horizon h = 48, optimal parameters are w = 288 and K = 2.
– For the prediction horizon h = 72, optimal parameters are w = 576 and K = 4.
– For the prediction horizon h = 144, optimal parameters are w = 864 and
K = 4.

4.2 Results

The four experiments are run on a cluster located at the Data Science and
Big Data Laboratory in Pablo de Olavide University. The cluster is formed by
4 nodes: 3 slaves and 1 master. The whole cluster has 4 Processors Intel(R)
Core(TM) i7-5820K CPU with 48 cores, 120 GB of RAM memory. It uses Ubuntu
16.04.1 LTS, Apache Spark 2.3.4, HDFS on Hadoop 2.7.7 and Apache Kafka 2.11.

The metrics used to evaluate the performance of the algorithm are the
mean absolute percentage error (MAPE), expressed as a percentage, and the
mean absolute error (MAE), expressed in MW [24]. Table 1 presents the above-
mentioned metrics of error when forecasting the streaming set of data for the
different prediction horizons. Moreover, the maximum, minimum and standard
deviation (st. dev.) of the MAPE for the streaming set are depicted. It can be
noticed that both MAPE and MAE increase with higher values of the prediction
horizon. Considering that in this work the offline summary model is not updated,
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the standard deviation and values of MAPE and MAE lead to think that the
offline summary model represents in an accurate way the streaming data.

Table 1. Metrics of errors for different prediction horizons

h w k Maximum MAPE Minimum MAPE St. dev. MAPE MAPE MAE

24 144 4 33.0031 0.2464 2.0745 2.4288 670.1298

48 288 2 31.2719 0.4101 2.0842 2.7617 766.8640

72 576 4 34.3861 0.6002 2.8199 3.3535 933.9924

144 864 4 29.3277 0.6548 3.6136 3.8465 1072.8357

Figures 1 and 2 show the worst forecasts (the maximum MAPE) and the
best ones (the minimum MAPE) for each prediction horizon, respectively. They
both show the real and forecasted electricity demand values in the vertical axis
and the hours of the day in the horizontal axis. Each sub-figure includes the
day (in format day/month/year) and the horizon of the maximum or minimum
MAPE. All worst days correspond to public holidays in Spain: in summer for
the prediction horizons 24 and 48 and, in winter for the prediction horizons
72 and 144. For prediction horizons 24, 48 and 72, it can be observed abrupt
changes at the last time sample of the horizon as the following forecasted values
correspond to the next prediction horizon on the same day. On the other hand,
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Fig. 1. Days with the worst forecasts for each h horizon
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Fig. 2 shows that, in these days, the data used in the offline phase represents
well the online data because even without any update of the summary offline
model, the forecasted values are quite accurate.
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Fig. 2. Days with the best forecasts for each h horizon

Table 2 shows the MAE obtained when applying the algorithm recently pub-
lished in [22] and the proposed StreamWNN algorithm using the same set of
data and the same parameters for comparison purposes. It can be observed that
the error of the proposed algorithm is higher just for h = 24. However, the
MAEs of the StreamWNN are quite smaller than the ones in [22] for all the
other prediction horizons.

Table 2. The MAE (in MW) for the StreamWNN and the algorithm in [22].

h [22] StreamWNN

24 524.14 670.13

48 920.87 766.86

72 1313.40 933.99

144 1514.92 1072.84

Figure 3 represents the mean values for each hour, both of the forecasted and
of the real energy demand values of the h = 24 prediction horizon setup. The
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representation of the other three forecast horizons is very similar. It confirms
that the forecast results have behave very similar to the ones of the real data.

Besides the good performance, a streaming algorithm has to provide timely
results during the online phase. Even if the offline phase of the streaming algo-
rithm is not limited in execution time, the offline phase of the proposed algorithm
is fast considering the huge amount of data, both in training and test sets. The
offline phase of the proposed algorithm for h = 24 takes 222.09 s, 167.16 s for
h = 48, 153.47 s for h = 72 and 122.50 s for h = 144.

The online execution time for all four prediction horizons is presented in
Fig. 4. This figure shows for every 200 iterations of the algorithm, the time in
seconds from the beginning of the online phase. The number of iterations for
each experiment is different as w and h changes. In addition, as smaller these
values are, less time is taken to compute the iterations (as in the offline phase).
It can be observed that the algorithm increases linearly the execution time as
more iterations have been previously made, which is very important in streaming
algorithms. Considering these results, a forecast of h values is made in an average
of 1.4 s for h = 24, 1.6 s for h = 48, 1.9 s for h = 72 and 2.3 s for h = 144. These
results are presented in Table 3.
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Table 3. Computation times (in seconds) for different prediction horizons

h Offline phase time Online prediction time of h values

24 222.09 1.4

48 167.16 1.6

72 153.47 1.9

144 122.50 2.3

5 Conclusions

The StreamWNN algorithm for time series forecasting in the streaming environ-
ment has been proposed. The StreamWNN consists of two stages: an offline or
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batch phase and an online phase. The first stage creates a summary prediction
model with the K nearest neighbors for each window of w samples and their
next h samples of the training set. Afterwards, in the second stage, the time
series of the streaming set are processed satisfying the streaming requirements.
When streams arrive, the model predicts the h next values with a weighted
average using the selected K nearest neighbor from the batch prediction model.
The algorithm has been applied to an electricity demand time series dataset
containing records over nine years. The performance of the algorithm has been
evaluated with the MAPE and MAE error metrics for each prediction horizon.
A good performance has been shown when comparing these errors with a bench-
mark algorithm, that used the same dataset and parameters.

The future works will be focused on some characteristics of the algorithm
such as updating the summary batch model considering the knowledge of the
previous time series streams, detecting novelties and outliers in the streams or
studying the process to select the optimal values of the parameters.
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Abstract. Due to the increasing volume of forms that are generated in a
daily basis, the automatic extraction of the information included in these
template-based documents is greatly demanded. However, this is not a
straightforward task due to the great diversity of templates with different
location of form entities, and the quality of the scanned documents. In
this work, we have made a first step towards form entity recognition by
combining computer vision and natural language processing techniques.
First, we have applied state-of-the-art deep object detection and seman-
tic segmentation models for localising the position of form entities based
only on visual features. Afterwards, we have studied different transfer
learning approaches (fine-tuning and feature extraction) for classifying
the text content of the localised form entities. The studied models require
low computational and image resources, making them a feasible alterna-
tive to state-of-the-art models even if their performance is slightly worse.

Keywords: Form understanding · Object detection · Semantic
segmentation · Text classification

1 Introduction

Forms are a widespread type of document used in lots of fields including admin-
istration, medicine, finance, or insurance [5]. Forms are used as an appropriate
way to collect and communicate data following a structured format; and, nowa-
days, there is an enormous demand in digitising forms, and interpreting the data
included in them [28]. Forms are either provided under a born digital format (such
as PDF, HTML, or documents included in web applications), or included in a
scanned image that comes from a form written or printed on a paper [5]. In this
work, we have focused on the task of form understanding from scanned documents.
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Form understanding can be defined as the process of automatically extracting
information from a form [12], and it is usually approached by analysing both tex-
tual contents and organisational structures [28]. Form understanding on scanned
documents remains a challenging task due to the diversity of templates, struc-
tures, layouts, and formats that can greatly vary from one form to another; and,
also due to the different quality of the scanned document images [30]. In this
context, there is a feature that is shared by all forms: they contain a collection
of interlinked entities built as key-value (or label-value) pairs [28], together with
other entities such as headers or images. Therefore, form understanding can be
seen as a two-step process. In a first step, the spatial layout and written infor-
mation is analysed to localise the position of form entities and to identify them
as questions, answers, or other entities present in the form; this step is known
as form entity recognition. Subsequently, the extracted entities are interlinked to
understand their relationships in a task called form entity linking [12].

In this work, we have made a first step towards tackling form entity recogni-
tion by combining computer vision and natural language processing techniques;
the main differences of our approach with other existing methods are detailed
in Sect. 2. Our approach has been tested in the FUNSD dataset [12], described
in Sect. 3, and we can highlight the following contributions of this work.

– First, we have conducted a study of several state-of-the-art deep detection
and semantic segmentation models for localising the position of form entities
based only on visual features, see Sect. 4. The best model achieved a F1-score
of 0.71.

– Additionally, we have explored two different transfer learning approaches
(fine-tuning and feature extraction) for classifying the text in form entities,
see Sect. 5, achieving a F1-score of 0.81.

– Finally, we have publicly released all the code and models developed in this
work https://github.com/mavillot/FUNSD-Information-Extraction.

2 Related Work

Form understanding is a task that, up to now, has received little attention in
the literature [12]. The scarcity of works in this area is mainly based on the
absence of datasets of forms due to the sensitive information included in these
documents. Therefore, a recent and important milestone in this area was the
publication of the FUNSD dataset [12] in 2019, which was the first publicly
available dataset that was developed with form understanding purposes. This
was a fully annotated dataset of image forms from noisy and old scanned docu-
ments. Moreover, baselines and metrics for the tasks of form entity recognition
and form entity linking were provided. In particular, different text localisation
models at the word level (including Tesseract, EAST, Google Vision, and Faster
R-CNN) were combined with a multi-layer perceptron for form entity recogni-
tion obtaining a F1-score of 0.57. For the task of form entity linking a binary
classifier constructed using again a multi-layer perceptron achieved a F1-score
of 0.04.

https://github.com/mavillot/FUNSD-Information-Extraction
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Since its publication, the FUNSD dataset has been used as a benchmark by
several works. LayoutLM [30] proposed a pre-training method of text and lay-
out for document image understanding task. The method joins text, position,
2-D position and image embeddings. Text and position embeddings are inspired
by the BERT language model [6] trying to input textual information. 2-D posi-
tion embeddings denote the relative position of tokens in the document, and
image embeddings try to capture appearance features such as font directions,
types and colours. The LayoutLM method was pre-trained on a great number
of unlabelled documents in different domains. More concretely, the IIT-CDIP
Test Collection [14], which contains more than 6 million scanned documents,
was used. Then, the model was fine-tuned using the embeddings on different
contexts. In particular, the model was applied to form entity recognition on the
FUNSD dataset achieving the best performance (F1-score of 0.79) when using
text, layout, and image information at the same time on a pre-trained model on
11M document pages. Recently, an improved version of this method, named Lay-
outLMv2, was presented in [31]. Among other characteristics, the new method
integrates the document text, layout and image information in the pre-trained
phase. When this improved model was applied to form entity recognition on
the FUNSD dataset, a F1-score of 0.84 was obtained. A different approach was
used in [9], where the authors created a model called BROS that also used 2-D
positional embeddings following 1-D BERT embeddings. This work includes a
novel area-masking pre-training strategy designed for text blocks on 2-D space,
and defines a graph-based decoder to capture the semantic relation between text
blocks. Following LayoutLM, this method was also pre-trained in the IIT-CDIP
Test Collection, and it obtained a F1-score of 0.81 when it was applied to form
entity recognition on the FUNSD dataset.

Finally, a multimodal method to extract key-values pairs and build the hier-
archy structure in documents for form entity linking in the FUNSD dataset was
proposed in [28]. The form structure was considered as a tree-like hierarchy of
text fragments, and the parent-child relation corresponds to key-value pairs in
forms. In particular, given the hierarchical structure in the form, the superior
counterpart for each text fragment was predicted. This work obtained a mAP of
0.72. The problem of entity linking was also addressed by BROS [9] by including
a graph-based decoder. When the BROS model was applied to the task of entity
linking in the FUNSD dataset, a F1-score of 0.67 was obtained.

The main drawback of both the LayoutML and BROS models is that they
require a pre-training step on 11M images of old documents. Hence, in order
to work properly with modern documents, a similar pre-training step will be
required; however, as far as we are aware, such a dataset of modern documents
does not currently exists. In our work, we have designed an approach for form
entity recognition that does not require the pre-training step; namely, we first
localise the position of the form entities based only on visual features; and,
subsequently, we apply semantic labelling to the localised objects using text
classification models. Currently, we have used the annotations provided by the
FUNSD dataset, described in the following section, to construct both a localisa-
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tion model and a text classifier. The next step, that remains as further work will
be the connection of both models by using OCR over the form entities localised
by the visual model.

3 FUNSD Dataset

The FUNSD Dataset [12] is a freely available dataset for form understanding
in noisy scanned documents. This dataset contains 199 fully annotated images
of forms that vary widely with respect to their structure and appearance. The
dataset is available at https://guillaumejaume.github.io/FUNSD/. The forms
come from different fields, e.g., marketing, advertising, and scientific reports.
The documents were sampled from the form type document of the RVL-CDIP
dataset [8] which is composed of real grey scale images from the 1980s and 1990s.
The documents have a quality with various types of noise added by successive
scanning and printing procedures, and a low resolution (around 100 dpi).

The annotations of each image is encoded in a JSON file. Each form is rep-
resented as a list of semantic entities that are interlinked. A semantic entity is
described by a unique identifier, a label (chosen from four categories: question,
answer, header, or other), a bounding box with the position of the entity, a list
of words, and a list of links with the relationships among entities. For our work,
the information about the links has not be considered. The 199 annotated forms
contain more that 30,000 word-level annotations and around 10,000 entities. The
dataset is split into 149 images in the training set and 50 in the testing set. The
dataset statistics and class distribution of the semantic entities, as described
in [12], are included in Table 1.

Table 1. FUNSD class distribution of the semantic entities

Header Question Answer Other Total

Training 441 3,266 2,802 902 7,411

Testing 122 1,077 821 312 2,332

4 Vision Models for Detecting Form Entities

Form entity recognition in images can be framed either as an object detection
or a semantic segmentation task. Algorithms for object detection determine the
position, by means of a bounding box, and category of multiple objects in an
image; whereas, semantic segmentation models provide a classification for each
pixel of a given image. Currently, the most successful methods for both tasks are
based on deep learning methods [16]. In this section, we present a study of several
deep learning algorithms, both for object detection and semantic segmentation,
applied to recognise the semantic entities of the FUNSD dataset.

https://guillaumejaume.github.io/FUNSD/
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For our experiments with object detection algorithms, we have trained 6
object detection models using 3 deep learning libraries: IceVision [25], that pro-
vides the Faster R-CNN [18] and EfficientDet [22] models; DarkNet [1], that
supports the versions 3 and 4 of YOLO (the difference between these models is
the backbone architecture and state of the art features employed for training the
version 4 of YOLO) [26]; and Keras [3], that allows us to train FCOS [23] and
FSAF [32] models. In order to train these models, we applied transfer learning
by loading in them the corresponding backbone trained on the ImageNet classifi-
cation challenge, and then fine-tuned the model for our task using a GPU Nvidia
RTX 2080 Ti, and using the by-default hyper-parameters for these models. The
trained models were evaluated using precision, recall, F1-score, and mAP in the
testing set of the FUNSD dataset by considering only the localisation of text
regions (localisation), and also by taking into account the class of those regions
(detection), see Table 2. In both tasks, the best model was built using the ver-
sion 4 of YOLO with a F1-score of 0.8 in the localisation task, and a 0.71 in the
detection task.

Table 2. Results for the object detection and semantic segmentation models. The
localisation columns corresponds with the results for the localisation of form regions;
whereas, the detection columns also take into account the classification of those regions.
A “-” indicates that such a metric was not provided in the original paper. The best
results are highlighted in bold face.

Localisation Detection

Precision Recall F1-score mAP Precision Recall F1-score mAP

Faster R-CNN 0.73 0.63 0.68 13.05 0.16 0.14 0.15 12.5

FCOS 0.76 0.40 0.53 9.60 0.57 0.30 0.40 19.93

FSAF 0.64 0.36 0.46 7.31 0.49 0.27 0.35 19.49

EfficientDet 0.76 0.06 0.11 2.27 0.09 0.01 0.01 4.83

YOLOv3 0.81 0.79 0.8 62.5 0.7 0.7 0.7 55.14

YOLOv4 0.8 0.81 0.8 63.05 0.7 0.72 0.71 60.19

DeepLab 0.76 0.55 0.64 11.27 0.36 0.42 0.39 17.99

HRNet 0.75 0.53 0.62 11.19 0.43 0.48 0.45 20.44

U-Net 0.74 0.54 0.63 11.10 0.27 0.43 0.33 13.57

FUNSD model [12] 0.70 0.84 0.76 - - - 0.57 -

BROS [9] - - - - 0.80 0.81 0.81 -

LayoutLM [30] - - - - 0.76 0.81 0.79 -

LayoutLMv2 [31] - - - - 0.83 0.85 0.84 -

In addition to the object detection models, we have trained three semantic
segmentation algorithms: DeepLab [2] (with a Resnet 50 backbone), HRNet-
Seg [27] (with an HRNet W30 backbone), and U-Net [19] (with a Resnet 34
backbone). All the architectures were trained with the libraries PyTorch [17]
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and FastAI [10] and using a GPU Nvidia RTX 2080 Ti, and using the by-default
hyper-parameters for these models. In order to conduct the training process, we
first transformed the bounding boxes of the form entities provided by the FUNSD
dataset to masks. Analogously, the masks produced by the trained semantic
segmentation models where transformed to bounding boxes (in order to compare
them with the detection models) by taking the minimum enclosing bounding
box of each segmented region. The F1-score of the segmentation models when
classes are taken into account, see Table 2, ranges from 0.33 in the U-Net model
to 0.45 in the HRNet model; and the F1-score when we only pay attention to
the blocks ranges from 0.62 in the HRNet model to 0.64 in the DeepLab model.
These results are similar to those obtained by the Faster R-CNN (the third best
detection model), but far from those achieved by the YOLO algorithms.

We can notice that the performance of our models is far from that obtained
with models such as LayoutLM [30,31] or BROS [9] which combine text, layout
and visual features, see Table 2. As we have previously mentioned, the draw-
back of those models is that they require a pre-training step with 11M images,
whereas our models are only trained with the FUNSD data. As we have men-
tioned in Sect. 2, this might be an issue when working with modern documents,
since LayoutLM and BROS will require a new pretraining step with such kind
of document. The models presented in this section do not suffer from such draw-
back, but are based only on the inspection of visual features; hence, we are not
taking into account the textual information of forms. As shown in [9,30,31], such
knowledge is relevant when trying to recognise different form entities, and it is
explored in the following section.

5 Text Classification of Form Entities

Text classification is a natural language processing task that consists in cate-
gorising a text into a set of predefined classes. Nowadays, this task is mainly
tackled using deep learning models [6], and, namely, by training transformer-
based architectures [24]. As for the computer vision models, it is not feasible to
train this kind of model from scratch, but transfer learning must be applied. In
this section, we present two transfer learning approaches for text classification
of the form entities of the FUNSD dataset.

In the first set of experiments, we have fine-tuned several transformer-based
language models; namely, Albert [13], BERT [6], DistilBert [20], Roberta [15],
and ULMFit [11]. For fine-tuning the models, we replaced the head of each
language model (that is, the last layer of the model), with a new head adapted
to the number of classes of the FUNSD dataset. Then, we trained the models
for 5 epochs. All the networks used in our experiments were implemented in
Pytorch [17], and have been trained thanks to the functionality of the libraries
Hugging Face [29], Fastai [10] and Blur [7] using the GPUs provided by the
Google Colab environment [4], and using the by-default hyper-parameters for
these models. These models were evaluated using the weighted version of the
accuracy, precision, recall, and F1-score in the testing set of the FUNSD dataset



202 M. Villota et al.

(see Table 3), and the best results (a weighted F1-score of 0.81) were achieved
with the BERT architecture.

Table 3. Results for the text classification models. The first 5 rows provide the results
for deep learning models fine-tuned on the FUNSD dataset; whereas the next 7 rows
are classical machine learning models trained on the output of the last layer of a BERT
model. The last three rows come from the state-of-the-art models. A “-” indicates that
such a metric was not provided in the original paper. The best results are highlighted
in bold face.

Accuracy Precision Recall F1-score

Albert 0.78 0.78 0.78 0.78

BERT 0.82 0.81 0.82 0.81

DistilBert 0.72 0.71 0.72 0.71

Roberta 0.71 0.69 0.71 0.69

ULMFit 0.75 0.76 0.75 0.76

KNN 0.80 0.81 0.80 0.81

Decision tree 0.79 0.79 0.79 0.79

SVM 0.80 0.80 0.80 0.80

Naive Bayes 0.79 0.79 0.79 0.79

Random forest 0.79 0.80 0.79 0.79

Neural network 0.81 0.81 0.81 0.81

Logistic regression 0.81 0.81 0.81 0.81

BROS [9] - 0.80 0.81 0.81

LayoutLM [30] - 0.76 0.81 0.79

LayoutLMv2 [31] - 0.83 0.85 0.84

We have also tested a different transfer-learning approach for classifying the
text of the FUNSD dataset. In particular, instead of replacing the last layer of
the aforementioned text classification models, we used the last layer of the BERT
model as feature extractor; and, subsequently, used such features to train 7 classi-
cal machine learning algorithms (namely, KNN, decision tree, SVM, naive Bayes,
random forest, neural network, and logistic regression). The results obtained by
these models, summarised in Table 3, show that all of them performed equally
well (the 7 models reached a weighted F1-score close to 0.80). Moreover, three
of the models achieved the same weighted F1-score of the best fine-tuned model
with the advantage of not requiring a GPU for training.

It is worth noting that the text models presented in this section obtain results
close to those obtained by models like LayoutLM or BROS, but without requiring
the pre-training step. However, we are making two strong assumptions about
the text extraction that were not made by the LayoutLM and BROS models.
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First, we assume that the position of the text blocks is properly determined;
this is an assumption that is almost solved with the computer vision methods
presented in the previous section. Moreover, we assume that the text contained
in those blocks is read properly. In spite of the existence of OCR methods for
automatically reading text from documents [21], it was shown in [12] that those
methods fail when working with the FUNSD dataset. Hence, further research is
needed in those directions to successfully apply our approach.

6 Conclusions and Further Work

This work is a first step towards form entity recognition based on the combi-
nation of computer vision and natural language processing techniques. We have
tested several deep object detection and semantic segmentation models to iden-
tify form entities by just using visual features. The YOLO v4 detection model
has shown to be competitive, with a F1-score of 0.71, when compared with more
complex approaches presented in the literature. In addition, we have explored
the application of two transfer learning techniques for classifying the text of form
entities. In such a study, we reached the conclusion that fine-tuning the BERT
model produces the best result with a F1-score of 0.81. The studied models do
not require a pre-training step, making them a feasible alternative to state-of-
the-art models even if their performance is slightly worse.

Up to now, we have tackled the problem of form understanding from two
different perspectives by using, independently, computer vision and natural
language processing techniques. In the future, we plan to combine these two
approaches to bring to the table the benefits of each of them. One of the main
challenges will be a correct reading of the text included in the documents, since
OCR techniques do not perform properly in the FUNSD dataset [12]. Moreover,
we are interested in applying our models to more recent documents since the
FUNSD dataset is formed by old documents. The main challenges here are the
privacy concerns raised when using form documents, and the issues related to
the annotation of these documents, a time-consuming task that is instrumental
to train and evaluate any deep learning model.
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Abstract. The quality of daily life is a key factor in today’s urban
development. This is a complex aspect, as different groups of citizens
understand it quite differently and have different needs. This is particu-
larly important for people with disabilities. When thinking about solu-
tions for smart cities, there are a few approaches for the identification
of the problems or obstacles that their implementation poses for differ-
ent groups of people. Addressing this issue requires tools that provide
an interdisciplinary perspective, so the proposed smart solutions really
promote the improvement of the quality and well-being of all citizens in
cities. In this line, this paper presents a tool that facilitates collaboration
among stakeholders through identifying and analysing the elements that
prevent a smart city solution from being inclusive. The platform is based
on visual novels that illustrate how the solution would work in real set-
tings. Users comment on the novel, play with it to discover and evaluate
the solution, and propose changes. Then, a natural language processing
engine analyses their comments, and returns the identified non-inclusive
situations, ideas for improvement or solutions, and the degree of affinity
that each participant has with each of them. The tool has been vali-
dated in a mobility scenario. There, three groups of people with different
needs used the tool to identify obstacles and non-inclusive situations.
The results have been used to assess and improve the tool.
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1 Introduction

Disability is gaining more visibility in our society; media awareness campaigns
and the ageing of the population have both played a part in this progress. How-
ever, there is still much room for improvement in the development and evaluation
of solutions that will make smart cities truly inclusive [8]. Each kind of disability
has its particular set of characteristics, and in many cases there are known assis-
tive measures for them. Some of these had already been integrated into urban
development a few decades ago, such as the sound of traffic lights to allow people
with visual impairment to know when they can cross the street, or enable people
with mobility problems to go down the kerb when arriving at a zebra crossing.
However, not all people with disabilities and situations have been considered
equally, therefore, new solutions should be explored.

This progress is noticeable, but still not sufficient. Solution planning is usu-
ally done according to the criteria of urban planning staff, who are limited in
number and more importantly, they generally do not suffer any type of disability
and so they cannot provide an optimal solution from the perspective of a person
with disability. One way to support urban planning decisions for the develop-
ment of inclusive cities is by using simulation tools. Although existing ones are
useful, they are mainly based on parametric models of disabilities, so there are
multiple details they do not consider. This implies limitations regarding the cor-
rect understanding and interpretation of problems and situations, and it makes
it difficult to evaluate solutions provided by citizens. To overcome these issues,
more capabilities to gather, analyse and interpret the data provided by a plat-
form are required, so it can detect specific instances of exclusion and provide
ideas on how to counteract them as well as offer effective alternative solutions
and decision-making. A key point here should be gathering feedback from cit-
izens, to know whether the situation and proposed solutions are accepted and
produce a positive feeling of inclusion.

This work presents an approach for the cooperative design of more inclu-
sive cities. It considers that participants may have different levels of expertise
and experience (i.e., from urban planners to citizens with disabilities), and all
of them are needed to asses these complex solutions. The backbone of this app-
roach is a platform called Dcolbici3. It models scenarios as visual novels that
participants can play and comment on them to discover and evaluate the situa-
tions. The platform collects their opinions regarding those situations. Here, the
example that has been focused on involves people with psychomotor disabilities
or reduced mobility. The scenarios recreate their daily commuting in the city of
Madrid to identify sites that impede their mobility. The platform analyses all
the collected information using Natural Language Processing (NLP) techniques,
so it is able to discover non-inclusive situations by interpreting users’ comments.
It uses sentiment analysis to identify the mood or subjective opinions.

The rest of the paper is structured as follows. Section 2 reviews state-of-the-
art proposals in this area. Section 3 presents the platform and the visual novels
it generates to facilitate the collaboration of citizens in the design of smart city
solutions, with special emphasis on aspects of inclusion. Section 3.4 describes the
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evaluation process and the key results. Finally, Sect. 4 draws some conclusions
and future work.

2 Related Work

Today’s cities present obstacles to people with disabilities, which affects their
quality of life. For instance, wheelchair users have to deal with roadworks, pot-
holes and other obstacles that require them to make decisions and take action;
people with hearing problems have to use their other senses, mainly vision, to
avoid problems and compensate for the lack of sound; and people with visual
impairment have to use hearing signals to detect and avoid obstacles in their
daily lives. Tools are required to identify and solve these situations when design-
ing smart cities through information gathering and analysis.

2.1 Detection of Non-inclusive Needs in Smart Cities

The first step when developing smart city solutions is to research and understand
the needs of citizens. As previously indicated, each citizen may have different
needs as a result of her/his condition. The detection and understanding of those
needs have been widely studied in the last decades, especially with the rise and
evolution of the Smart City concept [1,7]. Some of the first tools for the detection
of non-inclusive situations were based on approaches that used technologies for
the creation of 3D environments and on the use of multi-agent systems for the
simulation of the behaviour of people with disabilities [9,12].

Tools are needed to understand the requirements for inclusiveness in smart
cities; these tools must facilitate the direct participation of citizens. Once they
are faced with a situation of potential non-inclusiveness, they could explain what
problem they are facing, how they feel, how long it could take to resolve it, how
and when the incident must be reported, what solutions or improvements they
propose, or any other relevant information that could help solve the problem.
This approach allows to collect information that people without certain problems
or disabilities may not detect, and therefore not take into account. This offers
an important evolutionary advantage with respect to the previously mentioned
agent-based simulation systems. This interactive user process within the simu-
lation provides quality information for the analysis, development and adoption
of urban inclusion solutions [2,4,10].

Although citizen participation and simulations are being included in smart
city studies with greater frequency, there is a lack of a widely accepted approach.
The participation of citizens in the recreation of realistic smart city scenarios
allows to obtain highly contextualised information. This reliable information
is taken into account a posteriori for the improvement of the city’s services.
Simulation systems, experts or citizens alone cannot provide reliable and precise
information, as they lack context. Thus, the contextualized experiences of the
citizen must be the main element in providing information.
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2.2 Analysis of the Information Collected from the Citizen
Interaction

The participatory aspect is key for the collection of information and under-
standing of situations of non-inclusiveness, from the perspective of the affected.
The information can be obtained from citizens with a specific type of disability
and analysed to find out how a situation affects them. The required type of
tool should have the ability to detect when there was a non-inclusive situation,
whether the person was able to solve it or not in the specific circumstances, how
much time was needed to overcome it, the feelings experienced by the person who
faced this situation, and the reactions to the solutions proposed by the tool. The
tool must also facilitate the extraction of ideas on ways of counteracting these
problems and solutions to avoid exclusion if it occurred.

This type of tool must be able to admit a high degree of citizen participa-
tion, to enable anyone wishing to improve inclusiveness in their smart city to
participate. Thus, the tool must have a pipeline for the stages of pre-processing
multiple and diverse responses, analysis of information and presentation of the
results. All this in an appropriate way to encourage new ideas and the iden-
tification of key inclusion aspects for each population group. NLP techniques
support this kind of analysis as a mechanism for the automatic extraction of
useful information from the multiple responses received in text format [6,11]. It
is worth highlighting the use of opinion data mining techniques (better known
as sentiment analysis).

In general, the answers of citizens on the collaborative platforms are not well-
structured and are not adapted to the grammar of a given natural language,
e.g., English or Spanish. In addition, the use of other language elements, such as
idioms, proverbs, hyperboles or emojis, makes the extraction of meaning and its
analysis complex. Such elements make it necessary to perform a pre-processing
stage, at which the received information is cleaned and tokenised for subsequent
analysis. Moreover, the platform must be able to classify the responses as options
or sentiments. Option-type responses can be of various kinds, and they should
be categorized into, for instance, “complaints,” “suggestions,” and “acknowledg-
ments”. When they are classified, the application of sentiment analysis can help
understand the citizens’ feeling in those responses. With this information, it is
possible to make the final analysis and a graphic representation.

The analysis of the needs in this area evidences the potential contribution of
this type of tool for the development of inclusive solutions in smart cities. Dif-
ferent techniques can be used to classify citizens into various categories within
a population group, identify problems and classify citizens’ responses and ideas
for solving the detected problems. In this way, the aspect of data analysis is cov-
ered from a perspective that allows for an objective evaluation of the responses
obtained on the collaborative platforms. This contributes to the achievement
of the objective of eliminating or mitigating situations of non-inclusiveness, in
search of an increase in the quality of daily life of all citizens.
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3 DColbici3: Collaborative Platform for the Identification
of Non-inclusive Situations in Smart Cities

The main objective of this work is to facilitate the participation of citizens in
the detection of non-inclusive situations that affect the quality of life of certain
groups in smart cities. To this end, a citizen-centred process of solution design is
proposed. This is an interactive process where citizens recreate their daily lives in
the form of visual novels. There, they can detect situations of non-inclusiveness
and give feedback on them and how they think these could be solved or improved.

3.1 Design of Visual Novels as a Collaborative Platform

The development of a collaborative platform requires a robust mechanism for
user interaction. In this case, it was important to make the choice of this mech-
anism considering that a large number of citizens will participate. In previous
projects [2,5], we have realized that the use of text or graphic models (e.g.,
domain specific languages), makes operation difficult for most people. However,
movies generated by simulations are much more accessible. In this line, we have
explored the use of visual novels, where a user is the central element of the novel
by participating in it, making decisions that condition the development of the
novel, and providing answers. The implementation of visual novels in DColbici3 is
facilitated by Monogatari (https://monogatari.io/), a JavaScript framework for
the creation and distribution of visual novels. The platform allows for the interac-
tion of the user, who can select options or answer questions. We also implemented
geopositioning functions in visual novels among other aspects. This allows the
platform to record whether users carry out the actions it requests them, in
the place where they are requested to do so. The interaction that Monogatari
enables meets the requirements set out in the review of the state-of-the-art. It
is a framework that allows for the development of a collaborative platform and,
among other functionalities, it can collect a variety of information from the novel
created by the user: actions carried out, the user’s opinion, and additional issues
through geopositioning, e.g., avoiding obstacles.

On our platform, throughout the story, a series of options are offered to find
out which one each citizen chooses. The subsequent analysis results in the discov-
ery of the options preferred by different groups (e.g., people without disabilities
or with motor or hearing disabilities) and in an understanding of why they are
preferred. However, the bare choice of options is not enough to discuss collabora-
tively the improvement of inclusion in a smart city. For this reason, the platform
shows text boxes to allow citizens to express their opinion regarding situations
of exclusion in the novel. Additionally, the platform asks series of open-ended
questions to collect opinions and ideas about a specific problem.

3.2 NLP for Collaborative Information Analysis

Most of the information gathered from the novel is from free answers. Figure 1
shows the pipeline of the analysis process of this information. The following
sections detail each stage of the analysis process.

https://monogatari.io/
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DColbici3
Preprocessing

(Cleaning &
Tokenized)

Information
extraction

(Open answers)
SpaCy

Preprocessing
(Sentimental)

Categorization

Translate & TextBlob WordVectors

Fig. 1. Processing pipeline for the analysis of open responses.

Preprocessing: Cleaning Tokenisation. The analysis of the information con-
tained in the comments, ideas, suggestions and feelings of the platform users is
done using NLP techniques. They allow to extract the key information from the
text, going through several stages.

The information provided by the user may contain irrelevant data, such as
some emoticons, symbols, digits and even references to URLs or HTML tags,
which must be discarded. A pre-processing stage cleans up the input data, elim-
inating the irrelevant data and words with no useful meaning. The platform
removes the most common words in the language. Given that the Dcolbici3 col-
laborative platform has for now been developed for a Spanish-speaking public,
the most common words are determiners, prepositions and conjunctions, such as
“de,” “la,” “que,” “el,” “en,” and “y”. Then, the platform prepares the remain-
ing input data (tokenises the responses) as arrays of strings containing tokens
joined by spaces (n-grams), so that it can be further analysed.

Thanks to the transformation of words into tokens, the platform is able to
know how many times or in which context certain words appear. This helps
detect situations of non-inclusion and their possible solutions.

As noted before, the Dcolbici3 platform asks two types of questions. One is
an “option” type, where the user chooses one of the several possible actions that
can be taken. These choices change the development of the visual novel. The
other one is a “sentiment” type of question, in which users share their feelings
regarding the options they have chosen: if s/he has felt comfortable, if that option
seems appropriate, or if other better solutions could be offered and why.

Sentiment Analysis. After the pre-processing of the raw responses collected
by the platform, they can be studied using sentiment analysis models. Most of the
tools and algorithms for carrying out these sentiment analyses are developed for
their use with English-language texts. However, the DColbici3 platform offers the
possibility to use the platform in Spanish. To overcome this issue and facilitate
the initial development, the analysis system uses a Spanish-English translator,
so that the analysis can be conducted satisfactorily. Here, the platform uses
Googletrans, a Python library that implements the Google Translate API.

The sentiment analysis uses TextBlob (https://textblob.readthedocs.io/) in
our platform. This is a Python library for processing text data. It provides an
API that allows to perform common NLP tasks such as part-of-speech tagging,
noun phrase extraction, or sentiment analysis, among others. TextBlob is used
to obtain polarity and subjectivity metrics. The polarity is the feeling, whose
value ranges from −1 to +1. Subjectivity is a measure of feeling that varies from

https://textblob.readthedocs.io/
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objective to subjective, and the value goes from 0 to 1. It is preferable to observe
the objective feeling than the subjective one, as it tends to provide both positive
and negative comments despite the translation to English.

Categorization. As previously described, the visual novels on DColbici3 show
three types of questions according to their possible responses: i) Questions to
select an option (choice), ii) Questions to ask about the person’s feeling on the
choices made in the previous type of question (sentiment), and iii) open-ended
questions where the user can propose solutions, improvements, or contributions
to each case (proposals). The first type allows the platform to determine what
kind of questions should be asked to the user further on. The second type is
the one to which sentiment analysis is applied. The third type can be divided
into three groups “Complaints,” “Suggestions,” and “Acknowledgements”. Once
that the text in the responses to “proposals” has been processed, the platform
uses sklearn (NLP) (https://scikit-learn.org/) and SpaCy (https://spacy.io/) to
categorize them into those groups. Word vectors are used to perform the analysis,
as they achieve better classification results with less training data.

3.3 Experimental Set-Up

The case study that has been carried out to validate the DColbici3 platform
has been specifically designed to detect non-inclusive situations for people with
psychomotor disabilities, reduced mobility and people who, without any of these
problems, could be affected in specific situations (e.g., carrying or pulling a
shopping trolley). For this purpose, a common situation has been modelled, such
as making a journey on foot in a city, here in Madrid (Spain) from the Moncloa
Intermodal Transportation Hub to the Spain Square (Plaza de España). It is a
straight way through the Princess Street (calle de la Princesa) of approximately
1.5 km with an average walking time of 19 min. What for most people is a normal
walk, for people with some type of disability it may be an obstacle track.

To identify potential problems, DColbici3 reliably recreated this routine sit-
uation by developing a visual novel using the Monogatari framework. The visual
novel includes elements and situations that usually occur in a city like Madrid.
Some examples are the lack of elements that facilitate transport in some places
(e.g., escalators at some metro stations), the presence of roadworks, or pavements
that are partially or totally closed for pedestrians. These features are important
in this context because they represent situations that people with special needs
perceive as non-inclusive.

The validation of DColbici3 has been carried out by a group of 24 people.
It included: i) 4 persons with disability (wheelchair), 10 persons with reduced
mobility (children’s carriage), and 10 persons with no mobility problem. The
case study pursued the identification of obstacles and situations that are not
inclusive for any of these groups.

https://scikit-learn.org/
https://spacy.io/
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Fig. 2. Interaction with the user during the development of the visual novel.

3.4 Results

During the visual novel, the platform asked a series of questions. Option-type
questions made it possible to determine to which of these three groups the user
belonged. Open-ended questions had also been asked to find out why some
options are selected over others, and what feelings the users experience when
making some of those choices. Figure 2 shows an interaction with the user by
means of an open-ended question on a specific aspect.

First, the answers obtained through the platform were preprocessed. Then,
the first step of the analysis process used the internal translator to translate
the texts collected in Spanish, and then TextBlob to obtain the polarity of all
the answers. In this case, the process was triggered manually by running the
script, but it can be configured to run once every certain number of responses
have been obtained. Figure 3 shows graphical representations of the results of
the analysis conducted in the case study. The first image (a) shows the most
repeated keywords in the case study: indicate (“indicar” in Spanish) with 9.5%,
effort (“esforzar”) with 7.1% and situation (“situación”), notify (“avisar”), sig-
nal (“señalar”), anticipation (“antelación”), request (“requerir”), report (“repor-
tar”) and incident (“incidencia”) with 4.8%.

A quick glance at the keywords with the highest percentages gives a first
insight into the problem detected in this case study (i.e., an “incident” occurs
and is not “warned” or “signalled” “in advance”). Furthermore, looking at the
other keywords with lower percentages gives a possible solution to the prob-
lem (i.e., the incident should be reported, creating an app would make it eas-
ier for the municipality). This possible solution is formed with the keywords:
report (“reportar” in Spanish) and incidence (“incidencia”) with 4.8%, should
(“debeŕıa”), would facilitate (“facilitaŕıa”), create (“crear”), app (“app”), and
city council (“ayuntamiento”) with 2.4%.

That result is very attractive for researchers from Social Sciences, as it allows
them to create different case studies and evaluate possible situations of social
exclusion, obtaining the problem perceived by a specific group of people and how
to improve or solve this situation. Figures 3(b) and 4(a) respectively show the
sentiment of each response received to a question (question 7) and of the options
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Fig. 3. NLP analysis of the responses.

(question 5), and the time taken to respond, and Fig. 4(b) shows that the number
of proposals for improvement was greater than the number of complaints.

Fig. 4. Some graphs obtained from the analysis of the case study

4 Conclusions and Future Work

This study has presented a collaborative platform called Dcolbici3 designed to
enable citizens to participate in the proposal and design of solutions for smart
cities. In this case study, users watched the visual novel and commented on it
to help detect problems, evaluate them and propose solutions for the inclusion
of people with permanent or temporary mobility problems. The platform has
analysed the users’ feedback through different types of questions to detect and
evaluate situations of non-inclusion in cities. This is possible thanks to the use of
NLP-based analysis, which extracts the key information and the general feeling
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regarding a problem detected by people representing different social groups. It
also compares users, groups of users, and the average behaviour regarding aspects
like decisions made or the time required to play parts of the novel.

There are several issues to be addressed in future work. Firstly, there is ongo-
ing work on the generation of the visual novel using Model-Driven Engineering
(MDE), so that simulations can be developed more easily by people with no
programming skills [3]. Secondly, the platform will incorporate additional anal-
ysis features for text. Third, this platform will be validated for other smart city
development aspects than inclusion.
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Abstract. Forecasting electricity demand is crucial for the manage-
ment of smart grids to ensure a secure, reliable and sustainable sup-
ply. Recently, a variant of convolutional neural networks, called tempo-
ral convolutional networks, has emerged for data sequence, competing
directly with deep recurrent neural networks in terms of execution time
and memory requirements. In this work, we propose a deep temporal
convolutional network to predict time series, namely, the electricity con-
sumption with a 4-h forecast horizon. Results using nine and a half years
of Spanish electricity load, with a 10-min sampling rate, are reported
and discussed. In addition, the performance of the proposed model is
compared with linear regression, decision trees, gradient boosted trees,
random forests, deep feed forward neural networks that use different
techniques to find the optimal hyper-parameters and a deep Long Short-
Term Memory network. The proposed model reaches competitive results
in terms of accuracy, with the smallest error verging on 1%.

Keywords: Deep learning · Temporal convolutional networks · Time
series forecasting · Electricity consumption

1 Introduction

Getting to know the future has always been a big challenge. Since a huge amount
electric energy cannot be stored, it is extremely important to generate as accu-
rately as possible the electric energy necessary to cover the demand. Therefore,
obtaining reliable predictions can make great social and economic impact, as well
as generating knowledge that could be critical in decision-making. The research
community is aware of this, so a large part of its studies has focused on the time
series analysis and forecasting [16].

Forecasting methods used to predict future values in a time series are based
on Box and Jenkins models [3], such as ARIMA, ARMA, ARCH or GARCH [28].
However, techniques based on machine learning and data mining are becoming
increasingly important in time series forecasting nowadays. These techniques
are widely used in various application fields such as energy [6], stock market
[21], health [4], pollution [20], natural disasters [2], agriculture [27], or energy
c© Springer Nature Switzerland AG 2021
E. Alba et al. (Eds.): CAEPIA 2021, LNAI 12882, pp. 216–225, 2021.
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resources [26], being some examples that can contribute to the fashioning of the
future of humanity.

Within these techniques, deep learning models have had the greatest impact
and growth in the last few years. This is due to the great progress that has
been made in the area of hardware [15]. Once the hardware limitation has been
solved, deep learning models have taken centre stage.

In this work, a deep Temporal Convolutional Network (TCN) is proposed
to forecast energy demand for the next four hours. This TCN combines the
power of convolutional networks to discover patterns with recurrent networks
to deal with sequential data. Results using electricity demand from Spain for
more of nine years measured with a 10-min frequency are reported. In addition,
the performance of the proposed TCN is compared to various deep feed-forward
neural networks, which differ in the way they obtain the optimal values of the
hyper-parameters. The TCN shows a remarkable improvement in the prediction
in terms of errors regarding other deep learning models.

The rest of the paper is structured as follows. Section 2 introduces the deep
learning models recently published in the context of energy time series fore-
casting. The forecasting problem and the description of the TCN deep learning
model can be found in Sect. 3. Section 4 discusses the most important results of
short-term electricity consumption forecasting in the Spanish electricity market.
Finally, the conclusions are presented in Sect. 5.

2 Related Work

It is well known that there are several architectures available in the literature,
such as Deep Feed Forward, Recurrent, Convolutional or Adversarial networks,
among others. The use of one architecture or another will depend on the char-
acteristics of the problem to be solved. A comprehensive review of the different
network architectures has been published in [8] while an experimental review on
such architectures can be found in [12].

Deep learning models have been widely used for energy forecasting. Li et al.
[13] used an enhanced deep learning model to manage the energy of an electric
vehicle. In particular, the authors used the deep Q-learning model, obtaining a
remarkable improvement in both energy loss and computational time. In [23], a
real-time forecasting model combining Long Short-Term Memory (LSTM) and
Convolutional Neural Network (CNN) architectures was presented. The model
performance was evaluated using energy consumption data from a four-storey
building in Bombay, India. In the same sense, the authors of [24] applied an
LSTM-based model to analyse the energy consumption of buildings on the Uni-
versity of New York campuses.

One of the most promising architectures for time series forecasting due to
its high efficiency is the TCN [1]. The authors in [19] introduced a TCN model
to predict the electrical load and demonstrated that the model is able to effi-
ciently detect the trend and multi-stationarity existing in the data. The authors
presented in [11] a TCN network application for predicting energy time series.
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In this paper, the authors forecast two time series comparing more than 1900
models. The results show that the TCN approach outperforms LSTM networks.
Zhang et al. also applied a TCN network to predict the trend of water qual-
ity in [30]. Specifically, the authors proposed a multi-task network to predict
multiple water quality variables. Li et al. performed a comparison of a TCN
model with multilayer feed-forward neural networks, and also with recurrent
networks, including state-of-the-art LSTM and Gated Recurrent Unit (GRU)
recurrent networks in [14]. The authors demonstrated the effectiveness of the
proposed model on two Australian datasets containing solar and meteorological
data. TCNs were also applied in text analysis. A method that used a TCN as an
encoder to infer the segmentation of written Chinese text was proposed in [9].
The authors compared the results with a Bi-LSTM network, obtaining better
performance. In the same area of research, Shao et al. applied a TCN to predict
messages in different social media in [22]. Traffic analysis has also been studied
using TCN. The authors combined a ResNet and a TCN to predict traffic volume
using a real-world dataset, showing the high efficiency of the model compared to
other existing models [10]. Another area where TCNs are having a big impact
is in the analysis of video and time-lapse images. Zhang et al. used a TCN to
summarize generic videos in [29]. Another interesting work applying TCN to
estimate density maps from different videos was published in [18]. Feng et al.
used a TCN model to dynamically detect stress through facial photographs in
[5].

However, although TCNs have been applied in many fields, to the authors’
knowledge, very few published works on TCNs for predicting electricity con-
sumption can be found in the literature.

3 Methodology

This section presents the proposed methodology to forecast time series in the
electricity context using TCN.

Given a time series expressed as [x1, x2, . . . , xt] the main goal of this work is
to predict a finite set of future values, expressed as [xt+1, xt+2, . . . , xt+h] based
on a window of historical values. In this way, the problem can be formulated as:

[xt+1, xt+2, . . . , xt+h] = m(xt, xt−1, xt−2, . . . , xt−w) (1)

where the m function is the model to be found in the training phase, h means the
number of values to be forecasted, also called prediction horizon, and w refers
to the set of previous values used to make the prediction.

In this work, the model m is obtained by a deep TCN, with the aim of show-
ing the efficiency of TCN in the prediction of electricity consumption time series.
TCN is a variant of convolutional neural networks that has been targeted for
sequence data analysis. Specifically, it is based on the propagation of convolu-
tions through each time instant. These convolutions are not causal, i.e., there is
no leakage of information from the future to the past, as in the case of recur-
rent networks. Figure 1 illustrates the architecture of a simple TCN network,
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where 1, 2 and 4 are the d dilation factors for the first, second and third lay-
ers, respectively. Another hyper-parameter depicted in the figure is the kernel
size. This parameter indicates the spatial volume considered in the convolutional
operations. The figure shows how these are set to 2, 2 and 1, respectively.

Fig. 1. Simple TCN architecture.

Dilated convolutions determine which values of a neuron in a previous layer
will contribute to the next layer. In this way, the model is able to learn both
local and temporal information. The dilated convolution can be expressed as a
function, Fd, defined in Eq. (2) as follows:

Fd(x) =
K−1∑

i=0

f(i) · xt−d·i (2)

where d is the dilation factor parameter and f is a filter of size K.
In addition, TCNs have residual modules, which add the input data to the

results obtained from the application of the dilated convolutions before providing
the final activation of the layer. The equation that define a TCN model can be
summarized as:

alt = g(W l
aFd(al−1

t ) + bla + al−1
t ) (3)

where Fd(·) is the dilated convolution of d factor defined in Eq. (2), alt is the
value of the neuron of the l-th layer at time t, W l

a and bla are the weights and
bias corresponding to the l-th layer, and g is the activation function.

4 Results

This section describes the results obtained by the TCN-based deep learning
model when predicting the electricity demand for the next 24 values correspond-
ing to 4 h (h = 24). First, Sect. 4.1 presents a description of the time series used.
Then, Sect. 4.2 describes the experiments carried out and reports the forecasts
and a comparison of the errors with other deep learning models.
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All the experiments have been executed using TensorFlow 2.1.0 under Ubuntu
18.04 operating system. An Nvidia Titan V GPU has been used. This GPU has
12 GB of HBM2 memory, 5120 CUDA cores and 640 tensor cores, allowing a
total of 3.8 TFLOPS of computational capacity in single precision.

4.1 Dataset Description

The dataset used in this study is a time series related to electricity consumption
in Spain. The time series is composed of one variable over a period of 9 years and
6 months, specifically from January 2007 to June 2016. This series has a sampling
frequency of 10 min, resulting into a dataset with a total of 497832 samples. The
original dataset has been processed to convert the data into a supervised learning
problem. For this purpose, an historical window size w was set. Due to previous
analysis on the same dataset [25], it has been determined that the optimal value
for w is 168. This means that a previous day and four hours will be used for the
prediction of the next 4 h. The processing turns the series into a matrix composed
of 20736 rows and 192 columns. To perform the learning model, the dataset has
been split into 14515 instances for training (70%) and 6221 for test (30%).

4.2 Experimental Setting

Deep neural network-based models are highly sensitive to the values of different
hyper-parameters. In this work it has been performed a trial-error optimization
(TE) in order to obtain the optimal model. The final TCN model is composed
of 3 layers. The first one is the input layer and is composed of 168 neurons, each
of them corresponds to a time instant of the sample. A TCN layer is applied
on the input layer by setting the following parameters: 64 filters, a kernel with
size 144, the hyperbolic tangent as activation function and 1 stack. The dilations
were set to {4, 8, 16, 24, 48}. Finally, a fully connected layer is applied. This
layer consists of 24 neurons that will calculate the output of the network. Each
of these neurons corresponds to the prediction at each time interval. The model
has been trained over 300 epochs with a batch size of 256.

In order to assess the performance of the model, the well-known root mean
squared error (RMSE), mean absolute error (MAE) and mean absolute percent-
age error (MAPE) measures have been selected. The formulas defining these
errors are represented below:

RMSE =

√√√√ 1
n

n∑

i=1

(pi − ai)2 (4)

MAE =
1
n

n∑

i=1

|pi − ai| (5)

MAPE =
1
n

n∑

i=1

|pi − ai|
ai

· 100 (6)
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where n, pi and ai mean the number of samples, predicted values and actual
values at time instant i, respectively.

4.3 Analysis of Results

In this Section, the TCN is applied to obtain the forecasts from august 20, 2013
at 02:50 to june 21, 2016 at 23:40, resulting in a total of 49305 forecasted values.

In order to evaluate the performance of the proposed TCN model, the results
are compared with other models published in the literature where the same data
set was used. In [7], it can be found the application of linear regression (LR),
decision trees (DT), gradient boosted trees (GBT) and random forests (RF).
In addition, the TCN is compared with neural network models based on deep
feed forward network (DFFN), with three different optimization approaches to
obtain the optimal hyper-parameters. The first one, with an exhaustive grid
search (GS), the second with a random search (RS), and the third with a random
search applying a smoothing filter as a final training step. Finally, the TCN is
also compared with a deep LSTM optimized using a RS. The values for RMSE,
MAE and MAPE obtained by all these models are presented in Table 1.

It can be seen that the deep TCN model significantly outperforms all DFFN-
based architectures, with a reported MAPE slightly greater than 1%, even if
they have been trained with a hyper-parameter optimization strategy. The same
applies to the other deep learning model, in which the improvement is even
greater. Ensemble, trees and linear models also exhibit worse results in terms of
the metrics selected. All the values can be found in Table 1.

Table 1. Errors obtained by the TCN and DFFN models.

Methods Optimization RMSE (MW) MAE (MW) MAPE (%)

LR GS 2554.01 2014.58 7.34

DT GS 1161.61 787.90 2.88

GBT GS 1096.72 787.90 2.72

RF GS 849.43 598.11 2.20

DFFN GS 380.49 451.96 1.68

DFFN RS 345.89 422.55 1.57

DFFN RS+filter 251.14 369.19 1.36

LSTM RS 545.90 398.77 1.45

TCN TE 180.43 310.01 1.13

Figures 2 and 3 shows the best and worst predicted days of the entire test set,
respectively. Both figures represent on their horizontal axis the 144 values corre-
sponding to each of the measurements of a day in the 10-min interval. The best
day corresponds to February 25, 2016, where the MAPE value was 5.87e–6, while
the worst day corresponds to December 31, 2013 with a MAPE of 0.019. The worst
predicted day coincides with a date marked on the calendar as New Year’s Eve.
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Fig. 2. Best daily prediction.

Fig. 3. Worst daily prediction.

The mean of the absolute errors for all months of the test set is depicted in
Fig. 4. It can be seen that the worst predicted month is May 2016. This is due to
the fact that 1 May is a day marked in the Spanish calendar as a public holiday,
and therefore, the model obtained an error much higher than the mean.
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Fig. 4. Monthly average of the absolute errors for the test set.

In terms of computational cost, the TCN network competes directly with the
LR, DT, GBT and RF models, being in the order of hours. However, the rest of
the models based on deep learning require days of training.

5 Conclusions

In this work, we have proposed a deep learning model to forecast an energy-
related time series. More precisely, a deep TCN model has been applied to obtain
forecasts for the next 24 values using the electricity consumption time series
in Spain during nine years and half with a measurement frequency of 10 min.
The performance of the TCN has been evaluated comparing with other deep
learning models in terms of MAE, MSE and MAPE. The results show that
the model is highly competitive for time series forecasting, obtaining an error
around 1%, resulting a relative improvement of 84.60%, 60.76%, 58.45%, 48.64%,
16.91%, 28.02%, 32.74% and 22.07% with regard to linear regression, decision
trees, gradient boosted trees, random forests, the DFFN with random search
and smoothing process, DFFN with random search only, DFFN with grid search
and an deep LSTM, respectively.

Future work will be aimed at applying a hyper-parameter optimization strat-
egy to study the scope for improvement of the TCN model and, more precisely,
to adapt the use of the novel Coronavirus Optimization Algorithm [17] to be
jointly used with TCN. In addition, an in-depth statistical analysis of all hyper-
parameters will be carried out in order to determine the influence of each one.
In the same way, tests will be carried out using other datasets to verify the
effectiveness of the model.
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Abstract. Research on language acquisition for academic purposes is
not extensive. In this work, we propose to build a system for recognizing
teaching activities from automatic transcriptions of classroom audio and
video recordings centered on the professor’s discourse. To this end, we
identified the main teaching activities that cover the nature of the lec-
turer discourse when giving a course e.g. ‘theoretical explanation’, real-
world practical example’, interaction lecturer-student’, ‘course-related
asides’, etc. We labeled a dataset of lecture transcriptions from a repos-
itory with an approximate length of 50 h and we build a classifier by
fine-tuning the XLM-RoBERTa model with a classification head on top
of it. The results will show that our proposal is a promising step ahead
towards recognition of discourse activities in academic contexts.

Keywords: Spoken academic lecture · Text classification ·
Transformer models

1 Introduction

This paper centers around recognition of human activity where low-level data
come in the form of transcriptions of audio recordings and the objective is to
identify the nature of the discourse. More specifically, we aim at recognizing
teaching activities from automated lecture transcriptions of university classes.

Research on language acquisition for academic purposes is not extensive. The
Language ENvironment Analysis (LENA) system is one of the few existing tools
that records the language environment of small children by combining a wearable
audio recorder with automated vocal analysis software [8,9]. Data collected from
teachers wearing the LENA system while teaching regular mathematics lessons
has been used to identify three common discourse activities: teacher lecturing,
whole class discussion and student group work [13]. LENA provides timely feed-
back for teachers to improve their skills in classroom discourse management
but it uses a proprietary voice identification and transcription system, and it is
particularly limited to small children.

The project Decibel Analysis for Research in Teaching (DART) analyzes the
volume and variance of STEM (Science Technology Engineering Mathematics)
course audio recordings to predict how much time is spent on single voice (e.g.,
c© Springer Nature Switzerland AG 2021
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lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question
thinking) activities [12]. DART aims at studying patterns of active learning by
comparing lecture and non-lecture activity (multiple and no voice) in courses for
STEM majors versus non-STEM majors.

Our work focuses on recognizing teaching activities in university classes,
which typically are more of the type of lecture-based learning, and builds on
automated transcriptions of the class recordings. LENA and DART provide a
discourse activity classification based on speech processing from audio record-
ings. Our proposal however exploits language modeling, what allows us achieving
a richer teaching activity classification based on the analysis of the nature of the
discourse and not merely on the audio-recording data.

We used video and audio recordings of lectures registered at our university
prior to 2020, where the voice of students is hardly audible, and so our proposal
for the recognition of teaching activities focuses on analyzing the nature of the
teacher discourse. That said, we present a system based on text classification to
recognize the type of speech of a university lecturer out of automated transcrip-
tions of class recordings. We identify a set of categories that characterize the
spoken academic discourse and we design a classifier using a transformer-based
language model, specifically a version of the BERT family transformer models
[5]. We underscore our system aims for recognizing discourse activities across a
variety of different university subjects, thus the focus is not on topic modeling
but on analyzing the discourse of a speech communication where the communica-
tive intent and modality of the lecturer matter. Our ultimate goal will eventually
be to cross-check the classification results with the academic evaluation surveys
of the lecturers and study correlations between teaching activities and student
satisfaction.

The paper is organized as follows. Section 2 briefly summarizes the main char-
acteristics of the spoken academic lecture. The following section presents the
procedure for the data segmentation and labeling. Section 4 explains the con-
struction of the classification model and Sect. 5 shows the experimental results.
Finally, we present a discussion and conclusions in Sect. 6.

2 Spoken Academic Lecture

In linguistics, the term genre refers to types of spoken and written discourse
recognized by a community; e.g. lectures, conversations, advertisements, novels,
shopping lists, interviews and many more. Since our work is devoted to the speech
used in university classes, our focus is on the spoken academic discourse
genre, particularly on classroom genres, which are regarded as paramount for
both students and faculty. Among the classroom genres, the seminar, tutorial,
presentation and oral exams typically involve a high level of interaction between
the presenter and the audience the activity is addressed to [6]. The academic
lecture, however, is mostly considered an expository genre where interaction
and communication between teachers and students are less frequent.
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The academic lecture is becoming more and more relevant due to the increas-
ing internationalization of higher education both from the point of view of stu-
dents and lecturers [7]. Lectures have a highly informational focus, similarly
to academic prose, and, at the same time, have interactive features as they are
delivered under on-line production circumstances that resemble face-to-face con-
versations in the spoken mode [1,4]. Hence lectures are categorized by features
that capture the informational purpose of the speech and by features displaying
the spoken discourse. Some researchers examined the macro-structure of univer-
sity lectures and the micro-features that contribute to this structure [15]:

– Interaction: important feature that indicates to which extent lecturers main-
tain contact with their audience so as to reduce the distance between them-
selves and their listeners as well as to ensure that what has been taught is in
fact understood.

– Theory or Content: this is used to reflect the lecturer’s purpose, which is
to transmit theoretical information.

– Examples of practical application: in this phase speakers illustrate the-
oretical concepts through concrete examples familiar to students.

Besides the three aforementioned identifying features of a lecture, more recent
research also point at the ability of lecturers to express their attitudes, to
relate personal experience to the content of the lectures, to talk about eval-
uation of materials, and to use formal and informal languages, spoken and
written (text in slideshows or other forms of text) [11].

3 Data Segmentation and Labeling

The data used in this work is a collection of automated transcriptions of class
recordings of university subjects given in Spanish. We used an online transcrip-
tion and translation platform for automated and assisted multilingual media
subtitling that provides support for the transcription of video, audio and con-
tent of courses1.

We selected a total of 27 audio recordings of lectures that covered scientific as
well as technical matters, e.g. Statistics, Electronic Devices, Mathematics, Micro-
processors, etc. All together, the selected recordings feature 3000 transcription
minutes, half corresponding to male lecturers and the other half to female lec-
turers. Additionally, 6 out of the 27 selected videos were manually reviewed so
the transcriptions of these lectures are much more reliable and accurate to the
original discourse of the speaker. Table 1 shows an excerpt of the output file
returned by the transcription platform. A viewer will see the text of section 23
on screen as a caption, then the text of section 24 and so on.

1 MLLP transcriptions. https://ttp.mllp.upv.es/index.php?page=faq.

https://ttp.mllp.upv.es/index.php?page=faq
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Table 1. Excerpt of a transcription.

3.1 Academic Labels

We manually segmented the transcription files by identifying context switching
in the text and deciding whether said context change was associated to a change
in the teacher’s discourse. Data segmentation was done along with data labeling;
we previously decided on the academic labels to classify the discourse activities
so that a context switching is detectable as a change of label. We reviewed each
other’s work to ensure consistency in the labeling process.

On the basis of the investigations on the academic lecture genre, we per-
formed an exhaustive analysis of the audio & transcription files and put forward
the hierarchy of academic labels shown in Fig. 1. The white nodes denote parts

Fig. 1. Hierarchy of academic labels
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of the audio file which do not have a readable transcription. The seven dark
coloured leaf nodes are the academic activities we used to label the discourse
segments. The meaning of each level is as follows:

Level 1: filtering out sounds from the audio file. The audio files of
some recordings contain corrupted sections or unwanted sounds due to a sudden
cutoff of the recording, background noise, errors in the recording or microphone
feedback. We identify these damaged sections of the audio file as Miscellaneous
and the rest is classified as audio that belongs to the Lecture.

Level 2: speaker identification. We distinguish the parts of the file in
which the speaker (the lecturer) is talking from those in which they are not. The
labels Indistinct Chat, Pause and Multimedia are used to mark sections of the
audio file that contain an indistinguishable speaker.

Level 3: lecture-audience relationship. All the features at level 3 and 4
can be extracted from the transcription file since we end up with a file exclusively
comprised of the discourse of the speaker after filtering the labels at level 1 and
2. The four labels at level 3 denote different ways for the lecturer to address
the students. The key label Syllabus comprises the entire academic discourse
around the specialized subject. Interaction denotes an exchange of communica-
tion between the lecturer and students; Digression is when a lecturer shifts to a
more personal self and offers course-related asides; and Other refers to a speech
unclassifiable under the other three labels which usually refers to the overall
functioning of delivering the class and to non-course-related matters.

Level 4: content-based lecture structure. It includes the phases of a reg-
ular expository class around the syllabus of a subject, namely Theory/Concept,
Example/Real Application, Exercise/Problem and Organization issues. Two
remarks are worth mentioning: (a) the label Exercise/Problem accounts for a
common practice in scientific/technical subjects but can be ignored in human-
ities and social science subjects; (b) Organization issues, which encompasses
general course information like schedules, teaching practice or grading policy of
interest for the carrying out of the syllabus, could also be classified as a sub-
category of Speaker if we assume that students generally put much attention
when the lecturer talks about organization matters.

We show now in Table 2 two examples of text segmentation and labeling in
Spanish, and their English’s translation.

4 Text Classification

For building our classifier for academic transcription segments, as we do not
have much training data or the necessary hardware to train a NLP model from
scratch, we employ transfer learning by using a pre-trained model and fine-
tuning it to our task. To this end, we chose XLM-RoBERTa, a multi-lingual
model that achieves a performance comparable to monolingual models in a vari-
ety of tasks such as named entity recognition, question answering, sentiment
analysis, natural language inference, etc. The pre-trained XLM-RoBERTa model
was downloaded from HuggingFace’s Transformers repository [14]. We used xlm-
roberta-base instead of the large version due to hardware restrictions.
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Table 2. Examples of text segmentation and labeling

We set the maximum sequence length to 512 tokens, which is the maximum
length supported by XLM-RoBERTa. The longer the sequence, the easier to
classify a segment due to the larger amount of context information comprised
in it. If the segment contains less than 512 tokens we apply padding, and for
segments longer than 512 tokens we split them using a sliding window with a
stride of 0.8 * max seq length (410 tokens).

We added a classification head on top of the pre-trained XLM-RoBERTa
model. This classification head takes as input the segment representation con-
tained in the embedding of the classifier token (a special token added at the
beginning of the segment). The classification head consists of a dense layer of
hidden size (768 units) with tanh activation function followed by a dense layer
of seven units (one unit for each label/class associated to one academic activity)
with softmax activation. The output of the classification head is a list contain-
ing the probability that the input segment belongs to each of the seven classes.
We used the Adam algorithm with weight decay fix as optimizer and categorical
cross-entropy as our loss function for fine-tuning.



232 D. Diosdado et al.

The hyperparameters were tuned with the Weights and Biases framework
[2] according to the model performance using Bayesian Optimization. The final
values of the hyperparameters are: learning rate = 0.00005, 40 epochs, batch
size of 8 segments (due to memory constraints), gradient accumulation steps of
32 (for a simulated batch size of 256 segments) and weight decay of 0.0007. We
trained our model with a Nvidia Geforce RTX 3090.

Table 3. Distribution of our data by label. The number of tokens was obtained by
using XLM-Roberta’s tokenizer.

Label Num segments Total tokens Avg. tokens Max tokens

Theory/Concept 454 115885 255.25 3019

Exercise/Problem 537 77866 145.01 1481

Example/Real Appl. 347 63239 182.24 1845

Organization 260 37083 142.63 1989

Interaction 567 66326 116.98 3878

Digression 118 11857 100.48 647

Other 112 5416 48.36 297

Total 2395 377672 157.69 3878

Table 3 shows the composition of our dataset by class. For each class, we
report the number of text segments, the total number of tokens, the average
token length of the segments and the maximum length in tokens of a segment.
As we can see in Table 3, our dataset is rather imbalanced, as some classes like
Theory/Concept or Exercise/Problem are much more frequent than other classes
like Digression or Other. This is reasonable and in line with the nature of the
academic lecture, wherein the most part of the teacher’s speech is devoted to the
contents of the syllabus of the subject. As a result, the number of segments and
the total number of tokens of the most populated classes is obviously higher.

We can draw some conclusions about the composition and structure of each
class. The three academic labels Theory/Concept, Exercise/Problem and Exam-
ple/Real Application make up 56% of the total number of segments, and 68% of
the total number of tokens in the dataset. These classes also share a substantial
part of their vocabulary with one another. The Other class is fairly regular as it
is mostly composed of relatively short segments. This is indicated by the lowest
value of the maximum number of tokens (297) in a segment and also by the low-
est average number of tokens (48.36). In contrast, Interaction is highly irregular
because it contains segments of variable length. Interaction is the class with the
largest number of segments (567) and the longest segment (3878) while this class
has about half the number of tokens of Theory/Concept, and its average number
of tokens is closer to the less populated classes. We also observed that Inter-
action appears more frequently among segments of Exercise/Problem, either by
the student asking for clarification or the teacher querying the students.
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5 Experimental Results

We evaluated our model on the whole dataset using 10-fold cross-validation
with stratify (each partition holds approximately one tenth of each class). We
report the aggregated confusion matrix of the results in Fig. 2 and the values of
precision, recall and F-score for each class in Table 4.

Fig. 2. Aggregated confusion matrix of 10-fold cross-validation

In the confusion matrix of Fig. 2, rows show the true label of the segments,
i.e., the label we manually assigned to the segments, and columns represent the
predicted class by our model. The values on the diagonal are the number of True
Positives (TP); for each class, the values in the columns show the False Positives
(FP) and the values in the rows show the number of False Negatives (FN).

Table 4 shows that the metrics of the class Digression fall behind the rest of
the classes, followed by the class Other. Digression has the lowest recall among
all classes, which is also confirmed by the high number of FN in Fig. 2 relative
to the number of samples of this class. This reveals the difficulty of the model
to correctly classify segments of Digression. We believe the reason for the poor
performance of the model with classes Digression and Other is due to the low
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number of samples of these two classes in our dataset as well as the difficulty we
experienced to correctly label the Digression samples.

It is also noticeable that the precision value of Interaction is higher than
its recall value, and higher than the precision of the other classes. The fact that
Interaction is the class with the largest proportion of samples correctly classified
responds to the ability of the model to recognize the distinguishing characteristics
of the discourse style in this class. In Interaction the teacher frequently uses the
second person to address the students, for querying them or answering their
questions. Interestingly, the model is able to identify the interaction teacher-
student even not yet having transcriptions of the students’ speech.

Table 4. Precision, Recall and F-Score by class.

Label Precision Recall F-Score

Theory/Concept 0.664 0.758 0.708

Exercise/Problem 0.662 0.685 0.673

Example/Real Application 0.672 0.631 0.651

Organization 0.678 0.689 0.683

Interaction 0.692 0.656 0.673

Digression 0.585 0.466 0.519

Other 0.616 0.545 0.578

In Fig. 2, the majority of high values in the columns other than the diagonals
are concentrated in three classes: Theory/Concept, Example/Real Application
and Exercise/Problem. We can thus say our model has a certain bias towards
this group of classes which otherwise seems reasonable since they are the most
representative classes of the academic discourse of a lecturer and share a sub-
stantial part of their vocabulary. We also observe a significant amount of mis-
classifications between Exercise/Problem and Interaction. This happens because
it is typically the case that students get more engaged during problem-solving
than theory explanations.

The class Theory/Concept shows the highest recall but a lower precision value
(low values in its row in Fig. 2 compared to the values in its column). This means
the model is fairly successful in correctly classifying many of the segments labeled
as Theory/Concept, but it also tends to classify as Theory/Concept segments
that do not actually belong to this class. This reveals a slight bias towards this
class which is probably due to Theory/Concept being the largest class in the
dataset. The second highest F-score of the class Organization is likely explained
by the particular vocabulary of this class, which easily distinguishes it from other
classes, such as terms that denote dates, weekdays, grading system, explanations
about laboratory activities, etc.
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6 Conclusions and Future Work

Despite the low number of labeled samples for this type of NLP task, our model
achieves a significant performance that confirms the adequacy of our labeling
scheme for recognizing teaching activities from automated transcriptions. We
observed that the three academic classes Theory/Concept, Exercise/Problem and
Example/Real Application concentrate a large part of the errors because these
classes make for more than half of the dataset and share a large part of their
vocabulary. Misclassfications between Interaction and Exercise/Problem happen
because many interactions student-lecturer take place during exercise solving in
class. Additionally, the model achieves good results for the Organization class
thanks to its distinctive and recognizable vocabulary (dates, grading, etc.).

A straightforward way to increase the performance of our model is by aug-
menting the size of the dataset [3,10]. We plan to develop an automated segmen-
tation process and use our classification model to help us augment the dataset.
Additionally, we will consider using a Language Model to spellcheck the text and
thus improve the quality of the transcriptions. Lastly, we intend to test XLM-
RoBERTa-large and check if the superior performance of the large version over
the base model [3] translates into a improvement in our classification model.
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Abstract. The train routing and timetabling problem consists of set-
ting routes and schedules of a set of vehicles given their initial timetables
and a railway network. The number of vehicles, the complexity and lim-
ited capacity of the railway network, and the time constraints make this
problem difficult to solve. In this paper, we model this problem as a
Multi-Agent Pathfinding problem, and propose a Conflict-Based Search
approach to solve it. In our approach, we consider the complex properties
found in this scenario such as continuous time, agents that function as
convoys of arbitrary length, arbitrary action duration, and railway net-
works to find a solution. We analyze and discuss our approach explaining
the main difficulties and evaluate it on several scenarios.

Keywords: Train routing and timetabling · Multi-agent path finding ·
Heuristic search

1 Introduction

The Train Routing Problem (trp) consists of routing a set of vehicles in railway
network and assigning them tracks to arrive (depart) to (from) the station. The
Train Timetabling Problem (ttp) consists of scheduling a set of vehicles without
violating track capacities and satisfying some time constraints. Both problems
can be studied separately, but they are directly related: scheduling a train not
only depends on the railway network and departure and arrival times, but also on
the route and all possible conflicts with other trains’ routes. The combination of
both problems is difficult to solve because of the number of trains, the complexity
and limited capacity of the railway network, and the time constraints.

Both problems have been widely studied using different techniques such as
Integer Linear Programming (ilp) [3], Mixed Integer Programming (mip) [11,13],
multi-objective linear programming [12], local search [4,7], heuristic search [6],
or Constraint Satisfaction Problems (csp) [14]. In this work, we study the Train
Routing and Timetabling problems together as Multi-Agent Pathfinding (mapf)
problems [5]. A mapf problem is the problem of finding paths for a set of agents
such that every agent reaches its goal while avoiding collisions.
c© Springer Nature Switzerland AG 2021
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trp has been already studied by previous works using a mapf approach [2].
However, they relax the problem by making assumptions that hinder the use
of such techniques in more realistic scenarios as: discrete time steps, unit-cost
actions, vehicles losing dimensionality while stopped, and grid scenarios. Andr-
eychuk et al. [1] study the mapf problem under a more realistic setting, where
agents have volume, there are arbitrary cost actions, and continuous time. The
type of agents considered are 2D non rotating agents situated also in grids.

Our work is inspired by Atzmon et al. [2] and Andreychuk et al. [1], but we
go one step forward by considering: (1) vehicles that keep their size throughout
the whole process; (2) use the concept of resources to determine conflicts, which
allows dealing with collision detection; and (3) more realistic railway networks.

The rest of the paper is organized as follows. First, we introduce a formal
definition of the Train Routing and Timetabling Problem (trtp) we address.
Then, we define the algorithms we use to solve the problem. Finally, we present
an empirical study in different scenarios, and the conclusions and future work.

2 Problem Definition

We define the Train Routing and Timetabling Problem (trtp), as a tuple
(I,R,V, T ) where I represents the railway topology, defined by a set of seg-
ments S and a set of points P ; R is a set of resources; V is a set of vehicles; and
T is the initial route timetable for all vehicles. Every segment s ∈ S has a start-
ing point and an end point (ss, se), where ss, se ∈ P and it is associated to one
of two directions ds ∈ {1, 2}, a length ls, and a travel time ts. Bidirectional seg-
ments are considered as different segments with opposite directions. Resources
are the basis of the railway safety system. They are exclusive since they can
only be occupied by a single vehicle at a time. Thus, each resource is defined
by a set of segments R ⊆ S, such that ∀i, j i �= j → Ri ∩ Rj = ∅. Each vehicle
v ∈ V has a length lv. We assume all vehicles can travel in both directions and
have constant speed c. A route timetable for a vehicle v is a sequence of tuples
〈p, d, [ta, td], o〉, where p is the position of the vehicle’s head, d is the direction,
[ta, td] is the time interval defining the arrival and departure times of the vehicle
head to/from p, and o is the sequence of segments (from head to tail) that the
vehicle occupies. p can be defined by either a point, an area, or a platform area.

An area is a subset of segments A ⊆ S. A platform area is a subset of platform
segments in an area, T ⊆ A. Platforms are the only segments where passengers
can board and alight.

The initial route timetable corresponds to the official train timetable, which
is a partial definition of the vehicles’ route. It must specify boarding/alighting
times in platform areas, which will be considered as hard constraints. Thus,
for each vehicle it could specify: (a) either an entry or internal point of the
infrastructure along with the arrival time to it; (b) one or more areas where
the vehicle has to stop, or platform areas where the vehicle has to board/alight
passengers, along with the corresponding times; and (c) an exit point from the
infrastructure to the external railway network.
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A solution to a trtp is a route timetable that completely defines all vehicles’
paths along with the arrival and departure point times, such that there are no
conflicts among vehicles and all arrivals and departures are performed on-time.

The following definitions refer to concepts which are relevant for finding a
solution to the trtp.

Definition 1 (Stop time). Given the arrival/departure interval [tpa, t
p
d] for a

specific point p in the route of a vehicle v, the stop time of v at p is defined as
tpstop = tpd − tpa. If tstop = 0, p is a non-stopping point.

Vehicles have an arbitrary length, which could be larger than the length of the
segment where their head is situated. This implies that a vehicle might occupy
several segments at the same time. Thus, the solver needs to keep track of the
segments’ occupation as the route is being computed. Also, the solution must
ensure that the route is safe, meaning that there are no collisions with other
vehicles. In order to achieve that, the route must comply with resource exclu-
sivity, which implies keeping track of the blocked resources and their releasing
times.

Definition 2 (Occupied segments). Let (p0, . . . , pi) be the points in the cur-
rent route of a vehicle v, which determines a sequence of segments (s0, . . . , si−1),
where each segment connects two consecutive route points. Let us assume that
v’s head is situated at point pi, which means that the vehicle is in segment si−1.
Let si−k be the first segment from head to tail for which

∑k
j=1 lsi−j

> lv. Then,
v occupies, from head to tail, the sequence of segments o = (si−1, . . . , si−k).

This definition is illustrated in Fig. 1 (left), where there is a vehicle whose
head is at pi, and the complete vehicle occupies the segments from si−1 to si−k.

Fig. 1. Occupation and direction change scheme.

To ensure a solution that respects the railway safety system, we need to define
the concept of segment occupation time, i.e., the time interval when a vehicle is
occupying a segment. This interval starts when the vehicle’s head arrives to the
starting point of the segment and ends when the vehicle’s tail leaves its end point.
The upper bound of this interval is computed considering the head’s departure
time from the end point plus the time from head to tail. Formally:

Definition 3 (Segment occupation time). Let (p0, . . . , pi) be the points
in the current route of a vehicle v, and o = (si−1, . . . , si−k) be the sequence
of occupied segments. Then, the segment occupation time of si−k is defined by
the time interval [tpi−k

a , t
pi−k+1
d + tvhead-tail + todelay], where tvhead-tail = lv/c and

todelay = tpi

stop + t
pi−1
stop + · · · + t

pi−k+2
stop .
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In this definition, the time from head to tail, tvhead-tail, is computed considering
the length of the vehicle and the constant speed c. The delay in leaving segment
si−k is due to the (potential) stops of the vehicle’s head in the points from pi−k+2

to pi. As Fig. 1 (left) shows, these are the successive points where the vehicle
can stop while its tail is still in segment si−k.

Resources are sets of exclusive segments. A resource is blocked when a vehicle
enters in any of its segments [10]. When a resource is blocked, no other vehicles
can use the resource until it is released. Note that a vehicle could block more
than one resource at the same time. A resource is released when the vehicle’s tail
passes another resource plus a constant security time. Given the sequence o of
occupied segments by a vehicle v, the list of blocked resources by v can be easily
computed considering the segments in o and the resources they belong to. Given
a resource R = {s0, . . . sn}, it would be blocked by a vehicle v within the interval
[tblock , trelease + tsafe ], where tblock is the arrival time of v’s head to a segment
in R; trelease is the time when v’s tail leaves the resource; and tsafe is an input
constant. The segment occupation times are computed following Definition 3.

In this work we assume vehicles can change their direction at a given moment.
To represent a direction change in the route schedule, we replace the vehicle’s
tail with its head and vice versa. We consider the time to move the new vehicle’s
head to the nearest point in the opposite direction (referred as setting time) plus
a maneuver time, tm. Let (pi, d, [tpi

a , tpi

d ], (si−1, . . . , si−k)) be the last tuple in the
route schedule for a vehicle before a direction change. Then, the next tuple in
its schedule, after the direction change, will be (pi−k, d̄, [t

pi

d + tm + tset, t
pi−k

d ], o).
pi−k is the nearest point in the opposite direction, given that when the head
was at pi the vehicle was occupying the previous segments to si−k. The opposite
direction is denoted as d̄. The arrival time to this nearest point is the departure
time from pi, tpi

d , plus the setting and maneuver times. tpi

d refers now to the
tail departure since there was a direction change. The setting time is tset =
(
∑k

j=1 lsi−j
− lv)/c, where the numerator is the total length of the occupied

segments minus the vehicle’s length. This is the distance from the position of
the vehicle’s tail before the direction change to the point pi−k, the nearest one
in the opposite direction. The occupied segments o when the vehicle’s head is at
pi−k are computed following Definition 2.

Figure 1 illustrates a direction change. The left figure shows the initial posi-
tion of the vehicle before the direction change, where its head is located at point
pi (right direction). The right figure shows the final position of the vehicle after
the direction change (left direction). The setting time is the time taken to move
the vehicle’s head from its actual position in segment si−k (left figure) to point
pi−k, which is the head position after the direction change (right figure).

3 Graph Representation of the Railway Network

In railway networks there are certain turns that vehicles cannot take due to
physical properties of the track topology. Figure 2 (left) shows a small railway
network where a train cannot turn from C to F if it reaches C from B (orange
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train). However, the turn is possible if the train comes from D (grey train).
Considering these physical restrictions when the network is represented as a
graph would mean to deal with additional constraints to avoid impossible turns.

Fig. 2. Railway network with two vehicles (left) and corresponding dvg (right).

To overcome this issue, we represent the infrastructure as a Double Vertex
Graph (dvg) [10], which consists of vertices (points) and edges (segments) that
prevent impossible turns. We perform the search over this graph. The main idea
of a dvg is that all vertices are duplicated, generating pairs (v, v◦), where v and
v◦ are joined vertices that represent the same point in the network. This asso-
ciation relies on a mapping function ◦ : V �→ V that for each vertex v returns
its joined vertex ◦(v) (or v◦). This mapping function satisfies that ◦(◦(v)) = v.
During the search, reaching a vertex on the dvg implies to be moved automati-
cally to its joined one, by applying the mapping function ◦. Therefore, the only
allowed movements are those represented by the outgoing edges of the joined
vertex. Outgoing edges do not include movements with impossible turns.

The infrastructure I is converted automatically into a dvg: each point vi is
converted into a double vertex (vi, v◦

i ); each segment with direction d, defined by
is starting and end points (vs, ve), generates the edge (v◦

s , ve); and each segment
with direction d̄, defined by points (vs, ve) generates the edge (vs, v◦

e ). Figure 2
(right) shows the result of transforming the infrastructure in Fig. 2 (left) to a
dvg. Thus, the infrastructure contains the segments: AB, BC, CD, DE, GF, FC
(direction 1); BA, CB, DC, ED, FG, CF (direction 2).

A formal track topology, as defined by Montigel [10], includes both the dvg
and the definition of resources, which guarantee safety in the railway system.
Figure 2 (right) shows an example where resources represented with dashed lines.
Considering the dvg, vertices connected by an edge belong to the same resource.
Resource boundaries lie between joined vertices.

4 The trtp as a mapf Problem

In this section, we explain the approach followed to solve the trtp problem as
a mapf problem. Specifically, we apply Conflict-Based Search (cbs) [15], where
agents are trains and the search is performed over the formal track topology.

cbs consists of two search spaces: high-level and low-level. At the high level,
the search is performed on a binary conflict tree (ct), which is created from
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the found conflicts. At the low level, the search seeks a path for a single agent
consistent with the imposed restrictions. The main idea behind this type of
search is to allow each agent to find its own path at the low level while checking
that those paths are conflict-free at the high level.

In this work, each node n ∈ ct is a state that consists of: (1) a set of
constraints (initially empty); (2) a potential solution to the trtp, Tn, consisting
of complete route timetable for each vehicle; and (3) the total cost of the solution.
To ensure the safety of the system, constraints are defined over resources; only
one vehicle can be located at the same time in the same resource.

Definition 4 (Conflict). A conflict appears when there is an overlap of the
time intervals of two agents occupying the same resource. A conflict over a
resource R ∈ R is defined as a tuple 〈v1, v2, [t1, t2], [t3, t4]〉, where v1, v2 ∈ V are
the vehicles involved in the conflict, and [t1, t2], [t3, t4] are the respective resource
occupation time intervals with [t1, t2] ∩ [t3, t4] �= ∅.

During the high-level search, we select the next node n ∈ ct with least cost.
If n does not have any conflict, n is a solution and we return the conflict-free
route timetable for each agent on n. Otherwise, the search continues expanding
n. A conflict in n is arbitrarily chosen and we constrain each agent’s search
according to the occupation time interval of the other agent involved in the
conflict. We define two constraints for each selected conflict, represented as c1 =
(v1, R, [t3, t4]) and c2 = (v2, R, [t1, t2]). The former represents that the agent v1
must not be in R during the time interval [t3, t4], preventing it from occupying R
while v2 is inside (c2 is similar, but in the opposite direction). Then, we generate
two new successors n1 and n2 in the ct, with the same set of constraints as n,
plus the new one generated to each vehicle. Hence, n1 will restrict the solution
of v1 with c1 while n2 will do it to v2 with c2. A low-level search is performed
for each node to find a new solution consistent with the new constraints.

The low-level search seeks a complete route timetable for a vehicle consis-
tent with its initial timetable T0, and its constraints. We conduct a modified
A∗, using as heuristic the minimum travel time without considering changes of
direction. A state is represented as 〈p, d, ta, T 〉, where p is the vehicle’s position,
d is the direction the vehicle is facing, ta is the arrival time to p, and T is the
vehicle’s timetable (partial route used to determine the vehicle’s current occu-
pation). Applicable actions are moving actions from one point to another. Stops
happen at the arrival vertex and the mapping function ◦ is applied on departure.
Direction changes can be applied at any moment (but have lower priority).

Sub-goals of a vehicle can be either points or areas. If a sub-goal g is a point,
the search can be easily guided using a heuristic function that estimates the cost
of reaching that point from the current point. However, when g is an area this
is not enough because each area has a set of n predefined platform segments.
Any path that leads the vehicle to one of these segments within the specified
time interval could be a valid solution. Then, for that case, we first perform a
platform selection step by generating as many search nodes as platforms are in
the area. All of these nodes have the same state, but differ in the goal point.
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The search is performed as follows. For each node n, g(n) is the ta to the
current point, defined in its state. We keep two open lists during the search. The
first one stores nodes n that do not require a direction change to reach the goal.
These are expanded according to their f(n) = g(n)+h(n) value. The second one
stores nodes that require at least a direction change. They are sorted according
to g(n), but only expanded when the first list is empty. This guarantees that
direction changes are only performed when necessary. Applying a move action
from point p to point p′ implies: computing the departure time td from the
current point p; generating a successor whose partial route includes p along with
its time interval; and computing the arrival time, t′a of the next current point
p′. We do not consider stops unless this option violates a constraint. Thus, we
set td equal to ta whenever possible. The arrival time at p′ is computed as the
departure time from p plus the travel time tpp′ of the current traveling segment,
t′a = td + tpp′ . If the node being expanded is a goal node, the departure time
is set to ∞: this indicates that the vehicle will remain parked in the current
segment(s). Then, the solution is returned. A stop is a td such that ta < td. We
only consider them when they are needed to avoid violating any constraint.

Definition 5 (Constraint Violation). Given a state s = 〈p, d, ta, T 〉 and a
successor state s′ = 〈p′, d′, t′a, T

′〉, generated by applying a move action from p
to p′ to the current vehicle v, a constraint c = (v,R, [ti, tj ]) for v is violated if
the segment (p, p′) belongs to R and either: (a) ti < td < tj, or (b) td < ti and
t′a > ti, or (c) t′a < ti, the successor s′′ of s′ involves a movement through a
segment which still belongs to R, and this movement generates a violation of c.

In (a), the violation can only be solved in two ways: (1) making td < ti, or
(2) making td > tj . Assuming that the vehicle does not stop at p (i.e. td = ta and
t′a = ta+tpp′), there is no chance to make td < ti since td is the earliest departure
time. Therefore, we choose to solve the constraint violation making td > tj by
setting td = tj + tsafe , where tsafe is the constant security time defined for the
network. Then, t′a = td + tpp′ . It implies making a stop at p to delay entering the
resource until the upper bound of the forbidden interval is reached. In (b), the
solution is similar since an earlier departure from p would be needed to achieve
t′a < ti. This is not possible because td is the earliest departure time (if the
vehicle does not stop at p). In (c), the constraint violation cannot be checked at
the expansion time of the current node (state s). At this point, it is a potential
violation since we do not know neither the departure time in s′ nor the arrival
time in s′′ until s′ is expanded. In such scenario, we must create two child nodes
to guarantee completeness. One is the current successor (td = ta), which does
not violate the constraint at the moment. The other node is created by making
a stop at p, to delay its departure time to the upper bound of the forbidden
interval. This is done by following (a) or (b). When the departure time in s′ or
the arrival time in s′′ violates the constraint, the path is discarded.

This conflict resolution approach is also valid in those cases where a direction
change is applicable (a direction change action generates an additional succes-
sor). In all cases, when selecting the departure time, the occupied segments, and
their occupation times are computed following Definitions 2 and 3.
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The final route timetable generated is optimal with respect to the travel time
while complying with the imposed constraints. Considering the way constraints
are created, the solution might not be optimal. Constraints are added using
the vehicle’s occupation time in the resource, not the minimum occupation time
possible for that resource. So a solution that complies with the constraints might
be more costly than one with different constraints.

5 Evaluation

We tested 3 networks, following experts’ guidelines, of increasing size: 110, 148,
and 312 segments, with 40, 55, and 115 resources respectively. We ran experi-
ments with an increasing number of agents k, ranging from 2 to 10. The maxi-
mum number of agents seems to be low, but the networks are relatively small.
Hence, we are testing the very complex scenarios due to a high percentage of the
network occupied by agents. This parameter, denoted as %O, is computed as the
number of initially occupied resources divided by the total number of resources
in the network. We randomly assigned a different length to each agent from 5 to
25. For all networks, the average segment length is 20, so agents might occupy
two segments in some cases. Each agent has associated a platform as goal.

We tested with three types of deadlines. To compute them, for each network,
we ran 1000 problems with one agent having a random initial position and
destination. The base deadline, bd, is set to the maximum time needed for the
agent to reach its destination among all runs. bd is considered as a hard deadline
in practice, since it is very unlikely the algorithm finds a solution for all agents
that takes less time than bd. The higher the number of agents in the network, the
higher the number of conflicts, which causes delays over all vehicles. The other
two deadlines are: d = bd × 2 (medium deadline); and d = bd × 4 (soft deadline).

We generated 100 random problems and ran them for each type of deadline
and number of agents. We gave 60 s to the algorithm to solve each instance and
report: (1) if the problem was solved within the time bound, s; (2) the sum of
costs of all the agents’ plans, soc; (3) the makespan, mk, which is the time step
at which the last agent reaches its destination; and (4) the time t in milliseconds
needed to solve the problem.

Table 1 shows the results1. For the small network, we only report results up to
6 agents since with a higher number of agents none of the problems were solved
within the time bound. A higher number of agents makes the small network
intractable with very high occupancy rates, which prevent agents from reaching
their destinations. For all the networks, increasing the number of agents causes
higher occupancy rates and lower success rates, as expected. Having more agents
in the network means more potential conflicts to be solved, many of them being
unsolvable within the given time bound. The success rate drops below 0.5 when
the occupancy of the network is 25% or higher in the small and medium networks.
For the large network, there are worse success rates for lower occupancy rates.
The topology of the network creates a bottleneck in some resources that connect
1 Results obtained on an Intel Core i7 2.9 GHz CPU computer with 16 GB of RAM.
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Table 1. Results for the three types of networks.

Soft deadline Medium deadline Hard deadline

Network k %O s soc mk t s soc mk t s soc mk t

Small 2 10.0 1.0 122.1 75.8 184.5 0.9 120.2 77.1 147.6 1.0 120.9 76.9 94.7

3 15.0 0.9 174.1 84.2 500.2 0.8 167.5 86.6 581.5 0.9 170.9 86.3 1494.5

4 20.0 0.8 235.1 98.1 1722.4 0.7 226.7 90.5 3186.1 0.8 222.3 89.1 3143.4

5 25.0 0.5 256.8 93.3 2437.0 0.5 261.5 92.5 2430.5 0.6 279.8 97.3 6310.1

6 30.0 0.3 289.5 89.6 2464.9 0.2 302.2 101.1 6784.7 0.3 292.0 98.7 10046.5

Medium 2 7.2 1.0 115.6 74.2 122.2 0.9 116.2 74.8 105.7 0.9 121.7 77.6 81.5

3 10.9 0.9 163.4 79.8 830.8 0.9 165.9 80.7 1056.1 0.9 169.5 80.5 1644.6

4 14.5 0.9 209.9 83.1 1281.1 0.8 209.8 85.3 1365.9 0.9 209.1 81.9 1640.2

5 18.1 0.7 256.8 84.6 3092.4 0.8 240.9 84.6 4122.2 0.8 242.9 81.3 2955.7

6 21.8 0.5 297.6 91.6 7713.5 0.6 283.3 92.3 4579.2 0.7 271.6 81.9 5395.1

7 25.4 0.3 293.8 79.6 8366.5 0.4 308.3 81.0 7828.9 0.5 300.6 86.7 10867.0

8 29.0 0.2 359.6 97.8 10634.9 0.1 355.6 84.6 6660.3 0.2 330.7 88.7 8672.1

9 32.7 0.07 326.5 106.5 11896.5 0.1 356.1 87.7 13187.9 0.09 324.0 79.5 23325.1

10 36.3 0.05 390.5 89.0 28865.7 0.08 365.3 93.1 14941.0 0.1 378.5 90.3 23050.8

Large 2 3.4 0.9 148.1 95.5 90.1 1.0 153.5 96.4 235.6 0.9 163.8 102.7 189.4

3 5.2 0.9 226.5 111.2 244.7 0.9 226.9 109.0 477.4 0.9 221.0 106.8 680.37

4 6.9 0.9 282.7 111.8 990.2 0.9 300.6 117.1 1697.6 0.9 292.4 115.2 2321.1

5 8.7 0.8 344.7 119.4 2909.1 0.8 349.3 120.8 4069.4 0.8 337.1 118.0 1751.0

6 10.4 0.6 401.3 125.8 5492.0 0.7 404.9 122.1 7108.1 0.7 408.3 124.0 4687.2

7 12.1 0.5 446.7 118.2 8220.7 0.5 484.4 126.8 9653.6 0.4 452.6 122.1 6645.8

8 13.9 0.2 497.5 123.5 10284.9 0.2 511.7 129.2 14845.7 0.3 503.5 135.5 10484.7

9 15.6 0.1 509.1 117.9 26109.0 0.2 487.4 117.8 17595.5 0.2 508.9 116.1 14108.9

10 17.3 0.1 555.2 121.5 13578.3 0.08 585.1 118.4 9409.1 0.07 601.6 131.3 14904.5

two main areas, which causes a high number of conflicts. Regarding the deadlines,
there is no apparent relationship between the type of deadline and the success
rate. Looser deadlines have a less constrained search space, and the algorithm
might exceed the given time while looking for a solution.

6 Conclusions and Future Work

In this paper we introduced an approach for solving trtp problems as mapf
problems using cbs. We consider specific problem’s features: the search is per-
formed in a dvg, which allows representing implicitly the physical character-
istics of railway networks and exclusive resources related to the railway safety
system; continuous time, deadlines, and actions with duration; agents with arbi-
trary length; direction change maneuvers; and abstract goal definition that may
involve solving the platforming problem.

We evaluated the approach on three different scenarios, varying the size of
the network, the number of agents, and the deadline tightness. The results show
that the higher the occupancy rate is, the lower the success rate is, given that a
higher number of agents results in a higher number of potential conflicts.

We would like to consider the full complexity inherent to a real trtp, which
would involve dealing with sub-goal sequences in the initial route timetable, vehi-
cle coupling and decoupling maneuvers, resource sharing, deposit operations, and
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additional metrics to consider the platforming occupation time or the robustness
of timetables. We would also like to evaluate it in real-world scenarios.
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Abstract. This article presents the problem of locating electric vehi-
cle (EV) charging stations in a city by defining the Electric Vehicle

Charging Stations Locations (EV-CSL) problem. The idea is to min-
imize the distance the citizens have to travel to charge their vehicles.
EV-CSL takes into account the maximum number of charging stations
to install and the electric power requirements. Two metaheuristics are
applied to address the relying optimization problem: a genetic algo-
rithm (GA) and a variable neighborhood search (VNS). The experimen-
tal analysis over a realistic scenario of Malaga city, Spain, shows that the
metaheuristics are able to find competitive solutions which dramatically
improve the actual installation of the stations in Malaga. GA provided
statistically the best results.

Keywords: Electric vehicle · Charging station location ·
Metaheuristics

1 Introduction

Road transportation is one of the main sources of air pollutants in our cities [12].
Reducing the road vehicles’ emissions would have an important impact on tack-
ling global warming [17] and improving inhabitants’ health [11]. An extended
use of electric vehicle (EV) transportation will reduce the emission of pollutants.
However, at the time of this research, the EV adoption is limited by several fac-
tors. One of the main factors is the need for a specific charging infrastructure for
EV, which present two main issues [9]: a) charging times determine the number
of vehicles that can be charged over the time; and b) charging stations have high
energy consumption requirements, which limits the number of stations that can
be installed in a given area. Improving the availability of charging stations will
lead to increasing the adoption of this type of green transportation [9].

Smart cities provide a series of tools for advanced knowledge and decision-
making support [2,3,8,12]. In this line, this work focuses on providing a solution
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to efficiently allocate EV charging stations to ease EV uptake by the citizens.
The proposed approach takes into account the distance the users have to travel
to charge their EV and the power electric substations installed in the city to
provide electric power to the different urban areas. These electric substations
produce a limited energy, which determines the maximum EV charging stations
to be allocated in a given area. Thus, we have defined an optimization problem
named Electric Vehicle Charging Stations Locations (EV-CSL).

Finding the best locations of EV charging stations is attracting the attention
of the research community. In Brandstätter et al. [1] the authors presented an
ad-hoc heuristic for solving the EV-CSL problem. The main drawback of their
approach is that it does not take into account the energy constraints of the
substations. Other research studies only considered the aspects related to the
installation of the EV charging points [10], i.e., installation price, maintenance,
etc., leaving quality of service (QoS) and users aside of the problem.

The problem of finding the optimal locations for the EV charging stations for
a full city can be defined as a variant of a p-median problem [5,14], which have
been proven to be an NP-Hard optimization problem. The large search space
makes impractical the use of traditional optimization methods (e.g., enumeration
techniques or dynamic programming). Thus, heuristic and metaheuristics are
useful methods to perform the search using bounded computational resources [4].
Here, two metaheuristic algorithms have been applied to address EV-CSL: a
genetic algorithm (GA) [19] and a variable neighborhood search (VNS) [15].

To evaluate the proposed approach, a realistic scenario of the whole city of
Malaga (Spain) has been modeled by taking into account real data (i.e., open
data provided by the municipality of the city, road maps from Open Street
Maps [16], and electric substations locations). In turn, the computed results
are compared against the current solution provided by the municipality (actual
locations of the charging stations), as a baseline solution.

The main contributions of our work are:

– Providing the mathematical formulation of EV-CSL.
– Modeling a realistic instance based on real data of the city of Malaga to

address EV-CSL focusing on citizens’ needs and electricity supply constraints.
– Implementing and applying two metaheuristics to EV-CSL: a GA and a VNS.
– Studying the solutions computed by the proposed algorithms to analyze their

performance when addressing this problem and comparing them with the
actual solution deployed in Malaga.

The rest of this article is organised as follows: the following section defines
the EV-CSL addressed in this research. Section 3 introduces the main aspects
of the metaheuristics applied and implemented. Section 4 describes the real-
world scenario defined to tackle the EV-CSL problem and the main experimental
settings. The experimental analysis is reported in Sect. 5. Finally, Sect. 6 presents
the conclusions and formulates the main lines for future work.
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2 Efficient Full City EV Charging Station Locations

The Electric Vehicle Charging Stations Locations (EV-CSL) problem is
defined to provide potential locations of EV charging stations for a full city given
a maximum number of charging stations (Ms) to provide the best QoS possible.
In this study, as a preliminary approach, the QoS is given by the distance between
the citizens’ homes and the EV charging station. The mathematical formulation
of EV-CSL is defined considering the following:

– A maximum number of electric car charging station defined by Ms.
– A set S = {s1, . . . , sM} of potential street segments for charging stations. For

this version of the problem, each street segment of S can be the location of
one charging station.

– A set C = {c1, . . . , cN} of client locations. Following a usual approach in the
related literature, nearby locations are grouped in clusters, assuming a similar
behavior between elements in each cluster. The number of users to serve at
each location c is uc. The distance from client c to the charging station s ∈ S
is dcc,s, and the maximum distance between any client in C and its assigned
charging station (in meters) is Dc.

– A set E = {e1, . . . , eT } of electrical substations that serve as electric power
source for the charging stations. The distance from the electrical substation e
to the charging station in s ∈ S is dee,s, and the maximum distance between
substation e in E and its assigned charging station s (in meters) is De. As the
substations have electric power restrictions, the number of charging stations
that can be fed by a substation e is limited by mpe.

Equations 1–7 describe the model, using the following variables: xc,s is 1 if the
client c is assigned to the station located in s and 0 otherwise, and ye,s is 1
if the electrical substation e is feeding the charging station located in s and 0
otherwise.

min
∑

c∈C, s∈S

xc,sdc,suc (1)

subject to
∑

s∈S

xc,s = 1 ∀ c ∈ C (2)

∑

c∈C, s∈S

xc,s = |C| (3)

dcc,sxc,s ≤ Dc ∀ c ∈ C, s ∈ S (4)
dee,sye,s ≤ De ∀ e ∈ E, s ∈ S (5)
∑

s∈S

ye,s ≤ mpe,s ∀ e ∈ E (6)

|So| = Ms So = {so\∀so ∈ S,
∑

c∈C

xc,so > 0} (7)
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As the QoS provided is measured in terms of distance between the clients
and the charging stations, a single objective is provided in Eq. 1: minimizing
the distance between the clients and the assigned charging stations. Regarding
the problem constraints, all the clients are assigned to a unique charging sta-
tion (Eq. 2); all the clients are served for any charging station, i.e., there are
not potential clients without a charging station assigned (Eq. 3); the maximum
distance between the charging station and the client assigned should be lower
than Dc (Eq. 4); the maximum distance between the electric substation and the
fed charging station should be lower De (Eq. 5); the number of charging stations
that are fed by a given electric substation should be lower or equal than pme

(Eq. 6); and the number of charging stations located should be lower than the
maximum number of charging stations to be located Ms.

3 Metaheuristics for Efficient EV-CSL

This section summarizes the applied metaheuristics to address EV-CSL in the
city of Malaga and introduces the main implementation details.

3.1 Algorithms

Genetic Algorithm: It was originally presented by John Holland inspired by
the evolution of species in Nature [19]. A basic pseudocode is showed in Algo-
rithm 1. GA is an iterative method. In each iteration, the algorithm generates λ
new solutions (new population). A new solution is generated from several parent
solutions (two parents this case, p1 and p2) selected from the previous popula-
tion. The selected solutions are mixed (crossover) between them to generate a
new one, which is probabilistically disturbed (mutated). At the end of an iter-
ation, the new solutions replace others from the previous population following
some kind of strategy. Finally, the algorithm returns the best solution found.

Variable Neighbourhood Search: It is based on the concept of neighbour-
hood [15]. The pseudocode is showed in Algorithm 2. Each solution has a defined
neighbourhood, i.e., a set of solutions with closest facilities to it. The current
solution x is modified according to these neighbourhoods (next() indicates the
number of modifications) and improved by a local search. In this version, a num-
ber K of consecutive non-improvements is allowed before finishing the algorithm.
The VNS applied in the proposed approach is based on the version defined in [6].
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Algorithm 1. GA
1: pop ← generatepopulaion()
2: i ← 1
3: while non stop condition do
4: pop′ ← ∅
5: for l ∈ {1..λ} do
6: p1, p2 ← select(pop)
7: x ← crossover(p1, p2)
8: x′ ← mutation(x)
9: pop′ ← x′

10: end for
11: pop ← replacement(pop, pop′)
12: i ← i + 1
13: end while
14: return pop

Algorithm 2. VNS
1: x ← generation()
2: x ← localsearch(x)
3: r ← true
4: while r & non stop condition do
5: r ← false
6: j ← 1
7: while ¬r & j ≤ K do
8: i ← 1
9: while ¬r & i ≤ kmax do

10: k ← next(i, kmax)
11: x′ ← shake(x, k)
12: x′ ← localsearch2(x′)
13: x ← acceptation(x, x′)
14: if x = x′ then r ← true
15: else r ← false
16: end if
17: i ← i + 1
18: end while
19: j ← j + 1
20: end while
21: end while
22: return x

3.2 Implementation Details

The solution encoding and the fitness function evaluation are defined in this
section. Other details about the applied algorithms (i.e., GA and VNS variation
operators) are presented in the parameter settings section (see Sect. 5).

Solution Encoding: The applied solution encoding considers a vector So of SM

binary elements, i.e., So = 〈so0, ..., soSM
〉, being SM the number of road segments

that are potential locations for the EV charging stations (in the modeled scenario
SM = 33, 550, see Sect. 4.1). Thus, if in the road segment i there is an EV
charging station soi = 1, otherwise soi = 0.

Fitness Function: The fitness function evaluates the QoS provided by
installing EV charging stations in the locations represent by the solution So.
In this approach, the QoS is given by the distance that the users have to travel
from their homes to the charging station. Thus, the EV-CSL problem is defined as
a minimization problem in which the objective function is the average distance
the citizens travel from their homes (in EV-CSL are known as neighborhood cen-
ters that groups a set of buildings) to the EV charging station. The objective
function is defied according to Eq. 1.
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4 Experimental Settings

This section describes the main aspects of the experiments carried out to address
EV-CSL by using GAs and VNSs. It presents the real-world scenario/instance
defined to evaluate the proposed approach. It summarizes the implementation
and computational platform. It describes the experiments performed by using
irace to configure the main parameters of the applied algorithms.

4.1 Scenarios

The EV-CSL is addressed over the city of Malaga, as case study. This realis-
tic scenario consists of 567,953 citizens in 363 neighborhoods. The road map is
defied by using the data of Open Street Maps Based. The map includes total
of 33,550 road segments as tentative locations for the charging stations (i.e.,
SM = 33,550). Finally, the scenario includes the main data of the actual 14 elec-
trical substations, i.e., locations, maximum energy flow capacity, etc. (see Fig. 1).
The maximum energy flow capacity limits the number of charging stations that
can be located in a given area. Thus, it is not realistic to place as many charging
stations as we want in any place because a fast charge of a medium-class EV
station consumes more than a whole building of apartments. The different colors
in Fig. 1 show the areas of the city covered by each substation.

Different instances have been defined by changing the maximum number of
EV charging stations to be installed, i.e., Ms. To compare among the different

Fig. 1. Road map of Malaga, Spain. The edges represent each possible street segment
associated with a substation.
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methods, five instances are use with Ms ∈ {10, 20, 30, 40, 50}. Besides, to com-
pare the provided solutions against the actual one provided by the municipality
of Malaga (baseline), another instance was defined with Ms = 45 because at the
time of this research Malaga has 45 EV charging stations.

4.2 Implementation and Hardware Platform

The computation platform used in this work consists of a cluster of 144 cores,
equipped with three Intel Xeon CPU (E5-2670 v3) at 2.30 GHz and 64 GB mem-
ory. We have carried out 30 runs of each experiment. The stop condition for
both algorithms is the computational time, in this case, they run for 60 CPU
seconds. After that, the algorithms report the best solution found in each of the
runs. The algorithms were implemented by using C++, the source code can be
found in https://github.com/NEO-Research-Group/EV-CSL.

4.3 Parameter Settings

GAs and VNSs can use parameters and operators: crossover, mutation, local
searches, etc. We have implemented several alternatives for these operators. To
get the best parameter setting of the algorithms for our problem, a prelimi-
nary parameter setting study was performed. Using a reduced scenario, i.e., the
northwest area of Malaga, and irace [13] tool to obtain the best configuration of
our algorithms. The two best configurations returned by irace are the ones used
in the experimental analysis, trying to avoid possible overfitting in the process
carried out by irace. Table 1 shows the configurations of the GA and the VNS.

5 Experimental Analysis

This section presents the main results of the experiments carried out by perform-
ing 30 independent runs of each algorithm variation and each of the instances
(i.e., Ms ∈ {10, 20, 30, 40, 45, 50}).

Table 1. Two best parameter configurations found by irace for GA and VNS.

Parameter GA-1 GA-2 Parameter VNS-1 VNS-2

population 30 50 Neighbour. model Quadr. [3] Closest [3]

λ 12 6 Neighbour. Size 17 6

selection Worse one Better one shake Random Random

crossover None CUPCAP [4] next None None

mutation Random Random localsearch None IALTL=20 [7]

mut. prob. 0.65 0.76 localsearch2 FI [18] FI [18]

replacement (μ, λ) (μ + λ) kmax 44 34

K 85 59

accept Elitist Elitist

https://github.com/NEO-Research-Group/EV-CSL
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5.1 Optimization Results Comparison

Figure 2 and Table 2 presents the results of each algorithm for the six instances
addressed in terms of fitness value (i.e., average distance that users have to travel
to get the assigned charging station) of the best solution found. The blue line
represents the fitness value obtained for the solution that represents the actual
location of the EV charging stations in Malaga (baseline solution). Comparing
the four metaheuristic alternatives, GA-2 provides the best (lowest) results for
all the instances. In turn, GA-2 provides the most robust method because it
shows the lowest variability among the different runs.

According to Wilcoxon Signed Ranks with Bonferroni correction, GA-2 is
the best method and GA-1 provides the worst results, for all the instances.
This remarks the importance of finding the proper configuration of the GA. For
instances Ms = 10 and Ms = 20, VNS-1 and VNS-2 do not show statistical dif-
ference. VNS-2 provides statistically the second best results the rest of instances.

As it can be seen in Fig. 2, all the proposed algorithms improve the baseline
QoS (distance) when installing only 20 stations. In turn, GA-2 is able to improve
the baseline using only 10 stations.
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Fig. 2. Fitness value (average distance) of each algorithm for the different instances.
The blue line represents the fitness value of baseline solution. (Color figure online)

Table 2. Experimental results for each algorithm in each instance (×102).

Ms Algorithm Mean ± SD Min Median Max

10 GA-1 14.08 ± 0.38 13.25 14.14 14.63

10 GA-2 11.21± 0.075 11.03 11.12 11.31

10 VNS-1 12.44 ± 0.40 11.73 12.42 13.14

10 VNS-2 12.52 ± 0.46 11.54 12.41 13.43

20 GA-1 11.03 ± 0.20 10.60 11.06 11.42

20 GA-2 8.08± 0.11 7.86 8.07 8.34

20 VNS-1 8.80 ± 0.22 8.44 8.84 9.31

20 VNS-2 8.89 ± 0.20 8.52 8.89 9.31

(continued)
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Table 2. (continued)

Ms Algorithm Mean ± SD Min Median Max

30 GA-1 9.51 ± 0.14 9.19 9.50 9.79

30 GA-2 6.68± 0.11 6.48 6.70 6.87

30 VNS-1 7.36 ± 0.19 7.04 7.36 7.74

30 VNS-2 7.28 ± 0.21 6.92 7.33 7.80

40 GA-1 8.40 ± 0.15 8.06 8.40 8.69

40 GA-2 5.80± 0.08 5.62 5.81 5.96

40 VNS-1 6.55 ± 0.16 6.16 6.59 6.84

40 VNS-2 6.23 ± 0.14 5.98 6.21 6.51

45 GA-1 7.99 ± 0.17 7.35 8.02 8.26

45 GA-2 5.42± 0.08 5.26 5.43 5.58

45 VNS-1 6.12 ± 0.16 5.73 6.14 6.46

45 VNS-2 5.88 ± 0.16 5.66 5.84 6.27

50 GA-1 7.66 ± 0.13 7.27 7.67 7.93

50 GA-2 5.20± 0.10 5.00 5.18 5.40

50 VNS-1 5.86 ± 0.16 5.54 5.87 6.23

50 VNS-2 5.49 ± 0.10 5.23 5.47 5.71

5.2 Improvement on Travel Distance over the Real Layout of
Stations

To better illustrate the improvement offered by our algorithms versus the actual
stations locations in the city of Malaga (a.k.a. baseline solution), we have com-
pare the solutions found by installing the same number of stations (Ms = 45) in
terms of average distance that the EV users have to travel to charge their cars.

Figure 3 shows the proportion of solutions for each algorithm (y-axis)
obtained less than the percentage of improvement defined in the x -axis, i.e.,
the percentage of computed solutions that achieved at most that percentage of
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Fig. 3. Empirical cumulative distribution of the percentage of improvement of our
solutions in each algorithm, compared to the baseline solution.
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improvement. GA-1 lags far behind the other algorithms by only over 30% in the
75% of its solutions. The two versions of VNS offer improvements between 40–
50%. The best algorithm is GA-2, being also the most stable (less steep curve)
with a 52% of improvement in more than the 70% of its solutions. In general,
it is interesting to note that the algorithms using the second-best configurations
found by irace offer the most significant improvements. This result underlines
the importance of take into account the overfitting when we configuring machine
learning techniques.

6 Conclusion

This article presented a definition of the EV-CSL optimization problem. The
optimization problem takes into account the QoS provided (in terms of distance
customers have to travel to get the charging station) and the energy limita-
tions of the different electric substations around the city. Two different meta-
heuristic algorithms, both parameterized using irace, have been proposed and
implemented to address the problem: GA and VNS.

A realistic scenario based on city of Malaga has been defined by using real
data (i.e., road maps, inhabitants’ home location, electric substations location,
etc.) Different instances have been defined by locating a different number of
charging stations (from 10 to 50).

The main results of the experimental evaluation indicate that the proposed
metaheuristics were able find competitive solutions. The solutions provided by
the proposed methodology were able to improve the actual QoS provided in
Malaga with 45 stations installing only 20. In general, a variation of GA provided
the best results for the different instances. When comparing the actual solution
in the city with the ones provided by the four metaheuristic variations analyzed
here, metaheuristic dramatically improve the QoS.

The main lines for future work are related to extending the proposed problem
model to consider the number of parking slots in each station and the charg-
ing time, exploring other optimization methods, and defining a multi-objective
variation of the problem by including other objectives, such as the installation
costs. In addition, we are working to improve the proposed model to include in
the QoS the idea that the vehicles can be charged when the citizens are working
or doing other activities.
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Abstract. Automated legal reasoning and its application in smart con-
tract is getting interest. In this context, ethical and legal concerns make
it necessary for automated reasoners to justify in human-understandable
terms the advice given. Logic Programming, specially Answer Set Pro-
gramming, has a rich semantics and has been used to very concisely
express complex knowledge. However, modelling vague concepts such as
ambiguity and discretion cannot be expressed in top-down execution
models based on Prolog, and in bottom-up execution models based on
ASP the justifications are incomplete and/or not scalable. We propose to
use s(CASP), a top-down execution model for predicate ASP, to model
ambiguity and discretion following a set of patterns. We have imple-
mented a framework, called s(LAW), to model, reason, and justify the
applicable legislation and validate it by translating (and benchmarking)
the criteria for the admission of students in public centers established by
the “Comunidad de Madrid”.

Keywords: Answer Set Programming · Goal-directed · Ambiguity ·
Administrative discretion

1 Introduction

The formal representation of a legal text to automatize reasoning about them
is well known in literature. For deterministic rules there are several proposals,
often based on logic-based programming languages [12,14].

This topic is recently gaining much attention thanks to the interest in the so-
called smart contracts, and to autonomous decisions by public administrations
[3,10,15]. A smart contract is a program that represents the legal terms of a
contract and is deployed on a block-chain platform to automatically execute,
control and document the events described in the contract.
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However, none of the existing proposals are able to represent the ambi-
guity and/or administrative discretion present in contracts and/or applicable
legislation, e.g., force majeure. Force majeure is a law term that must be under-
stood as referring to abnormal and unforeseeable circumstances which were out-
side the control of the party by whom it is pleaded and the consequences of
which could not have been avoided in spite of the exercise of all due care (see
judgment Court of Justice of European Union, case Tomas Vilkas, C-640/15, 25
January 2017). In the procedure for awarding school places in centers supported
with public funds in the “Comunidad de Madrid” (CM), in Spain, the proximity
of a school to a family’s home or work address plays an important role. This
proximity is determined based on existing educational districts, except in cases
of force majeure, but these cases are not defined a priory.

In this work we present a framework, called s(LAW), that allows for modeling
legal rules involving ambiguity, and supports reasoning and inferring conclusions
based on them. Additionally, thanks to the goal-directed execution of s(CASP),
the underlying system used to implement our proposal, s(LAW) provides justi-
fication of the resulting conclusions (in natural language).

To evaluate the expressiveness of our proposal we have translated the pro-
cedure for awarding school places for the “Educación Secundaria Obligatoria”
(ESO) of centers supported with public funds in the CM. The Spanish Organic
Law on Education1 regulates, in article 84, the criteria for the admission of
students in public centers and private subsidized centers and, in its second para-
graph of this article 84, indicates adjudication criteria. However, since Spain
is a politically decentralized country, it is the autonomous communities (and,
therefore, their educational administrations) that have powers to develop these
aspects of basic state legislation. The CM, in use of its powers in educational
matters, establishes the framework and general procedure for the admission of
students to educational centers supported with public funds for the ESO.2 The
case presented in this paper is, therefore, a real case, based on the regulations
currently in force in the CM.

2 Goal-Directed Answer Set Programming

Our proposal relies on Answer Set Programming (ASP) [7] for coding contracts
and legal rules. More specifically, we use s(CASP) [1], a goal-directed implemen-
tation of ASP that features predicates, constraints among non-ground variables,
and uninterpreted functions.
1 Organic Law 2/2006, May 3, last modified by Organic Law 3/2020, December 29.
2 Decree 29/2013, of April 11, modified by Decree 11/2019, of March 5, of the

Governing Council, on freedom of choice respecting school centers; Order 1240/2013,
of April 17, of the Department of Education, Youth and Sports of Community of
Madrid, modified by Order 1534/2019, of May 17, of the Department of Education
and Research Community of Madrid; Resolution of July 31, 2013, of the General
Directorate for the Improvement of the Quality of Education (regarding bilingual
education); and Joint Resolution of the Deputy Department of Educational Policy
and Educational Organization, of February 18, 2021 (https://bit.ly/3dAX22d).

https://bit.ly/3dAX22d
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The top-down query-driven execution strategy of s(CASP) has three major
advantages w.r.t. traditional ASP system: (a) it does not require to ground the
programs; (b) its execution starts with a query and the evaluation only explores
the parts of the knowledge base relevant to the query; and (c) s(CASP) returns
partial stable models (the relevant subsets of the ASP stable models needed
to support the query) and their corresponding justification (proof tree). Thus,
our proposal automates commonsense reasoning and is scalable whereas ground
based ASP systems do not (Sect. 5).

Additionally, s(CASP) provides a mechanism to present justifications in nat-
ural language using a generic translation, and the possibility of customizing them
with directives that provide explanation patterns in natural language. Both plain
text and user-friendly, expandable HTML can be generated. These patterns can
be used with the program text itself, thereby making it easier for experts with-
out a programming background to understand both the program and the results,
i.e., partial model and justification, of its execution.

3 Administrative and Judicial Discretion Reasoner

This work makes two main contributions: (i) a set of patterns to translate legal
rules into ASP, and natural language patterns to generate readable justifications;
(ii) a framework to model, reason, and justify conclusions based on the evidence
provided by the user and the applicable legislation, representing ambiguity, dis-
cretion and/or incomplete information (key concepts in legal cases).

3.1 Patterns to Translate Law into ASP

The translation of legal rules into logic predicates has been considered a straight-
forward task for many years. However, the translation of ambiguity and/or dis-
cretion concepts required the help of an expert in law and/or in the field of
application, in order to specify only one interpretation and/or decision.

Let us use the encoding of the procedure for the adjudication of schools places
in the CM (Fig. 1) to explain the following patterns:

Requirement For Applying. These are the most common constructions in
legal articles. There are two patterns:

– Disjunction of requirements, e.g., “s/he obtains a school place if one of the
following common requirements are met”. Which is translated by separating
each requirement in different clauses, see Fig. 1 lines 9, 12, and 19:

– Conjunction of requirements, e.g., “In addition, some of the specific require-
ments must be met”. Which is translated to a single clause where the comma
',' means and, see Fig. 1 lines 5–7:

Exceptions For Applying. As we mentioned before, a legal article is a default
rule subject to possible exceptions. In s(CASP) the exceptions can be encoded
using negation as failure. For example, Fig. 1 lines 2–4 shows the translation of
“It will be possible to obtain a school place if the requirement is met and there
is no exception” and then, the compiler of s(CASP) would generate its dual, i.e.,
not exception, by collecting and checking that no exceptions hold:
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1 not exception :- not exception_1, . . ., not exception_n.

where not exception_i is a new predicate name that identified the dual of
the ith exception. For the sake of brevity let us omit the explanation of how
the compiler generates the dual for each exception (see [1,9] for details). Fig. 1
lines 46–57 shows the translation of the unique exception defined in our running
example: “Students coming from non-bilingual public schools, who apply for a
place in English language bilingual schools and who wish to study in the Bilingual
Section, need to accredit a level of English in the four skills equivalent to level
B1 for 1st/2nd ESO, and to level B2 for 3rd/4th ESO”.

Ambiguity. Ambiguity occurs when some aspects of the law can be interpreted
in different ways. For example, “proximity to the family or work address” is a
specific and defined requirement based on the distribution by educational dis-
tricts. However, in case of force majeure, students from a education district
may be reassigned to a school from another district. Figure 1 lines 34–44 encode
this scenario allowing evaluation without having to determine a priori the force
majeure circumstances necessary to justify the reassignment of students. This
pattern generates a model where force_majeure is assumed to hold and another
model where there is no evidence that force_majeure holds.

Discretion To Act. The discretion to act introduces different possible inter-
pretations of the law and/or the contract that we intent to model by generating
multiple models. Implementations based on Prolog compute a single, canonical
model, and therefore, bypass this non determinism by selecting one interpreta-
tion. The discretion to act can be considered as a ground or an exception follow-
ing the previous patterns. For example, Fig. 1 lines 59–79 shows the translation
of the discretion to act rule: “The School Council may add another complemen-
tary criterion”. The resulting encoding uses predicates in which the variable CC
can be instantiated with different values. This feature allows us to reuse some of
the clauses without repeating them, i.e., the clauses in lines 59–79 are generic,
while clauses 81–88 specify the ground and exceptions of the criteria added by
a particular school. Clauses in lines 66–71 generate two possible models if the
discretion to act is exercised according to the purpose/intention of the law and
it is not unlawful. In one model the complementary criterion is applied and in
the other it does not. Then, clauses in lines 86–88 state the cases in which the
discretion to act has a purpose and/or is unlawful.

Unknown Information. The use of default negation may introduce unexpected
results in the absence of information (positive and/or negative). Therefore, in
many cases the desirable behavior should capture the absence of information by
generating different models depending on the relevant information. For example,
it may be unclear whether the documents we have to certify that we are a
large_family are valid or not, so we avoid introducing that information and the
reasoner would reason assuming both scenarios. To state that some information is
certain we would use the predicate evidence/1, e.g., evidence(large_family)
means that s/he has the condition of large family. Additionally, s(LAW) would
provide strong negation, denoted with '-', to specify that we have evidences
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Fig. 1. Translation of the procedure for awarding school places under s(LAW).

supporting the falsehood of some information, e.g., -evidence(large_family)
means that s/he does not have the condition of large family.

3.2 Description of s(LAW)

s(LAW), built on top of s(CASP), is composed by three modules: the first con-
tains the articles, the second contains explanations to generate readable justifi-
cations, and the third one contains the evidences. In our running example:
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Fig. 3. Justification in Natural Language for the evaluation of student01.pl.

ArticleESO.pl. Contains the legislation rules in Fig. 1 following the patterns
described in Sect. 3.1.

ArticleESO.pre.pl. Contains the natural language patterns for the predicates
that are relevant to provide readable justifications of the conclusions inferred by
s(LAW). The directive #pred defines the natural language patterns, e.g.:

1 #pred obtain_place :: 's/he may obtain a school place'.

Additionally, to facilitate the understanding of the code we can obtain a
readable code (in natural language) by invoking scasp --code --human.

Fig. 2. File student01.pl.

StudentXX.pl. Figure 2 shows the encoding
of the module student01.pl corresponding
to one student. This last module encodes
the evidences of a student and links them
with the previous modules ArticleESO.pl
and ArticleESO.pred.pl (lines 1–2). The
predicates evidences/1 and -evidence/1
(explained in Sect. 3.1) are used to
specify the known information (positive
or negative evidences). For the sake
of brevity, let us handle as unknown
the evidences corresponding to:
large_family, renta_minima_insercion,
sibling_enroll_center, same_educatio
n_district, b1_certificate, foreign_s
tudent, and specific_etnia. Figure 2 lines 7–13 provide the known informa-
tion corresponding to this student. Additionally, we consider that the students,
coming from non-bilingual public schools, apply for a place in English language
bilingual schools and wish to study in the Bilingual Section (Fig. 2 lines 4–5).

4 Reasoning and Deduction with Real Use-Cases

The modules of s(LAW) are implemented under s(CASP) version 0.21.04.04
(https://gitlab.software.imdea.org/ciao-lang/sCASP), that runs under Ciao

https://gitlab.software.imdea.org/ciao-lang/sCASP
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Table 1. Case of different students evaluated using s(LAW).
Note: ‘+’ is a positive evidence, ‘−’ is a negative evidence, ‘?’ means unkown.

st 1 st 2 st 3 st 4 st 5 st 6

large_family + + + − − −
renta_minima_insercion + + + ? − −

sibling_enroll_center + + − + − −
same_education_district + + − + − −

b1_certificate + − + ? − −

foreign_student − − − − + −
specific_etnia − − − − − +

?- obtain_place yes no yes yes yes no

Prolog version 1.19-480. (http://ciao-lang.org/). The benchmarks used in this
section are available at http://platon.etsii.urjc.es/∼jarias/papers/slaw-caepia21
and were run on a MacOS 11.2.3 laptop with an Intel Core i7 at 2.6 GHz.

A priori Deduction: Consider we run our reasoner s(LAW) in the interactive
mode to reason about six different students by invoking:

1 scasp -i --tree --human --short studentXX.pl

where XX corresponds to the ‘id’ of each student (from 1 to 6). Then, we ask
the queries to obtain conclusions from the reasoner. Table 1 shows the data
corresponding to the candidates and the conclusion generated by s(LAW) for
the query ?- obtain_place. Students 1, 3, 4, and 5 obtain a place at the school
while students 2 and 6 do not.

– Student 1: Fig. 2 contains the information corresponding to this student.
Since s/he meets common and specific requirements and avoids the excep-
tion (having level b1 in English), the evaluation returns the partial model:

{ obtain_place, large_family, sibling_enroll_center, come_non_bilingual,

want_bilingual_section(2nd ESO), b1_certificate }

and the corresponding justification shown in Fig. 3.
– Student 2: meets common and specific requirements but has to be rejected

because s/he does not accredit level b1 in English.
– Student 3: meets common requirements, avoids the exception and by assuming
force_majeure s/he also meets a specific requirement (school proximity).
Note that s/he does not live in the same education district.

– Student 4: in this use-case there is absence of information regarding the “renta
minima de insercion” and the English certificate (marked with ?). The partial
model returned assumes that the truth values for these pieces of information
are true. Therefore, based on that assumption the student would obtain a
place.

http://ciao-lang.org/
http://platon.etsii.urjc.es/~jarias/papers/slaw-caepia21
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Fig. 4. Justification in Natural Language for the evaluation of student06.pl.

– Student 5: now we consider that the school added a complementary criterion
for foreign students and therefore, since the student is a foreigner, s/he obtains
a place.

– Student 6: in this use-case the complementary criterion specific_etnia can-
not be applied because it discriminates by race and therefore, it is unlawful.
Therefore, the student does not obtain a place.

A posteriori Deduction. The main advantage of s(LAW) is its ability to
generate justifications not only for positive but also for negative information.
This ability allows us to analyze the reason for a specific inference and/or to
determine which are the requirements needed to obtain a specific conclusion:

– For student 3, the query ?- not force_majeure, obtain_place avoids the
assumption of force majeure and the student does not obtain a place.

– For student 4, the query ?- not obtain_place returns the partial models
(with the assumptions) for which this student does not obtain a place.

– For student 6, Fig. 4 shows the justification of the query ?- not
obtain_place so we can analyze more in detail why this student is rejected.
While the complementary criteria for student 5 (foreign_student) is similar
to specific_etnia, the justification tree shows that this student does not
obtain a place because the complementary criterion is illegal (Fig. 4 lines 14–
15).

Additionally, we can collect the partial models, in which the school place
is or is not obtained, together with their justification and analyze “Epistemic
Specifications” [6], that is, what is true in all/some models, which partial models
share certain assumptions, etc. This reasoning makes it possible to detect the
missing information that would change the decision from “not obtained” (or
“obtained” under some assumptions) to “obtained”. Note that, by introducing
the new evidences, the resulting justification of s(LAW) provides an explanation
in which these evidences are used to support the decision.
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5 Related Work

Most ASP systems follow bottom-up executions that require a grounding phase
where the variables of the program are replaced with their possible values. During
the grounding phase, links between variables are lost and therefore an expla-
nation framework for these systems must face many challenges to provide a
concise justification of why a specific answer set satisfies the rules (and which
rules). The most relevant approaches are: off-line and on-line justifications [11];
Causal Graph Justification [2]; and Labeled ABA-Based Answer Set Justifica-
tion (LABAS) [13]. However, these approaches are applied to grounded versions
of the programs, i.e., non-ground programs have to be grounded, and they may
produce unwieldy justifications when the non-ground program has uninterpreted
functions, consults large databases and/or requires the representation of dense
domains [1].

On the other hand, systems that follow a top-down execution can trace which
rules have been used to obtain the answers more easily. One such system is
ErgoAI (https://coherentknowledge.com), based on XSB [16], that generates jus-
tification trees for programs with variables. ErgoAI has been applied to analyze
streams of financial regulatory and policy compliance in near real-time providing
explanations in English that are fully detailed and interactively navigable. How-
ever, default negation in ErgoAI is based on the well-founded semantics [5] and
therefore ErgoAI is not a framework that allows the representation of ambiguity
and/or administrative discretion.

Finally, we would like to emphasize that explainable AI techniques for black-
box AI tools, most of them based on machine learning, are not able to explain
how variation in the input data changes the resulting decision [4].

6 Conclusions

In this paper we have shown that using goal-directed answer set programming,
s(LAW) is capable of modeling discretion and ambiguity. The deduction based
on s(LAW) allows: the consideration of different conclusions (multiple models)
which can be analyzed by humans thanks to the justification generated in natural
language; and the reasoning about the set of these conclusions/models. To the
best of our knowledge, s(LAW) is the only system that exhibits the property of
modelling vague concepts.3

Our future work unfolds among two major lines. The first is to complete
the modeling of the legislation by tabulation for each of the criteria used in
the procedure for adjudication of school places in centers supported with public
funds. And, second, the use of this tabulation of criteria to check (by employing
the underlying constraint solver of s(SCASP)) whether automated decisions can
be made when the regulation includes ambiguity, administrative discretion and
unknown information.
3 On January 14th, 2021, Dr. Robert Kowalski explained how they bypassed in [14] the

representation of vague concepts such as without undue delay [8, 1:20:15, 1:26:00].

https://coherentknowledge.com
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