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Abstract. The Quadratic Assignment Problem (QAP) is one of the
most challenging combinatorial optimization problems with many real-
life applications. Currently, the best solvers are based on hybrid and
parallel metaheuristics, which are actually highly complex and paramet-
ric methods. Finding the best set of tuning parameters for such methods
is a tedious and error-prone task. In this paper, we propose a strategy
for auto-parameterization of QAP solvers. We show evidence that auto-
parameterization can further improve the quality of computed solutions.
Our auto- parameterization scheme relieves the user from having to find
the right parameters while providing a high quality solution.
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1 Introduction

The Quadratic Assignment Problem (QAP) is a hard combinatorial optimiza-
tion problem with many real-life applications such as scheduling, facility location,
electronic chipset layout, production, process communications, among many oth-
ers [3]. QAP has been shown to be NP-Hard and finding effective algorithms to
solve it is an active research topic in recent years.

Medium size problems can be solved using exact methods (e.g., size <30),
which can find an optimal solution or prove that a problem has no solution [1].
Exact methods consider the entire search space: either explicitly by exhaustive
search or implicitly, by pruning some portions of the search space that have been
detected as irrelevant for the search.

To tackle harder problems, one must resort to incomplete methods which pro-
vide good, albeit potentially sub-optimal solutions in a reasonable time. Such is
the case for metaheuristics, which are high-level procedures that make choices
to efficiently explore part of the search space, so as to make problems tractable.
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Metaheuristics usually have several parameters to adjust their behavior depend-
ing on the problem to solve [7]. Examples of metaheuristics include genetic algo-
rithms, tabu search, local search and simulating annealing.

Metaheuristics operate on two main working principles: intensification and
diversification. The former refers to the method’s ability to explore more deeply a
promising region of the search space, while the latter refers to the exploration of
different regions of the search space. By design, some metaheuristics methods are
better at intensifying the search while others are so at diversifying it. However,
the behavior of most metaheuristics can be controlled via a set of parameters. A
fine tuning of these parameters is therefore crucial to achieve an effective trade-
off between intensification and diversification, and hence good performance in
solving a given problem. Unfortunately, selecting the best set of parameters is
a tedious and error-prone task. This process is even harder because the best
parameters values vary with the problem structure and even just for different
instances of the same problem, as stated by the Non-Free-Lunch theorem [41].

Each metaheuristic has its own strengths and weaknesses, which may vary
according to the problem or even to the instance being solved. The trend is thus
to design hybrid metaheuristics, which combine diverse methods in order to
benefit from the individual advantages of each one [5]. However, this increases
the number of parameters (parameters of individual metaheuristics and new
parameters to control the hybridization). The design and implementation of a
hybrid metaheuristic is a complex process; tuning the resulting parameters, to
reach the best performance, is also very challenging.

Despite the good results obtained using hybrid metaheuristics, it is still neces-
sary to reduce the processing times needed for the hardest instances [36]. One of
the most plausible options entails parallelism [13]. In parallel metaheuristics one
can have multiple instances of the same (or different) metaheuristics running in
parallel, either independently or cooperatively through concurrent process com-
munications [10,37]. Not only does parallelism help to decrease processing time,
but it can also be a means to easily implement hybridization.

In previous work we proposed a Cooperative Parallel Local Search solver,
called CPLS [30,32]. CPLS embeds various simple local search metaheuristics
and then relies on cooperative parallelization to concurrently execute several
metaheuristic instances, which cooperate during the search process. We later
extended CPLS, by proposing PHYSH (Parallel HY bridization of simple Heuris-
tics) [26,27]. PHYSH supports the combination of population-based and single-
solution metaheuristics. CPLS and PHYSH also require the fine tuning of a
larger number of parameters, since more metaheuristics (of different types) are
involved. Moreover, the configuration of the parallel interaction itself (communi-
cation between the methods) involves yet another set of parameters which need
to be adjusted. Tuning this increasing number of parameters makes it even more
difficult to find the appropriate setting for the algorithm to behave optimally.

Automating the task of finding good parameters is thus desirable and has
attracted significant attention from researchers. We may identify two kinds of
strategies for automatic tuning: parameter tuning and parameter control [20].
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In parameter tuning (off-line tuning) the set of parameters are defined before
applying the algorithm to a specific problem (static definition of parameters).
Several strategies for automatic parameter tuning of metaheuristics have been
proposed [21,22]. In contrast, parameter control strategies (online-tuning) adapts
the values of the controlled parameters during the algorithm execution (dynamic
adaptation of parameters). The idea is to find the best parameters setting dur-
ing the solving process, using some mechanism to alter the parameter values
according to the algorithm performance.

Parameter tuning can be seen as a pre-process pass which is executed before
the solving in order to determine the adequate values for parameters. This does
not affect the implementation of the solver. On the other hand, parameter con-
trol has to be implemented in the kernel of the solver. The former may appear
easier but when the number of parameters become large it is hard to use in
practice. Indeed, it usually requires many runs to identify the best parameter
settings, making this a time-consuming process. These methods are often lim-
ited by the number of parameters and the computational power available. In
that case, parameter control strategies emerge as a viable solution to deal with
the high complexity of current solvers (hybrid and/or parallel).

In this paper we propose a parallel hybrid method with a parameter con-
trol strategy for solving the QAP, called DPA-QAP. DPA-QAP embeds mul-
tiple metaheuristic methods in a parallel hybrid execution and self-adapts the
parameters of the metaheuristics using an iterative process, adaptation is per-
formed based on performance measures. We carried out an experimental eval-
uation which shows that the auto-parametrization strategy outperforms a sim-
pler version of DPA-QAP with no auto-parametrization, i.e., a parallel hybrid
method with static parametrization. We perform the evaluation using the clas-
sical QAPLIB instances and also a particular set of very hard QAP instances.

In the remaining of this paper we present the related work on Sect. 2. Section 3
presents the general structure of DPA-QAP and Sect.4 introduces the auto-
parametrization strategy. Sectionb contains the experimental evaluation per-
formed which validates our strategy. A short conclusion ends the paper.

2 Related Work

The Quadratic Assignment Problem (QAP) was first proposed by Koopmans
and Beckmann in 1957 [25] as a model for a facilities location problem. This
problem consists in assigning a set of n facilities to a set of n locations, while
minimizing the cost associated with the flows of items among facilities and the
distance between them.

Metaheuristic methods have been successfully applied for solving QAP. From
the 90s, several metaheuristic methods have emerged as a suitable option to solve
this problem, e.g., Tabu Search [38], Genetic Algorithms [40], among several oth-
ers. These methods perform well on a wide range of QAP instances, however,
some hard instances still require very long runs to achieve quality solutions.
Moreover, no method was able to get good performance on an extensive set
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of instances. The aforementioned problems spurred the emergence of new tech-
niques based on hybridization and parallelization. For instance, one of the fun-
damental methods of hybrid metaheuristics is the memetic algorithm (MA) [29].
MA is an effective approach which combines an evolutionary algorithm with a
local search procedure. Hybrid metaheuristics are intricate procedures, tricky to
design, implement, debug and tune, therefore, it is unsurprising that hardly any
of them only combine more that a couple of methods.

Parallelizing metaheuristics grants access to using powerful computational
platforms with the aim of speeding up the search process [12]. A straightforward
implementation of parallel metaheuristics is the Independent multi-walks app-
roach which speeds up the search process by performing concurrent executions
of multiple metaheuristic instances, therefore augmenting the probability to get
quickly a good solution [11]. Another kind of parallel metaheuristics allows the
concurrent instances to cooperate by exchanging information during the search
process, aiming to improve the efficiency of the solver [28,39]. We identify these
methods as Cooperative multi-walk approaches.

We proposed a way to create hybridization through cooperative paralleliza-
tion in our CPLS framework [30,32]. CPLS allows the user to code the individual
metaheuristics, and the framework manages parallelism and communications. In
CPLS, different local search metaheuristics concurrently interact by exchang-
ing relevant information about the search. This interaction provides a cooper-
ative way to intensify the search. This framework has been successfully used
to solve hard variants of Stable Matching Problems [33] and hard instances of
QAP [30,31]. Since CPLS does not support population-based methods, we pro-
posed an extension of the framework called PHYSH [26,27], which provides an
efficient strategy to promote cooperation between population-based and single-
solution methods, metaheuristics of a different nature. Both CPLS and PHYSH
have proved able to efficiently solve several hard QAP instances.

Parallel hybrid metaheuristics often have many parameters which modify the
algorithm behaviour. Setting these parameters has influence on the performance
of the method, however, finding the optimal values for these parameters is usu-
ally a hard task [21]. Using hybridization and parallelism makes this task even
more difficult for mainly two reasons: First, hybrid metaheuristics inherit the
parameters of each “low level” metaheuristic, so one needs to find the setting of
more parameters, since a parameter configuration for one algorithm usually is
not suitable for another. Second, cooperative parallel strategies require parame-
ters to define their behaviour, e.g., for determining how frequently metaheuristics
should interact or how each metaheuristic has to use the received information,. . .

Tuning metaheuristic parameters (i.e., offline-tuning) has been carried out
in different ways, in earlier times the tuning process was done by hand, another
approach was to take parameters values from similar algorithms reported in
the literature. More recently, the use of specialized tools for automatic parame-
ter tuning has become prevalent, these techniques use advanced methodologies
and tools from a theory of experiment design to machine learning approaches,
among others [19]. Several methods have been proposed for parameter tuning,
for instance F-Race [4], ParamILS [21], SMAC [22], HORA [2]. However, these
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methods have limitations when tuning a large number of parameters or when
they require significant computational resources to perform the test runs [20].

Parameter control (online-tuning) emerges as a reasonable option. Some
strategies have been proposed for specific metaheuristics such as [35] for swarm
intelligence and [23] for evolutionary algorithms. Also, some specific strategies
has been proposed for the QAP, such as [16] which proposes a strategy for self-
control parameters on a Tabu Search method.

Hyper-heuristics present another way to face the problem of metaheuris-
tic parameter control. These form a novel research approach in which a high
level strategy selects or generates the best metaheuristics with their respective
parameters and acceptance criteria. Aiming to have more general methods, not
designed for a single problem or for a few instances of a problem [9]. To the
best of our knowledge, only one hyperheuristic method solves the QAP and uses
parallelism in its design [14]: the authors propose a parameter control method
using a genetic algorithm (GA) acting as a high-level strategy in the hyper-
heuristic approach. The GA, generation by generation, performs the adaptation
of parameters through cross-over and mutation operators, ending up with the
parameters at their best adjustment for each method.

We achieve a form of hyperheuristic using cooperative parallelism. The key
idea is to use the parallel computational power to not only create a hybrid meta-
heuristic but also to automatically control the parameters of the metaheuristic
involved in the parallel hybrid method.

3 DPA-QAP Method

This section presents the general structure of DPA-QAP, a Dynamic Parameter
Adaptation method for solving the Quadratic Assignment Problem. DPA-QAP
is build on the top of a parallel hybrid metaheuristic solver, similar to the one
presented in [30]. Figure 1 presents the two main components of DPA-QAP, the
Worker nodes and a Master node (workers and master to simplify). Workers run
a set of metaheuristics, in parallel, carrying out the search process. We design
each worker to run in a separate thread, ideally bound to its own dedicated core,
each thread runs a specific metaheuristic instance.

Elite
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Fig. 1. DPA-QAP top-level view.
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Each worker reports periodically its current candidate solution and some
contextual information (e.g., solution cost, performance metrics, etc.) to the
master, which stores best intermediate solutions into an elite pool. When the
master receives a solution from a worker, it merges it into the elite pool. If the
incoming solution is already present, it gets mutated by performing two random
swaps. This mechanism promotes some diversity for the candidate solutions in
the pool. When the elite pool is full, the master sends solutions to workers, ensur-
ing the receiver implements a different metaheuristic from the one that inserted
that solution into the pool. This process constitutes a flexible interaction fea-
ture which eases the hybridization of metaheuristics promoting cross-fertilization
among different types. The size of this pool is equal to the number of workers,
since the pool must have a solution for each method.

On the top of this cooperative parallel search, DPA-QAP implements a
dynamic adaptation strategy which is tasked to automatically adjust the param-
eters of the metaheuristics during their execution, looking for the best setting
and trying to ensure a balance between intensification and diversification.

3.1 Metaheuristics Used in the DPA-QAP Method

We select three different metaheuristic methods for the workers: Robust Tabu
Search (RoTS), Extremal Optimization (EO), and Multistart Local Search
(MLS). We select these metaheuristics because they are commonly used in com-
binatorial optimization problems particularly for the QAP. We now present a
brief description of each of these methods.

Robust Tabu Search. The name Tabu Search (TS) refers to the use of an
adaptive memory and special problem-solving strategies, to get a better local
search method [17]. The idea is to memorize within a structure the elements
that for the LS will be forbidden to use (tabu) and thus avoid getting trapped in
local optima. TS looks for the best solution within the neighborhood but does
not visit the solutions of previous neighbors if they have been visited before or
have been marked as prohibited locations [14]. RoTS is an adaptation of TS to
the QAP and has been one of the best performing methods for this problem [38].

Extremal Optimization. EO is a metaheuristic inspired by self-organizing
processes as frequently found in nature: for EO this is self-organized criticality
(SOC). The version proposed by [6] has only one adjustable parameter: 7, and
uses of a Probability Distribution Function (PDF). EO proceeds like this: it
inspects all candidate configurations assigning a fitness value, by means of the
goal function. The configurations are then ranked from worst to best. EO resorts
to the PDF to choose a solution from organized configurations. The role of the
T parameter is to provide different search strategies from pure random walk
(7 = 0) to deterministic (greedy) search (7 = 00). In previous work, we extended
the basic EO metaheuristic to support not only a power-law PDF, but also an
exponential and a gamma-law PDFs [31].

Multistart Local Search. Local Search (LS) is one of the oldest and most
frequently used metaheuristics. LS starts from an initial solution and repeatedly
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improves it within a defined neighborhood. Neighbor solutions can be generated
by applying minor changes to the initial solution. LS ends when no improved
solutions are found in the neighborhood achieving a local optima [42]. Multistart
Local Search (MLS) is a modification of LS that iteratively performs multiple
different searches, executing each LS from a different starting point. When MLS
reaches a local optimum, it tries to escape by restarting the search from scratch
or performing some random moves in the current solution.

Table 1. Metaheuristic’s parameter ranges (n stands for QAP instance’s size).

Metaheuristic | Parameter name Range
RoTS Tabu duration factor | [4n—20n]
Aspiration factor [n2-10n7]
EO PDF Power - Exponential - Gamma
T [0, 1]
MLS Start type Restart from scratch - Random swaps

Metaheuristics Parameters. Table 1 presents the parameters considered for
each metaheuristic, together with the range of variation for each parameter.
These ranges are picked from the best performances, as reported in the literature.
For RoTS we use the parameters reported in [38], for EO we select the parameters
reported in [31] and for MLS, the only parameter used is the restart process,
then no range is needed.

4 Automatic Parameter Adaption in DPA-QAP

The DPA-QAP method operates within an iterative process. At the beginning,
workers are initialized with random parameters. DPA-QAP dynamically adapts
the best setting of parameters in every worker (which is executing a metaheuristic
instance). Parameter control depends on the performance in the solving process
for an individual worker at each iteration. Each worker periodically reports rel-
evant information to the master. With this information, the master evaluates
the worker’s performance and tweaks its parameters, trying to strike a balance
between intensification and diversification in the search. Figure2 depicts the
flow diagram of this process. Gray boxes represent the functionality executed by
workers, in parallel. White boxes specify the iterative adaptation process by the
master. The master waits while the workers perform the search. When it receives
a metaheuristic report, it develops a performance evaluation for each worker and
executes the parameters’ adaptation procedure. The master then sends a new,
evolved, set of parameters and a new configuration back to the workers. Workers
resume the search with the settings they received: parameters and restarting
from a new initial solution (from the master’s elite pool). DPA-QAP repeats
this process until an established number of iterations is accomplished or when
the solution target is reached.
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Fig. 2. DPA-QAP flow diagram.

4.1 Metaheuristics Performance Metrics

At each iteration of the parameters’ adaptation process, each metaheuristic
runs for a given time, iteration_time. When the iteration_time is run-
ning out, workers report to the master the initial solution and the best found
solution in the interval with theirs associated costs. In order to assess the
performance of a worker using a specific set of parameters, the master com-
putes the distance between the initial and final solution (pair-wise difference)

and the percentage gain for that iteration. The percentage gain is defined as:
i €OSlinitial —COStfinal
gam = costipitial ’

Evaluating the performance of the metaheuristics is a critical process, and
selecting the right set of metrics affects the overall performance of the param-
eters’ adaptation process. In this work we consider two classical metrics, the
percentage gain in the cost of the objective function and the distance between
solutions. The gain acts as a direct indicator of the metaheuristic’s performance,
meanwhile the distance is assessing how diverse the search is. Other metrics can
be also considered, for instance, the time spend on local optima, the number of
iterations without improvements, among many others.

4.2 Performance Evaluation

The parameters’ adaptation process evaluates the workers’ performance by pro-
cessing the percentage gain and the similarity between the initial and final solu-
tion. Through experimentation we verify that the gain is usually bigger at initial
stages of the search than at the final stage. For this reason, DPA-QAP changes
the value of the diversification gain limit during the search process, inspired
by how the temperature decreases in simulated annealing [24]. Figure 3 shows
how the diversification gain limit decreases in DPA-QAP during the search pro-
cess. Using this dynamic limit, DPA-QAP diversifies the search more easily at
the beginning than at the end of the search process. The similarity criterion is
computed comparing the distance between the initial and final solutions. If this
distance is lower than one-third of the QAP size (i.e., 66% of the variables are
equal), we consider both solutions as “very similar”.

Considering these two criteria, we defined the following rules to determine
which action must be taken for adapting the worker’s parameters: If the gain
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obtained by the method and its pair-wise difference is lower than the corre-
sponding limits, the component adapts the metaheuristic parameters to diver-
sify the search. If the gain is higher than the corresponding diversification gain
limit or the pair-wise difference is higher than the distance solution limit, the
component adapts the parameters to intensify the search. Both the dynamic
diversification limits and the distance solution limit are hyper-parameters of the
auto-parametrization strategy. We plan to test different limits in future work.

Adapting the Parameters. The evaluation of the worker’s performance out-
puts a mandate which can be, intensify or diversify. This output is used as
input for the parameters adaptation process. For each possible case we define a
behavior depending of the metaheuristic type.

In EO the parameter 7 is in the range 0 to 1 and, depending on its value and
the PDF, this may lead the metaheuristic to intensify or diversify the search,
by adding or subtracting a delta value belonging to the range (see Fig.4). The
parameters are then adjusted by adding to their values using deltas, so the
master performs a search process that looks for the best parameters setting for
a given metaheuristic.

1 1 1 1 1 1

Diversification gain limit

1

10 20 30 40 50 60 70

PDF —AT -I—AT

° 1 : : : Gamma 0 +—+ 1
Max. L —
ner;:ms Pow - EXP 1 0
DPA-QAP iteration Intensification Diversification
Fig. 3. Gain diversification limits. Fig. 4. EO parameters adaptation.

We define the parameter adaptation process for Robust Tabu search as fol-
lows: if the parameter adaptation component returns diversify, a delta of n/2
is added to the tabu duration and a delta of n?/2 is added to the aspiration
parameters. If the parameter adaptation component returns intensify, the tabu
duration is subtracted by n/2 and the aspiration is decreased by n/2. For inten-
sification, the delta for the adaptation of the aspiration parameter is different to
diversification. This is done intending to slow down the intensification process,
avoiding to stagnates on a local optimum. For the case of MLS, if there is any
gain in cost, the type of restart is retained. If there is no gain, the algorithm
changes to the other option.
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5 Experimental Evaluation

In this section we present an experimental evaluation of our proposed method,
DPA-QAP, comparing its performance against an independent parallel hybrid
metaheuristic method. We consider three sets of very hard benchmarks: the
20 hardest instances of QAPLIB [8] and two sets of even harder instances:
Drezner’s [15] dre XX and Palubeckis’s [34] Inst XX instances. Each instance is
executed 30 times stopping as soon as the Best Known Solution (BKS) is found
or when a time limit of 5 min is hit, in case the BKS is not reached. All experi-
ments have been carried out on a quad-AMD Opteron 6380 system, totaling 64
cores running at 2.5 GHz and 128 GB of RAM.

At present, DPA-QAP is systematically configured with 30 worker nodes:
10 running RoTS, 10 running EO and 10 running MLS. Each worker node ran-
domly initializes each parameter of its metaheuristic by randomly picking a value
from the admissible values (see Table 1). These parameters are then periodically
adapted as explained in the previous section. In this experiment, parameter con-
trol is triggered every 15 or 20s, depending on the size of the problem. Each
metaheuristic can thus adapt its parameters up to 20 times during the 5 minutes
global execution cap. We plan to study the impact of varying this interval and
determine if it is also possible and useful to dynamically adapt it.

We compare DPA-QAP to a base solver (BASE-QAP) which is statically
parametrized (this solver is actually derived from DPA-QAP by disabling the
parameter control mechanisms). Other than that, BASE-QAP is identical to
DPA-QAP: it also creates 30 metaheuristic instances (10 of each type of meta-
heuristic); each metaheuristic instance also randomly initializes its parameters,
which instead remain fixed during the execution. Our goal is to compare this pre-
process parameterization (parameters fixed) with self-parameterization. Usually
the parameter tuning pre-process is a time-consuming task, the idea is to avoid
this offline tuning step by having an online method able to adapt its parameters
meanwhile the problem solution is carry out.

Both methods are similarly implemented in Java 11 using the ForkJoinPool
and AtomicType classes to handle the parallelism in a shared memory model *.
In all cases we made sure that each worker node is actually mapped by the JVM
onto a different physical core, at runtime.

5.1 Evaluation on QAPLIB

We evaluated the performance of the DPA-QAP on QAPLIB, a well-known
collection of 134 QAP problems of various sizes and difficulties [8]. The instances
are named as name XX where name corresponds to the first letters of the author
and XX is the size of the problem. For each instance, QAPLIB also includes the
Best Known Solution (BKS), which is sometimes the optimum. Many QAPLIB
instances are easy for a parallel solver, we therefore selected the 20 hardest

1 Source code and instances can be found here.
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ones (removing all systematically solved instances). We ran both DPA-QAP
and BASE-QAP under the same conditions (30 repetitions, time limit of 5 min).

Table 2 presents the results. For each solver, the table lists the number of
times the BKS is reached across the 30 executions (#BKS), the Average Per-
centage Deviation (APD), which is the average of the 30 relative deviation
percentages computed as follows: 100 x %, where Avg is the average of
the 30 found costs, and finally the average execution time (Time). Execution
times are given in seconds (as a decimal number). This time is the elapsed (wall
clock) time, and includes the time to install all solver instances, solve the prob-
lem, communications and the time to detect and propagate the termination. To
compare the performance of both solvers, we first compare the number of BKS
found, then (in case of tie), the APDs and finally the execution times. For each
benchmark, the best-performing solver row is highlighted and the discriminant
field is enhanced in bold font.

DPA-QAP outperforms BASE-QAP on 14 out of 20 of the hardest QAPLIB
instances, while the reverse only occurs for 6 instances. 7 instances can never
been solved by any solver. Clearly, a time limit of 5 min is too short for those hard
problems: we plan to experiment with larger time limits. The “summary” row
shows that DPA-QAP obtains a better #BKS than BASE-QAP (192 vs. 153,
a 25% increase). The average APD is also better (0.174 vs. 0.180). Notice that
solutions of better quality are obtained in a slightly shorter average execution
time (269.5s vs. 276.7 s).

Notice that BASE-QAP is indeed an efficient solver for this benchmark, it
implements a parallel hybridization strategy and its parameters, despite being
randomly initialized, are selected within a range taken from state-of-the-art
solvers which report competitive results. Still, DPA-QAP managed to outper-
form BASE-QAP in most instances.
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Table 2. Evaluation of dynamic adaptation on 20 hardest instances of QAPLIB.

DPA-QAP BASE-QAP

BKS #BKS APD  Time #BKS APD  Time

sko72 66256 28 0.010 1309 24 0.012 161.2
sko81 90998 20 0.012 209.6 10 0.011 242.3
sko90 115534 9 0.022 262.2 8 0.016 274.9
sko100a 152002 12 = 0.027  245.0 4 0.029 279.3
sko100b 153890 20 0.012 223.1 14 0.014 2429
sko100c 147862 27  0.010 268.7 20 0.010 287.2
sko100d 149576 6 0.024 287.7 9 0.021 285.9
sko100e 149150 20 0.012 266.1 16 0.015 271.2
sko100f 149036 8 0.018 2678 9 0.017 265.9
tai4Oa 3139370 4 0.082 272.7 3 0.085 290.6
taibOa 4938796 0 0.386 300.0 0 0.401 300.0
tai6la 7205962 0 0.479 300.0 0 0519 300.0
tai80a 13499184 0 0.689 300.0 0 0.780 300.0
tailO0a 21044752 0 0.647 300.0 0 0.685 300.0

tai80b 818415043 14 0.031 2821 13 0.028 254.5
tail00b 185996137 5 0.084 2829 10 0.077 285.3

tailb0b 498896643 0 0.654 300.0 0 0.601 300.0
tai2b6c¢ 44759294 0 0.183 300.0 0 0.179 300.0
tho150 8133398 0 0.095 300.0 0 0.086 300.0
will00 273038 19 0.011  292.0 13 0.013 293.0
Summary 192 0.174 269.5 153 0.180 276.7

5.2 Evaluation on Harder Instances

We evaluated DPA-QAP on two more sets of instances, artificially crafted to be
very difficult for metaheuristics: the dre XX instances proposed by Drezner [15]
and the Inst XX instances by Palubeckis [34]. These problems are generated with
a known optimum. For this test we used the same machine and configuration as
for QAPLIB (30 cores and a time limit of 5min with 30 repetitions).

Table 3 presents the results for Drezner’s instances. We have omitted small
instances which are systematically solved by both solvers in less than 15s. We
start with dre42 which is solved by both solvers at each replication; even on this
case DPA-QAP is much faster than BASE-QAP: 34 s vs. 61s. In all instances,
DPA-QAP outperforms BASE-QAP. As a whole, DPA-QAP reaches more BKS
(60 vs. 38) and, when the optimum is not reached, solutions provided by DPA-
QAP are of much better quality than BASE-QAP as shown by the APDs (23.558
vs. 32.408), and it does so in a shorter period of time.
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Table 3. Evaluation on Drezner Table 4. Evaluation on Palubeckis’

instances. instances.
DPA-QAP BASE-QAP DPA-QAP BASE-QAP
OPT #BKS APD Time #BKS APD Time OPT #BKS APD Time #BKS APD Time
dre42 764 30 0.0 34 30 0.0 61 Inst40 837900 29 0.15 108 26 0.17 151
dre56 1086 21 14.1 213 8 21.0 259 Inst50 1840356 23 0.10 199 18 0.12 238
dre72 1452 9 274 265 0 34.9 300 Inst60 2967464 20 0.16 188 11 0.15 249
dre90 1838 0 22.1 300 0 28.0 300 Inst70 5815290 9 0.12 267 3 0.16 293
dre110 2264 0 36.1 300 0 52.1 300 Inst80 6597966 2 0.18 292 2 0.19 292
dre132 2744 0 41.7 300 0 58.3 300 Inst100 15008994 0 0.18 300 0 0.18 300
Inst150 58352664 0 0.14 300 0 0.14 300

SMRY 60 23.6 235 38 32.4 254

Inst200 75405684 0 0.14 300 0 0.14 300

SMRY 83 0.15 244 60 0.16 265

Table 4 presents the results for Palubeckis’ instances. As in the previous case,
we did not include small instances which are systematically solved by both solvers
in less than 15s. Here again, DPA-QAP performs better than BASE-QAP on
all instances of the benchmark. As for Drezner’s instances, the time limit of
5 min appears too short to solve large instances. However, DPA-QAP does find
more BKS (83 vs. 60) and dynamic parameter adaptation makes it possible to
improve the quality of solutions wrt. BASE-QAP as shown by the APDs (0.147
vs. 0.157).

6 Conclusions and Future Work

We have proposed a dynamic parameter adaptation scheme for parallel and
hybrid solvers based on metaheuristics to solve the QAP. The basic principle of
this approach is to have a master node which periodically collects the progress
of each metaheuristic. This node has a global view of the overall search progress,
therefore it can provide each metaheuristic with new parameter values in order
to increase its effectiveness. We proposed DPA-QAP: an implementation of this
architecture in Java, embedding three well-known metaheuristics: Robust Tabu
Search, Extremal Optimization and Multistart Local Search. The first experi-
ments performed on very difficult instances of QAP validate our approach by
significantly improving solution quality.

We plan to extend this work in several directions. First, we will experiment
on machines with more cores and with time limits greater than the 5 minutes cap
which was allowed in this work. We will also try to determine the best settings
for parameter reporting and adjustment: in this experiment we used a constant
interval which needs to be refined. Another line of potential experiments consists
in including efficient metaheuristics, such as Ant Colony Optimization [18]; or
embedding population-based methods, e.g. genetic algorithms. Finally, we plan
to address larger instances of the QAP as well as other difficult problems. As an
outcome, we aim to design and propose a general framework for self-adaptation
able to address a wide variety of combinatorial search and optimization problems.
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