
Bernabé Dorronsoro
Lionel Amodeo
Mario Pavone
Patricia Ruiz (Eds.)

4th International Conference, OLA 2021
Catania, Italy, June 21–23, 2021
Proceedings

Optimization
and Learning

Communications in Computer and Information Science 1443

Communications
in Computer and Information Science 1443

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Bernabé Dorronsoro • Lionel Amodeo •

Mario Pavone • Patricia Ruiz (Eds.)

Optimization
and Learning
4th International Conference, OLA 2021
Catania, Italy, June 21–23, 2021
Proceedings

123

Editors
Bernabé Dorronsoro
University of Cádiz
Cádiz, Spain

Lionel Amodeo
University of Technology of Troyes
Troyes, France

Mario Pavone
University of Catania
Catania, Italy

Patricia Ruiz
University of Cádiz
Cádiz, Spain

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-85671-7 ISBN 978-3-030-85672-4 (eBook)
https://doi.org/10.1007/978-3-030-85672-4

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0481-790X
https://orcid.org/0000-0003-0250-7959
https://orcid.org/0000-0003-3421-3293
https://orcid.org/0000-0001-5891-0646
https://doi.org/10.1007/978-3-030-85672-4

Preface

This book compiles the best papers submitted to the Fourth International Conference
on Optimization and Learning (OLA 2021). The papers were selected according to the
scores awarded by the Program Committee during the blind review process. OLA 2021
was going to take place in Catania, Italy, during June 21–23, but it finally had to be
organized in online mode. The main objective of the OLA conference series is to attract
influential researchers from all over the world working in the fields of complex
problems optimization, machine learning, and deep learning to identify synergies and
discuss applications for real-world problems. The conference builds a welcoming
atmosphere where researchers can present innovative work in the relevant fields.

Three categories of papers were considered for OLA 2021, namely ongoing research
works and high impact journal publications (both in the shape of an extended abstract)
along with regular papers with novel contents and important contributions. A selection
of the best papers in this latter category is published in this book.

A total of 49 papers were presented at OLA 2021, which were arranged into nine
sessions, covering topics such as the use of optimization methods to enhance learning
techniques, the use of learning techniques to improve the performance of optimization
methods, advanced optimization methods and their applications, machine and deep
learning techniques, and applications of learning and optimization tools to trans-
portation and routing, scheduling, or other real-world problems.

The conference received a total of 62 papers, from which only 27 (43.5% of all
submissions) were selected for publication in this book.

June 2021 Bernabé Dorronsoro
Lionel Amodeo
Mario Pavone
Patricia Ruiz

Organization

Conference Chairs

Mario Pavone University of Catania, Italy
Lionel Amodeo Université de Technologie de Troyes, France

Conference Program Chairs

Bernabe Dorronsoro University of Cadiz, Spain
Vincenzo Cutello University of Catania, Italy

Conference Steering Committee Chair

El-Ghazali Talbi University of Lille and Inria, France

Organization Committee

Jeremy Sadet Université Polytechnique des Hauts-de-France, France
Rachid Ellaia EMI and Mohamed V University of Rabat, Morocco
Rocco A. Scollo University of Catania, Italy
Antonio M. Spampinato University of Catania, Italy
Georgia Fargetta University of Catania, Italy
Carolina Crespi University of Catania, Italy
Francesco Zito University of Catania, Italy

Publicity Chairs

Juan J. Durillo Leibniz Supercomputing Center, Germany
Grégoire Danoy University of Luxembourg, Luxembourg

Program Committee

Lionel Amodeo Université de Technologie de Troyes, France
Mehmet-Emin Aydin University of Bedfordshire, UK
Mathieu Balesdent ONERA, France
Pascal Bouvry University of Luxembourg, Luxembourg
Loїc Brevault ONERA, France
Matthias R. Brust University of Luxembourg, Luxembourg
Grégoire Danoy University of Luxembourg, Luxembourg
Bernabe Dorronsoro University of Cadiz, Spain
Patrick de Causmaecker KU Leuven, Belgium
Krisana Chinnasarn Burapha University, Thailand

Abdellatif El Afia Mohamed V University of Rabat, Morocco
Rachid Ellaia EMI, Morocco
Bogdan Filipic Jožef Stefan Institute, Slovenia
José Manuel García Nieto University of Málaga, Spain
Domingo Jimenez University of Murcia, Spain
Hamamache Kheddouci University of Lyon, France
Peter Korosec Jožef Stefan Institute, Slovenia
Dmitri E. Kvasov University of Calabria, Italy
Andrew Lewis Griffith University, Australia
Francisco Luna University of Malaga, Spain
Teodoro Macias Escobar Technological Institute of Ciudad Madero, Mexico
Roberto Magán-Carrión University of Granada, Spain
Renzo Massobrio Universidad de la República, Uruguay
Gonzalo Mejia Delgadillo Pontificia Universidad Católica de Valparaíso, Chile
Nouredine Melab University of Lille, France
Edmondo Minisci University of Strathclyde, UK
Antonio J. Nebro University of Málaga, Spain
Sergio Nesmachnow Universidad de la República, Uruguay
Eneko Osaba Icedo TECNALIA, Spain
Gregor Papa Jožef Stefan Institute, Slovenia
Apivadee Piyatumrong NECTEC, Thailand
Helena Ramalhinho Universitat Pompeu Fabra, Spain
Ángel Ruiz Zafra University of Cadiz, Spain
Roberto Santana University of the Basque Country, Spain
Alejandro Santiago Polytechnic University of Altamira, Mexico
Javier del Ser TECNALIA, Spain
Yaroslav D. Sergeyev University of Calabria, Italy
Andrei Tchernykh CICESE, Mexico
Sartra Wongthanavasu Khon Kaen University, Thailand
Alice Yalaoui Université de Technologie de Troyes, France
Farouk Yalaoui Université de Technologie de Troyes, France
Xin-She Yang Middlesex University London, UK
Nicolas Zufferey Université de Genève, Switzerand

viii Organization

Contents

Synergies Between Optimization and Learning

Embedding Simulated Annealing within Stochastic Gradient Descent. 3
Matteo Fischetti and Matteo Stringher

Comparing Local Search Initialization for K-Means and K-Medoids
Clustering in a Planar Pareto Front, a Computational Study 14

Jiangnan Huang, Zixi Chen, and Nicolas Dupin

Reinforcement Learning-Based Adaptive Operator Selection 29
Rafet Durgut and Mehmet Emin Aydin

Learning for Optimization

A Learning-Based Iterated Local Search Algorithm for Solving
the Traveling Salesman Problem . 45

Maryam Karimi-Mamaghan, Bastien Pasdeloup, Mehrdad Mohammadi,
and Patrick Meyer

A Hybrid Approach for Data-Based Models Using
a Least-Squares Regression . 62

Malin Lachmann and Christof Büskens

A Comparison of Learnheuristics Using Different Reward Functions
to Solve the Set Covering Problem . 74

Broderick Crawford, Ricardo Soto, Felipe Cisternas-Caneo,
Diego Tapia, Hanns de la Fuente-Mella, Wenceslao Palma,
José Lemus-Romani, Mauricio Castillo, and Marcelo Becerra-Rozas

A Bayesian Optimisation Approach for Multidimensional
Knapsack Problem . 86

Hanyu Gu, Alireza Etminaniesfahani, and Amir Salehipour

Machine Learning and Deep Learning

Robustness of Adversarial Images Against Filters . 101
Raluca Chitic, Nathan Deridder, Franck Leprévost,
and Nicolas Bernard

Guiding Representation Learning in Deep Generative Models
with Policy Gradients . 115

Luca Lach, Timo Korthals, Francesco Ferro, Helge Ritter,
and Malte Schilling

Deep Reinforcement Learning for Dynamic Pricing
of Perishable Products . 132

Vibhati Burman, Rajesh Kumar Vashishtha, Rajan Kumar,
and Sharadha Ramanan

An Exploratory Analysis on a Disinformation Dataset 144
Matheus Marinho, Carmelo J. A. Bastos-Filho, and Anthony Lins

Automatic Synthesis of Boolean Networks from Biological Knowledge
and Data . 156

Athénaïs Vaginay, Taha Boukhobza, and Malika Smaïl-Tabbone

Transportation and Logistics

Solving Inventory Routing Problems with the Gurobi
Branch-and-Cut Algorithm . 173

Danny Meier, Benjamin Keller, Markus Kolb, and Thomas Hanne

Iterated Local Search with Neighbourhood Reduction for the Pickups
and Deliveries Problem Arising in Retail Industry . 190

Hanyu Gu, Lucy MacMillan, Yefei Zhang, and Yakov Zinder

A Genetic Algorithm for the Three-Dimensional Open Dimension
Packing Problem. 203

Cong Tan Trinh Truong, Lionel Amodeo, and F. Yalaoui

Formulation of a Layout-Agnostic Order Batching Problem 216
Johan Oxenstierna, Louis Janse van Rensburg, Jacek Malec,
and Volker Krueger

Optimization

Neighborhood Enumeration in Local Search Metaheuristics 229
Michiel Van Lancker, Greet Vanden Berghe, and Tony Wauters

Cryptographic Primitives Optimization Based on the Concepts
of the Residue Number System and Finite Ring Neural Network 241

Andrei Tchernykh, Mikhail Babenko, Bernardo Pulido-Gaytan,
Egor Shiryaev, Elena Golimblevskaia, Arutyun Avetisyan,
Nguyen Viet Hung, and Jorge M. Cortés-Mendoza

x Contents

Investigating Overlapped Strategies to Solve Overlapping Problems
in a Cooperative Co-evolutionary Framework . 254

Julien Blanchard, Charlotte Beauthier, and Timoteo Carletti

Improved SAT Models for NFA Learning . 267
Frédéric Lardeux and Eric Monfroy

Applications of Learning and Optimization Methods

Synthesis of Scheduling Heuristics by Composition and Recombination. 283
Dominik Mäckel, Jan Winkels, and Christin Schumacher

Solving QAP with Auto-parameterization in Parallel
Hybrid Metaheuristics . 294

Jonathan Duque, Danny A. Múnera, Daniel Díaz, and Salvador Abreu

Theoretical Analysis of a Dynamic Pricing Problem with Linear
and Isoelastic Demand Functions . 310

Mourad Terzi, Yassine Ouazene, Alice Yalaoui, and Farouk Yalaoui

A Hybrid FLP-AHP Approach for Optimal Product Mix in Pulp
and Paper Industry . 324

Meenu Singh and Millie Pant

An Application of BnB-NSGAII: Initializing NSGAII to Solve 3 Stage
Reducer Problem. 337

Ahmed Jaber, Pascal Lafon, and Rafic Younes

The Horizontal Linear Complementarity Problem and Robustness
of the Related Matrix Classes . 350

Milan Hladík and Miroslav Rada

Incorporating User Preferences in Multi-objective Feature Selection
in Software Product Lines Using Multi-Criteria Decision Analysis 361

Takfarinas Saber, Malika Bendechache, and Anthony Ventresque

Author Index . 375

Contents xi

Synergies Between Optimization and
Learning

Embedding Simulated Annealing
within Stochastic Gradient Descent

Matteo Fischetti(B) and Matteo Stringher

Department of Information Engineering, University of Padova,
via Gradenigo 6/A, 35100 Padova, Italy

matteo.fischetti@unipd.it

Abstract. We propose a new metaheuristic training scheme for Machine
Learning that combines Stochastic Gradient Descent (SGD) and Discrete
Optimization in an unconventional way. Our idea is to define a discrete
neighborhood of the current SGD point containing a number of “poten-
tially good moves” that exploit gradient information, and to search this
neighborhood by using a classical metaheuristic scheme borrowed from
Discrete Optimization. In the present paper we investigate the use of
a simple Simulated Annealing (SA) metaheuristic that accepts/rejects
a candidate new solution in the neighborhood with a probability that
depends both on the new solution quality and on a parameter (the tem-
perature) which is modified over time to lower the probability of accepting
worsening moves.

Computational results on image classification (CIFAR-10) are
reported, showing that the proposed approach leads to an improvement
of the final validation accuracy for modern Deep Neural Networks such
as ResNet34 and VGG16.

Keywords: Simulated annealing · Stochastic gradient descent · Deep
neural networks · Machine learning · Training algorithm

1 Introduction

Machine Learning (ML) is a fundamental topic in Artificial Intelligence. Its
growth in the research community has been followed by a huge rise in the number
of projects in the industry leveraging this technology.

Deep learning is a subset of ML, based on learning data representation
through the use of neural network architectures, specifically Deep Neural Net-
works (DNNs). Inspired by human processing behavior, DNNs have set new
state-of-art results in speech recognition, visual object recognition, object detec-
tion, and many other domains.

Work supported by MiUR, Italy (project PRIN). We gratefully acknowledge the sup-
port of NVIDIA Corporation with the donation of the Titan Xp GPU used for this
research.

c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 3–13, 2021.
https://doi.org/10.1007/978-3-030-85672-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_1&domain=pdf
http://orcid.org/0000-0001-6601-0568
https://doi.org/10.1007/978-3-030-85672-4_1

4 M. Fischetti and M. Stringher

Stochastic Gradient Descent (SGD) is de facto the standard algorithm for
training Deep Neural Networks (DNNs). Leveraging the gradient, SGD allows
one to rapidly find a good solution in the very high dimensional space of weights
associated with modern DNNs. Moreover, the use of minibatches allows one to
exploit modern GPUs and to achieve a considerable computational efficiency.

In the present paper we investigate the use of an alternative training method,
namely, the Simulated Annealing (SA) algorithm [2]. The use of SA for training
is not new, but previous proposals are mainly intended to be applied for non-
differentiable objective functions for which SGD is not applied due to the lack
of gradients; see, e.g., [4,7]. Instead, our SA method requires differentiability of
(a proxy of) the loss function, and leverages on the availability of a gradient
direction to define local moves that have a large probability to improve the
current solution.

Our approach is computationally evaluated in an implementation leveraging
hyper-parameters. Assume some hyper-parameter values (e.g., learning rates for
SGD) are collected in a discrete set H. At each SGD iteration, we randomly pick
one hyper-parameter from H, temporarily implement the corresponding move as
in the classical SGD method (using the gradient information) and evaluate the
new point on the current minibatch. If the loss function does not deteriorate too
much, we accept the move as in the classical SGD method, otherwise we reject it:
we step back to the previous point, change the minibatch, randomly pick another
hyper-parameter from H, and repeat. The decision of accepting/rejecting a move
is based on the classical SA criterion, and depends of the amount of loss-function
worsening and on a certain parameter (the temperature) which is modified over
time to lower the probability of accepting worsening moves.

A distinctive feature of our scheme is that hyper-parameters are modified
within a single SGD execution (and not in an external loop, as customary) and
evaluated on the fly on the current minibatch, i.e., their tuning is fully embedded
within the SGD algorithm.

Computational results are reported, showing that the proposed approach
leads to an improvement of the final validation accuracy for modern DNN archi-
tectures (ResNet34 and VGG16 on CIFAR-10).

2 Simulated Annealing

The basic SA algorithm for a generic optimization problem can be outlined as
follows. Let S be the set of all possible feasible solutions, and f : S → R be the
objective function to be minimized. An optimal solution s∗ is a solution in S
such that f(s∗) ≤ f(s) holds for all s ∈ S.

SA is an iterative method that constructs a trajectory of solutions
s(0), · · · , s(k) in S. At each iteration, SA considers moving from the current
feasible solution s(i) (say) to a candidate new feasible solution snew (say). Let
Δ(s(i), snew) = f(snew)−f(s(i)) be the objective function worsening when mov-
ing from s(i) to snew—positive if snew is strictly worse than s(i). The hallmark
of SA is that worsening moves are not forbidden but accepted with a certain

Embedding Simulated Annealing within Stochastic Gradient Descent 5

acceptance probability p(s(i), snew, T) that depends on the amount of worsening
Δ(s(i), snew) and on a parameter T > 0 called temperature. A typical way to
compute the acceptance probability is through Metropolis’ formula [5]:

p(s, snew, T) =
{

e−Δ(s(i),snew)/T if Δ(s(i), snew) > 0
1 if Δ(s(i), snew) ≤ 0 .

(1)

Thus, the probability of accepting a worsening move is large if the amount of
worsening Δ(s(i), s′) > 0 is small and the temperature T is large. Note that the
probability is 1 when Δ(s(i), s′) ≤ 0, meaning that improving moves are always
accepted by the SA method.

Temperature T is a crucial parameter: it is initialized to a certain value T0

(say), and iteratively decreased during the SA execution so as to make worsening
moves less and less likely in the final iterations. A simple update formula for T
is T = α · T , where α ∈ (0, 1) is called cooling factor. Typical ranges for this
parameter are 0.95–0.99 (if cooling is applied at each SA iteration) or 0.7−0.8 (if
cooling is only applied at the end of a “computational epoch”, i.e., after several
SA iterations with a constant temperature).

The basic SA scheme is outlined in Algorithm 1; more advanced implemen-
tations are possible, e.g., the temperature can be restored multiple times to the
initial value.

Algorithm 1 : SA
Input: function f to be minimized, initial temperature T0 > 0, cooling factor
α ∈ (0, 1), number of iterations nIter
Output: the very last solution s(nIter)

1: Compute an initial solution s(0) and initialize T = T0

2: for i = 0, . . . , nIter − 1 do
3: Pick a new tentative solution snew in a convenient neighborhood N (s(i)) of s(i)

4: worsening = f(snew) − f(s(i))
5: prob = e−worsening/T

6: if random(0, 1) < prob then
7: s(i+1) = snew

8: else
9: s(i+1) = s(i)

10: end if
11: T = α · T
12: end for

At Step 6, random(0, 1) is a pseudo-random value uniformly distributed in
[0,1]. Note that, at Step 5, the acceptance probability prob becomes larger than
1 in case worsening < 0, meaning that improving moves are always accepted
(as required).

6 M. Fischetti and M. Stringher

2.1 A Naive Implementation for Training Without Gradients

In the context of training, one is interested in minimizing a loss function L(w)
with respect to a large-dimensional vector w ∈ �M of so-called weights. If L(w) is
differentiable (which is not required by the SA algorithm), there exists a gradient
∇(w) giving the steepest increasing direction of L when moving from a given
point w.

Here is a very first attempt to use SA in this setting. Given the current
solution (i.e., set of weights) w, we generate a random move Δ(w) ∈ �M and
then we evaluate the loss function in the nearby point w′ := w − εΔ(w), where
ε is a small positive real number. If the norm of εΔ(w) is small enough and L is
differentiable, due to Taylor’s approximation we know that

L(w′) � L(w) − ε ∇T (w)Δ(w). (2)

Thus the objective function improves if ∇(w)T Δ(w) > 0. As we work in the
continuous space, in the attempt of improving the objective function we can
also try to move in the opposite direction and move to w′′ := w + ε Δ(w). Thus,
our actual move from the current w consists of picking the best (in terms of
objective function) point wnew, say, between the two nearby points w′ and w′′:
if wnew improves L(w), then we surely accept this move; otherwise we accept it
according to the Metropolis’ formula (1). Note that the above SA approach is
completely derivative free: as a matter of fact, SA could optimize directly over
discrete functions such as the accuracy in the context of classification.

(a) Validation loss (b) Validation accuracy

Fig. 1. Performance on the validation set of our naive SA implementation (SSA) for
VGG16 on Fashion-MNIST. SGD: learning rate η = 0.001, no momentum/Nesterov
acceleration. SSA: ε = 0.01, α = 0.97, T0 = 1.

In a preliminary phase of our work we implemented the simple scheme above
in a stochastic manner, using minibatches when evaluating L(w′) and L(w′′),
very much in the spirit of the SGD algorithm. Figures 1–2, compare the per-
formance of the resulting Stochastic SA algorithm, called SSA, with that of a

Embedding Simulated Annealing within Stochastic Gradient Descent 7

(a) Loss comparison (b) Accuracy comparison

Fig. 2. Comparison of our naive SA implementation (SSA) vs SGD for VGG16 on
Fashion-MNIST. SGD: learning rate η = 0.001, no momentum/Nesterov acceleration.
SSA: ε = 0.01, α = 0.97, T0 = 1. Subfigure (b) clearly shows that SSA has no overfitting
but is not able to exploit the full capacity of VGG16, resulting into an unsatisfactory
final accuracy.

straightforward SGD implementation with constant learning rate and no momen-
tum [9] nor Nesterov [6] acceleration, using the Fashion-MNIST [10] dataset and
the VGG16 [8] architecture. Figure 2(b) reports accuracy on both the training
and the validation sets, showing that SSA does not suffer from overfitting as
the accuracy on the training and validation sets are almost identical—a benefit
deriving from the derivative-free nature of SSA. However, SSA is clearly unsatis-
factory in terms of validation accuracy (which is much worse than the SGD one)
in that it does not exploit well the VGG16 capacity.

We are confident that the above results could be improved by a more
advanced implementation. E.g., one could vary the value of ε during the algo-
rithm, and/or replace the loss function by (one minus) the accuracy evaluated on
the current minibatch—recall that SSA does not require the objective function
be differentiable. However, even an improved SSA implementation is unlikely to
be competitive with SGD. In our view, the main drawback of the SSA algorithm
(as stated) is that, due the very large dimensional space, the random direction
±Δ(w) is very unlikely to lead to a substantial improvement of the objective
function as the effect of its components tend to cancel out randomly. Thus, a
more clever definition of the basic move is needed to drive SSA in an effective
way.

3 Improved SGD Training by SA

We next introduce an unconventional way of using SA in the context of train-
ing. We assume the function L(w) to be minimized be differentiable, so we can
compute its gradient ∇(w). From SGD we borrow the idea of moving in the
anti-gradient direction −∇(w), possibly corrected using momentum/Nesterov
acceleration techniques. Instead of using a certain a priori learning rate η, how-
ever, we randomly pick one from a discrete set H (say) of possible candidates.

8 M. Fischetti and M. Stringher

In other words, at each SA iteration the move is selected randomly in a dis-
crete neighborhood N (w(i)) whose elements correspond to SGD iterations with
different learning rates. An important feature of our method is that H can (actu-
ally, should) contain unusually large learning rates, as the corresponding moves
can be discarded by the Metropolis’ criterion if they deteriorate the objective
function too much.

A possible interpretation of our approach is in the context of SGD hyper-
parameter tuning. According to our proposal, hyper-parameters are collected
in a discrete set H and sampled within a single SGD execution: in our tests,
H just contains a number of possible learning rates, but it could involve other
parameters/decisions as well, e.g., applying momentum, or Nesterov (or none of
the two) at the current SGD iteration, or alike. The key property here is that
any element in H corresponds to a reasonable (non completely random) move,
so picking one of them at random has a significant probability of improving the
objective function. As usual, moves are accepted according to the Metropolis’
criterion, so the set H can also contain “risky choices” that would be highly
inefficient if applied systematically within a whole training epoch.

Algorithm 2 : SGD-SA
Parameters: A set of learning rates H, initial temperature T0 > 0
Input: Differentiable loss function L to be minimized, cooling factor α ∈ (0, 1),
number of epochs nEpochs, number of minibatches N
Output: the best performing w(i) on the validation set at the end of each epoch

1: Divide the training dataset into N minibatches
2: Initialize i = 0, T = T0, w(0) = random initialization()
3: for t = 1, . . . , nEpochs do
4: for n = 1, . . . , N do
5: Extract the n-th minibatch (x, y)
6: Compute L(w(i), x, y) and its gradient v = backpropagation(w(i), x, y)
7: Randomly pick a learning rate η from H
8: wnew = w(i) − η v
9: Compute L(wnew, x, y)

10: worsening = L(wnew, x, y) − L(w(i), x, y)
11: prob = e−worsening/T

12: if random(0, 1) < prob then
13: w(i+1) = wnew

14: else
15: w(i+1) = w(i)

16: end if
17: i = i + 1
18: end for
19: T = α · T
20: end for

Our basic approach is formalized in Algorithm2, and will be later referred to
as SGD-SA. More elaborated versions using momentum/Nesterov are also possible

Embedding Simulated Annealing within Stochastic Gradient Descent 9

but not investigated in the present paper, as we aim at keeping the overall
computational setting as simple and clean as possible.

4 Computational Analysis of SGD-SA

We next report a computational comparison of SGD and SGD-SA for a classi-
cal image classification task involving the CIFAR-10 [3] dataset. As customary,
the dataset was shuffled and partitioned into 50,000 examples for the training
set, and the remaining 10,000 for the test set. As to the DNN architecture, we
tested two well-known proposals from the literature: VGG16 [8] and ResNet34
[1]. Training was performed for 100 epochs using PyTorch, with minibatch size
512. Tests have been performed using a single NVIDIA TITAN Xp GPU.

Our Scheduled-SGD implementation of SGD is quite basic but still rather
effective on our dataset: it uses no momentum/Nesterov acceleration, and the
learning rate is set according the following schedule: η = 0.1 for first 30
epochs, 0.01 for the next 40 epochs, and 0.001 for the final 30 epochs. As to
SGD-SA, we used α = 0.8, initial temperature T0 = 1, and learning-rate set
H = {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05}.

Both Scheduled-SGD and SGD-SA use pseudo-random numbers generated
from an initial random seed, which therefore has some effects of the search path
in the weight space and hence on the final solution found. Due to the very large
number of weights that lead to statistical compensation effects, the impact of
the seed on the initialization of the very first solution w(0) is very limited—a
property already known for SGD that is inherited by SGD-SA as well. However,
random numbers are used by SGD-SA also when taking some crucial “discrete”
decisions, namely: the selection of the learning rate η ∈ H (Step 7) and the
acceptance test (Step 12). As a result, as shown next, the search path of SGD-SA
is very dependent on the initial seed. Therefore, for both Scheduled-SGD and
SGD-SA we decided to repeat each run 10 times, starting with 10 random seeds,
and to report results for each seed. In our view, this dependency on the seed is
in fact a positive feature of SGD-SA, in that it allows one to treat the seed as
a single (quite powerful) hyper-parameter to be randomly tuned in an external
loop.

Our first order of business is to evaluate the convergence property of SGD-SA
on the training set—after all, this is the optimization task that SA faces directly.
In Fig. 3 we plot the average probability prob (clipped to 1) of accepting a move at
Step 12, as well as the training-set accuracy as a function of the epochs. Subfig. 3a
shows that the probability of accepting a move is almost one in the first epochs,
even if the amount of worsening is typically quite large in this phase. Later on,
the probability becomes smaller and smaller, and only very small worsenings
are more likely to be accepted. As a result, large learning rates are automati-
cally discarded in the last iterations. Subfig. 3b is quite interesting: even in our
simple implementation, Scheduled-SGD quickly converges to the best-possible
value of one for accuracy, and the plots for the various seeds (gray lines) are
almost overlapping—thus confirming that the random seed has negligible effects

10 M. Fischetti and M. Stringher

(a) Probability of accepting worsening moves

(b) Training accuracy (10 runs with different random seeds)

Fig. 3. Optimization efficiency over the training set (VGG16 on CIFAR-10)

of Scheduled-SGD. As to SGD-SA (black lines), its convergence to accuracy one
is slower than Scheduled-SGD, and different seeds lead to substantially different
curves—a consequence of the discrete random decisions taken along the search
path.

Figure 4 shows the performance on the validation set of Scheduled-SGD and
SGD-SA (both with 10 runs with different random seeds) when using the ResNet34
architecture—results with VGG16 are very similar, hence they are not reported.
As expected, the search path of SGD-SA is more diversified (leading to accuracy

Embedding Simulated Annealing within Stochastic Gradient Descent 11

drops in the first epochs) but the final solutions tend to generalize better than
Scheduled-SGD, as witnessed by the better performance on the validation set.

(a) Validation loss

(b) Validation accuracy

Fig. 4. ResNet34 on CIFAR-10 (validation set)

Table 1 gives more detailed results for each random seed, and reports the
final validation accuracy and loss reached by Scheduled-SGD and SGD-SA. The
results show that, for all seeds, SGD-SA always produces a significantly better
(lower) validation loss than Scheduled-SGD. As to validation accuracy, SGD-SA
outperforms Scheduled-SGD for all seeds but seeds 3, 4 and 6 for ResNet34.

12 M. Fischetti and M. Stringher

Table 1. Best validation accuracy and loss, seed by seed.

Method Seed VGG16 ResNet34

Loss Accuracy Loss Accuracy

Scheduled-SGD 0 0.001640 85.27 0.001519 82.18

1 0.001564 84.94 0.001472 82.58

2 0.001642 84.84 0.001467 82.27

3 0.001662 84.93 0.001468 82.37

4 0.001628 84.92 0.001602 81.69

5 0.001677 85.37 0.001558 81.80

6 0.001505 84.91 0.001480 82.24

7 0.001480 85.28 0.001532 82.07

8 0.001623 85.26 0.001574 81.52

9 0.001680 85.41 0.001499 82.41

SGD-SA 0 0.001127 86.44 0.001306 82.55

1 0.001206 86.18 0.001231 84.11

2 0.001121 86.04 0.001238 83.32

3 0.001133 86.76 0.001457 81.39

4 0.001278 85.17 0.001585 76.31

5 0.001112 86.30 0.001276 83.74

6 0.001233 85.71 0.001405 82.07

7 0.001130 86.59 0.001261 82.57

8 0.001167 86.14 0.001407 83.12

9 0.001084 86.28 0.001240 83.19

Best Scheduled-SGD 0.001480 85.41 0.001467 82.58

Best SGD-SA 0.001084 86.76 0.001240 84.11

In particular, SGD-SA leads to a significantly better (1–2%) validation accuracy
than Scheduled-SGD if the best run for the 10 seeds is considered.

5 Conclusions and Future Work

We have proposed a new metaheuristic training scheme that combines Stochastic
Gradient Descent and Discrete Optimization in an unconventional way.

Our idea is to define a discrete neighborhood of the current solution contain-
ing a number of “potentially good moves” that exploit gradient information, and
to search this neighborhood by using a classical metaheuristic scheme borrowed
from Discrete Optimization. In the present paper, we have investigated the use
of a simple Simulated Annealing metaheuristic that accepts/rejects a candidate
new solution in the neighborhood with a probability that depends both on the
new solution quality and on a parameter (the temperature) which is varied over

Embedding Simulated Annealing within Stochastic Gradient Descent 13

time. We have used this scheme as an automatic way to perform hyper-parameter
tuning within a single training execution, and have shown its potentials on a clas-
sical test problem (CIFAR-10 image classification using VGG16/ResNet34 deep
neural networks).

In a follow-up research we plan to investigate the use of two different objective
functions at training time: one differentiable to compute the gradient (and hence
a set of potentially good moves), and one completely generic (possibly black-box)
for the Simulated Annealing acceptance/rejection test—the latter intended to
favor simple/robust solutions that are likely to generalize well.

Replacing Simulated Annealing with other Discrete Optimization metaheuris-
tics (tabu search, variable neighborhood search, genetic algorithms, etc.) is also
an interesting topic that deserves future research.

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
arXiv e-prints, December 2015

2. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–80 (1983)

3. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 (Canadian Institute for Advanced
Research). http://www.cs.toronto.edu/∼kriz/cifar.html

4. Ledesma, S., Torres, M., Hernández, D., Aviña, G., Garćıa, G.: Temperature
cycling on simulated annealing for neural network learning. In: Gelbukh, A., Kuri
Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 161–171. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76631-5 16

5. Metropolis, N.C., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.:
Equation of state calculation by fast computing machines. J. Chem. Phys. 21,
1087–1092 (1953)

6. Nesterov, Y.: A method of solving a convex programming problem with conver-
gence rate O(1/sqr(k)). Soviet Math. Doklady 27, 372–376 (1983). http://www.
core.ucl.ac.be/∼nesterov/Research/Papers/DAN83.pdf

7. Sexton, R., Dorsey, R., Johnson, J.: Beyond backpropagation: using simulated
annealing for training neural networks. J. End User Comput. 11 (1999)

8. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. arXiv e-prints, September 2014

9. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization
and momentum in deep learning. In: Proceedings of the 30th International Con-
ference on International Conference on Machine Learning, ICML 2013, vol. 28, pp.
III-1139–III-1147. JMLR.org (2013). http://dl.acm.org/citation.cfm?id=3042817.
3043064

10. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms (2017)

http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1007/978-3-540-76631-5_16
http://www.core.ucl.ac.be/~nesterov/Research/Papers/DAN83.pdf
http://www.core.ucl.ac.be/~nesterov/Research/Papers/DAN83.pdf
http://dl.acm.org/citation.cfm?id=3042817.3043064
http://dl.acm.org/citation.cfm?id=3042817.3043064

Comparing Local Search Initialization
for K-Means and K-Medoids Clustering

in a Planar Pareto Front,
a Computational Study

Jiangnan Huang , Zixi Chen , and Nicolas Dupin(B)

Université Paris-Saclay, LISN, 91405 Orsay, France
{jiangnan.huang,zixi.chen,nicolas.dupin}@universite-paris-saclay.fr

Abstract. Having N points in a planar Pareto Front (2D PF), k-means
and k-medoids are solvable in O(N3) time by dynamic programming
algorithms. Standard local search approaches, PAM and Lloyd’s heuris-
tics, are investigated in the 2D PF case to solve faster large instances.
Specific initialization strategies related to 2D PF cases are implemented
with the generic ones (Forgy’s, Hartigans, k-means++). Applying PAM
and Lloyd’s local search iterations, the quality of local minimums are
compared with optimal values. Numerical results are computed using
generated instances, which were made public. This study highlights that
local minimums of a poor quality exist for 2D PF cases. A parallel
or multi-start heuristic using four initialization strategies improves the
accuracy to avoid poor local optimums. Perspectives are still open to
improve local search heuristics for the specific 2D PF cases.

Keywords: Clustering algorithms · K-means · K-medoids ·
Heuristics · Local search · Bi-objective optimization · Pareto Front

1 Introduction

K-means clustering is one of the most famous unsupervised learning problem,
and is widely studied in the literature [16,18]. K-medoids clustering, the discrete
variant of the k-means problem, maximizes the dissimilarity around a represen-
tative solution [17]. If k-medoids clustering is more combinatorial than k-means
clustering, it is known to be more robust on noises and outliers [16]. Both k-
medoids and k-means problems are NP hard in the general and planar cases
[1,15,19]. One dimensional (1D) cases of k-means and k-medoids are solvable in
polynomial time, with Dynamic Programming (DP) algorithms [12,14,22].

Facing the NP-hard complexity, a seminal heuristic to solve k-means prob-
lems is a steepest descent heuristic converging to local minimums, provided by
Lloyd [18]. A careful initialization is prominent for this local search algorithm,
many initialization strategies were proposed and discussed [2,11,13,16]. A com-
parative analysis was provided for general instances of k-means to analyze the
c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 14–28, 2021.
https://doi.org/10.1007/978-3-030-85672-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_2&domain=pdf
http://orcid.org/0000-0003-1585-1185
http://orcid.org/0000-0002-6290-9709
http://orcid.org/0000-0003-3775-5629
https://doi.org/10.1007/978-3-030-85672-4_2

Comparing Local Search Initialization 15

impact and efficiency of initialization strategies [3]. Lloyd’s local search was
extended to solve heuristically k-medoids problems, this adaptation is named
PAM (Partitioning Around Medoids) [17]. Comparing empirically the efficiency
of initialization strategies for PAM local search is also of interest for k-medoids.

The specific cases of k-means and k-medoids clustering in a planar Pareto
Front (2D PF) hold for an application to bi-objective optimization problems
and algorithms [5,9]. In both cases, there is a polynomial complexity with DP
algorithms running in O(N3) time [5,9]. However, this cubic complexity may
be a bottleneck to solve quickly large instances, which may be required for the
real-world application. PAM and Lloyd’s local search algorithms are still useful.
Similarly with [3,21], this paper aims to compare the impact and efficiency of
local search initialization for 2D PF instances. Contrary to [3,21], local mini-
mums can be compared to known optimal values thanks to the DP exact algo-
rithm. Another open question is to determine if the 2D PF case induce also good
properties for PAM and Lloyd’s local search heuristics.

This paper is organized as follows. In Sect. 2, we define formally the problem
and fix the notation. In Sect. 3, initialization heuristics are presented. In Sect. 4,
the experimental conditions are presented before describing and analyzing the
computational results. In Sect. 5, our contributions are summarized, discussing
also future directions of research.

Fig. 1. Illustration of a 2D Pareto Front and its indexation

2 Problem Statement and Notations

Let E a 2D PF of size of N , E = {x1, . . . , xN} is a set of N elements of R
2

in a 2D PF. As illustrated in Fig. 1, the 2D PF E can be re-indexed such that
E = {xk = (yk, zk)}k∈[[1,N]] such that k ∈ [[1, N]] �→ xk is increasing and k ∈
[[1, N]] �→ yk is decreasing, it is proven formally in [7]. Defining the binary relation
y = (y1, y2) ≺ z = (z1, z2) with y1 < z1 and y2 > z2, ≺ is a total order in E
and x1 ≺ · · · ≺ xN .

We define ΠK(E), as the set of all the possible partitions of E in K subsets.
Defining a cost function f for each subset of E to measure the dissimilarity,

16 J. Huang et al.

K-sum-clustering problems are combinatorial optimization problems, minimiz-
ing the sum of the measure f for all the K partitioning clusters:

min
π∈ΠK(E)

∑

P∈π

f(P) (1)

K-medoids and K-means problems are in the shape of (1). K-medoids prob-
lem considers the minimal sum of the squared distances from one point of P ,
the medoid, to the other points of P :

∀P ⊂ E, fmedoids(P) = min
c∈P

∑

x∈P

||x − c||2 (2)

Note that || denotes the standard Euclidean norm in this paper, | is used to
denote the cardinal of a subset of E. K-means clustering considers the sum of
the squared distances from any point of P to the centroid :

∀P ⊂ E, fmeans(P) = min
c∈R2

∑

x∈P

||x − c||2 =
∑

x∈p

∣∣∣∣∣

∣∣∣∣∣x − 1
|p|

∑

y∈p

y

∣∣∣∣∣

∣∣∣∣∣

2

(3)

The first equality in (3) shows the similarity with k-medoids, k-medoids is
the discrete version of k-medoids. The second equality in (3), proven with convex
optimization in [20], is used in this paper to compute fmeans(P) in O(|P |) time,
whereas fmedoids(P) is computed in O(|P |2) time using (2). This difference is
crucial in the computational efficiency to solve k-means and k-medoids.

PAM and Lloyd’s algorithm are similar local search algorithms iterating over
solutions encoded as partitioning subsets P1, . . . , PK and their respective cen-
troids c1, . . . , cK (or medoids for PAM). Having a current solution encoded like
previously, two steps are processed to improve the solution:

• The partitioning subsets P1, . . . , PK are modified, assigning each point to the
closest centroid or medoid ci. This step runs in O(NK) time.

• The centroids or medoids ci are recomputed with formulas (3) or (2) consid-
ering the updated partitioning subsets P1, . . . , PK . This step runs in O(N)
time for k-means in O(N2) time for k-medoids.

If a modification is operated, these steps improve the current clustering solu-
tion, it is a steepest descent algorithm. Otherwise, the current solution is a local
minimum for PAM or Lloyd’s local search, that can be different from a global
minimum, optimal for optimization problems (1). The initial solution given to
the local searches has an influence to the quality of local minimums [3]. In the
following we compare the efficiency of specific and generic initialization strate-
gies for 2D PF cases. Considering 2D PF instances induces that optimal values
of k-medoids and k-means are known even for some large instances thanks to
the specific DP algorithms [5,9].

Comparing Local Search Initialization 17

3 Initialization Heuristics

In this section, we introduce the initialization heuristics which are implemented
in the computational experiments. We distinguish the generic ones applying for
any clustering instances, to specific strategies using properties of 2D PF cases.
Initialization strategies were more studied for the k-means problem. We adapt
such strategies for the k-medoids problem defining the same clusters than the
k-means initialization, i.e. keeping the assignment of points into clusters, and
recomputing the medoids with (2) instead of considering the centroids with (3).
Hence, we only describe how to define partitioning clusters, giving the complexity
results of this phase and keeping in mind that the computations of centroids and
medoids run respectively in O(N) and O(N2) time.

3.1 Generic Initialization Strategies

Firstly, we present generic initialization designed for the k-means problem:

• Random selection (RAND): it is one of the most naive algorithms. Firstly,
K points are selected randomly (and uniformly) among the N points to initial-
ize centers. Secondly, clusters are defined assigning each point to the cluster
of its closest randomly selected point. Defining such clusters runs in O(N)
time.

• Furthest Point (FP): FP selects randomly the first point. Once k < K
points are selected, the k + 1 next one maximizes the minimal distance from
this point to the previously k selected point. As outliers may be the furthest
from other points, this algorithm is easily affected by outliers. Selecting the
K points runs in O(K2N) time.

• K-means++: K-means++ is an upgraded and randomized version of FP.
K-means++ selects randomly the first point, and use different selection prob-
abilities instead of the deterministic max-min distance [2]. If a point is far
from the already selected points, its selection probability is higher. Selecting
K points for K-means++ runs in O(K2N) time.

• Forgy’s method: Forgy’s initialization uniformly and randomly assigns each
point to one of the K clusters, it runs in O(N) time [11].

• Hartigan’s method: Hartigan’s initialization firstly sorts the points accord-
ing to their distances from the centroid of the N initial points. The
k -th i ∈ {1, 2, . . . ,K} center is then chosen to be the point with posi-
tion round

(
(1 + N(k−1)

K)
)

in the sorted list [13]. Hartigan’s method runs in
O(N log N) time to define partitioning clusters, it is defined by the complexity
of the sorting algorithm.

3.2 Initialization Using 2D PF Indexation

The 2D PF indexation, illustrated in Fig. 1, allows to provide variants of the
random and Hartigan’s initialization, using this specific indexation. The follow-
ing strategies select initial centroids or medoids in O(N log N) time, the time
complexity of the sorting re-indexation:

18 J. Huang et al.

• N/(K + 1) − Uniform: using the 2d PF indexation, N/(K + 1) − Uniform

selects the K points at indexes round
(

kN
K+1

)
for k ∈ {1, 2 . . . ,K}.

• N/(2K) − Uniform: using the 2d PF indexation, N/(2K) − Uniform
selects the K points at indexes round

(
kN
2K

)
for k ∈ {1, 2 . . . ,K}.

• N/K-Random selection (N/K-RAND) N/K-RAND is a tailored variant
of RAND selection, the K points for initial centroids or medoids are randomly
chosen in each of the N/K-size intervals dividing uniformly the indexes of the
2D PF.

3.3 Initialization Using p-Dispersion for 2D PF

P-dispersion problems select P � 2 points among N initial points, maximiz-
ing diversity measures [10]. Some variants are solvable in polynomial time in a
2D PF [4]. Similarly with Hartigan’s heuristic, one may select initial centroids
or medoids among diversified points. We use the standard p-dispersion (Max-
Min p-dispersion) problem, having a time complexity in O(PN log N), other
variants running at least in O(PN2) [4]. Selecting directly K points with (Max-
Min) K-dispersion selects the two extreme points [4]. Two slight adaptations
are thus provided to avoid both extreme points, keeping the time complexity in
O(KN log N):

• K+2-dispersion (K + 2-disp): a K + 2-dispersion is solved using the DP
algorithm [4], and the two extreme points (x1 and xN after re-indexation)
are removed.

• 2K + 1 dispersion (2K + 1-disp): a 2K + 1-dispersion is solved using the
tailored DP algorithm [4], and we keep the even indexes reindexing the 2K+1
points from 1 to 2K + 1.

Note that standard p-center problems and variants have also time complexity
allowing quick initialization [6,7]. However, such dissimilarity measures are based
on the most extreme points, that would include outliers, which is not wished for
k-means and k-medoids initialization. K-center based initialization strategies are
thus not in our benchmark of initialization strategies.

3.4 Initialization Using 1D Dynamic Programming

One dimensional (1D) k-means is solvable in polynomial time, with an imple-
mentation available in a R package [22]. A first DP algorithm runs in O(KN2)
time and using O(KN) memory space [22]. An improvement was proposed in
O(KN) time and using O(N) memory space [12]. Such complexity result allows
for our application to use this 1D DP algorithm as an initialization heuristic to
define first clusters, using two heuristics to reduce the 2D PF into a 1D case:

• 1D-DP-reduc: using the specific shape of a 2D PF illustrated in Fig. 1, one
definea an approximated 1D structure, associating to each point xi of the 2D
PF the scalar zi =

∑i−1
j=0 ||xj − xj+1||. The 1D interval clustering define the

Comparing Local Search Initialization 19

indexation for the 2D PF clustering, computing the costs of clusters in the
2D PF requires respectively O(N) and O(N2) time computations for k-means
and k-medoids (which computes also the initial centroids or medoids).

• 1D-DP-linReg: this initialization is similar to 1D-DP-reduc, the difference
being in the reduction from a 2D PF case to 1D. A linear regression is used,
1D points zi are now the orthogonal projection of points xi in the linear
regression, as illustrated in Fig. 2.

Fig. 2. From a 2dPF to a 1D case with 1D-DP-linReg approach

4 Computational Experiments and Results

4.1 Data Generation

To the best of our knowledge, no specific datasets for 2D PF are available for our
study. Starting from any decreasing function f : [0, 1] → R, one may generate
2D PF with N random values in (yn) ∈ [0, 1]N and considering the 2D points
(yn, f(yn)) for n ∈ [[1;N]]. With a uniform distribution in the random generation
and a convex function f , such generation would be too regular, and the naive
N/(2K) − Uniform initialization would be very close to the trivial optimal
solutions. Hence, a new data generator, described in Algorithm 1, was provided
to furnish 2D PF without regularity, like the one given in Fig. 2:

In Algorithm 1, there is a loop invariant: list L contains non-dominated
points, and B contains the couple of neighbor points in L with the indexation of
Fig. 1. Starting from a point (x1, y1, x2, y2) ∈ B and having x3 ∈]x1, x2[and y3 ∈
]y1, y2[, we have (x1, y1) ≺ (x3, y3) ≺ (x2, y2). Hence, adding (x3, y3) in L keep
the two by two incomparability relations in L, and the neighboring properties
in B.

20 J. Huang et al.

Algorithm 1: random generation of a 2d-PF

Input: N the size of the wished 2D PF
initialize n = 2, L = {(0, 1000); (1000, 0)}, B = {(0, 1000, 1000, 0)}
for i = 3 to N

select randomly (x1, y1, x2, y2) ∈ B and remove it from B
select randomly x3 ∈]x1, x2[and y3 ∈]y1, y2[
add (x3, y3) in L and add (x1, y1, x3, y3) and (x3, y3, x2, y2) in B

end for
return L

4.2 Computational Experiments and Conditions

In our computational results, we used instances generated by Algorithm 1 with
five values of N , N ∈ {50; 100; 500; 1000; 5000}, generating 10 instances for each
value of N . For each generated 2D PF, we experimented K-clustering with five
values of K, K ∈ {2; 3; 5; 10; 20}. This defines a total of 250 = 5×5×10 instances
for k-medoids and k-means problems. For the reproducibility of the results, these
instances and the results instance by instance are available in https://github.
com/ndupin/Pareto2d. For these 250 instances, following results are provided
for each initialization strategy of k-means and k-medoids:

– the initial value of the heuristic solution;
– the value of the local minimum using PAM or Lloyd’s local search
– the number of iterations to converge to a local minimum

Having an exact DP algorithm for K-medoids, it allows to present the quality
of solutions in terms of over-cost gap related to the optimal solutions [5]. For
k-means, the similar DP algorithm is only a heuristic [9]. Solutions of the DP
algorithm are guaranteed optimal if a conjectured lemma is proven [9]. Our
experiments did not show any counter-example where a better solution is found,
the previous conjecture is not experimentally proven to be false, a perspective
is still to prove this conjecture.

Note that we do not provide computation times. The heuristics converge very
quickly, in order of second, which is visible in the number of iterations. Com-
paring the solving time with heuristics and the exact DP could be interesting.
Optimal values with DP algorithms were provided using K = 20 computations,
and storing the values in the DP matrix. Note that RAND, N/K-RAND, Forgy,
Hartigan, k-means++ are randomized initialization strategies, the results are
given in average using 25 runs with different seeds. Other initialization heuris-
tics are deterministic, one run is enough to provide the results.

Similarly to [8], a parallel local search uses a portfolio of several initializa-
tion strategies, and computes independently the local search algorithms for each
initial solution. It allows to have the best local minimum among the selected ini-
tialization strategies. Having two threads, the 1D DP initialization were selected,
the results are reported as Paral 1D DP. Allowing four threads, both previ-
ous initialization were selected with k-means++ and FP initialization, this is
denoted Parall4. These choices were motivated by Tables 1, 2, 3 and 4.

https://github.com/ndupin/Pareto2d
https://github.com/ndupin/Pareto2d

Comparing Local Search Initialization 21

Table 1. Comparison of statistical indicators for the relative over-costs of local mini-
mums induced by the different initialization strategies for the k-means problem, com-
parison to the solutions from [9].

Init. Time Average Q1 Median Q3 Variance

RAND O(N) 964,64 % 15,35 % 135,15 % 400,80 % –

Furthest P O(K2N) 41,75 % 1,90 % 18,80 % 50,43 % 57,21 %

Kmeans++ O(K2N) 74,67 % 14,03 % 48,05 % 93,10 % 94,38 %

Forgy O(N) 3224,63 % 31,48 % 330,15 % 2245,43 % –

Hartigan O(N logN) 1783,30 % 0,00 % 75,70 % 322,90 % –

N/(K+1)-Unif O(N logN) 1280,03 % 0,00 % 43,95 % 253,60 % –

N/2K-Unif O(N logN) 1221,94 % 0,00 % 42,40 % 249,25 % –

N/K-RAND O(N logN) 1142,18 % 6,83 % 50,30 % 236,43 % –

K+2 disp O(KN logN) 99,69 % 0,00 % 22,40 % 93,33 % 857,72 %

2K+1 disp O(KN logN) 399,72 % 0,00 % 12,35 % 72,20 % –

1D-DP-reduc O(KN) 336,50 % 0,00 % 0,15 % 115,18 % –

1D-DP-proj O(KN) 158,45 % 0,00 % 1,90 % 38,78 % 3677,36 %

Best Parall 2,90 % 0,00 % 0,00 % 0,90 % 0,83 %

Paral 1D DP 154,77 % 0,00 % 0,00 % 10,95 % 3685,79 %

Parall4 3,90 % 0,00 % 0,00 % 1,90 % 1,70 %

Tables 1 and 2 present statistical indicators for the quality of local minimums
induced by the different initialization strategies. For each initialization strategy,
the 250 instances provide a sequence of 250 local minimums, that can be com-
pared to the values of the DP algorithms [5,9]. Statistics are provided based
on the over-cost percentages, with average values and variance and quartiles to
analyze the dispersion.

Tables 3 and 4 present for k-means and k-medoids clustering the average
results for the initial solution and the induced local minimums for some given
values of K and N . It illustrates the improving rates of the local search for the
different initialization heuristics, but also the influence of K and N in the quality
of the primal heuristics.

4.3 Analyses of Computational Results

The average number of iterations for the convergence to a local minimum is
illustrated when N is increasing for k-means and k-medoids clustering in Figs. 3
and 4 respectively. The number of iteration is very small, and is also slightly
increasing. Keeping in mind that each iteration runs in O(N) or O(N2) for k-
means and k-medoids respectively, the initialization strategy is prominent in the
total computation time to apply PAM and Lloyd’s local searches. This property
is specific for 2D PF cases, this does not hold for general instances.

Generally, local minimums exist with a very poor quality, few such local mini-
mums degrade dramatically the average values, and the medians are much better

22 J. Huang et al.

Table 2. Comparison of statistical indicators for the relative over-costs of local min-
imums induced by the different initialization strategies for the k-medoids problem,
comparison to the optimal solution from [5].

Init Time Average Q1 Median Q3 Var

RAND O(N2) 1661,16 % 27,70 % 162,85 % 499,75 % –

Furthest P O((N +K2)N) 43,38 % 3,73 % 19,60 % 54,38 % 66,13 %

Kmeans++ O((N +K2)N) 79,54 % 15,78 % 53,25 % 109,48 % 118,93 %

Forgy O(N2) 3687,94 % 39,25 % 336,15 % 2304,70 % –

Hartigan O(N2) 2214,39 % 0,15 % 102,70 % 387,18 % –

N/(K+1)-Unif. O(N logN) 1921,86 % 0,00 % 72,55 % 358,65 % –

N/2K-Unif. O(N logN) 1723,85 % 0,00 % 83,20 % 355,08 % –

N/K-RAND O(N logN) 1526,19 % 11,38 % 84,20 % 330,25 % –

K+2 disp O(KN logN) 340,92 % 0,00 % 31,85 % 131,43 % –

2K+1 disp O(KN logN) 820,99 % 0,00 % 21,95 % 90,68 % –

1D-DP-reduc O(N2) 677,31 % 0,00 % 0,15 % 74,45 % –

1D-DP-proj O(N2) 617,97 % 0,00 % 0,60 % 23,40 % –

Best Parall 5,20 % 0,00 % 0,00 % 1,20 % 2,39 %

Paral 1D DP 615,29 % 0,00 % 0,00 % 16,53 % –

Parall4 5,87 % 0,00 % 0,00 % 2,78 % 2,58 %

than the average. Variance computations are in such cases non significative. One
must keep this in mind reading Tables 1 and 2. It is also visible in Tables 3 and 4
is some subsets. Note that Tables 1 and 2 provide results which are very similar
considering k-medoids or k-means clustering in a 2D PF.

RAND and Forgy’s initialization are the worst strategies in terms of quality
of local minimums. N/K-RAND improves the results obtained by the RAND
initialization, but the results are still unsatisfactory. FP, k-means++ are the best
generic approaches, and also the best approaches to avoid local minimums of a
poor quality. These initialization approaches are also the most time consuming,
as given by the complexities underlined in Tables 1 and 2.

Naive initialization using 2D PF indexation, N/(K+1)-Uniform and N/(2K)-
Uniform have very similar results, with more than a quartile of optimal solutions
found, and a degradation of the results for the other quartiles, with a quartile of
poor solutions. Initialization using p-dispersion improves the previous uniform
ones, with more than a half of excellent solutions, but the last quartile is mainly
composed of poor solutions. Initialization based in the 1D DP algorithm may be
seen as the best individual approaches to find optimal solutions, with more than
an half of excellent solutions. However, very poor local minimums still exist for
the resulting local search heuristic.

Comparing Local Search Initialization 23

Table 3. Comparison of average values on the datasets with N = 100, 1000, 5000 and
K = 3, 10 of the initial overcost gap to the optimal solutions after initialization and
after local search convergence for K-medoids. Bold values indicate the best average
values for a given size of instances.

For K = 3:

N=100 N=100 N=1000 N=1000 N=5000 N=5000
init init+LS init init+LS init init+LS

RAND 642,6% 39,5% 785,6% 34,7% 616,7% 50,7%
N/K-RAND 273,4% 29,1% 237,6% 28,5% 283,8% 30,5%
Furthest P 181,9% 37,4% 202,5% 23,0% 129,9% 18,4%
Kmeans++ 228,7% 55,5% 327,4% 56,3% 206,0% 15,0%
Hartigan’s 457,6% 54,3% 497,2% 24,2% 485,9% 84,1%
Forgy’s 1040,8% 97,0% 1247,0% 67,2% 1048,8% 73,6%
K+2 disp 372,8% 16,4% 562,8% 78,2% 262,4% 21,2%
2K+1 disp 165,1% 32,2% 321,8% 29,2% 161,1% 12,7%
N/(K+1)-Unif 307,2% 39,9% 259,2% 38,9% 373,0% 33,9%
N/2K-Unif 233,6% 41,1% 156,1% 39,1% 254,0% 36,6%
1D-DP-reduc 11,2% 0,2% 594,8% 134,8% 737,0% 154,6%
1D-DP-proj 13,1% 1,3% 136,2% 84,6% 737,0% 154,6%

For K = 10:

N=100 N=100 N=1000 N=1000 N=5000 N=5000
init init+LS init init+LS init init+LS

RAND 2624,14 % 501,14 % 3386,84 % 375,79 % 3633,05 % 418,77 %
N/K-RAND 822,59 % 298,63 % 1306,63 % 182,64 % 927,22 % 314,39 %
Furthest P 206,07 % 34,10 % 355,41 % 63,35 % 348,31 % 53,23 %
Kmeans++ 300,26 % 100,13 % 554,78 % 103,51 % 592,68 % 137,74 %
Hartigan’s 851,03 % 378,84 % 2646,14 % 249,99 % 1903,80 % 347,85 %
K+2 disp 1108,43 % 162,79 % 1170,57 % 125,64 % 1185,58 % 130,94 %
2K+1 disp 128,35 % 55,56 % 481,00 % 76,65 % 565,40 % 92,58 %
N/(K+1)-Unif 873,48 % 475,54 % 2122,56 % 212,33 % 1449,22 % 366,43 %
N/2K-Unif 733,31 % 271,75 % 1799,85 % 185,13 % 577,15 % 300,36 %
1D-DP-reduc 47,56 % 39,55 % 13,67 % 5,63 % 11,76 % 1,08 %
1D-DP-proj 47,17 % 41,58 % 23,47 % 6,87 % 19,89 % 5,06 %

Combining in parallel both 1D DP initialization significantly improves the
quality of quartiles, with more than a half of optimal solutions, but this is still
not enough to avoid the bad local minimums. Tables 3 and 4 shows that dif-
ficulty occurs with small values of K and high values of N , especially with
K = 3 and N = 5000. This induces to consider in the pool of initialization FP
and k-means++, these approaches having less dispersed results. Tables 3 and 4
illustrate the complementarity of FP and k-means++ with the 1D DP initializa-
tion. The resulting Parall4 heuristic provides accurately solutions of an excellent
quality, close to the best reachable ones with local search as shown in the row

24 J. Huang et al.

Table 4. Comparison of average values on the datasets with N = 100, 1000, 5000 and
K = 3, 10 of the initial overcost gap to the optimal solutions after initialization and
after local search convergence for K-means. Bold values indicate the best average values
for a given size of instances.

For K = 3:

N=100 N=100 N=1000 N=1000 N=5000 N=5000
init init+LS init init+LS init init+LS

RAND 630,57 % 28,84 % 771,83 % 30,91 % 651,72 % 38,05 %
N/K-RAND 323,33 % 37,22 % 272,00 % 18,09 % 389,23 % 16,20 %
Furthest P 256,02 % 29,10 % 291,39 % 22,30 % 282,99 % 16,88 %
Kmeans++ 178,97 % 27,10 % 242,87 % 22,79 % 130,54 % 11,73 %
Forgy 289,11 % 37,69 % 347,81 % 57,05 % 274,44 % 22,03 %
Hartigan 1088,12 % 79,35 % 1285,98 % 50,26 % 1093,43 % 75,43 %
N/(K+1)-Unif 391,51 % 11,76 % 586,49 % 9,43 % 274,81 % 22,00 %
N/2K-Unif 175,60 % 10,60 % 336,87 % 7,42 % 170,10 % 12,90 %
K+2 disp 246,78 % 38,16 % 165,30 % 18,09 % 266,10 % 19,06 %
2K+1 disp 479,67 % 31,57 % 518,54 % 18,09 % 506,01 % 63,30 %
1d-DP-reduc 1,00 % 0,00 % 1034,98 % 766,00 % 1113,41 % 814,74 %
1d-DP-proj 2,40 % 1,17 % 173,47 % 173,02 % 1113,41 % 814,74 %

For K = 10:

N=100 N=100 N=1000 N=1000 N=5000 N=5000
init init+LS init init+LS init init+LS

RAND 3315,60% 383,01% 2904,06% 310,10% 3826,40% 368,51%
N/K-RAND 999,86% 249,86% 2184,31% 222,75% 1487,10% 348,64%
Furthest P 973,94% 189,94% 1553,72% 151,53% 957,58% 284,20%
Kmeans++ 249,06% 39,92% 369,80% 54,48% 351,74% 50,75%
Forgy 378,58% 100,34% 593,75% 112,25% 649,23% 146,26%
Hartigan 14083,05% 1591,61% 25774,46% 1281,40% 30135,19% 1516,02%
N/(K+1)-Unif 1265,31% 153,61% 1205,87% 122,00% 1217,02% 127,50%
N/2K-Unif 158,00% 38,58% 497,14% 73,00% 581,67% 90,01%
K+2 disp 841,50% 233,27% 1852,64% 137,71% 593,71% 280,50%
2K+1 disp 974,50% 224,33% 2722,44% 246,10% 1952,80% 328,46%
1d-DP-reduc 57,04% 6,95% 5,70% 2,12% 1,28% 1,00%
1d-DP-proj 59,70% 9,82% 12,08% 5,07% 7,01% 5,20%

BestParall of Tables 1 and 2. Parall4 heuristic does not require a lot of compu-
tation times as in [5,9], and requires only 4 threads for parallel computations,
or one thread in a multi-start local search with four sequential local searches,
which runs in small computation times.

Comparing Local Search Initialization 25

Fig. 3. Number of iterations for K = 5,20 and Lloyd’s local search applied to the ini-
tialization strategies, with N varying from 50 to 5000

26 J. Huang et al.

Fig. 4. Number of iterations for K= 5,20 and PAM local search applied to the initial-
ization strategies, with N varying from 50 to 5000

5 Conclusions and Perspectives

Standard local search approaches, PAM and Lloyd’s heuristics, are investigated
in the 2D PF case to solve faster large instances of k-means and k-medoids clus-
tering than the DP algorithms. Generally, local minimums with a poor quality
are found using any initialization heuristic. Two heuristic reductions to the 1D
cases, allowing to use the specific 1D DP algorithm provided in average the
solutions with the best quality. The generic initialization methods, k-means++

Comparing Local Search Initialization 27

and Furthest Point, were the best to avoid local minimums of a poor quality.
Combining these four approaches in a parallel or multi-start local search heuris-
tic allows to have more accurately solutions of a good quality. Such approach
is much faster than the exact DP algorithms [5,9], for an application to large
instance sizes, this is due to the complexity of the initialization heuristics and
that a small number of iterations is required to converge to local optimums.

This numerical study offers several research perspectives. In the applications
to evolutionary algorithms of 2D PF clustering already discussed by [4,6,9], it
allows to have faster solutions of a very good quality. Perspective are also to
prove the global optimality of the solutions provided for k-means clustering in
a 2D PF by the DP algorithm [9]. Perspectives may be to improve the local
search for the specific 2D PF case instead of the generic PAM and Lloyd’s local
search algorithms, to improve the accuracy and avoid local minimums of a poor
quality. Lastly, one may try to generalize such study and results to dimension 3
and more. A challenging issue would be to extend an efficient projection to the
1D PF case, it was easier considering the 2D PF case.

References

1. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-
of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)

2. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)

3. Celebi, M., Kingravi, H., Vela, P.: A comparative study of efficient initialization
methods for the k-means clustering algorithm. Expert Syst. Appl. 40, 200–210
(2013). https://doi.org/10.1016/j.eswa.2012.07.021

4. Dupin, N.: Polynomial algorithms for p-dispersion problems in a 2D Pareto Front.
arXiv preprint arXiv:2002.11830 (2020)

5. Dupin, N., Nielsen, F., Talbi, E.-G.: K-medoids clustering is solvable in polynomial
time for a 2D Pareto Front. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.)
WCGO 2019. AISC, vol. 991, pp. 790–799. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-21803-4 79

6. Dupin, N., Nielsen, F., Talbi, E.-G.: Clustering a 2D Pareto Front: P-center prob-
lems are solvable in polynomial time. In: Dorronsoro, B., Ruiz, P., de la Torre, J.C.,
Urda, D., Talbi, E.-G. (eds.) OLA 2020. CCIS, vol. 1173, pp. 179–191. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-41913-4 15

7. Dupin, N., Nielsen, F., Talbi, E.: Unified polynomial Dynamic Programming algo-
rithms for p-center variants in a 2D Pareto Front. Mathematics 9(4), 453 (2021)

8. Dupin, N., Talbi, E.: Parallel matheuristics for the discrete unit commitment prob-
lem with min-stop ramping constraints. Int. Trans. Oper. Res. 27(1), 219–244
(2020)

9. Dupin, N., Talbi, E., Nielsen, F.: Dynamic programming heuristic for k-means
clustering among a 2-dimensional pareto frontier. In: 7th International Conference
on Metaheuristics and Nature Inspired Computing, META 2018 (2018)

10. Erkut, E., Neuman, S.: Comparison of four models for dispersing facilities. INFOR:
Inf. Syst. Oper. Res. 29(2), 68–86 (1991)

https://doi.org/10.1016/j.eswa.2012.07.021
http://arxiv.org/abs/2002.11830
https://doi.org/10.1007/978-3-030-21803-4_79
https://doi.org/10.1007/978-3-030-21803-4_79
https://doi.org/10.1007/978-3-030-41913-4_15

28 J. Huang et al.

11. Forgy, E.: Cluster analysis of multivariate data: efficiency vs. interpretability of
classification. Biometrics 21(3), 768–769 (1965)

12. Grønlund, A., et al.: Fast exact k-means, k-medians and Bregman divergence clus-
tering in 1D. arXiv preprint arXiv:1701.07204 (2017)

13. Hartigan, J., Wong, M.: Algorithm AS 136: a k-means clustering algorithm. J. R.
Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

14. Hassin, R., Tamir, A.: Improved complexity bounds for location problems on the
real line. Oper. Res. Lett. 10(7), 395–402 (1991)

15. Hsu, W., Nemhauser, G.: Easy and hard bottleneck location problems. Discret.
Appl. Math. 1(3), 209–215 (1979)

16. Jain, A.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8),
651–666 (2010)

17. Kaufman, L., Rousseeuw, P.: Clustering by Means of Medoids. North-Holland
(1987)

18. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

19. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar K-means problem is
NP-hard. Theor. Comput. Sci. 442, 13–21 (2012)

20. Nielsen, F.: Introduction to HPC with MPI for Data Science. Springer, Heidelberg
(2016)

21. Pena, J., Lozano, J., Larranaga, P.: An empirical comparison of four initializa-
tion methods for the k-means algorithm. Pattern Recogn. Lett. 20(10), 1027–1040
(1999)

22. Wang, H., Song, M.: Ckmeans.1d.dp: optimal k-means clustering in one dimension
by dynamic programming. R J. 3(2), 29–33 (2011)

http://arxiv.org/abs/1701.07204

Reinforcement Learning-Based Adaptive
Operator Selection

Rafet Durgut1(B) and Mehmet Emin Aydin2

1 Engineering Faculty, Computer Engineering Department, Karabuk University,
Karabük, Turkey

rafetdurgut@karabuk.edu.tr
2 UWE Bristol, Department of Computer Science and Creative Technologies,

Bristol, UK
mehmet.aydin@uwe.ac.uk

Abstract. Metaheuristic and swarm intelligence approaches require
devising optimisation algorithms with operators to let produce neigh-
bouring solutions to conduct a move. The efficiency of algorithms using
single operator remains recessive in comparison with those with multiple
operators. However, use of multiple operators require a selection mecha-
nism, which may not be always as productive as expected; therefore an
adaptive selection scheme is always needed. In this study, an experience-
based, reinforcement learning algorithm has been used to build an adap-
tive selection scheme implemented to work with a binary artificial bee
colony algorithm in which the selection mechanism learns when and sub-
ject to which circumstances an operator can help produce better and
worse neighbours. The implementations have been tested with commonly
used benchmarks of uncapacitated facility location problem. The results
demonstrates that the selection scheme developed based on reinforcement
learning, which can also be named as smart selection scheme, performs
much better that state-of-art adaptive selection schemes.

Keywords: Adaptive operator selection · Reinforcement learning ·
Artificial bee colony · Uncapacitated Facility Location Problem (UFLP)

1 Introduction

Metaheuristic and swarm intelligence algorithms have gained a deserved popu-
larity through the success accomplished over last few decades. Although they do
not guarantee globally optimal solutions within a reasonable time, the success
in offering useful near-optimum solutions within an affordable time has helped
gain such credit. This does not mean that metaheuristic and swarm intelligence
algorithms can be seamlessly implemented for a productive algorithmic solu-
tion. The main shortcoming arises in handling local optima capabilities, which
enforces researchers to build a balance in exploration for new and fresh solutions
while exploiting the gained success level within the search space. That is known

c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 29–41, 2021.
https://doi.org/10.1007/978-3-030-85672-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_3&domain=pdf
http://orcid.org/0000-0002-4890-5648
https://doi.org/10.1007/978-3-030-85672-4_3

30 R. Durgut and M. E. Aydin

as Exploration versus Exploitation (EvE) rate in the literature [5]. EvE rate
guides to search through as many neighbourhoods as possible while retaining
exploitation of achieved success and gained experience for a better performance,
where weaker exploration causes falling in local optima while weaker exploitation
would cause higher fluctuations in performance [12].

Metaheuristic approaches, especially population-based ones, use neighbour-
hood functions, also known as operators, to let the search process identify next
solutions to move to. It is conceivable that search with single operators would
have higher likelihood to stick in a local optima than multiple operators. Many
hybridisation approaches and memetic algorithms have been designed to help
diversify the search through a balanced EvE, which usually appear in the form
of using multiple operators subject to a selection scheme. The idea an operator
to apply after another would prevent the search falling in local optima contribut-
ing to diversification of the search. It appears that the nature of the operators
to be applied in an order and the order managed in use play very important
role in the success level of the algorithms. Adaptive operator selection schemes
have been studied for a while to achieve a useful balance in EvE and level of
diversification in search [11].

Adaptive operator selection is a process of two phases; (i) credit assignment in
which the selected operators are credited based on the level of success measured,
or (ii) operator selection in which an operator is identified to run based on
the credit level in order to produce a neighbour [10]. The amount of credit to
assign is decided using either the positive difference achieved in fitness values
or the categories of success or fail [9]. Credit assignment phase also covers the
calculation of the time window in which the amount of credit to assign to selected
operators is estimated [4]. On the other hand, operator selection phase imposes
prioritisation/rank of operators within a pool of functions/operators. Probability
Matching (PM), Adaptive Pursuit (AP) and Upper Confidence Bound (UCB)
are known to be among state-of-art operators selection schemes [4].

Adaptive operator selection schemes have been used in the literature with
evolutionary algorithms and swarm intelligence. Failho et al. [8] uses a multi-
armed bandits approach with genetic algorithms, while Durgut and Aydin [7]
comparatively studied the success of PM, AP, and UCB schemes to supply a
binary artificial bee colony algorithm. Yue et al. [18] proposes a self-adaptive
particle swarm optimisation algorithm adaptively selecting among 5 operators
to solve large scale feature selection problems.

Adaptive operator selection schemes estimate likelihood of each operator
within the pool relying on credits gained to the time. The selection happens
through the estimated likelihoods irrespective of the problem state in hand. It is
clear that the success of selected operator is not sensitive to the problem state;
whether it is in a harsh neighbourhood or trapped in a difficult local optima or
not. Reinforcement learning (RL) gains more and more popularity day-by-day
to solve dynamic problems progressively, gaining experiences through problems
solving process [3,16]. There are renown powerful RL algorithms let map input

Reinforcement Learning-Based Adaptive Operator Selection 31

sets to outputs through experiencing the the problems states and collecting envi-
ronmental responses to the actions taken [19].

In this study, an artificial bee colony (ABC) algorithm has been imple-
mented for solving uncapacitated facility location problems (UFLP) represented
in binary form. ABC algorithms have been implemented to solve many real-
world engineering problems. Among them are combinatorial optimisation prob-
lems, which formulated as binary optimisation problems. ABC can be viewed
as multi-start hill-climbing algorithms in optimisation, where new neighbouring
solutions are generated with operators as discussed above. In this study, the
ABC algorithm is furnished with multiple operators selected with reinforcement
learning-based selection scheme.

The rest of this paper is organised as follows; Adaptive operator selection
schemes are introduced in Sect. 2, the operator selection scheme developed based
on reinforcement algorithm is explained in Sect. 3. Experimentation and results
are presented and discussed in Sect. 4 while conclusions are briefed in Sect. 5.

2 Adaptive Operator Selection

One of the common problem of heuristic-based optimisation algorithms is that
search is inevitably driven into local optima, which sometimes remains as the
offered final solution. The aim of use multiple operator is to help rescue the
search from local optima by the means of diversifying search using different
neighbourhood functions/operators interchangeably or systematically. Operator
selection schemes are used for this purpose.

Operator selection is not necessarily to be adaptive by nature, but, most of
recent studies have been developed as adaptive to insert smartness in the process
of selection. Metaheuristic and evolutionary approaches can come up with self-
imposing operator selection. Evolutionary algorithms such as genetic algorithms
and genetic programming have self-contained probabilistic operator selection
while metaheuristics such as variable neighbourhood search imposes a system-
atic count-based operator change mechanism to achieve diversity in search and
manage neighbourhood change. Operator selection built-in algorithms do not
offer much flexibility in working with multiple operators, while memetic algo-
rithms, hill-climbing style heuristic algorithms and modern swarm intelligence
algorithms allow customising operator selection mechanism to engineer bespoke
efficient optimisation algorithms.

Adaptive operator selection is the process of prioritisation of the operators
based on merits, which can be imported in the algorithms via crediting each
operator based on achievements gained. Although there are a number of adaptive
operator selection schemes studied, the general mechanism is depicted in Fig. 1 in
which a two phase process is run; (i) operator selection and (ii) credit assignment.
As suggested, the pool of operators holds a finite number of operators to select
an operator from in order to produce neighbours to move to, while the selected
operators is credited upon its action and success level it achieves in producing
new solutions. The credit level to assign to the selected operator is estimated
based on preferred rules.

32 R. Durgut and M. E. Aydin

Fig. 1. General overview of adaptive operator selection process with support of popu-
lation and pool of operators

2.1 Operator Selection

The first phase of operator selection process is to execute the selection rule
imposed by operator selection scheme in order to produce neighbouring solu-
tions to move to. The main aim is to keep a EvE rate as balanced as possible so
that the search to be intensified within the neighbourhood as long as it produces
positively and to be diversified as soon as it turns to negative productivity. Liter-
ature reports a number of operator selection schemes; random selection, merit-
based selection, probability matching, adaptive pursuit and multi-arm bandit
approaches, e.g. upper confidence bound (UCB). Random selection chooses an
operator from the pool completely randomly, Roulette-wheel takes the success
counts of each operator into account to calculate a probability-based prioritisa-
tion, while probability matching (PM) approach accounts the success as merits
and lets to increase the selectability of non-chosen operators using the following
rule:

pi,t = pmin + (1 − Kpmin)
qi,t

∑K
j=1 qj,t

, i = 1, 2..K (1)

where K is the number of operators in the pool, pmin ∈ [0, 1] represents the min-
imum probability of being selected, and qi,t is the credit level/value of operation
i at time t. Both PM and AP use pmin to set a base probability for each oper-
ator, which would help address the EvE dilemma with allocating a minimum
chance to every operators to be selected. PM imposes to calculate the probabili-
ties of being selected per operation, while AP uses the strategy of “winner takes
all” approach that credits more to promising options. adaptive pursuit (AP)
calculates the probabilities with Eq. 2.

pi,t =

{
pi,t−1 + β(pmax − pi,t−1), if i = it∗
pi,t−1 + β(pmin − pi,t−1), otherwise

(2)

Both of PM and AP impose higher dominance for exploitation, which is
aimed to decrease by UCB using the following rule, which selects the operator
with highest probability.

pi,t =

{
1 − pmin ∗ (K − 1) if i = it∗
pmin, otherwise

(3)

Reinforcement Learning-Based Adaptive Operator Selection 33

where K is the number of operators in the pool, pmin ∈ [0, 1] represents the
minimum (base) probability for being selected, it∗ is calculated with 4.

it∗ = arg max
i=1,..,K

{qi,t + C ×
√

2 log
∑K

j=1 nj,t

ni,t
} (4)

where opt represents the selected operator, C works as a scaling factor, n is
number of times the operator selected while qi,t and ni,t on the right-hand-side
of equation help control EvE dilemma, respectively.

2.2 Credit Assignment

The next phase of adaptive operator selection process is to estimate a credit to
be assigned to the operator just used. This involves how to estimate the amount
of reward to assign and what to be the base for estimate of a credit. Literature
suggests that mainly two classes of approaches have been implemented; whether
a success has been achieved or not, or how much positive difference accomplished.
The former approach considers if the result is “success” or “fail”, while the latter
processes the amount of achievement in quantity to estimate the level of reward
to assign.

The process of credit assignment entails clarifying the time window with
which the reward level is to be estimated. The time window can span from last
single step to a pre-defined number of previous steps in which the credit level
and/or the achievement level can be averaged. This reveals that a credit can be
decided as instant credit, an averaged credit or the maximum credit.

3 Proposed Approach: Adaptive Selection
with Reinforced-Clusters

Operator selection adaptively developed and used for higher efficiency in diver-
sification of search process. The operator selection schemes, even the adaptive
ones, propose choosing an operator based on credits gained over the success
counts through out the search, but, regardless of the input sets, the problem
state, and search circumstances. The merit-based schemes usually select opera-
tors through a blind process, where the total gained credit is relied on regardless
of the status of search etc. It is known that operators do not always produce suc-
cess due to their limitations; each performs better under some circumstances,
while does worse in other circumstances. Once the fruitful circumstances are
ascertained for each operator, a complementary policy can be customised for
deliberative selection to achieve success.

This study aims to propose a more conscious selection process developed
based on reinforcement learning approach implemented into a distance-based
clustering algorithm in which the distance in between the input set and the
fine-tuned cluster centres is estimated and made reference index in operator

34 R. Durgut and M. E. Aydin

selection. The idea of setting up a selection scheme based on clusters is dis-
cussed and implemented in machine learning studies. Reinforcement learning is
known to be very useful in handling dynamically changing environment and for
solving dynamic problems, particularly for operating within unknown dynamic
environments. One of earlier studies proposes embedding reinforcement learn-
ing in a distance-based clustering algorithm, namely hard-c-means algorithm, to
train agents to select the best scheduling operator subject to dynamic production
environments to solve dynamic scheduling problems [2]. Inspiring of this study,
a reinforced-clustering algorithm is put together to optimise the cluster centres
so that the problem states can be classified with optimised clusters, where each
cluster will correspond to an operator. The algorithm will impose selecting the
cluster centre, operator, closer to the input set in distance. This will facilitates
a selection scheme conscious with problem state.

Operators are selected based on probabilities, pi,t, calculated as in Eq. 3,
where the best operator is determined using Eq. 5. The other operators are also
prioritised based on the distance in between the problem state at time t, xt,
and the cluster centres, ct - corresponding to the operators. Here, the distance
metric used in this study is hamming distance due to the binary representation
of the problem and the operators.

it∗ = arg min
i=1,..,K

{βqi,t + γei(xt)} (5)

where qi,t is the credit level/value of operation i at time t, while ei(xt) = ‖xt −
ci‖, the estimated distance between an input set and cluster ci, β and γ are
coefficients to balance between credit and distance metrics. Note that unlike
other methods, the reward value of good solutions is reflected as negative.

4 Experimental Results

The reinforced-clustering-based operator selection scheme has been tested with a
binary ABC algorithm to solve uncapacitated facility location problem (UFLP)
instances, which is one of well-known NP-Hard combinatorial problem. The
details of UFLP benchmarking instances taken form OR-Library can be found
in many articles [1,7].

The problem solving algorithm to use reinforced-clustering-based operator
selection scheme is chosen as the standard artificial bee colony (ABC) algo-
rithm reported in [13]. The standard ABC is designed for continuous numerical
optimisation problems, while UFLP is a combinatorial optimisation problem rep-
resented in binary form [17]. The algorithm has been rearranged to work with
state-of-art binary operators; binABC [15] and ibinABC [6] work on the basis of
XOR logical operator and disABC [14] uses a hamming distance-based binary
logic.

Algorithm 1 presents a pseudo code of ABC algorithm embedded with
reinforced-cluster-based operator selection scheme implemented for UFL prob-
lems. As seen, ABC imposes a three-phase process to evolve a swarm (pop-
ulation) of solutions. The first phase exploits employed bees to generate new

Reinforcement Learning-Based Adaptive Operator Selection 35

Algorithm 1. The pseudo code of binary ABC embedded with reinforced-cluster
based operator selection scheme
1: Initialisation phase:
2: Set algorithm parameters
3: Create initial population
4: while Termination criteria is not met do
5: Employed bee phase:
6: Select operators and assign to bees
7: for i=1 to N do
8: Select neighbour, apply operator and obtain candidate solution (vi)
9: if f(vi) is better than f(xi) then
10: Replace vi with xi

11: Get reward and add to rop,t and update centroid of cop,t
12: Reset trial counter
13: else
14: Increment trial counter
15: end if
16: end for
17: Onlooker bee phase:
18: Calculate probabilities for food sources
19: Select operators and assign to bees
20: Increment operator counter, t=0
21: for i=1 to N do
22: Determine current solution according to probability
23: Select neighbour food source
24: Apply operator and obtain candidate solution (vc)
25: if f(vc) is better than f(xc) then
26: Replace vc with xc

27: Get reward and add to rop,t and update centroid of cop,t
28: Reset trial counter
29: else
30: Increment trial counter
31: end if
32: end for
33: Update Phase:
34: Credit assignment
35: Memorisation
36: Scout bee phase:
37: if Limit is exceed for any bee then
38: Create random solution for the first exceeding bee and evaluate it
39: end if
40: end while

solutions with selected binary operators applying to the materials taken from
a selected solutions and one of its neighbours. The generated solution is added
to the swarm if it is better than the parents, the amount of reward to allocate
to the operators is estimated and the position of centre for selected and used
operator is updated. If the the generated new solution is not better than the
parent solution no reward is generated and the trail counter is incremented.

The onlooker bees conduct the second phase of ABC in which the solutions
are selected with a probabilistic approach to let randomness contribute the diver-
sity of the swarm. Similar to the first phase, the operator selection, the reward
estimation and crediting are performed and the corresponding cluster centres are
updated. The scout bees follow up the onlookers to replace from non-improvable
solutions with randomly generated ones to keep the swarm further divers.

The experimentation has started with parametric study to fine-tune param-
eters used in both the algorithm and within the mechanics of the operator

36 R. Durgut and M. E. Aydin

selection scheme. The experimentation for parametric study has been conducted
using the hardest benchmarking instance of UFL problem, which is known as
CapC. The parameters configured for best fit are tabulated in Table 1 and aver-
aged over 30 repetitions.

Table 1. Parameter configurations tested

Parameter Values

Reward Inst Avrg Max

Pmin 0.10 0.20 0.30

W 10.00 25.00 50.00

β 0.01 0.05 0.10

γ 0.10 0.50 0.90

Table 2 presents the hit metric, which is the number of trails attained the
optimum. The best performance so far is 25 hits out of 30 trails, where γ = 0.5,
β = 0.01 and Pmin = 0.1 are found and setup. Next, the reward estimation
across a time/iteration window is fine-tuned, where the parametric study results
obtained for average and extreme rewards are tabulated in Table 3. The best hit
values are obtained 25 and 27 out of 30 trails for average and extreme reward
cases. respectively.

Table 2. Parameter tuning for Instant reward measured with hit metric

γ Pmin

0.1 0.2 0.3

β β β

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

0.1 24 16 20 18 24 24 24 24 24

0.5 25 21 19 19 19 21 24 19 14

0.9 16 21 14 21 21 14 17 21 17

The window size (W) of 25 and 50 produce best results, while all trails are
tested with Pmin = 0.1, β = 0.05 and γ = 0.1. The averaged achievements
conclude that W = 25 produces the best configuration.

The best configuration concluded out of parametric study has been run with
hardest benchmark instances, CapC, to trace the operator selection through
timeline, where the progress of operation selection is plotted in Fig. 2. The plot
demonstrates that disABC operates best over the first 200 iterations and then
ibinABC takes over the best delivery. binABC doesn’t perform well in compar-
ison to other two as suggested in the plot.

Reinforcement Learning-Based Adaptive Operator Selection 37

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100
Operator Usage

binABC
ibinABC
DisABC

Fig. 2. Operator usage rates through search process

The results by the proposed approach have been tabulated in Table 4 along-
side of other adaptive operator selection methods explained above for compara-
tive purposes. As seen, all adaptive methods embedded in binary ABC algorithm
have assisted solve all UFLP benchmark instances with 100% success except
CapC, where the Gap and St. Dev metrics are 0 and the hit measure is 30 out
of 30 for all instances except CapC. It is paramount to define the gap as the

Table 3. Parametric fine-tuning results in hit metric for both average and extreme
rewards

W Pmin β Average Reward Extreme Reward W Pmin β Average Reward Extreme Reward

γ γ γ γ

0.1 0.3 0.9 0.1 0.3 0.9 0.1 0.3 0.9 0.1 0.3 0.9

5 0.1 0.01 16 21 16 24 25 24 25 0.1 0.01 22 20 22 22 23 24

0.05 23 19 17 23 24 23 0.05 25 17 19 27 21 23

0.1 21 19 18 23 24 19 0.1 24 21 18 22 19 21

0.2 0.01 24 21 23 19 19 23 0.2 0.01 23 21 21 17 25 23

0.05 22 20 18 21 19 17 0.05 15 19 21 21 22 22

0.1 20 21 19 19 18 19 0.1 22 20 21 17 25 23

0.3 0.01 20 21 23 19 18 20 0.3 0.01 21 20 20 20 16 26

0.05 20 23 20 21 20 19 0.05 20 18 18 22 23 17

0.1 22 15 18 21 16 19 0.1 21 18 19 25 22 16

10 0.1 0.01 25 21 24 22 16 25 50 0.1 0.01 23 19 19 21 18 19

0.05 21 23 20 20 18 22 0.05 21 22 19 27 21 19

0.1 24 15 23 22 19 22 0.1 20 20 18 21 18 23

0.2 0.01 25 19 20 21 18 13 0.2 0.01 18 20 25 21 22 19

0.05 21 22 20 14 23 17 0.05 19 21 19 21 18 18

0.1 24 21 20 15 21 21 0.1 23 14 22 22 17 19

0.3 0.01 24 20 20 24 20 19 0.3 0.01 16 25 20 21 18 20

0.05 21 14 16 20 24 19 0.05 22 17 21 22 16 20

0.1 23 21 19 20 20 22 0.1 16 19 16 21 14 18

38 R. Durgut and M. E. Aydin

Table 4. The comparative results obtained; the proposed operator selection scheme
vs alternatives

Benchmarks PM-ABC AP-BABC UCB-BABC C-BABC

Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit

Cap71 0 0 30 0 0 30 0 0 30 0 0 30

Cap72 0 0 30 0 0 30 0 0 30 0 0 30

Cap73 0 0 30 0 0 30 0 0 30 0 0 30

Cap74 0 0 30 0 0 30 0 0 30 0 0 30

Cap101 0 0 30 0 0 30 0 0 30 0 0 30

Cap102 0 0 30 0 0 30 0 0 30 0 0 30

Cap103 0 0 30 0 0 30 0 0 30 0 0 30

Cap104 0 0 30 0 0 30 0 0 30 0 0 30

Cap131 0 0 30 0 0 30 0 0 30 0 0 30

Cap132 0 0 30 0 0 30 0 0 30 0 0 30

Cap133 0 0 30 0 0 30 0 0 30 0 0 30

Cap134 0 0 30 0 0 30 0 0 30 0 0 30

CapA 0 0 30 0 0 30 0 0 30 0 0 30

CapB 0 0 30 0 0 30 0 0 30 0 0 30

CapC 0.0055 1428.003 25 0.0043 1302.539 26 0.0087 1694.457 22 0.0033 1149.5 27

average difference in between the optimum value and the fitness/cost value
found, while St. Dev. is the standard deviation calculated over 30 repeated trails.
CapC seems to be the hardest benchmark instance, which helps fine-tuning the
hyper parameters and comparing the results produced by each rival approaches.
The proposed method, labelled as “C-BABC” in the tables, produces the lowest
gap and st. dev and the highest hit in comparisons to “PM-BABC”, “AP-BABC”
and “UCB-BABC”, which are the binary ABC algorithms embedded with PM,
AP and UCB as explained above.

The success of proposed method has been comparatively tested with a num-
ber of recently published studies, which can be considered as state-of-art works.
The comparative results have been picked up form corresponding articles [1]
and tabulated with the results produced by the proposed approach. As clearly
seen on Table 5, the proposed method, C-BABC, outperforms all the algorithms
known to be the state-of-the-art with a 100% success of solving all benchmark
instances except CapC, which is solved with the highest score, while binAAA
and JayaX solve all instances except CapB and CapC. Due to level of hardness
in solving CapB and CapC approaches are tested with, so is the proposed app-
roach in comparative way. The difference between the results by the proposed
approach and other competitor algorithms have been tested statistically with
Wilcoxon signed rank and the results are presented in Table 6, where C-BABC,
the proposed method is significantly performed better.

Reinforcement Learning-Based Adaptive Operator Selection 39

Table 5. Comparative results; The proposed method (C-BABC) versus some state-of-
art approaches

Benchmark GA-SP BPSO binAAA JayaX C-BABC

Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit

Cap71 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30

Cap72 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30

Cap73 0.066 899.65 19 0.024 634.625 26 0 0 30 0 0 30 0 0 30

Cap74 0 0 30 0.0088 500.272 29 0 0 30 0 0 30 0 0 30

Cap101 0.068 421.655 11 0.0432 428.658 18 0 0 30 0 0 30 0 0 30

Cap102 0 0 30 0.00989 321.588 28 0 0 30 0 0 30 0 0 30

Cap103 0.063 505.036 6 0.04939 521.237 14 0 0 30 0 0 30 0 0 30

Cap104 0 0 30 0.040 1432.239 28 0 0 30 0 0 30 0 0 30

Cap131 0.068 720.877 16 0.171 1505.749 10 0 0 30 0 0 30 0 0 30

Cap132 0 0 30 0.058 1055.238 21 0 0 30 0 0 30 0 0 30

Cap133 0.091 685.076 10 0.082 690.192 10 0 0 30 0 0 30 0 0 30

Cap134 0 0 30 0.195 2594.211 18 0 0 30 0 0 30 0 0 30

CapA 0.046 22451.21 24 1.69 319855.4 8 0 0 30 0 0 30 0 0 30

CapB 0.58 66658.65 9 1.40 135326.7 5 0.24 39224.74 15 0.07 27033.02 26 0 0 30

CapC 0.70 51848.28 2 1.62 115156.4 1 0.29 29766.31 1 0.021 5455.94 17 0.0033 1149.5 27

Table 6. Statistical test results for state-of-art methods compared with proposed app-
roach

Benchmarks binAAA JayaX BPSO GA-SP

p-value H p-value H p-value H p-value H

Cap71 1 0 1 0 1 0 1 0

Cap72 1 0 1 0 1 0 1 0

Cap73 1 0 1 0 1.E-01 0 1.E-03 1

Cap74 1 0 1 0 3.E-06 1 4.E-08 1

Cap101 1 0 1 0 2.E-01 0 4.E-04 1

Cap102 1 0 1 0 5.E-01 0 1 0

Cap103 1 0 1 0 1.E-06 1 1.E-06 1

Cap104 1 0 1 0 5.E-01 0 1 0

Cap131 1 0 1 0 1.E-06 1 1.E-06 1

Cap132 1 0 1 0 1.E+00 0 4.E-08 1

Cap133 1 0 1 0 2.E-06 1 1.E-06 1

Cap134 1 0 1 0 5.E-04 1 1 0

CapA 1 0 1 0 5.E-05 1 1.E-01 0

CapB 6.E-05 1 2.E-07 1 2.E-06 1 2.E-06 1

CapC 4.E-06 1 1.E-04 1 3.E-06 1 4.E-06 1

5 Conclusion

This study has been done to investigate how machine learning can help adapt a
dynamically updating scheme for operator selection within ABC algorithms as
one of recently developed swarm intelligence approaches in solving binary prob-
lems. The research has been done embedding an online learning mechanism into

40 R. Durgut and M. E. Aydin

binary ABC to learn which operator performs better in given circumstances.
The main contribution of this research is that the adaptive operator selection
has been achieved through reinforcement learning which is implemented with
Hard-C-means clustering algorithm converted its unsupervised nature into rein-
forcement learning. Unlike the previously suggested adaptive selection schemes,
this approach maps the binary input set into corresponding operators, hence,
each time the hamming distance between both binary sets is used to make
the selection, while the centres of the clusters are optimised/fine-tuned with
estimated rewards per operator selection. The optimised cluster centres remain
as the basis of operator selection. The proposed algorithm is tested with solv-
ing UFL problems, and statistically verified that the proposed approach signif-
icantly outperforms the state-of-art approaches in solving the same benchmark
instances. It is also demonstrated that other existing adaptive approaches are
also outperformed.

References

1. Aslan, M., Gunduz, M., Kiran, M.S.: Jayax: jaya algorithm with xor operator for
binary optimization. Appl. Soft Comput. 82, 105576 (2019)

2. Aydin, M.E., Öztemel, E.: Dynamic job-shop scheduling using reinforcement learn-
ing agents. Robot. Auton. Syst. 33(2–3), 169–178 (2000)

3. Coronato, A., Naeem, M., De Pietro, G., Paragliola, G.: Reinforcement learning for
intelligent healthcare applications: a survey. Artif. Intell. Med. 109, 101964 (2020)

4. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection
with dynamic multi-armed bandits. In: Proceedings of the 10th annual conference
on Genetic and evolutionary computation, pp. 913–920 (2008)

5. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation
metaheuristic algorithms. Comput. Ind. Eng. 137, 106040 (2019)

6. Durgut, R.: Improved binary artificial bee colony algorithm. Frontiers of Informa-
tion Technology & Electronic Engineering (in press) (2020)

7. Durgut, R., Aydin, M.E.: Adaptive binary artificial bee colony algorithm. Appl.
Soft Comput. 101, 107054 (2021)

8. Fialho, Á.: Adaptive operator selection for optimization. Ph.D. thesis, Université
Paris Sud-Paris XI (2010)

9. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive
operator selection. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C.
(eds.) PPSN 2008. LNCS, vol. 5199, pp. 175–184. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87700-4 18

10. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Analyzing bandit-based adap-
tive operator selection mechanisms. Ann. Math. Artif. Intell. 60(1–2), 25–64 (2010)

11. Hussain, A., Muhammad, Y.S.: Trade-off between exploration and exploitation
with genetic algorithm using a novel selection operator. Complex Intell. Syst. 6,
1–14 (2019)

12. Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y.: On the exploration and exploita-
tion in popular swarm-based metaheuristic algorithms. Neural Comput. Appl.
31(11), 7665–7683 (2019)

13. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC)
algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

https://doi.org/10.1007/978-3-540-87700-4_18

Reinforcement Learning-Based Adaptive Operator Selection 41

14. Kashan, M.H., Nahavandi, N., Kashan, A.H.: DisABC: a new artificial bee colony
algorithm for binary optimization. Appl. Soft Comput. 12(1), 342–352 (2012)

15. Kiran, M.S., Gündüz, M.: Xor-based artificial bee colony algorithm for binary
optimization. Turkish J. Electr. Eng. Comput. Sci. 21(Sup. 2), 2307–2328 (2013)

16. Moerland, T.M., Broekens, J., Jonker, C.M.: Model-based reinforcement learning:
A survey. arXiv preprint arXiv:2006.16712 (2020)

17. Ozturk, C., Hancer, E., Karaboga, D.: Dynamic clustering with improved binary
artificial bee colony algorithm. Appl. Soft Comput. 28, 69–80 (2015)

18. Xue, Y., Xue, B., Zhang, M.: Self-adaptive particle swarm optimization for large-
scale feature selection in classification. ACM Trans. Knowl. Discov. Data (TKDD)
13(5), 1–27 (2019)

19. Yang, T., Zhao, L., Li, W., Zomaya, A.Y.: Reinforcement learning in sustainable
energy and electric systems: a survey. Ann. Rev. Control 49, 145–163 (2020)

http://arxiv.org/abs/2006.16712

Learning for Optimization

A Learning-Based Iterated Local Search
Algorithm for Solving the Traveling

Salesman Problem

Maryam Karimi-Mamaghan(B) , Bastien Pasdeloup ,
Mehrdad Mohammadi , and Patrick Meyer

IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238 Brest, France
{maryam.karimi,bastien.pasdeloup,mehrdad.mohammadi,

patrick.meyer}@imt-atlantique.fr

Abstract. In this paper, we study the use of reinforcement learning in
adaptive operator selection within the Iterated Local Search metaheuris-
tic for solving the well-known NP-Hard Traveling Salesman Problem.
This metaheuristic basically employs single local search and perturbation
operators for finding the (near-) optimal solution. In this paper, by incor-
porating multiple local search and perturbation operators, we explore
the use of reinforcement learning, and more specifically Q-learning as a
machine learning technique, to intelligently select the most appropriate
search operator(s) at each stage of the search process. The Q-learning is
separately used for both local search operator selection and perturbation
operator selection. The performance of the proposed algorithms is tested
through a comparative analysis against a set of benchmark algorithms.
Finally, we show that intelligently selecting the search operators not only
provides better solutions with lower optimality gaps but also accelerates
the convergence of the algorithms toward promising solutions.

Keywords: Adaptive operator selection · Iterated local search ·
Reinforcement learning · Q-learning · Traveling salesman problem

1 Introduction

Combinatorial Optimization Problems (COPs) are a complex class of opti-
mization problems with discrete decision variables and a finite search space.
Many COPs are NP-hard for which no polynomial-time algorithm exists. Meta-
heuristics (MHs) can solve these problems in a reasonable time and provide them
with acceptable solutions; however, they do not guarantee the optimality [25].
MHs employ either single or multiple search operators to evolve a single or a
population of solutions toward (near-) optimal solutions. When using multiple
search operators, the problem of operator selection arises.

Individual search operators may be effective in particular stages of the search
process and not throughout the search process. The reason is that the search
space of COPs is a non-stationary environment that includes different search
c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 45–61, 2021.
https://doi.org/10.1007/978-3-030-85672-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_4&domain=pdf
http://orcid.org/0000-0003-2889-5769
http://orcid.org/0000-0002-8417-7537
http://orcid.org/0000-0002-3726-8356
http://orcid.org/0000-0001-6479-213X
https://doi.org/10.1007/978-3-030-85672-4_4

46 M. Karimi-Mamaghan et al.

regions with dissimilar characteristics. Therefore, different search operators act
differently in different regions of the search space [7]. Accordingly, solving COPs
with single search operators does not necessarily lead to the highest performance
of the search process. Intuitively, employing multiple search operators selected
in an appropriate way during the search process not only leads to a more robust
behavior of a MH with respect to the process of finding the optimal solution [22],
but also significantly affects the exploration (i.e., explore undiscovered regions)
and exploitation (i.e., intensify the search in promising regions) abilities of a MH,
and provides an Exploration-Exploitation balance during the search process. The
main question in this regard is in which order the search operators should be
employed such that the MH can go toward the global optimum. One efficient
way is to dynamically select and apply the most appropriate operators based
on their history of performance during the search process. This is referred to as
Adaptive Operator Selection (AOS) [7]. Adaptive selection strategies may differ
from very simple strategies to more advanced ones. In simple strategies, such
as score-based selection strategy [19], an initial score is assigned to each search
operator and the scores are updated based on the performance of each operator
at each step of the search process. In this strategy, the selection chance of each
search operators is then proportional to its accumulated score. Regardless of the
neglectable overhead that they impose to the search process, the added-value of
simple strategies may not be necessarily significant [27]. Hence, more advanced
adaptive strategies should be embedded into the AOS.

In this regard, Machine Learning (ML) techniques can be used in AOS to
provide a more intelligent adaptive strategy when selecting the search operators
during the search process. The integration of ML techniques into MHs is an
emerging research field that has attracted numerous researchers in recent years
[3,5,8,10,11,18,23,26]. In particular, ML techniques help the AOS to use feed-
back information on the performance of the search operators during the search
process. In this situation, operators are selected based on a credit assigned to
each operator (i.e., feedback from their historical performance). Considering the
nature of the feedback, the learning can be offline or online. In offline learning,
knowledge is extracted from a set of training instance with the aim to solve new
problem instances. In online learning, the knowledge is extracted and incorpo-
rated into the resolution process dynamically while solving a problem instance
[4,26].

In this paper, we study the use of reinforcement learning (RL), particularly
Q-learning as a ML technique, in AOS within the Iterated Local Search (ILS)
meta-heuristic [13] for solving the well-known NP-hard Traveling Salesman Prob-
lem (TSP). The ILS basically employs single local search and perturbation oper-
ators for finding the (near-) optimal solutions. However, there are several specific
and efficient local search and perturbation operators for TSP in the literature
(e.g., 2-opt, 3-opt, insertion, etc. as local search operators and double-bridge,
shuffle-sequence, etc. as perturbation operators) [25] that can be employed simul-
taneously. In this paper, we incorporate multiple local search and perturbation
operators into the ILS and use Q-learning to adaptively select among them dur-

A Learning-Based Iterated Local Search Algorithm for Solving the TSP 47

ing the search process. Indeed, Q-learning is integrated into ILS to adaptively
select its operators during the search process. This integrated algorithm is called
Q-ILS hereafter. In this paper, two variants of Q-ILS are proposed: in the first
algorithm called Q-ILS-1, Q-learning is used to select appropriate local search
operators at each stage of the search process, and in the second algorithm called
Q-ILS-2, Q-learning is used for selecting appropriate perturbation operators. We
will show that both Q-ILS-1 and Q-ILS-2 are able to find good solutions and
outperform the ILS with single operator and also ILS with multiple randomly
selected operators.

The rest of the paper is organized as follows. Section 2 reviews the recent rel-
evant papers studying Q-learning for AOS in solving different COPs. Section 3
explains the preliminaries and main concepts of this paper. The two Q-ILS algo-
rithms (Q-ILS-1 and Q-ILS-2) are proposed in Sect. 4. The performances of the
proposed algorithms are investigated in Sect. 5. Finally, the conclusion is given
in Sect. 6.

2 Literature Review

AOS has been widely studied within different MHs for adaptively selecting the
search operators [7,15,16,30]. Most of the studies use simple score-based meth-
ods that select operators based on their accumulated score [7]. Besides simple
score-based mechanisms for AOS, RL techniques, in particular Q-learning algo-
rithm, have been used for AOS in recent years [2,9,17,21,22]. In the following,
the studies on the use of Q-learning algorithm for AOS for solving different COPs
are elaborated.

In [22], Q-learning has been integrated into a Variable Neighborhood Search
algorithm to solve the symmetric TSP. The role of Q-learning is to select appro-
priate local search operators during the search process, where both the states and
actions are a set of local search operators (i.e., interchange, insertion, 2-opt, and
double-bridge). The authors show that using Q-learning to intelligently select
the local search operators achieves satisfactory results for small-sized instances
of the TSP. In [21], the Q-learning algorithm is used to select the search oper-
ators of a Genetic algorithm, namely mutation and crossover operators, during
the search process for solving TSP. The authors discuss that adaptive operator
selection based on the immediate performance of the operators might lead to a
short-sighted optimization. Therefore, to overcome this shortcoming, they rec-
ommended using RL that can learn a policy to maximize the expected reward
in a long-term prospect. In [17], the authors have used Q-learning algorithm to
select appropriate local search operators of a Simulated Annealing algorithm.
The proposed algorithm is applied to mixed-model sequencing problem to select
among exchange, shift, and knowledge sharing operators. The states are defined
as the number of successful neighbor moves (i.e., moves that improve the objec-
tive function) occurred during an episode, and actions are a set of triplet local
search operators. They show that the integration of Q-learning into Simulated
Annealing significantly improves its performance comparing to other Simulated

48 M. Karimi-Mamaghan et al.

Annealing-based algorithms. In [2], the authors have employed Q-learning to
select the order of applying mutation and crossover operators in each generation
of the Genetic algorithm. In their algorithm, five states are defined depending on
the number of chromosomes within the population that are replaced by executing
an action, and there are two possible actions; apply crossover first and mutation
next or apply mutation first and crossover next. To show the performance of the
proposed method, it is applied to job sequencing and tool switching problem.
The authors show that the proposed algorithm is competitive and even superior
to the state-of-the-art algorithms for solving some instances of the problem.

As shown by the reviewed papers, the use of Q-learning in AOS has provided
promising results in solving different COPs, and even in some cases it has been
superior to some state-of-the-art algorithms. Motivated by the good performance
of Q-learning, this paper aims at investigating the integration of Q-learning
into AOS to select local search (Q-ILS-1 algorithm) and perturbation (Q-ILS-2
algorithm) operators of the ILS for solving the TSP.

The main contributions of this paper compared to the literature are threefold:
1) for the first time, this paper investigates the use of Q-learning in ILS for
intelligently selecting the search operators throughout the search process, 2) the
Q-learning is integrated into ILS in two levels for selecting local search and
perturbation operators, with the aim of investigating the effect of intelligent
AOS in each level, and 3) a new design of Q-learning is proposed where a set of
appropriate states and actions are defined according to the level of integration.
In Q-ILS-1 the states are defined as the sequence of last k local search operators
and the actions are the local search operators. In Q-ILS-2, we define two states;
0 if there is no improvement in the best found solution during an episode and 1;
otherwise, and the actions are a set of perturbation operators.

3 Preliminaries

In this section, first a short introduction to the TSP is provided. Next, the basics
of the ILS algorithm and the Q-learning algorithm are explained.

3.1 Traveling Salesman Problem

TSP is a classical NP-hard COP, which requires exponential time to be solved
to optimality [12]. TSP can be formally defined by means of a weighted graph
G = (V,A) where V is the set of vertices representing cities and A is the set of
edges that connect the vertices of V . The edge that connects cities i and j has
a weight of dij , which represents the distance between cities i and j; i, j ∈ V . In
TSP, the aim is to find the Hamiltonian cycle of minimum total travel distance
such that all vertices are visited exactly once.

3.2 Iterated Local Search

Iterated Local Search (ILS) is a well-known MH for its effectiveness in both
exploration and exploitation and its simplicity in practice. When the search gets

A Learning-Based Iterated Local Search Algorithm for Solving the TSP 49

trapped in a local optimum, ILS attempts to escape from the trap without losing
many of the good properties of the current solution [13]. Considering sbest as the
best solution found in the history of ILS, the general pseudo code of ILS is given
in Algorithm1. For a given initial solution s0, a LocalSearch(.) function is
performed on solution s0 to search its neighborhood with the hope to find better
solutions, particularly the local optimal solution s∗. Subsequently, s∗ is archived
as the current best solution sbest. Then, the main loop of the ILS starts by per-
forming a Perturbation(.) function over the current local optimum solution s∗

to help the search process to escape from the local optimum; whereby an inter-
mediate solution s′ is generated. The LocalSearch(.) function is performed on
the intermediate solution s′ to obtain a new local optimal solution s∗′

. Next, the
Acceptance(s∗, s∗′

, sbest) function is employed to check whether the new local
optimal solution s∗′

is accepted. The Acceptance(.) function can only accept
better solution (i.e., Only Improvement strategy) or it can even accept worse
solution with a small gap (i.e., Metropolis acceptance strategy [14]). Finally, the
best solution sbest is updated. The algorithm terminates when the termination
criterion is satisfied.

Algorithm 1. Pseudo code of the ILS

1 get an initial solution s0
2 s∗ := LocalSearch(s0)
3 sbest := s∗

4 while termination criterion not reached do
5 s′ := Perturbation(s∗)
6 s∗′

:= LocalSearch(s′)
7 s∗ := Acceptance(s∗, s∗′

, sbest)
8 end
9 return the best found solution sbest

3.3 The Q-Learning Algorithm

In RL, an agent interacts with the environment and aims to iteratively learn
which action to take at a given state of the environment to achieve a goal. At
each interaction depending on the state s (s ∈ S) the agent takes an action a
(a ∈ A(s)) and receives a numerical feedback from the environment. Through
this process, the agent attempts to iteratively maximize the cumulative received
reward. Classical RL methods need the complete model of the environment (i.e.,
all possible states of the system, the set of possible actions per state, and the
matrix of transition probabilities as well as the expected values of the feedback).
However, in most problems including COPs, it is not possible to have a complete
model of the environment [29]. In such cases, Monte Carlo and Temporal Differ-
ence algorithms can be used [24]. The Q-learning algorithm [28] is a model-free
RL algorithm based on temporal differences. In Q-learning, a Q-value is asso-
ciated with each state-action pair (s, a) that represents the expected gain of

50 M. Karimi-Mamaghan et al.

the choice of action a at state s. The Q-value of each state-action pair (s, a) is
updated using Expression (1).

Q(s, a) ← Q(s, a) + α[r + γ max
a′

Q(s′, a′) − Q(s, a)] (1)

where r is the reward (punishment) received after performing action a in state
s and γ (0 ≤ γ < 1) and α (0 ≤ α < 1) are the discount factor and the learning
rate, respectively.

One strategy to select the actions in Q-learning is to always select the action
with the maximum Q-value. In this strategy, the best state-action pairs with
the maximum Q-values are exploited sufficiently, while other state-action pairs
remain unexplored. To cope with this issue and to make a balance between
exploration and exploitation, the ε-greedy strategy (Expression (2)) [24] is an
efficient strategy that assigns an ε selection probability to other actions to give
them a chance to be explored.

a =

⎧
⎨

⎩

argmax
a

Q(s, a) with probability 1 − ε

any other action with probability ε
(2)

To move from exploration of new actions toward exploitation of the best
actions, the value of ε gradually degrades throughout the search process using a
parameter β called ε-decay.

4 Proposed Q-ILS Algorithms

This section proposes two Q-ILS-1 and Q-ILS-2 algorithms and explains their
corresponding operators and properties.

4.1 Q-ILS-1 Algorithm

The novelty of the proposed Q-ILS-1 algorithm is development of a new local
search procedure for ILS based on the ideas from AOS and Q-learning. The
proposed local search procedure adaptively selects appropriate operators during
the search process based on the currently employed operator and operators’
history of performance. In the first step, a pool of local search operators are
incorporated into the algorithm. Then, the proposed Q-learning algorithm is
integrated into AOS to select local search operators.

General Framework. In Q-ILS-1, the local search operators perform a descent-
based search and continue until no more improvements are found. As the per-
turbation operator, we employ double-bridge operator wherein four edges are
removed from the route of the cities and sub-routes are reconnected in another
way to explore a new route [25]. The Acceptance(.) function in Q-ILS-1 applies
a Metropolis acceptance strategy [14] that accepts all improved solutions and

A Learning-Based Iterated Local Search Algorithm for Solving the TSP 51

even non-improved solutions with a probability of exp Δf
T , where Δf is the dif-

ference between the objective function before and after applying the local search
operator, and parameter T denotes the temperature. The higher the value of T ,
the higher the chance to accept worse moves and vice versa.

Local Search Operators. In Q-ILS-1, three efficient local search operators
are used; the basic 2-opt [25], a new 2-opt, and a new insertion operators. The
basic 2-opt removes two edges from the route of the cities and reconnects the
sub-routes with new edges.

In this paper, we propose a new 2-opt operator based on the idea of best-
move 2-opt presented in [6]. In the best-move 2-opt, in each iteration of the
local search, all the improving moves are identified and sorted based on their
improvement value, and only the best improving move is performed. In this
way, the information gathered about other improving moves is neglected and
remain unused. However, in the proposed 2-opt, the main idea is to use the
gathered information about the improving moves and to perform all possible
moves simultaneously as long as they can be done independently (i.e., they do
not share any segment of the route). In this way, in an iteration of the local
search, a greater value of improvement achieves. We call this new 2opt, the
best-independent-moves 2-opt. To explain the procedure of the proposed 2-opt,
consider a simple example of Fig. 1. In the first step, all improving moves are
identified (moves 1, 2, 3, and 4 with improving values in parenthesis). Then, the
improving moves are sorted based on their improvement values in a descending
order (moves 2, 4, 1, 3). Finally, starting from the first move, all the independent
moves are performed simultaneously (moves 2, 4, and 3). Indeed, move 1 cannot
be applied immediately after move 4 since they share the same segment “Q-R-A”.

In addition, we propose a new insertion operator in this paper. In the new pro-
posed insertion operator, four types of moves are employed: forward-left, forward-
right, backward-left, and backward-right. Let’s consider two k → i → l and
m → j → n segments of the route, where the first segment is visited before the
second segment. In addition, consider that two cities i and j undergo the insertion
operator. The four above-mentioned insertion moves produce m → i → j → n,
m → j → i → n, k → j → i → l, and k → i → j → l, respectively. Finally, the
best insertion move among all four moves are applied to the solution.

Action, State, and Reward. In Q-ILS-1, the actions are the set of local
search operators to be selected and applied at each iteration and the states are
the sequence of last k local search operators (k is equal to 1). At the end of each
iteration, the performance of the employed perturbation operator is evaluated.
Then, a reward or punishment is assigned to the employed operator. If the oper-
ator has been able to improve the best found solution, it receives a reward equal
to the proportional improvement of the objective function; otherwise, it receives
a punishment and is deleted from the set of available actions for the next iter-
ation. In some cases, where no operator is able to improve the solution and set
of available operators is empty, one operator is selected and applied randomly.

52 M. Karimi-Mamaghan et al.

Fig. 1. Independent improving moves in the best-independent-moves 2-opt operator

4.2 Q-ILS-2 Algorithm

The novelty of the proposed Q-ILS-2 algorithm is development of a new per-
turbation procedure for ILS based on the ideas from AOS and Q-learning. In
this algorithm, the type of perturbation operators and the number of times to
apply them are adaptively selected based on the status of the search using the Q-
learning algorithm. The aim of the proposed perturbation procedure is to adapt
the exploration level to the status of the search. The general framework of Q-
ILS-2 is the same as Q-ILS-1 except that Q-ILS-2, employs the best-independent-
moves 2-opt operator as its single local search operator.

Perturbation Operators. In Q-ILS-2, a pool of three different perturbation
operators are employed; the Double-bridge operator, the Shuffle-sequence oper-
ator that perturbs the solution by re-ordering a randomly selected sequence
at random, and the Reversion-sequence operator that perturbs the solution by
reversing a randomly selected sequence from the solution.

Action, State, and Reward. In Q-ILS-2, the actions are tuples (P,R), where
P is the type of the perturbation operator and R is the repetition number of
the perturbation operator P . Each action is given a chance of one episode equal
to a fixed number of iterations to help the solution to escape from the local
optimum. Accordingly, the states are the set of S = {0, 1}. s = 1 if the current
perturbation operator P with R number of repetition followed by the local search
has been able to improve the best found solution in an episode and s = 0,
otherwise. After evaluation of the current action at the end of each episode, a
reward (punishment) is assigned to the corresponding action. If the operator
has been able to improve the best found solution, it receives a reward equal to
the proportional improvement of the objective function; otherwise, it receives a
punishment.

A Learning-Based Iterated Local Search Algorithm for Solving the TSP 53

5 Results and Discussion

In this section, the performance of the two proposed algorithms, Q-ILS-1 and
Q-ILS-2 are validated through a set of experimental results. For this aim, the
experiments are designed in Sect. 5.1. Next, the numerical results are presented
in Sect. 5.2.

5.1 Experimental Design

The performance of the proposed algorithms are validated through a set of 24
randomly selected symmetric TSP instances from the TSPLIB library [1] with
different number of cities ranging from 50 to 2150. Two different experiments
are done in this paper. First, the performance of the proposed algorithms in
finding the optimal solution is investigated. Second, a comparative study is done
to assess the efficiency of employing Q-learning in AOS. For this aim, first, to
show the effectiveness of intelligent operator selection, Q-ILS-1 and Q-ILS-2
are compared to their corresponding Random ILS (R-ILS) with the same set
of operators selected randomly. Second, in order to show the effectiveness of
incorporating multiple operators into ILS, Q-ILS-1 and Q-ILS-2 are compared
to their corresponding S-ILS algorithms, each employing single local search and
perturbation operators.

For the Q-ILS-2, the maximum number of repetitions R of double-bride,
shuffle-sequence and reversion-sequence are considered equal to 3, 1, and 1,
respectively. The input parameters of the proposed algorithms are tuned using
Design of Experiments [20] where ε = 0.8, α = 0.6, γ = 0.5, β = 0.999, and
episode = 3. Each algorithm has been executed 30 times on each instance and is
stopped after 0.2N number of iterations without improvement, where N is the
number of cities in each instance. All algorithms have been coded in Python 3
and executed on an Intel Core i5 with 2.7 GHz CPU and 16G of RAM.

The performance of the algorithms is measured using two main criteria [25]:

• The solution quality represented as the Relative Percentage Deviation (RPD).
The RPD is calculated as RPD = OF−OF ∗

OF ∗ × 100, where OF is the objective
function (i.e., tour length) of the best found solution by each algorithm and
OF ∗ is the objective function of the optimal solution.

• The convergence behavior of the algorithms that measures how fast (i.e.,
when/ at which iteration) an algorithm converges to the best found (optimal)
solution.

5.2 Numerical Results

The performance of Q-ILS-1 and Q-ILS-2 in achieving the (near-) optimal solu-
tion are investigated through Tables 1 and 2. In these tables, the columns “Best
RPD” and “Best time” are the gap of the best found solution and its correspond-
ing CPU time, respectively and the columns “Average RPD” and “Average time"
are the average gap and average CPU time over 30 executions.

54 M. Karimi-Mamaghan et al.

Table 1. Result of the proposed Q-ILS-1 in comparison to the optimal solutions

Instance Optimal Best RPD (%) Best time (s) Average RPD (%) Average
time (s)

berlin52 7542 0 0.1 0 0.7

st70 675 0 2.4 0.037 9.9

kroA100 21282 0 0.3 0.005 10.2

rd100 7910 0 9.3 0.173 25.9

lin105 14379 0 0.5 0 15.2

pr124 59030 0 4.7 0.004 34.1

ch130 6110 0.262 42.9 0.546 73.4

ch150 6528 0.077 50.5 0.465 50.8

u159 42080 0 5.8 0 55.4

d198 15780 0.165 286.8 0.263 220.9

kroA200 29368 0.051 97.3 0.352 237.5

ts225 126643 0 1.1 0 48.0

pr264 49135 0 303.5 0.402 207.1

a280 2579 0 451.8 0.587 396.8

pr299 48191 0.151 734.7 0.805 704.3

lin318 42029 0.895 737.2 1.559 688.7

fl417 11861 0.430 605.5 0.696 796.1

pr439 107217 0.755 840.1 2.308 778.2

pcb442 50778 1.061 747.7 1.568 758.4

d493 35002 1.451 16.5 2.135 643.4

vm1084 239297 3.025 1461.4 4.217 2012.2

d1291 50801 3.173 782.4 4.295 1835.3

u1817 57201 4.142 254.0 4.858 664.4

u2152 64253 3.836 235.3 4.841 919.8

Table 1 indicates that Q-ILS-1 is able to find optimal solution in both small-
and medium-sized instances and it is able to find near-optimal solutions with
an optimality gap of 3.83% for the largest instance with 2152 cities. By looking
at the “Best RPD” and the “Average RPD” results, it can be seen that Q-ILS-
1 has produced small gaps over all 30 executions. In terms of the CPU time,
the higher the size of the instance, the higher the CPU time of the algorithm.
By looking at the “Best Time” and the “Average Time” results, it can be seen
how expensive certain instances are in terms of CPU time. For example, instance
“ts225” with 225 cities is much less expensive comparing to instance “ch130” with
130 cities. Accordingly, the number of cities is not the only factor that affects
the computational complexity of the instance, but the geographical distribution
of the cities is also an important factor.

A Learning-Based Iterated Local Search Algorithm for Solving the TSP 55

Table 2. Result of the proposed Q-ILS-2 in comparison to the optimal solutions

Instance Optimal Best RPD (%) Best time (s) Average RPD (%) Average
time (s)

berlin52 7542 0 0 0 0.2
st70 675 0 0.7 0.109 4.5
kroA100 21282 0 1.3 0 7.3
rd100 7910 0 3.6 0.201 14.2
lin105 14379 0 0.4 0 4.5
pr124 59030 0 1.8 0 8.7
ch130 6110 0 17.4 0.359 40.4
ch150 6528 0 19.8 0.374 33.2
u159 42080 0 9.6 0.112 42.9
d198 15780 0.057 149.4 0.180 147.5
kroA200 29368 0 117.3 0.150 194.8
ts225 126643 0 56.5 0.002 108.9
pr264 49135 0 61.4 0.172 135.8
a280 2579 0 246.4 0.498 276.5
pr299 48191 0 453.1 0.274 440.7
lin318 42029 0.302 502.4 0.795 479.6
fl417 11861 0.211 574.5 0.339 553.0
pr439 107217 0.438 573.9 1.392 528.2
pcb442 50778 0.640 518.4 1.294 521.6
d493 35002 0.923 571.5 1.499 587.8
vm1084 239297 3.061 2729.6 3.717 2608.3
d1291 50801 2.281 1985.9 3.418 2060.1
u1817 57201 3.449 412.1 4.366 1416
u2152 64253 3.947 1967.5 4.531 1022.3

Some of the observations from Table 1 can be also generalized to the results of
Table 2. Besides the zero optimality gap for small- and medium-sized instances,
Q-ILS-2 is even able to find optimal solution for some large-sized instances up to
300 cities. For larger instances, small gaps have been also reported with an
optimality gap of 3.94% for the largest instance with 2152 cities. Similar to Q-
ILS-1, the results of “Best RPD” and “Average RPD” show that Q-ILS-2 produces
small gaps over all 30 executions for almost all instances.

Table 3 shows the comparative results of Q-ILS-1 and Q-ILS-2 against R-ILS
and S-ILS algorithms. Considering Q-ILS-1 with three local search operators,
there are three S-ILS; S-ILS-1 to S-ILS-3 that stand for the use of basic 2-opt,
best-independent-moves 2-opt and insertion local search operators, respectively.

Considering Q-ILS-2 with three perturbation operators, S-ILS-1 to S-ILS-
3 stand for the use of double-bridge, shuffle-sequence, and reversion-sequence

56 M. Karimi-Mamaghan et al.

Table 3. The RPD (%) of R-ILS and S-ILS comparing to Q-ILS-1 and Q-ILS-2

Instance Q-ILS-1 Q-ILS-2
R-ILS S-ILS R-ILS S-ILS

1 2 3 1 2 3

berlin52 2.04 1.34 2.09 3.01 3.34 3.48 3.17 2.10
st70 1.05 1.03 1.21 1.00 1.19 1.25 0.74 0.83
kroA100 0.34 0.76 0.43 2.17 0.97 1.23 0.58 0.64
rd100 1.23 1.53 1.63 3.00 1.43 1.79 1.20 1.62
lin105 1.39 1.07 1.19 1.02 0.83 1.84 1.24 0.85
pr124 0.60 0.72 0.93 1.87 1.06 1.21 0.65 0.70
ch130 0.99 1.51 1.12 2.60 1.68 2.18 1.12 1.23
ch150 0.95 1.19 1.29 3.20 1.31 2.36 1.01 1.17
u159 1.78 1.44 1.26 2.28 2.28 2.99 1.28 1.74
d198 0.43 0.39 0.51 2.65 0.73 1.92 0.71 0.96
kroA200 0.53 0.31 0.37 1.07 1.33 1.91 0.60 1.02
ts225 0.72 0.81 0.97 3.67 0.72 1.54 0.74 0.80
pr264 1.00 1.15 1.22 5.05 1.67 3.39 1.12 1.14
a280 1.96 1.84 2.27 4.23 2.23 4.17 1.53 2.00
pr299 1.63 2.07 1.56 5.06 2.22 4.23 1.65 2.18
lin318 0.58 0.48 0.58 0.97 1.81 3.34 1.44 1.79
fl417 1.67 2.00 2.19 5.11 1.14 3.88 2.19 1.99
pr439 1.51 1.22 1.68 3.16 2.78 3.65 1.75 1.45
pcb442 0.77 1.34 1.40 3.36 1.26 3.16 1.66 1.97
d493 0.85 0.87 1.49 3.28 1.26 3.58 2.18 2.06
vm1084 0.67 1.01 1.44 3.58 1.33 2.74 1.40 1.89
d1291 1.15 1.08 1.74 2.82 2.06 3.33 2.30 2.62
u1817 2.19 1.35 2.82 5.17 1.57 3.18 3.14 3.24
u2152 2.45 1.26 2.46 5.59 1.75 2.72 2.43 2.52

operators perturbation operators repeated only once, respectively. The values in
Table 3 represent the RPD of other algorithms (i.e., R-ILS and S-ILS) comparing
to Q-ILS-1 and Q-ILS-2 which is calculated as Eq. 3.

RPDR(S) =
OFR(S) − OFQ

OFQ
× 100 (3)

where OFR(S) is the average tour length obtained by R-ILS (S-ILS) for each
instance and OFQ is the average tour length obtained by Q-ILS-1/Q-ILS-2. A
positive RPD value for an algorithm represents that the corresponding algorithm
has a positive gap compared to the Q-ILS-1/Q-ILS-2. The RPD values equal
to 0 shows both the two algorithms have led to the same solution. It can be

A Learning-Based Iterated Local Search Algorithm for Solving the TSP 57

Fig. 2. Convergence behavior of Q-ILS-1 comparing to its benchmarks for instance
d493

seen that both R-ILS and S-ILS for almost all the instances have positive gap
compared to Q-ILS-1 and Q-ILS-2. This highlights the outperformance of the
proposed Q-ILS algorithms over R-ILS and S-ILS in terms of the optimality gap.
Investigating the results of R-ILS with positive gaps illustrates the efficiency
of integrating the knowledge from the Q-learning algorithm into the operator
selection mechanism of the ILS algorithm. Furthermore, the performance of Q-
ILS algorithms are better than the S-ILS algorithms with single local search or
perturbation operators. It shows the efficiency of employing different operators
when solving TSP instances. Based on the obtained results, it can be concluded
that intelligent selection of the operators at each stage of the search process
using Q-learning provides promising results when solving TSP instances.

In addition to investigating the performance of Q-ILS-1 and Q-ILS-2 over R-
ILS and S-ILS in finding (near-) optimal solutions, the algorithms are also com-
pared based on their convergence behavior. In this regard, the gap to the optimal
solution for the instance “d493” for different algorithms at different stages of the
search are depicted in Fig. 2 for Q-ILS-1 and Fig. 3 for Q-ILS-2.

As Figs. 2 and 3 illustrate, the convergence of Q-ILS-1 and Q-ILS-2 happens
at earlier stages of the search, about 40% of the search process for Q-ILS-1 and
60% of the search process for Q-ILS-2, which leads to solutions with higher qual-
ity in both algorithms. Considering Fig. 3, although R-ILS converges at earlier
stages, it is a premature convergence which cannot be improved by the end of the
search process. Considering both Figs. 2 and 3, all algorithms are competitive
but the Q-ILS-1 and Q-ILS-2 always converge faster to the good solutions. The
faster convergence of Q-ILS-1 and Q-ILS-2 is also observed for all TSP instances.

Based on the obtained results, the integration of Q-learning into ILS in
both levels provides promising results. Comparing the performance of the pro-
posed Q-ILS-1 and Q-ILS-2 algorithms, it can be seen that Q-ILS-2 outperforms
the Q-ILS-1 in all selected instances. It can be concluded that incorporating

58 M. Karimi-Mamaghan et al.

Fig. 3. Convergence behavior of Q-ILS-2 comparing to its benchmarks for instance
d493

multiple efficient perturbation operators with different characteristics into ILS
and intelligently selecting among them significantly enhances the exploration
ability of the ILS.

6 Conclusion

In this paper, we have integrated the Q-learning algorithm as a machine learning
technique to select the most appropriate search operators in the ILS algorithm
for solving TSP. For this aim, the Q-learning has been integrated into the ILS
algorithm in two levels: 1) selecting the appropriate local search operators and
2) selecting the appropriate perturbation operators at each stage of the search
process. In the first integration level, a set of three local search operators includ-
ing the basic 2-opt, a new 2opt, and a new insertion operator are considered.
In the second integration level, the selection is done among three perturbation
operators including double-bridge, shuffle-sequence and reversion-sequence.

The performance of the proposed algorithms has been tested on a set of 24
symmetric TSP instances from the TSPLIB library. In addition, a comparative
study has been conducted to investigate the efficiency of intelligently select-
ing search operators using Q-learning algorithm. The results showed that the
proposed algorithms are able to find optimal solutions for small- and medium-
sized instances and near-optimal solutions for large-sized instances with small
gaps. Through the comparative analysis, it was observed that employing several
search operators provides better performance for the ILS when solving the TSP
instances. Furthermore, the impact of the Q-learning for intelligently selecting
the appropriate search operators at each stage of the search process was signifi-
cant.

Finally, it was concluded that employing different perturbation operators pro-
vides better results in comparison to employing different local search operators.

A Learning-Based Iterated Local Search Algorithm for Solving the TSP 59

Indeed, the ILS algorithm is inherently powerful in exploitation while it gets
trapped easily in local optimum. Accordingly, considering different perturbation
operators and selecting the most appropriate one at each stage of the search
process helps the ILS to escape from the local optimum. ILS with multiple
perturbation operators becomes more and more efficient when the knowledge
obtained from the Q-learning algorithm is injected into its operator selection
mechanism.

Testing the performance of the proposed algorithms on TSP instances with
larger sizes could be an interesting future research direction. In addition, con-
sidering other types of local search and perturbation operators and testing their
performance is another future research direction that is worth of further investi-
gation. Finally, comparing the performance of the proposed algorithms against
the benchmark algorithms in the literature and statistically checking their dif-
ferences could be another future research work.

References

1. www.elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
2. Ahmadi, E., Goldengorin, B., Süer, G.A., Mosadegh, H.: A hybrid method of 2-

TSP and novel learning-based GA for job sequencing and tool switching problem.
Appl. Soft Comput. 65, 214–229 (2018)

3. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

4. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.:
A classification of hyper-heuristic approaches: revisited. In: Gendreau, M., Potvin,
J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 453–477. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_14

5. Calvet, L., de Armas, J., Masip, D., Juan, A.A.: Learnheuristics: hybridizing
metaheuristics with machine learning for optimization with dynamic inputs. Open
Math. 15(1), 261–280 (2017)

6. El Krari, M., El Benani, B., et al.: Breakout local search for the travelling salesman
problem. Comput. Inform. 37(3), 656–672 (2018)

7. Fialho, Á.: Adaptive operator selection for optimization. Ph.D. thesis, Université
Paris Sud - Paris XI (2010)

8. Karimi-Mamaghan, M., Mohammadi, M., Jula, P., Pirayesh, A., Ahmadi, H.: A
learning-based metaheuristic for a multi-objective agile inspection planning model
under uncertainty. Eur. J. Oper. Res. 285(2), 513–537 (2020)

9. Karimi-Mamaghan, M., Mohammadi, M., Pasdeloup, B., Billot, R., Meyer, P.: An
online learning-based metaheuristic for solving combinatorial optimization prob-
lems. In: 21ème congrès annuel de la société Française de Recherche Opérationnelle
et d’Aide à la Décision (ROADEF) (2020)

10. Karimi-Mamaghan, M., Mohammadi, M., Pirayesh, A., Karimi-Mamaghan, A.M.,
Irani, H.: Hub-and-spoke network design under congestion: a learning based meta-
heuristic. Transp. Res. Part E: Logist. Transp. Rev. 142, 102069 (2020)

11. Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M.,
Talbi, E.G.: Machine Learning at the service of Meta-heuristics for solving Com-
binatorial Optimization Problems: A state-of-the-art. Eur. J. Oper. Res. (2021)

www.elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
https://doi.org/10.1007/978-3-319-91086-4_14

60 M. Karimi-Mamaghan et al.

12. Karp, R.M.: On the computational complexity of combinatorial problems. Net-
works 5(1), 45–68 (1975)

13. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics. ISOR, vol. 57, pp. 320–
353. Springer, Heidelberg (2003). https://doi.org/10.1007/0-306-48056-5_11

14. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–
1092 (1953)

15. Mohammadi, M., Jula, P., Tavakkoli-Moghaddam, R.: Reliable single-allocation
hub location problem with disruptions. Transp. Res. Part E: Logist. Transp. Rev.
123, 90–120 (2019)

16. Mohammadi, M., Tavakkoli-Moghaddam, R., Siadat, A., Dantan, J.Y.: Design of
a reliable logistics network with hub disruption under uncertainty. Appl. Math.
Model. 40(9–10), 5621–5642 (2016)

17. Mosadegh, H., Ghomi, S.F., Süer, G.A.: Stochastic mixed-model assembly line
sequencing problem: mathematical modeling and q-learning based simulated
annealing hyper-heuristics. Eur. J. Oper. Res. 282(2), 530–544 (2020)

18. Pasdeloup, B., Karimi-Mamaghan, M., Mohammadi, M., Meyer, P.: Autoencoder-
based generation of individuals in population-based metaheuristics. In: ROADEF
2020: 21ème Congrès Annuel de la Société Française de Recherche Opérationnelle
et d’Aide à la Décision (2020)

19. Peng, B., Zhang, Y., Gajpal, Y., Chen, X.: A memetic algorithm for the green
vehicle routing problem. Sustainability 11(21), 6055 (2019)

20. Ridge, E., Kudenko, D.: Tuning an algorithm using design of experiments. In:
Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimen-
tal Methods for the Analysis of Optimization Algorithms, pp. 265–286. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-02538-9_11

21. Sakurai, Y., Takada, K., Kawabe, T., Tsuruta, S.: A method to control parameters
of evolutionary algorithms by using reinforcement learning. In: 2010 Sixth Inter-
national Conference on Signal-Image Technology and Internet Based Systems, pp.
74–79. IEEE (2010)

22. dos Santos, J.P.Q., de Melo, J.D., Neto, A.D.D., Aloise, D.: Reactive search strate-
gies using reinforcement learning, local search algorithms and variable neighbor-
hood search. Expert Syst. Appl. 41(10), 4939–4949 (2014)

23. Song, H., Triguero, I., Özcan, E.: A review on the self and dual interactions
between machine learning and optimisation. Progr. Artif. Intell. 8(2), 143–165
(2019). https://doi.org/10.1007/s13748-019-00185-z

24. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

25. Talbi, E.G.: Metaheuristics: From Design to Implementation, vol. 74. Wiley, Hobo-
ken (2009)

26. Talbi, E.G.: Combining metaheuristics with mathematical programming, con-
straint programming and machine learning. Ann. Oper. Res. 240(1), 171–215
(2016). https://doi.org/10.1007/s10479-015-2034-y

27. Turkeš, R., Sörensen, K., Hvattum, L.M.: Meta-analysis of metaheuristics: quan-
tifying the effect of adaptiveness in adaptive large neighborhood search. Eur. J.
Oper. Res. 292(2), 423–442 (2021)

28. Watkins, C.J.C.H.: Learning from delayed rewards (1989)

https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/978-3-642-02538-9_11
https://doi.org/10.1007/s13748-019-00185-z
https://doi.org/10.1007/s10479-015-2034-y

A Learning-Based Iterated Local Search Algorithm for Solving the TSP 61

29. Wauters, T., Verbeeck, K., De Causmaecker, P., Berghe, G.V.: Boosting meta-
heuristic search using reinforcement learning. In: Talbi, E.G. (ed.) Hybrid Meta-
heuristics. Studies in Computational Intelligence, vol. 434, pp. 433–452. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-30671-6_17

30. Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., Mohammadi, M.: Sustain-
able design of a closed-loop location-routing-inventory supply chain network under
mixed uncertainty. Transp. Res. Part E: Logist. Transp. Rev. 89, 182–214 (2016)

https://doi.org/10.1007/978-3-642-30671-6_17

A Hybrid Approach for Data-Based
Models Using a Least-Squares Regression

Malin Lachmann(B) and Christof Büskens

Center for Industrial Mathematics, University of Bremen,
Bibliothekstraße 5, 28359 Bremen, Germany

mlachmann@uni-bremen.de, bueskens@math.uni-bremen.de

Abstract. An increased use of renewable energy could significantly
reduce greenhouse gas emissions but is difficult to realize since most
renewable energy sources underlie volatile availability. Making use of
storage devices and scheduling consumers to times when energy is avail-
able allows to increase the amount of renewable energy that can be used.
For this purpose, adequate models for forecasting the energy generated
and consumed as well as for the behavior of storage devices are essen-
tial. Many data-based modeling approaches are computationally costly
and therefore difficult to apply in real-world systems. Hence we present a
computationally efficient modeling approach using a least-squares regres-
sion. Besides, we propose to use a hybrid model approach and evaluate
it on real-world data at the examples of modeling the state of charge of
a battery storage and the temperature inside a milk cooling tank. The
experiments indicate that the hybrid approach leads to better forecast-
ing results, especially for modeling more complicated behavior. Also, it is
investigated if the behavior of the models is qualitatively realistic and we
find that the battery model fulfills this requirement and is thus suitable
for the application in a smart energy management system. Even though
forecasts for the hybrid milk cooling model have even lower error values
than the ones for the battery storage, further steps need to be taken to
avoid undesired effects when using this model in such a sophisticated
system.

Keywords: Data-based modeling · Least-squares regression · Hybrid
models · Multiple models

1 Introduction

Even though its greenhouse gas emissions are decreasing, the energy supply
sector is still the sector causing most of these environmentally hazardous emis-
sions [1]. Increased use of renewable energy sources could reduce those emissions
and thus allow climate change to decelerate. However, most of these sources

This research is based on a project funded by the Federal Ministry for Economic Affairs
and Energy of Germany (project title SmartFarm, project number 0325927).

c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 62–73, 2021.
https://doi.org/10.1007/978-3-030-85672-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_5&domain=pdf
http://orcid.org/0000-0002-6313-4415
http://orcid.org/0000-0001-7385-4670
https://doi.org/10.1007/978-3-030-85672-4_5

A Hybrid Approach for Data-Based Models 63

have volatile availability. On the one hand, there are times where the demand
is higher than the availability, on the other hand, if the demand is low at times
of high availability, the grid stability might be in danger. To still allow increas-
ing the use of renewable energy sources, the installation of storage devices can
help to absorb this undesired behavior. In this context, storage devices are not
limited to electrical storages but could also include devices that can be used as
thermal storage such as cooling systems or heat pumps. Locally installed smart
energy management systems can now allow using such storage devices in an
optimal way. For this purpose, models that forecast the local energy generation
and consumption as well as the behavior of storage devices are essential.

Modeling approaches are usually classified into two groups: Physics-based
and data-based modeling [2,3]. The first aims at finding a model by analyzing
the underlying physical laws and requires a deep understanding of the depen-
dencies in the system while the latter determines a model by data for input and
output values that is recorded during a training horizon and highly depends on
the quality of this data. Their biggest advantage is that they are transferable
to many different devices. For data-based approaches, it is often distinguished
between models based on statistical methods and techniques using artificial intel-
ligence (AI) [4]. AI techniques include fuzzy regression models, artificial neural
networks and support vector machines while examples for statistical methods
are (linear) regression models and autoregressive and moving average models.
All these techniques are often used to model energy generation, consumption or
storage behavior. In [5] and [6], for instance, forecasts for the energy generation
are made by applying regression methods and a neural network, respectively.
In [7–9], models for batteries’ states of charge are determined with a neural net-
work together with a Kalman filter, using a neuro-fuzzy inference system and a
resistor-capacitor model.

In this work, we extend the data-based technique used in [10–12] such that
the model can forecast complex behavior better. To achieve that, a data-based
method based on a least-squares regression is combined with a hybrid model
approach as introduced in [13] allowing multiple models for one device, each
identified on and valid for a subset of the data. This paper investigates the
application of these approaches on real-world data and evaluates if hybrid models
are likely to be more plausible, i.e. to show more realistic qualitative model
behavior.

In Sect. 2 the modeling approach is presented and the extension to hybrid
models is explained. The subsequent section deals with numerical results of
applying this modeling approach to real-world data using the examples of a
battery storage and the temperature inside a milk cooling tank. In Sect. 4 this
work is closed with a conclusion and possible future work is outlined.

2 Data-Based Modeling Approach

One approach to data-based modeling is to fit the data by applying a least-
squares regression. This method has two advantages over other data-based tech-
niques. First, it allows fast computation of models even for large data sets which

64 M. Lachmann and C. Büskens

is very convenient in case calculations need to be done on locally installed hard-
ware with little computational power. Second, the method can be extended to
include an even more efficient adaptation of the models to new data without
recalculating the model on the entire data set, but only on the newly acquired
data. This method will only be sketched here since it is frequently applied e.g.
in [14] where it is also explained in more detail. In [11] and [10], this method
is applied to a similar problem where it is extended to determining probabilis-
tic forecasts and analyzing the capability of adapting to new data as well as
improving forecasts by taking very recent data into account. In contrast to that,
the focus in this paper is on a hybrid model approach that is explained in this
section.

2.1 Data-Based Modeling with Least-Squares Regression

When identifying data-based models using a least-squares regression, we want
to find a model f : IRm → IR that best fits to a given data set with output data
yi ∈ IR, i ∈ {1, . . . , n}, measured at n different points in time, and input data
xi ∈ IRm, i ∈ {1, . . . , n} measured at the same time points from m different
inputs x1, . . . , xm.

According to Taylor’s Theorem, such a function f can be approximated
around a point x0 ∈ IRm by its derivatives at that point if it is sufficiently
smooth. Since the function is not given, the derivatives which determine the
coefficients of the polynomial are not available. Nevertheless, assuming a nor-
mally distributed error, the coefficients can be determined as minimizers of the
mean-square deviation between the model f(xi) and the measured output yi at
all times. This problem can be reformulated as a linear least-squares problem
which can be solved by QR-decomposition very efficiently even for large data
sets [15].

2.2 Introducing Hybrid Models

In [10], it is found that high polynomial degrees often result in an overfitted
model, i.e. one that fits very well to the training data but does not generalize
well. It is also mentioned that if the model might be extrapolated to a bigger
data range, a polynomial degree of one is best to use. However, a low polynomial
degree does often not allow to model complex behavior. Using hybrid models is
a possible approach to reduce the chance of overfitting but still allow modeling
complex dependencies. For more details on this, we refer to [13].

Since the behavior of the device to be modeled might be very different in
different phases, i.e. in κ ∈ IN different subsets of the data set, we want to
identify κ different models on the respective subsets, each valid only for these
data subsets. If we denote the κ disjoint data subsets as X1, . . . , Xκ, then we
can write our model as

A Hybrid Approach for Data-Based Models 65

f(xi) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(xi) if xi ∈ Xk1

f2(xi) if xi ∈ Xk2

...
...

fκ(xi) if xi ∈ Xkκ
.

There exist many different approaches for choosing these subsets (see [13])
and it can be expected that the modeling results are sensitive to the data par-
titioning strategy, although the investigation of the effects is not part of this
paper. Our choice in the following is to divide the data into subsets depending
on the value of one integer input x having κ different values. This input can be
measured data, obtained by a classification algorithm or be generated by hand.
When calculating a forecast for time i, it is determined to which subset Xk the
point xi belongs and the corresponding function fk is chosen for calculating the
forecasted model value at time i, that means f(xi) = fk(xi) if xi ∈ Xk.

3 Experimental Results Comparing Non-hybrid
and Hybrid Models on Real-World Data

3.1 Setup and Data

The modeling approaches are now evaluated on real-world data at the example
of the state of charge of a battery storage and the temperature of a milk cooling
tank. The data was recorded by a measurement system comprised of one- and
three-phase smart meters, current terminals and 1-wire temperature sensors on
two demonstration sites in Lower Saxony, Germany within the scope of a research
project aiming at developing an energy management system that controls storage
devices and shiftable consumers such that the use of self-produced energy is
maximized.

At both demonstration sites, a photovoltaic plant produces energy that can
either be locally used or exported to the grid. One of the sites is a four-person
household in which a lithium-ion battery storage with a capacity of 106 A h, a
usable energy of 5.0 kW h and a one-phase inverter with a maximum apparent
power flow of 6 kV A is installed. Internal values from the inverter can be accessed
via a modbus interface and are also used. On the other site, a milk farm, a milk
cooling tank with an energy consumption of up to 13 kW is installed which can
be used as thermal storage by cooling the milk to a lower temperature within
constraints that guarantee no quality loss.

The data used for the battery storage was recorded on 37 days in April and
May 2017 and interpolated to 30 min with a moving average filter to reduce
noise in the measurements. The first 20 days of data are used for training a
model while all other data is used for validating that model. For modeling the
milk cooling tank temperature, active power and temperature data measured
between February 18, 2018 and April 10, 2018 is used and interpolated to five
minutes again using a moving average filter. Here, further preprocessing was
required since up to eight values per day (i.e. from 1440 values) exceeded all

66 M. Lachmann and C. Büskens

other values by several orders of magnitude. They were replaced by the value
measured before that value since the data does often not change within a minute.
The 52 days of data are again divided into a training period and a validation
period where the first comprises the first 20 days of that set.

Within that setup, we now want to determine non-hybrid and hybrid models
for the state of charge of the battery and the temperature inside the milk cooling
tank. Both values show a dynamic behavior and depend on the state of charge
or the temperature that was measured before as well as the active power which
is available as a forecast in the energy management system. In the experiments,
the actual measurements of the active power will be used since the quality of the
power forecasts could influence the results. Also, the state of charge or temper-
ature measured one time step before will be used as an input to the model. In
addition to that, setpoints for the milk cooling tank would be determined in an
energy management system indicating whether the cooling is on or off. These
were reconstructed from the power data and are also used in the experiments.

Within the energy management system in which the models presented here
will be applied, forecasts for 24 h are required. Since the models use the state of
charge or temperature measured one step earlier which is not available at time
points in the future, we evaluate the models iteratively to simulate the models’
predictions within that energy management system. This means for a forecast
starting at time t0 that is one step into the future, we use the state of charge or
temperature measured one step ago which is available. For the next time step
t1 we do not have a measurement at the time t0 to use, but instead calculate
the output value at time t1 using the forecasted value at time t0. This value is
then used as an input to forecasting the output at time t2. This procedure is
continued until the end of the forecast horizon, e.g. until values for 24 h into the
future are calculated.

Naturally, those forecasts will be more accurate during the beginning of the
forecast horizon since small deviations from the data within the first hours can
propagate and lead to huge differences in the last hours. Thus, the energy man-
agement system requests forecasts minutely and recalculates the optimal opera-
tion schedule to reduce this effect. However, in the following evaluations, we will
consider forecasts for 24 h since these are of interest to the energy management
system. To allow clear depictions, we will simulate that forecasts are requested
only at midnight.

To evaluate the quality of a model, the deviation between the forecast by
a model and the actual measurements is considered during the training and
the validation period separately. To measure this deviation, we calculate the
normalized root-mean-square deviation (nRSMD) which is the root-mean-square
deviation (RSMD) (often also referred to as root-mean-square error (RSME))
normalized to the biggest value ymax measured for the output y, i.e.

nRSMD =
1

ymax

√
∑n

i=1 (yi − f(xi))
2

n
.

A Hybrid Approach for Data-Based Models 67

3.2 Comparing Non-hybrid and Hybrid Models on Real-World
Data

Forecasting the State of Charge of a Battery Storage. To identify the
parameters of not only a non-hybrid, but also a hybrid model, the data for the
battery storage device as mentioned above needs to be divided into subsets that
show similar behavior. For this division, we add an input xm+1 to the data that
indicates whether the battery storage is charged or not, i.e. κ = 2 and

xm+1
i =

{
1 if the battery storage is charged at time i

0 otherwise.

Based on this data, one non-hybrid and one hybrid model for the state of
charge of a battery storage device are determined and forecasts are calculated. An
excerpt of the results is depicted in Fig. 1 and shows five days at the beginning
of the validation period. It can be observed that on some days the forecast
calculated using the hybrid model (green) is closer to the measured data (purple)
than the one with the non-hybrid model (blue) and on other days they are very
similar. For both models, the forecasts do usually not reach the maximum state
of charge of 90 %. This behavior can similarly be observed on the other days of
the validation period indicating that the model predicts the charging process to
be slower than in the measurements. The discharging, however, can be predicted
better. In total, forecasts from both models are close to the measurements while
the hybrid model seems to yield better predictions than the non-hybrid one.

Fig. 1. Model for the state of charge of a battery storage during five days from the
validation data. Measurements are depicted in purple, the results of the iteratively
computed forecast by the non-hybrid model in blue and the ones obtained by the
hybrid model in green. (Color figure online)

This can also be observed in the error values of both models. The nRSMD for
the non-hybrid model is 8.6 % during the training period and 6.9 % during the

68 M. Lachmann and C. Büskens

validation period. This indicates that the model is not overfitted to the training
data but generalizes well. The error values for the hybrid model are 8.0 % on the
training data and 6.0 % on the validation data indicating that the hybrid model
has the potential to improve forecasts even for devices in which a non-hybrid
approach already leads to good models. Regarding the fact that the iterative
forecast calculation is determined for a horizon of 24 h, the error values here are
comparable to the results of other works, e.g. [9] in which the state of charge of
batteries is forecasted with an error of less than 5 %.

Forecasting the Temperature Inside a Milk Cooling Tank. To forecast
the temperature in the milk cooling tank, it is interesting to know the general
behavior of the temperature. In the measurements, it can be observed that there
is a pattern that repeats with a periodicity of two days. In Fig. 2, the mea-
surements, depicted in purple, are often constantly at about 5 ◦C which is the
temperature at which the milk is stored. In the power data, it can be seen that
the isolation of the tank allows it to keep that temperature constant without
cooling after it is reached. Twice a day, pre-cooled milk is added to the tank
raising the temperature to about 8 ◦C depending on the amount of milk in the
tank. Every other day the tank is emptied and cleaned with warm water resulting
in temperatures of up to 53 ◦C. After that, no cooling is activated and the tank
is left open until the next milking. The first milking after the cleaning procedure
occurs while the tank still has a temperature of about 15 ◦C.

From this knowledge an additional input xm+1 is added to the data set
indicating whether it is cleaned, milk is added or none of these, i.e. κ = 3 and

xm+1
i =

⎧
⎪⎨

⎪⎩

1 if milk is added to the tank at time i

−1 if the milk tank is cleaned at time i

0 otherwise

while the cleaning process is considered to start once the tank is cleaned with hot
water and ends when the subsequent milking starts. An addition of milk occurs
when a rise in temperature can be observed even though the power indicates
that the cooling is active.

Based on this indicator vector for the hybrid model, again a non-hybrid and
a hybrid model for the temperature inside the milk cooling tank are determined
based on temperature data from one time step earlier, active power data and
reconstructed setpoints. These results are depicted in Fig. 2 which shows four
days from the validation period. First, it can be observed that the non-hybrid
model (blue) is neither close to the measurements (purple) nor able to predict
the behavior. It shows a periodicity of two days but the predicted temperature
decreases when the one in the measurement increases and vice versa.

In contrast, the hybrid model is much closer to the measurements. During
the cleaning process, i.e. when temperatures are above 10 ◦C, it fails to forecast
the decrease in the data but instead predicts a constant temperature of about
25 ◦C. This could be since the model calculated during cleaning times is – as

A Hybrid Approach for Data-Based Models 69

Fig. 2. Model for the temperature inside a milk cooling tank during five days of the
validation data. Measurements are depicted in purple, the results of the iteratively
computed forecast by the non-hybrid model in blue and the ones obtained by the
hybrid model in green. (Color figure online)

all models – linear in its inputs and can thus not model the decrease in the
data but chooses an average temperature. At all other times it can be observed
that the forecast qualitatively behaves as the measurement: At times where
the measurement is constant, the hybrid model forecasts constant behavior at
the correct temperature and at times where the temperature is changing, this
change is also visible in the forecasts even though the temperature is often lower
than the measurements and decreases to a constant value later than the actual
measurement does.

The hybrid model outperforms the non-hybrid one also when regarding the
error values. The error (nRSMD) of the non-hybrid model during the training
period is 10.6 % which does not seem to be very high. However, during the
validation period, the error is 16.0 % which is much higher and indicates that
this model does not generalize well. The error values of the hybrid model are
much lower, being 4.9 % on the training data and 6.4 % on the validation data.
In [12], the error for the temperature of a milk cooling model is calculated with
an error of 11 % indicating that the hybrid model is not only an improvement
over the non-hybrid model but also better than what other approaches have
achieved.

3.3 Checking the Models’ Plausibility

After finding that the non-hybrid and hybrid models are mostly close to the
actual measurements, it is of interest if they could be used in a smart energy
management system. That requires that the models behave logically correct even
if the storage device is operated differently than in the measurements, e.g. the
battery storage could be charged or discharged at different times than in the
measurement. In case of the milk cooling, a smart system could decide to cool it
to a slightly lower temperature at times of an energy surplus, such that during

70 M. Lachmann and C. Büskens

the next milking less energy needs to be used for cooling. To check whether the
models identified above could be used in such a context, we now simulate their
qualitative behavior on artificial data.

For the battery storage, it is checked how the non-hybrid and hybrid model
forecast the state of charge during one day for given power values. For that, the
power is set to 0 W during the first quarter of the forecast horizon, then charging
at constant 200 W is simulated during the second quarter, followed by a quarter
where the active power is −200 W which means that the battery is discharged.
In the last quarter of the forecast horizon, the power is again set to 0 W. This
power curve (black) is depicted in Fig. 3 together with the forecasts generated
by the non-hybrid (blue) and hybrid (green) model. Discharging and charging
can be observed in the forecasts as expected. Furthermore, when the simulated
active power is 0 W the state of charge also decreases, but slower than at a
power of −200 W. This passive discharging, i.e. the process of slowly decreasing
the state of charge even though no energy is actively used, matches the actual
behavior of all battery storages. The hybrid model forecasts a slightly slower
passive discharging than the non-hybrid one. The biggest difference between
the non-hybrid and the hybrid model can be observed during the charging in
the second quarter where both models show an increase in the state of charge
which is realistic. However, the hybrid model reaches much higher states of
charge, but since the constant charging with 200 W for a longer time cannot be
found in the measurements, it cannot be assessed which of the models is more
realistic. Nevertheless, the fact that the hybrid model forecasts higher states
of charge after a charging period could explain why in Fig. 1 forecasts by the
hybrid model were closer to the measurements than the ones by the non-hybrid
model. In summary, both models show realistic behavior here and could thus
be applied in an energy management system where they would be suitable to
forecast behavior that has not occurred in the data.

For the temperature inside a milk cooling tank, we simulate an additional
cooling period at noon after the temperature has been constant for several hours
to check if the models would predict a decrease in the temperature and stay
at that lower temperature once the cooling is turned off. For simulating the
additional cooling process, we set the active power to 11 850 W, the average
power measured during all cooling processes, and adjust the setpoints to indicate
cooling. The non-hybrid model predicts a decrease in temperature, but is, as in
Fig. 2, not able to predict the constant temperature. For the hybrid model, the
simulated additional cooling leads to a rise in temperature once the cooling starts
and the temperature falls to the constant temperature of 5 ◦C once the process
stops. Thus both models are not able to predict an additional cooling process
qualitatively correct and also other choices of the additional input xm+1 do not
lead to better qualitative behavior. This might be since the training data does
not include temperatures below 5 ◦C. Another explanation is that the models
learn that the temperature rises once the cooling starts since at the beginning
of each cooling warm milk is added. Adding data from a flow sensor as an input
could thus be interesting. Also, other data, such as the amount of milk inside the

A Hybrid Approach for Data-Based Models 71

Fig. 3. Model for the state of charge of a battery storage evaluated on data simulating
an active power profile as depicted by the black line. The forecast by the non-hybrid
model is depicted in blue and the one obtained by the hybrid model in green. (Color
figure online)

tank might improve the models. Furthermore, it would be interesting to choose
the subsets for the hybrid model in a more sophisticated way, e.g. by a clustering
approach, or to generate data containing additional cooling periods.

4 Conclusion

In this work it is evaluated to which extent computationally efficient data-based
models can be applied to forecast the behavior of storage devices. The modeling
approach uses a least-squares regression and is extended to hybrid models, where
each submodel is trained on a subset of the data. The division into subsets is
based on integer-valued indicator vectors that are added to the data manually.
These two approaches are evaluated at the examples of the state of charge of
a battery storage and the temperature inside a milk cooling tank. For both
devices, two different models, a non-hybrid and a hybrid one, are calculated
and compared to the actual measurements. It is found that the hybrid model
is closer to the measurements in both cases. For the battery storage device,
the error values of the models are not too far apart, but for the milk cooling
tank, the non-hybrid model fails to forecast the temperature inside the tank
while the hybrid model’s prediction is close to the measurements. Additionally,
it is investigated whether the models show plausible behavior which would be
essential for their application in an energy management system. It is found that
both battery models show realistic behavior while the hybrid model predicts a
higher state of charge after a period of charging. In contrast, the models for the
milk cooling tank both do not show plausible behavior. This can be explained
by the fact that the data might lack information such as the flow of milk into
the tank that influences the temperature heavily or the fact that the model is
extended to data not contained in the training data.

72 M. Lachmann and C. Büskens

To tackle this, adding further data would be interesting as well as a repetition
of the experiments once data is available where the milk cooling tank is controlled
and thus includes behavior that could not be predicted in the experiments in this
paper. Additionally, it would be very interesting to evaluate if other divisions
of the data into subsets lead to better results, e.g., if the data is divided into
subsets by a clustering approach.

In summary, we show on real-world data that a hybrid data-based modeling
approach can indeed improve forecasts calculated by models identified using
least-squares regression. However, even though the hybrid models are much closer
to the actual measurements, when applying them in a smart energy management
system it must be carefully checked if their qualitative behavior is plausible.

References

1. World Resources Institute: World Greenhouse Gas Emissions (2016). https://
www.wri.org/resources/data-visualizations/world-greenhouse-gas-emissions-2016.
Accessed 30 Nov 2020

2. Foley, A.M., Leahy, P.G., Marvuglia, A., McKeogh, E.J.: Current methods and
advances in forecasting of wind power generation. Renewable Energy 37(1), 1–8
(2012)

3. Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F.J.,
Antonanzas-Torres, F.: Review of photovoltaic power forecasting. Sol. Energy 136,
78–111 (2016)

4. Pedro, H.T.C., Inman, R.H., Coimbra, C.F.M.: 4 - Mathematical Methods for Opti-
mized Solar Forecasting. In: Kariniotakis, G. (eds.) Renewable Energy Forecasting.
From Models to Applications, pp. 111–152 Woodhead Publishing (2017). https://
doi.org/10.1016/B978-0-08-100504-0.00004-4

5. Tsekouras, G., Dialynas, E., Hatziargyriou, N., Kavatza, S.: A non-linear multi-
variable regression model for midterm energy forecasting of power systems. Electr.
Power Syst. Res. 77(12), 1560–1568 (2007)

6. Li, S., Wunsch, D.C., O’Hair, E.A., Giesselmann, M.G.: Using neural networks
to estimate wind turbine power generation. IEEE Trans. Energy Convers. 16(3),
276–282 (2001)

7. Chen, Z., Qiu, S., Masrur, M.A., Murphey, Y.L.: Battery state of charge estimation
based on a combined model of extended Kalman filter and neural networks. In:
Proceedings of the 2011 International Joint Conference on Neural Networks, pp.
2156–2163. IEEE, San Jose, USA (2011)

8. Cai, C.H., Du, D., Liu, Z.Y.: Battery State-of-Charge (SOC) Estimation Using
Adaptive Neuro-Fuzzy Inference System (ANFIS). In: Proceedings of the 12th
IEEE International Conference on Fuzzy Systems (FUZZ 2003), pp. 1068–1073.
IEEE, St. Louis, USA (2003)

9. Eichi, H.R., Chow, M.: Adaptive parameter identification and state-of-charge esti-
mation of lithium-ion batteries. In: Proceedings of the 38th Annual Conference of
the IEEE Industrial Electronics Society, pp. 4012–4017. IEEE, Montreal, Canada
(2012)

10. Lachmann, M., Maldonado, J., Bergmann, W., Jung, F., Weber, M., Büskens,
C.: Self-learning data-based models as basis of a universally applicable energy
management system. Energies 13(8), 2084 (2020)

https://www.wri.org/resources/data-visualizations/world-greenhouse-gas-emissions-2016
https://www.wri.org/resources/data-visualizations/world-greenhouse-gas-emissions-2016
https://doi.org/10.1016/B978-0-08-100504-0.00004-4
https://doi.org/10.1016/B978-0-08-100504-0.00004-4

A Hybrid Approach for Data-Based Models 73

11. Jung, F., Büskens, C.: Probabilistic data-based models for a reliable energy man-
agement. In: Proceedings of the 2018 IEEE International Conference on Environ-
ment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power
Systems Europe, pp. 1–6. IEEE, Palermo, Italy (2018)

12. Lachmann, M., Jung, F., Büskens, C.: Computationally efficient identification of
databased models applied to a milk cooling system. In: Conference of Computa-
tional Interdisciplinary Science, 2019, pp. 1–10. Galoa, Atlanta, USA (2020)

13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data
Mining, Inference, and Prediction. 2nd edn. Springer Science & Business Media,
New York, USA (2009)

14. Chen, S., Wassel, D., Büskens, C.: High-precision modeling and optimization of
cogeneration plants. Energ. Technol. 4, 177–186 (2016)

15. Hanke-Bourgeois, M.: Grundlagen der numerischen Mathematik und des wis-
senschaftlichen Rechnens. Vieweg+Teubner Verlag/GWV Fachverlage GmbH,
Wiesbaden, Germany, pp. 119 (2009)

A Comparison of Learnheuristics Using
Different Reward Functions to Solve

the Set Covering Problem

Broderick Crawford , Ricardo Soto , Felipe Cisternas-Caneo(B) ,
Diego Tapia , Hanns de la Fuente-Mella , Wenceslao Palma ,

José Lemus-Romani , Mauricio Castillo , and Marcelo Becerra-Rozas

Pontificia Universidad Católica de Valparáıso, Valparáıso, Chile
{broderick.crawford,ricardo.soto,hanns.delafuente,

wenceslao.palma}@pucv.cl, {felipe.cisternas.c,diego.tapia.r,jose.lemus.r,
mauricio.castillo.d,marcelo.becerra.r}@mail.pucv.cl

Abstract. The high computational capacity that we have thanks to
the new technologies allows us to communicate two great worlds such
as optimization methods and machine learning. The concept behind
the hybridization of both worlds is called Learnheuristics which allows
to improve optimization methods through machine learning techniques
where the input data for learning is the data produced by the opti-
mization methods during the search process. Among the most outstand-
ing machine learning techniques is Q-Learning whose learning process
is based on rewarding or punishing the agents according to the conse-
quences of their actions and this reward or punishment is carried out by
means of a reward function. This work seeks to compare different Learn-
heuristics instances composed by Sine Cosine Algorithm and Q-Learning
whose different lies in the reward function applied. Preliminary results
indicate that there is an influence on the quality of the solutions based
on the reward function applied.

Keywords: Learnheuristic · Sine cosine algorithm · Q-Learning ·
Reward function · Reinforcement learning

1 Introduction

Optimization problems are very recurrent in the real world being very complex
to solve and it is necessary to obtain results in reasonable times. Approximate
optimization techniques such as metaheuristics provide good results in reason-
able times but when solving increasingly complex industry problems the quality
of the solutions worsen.

Nowadays there is a high computational capacity thanks to new technologies
allowing machine learning techniques to process large volumes of data in short
times. During the optimization process a large amount of data is generated serv-
ing as input for some machine learning techniques to improve the optimization
process and obtain better quality solutions.
c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 74–85, 2021.
https://doi.org/10.1007/978-3-030-85672-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_6&domain=pdf
http://orcid.org/0000-0001-5500-0188
http://orcid.org/0000-0002-5755-6929
http://orcid.org/0000-0001-7723-7012
http://orcid.org/0000-0002-0603-3722
http://orcid.org/0000-0003-2564-8770
http://orcid.org/0000-0002-7232-0412
http://orcid.org/0000-0001-5379-0315
http://orcid.org/0000-0001-7804-6381
http://orcid.org/0000-0003-0426-0144
https://doi.org/10.1007/978-3-030-85672-4_6

A Comparison of Learnheuristics Using Different Reward Functions 75

This hybridization is called Learnheuristic [1], where it is composed of an
optimization module and a machine learning module. The optimization module
solves an optimization problem and in each iteration generates a quantity of
data that is delivered to the machine learning module so that it learns and
makes decisions that affect the optimization technique in order to improve the
quality of the solutions.

This work applies the concept of Learnheuristic, where the optimization mod-
ule is composed of the metaheuristic Sine Cosine Algorithm (SCA) and the
machine learning module is composed of Q-Learning. Q-Learning is used to learn
how to select binarization schemes when SCA solves the Set Covering Problem.
In particular, we seek to demonstrate the impact generated by different reward
functions applied in Q-Learning.

The paper is organized as follows: Sect. 2 presents the Set Covering Problem,
Sect. 3 presents the reinforcement learning, Q-Learning and the reward functions
found in the literature, Sect. 4 presents Sine Cosine Algorithm, why it is neces-
sary to use binarization schemes and how the Learnheuristic is generated, Sect. 5
presents the experimental results to finish with the conclusions in Sect. 6.

2 Set Covering Problem

The Set Covering Problem (SCP) is a classic optimization problem, which can be
used to model in different applications and various domains, such as assignment
problems, transport networks, among others. This problem is class NP-Hard [8]
and consists of finding the set of elements with the minor cost that meets a
certain amount of needs. The mathematical model of the Set Covering Problem
is available at [10].

The SCP allows modeling of real-life optimization problems such as the loca-
tion of gas detectors for industrial plants [22], the location of electric vehicle
charging points in California [25], the optimal UAV locations for the purpose
of generating wireless communication networks in disaster areas [17] and airline
and bus crew scheduling [18]. These studies allow us to appreciate the impor-
tance of solving this problem with optimization techniques that guarantee good
results.

3 Reinforcement Learning

Reinforcement learning is a subcategory of Machine Learning whose learning
process consists of an agent performing different actions in different states and
the objective of the agent is to learn what is the best action for each of the
states by judging the consequence of performing each of the actions. Some of the
classic examples are Q-Learning [23], Monte Carlo RL [11] and SARSA [19].

76 B. Crawford et al.

3.1 Q-Learning

Watkins et al. [23] proposed Q-Learning in 1992 and it is one of the best known
reinforcement learning techniques. The main objective is to maximize the accu-
mulated reward of an action in a particular state, in other words, to find the
best action for a state.

An agent travels in different states and in each one of them an action is
experienced immediately obtaining a reward or a punishment and the moment
when an action is taken in a particular state is called a episode.

The agent should learn to select the best action for each one of the possible
states. As the episodes pass the agent performs all possible actions for a state
and the best action is the one that obtains the best accumulated reward [23].

The Q-Learning algorithm tries to learn how much accumulated reward the
agent will get in the long run for each pair of action-state. The action-state
function is represented as Q(s, a) which returns the reward that the agent will
get when performing the action a in the state s and assumes that it will follow
the same policy obtained by the Q function until the end of the episode, this
value is called Q-Value.

These Q-Values are stored in the Q-Table, which is a matrix where the rows
correspond to the states and the columns correspond to the actions.

The Q-Value obtained for action a in state s when the n-th episode occurs is
calculated as follows:

Qn(s, a) =
{

(1 − αn)Qn−1(s, a) + αn[rn + γVn−1(sn+1)] if s = sn and a = an

Qn−1(s, a) otherwise,
(1)

where,
Vn−1(sn+1) = max Qn−1(sn+1, b) (2)

sn corresponds to the current state, an corresponds to the action selected and
performed for the n-th episode, max Qn−1(sn+1, b) corresponds to the highest Q-
Value obtained for episode n−1 for the following state sn+1, in other words, the
best action for the following state sn+1, rn corresponds to the reward function
that allows rewarding or punishing the action based on its consequence, αn

corresponds to the learning factor and γ corresponds to the discount factor.

3.2 Reward Function

The big question when using Q-Learning is: How to reward or punishment the
consequences of carrying out an action? A good balance of reward and penalty
allows an equitable variation of the selection of actions so the best action found
is more reliable.

A Comparison of Learnheuristics Using Different Reward Functions 77

In the literature different Learnheuristics were found where metaheuristics
incorporate Q-Learning as a machine learning technique. The reward function
used by these Learnheuristics are diverse and adapted to the behavior of the
metaheuristic.

For example, in [15] proposes 3 ways of reward or penalty for Ant Colony
Optimization where all are associated to the best ant tour and, in some cases,
they are calculated with respect to a predefined W constant.

On the other hand, other ways of rewarding or penalizing were found where
they are oriented to the performance of Metaheuristics and can be applied to
any of them. Such are the cases of [24] where the reward is 1 when the fitness
is improved or -1 otherwise and as a result of this the reward or penalty visible
in equation (4) is born where only the reward is given. The different reward
functions are shown in Table 1.

Table 1. Reward function

Reference Reward Function

[24] rn =

{
1, if the current action improves fitness

−1, otherwise.
(3)

– rn =

{
1, if the current action improves fitness

0, otherwise.
(4)

[15] rn =

{
W · fbest, if (r, s) ∈ tour done by the best agent

0, otherwise.
(5)

[15] rn =

{
W

fbest
, if (r, s) ∈ tour done by the best agent

0, otherwise.
(6)

[15] rn =

{√
fbest, if (r, s) ∈ tour done by the best agent

0, otherwise.
(7)

4 Sine Cosine Algorithm

Sine Cosine Aalgorithm (SCA) is a population-based metaheuristic where initial
solutions are randomly generated and altered during the search process [13]. The
equations of movements proposed for both phases are as follows:

Xt+1
i,j =

{
Xt

i,j + r1 · sin (r2) · |r3P t
j − Xt

i,j | , r4 < 0.5
Xt

i,j + r1 · cos (r2) · |r3P t
j − Xt

i,j | , r4 ≥ 0.5 (8)

r1 = a − t
a

T
(9)

78 B. Crawford et al.

where r1 is a parameter by Eq. 9, r2, r3 and r4 are random numbers, Xt
i,j is the

position of the i − th solution in the j − th dimension in t − th iteration and
P t
j it is the position of the best solution in the j − th dimension in the t − th

iteration.
SCA is a metaheuristic that was built to solve problems in continuous

domains, that is why to solve combinatorial optimization problems such as the
Set Covering Problem it is necessary to transform the solutions from the con-
tinuous domain to the discrete domain [4].

One of the most used mechanisms to transfer solutions from the continuous
domain to the binary domain is the Two-Step Technique. This technique consists
of first transferring the values of the solutions from the continuous domain to the
[0, 1] domain by means of transfer functions and then taking the values of the
solutions in the [0, 1] domain and discretizing them by means of discretization
functions.

4.1 Learnheuristic Framework

Recent studies [2,20,21] built a general Learnheuristics framework that incorpo-
rates Q-Learning as a machine learning module for operator selection. In particu-
lar, they select binarization schemes derived from combinations between transfer
functions and discretization functions of the Two-Step Technique.

In the present work, modifications were made to the proposal presented by
the authors in [2]. The actions to be taken by the agents are the binarization
schemes, the states are the phases of the metaheuristic, i.e. exploration or
exploitation, the episodes where an action is selected and applied in a particular
state will be the iterations and the agents will be the individuals of the Sine
Cosine Algorithm.

4.2 Balancing Exploration and Exploitation

To design a good metaheuristic is to make a proper trade-off between two forces:
exploration and exploitation. It is one of the most basic dilemmas that both
individuals and organizations constantly face. Exploration consists of looking
for alternatives different from those already found while exploitation consists
of exploiting a previously known alternative. This translates into selecting a
new product for an individual, innovating or not for an organization and for
metaheuristics into exploring the search space or exploiting a limited region of it.
Ambidextrous Algorithms [3,12] aim at balancing exploration and exploitation
oriented to decision making.

Before solving the balancing problem between exploration and exploitation,
one must first have the ability to measure these indicators and then make a deci-
sion. Diversity metrics allow the measurement of exploration and exploitation
because they quantify the dispersion of the individuals of the population.

A Comparison of Learnheuristics Using Different Reward Functions 79

There are different ways to quantify this diversity where the metrics based on
central measurements and others based on frequency stand out. Metrics based
on central measurements quantify diversity levels only in population algorithms.
This is because the best search agents tend to attract the other solutions to
them. In other words, the distance between solutions increases in exploration
search processes and decreases in exploitation search processes [14].

In the literature there are different ways to quantify diversity and for this
work the Dimensional-Hussain Diversity [9] was used. Dimensional-Hussain
Diversity is a diversity based on central measurements and is defined as:

Ddh(X) =
1

l · n

l∑
d=1

n∑
i=1

|mean(xd) − xd
i | (10)

Where Ddh(X) corresponds to the Dimensional-Hussan Diversity of the pop-
ulation X, mean(xd) is average of the d-th dimension, n is the number of search
agents in the population X and l is the number of dimension of the optimization
problem.

Morales-Castañeda et al. in [14] propose some equations which can obtain
a percentage of exploration (XPL%) and a percentage of exploitation (XPT%)
based on the diversity of the population. The particularity of these equations
is that they are generic, that is, any diversity metric can be used, since the
percentages are calculated around the diversity that the population has in a
given iteration in relation to the maximum diversity obtained during the search
process. These equations are as follows:

XPL% =
(

Divt
Divmax

)
× 100 , XPT% =

(|Divt − Divmax|
Divmax

)
× 100 (11)

Where Divt corresponds to the current diversity in the t-th iteration and
Divmax corresponds to the maximum diversity obtained in the entire search
process.

By obtaining these percentages of exploration and exploitation we can deter-
mine the current state to be used in Q-Learning. This determination is done in
the following way:

next state =
{

Exploration if XPL% ≥ XPT%
Exploitation if XPL% < XPT% (12)

All of the above are summarized in Algorithm 1.

80 B. Crawford et al.

5 Experimental Results

To evaluate the impact of the reward function in Q-Learning is that 5 different
instances of BQSCA were implemented where the main change lies in the reward
function to be applied. Table 2 shows the applied functions and their respective
names.

Each of the instances was run 31, with a population of 40 individuals and
1000 iterations performed in each run. As mentioned in Sect. 3.1, Q-Learning has
2 additional parameters and they are the learning factor (α) and the discount
factor (γ). The 5 versions of BQSCA were configured with the same learning
factor whose value is α = 0.1 proposed in [5] and the same discount factor whose
value is γ = 0.4 proposed in [5]. On another hand, the value of the constant a
of the parameter r1 of Eq. 9 is 2 [13].

Table 2. Q-Learning implementation

Reference Reward Type Equation Name

[24] Penalty -1 Eq. (3) BQSCA-QL1

– With Out Penalty Eq. (4) BQSCA-QL2

[15] Global Best Eq. (7) BQSCA-QL3

[15] Root Adaptation Eq. (6) BQSCA-QL4

[15] Escalating Multiplicative Adaptation Eq. (5) BQSCA-QL5

The Set Covering Problem instances proposed by OR-Library, which are
betchmarck instances where the different authors make their comparisons, have
been solved.

Table 4 shows the details obtained for the algorithms. The first column refers
to each evaluated instance, the second column refers to the best known optimum
for each instance, the fourth column indicates the best optimum obtained for
each algorithm, the fifth column indicates the average of the results obtained for
each algorithm and the sixth column indicates the Relative Percetage Deviation
(RPD%) for each algorithm. These last 3 columns are repeated for each algorithm
under analysis.

The RPD measures the percentage deviation of the best result obtained Z
in relation to the best known result Zopt for each instance. The measure is
calculated as follows:

RPD =
Z − Zopt

Zopt
× 100 (13)

The results indicate that the 5 instances of BQSCA obtain good results,
reaching optimal results in some instances. It should be noted that BQSCA-
QL1 obtains preliminarily better results than the other instances.

A Comparison of Learnheuristics Using Different Reward Functions 81

Additionally, a statistical test was performed to validate the results obtained.
Since the data does not come from nature, it does not have a normal distribution.
On the other hand, since the data are not independent of each other, a nonpara-
metric statistical test was performed. The Wilcoxon-Mann-Whitney test was
applied. The hypothesis used for this statistical test is the following:

H0 = Algorithm A ≥ Algorithm B , H1 = Algorithm A < Algorithm B

If the result of the statistical test is obtained a p-value <0.05, we cannot
assume that Algorithm A has worse performance than Algorithm B, rejecting
H0.

The results indicate that the 5 instances of BQSCA obtain good results,
reaching optimal results in some instances. It should be noted that BQSCA-
QL1 obtains preliminarily better results than the other instances.The results
are shown in Table 3.

Table 3. p-value average BQSCA

QL1 QL2 QL3 QL4 QL5

QL1 – >0.005 0.0484 0.0360 >0.005

QL2 >0.005 – >0.005 >0.005 >0.005

QL3 >0.005 >0.005 – >0.005 >0.005

QL4 >0.005 >0.005 >0.005 – >0.005

QL5 >0.005 >0.005 >0.005 >0.005 –

By being able to quantify the diversity of the population in a particular
iteration, we can analyze the behavior of the Binary Q-Sine Cosine Algorithm
in terms of exploration and exploitation. This information is shown in Figs. 1a
and Fig. 1b. It can be seen that the Learnheuristics on average reach a balance
close to 50% of exploration and exploitation but it is not a smooth transition
as there are sharp jumps from exploration to exploitation or from exploitation
to exploitation. In conclusion, the proposal perturb exploration and exploitation
but fails to control it.

By analyzing the results obtained from both Table 4 and the statistical test
in Table 3, we can see that BQSCA-QL1 stands out over some proposals. A
peculiarity of this instance is that it is the only one that considers negative
reward [6,7,16]. Experimental results show that considering negative reward
“deters” exploration in reinforcement learning algorithm.

82 B. Crawford et al.

(a) BQSCA-QL1 solving instance scpb4 (b) BQSCA-QL3 solving instance scpb2

Fig. 1. BQSCA-QL1 Exploration-Exploitation

Algorithm 1. Binary Q-Sine Cosine Algorithm
Input: The population X = {X1, X2, ..., Xn}
Output: The updated population X ′ = {X ′

1, X
′
2, ..., X

′
n} and Xbest

1: Initialize Q-Table with q0
2: Initialize random population X
3: Set initial r1
4: Calculate Initial Population Diversity (X)
5: Define the initial state using equation (12)
6: for iteration (t) do
7: a : Select action from Q-Table
8: for solution (i) do
9: Evaluate solution Xi in the objective function

10: for dimension (j) do
11: Update P t

j , where P t
j = Xbest,j

12: Randomly generate the value of r2, r3, r4
13: Update the position of Xi,j

14: end for
15: end for
16: Binarization X with action a and apply reward function
17: Calculate Population Diversity (X)
18: Define the next state using equation (12)
19: Update Q-Table using equation (1)
20: Update r1
21: Update Xbest

22: end for
23: Return the updated population X where Xbest is the best result

A Comparison of Learnheuristics Using Different Reward Functions 83

Table 4. Results obtained by solving instances of OR-library

Inst. Opt. QL1 QL2 QL3 QL4 QL5

Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

41 429 431.0 439.19 0.47 435.0 442.72 1.4 439.0 444.06 2.33 438.0 444.32 2.1 438.0 444.13 2.1

42 512 535.0 549.52 4.49 537.0 553.71 4.88 541.0 554.89 5.66 542.0 555.45 5.86 537.0 552.39 4.88

43 516 532.0 545.48 3.1 534.0 552.03 3.49 535.0 552.19 3.68 535.0 550.52 3.68 527.0 547.0 2.13

44 494 510.0 527.48 3.24 514.0 530.44 4.05 516.0 530.43 4.45 512.0 531.9 3.64 511.0 530.68 3.44

45 512 532.0 547.45 3.91 537.0 553.17 4.88 527.0 549.48 2.93 532.0 551.58 3.91 531.0 550.16 3.71

46 560 573.0 585.74 2.32 573.0 588.68 2.32 577.0 588.68 3.04 576.0 591.77 2.86 568.0 588.84 1.43

47 430 437.0 447.26 1.63 441.0 449.77 2.56 440.0 449.84 2.33 439.0 449.81 2.09 439.0 451.06 2.09

48 492 502.0 511.55 2.03 509.0 516.39 3.46 499.0 513.87 1.42 503.0 514.13 2.24 507.0 514.77 3.05

49 641 672.0 690.26 4.84 683.0 697.48 6.55 685.0 697.42 6.86 686.0 696.55 7.02 676.0 697.52 5.46

410 514 521.0 532.0 1.36 521.0 533.88 1.36 529.0 537.26 2.92 526.0 535.58 2.33 522.0 534.52 1.56

51 253 263.0 269.13 3.95 264.0 272.75 4.35 264.0 272.32 4.35 264.0 273.16 4.35 265.0 273.29 4.74

52 302 326.0 332.55 7.95 327.0 335.58 8.28 325.0 334.61 7.62 328.0 335.48 8.61 327.0 335.71 8.28

53 226 231.0 234.94 2.21 230.0 235.62 1.77 231.0 235.81 2.21 232.0 236.29 2.65 230.0 235.77 1.77

54 242 250.0 253.93 3.31 250.0 254.6 3.31 250.0 255.39 3.31 252.0 255.39 4.13 251.0 254.84 3.72

55 211 216.0 219.85 2.37 218.0 221.46 3.32 217.0 220.87 2.84 214.0 221.39 1.42 217.0 220.97 2.84

56 213 217.0 228.23 1.88 221.0 231.26 3.76 225.0 231.23 5.63 223.0 231.9 4.69 220.0 230.9 3.29

57 293 305.0 312.97 4.1 304.0 316.4 3.75 303.0 317.03 3.41 306.0 318.32 4.44 312.0 317.48 6.48

58 288 295.0 299.37 2.43 296.0 301.32 2.78 296.0 300.77 2.78 295.0 300.9 2.43 295.0 301.1 2.43

59 279 285.0 291.73 2.15 284.0 293.42 1.79 289.0 293.1 3.58 288.0 294.1 3.23 286.0 293.23 2.51

510 265 271.0 278.19 2.26 274.0 281.35 3.4 277.0 281.74 4.53 273.0 281.9 3.02 274.0 281.84 3.4

61 138 141.0 145.77 2.17 144.0 148.16 4.35 144.0 148.42 4.35 146.0 148.29 5.8 146.0 148.65 5.8

62 146 151.0 156.26 3.42 152.0 159.06 4.11 154.0 158.77 5.48 152.0 158.58 4.11 153.0 158.06 4.79

63 145 149.0 151.19 2.76 149.0 151.29 2.76 149.0 151.65 2.76 149.0 151.74 2.76 149.0 151.74 2.76

64 131 133.0 135.35 1.53 133.0 136.03 1.53 133.0 135.74 1.53 134.0 136.29 2.29 134.0 136.32 2.29

65 161 169.0 179.87 4.97 173.0 183.26 7.45 173.0 183.19 7.45 173.0 182.84 7.45 175.0 182.97 8.7

a1 253 262.0 267.24 3.56 266.0 269.42 5.14 263.0 268.81 3.95 263.0 268.9 3.95 265.0 269.68 4.74

a2 252 267.0 271.65 5.95 267.0 273.8 5.95 269.0 274.16 6.75 269.0 274.1 6.75 268.0 274.23 6.35

a3 232 243.0 247.85 4.74 245.0 248.87 5.6 245.0 249.45 5.6 242.0 249.71 4.31 242.0 248.63 4.31

a4 234 245.0 250.81 4.7 245.0 252.61 4.7 249.0 252.77 6.41 245.0 252.13 4.7 245.0 252.68 4.7

a5 236 245.0 248.92 3.81 247.0 251.27 4.66 245.0 250.48 3.81 245.0 251.29 3.81 244.0 251.26 3.39

b1 69 70.0 71.81 1.45 71.0 72.68 2.9 72.0 72.9 4.35 72.0 72.87 4.35 72.0 73.03 4.35

b2 76 76.0 80.16 0.0 78.0 81.35 2.63 76.0 81.13 0.0 78.0 81.06 2.63 78.0 81.23 2.63

b3 80 81.0 82.85 1.25 82.0 83.87 2.5 82.0 83.77 2.5 82.0 83.58 2.5 81.0 83.55 1.25

b4 79 82.0 83.82 3.8 83.0 84.9 5.06 82.0 84.68 3.8 83.0 84.9 5.06 81.0 85.1 2.53

b5 72 73.0 74.55 1.39 73.0 75.03 1.39 74.0 74.9 2.78 74.0 75.23 2.78 73.0 74.84 1.39

c1 227 240.0 245.55 5.73 246.0 251.85 8.37 244.0 251.03 7.49 239.0 251.0 5.29 244.0 250.94 7.49

c2 219 234.0 240.19 6.85 237.0 242.89 8.22 238.0 242.61 8.68 231.0 242.65 5.48 233.0 242.19 6.39

c3 243 255.0 260.97 4.94 259.0 263.25 6.58 257.0 262.74 5.76 256.0 263.0 5.35 256.0 263.48 5.35

c4 219 232.0 236.03 5.94 230.0 236.1 5.02 233.0 236.94 6.39 232.0 237.13 5.94 232.0 236.97 5.94

c5 215 225.0 231.62 4.65 229.0 234.2 6.51 226.0 233.35 5.12 227.0 233.42 5.58 226.0 233.45 5.12

d1 60 62.0 64.42 3.33 64.0 65.97 6.67 64.0 66.0 6.67 64.0 65.81 6.67 63.0 66.06 5.0

d2 66 67.0 69.52 1.52 69.0 69.97 4.55 68.0 69.97 3.03 69.0 70.26 4.55 68.0 70.03 3.03

d3 72 75.0 78.0 4.17 76.0 78.86 5.56 75.0 78.74 4.17 75.0 78.58 4.17 76.0 78.77 5.56

d4 62 62.0 64.0 0.0 63.0 64.16 1.61 62.0 64.13 0.0 62.0 64.16 0.0 63.0 64.29 1.61

d5 61 63.0 65.55 3.28 64.0 66.35 4.92 63.0 66.13 3.28 64.0 66.06 4.92 63.0 66.16 3.28

6 Conclusion

Learnheuristics improve the balance between exploration and exploitation to
obtain high quality solutions. In particular, they perturb the solutions by gen-
erating an exploration and exploitation balance but it is not a tenuous and
controlled balance. This evidences the great interest of researchers in Learn-
heuristics or Ambidextrous Algorithms and the great field of research they open
due to the two interacting worlds.

84 B. Crawford et al.

Regarding the reward function, it can be concluded from the statistical eval-
uation that, to solve the Set Covering Problem with the metaheuristic Sine
Cosine Algorithm applying Q-Learning as a binarization scheme selector, there
is an influence of these but there is not a better one than the others.

In the future, this research can be extended to solve another optimization
problem, apply another metaheuristic or apply another reinforcement learning
technique to demonstrate the impact of the reward function in other work con-
texts.

Acknowledgements. Felipe Cisternas-Caneo and Marcelo Becerra-Rozas are sup-
ported by Grant DI Investigación Interdisciplinaria del Pregrado/VRIEA/PUCV/
039.324/2020. Broderick Crawford and Wenceslao Palma are supported by Grant CON-
ICYT /FONDECYT/REGULAR/1210810. Ricardo Soto is supported by Grant CON-
ICYT/FONDECYT /REGULAR/1190129. Broderick Crawford, Ricardo Soto and
Hanns de la Fuente-Mella are supported by Grant Núcleo de Investigación en Data Ana-
lytics/VRIEA /PUCV/039.432/2020. José Lemus-Romani is supported by National
Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO
NACIONAL /2019-21191692.

References

1. Bayliss, C., Juan, A.A., Currie, C.S., Panadero, J.: A learnheuristic approach for
the team orienteering problem with aerial drone motion constraints. Appl. Soft
Comput. 92, 106280 (2020)

2. Cisternas-Caneo, F., et al.: A data-driven dynamic discretization framework to
solve combinatorial problems using continuous metaheuristics. In: Innovations in
Bio-Inspired Computing and Applications, pp. 76–85. Springer International Pub-
lishing, Cham (2021)

3. Crawford, B., de la Barra, C.L.: Los algoritmos ambidiestros (2020). https://
www.mercuriovalpo.cl/impresa/2020/07/13/full/cuerpo-principal/15/. Accessed 2
December 2021

4. Crawford, B., Soto, R., Astorga, G., Garćıa, J., Castro, C., Paredes, F.: Putting
continuous metaheuristics to work in binary search spaces. Complexity, 2017 (2017)

5. Dorigo, M., Gambardella, L.M.: A study of some properties of Ant-Q. In: Voigt,
H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS,
vol. 1141, pp. 656–665. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61723-X 1029

6. Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K.O., Clune, J.: Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995 (2019)

7. Fuchida, T., Aung, K.T., Sakuragi, A.: A study of q-learning considering negative
rewards. Artif. Life Robot. 15(3), 351–354 (2010)

8. Michael, R.G., David, S.J.: Computers and intractability: a guide to the theory of
np-completeness (1979)

9. Hussain, K., Zhu, W., Salleh, M.N.M.: Long-term memory harris′ hawk opti-
mization for high dimensional and optimal power flow problems. IEEE Access
7, 147596–147616 (2019)

10. Lanza-Gutierrez, J.M., et al.: Exploring further advantages in an alternative formu-
lation for the set covering problem. Mathematical Problems in Engineering (2020)

https://www.mercuriovalpo.cl/impresa/2020/07/13/full/cuerpo-principal/15/
https://www.mercuriovalpo.cl/impresa/2020/07/13/full/cuerpo-principal/15/
https://doi.org/10.1007/3-540-61723-X_1029
https://doi.org/10.1007/3-540-61723-X_1029
http://arxiv.org/abs/1901.10995

A Comparison of Learnheuristics Using Different Reward Functions 85

11. Lazaric, A., Restelli, M., Bonarini, A.: Reinforcement learning in continuous action
spaces through sequential monte carlo methods. Adv. Neural. Inf. Process. Syst.
20, 833–840 (2007)

12. Lemus-Romani, J., et al.: Ambidextrous socio-cultural algorithms. In: Gervasi, O.,
et al. (eds.) ICCSA 2020. LNCS, vol. 12254, pp. 923–938. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58817-5 65

13. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.
Based Syst. 96, 120–133 (2016)

14. Morales-Castañeda, B., Zaldivar, D., Cuevas, E., Fausto, F., Rodŕıguez, A.: A
better balance in metaheuristic algorithms: does it exist? Swarm Evolut. Comput.
54, 100671 (2020)

15. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learn-
ing. In: Metaheuristics: Computer Decision-Making. Applied Optimization, vol.
86. Springer, Boston, MA (2003). https://doi.org/10.1007/978-1-4757-4137-7 25

16. Xinyan, O., Chang, Q., Chakraborty, N.: Simulation study on reward function
of reinforcement learning in gantry work cell scheduling. J. Manuf. Syst. 50, 1–8
(2019)

17. Park, Y., Nielsen, P., Moon, I.: Unmanned aerial vehicle set covering problem con-
sidering fixed-radius coverage constraint. Comput. Oper. Res. 119, 104936 (2020)

18. Smith, B.M.: Impacs-a bus crew scheduling system using integer programming.
Math. Program. 42(1–3), 181–187 (1988)

19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press,
Cambridge (2018)

20. Tapia, D., et al.: A q-learning hyperheuristic binarization framework to balance
exploration and exploitation. In: Florez, H., Misra, S. (eds.) ICAI 2020. CCIS,
vol. 1277, pp. 14–28. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61702-8 2

21. Tapia, D., et al.: Embedding q-learning in the selection of metaheuristic operators:
the enhanced binary grey wolf optimizar case. In: Proceeding of 2021 IEEE Inter-
national Conference on Automation/XXIV Congress of the Chilean Association of
Automatic Control (ICA-ACCA), IEEE ICA/ACCA 2021, ARTICLE IN PRESS
(2021)

22. Vianna, S.S.V.: The set covering problem applied to optimisation of gas detectors
in chemical process plants. Comput. Chem. Eng. 121, 388–395 (2019)

23. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
24. Zamli, K.Z., Din, F., Ahmed, B.S., Bures, M.: A hybrid q-learning sine-cosine-

based strategy for addressing the combinatorial test suite minimization problem.
PloS one 13(5), e0195675 (2018)

25. Zhang, L., Shaffer, B., Brown, T., Scott Samuelsen, G.: The optimization of dc
fast charging deployment in california. Appl. Energy 157, 111–122 (2015)

https://doi.org/10.1007/978-3-030-58817-5_65
https://doi.org/10.1007/978-1-4757-4137-7_25
https://doi.org/10.1007/978-3-030-61702-8_2
https://doi.org/10.1007/978-3-030-61702-8_2

A Bayesian Optimisation Approach
for Multidimensional Knapsack Problem

Hanyu Gu(B) , Alireza Etminaniesfahani, and Amir Salehipour

School of Mathematical and Physical Sciences, University of Technology Sydney,
15 Broadway, Ultimo, NSW 2007, Australia
{Hanyu.Gu,amir.salehipour}@uts.edu.au,

Alireza.Etminaniesfahani@student.uts.edu.au

Abstract. This paper considers the application of Bayesian optimi-
sation to the well-known multidimensional knapsack problem which is
strongly NP-hard. For the multidimensional knapsack problem with a
large number of items and knapsack constraints, a two-level formulation
is presented to take advantage of the global optimisation capability of the
Bayesian optimisation approach, and the efficiency of integer program-
ming solvers on small problems. The first level makes the decisions about
the optimal allocation of knapsack capacities to different item groups,
while the second level solves a multidimensional knapsack problem of
reduced size for each item group. To accelerate the Bayesian optimisation
guided search process, various techniques are proposed including variable
domain tightening, initialisation by the Genetic Algorithm, and optimi-
sation landscape smoothing by local search. Computational experiments
are carried out on the widely used benchmark instances with up to 100
items and 30 knapsack constraints. The preliminary results demonstrate
the effectiveness of the proposed solution approach.

Keywords: Bayesian optimisation · Multidimensional knapsack
problem · Meta-heuristics

1 Introduction

The Bayesian optimisation (BO) is a powerful machine learning based method
for the optimisation of expensive black-box functions, which typically only allow
point-wise function evaluation [22,23]. Although BO has been widely used in the
experimental design community since the 1990s [13,15], it is not until the last
decade that BO has become extremely popular in the machine learning com-
munity as an efficient tool for tuning hyper-parameters in various algorithms,
e.g., deep learning [5,7], natural language processing [29], and preference learn-
ing [10]. The BO is also embraced by new areas such as robotics [16], automatic
control [1], and pharmaceutical product development [21].

The Multidimensional Knapsack Problem (MKP) is an extension of the clas-
sic Knapsack Problem (KP). It comprises of n items and m knapsacks with
c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 86–97, 2021.
https://doi.org/10.1007/978-3-030-85672-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_7&domain=pdf
http://orcid.org/0000-0003-2035-2583
https://doi.org/10.1007/978-3-030-85672-4_7

A Bayesian Optimisation Approach for Multidimensional Knapsack Problem 87

limited capacities. Each item contributes a certain amount of profit if selected
and consumes “resources” simultaneously in each knapsack. The MKP aims for a
subset of items that achieves the highest total profit while abiding by the capaci-
ties of all knapsacks. The MKP is a well-known, and strongly NP-hard combina-
torial optimisation problem, and has found applications in many practical areas
involving resource allocation [11,17]. In spite of the tremendous progress made
in exact solution techniques, many instances from the widely used Chu and
Beasley MKP test set [4] cannot be solved to optimality [8,12,28], especially
when the number of knapsacks is large. The best known solutions on the hard
instances are all obtained by specialised meta-heuristics which require exorbi-
tant computation time [3,6,24,25,27]. The simplicity of problem statement and
computational hardness makes the MKP an ideal test bed for new solution ideas
and techniques [14,18].

The BO encounters insurmountable issues to solve the MKP. Firstly, the
BO is designed to solve problems with simple feasible set of continuous vari-
ables [9], while the MKP has only binary variables with many knapsack con-
straints. Whereas a lot of efforts have been committed to consider feasible set
with combinatorial structures, all the reported computational studies investi-
gated problems with just a few dozen categorical/integer/binary variables [2,19].
Secondly, the BO is only efficient for low dimensional problems with less than
20 variables, while the MKP can have hundreds of binary variables. Although
the BO with random embedding can solve problems with billions of variables, it
relies on the “low effective dimensionality” which can be an issue for MKP [26].
Finally, the MKP has a linear function which is “cheap” to calculate, which
makes it hard for the BO to compete with other meta-heuristic and artificial
intelligence algorithms.

Based on the idea of divide and conquer, a novel two-level model for MKP
(TL-MKP) is proposed in this paper to take advantage of the special structure
of MKP, i.e., the number of items (variables) is much larger than the number
of knapsacks (constraints). In particular, the items are divided into groups, and
the knapsack capacities allocated to each group are determined by the first level,
or master problem, of the TL-MKP. With assigned knapsack capacities, each
group can be solved as a MKP of reduced size in the second-level of TL-MKP, or
subproblem. It is shown in Sect. 2 that the master problem has a non-continuous,
multi-modal, and expensive to evaluate objective function with simple feasible
set, which is suitable for the application of BO. Since the subproblem has a much
smaller number of binary variables, it can be efficiently solved to optimality with
commercial integer programming solvers.

It is essential to incorporate prior knowledge in the BO, which was designed
to be a black-box global optimisation method. Two novel techniques are pre-
sented in this paper to make use of the information provided by mathematical
programming solver and meta-heuristics. Indeed, when a good solution is known,
e.g., by using other meta-heuristics, an efficient heuristic is proposed in this paper
to tighten the domain bounds of the master problem in the TL-MKP. Inspired
by the simulation approach used in robotics control algorithms to initialise the

88 H. Gu et al.

BO [20], the Genetic Algorithm (GA) is used in this paper to generate initial
trial points for the BO. To take advantage of the linear structure of the objective
function of MKP, the GA is run on the MKP instead of the master problem of
TL-MKP. These techniques can significantly accelerate the search process of BO
as demonstrated by the computational experiments in this paper.

The paper is organised as follows. The novel two-level model for MKP is
presented with discussion of the properties of the master problem in Sect. 2. The
BO based optimisation approach and some acceleration techniques are described
in Sect. 3. The implementation details are discussed in Sect. 4. Computational
results are presented in Sect. 5. The conclusion is given in Sect. 6.

2 Two-Level Model for MKP

Given m knapsacks with capacities bi, i = 1, . . . ,m, and a set of n items I =
{1, 2, . . . , n}, each item j requires a resource consumption of ai,j units in the i-th
knapsack, i = 1, . . . , m, and yields cj units of profit upon inclusion, j = 1, . . . , n.
The goal is to find a subset of items that yields maximum profit, denoted by
z∗, without exceeding the knapsack capacities. The MKP can be defined by the
following integer linear programming model:

(MKP) z∗ = max{cTx : Ax ≤ b, x ∈ {0, 1}n}, (1)

where c = [c1, c2, . . . , cn]T is an n-dimensional vector of profits, x =
[x1, x2, . . . , xn]T is an n-dimensional vector of 0–1 decision variables indicat-
ing whether an item is included or not, A = [ai,j], i = 1, 2, . . . ,m, j = 1, 2, . . . , n
is an m×n coefficient matrix of resource requirements, and b = [b1, b2, . . . , bm]T

is an m-dimensional vector of resource capacities. It is further assumed that all
parameters are non-negative integers.

Assume the items are divided into two groups, i.e., I = I1 ∪ I2, and I1 ∩ I2 =
∅. Each group is formulated as a MKP with profit vector ci = cIi , resource
requirement matrix Ai = AIi , and capacity vector bi ∈ R

m. The two groups
share the capacities of the m knapsacks, i.e.,

b1 + b2 = b (2)

The first level of the TL-MKP (the two-level model for MKP), or the master
problem is defined as

(L1-MKP) f∗ = max{f(t) : t ∈ R
m, 0 ≤ t ≤ b}, (3)

where
f(t) = z∗

1(t) + z∗
2(b − t) (4)

is calculated by solving the second level of the TL-MKP, or subproblems:

(L2-MKP) z∗
i (u) = max{cixi : Aixi ≤ u, xi ∈ {0, 1}|Ii|}, i = 1, 2 (5)

A Bayesian Optimisation Approach for Multidimensional Knapsack Problem 89

Since each solution of the TL-MKP can be easily converted to a solution to
the MKP with the same objective value, and each solution of the MKP can be
used to define a value of t for the master problem of TL-MKP (3), the following
proposition holds.

Proposition 1. (t∗ = A1x1∗, x1∗, x2∗) is an optimal solution of TL-MKP if and
only if x∗, defined as x∗

N1
= x1∗ and x∗

N2
= x2∗, is an optimal solution of MKP.

Furthermore, f∗ = z∗.

Example 1. Consider an instance of MKP with three items and one knapsack,
where c = [1, 2, 3], A = [1, 2, 3], and b = 4. The two groups are I1 = {1, 2} and
I2 = {3}. It is straightforward to show that the first level objective function is

f(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3 t ∈ [0, 1)
4 t = 1
1 t ∈ (1, 2)
2 t ∈ [2, 3)
3 t ∈ [3, 4]

.

Example 2. Consider an instance of MKP with 20 items and two knapsacks. The
two groups have the same number of items. Figure 1 shows the contour graph of
the first level objective function f(t). The optimal value is equal to 75.

65

65

65

65

65

65

65

65

65

65

65

65

65

65

70

70

70

70

70

70

70

70

70

70

72

72

72

72

72

72

72

75
75

0 5 10 15 20 25 30 35 40 45 50
t1

0

5

10

15

20

25

30

35

40

45

50

t 2

Fig. 1. Contour of the first level objective function f(t); t1(t2) is the capacity allocated
to group 1 from knapsack 1 (2).

Examples (1) and (2) clearly demonstrate that the objective function of the
master problem in TL-MKP is non-continuous, and can have many local optima.

90 H. Gu et al.

Although the subproblems have much smaller sizes, they are still more expensive
to evaluate than the linear function of MKP.

It can be observed that f(t) is not differentiable when at least one knapsack
has no slack capacity in one of the subproblems. That leads to the following
proposition,

Proposition 2. f(t) is differentiable almost everywhere in the sense of Lebesque
measure with f ′(t) = 0.

Although f(t) is differentiable almost everywhere, the derivative is constantly
zero and consequently, useless for the design of optmisation algorithms.

3 Bayesian Optimisation and Acceleration

The BO is a promising option to deal with the challenges presented by the
master problem of TL-MKP such as no closed form, non-continuity, multiple
local optima, absense of useful derivatives, and high cost of function evaluation.
In this section, the basic principles of BO are described first [9], then followed
by techniques to incorporate prior knowledge to accelerate the search process.

The BO builds a probabilistic model for the unknown f(t) of the master
problem of TL-MKP. In particular, f(t) is assumed to be drawn from a Gaussian
process (GP), which is determined by a mean function μ0 : R

m → R, and a
positive definite covariance function k0 : Rm×R

m → R, also known as the kernel
of the GP. The BO sequentially generates points to evaluate within the feasible
region of TL-MKP. Assume that n points have been evaluated with observations
Dn = {(t1, f(t1)), (t2, f(t2)), . . . , (tn, f(tn))}. Using Bayes’ rule, the conditional
distribution of f(t) is derived as a Normal distribution:

P (f(t)|Dn, t) = N (μn(t), σ2
n(t)) (6)

μn(t) = Σ0(t, t1:n)Σ0(t1:n, t1:n)−1(f(t1:n) − μ0(t1:n)) + μ0(t) (7)

σ2
n(t) = k0(t, t) − Σ0(t, t1:n)Σ0(t1:n, t1:n)−1)Σ0(t1:n, t) (8)

where f(t1:n) = [f(t1), . . . , f(tn)]T , μ0(t1:n) = [μ0(t1), . . . , μ0(tn)]T , and

Σ0(t1:n, t1:n) =

⎛

⎜
⎝

k0(t1, t1) · · · k0(t1, tn)
...

. . .
...

k0(tn, t1) · · · k0(tn, tn)

⎞

⎟
⎠ .

The BO selects the next most promising point to evaluate, i.e., tn+1, by opti-
mising an acquisition function, which balances exploration (uncertainty σn(tn+1)
is large) against exploitation (objective expected value μn(tn+1) is large). Differ-
ent types of acquisition function have been proposed in the literature, while the
most commonly used is Expected Improvement (EI). The EI acquisition function
is defined as

A Bayesian Optimisation Approach for Multidimensional Knapsack Problem 91

EIn(t) = En(max(f(t) − maxn
i=1f(ti), 0)), (9)

where En(·) is the expectation taken under the posterior distribution (6).
The next point to evaluate is selected as

tn+1 = argmaxtEIn(t). (10)

With new point (tn+1, f(tn+1)), the conditional probability of f(t) can be
updated according to (6), and the iterative process stops when a sampling budget
is reached.

3.1 Variable Domain Tightening

The efficiency of BO depends on the size and dimensionality of the search space
of TL-MKP, which is defined in (3) as [0, b] ⊂ R

m. If a good lower bound of
MKP fL is known, e.g., through a quick meta-heuristic, the search space can
be reduced to F = {t|f(t) ≥ fL, t ∈ [0, b] ⊂ R

m}. However, this will make
the EI acquisition function harder to optimise in (10) since F has no simple
representation. In this paper, an optimisation based approach is employed to
find the smallest hypercube H = [tL, tU] that contains F , i.e., F ⊂ H. The
upper bound of H along the i-th coordinate, tUi , i = 1, . . . ,m, can be obtained
by solving

tUi = max{A1x1 : cTx ≥ fL, Ax ≤ b, x1 = xI1 , x ∈ {0, 1}n}. (11)

The lower bound of H along the i-th coordinate, tLi , i1, . . . ,m, can be obtained
by solving

tLi = min{A1x1 : cTx ≥ fL, Ax ≤ b, x1 = xI1 , x ∈ {0, 1}n}. (12)

The exact solution of (11) and (12) is time-consuming. Therefore, tU (tL) can
be replaced by a upper (lower) bound of (11) ((12)), e.g., using the linear pro-
gramming relaxation by replacing x ∈ {0, 1}n with x ∈ [0, 1]n.

3.2 Initialisation with Genetic Algorithm

The BO randomly generates the initial trial points in the search space which
can lead to slow convergence. In this paper, The GA is used to generate initial
points that have good solution quality as well as diversity in the search space. The
GA is a population based meta-heuristic which evolves by generations through
genetic operators such as cross-over and mutation. In the early stage of GA the
population has good diversity but low percentage of good solutions; while in the
later stage, the population has high percentage of good solutions but with less
diversity.

It is computationally infeasible to run GA on the TL-MKP since the objec-
tive evaluation involves solving two MIP problems and consequently expensive.
Instead, the GA is directly run on the MKP, and the population is mapped to

92 H. Gu et al.

initialise the BO for TL-MKP. In particular, let x̃ be a solution from a population
of GA. The mapped solution for TL-MKP becomes

t̃ = A1x̃N1 . (13)

It is easy to see that
f(t̃) ≥ cT x̃. (14)

3.3 Optimisation Landscape Smoothing

At each sampling point of BO, a feasible solution to the MKP is also generated
according to Proposition 1. This solution can be improved by a local search
which is efficient to cope with large number of items and constraints. We define
the neighbourhood of a solution x as the set of solutions with at most k different
items:

Nk(x) = {y ∈ {0, 1}n : Ay ≤ b, ‖|x − y|‖1 ≤ k}. (15)

For Example 1, with k = 1, the first level objective function becomes

f(t) =

{
4 t ∈ [0, 2)
3 t ∈ [2, 4]

,

which is “smoother” in terms of the optimisation landscape.

4 Implementation

The BO approach for the MKP (BO-MKP) can be described as in Algorithm 1,
and a prototype of BO-MKP was implemented in Matlab R2020b. In Step 1 of
BO-MKP, the linear relaxation of (11) and (12) are solved to tighten the bounds
of the feasible set of TL-MKP using the function linprog in Matlab Optimization
Toolbox. Using the function ga in the Global Optimization Toolbox of Matlab,
an initial set of trial points are generated in Step 2 as input for BO according to
(13). In Step 3, the BO is implemented with the function bayesopt in the Global
Optimization Toolbox of Matlab. The acquisition function is set to “expected-
improvement”, and the maximum number of evaluation, “MaxObjectiveEvalu-
ations”, is set to N which is a user specified parameter. The subproblems of
TL-MKP (5) are solved by the mixed integer programming solver intlinprog in
Matlab Optimization Toolbox. In Step 4, The best solution of TL-MKP found
by BO is converted to a solution of MKP with the same objective function value
according to Proposition 1.

The selection of kernel function for GP can have a strong influence on the
performance of BO. bayesopt uses the ARD Matérn 5/2 kernel

k(xi, xj |σf , σl) = σ2
f (1 +

√
5r

σl
+

5r2

3σ2
l

) exp (−
√

5r

σl
)

where r =
√

(xi − xj)T (xi − xj), and the parameters are estimated by Gaussian
process regression fitrgp.

A Bayesian Optimisation Approach for Multidimensional Knapsack Problem 93

Algorithm 1: The BO approach for the MKP (BO-MKP).
Input: MKP, item groups I1 and I2, lower bound of MKP fL,

maximum number of evaluation N for BO.
Output: a feasible solution of MKP.
Step 1: tighten the bounds of feasible set of TL-MKP based on fL;
Step 2: generate initial trial points using GA;
Step 3: search for the global optimum of TL-MKP using BO within a
sampling budget of N evaluations;

Step 4: convert the best solution found by BO to the solution of MKP;
return

5 Computational Experiments

All experiments are carried out on the widely used Chu and Beasley MKP test
set in [4]. The Chu and Beasley test set contains classes of randomly generated
instances for each combination of n ∈ {100, 250, 500} items, m ∈ {5, 10, 30}
constraints, and tightness ratios α ∈ {0.25, 0.5, 0.75} with smaller α representing
tighter resource capacities. In the Chu and Beasley MKP test set, the resource
consumption values aij are integers uniformly chosen from (0, 1000), which leads
to large values of the knapsack capacities b. Since the search space of BO for TL-
MKP is defined by b in (3), the Chu and Beasley MKP test set is an challenging
test bed for the proposed BO approach.

To show the effect of tightening bounds in Sect. 3.1, the BO is tested on three
selected instances with n = 100, and the results are reported in Table 1. The
rows correspond to the instances with the number of knapsack constraints m =
5, 10 and 30. The optimal values of these instances are obtained by CPLEX
and reported in the column titled “Opt.” The columns are divided into two
groups for the BO results, one for the cases without bound tightening (“With-
out tightening”) and the other one for the cases with bound tightening (“With
tightening”). To have a better understanding of the convergence behavior of BO,
two values are applied for the maximum number of evaluations, i.e., N = 25, 50.
Since the BO is a stochastic algorithm, the average objective function value of 5
runs is reported for each pair of (m,N) in the columns titled “Ave.”. The rela-
tive gap for the solution found by the BO is calculated as 100 × (z∗ − f)/z∗ and
reported in the columns titled “gap(%)”. It can be seen that the performance of
BO deteriorates dramatically when m increases. When m = 30, the BO reaches
a massive relative gap of 63.8% after 50 function evaluations. This observation
is consistent with BO’s behavior for other optimisation problems. When bound
tightening technique is applied, the performance of BO is improved on all (m,
N) pairs. The improvement is more dramatic when m becomes large. For m = 10
and N = 50 the relative gap is reduced from 9.8% to 4%. However, the solution
quality for m = 30 is still not satisfactory with a large gap of 31.8%.

Table 2 presents the results of BO-MKP which initialises the BO with GA.
The initial trial points provided by the GA should be diverse enough while also
having good solution quality. Therefore, the maximum number of iterations of

94 H. Gu et al.

Table 1. Effects of bound tightening for BO on the TL-MKP.

m Opt. Without tightening With tightening

N=25 N = 50 N = 25 N=50

Ave. gap(%) Ave. gap(%) Ave. gap(%) Ave. gap(%)

5 24381 22897 6.1 23849 2.2 23913 1.9 24017 1.5

10 23064 17145 25.7 20806 9.8 20581 10.8 22149 4.0

30 21946 5710.2 74.0 7955 63.8 14659 33.2 14978 31.8

GA is limited to 55 in BO-MKP. It can be seen that the GA initialisation is not
helpful when m = 5, which suggests that the BO has strong global search capa-
bility when the dimension is low. In sharp contrast, the BO-MKP dramatically
reduces the relative gap for larger dimension. Indeed, the relative gap is just 4%
for m = 30 with 50 function evaluations.

Table 2. Effects of GA initialisation for BO on the TL-MKP.

Opt. N = 25 N = 50

w/o GA Ave. gap(%) w/o GA Ave. gap(%)

m = 5 24381 23913 23928 1.9 24017 24063 1.3

m = 10 23064 20581 22471 2.6 22149 22396 2.9

m = 30 21946 14659 20727 5.6 14978 21060 4.0

Table 3 shows the impact of employing the local search in solving the BO-
MKP. With k = 5 for the neighbourhood defined in (15), the three instances
with m = 5, 10 and 30 are all solved to optimality.

Table 3. Effects of local search for BO on the TL-MKP.

Opt. N = 25

w/o LS with LS gap(%)

m = 5 24381 23928 24381 0.0

m = 10 23064 22471 23064 0.0

m = 30 21946 20727 21946 0.0

The overall performance of BO-MKP on all the 90 instances with 100 items,
i.e., n = 100 is presented in Table 4. For the groups with m = 5 and m = 10,
we set N = 25 and k = 5. For all instances with m = 5 and 26 instances
with m = 10, the optimal solutions are obtained. The remaining 4 instances
in the group with m = 10 can also be solved to optimality by increasing N

A Bayesian Optimisation Approach for Multidimensional Knapsack Problem 95

to 50. We set k = 10 and N = 50 for all instances with m = 30. This group
of instances is particularly challenging to BO due to the high dimensions of
the search space. However, with a strong local search procedure to smooth the
optimisation landscape, high quality solutions are obtained on all instances.

Table 4. Computational results for all instances with 100 items.

α = 0.25 α = 0.5 α = 0.75

m = 5 Average 24197.2 43252.9 60471.0

Best 24197.2 43252.9 60471.0

Opt. 24197.2 43252.9 60471.0

gap % 0.0 0.0 0.0

Time 146.7 s 128.8 s 83.3 s

m = 10 Average 22601.0 42660.2 59555.6

Best 22601.9 42660.6 59555.6

Opt. 22601.9 42660.6 59555.6

gap % 0.0 0.0 0.0

Time 191.5 s 195.3 s 152.3 s

m = 30 Average 21638.2 41420.3 59201.8

Best 21652.9 41427.2 59201.8

Opt. 21660.4 41440.4 59201.8

gap % 0.1 0.0 0.0

Time 359.0 s 359.3 s 311.3 s

6 Conclusion and Future Work

In this paper, a two-level model is presented for the multidimensional knap-
sack problem. The master problem has much smaller dimensions, which makes
it amenable to Bayesian optimisation. Three techniques are introduced to accel-
erate the search process of BO. Preliminary test results show the effectiveness of
the proposed approach. It strongly demonstrates that incorporating prior knowl-
edge and smoothing the optimisation landscape by the local search are crucial
for the success of BO for large MKP.

Future work includes the investigation of the proper kernels in BO for combi-
natorial optimisation problems, the automatic tuning of hyper-parameters, and
comparison with other meta-heuristics. It is also interesting to extend the models
to combinatorial optimisation problems with more complex structures.

References

1. Baheri, A., Bin-Karim, S., Bafandeh, A., Vermillion, C.: Real-time control using
bayesian optimization: a case study in airborne wind energy systems. Control Eng.
Pract. 69, 131–140 (2017)

96 H. Gu et al.

2. Baptista, R., Poloczek, M.: Bayesian optimization of combinatorial structures. In:
Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 462–
471. PMLR, Stockholmsmässan, Stockholm Sweden, 10–15 July 2018

3. Boussier, S., Vasquez, M., Vimont, Y., Hanafi, S., Michelon, P.: A multi-level search
strategy for the 0–1 multidimensional knapsack problem. Discret. Appl. Math.
158(2), 97–109 (2010)

4. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack
problem. J. Heuristics 4(1), 63–86 (1998)

5. Dean, J., et al.: Large scale distributed deep networks. In: Pereira, F., Burges,
C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Pro-
cessing Systems 25, pp. 1223–1231. Curran Associates, Inc. (2012)

6. Della Croce, F., Grosso, A.: Improved core problem based heuristics for the 0/1
multi-dimensional knapsack problem. Comput. Oper. Res. 39(1), 27–31 (2012)

7. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparam-
eter optimization of deep neural networks by extrapolation of learning curves. In:
Proceedings of the 24th International Conference on Artificial Intelligence, pp.
3460–3468. IJCAI 2015, AAAI Press (2015)

8. Drake, J.: Or library mkp - best known solutions. http://www.cs.nott.ac.uk/∼jqd/
mkp/bestresults.html

9. Frazier, P.I.: Bayesian optimization. INFORMS TutORials in Operations Research,
pp. 255–278 (2018)

10. Freno, A., Saveski, M., Jenatton, R., Archambeau, C.: One-pass ranking models for
low-latency product recommendations. In: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining , pp. 1789–
1798. Association for Computing Machinery, New York, NY, USA (2015)

11. Fréville, A.: The multidimensional 0–1 knapsack problem: An overview. Eur. J.
Oper. Res. 155(1), 1–21 (2004)

12. Fréville, A., Hanafi, S.: The multidimensional 0–1 knapsack problem - bounds and
computational aspects. Ann. Oper. Res. 139(1), 195–227 (2005)

13. Greenhill, S., Rana, S., Gupta, S., Vellanki, P., Venkatesh, S.: Bayesian optimiza-
tion for adaptive experimental design: A review. IEEE Access 8, 13937–13948
(2020)

14. Gu, H.: Improving problem reduction for 0–1 multidimensional knapsack problems
with valid inequalities. Comput. Oper. Res. 71(C), 82–89 (2016)

15. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13(4), 455–492 (1998)

16. Junge, K., Hughes, J., Thuruthel, T.G., Iida, F.: Improving robotic cooking using
batch bayesian optimization. IEEE Robot. Autom. Lett. 5(2), 760–765 (2020)

17. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer, Heidelberg
(2004)

18. Lai, X., Hao, J., Glover, F.W., Lü, Z.: A two-phase tabu-evolutionary algorithm
for the 0–1 multidimensional knapsack problem. Inf. Sci. 436–437, 282–301 (2018)

19. Oh, C., Tomczak, J., Gavves, E., Welling, M.: Combinatorial bayesian optimization
using the graph cartesian product. In: Wallach, H., Larochelle, H., Beygelzimer,
A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information
Processing Systems 32, pp. 2914–2924. Curran Associates, Inc. (2019)

20. Rai, A., Antonova, R., Meier, F., Atkeson, C.G.: Using simulation to improve
sample-efficiency of bayesian optimization for bipedal robots. J. Mach. Learn. Res.
20(49), 1–24 (2019)

http://www.cs.nott.ac.uk/~jqd/mkp/bestresults.html
http://www.cs.nott.ac.uk/~jqd/mkp/bestresults.html

A Bayesian Optimisation Approach for Multidimensional Knapsack Problem 97

21. Sano, S., Kadowaki, T., Tsuda, K., Kimura, S.: Application of Bayesian optimiza-
tion for pharmaceutical product development. J. Pharm. Innov. 15(3), 333–343
(2019)

22. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the
human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1),
148–175 (2016)

23. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q.
(eds.) Advances in Neural Information Processing Systems 25, pp. 2951–2959. Cur-
ran Associates, Inc. (2012)

24. Vasquez, M., Vimont, Y.: Improved results on the 0–1 multidimensional knapsack
problem. Eur. J. Oper. Res. 165(1), 70–81 (2005)

25. Vimont, Y., Boussier, S., Vasquez, M.: Reduced costs propagation in an efficient
implicit enumeration for the 01 multidimensional knapsack problem. J. Comb.
Optim. 15(2), 165–178 (2008)

26. Wang, Z., Hutter, F., Zoghi, M., Matheson, D., De Freitas, N.: Bayesian opti-
mization in a billion dimensions via random embeddings. J. Artif. Int. Res. 55(1),
361–387 (2016)

27. Wilbaut, C., Hanafi, S.: New convergent heuristics for 0–1 mixed integer program-
ming. Eur. J. Oper. Res. 195(1), 62–74 (2009)

28. Wilbaut, C., Hanafi, S., Salhi, S.: A survey of effective heuristics and their appli-
cation to a variety of knapsack problems. IMA J. Manag. Math. 19(3), 227–244
(2008)

29. Yogatama, D., Kong, L., Smith, N.A.: Bayesian optimization of text representa-
tions. In: Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pp. 2100–2105. Association for Computational Linguistics,
Lisbon, Portugal

Machine Learning and Deep Learning

Robustness of Adversarial Images Against
Filters

Raluca Chitic1(B) , Nathan Deridder1 , Franck Leprévost1 ,
and Nicolas Bernard2

1 University of Luxembourg, House of Numbers, 6, avenue de la Fonte,
4364 Esch-sur-Alzette, Grand Duchy of Luxembourg

{Raluca.Chitic,Franck.Leprevost}@uni.lu
nathan.deridder.001@student.uni.lum

2 La Fraze, 1288, chemin de la Fraze, 88380 Arches, France
Nicolas.Bernard@lafraze.com

Abstract. This article addresses the robustness issue of adversarial
images against filters. Given an image A, that a convolutional neural
network and a human both classify as belonging to a category cA, one
considers an adversarial image D that the neural network classifies in
a category ct �= cA, although a human would not notice any difference
between D and A. Would the application of a filter F (such as the Gaus-
sian blur filter) to D still lead to an adversarial image F (D) that fools
the neural network? To address this issue, we perform a study on VGG-
16 trained on CIFAR-10, with adversarial images obtained thanks to
an evolutionary algorithm run on a specific image A taken in one cat-
egory of CIFAR-10. Exposed to 4 individual filters, we show that the
outputted filtered adversarial images essentially do remain adversarial
in some sense. We also show that combining filters may render our EA
attack less effective. We therefore design a new evolutionary algorithm,
whose aim is to create adversarial images that do pass the filter test, do
fool VGG-16 and do remain close enough to A that a human would not
notice any difference. We show that this is indeed the case by running
this new algorithm on the same image A.

1 Introduction

During the last decade, Neural Networks, and particularly Convolutional Neural
Networks (CNNs), have established themselves as the leading way to recognise
objects in images. From there, they can be applied to automated image classi-
fication, image segmentation, video feed monitoring, etc. However, they are not
absolutely foolproof. Trompe-l’œil can fool a human into seeing something that
is not really there. In the same way, a CNN can be wrong from time to time,
misclassifying an object in a picture as something else. Adversarial images are
specially crafted to this purpose.

Significant work has been performed on adversarial attacks which are
designed to fool CNNs trained for object recognition. Among the different types
c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 101–114, 2021.
https://doi.org/10.1007/978-3-030-85672-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_8&domain=pdf
http://orcid.org/0000-0003-1113-2343
http://orcid.org/0000-0003-1215-1239
http://orcid.org/0000-0001-8808-2730
http://orcid.org/0000-0003-3857-9591
https://doi.org/10.1007/978-3-030-85672-4_8

102 R. Chitic et al.

of successful adversarial attacks are those based on Evolutionary Algorithms
(EAs). Although EA-based attacks produce adversarial images that are misclas-
sified by CNNs, these images often contain noise-like artefacts. This can pose
an issue for the similarity between the original, unmodified and the adversar-
ial images, which is a requirement for adversarial attacks [2]. Moreover, noise-
removing filters are a staple of image processing. It raises questions regarding
the robustness of noisy adversarial images: Would it be enough to add a filter in
front of a CNN to protect it against such existing attacks? Or from the attacker’s
point of view, given an adversarial image fooling a CNN, is it robust? Does the
filtered adversarial image remain adversarial? If it does not, then is it possible to
modify an EA-based attack to fool the combination Filter + CNN? This article
addresses these questions in a specific context, and in elaborated scenarios.

The considered CNN, briefly described in Sect. 2, is VGG-16 [8,12] trained
on the CIFAR-10 [9] dataset to classify images according to 10 categories. The
adversarial images are obtained by the evolutionary algorithm EAtarget

L2
intro-

duced in [4,5] for the target scenario. In a nutshell, this scenario considers two
different categories ct and cA, and an image A classified by a trained CNN
in cA. An EA then aims at evolving A into an adversarial image D, that the
CNN classifies as belonging to ct, while remaining close to A for a human eye.
Section 3 summarizes the main features of EAtarget

L2
in the context of the target

scenario instantiated on VGG-16 trained on CIFAR-10. Section 4 first explicits
the implementation aspects and the parameters of EAtarget

L2
. Then, one example

is detailed. This section displays both the ancestor image in the category dog,
and the adversarial descendent image in each of the 9 distinct remaining target
categories of CIFAR-10, obtained by explicitly running EAtarget

L2
on the chosen

ancestor with these parameters. To address the questions at the origin of this
paper, a series of filters are compared in Sect. 5, and then applied in Sect. 6 to
the images of Sect. 4.

A first outcome is that the adversarial images created by EAtarget
L2

and the
ancestor essentially have the same pattern once exposed to individual filters.
Depending on the filter, filtered adversarial images remain adversarial, either for
the target scenario or for the untargeted scenario, for which one only requires
the adversarial image to be classified in a different category than the original
one. However, using composition of different filters render the EAtarget

L2
attack

less effective, not only for the target but also for the untargeted scenario. This
outcome leads to the construction in Sect. 7 of the variant EAtarget,F

L2
of the

EA, whose fitness function natively includes the robustness against the filter
F for the target scenario. Section 7 shows the adversarial images obtained by
running EAtarget,F

L2
for a specific composition of filters on the same dog ancestor

image, and the behavior of these new adversarial images towards filters. Section 8
summarizes the conclusions of this case study, some characteristics of the new
black-box, targeted, non-parametric creation process EAtarget,F

L2
of adversarial

images robust against filters, and provides a series of research directions.

Robustness of Adversarial Images Against Filters 103

This article, formalizing some aspects of the bachelor student project of the
second author, is an additional contribution to the research program announced
in [2].

2 VGG-16 Trained on CIFAR-10

Although applicable to any CNN trained at image classification on some dataset,
we instantiate our approach on a concrete case: VGG-16 trained on CIFAR-10.
On the one hand, the dataset CIFAR-10 [9] encompasses 50, 000 training images,
and 10, 000 test images of size 32×32×3, meaning that each image has a width
and height of 32 pixels, each pixel having a color resulting from the 3 RGB
values. The images are sorted according to � = 10 categories (see Table 1).

Table 1. CIFAR-10.– For 1 ≤ i ≤ 10, the 2nd row specifies the category ci of CIFAR-
10. In our experiment, we shall use the picture n◦16 in the dog category from the test
set of CIFAR-10 as ancestor.

i 1 2 3 4 5 6 7 8 9 10

ci plane car bird cat deer dog frog horse ship truck

On the other hand, an input image I given to VGG-16 [12] is processed
through 16 layers to produce a classification output vector oI of size � = 10
in the case considered, namely oI = (oI [1], · · · ,oI [10]), where 0 ≤ oI [i] ≤ 1,
and

∑10
i=1 oI [i] = 1. Each value oI [i] measures the probability that the image I

belongs to the category ci. As a consequence, an image I is classified as belonging
to the category ck if k = arg max1≤i≤10(oI [i]).

3 Target and Untargeted Scenarios, and Design
of EAtarget

L2

The target scenario consists in first choosing two different categories ct �= cA
among the 10 categories of CIFAR-10. Then one is given an ancestor image A
labelled by VGG-16 as belonging to cA. Finally one constructs a new image
D, classified by VGG-16 as belonging to ct, although D remains so close to A
that a human would likely classify D as belonging to cA or even be unable to
distinguish D from A. The classification threshold value is set at 0.95, meaning
that such a D has achieved its purpose if oD[t] ≥ 0.95. We shall also encounter
in Sect. 6 the slightly different untargeted scenario. An adversarial image D is
still required to be similar to A for a human eye, while VGG-16 classifies D as
belonging to a category c �= cA, in the sense that the label value of c outputted
by VGG-16 for D is the largest among all label values, and is strictly larger than
the label value of cA. In particular, an image adversarial for the target scenario
is also adversarial for the untargeted scenario, but the inverse may not be true.

104 R. Chitic et al.

Keeping these notations, let us summarize the strategy adopted in [4,5]
to construct an evolutionary algorithm EAtarget

L2
, that creates such adversarial

images fooling VGG-16 trained on CIFAR-10 for the target scenario. The main
components of our EA are as follows.

Population Initialization. The initial population is set to 160 copies of the ances-
tor image A.

Evaluation. This operation is performed on each individual image ind of a given
generation gp via the fitness function fitL2(ind, gp) that takes into account a
dual goal made of both the evolution of ind towards the target category ct, and
its proximity with the ancestor A, measured thanks to the L2-norm:

fitL2(ind, gp) = A(gp, ind)oind[ct] − B(gp, ind)L2(ind,A) ≥ 0, (1)

where the quantities A(gp, ind), B(gp, ind) ≥ 0 weight and balance the dual goal
(see Sect. 4 for their values). The L2-norm is used to calculate the difference
between the pixel values of the ancestor and of the considered image ind:

L2(ind,A) =
∑

pj

|ind[pj] − A[pj]|2, (2)

where pj is the pixel in the jth position, and 0 ≤ ind[pj],A[pj] ≤ 255 are the
corresponding pixel values of the images ind and A.

Evolution. Once the fitness function of each individual in the population is com-
puted (starting with the first generation made of the initial population), the
on-going generation is split into 3 groups. The “elite” consists of the 10 best indi-
viduals in the population. The “didn’t make it”, consisting of the lower scored
half of the population, is discarded. The “middle class” consists of the remain-
ing individuals. The “elite” is kept unchanged. Each of the 80 individuals of the
“didn’t make it” group is replaced by an individual resulting of the mutation of
elements from the “elite” and the “middle-class”. All “middle-class” individuals
are mutated. The performed mutations are those described in [4] (they remain
similar to some extent to those of [1]). Cross-overs (see [4]) are applied to all
individuals except those of the “elite”. Pixel values are modified in a range ±3
in the version used here of EAtarget

L2
. These operations lead to the 160 individuals

composing the new generation subject to the next round of evaluation.

This loop is performed as many times as necessary to create the adversarial
image D as the result of EAtarget

L2
run on A for the target category ct. Hence

D = EAtarget
L2

(A, ct) satisfies oD[t] ≥ 0.95.

4 Obtention of the Adversarial Images: Running EAtarget
L2

Concretely, for any generation gp, one sets B(gp, ind) = 10− log10(L2(ind,A)). The
value of A(gp, ind) depends on oind[ct] (note that log10 oind[ct] ≤ 0).

Robustness of Adversarial Images Against Filters 105

A(gp, ind) =

⎧
⎪⎨

⎪⎩

10−3+log10 oind[ct] if oind[ct] < 10−3

10−2+log10 oind[ct] if 10−3 ≤ oind[ct] < 10−2

10−1+log10 oind[ct] if 10−2 ≤ oind[ct]
(3)

EAtarget
L2

was implemented in Python 3.7 with the NumPy [11] library. Keras [6]
was used to load and run the VGG-16 [12] model. Our experiments were run on
a computer with an Nvidia RTX 3080 GPU and an Amd Ryzen 7 5800X CPU.

Figure 1 shows the ancestor image A taken in the category dog (image n◦16 in
the category c6 of the test set of CIFAR-10, used throughout this article). Besides
A, Fig. 1 also presents the 9 evolved adversarial images Di = EAtarget

L2
(A, ci), with

i �= 6, classified by VGG-16 as belonging to the category ci with the notations
of Table 1. By slightly changing many pixels instead of heavily changing a few
pixels, this approach, that enhances the indistinguishability between the adver-
sarial image and the ancestor image, differs substantially from [13], where one
single pixel is changed, but this modification is noticeable for a human without
difficulty.

Fig. 1. Comparison of the ancestor A (chosen as the image n◦16 in the dog category
c6) in the 6th position with the adversarial images Di = EAtarget

L2
(A, ci) in the ith

position (i �= 6). VGG-16 classifies A in the dog category with probability 0.9996387,
and classifies Di in the target category ci with probability ≥ 0.95.

Table 2 specifies the number of generations and the execution time required
by EAtarget

L2
to create the adversarial images Di of Fig. 1. The images pictured

in Fig. 1 are tested in Sect. 6. More precisely, filters performed on these images
create new images that are given as input to VGG-16 for classification. The
choice of these filters is described in the next section.

5 Selection of Filter

In image processing, a filter or a Kernel [14] is essentially given by a square
f × f matrix for an odd integer f . Filtering an image I, say of size n × n, is an
operation performed pixel for pixel as follows. For each pixel p of I, one puts
in matrix form a f × f area of the image centered on p. The coefficients of the
resulting f × f matrix Ip are the RGB values of the corresponding pixels in the
considered area. The convolution operation of the kernel matrix and of Ip leads
to a f × f matrix F ∗ Ip. The values of the pixel p of the filtered image F (I)
is the sum of the coefficients of F ∗ Ip. Pixels at a distance < f of an edge of I
require a special treatment to ensure that the size of the filtered image F (I) is
also of size n×n (otherwise, its size would be reduced to (n−f +1)×(n−f +1)).

106 R. Chitic et al.

Table 2. For 1 ≤ i ≤ 10, i �= 6, the 2nd row specifies the number of generations
required by EAtarget

L2
to create the adversarial image Di pictured in Fig. 1. The 3rd row

shows the total execution time, measured in seconds, while the 4th row represents the
average number of generations per second.

i 1 2 3 4 5 7 8 9 10

of generations 815 960 494 127 1011 376 286 970 526

total time (in seconds) 46.22 69.14 27.02 8.27 53.93 20.67 16.2 52.36 28.21

of generations/second 17.63 13.88 18.28 15.36 18.74 18.19 17.65 18.53 18.65

Although one could consider a large list of filters, we focus in this article
on the following four [10, chapters 7 and 8], that have a significant impact on
images. In our computations performed on images of size 32 × 32, we shall take
f = 1 for F1 and f = 3 for F2, F3, F4, and used the OpenCV implementation
library [3].

The inverse filter F1 replaces all colors by their complementary colors.
This operation is performed pixel for pixel by subtracting the RGB value
(255, 255, 255) of white by the RGB value of that pixel.

The Gaussian blur filter F2 uses a Gaussian distribution to calculate the

Kernel, G(x, y) = 1
2πσ2 e− x2+y2

2σ2 , where x is the distance from the origin on the
x-axis, y is the distance from the origin on the y-axis and σ is the standard
deviation of the Gaussian distribution. By design, the process gives more priority
to the pixels in the center, and blurs around it with a lesser impact as one moves
away from the center.

The median filter F3 is used to reduce noice and artefacts in a picture.
Though under some conditions it can reduce noise while preserving the edges,
this does not really occur for small images like those considered here. In general,
one selects a pixel, and one computes the median of all the surrounding pixels.

The unsharp mask filter F4 enhances the sharpness and contrast of images.
The unsharp masked image is obtained by blurring a copy of the image using a
Gaussian blur, which is then weighted and subtracted from the original image.

Any such filter F , or any combination of filters Fi1 , Fi2 , · · · , Fik
operating

successively (in that order) on an image I, creates a filtered image F (I) or
Fik

◦ · · · ◦ Fi2 ◦ Fi1(I). In Sect. 6 we make use of the previous four filters taken
individually, and of the combination F3 ◦ F4.

6 Filtering the Ancestor and the Adversarial Images

The ancestor image A, and the adversarial images Di = EAtarget
L2

(A, ci) (i �= 6)
represented in Fig. 1 are tested against the filters of Sect. 5. Figure 2 shows the
outcome of this process. From left to right, the 10 pictures on the kth row
represent F (A) in the 6th position and F (Di) in the ith position for 1 ≤ i �= 6 ≤
10, with F = Fk for 1 ≤ k ≤ 4, and F = F3 ◦ F4 for the 5th row. The reason
for the choice of F3 ◦ F4 is that F4 is used to amplify and highlight detail, while

Robustness of Adversarial Images Against Filters 107

F3 is used to remove noise from an image without removing detail. Therefore,
a combination of these filters could remove the noise created by the EA while
maintaining a high level of detail.

Fig. 2. Comparison of the impact of filters on the ancestor A and on the adversarial
images Di. The kth row represents F (A) (in 6th position) and F (Di) (in ith position,
i �= 6), where F = Fk for 1 ≤ k ≤ 4, and F = F3 ◦ F4 for k = 5.

These filtered images are given to VGG-16 for classification. Table 3 shows
the outcome with filters F = Fk for 1 ≤ k ≤ 3, while Table 4 is produced
with F4, and Table 5 with F3 ◦ F4. Each Table has (groups of) rows showing
the probability of the filtered images for the c6 category, the target class ci,
the maximum probability and its corresponding class outputted by VGG-16,
respectively. In all tables, we set D6 = A to ease the notations.

The inverse, Gaussian blur and median filters (F1, F2 and F3, Table 3) pro-
duce images that are adversarial against VGG-16 for the untargeted scenario.
Indeed, the c6 probabilities of the F (Di) are very low, and there is a category
c �= c6 of probability strictly larger. Only one adversarial image reverts to the
dog class after being filtered (filter F3, class 2). The noticeable predominance
of the cat class as the predicted category of the filtered images is likely due to
the similarity in features of the CIFAR-10 dog and cat images that VGG-16 was
trained on. Another reason for the inefficacy of filters F1, F2 and F3 to protect
VGG-16 for the untargeted scenario is that the c6 probability of F (A) is dras-
tically reduced from the initial 0.9996387 of A, which is undesired. Although
adversarial for the untargeted scenario, these filtered images can not be consid-
ered adversarial for the target scenario. Still, almost all F (Di) are classified in
the same category cat as F (A), hence follow F (A)’s pattern.

Filters F4 and F3 ◦ F4 do not significantly reduce the c6 probability of F (A)
(Tables 4 and 5). The F4(Di)s are classified in ci with high confidence, and
are definitively adversarial for the untargeted scenario. Moreover, they are all

108 R. Chitic et al.

Table 3. Label values in the category c6, target class ci, maximum probability and its
corresponding class given by VGG-16 for the filtered ancestor F (A) and the filtered
adversarial images F (Di) (i �= 6) for F = F1 (1st group of 5 rows), F2 (2nd group of 5
rows) and F3 (3rd group of 5 rows).

i 1 2 3 4 5 6 7 8 9 10

oF1(Di)[6] 8e-04 1e-02 8e-03 8e-04 5e-03 1e-03 2e-02 1e-02 3e-03 8e-04

oF1(Di)[i] 5e-04 8e-04 8e-05 0.99 6e-04 1e-03 2e-02 4e-05 1e-02 0.91

max(oF1(Di)) 0.98 0.72 0.98 0.99 0.68 0.99 0.95 0.97 0.82 0.91

cargmax(oF1(Di)
) truck frog cat cat frog cat cat cat truck truck

i 1 2 3 4 5 6 7 8 9 10

oF2(Di)[6] 1e-04 1e-02 3e-03 1e-04 6e-04 3e-04 1e-03 1e-03 1e-04 2e-04

oF2(Di)[i] 1e-05 2e-06 8e-05 0.99 2e-05 3e-04 1e-05 2e-05 3e-06 2e-06

max(oF2(Di)) 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

cargmax(oF2(Di)
) cat cat cat cat cat cat cat cat cat cat

i 1 2 3 4 5 6 7 8 9 10

oF3(Di)[6] 1e-02 0.84 0.22 6e-03 1e-02 0.26 0.14 0.12 2e-02 0.11

oF3(Di)[i] 1e-05 3e-06 1e-03 0.99 2e-05 0.26 5e-05 6e-05 4e-06 5e-06

max(oF3(Di)) 0.98 0.84 0.77 0.99 0.98 0.73 0.86 0.88 0.97 0.89

cargmax(oF3(Di)
) cat dog cat cat cat cat cat cat cat cat

Table 4. Label values in the category c6, target class ci, maximum probability and its
corresponding class given by VGG-16 for the filtered ancestor F4(A) and the filtered
adversarial images F4(Di) (i �= 6).

i 1 2 3 4 5 6 7 8 9 10

oF4(Di)[6] 1e-03 8e-05 1e-02 0.15 3e-04 0.99 3e-04 1e-02 1e-03 5e-05

oF4(Di)[i] 0.94 0.99 0.97 0.84 0.99 0.99 0.99 0.98 0.99 0.99

max(oF4(Di)) 0.94 0.99 0.97 0.84 0.99 0.99 0.99 0.98 0.99 0.99

cargmax(oF4(Di)
) plane car bird cat deer dog frog horse ship truck

Table 5. Label values in the category c6, target class ci, maximum probability and
its corresponding class given by VGG-16 for the filtered ancestor F3 ◦ F4(A) and the
filtered adversarial images F3 ◦ F4(Di) (i �= 6).

i 1 2 3 4 5 6 7 8 9 10

oF3◦F4(Di)
[6] 0.17 0.99 0.75 0.11 8e-02 0.91 0.51 0.32 0.22 0.58

oF3◦F4(Di)
[i] 3e-05 1e-06 3e-03 0.88 3e-05 0.91 1e-04 8e-05 8e-06 7e-06

max(oF3◦F4(Di)
) 0.82 0.99 0.75 0.88 0.91 0.91 0.51 0.67 0.77 0.58

cargmax(oF3◦F4(Di)
) cat dog dog cat cat dog dog cat cat dog

Robustness of Adversarial Images Against Filters 109

adversarial for the target scenario, while F4(A) simultaneously remains classified
as dog. In that sense, our EAtarget

L2
attack is robust against the unsharp mask

filter for the target and a fortiori the untargeted scenario.
The final filter F3 ◦ F4 has a particular impact. First, F3 ◦ F4(A) remains

classified as dog. Second, the c6 probabilities of the F3 ◦ F4(Di)s (Table 5) are
either the largest or the second largest. Out of the 9 adversarial images, 4 reverted
to the dog class after filtering, while the other 5 were classified as cat, with dog
being the second most likely category. Hence the F3 ◦ F4 combination of filters,
which brings back a significant proportion of filtered images to the ancestor
category, may render our EA-based attack less effective, not only for the target,
but also for the untargeted scenario.

7 The Variant EAtarget,F
L2

Results of the previous section lead to the conception of EAtarget,F
L2

. This variant
of EAtarget

L2
natively takes into account the goal to create adversarial images that

remain adversarial for the target scenario once filtered, in addition to remaining
close to the ancestor and being classified as belonging to a target category. The
main modification is clearly in the fitness function:

fitFL2
(ind, gp) = A(gp, ind)(oind[ct] + oF (ind)[ct]) − B(gp, ind)L2(ind,A) (4)

where the last component measures the probability that the individual filtered
with F is classified as the target category. Since F3 ◦ F4 is the only filter which
can revert a significant proportion of the adversarial images to c6, it makes sense
to explore EAtarget,F3◦F4

L2
. For the sake of consistency, the range of pixel value

modification is set to ±3 as well for EAtarget,F3◦F4
L2

.
Running EAtarget,F3◦F4

L2
for the target scenario on the same dog ancestor

image as during the previous experiments leads to the DF3◦F4
i adversarial images

pictured in Fig. 3.

Fig. 3. Comparison of the ancestor A in the 6th position with the adversarial images
DF3◦F4

i = EAtarget,F3◦F4
L2

(A, ci) in the ith position (i �= 6, from left to right). VGG-16

classifies DF3◦F4
i as belonging to the target category ci with probability ≥ 0.95.

The ancestor image A, and the adversarial images DF3◦F4
i = EAtarget,F3◦F4

L2

(A) (i �= 6) pictured in Fig. 3 are tested against the filters of Sect. 5. Figure 4
shows the outcome of this process. More precisely, from left to right, the picture
in the ith position on the kth row represent F (DF3◦F4

i) for i �= 6 and F (A) for
i = 6, filtered with F = Fk for 1 ≤ k ≤ 4, and F = F3 ◦ F4 for k = 5.

110 R. Chitic et al.

Fig. 4. Comparison of the impact of filters on the ancestor A and on the adversarial
images DF3◦F4

i . The kth row represents F (A) (in 6th position) and F (DF3◦F4
i) (in ith

position, i �= 6), where F = Fk for 1 ≤ k ≤ 4, and F = F3 ◦ F4 for k = 5.

These filtered images are given to VGG-16 for classification. Table 6 is pro-
duced with the filters F1, F2, F3, while Table 7 is produced with F4, and Table 8
with F3 ◦ F4. Each Table has (groups of) rows showing the probability of the
filtered images for the c6 category, the target class ci, the maximum probability
and its corresponding class outputted by VGG-16, respectively. In all tables, we
set DF3◦F4

6 = A to ease the notations.
The first outcome of Tables 6, 7 and 8 is that the EAtarget,F3◦F4

L2
attack is

robust against all individual filters considered for the untargeted scenario. This
result is not surprising, since the Fk (1 ≤ k ≤ 4) filters were already not a
good defense for the CNN when using adversarial images created with EAtarget

L2
.

Hence, although the DF3◦F4
i adversarial images were only designed to circumvent

filter F3 ◦ F4, they are also robust against filters F1 to F4.
None of the EAtarget,F3◦F4

L2
adversarial images filtered with F1 to F3 were

classified as dog. Nonetheless, the predicted categories vary between filters. While
the Gaussian filter predicts cat for all images, the inverse and median filters also
predict the target class for some images. By simply observing the images of
Fig. 4, one can see that the Gaussian filter produces the blurriest images, hence
reducing not only the object details, but also the noise added by the EA. This
might explain why the predictions corresponding to the Gaussian-filtered images
do not contain much information related to the target class.

As is the case with EAtarget
L2

, the adversarial images produced by
EAtarget,F3◦F4

L2
, once filtered with F4 are all classified as the target class, hence

being adversarial for the target scenario. This is probably due to the fact that,
while the unsharp mask increases the contrast of the dog object, it also intensi-
fies the noise added by the EA, which directs the image towards the adversarial
class. The noisy aspect of the filtered images can be seen in the 4th row of Fig. 4.

Robustness of Adversarial Images Against Filters 111

Table 6. Label values in the category c6, target class ci, maximum probabil-

ity max o = max

(
o
F

(
DF3◦F4

i

)
)

and its corresponding class cmax, where cmax =

arg max

(
o
F

(
DF3◦F4

i

)
)

given by VGG-16 for the filtered ancestor F (A) and the fil-

tered adversarial images F (DF3◦F4
i) (i �= 6) for F = F1 (1st group of 5 rows), F2 (2nd

group) and F3 (3rd group).

i 1 2 3 4 5 6 7 8 9 10

o
F1

(
DF3◦F4

i

)[6] 3e-03 2e-03 8e-04 1e-03 1e-03 1e-03 7e-03 0.11 1e-03 1e-04

o
F1

(
DF3◦F4

i

)[i] 2e-03 1e-04 7e-05 0.99 6e-04 1e-03 0.22 5e-05 1e-02 0.99

max o 0.58 0.66 0.97 0.99 0.85 0.99 0.73 0.86 0.75 0.99

cmax frog cat cat cat frog cat cat cat frog truck

i 1 2 3 4 5 6 7 8 9 10

o
F2

(
DF3◦F4

i

)[6] 2e-04 3e-04 6e-03 1e-04 1e-03 3e-04 6e-03 1e-03 3e-04 1e-03

o
F2

(
DF3◦F4

i

)[i] 3e-05 3e-06 2e-04 0.99 4e-05 3e-04 2e-05 5e-05 4e-06 3e-06

max o 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

cmax cat cat cat cat cat cat cat cat cat cat

i 1 2 3 4 5 6 7 8 9 10

o
F3

(
DF3◦F4

i

)[6] 9e-04 4e-02 1e-03 3e-04 4e-02 0.26 4e-02 4e-03 1e-02 0.10

o
F3

(
DF3◦F4

i

)[i] 0.84 0.17 0.99 0.99 0.88 0.26 0.84 0.98 1e-02 8e-02

max o 0.84 0.72 0.99 0.99 0.88 0.73 0.84 0.98 0.97 0.80

cmax plane cat bird cat deer cat frog horse cat cat

Table 7. Label values in the category c6, target class ci, maximum probability

max o = max

(
o
F4

(
DF3◦F4

i

)
)

and its corresponding class cmax, where cmax =

arg max

(
o
F4

(
DF3◦F4

i

)
)

given by VGG-16 for the filtered ancestor F4(A) and the fil-

tered adversarial F4(DF3◦F4
i) (i �= 6).

i 1 2 3 4 5 6 7 8 9 10

o
F4

(
DF3◦F4

i

)[6] 4e-04 6e-05 4e-03 6e-02 4e-04 0.99 3e-04 5e-03 1e-04 1e-04

o
F4

(
DF3◦F4

i

)[i] 0.96 0.99 0.99 0.93 0.97 0.99 0.99 0.99 0.99 0.98

max o 0.96 0.99 0.99 0.93 0.97 0.99 0.99 0.99 0.99 0.98

cmax plane car bird cat deer dog frog horse ship truck

112 R. Chitic et al.

Table 8. Label values in the category c6, target class ci, maximum probability

max o = max

(
o
F3◦F4

(
DF3◦F4

i

)
)

and its corresponding class cmax, where cmax =

arg max

(
o
F3◦F4

(
DF3◦F4

i

)
)

given by VGG-16 for the filtered ancestor F3 ◦ F4(A) and

the filtered adversarial F3 ◦ F4(DF3◦F4
i) (i �= 6).

i 1 2 3 4 5 6 7 8 9 10

o
F3◦F4(DF3◦F4

i)
[6] 6e-05 2e-04 1e-04 2e-04 1e-04 0.91 1e-04 1e-04 5e-04 8e-05

o
F3◦F4(DF3◦F4

i)
[i] 0.99 0.99 0.99 0.99 0.99 0.91 0.99 0.99 0.99 0.99

max o 0.99 0.99 0.99 0.99 0.99 0.91 0.99 0.99 0.99 0.99

cmax plane car bird cat deer dog frog horse ship truck

Finally, Table 8, corresponding to F3 ◦ F4, shows a clear improvement com-
pared to Table 5, as EAtarget,F3◦F4

L2
produces images that are no longer vulnerable

to this filter for the target scenario.
Although EAtarget,F3◦F4

L2
provides an increase in robustness compared to

EAtarget
L2

, it is also interesting to compare the time efficiency of the two algo-
rithms. Table 9 gives the number of generations and the amount of time required
by EAtarget,F3◦F4

L2
to create the adversarial images DF3◦F4

i .

Table 9. For 1 ≤ i ≤ 10, i �= 6, the 2nd row specifies the number of generations
required by EAtarget,F3◦F4

L2
to create the adversarial images DF3◦F4

i . The 3rd row gives

the total execution time, while the 4th row gives the average number of generations
per second.

i 1 2 3 4 5 7 8 9 10

of generations 1495 1164 717 194 1812 820 541 1262 1330

Total time (in seconds) 159.2 136.04 80.23 22.85 199.08 82.98 53.26 133.33 139.01

of generations/second 9.39 8.56 8.94 8.49 9.1 9.88 10.16 9.47 9.57

Comparing Tables 2 and 9 shows that the higher robustness of EAtarget,F3◦F4
L2

requires both a longer execution time per generation and more generations.
Firstly, EAtarget,F3◦F4

L2
must satisfy not two, but three conditions. More gen-

erations are needed to have not only the plain adversarial images with a target
class probability higher than 0.95, but also its filtered version. Secondly, the
drop in the average number of generations computed per second is due to the
additional filtering step in EAtarget,F3◦F4

L2
.

8 Conclusion

This ongoing work addresses the issue of the robustness against filters of adver-
sarial images fooling CNNs. By considering VGG-16 trained at image classifi-

Robustness of Adversarial Images Against Filters 113

cation on CIFAR-10, adversarial images Di created by the EAtarget
L2

evolution-
ary algorithm performed on the dog instantiation of the “target scenario” with
ancestor image A, and specific filters F1, F2, F3, F4, we first prove that the F (Di)
images, while no longer adversarial for the target scenario for F = F1, F2, F3,
are not only adversarial for the untargeted scenario, but foremost follow F (A)’s
pattern for these three individual filters. We also prove that the F4(Di) images
remain adversarial for the target scenario, and a fortiori for the untargeted sce-
nario, while F4(A) is classified in the same category as A. Hence, by essentially
following the ancestor’s behavior towards these four individual filters, the adver-
sarial images Di acquire an additional similarity with A. These results confort
their adversarial profile, and enhance the robustness and quality of the EAtarget

L2

attack.
We secondly show that the F3 ◦F4 combination of filters brings back a signif-

icant proportion of filtered images in the ancestor category, while F3 ◦ F4(A) is
classified in the same category as A. Since this may render EAtarget

L2
less effective,

not only for the target, but also for the untargeted scenario, a third outcome of
this work is the construction of the variant EAtarget,F

L2
of the evolutionary algo-

rithm, that natively takes into account the robustness of adversarial images
against a generic filter F . We instantiate this EA on F = F3 ◦F4. The produced
images DF3◦F4

i are adversarial against F3 ◦ F4 for the target scenario, but also
essentially against F4 and F3. They are to a large extent adversarial against F1

and F2 for the untargeted scenario as well. The performance of this new EA is
compared to that of EAtarget

L2
, showing that the provided robustness comes at

the cost of more, as well as longer generations.
These preliminary results lead to a series of future work. We intend to extend

our methodology to all images of Fig. 10 of [4], beyond the sole dog series of
the present article, potentially with more than one ancestor and more than one
descendant in each given category. We also plan to assess the efficiency of the cre-
ation of adversarial images with EAtarget,F

L2
depending on which ancestor image

is provided as input: either the original A or the processed adversarial image
EAtarget

L2
(A, ci). An important direction would be to consider larger images, such

as those of ImageNet [7], since the small 32 × 32 images of this study are natu-
rally grainy. Finally, one could consider to address these issues with a different
choice of the measure of proximity between images, for instance with SSIM [15]
instead of L2, and with different scenarios, for instance the flat scenario of [4].

References

1. Bernard, N., Leprévost, F.: Evolutionary algorithms for convolutional neural net-
work visualisation. In: High Performance Computing – 5th Latin American Con-
ference, 2018, Bucaramanga, Colombia, 23–28 Sep 2018. Communications in Com-
puter and Information Science, vol. 979, pp. 18–32. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-030-16205-4 2

2. Bernard, N., Leprévost, F.: How evolutionary algorithms and information hiding
deceive machines and humans for image recognition: a research program. In: Pro-
ceedings of the OLA 2019 International Conference on Optimization and Learning,
Bangkok, Thailand, 29–31 Jan 2019, pp. 12–15. Springer, Heidelberg (2019)

https://doi.org/10.1007/978-3-030-16205-4_2

114 R. Chitic et al.

3. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000).
https://www.drdobbs.com/open-source/the-opencv-library/184404319

4. Chitic, R., Bernard, N., Leprévost, F.: Evolutionary algorithms deceive humans and
machines at image classification: an extended proof of concept on two scenarios.
J. Inf. Telecommun. 5, 121–143 (2020). http://dx.doi.org/10.1080/24751839.2020.
1829388

5. Chitic, R., Bernard, N., Leprévost, F.: A proof of concept to deceive humans and
machines at image classification with evolutionary algorithms. In: Intelligent Infor-
mation and Database Systems, 12th Asian Conference, ACIIDS 2020, Phuket,
Thailand, 23–26 March 2020, vol. 12034, pp. 467–480. Springer, Heidelberg (2020).
https://doi.org/10.1007/978-3-030-42058-1 39

6. Chollet, F.: Keras. GitHub code repository (2015–2020). https://github.com/
fchollet/keras

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: The imagenet image
database (2009). http://image-net.org

8. Geifman, Y.: cifar-vgg (2018). https://github.com/geifmany/cifar-vgg
9. Krizhevsky, A., et al.: The CIFAR datasets (2009). https://www.cs.toronto.edu/

∼kriz/cifar.html
10. Lim, J.S.: Two-Dimensional Signal and Image Processing. Prentice Hall, Hoboken

(1989)
11. Oliphant, T.E.: A guide to NumPy. Trelgol Publishing USA (2006)
12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556
13. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.

CoRR abs/1710.08864 (2017)
14. Sung Kim, R.C.: Applications of Convolution in Image Processing with MAT-

LAB. University of Washington (2013). https://www.semanticscholar.org/paper/
Applications-of-Convolution-in-Image-Processing-Casper/391f4dc0567f671b0718f
80834fdc1e83a9fd54b

15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

https://www.drdobbs.com/open-source/the-opencv-library/184404319
http://dx.doi.org/10.1080/24751839.2020.1829388
http://dx.doi.org/10.1080/24751839.2020.1829388
https://doi.org/10.1007/978-3-030-42058-1_39
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://image-net.org
https://github.com/geifmany/cifar-vgg
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1409.1556
https://www.semanticscholar.org/paper/Applications-of-Convolution-in-Image-Processing-Casper/391f4dc0567f671b0718f80834fdc1e83a9fd54b
https://www.semanticscholar.org/paper/Applications-of-Convolution-in-Image-Processing-Casper/391f4dc0567f671b0718f80834fdc1e83a9fd54b
https://www.semanticscholar.org/paper/Applications-of-Convolution-in-Image-Processing-Casper/391f4dc0567f671b0718f80834fdc1e83a9fd54b

Guiding Representation Learning in Deep
Generative Models with Policy Gradients

Luca Lach1,3(B), Timo Korthals2, Francesco Ferro3, Helge Ritter1,
and Malte Schilling1

1 Neuroinformatics Group, Bielefeld University, Bielefeld, Germany
llach@techfak.uni-bielefeld.de

2 Cognitronics and Sensor Systems Group, Bielefeld Univeristy, Bielefeld, Germany
tkorthals@techfak.uni-bielefeld.de

3 PAL Robotics, Barcelona, Spain
luca.lach@pal-robotics.com

Abstract. Variational Auto Encoder (VAE) provide an efficient latent
space representation of complex data distributions which is learned in
an unsupervised fashion. Using such a representation as input to Rein-
forcement Learning (RL) approaches may reduce learning time, enable
domain transfer or improve interpretability of the model. However, cur-
rent state-of-the-art approaches that combine VAE with RL fail at learn-
ing good performing policies on certain RL domains. Typically, the VAE
is pre-trained in isolation and may omit the embedding of task-relevant
features due to insufficiencies of its loss. As a result, the RL approach can
not successfully maximize the reward on these domains. Therefore, this
paper investigates the issues of joint training approaches and explores
incorporation of policy gradients from RL into the VAE’s latent space
to find a task-specific latent space representation. We show that using
pre-trained representations can lead to policies being unable to learn any
rewarding behaviour in these environments. Subsequently, we introduce
two types of models which overcome this deficiency by using policy gra-
dients to learn the representation. Thereby the models are able to embed
features into its representation that are crucial for performance on the
RL task but would not have been learned with previous methods.

1 Introduction

Reinforcement Learning (RL) gained much popularity in recent years by outper-
forming humans in games such as Atari ([1,2]), Go ([2,3]) and Starcraft 2 [4].
These results were facilitated by combining novel machine learning techniques
such as deep neural networks [5] with classical RL methods. The RL framework
has shown to be quite flexible and has been applied successfully in many further

This work was supported by the European Union Horizon 2020 Marie Curie Actions
under Grant 813713 NeuTouch.

c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 115–131, 2021.
https://doi.org/10.1007/978-3-030-85672-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-85672-4_9

116 L. Lach et al.

domains, for example, robotics [6], resource management [7] or physiologically
accurate locomotion [8].

The goal of representation learning is to learn a suitable representation
for a given application domain. Such a representation should contain useful
information for a particular downstream task and capture the distribution of
explanatory factors [9]. Typically, the choice of a downstream task influences
the choice of method for representation learning. While Generative Adver-
sarial Network (GAN) are frequently used for tasks that require high-fidelity
reconstructions or generation of realistic new data, auto-encoder based methods
have been more common in RL. Recently, many such approaches employed the
Variational Auto Encoder (VAE) [10] framework which aims to learn a smooth
representation of its domain. For a large number of RL environments, the usage
of VAEs as a preprocesser improved sample efficiency and performance ([11,12]).

Many of the current methods combining RL with representation learning
follow the same pattern, called unsupervised pre-training [13]. First, they build
a dataset of states from the RL environment. Second, they train the VAE on
this static dataset and lastly train the RL mode using the VAE’s representation.
While this procedure generates sufficiently good results for certain scenarios,
there are some fundamental issues with this method. Such an approach assumes
that it is possible to collect enough data and observe all task-relevant states in the
environment without knowing how to act in it. As a consequence, when learning
to act the agent will only have access to a representation that is optimized for
the known and visited states. As soon as the agent becomes more competent, it
might experience novel states that have not been visited before and for which
there is no good representation (in the sense that the experienced states are out
of the original learned distribution and the mapping is not appropriate).

Another issue arises from the manner the representation is learned. Usually,
the VAE is trained in isolation, so it decides what features are learned based on
its own objective function and not on what is helpful for the downstream task.
Mostly, such a model is tuned for good reconstruction. Without the information
from the RL model, such a representation does not reflect what is important for
the downstream task. As a consequence, the VAE might omit learning features
that are crucial for good performance on the task because they appear negligible
with respect to reconstruction ([14], Chap. 15, Fig. 15.5). For example, small
objects in pixel-space are ignored as they affect a reconstruction based loss only
marginally. Thus, any downstream task using such a representation will have
no access to information about such objects. A good example for such a task is
Atari Breakout, a common RL benchmark. Figures 1a and 1b show an original
Breakout frame and its reconstruction. While the original frame contains the
ball in the lower right hand corner, this crucial feature is missing completely in
the reconstruction.

We approach this issue through simultaneously learning representation and
RL task, that is by combining the training of both models. As an advantage,
this abolishes the need of collecting data before knowing the environment as
it combines VAE and RL objectives. In consequence the VAE has an incentive

Guiding Representation Learning in Deep Generative Models 117

(a) Input frame after pre-processing (b) Reconstruction of 1a

Fig. 1. A frame from Atari Breakout. The original image 1a was passed through a pre-
trained VAE yielding the reconstruction 1b. Note the missing ball in the lower right
hand corner.

to represent features that are relevant to the RL model. The main contribu-
tions of this paper are as follows: First we show, that using unsupervised pre-
training on environments that have underrepresented task-relevant features fails
to produce good RL policies. Second, we show that by jointly training repre-
sentation and policy leads to a model that encodes task-relevant information
and thus enabling significantly higher performing policies. This will be shown
by comparing achieved rewards and by an analysis of the trained model and its
representation.

2 Related Work

[15] explored Auto Encoder (AE) ([16–18]) as a possible pre-processor for RL
algorithms. The main focus in their work was finding good representations for
high dimensional state spaces that enables policy learning. As input, rendered
images from the commonly used grid world environment were used. The agent
had to manoeuvre through a discretized map using one of four discrete movement
actions per timestep. It received a positive reward once reaching the goal tile and
negative rewards elsewhere. The AE bottleneck consisted only of two neurons,
which corresponds to the dimensionality of the environemnt’s state. Fitted Q-
Iteration (FQI) [19] was used to estimate the Q-function, which the agent then
acted ε-greedy upon. Besides RL, they also used the learned representation to
classify the agents position given an encoding using a Multi-Layer Perceptron
(MLP) [20]. For these experiments, they found that adapting the encoder using
MLP gradients lead to an accuracy of 99.46 %. However, they did not apply this
approach to their RL task.

118 L. Lach et al.

A compelling example for separate training of meaningful representation is
provided by [21] who proposed a framework called DARLA. They trained RL
agents on the encoding of a β-VAE ([22,23]) with the goal of zero-shot domain
transfer. In their approach, β-VAE and agent were trained separately on a source
domain and then evaluated in a target domain. Importantly, source and target
domain are similar to a certain extent and only differ in some features, e.g. a blue
object in the source domain might be red in the target domain. During training
of the β-VAE, the pixel-based reconstruction loss was replaced with a loss calcu-
lated in the latent space of a Denoising Auto Encoder (DAE) [24]. Thereby their
approach avoids missing task relevant feature encodings at the cost of training
another model. For one of their evaluation models, they allowed the RL gradi-
ents to adapt the encoder. Their results show that subsequent encoder learning
improves performance of Deep Q-Learning (DQN) but decreases performance of
Asynchronous Advantage Actor-Critic (A3C) [25].

[26] proposed a combination of VAE, Recurrent Neural Networks (RNN) [27]
and a simple policy as a controller. They hypothesized that by learning
a good representation of the environment and having the ability to pre-
dict future states, learning the policy itself becomes a trivial task. Like in
most other models, the VAE was pre-trained on data collected by a ran-
dom policy. Only the RNN and the controller were trained online. The com-
pressed representation from the VAE was passed into a RNN in order to
estimate a probability density for the subsequent state. The controller was
deliberately chosen as a single linear layer and could thus be optimized with
Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) [28].

This work demonstrated how a VAE can provide a versatile representation
that can be utilized in reinforcement learning. In addition, such an approach
allows to predict the subsequent encoded state. While these findings encourage
the usage of VAE in conjunction with RL, this is only possible in environments
where the state space can be explored sufficiently by a random policy. However,
if the policy can only discover important features after acquiring a minimal level
of skill, sampling the state space using a random policy will not yield high-
performing agents. Learning such features would only be possible if the VAE is
continuously improved during policy training.

In the work of PlaNet [29], the authors also use a VAE to learn a latent state
representation of a pixel input. Based on the learned representation, they use
the Cross Entropy Method to learn various robotics control tasks. They refine
this method in their subsequent publications Dreamer [30] and DreamerV2 [31]
where the agent is trained purely on imagined trajectories from the VAE. Their
works are similar to ours to the extent that they also continuously adapt the
learned latent state representation. However their environments do not contain
task relevant features that are underrepresented, hence their focus does not lie
on training them.

Another interesting combination of VAEs and Reinforcement Learning
(RL) was recently proposed by [32], with their so called Action-Conditional Vari-
ational Auto-Encoder (AC-VAE). Their motivation for creating this model was

Guiding Representation Learning in Deep Generative Models 119

to train a transparent, interpretable policy network. Usually, the β-VAEs decoder
is trained to reconstruct the input based on the representation the encoder pro-
duced. In this work though, the decoders objective was to predict the subsequent
state st+1. As input it got the latent space vector z combined with an action-
mapping-vector, which is the action vector at with a zero-padding to match
the latent spaces dimensionality. Inspecting the decoder estimates for st+1 when
varying one dimension of the latent space showed, that each dimension encoded
a possible subsequent state that is likely to be encountered if the correspond-
ing action from this dimension was taken. Unfortunately, the authors did not
report any rewards they achieved on Breakout, hence it was not possible for us
to compare model performances.

3 Combination of Reinforcement and Representation
Learning Objectives

In this section, we will first revisit the fundamentals of Reinforcement Learning
(RL) and VAEs and discuss their different objective functions. Then, we propose
a joint objective function that allows for joint training of both models using
gradient descent based learning methods.

3.1 Reinforcement Learning with Policy Optimization

RL tries to optimize a Markov Decision Process (MDP) [33] that is given by
the tuple 〈S,A, r, p, γ〉. S denotes the state space, A the action space and p :
S×R×S×A → [0, 1] the environment’s dynamics function that, provided a state-
action pair, gives the state distribution for the successor state. r : S × A → R
is the reward and γ ∈ [0, 1) the scalar discount factor. The policy πθ(a|s) is a
stochastic function that gives a probability distribution over actions for state s. θ
denotes the policy’s parameter vector which is typically subject to optimization.
A trajectory τ = (s0, a0, ..., sT , aT) consisting of an alternating sequence of states
and actions can be sampled in the environment, where T stands for the final
timestep of the trajectory and ai ∼ πθ(ai|si).

The overarching goal of RL is to find a policy that maximizes the aver-
age collected reward over all trajectories. This can be expressed as the opti-
mization problem maxEτ∼p(τ)

[∑
t r(s, a)

]
, which can also be written in terms

of an optimal policy parameter vector θ∗ = arg maxθ Eτ∼p(τ)

[∑
t r(s, a)

]
.

When trying to optimize the policy directly be searching for θ∗, pol-
icy optimization algorithms like Asynchronous Advantage Actor-Critic (A3C),
Actor-Critic with Experience Replay (ACER) [34], Trust Region Policy Opti-
mization (TRPO) [35] or Proximal Policy Optimization (PPO) [36] are com-
monly used. The fundamental idea behind policy optimization techniques is to
calculate gradients of the RL objective with respect to the policy parameters:

120 L. Lach et al.

∇θJ(θ) = E
τ∼p(τ)

[
∇θ log πθ(τ) r(τ)

]
(1)

where we defined
∑T

t=0 r(s, a) = r(τ) for brevity. However, most policy optimiza-
tion methods introduce heavy modifications to this vanilla gradient in order to
achieve more stable policy updates. Throughout our work, we have used PPO
as RL algorithm because it is quite sample efficient and usually produces stable
policy updates. For an in-depth description of PPO, we refer to ourA.1 or the
original work [36].

3.2 Learning Representations Using Variational Auto-Encoders

[10] introduced the VAE as a method to perform Variational Inference (VI) [37]
using function approximators, e.g. deep neural networks. VI tries to approximate
a distribution over the generative factors of a dataset which would otherwise
involve calculating an intractable integral. The authors present an algorithm that
utilizes the auto encoder framework, an unsupervised learning method which
learns data encodings by reconstructing its input. Therefore, the input is first
compressed until it reaches a given size and is afterwards decompressed to its
original size. When using deep neural networks, these transformations can be
achieved by using for example fully connected or convolutional layers. In order for
the VAE to approximate a distribution over generative factors, the authors used
the so called “reparametrization trick”. It allows for gradient based optimization
methods to be used in searching for the distribution parameters. For training
the VAE, a gradient based optimizer tries to minimize the following loss:

LV AE(x, φ, ψ) = −DKL(qφ(z|x) || p(z)) + E
qφ(z |x)

[
log pψ(x|z)

]

with z = l(μ,σ, ε) and ε ∼ p(ε)
(2)

where DKL denotes the Kullback-Leibler Divergence (KL) [38] of the approxi-
mated distribution over generative factors produced by the encoder qφ(z|x) and
some prior distribution p(z). The expectation is often referred to as reconstruc-
tion loss that is typically calculated on a per-pixel basis. Lastly, l(μ,σ, ε) is a
sampling function that is differentiable w.r.t. the distribution parameters, for
example z = u + σε.

3.3 Joint Objective Function

Combining both loss functions such that both models can be trained at the
same time is rather straight-forward. Adding both individual losses and using
an optimizer such as ADAM [39] to minimize them is sufficient to achieve joint
training. During backpropagation, gradients from the policy and the VAE are
combined in the latent space. Due to different topologies of the networks, gradi-
ent magnitudes differ significantly. Therefore, we introduced the hyperparameter
κ which can be used to either amplify or dampen the gradients and we arrive at
the following loss:

Guiding Representation Learning in Deep Generative Models 121

Ljoint = κLPG(θk, θk−1, φk) + LV AE(x, φ, ψ, β) (3)

where LPG is some policy gradient algorithm’s objective function. As mentioned
before, we used PPO’s loss LPPO (Eq. 4 in the appendix).

4 Experiments

In order to test our model with the combined objective function given by Eq. 3,
we have used the well-known benchmark of Atari Breakout. This environment
has several properties that make it appealing to use: it is easily understandable
by humans, used often as a RL task and the conventional pre-trained methods
fail at mastering it. The ball is the most important feature that is required to
be encoded in order to perform well, is heavily underrepresented (approximately
0.1% of the observation space). Therefore, the VAE’s incentive to encode it is
very low whereas our model succeeds in encoding it. In the following, we compare
the pre-trained approach to two different continuously trained models that use
the loss from Eq. 3.

4.1 Data Collection and Pre-Processing

The raw RGB image data produced by the environment has a dimensionality
of 210 × 160 × 3 pixels. We employ a similar pre-precessing as [1], but instead
of cropping the grey-scaled frames, we simply resize them to 84 × 84 pixels. As
we will first train models similar to those introduced in previous works with a
pre-trained VAE, we needed to construct a dataset containing Breakout states.
We used an already trained policy to collect a total of 25, 000 frames, the approx-
imate equivalent of 50 episodes.

4.2 Pre-training the Variational Auto-Encoder

Our first model is based on those of the previously introduced works which
involve isolated pre-training the VAE on a static dataset. Figure 2 shows the
individual parts of the complete training process. For the first model, PPOfixed,
the encoder and decoder (shown in orange and red) are pre-trained before policy
training. During this phase, there is no influence from the RL loss. Once the VAE
training is finished, the decoder shown in red in Fig. 2 is discarded completely.
Later during policy training, we use n instances of the same encoder with shared
weights that receive a sequence of the last n frames as input. Stacking allows
us to incorporate temporal information and for the policy to predict the ball’s
trajectory. By sharing the weights, we ensure that the resulting encodings orig-
inate from the same function. U then represents the concatenated encodings of
the sequence.

Prior to policy training, we trained the VAE on the dataset we have collected
before, with hyperparameters from Table 1. Once pre-training was finished, we
discarded the decoder weights and used the stacked encoder as input for the

122 L. Lach et al.

Fig. 2. Model combining PPO and a VAE. Depending on the model configuration, the
colored parts are trained differently. X is the VAE’s input and X̂ the reconstructions.
PPO receives the mean vectors U as input and calculates a distribution over actions
π. Note that we use capital letters in the VAE to emphasize that we pass n frames at
the same time when a policy is trained.

policy Multi-Layer Perceptron (MLP). The MLP was then trained 10M steps
with hyperparameters from Table 2. During this training, the encoder weights
were not changed by gradient updates anymore but remained fixed.

The second model we introduce is called PPOadapt, which has the same struc-
ture and hyperparameters as the first model. For this model, we also train the
VAE in isolation first, however the encoder weights are not fixed anymore during
policy training. Gradients from the RL objective are back propagated through
the encoder, allowing it to learn throughout policy training. We hypothesize that
features that are important for policy performance can be incorporated in an
already learned representation.

Figure 3 compares the median rewards of three rollouts with different random
seeds for all models. PPOfixed was not once able to achieve a reward of 10 or
higher, while PPOadapt steadily improved its performance with final rewards well
over 50. The learning curve of PPOadapt shows that the model is able to learn how
to act in the environment, whereas PPOfixed does not. The non-zero rewards from
PPOfixed are similar to those of random agents in Breakout. From these results,
we can assume that training the VAE in isolation on a static dataset for Breakout

Guiding Representation Learning in Deep Generative Models 123

results in a deficient representation for RL. Therefore, using policy gradients to
adapt an already learned representation can be beneficial in environments where
the VAE fails to encode task-relevant features.

Fig. 3. Reward of the three proposed models across three random seeds each. PPOfixed

is not able to achieve high rewards while the other two models consistently improve
their performance.

4.3 Jointly Learning Representation and Policy

The last model we introduce, PPOVAE, combines a complete VAE with a policy
MLP that receives U, the concatenated state encodings, as input. As opposed to
the first two models, all weights are initialized randomly before policy training
and the VAE is not pre-trained. For this procedure an already trained agent
that gathers a dataset for the VAE beforehand is not necessary. The decoder
is trained exactly as in the isolated setting, meaning its gradients are also only
computed using the VAE’s loss function. During backpropagation, the gradients
coming from Z and h1 are added together and passed through the encoder.
This model has the same network configuration and hyperparameters as the
first two, with the only difference that we also evaluated different values for κ
from the joint loss 3 (see A.3). For the results reported here, we chose κ = 20.
All hyperparameters can be found in Table 3.

By simultaneously training representation and policy, we expect the VAE to
learn task-relevant features from the beginning of training. This assumption is
supported by the learning curve shown in Fig. 3, which compares PPOVAE to

124 L. Lach et al.

the previous two models. The curve shows a steady increase in reward over the
course of training with PPOVAE achieving slightly higher rewards than PPOadapt

in the beginning. This characteristic changes after less than 1M steps and from
that point on PPOadapt consistently outperforms PPOVAE. This difference in
performance is likely attributed to the fact, that in PPOVAE the decoder is
trained throughout the complete training. The gradients of PPOadapt can change
the latent space without restrictions and they only optimize the RL objective. In
PPOVAE however, gradients are also produced by the decoder that presumably
do not contain information about the ball. Therefore PPOVAE’s latent space is
constantly changed by two different objectives, thus leading to lower rewards for
the RL part.

4.4 Analyzing the Value Function Gradients

So far, the results imply that PPOVAE and PPOadapt do indeed learn encod-
ings of the ball. One difficulty when analyzing the representation is, that the
decoder still has no incentive to reconstruct the ball, even if it is present in the

Fig. 4. The Jacobian of PPO’s value
function. Highlighted areas mean
high importance in terms of future
rewards. Note the high Jacobian val-
ues around the ball and the blocks.

latent space. In a work that enhances
Deep Q-Learning (DQN) algorithm [40],
the authors visualized the Jacobian of the
value function w.r.t. the input images.
These visualizations showed which features
or regions from the input space are con-
sidered as important in terms of future
reward. As we also learn a value function,
we did the same and visualized what our
model considered important and what not.

In Fig. 4 we illustrate a pre-processed
frame and added the values of the Jaco-
bian to the blue channel if the were greater
than the mean value of the Jacobian.
Only visualizing above-mean Jacobian val-
ues removes some noise in the blue chan-
nel makes the images much easier to inter-
pret and only highlights regions of high rel-
evance. We can clearly see, that the Jaco-
bian has high values at missing blocks as
well as around the ball, meaning that these regions are considered to have high
impact on future rewards. By visualizing the Jacobian we have confirmed that
the policy gradients encourage the VAE to embed task-relevant features.

5 Conclusion

This paper focused on the issue of pre-training VAEs with the purpose of learn-
ing a policy for a downstream task based on the VAE’s representation. In many

Guiding Representation Learning in Deep Generative Models 125

environments, the VAE has little to no incentive to learn task-relevant features
if they are small in observation space. Another issue arises if the observation of
these features depends on policy performance and as a result, they are underrep-
resented in a dataset sampled by a random agent. In both cases, fixing encoder
weights during policy training prevents the VAE to learn these important fea-
tures and policy performance will be underwhelming.

We carried out experiments on the popular RL benchmark Atari Breakout.
The goal was to analyze whether policy gradients guide representation learn-
ing towards incorporating performance-critic features that a VAE would not
learn on a pre-recorded dataset. First experiments confirmed, that the common
pre-trained approach did not yield well-performing policies in this environment.
Allowing the policy gradients to adapt encoder weights in two different mod-
els showed significant improvements in terms of rewards. With policy gradients
guiding the learned representation, agents consistently outperformed those that
were trained on a fixed representation.

Out work verifies the fundamental issue with pre-trained representations and
provides methods that overcome this issue. Nonetheless, future work can still
explore a variety of improvements to our models. For once, training not only
the encoder but also the decoder with RL gradients can improve interpretability
of the VAE and enable it to be used as a generator again that also generates
task-relevant features. Another direction is to impose further restrictions on the
latent space during joint training of VAE and policy. The goal there would be
to maintain the desired latent space characteristics of VAEs while still encoding
task-relevant features.

A Appendix

A.1 Stable Policy Learning with Proximal Policy Optimization

Most actor-critic algorithms successfully reduce the variance of the policy gradi-
ent, however they show high variance in policy performance during learning and
are at the same time very sample inefficient. Natural gradient ([41]) methods such
as Trust Region Policy Optimization (TRPO) from [35] greatly increase sample
efficiency and learning robustness. Unfortunately, they are relatively complicated
to implement and are computationally expensive as the require some second
order approximations. PPO ([36]) is a family of policy gradient methods that
form pessimistic estimates of the policy performance. By clipping and therefore
restricting the policy updates, PPO prohibits too large of a policy change as
they have been found to be harmful to policy performance in practice. PPO is
often combined with another type of advantage estimation ([42]) that produces
high accuracy advantage function estimates.

We define the PPO-Clip objective is defined as

JPPO(θk, θk−1) = E

[
min

(
o(θ)Aπθk (s, a), clip

(
o(θ), 1 − ε, 1 + ε

)
Aπθk (s, a)

)]

s.t. δMB < δtarget
(4)

126 L. Lach et al.

where o(θ) = πθk
(a|s)

πθk−1 (a|s) denotes the probability ratio of two policies.
This objective is motivated by the hard KL constraint that TRPO enforces on

policy updates. Should a policy update result in a policy that deviates too much
from its predecessor, TRPO performs a line search along the policy gradient
direction that decreases the gradient magnitude. If the constraint is satisfied
during the line search, the policy is updated using that smaller gradient step.
Otherwise the update is rejected after a certain number of steps. This method
requires to calculate the second order derivative of the KL divergence, which is
computationally costly. PPO uses its clipping objective to implicitly constrain
the deviation of consecutive policies. In some settings, PPO still suffers from
diverging policy updates ([43]), so we included a hard KL constrained on policy
updates. The constraint can be checked after each mini-batch update analytically
and is therefore not very computationally demanding.

PPO extends the policy gradient objective function from [44]. With the prob-
ability ratio o(θ), we utilize importance sampling in order to use samples col-
lected with any policy to update our current one. Thereby we can use samples
more often than in other algorithms, making PPO more sample efficient. Using
importance sampling, we still have a correct gradient estimate. Combining the
new objective with actor-critic methods yields algorithm 1. K denotes the num-
ber of optimization epoch per set of trajectories and B denotes the mini-batch
size. In the original paper, a combined objective function is also given with:

LPPO(θk, θk−1, φk) = E

[
c1J

PPO(θk,θk−1) − c2LV πθ (φk) + H(πθk
)
]

s.t. δMB < δtarget

(5)

where H(πθk
) denotes the policy entropy. Encouraging the policy entropy not to

decrease too much prohibits the policy from specializing on one action. As dis-
cussed in [43], there are two cases for JPPO(θk, θ): either the advantage function
was positive or negative. In case the advantage is positive, it can be written as:

JPPO(θk, θ) = E

[
min (o(θ), (1 + ε)) Aπθk (s, a)

]
(6)

Aπθk (s, a) > 0 indicates that the action yields higher reward than other actions
in this state, hence we want its probability πθk

(a|s) to increase. This increase is
clipped to (1 + ε) once πθk

(a|s) > πθk−1(a|s)(1 + ε). Note however, that updates
that would worsen policy performance are neither clipped nor bound. If the the
advantage is negative, it can be expressed as:

JPPO(θk, θ) = E

[
max (o(θ), (1 − ε)) Aπθk (s, a)

]
(7)

This equation behaves conversely to 6: Aπθk (s, a) < 0 indicates that we chose
a suboptimal action, thus we want to decrease its probability. Once πθk

(a|s) <
πθk−1(a|s)(1 − ε), the max bounds the magnitude by which the action’s proba-
bility can be decreased.

Guiding Representation Learning in Deep Generative Models 127

Algorithm 1. Proximal Policy Optimisation with KL constraint
1: Initialize policy parameters θ0 and value function parameters φ0

2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {τi} with πθk and compute R̂t

4: δMB ← 0
5: for 0, 1, 2, ...K do
6: for each mini-batch of size B in {τi} do
7: Update the policy by maximizing the PPO-Clip objective 4
8: Minimize LV πθ

on the mini-batch
9: end for

10: end for
11: if δMB > δtarget then
12: θk+1 = θk

13: end if
14: end for

A.2 Hyperparameter Tables

Table 1. Hyperparameter table for VAE training on Breakout

Parameter Value

Epochs 100

Batch size 128

Input size (84, 84, 1)

Optimizer ADAM

Learning rate 1 × 10−4

Encoder Conv2D 32× 4× 4 (stride 2) - 64× 4× 4 (stride 2) - FC 512 (ReLU)

Latents 20 (linear)

Decoder FC 512 (ReLU) - 64 × 4 × 4 (stride 2) - 32 × 4 × 4 (stride 2) Conv2D
Transpose

128 L. Lach et al.

Table 2. Policy hyperparameters of
PPOfixed and PPOadapt

Parameter Value

Timesteps 1 × 107

Environments 16

Batch size 32

tmax 2048

K 10

c1 1.0

c2 0.5

c3 0.0

γ 0.99

λ 0.95

Network FC 64 (tanh) -
FC 64 (tanh)

Optimizer ADAM

Learning rate 3 × 10−4

Table 3. Policy hyperparameter table
of PPOVAE

Parameter Value

Timesteps 1 × 107

Environments 16

Batch size 32

tmax 2048

K 10

c1 1.0

c2 0.5

c3 0.0

γ 0.99

λ 0.95

Network FC 64 (tanh) -
FC 64 (tanh)

Optimizer ADAM

Learning rate 3 × 10−4

κ (1, 10, 20)

A.3 Choosing Appropriate Values for κ

In Eq. 3, we introduced the hyperparameter κ to balance VAE and PPO gradi-
ents. We found empirically, that tuning κ is straight forward and requires only
few trials. In order to simplify the search for κ, one can evaluate gradient mag-
nitudes of the different losses at the point where they are merged at U. Our
experiments showed PPO’s gradients to be significantly smaller, thus scaling up
the loss function was appropriate. This will likely differ if the networks are con-
figured differently. Increasing κ from 1 to 10 led to considerably higher rewards,
however the difference in performance was small when increasing κ further to
20. Therefore, we chose κ = 20 in our reported model performances (Fig. 5).

Guiding Representation Learning in Deep Generative Models 129

Fig. 5. Performance comparison of PPOVAE with different values for κ

References

1. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

2. Schrittwieser, J., et al.: Mastering atari, go, chess and shogi by planning with a
learned model. arXiv preprint arXiv:1911.08265 (2019)

3. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484 (2016)

4. Vinyals, O., et al.: Starcraft ii: A new challenge for reinforcement learning. arXiv
preprintarXiv:1708.04782 (2017)

5. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
6. Andrychowicz, O.M., et al.: Learning dexterous in-hand manipulation. Int. J.

Robot. Res. 39(1), 3–20 (2020)
7. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep

reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics
in Networks, pp. 50–56. ACM (2016)

8. Kidziński, �L., et al.: Scott: learning to run challenge solutions: adapting reinforce-
ment learning methods for Neuromusculoskeletal environments. In: Escalera, Ser-
gio, Weimer, Markus (eds.) The NIPS 2017 Competition: Building Intelligent Sys-
tems. TSSCML, pp. 121–153. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94042-7 7

9. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

10. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

11. Achiam, J., Edwards, H., Amodei, D., Abbeel, P.: Variational option discovery
algorithms. arXiv preprint arXiv:1807.10299 (2018)

http://arxiv.org/abs/1911.08265
https://doi.org/10.1007/978-3-319-94042-7_7
https://doi.org/10.1007/978-3-319-94042-7_7
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1807.10299

130 L. Lach et al.

12. Gregor, K., Rezende, D.J., Besse, F., Wu, Y., Merzic, H., van den Oord, A.: Shaping
belief states with generative environment models for Rl. Adv. Neural Inf. Proc.
Syst. 32, 13475–13487 (2019)

13. Erhan, D., Courville, A., Bengio, Y., Vincent, P.: Why does unsupervised pre-
training help deep learning? In: Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, pp. 201–208. JMLR Workshop and
Conference Proceedings (2010)

14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge
(2016)

15. Lange, S., Riedmiller, M.A.: Deep auto-encoder neural networks in reinforcement
learning. In: IJCNN, pp. 1–8. IEEE (2010)

16. Lecun, Y.: Ph.D. Thesis: Modeles connexionnistes de l’apprentissage (Connection-
ist learning models). Universite P. et M. Curie (Paris 6), June 1987

17. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular
value decomposition. Biol. Cybern. 59, 291–294 (1988). https://doi.org/10.1007/
BF00332918

18. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and
helmholtz free energy, pp. 3–10 (1994)

19. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning.
J. Mach. Learn. Res. 6, 503–556 (2005)

20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. Technical report, California Univ San Diego La Jolla Inst
for Cognitive Science (1985)

21. Higgins, I., et al.: Darla: improving zero-shot transfer in reinforcement learning.
In: Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1480–1490. JMLR. org (2017)

22. Higgins, I., et al.: Early visual concept learning with unsupervised deep learning.
arXiv preprint arXiv:1606.05579 (2016)

23. Higgins, I., et al.: Beta-vae: Learning basic visual concepts with a constrained
variational framework. 3 (2017)

24. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of the 25th interna-
tional conference on Machine learning, pp. 1096–1103 (2008)

25. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning, pp. 1928–
1937 (2016)

26. Ha, D., Schmidhuber, J.: Recurrent world models facilitate policy evolution. In:
Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett,
R. (eds) Advances in Neural Information Processing Systems, vol. 31, pp. 2450–
2462. Curran Associates Inc (2018)

27. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

28. Hansen, N.: The cma evolution strategy: a comparing review. In: Towards a New
Evolutionary Computation, pp. 75–102. Springer (2006). https://doi.org/10.1007/
3-540-32494-1 4

29. Hafner, D., et al.: Learning latent dynamics for planning from pixels. In: Interna-
tional Conference on Machine Learning, pp. 2555–2565. PMLR (2019)

30. Hafner, D., Lillicrap, T., Ba, J., Norouzi, M.: Dream to control: learning behaviors
by latent imagination. arXiv preprint arXiv:1912.01603 (2019)

31. Hafner, D., Lillicrap, T., Norouzi, M., Ba, J.: Mastering atari with discrete world
models. arXiv preprint arXiv:2010.02193 (2020)

https://doi.org/10.1007/BF00332918
https://doi.org/10.1007/BF00332918
http://arxiv.org/abs/1606.05579
https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1007/3-540-32494-1_4
http://arxiv.org/abs/1912.01603
http://arxiv.org/abs/2010.02193

Guiding Representation Learning in Deep Generative Models 131

32. Yang, J., Lee, G., Chang, S., Kwak, N.: Towards governing agent’s efficacy: action-
conditional β-vae for deep transparent reinforcement learning. volume 101 of Pro-
ceedings of Machine Learning Research, pp. 32–47. PMLR, Nagoya, Japan, 17–19
Nov 2019

33. Bellman, R.: A Markovian decision process. J. Math. Mech. 679-684 (1957)
34. Wang, Z., et al.: Sample efficient actor-critic with experience replay. arXiv preprint

arXiv:1611.01224 (2016)
35. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy

optimization. pp. 1889–1897 (2015)
36. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)
37. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to vari-

ational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)
38. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1),

79–86 (1951)
39. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
40. Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., Freitas, N.: Dueling

network architectures for deep reinforcement learning. In: International conference
on Machine Learning, pp. 1995–2003 (2016)

41. Amari, S.-I.: Natural gradient works efficiently in learning. Neural Comput. 10(2),
251–276 (1998)

42. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: High-dimensional
continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438 (2015)

43. OpenAI Spinning Up - PPO. Spinning up explanation of ppo (2018)
44. Kakade, S.M.: A natural policy gradient, pp. 1531–1538 (2002)

http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1506.02438

Deep Reinforcement Learning
for Dynamic Pricing of Perishable

Products

Vibhati Burman(B), Rajesh Kumar Vashishtha(B), Rajan Kumar,
and Sharadha Ramanan(B)

TCS Research, Chennai, India
{vibhati.b,r.vashishtha,sharadha.ramanan}@tcs.com

Abstract. Dynamic pricing is a strategy for setting flexible prices for
products based on existing market demand. In this paper, we address
the problem of dynamic pricing of perishable products using DQN value
function approximator. A model-free reinforcement learning approach is
used to maximize revenue for a perishable item with fixed initial inven-
tory and selling horizon. The demand is influenced by the price and
freshness of the product. The conventional tabular Q-learning method
involves storing the Q-values for each state-action pair in a lookup table.
This approach is not suitable for control problems with large state spaces.
Hence, we use function approximation approach to address the limita-
tions of a tabular Q-learning method. Using DQN function approximator
we generalize the unseen states from the seen states, which reduces the
space requirements for storing value function for each state-action com-
bination. We show that using DQN we can model the problem of pric-
ing perishable products. Our results demonstrate that the DQN based
dynamic pricing algorithm generates higher revenue when compared with
conventional one-step price optimization and constant pricing strategy.

Keywords: Dynamic pricing · Deep reinforcement learning ·
Perishable items · Retail · Grocery · Fashion industry · Deep
Q-network · Revenue management

1 Introduction

Dynamic pricing, also referred as revenue management, is a strategy to adjust
the selling prices of products at the right time for maximizing revenue under
changing circumstances. These changing circumstances are the factors which
affect the demand and supply. Examples include amount of inventory available,
age of the product, weather and customer preferences.

Perishable items are those likely to spoil after a fixed time period. The
scope of perishable item spans various industries including grocery, pharma-
ceuticals, fashion and airlines. The consumer spend on perishables is increasing

Rajan was an employee of TCS when this work was done.

c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 132–143, 2021.
https://doi.org/10.1007/978-3-030-85672-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-85672-4_10

Deep Reinforcement Learning for Dynamic Pricing of Perishable Products 133

and expected to further increase in the next few years. In particular, the demand
for perishable food items such as vegetables, fruits, milk and eggs, are continuing
to increase as consumers are progressively becoming health conscious. In case
of fashion items, the demand is often short-lived due to several factors includ-
ing the impact of social media. The retailers are under great pressure to price
perishables optimally to offload inventory as well as maximize overall revenue.
Hence, there is a need to develop a dynamic pricing policy.

Feng et al. [8] developed an economic order quantity (EOQ) inventory model
for perishable items and hypothesize that for perishable products the demand
is dependent on its price, freshness and stock level. They have considered the
following characteristics for perishable food items:

1. Demand for a perishable product is dependent on its price, age and inventory
level.

2. The age of the product not only reduces the stocks but also decreases the
demand rate.

3. Product can not be sold after its expiration date.

Some work has been done for dynamic pricing through reinforcement learn-
ing (RL), but there still exist some challenges. In this paper, we identify and
address three important challenges. First, the existing work on dynamic pricing
of perishable products using RL employ tabular Q-learning approach. Pricing
policy using tabular Q-learning approach cannot be generalized to previously
unseen scenarios, i.e., we cannot estimate a pricing policy for a state unless
it has been visited several times. Second, the exisiting literature on dynamic
pricing through RL makes use of incremental method of learning a policy [22].
Incremental methods are not sample efficient and may lead to slower conver-
gence of policy. Third, most of the existing work on dynamic pricing makes use
of myopic approaches that try to optimize the immediate revenue. Harrison et
al. [14] showed that myopic policies can lead to incorrect policies. Furthermore,
Ravi Ganti et al. [12] have shown that far-sighted policies lead to increased profit
in the long term.

In this paper, we have made the following important and original contribu-
tions in order to overcome the aforementioned challenges. First, we make use of
a model-free DQN function approximator [18,26]. By making use of a function
approximator we address the problem of pricing for unseen states. Also, using
a function approximator drastically reduces the space requirement for obtaining
the pricing policy. To the best of our knowledge, this is the first application of
DQN for dynamic pricing of perishables. Second, reinforcement learning pro-
vides an alternative approach for optimizing the revenue over the entire selling
horizon of the item. This leads to better proftability in the long run.

The remainder of this paper is organized as follows. Section 2 provides a
review of related work. Section 3 gives some background on reinforcement learn-
ing. Section 4 discusses MDP formulation. We discuss the methodology in Sect. 5.
Experimental results and findings are explained in Sect. 6.

134 V. Burman et al.

2 Related Work

In this section, we review literature relevant to our work. Dynamic pricing has
been receiving a lot of attention due to increase in competition in the market
and advancement of AI based modeling. Gallego et al. [11] formulated dynamic
pricing model for perishables having stochastic demand with an arrival rate
as a function of price over finite horizon. Bitran et al. [3] extended this work
by considering demand as a Poisson process with an arrival rate as a function
of general purchasing patterns. Feng et al. [9,10] considered demand explicitly
as a multivariate function of price, freshness and displayed stocks to obtained
optimal price. Lu et al. [19] have maximized total profit to obtain the optimal
joint dynamic pricing and replenishment policy for perishable items by applying
pontryagins maximum principle. Duan et al. [7] proposed a dynamic pricing
model for perishable food with quantity and quality deteriorating simultaneously.
Their demand depends on the quality, the sales price and the reference price.
They formulated an optimal control model to maximize the total profit and
solved it by applying pontryagins maximum principle. Diaz et al. [1] studied
the relation between dynamic price strategy and relevant factors such as price
elasticity of demand, age-sensitivity of demand and age profile of initial inventory
for perishables. They proposed a deterministic mathematical model that studied
the influence of these factors on revenue and spoilage. Xiong et al. [27] studied
the dynamic pricing problem of selling fixed stock of perishable items over a
finite horizon, using fuzzy variables to model uncertain demand. They claim
the effectiveness and robustness of their algorithm using a real world example.
Robust optimization methods have been used to address dynamic pricing for
perishable products [2,17,21]. These are one step optimization methods that
result in myopic and static solutions, which focus only on maximizing immediate
revenue rather than for a long term.

Dynamic pricing problem have also been addressed by using Reinforce-
ment learning algorithms. Gosavi et al. [13] have used reinforcement learning
as stochastic optimization for dynamically pricing the airline tickets. They for-
mulated a semi-Markov Decision problem for their single leg problem over an
infinite time horizon by involving some of the important factors affecting the
pricing of tickets. Raju et al. [13] have developed dynamic pricing model for sin-
gle seller and two seller market scenario. Customer segmentation is an important
aspect for their model. For single seller market, pricing decision is taken using
Q-learning algorithm while for 2 seller market, actor-critic algorithm is used to
decide the optimal price. Cheng [5] integrated real-time demand learning with
look up table based Q-learning algorithm to optimaly price the identical prod-
ucts by a deadline. Rana et al. [22] used Q-learning and Q-leaning with eligibility
traces (Q(λ)) to establish a pricing policy for products having fixed inventory
and fixed time horizon. They defined state as remaining inventory, action as set
of price points and reward as revenue. Rana et al. [23] established a pricing pol-
icy for inter-dependent perishable items or services. Inter-dependent products
are the ones whose demand and prices are affected by one another. Q(λ) is used
to obtain the optimal policy. The Markov Decision Process (MDP) formulation

Deep Reinforcement Learning for Dynamic Pricing of Perishable Products 135

is done as: set of all possible amount of inventory available for each item is
considered as state, set of price points are actions and total revenue gathered is
considered as reward. Chen et al. [4] used Q-learning algorithm for dynamic pric-
ing of perishables in a competitive multi-agent retailer market. However, they
pointed out that their pricing strategy was not always optimal in every market.
There are also several papers that uses multi-agent reinforcement learning to
learn the optimal pricing strategy [15,16].

3 MDP Formulation for Dynamic Pricing of Perishables

We consider the dynamic pricing problem of a single perishable product, with a
given initial inventory. The objective is to price the product dynamically so as
to maximize the total expected revenue over a finite selling horizon.

Fig. 1. DQN methodology

We formulate the dynamic pricing problem as a Markov Decision Process.
Since we do not know the environment dynamics, we use a model-free rein-
forcement learning approach to solve the MDP. Specifically, we use DQN value
function approximator to solve the MDP and develop an efficient pricing method.

A reinforcement learning task that satisfies the Markov property is called a
Markov Decision Process, or MDP [24]. The task is a finite MDP if the state and
action spaces are finite. A finite MDP is defined by set of states, set of actions
and the one-step environment dynamics. In our MDP, the agent (decision maker)
will choose a pricing action from the set A (action set) at each time step t.
Since the environments response at time t + 1 depends only on the state-action
representation at time step t, the sequence of states st, with t = 1, 2, 3,..., m
satisfies the Markov property.

We are dealing with a finite horizon problem that is treated as an episodic
task in reinforcement learning. Each episode ends in a terminal state, which
occurs at the end of the product lifetime. After termination of an episode, the
state values are reset to the default initial value.

Selling horizon is the period of time during which the product is sold. The
selling horizon is separated into m discrete decision times. Let t = 1, 2, 3,..., m

136 V. Burman et al.

denote the index of decision time. A pricing decision is made at the beginning
of every decision time.

The elements of the MDP are described below:

1) State: The state is formulated as a vector of length two. The state at any
time step t, for a product, is given by st = (inventory left, time since product
launch). Here, the time since the product launch is considered as the age of
the product. The pricing action is selected based on the current state. The
current state is determined by the amount of inventory remaining and the
age of the product. This state formulation contains all information about the
past agent-environment interaction and thus, follows the Markov property.

2) Action: The agent transitions between different states by performing
actions. Actions represents the choices the agent makes based on the current
state. Here, the actions space includes all the discrete prices the product can
be assigned. The action space A is given by A = {a1, a2, .., an} for a product,
where n is the number of discrete actions the agent can execute. Selecting a
pricing action affects the future state of the environment and thus requires
foresightedness.

3) Reward: The reward obtained at time t + 1 is determined by the state
st and action at at time step t. In our case, the reward is given as the
revenue generated by taking an action at at time step t. The reward, rt+1 =
at ∗ demandt, is the product of price and demand. Demand is the units sold.
We aim to maximize the expected return i.e., cummulative sum of rewards.

4 Methodology

Although classical reinforcement learning algorithms such as Q-learning and
SARSA have been applied successfully for various applications [20,25] in the
past, these algorithms fail to scale up for real life problems involving large
state spaces. A classical RL algorithm makes use of lookup table for storing
the Q-values for every state-action combination it encounters. The size of this
lookup table grows in proportion to the size of state space. Also, the infor-
mation obtained from one state-action pair can not be propagated to other
state-action pairs. So, rather than remembering the solutions, we are finding a
general function to estimate the Q-value of a state-action pair. Neural networks,
being a good function approximator, have been used here. Recently, a neural
network based Deep Q-network or DQN technique proposed by Mnih et al. [26]
was shown to successfully learn control policies from large state spaces. They
applied DQN method to Atari games and demonstarted that it outperforms all
previous approaches. We have used a DQN with similar structure as presented
in [26] for dynamic pricing of perishables.

When reinforcement learning control algorithms are used with a non-linear
function approximator, like a neural network, they are liable to instability. To
improve the stability of the DQN, two neural networks of the same structure are
used [26], evaluate network and target network. Target network is used for gener-
ating the targets yj in the Q-learning updates. The target network’s parameters,

Deep Reinforcement Learning for Dynamic Pricing of Perishable Products 137

ŵ, remain fixed for r steps after which they are updated to the latest values of
the evaluate network parameters w. The evaluate network parameters, w, are
updated at every time step.

Experience replay is another key feature of the DQN, introduced by Mnih
et al. [26], that enhances its stability. The last N transitions of the form
(st, at, rt+1, st+1) are stored in memory. Here, st, at are the state, action at time
step t, and rt+1, st+1 is the reward and state at time step t + 1. From these N
transitions, we randomly sample a mini-batch of D transitions. By sampling uni-
formly from a large memory, we can avoid the temporal correlations and make
the data nearly i.i.d.

The methodology used for training our DQN based dynamic pricing algo-
rithm is shown in Fig. 1. We use an architecture where the input to the neural
network is the state representation. The output layer consist of a separate neu-
ron for each discrete action. Each output neuron represents the predicted state
action value function (Q(s, a)). The Q values for all the actions for a given state
are calculated in one forward pass of the neural network. A linear activation is
used for the output layer and rectified linear unit, (ReLU), is used as activation
function for the hidden layers.

The loss function used for Q-learning update is shown in Eq. 1. Adam opti-
mizer is used for updating the network weights.

L =
1
2n

n∑

i=1

[Q̂(st, ai
t; ŵ) − Q(st, ai

t;w)]2 (1)

where n is the total number of available control actions, Q is the action-value
function of the evaluate network, Q̂ is the action-value function of the target
network.

Learning: The learning of DQN is outlined in Algorithm 1. The training of
the DQN takes place offline. The algorithm starts by randomly initiaizing the
parameters w of the evaluate network and the target network’s parameters ŵ. We
then initialize a zero filled replay memory D of size (N , (length of state vector
* 2) + 2). The outer for loop controls the number of simulation episodes M .
We reset the state to its initial value after reaching the end of an episode. Each
episode lasts for a maximum of T time steps. Within each episode, we follow the
following procedure. At each time step, an action at is selected at random with a
probability ε. Otherwise, action is selected greedily. Next, the sale at a particular
pricing action is given by the demand function. The reward rt+1 is the revenue
generated by taking action at at state st. The inventory is now updated to
obtain the next state st+1.The state transition tuple (st, at, rt+1, st+1) is stored
in the replay memory D. Then a mini batch is randomly sampled from this
replay memory. The target vector is calculated as given in line 15 of Algorithm
1. The parameters w of evaluate neural network Q are updated by using the
Adam optimizer. The parameters ŵ of the target network remain fixed for r time
steps after which they are updated to most recent value of evaluate network’s
parameters w.

138 V. Burman et al.

Algorithm 1. DQN based pricing algorithm
1: Initialize replay memory D to size N
2: Initialize action-value function Q (evaluate network) with random weights w
3: Initialize target action-value function Q̂ (target network) with random weights

ŵ = w
4: for i = 1 to M do
5: Reset state to initial value

(st=1 = (initial inventory, 1))
6: for t = 1 to T do
7: With probability ε select a random action at

8: Otherwise, select at = argmaxa Q(st, a; w)
9: Execute action at

10: sale = min (inventory, demand(at,t))
11: reward: rt+1 = sale*at

12: inventory=inventory-sale
13: store transition (st, at, rt+1, st+1) in D.
14: randomly sample minibatch of transitions (sj , aj , rj+1, sj+1) from D
15:

Set yj =

{
rj+1, if episode terminates at step j + 1

rj+1 + γ maxa′ Q̂(sj+1, a
′; ŵ), otherwise

16: Perform a gradient descent step on [yj − Q(sj , aj ; w)]2 with respect to the
evaluate net parameter w.

17: every r steps, reset ŵ = w
18: end for
19: end for

5 Experimental Results

In this section, numerical results are provided to evaluate the performance of our
dynamic pricing method using DQN. We study the results of the DQN based
pricing model by simulating the demand function.

Scenario 1: In practice, the demand for perishables is a function of various fac-
tors such as age of the product, its price, competitor price etc. Here, the demand
function is considered to depend upon the price and freshness of the product.
The demand of a perishable food item is, in general, observed to decrease as
its age increases. Also, the price elasticity of perishable food items is mostly
negative, i.e., as price increases the demand decreases. So, we have modelled
demand as an exponentially decreasing function of time and price. Figure 2a
shows the simulated demand function. We have introduced randomness in the
demand function to account for dynamic market behaviour.

We consider a real-life instance of a grocery retailer who needs to sell a grocery
product with a fixed initial inventory. The retailer has 580 units of a product
with no replenishment and with shelf life of 40 days. According to [6] the prices
of perishable food items are normally discounted by 20–50% during the last few
days of the product’s shelf-life. Therefore, we have selected the following discrete
price points - 20, 25, 30, 35, 40. Also, here the prices can be changed daily.

Deep Reinforcement Learning for Dynamic Pricing of Perishable Products 139

(a) Demand for scenario 1 (b) Demand for scenario 2

Fig. 2. Demand function.

We use DQN for learning the best pricing strategy for the simulated demand
function. The time-steps are given by t = 1, 2, 3, ..., 40. The action set is the
set of discrete prices, A = { 20, 25, 30, 35, 40 }. Since the state is defined by
(inventory left, age of product), we have 40 × 580 states in the state-space.

The DQN involves two similar networks-target network and evaluate network.
Both these networks have the same architecture. The layout of the network and
the hyper-parameters are listed in Table 1. We have trained the DQN for 200000
episodes with the simulated demand function. The DQN algorithm has been
implemented using Python and Tensorflow on a MACOS Catalina system with
64-bit i5 processor @1.60 GHz and 8 GB DDR3 RAM. The average execution
time for training the DQN on 50000 episodes is 60 min and for training the DQN
on 200000 episodes is 3 h 50 min. GPU can be employed to significantly reduce
this training time. After training the DQN, we evaluate the pricing policy given
by it.

We compare the performance of the dynamic pricing algorithm using DQN
with the performance of myopic (single-step) optimization algorithm. The single
step price optimization model is formulated here as a non-linear function of
sales and price elasticity that satisfies the price constraints and maximizes the
revenue. We run this single-step optimization on the simulated demand function.
The overall revenue is calculated as the sum of daily revenue. This is compared
to the DQN results. Figure 3a shows the comparative plot of the cummulative
revenue for RL algorithm and myopic optimization algorithm at different time
steps. We can observe that the net revenue generated at the end of the product
shelf-life is significantly higher for the RL based algorithm. We also observe that
the cummulative revenue gap increases as the time increases. This shows the
long term effectiveness of DQN in revenue maximization.

We also compare the performance of the DQN based pricing strategy with a
fixed pricing strategy, which is a typical scenario in real world. In a fixed pricing
strategy, the product price remains constant irrespective of the inventory left and
the freshness of the product. Results for the net revenue generated at different
conatant prices at the end of the shelf life, are tabulated in Table 2a. We observe

140 V. Burman et al.

Table 1. Hyper-parameters of the DQN network

S. No. Parameter name Value

1 Number of input layer neurons 2

2 Number of output layer neurons 5

3 Number of hidden layer 3

4 Number of hidden layer neurons 35, 20, 10

5 Optimizer Adam

6 Learning rate (α) 0.00001

7 Discount factor (γ) .9

8 ε 0.5

9 Mini-batch size 64

10 Memory size 3000

11 r 200

(a) Cummulative revenue comparision
for different pricing strategies, for sce-
nario 1

(b) Cummulative revenue comparision
for different pricing strategies, for sce-
nario 2

Fig. 3. Cummulative revenue comparision.

that the RL based pricing policy generates the maximum revenue at the end
of the product life cycle. A 7.8% increase in revenue is observed by using DQN
based pricing policy, when compared with one-step price optimization.

Figure 4a exbhits the pricing strategy suggested by the trained DQN model.
We observe that the DQN pricing strategy suggests different prices for different
time periods. The pricing policy gradually decreases with time as the demand
decreases. This seems rational as a perishable product near its expiry cannot
be sold at the maximum selling price. Moreover, according to Chung and Li [6],
88% of consumers will check expiry dates before buying a perishable product.
This also implies that the products cannot be sold at maximum price near their
expiry.

Deep Reinforcement Learning for Dynamic Pricing of Perishable Products 141

(a) Pricing policy suggested by DQN
based dynamic pricing model, for sce-
nario 1

(b) Pricing policy suggested by DQN
based dynamic pricing model, for sce-
nario 2

Fig. 4. Pricing policy suggested by DQN.

Table 2. Revenue comparison

(a) Revenue comparison, for scenario 1

Pricing strategy Total Revenue

DQN 11635

1 step optimization 10792

constant price of 40 10283

constant price of 35 10137

constant price of 30 9940

constant price of 25 9552

constant price of 20 8901

(b) Revenue comparison, for scenario 2

Pricing strategy Total Revenue

DQN 12445

1 step optimization 11771

constant price of 40 11700

constant price of 35 11112

constant price of 30 10384

constant price of 25 9449

constant price of 20 8400

Scenario 2: We have also experimented with the DQN based dynamic pricing
algorithm for the case where the demand increases with time and decreases with
price. The simulated demand function is shown in Fig. 2b. This type of demand is
frequently encountered in airline ticketing and hotel room booking. The number
of seats available in a flight and the number of rooms available in a hotel can be
considered analogous to inventory available for a perishable product.

Here, we consider a scenario where the initial inventory level is 650 and the
distinct prices available are 20, 25, 30, 35, 40. Forty distinct time steps are
considered and the pricing decision can be taken at each time step. The DQN
architecture and hyper-parameter values are same as in scenario 1. The results
for total revenue generated at the end of the selling horizon, for different pricing
strategies are in Table 2b.

In this scenario also, we observe that the DQN based pricing strategy gener-
ates the highest revenue when compared with single-step and constant pricing
strategy. This can also be observed in Fig. 3b. We observe a 5.7% increase in
revenue by using DQN based pricing policy, when compared with one-step price
optimization. The pricing policy given by DQN is shown in Fig. 4b. We see that

142 V. Burman et al.

as the demand increases with time, the prices also increase. This is typically
observed in airline ticketing also, where the ticket prices increases as the date of
journey approaches.

6 Conclusion

In the near future, consumer spend is only expected to increase exponentially.
Social media impacts demand in continuous time and retailers need to respond
with near real-time optimal pricing to persuade consumers to spend. Hence,
dynamic pricing for perishables is a critical problem for retailers. In conclusion,
this paper presents a deep reinforcement learning based approach to implement
dynamic pricing for perishables. This approach is chiefly suitable for control
problems with large state space. We have formulated the dynamic pricing prob-
lem as a Markov decision process and our results demonstrate that the DQN
based dynamic pricing algorithm generates higher revenue when compared with
constant pricing strategy and one-step price optimization. We are working to
scale this approach to price multiple products for a real world use-case.

References

1. Adenso-Dı́az, B., Lozano, S., Palacio, A.: Effects of dynamic pricing of perishable
products on revenue and waste. Appl. Math. Model. 45, 148–164 (2017)

2. Adida, E., Perakis, G.: A robust optimization approach to dynamic pricing and
inventory control with no backorders. Math. Program. 107(1–2), 97–129 (2006)

3. Bitran, G.R., Mondschein, S.V.: Periodic pricing of seasonal products in retailing.
Manage. Sci. 43(1), 64–79 (1997)

4. Chen, W., Liu, H., Xu, D.: Dynamic pricing strategies for perishable product in a
competitive multi-agent retailers market. J. Artif. Soc. Soc. Simula. 21(2) (2018)

5. Cheng, Y.: Real time demand learning-based q-learning approach for dynamic
pricing in e-retailing setting. In: 2009 International Symposium on Information
Engineering and Electronic Commerce, pp. 594–598. IEEE (2009)

6. Chung, J., Li, D.: A simulation of the impacts of dynamic price management for
perishable foods on retailer performance in the presence of need-driven purchasing
consumers. J. Oper. Res. Soc. 65(8), 1177–1188 (2014)

7. Duan, Y., Liu, J.: Optimal dynamic pricing for perishable foods with quality and
quantity deteriorating simultaneously under reference price effects. Int. J. Syst.
Sci.: Oper. Logist. 6(4), 346–355 (2019)

8. Feng, L., Chan, Y.-L., Cárdenas-Barrón, L.E.: Pricing and lot-sizing polices for
perishable goods when the demand depends on selling price, displayed stocks, and
expiration date. Int. J. Prod. Econ. 185, 11–20 (2017)

9. Feng, Y., Xiao, B.: A continuous-time yield management model with multiple prices
and reversible price changes. Manage. Sci. 46(5), 644–657 (2000)

10. Feng, Y., Xiao, B.: Optimal policies of yield management with multiple predeter-
mined prices. Oper. Res. 48(2), 332–343 (2000)

11. Gallego, G., Van Ryzin, G.: Optimal dynamic pricing of inventories with stochastic
demand over finite horizons. Manage. Sci. 40(8), 999–1020 (1994)

Deep Reinforcement Learning for Dynamic Pricing of Perishable Products 143

12. Ganti, R., Sustik, M., Tran, Q., Seaman, B.: Thompson sampling for dynamic
pricing. arXiv preprint arXiv:1802.03050 (2018)

13. Gosavii, A., Bandla, N., Das, T.K.: A reinforcement learning approach to a single
leg airline revenue management problem with multiple fare classes and overbook-
ing. IIE Trans. 34(9), 729–742 (2002)

14. Michael Harrison, J., Bora Keskin, N., Zeevi, A.: Bayesian dynamic pricing policies:
learning and earning under a binary prior distribution. Manage. Sci. 58(3), 570–586
(2012)

15. Könönen, V.: Dynamic pricing based on asymmetric multiagent reinforcement
learning. Int. J. Intell. Syst. 21(1), 73–98 (2006)

16. Kutschinski, E., Uthmann, T., Polani, D.: Learning competitive pricing strategies
by multi-agent reinforcement learning. J. Econ. Dyn. Control 27(11–12), 2207–
2218 (2003)

17. Lim, A.E.B., Shanthikumar, J.G.: Relative entropy, exponential utility, and robust
dynamic pricing. Oper. Res. 55(2), 198–214 (2007)

18. Lin, L.-J.: Self-improving reactive agents based on reinforcement learning, planning
and teaching. Mach. Learn. 8(3–4), 293–321 (1992)

19. Lihao, L., Zhang, J., Tang, W.: Optimal dynamic pricing and replenishment pol-
icy for perishable items with inventory-level-dependent demand. Int. J. Syst. Sci.
47(6), 1480–1494 (2016)

20. Ng, A.Y., et al.: Autonomous inverted helicopter flight via reinforcement learning.
In: Ang, M.H., Khatib, O. (eds.) Experimental Robotics IX. STAR, vol. 21, pp.
363–372. Springer, Heidelberg (2006). https://doi.org/10.1007/11552246 35

21. Perakis, G., Sood, A.: Competitive multi-period pricing for perishable products: a
robust optimization approach. Math. Program. 107(1–2), 295–335 (2006)

22. Rana, R., Oliveira, F.S.: Real-time dynamic pricing in a non-stationary environ-
ment using model-free reinforcement learning. Omega 47, 116–126 (2014)

23. Rana, R., Oliveira, F.S.: Dynamic pricing policies for interdependent perishable
products or services using reinforcement learning. Expert Syst. Appl. 42(1), 426–
436 (2015)

24. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (2018)
25. Tesauro, G.: Temporal difference learning and td-gammon. Commun. ACM 38(3),

58–68 (1995)
26. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J.: Human-level control

through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
27. Xiong, Y., Li, G., Fernandes, K.J.: Dynamic pricing model and algorithm for per-

ishable products with fuzzy demand. Appl. Stoch. Model. Bus. Ind. 26(6), 758–774
(2010)

http://arxiv.org/abs/1802.03050
https://doi.org/10.1007/11552246_35

An Exploratory Analysis
on a Disinformation Dataset

Matheus Marinho1, Carmelo J. A. Bastos-Filho1(B), and Anthony Lins2

1 Universidade de Pernambuco, Recife, PE, Brazil
{mblm,carmelofilho}@ecomp.poli.br

2 Universidade Catolica de Pernambuco, Recife, PE, Brazil
anthony.lins@unicap.br

Abstract. Understanding the phenomenon of disinformation and its
spread through the internet has been an increasingly challenging task,
but it is necessary since the effects of this type of content have their
impacts in the most diverse areas and generate more and more impacts
within society. Automated fact-checking systems have been proposed by
applying supervised machine learning techniques to assist in filtering fake
news. However, two challenges are still present, the first related to under-
standing disinformation in its subgroups. The second challenge is related
to the availability of datasets containing news classified between true and
false. This article proposes an exploratory analysis through unsupervised
algorithms and the t-SNE technique to visualize data with high dimen-
sionality, identify the subgroups present in the disinformation, and the
identification of possible outsiders between the classes. We also propose
a new Corpus in Portuguese containing 19446 news, classified as true
and false, and 15 linguistic features extracted from this dataset. Finally,
we propose to use two classification models using the Random Forest
techniques, with and without intruders. In the end, the model without
intruder achieved superior performance, reaching an accuracy of 97.33%.

Keywords: Disinformation · Unsupervised learning · Clustering

1 Introduction

Disinformation can change political opinions, influencing the results of elections,
contributing to the spread of diseases, causing problems in public health, and
even causing deaths with hate campaigns and generating extremist groups [13].
The growth of “Fake News” was stimulated by the change in society, which
started to live more and more in a network [3], organized around interconnected
universes of digital communication driven by the internet. The network society
has generated a reduction in complexity and agility in the dispersion of content,
thus allowing news, whether true or false, written by any individual, to reach an
audience of hundreds of millions of readers [1].

One of the solutions that emerged in this fight against the disinformation
ecosystem is fact-checking, a service proposed by journalists that seek to identify
c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 144–155, 2021.
https://doi.org/10.1007/978-3-030-85672-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-85672-4_11

An Exploratory Analysis on a Disinformation Dataset 145

evidence, understand the context of the information and what can be inferred
from that evidence through a fact verification process [14]. However, due to the
complexity linked to this solution, the conclusion of the analyzed fact’s veracity
can take days [7]. This complexity creates a challenge, as human fact-checkers
are unable to keep up with the amount of disinformation and the speed with
which they spread, and in this way, the opportunity arises for the creation of
automated fact-checking systems (AFC).

Typically, AFCs are developed to assist in the classification activity, where
the news is labeled as true or false. In this type of activity, supervised machine
learning techniques are used in most cases, with a model previously trained from
a set of data containing the types of news evaluated. However, for the successful
construction of these models used in the AFC, two things need to be taken into
account: (i) identify the main characteristics that need to be taken into account
when evaluating the news and the strengths of these features in the process [12]
and identify the relationships between the variables input and output, as well
as the relationships between features and; (ii) the use of a diverse dataset since
the precision of the model generated by supervised machine learning is directly
related to the quality of the data contained in the classifier training dataset.

This paper aims to make an exploratory analysis of Fake.br Corpus [9], a
dataset related to disinformation, through the generation of clusters, to under-
stand: how the features are distributed in each cluster; the main characteristics of
these groups and; the relations of the features with the type of news (true/fake).
In this paper, we also present a new set of disinformation data with news in Por-
tuguese, increase the existing corpus of Fake.br, and perform analysis of possible
noisy data, which may hinder the process of generating the classification model.
In the end, we present the characteristics of these noisy data and compare the
results with and without noisy data.

Although the data already have a classification, the present paper seeks to
identify possible intrusive data existing in the data sets and understand the
characteristics existing in the subgroups related to disinformation and true news.

The rest of the paper is organized as follows. Section 2 reviews the related
work. Section 3 offers the background theory about Hierarchical Clustering and
t-SNE. Section 4 describes the methodology. Section 5 shows the results. Finally,
Sect. 6 presents conclusions and future work.

2 Related Work

In [11], the authors analyzed news features: n-grams, punctuation, psycholinguis-
tics, legibility, and syntax. For each class, they proposed different classifiers using
a linear support vector machine (SVM). The authors observed that depending on
the dataset analyzed, a different category has the best performance. In this case,
the legibility and punctuation classes had a better performance. The authors
also considered only semantic characteristics and can conclude that actual news
tends to have more function words, negations, and express relativity. On the
other hand, the language used to report fake content uses more social and positive

146 M. Marinho et al.

words and focuses on the present and future actions. Also, fake news authors use
more adverbs, verbs, and punctuation characters than legitimate news authors.

Reis et al. [12] listed 11 categories for the evaluation of news and pro-
posed 294,292 models, each with 20 features randomly selected from the existing
classes. The work concluded that features related to the social media data class,
such as the number of shares or reactions related to the news, the credibility of
the domain, and characteristics that indicate political bias, are the most present
in the models. In these cases, the models obtained better performance in the
separation of trustworthy news and disinformation.

For the application of machine learning techniques, a fundamental require-
ment is a dataset capable of representing the problem in question. However, on
the theme of Disinformation, it was only in 2018 that the authors [9] were the
first to build a Corpus containing true and false news in Portuguese. Fake.br
Corpus, contains 7200 news items, divided equally between true news and disin-
formation, collected between the years 2016 and 2018. Among the themes present
in the data set, are politics and economics. The authors also made available a
set containing 25 characteristics, 21 of which related to linguistic issues.

3 Background Theory

In this section, we present the relevant concepts to allow the reader to understand
the proposal properly.

3.1 Hierarchical Clustering

The process of unsupervised learning in the generation of clusters consists of
dividing the data into groups so that the data present in the same cluster are
as similar as possible, and the difference between groups is as significant as
possible [6]. Clustering techniques can be divided into two categories: hierarchical
and non-hierarchical. Unsupervised techniques are distinguished, as they do not
constitute a specific number of groupings; however, they generate groups through
an increasing sequence of divisions or continuous group connections.

Hierarchical methods are composed of two classes of algorithms for generating
clusters: agglomerative clustering and divisive clustering [5].

Agglomerative clustering is a conventional clustering method that can pro-
duce an informative hierarchical structure of clusters. The algorithm starts with
a large number of small initial clusters. The agglomerative cluster iteratively
merges a pair of clusters with the highest affinity under a given criterion until
some stop condition is reached [4]. There are many conventional methods for cal-
culating the affinity between a pair of clusters, such as single linkage, full linkage,
medium linkage, and ward [2]. In this work, we use the ward link to reduce the
variance between the merged clusters. We used agglomerative clustering in this
work because we aim to analyze the purity of the formed clusters in different
aggregation levels.

An Exploratory Analysis on a Disinformation Dataset 147

3.2 t-SNE

T-Distributed Stochastic Neighbor Embedding is a method for exploring high-
dimensional data, proposed by Maaten and Hinton [8]. Visual exploration is an
essential component of data analysis, as it allows the development of intuitions
and hypotheses for the processes that generated the data. Stochastic neighbor
embedding techniques calculate an N × N similarity matrix both in the original
data space and in the small dimension embedding space so that similarities form
a probability distribution over pairs of objects, these probabilities are usually
provided by a kernel Normalized Gaussian or Student-t calculated from the input
data [15].

T-SNE minimizes the divergence of the distribution that measures similar-
ities between pairs of the input objects and a distribution that measures simi-
larities between pairs of the corresponding low-dimension points in the embed-
ding, through a function that calculates the distance between a pair of objects,
typically uses the Euclidean distance. Another critical parameter is perplexity,
which is used to compare probability models, the performance of the SNE is
quite robust to changes in perplexity, and the typical values are between 5 and
50.

4 Methodology

In this section, we present the Fake.br Corpus, how the data preprocessing meth-
ods and the use of agglomerative clustering. After that, we discuss the dataset
proposed in this paper, how it was built, its final configuration, and the existing
features. Finally, the process of applying the t-SNE technique to identify regions
of conflict between true and false news will be discussed, as well as how we apply
the supervised technique to verify if there was a better convergence of the clas-
sifier after removing this news and applying the statistic tests in the validation
process between the existing classifiers.

4.1 Fake.br Corpus

This paper aims to understand the construction of disinformation in Brazil. In
this context, we found that there is a wide variety of datasets in the English
language. However, it is not easy to obtain this type of information in the Por-
tuguese language. The Fake.Br dataset [9] is the first with this purpose. The
language of the data set is Portuguese and contains 7200 news collected from
websites. The dataset is divided equally between fake and true news and grouped
into six categories: politics; tv and celebrities; society and daily news; science
and technology; economy and; religion.

The authors also made available a set with 25 features regarding each news.
Among them, we can cite the number of words, the number of verbs, and the
average sentence size. In the data set, the features’ types are distributed as
follows: 21 features are numeric with linguistic information, and four are cat-
egorical, which are related to the date of publication, author, news link, and
category.

148 M. Marinho et al.

4.2 Pre-processing

After analyzing the distribution of features, we discarded the categorical fea-
tures. Since we observed that the information in them is irrelevant and does
not influence the model’s response, for example, taking the author as a param-
eter could bias the proposed model. Thus, instead of having clusters that group
true and false news, groups divided the authors or the categories of each news
item. Because of this, we used the 21 numerical features related to linguistic
characteristics.

Finally, we normalized the data using a Min-Max algorithm that outputs a
value in the range between 0 and 1. It allows an easy way to compare measured
values using different scales or measures.

4.3 Agglomerative Clustering

The clustering algorithm was applied using the scikit-learn toolkit [10]. We used
the following configurations: the amount of cluster equal to 16; the affinity is
the ward, and; the metric is the Euclidean distance. Then, we calculate each
cluster’s purity according to the majority of news belonging to a specific class,
which, in turn, labels that cluster. For example, suppose that we have a cluster
containing 100 news, 80 of which are true, and 20 are fake. Then, we label the
cluster as true with a purity of 80%.

We propose an evaluation of the purity of each cluster to understand: (i)
what are the characteristics of the purest, that is, that it contains only news of
the same classification; and (ii) identify which subgroups exist within each class
of classification, in order to understand the different behaviors that may exist
within disinformation and true news.

4.4 Brazilian Disinformation Corpus

To increase diversity and update Fake.br Corpus, this article proposed an update
with 12246 more news, collected in the following ways: (i) for a part of the true
news, three web crawlers were proposed, to automate the extraction of con-
tent from the Globo, Sistema Jornal do Commercio and Diário de Pernambuco.
Among the types of news, those related to politics and health were extracted,
as they are the most relevant topics at the moment due to the state elections
in November 2020 and the amount of disinformation generated in the health
area related mainly to treatments and ways of propagation of COVID-19. These
three communication vehicles were chosen because they are companies that do
not publish disinformation. (ii) For collecting a part of the disinformation news,
a web crawler was developed to extract content from Boatos.org, a service man-
aged by journalists to compile the fake content that circulates on the internet.
Finally, (iii) texts were extracted through Monitor do Whatsapp, a project that
provides texts extracted from public groups within the communication platform,
with themes related to politics. The classification of these texts was carried out
by a team of journalists with experience in the fact verification process, and only

An Exploratory Analysis on a Disinformation Dataset 149

news related to disinformation was used in this work, as it was the class with
the least amount of examples. At the end of this collection process, the new data
set configuration can be seen in Table 1, containing 12127 true news and 7319
disinformation.

Table 1. Brazilian disinformation corpus configuration

Source Quantity

Fake.br Corpus - Fake 3600

Fake.br Corpus - True 3600

Globo 935

Sistema Jornal do Commercio 5661

Diário de Pernambuco 1931

Monitor do Whatsapp 887

Boatos.org 2832

Regarding the extracted characteristics, we initially attempted to replicate
those existing in Fake.br Corpus, however of the 21 numerical characteristics, 6
were not capable of replication because they did not beat their value with those
existing in the original data set, leaving the new set of data with 15 character-
istics, they were: number of tokens; words without punctuation; the number of
types; the number of uppercase; the number of verbs; the number of nouns; the
number of adjectives; the number of adverbs; the number of pronouns; pausal-
ity; the number of characters; average sentence length; average word length;
emotiveness; and diversity.

4.5 Outsiders Analysis

We proposed two analyzes using the technique for data exploration and visual-
ization of high-dimensional data, t-SNE, at the Brazilian Disinformation Corpus.
In the first evaluation, we used the Corpus classifications, making it possible to
identify conflicting regions, with intruders both from the real news inside the fake
news region, and the opposite. For the second evaluation, a new classification
was proposed using an unsupervised technique, called k-means. This analysis
aims to visualize the subgroups existing within each class and understand which
groups are more reliable to their class: purer, and which groups contain that
intrusive data. For this, different values were tested in the cluster quantity, seek-
ing to find the quantity that best represented the problem, which in this case, is
a high purity value in all groups, and this value in the Brazilian Disinformation
Corpus was nine groups.

After identifying the intruders and an analysis of their characteristics, two
supervised classifiers were proposed: one with all Corpus data and; another with-
out the intruding elements. We aim to validate whether the removal of such news

150 M. Marinho et al.

would increase the classification accuracy, as the models would not be trained
with data that may be noisy. For this last stage, classifiers were generated using
the Random Forest technique, as we have presented the latest work using Fake.br
Corpus, this technique performed well in the disinformation classification pro-
cess. For this evaluation, we used precision, recall, and F1. Besides, we used the
t-student test to verify if there was a statistically significant improvement among
the models.

5 Results

We carried out the initial analysis using the unsupervised technique at Fake.br
Corpus, to identify and understand the subgroups present in the truthful news
and the disinformation. We emphasize that it is not our intention to carry out
a classification process, as the data are already previously classified. Analyzing
the dendrogram (Fig. 1) generated by the hierarchical clustering algorithm, it
is possible to observe that this technique was able to separate the two groups
contained in the dataset (fake and true news). In the first level (see Table 2),
we obtained a cluster with 93.82% purity with its data mostly belonging to the
class of true news and a second cluster with 93.70% purity, this being composed
mostly by false news. Thus, in general analysis, only 449 news items were grouped
erroneously, and this value corresponds to only 6.24% of the total data. In con-
trast, 93.76% of the news items were correctly separated between the generated
clusters.

Fig. 1. Dendrogram

Thirty clusters were formed, of which 18 clusters have the most accurate
news, and 12 clusters contain mostly fake news. This information reveals more
considerable variability in the characteristics belonging to the data of this class
within the true news. However, the true clusters ended up being repeated in
4 cases; that is, the lower level cluster is the same as the upper-level cluster.
This repetition may be evidence that these clusters contain strong characteris-
tics and therefore did not go through changes in the merges performed by the
agglomerative technique.

In general, of the 30 clusters proposed (Fig. 1, 26 are more than 90% pure,
of these 13 clusters are more than 99%, and five are 100% pure. Analyzing the

An Exploratory Analysis on a Disinformation Dataset 151

perspective of classes: from the total of 26 clusters, 15 have the class of the true
ones, and 11 are fake clusters; of the 13 clusters, nine are true, and only four are
fake and; of the five clusters with 100% purity, four are true, and only one is fake.
It reinforces the initial conclusion that the true clusters have a greater variety
in the characteristics’ values, so it has a larger number of clusters. However, this
information is different, consequently allowing a good separation between the
true news.

Analyzing clusters with 100% purity, these are the characteristics present in
each cluster: (i) in the only fake cluster, the feature that stands out from the
others is the number of links, this value is higher than in all others groups, that
is, the 462 news items in this group have a large number of links in the text; (ii)
the first of the four true clusters, consists of only six news items and these have
a high value in 13 of the 21 characteristics analyzed; (iii) the second cluster has
25 true news items, these have the values of 14 characteristics above the average,
with 13 characteristics with lower values than the previous cluster and with the
characteristic of the quantity of first and second personal pronouns with the
highest value between clusters and; (iv) the other two true clusters with 100%
purity is generated from the (ii) and (iii) cluster, that is, they have the same
characteristics previously presented.

Table 2. Purity from k = 2

Cluster Class True news Fake news Purity (%)

0 True 3373 222 93.82

1 Fake 227 3378 93.70

For the analysis of subgroups, we chose to analyze the dendrogram sheet con-
taining 16 groups, as it contains the largest number of divisions, thus generating
a more detailed (specific) level among the news within each macro class (fake
and true). In the disinformation group, it is possible to observe that there are
not many differences between the groups. The group with the most significant
difference is the one that has a high value in the number of links, and the rest
has a small variation in the characteristics of average word size, average sentence
size, and diversity. This was already expected, as stated earlier, were more true
than false groups were generated.

After the analysis the subgroups existing in the set of true news, we observed
that they are initially divided by the number of tokens, the number of words
without punctuation and the number of types. Another thing that distinguishes
them is the number of pronouns and the number of characters. Finally, the
higher the values in these characteristics mentioned above, the greater their
purity related to the true groups.

The second analysis was related to applying the t-SNE technique in the
dataset generated by this paper, the Brazilian Disinformation Corpus. In Fig. 2,
in blue, we have the points related to true news and, in red, disinformation.

152 M. Marinho et al.

Fig. 2. t-SNE Brazilian disinformation corpus

Table 3. Outsiders characteristics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Class

0,46 0,49 0,49 0,25 0,46 0,42 0,38 0,26 0,33 0,27 0,46 0,35 0,28 0,20 0,60 True

0,57 0,60 0,60 0,33 0,58 0,53 0,51 0,43 0,51 0,29 0,57 0,38 0,29 0,24 0,51 Fake

Note that there is a separation zone between the groups; however, intruders are
in both classes. To understand, the characteristics of these news items that do
not belong to their zone, a cut was proposed in the reduced plan, where the
region of each class of news was determined, and in this way, the news that did
not belong to their zone was classified as outsiders. The characteristics of these
news items can be seen in Table 3, where the class indicates which one it belongs
to and therefore, if the class is true, it means that it is the set of real news that
was in the region of fake news and vice versa and columns 1 until 15 represent
the features.

Analyzing the table of intruders, it is possible to understand the reason why
these news invaded regions that did not belong, because in the case of true
intruders, they are news that has a high value of diversity, and as seen earlier,
this is a characteristic of related news disinformation. On the other hand, the
disinformation classified as an intruder presented high values in most of the
features, which was mapped as a characteristic of the real news, for example,
the features of number of tokens, number of types, and numbers of nouns. In
total, 670 intruders were identified, grouped into 429 false and 241 true.

The third analysis was carried out by applying an unsupervised k-means
technique to find the subgroups existing in the Brazilian Disinformation Dataset.
In this case, the number of groups that best represented the set was 9, and from
that identification, we applied the technique of dimensionality reduction t-SNE
again. The result can be seen in Fig. 3. Groups 3, 5, and 8, respectively, dark
green, light blue, and pink, are related to disinformation, and the rest related to
true news. Again, out of 9 proposed groups, the class with the largest number
of groups is true.

An Exploratory Analysis on a Disinformation Dataset 153

Fig. 3. t-SNE Brazilian disinformation corpus with k-means and k = 9

From the image, it is possible to notice that three groups are well separated
from the others, they are: 2; 3 and; 7, and 3 groups have their data in a conflict
zone, the groups: 1; 5 and; 6. Making a more detailed analysis in groups 3 and 7,
which are the groups of the right and left extremities, and they have the following
characteristics: group 3, which is true news, has a high value in the first three
features (number tokens, word number without punctuation and number types);
and group 7, in turn, related to disinformation has a high value in the diversity
characteristic and a low value in the others.

Table 4. Supervised results Brazilian disinformation dataset

Dataset Class Precision Recall F1 Accuracy

Raw Fake 93.72 92.72 93.07 94.85

True 95.76 96.14 95.90

Outsiders Fake 96.42 96.37 96.35 97.33

True 97.93 97.89 97.89

The last analysis was done by applying the supervised machine learning tech-
nique to assess the impact of generating a classifier using the intrusive data. For
this purpose, the Random Forest algorithm was used in the Brazilian Disin-
formation Dataset, and the results can be seen in Table 4. In all metrics, the
removal of intruders increased the accuracy from 94.85% to 97.33%. In a partic-
ular way, in each class, intruders’ absence contributed to an increase in precision
and recall metrics. Analyzing the F1 measure of the true class, the best result
reached 97.89%, and the disinformation class obtained 96.35%.

154 M. Marinho et al.

6 Conclusion

Society is increasingly connected through the internet, and news has been spread-
ing in a massive and fast way. The absence of filters has allowed an increase in
the circulation of fake news. Automated fact-checking systems have gained global
attention to combat disinformation. It can be implemented by combining com-
putational intelligence techniques and journalistic concepts. Thus, it is possible
to create models capable of identifying probable false news and alerting the
network readers.

This article had the following objectives. The first is constructing a new Cor-
pus, entitled Brazilian Disinformation Corpus, containing 19446 news items and
15 language features. This new data set allowed for mapping more news related
to disinformation. The second objective is to apply unsupervised techniques to
identify existing subgroups in the categories of true and false news, reinforcing
once again that we did not intend to carry out a classification activity but rather
to have a deeper understanding of the Corpus. From the obtained results, we
observed that there are more subgroups related to true news than related to
disinformation, and it can also be concluded that within the pure subgroups,
the features that stood out the most were a high value in the number of links in
fake class and in the true news a high value in 13 out of 21 features proposed in
[9].

The third objective is the identification of the existing subgroups in the
Brazilian Disinformation Dataset. For this, we applied the k-means technique 9
clusters. Despite the difference in the datasets’ size, the number of true clusters
was greater than that of false ones and what differentiated the subgroups was
also the different values in the features of the number of tokens, word number
without punctuation, and number types. The true news had a high value, and
the fake news groups had a low value, and in the diversity feature, this behavior
was reversed. The fourth assessment was related to identifying intrusive news
through a technique of visualization of data of high dimensionality. We identified
the regions that characterized the real news and the fake news, and finally, we
extracted the intruder news. In the end, 670 news items were classified as intrud-
ers, and their characteristics show behavior that diverged from the pattern found
in each macro group (true and false). The true intruders had a high diversity
value and fake content a high value of token quantity features and number of
types.

Lastly, two classification models were proposed, generated from the Random
Forest algorithm, for the disinformation and true news classification process.
The first model contained all the news from the Brazilian Disinformation Corpus
and the second model was generated without the outsiders elements identified
through the analysis of the regions generated by the t-SNE technique. In the
end, the model without the existence of outsiders obtained statistically better
performance. Thus, we can conclude that removing the outsiders improved the
classifier efficiency, reaching an accuracy of 97.33% and F1 measure of 96.35%
for fake news and 97.89% for true news.

An Exploratory Analysis on a Disinformation Dataset 155

We plan to analyze entropy, purity, and statistical tests to discard the features
for this work highlighted as irrelevant in the clustering process. We believe we
can obtain even more concise results in the formation of supervised models. We
will also perform a more detailed analysis of the intruder data to understand
whether or not there is a possible miss classification of this data. Finally, all of
this will contribute to constructing an automated fact verification system using
computational intelligence techniques.

References

1. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J.
Econ. Perspect. 31(2), 211–36 (2017)

2. Barreto, S., Ferreira, C., Paixao, J., Santos, B.S.: Using clustering analysis in a
capacitated location-routing problem. Eur. J. Oper. Res. 179(3), 968–977 (2007)

3. Castells, M.: A Galáxia Internet: reflexões sobre a Internet, negócios e a sociedade.
Zahar (2003)

4. Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divise and agglomerative
clustering for learning taxonomies from text. In: Proceedings of the 16th European
Conference on Artificial Intelligence, ECAI’2004, Including Prestigious Applicants
of Intelligent Systems, PAIS 2004 (2004)

5. Fahad, A.: A survey of clustering algorithms for big data: taxonomy and empirical
analysis. IEEE Trans. Emerg. Top. Comput. 2(3), 267–279 (2014)

6. Frigui, H., Krishnapuram, R.: Clustering by competitive agglomeration. Pattern
Recogn. 30(7), 1109–1119 (1997)

7. Hassan, N., et al.: The quest to automate fact-checking. In: Proceedings of the
2015 Computation+ Journalism Symposium (2015)

8. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res.
9(Nov), 2579–2605 (2008)

9. Monteiro, R.A., Santos, R.L.S., Pardo, T.A.S., de Almeida, T.A., Ruiz, E.E.S.,
Vale, O.A.: Contributions to the study of fake news in Portuguese: new corpus
and automatic detection results. In: Villavicencio, A., et al. (eds.) PROPOR 2018.
LNCS (LNAI), vol. 11122, pp. 324–334. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-99722-3 33

10. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

11. Pérez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of
fake news. arXiv preprint arXiv:1708.07104 (2017)

12. Reis, J.C., Correia, A., Murai, F., Veloso, A., Benevenuto, F., Cambria, E.: Super-
vised learning for fake news detection. IEEE Intell. Syst. 34(2), 76–81 (2019)

13. Silva, R.M., Santos, R.L., Almeida, T.A., Pardo, T.A.: Towards automatically
filtering fake news in Portuguese. Expert Syst. Appl. 146, 113199 (2020)

14. Thorne, J., Vlachos, A.: Automated fact checking: task formulations, methods and
future directions. arXiv preprint arXiv:1806.07687 (2018)

15. Van Der Maaten, L.: Accelerating t-SNE using tree-based algorithms. J. Mach.
Learn. Res. 15(1), 3221–3245 (2014)

https://doi.org/10.1007/978-3-319-99722-3_33
https://doi.org/10.1007/978-3-319-99722-3_33
http://arxiv.org/abs/1708.07104
http://arxiv.org/abs/1806.07687

Automatic Synthesis of Boolean Networks
from Biological Knowledge and Data

Athénäıs Vaginay1,2(B) , Taha Boukhobza1 , and Malika Smäıl-Tabbone2

1 Université de Lorraine, CNRS, CRAN, 54000 Nancy, France
2 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

athenais.vaginay@loria.fr

Abstract. Boolean Networks (BNs) are a simple formalism used to
study complex biological systems when the prediction of exact reac-
tion times is not of interest. They play a key role to understand the
dynamics of the studied systems and to predict their disruption in case
of complex human diseases. BNs are generally built from experimental
data and knowledge from the literature, either manually or with the
aid of programs. The automatic synthesis of BNs is still a challenge for
which several approaches have been proposed. In this paper, we pro-
pose ASKeD-BN, a new approach based on Answer-Set Programming to
synthesise BNs constrained in their structure and dynamics. By apply-
ing our method on several well-known biological systems, we provide
empirical evidence that our approach can construct BNs in line with
the provided constraints. We compare our approach with three existing
methods (REVEAL, Best-Fit and caspo-TS) and show that our approach
synthesises a small number of BNs which are covering a good proportion
of the dynamical constraints, and that the variance of this coverage is
low.

Keywords: Boolean network synthesis · Answer-Set Programming

1 Introduction

Models of biological systems are important to understand the underlying pro-
cesses in living organisms [10]. Once built, the model is an artefact that can be
used to study a system through simulation. Several formalisms have been pro-
posed to model biological systems [11], and they all have their own strengths and
weaknesses. The choice of a formalism is guided by the question at hand: the best
formalism is the most abstract formalism which can answer the question [3]. For
example, differential equations are a formalism suited to run detailed dynamic
simulations because they contain information on kinetic parameters. However,
they do not scale to large systems.

Boolean Networks (BNs) are a formalism used to study complex biological
systems where prediction of exact reaction times is not of interest [1]. They play
a key role to understand the dynamics of biological systems and predict their
c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 156–170, 2021.
https://doi.org/10.1007/978-3-030-85672-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_12&domain=pdf
http://orcid.org/0000-0001-5062-7993
http://orcid.org/0000-0003-1046-3554
http://orcid.org/0000-0002-8119-2117
https://doi.org/10.1007/978-3-030-85672-4_12

Automatic Synthesis of Boolean Networks 157

disruption in case of complex human diseases [2]. The key notions of BNs are
presented in Sect. 2.2. BNs are built from available knowledge about the structure
of the system and data about the behaviour of its components (Sect. 2.3). The
knowledge and data are used as constraints for the BN synthesis. The automatic
synthesis of BNs from biological data and knowledge is still a challenge for which
several methods have been developed. In Sect. 3, we review three state-of-the-art
approaches: REVEAL, Best-Fit and caspo-TS.

In Sect. 4, we present ASKeD-BN, a new automatic approach for the synthesis
of BNs constrained in their structure and dynamics. We rely on the Answer-Set
Programming framework to generate non-redundant BNs fulfilling the given con-
straints. We compare the performances of our approach with REVEAL, Best-Fit
and caspo-TS on several biological systems with experimental and synthetic
data (Sect. 5). Finally, we discuss the results and conclude.

2 Boolean Networks and Their Synthesis

2.1 Prior Knowledge Network (PKN)

Part of the knowledge one has about a biological system is the list of compo-
nents (genes, proteins. . .) constituting the system and how these components
influence each other. Influences have a polarity: activation (polarity “+”) or
inhibition (polarity “−”). The parents of a component X are the components
which influence X. A Prior Knowledge Network (PKN) encodes this knowl-
edge. The nodes of the network are the components of the system. The edges
are directed from parent components to child components and labelled “+” or
“−” according to the polarity of the influences. Figure 1 shows an example PKN
for a system of three components. In this PKN, C and A are the parents of C.

– “A activates C”
– “B interacts with itself”
– “C activates A”
– “C interacts with B”
– “C inhibits itself”

A

B

C

+

±

±+

-

Fig. 1. PKN example of a three-components system.

2.2 Boolean Networks (BNs)

BNs were introduced by Kauffman [7] to model genetic regulatory networks.
Concepts used in BNs are described in a recent review [17]. Two examples of
BNs are given in Fig. 2.

The components of a BN are the components of the considered biological
system. For example, a BN modelling a system of three proteins called A, B and
C has three components named A, B and C. A configuration of a BN is a vector

158 A. Vaginay et al.

B1 =

⎧⎪⎨
⎪⎩

fA := C

fB := B ∧ ¬C
fC := ¬C

(a) Transition functions of B1

B2 =

⎧⎪⎨
⎪⎩

fA := 0

fB := (B ∧ ¬C) ∨ (¬B ∧ C)

fC := A

(b) Transition functions of B2

A

B

C

+

+

-

-

(c) Interaction graph of B1

A

B

C

±

±+

(d) Interaction graph of B2

(e) Synchronous (left) and asynchronous
(right) state transition graphs of B1

(f) Synchronous (left) and asynchronous
(right) state transition graphs of B2

Fig. 2. The transition functions, derived interaction graph, and state transition graphs
according to synchronous and asynchronous update schemes of two BNs.

which associates a Boolean value (1/active or 0/inactive) to each component of
the BN. A BN with n components has 2n possible configurations. For example,
the 23 = 8 possible configurations of a BN with 3 components are: 000, 001, 010,
011, 100, 101, 110 and 111.

Each component has an associated transition function (Bn → B) which
maps the configurations of the BN to the next value of the component. The
transition functions are usually written as Boolean expressions. In this paper,
these expressions are in Disjunctive Normal Form (DNF), i.e., disjunctions of
conjunctions. The conjunctions are satisfiable, which means they do not contain
a literal and its contrary. The operators ¬, ∧, ∨ represent respectively negation,
conjunction and disjunction. Figures 2a and b show examples of transition func-
tions. The transition function associated with B in B2 states that the value of B
will be 1 if either the value of B or of C was 1 in the previous configuration.

Like for the PKN, the structure of a BN is defined in terms of parent-child
relationships between the components. A component P which appears in the
transition function of a component X is called a parent of X. If the parent
is negated in the DNF, we say that the polarity of the influence of P on X is
negative. Conversely, if the parent is not negated, the polarity is positive. The
Interaction Graph (IG) summarises these relationships as a directed graph.

Automatic Synthesis of Boolean Networks 159

The directed edge P → X is labelled with “+” or “−” depending on the polarity
of the influence P has on X. For example, the IG of B1 contains B +−→ B and
C −−→ B because B appears positively and C appears negatively in the transition
function associated with B. As we will see in Sect. 2.3, the PKN will act as a
hard constraint on the IG of the BNs we want to synthesise.

The BN dynamics is obtained by applying iteratively the transition func-
tions starting from each possible configuration. The order of application of the
transition functions is defined by the update scheme. The synchronous,
asynchronous and mixed update schemes are the most commonly used. In
the synchronous update scheme, the transition functions are applied all at once,
while in the asynchronous scheme, they are applied one by one. In the mixed
update scheme, any number of components can be updated at each step. Thus,
the update possibilities from both the synchronous and asynchronous update
schemes are included in this third update scheme.

The State Transition Graph (STG) is a directed graph whose nodes are
the 2n possible configurations of the BN. In this graph, there is a directed edge
from c to c′ if c′ is the result of applying to c the transition function(s) according
to the chosen update scheme. Figure 2 shows examples of synchronous and asyn-
chronous STGs. Later, we discuss how dynamical constraints are enforced in the
STGs, and how we use the mixed STG to quantify how well the synthesised BNs
match the dynamical constraints.

2.3 Synthesis of BNs from PKN and Multivariate TS

In general, BNs that model biological systems have to satisfy two categories
of constraints. On one hand, the BNs have to comply with a PKN. The PKN
constrains the structure of the synthesised BNs by defining which components
can appear as variables in each transition function and the polarity of those
variables. Hence, a component P is allowed to appear in the transition function
of a component X with a polarity s if the PKN contains an edge P s−→ X.
Formally, a BN is compatible with a PKN if its IG is a spanning subgraph of the
PKN. In other words, the IG of a BN compatible with a given PKN is formed
from the vertices and a subset of the edges of the PKN. For example, the two
BNs presented in Figs. 2a and b are compatible with the PKN given in Fig. 1.
On the contrary, a BN containing the transition function fA := B is not, since
the IG of this BN contains the edge B +−→ A, which is not in the PKN. A BN
having fA := ¬C is also incompatible: despite C being a possible parent of A,
the negative polarity is not allowed, since the PKN does not contain the edge
C −−→ A.

On the other hand, the synthesised BNs are expected to reproduce as well
as possible the sequence of configurations extracted from an observed continu-
ous multivariate Time Series (TS) of the concentration of the components over
time. An example of a multivariate TS is given in Table 1. Various strategies
for extracting the sequence of configurations and fitting the transition functions
to the observations have been proposed in the literature, but they all roughly

160 A. Vaginay et al.

result in enforcing the STG of the synthesised BNs to contain specific edges,
corresponding to specific transitions of configuration.

We focus here on the automatic synthesis of BNs that respect the structure
of a given PKN and are designed to reproduce as well as possible the observa-
tions from one given multivariate TS. For each synthesised BN, this ability of
reproducing the observations is measured in terms of coverage proportion, i.e.,
the proportion of transitions observed in the multivariate TS that are retrieved
by the BN when computing its STG according to the mixed update scheme.
Ideally, an identification method would only return BNs with a perfect coverage
proportion (i.e., 1).

Table 1. Multivariate TS of the three-components system given as example. The
continuous concentrations of the components have been sampled for 20 time steps.
Here, all the observations range from 0 to 100. The value resulting from the binarisation
with a threshold of 50 is indicated by the colour of the cells: green if the result of the
binarisation is 1 and red if 0. The resulting binary vectors are the configurations. Here
there are four configurations (010, 011, 100 and 001) lasting respectively 4, 3, 3 and 10
time steps. Vertical bars indicate a change of configuration.

Configurations sequence:

010 → 011 → 100 → 001

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 0 3 7 13 20 30 49 61 100 63 36 25 2 3 1 1 3 0 0 0

B 100 86 64 57 54 53 51 49 45 37 33 28 22 19 14 12 9 5 2 0

C 0 27 36 42 60 75 54 44 38 48 60 72 88 90 100 100 100 100 100 100

3 State-of-the-Art Methods of BN Synthesis from PKN
and TS

Several studies have been dedicated to the automatic synthesis of BNs from
PKNs and observed multivariate TS. Here, we review three main state-of-the-
art approaches: REVEAL [12], Best-Fit [9] and caspo-TS [16].

For each component of the system, REVEAL tests all the possible combina-
tions of its parent nodes, and attempts to find the functions that explain all
the observations of the binarised TS. For example with the multivariate TS
from Table 1: REVEAL tries to explain 010 → 010 → 010 → 010 → 011 →
011 → 011 → 100 → . . . Hence, it cannot handle inconsistencies—such as a
configuration being associated to distinct successor configurations. Such incon-
sistencies are frequent when sampling concentrations along time, because the
processes involved can have different speeds. In the example (Table 1), observing
both 010 → 010 and 010 → 011 is an inconsistency which causes the failure
of REVEAL. Furthermore, REVEAL cannot use the influence signs from the PKN,
and since it uses an already binarised TS, it is possibly biased by the chosen
binarisation.

Automatic Synthesis of Boolean Networks 161

Like REVEAL, Best-Fit tests every possible combination of the parent nodes
of each component. It cannot use the influence signs and works on the binarised
TS as well. Unlike REVEAL it can manage inconsistencies from the TS since it
returns the functions that explain the maximal number of time steps. In Table 1,
since 010 → 010 is observed three times and 010 → 011 only once, Best-Fit
will focus on explaining the former instead of the latter.

caspo-TS was designed to manage several multivariate TS, corresponding to
several experiments where the system is perturbed (forced activation or inhi-
bition of some components), and where some measurements are potentially
missing. Unlike REVEAL and Best-Fit, caspo-TS takes the influence signs into
account, but it can only generate locally monotonous BNs, i.e., BNs for which
a parent of a component cannot be both its activator and its inhibitor. B2 is an
example of a BN caspo-TS cannot generate because it is not locally monotonic.
Indeed, in fB , the components B and C act both as activator and inhibitor of
B. caspo-TS works as the following: first, it derives the set of BNs that are
compatible with the given PKN and an over-approximation of the dynamics
of the TS, using the so-called most-permissive semantics [4]. Because of this
over-approximation, the result can contain many false positive BNs, i.e., BNs
optimising the cost function used under the hood of caspo-TS, while their asyn-
chronous dynamics is not able to reproduce the configurations sequence of the
multivariate TS. These false positive BNs are subsequently ruled out using exact
model checking. This filtering is PSPACE-hard, but thanks to the first step, a
large set of BNs has already been excluded.

4 Our Approach: ASKeD-BN

4.1 Details of the Approach

We propose an approach for the Automatic Synthesis of Boolean Networks from
Knowledge and Data (ASKeD-BN). It computes a non-redundant set of BNs com-
plying with a given PKN and one observed multivariate TS. Unlike REVEAL and
Best-Fit, ASKeD-BN is capable of using the influence signs provided in the given
Prior Knowledge Network (PKN) and the raw values of the input multivari-
ate Time-Series (TS). Unlike caspo-TS, ASKeD-BN directly fits the behaviour of
each component with the TS. Also, it is not limited to the synthesis of locally-
monotonous BNs.

For each component of the studied system, our approach searches among all
possible transition functions. All the transition functions that do not respect
the given PKN are ruled out. Then, every remaining candidate is evaluated
on the basis of both their simplicity and their ability to reproduce the given
observations. The candidate transition functions for the component X might not
be able to explain all the binary state transitions happening at time t → t′. The
set of unexplained t′ is denoted U . Every time step t′ in U is associated with
a measure stating “how far” the continuous value X′

t is from the binarisation
threshold θ: |θ−X′

t|. These spotted errors are then averaged on the T time steps
of the TS through the Mean Absolute Error (MAE):

162 A. Vaginay et al.

MAEX =
∑

t′∈U |θ − Xt′ |
T

Among the candidates having the smallest MAE, we select the ones that has
the smallest number of influences. Finally, we create all the possible BNs by
generating all the combinations of the selected functions.

We implemented our approach using Python and the Answer-Set Program-
ming framework (ASP) with the system clingo [6]. ASP is a declarative pro-
gramming language oriented towards difficult (NP-hard) search problems. The
possible solutions of a problem are described with the constraints they must ful-
fill. These constraints are written as a logic program. The ASP solver is tasked
with finding the solutions of the program. To do so, it uses a Conflict-Driven
Clause Learning (CDCL) algorithm inspired by SAT solvers. In our case, the
CDCL algorithm avoids the evaluation of all the possible transition functions
by learning from conflicts: whenever it finds that a candidate is in conflict with
the constraints, it creates a new constraint that explains the conflict. These
learned constraints subsequently eliminate other conflicting candidates, pruning
the search space. Thanks to these pruning heuristics, our approach is efficient.
ASP and in particular clingo, have already been used in similar contexts includ-
ing caspo-TS.

4.2 Illustration on the Toy Example

Let us illustrate our approach on the toy example consisting of the PKN in Fig. 1
and the multivariate TS in Table 1.

When no PKN is available, the default PKN is a complete graph assuming
that each component can inhibit/activate all the others (including itself). In
this setup, a component with n parents have 22

n

possible transition functions.
In the toy example, each component can be explained by 22

3
= 256 distinct

functions, which correspond to 16 777 216 potential BNs (formed by all the
possible combinations of all the candidates of each component). Thanks to the
available PKN, the number of candidate functions for each components A, B
and C falls respectively to 3, 16 and 6. Besides the CDCL pruning, ASKeD-BN
virtually evaluates all the candidates, but for illustration purpose we will focus
on the two that are present in B1 and B2 (Figs. 2a and b).

For the component A, the candidate fA := 0 does not contain any literal and
it cannot explain the transition of configuration for A at t7 → t8. Hence, the set
U of unexplained time steps is {t8}. The concentration of A at time t8 is 61, and
the candidate’s MAE is thus |50−61|/20 = 0.55. The candidate fA := C involves
one literal (which is C). This candidate can explain all transitions. Hence, U = ∅
and the MAE associated with this candidate is 0. Despite requiring more literals,
fA := C is a better candidate than fA := 0 because its MAE is smaller. The
comparisons of the candidates proposed for the components B and C in B1 and
B2 are summarised in Table 2.

For the toy example, our approach returns B1 as the only solution. It retrieves
the 3 configuration transitions extracted from the binarised TS, thus its coverage

Automatic Synthesis of Boolean Networks 163

proportion is 1. REVEAL does not find any BN, and the BN returned by Best-Fit
does not comply with the PKN. caspo-TS finds 5 BNs with coverage proportions
ranging from 0.33 to 1 (standard deviation of 0.25).

Table 2. Number of influences and MAE for the candidate functions in B1 (Fig. 2a)
and B2 (Fig. 2b). A checkmark indicates the candidate selected by our approach, and
the best for each criterion: (1) minimal MAE and (2) minimal number of influences.

candidate fB := B ∧ ¬C � fB := (B ∧ ¬C) ∨ (¬B ∧ C) fC := ¬C � fC := A

MAE (U) 0 (∅) � 0 (∅) � 0 (∅) � 0.5 ({t5})
influences 2 � 4 1 � 1 �

5 Datasets and Procedure for the Comparative
Evaluation

5.1 Datasets

In order to compare our approach with REVEAL, Best-Fit and caspo-TS, we
used eight biological systems. For two of these systems (yeast ’s cell cycle and
A. thaliana’s circadian clock), their PKN and experimental multivariate TS are
taken from [13] and [18] respectively. These two systems are summarised in
Table 3. They respectively involve 4 and 5 components.

Table 3. Summary of two biological systems and their corresponding datasets

System Genes PKN TS Source

yeast
(cell cycle)

Fkh2, Swi5,
Sic1 & Clb1

Sic1 does not influence
itself nor Fkh2

14 time steps
6 transitions

[18]

A. thaliana
(circadian clock)

LHY, PRR7,
TOC1, X & Y

LHYX

TOC1 Y

PRR7
+

+
-+

--

+- 50 time steps
11 transitions

[13]

For the six other systems1, we conducted our experiments on multivariate TS
that we simulated from existing BNs taken from the repository of example BNs
of the package PyBoolNet [8]. For these systems, the number of components
ranges from 3 to 10. For each system, the used PKN is the IG of the associ-
ated BN. As for the generation of the multivariate TS, three parameters are
1 raf, randomnet n7k3, xiao wnt5a, arellano rootstem, davidich yeast and
faure cellcycle.

164 A. Vaginay et al.

taken into consideration: the update scheme (in {synchronous, asynchronous}),
the maximum number of introduced repetitions of each configuration (in {1, 4})
and the standard deviation of the added noise (in {0, 0.1}). For each setting of
these parameters, we follow a procedure similar to what is implemented in the
generateTimeSeries function of the R package BoolNet [15]:

1. choose randomly a configuration of the considered BN,
2. on this configuration, apply the update function(s) 20 times w.r.t the chosen

update scheme,
3. duplicate randomly each configuration in the obtained sequence

(added in contrast to generateTimeSeries),
4. add a Gaussian noise with a standard deviation of N.

For a given setting of the 3 parameters and a given system, we run the
procedure 7 times (with different random seeds). In the following, we denote
ARN the setting with the Asynchronous update scheme, Repetitions (of 4) and
Noise (of 0.1). We believe that this setting allows us to obtain multivariate TS
which are quite close to real TS.

We illustrate here how to generate a synthetic multivariate TS in the ARN
setting for B1 (Fig. 2a). We would start from a random configuration. Let it be
010. Then we apply 20 times the transition functions of B1 with the asynchronous
update scheme. This process is not deterministic as any path from Fig. 2e (right)
starting from 010 and of length 20 is valid. Let’s say we obtain a path starting
with 010 → 011 → 010 → 011 → 111 → 101 → . . . Then we add a ran-
dom number of duplications (in bold). The beginning of the sequence could for
example look like 010 → 011 → 011→ 010 → 011 → 011→ 011→ 111 →
101 → 101→ 101→ 101→ . . . Finally, we add a random Gaussian noise with
a standard deviation of 0.1. The synthetic multivariate TS could now start with
(0.02; 0.92;−0.16) → (0.04; 0.8; 0.7) → (−0.05; 1.06; 0.7) → . . .

5.2 Details on the Evaluation Procedure

For REVEAL and Best-Fit we use the implementation from the R package
BoolNet [15]. caspo-TS is ran with the option mincard, that asks for BNs with
functions minimising the number of influences. Note that this is also what our
method optimises.

In the following, we define an experiment as a BN identification method
applied on a system with one multivariate TS. The unicity of the multivariate TS
makes the problem under-specified and allows us to evaluate the performances
of the different approaches in this context.

REVEAL, Best-Fit and our approach need the binarised multivariate TS in
their inputs. We use a simple form of binarisation: the binarisation threshold
is defined as min + (max −min)/2. All values from the multivariate TS greater
or equal to the threshold are binarised to 1, and to 0 otherwise. For the two
systems with real TS, the theoretic range of the values is not know in advance,
so the binarisation threshold is determined component-wise: the components

Automatic Synthesis of Boolean Networks 165

are binarised taking into account their observed minimum and maximum. For
the six systems with the synthetic multivariate TS, we know a priori that the
values of all the components are between 0 and 1 (± the noise). In case of noisy
data, the fluctuations of a constant component are interpreted as state changes
when using a threshold computed component-wise. However, the identification
methods are not capable to detect these spurious transitions in the binarised TS.
Hence, we compute the binarisation threshold globally, on all the observations
of all the components.

In order to have a fair comparison of the methods, and since caspo-TS is
making the binarisation itself and is not aware that the theoretical minimum and
maximum of the components are 0 and 1 (± the noise), we correct a posteriori
the transition functions it returned. The value of the constant is set to the
binarised value that is the most present in the binarised TS of the component
concerned. Also, since caspo-TS does not return a function for the components
without parents in the PKN nor for the components that it founds constant for
all the TS (in the case where no noise is involved), we use the same technique to
set the transition functions to their correct values. We also added a step to filter
out BNs returned by REVEAL and Best-Fit which do not respect the polarities
given in the PKN.

For all the BNs returned by the four methods (and after the PKN-based
filtering for REVEAL and Best-Fit), we use PyBoolNet [8] to compute the STG
of each retrieved BN according to the mixed update scheme. Finally, we evaluate
the results of each experience according to three criteria:

– the number of BNs returned;
– the median of the coverage ratios: the proportion of configuration transitions

extracted from the input TS that are present in the mixed STG;
– the standard deviation of the coverage ratios.

All data and programs needed to reproduce the presented results are accessible
at https://gitlab.inria.fr/avaginay/OLA2021.

6 Results

6.1 Results on Systems with Real PKN and Experimental
Multivariate TS

Yeast (Fig. 3 left). For this system caspo-TS find 61 BNs while Best-Fit and
ASKeD-BN both find 16 BNs. As for REVEAL, due to inconsistencies in the TS, it
does not return any BN. Concerning the coverage, on the 7 transitions observed
in the TS, the BNs synthesised by Best-Fit recover 4 and the BNs synthesised
by ASKeD-BN recover five. The best coverage ratio (6 retrieved transitions over
7) is obtained for 8 BNs synthesised by caspo-TS (among the total of 61).
Nevertheless, as the box plot shows, the BNs synthesised by caspo-TS present
a large variance in their coverage.

https://gitlab.inria.fr/avaginay/OLA2021

166 A. Vaginay et al.

A. thaliana (Fig. 3 right). For this system, REVEAL returns no BN. The only BN
returned by Best-Fit has all the components set to 1 and recovers 5 transitions
over the 10 observed. ASKeD-BN also returns a single BN with a perfect coverage
since the BN recovers all the 10 transitions. As for the 5 BNs synthesised by
caspo-TS, we can make the same observation as before: they present a variability
in their coverage. The best coverage obtained by caspo-TS are from 2 different
BNs including the one synthesised by ASKeD-BN.

Fig. 3. Number of transitions retrieved by the BNs synthesised using the different
methods on the systems yeast (left) and A. thaliana (right). The blue dashed line
indicates the number of transitions that were observed in the multivariate TS. (Color
figure online)

To sum up, the results on these two real examples show that:

– REVEAL constantly fails to return any BN. At the opposite, caspo-TS returns
more BNs than the other methods;

– the coverage of the BNs returned by both our approach and caspo-TS are
better than for Best-Fit;

– caspo-TS presents worse variability in the coverage ratio of its BNs compared
to our approach.

6.2 Results on Systems with Generated Multivariate TS

Number of Synthesised BNs: The total number of BNs returned on the synthetic
datasets and the number of times the identification methods failed returning any
BNs are reported in Table 4. The table shows that a large proportion of BNs gen-
erated by REVEAL and Best-Fit were not complying with the influence signs from
the input PKN. The following reported results do not take into account these
non-compliant BNs. REVEAL is the method which returns the smallest number
of BNs, in particular in the ARN setting. This is due to the inconsistencies in
the TS, which are frequent in the ARN setting (as in real TS). On the opposite,
caspo-TS is the method that returned the largest number of BNs. Moreover,
when considering all experiments, there are 18 experiments for which caspo-TS

Automatic Synthesis of Boolean Networks 167

generated more than 100 BNs. In these cases, we stopped the enumeration and
analysed the 100 first BNs caspo-TS returned. Despite this limit, caspo-TS
returned between 5 and 7 times more BNs than our method.

Table 4. Number of experiments for which each method failed to return any BN,
number of BNs returned over all 336 experiments with synthetic TS and number of
BNs returned over the 42 experiments with the ARN setting. The labels “before” and
“after” refers to the filtering step which rules out the BNs not respecting the signs of
the given PKN (see Sect. 5.2).

measure REVEAL Best-Fit
caspo-TS ASKeD-BN

(setting) before after before after

failing experiments (all) 230 240 0 64 20 0
BNs returned (all) 100 677 500 406 100 678 198 724 8481 1210
BNs returned (ARN) 3 3 51 35 720 85

From here on, we focus on the results of the experiments corresponding to
the ARN setting (Asynchronous update scheme, random Repetition of config-
urations, and Noise addition) after having remove the BNs from REVEAL and
Best-Fit which does not respect the given PKN.

Coverage Ratio: To assess the coverage ratio criterion, instead of plotting the
boxplots for the 42 experiments of this setting (6 systems times 7 replicates), we
summarised them in Fig. 4. In the scatter plot, each experiment is represented by
a point whose coordinates are the coverage ratio median of the synthesised BNs
and the associated standard deviation (std). The more top-right a point is, the
better the corresponding identification method is (i.e., it produces BNs with high
coverage ratio and low std). We can see that for the few experiments for which
REVEAL was able to return BNs, the median coverage is actually excellent. The
median coverage of the BNs returned by Best-Fit is almost uniform: Best-Fit
lacks regularity in finding BNs with good coverage. But the high pick around
0 on the plot of std distribution shows that for a given experiment, the BNs
returned by Best-Fit have similar coverage rates. caspo-TS and our approach
have a very similar distribution of median coverage. They are both good at
finding BNs with very good coverage. But here again, for a given experiment,
the BNs synthesised by caspo-TS present a bigger variation of their coverage
proportions than the ones synthesised by our approach.

168 A. Vaginay et al.

Fig. 4. On the scatter plot, each point represents an experiment in the ARN condition
for which a given method potentially returned several BNs with different coverage
ratios. The horizontal coordinate of the point is the median of these ratios. The vertical
coordinate is their standard deviation (std). For a better visualisation, the coordinates
have been jittered with a variance of 0.1 on both axes. The curves on the top (resp. on
the left) of the scatter plot are the probability densities of the median (resp. the std) of
the points in the scatter plots. The densities have been estimated from the non-jittered
coordinates of the points with the Gaussian kernel density estimation method. The
smoothing parameter of the estimator was determined automatically (with the Scott
method). The areas under all these curves are 1, and the picks show where the points
are the most concentrated.

7 Conclusion and Perspectives

We presented ASKeD-BN, a novel method to create BNs from a PKN and a
multivariate TS. The results on 8 biological systems showed that our approach
has the best trade-off on the evaluation criteria: it returns a small set of BNs
with a high coverage median and low variance. Our results actually confirm
that although caspo-TS finds good BNs, too many sub-optimal BNs are also
retrieved. Indeed a new version of caspo-TS was recently proposed to tackle
this problem [5].

We now present two perspectives to improve our approach and the study.
First of all, real datasets may contain outlier measurements which could mis-
lead the computation procedure of the binarisation thresholds we used in this
paper. It would be interesting to see how such cases impact the performances of
the identification methods and to propose a better binarisation procedure with
prior outliers detection for instance. Second, contrarily to REVEAL, Best-Fit
and caspo-TS, our approach does not handle multiple multivariate TS. How-

Automatic Synthesis of Boolean Networks 169

ever, biologists often have several multivariate TS generated with perturbations
forcing some components to stay either active or inactive. However, exploiting
such supplementary data gives more information about the behaviour of the
studied system in specific conditions (e.g., pathological states). This knowledge
allows to constrain even more the space of solutions.

Finally, we are currently working on an automatic pipeline for BN synthesis
from a curated mathematical model repository, namely BioModels [14]. This
requires (i) automatic extraction of the PKN from the model structure encoded
in the SBML2 file format and (ii) generation of a multivariate TS by simulation
of these models.

Acknowledgements. We thank Julie Lao and Hans-Jörg Schurr for their valuable
comments and suggestions.

References

1. Albert, R., Thakar, J.: Boolean modeling: a logic-based dynamic approach for
understanding signaling and regulatory networks and for making useful predictions.
Wiley Interdisc. Rev. Syst. Biol. Med. 6(5), 353–369 (2014). https://doi.org/10.
1002/wsbm.1273

2. Biane, C., Delaplace, F., Melliti, T.: Abductive network action inference for tar-
geted therapy discovery. Electron. Notes Theoret. Comput. Sci. 335, 3–25 (2018).
https://doi.org/10.1016/j.entcs.2018.03.006

3. Bornholdt, S.: Less is more in modeling large genetic networks. Science 310(5747),
449–451 (2005). https://doi.org/10.1126/science.1119959

4. Chatain, T., Haar, S., Kolčák, J., Paulevé, L.: Most permissive semantics of
Boolean networks. Research Report (2020). https://hal.archives-ouvertes.fr/hal-
01864693

5. Chevalier, S., Noël, V., Calzone, L., Zinovyev, A., Paulevé, L.: Synthesis and simu-
lation of ensembles of Boolean networks for cell fate decision. In: Abate, A., Petrov,
T., Wolf, V. (eds.) CMSB 2020. LNCS, vol. 12314, pp. 193–209. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-60327-4 11

6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Morgan & Claypool Publishers, Williston (2012). ISBN 978-1-60845-971–1

7. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed
genetic nets. J. Theor. Biol. 22(3), 437–467 (1969). https://doi.org/10.1016/0022-
5193(69)90015-0

8. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the gen-
eration, analysis and visualization of Boolean networks. Bioinformatics (2016).
https://doi.org/10.1093/bioinformatics/btw682

9. Lähdesmäki, H., Shmulevich, I., Yli-Harja, O.: On learning gene regulatory net-
works under the Boolean network model. Mach. Learn. 52(1), 147–167 (2003).
https://doi.org/10.1023/A:1023905711304

10. Lazebnik, Y.: Can a biologist fix a radio?—Or, what i learned while study-
ing apoptosis. Cancer Cell 2(3), 179–182 (2002). https://doi.org/10.1016/S1535-
6108(02)00133-2

2 Systems Biology Markup Language.

https://doi.org/10.1002/wsbm.1273
https://doi.org/10.1002/wsbm.1273
https://doi.org/10.1016/j.entcs.2018.03.006
https://doi.org/10.1126/science.1119959
https://hal.archives-ouvertes.fr/hal-01864693
https://hal.archives-ouvertes.fr/hal-01864693
https://doi.org/10.1007/978-3-030-60327-4_11
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1023/A:1023905711304
https://doi.org/10.1016/S1535-6108(02)00133-2
https://doi.org/10.1016/S1535-6108(02)00133-2

170 A. Vaginay et al.

11. Le Novère, N.: Quantitative and logic modelling of molecular and gene networks.
Nat. Rev. Genet. 16(3), 146–158 (2015). https://doi.org/10.1038/nrg3885

12. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algo-
rithm for inference of genetic network architectures. In: Pacific Symposium on
Biocomputing, pp. 18–29 (1998). ISSN 2335–6928

13. Locke, J.C.W., et al.: Experimental validation of a predicted feedback loop in
the multi-oscillator clock of arabidopsis thaliana. Mol. Syst. Biol. 2(1), 59 (2006).
https://doi.org/10.1038/msb4100102

14. Malik-Sheriff, R.S., et al.: BioModels—15 years of sharing computational models
in life science. Nucleic Acids Res. 48(D1), D407–D415 (2020). https://doi.org/10.
1093/nar/gkz1055

15. Müssel, C., Hopfensitz, M., Kestler, H.A.: BoolNet—an R package for generation,
reconstruction and analysis of Boolean networks. Bioinformatics 26(10), 1378–1380
(2010). https://doi.org/10.1093/bioinformatics/btq124

16. Ostrowski, M., Paulevé, L., Schaub, T., Siegel, A., Guziolowski, C.: Boolean net-
work identification from perturbation time series data combining dynamics abstrac-
tion and logic programming. Biosystems 149, 139–153 (2016). https://doi.org/10.
1016/j.biosystems.2016.07.009

17. Schwab, J.D., Kühlwein, S.D., Ikonomi, N., Kühl, M., Kestler, H.A.: Concepts in
Boolean network modeling: what do they all mean? Comput. Struct. Biotechnol.
J. 18, 571–582 (2020). https://doi.org/10.1016/j.csbj.2020.03.001

18. Spellman, P.T., et al.: Comprehensive identification of cell cycle-regulated genes
of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell
9(12), 3273–3297 (1998). https://doi.org/10.1091/mbc.9.12.3273

https://doi.org/10.1038/nrg3885
https://doi.org/10.1038/msb4100102
https://doi.org/10.1093/nar/gkz1055
https://doi.org/10.1093/nar/gkz1055
https://doi.org/10.1093/bioinformatics/btq124
https://doi.org/10.1016/j.biosystems.2016.07.009
https://doi.org/10.1016/j.biosystems.2016.07.009
https://doi.org/10.1016/j.csbj.2020.03.001
https://doi.org/10.1091/mbc.9.12.3273

Transportation and Logistics

Solving Inventory Routing Problems
with the Gurobi Branch-and-Cut Algorithm

Danny Meier, Benjamin Keller, Markus Kolb, and Thomas Hanne(B)

University of Applied Sciences and Arts Northwestern Switzerland, Olten, Switzerland
thomas.hanne@fhnw.ch

Abstract. This study is about the implementation and test of a branch-and-cut
algorithm for an Inventory-Routing Problem (IRP). The considered mathematical
model and the dedicated problem instances have been published byC.Archetti and
others. The performance of the implementation on present day computer hardware
has been compared to results published in literature several years ago. Also, the
influence of the configuration of the used optimizing software package as well as
experiences with the publication of the mentioned researchers are documented in
this paper.

Keywords: Inventory Routing Problem · Logistics · Numerical optimization ·
Branch-and-cut · Gurobi

1 Introduction

The supply chain facilitates the procurement of materials and transforms them into a
finished product when it can be distributed to the customers. A supply chain intercon-
nects the supplier, the distributor, the manufacturer, the logistic, the retailer and the end
customer. This relation between suppliers till end customers involves a lot of processes
and the involvement of the electronic supply chain management (e-scm). Supply chain
management is nowadays a crucial factor for success. The role of IT is becoming more
and more important and to stay competitive it is inevitable to continuously improve the
information system. Larger international companies are facing a lot of challenges like
the growing complexity of electronic supply chain integration, the increasing customer
demands and global competition (Jitpaiboon 2005).

One part of the supply chain is the distribution of goods. In this studywewill focus on
the outbound logistic. Products have to be distributed betweenmanufacturer, retailers and
customers. In the oil industry gas has to be distributed to the gas stations. In the retailer
market products have to be shipped to the retailer stores. What these market segments
have in common is that customers will eventually buy from a competitor if products are
not available. Depending on market segments products should never run out of stock.
But costs incur by storing a product. Depending on the storing condition the product
storage can be cheaper in the main warehouse than in the retailer’s warehouse. Larger
companies, especially global operating corporations, have recognized that optimizing
their logistic can yield tremendous cost reductions. In the industry today new ways

© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 173–189, 2021.
https://doi.org/10.1007/978-3-030-85672-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_13&domain=pdf
http://orcid.org/0000-0002-5636-1660
https://doi.org/10.1007/978-3-030-85672-4_13

174 D. Meier et al.

of relationships have been established in the supply chain. The regular scenario for
inventory management is that each retailer will place orders to the supplier to prevent
stock out (RetailerManaged Inventory). One of the new scenarios is the so-calledVendor
Managed Inventory (VMI). This system moves the inventory planning responsibility to
the supplier. The supplier has to monitor the inventory of each retailer and will replenish
according to a defined replenishment policy to prevent stock out as well as holding
inventory costs as low as possible. The applied model is explained in more detail in
Sect. 3.

Due to its significance to the global industry the research sector has started to address
these issues more than half a century ago. One of the first problems that came up in the
1930s was the mathematical optimization problem of visiting all cities on a map with
respect to find the shortest tour where each city must be visited only once. This problem
is called Traveling Salesman Problem (TSP) and a solution represents a Hamiltonian
Circle. The TSP is one of the most basic problems and has its limitations. For traveling
to the destinations only one vehicle is available. The vehicle has unlimited capacity and
there is no time limitation when a destination should be delivered (Bertazzi and Speranza
2013). Before the algorithm can start calculating all destinationsmust be known. Solving
this simple model is already NP-hard and is classified in most literature as NP-complete
shown by Papadimitriou (Papadimitriou 1977).

On top of the TSP another subproblem is in between to the Inventory Routing Prob-
lem (IRP). The Vehicle Routing Problem (VRP) extends the raw routing problem by
introducing at least one or more vehicles, demanding customers, and other constraints
such as multiple suppliers, capacity constraints or time windows, which increases the
complexity dramatically. Every vehicle starts and returns after a defined route to the
same depot. Between the depot and every customer as well as between all customers
is one link that has a specified cost. The VRP algorithm minimizes the cost to fulfill
the customers demand while satisfying the defined constraints (Bertazzi and Speranza
2013). Constraints can be vehicle capacity limitation or the retailer opening hours.

In addition to the VRP the Inventory Routing Problem (IRP) considers time horizon.
The algorithm can run over a period of time, for example three days. The calculation
can be extended by the decision, if it is better to deliver a customer on day one, two or
three. This increases the problem significantly because the quantity to be delivered can
vary day by day. To simplify the problem and depending on the products to be delivered
a constraint can be defined for example when a customer is visited the stock has to be
filled up to the maximum level. The IRP is deciding day by day, which customer has to
be served with how much of the specified product (Bertazzi and Speranza 2013). The
results of the algorithm are optimized routes and costs. Daily consumption is most of the
time an assumption and has to be predicted. This implies in some scenarios a calculation
cannot be made in advance. In some environments time can be essential. There are many
ways to calculate the companies IRP. The simplest way is the brute-force method which
tries out every permutation. This solution needs a lot of computing power and is not
solvable for larger instances even not with distributed computing.

The branch-and-cutmethod is a popular technique to solvemany variations of integer
linear problems (ILPs) and can be tailored to a specific integer programming problem
(Mitchell 1999). There are different libraries or solvers available to find solutions in

Solving Inventory Routing Problems 175

linear programming. The paper of Archetti et al. (Archetti et al. 2007) has used the
CPLEX solver from IBM. This paper will give new benchmark results - produced with
up-to-date consumer hardware - for the Vendor-Managed Inventory Routing Problem
with a deterministic order-up-to level policy. In this implementation we have used the
Gurobi solver package. The implemented exact branch-and-cut approach is explained
in the paper of Archetti et al. (Archetti et al. 2007). These benchmarks are necessary to
have a sound baseline for other solution approaches. They can be compared against that.

This paper is structured as follows. Section 2 gives a literature survey of research
papers which has been consulted and read to become acquainted with the topic of inven-
tory routing problems and the understanding of optimization algorithms. Section 3 intro-
duces the reader into the chosen model for what an efficient algorithm is researched.
Explanations and finding to certain algorithms have been given in Sect. 4 whereas Sect. 5
will list the received results and compare them to existing approaches.

2 Literature Survey

This is not meant to be a comprehensive review of literature in the field of inventory
routing but rather give an overview of activity in the field and especially put in con-
text some papers which are relevant for the specific model dealt with in this paper. The
first studies on inventory routing problems were conducted in the eighties. Mentionable
pioneering work was done by Bell et al. (1983), Federgruen and Zipkin (1984) or Blu-
menfeld et al. (1985). Since then numerous studies about different variants of inventory
routing problems have been discussed in literature. A standard version of the problem
does not exist. The discussed problems differ in several criteria. There are several litera-
ture surveys which make a classification of the problems presented in published research
papers. Among them is Coelho et al. (2013) which applies these criteria to about 30 pub-
lished inventory routing problems: time horizon (finite, infinite), structure (one-to-one,
one-to-many, many-to-many), routing (direct, multiple, continuous), inventory policy
(maximum level, order-up-to level), inventory decisions (lost sales, back-order, non-
negative), fleet composition (homogeneous, heterogeneous), fleet size (single, multiple,
unconstrained). Another survey by Andersson et al. (2010) classifies about 70 publica-
tions in similar categories and elaborates on industrial aspects of combined inventory
management and routing.

The problem considered in this study was developed and solved with an exact algo-
rithm by Archetti et al. (Archetti et al. 2007). This paper describes the first attempt to
solve an inventory routing problem exactly. The authors developed a branch-and-cut
algorithm and a set of problem instances. The instances have been published and used
by other researchers in the field for benchmarking. The algorithm of Archetti et al. has
later been analyzed and improved by Solyalı and Süral (2011). They use an a priori tour
heuristic to simplify the routing decision and found their algorithm to perform better than
the one initially proposed by Archetti et al. Also Coelho and Laporte (2013) reference
the same model. They extended the model to a multi vehicle problem and developed an
algorithm for solving multi vehicle instances to optimality. Archetti et al. (2012) also
developed a hybrid heuristic based on the problem defined by Archetti et al. (2007).

176 D. Meier et al.

3 Model

The treated model - Vendor Managed Inventory Routing Problem with a deterministic
order-up-to level policy - was introduced first by Bertazzi et al. (2002). This kind of
problem is still very hard to solve exactly for bigger instances even though the com-
putation power of a single consumer computer has increased massively. The defined
model behind this paper is reduced to its main characteristics for simplification and
comparability to other benchmarks.

A product is shipped from one common supplier to several retailers, where each
retailer has a deterministic consumption in each time frame over a given finite time
horizon. The goal is to find tours starting from the supplier to only these retailers which
have to be served at the respective time frame. The total costs, consisting of inventory
and transportation costs, have to be minimized.

3.1 Problem Description and Formulation

A single product is shipped from a supplier s0 to a set of retailers M = {1, 2, …, n}
over a time horizon H. At each discrete time t ∈ T = {1, …, H} a single product of
quantity r0t is produced at the supplier and a quantity of rst is consumed at each retailer
s ∈ M. A starting inventory level B0 at the supplier and Is0 at the retailers is given. The
maximum inventory level at the supplier is not restricted whereas a retailer has a given
maximum inventory levelUs ≥ Is0. The current inventory level at time t for the supplier
s0 is Bt ≥ 0 and for each retailer s the current inventory level at time t is Ist ≥ 0. The
inventory cost h0 for the supplier is charged in T′ = T ∪ {H + 1}. The extended time
horizon H + 1 considers that for the time frame before start, the inventory cost must be
considered. Inventory costs are always calculated at the end of a time frame that means
after replenishment and consumption took place. The retailer s, s ∈M, has inventory cost
hs of and the total inventory cost over time horizon is then

∑
t∈T ′ hsIst . The inventory

level after the time horizon is not relevant, which means that after the last time frame
an unfeasible status can occur. Shipments can be performed at any time frame t ∈ T
by one vehicle with capacity C. The vehicle’s capacity must not be exceeded at any
time. The transportation cost cij where cij= cji, i, j ∈ M′ = M ∪ {0} is calculated by

the Euclidean distance NINT =
√(

Xi − Xj
)2 + (

Yi − Yj
)2. The inventory policy at the

retailers is denoted by order-up-to level (VMIR-OU) that means if a retailer is visited
yijt ∈ {0, 1} at time t the inventory must be replenished up to maximum inventory level
Us. In each time frame t ∈ T′ the supplier replenishes its inventory by r0t . The objective
function is to minimize the total transportation and inventory costs without violating any
constraint.

minimize
∑

t∈T ′
hoBt +

∑

s∈M

∑

t∈T ′
hsIst +

∑

t∈M ′

∑

j∈M ′,j �=i

∑

t∈T ′
cijy

t
ij (1)

Solving Inventory Routing Problems 177

3.2 Mathematical Formulation

Variable Description
M Set of retailers
MI = M ∪ {0} Set of supplier and retailers
H Time horizon
T Set of discrete time frames
T I = T ∪ {H + 1} Set of discrete time frames including one time frame before

delivery takes place
C Vehicle capacity
r0t Production at supplier at time t
rst Consumption at retailer s at time t
h0 Unit inventory cost at supplier
hs Unit inventory cost at retailer s
B0 Starting inventory at supplier
Bt Inventory at supplier at time t
Is0 Starting inventory at retailer s
Ist Inventory at retailer s at time t
Us Maximum inventory at retailer s
cij Transportation cost from retailer i to retailer j
xst Shipped quantity to the visited retailer s at time t
zst 1 if retailer s at time t is visited. Otherwise, 0
ytij Arc from retailer i to retailer j traveled at time t

MIP Formulation. Anexact definition of themodelwith all constraints and inequalities
has been given by (Archetti et al. 2007). Next to the VMIR-OU policy they also consider
other inventory policies such as VMIR and VMIR-ML.

Constraints. The following constraints have been assessed as useful and efficient.

Inventory and stock-out constraints

Bt = Bt−1 + r0t−1 −
∑

s∈M xst−1, t ∈ T ′ (2)

The supplier’s inventory level is calculated at time t by the level at time t − 1 plus
the produced quantity of products r0t−1 at time t − 1, minus the sum of quantity shipped
xst−1 to the retailers at time t − 1.

Bt ≥
∑

s∈M xst (3)

Supplier stock-out constraint: This constraint ensures that the inventory level at the
supplier has sufficient quantity in stock for the upcoming deliveries at time t.

Ist = Ist−1 + xst−1 − rst−1, s ∈ M , t ∈ T ′ where xs0 = rs0 = 0, s ∈ M (4)

Retailer inventory definition: The retailer’s inventory level is given a time t by the
level at time t − 1, plus the quantity xst−1 delivered at time t − 1, minus the used quantity
rst−1 at time t − 1.

Ist ≥ 0, s ∈ M , t ∈ T ′ (5)

178 D. Meier et al.

Replenishment constraints

xst ≥ Uszst − Ist, s ∈ M , t ∈ T (6)

xst ≤ Us − Ist, s ∈ M , t ∈ T (7)

xst ≤ Uszst, s ∈ M , t ∈ T (8)

Order-up-to level: These constraints define that if a retailer s is served the quantity
xst shipped to the retailers will fill up the inventory to the maximum Us. If a retailer s is
served at time t the variable zst is 1 and otherwise equals 0.

Capacity constraint

∑

s∈M xst ≤ C, t ∈ T (9)

Capacity constraint: This constraint ensures that the delivered product quantity does
not exceed the load capacity C of the transportation vehicle at any time t ∈ T′.

Routing constraints

∑

j∈M ′,j<i
ytij +

∑

j∈M ′,j>i
ytij = 2zit (10)

Routing constraint: When a retailer s is served at time t the vehicle must use a route
leaving from retailer s at time t.

(a) Subtour elimination constraint according to Fischetti et al. (1998) and Gendreau
et al. (1998)

∑

i∈S
∑

j∈S,j<i
ytij ≤

∑

i∈S zit − zkt, S ⊆ M , t ∈ T for some k ∈ S (11)

(b) Traditional subtour constraint according to (Dantzig et al. 1954)

∑

i∈S
∑

j∈S,j<i
ytij ≤ |S| − 1, S ⊆ M , t ∈ T (12)

(c) Improved subtour constraint (11)

∑

t∈T′
(∑

i∈S
∑

j∈S,j<i
yt

′
ij ≤

∑

i∈S zit′ − zkt′
)

, S ⊆ M , t ∈ T , k ∈ S where S is subtour of t (13)

xst ≥ 0, s ∈ M , t ∈ T (14)

Non-negativity constraint: When a retailer s is visited at time t the delivered good
xst cannot be below zero.

ytij ∈ {0, 1}, i, j ∈ M , j < i, t ∈ T (15)

Solving Inventory Routing Problems 179

Path constraint: When the path between retailer i to retailer j is traveled at time t the
value is equal 1 otherwise 0.

yti0 ∈ {0, 1, 2}, i ∈ M , t ∈ T (16)

Path constraint: When the path between supplier and retailer i is traveled at time t
and continued to another retailer the value yti0 is equal 1 and when same path is taken
back to the supplier the value yti0 is equal 2. If the path has not been taken yet the value
yti0 is zero.

zit ∈ {0, 1}, i ∈ M ′, t ∈ T (17)

Retailer visit constraint: When the retailer zit is visited at time t the value is equal 1
otherwise zero.

Inequalities
The following inequalities have been assessed as useful and efficient.

Ist ≥ (1 − zst)rst, s ∈ M , t ∈ T (18)

When the retailer s is not visited (zst is equal zero) at time t, then the inventory level
Ist must be at least equal to the product quantity rst consumed at time t.

Ist−k ≥
(∑k

j=0
rst−j

)(

1 −
∑k

j=0
zst−j

)

, s ∈ M , t ∈ T , k = 0, . . . , t − 1 (19)

This inequality extends the inequality (18) by the value k. The period of time retailers
are not served is calculated by t − k.

Ist ≥ Uszst−k −
∑t−1

j=t−k
rst, s ∈ M , t ∈ T , k = 1, . . . , t − 1 (20)

The inventory at a retailer Ist at time t must be equal or greater than the inventory at
the last delivery minus the sum of consumed goods since then.

zst ≤ z0t, s ∈ M , t ∈ T (21)

When any retailer s is visited at time t, zst is equal 1. Additionally, the supplier has to
be included in the route at time t, z0t equals 1. This inequality is to prevent that a retailer
can be visited without ever having visited the supplier.

yti0 ≤ 2zit, s ∈ M , t ∈ T (22)

If the arc between supplier and retailer i has been traveled at time t then retailer i
must be visited.

ytij ≤ zit, i, j ∈ M , t ∈ T (23)

If the arc between retailer i and j has been traveled, then both retailersmust be visited.

180 D. Meier et al.

3.3 Test Instances

Archetti et al. (2007) produced a large set of 160 test instances classified into three
groups and five test sets. These instances are specific to the Vendor-Managed Inventory
Routing Problem and are the most common and most used instances to benchmark. The
three parameters which identify the test instance and its respective properties are the time
horizon h = {3, 6} that describes how many discrete time frames should be taken into
account. The inventory costs c= {low, high} are grouped into two ranges of values. Each
retailer and the supplier are in this inventory cost range. The low group has inventory
costs between 0.01and 0.05 and the high group has inventory costs multiplied by 10 in
the range of 0.1 to 0.5. The third parameter describes how many retailers s are involved.
A test set i = {1,…, 5} contains every combination of the parameters mentioned before.
To identify the file the following naming convention has been applied: h[h][c][i]n[s]. For
example, a test instance from test set 2 with 6 time frames, 30 retailers and low inventory
costs is named as h6low2n30. A complete test set with all combinations is listed at Table
2 on page 10. The whole collection could be obtained from (Coelho n.d.). Therefore,
one test set consists of 32 test instances. Table 1 summarizes the properties within one
test set.

Table 1. Content of a test set provided by Archetti et al.

Inventory cost c Time frames h Retailers s

Low [0.01, 0.05] 3 5 ≤ x ≤ 50, x mod 5 = 0

Low [0.01, 0.05] 6 5 ≤ x ≤ 30, x mod 5 = 0

High [0.1, 0.5] 3 5 ≤ x ≤ 50, x mod 5 = 0

High [0.1, 0.5] 6 5 ≤ x ≤ 30, x mod 5 = 0

In this paper only the first two test sets have been fully benchmarked and compared.
The results of the other three test sets are quite similar. Test set three and four have the
same characteristics as test set two. And test set five has the same characteristics as test
set one.

4 Algorithm

To solve the inventory routing problem the commercial solver package from Gurobi
has been examined. The development has been done in C# and.NET 4.0. The devel-
oped implementation fully concentrates on the branch-and-cut algorithm and its limited
options to fine tune the behavior of the solving process. The evaluated parameters are
specific to the used solver package and do not allow further in-depth controlling.

• CPU cores: The default setting is set to the amount of available physical cores. Intel
based CPUs with Hyper-Threading support offer the double number of cores to use.

Solving Inventory Routing Problems 181

• Heuristic ratio: The percentage of heuristic influence as a ratio of the total computation
time to increase finding feasible solutions.

• Presolve capabilities: How much effort should be invested to try to tighten the model.
• Solving strategy: Sets the focus with which strategy a feasible solution should be
found. Strategy can be set to balanced, focus on finding fast feasible solutions, focus
on optimality or focus on best bounds.

• Branching priority: Without configuration the branching priority is set automatically
and can change during the execution. Setting the branching priority for certain decision
variables overrides the automatic behavior and considers the set value with priority.

Next to the configurable properties, optimization has been tried to apply through
finding stronger constraints for the subtour elimination (see Sect. 4.1). Adding each
subtour elimination constraint at the beginning is not feasible because of the number
of available permutations to form the constraint. Next to time issues this will blow up
computer memory at the time. According to best practice this kind of constraints will
be added as soon as a violated intermediate solution will occur. Adding the additional
constraint just after the solving process and resolve the model again has been deemed as
insufficient. This has been proven by some simple runs of more complex test instances.
Thus, the approach using a callbackmethod is evenmore efficient. If the callbackmethod
recognizes an optimal solutionwith a violated subtour, a lazy constraint according to (11)
will be added. In Applegate et al. (2007) different approaches for subtour elimination
are examined. For the test series in this paper the two most promising algorithms have
been implemented. The proposed subtour elimination algorithm by (Archetti et al. 2007)
is the separation algorithm of (Padberg and Rinaldi 1991) with the constraint definition
of (11) that was introduced by (Fischetti et al. 1998) and (Gendreau et al. 1998). The
side constraint k = arg maxj {zjt} has been also considered but simplified. Then zjt is a
binary decision variable that is only 1 if j ∈ M has been visited in time t ∈ T. Under the
condition that j ∈ S and S ⊆M, every k is part of the subtour and has been visited. But we
found a more efficient way to find an optimal solution faster. If a violated constraint will
not only be added for the violated time frame but also be added to all time frames of the
test instance, then an average time saving of factor 1.5 can be expected. The traditional
subtour elimination algorithm (12)mostly used in TSP related problems has been proven
as inefficient.

Unfortunately, the consumed literature did not provide any exact implementation
details even for the most critical part - namely the subtour elimination constraint. Based
on a personal interpretation of the mathematical equation the first implementations and
all further deviates have been implemented as best possible. Also, source code was not
available - neither on request - from the paper authors.

4.1 Implementation of Subtour Elimination Constraints

When the solver finds a feasible solution the callback method checks its routes for
subtours. For this the algorithm starts at the supplier (i = 0) and transits to a retailer j
through an arc which is part of the tour (ytoj ≥ 0). From this retailer j the tour proceeds
through an arc to another retailer k (ytjk = 1). In this way the arcs forming the route
are followed from retailer to retailer until the supplier is reached again. Subtours exist

182 D. Meier et al.

when not every served retailer (zst = 1) has been visited by following these adjacent
arcs. The retailers visited in this tour form a subtour but this subtour is not considered a
real subtour because it contains the supplier.

From the remaining retailers which are served but have no connection to the supplier
a retailer is selected as the starting point of the first real subtour. From there adjacent
arcs are followed until this retailer is reached again. The visited retailers are then part
of the first subtour. If there are still retailers which are served but not part of the first
subtour and also are not connected to the supplier again one is selected as the starting
point for the second subtour. This procedure is repeated until all served retailers are part
of a subtour.

For every real subtour (subtour that does not contain the supplier) the following
constraints are added to the model as lazy constraints:

∑

i∈S
∑

j∈S,j<i
ytij ≤

∑

i∈S zit − zkt, t ∈ T for every k ∈ S (24)

where S is the set of retailers forming a subtour. Because similar subtours were likely
to appear in multiple time frames the constraints (24) were not only constructed for the
time frame t in which the specific subtour was found but for all t ∈ T.

5 Results

5.1 Algorithm Optimization Results

Experiments showed that subtle adjustments to some of the settings of the Gurobi solver
sometimes resulted in noticeable change of the calculation time. Also experimenting
with attributes of variables resulted in unexpected changes of performance.

With Gurobi the type attribute of variables can be defined as integer, binary or
continuous. Variables also have attributes for upper and lower bound. The following
two examples illustrate what was observed when experimenting with these attributes.
Changing the attribute type of the ytij (vertex i to j is part of the route at time t) variables
from binary to integer with a lower and upper bound of 0 and 1 respectively, improved the
performance of the program. Another example of the influence of variable attributes was
observed with the xst variables (delivered quantity). Initially the upper bound attribute
of these variables was set to the maximum inventory level Us which is valid for the
VMIR-OU and VMIR-ML policy. Decreased calculation time was observed when the
upper bound attribute was set to infinity. The maximum value for xst was restricted by
the replenishment constraints (6) to (8) which were added to the Gurobi model.

Calculations have been performed for several different combinations of settings for
the Gurobi solver. A comparison of the program performance with different settings for
the number of used CPUs was made. A selection of instances was calculated using four
and eight CPUs. The total time used for calculating the test set instances was lower when
using eight CPUs. However, some instances were calculated faster with only four CPUs.
A pattern relating the computation times to the instance size by number of retailers or
time frames was not recognizable, although instances with a rather long computation
time were more likely to perform better with eight CPUs.

Solving Inventory Routing Problems 183

To determine the influence of the branching priority settings of the solver, several
computations were compared. For each computation over a set of problem instances a
different variable group was prioritized. That means the instance set was solved setting
the branching priority attribute of for example all zst to 1 while for all other variables the
attribute was 0 by default. Then the calculation was repeated for other variable groups,
e.g., xst or yt with increased branching priority.

The conclusion from these experiments was that the branching priority did not have
any noticeable impact on the overall performance of the solving process. The usage of
different solving strategies by alteration of the MIPFocus parameter of the solver did not
result in faster computation compared to the default setting. With the default setting the
solver automatically balances between finding new feasible solutions and proving that
the current solution is optimal. Neither emphasizing the first nor the later nor a focus on
the bound improved the performance of the calculation. The increase of time the solver
should spend for feasibility heuristics by raising the according parameter had a negative
impact on the computation time.

5.2 Computation Results

Computation results have been calculated on a system with a Microsoft Windows 8.1
64bit operating system and a quad core Intel i7 3770k CPU with 16 GB of memory. The
source code is written in C#.NET 4.0 and compiled with enabled code optimization. The
MIP solving package is provided by Gurobi in version 6.0.4. Maximum running time is
limited to 1800s (30 min). Source code is available on request to the authors.

The computation results are structured into two different benchmark categories. The
first category compares the different implemented solutions discussed in Sect. 4 (Table
2). The second category shows the evolution of computation power (Table 3). The results
are compared to the initial results from Archetti et al. (2007) and the newer result from
(Coelho and Laporte 2014) (Tables 4 and 5).

The test runs in this paper have been executed with four different settings. At first the
difference of computation time has been examined if different thread counts have been
used (4T or 8T). The CPU in this test environment has four physical cores and the ability
to use the Hyper-Threading technology from Intel which doubles the count of virtual
cores. Other settings than four or eight threads has been proven to be not efficient. Lower
counts don’t use the full power of themachine and higher counts have the disadvantage of
rescheduling overhead within the process execution. Between the two chosen settings no
overall winner has been evaluated. For some test instances the setting with four threads
performs better than using eight threads. And for some others the opposite is the case. But
no prediction is possible which performs better according to retailer count or involved
time frames. Regarding to all tests that have been done, the average computation time of
the four thread count settings is slightly lower. The second setting was the introduction
of the more efficient subtour elimination constraint (13) (SEE1 - Extended subtour
elimination constraint (13) used/SEE0 - Original subtour elimination constraint (11)
used). Implementation details of the new constraint are described in Sect. 4.1. This
extension has been proven as more efficient. In most cases the computation time could
be reduced. In some special cases the algorithm was able to find an optimal solution

184 D. Meier et al.

within the time limit for test instances, which are not solvable with the original subtour
elimination constraint in time.

Unfortunately, the implementation in this paper was not able to produce similar or
better results in case of computation time as the results from Coelho et al. Even after
this study it is not evident why the implementation is worse. Reasons could be the
implementation itself or the chosen solver package from Gurobi.

Table 2. Computation results for the self-implemented branch-and-cut algorithm

h6high1n5 5’942.82 0 0 0 0
h6low1n10 4’499.25 1 1 1 2
h6low1n15 5’462.68 1 1 2 2
h6low1n20 6’490.18 466 128 353 159
h6low1n25 7’095.86 92 35 138 69
h6low1n30 8’319.59 *1’800 19.4% *1’800 10.8% *1’800 7.1% *1’800 1.9%
h6low1n5 3’335.24 0 0 0 0

Average [s] 385 369 439 225
Solved 26 / 32 26 / 32 26 / 32

30 32

* = Not able to solve test instance to optimality within time limit

Instance Costs 8T-SE E1 4T-SEE1 8T-SEE0 4T-SEE0
t [s] G [%] t [s] G [%] t [s] G [%] t [s] G [%]

h3high1n10 4’970.62 0 0 0 0
h3high1n15 5’713.84 0 0 0 0
h3high1n20 7’353.82 1 1 1 1
h3high1n25 8’657.70 2 1 1 1
h3high1n30 12’635.55 232 324 1’007 850
h3high1n35 11’984.69 28 6 21 35
h3high1n40 14’006.60 *1’800 2.7% *1’800 0.3% *1’800 1.6% *1’800 1.6%
h3high1n45 14’661.20 40 83 342 213
h3high1n5 2’149.80 0 0 0 0
h3high1n50 15’235.80 *1’800 0.8% *1’800 0.6% *1’800 0.5% *1’800 1.8%
h3low1n10 2’167.37 0 0 0 0
h3low1n15 2’236.53 0 0 0 0
h3low1n20 2’793.29 1 1 1 1
h3low1n25 3’309.64 1 1 1 1
h3low1n30 3’918.76 229 199 1’032 529
h3low1n35 3’694.48 7 5 18 13
h3low1n40 4’263.43 *1’800 0.9% *1’800 7.6% *1’800 1.9% *1’800 10.0%
h3low1n45 4’369.38 67 70 134 145
h3low1n5 1’281.68 0 0 0 0
h3low1n50 4’629.92 *1’800 8.2% *1’800 1.3% *1’800 4.9% *1’800 5.6%
h6high1n10 8’870.15 1 1 4 3
h6high1n15 12’118.83 2 1 2 12
h6high1n20 14’702.95 329 141 134 159
h6high1n25 15’581.47 16 7 51 75 5.0%
h6high1n30 23’184.00 *1’800 4.8% *1’800 3.9% *1’800 n/a *1’800

Solving Inventory Routing Problems 185

Table 3. Computation result comparison - Current implementation vs. Archetti vs. Coelho et al.

Instance Costs 4T-SS E1 Archetti Coelho et al.
t [s] G [%] t [s] G [%] t [s] G [%]

h3high2n10 4’803.17 0 0 0
h3high2n15 5’821.04 0 0 1
h3high2n20 7’385.03 1 10 6
h3high2n25 9’266.87 1 14 9
h3high2n30 11’351.36 324 164 18
h3high2n35 10’706.91 6 199 24
h3high2n40 11’722.58 *1’800 2.7% 1’003 74
h3high2n45 13’675.96 83 1’205 76
h3high2n5 1’959.05 0 0 0
h3high2n50 15’453.80 *1’800 0.8% *1’800 n/a 148
h3low2n10 2’510.13 0 0 2
h3low2n15 2’506.21 0 0 0
h3low2n20 2’799.90 1 12 7
h3low2n25 3’495.97 1 25 7
h3low2n30 3’737.11 199 84 13
h3low2n35 3’796.80 5 173 27
h3low2n40 4’166.95 *1’800 0.9% 1’500 74
h3low2n45 4’226.82 70 1’133 38
h3low2n5 1’176.63 0 0 0
h3low2n50 4’919.75 *1’800 8.2% *1’800 n/a 235
h6high2n10 8’569.73 1 11 7
h6high2n15 11’932.10 1 22 6
h6high2n20 14’646.96 141 1’536 470
h6high2n25 16’823.20 7 578 35
h6high2n30 20’090.29 *1’800 4.8% *1’800 n/a 802
h6high2n5 5’045.91 0 0 1
h6low2n10 5’236.98 1 7 16
h6low2n15 5’494.74 1 39 10
h6low2n20 6’082.54 128 *1’800 n/a 688
h6low2n25 7’484.84 35 548 27
h6low2n30 7’761.53 *1’800 19.4% *1’800 n/a 1’190
h6low2n5 2’722.33 0 0 1

Average [s] 369 539 125
Solved 26 / 32 27 / 32 32 / 32

* = Not able to solve test instance to optimality within time limit

186 D. Meier et al.

Table 4. Computation results for the self-implemented branch-and-cut algorithm

Instance Costs 8T-SE E1 4T-SEE1 8T-SEE0 4T-SEE0
t [s] G [%] t [s] G [%] t [s] G [%] t [s] G [%]

h3high2n10 4’803.17 0 0 0 0
h3high2n15 5’821.04 1 0 1 1
h3high2n20 7’385.03 1 1 1 1
h3high2n25 9’266.87 85 69 89 85
h3high2n30 11’351.36 8 50 31 14
h3high2n35 10’706.91 3 2 3 4
h3high2n40 11’722.58 128 187 570 456
h3high2n45 13’675.96 338 119 262 244
h3high2n5 1’959.05 0 0 0 0
h3high2n50 15’453.80 702 1’191 1’250 422
h3low2n10 2’510.13 0 0 0 0
h3low2n15 2’506.21 0 0 0 1
h3low2n20 2’799.90 1 1 1 1
h3low2n25 3’495.97 60 48 126 262
h3low2n30 3’737.11 67 11 41 35
h3low2n35 3’796.80 23 3 3 3
h3low2n40 4’166.95 90 257 1’119 783
h3low2n45 4’226.82 428 303 232 349
h3low2n5 1’176.63 0 0 0 0
h3low2n50 4’919.75 246 462 386 408
h6high2n10 8’569.73 1 0 1 0
h6high2n15 11’932.10 2 2 10 11
h6high2n20 14’646.96 16 5 79 46
h6high2n25 16’823.20 1’352 1’432 1’204 *1’800 0.3%
h6high2n30 20’090.29 287 417 215 191
h6high2n5 5’045.91 0 0 0 0
h6low2n10 5’236.98 0 0 1 1
h6low2n15 5’494.74 1 2 2 16
h6low2n20 6’082.54 12 9 41 32
h6low2n25 7’484.84 *1’800 0.9% 419 *1’800 1.1% *1’800 1.0%
h6low2n30 7’761.53 711 182 437 240
h6low2n5 2’722.33 0 0 0 0

Average [s] 199 162 247 225
Solved 31 / 32 32 / 32 31 / 32

31 32

* = Not able to solve test instance to optimality within time limit

Solving Inventory Routing Problems 187

Table 5. Computation result comparison - Current implementation vs. Archetti vs. Coelho et al.

Instance Costs 4T-SSE1 Archeetti Coelho et al.
t [s] G [%] t [s] G [%] t [s] G [%]

h3high2n10 4’803.17 0 0 0
h3high2n15 5’821.04 0 1 3
h3high2n20 7’385.03 1 8 5
h3high2n25 9’266.87 69 47 7
h3high2n30 11’351.36 50 130 20
h3high2n35 10’706.91 2 97 21
h3high2n40 11’722.58 187 449 29
h3high2n45 13’675.96 119 553 145
h3high2n5 1’959.05 0 0 0
h3high2n50 15’453.80 1’191 1’782 251
h3low2n10 2’510.13 0 0 0
h3low2n15 2’506.21 0 1 2
h3low2n20 2’799.90 1 6 7
h3low2n25 3’495.97 48 53 16
h3low2n30 3’737.11 11 128 18
h3low2n35 3’796.80 3 74 23
h3low2n40 4’166.95 257 369 38
h3low2n45 4’226.82 303 928 158
h3low2n5 1’176.63 0 0 0
h3low2n50 4’919.75 462 1’235 133
h6high2n10 8’569.73 0 7 4
h6high2n15 11’932.10 2 31 6
h6high2n20 14’646.96 5 354 37
h6high2n25 16’823.20 1’432 1’732 113
h6high2n30 20’090.29 417 *1’800 n/a 197
h6high2n5 5’045.91 0 0 1
h6low2n10 5’236.98 0 4 2
h6low2n15 5’494.74 2 22 8
h6low2n20 6’082.54 9 282 52
h6low2n25 7’484.84 419 1’710 222
h6low2n30 7’761.53 182 *1’800 n/a 220
h6low2n5 2’722.33 0 0 1

Average [s] 162 425 54
Solved 32 / 32 30 / 32 32 / 32

* = Not able to solve test instance to optimality within time limit

6 Conclusions

The initial idea of this research project was to do experiments with a heuristic to solve
a problem in the field of inventory routing. Probably a heuristic, ideally with problem
instances for bench- marking, could be found and improved. However, the search in

188 D. Meier et al.

literature for such a heuristic was not successful, but problem instances for an inventory
routing model could be found. The problem instances were created during the develop-
ment of an exact branch-and-cut algorithm for solving an inventory routing problem by
(Archetti et al. 2007).

With the existence of an optimal solution a heuristic could be benchmarked against
it. For a benchmark to be valid the computing environment would have to be similar.
Because the results by Archetti et al. were calculated some years ago and the algorithms
implementationwas not available, thework concentrated on re-implementing the branch-
and-cut algorithm. Due to the limited time horizon for this research project the work
concentrated on the exact algorithm and its implementation.

The algorithm was implemented using the Gurobi Optimizer software package. It
was then run against the mentioned problem instances and the outcomes were compared
to results available in literature. In general, we found the optimal solution faster, which is
undoubtedly due to the better performance of the computer hardware and maybe, also to
the advancement of the solver software (although not the same productswere used than in
other papers). However, for bigger instances the computation time significantly exceeded
earlier results if they were at all solvable in the given time limit. It is not quite clear why
this is the case. Probable causes could lie in the internals of the used solver software. We
also assume that the detailed handling of the subtour elimination constraints could be
different. The description of these constraints in the referred literature was not detailed
enough for us to be clear on how exactly these were constructed and implemented.

Several experiments were made with solver specific settings and variable argu-
ments. These tests showed that the performance of the calculation depends a lot on the
configuration of the underlying solver software and on the specific problem instance.

References

Andersson, H., Hoff, A., Christiansen, M., Hasle, G., Løkketangen, A.: Industrial aspects and
literature survey: combined inventory management and routing. Comput. Oper. Res. 37(9),
1515–1536 (2010)

Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A
Computational Study (Princeton Series in Applied Mathematics), Princeton University Press
(2007)

Archetti, C., Bertazzi, L., Hertz, A., Speranza, M.G.: A hybrid heuristic for an inventory routing
problem. INFORMS J. Comput. 24(1), 101–116 (2012)

Archetti, C., Bertazzi, L., Laporte, G., Speranza, M.G.: A branch-and-cut algorithm for a vendor-
managed inventory-routing problem. Transp. Sci. 41(3), 382–391 (2007)

Bell, W.J., et al.: Improving the distribution of industrial gases with an on-line computerized
routing and scheduling optimizer. Interfaces 13(6), 4–23 (1983)

Bertazzi, L., Paletta, G., Speranza, M.G.: Deterministic order-up-to level policies in an inventory
routing problem. Transp. Sci. 36(1), 119–132 (2002). https://doi.org/10.1287/trsc.36.1.119.573

Bertazzi, L., Speranza, M.G.: Inventory routing problems with multiple customers. EURO J.
Transp. Logist. 2(3), 255–275 (2013). https://doi.org/10.1007/s13676-013-0027-z

Blumenfeld, D.E., Burns, L.D., Diltz, J.D., Daganzo, C.F.: Analyzing trade-offs between trans-
portation, inventory and production costs on freight networks. Transp. Res. Part B: Methodol.
19(5), 361–380 (1985)

https://doi.org/10.1287/trsc.36.1.119.573
https://doi.org/10.1007/s13676-013-0027-z

Solving Inventory Routing Problems 189

Coelho, L.: Collection of test instances for the inventory routing problem (n.d.). http://www.lea
ndro-coelho.com/instances/inventory-routing/

Coelho, L.C., Cordeau, J.-F., Laporte, G.: Thirty years of inventory routing. Transp. Sci. 48(1),
1–19 (2013)

Coelho, L.C., Laporte, G.: The exact solution of several classes of inventory-routing problems.
Comput. Oper. Res. 40(2), 558–565 (2013)

Coelho, L.C., Laporte, G.: An optimised target-level inventory replenishment policy for vendor-
managed inventory systems. Int. J. Prod. Res. 53(12), 3651–3660 (2014). https://doi.org/10.
1080/00207543.2014.986299

Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J.
Oper. Res. Soc. Am. 2(4), 393–410 (1954). http://www.jstor.org/stable/166695

Federgruen, A., Zipkin, P.: A combined vehicle routing and inventory allocation problem. Oper.
Res. 32(5), 1019–1037 (1984)

Fischetti, M., Gonzalez, J.J.S., Toth, P.: Solving the orienteering problem through branch-and-cut.
INFORMS J. Comput. 10(2), 133–148 (1998). https://doi.org/10.1287/ijoc.10.2.133

Gendreau, M., Laporte, G., Semet, F.: A branch-and-cut algorithm for the undirected selec-
tive traveling salesman problem. Networks 32(4), 263–273 (1998). 10.1002/(sici)1097-
0037(199812)32:4¡263::aid-net3¿3.3.co;2-h

Jitpaiboon, T.: The roles of information systems integration in the supply chain integration context-
firm perspective. Supply Chain (2005)

Mitchell, J.E.: Branch-and-cut algorithms for combinatorial optimization problems.Mathematical
Sciences (1999)

Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric
traveling salesman problems. SIAM Rev. 33(1), 60–100 (1991). https://doi.org/10.1137/103
3004

Papadimitriou, C.H.: The Euclidean travelling salesman problem is NP-complete. Theor. Comput.
Sci. 4(3), 237–244 (1977). https://doi.org/10.1016/0304-3975(77)90012-3

Solyalı, O., Süral, H.: A branch-and-cut algorithm using a strong formulation and an a priori tour-
based heuristic for an inventory-routing problem. Transp. Sci. 45(3), 335–345 (2011). https://
doi.org/10.1287/trsc.1100.0354

http://www.leandro-coelho.com/instances/inventory-routing/
https://doi.org/10.1080/00207543.2014.986299
http://www.jstor.org/stable/166695
https://doi.org/10.1287/ijoc.10.2.133
https://doi.org/10.1137/1033004
https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/10.1287/trsc.1100.0354

Iterated Local Search
with Neighbourhood Reduction

for the Pickups and Deliveries Problem
Arising in Retail Industry

Hanyu Gu1 , Lucy MacMillan2, Yefei Zhang1(B), and Yakov Zinder1

1 School of Mathematical and Physical Sciences, University of Technology Sydney,
15 Broadway, Ultimo, NSW 2007, Australia

{Hanyu.Gu,yakov.zinder}@uts.edu.au, Ye.f.zhang@student.uts.edu.au
2 Australian National Couriers, 29 Huntingwood Drive,

Huntingwood, NSW 2148, Australia
Lucym@ancdelivers.com.au

Abstract. The paper studies a vehicle routing problem with simultane-
ous pickups and deliveries that arises in the retail sector, which considers
a heterogeneous fleet of vehicles, time windows of the demands, practi-
cal restrictions on the drivers and a roster specifying the order of vehicle
loading at the depot. The high competition in this industry requires that
a viable optimisation approach must achieve a good balance of solution
time, quality and robustness. In this paper, a novel iterated local search
algorithm is proposed which dynamically reduces the neighbourhood so
that only the most promising moves are considered. The results of compu-
tational experiments on real-world data demonstrate the high efficiency
of the presented optimisation procedure in terms of computation time,
stability of the optimisation procedure and solution quality.

Keywords: Vehicle routing problem · Iterated local search ·
Neighbourhood reduction

1 Introduction

This paper considers a vehicle routing problem with simultaneous pickups and
deliveries (VRPSPD) which arises in the retail sector. The features of this prob-
lem include: a heterogeneous fleet of vehicles, time window for pickups and deliv-
eries, open routes, restriction on shift length and loading roster at the depot.
In spite of the practical importance of these features, few applications in the
literature considered all of them simultaneously [6,9]. Furthermore, the objec-
tive of the considered problem is to maximise the number of allocations which
is practically essential, but is rarely considered in the literature [9].

Supported by an Australian Government Research Training Program Scholarship.

c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 190–202, 2021.
https://doi.org/10.1007/978-3-030-85672-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_14&domain=pdf
http://orcid.org/0000-0003-2035-2583
http://orcid.org/0000-0003-2024-8129
https://doi.org/10.1007/978-3-030-85672-4_14

Iterated Local Search with Neighbourhood Reduction 191

Since VRPSPD is NP-hard in the strong sense [3], the majority of the publi-
cations in this topic present various heuristics and metaheuristics [6,9]. In prac-
tice, a scheduler expects to produce a good solution within a short time limit,
typically no more than one minute. In contrast, most research in the literature
focuses more on solution quality. In this paper, an iterated local search [7] based
optimisation algorithm is presented to achieve a satisfactory balance between
solution quality and computation time.

The iterated local search algorithm (ILS) has been widely used to solve com-
binatorial optimisation problem [7]. It iteratively generates a sequence of local
optimums. At each iteration a local search is performed on a problem-specific
neighbourhood structure. A perturbation mechanism is employed to avoid local
optimum and expand the search space. By allowing infeasible solutions in the
designed neighborhood structure [5,12], ILS has been demonstrated to be much
faster than the state-of-the-art for solving the Workforce Scheduling and Routing
Problem, which is, from a practical application viewpoint, similar to the studied
problem in this paper.

The most time-consuming component in ILS is the evaluation of potential
moves in the local search procedure due to the large size of the neighbourhood of
the current solution. It is also critical to select proper moves to increase the prob-
ability of converging to the global optimum. This paper presents a mechanism
to reduce the neighbourhood dynamically, which makes the move evaluation
faster, and at the same time direct search in the most promising part of the
neighbourhood.

Contributions of this paper include

– development of a MIP model for a VRPSPD problem with many features
from the retail sector

– introduction of neighbourhood reduction to speedup the ILS algorithm
– computational studies on real-world data

The remainder of the paper is organised as follows. Section 2 presents the
problem formulation. Section 3 describes the proposed iterated local search.
Section 4 presents the results for the computational experiments. Section 5 con-
cludes the paper.

2 Problem Statement

The considered vehicle routing problem can be stated as follows. Let G = {L,A}
be a directed graph, where the set of vertices L = {0} ∪ C and C = {1, 2, ..., l},
the set of arcs A = AD ∪ AC and AD = {(0, i)|i ∈ C}, AC = {(i, j)|i �= j,∀i, j ∈
C}. Vertex 0 represents the depot and the remaining vertices represent the l
customers. Each arc (i, j) ∈ A has an associated travel time ti,j .

The delivery to customer i ∈ C is characterised by its weight wd
i and volume

vd
i . The pickup from customer j ∈ C is characterised by its weight wp

i and volume
vp
i . For customer i ∈ C, the associated time window [ai, bi] indicates the earliest

192 H. Gu et al.

and latest time when the driver can start the corresponding services, and let
pi > 0 be the service time required for the driver to complete the service.

Let T be the set of all vehicles. Each vehicle i ∈ T is differed by its weight
capacity Wi and volume capacity Vi. All vehicles i ∈ T depart from the same
single depot and are not required to return to depot after serving all allocated
customers. The driver in each vehicle i ∈ T finishes the shift after serving the
last allocated customers. Due to the loading capacity of the depot, each vehicle
i ∈ T arrives at the depot at the specified starting time ri with loading time δi.
Furthermore, there exists an upper bound Si on the shift time of the driver in
vehicle i ∈ T , which is the length of time interval between the time when driver
starts loading at the depot and the time when driver finishes the service of the
last allocated customers.

Each customer i ∈ C can be served only once, but not all vehicles are capable
to serve certain customers. In this paper, two types of vehicles are considered, i.e.,
the one-man vehicle T ′ ⊂ T and the two-men vehicle T ′′ ⊂ T . The customers
are also classified as either one-man customer C ′ ⊂ C, or two-men customer
C ′′ ⊂ C. The one-man customer can be served by all vehicles, while two-men
customer can only be served by two-men vehicles.

The objective is to maximise the total number of allocated customer services
while respecting all the constraints on drivers, vehicles and the depot.

Let xi
jk be a binary variable indicating if customer j is the immediate prede-

cessor of customer k in the route of vehicle i; ηi
j be a binary variable indicating

if customer j is allocated to vehicle i; γi
j be a binary variable indicating if cus-

tomer j is the first customer to visit after vehicle i departing from the depot; θij
be a binary variable indicating if customer j is the last customer in the route
of vehicle i. Denote the time when driver in vehicle i starts serving customer
k by sik; the weight of the vehicle when leaving customer j by yj ; the volume
of the vehicle when leaving customer j by zj . The considered problem can be
formulated as follows:

J = max
∑

i∈T

∑

j∈C

ηi
j (1)

subject to
∑

i∈T

ηi
j ≤ 1, ∀j ∈ C (2)

∑

j∈C

γi
j ≤ 1, ∀i ∈ T (3)

γi
j +

∑

k∈C

xi
k,j = ηi

j , ∀i ∈ T, j ∈ C (4)

θij +
∑

k∈C

xi
j,k = ηi

j , ∀i ∈ T, j ∈ C (5)

aj ≤ sij ≤ bj , ∀j ∈ C, i ∈ T (6)

(ri + δi + t0,k)γi
k ≤ sik, ∀i ∈ T, k ∈ C (7)

Iterated Local Search with Neighbourhood Reduction 193

sij + (pj + tj,k)xi
j,k + (ak − bj)(1 − xi

j,k) ≤ sik, ∀i ∈ T,∀(j, k) ∈ AC (8)

pj + sij − ri − (pj + bj − ri)(1 − θij) ≤ Si, ∀j ∈ C, i ∈ T (9)
∑

k∈C

wd
kη

i
k ≤ Wi, ∀i ∈ T (10)

yk ≤ Wi + (max
e∈T

We − Wi)(1 − ηi
k), ∀i ∈ T, k ∈ C (11)

∑

j∈C

wd
j η

i
j − wd

k + wp
k − (max

e∈T
We − wd

k + wp
k)(1 − γi

k) ≤ yk, ∀i ∈ T, k ∈ C

(12)

yj − wd
k + wp

k − (max
e∈T

We − wd
k + wp

k)(1 − xi
j,k) ≤ yk, ∀i ∈ T,∀(j, k) ∈ AC

(13)
∑

k∈C

vd
kη

i
k ≤ Vi, ∀i ∈ T (14)

zk ≤ Vi + (max
e∈T

Ve − Vi)(1 − ηi
k), ∀i ∈ T, k ∈ C (15)

∑

j∈C

vd
j η

i
j − vd

k + vp
k − (max

e∈T
Ve − vd

k + vp
k)(1 − γi

k) ≤ zk, ∀i ∈ T, k ∈ C

(16)

zj − vd
k + vp

k − (max
e∈T

Ve − vd
k + vp

k)(1 − xi
j,k) ≤ zk, ∀i ∈ T,∀(j, k) ∈ AC

(17)

∑

i∈T ′

∑

k∈C′′
ηi
k = 0 (18)

xi
j,k ∈ {0, 1}, ∀{j, k} ∈ AC , i ∈ T (19)

ηi
j ∈ {0, 1}, ∀i ∈ T, j ∈ C (20)

θij ∈ {0, 1}, i ∈ T, j ∈ C (21)

yj ≥ 0, ∀j ∈ C (22)
zj ≥ 0, ∀j ∈ C (23)

where (7) and (3) guarantee that a vehicle either stays at the depot or vis-
its exactly one customer; (4) and (5) ensure that each customer must have an
immediate successor from the same route except for the last customer; together
with (2) ensure that a customer is visited by at most one vehicle; the arrival
time, loading time at the depot, travelling time between vertices, the time win-
dow are taken into account by (7), (8) and (6)–(8) respectively; the shift length,
weight capacity, volume capacity are enforced by (9), (10)–(13), and (14)–(17)
respectively; (6) and (8) eliminate subtours by virtue of pi > 0.

194 H. Gu et al.

3 ILS with Neighbourhood Reduction

A critical component of ILS is the design of proper neighbourhood structures.
It has been demonstrated by many publications that permitting infeasible solu-
tions in local search together with the use of an augmented objective function
can significantly boost the performance of the meta-heuristics in the field of vehi-
cle routing problem [1,2,8,12]. The neighbourhood structures considered in this
paper are defined by the commonly used edge exchange operators, which allows
the violation of the time window, shift length, weight and volume capacity con-
straints. However, the algorithm presented in this paper reduces the size of the
neighbourhood by only allowing moves that lead to more allocations than the
best known feasible solution. To be specific, let J(s) be the number of allocated
customers in a solution s which can be infeasible; H(s,O) be the neighbourhood
of a solution s induced by an edge exchange operator O permitting infeasible
solution. The corresponding reduced neighbourhood is defined as

Ĥ(s,O) = {s′ ∈ H(s,O)|J(s′) > J(s∗)}

where s∗ be the best known feasible solution. In the studied problem, it is per-
mitted to have customers not allocated. Therefore, feasible solutions can be
efficiently generated using simple heuristics (see Sect. 3.1 for more details). It
should be noted that the reduced neighbourhood is dynamic since s∗ can be
updated in the iterative process of ILS. Since ILS can quickly find good solu-
tions, the size of the reduced neighbourhood becomes significantly smaller after
just a few iterations, which leads to faster convergence of the algorithm. Also, the
solution process can be more stable because only solutions with more allocations
are considered in the local search process.

The paper considers two edge exchange operators

– inter-route swap O1: exchanges a sequence of up to two consecutive customers
in a route with a sequence of up to two consecutive customers in another route;
exchanges a sequence of up to two consecutive customers in a route with at
most one unallocated customer;

– intra-route swap O2: extract at most two consecutive customers from a route
and insert it into a different position of the same route; reverse the order of
a sequence of consecutive customers in the route.

It should be noted that O2 cannot increase the number of allocated customers.
Therefore, it is used mainly for repair infeasibility in the local search procedure.

In the local search procedure, the solution in the reduced neighbourhood is
evaluated based on the augmented objective function

f(s) = J(s) − α × TW (s) − β × WD(s) − σ × Weight(s) − ψ × V olume(s)
(24)

where TW (s), WD(s), Weight(s), V olume(s) are the total violation for con-
straints on time window, working duration, weight, volume corresponding

Iterated Local Search with Neighbourhood Reduction 195

to s and α, β, σ, ψ are non-negative weights for TW (s), WD(s), Weight(s),
V olume(s). Furthermore, TW (s), WD(s), Weight(s), V olume(s) are computed
by the technique used in [8,10,11].

The details of the local search procedure based on the reduced neighbourhood
(NRS) are given in Algorithm 1.

Algorithm 1. NRS(s)
1: while TRUE do
2: if ̂H(s, O1) == ∅ then return s∗ end if
3: s′ = s
4: s = argmaxx{f(x)|x ∈ ̂H(s, O1)}
5: if f(s′) < f(s) then
6: s′ = s
7: if s is feasible then s∗ = s end if
8: else
9: Break

10: end if
11: end while
12: s = s′

13: if ̂H(s, O2) �= ∅ then s = argmaxx{f(x)|x ∈ ̂H(s, O2)} end if
14: if f(s′) < f(s) then
15: if s if feasible then s∗ = s end if
16: else
17: s = s′

18: end if
19: return s

In this pseudocode, the input solution s is permitted to be infeasible. The
edge exchange operator O1 is applied until a local optimum is found under the
reduced neighbourhood Ĥ(s,O1). Since the size of the reduced neighbourhood
is related to the number of allocations in the current global optimum s∗, s∗ is
updated whenever a new global optimum is found (line 7 and 15). It should be
noted that Ĥ(s,O1) is empty only if the current s∗ has all customers allocated,
which is also the global optimum. Following the strategy in [12], local search
based on the edge exchange operator O2 is performed for at most one iteration
after the local optimum under O1 is found (line 13). In line 13, Ĥ(s,O2) is empty
only if s is a feasible solution. The output of NRS is either the input solution,
or a solution with more allocated customers and higher augmented objective
function value.

196 H. Gu et al.

Algorithm 2. ILS with neighbourhood reduction (ILS-NR)
1: s′ = INITIAL()
2: s∗ = s′

3: t = J(s∗)
4: h = 1
5: while s∗ has unallocated customers and h ≤ M do
6: α = β = σ = ψ = 1
7: e = 1
8: repeat
9: s̄ = s′

10: s′ =NRS(s′)
11: if f(s̄) �= f(s′) then Update α, β, σ, ψ end if
12: e + +
13: until f(s̄) == f(s′) or s∗ has unallocated customers or e > E
14: if J(s∗) > t then
15: t = J(s∗)
16: h = 1
17: end if
18: s′ = PERTURB(h)
19: h + +
20: end while
21: return s∗

The ILS with neighbourhood reduction (ILS-NR) is now presented in Algo-
rithm 2. It begins with the INITIAL procedure which generates a feasible solu-
tion for the problem (line 1). The details of INITIAL is given in Sect. 3.1. This
solution is also the current best known solution s∗ (line 2). It should be noted
that the current best known s∗ is a global variable and may be updated inside
the NRS and PERTURB procedure.

After the call of the INITIAL procedure, the WHILE loop (line 5–20) is
executed if the current best known solution s∗ has at least one unallocated cus-
tomer. The WHILE loop terminates if the current best known solution allocates
all customers, or counter h exceeds M which is a parameter. Each iteration of
the WHILE loop (line 5–20) attempts to find a solution with more allocations
than the current best known solution s∗ applying the local search procedure
(line 8–13).

Each iteration of the local search (line 8–13) is an applications of NRS which
aims to find a solution with a better value of the augmented objective function
(24). The penalties for violation of corresponding constraints are updated to
force the convergence to feasible solutions. Following [1,2,12], at the beginning
of each iteration of the local search (8–13), the initial value for weights α, β, σ, ψ
in the augmented objective function (24) are set to one (line 6). If NRS returns
an improving solution, a weight is multiplied by 1 + Δ if the corresponding
constraint has a positive violation; otherwise the weight is divided by 1 + Δ.
Δ is a parameter that controls the strength of the adjustment. This weight
updating mechanism is effective in producing feasible solutions, which explains

Iterated Local Search with Neighbourhood Reduction 197

why O2 is only applied for one iteration in NRS (line 10). Local search terminates
if either the NRS procedure fails to obtain a solution with better value of the
augmented objective function (24), the current best known solution s∗ allocates
all customers or the count e exceeds E which is a parameter.

3.1 INITIAL Procedure

The INITIAL procedure is a sweep heuristic [4] that constructs a feasible solution
for the problem. First a list of customers is constructed based on the geographic
coordinates of the customers. Then the customers are inserted to a route one by
one until no customer can be inserted, in which case a new route is constructed.
Since one-man vehicles can only serve one-man customers, whereas two-men
vehicles can serve all-types of customers, the procedure constructs the routes for
one-man vehicles first, then followed by the routes for two-men vehicles. When
inserting a customer into the route, the procedure chooses the insertion position
that respects all the constraints and gives the smallest increase in travel time.
The procedure terminates until either no customers can be inserted into the
vehicle’s route, or all customers have been allocated.

3.2 PERTURB Procedure

The PERTURB procedure expands the search space by randomly perturbing
the current best solution s∗. An unallocated customer is randomly chosen, and
then inserted into a position among the routes which gives the largest value of
(24) when α = β = σ = ψ = 1. Then, two randomly selected sequences of
consecutive customers are swapped between two randomly selected routes. This
random swap will be performed multiple times which depends on the counter
h in the pseudocode for the ILS-NR (Algorithm 2). To be specific, the number
of swaps starts from one and increases by one each time when counter h in
Algorithm 2 increase. The current best solution s∗ may also be updated in this
process.

4 Computational Study

This section presents the results of computational experiments aimed at the eval-
uation of the performance of ILS-NR. A total of 60 instances were provided by a
transportation company working in the retail industry. Each instance represents
the real-world situation on a particular day. The travel time from the location
of the depot to each customer, and the travel time between the location of each
customer are specified by a symmetric matrix. The time when driver arrives at
the depot is specified by a roster and each driver can work for a maximum of
10 h. ILS-NR is implemented in c++, and compiled with g++ O3. The following
settings are used throughout the experiments [12]:

198 H. Gu et al.

Table 1. Comparison of performance between CPLEX, ILS-NR and CPLEX warm
start

Instances |C| |T | CPLEX ILS-NR CPLEX warm start

Obj Gap(%) Time(s) Avg Max #Max Time(s) Input Obj Gap(%) Time(s)

M-2017-07-23 30 3 27 10.88 9112 28.00 28 30 0.13 28 28 0.00 3711

M-2017-07-24 26 2 21 9.52 14257 21.93 22 28 0.10 22 22 9.09 21600

M-2017-07-25 14 2 14 0.00 1 14.00 14 30 0.00 14 14 0.00 0

M-2017-10-08 28 2 24 12.50 10288 24.63 26 1 0.17 26 26 3.85 21600

M-2017-10-09 22 2 21 4.76 21600 21.00 21 30 0.03 21 21 4.76 21600

M-2017-10-10 22 2 17 11.76 21600 17.00 17 30 0.07 17 17 11.76 11304

M-2017-10-16 34 2 26 19.99 21600 26.10 27 3 0.30 27 27 15.55 21600

M-2017-10-17 24 2 21 9.52 21600 21.30 22 10 0.10 22 22 4.55 21600

M-2017-10-21 34 2 24 29.17 21600 26.87 28 1 0.33 28 28 12.75 21600

M-2017-10-24 17 2 17 0.00 3 16.90 17 27 0.00 17 17 0.00 0

M-2017-10-30 37 2 27 29.63 21600 28.90 30 1 0.40 30 30 16.85 21600

M-2017-12-22 72 7 66 9.09 21600 69.43 70 13 3.47 70 70 2.86 21600

M-2017-12-23 70 5 59 18.64 21600 65.80 67 3 3.47 67 67 4.48 21600

M-2017-12-24 70 5 50 40.00 21600 57.47 59 1 3.20 59 59 18.64 21600

M-2017-12-25 70 5 52 25.00 21600 57.50 59 1 3.40 59 59 10.17 21600

R-2017-07-23 47 5 47 0.00 463 47.00 47 30 0.00 47 47 0.00 1

R-2017-07-24 65 3 48 14.58 21600 52.13 53 5 2.60 53 53 3.77 21600

R-2017-07-25 43 4 42 0.00 19472 42.00 42 30 0.50 42 42 0.00 0

R-2017-10-08 88 6 80 8.71 21600 85.60 86 18 7.40 86 86 0.00 18582

R-2017-10-09 63 4 54 5.56 21600 55.27 56 8 2.37 56 56 1.79 21600

R-2017-10-10 44 5 44 0.00 593 44.00 44 30 0.00 44 44 0.00 0

R-2017-10-16 72 5 64 9.37 21600 68.67 69 20 3.50 69 69 1.77 21600

R-2017-10-17 37 4 34 8.82 5084 35.93 36 28 0.37 36 36 2.78 21600

R-2017-10-21 60 5 55 5.45 21600 58.00 58 30 1.80 58 58 0.00 1

R-2017-10-24 53 6 53 0.00 790 53.00 53 30 0.00 53 53 0.00 1

R-2017-10-30 71 7 69 2.90 21600 70.67 71 20 1.43 71 71 0.00 1

R-2017-12-12 52 4 49 6.12 21600 51.43 52 18 0.67 52 52 0.00 1

R-2017-12-19 52 4 46 10.87 21600 50.47 51 14 1.20 51 51 0.00 0

R-2017-12-22 62 4 53 15.09 21600 57.03 58 3 2.47 58 58 5.17 21600

R-2017-12-23 70 5 63 9.52 21600 67.73 68 22 3.23 68 68 1.47 21600

R-2017-12-24 70 5 56 10.71 21600 60.70 62 1 3.27 62 62 0.00 2

R-2017-12-25 70 5 65 7.69 21600 69.77 70 23 0.93 70 70 0.00 1

T-2017-07-23 64 5 63 1.59 21600 64.00 64 30 0.00 64 64 0.00 1

T-2017-07-24 70 5 67 2.99 21600 69.00 69 30 2.63 69 69 0.00 1

T-2017-07-25 57 4 55 3.64 21600 56.77 57 23 0.57 57 57 0.00 0

T-2017-10-08 65 8 65 0.00 3834 65.00 65 30 0.00 65 65 0.00 1

T-2017-10-09 43 7 43 0.00 31 43.00 43 30 0.00 43 43 0.00 1

T-2017-10-10 46 5 46 0.00 675 46.00 46 30 0.00 46 46 0.00 0

T-2017-10-16 63 7 63 0.00 6631 63.00 63 30 0.00 63 63 0.00 2

T-2017-10-17 56 4 49 12.24 21600 52.53 53 16 1.43 53 53 3.77 13380

T-2017-10-21 76 4 58 8.62 21600 61.93 62 28 4.23 62 62 1.61 21600

T-2017-10-24 62 4 52 10.05 21600 55.33 56 10 2.30 56 56 1.79 21600

T-2017-10-30 36 5 36 0.00 13 36.00 36 30 0.00 36 36 0.00 0

T-2017-12-12 63 7 63 0.00 1345 63.00 63 30 0.00 63 63 0.00 2

T-2017-12-19 54 5 54 0.00 923 54.00 54 30 0.00 54 54 0.00 1

T-2017-12-22 91 7 75 18.67 21600 88.73 89 22 7.47 89 89 0.00 7

T-2017-12-23 70 5 63 11.11 21600 69.93 70 28 0.67 70 70 0.00 1

T-2017-12-24 70 5 63 9.52 21600 67.10 68 3 3.77 68 68 1.47 21600

(continued)

Iterated Local Search with Neighbourhood Reduction 199

Table 1. (continued)

Instances |C| |T | CPLEX ILS-NR CPLEX warm start

Obj Gap(%) Time(s) Avg Max #Max Time(s) Input Obj Gap(%) Time(s)

T-2017-12-25 70 5 64 9.37 21600 68.53 69 16 3.23 69 69 1.45 21600

T-2017-12-26 70 5 65 4.62 21600 67.97 68 29 3.07 68 68 0.00 1

A-2017-10-16 100 4 53 30.19 21600 61.73 3 2 4.90 63 63 9.52 21600

A-2017-12-22 100 7 76 22.37 21600 82.70 84 2 9.20 84 84 10.72 21600

B-2017-10-08 100 6 72 15.16 21600 79.60 80 18 8.70 80 80 3.65 21600

B-2017-10-16 100 5 71 15.49 21600 78.93 80 6 8.03 80 80 2.50 21600

B-2017-10-30 100 7 81 13.58 21600 86.93 88 5 9.40 88 88 4.55 21600

B-2017-12-22 100 4 58 41.79 21600 67.97 70 1 7.90 70 70 17.49 21600

C-2017-07-24 100 5 86 9.30 21600 92.83 93 25 8.77 93 93 1.65 21600

C-2017-10-16 100 7 96 2.08 21600 97.97 98 29 6.97 98 98 0.00 5

C-2017-10-21 100 4 67 20.47 21600 75.40 76 12 9.67 76 76 6.06 21600

C-2017-12-22 100 7 89 11.24 21600 97.87 99 1 10.20 99 99 0.00 5

– The maximum permissible number of consecutive unsuccessful attempts to
improve the current best known solution (the parameter M in Algorithm 2)
is computed as |C| + λ|T |), where C is the set of all customers, T is the set
of all vehicles, λ = 10.

– The maximum number of exchange operations in the perturbation is five.
– The parameter Δ for adjusting the weights (Sect. 3) is 0.5.

In addition, the maximum permissible iterations for local search (the paramter
E in Algorithm 2) is 100. All computational experiments are conducted on a
computer with Intel Xeon CPU E5-2697 v3 2.60 GHz and 8 GB RAM.

We first compare the performance of ILS-NR with CPLEX which solves the
IP model in Sect. 2. Furthermore, we test the performance of CPLEX when
the best solution from ILS-NR is used as a warm start. Both CPLEX and
CPLEX with warm start have a time limit of 6 h and memory limit of 7.5GB
RAM. Version 12.10 of CPLEX is used for all the tests. In Table 1, the groups
titled “CPLEX” and “CPLEX warm start” contain results obtained by CPLEX
and CPLEX with warm start. In these groups, the objective value, optimal-
ity gap, computational time are displayed in columns titled “Obj”, “Gap(%)”
and “Time(s)”. The column titled “Input” in group “CPLEX warm start” dis-
plays the objective value of the warm start solution. ILS-NR is run 30 times
on each instance with the average objective value (“Avg.”), best objective value
(“Max.”), number of runs the best objective value is obtained (“#Max”) and
computation time (“Time(s)”) being reported under the group “ILS-NR”.

According to Table 1, CPLEX can prove optimality for 13 instances. With
warm start, CPLEX can prove optimality for another 16 instances with sig-
nificantly reduced CPU time. Among these 29 instances proved optimality by
CPLEX, ILS-NR can find optimal solutions with high frequency (#Max) within
10.2 s. For 45 out of 60 instances, the average objective values produced by ILS-
NR are better than the objective values produced by CPLEX which has a time
limit of 6 h.

200 H. Gu et al.

Table 2. Comparison of performance between ILS and ILS-NR

Instances |C| |T | ILS ILS-NR

Avg. Max Time(s) Avg. % Max. % Time(s) %

M-2017-07-23 30 3 28.00 28 0.17 28.00 0.00 28 0.00 0.13 20.00

M-2017-07-24 26 2 21.57 22 0.13 21.93 -1.70 22 0.00 0.10 25.00

M-2017-07-25 14 2 14.00 14 0.00 14.00 0.00 14 0.00 0.00 0.00

M-2017-10-08 28 2 24.13 25 0.17 24.63 −2.07 26 −4.00 0.17 0.00

M-2017-10-09 22 2 21.00 21 0.07 21.00 0.00 21 0.00 0.03 50.00

M-2017-10-10 22 2 16.97 17 0.03 17.00 −0.20 17 0.00 0.07 −100.00

M-2017-10-16 34 2 25.83 26 0.33 26.10 −1.03 27 −3.85 0.30 10.00

M-2017-10-17 24 2 21.03 22 0.10 21.30 −1.27 22 0.00 0.10 0.00

M-2017-10-21 34 2 26.23 28 0.27 26.87 −2.41 28 0.00 0.33 −25.00

M-2017-10-24 17 2 17.00 17 0.03 16.90 0.59 17 0.00 0.00 100.00

M-2017-10-30 37 2 28.47 29 0.40 28.90 −1.52 30 −3.45 0.40 0.00

M-2017-12-22 72 7 69.30 70 4.37 69.43 −0.19 70 0.00 3.47 20.61

M-2017-12-23 70 5 65.70 67 4.33 65.80 −0.15 67 0.00 3.47 20.00

M-2017-12-24 70 5 57.47 59 3.87 57.47 0.00 59 0.00 3.20 17.24

M-2017-12-25 70 5 57.37 58 4.00 57.50 −0.23 59 −1.72 3.40 15.00

R-2017-07-23 47 5 47.00 47 0.00 47.00 0.00 47 0.00 0.00 0.00

R-2017-07-24 65 3 51.80 52 2.93 52.13 −0.64 53 −1.92 2.60 11.36

R-2017-07-25 43 4 42.00 42 0.67 42.00 0.00 42 0.00 0.50 25.00

R-2017-10-08 88 6 85.50 86 16.10 85.60 −0.12 86 0.00 7.40 54.04

R-2017-10-09 63 4 55.07 56 2.90 55.27 −0.36 56 0.00 2.37 18.39

R-2017-10-10 44 5 44.00 44 0.00 44.00 0.00 44 0.00 0.00 0.00

R-2017-10-16 72 5 68.90 70 4.73 68.67 0.34 69 1.43 3.50 26.06

R-2017-10-17 37 4 36.00 36 0.43 35.93 0.19 36 0.00 0.37 15.38

R-2017-10-21 60 5 58.00 58 2.30 58.00 0.00 58 0.00 1.80 21.74

R-2017-10-24 53 6 53.00 53 0.00 53.00 0.00 53 0.00 0.00 0.00

R-2017-10-30 71 7 70.77 71 1.33 70.67 0.14 71 0.00 1.43 −7.50

R-2017-12-12 52 4 51.10 52 1.10 51.43 −0.65 52 0.00 0.67 39.39

R-2017-12-19 52 4 50.50 51 1.47 50.47 0.07 51 0.00 1.20 18.18

R-2017-12-22 62 4 56.67 58 9.67 57.03 −0.65 58 0.00 2.47 74.48

R-2017-12-23 70 5 67.77 68 4.07 67.73 0.05 68 0.00 3.23 20.49

R-2017-12-24 70 5 60.73 61 3.73 60.70 0.05 62 −1.64 3.27 12.50

R-2017-12-25 70 5 69.83 70 0.87 69.77 0.10 70 0.00 0.93 −7.69

T-2017-07-23 64 5 64.00 64 0.00 64.00 0.00 64 0.00 0.00 0.00

T-2017-07-24 70 5 69.00 69 3.20 69.00 0.00 69 0.00 2.63 17.71

T-2017-07-25 57 4 56.47 57 0.93 56.77 −0.53 57 0.00 0.57 39.29

T-2017-10-08 65 8 65.00 65 0.00 65.00 0.00 65 0.00 0.00 0.00

T-2017-10-09 43 7 43.00 43 0.00 43.00 0.00 43 0.00 0.00 0.00

T-2017-10-10 46 5 46.00 46 0.00 46.00 0.00 46 0.00 0.00 0.00

T-2017-10-16 63 7 63.00 63 0.00 63.00 0.00 63 0.00 0.00 0.00

T-2017-10-17 56 4 52.47 53 1.63 52.53 −0.13 53 0.00 1.43 12.24

T-2017-10-21 76 4 61.30 62 4.37 61.93 −1.03 62 0.00 4.23 3.05

T-2017-10-24 62 4 55.03 56 2.60 55.33 −0.55 56 0.00 2.30 11.54

T-2017-10-30 36 5 36.00 36 0.00 36.00 0.00 36 0.00 0.00 0.00

T-2017-12-12 63 7 63.00 63 0.00 63.00 0.00 63 0.00 0.00 0.00

T-2017-12-19 54 5 54.00 54 0.00 54.00 0.00 54 0.00 0.00 0.00

T-2017-12-22 91 7 88.97 89 15.00 88.73 0.26 89 0.00 7.47 50.22

T-2017-12-23 70 5 69.50 70 2.17 69.93 −0.62 70 0.00 0.67 69.23

T-2017-12-24 70 5 66.90 68 4.03 67.10 −0.30 68 0.00 3.77 6.61

T-2017-12-25 70 5 68.17 69 3.97 68.53 −0.54 69 0.00 3.23 18.49

(continued)

Iterated Local Search with Neighbourhood Reduction 201

Table 2. (continued)

Instances |C| |T | ILS ILS-NR

Avg. Max Time(s) Avg. % Max. % Time(s) %

T-2017-12-26 70 5 67.87 68 12.83 67.97 −0.15 68 0.00 3.07 76.10

A-2017-10-16 100 4 61.23 62 5.97 61.73 −0.82 63 −1.61 4.90 17.88

A-2017-12-22 100 7 82.63 84 10.90 82.70 −0.08 84 0.00 9.20 15.60

B-2017-10-08 100 6 79.33 81 16.80 79.60 −0.34 80 1.23 8.70 48.21

B-2017-10-16 100 5 78.17 80 9.20 78.93 −0.98 80 0.00 8.03 12.68

B-2017-10-30 100 7 86.47 88 17.07 86.93 −0.54 88 0.00 9.40 44.92

B-2017-12-22 100 4 67.20 68 8.90 67.97 −1.14 70 −2.94 7.90 11.24

C-2017-07-24 100 5 92.50 93 12.00 92.83 −0.36 93 0.00 8.77 26.94

C-2017-10-16 100 7 98.00 98 10.33 97.97 0.03 98 0.00 6.97 32.58

C-2017-10-21 100 4 75.20 76 16.60 75.40 −0.27 76 0.00 9.67 41.77

C-2017-12-22 100 7 98.20 99 13.73 97.87 0.34 99 0.00 10.20 25.73

Average 56.19 56.70 4.05 56.33 −0.32 56.82 −0.31 2.67 17.61

To demonstrate the effectiveness of the neighbourhood reduction, Table 2
presents the computational results for ILS-NR and ILS without neighbourhood
reduction. The performance of ILS-NR was measured against ILS by the per-
centage difference

XILS − XILS−NR

XILS
× 100 (25)

where X can either be the average objective value (column “Avg.”), best found
objective value (“Max”) or CPU time (“Time”); XILS−NR is the value obtained
by ILS-NR and XILS is the value obtained by ILS. Therefore, a negative per-
centage difference indicates that ILS-NR is better with respect to the average
objective value and best found objective value, while a positive percentage dif-
ference indicates that ILS-NR is better with respect to CPU time. For readers’
convenience, the superior results produced by ILS-NR are shown in bold.

In Table 2, ILS-NR is faster than ILS on 41 out of 60 instances with an
average difference of 17.61%, which clearly demonstrates the improvement on
computation time due to neighbourhood reduction. In terms of stability, the
average objective value produced by the ILS-NR outperforms the average objec-
tive value produced by ILS on 49 instances.

5 Conclusion

This paper considers a practical vehicle routing problem with simultaneous pick-
ups and deliveries which arises in the retail sector. A novel neighbourhood reduc-
tion technique is introduced to enhance the performance of the state-of-the-art
iterated local search algorithm. Computational experiments carried out on a set
of real-world instances demonstrate the superior performance of the proposed
algorithm in terms of computational time, solution quality and stability. The
advantage of the proposed algorithm is more conspicuous for time-critical appli-
cations given the longest computation time among the test instances is just
10.2 s.

202 H. Gu et al.

References

1. Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and
multi-depot vehicle routing problems. Netw.: Int. J. 30(2), 105–119 (1997)

2. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle
routing problems with time windows. J. Oper. Res. Soc. 52(8), 928–936 (2001)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San
Francisco (1979)

4. Gillett, B.E., Miller, L.R.: A heuristic algorithm for the vehicle-dispatch problem.
Oper. Res. 22(2), 340–349 (1974)

5. Gu, H., Zhang, Y., Zinder, Y.: Lagrangian relaxation in iterated local search for
the workforce scheduling and routing problem. In: Kotsireas, I., Pardalos, P., Par-
sopoulos, K.E., Souravlias, D., Tsokas, A. (eds.) SEA 2019. LNCS, vol. 11544, pp.
527–540. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34029-2 34

6. Koç, Ç., Laporte, G., Tükenmez, İ: A review on vehicle routing with simultaneous
pickup and delivery. Comput. Oper. Res. 104987 (2020)

7. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and
applications. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics.
ISORMS, vol. 272, pp. 129–168. Springer, Cham (2019). https://doi.org/10.1007/
978-3-319-91086-4 5

8. Nagata, Y., Bräysy, O., Dullaert, W.: A penalty-based edge assembly memetic
algorithm for the vehicle routing problem with time windows. Comput. Oper. Res.
37(4), 724–737 (2010)

9. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery prob-
lems. J. für Betriebswirtschaft 58(2), 81–117 (2008)

10. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with
adaptive diversity management for a large class of vehicle routing problems with
time-windows. Comput. oper. Res. 40(1), 475–489 (2013)

11. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unified solution framework
for multi-attribute vehicle routing problems. Eur. J. Oper. Res. 234(3), 658–673
(2014)

12. Xie, F., Potts, C.N., Bektaş, T.: Iterated local search for workforce scheduling and
routing problems. J. Heurist. 23(6), 471–500 (2017)

https://doi.org/10.1007/978-3-030-34029-2_34
https://doi.org/10.1007/978-3-319-91086-4_5
https://doi.org/10.1007/978-3-319-91086-4_5

A Genetic Algorithm for the
Three-Dimensional Open Dimension

Packing Problem

Cong Tan Trinh Truong(B), Lionel Amodeo, and F. Yalaoui

LOSI, University of Technology of Troyes, Troyes, France
{cong tan trinh.truong,lionel.amodeo,farouk.yalaoui}@utt.fr

Abstract. The three-dimensional Open Dimension Packing problem
(3D-ODPP) is a real-world driven optimization problem that aims at
the minimization of package volume in right-size packaging systems. The
problem can be found in many industrial scenarios, such as e-commerce
secondary packaging. The objective of the 3D-ODPP is to find out the
length, width, and height of the cardboard box that can be used to pack
a given set of or products so that the volume of the box is minimal.
Many literature researches have focused on exact methods to deal with
the 3D-ODPP. Despite the fact that the exact methods are capable of
finding the global solution, their applications are very limited in terms of
problem size and computational time because the 3D-ODPP is NP-hard
in the strong sense. In addition, constructive and meta-heuristic meth-
ods for solving the 3D-ODPP have not been discussed frequently in the
literature and remain a gap in the state-of-the-art.

This paper proposes a genetic algorithm that deals with the 3D-
ODPP. The genetic process is to find out the packing sequence and the
orientation of products. To construct the solution, a new greedy-search
product placement algorithm is developed. This placement algorithm is
used to determine the position where each product is placed and to cal-
culate the volume of the package. Literature instances are tested and
the obtained solutions are compared with that given by existing exact
methods. The experiments show that the proposed algorithm has the
capacity of solving the 3D-ODPP in a reasonable time and gives com-
petitive solutions compared with the benchmark methods, especially for
problems with many products.

1 Introduction

The three-dimensional Open Dimension Packing problem (3D-ODPP), one of
the Cutting and Packing problems according to the typology of [13], is a real-
world driven optimization problem that aims at the minimization of package
volume in right-size packaging systems. The problem can be found in many
industrial scenarios, such as e-commerce secondary packaging. The objective of
the 3D-ODPP is to find out the length, width, and height of the cardboard box

c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 203–215, 2021.
https://doi.org/10.1007/978-3-030-85672-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-85672-4_15

204 C. T. T. Truong et al.

that can be used to pack a given set of small items (or products) so that the
volume of the box is minimal.

Many literature researches, such as [6,8,9,11] have focused on exact meth-
ods to deal with the 3D-ODPP. These works are inspired by the mathematical
model of [2] that deals with the mono container loading problem. Despite the
fact that the exact methods like that in [6,8,9,11] are capable of finding the
global solution, their applications are very limited in terms of problem size and
computational time because the 3D-ODPP is NP-hard in the strong sense. In
addition, constructive and meta-heuristic methods for solving the 3D-ODPP
have not been discussed frequently in the literature. Therefore, solving large-
sized 3D-ODPP is still a gap in the state-of-the-art.

Genetic algorithms have been widely used in the literature for solving Cut-
ting and Packing problems [7]. For the container loading problem, genetic algo-
rithms are also used to deal with single and multi-objective problems [1,3,5,14].
However, meta-heuristic approaches are still not present much in the literature.
This paper proposes a genetic algorithm called “GA-ODP” that deals with the
3D-ODPP. The proposed method is inspired by the random-key biased genetic
algorithm for solving 2D and 3D Bin Packing problem presented in [4]. The algo-
rithm of [4] aims at minimizing the number of bins (container objects with fixed
measurements) needed to pack a set of items. In order to construct a solution,
three main decisions to be made are: the packing sequence indicating the order
in which the items are packed; the orientation of each item; and the positions
where the items are placed. [4] use a genetic algorithm to determine the ori-
entation and the packing sequence of the items, then a constructive algorithm
is applied to determine items’ positions. The GA-ODP in this paper uses the
same chromosome representation as that in [4]. However, the algorithm of [4]
only deals with Bin Packing problems where bins’ size is fixed, and the solutions
are constructed based on the empty spaces rested inside the bins while for the
3D-ODPP, all box measurements are variable, therefore, the encoding of item
orientation, the placement strategy, and the fitness function of [4] cannot be
used. This study proposes a new placement algorithm to construct the packing
solutions. The new placement algorithm is based on a greedy search algorithm
that finds the local optimum for each item placement in a packing sequence.
This placement algorithm allows constructing a solution for any packing order
and item orientation given by the genetic algorithm. No chromosome repairing
is needed in the evolutionary process.

Literature test instances with different problem sizes are tested and the
obtained results are compared with that given by existing method [11]. The
experiments show that the proposed algorithm has the capacity of solving the
3D-ODPP and gives competitive solutions compared with state-of-the-art exact
methods while the computational time is much shorter and therefore, the pro-
posed method has the capacity of dealing with larger problems.

The rest of this paper is organized as follows: the Sect. 2 represents the formu-
lation of the problem with a Mixed integer nonlinear programming. The Sect. 3
introduces the proposed genetic algorithm that deals with the 3D-ODPP. Com-

Genetic Algorithm for 3D-ODPP 205

putational experiments are shown in Sect. 4 and the conclusion of this study is
in Sect. 5.

2 Problem Formulation

The 3D-ODPP addressed in this study is a problem arises in an e-commerce
secondary packaging system where a set of cuboid-shaped items is to be packed
into a single cardboard box before being shipped to client. Given n items of
cuboid-shaped with their fixed length (p), width (q), and height (r). Every item
can be rotated in six possible orthogonal orientations inside the box. Knowing
that the capacity of the system is much higher than the items volume, which
means any set of items can be packed by the packaging system. As all the
measurements of the box are variable, the purpose is to determine the length
(Lb), width (Wb), and height (Hb) of the minimal volume packing box.

The mathematical model for solving the 3D-ODPP is presented in [8]:
Parameters:

– n: number of items to be packed.
– p, q, r: the vectors indicating items’ length, width and height, respectively.
– M : big number used in the model. M = (

∑n
i=1 pi)

3

Variables:

– xi, yi, zi (i ∈ {1...n}): Continuous variables indicating the coordinate of prod-
ucts.

– Lb,Wb,Hb: Continuous variables for length, width, height of the box, respec-
tively.

– oi,j (i ∈ {1...n}; j ∈ {1...6}): Binary variables indicating weather the product
i has orientation j. The orientations are defined as shown in Table 1.

– ai,j , bi,j , ci,j (i, j ∈ {1...n}): Binary variables indicating the “left-right”,
“front-behind”, and “above-under” relative positions of products i and j.
For example, if product i is on the left side of product j then a2,3 = 1, other-
wise, a2,3 = 0. If there is at least one relative position between two product,
then they are called “non-intersected”.

Objective function:
Minimize Lb × Wb × Hb (1)

Subject to:

6∑

j=1

oi,j = 1 ∀i ∈ {1...n} (2)

ai,j + aj,i + bi,j + bj,i + ci,j + cj,i ≥ 1 ∀i, j ∈ {1...n}; i �= j (3)
xi+pi(oi,1+oi,2)+qi(oi,3+oi,4)+ri(oi,5+oi,6) ≤ xj+M(1−ai,j) ∀i, j ∈ {1...n}; i �= j

(4)
yi+pi(oi,3+oi,5)+qi(oi,1+oi,6)+ri(oi,2+oi,4) ≤ yj+M(1−bi,j) ∀i, j ∈ {1...n}; i �= j

(5)

206 C. T. T. Truong et al.

zi+pi(oi,4+oi,6)+qi(oi,2+oi,5)+ri(oi,1+oi,3) ≤ zj+M(1−ci,j) ∀i, j ∈ {1...n}; i �= j
(6)

Lb ≥ xi + pi(oi,1 + oi,2) + qi(oi,3 + oi,4) + ri(oi,5 + oi,6) ∀i ∈ {1...n} (7)
Wb ≥ yi + pi(oi,3 + oi,5) + qi(oi,1 + oi,6) + ri(oi,2 + oi,4) ∀i ∈ {1...n} (8)
Hb ≥ zi + pi(oi,4 + oi,6) + qi(oi,2 + oi,5) + ri(oi,1 + oi,3) ∀i ∈ {1...n} (9)

max
i∈{1...n}

ri ≤ φ ≤
n∑

i=1

pi ∀φ ∈ {Lb, Wb, Hb} (10)

n∑

i=1

(pi × qi × ri) ≤ Lb × Wb × Hb ≤
n∑

i=1

pi ×
(

max
i∈{1...n}

qi

)
×

(
max

i∈{1...n}
ri

)
(11)

The constraint (2) assures that an item can only have at most one orientation.
The constraints (3) to (6) define the relative positions of items. The constraints
(7) to (9) make sure all products are entirely placed inside the box. Finally, the
constraints (10) to (11) show the upper and lower bounds of box length, width,
height, and volume.

[6,8,9,11] use the logarithm transformation and piecewise linearization tech-
nique presented in [10,12] to solve the model with a liner solver, e.g. CPLEX.

Table 1. Item orientations.

Orientation 1 2 3 4 5 6

Among x-axis (l) p p q q r r

Among y-axis (w) q r p r p q

Among z-axis (h) r q r p q p

3 Genetic Algorithm

As mentioned in Sect. 1, the exact methods proposed by [6,8,9,11] are very
limited by the problem size and require great computational power. Therefore,
an heuristic approach would be necessary in many practical cases. This section
describes how the genetic algorithm GA-ODP is applied to solve the 3D-ODPP.

3.1 Solution Encoding and Decoding

In this genetic algorithm, an encoded solution (also known as a “chromosome”)
is an array made of 2n genes that contain the genetic information about items’
packing sequence and orientation. The first n genes indicate the order in which
the items are loaded into the box. Every genes of this part is a real number whose
value is between 0 and 1. The second part of the chromosome includes n genes
whose value is an entire number between 1 and 6 indicating the orientation
of the items. The actual dimensions (l, w, h) of items among x, y, and z-axis
corresponding to item orientations are as shown in Table 1.

Genetic Algorithm for 3D-ODPP 207

Before constructing any solution, the chromosome must be decoded into the
actual packing sequence and item orientation so that the constructing algorithm
can turn them into item loading position and the box dimensions can be calcu-
lated (Fig. 1). The decoded genes are represented as two following vectors:

– The Vector of Loading Sequence (VLS): a vector of size (1 × n) that is
made of n elements whose value is an entire number between 1 and n, without
repeating, indicating the order in which the items are loaded into the box.
The VLS is obtained by sorting the first n genes in the ascending order. In
other words, the corresponding item of the gene with smaller value among
the first n genes will be packed earlier.

– The Vector of Item Orientation (VIO): a vector of size (1 × n) whose
elements are entire numbers within {1, 2, . . . , 6}. It indicates the exact orien-
tation of n corresponding items. As mentioned in Sect. 2, each item can have
one out of the six possible orientations. This vector can be obtained by copy-
ing the second part of the encoded chromosome: V IOi = C2,i ∀i = 1...n.

These vectors will be used as input arguments of the placement algorithm pre-
sented in Sect. 3.2.

3.2 Solution Construction

This section describes how to construct a solution from the decoded chromosomes
and calculate the fitness of each solution. To construct a solution including items’
orientation and loading position as well as the dimensions of the bounding box,
the decoded chromosome of the solution will be used by a placement algorithm.

Placement Algorithm: The placement algorithm is based on the greedy search
algorithm. It places the items one after the other by the specific order defined
by the VLS, until there is no item left. All the possible position, including x, y,
and z-coordinates, where the items can be placed are precalculated and stored
in three lists: Px, Py, and Pz, respectively. At the beginning, every list has only
one element, which equals to 0. This means the first item will always be placed
at the origin of the coordinate system. Every time a new item is placed, at most
one coordinate will be added into the each list. The new coordinates allow the
following items can be placed next to the item that has just been placed. The
placement algorithm will check all the combinations of x, y, and z-coordinates
and find out the position for each item so that the increase of box volume caused
by it’s placement is minimal. Once all items are loaded, the dimensions of the
bounding box will be calculated. This placement algorithm assures the feasibility
of all solutions. The placement algorithm is shown in Algorithm 1.

208 C. T. T. Truong et al.

Fitness Function: The quality of a solution is considered as the volume of the
bounding box given by the placement algorithm. As the box’s length, width, and
height are Lb, Wb, and Hb, the fitn ess function is:

f = Lb × Wb × Hb (12)

3.3 Evolutionary Process

A population is a set of individuals (chromosomes) created by a generator or
by the evolutionary process. At the beginning, a set of np chromosomes are
randomly generated to made up the initial population. The GA-ODP evolves the
initial population through ng generations to improve the solution and find out the
best packing sequence as well as items’ orientation for the given items. For each
generation, the fitness value of every individual is computed, then the individuals
are classified into two groups: the first group contains ne elite individuals with
highest fitness. The second group contains nr “regular” individuals, which are
the rest of the population. It is clear that ne+nr = np. To create the population
of the next generation, new individuals are generated by the following operators:

– Copying: the chromosome of all the elite individuals are copied directly to
the offspring’s chromosome of the next generation without modification in
the genes.

– Crossover: two individuals are selected from the population of the current
generation. Their genes are mixed up by a specific operator to create the
chromosome of a new offspring individual. Then the new individual is added
to the population of the next generation.

– Mutation: Some individuals from the current population are selected to copy
to the next generation but their genes will contain some random modifications
created by the mutation operator.

Let nc be the number of individuals created by the crossover operator, and
nm be the number of mutants, then, nr = nc + nm. In other words, for any
new generation, the population always has ne individuals copied from the previ-
ous generation and nr new individuals generated by the crossover and mutation
operator. During both operators, there is a small possibility that some mutations
appear on some genes and make the offspring’s chromosome a little bit different
before it is added to the population. Figure 3 illustrates the operations of gener-
ating a new population. The crossover and mutation operators are described as
follows:

Genetic Algorithm for 3D-ODPP 209

Fig. 1. Genetic algorithm

Copying: From the current population, the chromosome of all individuals with
highest fitness will be copied to the offspring’s chromosome of the population of
the next generation. In other words, all elites of the current population will be
copied to the next generation without modification.

Crossover: The GA-ODP uses a random-key crossover operator to generate
new individuals. For each pair of parent individuals, a crossover vector of 2n
random real numbers within [0, 1] is generated. A given probability of crossover
Pc is also used for this operator. For each number in the crossover vector, if the
number is greater than Pc then the gene at the corresponding position of the
first parent is copied to the offspring’s chromosome. Otherwise, the gene from
the second parent is copied to the offspring’s chromosome. Figure 2 shows an
example of crossover operator.

Fig. 2. Crossover operator

210 C. T. T. Truong et al.

Fig. 3. Evolutionary process

As mentioned in Sect. 3.2, the placement algorithm guarantees that any chro-
mosome can be decoded into a solution with no item intersection, therefore, no
reparation process is needed for new individuals.

Mutation: The mutation operator is necessary to increase the diversity of the
genetic pool and avoid premature convergence of the population. Let Pm be the
probability of mutation, a mutation vector is created in the same way at the
crossover vector above. If there is at least one element of the mutation vector
is less than Pm, then there will be a mutation occurred on the gene at the
corresponding position of the chromosome. Then the gene will be replaced by a
new random gene whose value is between [0, 1] if it is a packing sequence gene,
and in {1, . . . , 6} if it is an item orientation gene.

Genetic Algorithm for 3D-ODPP 211

Algorithm 1: Placement algorithm
Input: p, q, r,VLS,VIO
Output: L, W, H, x, y, z
Result: Items placement position and box dimensions
n = length of (p)
Calculate (l, w, h) corresponding to items’ orientation VIO
Sort the items by order of VLS
Px = Py = Pz = {0}
Initialize the set of placed items: B = {}
for i ∈ {1...n} do

Vmin = M
for x∗ ∈ Px do

for y∗ ∈ Py do
for z∗ ∈ Pz do

Calculate V ∗ when item i is placed at (x∗, y∗, z∗)
if (V ∗ ≤ Vmin) & (No intersection between item i and any item
in B) then

Vmin = V ∗

xi = x∗

yi = y∗

zi = z∗

Ajouter item i to B
if (xi + li) /∈ Px then

Ajouter (xi + li) au Px

if (yi + wi) /∈ Py then
Ajouter (yi + wi) au Py

if (zi + hi) /∈ Pz then
Ajouter (zi + hi) au Pz

Calculate Lb, Wb, and Hb

4 Computational Experiments

To see the efficiency of the proposed genetic algorithm, a set of test instances
derived from [11] named S1 will be tested. This set contains 10 test instances
of homogeneous and heterogeneous packing items. The number of products is
from 4 to 9 which is quite small in terms of problem size. To test the further
performance of the proposed algorithm, a new set of 10 test instances, named S2
is randomly generated. The products in S2 are cuboid and heterogeneous. The
size of the products is random number between 10 and 100 so that pi ≥ qi ≥ ri
∀i ∈ {S2.1, S2.2 . . . S2.10}. The number of items of the instances is from 8 to
50.

212 C. T. T. Truong et al.

The benchmark method is the mathematical model proposed in [11] resolved
with the solver IBM CPLEX 12.8.0.

For the GA-ODP, different combinations of parameters are tested to find
out the optimal configuration for the genetic algorithm and reduce the com-
putational time. In this section, different combinations of GA parameters are
tested to find out the combination that gives the best computational per-
formance. ng is selected from {50, 100, 200, 300}, ne ∈ {0.1np, 0.2np, 0.3np},
nm ∈ {0.1np, 0.2np, 0.3np}. As shown in [4], the population size np can sig-
nificantly affect the calculation, and good results are obtained by indexing the
population size into the problem size (or number of items). Therefore, in these
experiments, the population size is also a function of problem size, the following
values are tested to choose the best parameter: np ∈ {20n, 30n, 50n, 100n}. By
testing all the combinations created by the parameters, the following configura-
tion is chosen to be constant parameters for solving the test instances: ng = 200,
np = 20n, ne = 0.3np, nm = 0.1np, Pc = 0.5, and Pm = 0.1.

Next, the computational results obtained by using the best GA parameters
are compared with them given by the benchmark method. The algorithms are
programmed in C++ and the experiments are executed on an Intel Core i7-
6820HQ CPU @2.70 GHz, Windows 7 PC with 32 GB of RAM. The improvement
of the GA-ODP over the benchmark method is calculated as follows:

GAPV =
(V2 − V1)

V1
(13)

GAPt =
(t1 − t2)

t2
(14)

where V1 and t1 are box volume and computational time of the benchmark
method, while V2, t2 are these values given by the proposed method.

Table 2 shows the test results and the computational time for ten test
instances in S1. The row with header “Solver” shows the solutions given by the
benchmark method, while the row with header “GA-ODP” shows the experi-
mental results given by the proposed method. It can be seen that the solutions
given by the GA-ODP is competitive with that given by the benchmark method.
There are six out of ten test instances where the difference of box volume of both
method are the same. For the other instances, the difference is not enormous,
which is from about 1.2% to 3.8%. In terms of computational time, for the small
problem (S1.1, S1.2, S1.7, and S1.8) where number of items is not greater than
5, the solver finds the solution faster than the GA-ODP (the Gapt is negative).
However, when there are more items (S1.3 to S1.6 and S1.9 to S1.10), the solver
needs much more time to find out the solution, and the computational time
increases quickly among the number of items. In the other hand, the computa-
tional time of the GA-ODP does not increase in the same function as that of
the solver. In that way, the GA-ODP can solve the problems with more items
in a reasonable time.

Genetic Algorithm for 3D-ODPP 213

Table 2. Computational results for S1

Problem S1.1 S1.2 S1.3 S1.4 S1.5 S1.6 S1.7 S1.8 S1.9 S1.10

items 4 5 6 7 8 9 4 5 6 7

Solver L 28 30 35 43 9 10 127 102 92 101

W 26 28 28 28 8 8 57 95 81 89

H 6 6 6 6 5 6 30 30 50 51

V 4368 5040 5880 7224 360 480 217170 290700 372600 458439

T(s) 0.5 1.9 4.2 32.1 1.6 3.4 0.3 2.2 22.1 215.2

GA-ODP L 28 30 31 25 9 10 127 102 90 106

W 26 28 16 24 8 8 57 95 85 88

H 6 6 12 12 5 6 30 30 50 50

V 4368 5040 5952 7200 360 480 217170 290700 382500 466400

T(s) 1.84 2.8 2.88 4.08 0.8 1.6 1.68 2.56 3.12 3.76

GapV 0 0 0.012 0.023 0 0 0 0 0.027 0.038

Gapt -0.73 -0.32 0.46 6.87 1.0 1.13 -0.82 -0.14 6.08 56.23

The Table 3 shows the test results of instances of S2 with more items. It
can be seen that GA-ODP outperformed the benchmark method in terms of
computational time in all instances. For the problems S2.9 and S2.10, the solver
cannot find a solution within 3600 s while the GA-ODP finds the solutions in
113.45 and 1621.39 s, respectively. For other problem instances, the computa-
tional of the GA-ODP is also shorter than that of solver with 60% to 276%
improvement.

Table 3. Computational results for S2

Problem S2.1 S2.2 S2.3 S2.4 S2.5 S2.6 S2.7 S2.8 S2.9 S2.10

items 8 9 10 11 12 13 14 15 20 50

Solver V 265650 1170288 937020 713400 630336 888272 1656200 1132560 - -

T(s) 14.1 13.99 15.78 28.22 42.12 58.04 74.06 3600 3600 3600

GA-ODP V 265650 1170288 948264 726241 642312 908702 1697605 1195983 2468840 3724660

T(s) 3.75 5.87 8.22 14.01 18.49 36.36 43.54 51.86 113.45 1621.39

GapV 0 0 0.012 0.018 0.019 0.023 0.025 0.056 - -

Gapt 2.76 1.38 0.92 1.01 1.28 0.60 0.70 68.42 - -

The test results show that the proposed algorithm has the capacity of giving
competitive solutions compared with exact method in the literature. In the other
hand, the proposed algorithm can deal with larger problem while its computa-
tional time is not exploding among with the problem size.

The computational experiments also show that for most of the case, min-
imizing the adjusted box volume can lead to the minimal actual box volume.
In terms of computational times, the proposed algorithm is not exploding while
number of items increases.

214 C. T. T. Truong et al.

5 Conclusion

This paper has proposed a new genetic algorithm to deal with the 3D-ODPP.
The proposed algorithm has shown the capability of solving the 3D-ODPP in
a reasonable computational time while the given solutions are competitive with
those given by exact methods in the literature. The proposed method has sig-
nificant advantage in terms of computational time when solving problems with
more items to be packed.

However, this work has not consider many practical constraints that often
arise in real-world scenarios, such as item supporting, package balancing, weight
distribution, etc. These constraints can be attached to the problem as the hard
constraints or as a multi-objective optimization problem. Therefore, solving the
3D-ODPP by a genetic algorithm with the consideration of practical constraints
will be an interesting subject for future researches.

References

1. Araujo, L., Ozcan, E., Atkin, J., Baumers, M., Tuck, C., Hague, R.: Toward better
build volume packing in additive manufacturing: classification of existing problems
and benchmarks (2015)

2. Chen, C., Lee, S.M., Shen, Q.: An analytical model for the container loading prob-
lem. Eur. J. Oper. Res. 80(1), 68–76 (1995)

3. Gonçalves, J., Resende, M.: A parallel multi-population genetic algorithm for a
constrained two-dimensional orthogonal packing problem. J. Comb. Optim. 22(1),
180–201 (2011)

4. Gonçalves, J., Resende, M.: A biased random key genetic algorithm for 2d and 3d
bin packing problems. Int. J. Prod. Econ. 145, 500–510 (2013)

5. Gonçalves, J.F., Resende, M.G.: A parallel multi-population biased random-key
genetic algorithm for a container loading problem. Comput. Oper. Res. 39(2),
179–190 (2012)

6. Junqueira, L., Morabito, R.: On solving three-dimensional open-dimension rectan-
gular packing problems. Eng. Optim. 49(5), 733–745 (2017)

7. de Queiroz, T., Miyazawa, F., Wakabayashi, Y., Xavier, E.: Algorithms for 3d
guillotine cutting problems: Unbounded knapsack, cutting stock and strip packing.
Comput. Oper. Res. 39, 200–212 (2012)

8. Truong, C., Amodeo, L., Yalaoui, F.: A mathematical model for three-dimensional
open dimension packing problem with product stability constraints. In: Dorronsoro,
B., Ruiz, P., de la Torre, J., Urda, D., Talbi, E.G., (eds) Optimization and Learning.
OLA 2010. Communications in Computer and Information Science, 1173, 241–251.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41913-4 20

9. Truong, C., Amodeo, L., Yalaoui, F., Hautefaye, J., Birebent, S.: A product
arrangement optimization method to reduce packaging environmental impacts.
IOP Conf. Ser. Earth. Environ. Sci. 463, 012164 (2020)

10. Tsai, J.F., Li, H.L.: A global optimization method for packing problems. Eng.
Optim. 38(6), 687–700 (2006)

11. Tsai, J.F., Wang, P.C., Lin, M.H.: A global optimization approach for solving three-
dimensional open dimension rectangular packing problems. Optimization 64(12),
2601–2618 (2015)

https://doi.org/10.1007/978-3-030-41913-4_20

Genetic Algorithm for 3D-ODPP 215

12. Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarith-
mic number of binary variables and constraints. Math. Program. 128(1–2), 49–72
(2011)

13. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and
packing problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007)

14. Zheng, J., Chien, C., Gen, M.: Multi-objective multi-population biased random-
key genetic algorithm for the 3-d container loading problem. Comput. Indust. Eng.
89, 80–87 (2015)

Formulation of a Layout-Agnostic Order
Batching Problem

Johan Oxenstierna1,2(B) , Louis Janse van Rensburg3, Jacek Malec1 ,
and Volker Krueger1

1 Department of Computer Science, Lund University, Lund, Sweden
johan.oxenstierna@cs.lth.se

2 Kairos Logic AB, Lund, Sweden
3 Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia

Abstract. To date, research on warehouse order-batching has been limited by
reliance on rigid assumptions regarding rack layouts. Although efficient opti-
mization algorithms have been provided for conventional warehouse layouts with
Manhattan style blocks of racks, they are limited in that they fail to general-
ize to unconventional layouts. This paper builds on a generalized procedure for
digitization of warehouses where racks and other obstacles are defined using two-
dimensional polygons. We extend on this digitization procedure to introduce a
layout-agnostic minisum formulation for the Order Batching Problem (OBP),
together with a sub-problem for the OBP for a single vehicle, the single batch
OBP. An algorithm which optimizes the single batch OBP iteratively until an
approximate solution to the OBP can be obtained, is discussed. The formulations
will serve as the fundament for further work on layout-agnostic OBP optimization
and generation of benchmark datasets. Experimental results for the digitization
process involving various settings are presented.

Keywords: Order Batching Problem · Vehicle Routing · Warehouse digitization

1 Introduction

Order-picking is “the process of retrieving products from storage areas in response to a
specific customer request”where “customer request” denotes a shipment order consisting
of one or several products [1]. Order-picking is accountable for as much as 55% of all
operating expenses in a warehouse and is considered an important process to optimize
[2].Order-batching is a common method with which to conduct order-picking. It means
that each picker (vehicle) is set to pick a so-called batch of one or more orders [3].
As an optimization problem order-batching is known as the Order Batching Problem
(OBP) [4] or the Joint Order Batching and Picker Routing Problem (JOBPRP) [5].
The Picker Routing Problem is a sub-problem of the OBP for one vehicle and is here
treated as equivalent to the Traveling Salesman Problem (TSP) [6]. This paper follows

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 216–226, 2021.
https://doi.org/10.1007/978-3-030-85672-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_16&domain=pdf
http://orcid.org/0000-0002-6608-9621
http://orcid.org/0000-0002-2121-1937
http://orcid.org/0000-0002-8836-8816
https://doi.org/10.1007/978-3-030-85672-4_16

Formulation of a Layout-Agnostic Order Batching Problem 217

the convention that an “OBP” can include TSP optimization without having to include
TSP optimization in the name of the problem (such as the JOBPRP) [4]. The Picker
Routing Problem is henceforth referred to as TSP and the Order Batching Problem,
which includes TSP optimization, as OBP. In the literature theOBP is usually formulated
as a specific form of the more well-known Vehicle Routing Problem (VRP) [7], with
two key amendments:

1. Order-integrity: In the OBP products in one order cannot be picked by more than
one vehicle [8] whereas in the VRP this constraint is not used (there is no notion of
a warehouse shipment “order” in the VRP) [7].

2. Obstacle-layout: We can observe two types of obstacle layouts (see Fig. 1): In the
conventional layout, racks are laid out in a Manhattan style blocks. In the unconven-
tional layout, racks or other obstacles can be freely placed (see Fig. 2. for examples).
The unconventional layout includes the case when there are no racks or obstacles at
all. All previous work on the OBP seems to require explicitly a conventional layout
[5, 8–10], while the VRP does not have this requirement.

Fig. 1. Example of a conventional layout (left) with 30 racks, 16 aisles and 3 cross-aisles.
Adding a single or a few irregular racks or other obstacles to the conventional layout renders
it unconventional.

The aim of this paper is to formulate an OBP where orders and order-integrity
are preserved, but where the layout is generalized towards any layout with or without
polygonal obstacles. This is in linewith a future research recommendation byMasae et al.
[11]: “there is a strong need for developing […] algorithms for […] non-conventional
warehouses”. Below are some reasons for why this is important:

• It allows warehouses with unconventional layouts to formulate and optimize OBP’s.
This includes warehouses divided into zones where each zone has a conventional
layout.

• It allows OBP optimization to be used as a tool with which to optimize warehouse
layouts beyond conventional layouts.

• Problems in non-warehouse domains, such as agriculture, mining, road and aerial
logistics to be explored as OBP’s. The OBP is fundamentally similar to batch pro-
cessing [12] where each process consists of constrained sub-processes (similar to
order-integrity), and the Key Performance Indicator (KPI) depends on how well the

218 J. Oxenstierna et al.

Fig. 2. Eight examples of unconventional warehouse layouts. (a) and (b) show cases where the
layout has been built to fit within a non-rectangular outer wall. (e) is the so called “fishbone”
layout.

sub-processes operatewhen they are combined. These types of broadened perspectives
on the OBP can only be pursued if it is generalized beyond conventional layouts.

The paper continues with a literature review (Sect. 2), followed by the OBP formu-
lation (Sect. 3). The formulation builds on a digitization process which generates the
distances and shortest paths between all defined locations for a given warehouse [13].
The feasibility of the digitization process is examined in experiments involving various
warehouse configurations (Sect. 4).

2 Literature Review

TheOBP is a specific formof theVehicleRoutingProblem (VRP) [7] and a specificVRP-
variant known as the Steiner-VRP [14]. A key feature of the Steiner-VRP is that multiple
visits to the same location (representing a vertex in a graph) are allowed [5, 8, 10, 14].
OBP’s and VRP’s are known to be NP-hard [15, 16]. OBP’s have been formulated using
integer programming (e.g. [14]) or set-partitioning (e.g. [4]), with a heavy reliance on
heuristics for a conventionalwarehouse layout. The conventional layout is modeled such
that obstacles (racks) are arranged with parallel “aisles” (between racks) and parallel
“cross-aisles” (between sections of racks) [9, 14]. Using such restrictive definitions for
aisles and cross-aisles makes it possible to formulate heuristics that reduce the solution
space of an OBP. Briant et al. [9], for example, use cutting planes and various relaxation
heuristics to formulate an OBP which they then propose optimality bounds for. They
use a conventional layout with 8 aisles and 3 cross-aisles, which corresponds to the size
of the warehouse shown in Fig. 2(d).

Formulation of a Layout-Agnostic Order Batching Problem 219

Fig. 3. ASteiner-VRP (left) plotted against the proposed layout-agnostic OBP in a settingwithout
any obstacles. The dots denote products and the colors orders which the products belong to. The
outlined green and red products in the middle share the same location. The difference between
the Steiner-VRP and the OBP seen here is solely due to the order-integrity constraint. The vehicle
distances may be longer in the OBP but the products which they are assigned to carry are more
associated (by order color in this example). Order-integrity is used to e.g. reduce a later time-
consuming sorting effort or to reduce pick-error i.e. the risk of the wrong product going into the
wrong order. (Color figure online)

The conventional layout appears in formulations as “number of aisles” [8], “the cross-
distance between two consecutive aisles” [4], “number of vertices in the subaisle” [14]
or “intra-aisle distance” [17]. They are used as required inputs for OBP optimization.
Some authors have called for formulations involving more layouts than the conventional
layout [11, 18–21]. Without the conventional layout, however, it is a challenging task
to effectively constrain an OBP solution space. This can for instance be exemplified in
the scenario when there are no obstacles, and each order contains a single product. In
that case the OBP is equivalent to a Steiner-VRP, and this problem has no yet proposed
optimal solution [14]. ProposedOBPoptimization algorithms for the conventional layout
include dynamic programming [9], datamining [22], clustering [10] and meta-heuristics
such as Tabu Search [23], Ant Colony Optimization [15] and Genetic Algorithms [24].
In the VRP research domain problem formulations are generally not concerned with
obstacle layouts [25]. Instead the only requirement in a VRP is usually a cost matrix,
providing the travel distance or time between all pairs of locations [7, 26]. In a VRP it
is generally assumed that this cost matrix already exists, or that it is produced in a prior
data collection process. In research on the OBP, on the other hand, plenty of attention
is usually given to how to produce the cost matrix and how to define shortest paths or
TSP’s in an environment with obstacles. This can also be seen in some papers on VRP’s
that include obstacles (e.g. [27] and [28]). Concerning where vehicles begin and end
their trips, most OBP papers assume that the origin and destination location is the same

220 J. Oxenstierna et al.

(usually this location is named depot). If this is not the case, the OBP is denoted multi-
depot or aDial-A-Ride-Problem (DARP) [21]. An example of this is when vehicles have
one location where they drop off their picked orders, and where there are one or several
locations where they can start their rides.

3 Problem Formulation

3.1 Preliminaries

The proposed OBP formulation is based on an undirected, symmetric and weighted
graph. Without obstacles (racks or other) no graph is needed since distances between all
pairs of locations in that case can be assumed to be Euclidean. Also, in the obstacle free
case, the shortest path between any two locations can be assumed to be a single edge.
With obstacles, however, shortest distances must be calculated based on the shortest
paths that circumvent obstacles, and this is achieved here using the Floyd-Warshall
graph algorithm [13, 29]. Concerning number of depots the below formulation assumes
both an origin and a destination location for vehicles is formulated (but they can share
the same coordinates).

First a set of locations is defined as L ⊂ R
+ × R

+. This set consists of different
types of locations: ls ∈ L is the starting (origin) location for all vehicles. ld ∈ L is the
destination location for all vehicles. LP ⊂ L is the set of product locations. LU ⊂ L is
a union of sets of obstacles: LU = ∪iui, i ∈ N

+ where each ui is a polygonal obstacle
with a set of corner locations ui = {

l1i , l
2
i , . . . , l

k
i

} ⊆ LU , k ∈ N
+. All of the locations

can thus be summarized as a union: L = {ls} ∪ {ld } ∪LP ∪LU . The products which are
to be collected are defined as a set P = {p1, p2, . . . , pn}, n ∈ N

+. Each product p ∈ P
has a location locp : P → LP , weight wp : P → R

+ and volume volp : P → R
+. The

unassigned orders which are to be batched are defined as a subset of all possible combi-
nations of productsO ⊂ 2P . The locations of the products in an order o ∈ O are defined
as a function loco : O → 2LP . Order weight and volume quantities are defined as
wo : O → R

+ and volo : O → R
+. w(o) = ∑

p∈o w(p), vol(o) = ∑
p∈o vol(p). Vehi-

cles are defined as M = {
(w, vol, k, id)|w, vol, id ∈ R

+, k ∈ N
+}

where w denotes
weight capacity, vol denotes volume capacity, k denotes the maximum number of orders
the vehicle can carry and id a unique identifier of a vehicle. The capacities of a single
vehicle m ∈ M are provided using functions wm : M → R

+, volm : M → R
+ and

km : M → N
+.

The digital model of the warehouse is represented as a graph with a set of vertices
V = {v1, v2, . . . , vn}, n = |L|. V consists of different types of vertices denoted as
follows: vs ∈ V is a starting (origin) vertex for vehicles, vd ∈ V is a destination vertex
for vehicles, VLP ⊂ V is a set of product location vertices and VU ⊂ V is a set of
obstacle corner vertices. The union of all vertices, V = {vs} ∪ {vd } ∪ VLP ∪ VU , are
defined similarly to the locations apart from one important difference: There may be
several products in one location and there is one vertex per product location, not one
vertex per product (this is to limit the size of the graph). To get a set of locations from a
corresponding set of vertices the function locV : V → L is used. To get a set of vertices
from a set of locations is similarly provided by the function vL : L → V .

Formulation of a Layout-Agnostic Order Batching Problem 221

The set of possible batches is defined as B ⊂ 2O, b ∈ B, b ∈ 2O, b �= ∅.
The locations of the products in the batch can be obtained using function locb :
B → 2LP . loc(b) = ∪o∈bloc(o). Similarly, the vertices in the batch are vb : B →
2VLP . v(b) = ∪o∈bv(loc(o)). Batch weight and volume quantities are defined as
wb : B → R

+ and volb : B → R
+. The number of orders in a batch is defined as

kb : B → N
+ or |b|.

The set of edges E is defined such that each edge is an ordered pair e ∈ E =
{(i, j), i, j ∈ V, i �= j} where i is an origin and j a destination vertex. E excludes any
edge which passes through the hull of any polygon in U (for details on how this can
be achieved see [13]). Edges between adjacent corners in any polygon u ∈ U are not
excluded inE. The edges and vertices are then used to construct the symmetric undirected
weighted graph G = (V,E).

A shortest paths distance matrix D : V × V → R
+ provides the minimum sum of

edge distances between any two vertices inV without crossing any hull inLU .Each edge
cost dloc(i),loc(j) ∈ D (henceforth dij) is between two vertices, i, j ∈ V, i �= j. If there
exists an unobstructed path between loc(i) and loc(j) (which does not go through any
obstacle hull) the distance is Euclidean ‖loc(i)−loc(j)‖. If obstaclesmust be bypassed to
go from loc(i) to loc(j), however, the distance is a sum of Euclidean distances following
the shortest path between them (without crossing obstacles). The Floyd-Marshall graph
algorithm is used to compute these shortest paths and distances exactly [13].

The set of vertices, including origin and destination vertex, that have to be visited to
pick a batch is defined as Vb = {vs} ∪ v(b) ∪ {vd }, b ∈ B. A function can then be built
which provides the sequence of vertex visits in a batch TSP solution (tour):

Tb : Vb → {vi}ni=1, n = |Vb|, (1)

T (b)i =
⎧
⎨

⎩

vs i = 1
vk 1 < i < n
vd i = n

(2)

where vk ∈ v(b) and i gives the sequence of visits. The distance of a batch TSP
solution (tour) is similarly provided in a function:

Db : T (b)i → R
+, i ∈ N

+, i ≤ |T (b)|. (3)

D(b) =
∑

dT (b)iT (b)j , i, j ∈ N
+, j = i + 1, i < |T (b)| (4)

Note Db could be renamed DTb
to clarify that the distance of a batch is computed

over a certain tour to visit all the products in the batch. V,E,G andD are assumed to be
produced in a digitization preprocessing step and the computational effort at this stage
is assumed to not be included in subsequent OBP optimization. Out of V,E,G and D
onlyD is needed as input for OBP optimization assuming vehicles are capable of finding
the shortest path between any two locations on their own. V,E,G are also needed for
directions on how to follow the shortest path, and if visualizations of edges are sought,
both of which are arguably important in an industrial OBP optimization service. One
example of a visualization of G and a small OBP optimization instance can be seen in
Fig. 4 below:

222 J. Oxenstierna et al.

Fig. 4. Visualization of the digital graph (G) of awarehouse, and an exampleOBPwith twoorders,
two vehicles and vehicle capacity of one order. Each blue line is an edge e ∈ E that connects
two vertices (i, j), i, j ∈ V . The white hulls are racks (obstacles) laid out in an “unconventional”
way and no edges pass through them. The orange vertices show a subset of VU and the green and
yellow vertices along the racks are the sought products in VLP (where color indicates which order
it belongs to). Note one of the products is visited by both vehicles. At the bottom the origin and
destination, vs and vd can be seen (blue and red respectively). The OBP solution is here shown as
the red and lime edges following the shortest paths between vs, the yellow or green vertices and
vd (the two tours are obtained using Tb above). (Color figure online)

3.2 General OBP Formulation

A set-partitioning formulation with an exponential number of binary variables is used to
formulate the layout-agnostic general OBP. The binary decision variable xmb is used to
indicate whether batch b ∈ B is assigned to vehicle m ∈ M (xmb = 1 if m is assigned to
b, xmb = 0 otherwise). The binary decision variable xmo is used to indicate whether order
o ∈ O is assigned to vehicle m ∈ M (xmo = 1 if m is assigned o, xmo = 0 otherwise).
The binary decision variable xml is used to indicate whether vehicle m visits location
l ∈ LP (xml = 1 if m visits l, xml = 0 otherwise).

min
∑

b∈B
D(b)xmb,m ∈ M (5)

s.t.
∑

m∈M
xmo = 1,∀o ∈ O (6)

∑

l∈loc(o)
xml ≥ xmo,∀o ∈ O,m ∈ M (7)

q(b) ≤ q(m)xmb, b ∈ B, q ∈ {w, vol, k},m ∈ M (8)

Formulation of a Layout-Agnostic Order Batching Problem 223

The optimization aim of the OBP (5) is to assign batches to vehicles such that the
sum of the distances of all batches is minimized. (6) ensures that each unassigned order is
assigned to exactly one vehicle (order-integrity). (7) ensures that every product location
in every order assigned to a vehicle is visited at least once. This inequality is what renders
the OBP a general Steiner-VRP. (8) ensures capacity of vehicles is never exceeded.

3.3 Single Batch OBP Formulation

The general OBP formulation is problematic to work with due to the large number of
possible combinations of vehicles and batches. Below is a proposal for a more tractable
problem where the aim is to find a batch for an already selected vehicle. After vehicle
m has been selected the aim is to assign as many orders as possible to it while keeping
batch distance at a minimum:

argmin
b∈B

D(b) (9)

∃q(q(b) + q(o) ≥ q(m)),∀o ∈ O, o /∈ b, q ∈ {w, vol, k} (10)

where k(o) (i.e. the number of orders in an order) is 1. The aim in the single batch
OBP (9) is to, for a given vehiclem, find a single batch bwith theminimal batch distance.
Constraints (6), (7), and (8) from the general OBP still apply (for the given vehicle).
Constraint (10) is further added to ensure that the number of orders in the batch is as
large as possible (for all unassigned orders there exists a weight, volume or number of
orders quantity which will exceed vehicle capacity if the order is added to the batch).
Without this maximization of number of orders an optimization algorithm would always
create a batch with just a single order because this would produce the minimal batch
distance. The single batchOBP formulation is a specific version of the so calledminimum
cost maximal knapsack packing problem (MCMKP) if distance is treated as “profit” and
number of orders as knapsack “weight” (according to the definition by [30]). Note in
the formulation here batch “weight” and “volume” are not included in the maximization
since this would impose decision making over the importance of the different quantities
(which one is most important to maximize while not exceeding vehicle capacity). The
intention of the single batch OBP formulation is to provide the means with which to
build an efficient single batch OBP optimization algorithm. This algorithm can then be
used to produce one batch at a time within an algorithm which optimizes the general
OBP, as proposed in Algorithm 1 below:

Algorithm1 runswith the assumption that there are always enough vehicles to choose
from, and it creates single batches until there are no more unassigned orders left. The

224 J. Oxenstierna et al.

total cost is expressed in the TSP tour distances of the batches D(b). After a batch has
been created its orders are removed from O.

4 Experimental Results

This section evaluates the computational effort and memory requirement needed to
generate the datastructures used by the formulation in Sect. 3. The only datastructure
needed for OBP optimization is the distance matrix D, but graph G, including shortest
paths between all locations are also included (Table 1).

Table 1. Experimental results for the digitization of distances and shortest paths.

Computational time and memory requirement grows fast with number of locations
in the digitization procedure. The largest instance included 6491 defined locations and
required 18 hours of CPU-time. Please note the computation only has to be run once
(and re-run if the obstacle layout is changed in the warehouse). Once the graph has
been generated, distances and shortest paths can be queried quickly by pre-allocating
them in Random Access Memory (RAM), which is why RAM usage is also a relevant
parameter. “Number of locations”, denoted as |L| inSect. 3, and the number of products in
each defined location, varies depending on precision sought in the digitization process.
For example, the warehouse denoted c9543_ARA, holds around 40000 products, but
there are only 4037 defined locations. Each location in that case represents the products
within an area of around 3 m2 on the horizontal axis and 5 shelf levels on the vertical
axis, with a total of around 10 products represented by every defined location. Clearly,
a faster digitization process would be achieved if more products were mapped to the
same locations, but then the digital model would be less precise. The tradeoff between
memory and CPU-time on the one hand, and digitization precision on the other, is an
interesting topic left for future work.

Formulation of a Layout-Agnostic Order Batching Problem 225

5 Conclusion

This paper set out to formulate an Order Batching Problem (OBP) that does not depend
on the way in which racks or other obstacles are laid out in the warehouse. A digiti-
zation procedure to generate necessary datastructures was first described. A minisum
set-partitioning formulation with an exponential number of binary variables was intro-
duced for the layout-agnostic OBP. Amore tractable version of the OBP, the single batch
OBP, was additionally formulated where the aim is to find a single batch for an already
specified vehicle. Experiments evaluating CPU-times and memory footprints for gener-
ating necessary datastructures was presented. In ensuing work new layout agnostic OBP
optimization algorithms and benchmark instances will be introduced.

References

1. de Koster, R., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order picking:
a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007). https://doi.org/10.1016/j.ejor.
2006.07.009

2. Jiang, X., Zhou, Y., Zhang, Y., Sun, L., Hu, X.: Order batching and sequencing problem under
the pick-and-sort strategy in online supermarkets. Proc. Comput. Sci. 126, 1985–1993 (2018).
https://doi.org/10.1016/j.procs.2018.07.254

3. Sharp, G.P., Gibson, D.R.: Order batching procedures. Eur. J. Oper. Res. 58, 57–67 (1992)
4. Gademann,N., van deVelde, S.: Order batching tominimize total travel time in a parallel-aisle

warehouse. IIE Trans. 37(1), 63–75 (2005). https://doi.org/10.1080/07408170590516917
5. Valle, C.A., Beasley, B.A.: Order batching using an approximation for the distance travelled

by pickers. Eur. J. Oper. Res. 284(2), 460–484 (2019)
6. Ratliff, H., Rosenthal, A.: Order-picking in a rectangular warehouse: a solvable case of the

traveling salesman problem. Oper. Res. 31, 507–521 (1983)
7. Cordeau, J.-F., Laporte, G., Savelsbergh, M., Vigo, D.: Vehicle routing. In: Transportation,

Handbooks in Operations Research and Management Science, vol. 14, pp. 195–224 (2007)
8. Bozer, Y.A., Kile, J.W.: Order batching in walk-and-pick order picking systems. Int. J. Prod.

Res. 46(7), 1887–1909 (2008). https://doi.org/10.1080/00207540600920850
9. Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A.-L., Ogier, M.: An efficient

and general approach for the joint order batching and picker routing problem. Eur. J. Oper.
Res. 285(2), 497–512 (2020). https://doi.org/10.1016/j.ejor.2020.01.059

10. Kulak, O., Sahin, Y., Taner, M.E.: Joint order batching and picker routing in single and
multiple-cross-aisle warehouses using cluster-based tabu search algorithms. Flex. Serv.
Manuf. J. 24(1), 52–80 (2012). https://doi.org/10.1007/s10696-011-9101-8

11. Masae, M., Glock, C.H., Grosse, E.H.: Order picker routing in warehouses: a systematic
literature review. Int. J. Prod. Econ. 224, 107564 (2020). https://doi.org/10.1016/j.ijpe.2019.
107564

12. Chang, P.-Y., Damodaran, P., Melouk, S.: Minimizing makespan on parallel batch processing
machines. Int. J. Prod. Res. 42(19), 4211–4220 (2004). https://doi.org/10.1080/002075404
10001711863

13. van Rensburg, L.J.: Artificial intelligence for warehouse picking optimization - an NP-hard
problem. M.Sc., Uppsala University (2019)

14. Valle, C.A., Beasley, J.E., da Cunha, A.S.: Optimally solving the joint order batching and
picker routing problem. Eur. J. Oper. Res. 262(3), 817–834 (2017). https://doi.org/10.1016/j.
ejor.2017.03.069

https://doi.org/10.1016/j.ejor.2006.07.009
https://doi.org/10.1016/j.procs.2018.07.254
https://doi.org/10.1080/07408170590516917
https://doi.org/10.1080/00207540600920850
https://doi.org/10.1016/j.ejor.2020.01.059
https://doi.org/10.1007/s10696-011-9101-8
https://doi.org/10.1016/j.ijpe.2019.107564
https://doi.org/10.1080/00207540410001711863
https://doi.org/10.1016/j.ejor.2017.03.069

226 J. Oxenstierna et al.

15. Li, J., Huang, R., Dai, J.B.: Joint optimisation of order batching and picker routing in the
online retailer’s warehouse in China. Int. J. Prod. Res. 55(2), 447–461 (2017). https://doi.org/
10.1080/00207543.2016.1187313

16. Psaraftis, H., Wen, M., Kontovas, C.: Dynamic vehicle routing problems: three decades and
counting. Networks 67, 3–31 (2015). https://doi.org/10.1002/net.21628

17. Bué, M., Cattaruzza, D., Ogier, M., Semet, F.: A two-phase approach for an integrated order
batching and picker routing problem. In: Dell’Amico, M., Gaudioso, M., Stecca, G. (eds.) A
View of Operations Research Applications in Italy. ASS, vol. 2, pp. 3–18. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25842-9_1

18. Bortolini, M., Faccio, M., Ferrari, E., Gamberi, M., Pilati, F.: Design of diagonal cross-aisle
warehouseswith class-based storage assignment strategy. Int. J. Adv.Manuf. Technol. 100(9),
2521–2536 (2019). https://doi.org/10.1007/s00170-018-2833-9

19. Fumi, A., Scarabotti, L., Schiraldi, M.: The effect of slot-code optimization in warehouse
order picking. Int. J. Bus. Manag. 5, 5–20 (2013). https://doi.org/10.5772/56803

20. Gue, K.R., Meller, R.D.: Aisle configurations for unit-load warehouses. IIE Trans. 41(3),
171–182 (2009). https://doi.org/10.1080/07408170802112726

21. Henn, S.: Algorithms for on-line order batching in an order picking warehouse. Comput.
Oper. Res. 39(11), 2549–2563 (2012). https://doi.org/10.1016/j.cor.2011.12.019

22. Chen, M.-C., Wu, H.-P.: An association-based clustering approach to order batching consid-
ering customer demand patterns. Omega 33(4), 333–343 (2005). https://doi.org/10.1016/j.
omega.2004.05.003

23. Henn, S., Wäscher, G.: Tabu search heuristics for the order batching problem in manual order
picking systems. Eur. J. Oper. Res. 222(3), 484–494 (2012). https://doi.org/10.1016/j.ejor.
2012.05.049

24. Cergibozan, Ç., Tasan, A.: Genetic algorithm based approaches to solve the order batching
problem and a case study in a distribution center. J. Intell. Manuf. 1–13 (2020). https://doi.
org/10.1007/s10845-020-01653-3

25. Braekers, K., Ramaekers, K., Nieuwenhuyse, I.V.: The vehicle routing problem: state of the
art classification and review. Comput. Ind. Eng. 99, 300–313 (2016). https://doi.org/10.1016/
j.cie.2015.12.007

26. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle routing
problems. Eur. J. Oper. Res. 225(1), 1–11 (2013). https://doi.org/10.1016/j.ejor.2012.08.015

27. Mansouri, M., Lagriffoul, F., Pecora, F.: Multi vehicle routing with nonholonomic constraints
and dense dynamic obstacles (2017). https://doi.org/10.1109/IROS.2017.8206195

28. Bochtis, D.D., Sørensen, C.G.: The vehicle routing problem in field logistics part I. Biosyst.
Eng. 104(4), 447–457 (2009). https://doi.org/10.1016/j.biosystemseng.2009.09.003

29. Santis, R.D., Montanari, R., Vignali, G., Bottani, E.: An adapted ant colony optimization
algorithm for the minimization of the travel distance of pickers in manual warehouses. Eur.
J. Oper. Res. 267(1), 120–137 (2018). https://doi.org/10.1016/j.ejor.2017.11.017

30. Furini, F., Ljubić, I., Sinnl, M.: An effective dynamic programming algorithm for the
minimum-cost maximal knapsack packing problem. Eur. J. Oper. Res. 262(2), 438–448
(2017). https://doi.org/10.1016/j.ejor.2017.03.061

https://doi.org/10.1080/00207543.2016.1187313
https://doi.org/10.1002/net.21628
https://doi.org/10.1007/978-3-030-25842-9_1
https://doi.org/10.1007/s00170-018-2833-9
https://doi.org/10.5772/56803
https://doi.org/10.1080/07408170802112726
https://doi.org/10.1016/j.cor.2011.12.019
https://doi.org/10.1016/j.omega.2004.05.003
https://doi.org/10.1016/j.ejor.2012.05.049
https://doi.org/10.1007/s10845-020-01653-3
https://doi.org/10.1016/j.cie.2015.12.007
https://doi.org/10.1016/j.ejor.2012.08.015
https://doi.org/10.1109/IROS.2017.8206195
https://doi.org/10.1016/j.biosystemseng.2009.09.003
https://doi.org/10.1016/j.ejor.2017.11.017
https://doi.org/10.1016/j.ejor.2017.03.061

Optimization

Neighborhood Enumeration in Local
Search Metaheuristics

Michiel Van Lancker(B) , Greet Vanden Berghe , and Tony Wauters

Department of Computer Science, CODeS, KU Leuven, Leuven, Belgium
michiel.vanlancker@cs.kuleuven.be

Abstract. Neighborhood enumeration is a fundamental concept in the
design of local search-based metaheuristics. It is often the only princi-
ple of intensification present in a metaheuristic and serves as the basis
for various metaheuristics. Given its importance, it is surprising that
academic reporting on enumeration strategies lacks the necessary infor-
mation to enable reproducible algorithms. One aspect of neighborhood
enumeration in particular has been under the radar of researchers: the
order in which neighbors are enumerated. In this paper, we introduce a
versatile formalism for neighborhoods which makes explicit enumeration
order and we analyse the impact of enumeration order on the outcome
of search procedures with a small set of benchmark problems.

Keywords: Enumeration order · Local search · Neighborhoods ·
Metaheuristics

1 Introduction

Metaheuristics have gained a somewhat ambiguous reputation over the years. On
the one hand they are lauded for their useful characteristics in practical applica-
tions: metaheuristics are problem-independent, general optimization algorithms.
They are not only capable of being reused over a wide variety of problems, but
many are also anytime algorithms which maintain a valid solution throughout
the entire search process. Furthermore, they can be implemented in a highly con-
figurable fashion, enabling automated algorithm design and parameter tuning.
This results in algorithm templates that can be instantiated and automatically
tailored to solve specific problems or instances. On the other hand, metaheuris-
tics research has not yet reached the scientific rigor found in other fields, with
many researchers tending to focus on algorithmic efficiency – or worse, novelty
– rather than algorithmic understanding. This has led to a large variety of algo-
rithms which differ only slightly from one another or are identical except for the
terminology used [6].

While big steps have been made – especially during the last two decades –
to transform the field into a more academic one with rigorous scientific disci-
pline built on formalized concepts, many publications continue to operate in the
sphere of problem-solving rather than algorithmic understanding. This resulted
c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 229–240, 2021.
https://doi.org/10.1007/978-3-030-85672-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_17&domain=pdf
http://orcid.org/0000-0002-2417-9928
http://orcid.org/0000-0002-0275-5568
http://orcid.org/0000-0002-1014-6340
https://doi.org/10.1007/978-3-030-85672-4_17

230 M. Van Lancker et al.

in many metaheuristics, but few insights. Nevertheless, efforts are underway to
mature the discipline. Notable examples of this are (i) the endorsement by the
Journal of Heuristics of the view that nature should no longer serve as an explicit
inspiration for “novel” metaheuristics, (ii) the recognition of the need for white-
box algorithm implementations, preferably described in a purely functional style
[8], (iii) the call for rigorous evaluation and testing practices, and (iv) the active
promotion of a view of what metaheuristics research ought to be [7].

In this paper we zoom in on one specific component of metaheuristics: the
concept of local search neighborhoods. We argue that a gap exists between com-
mon theoretical neighborhood definitions and how they are implemented in prac-
tice. In other words: we argue that neighborhoods are not implemented according
to the white-box principle, preventing algorithm reproducibility and standard-
ized evaluation.

si s
N

N(s)
select

s′
s′ = s

no

yes sf

Fig. 1. Iterative improvement consists of repeatedly applying an improving operation
to the solution.

Many optimization techniques can be considered instantiations of the itera-
tive improvement-scheme (II-scheme), the distinction between which results from
the interaction between their instantiating components. The II-scheme itself is
straightforward: starting from an incumbent solution the search process consists
of a series of iterations, where in each iteration a selection function selects an
alternative solution of better quality than the incumbent solution. If a better
solution is found, it replaces the incumbent solution. This process is repeated
until no improving solution can be found.

In local search metaheuristics, a set of alternative solutions – called the
neighborhood of the incumbent solution – is constructed by making a set of
small modifications to the incumbent solution. Most, if not all, metaheuristics
can be mapped to the II-scheme shown in Fig. 1. The difference between various
metaheuristics yet again results from the differing interactions between their con-
stituent components. Which components to consider and how to combine them
is the responsibility of the (human) algorithm designer. Design choices which
require some thought include how to generate a neighborhood of the incumbent
solution, which solution to select from the neighborhood and how to compare
solutions. Good neighborhood design is important when it comes to the efficiency
of a local search (meta)heuristic. Choosing an appropriate selection criterion is
equally important, as it strongly determines the behavior of the search and can
have a dramatic impact on runtime.

Given the importance of these two design questions, it is fair to assume
that reporting on metaheuristic algorithms should include complete information

Neighborhood Enumeration in Local Search Metaheuristics 231

concerning which choices were made and, ideally, why. However, at present the
opposite situation is the case: many publications concerning metaheuristics do
not report neighborhood specifications to the level of detail required to facil-
itate reproducibility. Most obvious is the lack of information concerning how
operators in a neighborhood are enumerated. This information is crucial if an
order-dependent selection criterion is used and, indeed, virtually all deterministic
selection criteria are order-dependent. A second, more subtle issue is the lack of
information concerning which operators are a priori included in a neighborhood.

Our contributions in this paper are threefold. First, we introduce a formal-
ism for the concept of a local search neighborhood, which makes explicit the
enumeration order. Second, we analyze the effect of enumeration order on the
outcome of a search procedure through a series of computational experiments.
Third and finally, we provide several examples of the expressiveness of the pro-
posed formalism.

The remainder of this paper is structured as follows. Beginning with the con-
cept of iterative improvement, Sect. 2 introduces neighborhoods and selection
methods and provides a brief overview of how neighborhood enumeration is com-
monly reported in metaheuristics research. In Sect. 3 we introduce a formalism
for neighborhood enumeration. Section 4 then analyzes the effect of enumeration
order on the outcome of a search procedure on a set of benchmark instances. Sev-
eral examples demonstrating the flexibility of the formalism are given in Sect. 5.
Section 6 then concludes the paper.

2 Iterative Improvement, Neighborhoods and Selection

In this section we review the relationship between iterative improvement, neigh-
borhoods and selection criteria. In doing so we identify a gap between the com-
monly used definitions for the aforementioned concepts and the components
required to implement the II-scheme, resulting in an incomplete algorithm spec-
ification. The section ends with a brief analysis of how neighborhood enumeration
is currently reported on in the academic literature.

To approach local search metaheuristics as instantiations of iterative improve-
ment, strict definitions are required for the instantiating components. Consider
the II-scheme shown in Fig. 1. It is clear that an instantiation of the scheme is
determined by three factors, namely: a neighborhood generation function N , a
neighbor selection function select and a condition to test whether or not the
search has ended. Since we are only interested in improvement methods, the
ending condition can be excluded from the analysis and thus the behavior of a
deterministic II-procedure is dependent on only two functions: the neighborhood
function N : S → P(S) and the selection function select : P(S) → S. As is clear
from its type, the neighborhood-function must map the incumbent solution to a
set of alternative solutions, resulting in the common introductory definition of a
neighborhood [2,9]:

232 M. Van Lancker et al.

Definition 1. A neighborhood function is a mapping N : S → P(S) which
assigns to each solution s ∈ S a set of solutions N(s) ⊆ S. The members of
N(s) are called neighbors of s.

In the context of local search however, a different definition is sometimes used
to more adequately capture the notion of operators and locality. A neighborhood
is defined in terms of a relation – the local search operator – on S:

Definition 2. The R-neighborhood NR(s) of solution s ∈ S is the neighborhood
defined by the relation R on S, NR(s) = {s′ ∈ S : sRs′}.

The second component of the II-scheme is a selection function, which returns
a single neighbor from the neighborhood it receives as input. We refrain from
giving a general definition of selection criteria, but note that any selection cri-
terion must be a function of type select : P(S) → S and we shall examine how
well two of the most popular selection criteria adhere to this definition.

The first criterion we will consider is the argmin selection criterion (Eq. 1),
which selects the best solution from the neighborhood. Next is the firstmin
selection criterion (Eq. 2), which selects the first improving solution from the
neighborhood. More formal definitions of both criteria are as follows:

argmin
s′∈N(s)

c(s′) := {s′ | ∀s′′ ∈ N(s) : c(s′) ≤ c(s′′)} (1)

firstmin
si∈N(s)

c(si) := {si ∈ N↓(s) | ∀sj ∈ N↓(s) : i ≤ j} (2)

where N↓(s) := {s′ ∈ N(s) | c(s′) ≤ c(s)} (3)

Note that this definition of argmin denotes a set of solutions instead of a
single solution: if multiple solutions have the best objective value, all of these
solutions will be returned. As such the definition specifies a function of type
P(S) → P(S) and a modification, a tie-breaker, is needed to acquire the required
type. Common tie-breakers are to select the first, the last or a random solution
from the set of most improving solutions. Only the first two of these tie-breakers
are deterministic and both of these are order-dependent.

For firstmin, the impact of order is obvious. To be able to return the first
improving neighbor an order must be imposed on neighborhood N . In the worst
case all solutions in the neighborhood are improving and thus each possible
ordering of N will return a different solution. It follows that the neighborhood
enumeration order must be known to achieve a full specification of a single
iteration in the II-scheme. While the effect of enumeration order on the outcome
of a single iteration is generally fairly limited, this is less so when considering the
entire II-scheme. Since every iteration starts from the outcome of the previous
iteration, the effect of an enumeration order compounds throughout the whole
search.

Given the effect of enumeration order on the outcome of a search procedure,
it is somewhat surprising that most publications do not contain any information
about it. Many publications only describe neighborhoods in terms of their local

Neighborhood Enumeration in Local Search Metaheuristics 233

search operator. A notable exception is [5], which does not only mention the use
of a random enumeration order, but also publishes the complete source code of
its implementation.

Finally, let us examine some open-source implementations of metaheuris-
tics and see how they implement neighborhood enumeration. The following two
implementations serve as an example: the Java Metaheuristics Search Frame-
work(JAMES) [4] and the suite of metaheuristic frameworks PARADISEO [3].
In JAMES it is possible for users to implement custom neighborhoods through
a neighborhood- and operator-interface, but imposing orders on neighborhood
sets through an interface is not possible and must be programmed from scratch
by the user. When querying the full neighborhood, an eagerly constructed list
of operators is returned. In PARADISEO, users can implement custom neigh-
borhoods in a similar fashion, though here order is made explicit by means of
an iterator-interface. Querying the full neighborhood returns a lazy iterator over
the neighborhood. Furthermore, neighborhoods can be linked together into new
neighborhoods.

Before continuing with the next section, we end this section with an example
of issues arising when neighborhood definitions are incomplete. We will illustrate
these issues by considering the TwoOpt-operator for the Traveling Salesperson
Problem (TSP). Let C = {c1, . . . , cn} be a set of points on the Euclidean plane
representing cities and let d : C × C → N be the distance between two cities.
Then, the goal of the TSP is to find the shortest tour which visits each city
once. Let permutation π ∈ Π represent a tour through all cities in C and let
Iπ = {1, . . . , n} be the index set of π. Element πi ∈ π, where i ∈ Iπ, represents
the ith visited city in the tour. The objective value c(π) is computed with (Eq. 4).

c(π) =
∑

i∈Iπ\{n}
d(πi, πi+1) + d(πn, π1) (4)

Applying the TwoOpt-operator to a solution for the TSP equals swapping
two edges in the tour, or equivalently, inverting a subsequence of the solution
representation π. The operator takes as input the current tour and two indices
i, j ∈ Iπ. To implement a function to generate the TwoOpt neighborhood, a
double for loop is typically used. A naive implementation would generate neigh-
bors for all possible pairs (i, j) ∈ I2π. This is however redundant: TwoOpt is a
symmetric operator, thus a more efficient implementation would only generate
neighbors for the pairs (i, j) for which i < j, as these are sufficient to cover
the whole neighborhood. Aside from redundancy, which is unwanted but not
problematic, if it is unclear which moves are included in the neighborhood and
which are not, any order-dependent selection function can cause diverging search
outcomes for two neighborhoods that “look” the same.

3 Neighborhood Enumeration

The previous section provided an introduction to how common definitions of
neighborhoods, selection criteria and local optima are not sufficiently exact from

234 M. Van Lancker et al.

an implementation perspective and how this in turn results in an incomplete
algorithm specification. As suggested by the TwoOpt-example, there are two
pieces of information missing from Definition 2: how many (i.e. which) solutions
belong to a neighborhood and the order in which these solutions are visited.
In this section we present an alternative definition of a neighborhood function,
which makes the aforementioned information concrete. The purpose of the defi-
nition being introduced is to capture the structure of a local search neighborhood
in such a way that the required implementation steps become clear.

Consider the neighborhood NM (s) ⊆ S. For all sφ ∈ NM (s) we know that we
can move from s to sφ. Let mφ : s �→ sφ be the function representing the move
from s to si. There are |NM (s)| such functions, one for each sφ ∈ NM (s). Thus
we can define the neighborhood as NM (s) = {mi(s)}i∈Φ, where Φ is an index
over NM (s). Note that if we provide a constructor function M : Φ → (S → S),
we can construct function mφ : S → S by evaluating M(φ). Given an iterator T
over Φ, the first neighbor in the neighborhood can be generated as follows: take
the first element φ from the iterator, call constructor M to construct move mφ,
and apply mφ(s). To generate subsequent neighbors, take the next element from
T and repeat the process until all elements from T have been consumed. The
neighborhood can then be defined as:

Definition 3. A neighborhood NM (s, T) is the set of solutions constructed by
applying each function mφ : S → S for each φ ∈ T to s, where T is an iterator
over (a subset of) ΦM , the parameter space of operator M : ΦM → (S → S).
As T is ordered, a neighborhood enumeration is uniquely defined by the triple
(s,M, T).

This definition results in several extra design questions concerning the param-
eter space used in a neighborhood. While neighborhood design typically only
considers the choice of operator, now two more design choices must be made:
which operator parameters should be included in a neighborhood and in what
order they should be generated. In the next two sections we take a more detailed
look at what options are available regarding these choices.

3.1 Parameter Spaces

When considering operators, we make three observations: First, the parameter
space ΦM of operator M is dependent on the solution representation. Second, it
is dependent on functional properties of its operator. Third, any subset of the
parameter space can be used to generate a neighborhood.

Consider the TSP and three operators defined in Table 1. All three operators
are quadratic and, since solution representation π is unconstrained, each operator
can take any (i, j) ∈ I2π as input, where I2π is the Cartesian product of Iπ.
However, depending on the operator, we can eliminate some elements from I2π.
For example, we know that the Swap- and TwoOpt-operators are symmetric
operators and thus parameter combinations (i, j) and (j, i) will construct the
same moves. Furthermore, for all three operators it is the case that no matter

Neighborhood Enumeration in Local Search Metaheuristics 235

the state of the incumbent solution, parameter (i, i) will construct the identity
move.

Table 1. Definitions of the Swap, 2opt and Shift operators and their respective param-
eter spaces.

Operator Parameter space Neighbor relation

Swap (i, j) ∈ I2
π : i < j π′

i = πj ∧ π′
j = πi

TwoOpt (i, j) ∈ I2
π : i < j ∀k ∈ [0, j − i] : π′

i+k = πj−k

Shift (i, j) ∈ I2
π : i �= j π′

j = πi

π′
k =

{
∀k ∈ [i + 1, j] : πk−1, if i < j

∀k ∈ [j, i − 1] : πk+1 otherwise

1

2

3

1 2 3 4 5

6 7

8 9 10

(a) Single-level indexing

1

2

3

1 2 3 4 5

1 2

1 2 3

(b) Multi-level indexing

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

(c) Parameter space

Fig. 2. The interpretation of operators and their respective parameter spaces is depen-
dent on the indexing system used.

The importance of the chosen solution representation and index set becomes
obvious when we consider more complex solution representations. Instead of per-
mutation π, consider an ordered set of permutations ρ. To implement a neigh-
borhood for this structure, we require an index set to base our parameter space
on. Looking at Fig. 2 it is clear that multiple options are available. We can use a
single-level, linear index – like we did for permutation π – where every position
in the representation is represented by a single integer: its position in the over-
all element order. Alternatively, a multi-level index can be used, where every

236 M. Van Lancker et al.

position in the representation is represented by two integers: the position of the
permutation in the set and the position within the permutation. Figure 2c illus-
trates the correspondence between the parameter spaces of a symmetric operator
using single-level and multi-level indexing. In light grey is the parameter space
based on the single-level index. In dark grey are parameters corresponding to
moves that operate inside a permutation of the set of permutations, using the
multi-level index. Similarly, in white are the parameters corresponding to inter-
permutation moves when using the multi-level index.

3.2 Enumeration Order

The final step is to impose an order on the defined parameters. Given a set
of parameters of size n, there are n! ways to impose an order. However, some
of these orders are more interesting than others. Of special interest are those
that follow particular patterns, which can usually be efficiently implemented
as an iterator which generates the parameter sequence lazily. Some of these
patterned sequences can be interpreted as prioritizing certain moves: consider
the TwoOpt operator for the TSP and assume that we are using the firstmin
selection function. If TwoOpt moves are enumerated according to the scheme
(1, 2), (1, 3), (1, 4), . . . , the beginning position of the subsequence is considered
more important than that of the end. Similarly scheme (2, 1), (3, 1), (4, 1), ...
deems the end position more important. Finally, scheme (1, 2), (2, 3), (3, 4), . . .
prioritizes moves corresponding to shorter subsequence inversions. Such semantic
distinctions can help algorithm designers gain insights into the behavior and
performance of their algorithms.

1
1

2

2

3

3

4

4

5

5

(a) I2π

1
1

2

2

3

3

4

4

5

5

(b) I2π : i �= j

1
1

2

2

3

3

4

4

5

5

(c) I2π : i < j

1
1

2

2

3

3

4

4

5

5

(d) I2π : i < j

Fig. 3. Various iterators over I2
π.

Four iterators for quadratic operators are shown in Fig. 3 which differ in
terms of their parameters included, order and direction. Figure 3a illustrates
an iterator over the full parameter space – the Cartesian product I2π – ordered

Neighborhood Enumeration in Local Search Metaheuristics 237

along the rows. Figure 3b is ordered along the columns and eliminates parameters
(i, i) ∈ I2π. Figures 3c and 3d are both ordered along the diagonals and eliminate
parameters (i, j) ∈ I2π for which i ≥ j, but they differ in the direction they take.

4 Experimental Evaluation

To evaluate the influence of enumeration order on search procedures we consider
a search procedure to be a program of type solve : S → S. This program takes
an initial solution si and returns a local optimum as final solution sf . We refer
to the change induced on si by solve as Δs = |C| − |ec| − 1, where |C| is the
number of cities and |ec| is the number of edges si and sf have in common. In a
similar fashion, we refer to the difference between the objective value of si and
sf as Δv = c(sf) − c(si) and its runtime as Δt.

Table 2. The set of algorithm design parameters considered when experimentally
evaluating enumeration order.

Constructive Select Operator Order Direction

Random Argmin Swap Column Forward

Greedy Firstmin TwoOpt Row Reverse

Rolling Shift Diagonal

To study the impact of enumeration order on the search we compare Δs,
Δv and Δt for solve procedures instantiated with different design parameters.
Table 2 lists these design parameters. As the first three columns do no influence
enumeration order, they can be considered design parameters resulting in dif-
ferent “contexts” in which the effect of enumeration order is evaluated. These
parameters serve to broaden the scope of our analysis. All of the included design
parameters have been defined in earlier sections of this paper, except for the selec-
tion function rolling. This selection function is an adapted version of firstmin.
Whereas firstmin begins from scratch in the next iteration after selecting the
first improving neighbor si = mi(s), rolling will continue enumerating from its
current position. The last two columns determine enumeration order. Three dif-
ferent iterators are used as parameter Order, each of which can be used in two
Directions, resulting in six enumeration order. Every configuration is tested
on 42 TSP instances from TSPLIB. All algorithms and experiments are imple-
mented in the Julia programming language for technical computing [1] and run
in a single-core-per-run configuration on an Intel(R) Xeon(R) CPU E5-2650 v2
@ 2.60GHz machine with 16 cores. A complete description of the experimental
setup and data is available online1.

1 https://github.com/Michiel-VL/Neighborhood Enumeration Data.

https://github.com/Michiel-VL/Neighborhood_Enumeration_Data

238 M. Van Lancker et al.

(a) Greedy (b) Random

Fig. 4. The relative difference between the final solutions should be zero if order had
no influence.

First, we examine the effect of enumeration order on the solution state. If
no such effect were to exist, then the final solutions of the six runs for a given
context and instance should be identical, independent of the enumeration order
parameters. To measure if there is an effect of enumeration order on the solution
state, we compute the mean relative pairwise distance Δsr between the set of
final solutions of a given context and instance. Figure 4 is given for each of
the 18 contexts. It is clear that the enumeration order does have an influence
on the search outcome. Even for argmin selection, which is just barely order-
dependent, Δsr is fairly large, suggesting that the effect compounds quickly over
the iterations of a search procedure.

(a) Greedy, Shift (b) Greedy, Swap (c) Greedy, TwoOpt

(d) Random, Shift (e) Random, Swap (f) Random, TwoOpt

Fig. 5. The numbers of wins for different orders and operators.

Neighborhood Enumeration in Local Search Metaheuristics 239

Figure 5 shows the relative number of wins per enumeration order for different
constructive heuristics and local search operators. While enumeration order does
seem to affect the winrate, the results are inconclusive as to which order should
be preferred for a given operator or constructive heuristic.

5 Discussion

Modeling a local search neighborhood as the combination of an operator with
its own parameter space and an iterator over this parameter space has sev-
eral advantages. First, it renders explicit the enumeration order to explore the
neighborhood, which we have shown has an impact on the search outcome. Fur-
thermore it is modular, as operator, set of parameters and order are completely
separable implementation-wise. This not only enables easy reuse of code but it is
also expressive, offering a range of neighborhood structures at virtually no cost.

It is also possible to encode structural properties of the problem in the neigh-
borhood. As shown in Sect. 3, parameter spaces based on structured index sets
can be used to distinguish between different parts of a solution representation.
By opening up a neighborhood’s structure through its parameter space, it is pos-
sible to use a wide variety of known algorithms to construct parameter spaces
and reuse these over various neighborhoods.

Given a set of neighborhood definitions, new neighborhoods can be con-
structed in an algorithmic manner. Using function composition, operators can
be composed into new operators and through the Cartesian product and disjoint
union, various enumeration structures are available. Furthermore, given that in
many programming languages iterators are denoted by a data structure that is
composable in various ways – like filtering, linking or zipping – the definition as a
whole is very expressive and enables concise descriptions of algorithms like Vari-
able Neighborhood Descent and concepts such as path relinking or higher-order
neighborhoods.

Note that defining a neighborhood as a triple (s,M, T (ΦM)) replaces the
nested for-loops in many neighborhood implementations with a single foreach-
loop. This triple separates three different neighborhood-design concerns that are
typically entangled in code: local-search operators, neighborhood size and enu-
meration order. This enables algorithm designers not only to reuse operator,
parameter space and enumeration order implementations for multiple neighbor-
hoods, but it also leads to a more descriptive way of handling neighborhoods,
enabling swift development and automated algorithm configuration.

6 Conclusion

In this paper we introduced a novel definition for neighborhoods aimed at for-
malizing their implementation. Defining local search neighborhoods in terms of
a parametrized local search operator and an iterator over the parameter space of
the operator leads to an expressive, composable definition which can be readily
used during implementation. The iterator makes explicit two algorithm design

240 M. Van Lancker et al.

considerations that are typically overlooked: in what order should neighbors be
generated and which neighbors should be included in a neighborhood. Further-
more, by basing the operator parameter spaces on the indexing mechanism of a
solution representation, significant parts of neighborhood design can be automat-
ically derived from a solution representation. Finally, many enumeration orders
can be efficiently implemented as a lazy sequence and therefore neighborhoods
can be generated lazily.

While we only considered unconstrained problem representations, it would be
interesting to look at constrained problems to examine how particular types of
constraints affect the use of the definition, as complex constraints could prevent
efficient iterator implementations. Though interesting, this primarily concerns
implementation efficiency rather than formalization and thus lay outside the
scope of this paper.

Acknowledgements. Research supported by Data-driven logistics (FWO-S007318N).
Editorial consultation provided by Luke Connolly, KU Leuven.

References

1. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to
numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/
141000671

2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and con-
ceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)

3. Cahon, S., Melab, N., Talbi, E.G.: Paradiseo: a framework for the reusable design
of parallel and distributed metaheuristics. J. Heuristics 10(3), 357–380 (2004)

4. De Beukelaer, H., Davenport, G.F., De Meyer, G., Fack, V.: JAMES: an object-
oriented java framework for discrete optimization using local search metaheuristics.
Softw. Pract. Exp. 47(6), 921–938 (2017). https://onlinelibrary.wiley.com/doi/abs/
10.1002/spe.2459

5. Mecler, J., Subramanian, A., Vidal, T.: A simple and effective hybrid genetic search
for the job sequencing and tool switching problem. Comput. Oper. Res. 127, 105153
(2020). https://doi.org/10.1016/j.cor.2020.105153, http://www.sciencedirect.com/
science/article/pii/S0305054820302707

6. Sörensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22(1),
3–18 (2015)

7. Swan, J., et al.: Towards metaheuristics “in the large” (2020). arXiv preprint:
arXiv:2011.09821

8. Swan, J., et al.: A research agenda for metaheuristic standardization (2015)
9. Talbi, E.G.: Metaheuristics: From Design To Implementation, 74. John Wiley &

Sons, Hoboken (2009)

https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2459
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2459
https://doi.org/10.1016/j.cor.2020.105153
http://www.sciencedirect.com/science/article/pii/S0305054820302707
http://www.sciencedirect.com/science/article/pii/S0305054820302707
http://arxiv.org/abs/2011.09821

Cryptographic Primitives Optimization Based
on the Concepts of the Residue Number System

and Finite Ring Neural Network

Andrei Tchernykh1,2,3(B) , Mikhail Babenko2,4 , Bernardo Pulido-Gaytan1 ,
Egor Shiryaev4 , Elena Golimblevskaia4 , Arutyun Avetisyan2 ,

Nguyen Viet Hung5 , and Jorge M. Cortés-Mendoza3

1 CICESE Research Center, Ensenada, BC, Mexico
chernykh@cicese.mx, lpulido@cicese.edu.mx

2 Ivannikov Institute for System Programming, Moscow, Russian Federation
mgbabenko@ncfu.ru, arut@ispras.ru

3 South Ural State University, Chelyabinsk, Russia
kortesmendosak@susu.ru

4 North-Caucasus Federal University, Stavropol, Russian Federation
eshiriaev@ncfu.ru

5 Le Quy Don Technical University, Hanoi, Vietnam
hungnv@lqdtu.edu.vn

Abstract. Data encryption has become a vital mechanism for data protection.
One of the main challenges and an important target for optimization is the encryp-
tion/decryption speed. In this paper, we propose techniques for speeding up the
software performance of several important cryptographic primitives based on
the Residue Number System (RNS) and Finite Ring Neural Network (FRNN).
RNS&FRNN reduces the computational complexity of operations with arbitrary-
length integers such as addition, subtraction, multiplication, division by constant,
Euclid division, and sign detection. To validate practical significance, we compare
LLVM library implementations with state-of-the-art, high-performance, portable
C++NTL library implementations. The experimental analysis shows the superior-
ity of the proposed optimization approach compared to the available approaches.
For the NIST FIPS 186-5 digital signature algorithm, the proposed solution is 85%
faster, even though the sign detection has low efficiency.

Keywords: Residue number system · Finite ring neural network · Encryption ·
High-performance · Cryptographic primitives

1 Introduction

Security becomes commonplace in all modern computing areas and affects many
fields, including casual people communication, Internet of Things (IoT), analytics, self-
learning systems, cloud computing, etc. Advanced cryptographic algorithms provide key
mechanisms for data confidentiality, integrity, authentication, non-repudiation, etc.

© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 241–253, 2021.
https://doi.org/10.1007/978-3-030-85672-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_18&domain=pdf
http://orcid.org/0000-0001-5029-5212
http://orcid.org/0000-0001-7066-0061
http://orcid.org/0000-0002-7384-7670
http://orcid.org/0000-0002-2359-1291
http://orcid.org/0000-0001-7188-8711
http://orcid.org/0000-0002-0470-9944
http://orcid.org/0000-0002-9818-4455
http://orcid.org/0000-0001-7209-8324
https://doi.org/10.1007/978-3-030-85672-4_18

242 A. Tchernykh et al.

The cryptographic primitives are usually complex in terms of computational over-
head and memory usage. They are designed based on mathematical theory, elliptic
curves, Neural Networks (NNs), etc.

The high performance of cryptographic algorithms is important for numerous rea-
sons. The principal one is the computational cost in terms of execution time. They can
be executed by conventional computers, accelerated computing servers, and specialized
hardware devices. In many cases, they are implemented as software components.

Many approaches are used to optimize encryption operations. Neuromorphic com-
puting is concernedwith emulating the neural structure and operation of the human brain.
The main goals are to create a device that can extract better features, learn, recognize,
classify, acquire new information, and even make a logical inference.

For instance, a single-chip prototype of the BrainScaleS 2, Intel Labs designed
Loihi, and IBM’s TrueNorth neuromorphic systems provide a proof-of-concept of a
spiking neural network application to learn neurons and synapses [13, 14]. They include
a hundred thousand neurons, each of which can communicate with thousands of others.

A Residue Number System (RNS) can achieve both fast computation and low power
consumption. It is parallel, adaptable, and fault-tolerant, meaning it can produce results
after components are failed [9, 10]. Theseproperties allow for the successful development
of cybersecurity systems [11–18].

RNS is a number system that represents integers by the remainders of division
by several pairwise coprimes, called moduli. The arithmetic is called multi-modular
arithmetic. It is widely used for computation with arbitrary length integers, for instance,
in cryptography. It provides faster computation than with the usual numeral systems,
even when converting between numeral systems is taken into account. By decomposing
a large integer into a set of smaller integers, a large calculation is performed as a series
of smaller calculations that can be performed independently and in parallel. The number
of parallel elementary processes equals the number of RNS moduli.

In this paper, we propose a new optimization method RNS&FRNN of operations
with arbitrary-length integers based on RNS and Finite Ring Neural Network (FRNN).

This paper is organized as follows. Section 2 describes the main concept of
modular arithmetical operations. Section 3 introduces modular logical operations.
Section 4 presents the scaling of RNS numbers by RNS base extension and introduces
RNS&FRNN optimization method. Section 5 focuses on the experimental analysis. The
conclusions and future work are discussed in the last Sect. 6.

2 Modular Arithmetical Operations

2.1 Addition, Subtraction, Multiplication, and Division

In the RNS, arithmetic operations are performed on each residue, according to the
following general formula:

X ◦ Y
RNS→

(
|x1 ◦ y1|p1, |x2 ◦ y2|p2 , . . . , |xn ◦ yn|pn

)
, (1)

where {p1, p2, . . . , pn} is a moduli set of pairwise coprime numbers. “◦” denotes the
operation of addition, subtraction, or multiplication.

Cryptographic Primitives Optimization Based on the Concepts of the RNS 243

Integer numbers X and Y are defined in RNS as tuples (x1, x2, . . . , xn) and
(y1, y2, . . . , yn), where xi represents the remainder of the division of X by pi, defined by
xi = |X |pi .

However, an additional restriction is imposed on the multiplication operation, which

follows from the Chinese Remainder Theorem (CRT): X · Y < P, where P =
n∏

i=1
pi.

Integer division can be performed by various methods [2–4]. The most reliable
algorithm is based on the scaling method. In this case, a dividend is an arbitrary number
in the range [0,P), and a divisor is any factor of P = p1 · p2 · . . . · pn.

This division is similar to dividing by numbers belonging to a certain limited set,
which is faster than dividing by an arbitrary divisor (2).

X =
⌊
X

p1

⌋
· p1 + x1, (2)

where X is the dividend, and p1 is the divisor.

The dividend is represented by the residues X
RNS→ (x1, x2, . . . , xn), and the divisor

is one of the moduli pi. xi is the residue of the division. In the first step of scaling, it is
necessary to subtract the residue from the dividend (3):

X ′ RNS→
(
x

′
1, x

′
2, . . . , x

′
n

)
=

(∣∣x1 − |xi|p1
∣∣
p1

,
∣∣x1 − |xi|p2

∣∣
p2

, . . . ,
∣∣xn − |xi|pn

∣∣
pn

)
. (3)

In the second step, the division of X ′ by pi is carried out directly by (4):

⌊
X

p1

⌋
RNS→

(
−,

∣∣∣∣x
′
1

∣∣∣p−1
1

∣∣∣
p2

∣∣∣∣
p2

, . . . ,

∣∣∣∣x
′
n

∣∣∣p−1
1

∣∣∣
pn

∣∣∣∣
pn

)
, (4)

where
∣∣∣p−1

1

∣∣∣
pi
is the multiplicative inversion of pi.

At the end of the second stage, the residue xi modulo pi remains unknown, which
can be found using the base extension (Sect. 4).

2.2 Euclidean Division

Euclidean division is carried out using the approximate division method. The essence
of the approximate method for calculating the positional characteristic to compare and
restore the positional notation of the numbers in RNS. It is based on the relative values
of the numbers to the full range determined by CRT.

We have:

X =
∣∣∣∣
∑n

i=1

P

pi

∣∣∣P−1
i

∣∣∣
pi
xi

∣∣∣∣
P
, (5)

where P =
n∏

i=1
pi, pi is the RNS moduli,

∣∣∣P−1
i

∣∣∣
pi
is the multiplicative inversion of Pi

relative to pi, Pi = P
pi
.

244 A. Tchernykh et al.

If we divide the left and right sides of (5) by the constant P corresponding to the
range of numbers, we obtain an approximate value

F(X) =
∣∣∣∣
X

P

∣∣∣∣
1

=
∣∣∣
∑n

i=1
kixi

∣∣∣
1
, (6)

where ki =
∣∣∣P−1

i

∣∣∣
pi

pi
and |x|1 is fractional part real number x.

The result is obtained after summing and discarding the integer part of the number
while maintaining the sum fractional part.

The fractional value F(X) = ∣∣X
P

∣∣
1 ∈ [0, 1) contains both information about the

value of the number and its sign [1]. If
∣∣X
P

∣∣
1 ∈ [

0, 1
2

)
, then the number x is positive, and

F(X) is equal to the value of x divided by P. Otherwise, x is a negative number, and
1−F(X) shows the relative value of the number x [5].

There are several methods of calculating F(X) [6–8]. The method of integer division
X /Y can be described by an iterative scheme, which is performed in two stages.

In the first stage, the search for the highest degree of 2i is carried out when
approximating the quotient with a binary series.

In the second stage, the approximation series is refined. To get a range larger than
P, you can choose the value P = P′·pn+1, i.e., it is necessary to extend the RNS base by
adding a redundant modulus. To avoid this base extension, a computationally complex
operation, it is necessary to compare the current results of iteration i with previous
values of iteration i − 1, and not dividends with intermediate divisors. This will satisfy
the condition 0 < Y < P − 1.

Known dividing algorithms determine the quotient based on the iteration X ′ =
X −Q1 ·D, where X and X ′ are the current and the next dividend respectively, D is the
divisor, Q1 is the quotient that is generated at each iteration from the full range of the
RNS, and is not selected from a small set of constants.

In this method, the quotient is determined based on the iteration ri = X −B2i, where
X is some divisible, B is the divisor, and 2i is a member of the approximating series of
the quotient. A comparison of the algorithms shows that the dividend in all iterations
does not change, and the divisor is multiplied by a constant, which significantly reduces
computational complexity.

The above method is easily modified in RNS using the approximate method of
comparing modular numbers. In the iterative division process on a weighted number
system, to search for the highest degree of a series of approximations of a quotient and
to refine the approximating series, the dividend is compared with doubled divisors or
with the sum of the members of the series.

The application of this idea for RNS can lead to an error in the division process.
When the dynamic range is overflowed, the recovered number goes beyond the working
range. For example, if the RNS moduli are p1 = 2, p2 = 3, p3 = 5, and p4 = 7, then
the range is P = 2 · 3 · 5 · 7 = 210.

Suppose, during recovery, we got the number X = 220. In RNS X = 220 =
(0, 1, 0, 3). The range P is exceeded by the number 10, which in the RNS is (0, 1, 0, 3).
When using relative values, the number X = 220 is expressed as X ′ = 10, which is not
true.

Cryptographic Primitives Optimization Based on the Concepts of the RNS 245

To overcome this difficulty, it is necessary to compare the current iteration values
with the previous ones in the RNS. It allows to correct determining a larger or smaller
number. The overflow of the dynamic range in the RNS can be used to make the decision
“more – less”.

In the first iteration, the dividend is compared with the divisor, and at the other
iterations, the doubled values of the divisors qiY < qi+1Y are compared. In each new
iteration, the current value is compared with the previous one.

The number of iterations required depends on the divisible and divisor values. Suc-
cessive application of this operation leads to the formation of a sequence of integers
Yq1 < ... < Yqn > Yqn+1.

Let the case Yqn > Yqn+1 be fixed at n + 1 iterations, which corresponds to an
overflow of the RNS range, i.e., Yqn+1 > P and X < Yqn+1. This completes the process
of generating interpolation of the quotient by a binary series or by a set of constants in
the RNS.

The process of approximating the quotient can be carried out by comparing only
doubled neighboring approximate divisors. An important issue when implementing the
function F() is the accuracy of the coefficients.

It should also be noted that the number of characters in the fractional part should
be twice as much as the number of characters in the RNS range. The modular num-
bers’ division based on the approximate method of comparing numbers consists of the
following steps (see Algorithm 1).

In this case, when the divisor has the minimum value and the dividend has the
maximum, the threshold �i is more than zero. It reduces the number of iterations when
dividing a large divisible and a small divisor.

Algorithm 1. Euclidean division in RNS.

Input: , , .
Output:

Step 1. We calculate the approximate values of the divisible and the divisor
 and compare them. If , then the division process ends and the quo-

tient . If , then the division process ends, and the quotient is equal
to unity. If , then a higher degree is searched for by approximating the
quotient with a binary code.

Step 2. We select the constant (the highest power of the series), multiply it by the
divisor and introduce it into the comparison scheme. The constants

, where , are previously stored in the memory.
Step 3. We find . If in the sign digit is “1”, then the corre-

sponding degree of the series is discarded, if it is “0”, then in the adder of the quotient
we add the value of a member of the series with this degree, that is .

Step 4. We find , and check the term of the series with a degree .
Step 5. We find and perform the actions in accordance with para-

graph 4.
Step 6. Similarly, we check all the remaining members of the series of the pre-zero

degree. The resulting residue .

246 A. Tchernykh et al.

3 Modular Logical Operations

The operations of determining the sign of a number and comparing numbers can be
performed using the approximate method discussed in Sect. 2.2.

The value obtained by (6) is a Positional Characteristic (PC). The determination of
the sign detection is reduced to the PC, which consists of comparing the PC with the
half value pi, where i = 1, n. Thus, the sign of the number determines the following
relation: if

∣∣X
P

∣∣
1 < 1

pi
, then the number is positive; if

∣∣X
P

∣∣
1 > 1

pi
, then the number is

negative (Algorithm 2).

Algorithm 2. Sign detection in RNS.

Input: , , , , for .
Output:

1. for to do:
2. = 0
3. for to do:
4.
5. if : return
6. else: return

The algorithm of sign detection in RNS is more complex in comparison with the
algorithm of sign detection in the binary number system.

The numbers comparison can be viewed as calculating the PC of both numbers (X
and Y) and comparing them:

if
∣∣X
P

∣∣
1−

∣∣Y
P

∣∣
1 = 0, thenX = Y ; if

∣∣X
P

∣∣
1−

∣∣Y
P

∣∣
1 > 0, thenX > Y ; if

∣∣X
P

∣∣
1−

∣∣Y
P

∣∣
1 < 0,

thenX < Y . The implementation of the number comparison can provide an output s = 0
if X = Y , if X > Y then s = 1, and s = −1 when X < Y .

4 Scaling RNS Numbers by Base Extension

Scaling anRNSnumber allows choosing a divisor that can simplify the division operation
before dividing by pi. The scaling depends on the coefficient K . The general formula for
scaling the remainder is as follows:

x
′
i
= ∣∣xki · Ki

∣∣
pi

(7)

Thus, it is required to define two variables: xk and Ki.

xki = |xi − xn+1|pi , (8)

where xn+1 = rX . rX is a rank of a number, and in the RNS, it is reduced to the
following calculations:

rX =
∑n−1

i=1 xi · Bi

P
, (9)

Cryptographic Primitives Optimization Based on the Concepts of the RNS 247

where Bi =
∣∣∣P−1

i

∣∣∣
pi
is RNS modulo. Having defined xki , we need to calculate Ki,

which is defined as Ki =
∣∣∣Kpi−2

i

∣∣∣
pi
.

The base extension of the number in the RNS for neuromorphic computing can be
effectively performed using the following procedure. The calculation of the new residue
is based on the rank of the number, which can be defined as:

rX =
∣∣∣
∑n

i=1
xiBi

∣∣∣
pn

, (10)

where Bi = Pi ·
∣∣∣P−1

i

∣∣∣
pi
is an orthogonal basis. Considering that, based on CRT and

orthogonal basis, the number X in the base system p1, p2, . . . , pn−1 can be written as

X =
∑n

i=1
aiBi − xjP (11)

Substituting (10) in (11), we obtain the following:

X =
∣∣∣∣
∑n−1

i=1
xi|Bi|pj + xj

(
pj − |P|pj

)∣∣∣∣
pj

(12)

Based on the above, for the base extension, it is necessary to calculate the rank of
the number xj in the base system p1, p2, . . . , pn−1 according to the expression (11) and
find the remainder xj by (12).

The proposed optimizationmethod for the base extension is characterized by calcula-
tions for small modulo pn. However, when compared with the CRTmethod, it simplifies
the calculation with the large modulo P, and then the calculation with pj. The residue of
the number on the base extension is obtained by optimization method RNS&FRNN of
RNS operations based on FRNN.

The constants of the expressions (11) and (12) can be calculated in advance. They
determine the network structure. FRNN presented in Fig. 1 works as follows.

Fig. 1. FRNN architecture for the modular base
extensions.

Fig. 2. The architecture of FRNN
recalculation of the base extension.

The network input receives themodular values x1, . . . , xn. In the first stage, amodular
neural network modulo pn by weighted summation of the modular values of the number

248 A. Tchernykh et al.

x1 ÷ xn with coefficients g1 ÷gn calculates the rank of the number rA. Then the modular

network modulo pj calculates the value
n−1∑
i=1

ai|Bi|pn+1 . In the second stage, xj = |X |pj is
calculated using the computational model (11).

Each set of moduli of the modular code is characterized by an orthogonal basis,
due to which, for the base extension, it is necessary to recalculate the basis B

′
i, i =

1, n + 1. To recalculate them, the input data are: orthogonal basis Bi, i = 1, n, the
moduli p1, p2, . . . , pn and the values of the extended modulo pj. Since P

′
i = P′/pi and

Pi are coprime, we can calculate the orthogonal basis of the extended system as follows

B
′
i ≡ P′

pi
·
∣∣∣P′−1

i

∣∣∣
pi

(13)

To calculate it on a NN basis, it is necessary to calculate two constants:
∣∣∣ 1
Pj

∣∣∣
pi
. and

P
′
i = P′

pi
. Thus, the NN architecture can be presented as following (Fig. 2).

The proposed algorithm has lower computational complexity compared to the known
methods. However, the method involves multiplying pre-calculated constants. These
constants are usually known in advance.

5 Experimental Results

Weperform experimental analysis on CPU 2.7 GHz Intel Core i5, RAM8GB 1867MHz
DDR3, macOS High Sierra version 10.13.6 operating system. We use NTL, a high-
performance, portable C++ library version 11.4.3, and LLVM’sOpenMP runtime library
version 10.0.0. RNS moduli are generated as a sequence of decreasing consecutive
coprime numbers starting from p1 = 32, 749, . . . , p285 = 29, 789, and L = ⌈

log2 P
⌉
.

One million random values of X and Y are generated using RandomBnd() function, an
NTL routine for generating pseudo-random numbers. Execution time T of arithmetic
and logical operations are measured in microseconds (μs). The number of threads is
four. The results are presented in Table 1.

First, we measure the relative performance of each operation independently. The
speedupofRNS&FRNNis between9,954 and25,888 for the addition, 12,348 and31,385
for the subtraction, 13,193.9 and 318,203 for multiplication, 15,353.5 and 140,290 for
division by constant, and 17,815.5 and 40,359.7 for Euclid division, varying n and L.
RNS sign detection performance is between 4.5 and 15 times lower.

Now, let us compare the performance ofNISTFIPS186–5 digital signature algorithm
with two implementations. It is based on the operation of multiplying the point of an
elliptic curve over GF(q) by a scalar, the most time-consuming operation, where q is a
prime number.

Different approaches for computing the elliptic scalar multiplication are introduced.
Well-known Montgomery approach is based on the binary method, where scalar multi-
plication is defined to be the elliptic point resulting from adding value to itself several
times. It performs addition and doubling in each iteration.

Let us evaluate the mathematical expectation of the number of additions and
doubling.

Cryptographic Primitives Optimization Based on the Concepts of the RNS 249

Table 1. Execution time of operations on NTL 11.4.3 (binary) and RNS&FRNN (RNS) (μs).

(a) Addition, Subtraction, and Multiplication

n L Addition Subtraction Multiplication

Binary RNS Binary/RNS Binary RNS Binary/RNS Binary RNS Binary/RNS

15 225 99,548 10 9,954.8 105,076 8 13,134.5 118,745 9 13,193.9

30 450 110,852 10 11,085.2 126,619 8 15,827.4 194,619 9 21,624.3

45 675 103,665 8 12,958.1 111,137 8 13,892.1 198,589 10 19,858.9

60 900 108,377 10 10,837.7 116,266 8 14,533.3 322,731 8 40,341.4

75 1,124 113,044 8 14,130.5 115,830 9 12,870 392,779 10 39,277.9

90 1,349 114,060 8 14,257.5 120,409 8 15,051.1 510,666 8 63,833.3

105 1,573 116,498 9 12,944.2 123,482 10 12,348.2 604,474 9 67,163.8

120 1,797 168,430 9 18,714.4 180,615 10 18,061.5 727,589 9 80,843.2

135 2,021 167,513 8 20,939.1 179,552 8 22,444 827,077 8 103,384.6

150 2,245 172,927 8 21,615.9 185,494 9 206,10.4 973,639 10 97,363.9

165 2,469 172,716 9 19,190.7 218,787 8 27,348.4 1,140,607 9 126,734.1

180 2,693 180,369 9 20,041.0 231,800 8 28,975 1,328,500 8 166,062.5

195 2,917 186,132 9 20,681.3 199,568 10 19,956.8 1,397,494 9 155,277.1

210 3,140 186,433 9 20,714.8 211,051 8 26,381.4 1,602,832 8 200,354.0

225 3,364 187,804 9 20,867.1 209,095 9 23,232.8 1,757,143 9 195,238.1

240 3,587 201,887 8 25,235.9 221,684 9 24,631.6 1,936,657 8 242,082.1

255 3,810 201,556 8 25,194.5 243,480 10 24,348 2,117,587 8 264,698.4

270 4,033 233,000 9 25,888.9 241,572 8 30,196.5 2,208,706 9 245,411.8

285 4,256 215,689 10 21,568.9 282,472 9 31,385.8 2,545,628 8 318,203.5

(b) Division by constant, Euclid division, and Sign detection

n L Division by constant Euclid division Sign detection

Binary RNS Binary/RNS Binary RNS Binary/RNS Binary RNS Binary/RNS

15 225 122,828 8 15,353.5 171,928 8 21,491.0 1 9 0.11

30 450 168,685 9 18,742.8 182,879 9 20,319.9 1 8 0.13

45 675 145,610 9 16,178.9 178,155 10 17,815.5 1 9 0.11

60 900 174,282 8 21,785.3 201,592 10 20,159.2 1 9 0.11

75 1,124 198,819 8 24,852.4 183,151 9 20,350.1 1 9 0.11

90 1,349 220,280 9 24,475.6 191,398 8 23,924.8 1 9 0.11

105 1,573 244,787 9 27,198.6 194,943 8 24,367.9 1 9 0.11

120 1,797 319,813 8 39,976.6 251,513 8 31,439.1 1 8 0.13

135 2,021 334,435 9 37,159.4 252,916 9 28,101.8 1 15 0.07

150 2,245 362,685 8 45,335.6 266,925 9 29,658.3 1 10 0.10

165 2,469 407,955 9 45,328.3 262,714 8 32,839.3 1 9 0.11

180 2,693 439,295 10 43,929.5 282,383 8 35,297.9 1 9 0.11

195 2,917 451,525 9 50,169.4 287,426 8 35,928.3 1 9 0.11

210 3,140 461,168 9 51,240.9 283,955 9 31,550.6 2 10 0.20

225 3,364 486,675 10 48,667.5 285,086 8 35,635.8 1 8 0.13

240 3,587 504,493 9 56,054.8 332,445 10 33,244.5 1 9 0.11

255 3,810 537,938 10 53,793.8 331,538 9 36,837.6 1 10 0.10

270 4,033 1,262,615 9 140,290.6 363,237 9 40,359.7 1 10 0.10

285 4,256 553,609 9 61,512.1 355,031 10 35,503.1 2 9 0.22

250 A. Tchernykh et al.

Doubling can be expressed as:

1

2�log2 q�
∑log2 q−1

i
i · 2i =

(⌈
log2 q

⌉ − 2
)
2�log2 q� + 2

2�log2 q� ≈ ⌈
log2 q

⌉ − 2 (14)

Addition can be expressed as:

1

2�log2 q�
∑�log2 q�

i=0
i · Ci�log2 q� =

⌈
log2 q

⌉

2�log2 q� · 2�log2 q�−1 =
⌈
log2 q

⌉

2
, (15)

where Ca
b = b!

(b−a)!·a! .
Using the projective Jacobian coordinates for the case when Z
= 1 and a = −3, it

takes 16 multiplications to add points, and 8 multiplications to double a point.
Statistical analysis of the algorithm demonstrates that the mathematical expectation

of number of modular multiplications is about
⌈
log2 q

⌉

2
· 16 + (⌈

log2 q
⌉ − 2

) · 8 = 16 log2 q − 16 (16)

The execution time of the modular multiplication can be estimated as a sum of one
multiplication and one addition; hence, TBin = (16

⌈
log2 q

⌉ − 16)(MBin + ABin), where
MBin is the execution time of the multiplications and ABin is the execution time of the
addition.

To assess the RNS implementation of the algorithm, first, we consider the RNS to
binary TC and binary to RNS TE conversion times (Table 2).

The modular multiplication of an elliptic curve point by a scalar in RNS requires
one multiplication, one addition, n(n − 1)/4 divisions by a constant, and one operation
for determining the sign of a number, where n is the number of moduli.

The execution time of the RNS implementation can be estimated as

TRNS = (
16

⌈
log2 q

⌉
q − 16

)(
MRNS + ARNS + n(n − 1)

4
DCRNS + SRNS

)
+ 2(TC + TE),

where MRNS is the execution time of multiplication of two numbers in RNS, ARNS

is the execution time of addition in RNS, DCRNS is the execution time of the division
by constant in RNS, SRNS is the execution time of the sign detection, TC is the time of
binary to RNS conversion, and TE is the time of RNS to binary conversion.

Thus, for q = 2511 − 1, n = 75, TBin and TRNS are estimated, in the
worst case, as TBin = (16 · 511 − 16) · (392, 779 + 113, 044) = 4, 127, 515,
680, TRNS = (16 · 511 − 16) · (10 + 8 + 75 · (75 − 1)/4 · 8 + 9) +
2 · (384, 687, 100 + 685, 935, 110) = 2, 232, 040, 738. Therefore, TBin/TRNS ≈ 1.85
times.

Cryptographic Primitives Optimization Based on the Concepts of the RNS 251

Table 2. Time of Binary to RNS (TC) and RNS to Binary (TE) conversion (μs).

n L TC TE

15 225 43,685,000 58,829,340

30 450 109,762,100 152,454,240

45 675 192,411,600 290,528,220

60 900 309,272,700 464,671,140

75 1,124 384,687,100 685,935,110

90 1,349 484,623,300 952,097,660

105 1,573 595,553,500 1,251,265,520

120 1,797 713,753,000 1,604,888,270

135 2,021 815,894,900 1,995,859,970

150 2,245 944,469,700 2,440,457,340

165 2,469 1,085,540,400 2,962,540,610

180 2,693 1,264,208,500 3,524,798,450

195 2,917 1,424,684,400 4,180,765,530

210 3,140 1,648,081,600 4,692,365,130

225 3,364 1,713,357,600 5,268,070,980

240 3,587 1,882,562,600 6,117,228,220

255 3,810 2,049,367,600 6,824,793,510

270 4,033 2,242,481,300 7,592,480,470

285 4,256 2,469,894,800 8,680,054,900

6 Conclusion

We propose an optimization of six encryption operations: addition, subtraction, multipli-
cation, division by constant, Euclid division, and sign detection with integers of arbitrary
length based on modular arithmetic and finite ring neural networks.

We show that they provide significant advantages in comparisonwith long arithmetic
implemented in NTL. The higher benefits of RNS&FRNN are derived for the multipli-
cation of large numbers. RNS shares them into smaller numbers that can be performed
independently and in parallel without carries between them. We demonstrate that the
proposed solution is 85% faster than NIST FIPS 186-5 digital signature algorithm, even,
calculation of the sign detection operation is inefficient.

The structure of the non-positional operations of RNS, fault tolerance, and paral-
lelism can be well suited for neuromorphic systems. However, the proposed approach
does not provide an efficient implementation of logical operations, such as comparison,
number sign determination, etc., which we will study in future work.

252 A. Tchernykh et al.

Acknowledgments. This work was partially supported by theMinistry of Education and Science
of the Russian Federation (Project 075–15-2020–788).

References

1. Krasnobayev, V.A., Yanko, A.S., Koshman, S.A.: A Method for arithmetic comparison of
data represented in a residue number system. Cybern. Syst. Anal. 52(1), 145–150 (2016).
https://doi.org/10.1007/s10559-016-9809-2

2. Ruchkin, V., Romanchuk, V., Sulitsa, R.: Clustering, restorability and designing of embedded
computer systems based on neuroprocessors. In: 2013 2nd Mediterranean Conference on
Embedded Computing (MECO), pp. 58–61 (2013). https://doi.org/10.1109/MECO.2013.660
1318

3. Vinogradov, I.M.: Elements of Number Theory. Courier Dover Publications (2016)
4. Yu, D.-J., Hu, J., Tang, Z.-M., Shen, H.-B., Yang, J., Yang, J.-Y.: Improving protein-ATP bind-

ing residues prediction by boosting SVMs with random under-sampling. Neurocomputing
104, 180–190 (2013). https://doi.org/10.1016/j.neucom.2012.10.012

5. Hu, J., Li, Y., Yan, W.-X., Yang, J.-Y., Shen, H.-B., Yu, D.-J.: KNN-based dynamic query-
driven sample rescaling strategy for class imbalance learning. Neurocomputing 191, 363–373
(2016). https://doi.org/10.1016/j.neucom.2016.01.043

6. Babenko,M., et al.: Positional characteristics for efficient number comparison over the homo-
morphic encryption. Program. Comput. Softw. 45(8), 532–543 (2019). https://doi.org/10.
1134/S0361768819080115

7. Tchernykh, A., et al.: Scalable data storage design for non-stationary IoT environment with
adaptive security and reliability. IEEE Internet Things J. 7(10), 10171–10188 (2020). https://
doi.org/10.1109/JIOT.2020.2981276

8. Burgess, N.: Scaling an RNS number using the core function. In: Proceedings 2003 16th IEEE
Symposium on Computer Arithmetic, pp. 262–269 (2003). https://doi.org/10.1109/ARITH.
2003.1207687

9. Tchernykh, A., et al.: Performance evaluation of secret sharing schemes with data recovery in
secured and reliable heterogeneous multi-cloud storage. Cluster Comput. 22(4), 1173–1185
(2019). https://doi.org/10.1007/s10586-018-02896-9

10. Miranda-López, V., Tchernykh, A., Babenko,M., Avetisyan, A., Toporkov, V., Drozdov. A.Y.:
2Lbp-RRNS: two-levels RRNS with backpropagation for increased reliability and privacy-
preserving of secure multi-clouds data storage. IEEE Access 8, 199424–199439 (2020).
https://doi.org/10.1109/ACCESS.2020.3032655

11. Babenko, M., Shiriaev, E., Tchernykh, A., Golimblevskaia, E.: Neural network method for
base extension in residue number system. In: Bychkov, I., Tchernykh, A., Feoktistov, A.
(eds.) ICCS-DE2020- 2nd InternationalWorkshop on Information, Computation, andControl
Systems for Distributed Environments, Irkutsk, Russia, 6–7 July 2020, vol. 2638, pp. 9–22.
CEUR-WS (2020). http://ceur-ws.org/Vol-2638/paper1.pdf

12. Babenko, M., Tchernykh, A., Golimblevskaia, E., Hung, N.V., Chaurasiya, V.K.: Computa-
tionally secure threshold secret sharing scheme with minimal redundancy. In: Bychkov, I.,
Tchernykh, A., Feoktistov, A. (eds.) ICCS-DE 2020- 2nd International Workshop on Infor-
mation, Computation, and Control Systems for Distributed Environments, Irkutsk, Russia,
6–7 July 2020, vol. 2638, pp. 23–32. CEUR-WS (2020). http://ceur-ws.org/Vol-2638/paper2.
pdf

13. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38(1), 82–99 (2018). https://doi.org/10.1109/MM.2018.112130359

https://doi.org/10.1007/s10559-016-9809-2
https://doi.org/10.1109/MECO.2013.6601318
https://doi.org/10.1016/j.neucom.2012.10.012
https://doi.org/10.1016/j.neucom.2016.01.043
https://doi.org/10.1134/S0361768819080115
https://doi.org/10.1109/JIOT.2020.2981276
https://doi.org/10.1109/ARITH.2003.1207687
https://doi.org/10.1007/s10586-018-02896-9
https://doi.org/10.1109/ACCESS.2020.3032655
http://ceur-ws.org/Vol-2638/paper1.pdf
http://ceur-ws.org/Vol-2638/paper2.pdf
https://doi.org/10.1109/MM.2018.112130359

Cryptographic Primitives Optimization Based on the Concepts of the RNS 253

14. DeBole, M.V., et al.: TrueNorth: accelerating from zero to 64 million neurons in 10 years.
Computer 52(5), 20–29 (2019). https://doi.org/10.1109/MC.2019.2903009.

15. Babenko, M., et al.: RNS number comparator based on a modified diagonal function.
Electronics 9, 1784 (2020). https://doi.org/10.3390/electronics9111784

16. Miranda-Lopez, V., et al.: Weighted two-levels secret sharing scheme for multi-clouds data
storage with increased reliability. In: 2019 International Conference on High Performance
Computing & Simulation (HPCS), pp. 915–922. IEEE (2019). https://doi.org/10.1109/HPC
S48598.2019.9188057

17. Babenko,M., Deryabin,M., Tchernykh,A.: The accuracy estimation of the interval-positional
characteristic in residue number system. In: 2019 International Conference on Engineering
and Telecommunication (EnT), pp. 1–5. IEEE (2019). https://doi.org/10.1109/EnT47717.
2019.9030549

18. Kucherov, N., Babenko,M., Tchernykh,A., Kuchukov,V., Vashchenko, I.: Increasing reliabil-
ity and fault tolerance of a secure distributed cloud storage. In: The InternationalWorkshop on
Information, Computation, and Control Systems for Distributed Environments (2020) https://
doi.org/10.47350/ICCS-DE.2020.16.

https://doi.org/10.1109/MC.2019.2903009
https://doi.org/10.3390/electronics9111784
https://doi.org/10.1109/HPCS48598.2019.9188057
https://doi.org/10.1109/EnT47717.2019.9030549
https://doi.org/10.47350/ICCS-DE.2020.16

Investigating Overlapped Strategies
to Solve Overlapping Problems

in a Cooperative Co-evolutionary
Framework

Julien Blanchard1(B) , Charlotte Beauthier2 , and Timoteo Carletti1

1 Department of Mathematics and naXys institute, University of Namur,
Namur, Belgium

{julien.blanchard,timoteo.carletti}@unamur.be
2 Cenaero Research Center, Gosselies, Belgium

charlotte.beauthier@cenaero.be

Abstract. Cooperative co-evolution is recognized as an effective app-
roach for solving large-scale optimization problems. It breaks down the
problem dimensionality by splitting a large-scale problem into ones focus-
ing on a smaller number of variables. This approach is successful when
the studied problem is decomposable. However, many practical optimiza-
tion problems can not be split into disjoint components. Most of them
can be seen as interconnected components that share some variables
with other ones. Such problems composed of parts that overlap each
other are called overlapping problems. This paper proposes a modified
cooperative co-evolutionary framework allowing to deal with non-disjoint
subproblems in order to decompose and optimize overlapping problems
efficiently. The proposed algorithm performs a new decomposition based
on differential grouping to detect overlapping variables. A new coop-
eration strategy is also introduced to manage variables shared among
several components. The performance of the new overlapped framework
is assessed on large-scale overlapping benchmark problems derived from
the CEC’2013 benchmark suite and compared with a state-of-the-art
non-overlapped framework designed to tackle overlapping problems.

Keywords: Large-scale global optimization · Evolutionary
algorithms · Cooperative co-evolution · Overlapping problem

1 Introduction

Nowadays, many real-world optimization problems arising in engineering and
sciences deal with a large number of variables [7]. They present challenging

The present research benefited from computational resources made available on the
Tier-1 supercomputer of the Fedération Wallonie-Bruxelles, infrastructure funded by
the Walloon Region under the grant agreement n◦1117545.

c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 254–266, 2021.
https://doi.org/10.1007/978-3-030-85672-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_19&domain=pdf
http://orcid.org/0000-0002-3423-4521
http://orcid.org/0000-0001-6413-0080
http://orcid.org/0000-0003-2596-4503
https://doi.org/10.1007/978-3-030-85672-4_19

Overlapped Strategies to Solve Overlapping Problems in a CC Framework 255

characteristics making them hard to efficiently optimize. They are commonly
solved by means of metaheuristics such as evolutionary algorithms or swarm
intelligence [3]. However, the standard metaheuristics are not suitable to solve
such large-scale global optimization (LSGO) problems because they suffer from
the curse of dimensionality, i.e. their performance deteriorates when increas-
ing the number of variables [1]. In this context, new approaches relying on the
”divide-and-conquer strategy” have been proposed. They divide the initial LSGO
problem into smaller ones which focus on smaller groups of variables. The lat-
ter are optimized in a round-robin fashion with a standard metaheuristic with
the aim of producing the solution of the initial problem. This framework has
been introduced by Potter and De Jong [9]. They designed a cooperative co-
evolutionary (CC) approach to optimize LGSO problems by means of a genetic
algorithm. Following this promising approach, the CC strategy have been embed-
ded in many other metaheuristics such as evolutionary programming [6], particle
swarm optimization [2] and differential evolution [11].

In any case, the efficiency of this approach is highly dependent on the per-
formed decomposition. The latter depends on the characteristics of the objective
function in terms of separability. A function is separable if the influence of any
variable on the function value depends only on itself [18]. In this case, any decom-
position that reduces the dimensionality is efficient in the CC framework. Other
functions can be classified as additively separable [8] if they can be written as:

f(x) =
m∑

i=1

fi(xi), (1)

where xi (i = 1, . . . ,m) are mutually exclusive ki-dimensional decision vectors
of fi, x is the n-dimensional decision vector of the function f and m is the
number of independent components such that k1 + · · ·+km = n. In this way, the
influence, of any variable in a component, on the function value depends only on
other variables of the same component. Therefore, an ideal decomposition would
divide the initial problem such that each subproblem focuses on one component
given in Equation (1). The main challenge is thus to identify these components.
It can be done by using the differential grouping strategy [8,16].

However, separable and partially separable problems are not representative
of most LSGO problems arising in real-world optimization applications. Most of
them incorporate several components that usually interact with each other. For
example, the supply chain design and optimization [4] involves several compo-
nents such as suppliers, manufacturers and distributors that interact with each
other through a variety of transportation and delivery methods. Such intercon-
nected problems are often referred as overlapping problems [17] because they are
composed of parts that overlap others. In other words, each component involves
multiple variables and some of them are shared with one or several other compo-
nents. This kind of function is very challenging and standard CC algorithms fail
to optimize them efficiently. Indeed, most of them rely either on random group-
ing [18] or on intelligent decomposition methods based on interaction identifica-
tion [8]. The former simply completes several random decompositions in order

256 J. Blanchard et al.

to try catching linked variables in a same component but does not explicitly
consider the interaction structure. The latter assigns all the linked variables in a
single group and therefore does not reduce the dimensionality when dealing with
overlapping problems. Two exceptions are the decomposition based on spectral
clustering introduced in [5] and the decomposition specially designed for over-
lapping problems introduced in [15]. The latter breaks the linkage at shared
variables between components in order to reduce the problem dimensionality,
even for overlapping problems. It will be further discussed in Sect. 2.2.

In addition to the above methods, other CC strategies considering subsets
that overlap each other have also received some attention. They raise some ques-
tions related to the exchange of information between components and related to
the construction of the complete n-dimensional solution. In [14], non separable
problems are decomposed into overlapping subproblems on the basis of a sta-
tistical variable interdependence learning scheme. The exchange of information
is ensured by a periodically updated global solution (built on the basis of sub-
problem cores) used as shared memory. In [13], an overlapping decomposition
covering the set of variables is predetermined. Compete and sharing strategies
are implemented to choose the representative variables and share them among
components. In [12], overlapping is not used to facilitate the decomposition but
to overlap influential variables and evolves them in several components.

Some of these algorithms claim to tackle overlapping problems but do it with
non-overlapped strategies [5,15]. Others, although based on overlapped strate-
gies, do not explicitly claim to be able to tackle overlapping problems [12–14].
One may obviously think that the best way to optimize them in a CC framework
is to do it with overlapped strategies. Nevertheless, to the best of the authors’
knowledge, there are no research studies in that way. This paper introduces such
a strategy and compare it with the non-overlapped approach specially designed
for overlapping problems in [15]. The paper is organized as follows: Sect. 2 briefly
describes the CC framework and the recursive differential grouping. Section 3
introduces the new strategy to split LSGO problems into overlapping subprob-
lems and the overlapped CC framework that manages the exchange of informa-
tion between subproblems. Experimental settings and results analysis are given
in Sect. 4. Finally, findings and perspectives are discussed in Sect. 5.

2 Related Work

2.1 Cooperative Co-evolutionary Algorithms

The first attempt to optimize a LSGO problem with an evolutionary algo-
rithm by means of a divide-and-conquer strategy was presented in 1994 [9].
Since then, this new approach, called cooperative co-evolution, has been widely
studied [7]. The classical structure of this framework is described as follows:

1. Decomposition: Split the n-dimensional decision vector into some smaller dis-
joint subcomponents;

Overlapped Strategies to Solve Overlapping Problems in a CC Framework 257

2. Optimization: Optimize each subcomponent with a standard evolutionary
algorithm for a fixed number of iterations in a round-robin strategy;

3. Combination: Merge the solutions from each subcomponent to build the n-
dimensional solution.

Throughout the optimization stage, the individuals in each subcomponent need
to be evaluated with the n-dimensional function. For this purpose, they are
completed with the variables of the context vector. The latter is a n-dimensional
vector that contains information from all the subcomponents. Typically, it is
composed of the variables of the current best solutions in each subcomponent
and it is updated each time a better solution is found in a subcomponent.

2.2 Recursive Differential Grouping

In a CC framework, the decomposition should ideally be performed in such a
way that there is no interaction between variables from different subcompo-
nents. For additively separable problems, it can be uncovered with the Differ-
ential Grouping (DG) strategy [8,16]. In particular, the Recursive Differential
Grouping (RDG) that benefits, as stated by its name, from recursive interaction
detections between subsets of variables, relies on the following result [15,16]:

Theorem 1. Let f : R
n → R̄ be an objective function; X1 and X2 be two

mutually exclusive subsets of decision variables: X1 ∩ X2 = ∅. If there exist a
candidate solution x� and sub-vectors a1, a2, b1, b2 such that

f1,1(x�) − f2,1(x�) �= f1,2(x�) − f2,2(x�) (2)

where, fi,j(x�) is the function value obtained when replacing, in x�, the variables
of X1 with ai and the variables of X2 with bj (i, j = 1, 2), then there is some
interaction between the decision variables in X1 and X2.

In practice, all the variables of x�, a1 and b1 are set to the lower bounds l
of the search space. The variables of a2 are set to the upper bounds u and
those of b2 are set to the mean m̄ of the lower bounds and the upper bounds.
Furthermore, equation (2) is not directly employed since the inequality may be
the results of computational round-off errors instead of interaction detection, as
expected. Thus, the following quantities are computed

Δ1 = f1,1(x�) − f2,1(x�), Δ2 = f1,2(x�) − f2,2(x�), λ = |Δ1 − Δ2| (3)

and some interaction is detected when λ is greater than a threshold ε (see [16]
for further details). Eventually, the success of the RDG algorithm relies on the
recursive use of Theorem 1 to identify variables in X2 that interact with those
of X1. Indeed, if any interaction between X1 and X2 is detected using Equa-
tion (3), the set X2 is divided into two nearly equally-sized groups G1 and G2.
Then, the interaction between X1 and G1 and X2 and G2 is checked. The process
is repeated until all single variables in X2 that interact with X1 are identified.

258 J. Blanchard et al.

In brief, the complete RDG algorithm can be presented as follows: (1) deter-
mine all the variables that interact with a selected variable xi using the above
recursive strategy and put them in a set X1; (2) identify variables that interact
with X1 and add them to X1, repeat the process until no more variable is added
to X1; (3) select another variable that is yet to be classified and return to step (1).
Note that this approach would set all the variables of an overlapping problem
into a single group. In [15], this issue was solved by slightly modifying the step
(2) by imposing a condition on the size of X1. In this new approach called RDG3,
the step (2) is repeated: (a) until no more variable is added to X1 or (b) until X1

contains more than εn variables, where εn is fixed to a predetermined value.

3 Proposed Algorithm

The newly proposed algorithm aims to tackle LSGO overlapping problems within
an overlapped CC framework. The fact that it has to deal with subcomponents
that share several variables raises new challenges. The first one is to perform an
accurate decomposition that detects overlapping variables efficiently and share
them among several subcomponents. It can be achieved by using the modi-
fied approach of the RDG strategy presented in Sect. 3.1. The second challenge
concerns the management of overlapping variables during the optimization, in
particular for function evaluations. It will be discussed in Sect. 3.2.

3.1 Overlapped Recursive Differential Grouping

The main idea of the newly proposed decomposition strategy is to relax
the grouping by identifying variables that make the link between several compo-
nents in interconnected problems and share them among these components. For
example, in the interaction graph presented in Fig. 1, three components can be
identified:

S1 = {x1, x2, x3, x4}, S2 = {x3, x4, x5, x6, x7} and S3 = {x7, x8, x9}. (4)

In each of them, interaction between variables are plentiful while there is no
direct interaction between variables from distinct components, i.e. ∀ i, j(i �= j),
k, l(k �= l)such that xi ∈ Sk\Sl and xj ∈ Sl\Sk, xi does not interact with xj .
Using the RDG3 strategy to decompose such a problem will break the linkage
at shared variables and will lead to the decomposition illustrated in Fig. 1a. The
latter might not be the optimal one since x3 and x4 (resp. x7) are not optimized
with x5, x6 and x7 (resp. x8 and x9) while they are strongly connected. The new
strategy, called Overlapped RDG (ORDG), is aimed to allow some overlapping
between subcomponents to prevent from breaking these important linkages. It
will produce the decomposition proposed in Fig. 1b.

The ORDG strategy is presented in Algorithm 1. It is very closed to the
RDG algorithm except for the instructions in the ”else” statement at line 12.
In particular, the instruction at line 5 recursively identifies variables in X2 that
interact with X1. They are added to X1 to constitute the set X�

1 (see Algo-
rithm 2).

Overlapped Strategies to Solve Overlapping Problems in a CC Framework 259

(a) RDG3 (b) Overlapped RDG

Fig. 1. The two obtained decompositions for an overlapping problem using RDG3 and
Overlapped RDG strategies respectively.

Algorithm 1: Overlapped Recursive Differential Grouping
1 seps = {}, nonseps = {};
2 Set all the variables of xl to the lower bounds, compute f = f(xl) ;

3 X1 = {x1}, X2 = {x2, . . . , xn} ;
4 while X2 �= {} do
5 X�

1 =R Inter(X1, X2, f , f) ;

6 if |X�
1 | = |X1|

// For RDG3, the if would be: if |X�
1 | = |X1| or |X�

1 | > εn

7 then
8 if |X1| = 1 then seps = seps ∪ X1 ;
9 else nonseps = nonseps ∪ X1 ;

10 X1 = {xj} s.t. j ≤ i ∀xi ∈ X2;
11 X2 = X2 \ {xj} ;

12 else
// For RDG3, the else statement would only contains the

following instructions: X1 = X�
1, X2 = X2 \ X1 ;

13 if |X1| = 1 then
14 X1 = X�

1 , X2 = X2 \ X1 ;
15 else
16 X��

1 = L inter(X1, X2, f , f) ;

17 nonseps = nonseps ∪ X1 ;
18 X1 = X�

1 \ X1 ∪ X��
1 ;

19 X2 = X2 \ X�
1 ;

20 if |X1| = 1 then seps = seps ∪ X1 ;
21 else nonseps = nonseps ∪ X1 ;
22 return seps and nonseps;

– If no interaction has been identified, i.e. if |X�
1 | = |X1|, the X1 set is recog-

nized as a nonseparable subset if it contains several variables, otherwise the
only variable in X1 is identified as a separable one (lines 8-9). The process
moves on to the next variable that is yet to be classified (lines 10-11).

260 J. Blanchard et al.

– Otherwise, some interaction has been identified between X1 and X2. The
variables in X2 responsible of the interaction have been identified during the
recursive detection at line 5 but at this stage, the variables in X1 responsible
of the interaction have not yet been determined (and they should be to per-
form the overlapped decomposition). If X1 contains only one variable, this is
the one responsible of the interaction. In this case, the algorithm moves on to
the next iteration while making the same update that for the RDG3 strategy
(lines 13-14). Otherwise (i.e. if X1 contains several variables), those interact-
ing with X2 are identified at line 16 using a recursive mechanism again (see
Algorithm 3) and the update described in lines 17-19 produces the desired
overlapped decomposition.

Algorithm 2: R Inter(X1,X2, f , f)

1 if Interact(X1, X2, f , f) then

2 if |X2| = 1 then
3 X1 = X1 ∪ X2 ;

4 else
5 Split X2 into equally-sized

groups G1, G2 ;
6 X1

1 =R Inter(X1, G1, f , f);

7 X2
1 =R Inter(X1, G2, f , f);

8 X1 = X1
1 ∪ X2

1 ;

9 return X1 ;

Algorithm 3: L Inter(X1,X2, f , f)

1 if Interact(X1, X2, f , f) then

2 if |X1| = 1 then
3 return X1 ;

4 else
5 Split X1 into equally-sized

groups G1, G2 ;
6 X1

1 =L Inter(G1, X2, f , f);

7 X2
1 =L Inter(G2, X2, f , f);

8 X1 = X1
1 ∪ X2

1 ;

9 return X1 ;

Note that the main difference between the R inter and the L inter functions
lies in the fact that the former focuses on the set X2 while the latter works on X1.
Furthermore, the two functions also differ in line 3 (see Algorithms 2 and 3) since
the R inter function adds variables from X2 that interact with X1 to X1 while
the L inter function only returns variables from X1 that interact with X2. For
both algorithms, the Interact function at line 1 relies on Theorem 1.

3.2 Overlapped CC Framework

The main layout of the overlapped CC framework is similar to the standard CC
presented in Sect. 2.1 with the major exception that it is designed to detect and
manage overlapping variables efficiently. For this purpose, the decomposition
step performs the ORDG algorithm presented in the previous section.

The optimization still consists in iteratively evolving each subcomponent in
a round-robin strategy. However, in this step, the cooperation between subprob-
lems through the sharing of best solutions in the context vector needs to be
revised. Since subcomponents overlap, a variable xi belonging to one compo-
nent Sk may also appear in another component Sl. This introduces the issue of
which value of xi has to be shared in the context vector. In a standard framework
(i.e. without any overlapping), this value is the one of the variable xi of the best

Overlapped Strategies to Solve Overlapping Problems in a CC Framework 261

individual in the (only) subpopulation containing xi (see Fig. 2a for an illustra-
tive example). For the overlapped framework, this idea is extended: the value of
xi in the context vector is the one of the best individual among all the individu-
als in the two subpopulations focusing on xi (or in the only subpopulation if xi

is not overlapped). Such an arrangement is illustrated in Fig. 2b.
Note that, in order to choose the best individual within two different sub-

populations, the function value of each individual used for comparison is the
one that has been computed during the optimization of the corresponding sub-
components in the round-robin fashion loop. In this process, individuals in each
subcomponent are completed with the variables of the context vector in order
to be evaluated. The latter is updated each time a better solution is reached.

(a) Standard CC (b) Overlapped CC

Fig. 2. Management of the context vector within a standard and an overlapped CC
framework. The illustrative example relies on the interaction structure presented in
Fig. 1. Dashed, dotted and solid lines represent individuals from subpopulations 1, 2
and 3 respectively. The context vector is built with the variables values of the best
individual in each subpopulation.

4 Experimental Settings and Results

The performance of the new overlapped framework is assessed on large-scale
overlapping benchmark problems derived from the CEC’2013 suite [17] and com-
pared with the standard CC framework based on RDG3 decomposition [15]. The
benchmark set contains 6 functions. Two of them, F5 and F6, are directly taken
from [17]: F6 is the 1000-d shifted Rosenbrock function and F5 is the 905-d shifted
Schwefel’s function with conflicting1 overlapping subcomponents. The four other
functions, F1 to F4, are obtained by replacing the Schwefel basis function in F5

by Ackley, Elliptic, Rastrigin and Rosenbrock functions respectively. Therefore,
functions F1 to F5 contain 20 overlapping subcomponents that share 5 variables
1 Note that the function f13 in [17] also contains overlapping subcomponents but it has

not been included in the benchmark set because their overlapping subcomponents are
conforming. It means that they have the same optimum value with respect to both
subcomponent functions. It can be simply optimized in a standard CC framework.

262 J. Blanchard et al.

with adjacent subcomponents. The F6 function (Rosenbrock) can be seen as
containing 999 subcomponents sharing one variable with adjacent ones.

In order to evaluate the decomposition effects of the newly proposed frame-
work on overlapping problems, the RDG3 and ORDG strategies are used to
decompose the benchmark problems presented above. For the RDG3, two dif-
ferent threshold values εn = 50 and εn = 0 are tested. The first value is the
one used to study optimization results in [15] while the second value aims to
identify as many components as possible and systematically cut the overlapping
at shared variables. The number of components generated (k), the sum of the
number of variables in each group (r) and the number of function evaluations
computed (FEs) are reported in Table 1.

Table 1. Decomposition results of RDG3 (with εn = 50 and εn = 0) and ORDG
strategies. k is the number of components generated, r is the sum of the number of
variables in each group and FEs is the number of function evaluations.

Fun RDG3 (εn = 50) RDG3 (εn = 0) ORDG

k r FEs k r FEs k r FEs

F1 12 905 16273 20 905 16597 12 1011 16702

F2 12 905 16252 19 905 16666 17 1000 18214

F3 12 905 16249 20 905 16615 17 1000 18214

F4 12 905 16252 20 905 16666 17 1000 18214

F5 13 905 16288 21 905 16669 17 1003 18202

F6 20 1000 49891 500 1000 25435 999 1998 59848

For the RDG3 decompositions, r is simply equal to the number of variables
of the function because there is no overlap. For F1 to F5, the ORDG should cap-
ture the overlapping subcomponents introduced in [17] and therefore retrieve the
1000 variables involved in the benchmark construction. This is the case for F2

to F4. For F1 and F5, some additional interactions between independent vari-
ables have been identified due to computational round-off errors and lead to a
slightly larger value of r. Still according to [17], the number of components k
for functions F1 to F5 is equal to 20 in the benchmark construction. The RDG3
with εn = 50 produces only 12 (or 13) components since components that con-
tain less than 50 variables are merged with other ones. The RDG3 with εn = 0
retrieves the 20 subcomponents (except for F2 and F5 for which the small dif-
ference is again due to computational round-off errors). The ORDG detects 17
components for functions F2 to F5

2. They correspond to the ones formed in the
benchmark construction except that some of them have been merged. Indeed, if
the ORDG procedure starts the detection with a variable belonging to a com-
ponent that share some overlapping variables with two adjacent components,
2 Theoretically, 17 components should also be detected for F1 but round-off erros affect

the results for that particular function.

Overlapped Strategies to Solve Overlapping Problems in a CC Framework 263

the latter are merged to form only one component. Thereafter, adjacent compo-
nents to these components are also merged and so on. Although this prevents
the detection of the 20 subcomponents, the obtained decomposition still agrees
with the desired objective. In this particular case, the fact that some overlapping
components contain two subsets of variables that do not directly interact will not
affect the optimization efficiency. For the F6 function, the obtained decomposi-
tion corresponds to the expected one, 20 (500) components of 50 (2) variables
are formed for the RDG3 with εn = 50 (= 0 resp.) and the ORDG produces 999
components of 2 variables. Finally, since the ORDG analyses additional inter-
actions with respect to the RDG3, the cost in terms of FEs is higher. However,
the additional cost remains reasonable and will be negligible with respect to the
budget in terms of FEs allowed for the optimization.

The influence of the decomposition on the optimization results is analyzed
by embedding each kind of decomposition in the overlapped CC framework pre-
sented above. In particular, when the latter is coupled with the RDG3 decom-
positions, it behaves like the standard CC. The evolutionary algorithm used to
optimize the subcomponents is a genetic algorithm. In this study, the one imple-
mented in the Minamo software is considered [10]. Here there is an overview
of its main features: real-value representation of the individuals; tournament
selection to pick up pairs of parents; arithmetic crossovers for recombination;
mutation rate of 1 %; elitism of two individuals. Within the CC framework,
the population size is set to 10 times the number of variables of the consid-
ered component. The round-robin fashion optimization loop is repeated until
the maximum number of FEs is reached. It is set to 3 × 106 in total (for the
decomposition and the optimization).

The median of the best solution over 51 independent runs and the stan-
dard deviation are reported in Table 2. The CC-ORDG produces better solution
quality than the CC-RDG3 for 4 of the 6 functions. The CC-RDG3 with εn = 0
generates the best results for the 2 other functions. Convergence graphs depict-
ing the convergence behavior along the optimization process are also provided
in Fig. 3. It can be seen that the three algorithms follow the same trend for func-
tions F1 to F5

3. Between the two variants of the CC-RDG3, the slightly different
number of components does not have too much influence on the optimization
quality. However, for F6, the CC-RDG3 with εn = 0 that produces many more
subcomponents (each of them focusing on 2 variables) has a better handle of the
optimization. Furthermore, the closed results between the CC-RDG3 with εn = 0
and the CC-ORDG may be surprising. By analyzing the convergence behavior
of the overlapping variables in the CC-ORDG in details, it can be seen that
most of the time, the variables shared among two subcomponents converge to
the same value at the same rate in the two subcomponents. In this context, the
overlapped decomposition does not significantly contribute to a better cooper-
ation between subcomponents in comparison with the cooperation through the
sharing of the context vector performed in a standard CC framework. Therefore,

3 Note that for F2, the CC-ORDG is stuck in a pseudo-optima for a few runs. It causes
the large green-colored area in Fig. 3b.

264 J. Blanchard et al.

Table 2. Optimization results of the CC-RDG3 (with εn = 50 and εn = 0) and the
CC-ORDG. The median of the best solution over 51 independent runs and the standard
deviation are presented. Best median values are in bold.

Fun RDG3 (εn = 50) RDG3 (εn = 0) ORDG

Median Std Median Std Median Std

F1 7.03e+07 1.77e+05 7.04e+07 1.48e+05 7.01e+07 2.84e+05

F2 3.95e+13 3.56e+12 3.53e+13 5.24e+12 3.85e+13 1.67e+14

F3 4.83e+08 2.81e+07 5.22e+08 4.45e+07 4.17e+08 8.11e+07

F4 6.01e+11 1.82e+10 4.27e+11 1.40e+10 7.80e+11 3.58e+10

F5 1.04e+11 2.15e+10 1.15e+11 2.66e+10 9.64e+10 1.75e+10

F6 8.68e+05 9.80e+04 1.50e+03 1.21e+02 1.34e+03 1.01e+02

(a) F1 (b) F2 (c) F3

(d) F4 (e) F5 (f) F6

Fig. 3. Convergence graphs representing the evolution of f(x) (in log-scale) with
respect to the number of FEs. CC-RDG3 with εn = 50 (blue stars), CC-RDG3 with
εn = 0 (red circles), CC-ORDG (green triangles). The solid line depicts the median
value while the light-colored area represents the interval between the best and the worst
value over the 51 runs.

although results in Table 2 might indicate that the CC-ORDG provides slightly
better results, we can not definitely claim that a strategy is better than the
other.

Overlapped Strategies to Solve Overlapping Problems in a CC Framework 265

5 Discussion

The new CC framework introduced in this paper is designed to opti-
mize overlapping LSGO problems with an overlapped decomposition strategy.
In this context, an overlapped variant of the RDG has been developed to effi-
ciently detect overlapping variables and share them among several subcom-
ponents. The optimization step of the standard CC framework has also been
extended in order to efficiently sha-re information between overlapped subcom-
ponents through the context vector.

Numerical experiments were conducted on 6 benchmark functions. The exten-
sion of the method to a larger set of test functions is straightforward. However
we believe the latter goes beyond the scope of this introductory paper and thus
it will be considered in a further work. Similarly, the benchmark set is limited
to 905-d and 1000-d functions, which is common practice in LSGO studies. Fur-
ther research on the scalability may also be carried out to determine how the
algorithm performs on more complex problems with larger dimensions.

The experiments presented in this paper show that the new approach pro-
duces the desired overlapped decomposition. However, although the optimization
results might indicate that the new decomposition helps to get slightly better
solutions, we can not definitely claim that the new framework outperforms the
standard ones. This may be partly explained by the fact that the exchange of
information between subcomponents in a standard CC framework through the
context vector is stronger than we could expect. In any way, there is scope for
even better progress to further develop the CC concept to deal with overlapping
problems. We think that the new strategy that introduces overlapped subcom-
ponents may be a promising way to achieve such an improvement.

References

1. Bellman, R.: Adaptive Control Processes : A Guided Tour. Princeton University
Press, Princeton, New Jersey, USA (1961)

2. van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm
optimization. IEEE Trans. Evol. Comput. 8, 225–239 (2004)

3. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Natural Computing
Series. Springer, Heidelberg, Germany (2015)

4. Garcia, D.J., You, F.: Supply chain design and optimization: challenges and oppor-
tunities. Comput. Chem. Eng. 81, 153–170 (2015)

5. Li, L., Fang, W., Wang, Q., Sun, J.: Differential grouping with spectral cluster-
ing for large scale global optimization. In: 2019 IEEE Congress on Evolutionary
Computation, pp. 334–341. IEEE, Piscataway, New Jersey, USA (2019)

6. Liu, Y., Yao, X., Zhao, Q., Higuchi, T.: Scaling up fast evolutionary programming
with cooperative coevolution. In: Proceedings of the 2001 Congress on Evolutionary
Computation, Vol. 2, pp. 1101–1108. IEEE, Piscataway, New Jersey, USA (2001)

7. Mahdavi, S., Shiri, M.E., Rahnamayan, S.: Metaheuristics in large-scale global
continues optimization: a survey. Inf. Sci. 295, 407–428 (2015)

8. Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential
grouping for large scale optimization. IEEE Trans. Evol. Comput. 10(10), 1–17
(2013)

266 J. Blanchard et al.

9. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function
optimization. In: Davidor, Y., Schwefel, H.P., Männer, R. (eds) Parallel Prob-
lem Solving from Nature - PPSN III, 866, 249–257. Lecture Notes in Computer
Science. LNCS. Springer, Heidelberg, Germany (1994). https://doi.org/10.1007/
11539117 147

10. Sainvitu, C., Iliopoulou, V., Lepot, I.: Global optimization with expensive functions
- sample turbomachinery design application. In: Diehl, M., et al. (eds.) Recent
Advances in Optimization and its Applications in Engineering, 499–509. Springer-
Verlag, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12598-0 44

11. Shi, Y., Teng, H., Li, Z.: Cooperative co-evolutionary differential evolution for
function optimization. In: wang, L., Chen, K., Ong, Y.S. (eds) Advances in Nat-
ural Computation. ICNC 2005, 3611, 1080–1088. Lecture Notes in Computer
Science. LNCS, Springer, Heidelberg, Germany (2005). https://doi.org/10.1007/
11539117 147

12. Song, A., Chen, W.N., Luo, P.T., Gong, Y.J., Zhang, J.: Overlapped cooperative
co-evolution for large scale optimization. In: 2017 IEEE International Conference
on Systems, Man, and Cybernetics, pp. 3689–3694. IEEE, Piscataway, New Jersey,
USA (2017)

13. Strasser, S., Sheppard, J., Fortier, N., Goodman, R.: Factored evolutionary algo-
rithms. IEEE Trans. Evol. Comput. 2(21), 281–293 (2017)

14. Sun, L.S.Y., Cheng, X., Liang, Y.: A cooperative particle swarm optimizer with
statistical variable interdependence learning. Inf. Sci. 1(186), 20–39 (2012)

15. Sun, Y., Li, X., Ernst, A., Omidvar, M.N.: Decomposition for large-scale optimiza-
tion problems with overlapping components. In: 2019 IEEE Congress on Evolu-
tionary Computation, pp. 326–333. IEEE, Piscataway, New Jersey, USA (2019)

16. Sun, Y., Omidvar, M.N., Kirley, M., Li, X.: Adaptive threshold parameter estima-
tion with recursive differential grouping for problem decomposition. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, GECCO 2018, pp.
889–896. ACM, New York, NY, USA (2018)

17. Xi, L., Tang, K., Omidvar, M.N., Yang, Z., Qin, K.: Benchmark functions for
the CEC 2013 special session and competition on large-scale global optimization.
Technical report. RMIT University, Melbourne (2013)

18. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using coopera-
tive coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

https://doi.org/10.1007/11539117_147
https://doi.org/10.1007/11539117_147
https://doi.org/10.1007/978-3-642-12598-0_44
https://doi.org/10.1007/11539117_147
https://doi.org/10.1007/11539117_147

Improved SAT Models for NFA Learning

Frédéric Lardeux(B) and Eric Monfroy

LERIA, University of Angers, Angers, France
{frederic.lardeux,eric.monfroy}@univ-angers.fr

Abstract. Grammatical inference is concerned with the study of algo-
rithms for learning automata and grammars from words. We focus on
learning Nondeterministic Finite Automaton of size k from samples of
words. To this end, we formulate the problem as a SAT model. The gen-
erated SAT instances being enormous, we propose some model improve-
ments, both in terms of the number of variables, the number of clauses,
and clauses size. These improvements significantly reduce the instances,
but at the cost of longer generation time. We thus try to balance instance
size vs. generation and solving time. We also achieved some experimental
comparisons and we analyzed our various model improvements.

Keywords: Constraint problem modeling · SAT · Model reformulation

1 Introduction

Grammatical inference [7] is concerned with the study of algorithms for learning
automata and grammars from words. It plays a significant role in numerous
applications, such as compiler design, bioinformatics, speech recognition, pattern
recognition, machine learning, and others. The problem we address in this paper
is learning a finite automaton from samples of words S = S+∪S−, which consist
of positive words (S+) that are in the language and must be accepted by the
automaton, and negative words (S−) that must be rejected by the automaton.
A non deterministic automaton (NFA) being generally a smaller description for
a language than an equivalent deterministic automaton (DFA), we focus here on
NFA inference. An NFA is represented by a 5-tuple (Q,Σ,Δ, q1, F) where Q is
a finite set of states, the vocabulary Σ is a finite set of symbols, the transition
function Δ : Q × Σ → P(Q) associates a set of states to a given state and a
given symbol, q1 ∈ Q is the initial state, and F ⊆ Q is the set of final states.

Not to mention DFA (e.g., [6]), the problem for NFA has been tackled from
a variety of angles. In [15] a wide panel of techniques for NFA inference is given.
Some works focus on the design of ad-hoc algorithms, such as DeLeTe2 [3] that
is based on state merging methods. More recently, a new family of algorithms
for regular languages inference was given in [14]. Some approaches are based
on metaheuristic, such as in [12] where hill-climbing is applied in the context
of regular language, or [4] which is based on genetic algorithm. In contrast to
metaheuristics, complete solvers are always able to find a solution if there exists
c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 267–279, 2021.
https://doi.org/10.1007/978-3-030-85672-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_20&domain=pdf
http://orcid.org/0000-0001-8636-3870
http://orcid.org/0000-0001-7970-1368
https://doi.org/10.1007/978-3-030-85672-4_20

268 F. Lardeux and E. Monfroy

one, to prove the unsatisfiability of the problem, and to find the optimal solution
in case of optimization problems. In this case, generally, the problem is modeled
as a Constraint Satisfaction Problem (CSP [11]). For example, in [15], an Integer
Non-Linear Programming (INLP) formulation of the problem is given. Parallel
solvers for minimizing the inferred NFA size are presented in [8,9]. The author
of [10] proposes two strategies, based on variable ordering, for solving the CSP
formulation of the problem.

In this paper, we are not interesting in designing or improving a solver, but
we focus in improving models of the problem in order to obtain faster solving
times using a standard SAT solver. Modeling is the process of translating a
problem into a CSP consisting in decision variables and constraints linking these
variables. The INLP model for NFA inference of [15] cannot be easily modified
to reduce the instances: to our knowledge, only Property 1 of our paper could be
useful for the INLP model, and we do not see any other possible improvement.
We thus start with a rather straightforward conversion of the INLP model into
the propositional satisfiability problem (SAT [5]). This is our base SAT model to
evaluate our improvements. The model, together with a training sample, lead to
a SAT instance that we solve with a standard SAT solver. The generated SAT
instances are very huge: the order of magnitude is |S|.(|ω|+1).k|ω| clauses, where
k is the number of states of the NFA, ω is the longest word of S, and |S| is the
number of words of the training sample. We propose three main improvements to
reduce the generated SAT instances. The first one prevents generating subsumed
constraints. Based on a multiset representation of words, the second one avoid
generating some useless constraints. The last one is a weaker version of the first
one, based on prefixes of words. The first improvement returns smaller instances
than the second one, which in turn returns smaller instances than the third
one. However, the first improvement is very long and costly, whereas the third
one is rather fast. We are thus interested in balancing generation and solving
times against instance sizes. We achieved some experiments with the Glucose
solver [1] to compare the generated SAT instances. The results show that our
improvements are worth: larger instances could be solved, and faster. Generating
the smallest instances can be too costly, and the best results are obtained with
a good balance between instance sizes and generation/solving time.

This paper is organized as follows. In Sect. 2, we describe the problem and we
give the basic SAT model. We also evaluate the size of the generated instances.
Section 3 presents 3 model improvements, together with sketches of algorithms
to generate them. Section 4 exposes our experimental results and some analysis.
We finally conclude in Sect. 5.

2 Modeling the Problem in SAT

The non-linear integer programming (INLP) model of [9,15] cannot be easily
improved or simplified. Indeed, the only improvement proposed in [15] and [9]
corresponds to Property 1 (given in the next section). In this section, we thus
present a SAT formulation of the NFA inference problem. This SAT model per-
mits many improvements to reduce the size of the generated SAT instances.

Improved SAT Models for NFA Learning 269

The NFA Inference Problem. Consider an alphabet Σ = {s1, . . . , sn} of n
symbols; a training sample S = S+ ∪ S−, where S+ (respectively S−) is a set
of positive words (respectively negative words) from Σ∗; and an integer k. The
problem consists in building a NFA of size k which validates words of S+, and
rejects words of S−. The problem can be extended to an optimization problem:
it consists in inferring a minimal NFA for S, i.e., an NFA minimizing k. However,
we do not consider optimization in this paper.

Notations. Let A = (Q,Σ, q, F) be a NFA with: Q = {q1, . . . , qk} a set of
states, Σ a finite alphabet (a set of symbols), q the initial state, and F the set of
final states. The symbol λ represents the empty word. We denote by K the set
{1, . . . , k}. A transition from qj to qk with the symbol si is denoted by τsi,qj→qk .
Consider the word w = w1 . . . wn with w1, . . . , wn in Σ. Then, the notion of
transition is extended to w by Tw,qi1→qin+1

which is a sequence of transitions
τw1,qi1→qi2

, . . . , τwn,qin→qin+1
. The set of candidate transitions for w between the

states qi1 and qil in a NFA of size k is Tw,qi1→qil
= {Tw,qi1→qil

| ∃i2, . . . iil−1 ∈
K, Tw,qi1→qil

= τw1,qi1→qi2
, . . . , τwl,qil−1→qil

}.

A SAT Model. Our base model is a conversion into SAT of the nonlinear integer
programming problem given in [15] or [9]. Consider the following variables:

– k the size of the NFA we want to build,
– F = {f1, . . . , fk} a set of k Boolean variables determining whether states q1

to qk are final or not,
– and Δ = {δs,qi→qj |s ∈ Σ and i, j ∈ K} a set of n.k2 variables determining

whether there is or not a transition δs,qi→qj , i.e., a transition from state qi to
state qj with the symbol s, for each qi, qj , and s.

A transition Tw1...wn,qi1→qin+1
= τw1,qi1→qi2

, . . . τwn,qin→qin+1
exists if and only

if the conjunction d = δw1,qi1→qi2
∧ . . . ∧ δwn,qin→qin+1

is true. We call d a
c transition, and we say that d models Tw1...wn,qi1→qin+1

. We denote by Dw,qi,qj

the set of all c transitions for the word w between states qi and qj .
The problem can be modeled with 3 sets of equations:

1. If the empty word λ is in S+ or in S−, we can determine whether the first
state is final or not:

if λ ∈ S+, f1 (1)
if λ ∈ S−, ¬f1 (2)

2. For each word w ∈ S+, there is at least a transition starting in q1 and ending
in a final state qj :

∨

j∈K

∨

d∈Dw,q1,qj

(
d ∧ fj

)
(3)

With the Tseitin transformations [13], we create one auxiliary variable for
each combination of a word w, a state j ∈ K, and a transition d ∈ Dw,q1,qj :

auxw,j,d ↔ d ∧ fj

270 F. Lardeux and E. Monfroy

For each w, we obtain a formula in CNF:
∧

j∈K

∧

d∈Dw,q1,qj

[(¬auxw,j,d ∨ (d ∧ fj))] (4)

∧

j∈K

∧

d∈Dw,q1,qj

(auxw,j,d ∨ ¬d ∨ ¬fj) (5)

∨

j∈K

∨

d∈Dw,q1,qj

auxw,j,d (6)

d is a conjunction, and thus ¬auxw,j,d ∨ d is a conjunction of |w| binary
clauses: (¬auxw,j,d ∨ δw1,q1→qi2

) ∧ . . . ∧ (¬auxw,j,d ∨ δw|w|,qi|w| →qi|w|+1
).

|Dw,q1,qj | = k|w|−1 since for each symbol of w there is k possible moves
in the NFA, except for the last symbol which leads to qj . Thus, we have
(|w| + 1).k|w| binary clauses for Constraints (4), k|w| (|w| + 2)-ary clauses for
Constraints (5), and one k|w|-ary clause for Constraints (6). We have added
k|w| auxiliary variables.

3. For each w ∈ S− and each state qj , either there is no complete transition
from state q1 to qj , or qj is not final:

¬

⎡

⎣
∨

j∈K

∨

d∈Dw,q1,qj

(
d ∧ fj

)
⎤

⎦ (7)

Constraints (7) are already in CNF, and we have k|w| (|w + 1|)-ary clauses.

Thus, the constraint model Mk for building a NFA of size k is:

Mk =
∧

w∈S+

(
(4) ∧ (5) ∧ (6)

)
∧

∧

w∈S−
(7)

and is possibly completed by (1) or (2) if λ ∈ S+ or λ ∈ S−.

Size of the Models. Considering ω+, the longest word of S+, and ω−, the
longest word of S−, the number of constraints in model Mk is bounded by:

– |S+|.(|ω+| + 1).k|ω+| binary clauses;
– |S+|.k|ω+| (|ω+| + 2)-ary clauses;
– |S+| k|ω+|-ary clauses;
– |S−|.k|ω−| (|ω−| + 1)-ary clauses.

The number of Boolean variables is bounded by:

– k variables in F determining final states;
– n.k2 variables determining existence of transitions;
– |S+|.k.|ω+| auxiliary variables auxw,j,d.

It is thus obvious that it is important to improve the model Mk.

Improved SAT Models for NFA Learning 271

3 Improving the SAT Model

We now give some properties that can be used for improving the SAT model.
By abuse of language, we will say that a model M1 is smaller than a model
M2 whereas we should say that the SAT instance generated with M1 and data
D is smaller than the instance generated with M2 and D. A first and simple
improvement is based on the following property.

Property 1 (Empty word λ). If λ ∈ S−, then each c transition ending in q1 does
not have to be considered when generating the constraints related to the word
w ∈ S.

Indeed, if w is positive, it cannot be accepted by a transition ending in q1;
similarly, if w is negative, ¬d∨¬f1 is always true. When λ ∈ S+, the gain is not
very interesting: f1 can be omitted in Constraints (7), (4), and (5). This does not
really reduce the instance, and a standard solver would simplify it immediately.

Whereas a transition is an ordered sequence, the order of conjuncts in
a c transition is not relevant, and equal conjuncts can be deleted. Thus, a
c transition may model several transitions, and may correspond to several words.
By abuse of language, we say that a c transition ends in a state qj if it cor-
responds to at least a transition ending in qj . Thus, a c transition may end
in several states. We consider an order on c transitions. Let d and d′′ be two
c transitions. Then, d
 d′′ if and only if there exists a c transition d′ such that
d ∧ d′ = d′′. In other words, each transition variable δs,qi→qj appearing in d also
appears in d′′. This order is used in the two first model improvements which are
based on c transitions. The third model improvement is based on transitions.
We now consider some redundant constraints.

Property 2 (Redundant constraints). When a state qi cannot be reached, each
outgoing transition becomes free (it can be assigned true or false), and qi can be
final or not. In order to help the solver, all the corresponding variables can be
assigned an arbitrary value. For each state qj , j �= 1:

(∧

i∈K,i �=j

∧

s∈Σ

¬δs,qi→qj

)
→ ¬fj ∧

(∧

i∈K

∧

s∈Σ

¬δs,qj→qi

)

In CNF, these constraints generate (for all qj), (k−1).(k.n+1) redundant clauses
of size n.(k − 1) + 1.

These constraints are useful when looking for a NFA of size k when k is not
the minimal size of the NFA. Compared to SAT instance size, these redundant
constraints can be very helpful without being too heavy.

Note that in our implementation, for all the models, we always sim-
plify instances using Property 1 and removing duplicate transition variables in
c transitions (i.e., δs,qi→qj ∧ . . . ∧ δs,qi→qj is simplified into δs,qi→qj ∧ . . .). More-
over, we also generate the redundant constraints as defined in Property 2.

Improvement Based on c transitions Subsumption. This first improve-
ment consists in removing tautologies for negative words, and some constraints
and unsatisfiable disjuncts for positive words.

272 F. Lardeux and E. Monfroy

Property 3 (c transition subsumption). Let v be a negative word from S−, and
¬dv ∨ ¬qj be a Constraint (7) generated for the c transition dv for v ending in
state qj . We denote this constraint cv,dv,qj . Consider a positive word w from
S+, and dw a c transition for w ending in qj such that dv
 dw. Then, each
dw ∧ fj will be false due to cv,dv,qj . Thus, Constraints (4) and (5) corresponding
to w, dw, and qj will force to satisfy ¬auxw,j,dw

; hence, they can be omitted and
auxw,j,dw

can be removed from Constraints (7). Similarly, consider ω from S−,
and dω a c transition for w ending in qj such that dv
 dw. Then, Constraint (7),
¬dv∨¬qj , will always be true (due to the constraint cv,dv,qj), and can be omitted.

We can compute the size of the reduced SAT instance when the smaller word
is a prefix. Let v ∈ S− and w ∈ S be words such that w = v.v′, i.e., v ⊆ w
and v is a prefix of w. Then, using Property 3: if w ∈ S−, the number of clauses
generated for w is reduced to (k−1).k|w|−1 clauses of size |w+1|; if w ∈ S+, the
number of clauses generated for w is reduced to (|w| + 1).(k − 1).k|w|−1 binary
clauses for Constraints (4), (k−1).k|w|−1 (|w|+2)-ary clauses for Constraints (5),
and one clause of size (k − 1).k|w|−1 for Constraint (6). The number of auxiliary
variables is reduced to (k − 1).k|w|−1.

Operationally, we have a two step mechanism. First, for each negative word,
each c transition together with its ending state is generated and stored in a
database of couples (c transition, ending state) that we call c couple. Then,
for generating constraints for a word w, each of its c couple is compared to
the database. If a c transition for w ending in qj is smaller than a c transition
from the database also ending in qj , then the corresponding constraints are not
generated, as shown above. We call Mk,all this reduced model.

Improvement Based on Multisets. Although efficient in terms of generated
instance sizes, the previous improvement is very costly in memory and time.
It becomes rapidly intractable. This second improvement also uses Property 3.
It is a weakening of the above operational mechanism that does not omit every
subsumed c transition. This mechanism is less costly. Hence, generated instances
will be a bit larger, but the balance generation time against instance size is very
good. The idea is to order words in order to search in a very smaller database
of c couples (c transition, ending state) when generating constraints for a word
w. Moreover, this order will also imply the order for generating constraints.

We associate each word to a multiset which support is the vocabulary Σ.
The word w, is thus associated with the multiset ms(w) = {s

|w|s1
1 , . . . , s

|w|sn
n }

where |w|si
is the number of occurrences of the symbol si in w. Note that several

words can have the same multiset representation. Based on multiset inclusion
({s

a′
1

1 , . . . , s
a′
n

n } ⊆M {sa1
1 , . . . , san

n } ⇔ ∀i, a′
i ≤ ai), we can now define the notion

of word inclusion, noted ⊆ω. Consider w and w′, two words of Σ∗, then:

w′ ⊆ω w ⇔ ms(w′) ⊆M ms(w)

Consider a sample S = S+ ∪ S−. Let �(S) be the multiset defined as

�(S) = {s
1+maxw∈(S){|w|s1}
1 , . . . , s

1+maxw∈(S){|w|sn}
n }

Improved SAT Models for NFA Learning 273

and ⊥ = {s01, . . . , s
0
n}. Then, �(S) represents words which are not in the sample

S, and ⊥ represents the empty word λ which may be in S.
Consider the sample S = S+ ∪ S−. Let MS(S) = {ms(w)|w ∈ S+ ∪ S−} be

the set of the representations of words of S. Then, (MS(S) ∪ {⊥,�(S)},⊆M)
is a lattice. Let m be a multiset of MS(S). Then, inf(m) is the set of multisets
{m′ ∈ MS(S) | m′ ⊆M m}. This lattice of multisets defines the data structure
used for constraint generation. For generating constraint of a word w of a multiset
m, we now only compare its c couples with the database of c couples of words
w′ ∈ S− with w′ ⊆ω w, i.e., words represented by multisets smaller than m.

The negative words that allow to reduce the most, are the ones represented
by the smallest multiset. We thus also propose a mechanism to reduce the
database (c transition, ending state) with the most useful c couples, i.e., the
ones from smallest words. Let level(m) be the “level” of the multiset defined by:
level(m) = 0 if m = ⊥, 1 + maxm′∈inf(m)(level(m′)) otherwise. Given a multi-
set m, and a threshold l, the base function returns all the multisets m′ of level
smaller than l, and such that m′ ⊆M m: base(p, l) = {n ∈ inf(p) | level(n) ≤
l}

⋃ (⋃
p′∈inf(p) base(p′, l)

)
if p �= ⊥, ∅ otherwise.

Based on Property 3, c couples of the negative words of these multisets
will be used to reduce constraint generation of the words of m. We call this
model Mk,mset,l, with l a given threshold. If base is called with the threshold
0, the database will be empty and the complete instance will be generated:
Mk,mset,0 = Mk. If base is called with the maximum level of the lattice, then,
the database will be the largest one built with all the smaller words, and we will
thus obtain the smallest instances with this notion of lattice. However, the larger
the threshold, the longer the generation time, and the smaller the SAT instance.
With the maximal threshold, the generated instances will be a bit larger than
with the previous improvement (Mk,all ⊆ Mk,mset,max), but the generation is
significantly faster. For lack of space, we cannot give here the complete algo-
rithms for generating this improved model.

Improvements Based on Prefixes. Although faster to generate, the second
model is still costly. We now propose a kind of weakening of Property 3, restrict-
ing its use to prefix.

Property 4 (Prefix). Let w ∈ S be a word from the sample. Consider D∗
w,qi,qj

the set of c transitions defined by:

D∗
w,qi,qj =

∨

l∈K,l �=j

((∨

du∈D∗
u,qi,ql

du ∧
(∨

dv∈D∗
v,ql,qi

dv

)))

if w = u.v, and u ∈ S−; otherwise, D∗
w,qi,qj = Dw,qi,qj . Then,

∀d ∈ Dw,qi,qj \ D∗
w,qi,qj ,¬d ∨ ¬fj

Hence, this property allows us to directly generate the reduced constraints, for
negative or positive words, without comparing c couples with a database.

274 F. Lardeux and E. Monfroy

Let w = u1 . . . un be a word from S such that u1 ∈ S−, u1.u2 ∈ S−, and
u1 . . . un−1 ∈ S− and for each i < n, there does not exist a decomposition
ui = u′

i.u
′′
i such that u1 . . . ui−1.u

′
i ∈ S−. Then, if w ∈ S+, using several times

Property 4, Constraints (4), (5), and (6) can be replaced by Constraints (8), (9),
and (10) where l0 = q1 and N = [1, . . . , n]:

∧

i∈N,li∈K\{lj |1≤j<i}

∧

i∈N,di∈Dui,qli−1,ql

[(¬auxw,l1,...,ln ∨ (d1 ∧ . . . ∧ dn ∧ fj))] (8)

∧

i∈N,li∈K\{lj |1≤j<i}

∧

i∈N,di∈Dui,qli−1,ql

(auxw,l1,...,ln ∨ ¬d1 ∨ . . . ∨ ¬dn ∨ ¬fj) (9)

∨

i∈N,li∈K\{lj |1≤j<i}

∨

i∈N,di∈Dui,qli−1,ql

auxw,l1,...,ln (10)

Similarly, if w ∈ S−, using several times Property 4, Constraints (7) can be
replaced by Constraints (11):

∧

i∈N,li∈K\{lj |1≤j<i}

∧

i∈N,di∈Dui,qli−1,ql

(¬d1 ∨ . . . ∨ ¬dn ∨ ¬fj) (11)

The number of clauses and variables generated for w ∈ S+ is reduced to:

– (|w| + 1).
(∏n

i=1(k − i + 1)
)
.k|w|−n binary clauses for Constraints (8),

–
(∏n

i=1(k − i + 1)
)
.k|w|−n (|w| + 2)-ary clauses for Constraints (9),

– one clause of size
(∏n

i=1(k − i + 1)
)

for Constraint (10),
– and the number of auxiliary variables is reduced to

(∏n
i=1(k − i + 1)

)
.

For w ∈ S−, Constraints (11) are already in CNF and they correspond to(∏n
i=1(k − i + 1)

)
.k|w|−n (|w + 1|)-ary clauses. Interestingly, these new counts

of clauses (and more especially the factor k − i + 1 with i = n) also give us a
lower bound for k: k must be greater than or equal to n, the number of nested
prefixes in a word. This new improved model, that we call Mk,pref , is not much
larger than Mk,mset, but it is significantly faster to generate.

Improvement Order. We have defined various models for inference of NFA of
size k that can be ordered by their sizes: Mk,all ⊆ Mk,mset,l max ⊆ mk,pref ⊆ Mk.
Note that Mk,mset,l with l �= l max, and Mk,pref cannot be compared in the
general case; their sizes depend on the instance, the number and size of prefixes,
and on the given level l. In the next section, we compare these models not only
in terms of instance size, but also in terms of generation and resolution time.

4 Experimental Results

We suspect that, with respect to their generation time, the models are in reverse
order of the order given above. Thus, we are interested in finding the best balance
between three parameters: model size v.s. generation time + SAT solving time.

Improved SAT Models for NFA Learning 275

The experiments were carried out on a computing cluster with Intel-E5-
2695 CPUs and 128 GB of memory. Running times were limited to 2 h for the
generation of SAT instances, and 3 h to solve them. We used the Glucose [1]
SAT solver with the default options. The benchmarks are based on the training
set of the StaMinA Competition (http://stamina.chefbe.net). We selected 12
instances1 with a sparsity s ∈ {12.5%, 25%, 50%, 100%} and an alphabet size
|Σ| ∈ {2, 5, 10}. For each of them, we limited the number of words to |S+| =
|S−| = 10 and 20 for a maximal size of words equal to 7 and to |S+| = |S−| = 20
for a maximal size of words equal to 10. We generate CNF instances for different
NFA sizes (k ∈ {3, 4, 5}). Consequently, we obtained 96 instances.

Table 1 presents a synthetic view of our experiments. The 4 first columns
detail the instances: size of the NFA (k), size of the longest word (|ω|), number
of positive (and negative) words (|S+|), and the model. The next columns provide
average values over the 12 instances for the modeling time (TModel), the number
of variables (#V ar), the number of clauses (#Cl), the solving time (Tsolve), and
the total modeling+solving time (Ttotal). We do not indicate the standard devi-
ations but they are very close to zero. “-” indicates that no result was obtained
before the time-out. From Table 1, we can draw some general conclusions about
model improvements. As expected, Mk,all always returns the smallest instances,
and also the instances that Glucose solve the fastest. However, the generation
time of these instances is very long. Thus, the total CPU time, i.e., generation
+ solving, is not the best. We can also see that when we increase the maximum
length of words, this model does not permit to generate the instances in less
than 2 h (e.g., Table 1, for k = 4, ω = 10, and |S+| = 20). This model is thus
tractable, but only for small instances, with short words and small samples.

Mk,mset,lmax
generates instances a bit larger than Mk,all. Consider the nega-

tive word v = aaab, and the positive word w = ba. Mk,all uses some c transitions
of v to ignore some clauses of w that Mk,mset,lmax

will not detect. For example,
a loop on aaa from v with the same transition in v is used in Mk,all but not in
Mk,mset,lmax

. However, with the multiset data structure, we obtain a much faster
generation of instances. The total time is thus more interesting with Mk,mset,lmax

than with Mk,all. The generation time of Mk,mset,lmax
is still very high, and its

interest is not always significant. For large instances, not presented in the table,
Mk,mset,lmax

could not be generated in less than 2 h.
For Mk,pref , we can see that the generation time becomes reasonable, and

much smaller than with the two previous improvements. Although smaller than
with Mk, the instances are larger than with Mk,mset,lmax

. In various experiments,
this improvement was the best for the total time. Note also that our training
samples are not so big, and that the number of prefixes is not so important. With
larger |S+|, for a fixed k, we should obtain better performances of Mk,pref .

We also tried two more improvements of Mk,mset,l with l ∈ {1, 3}. The gen-
eration time of these models is logically faster than the ones of Mk,mset,lmax

; as
planned, the SAT instances are also larger. However, we were pleasantly surprised
by the total time which is much better than for Mk,mset,lmax

. The three models

1 We conserved the “official” name used during the Stamina Competition.

http://stamina.chefbe.net

276 F. Lardeux and E. Monfroy

Table 1. Comparison on 96 generated instances between the models mk,all,
mk,mset,lmax , mk,mset,1, mk,mset,3, and mk,pref . Instances are grouped by size of the
NFA (k), size of the longest word (|ω|), and number of positive (and negative) words
(|S+|). For each line, obtained values are average on 12 instances.

k |ω| |S+| Model Tmodel #Var. #Cl. Tsolve Ttotal

3 7 10 mk 0.19 6742 61366 0.22 0.41

mk,all 0.68 4310 37789 0.14 0.82

mk,mset,lmax 0.17 4742 42020 0.14 0.31

mk,mset,1 0.18 5517 49484 0.16 0.34

mk,mset,3 0.17 4822 42850 0.14 0.31

mk,pref 0.18 6466 58645 0.2 0.38

20 mk 0.48 14830 134302 1.58 2.06

mk,all 2.62 8274 72569 1.64 4.26

mk,mset,lmax 0.42 8929 79030 1.22 1.64

mk,mset,1 0.45 11179 99811 1.39 1.84

mk,mset,3 0.46 9148 81188 1.27 1.73

mk,pref 0.43 13689 123390 1.71 2.14

10 20 mk 11 303519 3276974 397.68 408.68

mk,all 746.08 108417 1172093 79.98 826.06

mk,mset,lmax 9.87 122423 1313463 143.32 153.19

mk,mset,1 9.04 208610 2255307 233.97 243.01

mk,mset,3 9.06 134720 1443357 156.24 165.3

mk,pref 8.88 281408 3040802 270.04 278.92

4 7 10 mk 1.46 45014 428775 10.3 11.76

mk,all 19.42 32956 302835 5.59 25.01

mk,mset,lmax 1.64 35362 328938 5.58 7.22

mk,mset,1 1.42 39242 369600 7.12 8.54

mk,mset,3 1.56 36048 336637 5.58 7.14

mk,pref 1.3 43655 414141 10.69 11.99

20 mk 3.93 100984 950473 83.55 87.48

mk,all 93.48 64428 588293 74.55 168.03

mk,mset,lmax 4.33 68041 628400 43.08 47.41

mk,mset,1 3.65 83463 777005 32.32 35.97

mk,mset,3 4.27 70720 653396 41.36 45.63

mk,pref 3.37 94829 887943 55.88 59.25

10 20 mk 187.59 4670833 53350566 2084.78 2272.37

mk,all - - - - -

mk,mset,lmax 919.56 2304788 26010946 651 1570.56

mk,mset,1 173.82 3336332 38121787 658.7 832.52

mk,mset,3 375.34 2345238 26693196 107.13 482.47

mk,pref 162.45 4405201 50260648 1331.92 1494.37

5 7 10 mk 6.61 201651 1962754 215.06 221.67

mk,all 232.47 161828 1526044 51.82 284.29

mk,mset,lmax 14.38 169816 1619550 171.92 186.3

mk,mset,1 7.24 182445 1759734 180.98 188.22

mk,mset,3 10.76 172660 1653301 210.1 220.86

mk,pref 6.26 196894 1908623 176.12 182.38

20 mk 19.37 456976 4382919 1268.18 1287.55

mk,all 1158.5 320689 2995308 631.14 1789.64

mk,mset,lmax 44.01 333799 3148787 1115.9 1159.91

mk,mset,1 20.24 398074 3784691 1192.49 1212.73

mk,mset,3 32.82 348339 3288509 1309.17 1341.99

mk,pref 16.54 434008 4141453 1203.36 1219.9

Improved SAT Models for NFA Learning 277

Table 2. Focus on 2 specific instances.

k |ω| |S+| Model Tmodel #Var. #Cl. Tsolve Ttotal

25 training

5 7 20 mk 16.72 378030 3748314 934.92 951.64

mk,all 854.47 271338 2626880 841.22 1695.69

mk,mset,lmax 48.71 275331 2678349 1538.06 1586.77

mk,mset,1 14.25 280899 2733709 895.92 910.17

mk,mset,3 23.67 277359 2696089 1147.41 1171.08

mk,pref 11.76 338880 3377124 687.79 699.55

35 training

4 10 20 mk 163.10 5253332 59504339 - -

mk,all - - - - -

mk,mset,lmax 676.22 4234500 47661301 2322.42 2998.64

mk,mset,1 209.86 4969772 56092438 - -

mk,pref 184.56 5253332 59504339 7145.62 7330.18

Mk,pref , Mk,mset,1, and Mk,mset,3 are very difficult to compare. Depending on
the instance, on the number and size of prefixes, on multiset inclusion, one can be
better than the other. But for all the instances we tried, one of this 3 models was
always the best of the 6 models, and they were better than Mk. Table 2 presents
a focus on 2 specific instances (25 training and 35 training, both with |Σ| = 5)
with a fixed value for k, |ω|, and |S+|. The columns correspond exactly to those
of Table 1. For the first instance, we clearly see the order presented in Sect. 3 for
instance sizes of improved models. We can also see the reverse order in terms of
generation time. When |Σ| is small, the probability of having prefixes is higher
than with larger vocabularies, and for this instance, Mk,pref returns the best
instance in terms of generation+solving time. For the second instance, Mk,all

could not be generated in less than 2 h. Mk and Mk,mset,3 could be generated
rather quickly, but could not be solved. Mk,pref was even faster for generating
the SAT instance. However, we see that there was not prefix in the training set
(the size of instances of Mk and Mk,pref are the same). The overhead for taking
prefixes into account is rather insignificant (12% of generation time). Since the
solving time was close to the timeout, the Mk instance did not succeed to be
solved while the Mk,pref instance succeeded (the small difference of 55 s., i.e., less
than 0,8 %, is certainly due to clause order in the SAT instance). This instance
shows that Mk,mset,lmax

can be the best model in terms of total time. This is
due to the fact that there is no negative word being prefix of another word from
S, and that the lattice is rather “wide”, with a long branch. Hence, Mk,mset,l is
interesting when l is large for this training sample.

278 F. Lardeux and E. Monfroy

5 Conclusion

In the context of grammatical inference, we proposed various model improve-
ments for learning Nondeterministic Finite Automaton of size k from samples
of words. Our base model, Mk, is a conversion from an INLP model [15]. The
first improvement, Mk,all, leads to the smallest SAT instances, which are also
solved quickly. However, generating this model is too costly. Thus, when prob-
lems grow (in terms of k, |S|, or length of words), Mk,all cannot be generated
anymore. We proposed a set of improvements based on multiset representation
of words, Mk,mset,l. The generated SAT instances are a bit larger with the maxi-
mal level than with Mk,all, but generation is still costly. We thus defined a third
improvement based on prefix. On average, the best balance between generation
and solving time is obtained with Mk,pref , Mk,mset,1, or Mk,mset,3: the genera-
tion is rather light and the reductions are significant. The interest of our work
is that, to our knowledge, we are the only ones working on CSP model improve-
ments. It is very complicated to compare our results with previous works. Many
works on this topics are only formal and experimental results are also difficult
to compare. For examples, the authors of [8,9] focus on a parallel solver for opti-
mizing k. In [10], experiments are based on samples issued from the Waltz-DB
database [2] of amino acid sequences, i.e., all the words are of size 6, and there
cannot be any prefix word: in the tests we performed, only anagrams could be
used in multisets. Moreover, for all the 50 instances we tried issued from this
database, the Mk model could be generated and solved in a reasonable time,
without need of any model improvement.

In the future, we plan to hybridize Mk,mset,l for small values of l with Mk,pref .
The second idea is to simplify the work of the SAT solver and of the instance
generation with simplified and incomplete training samples. We would then eval-
uate our SAT models with respect to the accurateness of the generated NFA on
test set of words.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of IJCAI 2009, pp. 399–404 (2009)

2. Beerten, J., et al.: WALTZ-DB: a benchmark database of amyloidogenic hexapep-
tides. Bioinform. 31(10), 1698–1700 (2015)

3. Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSAs. The-
oret. Comput. Sci. 313(2), 267–294 (2004)

4. Dupont, P.: Regular grammatical inference from positive and negative samples by
genetic search: the GIG method. In: Carrasco, R.C., Oncina, J. (eds.) Grammati-
cal Inference and Applications, ICGI 1994. LNCS (LNAI), vol. 862, pp. 236–245.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58473-0 152

5. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman & Company, San Francisco (1979)

6. Heule, M., Verwer, S.: Software model synthesis using satisfiability solvers. Empir.
Softw. Eng. 18(4), 825–856 (2013)

https://doi.org/10.1007/3-540-58473-0_152

Improved SAT Models for NFA Learning 279

7. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, Cambridge (2010)

8. Jastrzab, T.: On parallel induction of nondeterministic finite automata. In: Pro-
ceedings of ICCS 2016. Procedia Computer Science, vol. 80, pp. 257–268. Elsevier
(2016)

9. Jastrzab, T.: Two parallelization schemes for the induction of nondeterministic
finite automata on PCs. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Kar-
czewski, K. (eds.) Parallel Processing and Applied Mathematics, PPAM 2017.
LNCS, vol. 10777, pp. 279–289. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-78024-5 25

10. Jastrzab, T.: A comparison of selected variable ordering methods for NFA induc-
tion. In: Rodrigues, J., et al. (eds.) Computational Science, ICCS 2019. LNCS,
vol. 11540, pp. 741–748. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-22750-0 73

11. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming,
1st edn. Elsevier Science, Amsterdam (2006)

12. Tomita, M.: Dynamic construction of finite-state automata from examples using
hill-climbing. In: Proceedings of the Fourth Annual Conference of the Cognitive
Science Society, pp. 105–108 (1982)

13. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning. SYMBOLIC, pp. 466–
483. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1 28

14. de Parga, M.V., Garćıa, P., Ruiz, J.: A family of algorithms for non deterministic
regular languages inference. In: Ibarra, O.H., Yen, H.C. (eds.) Implementation and
Application of Automata, CIAA 2006. LNCS, vol. 4094, pp. 265–274. Springer,
Heidelberg (2006). https://doi.org/10.1007/11812128 25

15. Wieczorek, W.: Grammatical Inference - Algorithms, Routines and Applications.
Studies in Computational Intelligence, vol. 673. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-46801-3

https://doi.org/10.1007/978-3-319-78024-5_25
https://doi.org/10.1007/978-3-319-78024-5_25
https://doi.org/10.1007/978-3-030-22750-0_73
https://doi.org/10.1007/978-3-030-22750-0_73
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/11812128_25
https://doi.org/10.1007/978-3-319-46801-3

Applications of Learning and
Optimization Methods

Synthesis of Scheduling Heuristics
by Composition and Recombination

Dominik Mäckel1 , Jan Winkels1 , and Christin Schumacher2(B)

1 Department of Computer Science 14 – Software Engineering,
TU Dortmund University, Dortmund, Germany

{dominik.maeckel,jan.winkels}@tu-dortmund.de
2 Department of Computer Science 4 – Modeling and Simulation,

TU Dortmund University, Dortmund, Germany
christin.schumacher@tu-dortmund.de

Abstract. In many machine scheduling studies, individual algorithms
for each problem have been developed to cope with the specifics of the
problem. On the other hand, the same underlying fundamentals (e.g.
Shortest Processing Time, Local Search) are often used in the algorithms
and only slightly modified for the different problems. This paper deals
with the synthesis of machine scheduling algorithms from components of
a repository. Especially flow shop and job shop problems with makespan
objective are considered to solve with Shortes/Longest Processing Time,
NEH, Giffler & Thompson algorithms. For these components, the paper
includes an exemplary implementation of an agile scheduling system that
uses the Combinatory Logic Synthesizer to recombine components of
scheduling algorithms to solve a given scheduling problem. Special atten-
tion is given to the composition heuristics and the process of recombina-
tion to executable programs. The advantages of this componentization
are discussed and illustrated with examples. It will be shown that algo-
rithms can be generalized to deal with scheduling problems of different
machine environments and production constraints.

1 Introduction

In production, machine scheduling algorithms help to decide automatically when
a certain job should be executed on which machine. Many manufacturers have
not yet automated their machine scheduling. One reason is that for each machine
scheduling problem with its numerous specific characteristics, suitable algo-
rithms have to be selected, adapted, and implemented individually. Each practi-
cal scheduling problem can be categorized into a problem class, for which dedi-
cated heuristics are applicable. If a class is a subset of another class, the heuristics
of the superset class can often also be applied to the subset class. Also, relation-
ships and overlapping between categories can be identified which simplifies the
transfer of heuristics between problem classes.

The assignment problem which a combination of heuristics or metaheuristics
should be chosen for which practical production environment concerning the
c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 283–293, 2021.
https://doi.org/10.1007/978-3-030-85672-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_21&domain=pdf
http://orcid.org/0000-0002-7866-7927
http://orcid.org/0000-0001-6823-5752
http://orcid.org/0000-0002-9847-0443
https://doi.org/10.1007/978-3-030-85672-4_21

284 D. Mäckel et al.

applicability, solution quality, and computing time represents a combinatorial
challenge. The synthesis framework Combinatory Logic Synthesizer ((CL)S) [1]
is suitable for the automated solution of this task. The (CL)S can construct
software from a collection of individual components and it is possible to specify
components semantically, which enables the (CL)S to select the appropriate com-
ponents. The framework then automatically generates all possible combinations
in the form of executable software.

The objective of the paper is to use the (CL)S-Framework to automatically
select and combine different algorithms to solve a given scheduling problem.
Therefore, we build a (CL)S repository of algorithms for different machine envi-
ronments, which takes the relationships of the classes into account and automat-
ically composes selected algorithms for instances of these problems.

This paper is structured as follows: First, we present the general classifica-
tion scheme of machine scheduling problems. In the related work, we discuss
algorithms for scheduling of flow shop and job shop problems and present the
framework on which our implementation is based on, the (CL)S. The handling
of this framework, as well as the generation and composition of algorithms, is
shown in the fourth chapter with example runs. In detail, we show the poten-
tial of the tool and the resulting possibilities using the Giffler & Thompson’s
algorithm.

2 Classification of Machine Scheduling Problems

Machine scheduling problems can be specified by a tuple α|β|γ [2, pp. 288–290]
[3, pp. 13–21] [4, pp. 1–2]. In the following, parameter values are specified which
are considered in this paper.
The parameter α defines the amount and arrangement of machines [4, pp. 14–15]:

– 1: Single Maschine, one machine is available for production.
– Fm: flow shop, m machines with one machine per processing stage. All jobs

follow the same route through the machines.
– Jm: job shop, m machines with one machine per stage. Each job has a pre-

scribed route through the stages. The route may differ between the jobs.
– Om: Open Shop, m machines, where each job can visit the machines one after

the other in an order that is determined by the planner.

Parameter β can contain as many entries as required and describes characteristics
and limitations of the production process:

– prmu: Permutation, the processing sequence of jobs from the first processing
stage through all machines is to be kept consistent [3, p. 17].

– skip: skipping stages of jobs is possible (further example, but not applicated
in the paper) [5, pp. 1151–1155] [4, p. 13].

γ specifies the objective function:

– Cmax: Makespan, interval between production start of the first scheduled job
and finish time of the last job.

Synthesis of Scheduling Heuristics by Composition and Recombination 285

3 Related Work

In the following, important scheduling algorithms for these machine envi-
ronments and β-constraints in combination with makespan minimization are
described, as well as related work according to the (CL)S.

3.1 Machine Scheduling Algorithms for Flow Shops and Job Shops

In the context of machine scheduling, an enormous number of papers and algo-
rithms are available. Literature overviews for flow shops and job shops can
be found in Komaki, Sheikh, and Malakooti [6] Framinan, Gupta, and Leis-
ten [7] (permutation flow shop with makespan minimization) and Zhang et al.
[8]. A comparison between commonly used algorithms for constructive flow shop
scheduling can be found in Ruiz and Maroto [9]. Different dispatching rules have
been studied in Arisha, Young, and El Baradie [10]. In the following, selectively
a few algorithms of the overviews are analyzed that dealt with flow shops or
job shops to minimize the makespan and are related to our problem classes (see
Sect. 2).

Some of the most commonly used constructive heuristics for flow shops
and job shops are Shortest Processing Time First (SPT), Longest Processing
Time First (LPT), and the NEH-heuristic (flow shops) and have therefore been
considered in this paper. The benefits of dispatching rules like SPT and LPT
are low computational complexities and therefore fast calculations, and trans-
parent behavior for production planners. The NEH-Heuristic, firstly published
by Nawaz, Enscore, and Ham [11, pp. 92–94] for permutation flow shops and
makespan minimization (Fm|prmu|Cmax) produces good results in most cases.
Giffer and Thompson [12] published a constructive algorithm that also applies
rules like SPT and LPT to job shops.

3.2 Giffler & Thompson Algorithm

Using the algorithm by Giffler & Thompson, job shop as well as flow shop prob-
lems can be solved. It schedules exactly one job on a machine in each iteration,
so the algorithm returns complete schedules after m ∗ n iterations, where m is
the number of machines and n the amount of jobs. The heuristic is only param-
eterized by the applied dispatching rule. In the algorithm, this dispatching rule
decides between several competing jobs on the same machine. The implementa-
tion of the complete Giffler & Thompson algorithm is shown in Algorithm 1.1.
The algorithm consists of four phases where steps 2 to 4 iterate until all jobs
are scheduled [13, S. 75–76]. The calculated schedule and the completion times
of the scheduled jobs and for all machines are returned.

286 D. Mäckel et al.

1 Let Zi be the completion time of machine i. Initialize Zi = 0 for i = 0, ...,m. Select
a dispatching rule.

2 Select machine i∗ that first can finish a job out of the set of jobs, which are waiting
to be processed next on one of the machines and are not scheduled yet.

3 From the set of all jobs waiting to be processed on this machine i∗ select one job
by the dispatching rule which is initalized in step 1.

4 Schedule selected job on machine i∗ and update Zi∗ . If there are jobs left to be
scheduled, return to step 2.

Algorithm 1.1: Implementation of the Giffler & Thompson algorithm

Algorithm 1.1 works as follows. In each iteration (step 2–4), the machine is
determined, which can first complete a job. For this purpose, each not yet fully
scheduled job is iterated and the end time after scheduling on the next machine
to be visited is compared. Up to this point, it is a greedy algorithm that selects
a machine according to the earliest completion time on the next machine the job
has to be processed on. Once the machine to be scheduled has been determined,
in the second phase the job is varied to meet a prioritization on the machine.
This is done by determining all jobs that are also to be scheduled next on the
selected machine, including the job determined in the previous phase. If two
or more jobs are waiting to be scheduled on the selected machine, the jobs get
ranked according to the selected dispatching rule. After selecting a job on the
determined machine, it gets scheduled and Zi, as well as the current end time
of the job, gets updated.

3.3 Combinatory Logic Synthesizer

Combinatory Logic Synthesizer, short: (CL)S, is a type-based framework for
the synthesis of software from a set of components specified in a repository
[1]. The framework was developed in the programming language Scala and is
used in this paper. In addition to the synthesis, the framework also allows the
immediate execution of the synthesis result. Due to the implementation in the
Scala programming language, the synthesis results can also access existing Java
and Scala libraries. The framework (CL)S was developed at the chair 14 of the
faculty for Computer Science at the TU Dortmund University.

The Combinatory Logic Synthesizer ((CL)S) is particularly suitable for han-
dling unpredictable variability, which makes it well suited for the synthesis of
machine allocation algorithms in production planning. (CL)S enables the spec-
ification of components, their implementation, as well as the modeling of vari-
ability and the automatic composition of components under consideration of the
modeled variability rules [14]. All this is uniformly done within the framework.
Thus, the framework provides a solid basis for mapping and specifying individ-
ual heuristics and algorithms, and is also suitable as a technological basis for the
automatic composition of components [15]. The (CL)S has been used in the past
for numerous applications of a similar nature. As an example, we mention the

Synthesis of Scheduling Heuristics by Composition and Recombination 287

automatic configuration of factory planning projects [16], the automatic gen-
eration of BPMN processes [14], and the automated configuration of plans in
construction projects [17]. The basis for the use of the framework is that within
the target domain, results can be composed of specifiable components. In the
(CL)S the specification is done by so-called semantic intersection types. How
components can be specified and implemented, and which solutions are then
generated automatically, is shown in the following chapters using an example.

4 Implementation

Machine
schedule

Constructive
Heuristics

Iterative
Metaheuristics

Dispatching
Rules

Neighbourhood
Strategies

Type of machine
scheduling

problem

(flow shop, job
shop)

Demand data

Scrap data

Processing times

Set-up times

C

L

S

Composition
of heuristics

Objective function

Constraints

Fig. 1. Concept of schedule generation with (CL)S

The (CL)S-Repository contains all algorithm components as shown in Fig. 1,
which can be combined into an executable scheduling system. Through a syn-
thesis request to the (CL)S framework, production characteristics can be used
to intersect with the defined types of the algorithm components. The (CL)S only
selects those heuristics that are applicable to the given problem class. Available
problem classes in this exemplary implementation are flow shop and job shop.
After composing the algorithms, they can be utilized to solve the given schedul-
ing problem and produce valid machine schedules. The synthesized algorithms
work as transition functions and transfer the given data object into an applicable
machine schedule. After scheduling, the makespan is calculated.

Further problem classes can be integrated by adding further possible param-
eter assignments and therefore extending the intersection types. By specifying
additional parameters, further β constraints can be realized, which may exclude
further heuristics because they are not applicable for the problem, or include
others because they require certain assumptions or additional data such as dead-
lines.

288 D. Mäckel et al.

Γ = {
Scheduler: (String → String) ∩ (Algorithm ∩ shopClass → Scheduler(shopClass))

NEH: String ∩ (Algorithm ∩ FS)

FSDispatch: (String → String) ∩ (PriorityRule → Algorithm ∩ FS)

GifflerThompson: (String → String) ∩ (PriorityRule → Algorithm ∩ JS ∩ FS)

LPT: String ∩ PriorityRule

SPT: String ∩ PriorityRule

}

Fig. 2. (CL)S repository

Our defined (CL)S repository is shown in Fig. 2 and the solution tree calcu-
lated by the (CL)S across all combinators of the repository is illustrated in Fig. 3.
The repository’s first combinator Scheduler of Fig. 2 is a wrapping base module,
which serves as the common target type for all synthesis requests. Accordingly,
it is found on the first level of the solution tree (left square in Fig. 3). As param-
eter shopClass (see Fig. 2) it receives information about the problems’ machine
environment (α-component). Starting from the base module, the different algo-
rithms for flow shop and job shop problems of the type Algorithm are now
available according to the parameter shopClass. By concretizing the parameter
when calling the synthesis, the number of applicable combinators is reduced in
such a way that only the algorithms for the corresponding problem class can be
used. This is done by using the parameter also as an intersection type of the
base module and thus an intersection with combinators of other problem classes
is no longer possible.

Fig. 3. (CL)S solution tree for flow shops

The first two algorithms NEH and FSDispatch in our implementation can
only be applied to flow shops while the algorithm of Giffler & Thompson can
be applied to job shops, which implies that it can also be used for flow shops
because flow shops are a real subset of job shops as shown in Fig. 4.

Synthesis of Scheduling Heuristics by Composition and Recombination 289

Om

Jm

Fm

1

Fig. 4. Relationships between considered scheduling problem classes

The algorithms FSDispatch and GifflerThompson additionally require a dis-
patching rule. Figure 3 shows the reuse of these dispatching rules SPT and LPT
for FSDispatch and GifflerThompson. This shows again one advantage of such a
composing method. It is easily possible to integrate and combine new algorithms,
heuristics, and dispatching rules into the tool by inserting them into the reposi-
tory as combinators with corresponding intersection types. New components can
reuse already existing ones. Individual components can also be replaced by other
possibly better performing components without having to replace them individ-
ually at all points. Furthermore, the derivation graph in Fig. 3 shows similarities
and differences between algorithms in the sense that the use of similar compo-
nents is immediately recognizable. The procedure of disassembling an algorithm
into reusable components and representing them as (CL)S-combinators is now
explained in detail using the example of the Giffler & Thompson algorithm.

5 Results

To show that the same implementation of an algorithm can be effectively used
for different machine environments, the Giffler & Thompson algorithm and its
implementation is shown in Algorithm 1.1 has been applied to a flow shop and
a job shop problem. The selection of the dispatching rule takes place inside the
dispatching rule combinator that has been selected by CLS and parsed into the
program code at this point. The dispatching rule is varied by replacing the code
at this point.

To give a concrete example, processing times in Table 1 have been randomly
generated from a triangular distribution with lower limit 5s, upper limit 15s,
and mode 8s. For the job shop problem, also the processing order has been
randomized across the stages as shown in Table 2. The entry “4” in row “S1”
and column “job 1” indicates that job 1 has to be processed on the first stage
(S1) in the fourth production step. Before, the job has to visit stage 3, then stage
2 and stage 2 in exactly this sequence. The calculated job shop schedule of the
Giffler & Thompson algorithm with LPT-rule is shown in Fig. 5.

Since the algorithm was not particularly designed for flow shop problems, it
is reasonable to compare its result with the NEH heuristic. The two schedules

290 D. Mäckel et al.

Table 1. Generated processing times

Job 1 2 3 4 5 6 7 8 9 10

S1 6 12 8 9 10 8 9 9 11 7

S2 7 11 7 7 9 7 10 9 10 6

S3 8 12 11 8 9 8 12 13 7 9

S4 9 12 11 7 6 9 10 8 11 10

Table 2. Order for job shop production

Job 1 2 3 4 5 6 7 8 9 10

S1 4 1 4 3 4 4 1 3 2 3

S2 3 3 1 4 1 2 2 2 3 1

S3 1 2 2 1 3 3 4 4 4 4

S4 2 4 3 2 2 1 3 1 1 2

Job Shop : G&T LPT

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

J2 J7 J3 J5 J9 J8 J10 J6 J4 J1

J9 J2 J7 J8 J3 J5 J6 J10 J4 J1

J8 J2 J9 J5 J7 J3 J10 J6 J4 J1

J3 J5 J2 J7 J9 J8 J6 J1 J10 J4

Cmax

Fig. 5. Jop shop schedule with Giffler & Thompson

are shown in Fig. 6. As expected, the NEH heuristic creates a better schedule
than the Giffler & Thompson algorithm. It is worth mentioning that Giffler &
Thompson created a valid schedule that can keep up with algorithms specially
designed for flow shop algorithms and can therefore be for example used as a
starter solution for an iterative algorithm or it can be used if no better solution
is available. In addition, Giffler & Thompson algorithm can be executed with
different priority rules. To execution of the algorithm with different priority rules
as input parameters lead to multiple solutions, the planner team can choose from.
The benefit is not having to implement an algorithm for flow shop problems as
the job shop algorithm can already handle it.

Synthesis of Scheduling Heuristics by Composition and Recombination 291

Flow Shop : NEH

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

J1 J10 J6 J3 J7 J2 J9 J4 J8 J5

J1 J10 J6 J3 J7 J2 J9 J4 J8 J5

J1 J10 J6 J3 J7 J2 J9 J4 J8 J5

J1 J10 J6 J3 J7 J2 J9 J4 J8 J5

Flow Shop : G&T LPT

J2 J7 J9 J8 J3 J5 J10 J6 J4 J1

J2 J7 J9 J8 J3 J5 J10 J6 J4 J1

J2 J7 J9 J8 J3 J5 J10 J6 J4 J1

J2 J7 J9 J8 J3 J5 J10 J6 J4 J1

Cmax,NEH Cmax,G&T

Fig. 6. Comparison of flow shop schedules with NEH and Giffler & Thompson

6 Conclusion

In this paper, we presented a repository for machine scheduling algorithms using
the (CL)S, a framework that can generate algorithms automatically and to create
solutions that are specially tailored to a previously specified problem. We used
this framework for the problem area of machine scheduling in order to solve flow
shop and job shop problems with SPT, LPT, NEH and Giffler & Thompson.

We have classified scheduling algorithms and mapped them as components in
a (CL)S repository. Through componentization, different algorithms can be inte-
grated into a framework via a uniform interface. This makes it easy to generate
different algorithmen to scheduling problems. The recombined algorithms gener-
ate valid schedules according to their functionalities. Algorithms can be defined
for various problem classes and constraints. According to the synthesis request,
only those algorithms are recombined that apply to the current problem.

292 D. Mäckel et al.

The shown concept is not limited to constructive algorithm as presented
in this study and can also be applied to any iterative metaheuristic in further
studies if the given data object already contains a constructive start solution.
Concatenations of different constructive and iterative heuristics are conceivable
as well. Also, extensions of other objective functions are possible.

References

1. Bessai, J., Dudenhefner, A., Düdder, B., Martens, M., Rehof, J.: Combinatory logic
synthesizer. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp.
26–40. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45234-9 3
ISBN 978-3-662-45233-2

2. Graham, R.L., et al.: Optimization and approximation in deterministic sequenc-
ing and scheduling: a survey. In: Hammer, P.L., Johnson, E.L., Korte, B.H. (ed.)
Annals of Discrete Mathematics: Proceedings of the Advanced Research Institute
on Discrete Optimization and Systems Applications of the Systems Science Panel of
NATO and of the Discrete Optimization Symposium co-sponsored by IBM Canada
and SIAM Banff, Aha and Vancouver, vol. 5, pp. 287–326. Elsevier (1979). https://
doi.org/10.1016/S0167-5060(08)70356-X

3. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 5th edn. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-26580-3. ISBN 9783319265780

4. Ruiz, R., Vázquez-Rodŕıguez, J.A.: The hybrid ow shop scheduling problem. Eur. J.
Oper. Res. 205(1), 1–18 (2010). https://doi.org/10.1016/j.ejor.2009.09.024. ISSN
0377-2217

5. Ruiz, R., Şerifoğlu, F.S., Urlings, T.: Modeling realistic hybrid flexible flowshop
scheduling problems. Comput. Oper. Res. 35(4), 1151–1175 (2008). https://doi.
org/10.1016/j.cor.2006.07.014. ISSN 03050548

6. Komaki, G.M., Sheikh, S., Malakooti, B.: Flow shop scheduling problems with
assembly operations: a review and new trends. Int. J. Prod. Res. 57(10), 2926–
2955 (2019). https://doi.org/10.1080/00207543.2018.1550269. ISSN 0020-7543

7. Framinan, J.M., Gupta, J.N.D., Leisten, R.: A review and classification of heuristics
for permutation flow-shop scheduling with makespan objective. J. Oper. Res. Soc.
55(12), 1243–1255 (2004). https://doi.org/10.1057/palgrave.jors.2601784

8. Zhang, J., et al.: Review of job shop scheduling research and its new perspectives
under Industry 4.0. J. Intell. Manuf. 30(4), 1809–1830 (2019). https://doi.org/10.
1007/S10845-017-1350-2. ISSN 0956-5515

9. Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation
flowshop heuristics to minimize flowtime. Eur. J. Oper. Res. 40, 479–494 (2005).
https://doi.org/10.1016/j.ejor.2004.04.017. ISSN 0956-5515

10. Arisha, A., Young, P., El Baradie, M.: Flow shop scheduling problem: a compu-
tational study. In: Sixth International Conference on Production Engineering and
Design for Development (PEDD6). Dublin Institute of Technology, Cairo, Egypt,
1 Jan 2002, pp. 543–557 (2002)

11. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-
job flow-shop sequencing problem. Omega 11(1), 91–95 (1983). https://doi.org/10.
1016/0305-0483(83)90088-9. http://www.sciencedirect.com/science/article/pii/03
05048383900889. ISSN 03050483

https://doi.org/10.1007/978-3-662-45234-9_3
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1016/j.ejor.2009.09.024
https://doi.org/10.1016/j.cor.2006.07.014
https://doi.org/10.1016/j.cor.2006.07.014
https://doi.org/10.1080/00207543.2018.1550269
https://doi.org/10.1057/palgrave.jors.2601784
https://doi.org/10.1007/S10845-017-1350-2
https://doi.org/10.1007/S10845-017-1350-2
https://doi.org/10.1016/j.ejor.2004.04.017
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/0305-0483(83)90088-9
http://www.sciencedirect.com/science/article/pii/0305048383900889
http://www.sciencedirect.com/science/article/pii/0305048383900889

Synthesis of Scheduling Heuristics by Composition and Recombination 293

12. Giffer, B., Thompson, G.L.: Algorithms for solving production scheduling
problems. Oper. Res. 8(4) 487–503 (1960). https://doi.org/10.1287/opre.8.4.487.
http://search.ebscohost.com/login.aspx?direct=true&db=bsu&AN=7687426&site
=ehost-live

13. Jaehn, F., Pesch, E.: Ablaufplanung: Einführung in Scheduling, 1st edn. Springer,
Berlin (2014). https://doi.org/10.1007/978-3-642-54439-2. ISBN 978-3-642-54439-
2

14. Bessai, J., Dudenhefner, A., Düdder, B., Martens, M., Rehof, J.: Combinatory pro-
cess synthesis. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp.
266–281. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 19

15. Winkels, J.: Automatisierte Komposition und Konfiguration von Work-flows
zur Planung mittels kombinatorischer Logik. Technische Universität Dortmund.
https://doi.org/10.17877/DE290R-20469

16. Winkels, J., Graefenstein, J., Schäfer, T., Scholz, D., Rehof, J., Henke, M.: Auto-
matic composition of rough solution possibilities in the target planning of factory
planning projects by means of combinatory logic. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018. LNCS, vol. 11247, pp. 487–503. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03427-6 36 ISBN 9783030034283

17. Lenz, L.T., et al.: Smart factory adaptation planning by means of BIM in combina-
tion of constraint solving techniques. In: Proceedings of the International Council
for Research and Innovation in Building and Construction (CIB), World Building
Congress 2019 – Constructing Smart Cities (2019)

https://doi.org/10.1287/opre.8.4.487
http://search.ebscohost.com/login.aspx?direct=true&db=bsu&AN=7687426&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=bsu&AN=7687426&site=ehost-live
https://doi.org/10.1007/978-3-642-54439-2
https://doi.org/10.1007/978-3-319-47166-2_19
https://doi.org/10.17877/DE290R-20469
https://doi.org/10.1007/978-3-030-03427-6_36
https://doi.org/10.1007/978-3-030-03427-6_36

Solving QAP with Auto-parameterization
in Parallel Hybrid Metaheuristics

Jonathan Duque1(B) , Danny A. Múnera1 , Daniel Dı́az2 ,
and Salvador Abreu3

1 Facultad de Ingenieŕıa, Universidad de Antioquia, Medelĺın, Colombia
{jonathan.duque,danny.munera}@udea.edu.co

2 CRI, Université Paris 1, Paris, France
daniel.diaz@univ-paris1.fr

3 NOVA-LINCS, Universidade Évora, Évora, Portugal
spa@uevora.pt

Abstract. The Quadratic Assignment Problem (QAP) is one of the
most challenging combinatorial optimization problems with many real-
life applications. Currently, the best solvers are based on hybrid and
parallel metaheuristics, which are actually highly complex and paramet-
ric methods. Finding the best set of tuning parameters for such methods
is a tedious and error-prone task. In this paper, we propose a strategy
for auto-parameterization of QAP solvers. We show evidence that auto-
parameterization can further improve the quality of computed solutions.
Our auto- parameterization scheme relieves the user from having to find
the right parameters while providing a high quality solution.

Keywords: QAP · Auto-parametrization · Heuristics · Parallelism

1 Introduction

The Quadratic Assignment Problem (QAP) is a hard combinatorial optimiza-
tion problem with many real-life applications such as scheduling, facility location,
electronic chipset layout, production, process communications, among many oth-
ers [3]. QAP has been shown to be NP-Hard and finding effective algorithms to
solve it is an active research topic in recent years.

Medium size problems can be solved using exact methods (e.g., size ≤30),
which can find an optimal solution or prove that a problem has no solution [1].
Exact methods consider the entire search space: either explicitly by exhaustive
search or implicitly, by pruning some portions of the search space that have been
detected as irrelevant for the search.

To tackle harder problems, one must resort to incomplete methods which pro-
vide good, albeit potentially sub-optimal solutions in a reasonable time. Such is
the case for metaheuristics, which are high-level procedures that make choices
to efficiently explore part of the search space, so as to make problems tractable.

c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 294–309, 2021.
https://doi.org/10.1007/978-3-030-85672-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_22&domain=pdf
http://orcid.org/0000-0002-3672-1630
http://orcid.org/0000-0003-0762-0571
http://orcid.org/0000-0002-2700-2271
http://orcid.org/0000-0002-1613-4631
https://doi.org/10.1007/978-3-030-85672-4_22

Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 295

Metaheuristics usually have several parameters to adjust their behavior depend-
ing on the problem to solve [7]. Examples of metaheuristics include genetic algo-
rithms, tabu search, local search and simulating annealing.

Metaheuristics operate on two main working principles: intensification and
diversification. The former refers to the method’s ability to explore more deeply a
promising region of the search space, while the latter refers to the exploration of
different regions of the search space. By design, some metaheuristics methods are
better at intensifying the search while others are so at diversifying it. However,
the behavior of most metaheuristics can be controlled via a set of parameters. A
fine tuning of these parameters is therefore crucial to achieve an effective trade-
off between intensification and diversification, and hence good performance in
solving a given problem. Unfortunately, selecting the best set of parameters is
a tedious and error-prone task. This process is even harder because the best
parameters values vary with the problem structure and even just for different
instances of the same problem, as stated by the Non-Free-Lunch theorem [41].

Each metaheuristic has its own strengths and weaknesses, which may vary
according to the problem or even to the instance being solved. The trend is thus
to design hybrid metaheuristics, which combine diverse methods in order to
benefit from the individual advantages of each one [5]. However, this increases
the number of parameters (parameters of individual metaheuristics and new
parameters to control the hybridization). The design and implementation of a
hybrid metaheuristic is a complex process; tuning the resulting parameters, to
reach the best performance, is also very challenging.

Despite the good results obtained using hybrid metaheuristics, it is still neces-
sary to reduce the processing times needed for the hardest instances [36]. One of
the most plausible options entails parallelism [13]. In parallel metaheuristics one
can have multiple instances of the same (or different) metaheuristics running in
parallel, either independently or cooperatively through concurrent process com-
munications [10,37]. Not only does parallelism help to decrease processing time,
but it can also be a means to easily implement hybridization.

In previous work we proposed a Cooperative Parallel Local Search solver,
called CPLS [30,32]. CPLS embeds various simple local search metaheuristics
and then relies on cooperative parallelization to concurrently execute several
metaheuristic instances, which cooperate during the search process. We later
extended CPLS, by proposing PHYSH (Parallel HYbridization of simple Heuris-
tics) [26,27]. PHYSH supports the combination of population-based and single-
solution metaheuristics. CPLS and PHYSH also require the fine tuning of a
larger number of parameters, since more metaheuristics (of different types) are
involved. Moreover, the configuration of the parallel interaction itself (communi-
cation between the methods) involves yet another set of parameters which need
to be adjusted. Tuning this increasing number of parameters makes it even more
difficult to find the appropriate setting for the algorithm to behave optimally.

Automating the task of finding good parameters is thus desirable and has
attracted significant attention from researchers. We may identify two kinds of
strategies for automatic tuning: parameter tuning and parameter control [20].

296 J. Duque et al.

In parameter tuning (off-line tuning) the set of parameters are defined before
applying the algorithm to a specific problem (static definition of parameters).
Several strategies for automatic parameter tuning of metaheuristics have been
proposed [21,22]. In contrast, parameter control strategies (online-tuning) adapts
the values of the controlled parameters during the algorithm execution (dynamic
adaptation of parameters). The idea is to find the best parameters setting dur-
ing the solving process, using some mechanism to alter the parameter values
according to the algorithm performance.

Parameter tuning can be seen as a pre-process pass which is executed before
the solving in order to determine the adequate values for parameters. This does
not affect the implementation of the solver. On the other hand, parameter con-
trol has to be implemented in the kernel of the solver. The former may appear
easier but when the number of parameters become large it is hard to use in
practice. Indeed, it usually requires many runs to identify the best parameter
settings, making this a time-consuming process. These methods are often lim-
ited by the number of parameters and the computational power available. In
that case, parameter control strategies emerge as a viable solution to deal with
the high complexity of current solvers (hybrid and/or parallel).

In this paper we propose a parallel hybrid method with a parameter con-
trol strategy for solving the QAP, called DPA-QAP. DPA-QAP embeds mul-
tiple metaheuristic methods in a parallel hybrid execution and self-adapts the
parameters of the metaheuristics using an iterative process, adaptation is per-
formed based on performance measures. We carried out an experimental eval-
uation which shows that the auto-parametrization strategy outperforms a sim-
pler version of DPA-QAP with no auto-parametrization, i.e., a parallel hybrid
method with static parametrization. We perform the evaluation using the clas-
sical QAPLIB instances and also a particular set of very hard QAP instances.

In the remaining of this paper we present the related work on Sect. 2. Section 3
presents the general structure of DPA-QAP and Sect. 4 introduces the auto-
parametrization strategy. Section 5 contains the experimental evaluation per-
formed which validates our strategy. A short conclusion ends the paper.

2 Related Work

The Quadratic Assignment Problem (QAP) was first proposed by Koopmans
and Beckmann in 1957 [25] as a model for a facilities location problem. This
problem consists in assigning a set of n facilities to a set of n locations, while
minimizing the cost associated with the flows of items among facilities and the
distance between them.

Metaheuristic methods have been successfully applied for solving QAP. From
the 90s, several metaheuristic methods have emerged as a suitable option to solve
this problem, e.g., Tabu Search [38], Genetic Algorithms [40], among several oth-
ers. These methods perform well on a wide range of QAP instances, however,
some hard instances still require very long runs to achieve quality solutions.
Moreover, no method was able to get good performance on an extensive set

Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 297

of instances. The aforementioned problems spurred the emergence of new tech-
niques based on hybridization and parallelization. For instance, one of the fun-
damental methods of hybrid metaheuristics is the memetic algorithm (MA) [29].
MA is an effective approach which combines an evolutionary algorithm with a
local search procedure. Hybrid metaheuristics are intricate procedures, tricky to
design, implement, debug and tune, therefore, it is unsurprising that hardly any
of them only combine more that a couple of methods.

Parallelizing metaheuristics grants access to using powerful computational
platforms with the aim of speeding up the search process [12]. A straightforward
implementation of parallel metaheuristics is the Independent multi-walks app-
roach which speeds up the search process by performing concurrent executions
of multiple metaheuristic instances, therefore augmenting the probability to get
quickly a good solution [11]. Another kind of parallel metaheuristics allows the
concurrent instances to cooperate by exchanging information during the search
process, aiming to improve the efficiency of the solver [28,39]. We identify these
methods as Cooperative multi-walk approaches.

We proposed a way to create hybridization through cooperative paralleliza-
tion in our CPLS framework [30,32]. CPLS allows the user to code the individual
metaheuristics, and the framework manages parallelism and communications. In
CPLS, different local search metaheuristics concurrently interact by exchang-
ing relevant information about the search. This interaction provides a cooper-
ative way to intensify the search. This framework has been successfully used
to solve hard variants of Stable Matching Problems [33] and hard instances of
QAP [30,31]. Since CPLS does not support population-based methods, we pro-
posed an extension of the framework called PHYSH [26,27], which provides an
efficient strategy to promote cooperation between population-based and single-
solution methods, metaheuristics of a different nature. Both CPLS and PHYSH
have proved able to efficiently solve several hard QAP instances.

Parallel hybrid metaheuristics often have many parameters which modify the
algorithm behaviour. Setting these parameters has influence on the performance
of the method, however, finding the optimal values for these parameters is usu-
ally a hard task [21]. Using hybridization and parallelism makes this task even
more difficult for mainly two reasons: First, hybrid metaheuristics inherit the
parameters of each “low level” metaheuristic, so one needs to find the setting of
more parameters, since a parameter configuration for one algorithm usually is
not suitable for another. Second, cooperative parallel strategies require parame-
ters to define their behaviour, e.g., for determining how frequently metaheuristics
should interact or how each metaheuristic has to use the received information,. . .

Tuning metaheuristic parameters (i.e., offline-tuning) has been carried out
in different ways, in earlier times the tuning process was done by hand, another
approach was to take parameters values from similar algorithms reported in
the literature. More recently, the use of specialized tools for automatic parame-
ter tuning has become prevalent, these techniques use advanced methodologies
and tools from a theory of experiment design to machine learning approaches,
among others [19]. Several methods have been proposed for parameter tuning,
for instance F-Race [4], ParamILS [21], SMAC [22], HORA [2]. However, these

298 J. Duque et al.

methods have limitations when tuning a large number of parameters or when
they require significant computational resources to perform the test runs [20].

Parameter control (online-tuning) emerges as a reasonable option. Some
strategies have been proposed for specific metaheuristics such as [35] for swarm
intelligence and [23] for evolutionary algorithms. Also, some specific strategies
has been proposed for the QAP, such as [16] which proposes a strategy for self-
control parameters on a Tabu Search method.

Hyper-heuristics present another way to face the problem of metaheuris-
tic parameter control. These form a novel research approach in which a high
level strategy selects or generates the best metaheuristics with their respective
parameters and acceptance criteria. Aiming to have more general methods, not
designed for a single problem or for a few instances of a problem [9]. To the
best of our knowledge, only one hyperheuristic method solves the QAP and uses
parallelism in its design [14]: the authors propose a parameter control method
using a genetic algorithm (GA) acting as a high-level strategy in the hyper-
heuristic approach. The GA, generation by generation, performs the adaptation
of parameters through cross-over and mutation operators, ending up with the
parameters at their best adjustment for each method.

We achieve a form of hyperheuristic using cooperative parallelism. The key
idea is to use the parallel computational power to not only create a hybrid meta-
heuristic but also to automatically control the parameters of the metaheuristic
involved in the parallel hybrid method.

3 DPA-QAP Method

This section presents the general structure of DPA-QAP, a Dynamic Parameter
Adaptation method for solving the Quadratic Assignment Problem. DPA-QAP
is build on the top of a parallel hybrid metaheuristic solver, similar to the one
presented in [30]. Figure 1 presents the two main components of DPA-QAP, the
Worker nodes and a Master node (workers and master to simplify). Workers run
a set of metaheuristics, in parallel, carrying out the search process. We design
each worker to run in a separate thread, ideally bound to its own dedicated core,
each thread runs a specific metaheuristic instance.

Fig. 1. DPA-QAP top-level view.

Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 299

Each worker reports periodically its current candidate solution and some
contextual information (e.g., solution cost, performance metrics, etc.) to the
master, which stores best intermediate solutions into an elite pool. When the
master receives a solution from a worker, it merges it into the elite pool. If the
incoming solution is already present, it gets mutated by performing two random
swaps. This mechanism promotes some diversity for the candidate solutions in
the pool. When the elite pool is full, the master sends solutions to workers, ensur-
ing the receiver implements a different metaheuristic from the one that inserted
that solution into the pool. This process constitutes a flexible interaction fea-
ture which eases the hybridization of metaheuristics promoting cross-fertilization
among different types. The size of this pool is equal to the number of workers,
since the pool must have a solution for each method.

On the top of this cooperative parallel search, DPA-QAP implements a
dynamic adaptation strategy which is tasked to automatically adjust the param-
eters of the metaheuristics during their execution, looking for the best setting
and trying to ensure a balance between intensification and diversification.

3.1 Metaheuristics Used in the DPA-QAP Method

We select three different metaheuristic methods for the workers: Robust Tabu
Search (RoTS), Extremal Optimization (EO), and Multistart Local Search
(MLS). We select these metaheuristics because they are commonly used in com-
binatorial optimization problems particularly for the QAP. We now present a
brief description of each of these methods.

Robust Tabu Search. The name Tabu Search (TS) refers to the use of an
adaptive memory and special problem-solving strategies, to get a better local
search method [17]. The idea is to memorize within a structure the elements
that for the LS will be forbidden to use (tabu) and thus avoid getting trapped in
local optima. TS looks for the best solution within the neighborhood but does
not visit the solutions of previous neighbors if they have been visited before or
have been marked as prohibited locations [14]. RoTS is an adaptation of TS to
the QAP and has been one of the best performing methods for this problem [38].

Extremal Optimization. EO is a metaheuristic inspired by self-organizing
processes as frequently found in nature: for EO this is self-organized criticality
(SOC). The version proposed by [6] has only one adjustable parameter: τ , and
uses of a Probability Distribution Function (PDF). EO proceeds like this: it
inspects all candidate configurations assigning a fitness value, by means of the
goal function. The configurations are then ranked from worst to best. EO resorts
to the PDF to choose a solution from organized configurations. The role of the
τ parameter is to provide different search strategies from pure random walk
(τ = 0) to deterministic (greedy) search (τ ⇒ ∞). In previous work, we extended
the basic EO metaheuristic to support not only a power-law PDF, but also an
exponential and a gamma-law PDFs [31].

Multistart Local Search. Local Search (LS) is one of the oldest and most
frequently used metaheuristics. LS starts from an initial solution and repeatedly

300 J. Duque et al.

improves it within a defined neighborhood. Neighbor solutions can be generated
by applying minor changes to the initial solution. LS ends when no improved
solutions are found in the neighborhood achieving a local optima [42]. Multistart
Local Search (MLS) is a modification of LS that iteratively performs multiple
different searches, executing each LS from a different starting point. When MLS
reaches a local optimum, it tries to escape by restarting the search from scratch
or performing some random moves in the current solution.

Table 1. Metaheuristic’s parameter ranges (n stands for QAP instance’s size).

Metaheuristic Parameter name Range

RoTS Tabu duration factor [4n–20n]

Aspiration factor [n2–10n2]

EO PDF Power - Exponential - Gamma

τ [0, 1]

MLS Start type Restart from scratch - Random swaps

Metaheuristics Parameters. Table 1 presents the parameters considered for
each metaheuristic, together with the range of variation for each parameter.
These ranges are picked from the best performances, as reported in the literature.
For RoTS we use the parameters reported in [38], for EO we select the parameters
reported in [31] and for MLS, the only parameter used is the restart process,
then no range is needed.

4 Automatic Parameter Adaption in DPA-QAP

The DPA-QAP method operates within an iterative process. At the beginning,
workers are initialized with random parameters. DPA-QAP dynamically adapts
the best setting of parameters in every worker (which is executing a metaheuristic
instance). Parameter control depends on the performance in the solving process
for an individual worker at each iteration. Each worker periodically reports rel-
evant information to the master. With this information, the master evaluates
the worker’s performance and tweaks its parameters, trying to strike a balance
between intensification and diversification in the search. Figure 2 depicts the
flow diagram of this process. Gray boxes represent the functionality executed by
workers, in parallel. White boxes specify the iterative adaptation process by the
master. The master waits while the workers perform the search. When it receives
a metaheuristic report, it develops a performance evaluation for each worker and
executes the parameters’ adaptation procedure. The master then sends a new,
evolved, set of parameters and a new configuration back to the workers. Workers
resume the search with the settings they received: parameters and restarting
from a new initial solution (from the master’s elite pool). DPA-QAP repeats
this process until an established number of iterations is accomplished or when
the solution target is reached.

Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 301

Fig. 2. DPA-QAP flow diagram.

4.1 Metaheuristics Performance Metrics

At each iteration of the parameters’ adaptation process, each metaheuristic
runs for a given time, iteration time. When the iteration time is run-
ning out, workers report to the master the initial solution and the best found
solution in the interval with theirs associated costs. In order to assess the
performance of a worker using a specific set of parameters, the master com-
putes the distance between the initial and final solution (pair-wise difference)
and the percentage gain for that iteration. The percentage gain is defined as:
gain = costinitial−costfinal

costinitial
.

Evaluating the performance of the metaheuristics is a critical process, and
selecting the right set of metrics affects the overall performance of the param-
eters’ adaptation process. In this work we consider two classical metrics, the
percentage gain in the cost of the objective function and the distance between
solutions. The gain acts as a direct indicator of the metaheuristic’s performance,
meanwhile the distance is assessing how diverse the search is. Other metrics can
be also considered, for instance, the time spend on local optima, the number of
iterations without improvements, among many others.

4.2 Performance Evaluation

The parameters’ adaptation process evaluates the workers’ performance by pro-
cessing the percentage gain and the similarity between the initial and final solu-
tion. Through experimentation we verify that the gain is usually bigger at initial
stages of the search than at the final stage. For this reason, DPA-QAP changes
the value of the diversification gain limit during the search process, inspired
by how the temperature decreases in simulated annealing [24]. Figure 3 shows
how the diversification gain limit decreases in DPA-QAP during the search pro-
cess. Using this dynamic limit, DPA-QAP diversifies the search more easily at
the beginning than at the end of the search process. The similarity criterion is
computed comparing the distance between the initial and final solutions. If this
distance is lower than one-third of the QAP size (i.e., 66% of the variables are
equal), we consider both solutions as “very similar”.

Considering these two criteria, we defined the following rules to determine
which action must be taken for adapting the worker’s parameters: If the gain

302 J. Duque et al.

obtained by the method and its pair-wise difference is lower than the corre-
sponding limits, the component adapts the metaheuristic parameters to diver-
sify the search. If the gain is higher than the corresponding diversification gain
limit or the pair-wise difference is higher than the distance solution limit, the
component adapts the parameters to intensify the search. Both the dynamic
diversification limits and the distance solution limit are hyper-parameters of the
auto-parametrization strategy. We plan to test different limits in future work.

Adapting the Parameters. The evaluation of the worker’s performance out-
puts a mandate which can be, intensify or diversify. This output is used as
input for the parameters adaptation process. For each possible case we define a
behavior depending of the metaheuristic type.

In EO the parameter τ is in the range 0 to 1 and, depending on its value and
the PDF, this may lead the metaheuristic to intensify or diversify the search,
by adding or subtracting a delta value belonging to the range (see Fig. 4). The
parameters are then adjusted by adding to their values using deltas, so the
master performs a search process that looks for the best parameters setting for
a given metaheuristic.

Fig. 3. Gain diversification limits. Fig. 4. EO parameters adaptation.

We define the parameter adaptation process for Robust Tabu search as fol-
lows: if the parameter adaptation component returns diversify, a delta of n/2
is added to the tabu duration and a delta of n2/2 is added to the aspiration
parameters. If the parameter adaptation component returns intensify, the tabu
duration is subtracted by n/2 and the aspiration is decreased by n/2. For inten-
sification, the delta for the adaptation of the aspiration parameter is different to
diversification. This is done intending to slow down the intensification process,
avoiding to stagnates on a local optimum. For the case of MLS, if there is any
gain in cost, the type of restart is retained. If there is no gain, the algorithm
changes to the other option.

Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 303

5 Experimental Evaluation

In this section we present an experimental evaluation of our proposed method,
DPA-QAP, comparing its performance against an independent parallel hybrid
metaheuristic method. We consider three sets of very hard benchmarks: the
20 hardest instances of QAPLIB [8] and two sets of even harder instances:
Drezner’s [15] dreXX and Palubeckis’s [34] InstXX instances. Each instance is
executed 30 times stopping as soon as the Best Known Solution (BKS) is found
or when a time limit of 5 min is hit, in case the BKS is not reached. All experi-
ments have been carried out on a quad-AMD Opteron 6380 system, totaling 64
cores running at 2.5 GHz and 128 GB of RAM.

At present, DPA-QAP is systematically configured with 30 worker nodes:
10 running RoTS, 10 running EO and 10 running MLS. Each worker node ran-
domly initializes each parameter of its metaheuristic by randomly picking a value
from the admissible values (see Table 1). These parameters are then periodically
adapted as explained in the previous section. In this experiment, parameter con-
trol is triggered every 15 or 20 s, depending on the size of the problem. Each
metaheuristic can thus adapt its parameters up to 20 times during the 5 minutes
global execution cap. We plan to study the impact of varying this interval and
determine if it is also possible and useful to dynamically adapt it.

We compare DPA-QAP to a base solver (BASE-QAP) which is statically
parametrized (this solver is actually derived from DPA-QAP by disabling the
parameter control mechanisms). Other than that, BASE-QAP is identical to
DPA-QAP: it also creates 30 metaheuristic instances (10 of each type of meta-
heuristic); each metaheuristic instance also randomly initializes its parameters,
which instead remain fixed during the execution. Our goal is to compare this pre-
process parameterization (parameters fixed) with self-parameterization. Usually
the parameter tuning pre-process is a time-consuming task, the idea is to avoid
this offline tuning step by having an online method able to adapt its parameters
meanwhile the problem solution is carry out.

Both methods are similarly implemented in Java 11 using the ForkJoinPool
and AtomicType classes to handle the parallelism in a shared memory model 1.
In all cases we made sure that each worker node is actually mapped by the JVM
onto a different physical core, at runtime.

5.1 Evaluation on QAPLIB

We evaluated the performance of the DPA-QAP on QAPLIB, a well-known
collection of 134 QAP problems of various sizes and difficulties [8]. The instances
are named as nameXX where name corresponds to the first letters of the author
and XX is the size of the problem. For each instance, QAPLIB also includes the
Best Known Solution (BKS), which is sometimes the optimum. Many QAPLIB
instances are easy for a parallel solver, we therefore selected the 20 hardest

1 Source code and instances can be found here.

https://github.com/JonathanDuque/QAPMetaheuristic/tree/DPA-QAP

304 J. Duque et al.

ones (removing all systematically solved instances). We ran both DPA-QAP
and BASE-QAP under the same conditions (30 repetitions, time limit of 5 min).

Table 2 presents the results. For each solver, the table lists the number of
times the BKS is reached across the 30 executions (#BKS), the Average Per-
centage Deviation (APD), which is the average of the 30 relative deviation
percentages computed as follows: 100 × Avg−BKS

BKS , where Avg is the average of
the 30 found costs, and finally the average execution time (Time). Execution
times are given in seconds (as a decimal number). This time is the elapsed (wall
clock) time, and includes the time to install all solver instances, solve the prob-
lem, communications and the time to detect and propagate the termination. To
compare the performance of both solvers, we first compare the number of BKS
found, then (in case of tie), the APDs and finally the execution times. For each
benchmark, the best-performing solver row is highlighted and the discriminant
field is enhanced in bold font.

DPA-QAP outperforms BASE-QAP on 14 out of 20 of the hardest QAPLIB
instances, while the reverse only occurs for 6 instances. 7 instances can never
been solved by any solver. Clearly, a time limit of 5 min is too short for those hard
problems: we plan to experiment with larger time limits. The “summary” row
shows that DPA-QAP obtains a better #BKS than BASE-QAP (192 vs. 153,
a 25% increase). The average APD is also better (0.174 vs. 0.180). Notice that
solutions of better quality are obtained in a slightly shorter average execution
time (269.5 s vs. 276.7 s).

Notice that BASE-QAP is indeed an efficient solver for this benchmark, it
implements a parallel hybridization strategy and its parameters, despite being
randomly initialized, are selected within a range taken from state-of-the-art
solvers which report competitive results. Still, DPA-QAP managed to outper-
form BASE-QAP in most instances.

Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 305

Table 2. Evaluation of dynamic adaptation on 20 hardest instances of QAPLIB.

DPA-QAP BASE-QAP

BKS #BKS APD Time #BKS APD Time

sko72 66256 28 0.010 130.9 24 0.012 161.2

sko81 90998 20 0.012 209.6 10 0.011 242.3

sko90 115534 9 0.022 262.2 8 0.016 274.9

sko100a 152002 12 0.027 245.0 4 0.029 279.3

sko100b 153890 20 0.012 223.1 14 0.014 242.9

sko100c 147862 27 0.010 268.7 20 0.010 287.2

sko100d 149576 6 0.024 287.7 9 0.021 285.9

sko100e 149150 20 0.012 266.1 16 0.015 271.2

sko100f 149036 8 0.018 267.8 9 0.017 265.9

tai40a 3139370 4 0.082 272.7 3 0.085 290.6

tai50a 4938796 0 0.386 300.0 0 0.401 300.0

tai60a 7205962 0 0.479 300.0 0 0.519 300.0

tai80a 13499184 0 0.689 300.0 0 0.780 300.0

tai100a 21044752 0 0.647 300.0 0 0.685 300.0

tai80b 818415043 14 0.031 282.1 13 0.028 254.5

tai100b 185996137 5 0.084 282.9 10 0.077 285.3

tai150b 498896643 0 0.654 300.0 0 0.601 300.0

tai256c 44759294 0 0.183 300.0 0 0.179 300.0

tho150 8133398 0 0.095 300.0 0 0.086 300.0

wil100 273038 19 0.011 292.0 13 0.013 293.0

Summary 192 0.174 269.5 153 0.180 276.7

5.2 Evaluation on Harder Instances

We evaluated DPA-QAP on two more sets of instances, artificially crafted to be
very difficult for metaheuristics: the dreXX instances proposed by Drezner [15]
and the InstXX instances by Palubeckis [34]. These problems are generated with
a known optimum. For this test we used the same machine and configuration as
for QAPLIB (30 cores and a time limit of 5 min with 30 repetitions).

Table 3 presents the results for Drezner’s instances. We have omitted small
instances which are systematically solved by both solvers in less than 15 s. We
start with dre42 which is solved by both solvers at each replication; even on this
case DPA-QAP is much faster than BASE-QAP: 34 s vs. 61 s. In all instances,
DPA-QAP outperforms BASE-QAP. As a whole, DPA-QAP reaches more BKS
(60 vs. 38) and, when the optimum is not reached, solutions provided by DPA-
QAP are of much better quality than BASE-QAP as shown by the APDs (23.558
vs. 32.408), and it does so in a shorter period of time.

306 J. Duque et al.

Table 3. Evaluation on Drezner
instances.

DPA-QAP BASE-QAP

OPT #BKS APD Time #BKS APD Time

dre42 764 30 0.0 34 30 0.0 61

dre56 1086 21 14.1 213 8 21.0 259

dre72 1452 9 27.4 265 0 34.9 300

dre90 1838 0 22.1 300 0 28.0 300

dre110 2264 0 36.1 300 0 52.1 300

dre132 2744 0 41.7 300 0 58.3 300

SMRY 60 23.6 235 38 32.4 254

Table 4. Evaluation on Palubeckis’
instances.

DPA-QAP BASE-QAP

OPT #BKS APD Time #BKS APD Time

Inst40 837900 29 0.15 108 26 0.17 151

Inst50 1840356 23 0.10 199 18 0.12 238

Inst60 2967464 20 0.16 188 11 0.15 249

Inst70 5815290 9 0.12 267 3 0.16 293

Inst80 6597966 2 0.18 292 2 0.19 292

Inst100 15008994 0 0.18 300 0 0.18 300

Inst150 58352664 0 0.14 300 0 0.14 300

Inst200 75405684 0 0.14 300 0 0.14 300

SMRY 83 0.15 244 60 0.16 265

Table 4 presents the results for Palubeckis’ instances. As in the previous case,
we did not include small instances which are systematically solved by both solvers
in less than 15 s. Here again, DPA-QAP performs better than BASE-QAP on
all instances of the benchmark. As for Drezner’s instances, the time limit of
5 min appears too short to solve large instances. However, DPA-QAP does find
more BKS (83 vs. 60) and dynamic parameter adaptation makes it possible to
improve the quality of solutions wrt. BASE-QAP as shown by the APDs (0.147
vs. 0.157).

6 Conclusions and Future Work

We have proposed a dynamic parameter adaptation scheme for parallel and
hybrid solvers based on metaheuristics to solve the QAP. The basic principle of
this approach is to have a master node which periodically collects the progress
of each metaheuristic. This node has a global view of the overall search progress,
therefore it can provide each metaheuristic with new parameter values in order
to increase its effectiveness. We proposed DPA-QAP: an implementation of this
architecture in Java, embedding three well-known metaheuristics: Robust Tabu
Search, Extremal Optimization and Multistart Local Search. The first experi-
ments performed on very difficult instances of QAP validate our approach by
significantly improving solution quality.

We plan to extend this work in several directions. First, we will experiment
on machines with more cores and with time limits greater than the 5 minutes cap
which was allowed in this work. We will also try to determine the best settings
for parameter reporting and adjustment: in this experiment we used a constant
interval which needs to be refined. Another line of potential experiments consists
in including efficient metaheuristics, such as Ant Colony Optimization [18]; or
embedding population-based methods, e.g. genetic algorithms. Finally, we plan
to address larger instances of the QAP as well as other difficult problems. As an
outcome, we aim to design and propose a general framework for self-adaptation
able to address a wide variety of combinatorial search and optimization problems.

Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 307

Acknowledgements. This research was supported by the CODI project PRV19-1-01
funded by the University of Antioquia in Medelĺın, Colombia.

References

1. Abdel-Basset, M., Manogaran, G., Rashad, H., Zaied, A.N.H.: A comprehensive
review of quadratic assignment problem: variants, hybrids and applications. J.
Ambient Intell. Human. Comput. 1–24 (2018). https://doi.org/10.1007/s12652-
018-0917-x

2. Barbosa, E.B., Senne, E.L.: A heuristic for optimization of metaheuristics by means
of statistical methods. In: ICORES 2017 - Proceedings of the 6th International
Conference on Operations Research and Enterprise Systems 2017-January (Icores),
pp. 203–210 (2017). https://doi.org/10.5220/0006106402030210

3. Bhati, R.K., Rasool, A.: Quadratic assignment problem and its relevance to the
real world: a survey. Int. J. Comput. Appl. 96(9), 42–47 (2014)

4. Birattari, M., Kacprzyk, J.: Tuning Metaheuristics: A Machine Learning Per-
spective, vol. 197. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
00483-4

5. Blum, C.: Hybrid metaheuristics in combinatorial optimization: a tutorial. In:
Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) TPNC 2012. LNCS, vol. 7505,
pp. 1–10. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33860-
1 1

6. Boettcher, S., Percus, A.: Nature’s way of optimizing. Artif. Intell. 119(1), 275–286
(2000). https://doi.org/10.1016/S0004-3702(00)00007-2

7. Boussäıd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf.
Sci. 237, 82–117 (2013). https://doi.org/10.1016/j.ins.2013.02.041

8. Burkard, R.E., Karisch, S., Rendl, F.: QAPLIB - a quadratic assignment problem
library. Eur. J. Oper. Res. 55(1), 115–119 (1991). https://doi.org/10.1016/0377-
2217(91)90197-4

9. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.:
A classification of hyper-heuristic approaches: revisited. In: Gendreau, M., Potvin,
J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 453–477. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-91086-4 14

10. Caniou, Y., Codognet, P., Richoux, F., Diaz, D., Abreu, S.: Large-scale parallelism
for constraint-based local search: the costas array case study. Constraints 20(1),
1–27 (2014). https://doi.org/10.1007/s10601-014-9168-4

11. Codognet, P., Munera, D., Diaz, D., Abreu, S.: Parallel local search (2018). https://
doi.org/10.1007/978-3-319-63516-3 10

12. Cotta, C., Talbi, E.G., Alba, E.: Parallel hybrid metaheuristics. In: Parallel
Metaheuristics, pp. 347–370. Wiley, Hoboken (2005). https://doi.org/10.1002/
0471739383.ch15

13. Crainic, T.G., Toulouse, M.: Parallel meta-heuristics. In: Gendreau, M., Potvin,
J.Y. (eds.) Handbook of Metaheuristics. ISOR, vol. 146, pp. 497–541. Springer, US
(2010). https://doi.org/10.1007/978-1-4419-1665-5 17

14. Dokeroglu, T., Cosar, A.: A novel multistart hyper-heuristic algorithm on the grid
for the quadratic assignment problem. Eng. Appl. Artif. Intell. 52, 10–25 (2016).
https://doi.org/10.1016/j.engappai.2016.02.004

15. Drezner, Z.: The extended concentric tabu for the quadratic assignment problem.
Eur. J. Oper. Res. 160(2), 416–422 (2005)

https://doi.org/10.1007/s12652-018-0917-x
https://doi.org/10.1007/s12652-018-0917-x
https://doi.org/10.5220/0006106402030210
https://doi.org/10.1007/978-3-642-00483-4
https://doi.org/10.1007/978-3-642-00483-4
https://doi.org/10.1007/978-3-642-33860-1_1
https://doi.org/10.1007/978-3-642-33860-1_1
https://doi.org/10.1016/S0004-3702(00)00007-2
https://doi.org/10.1016/j.ins.2013.02.041
https://doi.org/10.1016/0377-2217(91)90197-4
https://doi.org/10.1016/0377-2217(91)90197-4
https://doi.org/10.1007/978-3-319-91086-4_14
https://doi.org/10.1007/s10601-014-9168-4
https://doi.org/10.1007/978-3-319-63516-3_10
https://doi.org/10.1007/978-3-319-63516-3_10
https://doi.org/10.1002/0471739383.ch15
https://doi.org/10.1002/0471739383.ch15
https://doi.org/10.1007/978-1-4419-1665-5_17
https://doi.org/10.1016/j.engappai.2016.02.004

308 J. Duque et al.

16. Fescioglu-Unver, N., Kokar, M.M.: Self controlling tabu search algorithm for the
quadratic assignment problem. Comput. Ind. Eng. 60(2), 310–319 (2011). https://
doi.org/10.1016/j.cie.2010.11.014

17. Glover, F.: Tabu search—part II. ORSA J. Comput. 2, 4–32 (1990). https://doi.
org/10.1287/ijoc.2.1.4

18. Hani, Y., Amodeo, L., Yalaoui, F., Chen, H.: Ant colony optimization for solving
an industrial layout problem. Eur. J. Oper. Res. 183(2), 633–642 (2007). https://
doi.org/10.1016/j.ejor.2006.10.032

19. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In:
Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9 3

20. Huang, C., Li, Y., Yao, X.: A survey of automatic parameter tuning methods for
metaheuristics. IEEE Trans. Evol. Comput. 24(2), 201–216 (2020). https://doi.
org/10.1109/TEVC.2019.2921598

21. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algo-
rithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009). https://
doi.org/10.1613/jair.2808

22. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

23. Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary
algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187
(2014)

24. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–80 (1983)

25. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of eco-
nomic activities. Econometrica 25(1), 53–76 (1957). https://doi.org/10.2307/
1907742

26. Lopez, J., Munera, D., Diaz, D., Abreu, S.: On integrating population-based meta-
heuristics with cooperative parallelism. In: Proceedings - 2018 IEEE 32nd Interna-
tional Parallel and Distributed Processing Symposium Workshops, IPDPSW 2018
(2018). https://doi.org/10.1109/IPDPSW.2018.00100

27. López, J., Múnera, D., Diaz, D., Abreu, S.: Weaving of metaheuristics with coop-
erative parallelism. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P.,
Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 436–448.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2 35

28. Loukil, L., Mehdi, M., Melab, N., Talbi, E.G., Bouvry, P.: A parallel hybrid genetic
algorithm-simulated annealing for solving Q3AP on computational grid. In: IPDPS
2009 - Proceedings of the 2009 IEEE International Parallel and Distributed Pro-
cessing Symposium (2014). https://doi.org/10.1109/IPDPS.2009.5161126

29. Moscato, P., Cotta, C., Mendes, A.: Memetic algorithms. In: Handbook of Heuris-
tics, vol. 1–2, pp. 53–85. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-39930-8 3

30. Munera, D., Diaz, D., Abreu, S.: Hybridization as cooperative parallelism
for the quadratic assignment problem. In: Blesa, M.J., et al. (eds.) HM 2016.
LNCS, vol. 9668, pp. 47–61. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-39636-1 4

https://doi.org/10.1016/j.cie.2010.11.014
https://doi.org/10.1016/j.cie.2010.11.014
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1016/j.ejor.2006.10.032
https://doi.org/10.1016/j.ejor.2006.10.032
https://doi.org/10.1007/978-3-642-21434-9_3
https://doi.org/10.1109/TEVC.2019.2921598
https://doi.org/10.1109/TEVC.2019.2921598
https://doi.org/10.1613/jair.2808
https://doi.org/10.1613/jair.2808
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.2307/1907742
https://doi.org/10.2307/1907742
https://doi.org/10.1109/IPDPSW.2018.00100
https://doi.org/10.1007/978-3-319-99253-2_35
https://doi.org/10.1109/IPDPS.2009.5161126
https://doi.org/10.1007/978-3-540-39930-8_3
https://doi.org/10.1007/978-3-540-39930-8_3
https://doi.org/10.1007/978-3-319-39636-1_4
https://doi.org/10.1007/978-3-319-39636-1_4

Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 309

31. Munera, D., Diaz, D., Abreu, S.: Solving the quadratic assignment problem
with cooperative parallel extremal optimization. In: Chicano, F., Hu, B., Garćıa-
Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 251–266. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30698-8 17

32. Munera, D., Diaz, D., Abreu, S., Codognet, P.: A parametric framework for coop-
erative parallel local search. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS,
vol. 8600, pp. 13–24. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44320-0 2

33. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: Solving
hard stable matching problems via local search and cooperative parallelization. In:
AAAI, Austin, TX, USA (2015)

34. Palubeckis, G.: An algorithm for construction of test cases for the quadratic assign-
ment problem. Informatica, Lith. Acad. Sci. 11(3), 281–296 (2000)

35. Parpinelli, R.S., Plichoski, G.F., Silva, R.S.D., Narloch, P.H.: A review of tech-
niques for online control of parameters in swarm intelligence and evolutionary
computation algorithms. Int. J. Bio-Inspired Comput. 13(1), 1–20 (2019)

36. Saifullah Hussin, M.: Stochastic local search algorithms for single and bi-objective
quadratic assignment problems. Ph.D. thesis, Université de Bruxelles (2016)

37. Silva, A., Coelho, L.C., Darvish, M.: Quadratic assignment problem variants: a
survey and an effective parallel memetic iterated tabu search. Eur. J. Oper. Res.
(xxxx) (2020). https://doi.org/10.1016/j.ejor.2020.11.035

38. Taillard, E.: Robust taboo search for the quadratic assignment problem.
Parallel Comput. 17(4–5), 443–455 (1991). https://doi.org/10.1016/S0167-
8191(05)80147-4

39. Talbi, E.G., Bachelet, V.: COSEARCH: a parallel cooperative metaheuristic. J.
Math. Modell. Algorithms 5(1), 5–22 (2006). https://doi.org/10.1007/s10852-005-
9029-7

40. Tate, D.M., Smith, A.E.: A genetic approach to the quadratic assignment prob-
lem. Comput. Oper. Res. 22(1), 73–83 (1995). https://doi.org/10.1016/0305-
0548(93)E0020-T

41. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893

42. Yagiura, M., Ibaraki, T.: Local search (2002). https://doi.org/10.1201/
9781420010749

https://doi.org/10.1007/978-3-319-30698-8_17
https://doi.org/10.1007/978-3-662-44320-0_2
https://doi.org/10.1007/978-3-662-44320-0_2
https://doi.org/10.1016/j.ejor.2020.11.035
https://doi.org/10.1016/S0167-8191(05)80147-4
https://doi.org/10.1016/S0167-8191(05)80147-4
https://doi.org/10.1007/s10852-005-9029-7
https://doi.org/10.1007/s10852-005-9029-7
https://doi.org/10.1016/0305-0548(93)E0020-T
https://doi.org/10.1016/0305-0548(93)E0020-T
https://doi.org/10.1109/4235.585893
https://doi.org/10.1201/9781420010749
https://doi.org/10.1201/9781420010749

Theoretical Analysis of a Dynamic
Pricing Problem with Linear

and Isoelastic Demand Functions

Mourad Terzi1,2(B), Yassine Ouazene1,2, Alice Yalaoui1,2,
and Farouk Yalaoui1,2

1 Chaire Connected Innovation, Université de Technologie de Troyes,
12 rue Marie Curie, CS 42060, 10004 Troyes Cedex, France

{mourad.terzi,yassine.ouazene,alice.yalaoui,farouk.yalaoui}@utt.fr
2 LIST3N, Université de Technologie de Troyes, 12 rue Marie Curie,

CS 42060, 10004 Troyes Cedex, France

Abstract. Dynamic pricing strategies are usually adopted to dynam-
ically adjust the products’ prices taking into account demand function
characteristics to maximize the revenue. This paper addresses the prob-
lem in which a firm has to make decisions about its selling prices in each
period to maximize the total profit over the whole horizon. We propose
a theoretical analysis of this problem from which we show that: first,
when the demand function is linear, the problem can be formulated as
a quadratic programming problem. We also present the Karush-Kuhn-
Tucker system, which can be used to find the optimal pricing policy when
the objective function is concave. Then, when the demand is isoelastic,
we also show that the problem can be reduced to the maximization of N
independent functions in bounded intervals. Some numerical examples
are provided to illustrate the results obtained for both the linear and
isoelastic cases.

Keywords: Revenue maximization · Dynamic pricing · Linear and
isoelastic demand · Quadratic programming · KKT conditions

1 Introduction

Dynamic pricing is a pricing strategy where the firms adjust dynamically the
prices of the products and services according to the perceived demand at dif-
ferent times Narahari et al. [12]. One of the key elements when dealing with a
dynamic pricing problem is the demand function which characterizes the rela-
tion between different factors like (selling price, advertising, seasonality,...) and
the demand. In the paper of Huang et al. [11], a survey on the demand func-
tions was presented. The factors considered are price, rebate, lead time, space,

Supported by the European Regional Development Fund (FEDER) and the Industrial
Chair Connected-Innovation (https://chaire-connected-innovation.fr/).

c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 310–323, 2021.
https://doi.org/10.1007/978-3-030-85672-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_23&domain=pdf
https://chaire-connected-innovation.fr/
https://doi.org/10.1007/978-3-030-85672-4_23

Theoretical Analysis of a Dynamic Pricing Problem 311

quality, and advertising. The authors observed that: 1) the linear and isoelastic
demand functions are the two widely used in the literature, and 2) the majority
of publications consider the price and quality factors.

Initially, the dynamic pricing has been applied to the service industries such
as airline [16] and hotels [4]. According to Elmaghraby et al. [10], factors like
1) the availability of demand data and decision-support system to track the
changes in prices and, 2) the simplicity of prices adjusting due to the recent
developments in technologies lead to several works on dynamic pricing on a
wide range of industries like retails [6].

Several studies dealing with the coordination of dynamic pricing and pro-
duction decisions with the discrete-time horizon and multiple products are con-
ducted. The work of Bajwa and Sox [2] presented a joint pricing, production,
and advertising decisions model for a firm that produces and sells multiple prod-
ucts as different brands. The authors assumed that the demand is a function of
the price and advertising money and demonstrated that coordinating the mar-
keting and operational decisions leads the firm to increase its profitability. The
paper of Bajwa, Fontem, and Sox [1] considered a manufacturer with a lim-
ited production capacity. They proposed a model that allows lost sales under
a price-dependent demand function. Ouazene et al. [13] studied the problem in
which the products can be sold through multiple channels and the demand is
a price-dependent function. The authors compared the dynamic and constant
pricing strategies. The paper of Couzon et al. [8] presented an extension of the
classical capacitated lot-sizing problem by considering a production system with
variable capacity under a price-dependent demand function. In [9], the same
authors as in [8] improved the model studied in Bajwa, Fontem, and Sox [1] by
introducing new lower and upper bounds that reduced the search space. They
also proposed new constructive efficient heuristics to solve the model. All the
papers cited above assumed that the demand in a given period is a function of
the price of the product in the same period and can take the linear or isoelastic
form.

Several surveys on dynamic pricing have been published, Elmaghraby et al.
[10], and Chen et al. [7] reviewed the literature on dynamic pricing with the
presence of inventory considerations. A survey on dynamic pricing and learning
was conducted in den Boer et al. [5]. The authors reviewed the literature on
dynamic pricing with demand uncertainty.

The presented work investigates the problem in which a firm has to make
decisions about its selling prices in each period to maximize the total profit over
the whole horizon. This problem has been initially tackled by Shakya et al. [15]
and solved by combining neural networks and evolutionary algorithms. Their
study is based on linear, exponential, and multinomial logit demand functions.
In the presented paper, a theoretical analysis in which we consider the linear and
isoelastic demand functions will be conducted. The mathematical properties of
the problem will be studied and some theoretical results that lead to finding the
optimum pricing policy will be provided.

312 M. Terzi et al.

The remainder of this paper is organized as follows. Section 2 presents the
dynamic pricing problem assumptions and mathematical formulation. Section 3
describes the resolution approach under the linear and isoelastic demand. A
numerical experiments are presented in Sect. 4. A conclusion is to be found in
Sect. 5.

2 Problem Description

The dynamic pricing problem addressed in this study is the same as the model
presented in [15]. The model is denoted as (P0). The problem considers a firm
that produces and sells its product. The goal is to find the product’s price in
each period to maximize the firm’s total profit over a given horizon. Following
the notations used to describe the model:

N Number of periods in the horizon

t Time index, t = 1, ..., N

Qt Number of production (sales) at period t

Pt Price of a product at period t (decision variable)

Ct Cost of one unit production in period t

Π Total profit during the entire planning horizon

Pt Upper bound for the price at period t

Pt Lower bound for price at period t

Kt Upper bound for the capacity at period t

Mt Lower bound for the capacity at period t

The initial mathematical model P0 is detailed below:

max Π =
N∑

t=1

(PtQt − CtQt) (1)

st : Mt ≤ Qt ≤ Kt, t = 1, 2, ..., N (2)

Pt ≤ Pt ≤ Pt, t = 1, 2, ..., N (3)

Pt > 0, t = 1, 2, ..., N (4)

The objective function represents the total profit over all the horizon to max-
imize. PtQt is the total revenues in period t and CtQt is the cost per production
in period t. Constraints 2 consider the production capacity, the objective is to
regulate the use of the available capacity in each period (machines, labor, etc. ...)
by considering production values that are at least equal to the minimum avail-
able capacity and don’t exceed the maximum production capacity. Constraints
(3) bound the selling price of each period by Pt and Pt to avoid a lower profit
value, and a lower demand. Finally, constraints (4) are the non-negativity con-
straints. Note that the decisions variables Pt (t = 1, ..., N) are a strict positive
real numbers.

Theoretical Analysis of a Dynamic Pricing Problem 313

3 Resolution Approach

In the presented work, the linear and isoelastic demand functions are considered.
Both are price-dependent demand. The linear demand is adopted from [15] and
the isoelastic function is the same as the demand studied in [9]. The following
notations will be considered in the presented work. Some new notations will be
introduced throughout the analytical study.

PT = (P1, P2, ..., PN) The pricing policy’s vector
M The total constraints’ number

3.1 Case with Linear Demand Function

Following the same assumption as in [15], the demand in period t (Eq. 5) is linear
and depends on the price of the product in the same period and on the price of
the product in other periods. at(> 0) is defined as the intercept parameter, it
represents the number of customers willing to buy the product at period t. bt′t
are the slope parameters. They represent the impact of price in period t′ on the
demand in period t. btt is generally assumed to be negative because when the
product’s price in a period t increases, the corresponding demand in the same
period decreases.

Qt = ψ(P1, P2, ..., PN) = at +
N∑

t′=1

bt′tPt′ (5)

Replacing Qt by its value from (5), P0 can be written as:

max
P1,P2,..,PN

Π =
N∑

t=1

(
at +

N∑

t′=1

bt′tPt′

)
(Pt − Ct) (6)

st : Mt ≤ at +
N∑

t′=1

bt′tPt′ ≤ Kt, t = 1, 2, ..., N (7)

Pt ≤ Pt ≤ Pt, t = 1, 2, ..., N (8)
Pt > 0, t = 1, 2, ..., N (9)

Proposition 1. The total profit function Π is quadratic and its expression is
given in Eq. (10). W is a (N × N) symmetric matrix and V T is a (1 × N)
vector of real numbers. D is a real constant number and it is independent from
the selling price vector.

Π =
1
2
PT WP + V T P + D (10)

314 M. Terzi et al.

Proof. Π can be rewritten as follows:

Π =

N∑

t=1

atPt −
N∑

t=1

atCt +

N∑

t=1

Pt

N∑

t′=1

bt′tPt′ −
N∑

t=1

Ct

N∑

t′=1

bt′tPt′

Π = S1 + S2 + S3

With S1 = −
N∑

t=1

atCt = D

S2 =
N∑

t=1

atPt −
N∑

t=1

Ct

N∑

t′=1

bt′tPt′

S2 = (a1P1 − C1(b11P1 + b21P2 + ... + bN1PN)) + (a2P2 − C2(b12P1 + b22P2 + ...

+ bN2PN)) + . . . + (aNPN − CN (b1NP1 + b2NP2 + ... + bNNPN))

S2 = P1(a1 − C1b11 − C2b12 − . . . − CNb1N) + P2(a2 − C1b21 − C2b22 − . . .−
CNb2N) + . . . + PN (aN − C1bN1 − C2bN2 − . . . − CNbNN)

S2 = P1(a1 −
N∑

t=1

Ctb1t) + P2(a2 −
N∑

t=1

Ctb2t) + . . . + PN (aN −
N∑

t=1

CtbNt)

S2 = V TP

With

V T
1,N =

(
a1 − ∑N

t=1 b1tCt, a2 − ∑N
t=1 b2tCt, . . . , aN − ∑N

t=1 bNtCt

)

and

PT =
(
P1, P2, . . . PN

)

S3 =
N∑

t=1

Pt

N∑

t′=1

bt′tPt′ = P1(b11P1 + b21P2 + . . . + bN1PN) + P2(b12P1 + b22P2 + . . .

+bN2PN) + . . . PN (b1NP1 + b2NP2 + . . . + bNNPN)

Let consider :

S4 =
1

2
PTWP

with P is the same vector as defined for S2 and :

WN,N =

⎛

⎜⎜⎜⎝

2b11, b12 + b21, b13 + b31, . . . , b1N + bN1

b12 + b21, 2b22, b23 + b32, . . . , b2N + bN2

...
...

...
...

...
b1N + bN1, b2N + bN2, b3N + bN3, . . . , 2bNN

⎞

⎟⎟⎟⎠

S4 =
1

2
(P1, P2, .., PN)

⎛

⎜⎜⎜⎝

2b11, b12 + b21, b13 + b31, . . . , b1N + bN1

b12 + b21, 2b22, b23 + b32, . . . , b2N + bN2

...
...

...
...

...
b1N + bN1, b2N + bN2, b3N + bN3, . . . , 2bNN

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

P1

P2

...
PN

⎞

⎟⎟⎟⎠

S4 =
1

2

(
2b11P1 + (b12 + b21)P2 + ... + (b1N + bN1)PN), (b12 + b21)P1 + 2b22P2+

Theoretical Analysis of a Dynamic Pricing Problem 315

. . . + (b2N + bN2)PN , . . . , (b1N + bN1)P1 + (b2N + bN2)P2 + ... + 2bNNPN)

)
⎛

⎜⎜⎜⎝

P1

P2

...
PN

⎞

⎟⎟⎟⎠

S4 =
1

2

(
P1

(
2b11P1 + (b12 + b21)P2 + ... + (b1N + bN1)PN

)
+ P2

(
(b12 + b21)P1+

2b22P2 + . . . + (b2N + bN2)PN

)
+ . . . + PN

(
(b1N + bN1)P1 + (b2N + bN2)P2 + . . .

+ 2bNNPN

))

S4 =
1

2

(
P1

(
2b11P1 + 2b21P2 + . . . + 2bN1PN

)
+ P2

(
2b12P1 + 2b22P2 + . . .+

2bN2PN

)
+ . . . PN

(
2b1NP1 + 2b2NP2 + . . . + 2bNNPN

))

S4 =

(
P1

(
b11P1 + b21P2 + . . . + bN1PN

)
+ P2

(
b12P1 + b22P2 + . . . + bN2PN

)
+

. . . + PN

(
b1NP1 + b2NP2 + . . . + bNNPN

))

S4 = S3

Then, the following relation is tune :

Π =
1

2
PTWP + V TP + D

Considering the constraints of P0, they can be rewritten as:

N∑

t′=1

bt′tPt′ ≤ Kt − at t = 1, 2, .., N (11)

−
N∑

t′=1

bt′tPt′ ≤ at − Mt t = 1, 2, .., N (12)

Pt ≤ Pt t = 1, 2, .., N (13)
− Pt ≤ −Pt t = 1, 2, .., N (14)

From Eqs. (10), (11), (12), (13) and, (14) we have a quadratic objective func-
tion and linear constraints, as a result, P0 is a quadratic programming problem
and it can be represented as:

max
P1,P2,..,PN

Π =
1
2
PT WP + V T P

st : AP ≤ E

(15)

The last term D is omitted from the objective function because it’s a constant
and it doesn’t have any influence on the optimal pricing policy. The matrix
AM×N is defined from the M constraints and the vector E contains the right
side of each constraint. The values of A and E are given in the following two
equations.

316 M. Terzi et al.

AM,N =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11, b21, . . . , bN1

−b11, −b21, . . . , −bN1

1, 0, . . . , 0
−1, 0, . . . , 0
...

...
...

...
b1N , b2N , . . . , bNN

−b1N , −b2N , . . . , −bNN

0, 0, . . . , 1
0, 0, . . . , −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

EM,1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K1 − a1

a1 − M1

P1

−P1

...
KN − aN

aN − MN

PN

−PN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

Since the problem P0 is quadratic and all the constraints are linear, two cases
are distinguished regarding the convexity of the objective function Π. When
Π is not concave i.e. the matrix W is not definite or semi-definite negative,
the problem is not convex and it can be solved using nonlinear programming
algorithms such as interior-point method, gradient methods, etc. However, all
these methods reach in generally a local optimum. When Π is concave i.e. the
matrix W is definite or semi-definite negative, P0 is a convex programming
problem and it can be solved optimally.

First, let consider the case when Π is concave, one way to find the optimal
solution of P0, is the resolution of Karush-Kuhn-Tucker or KKT system related
to P0. The KKT conditions generally aren’t sufficient i.e. if a point P ∗ is a solu-
tion for the KKT system, then P ∗ can be a local optimum, a global optimum,
or saddle point. However, when dealing with a convex programming problem,
the KKT conditions became sufficient and any solution of the KKT system is a
global optimum of the considering problem. In the rest of the section, the KKT
system for the problem P0 when this later is a convex programming problem is
presented.

Let Π ′ = −Π and P ′
0 the problem presented as follows:

min
P1,P2,..,PN

Π ′ =
1
2
PT W ′P + V ′T P

st : AP ≤ E

(18)

Note that the matrix W ′ = −W and the vector V ′T = −V T . The resolution of
P0 to optimality is equivalent to the resolution of P ′

0 to optimality. Furthermore,

Theoretical Analysis of a Dynamic Pricing Problem 317

P ′
0 is considered to define the KKT system. Before the presentation of the KKT

system, some new notations are introduced:

AjP − Ej = gj(P) j = 1, 2, ..,M
λT = (λ1,λ2,..,λM) λj is the jth KKT multiplier with j = 1, 2, ..,M

The KKT system related to P ′
0 is detailed below:

∇Π ′(P) +
M∑

j=1

λj∇gj(P) = 0 N equations (19)

gj(P) ≤ 0 j = 1, 2, ..,M M equations (20)
λjgj(P) = 0 j = 1, 2, ...,M M equations (21)
λj ≥ 0, j = 1, 2, ...,M (22)

After computing the gradients related to the first N equations, they are
represented as PT W ′ + V ′T + λT A = 0. Regarding the Eqs. (20), they can
be replaced by (AP − E) ≤ 0. The value of λjgj(P) ≤ 0 ∀j, since from the
Eqs. (20) and (22), we have gj(P) ≤ 0 ∀j and λj ≥ 0 ∀j, respectively. As a
result, the M equations related to λjgj(P) = 0 ∀j are replaced by the constraint
λ1g1(P)+λ2g2(P)+ ...+λMgM (P) = 0 which corresponds to λT (AP −E) = 0.
The last sum is equal to 0 if and only if each term λjgj(P) = 0 ∀j. The KKT
system for P ′

0 can be represented as:

PT W ′ + V ′T + λT A = 0 N equations (23)
AP − E ≤ 0 M equations (24)

λT (AP − E) = 0 1 equation (25)
λj ≥ 0, j = 1, 2, ...,M (26)

Regarding the first N equations, they are represented as a one line vector
(1×N). The constraints remain the same if we consider the transpose of PT W ′+
V ′T +λT A = 0 which is equal to W ′P +V ′+AT λ. Now, considering the equations
AP −E ≤ 0 and λT (AP −E) = 0, the vector S = (s1, s2, ..., sM)T is added, with
si ≥ 0 such that AP −E +S = 0 and λT (−S) = 0. The last term λT (−S) = 0 is
equal to −λT

1 s1 − λT
2 s2 − ... − λT

MsM = 0. As each term −λT
j sj ≤ 0 ∀j, the term

λT (−S) = 0 can be replaced by λT (S) = 0. The KKT system is represented as
follows:

W ′P + V ′ + AT λ = 0 N equations (27)
AP − E + S = 0 M equations (28)

λT (S) = 0 1 equation (29)
λj ≥ 0, j = 1, 2, ...,M (30)

Finally, the matrix representation of the KKT system of P ′
0 is:

(
W ′, AT 0
A, 0 IM

)⎛

⎝
P
λ
S

⎞

⎠ =
(−V ′

E

)

318 M. Terzi et al.

λjsj = 0, j = 1, 2, ...,M

λj ≥ 0, j = 1, 2, ...,M

sj ≥ 0, j = 1, 2, ...,M

3.2 Case with Isoelastic Demand Function

The isoelastic demand function also called the constant elasticity function is the
simplest nonlinear demand function. One of its advantages is that it does not
require a finite upper limit of the price [11]. The same demand as the one studied
in [9] is considered. The demand in a period t depends only on the price of the
product in the same period (Eq. 31). (γ ≥ 0) is the seasonality factor. β is the
price elasticity of demand, it measures the percentage change in the quantity
demanded for a product in relation to percentage change in its price. According
to Phillips [14], the price elasticity is defined as β = −pD(p)

d′(p) . Since d′(p) ≤ 0
(downward-slopping of the demand), the value of β ≥ 0.

Qt = αγtP
−β
t (31)

Replacing Qt its value from (31), the total profit function Π is equal to:

Π =
N∑

t=1

αγtP
−β
t (Pt − Ct) (32)

Π = α

[
γ1P

−β
1 (P1 − C1) + γ2P

−β
2 (P2 − C2) + . . . + γNP−β

N (PN − CN)
]

(33)

Π = α

N∑

t=1

ft(Pt) (34)

with ft(Pt) = γtP
−β
t (Pt − Ct) (35)

Regarding the capacity constraints Mt ≤ Qt ≤ Kt ∀t, they are represented
as:

Mt ≤ αγtP
−β
t ≤ Kt (36)

Mt

αγt
≤ P−β

t ≤ Kt

αγt
(37)

(
Kt

αγt

)− 1
β

≤ Pt ≤
(

Mt

αγt

)− 1
β

(38)

We define It as : It = [Pt, Pt] ∩
[(

Kt

αγt

)− 1
β

,

(
Mt

αγt

)− 1
β
]

= [at, bt].

P0 can be written as:

max
P1,P2,..,PN

Π = α

N∑

t=1

ft(Pt)

Theoretical Analysis of a Dynamic Pricing Problem 319

s.t Pt ∈ [at, bt], t = 1, 2, ..., N

Finding the optimal pricing policy is equivalent to find the value Pt max

which maximizes ft, i.e. P ∗ = (max f1(P1),max f2(P2)...,max fN (PN)). The
optimal selling price for each ft is obtained analytically through the study of
ft’s variation. The derivative of ft, and the value P0t for which f ′

t(Pt) = 0 are
presented in Eqs. (39) and (40) respectively.

When β ≤ 1, f ′
t(Pt) > 0 ∀ Pt ≥ 0, which implies that ft is increasing

in [0,+∞[specially in [at, bt], then Pt max = bt. When β > 1, P0t > 0 and
0 < Ct < P0t. As a result, f ′

t ≥ 0 for Pt in]0, P0t] and f ′
t ≤ 0 for Pt ≥ P0t. This

means that, ft is increasing in]0, P0t] and decreasing in [P0t,+∞[. Regarding
the order between P0t, at and bt. The following cases are considered:

1. If at ≤ P0t ≤ bt then Pt max = P0t

2. If bt ≤ P0t then Pt max = bt

3. If at ≥ P0t then Pt max = at

f ′
t = αγt

(
P

−(β+1)
t

(
Pt(1 − β) + β.Ct)

))
(39)

P0t =
β

β − 1
Ct (40)

4 Numerical Experiments

In this section, two numerical examples are presented to illustrate the proposed
approach.

Example 1. The linear demand is considered, the instance’s parameters are gen-
erated randomly (Table 1). The number of periods is fixed to N = 2. The
total profit function Π is concave since (2b11 = −2 < 0, 2b22 = −6 < 0 and
2b11.2b22 − (b12 + b21)2 = 3 > 0), therefore the optimization problem P0 is a
convex programming problem. The feasible region X and the function Π are
shown in Figs. (1a) and (1b) respectively.

Table 1. Instance 1 Parameters values

Parameters t = 1 t = 2

Ct 2 3

at 3 8

Mt 3 2

Kt 4 9

Pt 8 8

Pt 1 1

btj b11 = −1, b12 = 1 b21 = 2, b22 = −3

320 M. Terzi et al.

(a) feasible region (X) (b) Profit function Π

Fig. 1. Total profit function and feasible area

Before the resolution, the nature of the optimal pricing policy P ∗ is consid-
ered. Since the total profit function is concave and the global maximum of Π in
R

2 is Pmax = (17, 32
3) /∈ X, any interior point of X is not an optimal solution

for the problem P0. As a result, P ∗ belongs to the boundary of X.
We apply the KKT system as defined in the Sect. 3.1 (see Appendix A for

details). The KKT system is implemented and resolved using Gekko Beal et
al. [3] on Python3. The optimal pricing policy is P ∗ = (P ∗

1 = 8, P ∗
2 = 9

2) and
the optimal total profit value is Π∗ = 27.75. One can remark that P ∗

1 = P1 = 8
and −P ∗

1 + 2P ∗
2 = 1, which confirm that P ∗ belongs to the boundary of X.

Example 2. The isoelastic demand is considered with β = 2 and, α = 100. The
values of N , Ct, Mt, Kt, Pt and Pt are the same as for Example 1. The seasonality
parameters are fixed to γ1 = γ2 = 0.5. The red and blue curves in the following
figure represent f1(P1) and f2(P2) respectively (Fig. 2).

Fig. 2. Curves of f1 and f2 (Color figure online)

Table 2 shows the values of at, bt, P0t, and P ∗
t which are computed by follow-

ing the steps described in the Sect. 3.2. For f1, the value of P01 belongs to [a1, b1],

Theoretical Analysis of a Dynamic Pricing Problem 321

as a result P ∗
1 = P01 = 4. Regarding the function f2, the value of P02 ≥ b2, thus,

P ∗
2 = b2 = 5. The total profit function Π = f1(P ∗

1)+f2(P ∗
2) = 6.25+4 = 10, 25.

Table 2. Prices’ intervals and optimal pricing policy

Parameters t = 1 t = 2

at 3.53 2.35

bt 4.08 5

P0t 4 6

P ∗
t 4 5

5 Conclusion

This paper investigated the dynamic pricing problem adopted from Shakya et
al. [15], in which a firm produces and sells its product over a finite horizon.
The problem considers constraints such as limited production capacity and pro-
duction costs. The firm has to set its selling prices such that the total profit is
maximized.

As a first contribution, the case when the demand at a period t is a linear
function of the price in the same period and the prices of the other periods
is studied. It has been shown that under these assumptions the problem can
be formulated as a quadratic programming problem. The Karush-Kuhn-Tucker
system to obtain the optimal pricing policy when the total profit function is
concave is presented.

The second contribution consists of the consideration of the isoelastic demand
function which is commonly used in the literature. It has been proven that
when dealing with this demand function, the objective function is the sum of N
univariate functions over N bounded intervals. As a result, the optimal pricing
policy is resumed to find the maximum of each function.

The presented work assumes that the selling price is the only factor that
influences demand. However, consumers are generally sensitive to other parame-
ters like the lead time, rebate, and competitor prices. One extension of this work
is the incorporation of these parameters to the demand function to achieve a
more accurate representation of the real market behavior’s.

Appendix A KKT system for Example 1

From the parameters values presented in the Table 1, the problem optimization
problem is formulated as:

min
P1,P2

Π ′ =
1
2
(P1, P2)

(
2 −3

−3 6

)(
P1

P2

)
+ (−2,−13)

(
P1

P2

)

322 M. Terzi et al.

s.t :

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 2
1 −2
1 0

−1 0
1 −3

−1 3
0 1
0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
P1

P2

)
≤ E8,1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
8

−1
1
6
8

−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The KKT system is defined as:

(
2 −3

−3 6

)(
P1

P2

)
+

(−2
−13

)
+

(−1 1 1 −1 1 −1 0 0
2 −2 0 0 −3 3 1 −1

)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

0
0

)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 2
1 −2
1 0

−1 0
1 −3

−1 3
0 1
0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
P1

P2

)
−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
8

−1
1
6
8

−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1
s2
s3
s4
s5
s6
s7
s8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1
s2
s3
s4
s5
s6
s7
s8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

λj , sj ≥ 0, j = 1, 2, ..., 8

References

1. Bajwa, N., Fontem, B., Sox, C.R.: Optimal product pricing and lot sizing decisions
for multiple products with nonlinear demands. J. Manag. Anal. 3(1), 43–58 (2016)

2. Bajwa, N., Sox, C.R.: Coordination of pricing, advertising, and production deci-
sions for multiple products. Int. J. Serv. Oper. Manag. 22(4), 495–521 (2015)

Theoretical Analysis of a Dynamic Pricing Problem 323

3. Beal, L.D., Hill, D.C., Martin, R.A., Hedengren, J.D.: Gekko optimization suite.
Processes 6(8), 106 (2018)

4. Bitran, G.R., Mondschein, S.V.: An application of yield management to the hotel
industry considering multiple day stays. Oper. Res. 43(3), 427–443 (1995)

5. den Boer, A.V.: Dynamic pricing and learning: historical origins, current research,
and new directions. Surv. Oper. Res. Manag. Sci. 20(1), 1–18 (2015)

6. Chen, L., Mislove, A., Wilson, C.: An empirical analysis of algorithmic pricing
on Amazon marketplace. In: Proceedings of the 25th International Conference on
World Wide Web, pp. 1339–1349 (2016)

7. Chen, X., Simchi-Levi, D.: Pricing and inventory management. Oxford Handb.
Pricing Manag. 1, 784–824 (2012)

8. Couzon, P., Ouazene, Y., Yalaoui, F.: Joint pricing and lot-sizing problem with
variable capacity. IFAC-PapersOnLine 52(13), 106–111 (2019)

9. Couzon, P., Ouazene, Y., Yalaoui, F.: Joint optimization of dynamic pricing and
lot-sizing decisions with nonlinear demands: theoretical and computational analy-
sis. Comput. Oper. Res. 115, 104862 (2020)

10. Elmaghraby, W., Keskinocak, P.: Dynamic pricing in the presence of inventory
considerations: research overview, current practices, and future directions. Manag.
Sci. 49(10), 1287–1309 (2003)

11. Huang, J., Leng, M., Parlar, M.: Demand functions in decision modeling: a com-
prehensive survey and research directions. Decis. Sci. 44(3), 557–609 (2013)

12. Narahari, Y., Raju, C., Ravikumar, K., Shah, S.: Dynamic pricing models for
electronic business. Sadhana 30(2–3), 231–256 (2005)

13. Ouazene, Y., Yalaoui, F., Kelly, R., Idjeraoui, T.: Coordination and optimization
of dynamic pricing and production decisions. In: 2017 IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 1–6. IEEE (2017)

14. Phillips, R.L.: Pricing and Revenue Optimization. Stanford University Press (2005)
15. Shakya, S., Kern, M., Owusu, G., Chin, C.M.: Neural network demand models and

evolutionary optimisers for dynamic pricing. Knowl.-Based Syst. 29, 44–53 (2012)
16. Smith, B.C., Leimkuhler, J.F., Darrow, R.M.: Yield management at American

airlines. Interfaces 22(1), 8–31 (1992)

A Hybrid FLP-AHP Approach for Optimal
Product Mix in Pulp and Paper Industry

Meenu Singh(B) and Millie Pant

Department of Applied Science and Engineering, Indian Institute of Technology (IIT) Roorkee,
Roorkee, India

{msingh1,pant.milli}@as.iitr.ac.in

Abstract. Pulp and Paper Industries (PPI) manufactures a wide range of papers
based on three different GSM (Grams/sq. meter). i.e., lower GSM, middle GSM
and higher GSM. In order tomaximize the profit, the PPImust efficiently utilize its
available resources thereby producing optimal units of three different GSMs. Such
problems lie under the category of product mix problems and forms an important
part of production planning for every process industry like papermill. In the present
study, this problem is represented as a Fuzzy Linear Programming (FLP)model, to
include the inherent vagueness and uncertainties. The solutions obtained through
FLP are further refined with the help of AHP (Analytical Hierarchy Process)
to determine the most profitable solution. Results indicate that ranking results
obtained by integrating AHP into FLP may help in providing a better guidance to
the Decision Maker (DM) for determining an optimal product mix.

Keywords: Indian Pulp and Paper Industry (IPPI) · Product mix optimization ·
Fuzzy linear programming (FLP) · Multi-criteria decision making (MCDM)

1 Introduction

The Pulp and Paper Industry (PPI) plays an important role in Indian economy due to
several reasons [1]. Different types of paper produced by a paper mill can be broadly
classified intoCultural and Industrial papers [2]. Themajor production ofmills dealswith
the cultural paper involving all types of writing and printing papers with three different
levels of GSM (Grams/sq. meter). i.e., lower GSM, medium GSM, and higher GSM.
The wrapping, packing, photographic and other functional papers are called industrial
papers. The various stages of pulping and papermaking process are presented in Fig. 1.

Production planning is an important decisionmaking for any process industry includ-
ing PPI, where the main objective is to maintain a tradeoff between production and
consumption.

The focus of the present study is to suggest an optimal production plan for Indian
Pulp and Paper Industries (IPPI) producing a variety of papers. The objective here is
to maximize the profit by suggesting an optimal product mix on the basis of different
levels of GSM. The problem is formulated as a Fuzzy Linear Programming (FLP) model
due to the inherent uncertainties in the model parameters. Further, sensitivity analysis

© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 324–336, 2021.
https://doi.org/10.1007/978-3-030-85672-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-85672-4_24

A Hybrid FLP-AHP Approach for Optimal Product Mix 325

of the proposed model is done by examining the effect of alpha-cuts on profit. Finally,
Analytical Hierarchical Process (AHP) is introduced into the model for evaluating the
feasible solutions as alternatives.

Fig. 1. Process flow diagram of PPI.

Rest of the paper is organized as follows. In Sect. 2, literature review on FLP for
production planning is given. In Sect. 3, brief description of the methodology is pro-
vided. Section 4 and 5, presents a hypothetical but realistic case study illustrating the
applicability of the proposed approach through a mathematical model. Section 6 provide
the results and discussion of the model and the decision making process respectively.
Finally, the paper concludes with Sect. 7, summarizing the present study and providing
future research directions.

2 Literature Review

Linear Programming (LP) has gained its reputation as one of the best decision making
tools for maximizing the goal achievements or minimizing the costs while satisfying all
the constraints and restrictions. Literature is full of instances advocating the effectiveness
of LP in different areas [3] and [4].

Introduction of fuzzy logic in LPwas suggested long back in 1970’s after the concept
of fuzzy theory was established by Zadeh in 1965 [5]. In [6–8], the authors suggested
that fuzzy set theory can be integratedwith othermathematical programming approaches
like non-linear programming, quadratic programing, dynamic programming and goal
programming for amore realistic representation of the problem. The fuzzy theory is used
to optimize the solutions for which constraints have fuzzy coefficients, fuzzy inequalities
or fuzzy variables.

Several instance are available in literature where the researchers have successfully
implemented FLP by substituting the crisp coefficient with fuzzy numbers in an LP
problem [3, 4, 9, 10]. Researchers have also shown that most of real life problems with
intensive decisionmaking like product mix, manpower allocation, flow shop scheduling,
transportation, production planning [9–13] can be dealt efficiently through an FLP app-
roach. However, there are work in the area of production planning activities [14–16] but
the authors were not able to find any relevant literature relating to production planning
in a fuzzy environment for an IPPI.

326 M. Singh and M. Pant

The proposed methodology integrates AHP, a well-known Multi-Criteria Decision
Making (MCDM) technique with FLP to select the most profitable solution from the set
of solutions achieved in the optimization process.

3 Methodology

An integrated FLP-AHP model is proposed for determining the optimal product mix for
an Indian Pulp and Paper Industry (IPPI). It is a two phase methodology, as illustrated
in Fig. 2.

In Phase I, fuzzification of the problem is done, while in Phase 2, AHP is invoked to
select the best possible alternative, out of the solutions obtained in Phase I. These phases
are further divided into a number of steps as described below and as illustrated in Fig. 2.

Phase I
• Formulation of LPP for Product Mix

Problem
• Fuzzification of data into Fuzzy Triangular

Numbers
• Formulation of FLP model
• Splitting FLP model into 8 Sub-problems
• Obtaining the optimal solutions for 8 sub-

problems
• Performing Sensitivity analysis

Phase II
• Pairwise Comparing the

obtained optimal solutions
• Ranking the optimal solution

through AHP
• Choosing the best optimal

solution for IPPI

Fig. 2. Schematic presentation of FLP-AHP model

Phase I

Step 1. Formulation of LPP: develop the LPP model with the help of the available crisp
data.
Step 2. Fuzzification of data: the available crisp data is changed into fuzzy triangular
numbers (FTN).
Step 3. Formulation of FLPmodel: using the data generated in Step 2, the LPP developed
in Step 1 is converted into an FLP model.
Step 4. Splitting: the model developed in Step 3, is split into a number of sub problems.
Step 5. Solution: Obtain the solution through different values of aspirations.

Phase II

Step 1. Decision Making through AHP: the solutions obtained for different values of
aspirations are treated as alternatives and the best solution is ranked through AHP.

A Hybrid FLP-AHP Approach for Optimal Product Mix 327

4 Case Study

4.1 Background

A hypothetical but realistic PPI in India is considered, that produces three types of writ-
ing/printing paper based on three different levels of GSM: lower GSM (58 to 64 GSM),
medium GSM (68 to 80 GSM) and higher GSM (90 to 120 GSM) papers. Each kind
of GSM papers are produced by a combination of raw material fibers such as eucalyp-
tus and poplar with fillers such as china clay, GCC, PCC etc. The range of percentage
composition of the raw material fibers with the fillers are presented in Table 1.

Table 1. The % of raw material and fillers used in each grade of paper.

Raw material Lower GSM Medium GSM Higher GSM

Pulp 90% 86% 85%

Filler 10% 14% 15%

The data and details for the case study were constructed following a series of dis-
cussions with the experts from management and R&D department of an Indian paper
mill.

During the papermaking process, the raw material goes through different processes
including pulping, bleaching, stock preparation, papermaking, converting and finishing.
During each process, the yield of pulp is lost to some extent due to the processing of a
particular grade of paper while the remaining amount undergoes the next process.

The expected average losses from one ton of input for each grade of paper; average
capacity of plant at each unit and the maximum output of the three kinds of papers
produced in a day is summarized in Table 2. A blank entry represents “no loss” implying
that the same amount is carried on to the next process.

The profit of each GSM for a ton is evaluated after estimating the selling price and
other expenses of each GSM as per the current market trend and as per the opinion of
experts. The profit for the three GSMwith the details of plant capacity is given in Table 3.

328 M. Singh and M. Pant

Table 2. Processing of paper with net losses at each department.

Departments Lower GSM Medium GSM Higher GSM

Input Losses Output Input Losses Output Input Losses Output

Input 1.000 – – 1.000 – – 1.000 – –

Pulping process 1.000 0.01 0.990 1.000 0.02 0.983 1.000 0.02 0.981

Bleaching
process

0.990 0.09 0.901 0.983 0.14 0.845 0.981 0.19 0.795

Stock
preparation
process

0.901 – 0.901 0.845 – 0.845 0.795 – 0.795

Papermaking
process

0.901 0.05 0.856 0.845 0.07 0.786 0.795 0.08 0.734

Converting &
finishing process

0.856 0.07 0.796 0.786 0.07 0.738 0.735 0.08 0.676

Output – – 0.796 – – 0.738 – – 0.676

Table 3. Details of plant capacity.

Papermaking
process

Tons/day Max production of
each grade

Tons/day Profit of each grade
of paper produced

Rs./Ton

Pulping process 230 Lower GSM 34 Lower GSM 5600

Bleaching
process

120 Medium GSM 158 Medium GSM 5000

Stock preparation
process

220 Higher GSM 34 Higher GSM 5100

Converting &
finishing process

220

5 Mathematical Model

The above-mentioned data for the papermaking processes and objective function was
analyzed to obtain estimates for LP problemmodel parameters. The decision variables of
the model are notated as x1, x2 and x3 representing the amount of: lower GSM, medium
GSM and higher GSM to be produced. The objective function Z is to maximize the profit
per ton for the three kinds of papers.

A Hybrid FLP-AHP Approach for Optimal Product Mix 329

The LPP model of the problem can be formulated as below, by using the given data
in Tables 1, 2 and 3:

Max Z = 5600x1 + 5000x2 + 4200x3
s.t.
0.90x1 + 0.86x2 + 0.85x3 ≤ 230 (Raw Material Constraint)
0.12x1 + 0.16x2 + 0.17x3 ≤ 22.7 (Filler Constraint)
x1 + x2 + x3 ≤ 230 (Pulping process constraint)
0.9x1 + 0.983x2 + 0.988x3 ≤ 120 (Bleaching process constraint)
0.901x1 + 0.891x2 + 0.869x3 ≤ 220 (Stock preparation process constraint)
0.869x1 + 0.860x2 + 0.835x3 ≤ 220 (Converting & Finishing Process)
0.15x1 + 0.7x2 + 0.14x3 ≤ 24 (Time constraint)
x1 ≤ 34 (Input constraint for Lower GSM)

x2 ≤ 158 (Input constraint for Medium GSM)

x3 ≤ 34 (Input constraint for Higher GSM)

(1)

However, there are several factors that affect the preciseness of data like: non-
availability of raw materials or fillers, improper management of resources, inadequate
power supply, and under utilization of capacity etc.

Presence of uncertainty in data justifies the application of fuzzy set theory for mod-
eling such problems [11–13]. In this study, FLP is implemented to maximize the value
of Z obtained through LP by using fuzzy triangular numbers. Fuzzy numbers generated
for each coefficient are given in Table 4.

Table 4. Fuzzy numbers of each coefficient.

Process Lower GSM Medium GSM Higher GSM

Lower Crisp Higher Lower Crisp Higher Lower Crisp Higher

Pulp 0.88 0.90 0.90 0.84 0.86 0.86 0.83 0.85 0.85

Filler 0.10 0.12 0.12 0.14 0.16 0.16 0.15 0.17 0.17

Bleaching
process

0.989 0.990 0.990 0.983 0.985 0.985 0.980 0.981 0.981

Stock
preparation
process

0.890 0.901 0.901 0.837 0.845 0.845 0.790 0.795 0.795

Converting &
finishing process

0.846 0.856 0.856 0.783 0.786 0.786 0.731 0.735 0.735

Time 0.14 0.15 0.15 0.696 0.7 0.7 0.14 0.15 0.15

Max production 34 34 35 158 158 161 34 34 35

330 M. Singh and M. Pant

5.1 Formulation of FLP

STEP 1. The crisp data mentioned in the Tables 1, 2 and 3 is utilized to calculate the
fuzzy numbers for each coefficient as presented in Table 4.
STEP 2. Using the fuzzy data in Table 4, the Fuzzy Linear Programming model for the
case company is formulated as (2):

Max Z = (5600, 5600, 6500)x1 + (5000, 5000, 6200)x2 + (4200, 4200, 5800)x3
s.t.

(0.88, 0.90, 0.90)x1 + (0.84, 0.86, 0.86)x2 + (0.83, 0.85, 0.85)x3 ≤ (230, 280, 280)
(0.10, 0.12, 0.12)x1 + (0.14, 0.16, 0.16)x2 + (0.15, 0.17, 0.17)x3 ≤ (22.7, 34.1, 34.1)
(0.989, 0.990, 0.990)x1 + (0.983, 0.985, 0.985)x2 + (0.980, 0.981, 0.981)x3 ≤ (120, 120, 120)
(0.890, 0.901, 0.901)x1 + (0.837, 0.845, 0.845)x2 + (0.790, 0.795, 0.795)x3 ≤ (220, 220, 220)
(0.846, 0.856, 0.856)x1 + (0.783, 0786, 0.786)x2 + (0.731, 0.735, 0.735)x3 ≤ (220, 220, 220)
(0.14, 0.15, 0.15)x1 + (0.696, 0.7, 0.7)x2 + (0.14, 0.15, 0.15)x3 ≤ (24, 24, 24)
x1, x3 ≤ (34, 34, 35)
x2 ≤ (158, 158, 161)

(2)

STEP 3. To obtain the better optimization result from the fuzzy numbers, the FLP has
been split into eight sub-problems of linear crisp programming, as seen in Table 5, by
taking in account, the total number of possible combinations of objective values with all
the constraints values.
STEP 4.The optimal solutions of each sub-problem (3) to (9) are obtained through Lingo
18.0 software and are presented in Table 6.
STEP 5. The crisp fuzzy linear model for maximizing the value of aspiration (λ) is
written as below:

Max Z = λ

s.t.
118300.0λ − 6500x1 − 6200x2 − 5800x3 + 550071.4 ≤ 0
(0.90 − 0.02λ)x1 + (0.86 − 0.02λ)x2 + (0.85 − 0.02λ)x3 − 50λ − 280 ≤ 0
(0.12 − 0.02λ)x1 + (0.16 − 0.02λ)x2 + (0.17 − 0.02λ)x3 − 11.4λ − 34.1 ≤ 0
(0.990 − 0.001λ)x1 + (0.985 − 0.002λ)x2 + (0.981 − 0.001λ)x3 − 120 ≤ 0
(0.901 − 0.011λ)x1 + (0.845 − 0.008λ)x2 + (0.795 − 0.005λ)x3 − 220 ≤ 0
(0.856 − 0.010λ)x1 + (0.786 − 0.003λ)x2 + (0.735 − 0.004λ)x3 − 220 ≤ 0
(0.15 − 0.01λ)x1 + (0.7 − 0.004λ)x2 + (0.15 − 0.001λ)x3 − 24 ≤ 0
x1 − λ − 34 ≤ 0
x2 − (3.0λ) − 158 ≤ 0
x3 − λ − 34 ≤ 0
0 ≤ λ ≤ 0
x1, x2, x3 ≥ 0

(11)

STEP 6. The solutions in Table 7 are obtained by varying the value of λ in Lingo 18.0
software. It is observed that the maximum profits of the case company varies depending
on the value of λ and variables of product mix. Also, only 3 solutions are found to be
feasible (highlighted in bold) while 4 solutions are infeasible.

A Hybrid FLP-AHP Approach for Optimal Product Mix 331

Table 5. The sub-problems of FLP.

5.2 AHP

In order to select the best optimal solution from the Table 7, Analytical Hierarchy Process
(AHP) is employed [17] as discussed in the next section.

The hierarchical structure in Fig. 3 presents the three feasible solutions (S1, S2, S3)
for selection of the best solution. The priority conditions and alternatives were decided
in the interview of three decision-makers (DMs), such as (DM 1, DM 2, DM 3). In order

332 M. Singh and M. Pant

Table 6. Optimal solutions of eight sub-problems.

x1 x2 x3 Z

X11 34 19.71 34 431771.4 Lower bound

X12 34 19.71 34 540428.6

X13 35 19.29 35 439428.6

X14 35 19.29 35 550071.4

X15 34 20.80 34 437223.0

X16 34 19.71 34 540428.6

X17 35 19.29 35 439428.6

X18 35 19.28 35 550071.4 Upper bound

Table 7. Sensitivity analysis of value of aspirations.

λ x1 x2 x3 Z Solution type

0 34.5 20.603 34.5 | 5,52,091.39 Feasible

0.3 34.62 26.150 34.62 | 4,70,027.35 Feasible

0.5 34.7 29.848 34.7 | 4,89,300.75 Non-feasible

0.7 34.78 33.546 34.78 | 5,08,574.15 Non-feasible

0.9 34.86 37.244 34.86 | 5,27,847.55 Non-feasible

1 34.9 39.093 34.9 | 5,37,484.25 Non-feasible

0.3309 34.63237 26.722 34.63237 | 4,73,006.38 Feasible

to prevent biases in their judgement, the DMs advocated for the equal. The same weights
were therefore assigned to them as (1/3, 1/3, 1/3). Implementation of AHP consisted of
the following steps:

1. Different comparison matrices were formed for the alternatives with respect to each
criterion individually for DMs.

2. The final comparison matrix is aggregated as geometric mean of individual DMs
matrix.

A Hybrid FLP-AHP Approach for Optimal Product Mix 333

Fig. 3. A hierarchical structure of the problem.

6 Results and Discussions

6.1 Sensitivity Analysis

Membership of aspiration values contributed towards managing the profit of the mill is
discussed in this section. The trends of profits and the trend of decision variables against
the value of λ are presented in Fig. 4(a) & Fig. 4(b). The following observations were
made:

1. The profit of product mix decreased in tandem with the decrease in the value of
aspiration level. The maximum and minimum profits were obtained for λ = 1 and λ

= 0.3 respectively. This is shown graphically in Fig. 4(a).
2. Decision variables x1 and x3 have the same values and the gap between them with

x2 is smaller as the value of λ increases. At λ = 0.9 or 1, the production amount of
x2 is greater than the x1 & x3. This trend can be visualized through Fig. 4(b).

3. Through the trends mentioned in 4(a) and 4(b), it can be said that the profit (in
Rupees) in a closed interval of [470027.35, 552091.39] can be obtained if the lower
GSM, medium GSM and higher GSM were produced (in Tons) in the interval of
[34.5, 34.62], [20.6, 26.15] and [34.5, 34.62], respectively.

4. The optimal feasible solutions were obtained by λ value in the range of [0, 0.330].
5. The crisp profit earned through LPP was Rs. 434200.0, which improved up to

21.35%. i.e., Rs. 117891.40 by the use of FLP.

334 M. Singh and M. Pant

(a)

0

0.3

0.5

0.7

0.9
1

0

0.2

0.4

0.6

0.8

1

1.2

420000

440000

460000

480000

500000

520000

540000

560000
Pr

ofi
t (

Z)

Value of Aspira ons ()
Z λ

(b)

0 0.3 0.330913 0.5 0.7 0.9 1
0

5

10

15

20

25

30

35

40

45

Value of Aspira ons ()

De
cs

io
n

va
ria

bl
es

X1 X2 X3

Fig. 4. (a) Trends of Profit against the value of aspirations. (b) Decision variables vs. aspiration
values.

6.2 Decision Making Through AHP

1. After determining the local priorities and checking the consistency at 10%. The
global final priority is evaluated and is depicted in Fig. 5.

2. It can be clearly seen that the S1 is the most profitable solution among all the three
optimum solutions, due to its overall weight (0.599). It’s the best combination for
the product mix of the case company with the production of 89.60 tons/ day in which
34.5 tons/ day is for lower GSM, 20.60 tons/ day for medium GSM and 34.5 for
higher GSM.

A Hybrid FLP-AHP Approach for Optimal Product Mix 335

0.599

0.271

0.130

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

S1 S2 S3

ov
er

al
l w

ei
gh

ts

Fig. 5. AHP overall weights for the three optimal solutions.

7 Conclusion

The product mix optimization for maximizing the profit has attracted a lot of attention
in recent years. This paper presented an integrated FLP-AHP approach for determining
the optimal product mix for an IPPI. The research tends to be a valuable method for
improving production planning for three high grades of writing/printing paper with
minimal resources. Some conclusions that can be drawn from the research:

• Implementation of fuzzy theory helped in enhancing the profit by 21.35%, which is a
significant improvement for a real life situation.

• Integrating AHP into FLP will help managers make better decisions by assisting in
identifying the most profitable solution among the available solutions.

• In this study, the authors have considered an example of an IPPI. However, due to the
generic nature of FLP-AHP, it can be applied to other manufacturing sectors as well
to determine product mix.

Further study can be undertaken by including more variables and constraints that
take place during production planning activities, constructing a multi-objective model
or considering other fuzzy membership functions like trapezoidal, logistics, S-curve etc.
Sustainability factors may also be included to make the model more realistic.

Acknowledgement. This work is in support of the project “Metaheuristics Framework for Multi-
objective Combinatorial Optimization Problems (METAMO-COP)” reg. no. DST/INT/Czech/P-
12/2019.

References

1. Challenges and Opportunities for the Pulp and Paper Industry | SciTech Connect. http://scitec
hconnect.elsevier.com/challenges-and-opportunities-for-the-pulp-and-paper/. Accessed 27
Nov 2020

http://scitechconnect.elsevier.com/challenges-and-opportunities-for-the-pulp-and-paper/

336 M. Singh and M. Pant

2. Jain, R.K.: Compendium of Census survey of Indian Paper Industry, 1st edn. Central Pulp
and Paper Institute, Saharanpur (2015)

3. Spitter, J.M., Hurkens, C.A., De Kok, A.G., Lenstra, J.K., Negenman, E.G.: Linear program-
ming models with planned lead times for supply chain operations planning. Eur. J. Oper. Res.
163(3), 706–720 (2005)

4. Li, Z., Li, Z.: Linear programming-based scenario reduction using transportation distance.
Comput. Chem. Eng. 88, 50–58 (2016)

5. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
6. Tanaka, H., Asai, K.: Fuzzy linear programming problems with fuzzy numbers. Fuzzy Sets

Syst. 13(1), 1–10 (1984)
7. Rommelfanger, H.: Fuzzy linear programming and applications. Eur. J. Oper. Res. 92(3),

512–527 (1996)
8. Bector, C.R., Chandra, S.: Fuzzy Mathematical Programming and Fuzzy Matrix Games, vol.

169. Springer, Berlin (2005). https://doi.org/10.1007/3-540-32371-6
9. Buckley, J.J.: Possibilistic linear programming with triangular fuzzy numbers. Fuzzy Sets

Syst. 26(1), 135–138 (1988)
10. Zimmermann, H.J.: Fuzzy programming and linear programming with several objective

functions. Fuzzy Sets Syst. 1(1), 45–55 (1978)
11. Pendharkar, P.C.: A fuzzy linear programming model for production planning in coal mines.

Comput. Oper. Res. 24(12), 1141–1149 (1997)
12. Wu, Y.K.: On the manpower allocation within matrix organization: a fuzzy linear program-

ming approach. Eur. J. Oper. Res. 183(1), 384–393 (2007)
13. Abdullah, L., Abidin, N.H.: A fuzzy linear programming in optimizing meat production. Int.

J. Eng. Technol. 6(1), 436–444 (2014)
14. Fang,C.C., Lai,M.H.,Huang,Y.S.: Production planning of newand remanufacturing products

in hybrid production systems. Comput. Ind. Eng. 108, 88–99 (2017)
15. Saniuk, S., Saniuk, A.: Decision support system for rapid production order planning in pro-

duction network. In: Burduk, A., Mazurkiewicz, D. (eds.) ISPEM 2017. AISC, vol. 637,
pp. 217–226. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64465-3_22

16. González Rodríguez, G., Gonzalez-Cava, J.M., Méndez Pérez, J.A.: An intelligent decision
support system for production planning based on machine learning. J. Intell. Manuf. 31(5),
1257–1273 (2019). https://doi.org/10.1007/s10845-019-01510-y

17. Saaty, T.L.: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation.
McGraw-Hill Inc., New York (1980)

https://doi.org/10.1007/3-540-32371-6
https://doi.org/10.1007/978-3-319-64465-3_22
https://doi.org/10.1007/s10845-019-01510-y

An Application of BnB-NSGAII:
Initializing NSGAII to Solve 3 Stage

Reducer Problem

Ahmed Jaber1,2(B) , Pascal Lafon1, and Rafic Younes2

1 University of Technology of Troyes UTT, Troyes, France
ahmed.jaber@utt.fr

2 Lebanese University, Beirut, Lebanon
https://www.utt.fr/, https://ul.edu.lb/

Abstract. The 3 stage reducer problem is a point of interest for many
researchers. In this paper, this problem is reformulated to a bi-objective
problem with additional constraints to meet the ISO mechanical stan-
dards. Those additional constraints increase the complexity of the prob-
lem, such that, NSGAII performance is not sufficient. To overcome this,
we propose to use BnB-NSGAII [10] method - a hybrid multi-criteria
branch and bound with NSGAII - to initialize NSGAII before solving
the problem, seeking for a better initial population. A new feature is
also proposed to enhance BnB-NSGAII method, called the legacy fea-
ture. The legacy feature permits the inheritance of the elite individuals
between - branch and bound - parent and children nodes. NSGAII and
BnB-NSGAII with and without the legacy feature are tested on the 3
stage reducer problem. Results demonstrate the competitive performance
of BnB-NSGAII with the legacy feature.

Keywords: NSGAII · Multi-objective · MINLP · Branch-and-bound ·
3-stage reducer

1 Introduction

In [3], the design of the 3 Stage Reducer (3SR) optimization problem has been
introduced to illustrate the optimal design framework of the power transmission
mechanism. This problem has been a point of interest for many researchers in
different domains. Engineering researchers enhance the problem for mechanical
engineering applications. In [4], the problem is extended to a mixed variables
optimization problem. And recently a similar problem is stated in [5] to illustrate
the optimization of the volume and layout design of 3SR. Due to the problem
complexity, optimization researchers are interested to test optimization methods
on it. In [14], the authors use the 3SR problem to examine the performance of
the constraint propagation method.

Supported by organization ERDF, Grand Est and Lebanese University.

c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 337–349, 2021.
https://doi.org/10.1007/978-3-030-85672-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_25&domain=pdf
http://orcid.org/0000-0001-5508-1299
https://doi.org/10.1007/978-3-030-85672-4_25

338 A. Jaber et al.

In this paper, the 3SR problem is reformulated to a bi-objective problem with
additional constraints to meet the ISO mechanical standards. Those additional
constraints increase the complexity of the problem, such that, the well-known
Non-Dominated Sorting Genetic Algorithm 2 (NSGAII) [1] performance is not
sufficient.

In [10], the authors enhance the performance of NSGAII by hybridizing it
with the multi-criteria branch and bound method [12], the proposed method is
called BnB-NSGAII. In this paper, we propose to use the BnB-NSGAII method
to initialize NSGAII before solving the 3SR problem, seeking a better initial
population. The initial population seeding phase is the first phase of any genetic
algorithm application. It generates a set of solutions randomly or by heuristic
initialization as input for the algorithm. Although the initial population seeding
phase is executed only once, it has an important role to improve the genetic
algorithm performance [2].

Furthermore, we propose a new feature to enhance the BnB-NSGAII method,
called the legacy feature. The legacy feature permits the inheritance of elite genes
between branch-and-bound nodes.

The rest is organized as follows. Section 2 presents the 3SR problem and its
complexity. The proposed BnB-NSGAII legacy feature is explained in Sect. 3.
The computational results are reported in Sect. 4. Finally, an overall conclusion
is drawn in Sect. 5.

2 3 Stage Reducer Problem

The design problem consists in finding dimensions of main components (pinions,
wheels and shafts) of the 3 stage reducer (Fig. 1) to minimize the following bi-
objective problem:

1. The volume of all the components of the reducer:

f1(x) = π

(
s=3∑
s=0

las
ra,s

2 +
s=3∑
s=1

[
bs

m2
ns

2
(Z2

s,1 + Z2
s,2)

])
(1)

2. The gap between the required reduction ratio ū and the ratio of the reducer
(tolerance):

f2(x) =
1
ū

∣∣∣∣∣ū −
s=3∏
s=1

Zs,2

Zs,1

∣∣∣∣∣ , ū > 1 (2)

The problem is designed assuming the following are known:

– The power to be transmitted, Pt and the speed rotation of input shaft Ne.
– The total speed rotation reduction ratio ū, the position of the output shaft

from the input shaft position (Fig. 2).
– The dimension of the casing box.

An Application of BnB-NSGAII 339

Fig. 1. Front and back view of a 3 stage reducer with closure.

Fig. 2. Detailed view of the 3 stage reducer.

The 3SR problem is formulated with 2 objective functions, 41 constraints
(presented in Appendix A), 3 categorical variables (gears modules), 6 integer
variables (number of teeth), and 11 continuous variables. Gears modules have 41
possibilities, pinion number of teeth ranges from 14 to 30 and wheel number of
teeth ranges from 14 to 150. Hence, the combinatorial space of the 3SR problem
consists in 413 +(30−14)3 +(150−14)3 � 8.7×1014. Thus, the problem is con-
sidered a mid-sized problem concerning the number of variables and constraints,
but, huge combinatorial space.

The additional constraints increase the complexity of the problem. This is
noticed by solving the problem using NSGAII with different initial conditions
as follows. In first hand, NSGAII is initialized with 1 feasible individual. On
the other hand, NSGAII is randomly initialized. Each was run 10 times with the
same parameters shown in Table 1. Figure 3(a) shows how many run each method
converged to a feasible solution out of 10. Figures 3(a) and 3(b) show that if the
initial population contains at least 1 feasible individual, NSGAII converges to

340 A. Jaber et al.

a good approximated Pareto front every time. Whilst, if NSGAII is initialized
with a random population, NSGAII either fails to converge to a feasible solution,
or it converges to a low-quality Pareto front.

Table 1. Parameters used for NSGAII algorithm

Parameters Value

Cross over probability 0.8

Mutation probability 0.9

Population size 200

Allowable generations 500

Constraint handling Legacy method [1]

Crossover operator Simulated binary crossover (SBX) [11]

ETAC 100

Mutation operator Partially-mapped crossover (PMX) [11]

ETAM 10

Fig. 3. Results of 3SR problem solved by NSGAII with (blue) and without (red) initial
feasible seed. (Color figure online)

Figure 4 shows part of the domain of the 3SR problem explored by NSGAII
with feasible initial population. The explored domain shows the complexity of
the problem, where both feasible and infeasible solutions share the same domain
on the projected objective domain. Moreover, all the feasible solutions are too
near to the infeasible ones.

An Application of BnB-NSGAII 341

Fig. 4. Explored portion of the domain, showing the 3SR problem complexity.

To enhance the quality of the solution of this problem - and accordingly any
similar problem - where feasible solutions are not known, our proposal is first
to use BnB-NSGAII proposed in [10] to search for feasible individuals. These
individuals are then injected in the random initial population of NSGAII.

3 BnB-NSGAII

In [10] the authors proposed the BnB-NSGAII approach. In this approach, Multi-
Criteria Branch and Bound (MCBB) [13] is used to enhance the exploration force
of NSGAII by investigating the mixed-integer domain space through branching
it to subdomains, then NSGAII bounds each one. In this way, MCBB guides
the search using the lower bounds obtained by NSGAII. Our proposal is to
furthermore enhance the exploration potential of BnB-NSGAII by adding the
legacy feature.

3.1 General Concept of BnB-NSGAII

The general multi-Objective MINLP problem (PMO-MINLP) is written as

minimize
x,y

f(x,y) = f1(x,y), . . . , fp(x,y)

subject to
cj(x,y) ≤ 0, j = 1, ...,m

x ∈ X, X ∈ R
nc

y ∈ Y , Y ∈ N
ni ,

(3)

where p and m are the number of objectives and constraints respectively. X and
Y denote the set of feasible solutions of the problem for nc continuous and ni

integer variables respectively.

342 A. Jaber et al.

PMO-MINLP is complex and expensive to solve. The general idea is thus to
solve several simpler problems instead. BnB-NSGAII divides PMO-MINLP by con-
structing a combinatorial tree that aim to partition the root node problem -
PMO-MINLP - into a finite number of subproblems Pr1, . . . , P ri, . . . , P rn. Where
i and n are the current node and the total number of nodes respectively. Each
Pri is considered a node. Each node is then solved by NSGAII. Solving a node
is to determine its lower and upper bounds. The upper bound of a node PN

i is
the Pareto front captured by NSGAII, which is then stored in an incumbent list
PN . Whilst the lower bound is the ideal point P I

i of the current node.

P I
i = min fk(xi,yi); k = 1, . . . , p. (4)

By solving Pri, one of the following is revealed:

• Pri is infeasible, means that NSGAII didn’t find any solution that satisfies
all constraints. Hence, Pri is pruned (fathomed) by infeasibility.

• Pri is feasible, but, the current lower bound P I
i is dominated by a previously

found upper bound PN . Therefore, Pri is fathomed by optimality.
• Pri is feasible, and, P I

i is not dominated by PN , P I
i ≤ PN . PN is then

updated by adding PN
i to it.

In the 3rd case, the combinatorial tree is furtherly branched by dividing Pri

into farther subproblems, called children nodes. If a node cannot be divided
anymore, it is called a leaf node. Leaves are the simplest nodes, since all integer
variables are fixed such that y = ȳ. NSGAII then solve leaves as Multi-Objective
continuous Non-Linear problem (PMO-NLP):

minimize
x, ȳ

f(x, ȳ) = f1(x, ȳ), . . . , fp(x, ȳ)

subject to
cj(x, ȳ) ≤ 0, j = 1, ...,m

x ∈ Xi,

(5)

where Xi denotes the set of feasible solutions of the current node. PN
i of each

leaf is then added to PN . The overall Pareto front is obtained by removing the
dominated elements from PN .

3.2 BnB Legacy Feature

In NSGAII, the best population is that found in the last generation, since it con-
tains the elite individuals among all the previous generations. In BnB-NSGAII,
each node is solved independently. The output of each node is the captured
Pareto front only. The last population in the node is thus discarded, although it
might be valuable to other nodes.

We propose to permit the legacy between nodes. Where each child node
inherits the last population from its parent node. The child node then initializes
NSGAII by this population.

An Application of BnB-NSGAII 343

The children nodes are subproblems of their parent node. Thus, the boundary
of parent node is different than that for the children nodes, Yparent �= Ychild.
Hence, the population is rebounded before initializing NSGAII. Rebounding the
population may lead to the loss of the elite individuals, though some of the elite
genes are still conserved.

3.3 An Application of BnB-NSGAII

BnB-NSGAII is characterized by high exploration potential. Thus, in this paper,
BnB-NSGAII is used to search for at least one feasible solution for the 3SR prob-
lem. For this aim, BnB-NSGAII is properly modified to 1) continue enumeration
of the combinatorial tree even if the root node is infeasible. 2) stop whenever a
feasible solution(s) is found. Then, NSGAII is called to solve the 3SR problem
by initializing it with the feasible solution(s) found as shown in Fig. 5.

Start

Solve node with
NSGAII

Yes NO
Feasible
Solution
Found

Initialize NSGAII with
feasible seed(s)

Solve 3SR problem
with NSGAII

End

NO

Yes

All integer
variables
are fixed

Add children nodes to
node list

NOYes Node List is
empty

BnB-NSGAII fails to
find feasible solution

Select node from
node list

Fig. 5. Flowchart of BnB-NSGAII application.

4 Numerical Experiment

NSGAII and BnB-NSGAII with and without the legacy feature were tested on
the 3SR problem. Each method was run 10 times. The test was done using the
same parameters for the 3 solvers. Table 1 shows the parameters used in this
experiment.

344 A. Jaber et al.

4.1 Results and Discussion

In this experiment, the evaluation of the performance of each method is limited
to how many times the method finds at least 1 feasible solution over the 10
runs. Figure 6(a) shows the number of times each method succeeded the test.
It can be obviously concluded that BnB-NSGAII legacy method overcomes the
performances of NSGAII and BnB-NSGAII. It should be noted that the compu-
tational effort is not regarded since all the runs converge within 30 min. Which
is considered an acceptable time for such a problem.

Fig. 6. Explored domain by (b) NSGAII, (b) BnB-NSGAII and (d) BnB-NSGAII
legacy methods. Feasible and infeasible individuals are plotted in green and red respec-
tively. (Color figure online)

Figure 6(b) shows that NSGAII explored local space of the domain depend-
ing on the initial population. While Fig. 6(c) shows that BnB-NSGAII explored
random spaces of the domain. Figure 6(d) shows that the legacy feature guides
the exploration force of BnB-NSGAII towards the feasible solutions.

5 Conclusion

The 3 stage reducer problem is a point of interest of many researchers, either
to use/enhance it for engineering applications, or to examine the performance

An Application of BnB-NSGAII 345

of optimization methods. The 3SR problem is desirable for such experiments for
its complexity.

The 3SR problem was reformulated to a bi-objective problem in this paper to
demonstrate a proposed application of BnB-NSGAII. The proposed application
is to use BnB-NSGAII as an initiator of NSGAII, where BnB-NSGAII initially
seeks feasible individuals before injecting them into the initial population of
NSGAII.

BnB-NSGAII was enhanced by adding the legacy feature. The legacy feature
is a generic feature that can be implemented in any branch and bound algorithm.
Any parameter that is tuned during the node solving process could be the legacy.
In this paper, the legacy was the last population in the father node in BnB-
NSGAII. The latter was then used to initialize the child node.

The performances of NSGAII and BnB-NSGAII with and without the legacy
feature were tested on the bi-objective version of the 3SR problem. Results show
that the legacy feature guides the exploration force of BnB-NSGAII leading it
to a better solution than that obtained by NSGAII and BnB-NSGAII.

A 3SR Problem Constraints

A.1 Closure Condition

Interference and fitting constraints are adopted from [5]. In [4], the closure con-
dition was expressed with the distance between the terminal point O3 shown in
Fig. 2 and required position of the center of the output shaft. The coordinate of
O3 can be easily compute with the center distance of each stage and the angle
ξ1, ξ2 and ξ3. But, if we consider that center distance of each stage allow this
closure condition, we can compute the value of ξ2 and ξ3. By this way can reduce
he number of variables in the optimization problem.

For a given value of ξ1 and r1,1, r1,2, center distance of each stage allow a
closure if we have:

‖ �O1O3‖ ≤ ‖ �O1O2‖ + ‖ �O2O3‖
Assuming the previous condition is true, we can compute the two intersection of
circle of center O1 of ‖ �O1O2‖ radius and circle of center O3 of ‖ �O2O3‖ radius.

With a2 = ‖ �O1O2‖ and a3 = ‖ �O2O3‖ we have:{
a2 sinα1 − a3 sin α3 = 0
a2 cos α1 + a3 cos α3 = ‖ �O1O3‖

which give:

cos α1 =
O1H

O1O2

=
a2
2 − a2

3 + (O1O3)2

2a2O1O3

346 A. Jaber et al.

Fig. 7. Gear mesh for each stage.

Knowing α1, computation of coordinate of O2 and O
′
2 is straightforward. If

the two position O2 and O
′
2 allow the wheel of the 2nd stage to fit in the casing

box, then O
′
2 is preferred for lubrication reason (Fig. 7).

A.2 Mechanical Constraint for One Stage of the Mechanism

Constraints Related to the Gear Pair. Following the recommendation from
International Standard ISO 6336, [6–8] we can calculate, knowing the geometry
of gear pair, the material and the working conditions the contact and σH the
bending stress σF in the gear pair. These stresses must be less of equal to the
respective permissible value σHP and σFP, depending on the material and the
working conditions.

From [8] the bending stress σF is given by (1 for the pinion and 2 for the
wheel):

σF(1,2) = σF0 (KAKVKFαKFβ)

with σF0(1,2), the nominal tooth stress:

σF0(1,2) =
Ft

bmn
(YFYSYβYBYDT)

where:

– Ft: is the tangential load from [6].
– b: is the facewidth.
– mn: is the normal module.

Factors KA, KV, KFα, KFβ are related to dynamic ad loading conditions
in the gear. Factors YF, YS, Yβ , YB, YDT are related to the geometry effect on
stress.

From [8], the permissible bending stress σFP is given by:

σFP =
σFLim

SFmin
(YSTYNTYδrelTYRrelTYX)

with σFLim is the nominal stress number (bending) from reference test gears [9]
and SFmin the minimal required safety factor. Factors YST, YNT, YδrelT, YRrelT,

An Application of BnB-NSGAII 347

YX are related to the reference test gears and the geometry and material condi-
tions of the gear pair.

From [7] the contact stress is given by (1 for the pinion and 2 for the wheel):

σH(1,2) = Z(B,D)σH0

√
KAKVKHαKHβ

with σH0 is the nominal contact stress:

σH0 = (ZHZEZεZβ)
√

Ft

bd1

u + 1
u

Factors ZH, ZE, Zε, Zβ are related to the Hertzian theory of contact, and take
into account geometry and material in the gear pair.

From [7] the permissible contact stress σHP is:

σHP =
σHLim

SHmin
(ZNTZLZVZRZWZX)

with σHLim is the allowable contact stress number and SHmin is the minimum
required safety factor for surface durability. Factors ZNT, ZL, ZV, ZR, ZW, ZX

are related to lubrication conditions, surface roughness and hardened conditions
and size of the tooth.

So to respect the requirement specification of a given power to be transmitted,
the gear pair must respect:

σF(1,2) ≤ σFP

σH(1,2) ≤ σHP

Considering that σF is proportional to Ft and σH is proportional to
√

Ft for
a given gear pair, we can rewrite these 2 conditions with Pt the power to be
transmitted:

σFP

σF(1,2)
Pt ≥ Pt

(
σHP

σH(1,2)

)2

Pt ≥ Pt

Usually, some factors are slightly for the pinion and the wheel so transmitted
power is different for the pinion (1) and the wheel (2). We will keep the minimal
value.

So finally, for the stage number s on the reducer, the following conditions
must be fulfilled:

min
(

σFPs

σF(1,2)s

)
Pt ≥ Pt (6)

min
(

σHPs

σH(1,2)s

)2

Pt ≥ Pt (7)

348 A. Jaber et al.

Following condition must be respected:

– For the transverse contact ratio: εα ≥ 1.3.
– For the minimal face width: b ≥ 0.1d2
– For the maximal face width: b ≤ d1

In order to use pinion with at least Zmin = 14 teeth, the value of the profile
shift coefficient must be adjusted to avoid gear meshing with the relation:

Zmin ≥ 2(1 − x1)
sin α2

n

⇒ x1 ≥ 1 − Zmin
sin α2

n

2
⇒ x1 ≥ 0.1812

Constraint Related to Shaft’s Reducer. In each of the 4 shafts of the
mechanism, the transmitted torque produce shear stress. This stress must not
exceed the allowable shear of the material of shafts τmax. We assume here that
all the shaft are using the same steel and that all shaft can be consider as beam.
So, with ra,0, the radius of input shaft, and ra,s, s = 1 . . . 3 the radius of output
shaft of the three stages, we have:

τs =
2Cs

πra,s
3

≤ τmax for s = 1 . . . 3 (8)

Cs is the output torque of each stage and Ce the torque on the input shaft,
where Zi,1 and Zi,2 are the number of teeth for pinion (1) and wheel (2) of stage
number i:

Cs = Ce

i=s∏
i=1

Zi,2

Zi,1

For the input shaft we have:

τ0 =
2Ce

πra,0
3

≤ τmax (9)

The total rotation angle between the initial section of the input shaft and the
final section of the output shaft is:

θ =
2Cela,0

Gπra,0
3

+
s=3∑
s=1

2Csla,s

Gπra,s
3

For some reasons (dynamic behaviour of the reducer, ...) this total rotation angle
should be limited by a maximal value θmax.

θ ≤ θmax (10)

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2),
182–197 (2002). https://doi.org/10.1109/4235.996017. http://ieeexplore.ieee.org/
document/996017/

https://doi.org/10.1109/4235.996017
http://ieeexplore.ieee.org/document/996017/
http://ieeexplore.ieee.org/document/996017/

An Application of BnB-NSGAII 349

2. Deng, Y., Liu, Y., Zhou, D.: An improved genetic algorithm with initial pop-
ulation strategy for symmetric TSP. Math. Probl. Eng. 2015, e212794 (2015).
https://doi.org/10.1155/2015/212794. https://www.hindawi.com/journals/mpe/
2015/212794/. ISSN 1024-123X. Hindawi

3. Fauroux, J.C.: Conception optimale de structures cinématiques tridimensionnelles.
Application aux mécanismes de transmission en rotation. Ph.D. thesis, INSA de
Toulouse, January 1999. https://tel.archives-ouvertes.fr/tel-00006691

4. Fauroux, J.C., Lafon, P.: Optimization of a multi-stage transmission mechanism.
IFToMM 2, 813–817 (2004)

5. Han, L., Liu, G., Yang, X., Han, B.: Dimensional and layout optimization design of
multistage gear drives using genetic algorithms. Math. Probl. Eng. 2020, 3197395
(2020). https://doi.org/10.1155/2020/3197395. Hindawi

6. International Organization for Standardization (Ginebra): ISO 6336-1: Calculation
of Load Capacity of Spur and Helical Gears. Part 1. ISO (2019)

7. International Organization for Standardization (Ginebra): ISO 6336-2: Calculation
of Load Capacity of Spur and Helical Gears. Part 2. ISO (2019)

8. International Organization for Standardization (Ginebra): ISO 6336-3: Calculation
of Load Capacity of Spur and Helical Gears. Part 3. ISO (2019)

9. International Organization for Standardization (Ginebra): ISO 6336-5: Calculation
of Load Capacity of Spur and Helical Gears. Part 5. ISO (2019)

10. Jaber, A., Lafon, P., Younes, R.: A branch-and-bound algorithm based on NSGAII
for multi-objective mixed integer nonlinear optimization problems. Eng. Optim. 1–
19 (2021). https://doi.org/10.1080/0305215X.2021.1904918. Taylor & Francis

11. Maruyama, S., Tatsukawa, T.: A parametric study of crossover operators in pareto-
based multiobjective evolutionary algorithm. In: Tan, Y., Takagi, H., Shi, Y., Niu,
B. (eds.) ICSI 2017. LNCS, vol. 10386, pp. 3–14. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-61833-3 1

12. Mavrotas, G., Diakoulaki, D.: A branch and bound algorithm for mixed zero-one
multiple objective linear programming. Eur. J. Oper. Res. 107(3), 530–541 (1998).
https://doi.org/10.1016/S0377-2217(97)00077-5

13. Mavrotas, G., Diakoulaki, D.: Multi-criteria branch and bound: a vector maximiza-
tion algorithm for mixed 0–1 multiple objective linear programming. Appl. Math.
Comput. 171(1), 53–71 (2005). https://doi.org/10.1016/j.amc.2005.01.038

14. Yvars, P.A., Zimmer, L.: System sizing with a model-based approach: application
to the optimization of a power transmission system. Math. Probl. Eng. 2018, 1–14
(2018). https://doi.org/10.1155/2018/6861429

https://doi.org/10.1155/2015/212794
https://www.hindawi.com/journals/mpe/2015/212794/
https://www.hindawi.com/journals/mpe/2015/212794/
https://tel.archives-ouvertes.fr/tel-00006691
https://doi.org/10.1155/2020/3197395
https://doi.org/10.1080/0305215X.2021.1904918
https://doi.org/10.1007/978-3-319-61833-3_1
https://doi.org/10.1007/978-3-319-61833-3_1
https://doi.org/10.1016/S0377-2217(97)00077-5
https://doi.org/10.1016/j.amc.2005.01.038
https://doi.org/10.1155/2018/6861429

The Horizontal Linear Complementarity
Problem and Robustness of the Related

Matrix Classes

Milan Hlad́ık1(B) and Miroslav Rada2

1 Faculty of Mathematics and Physics, Department of Applied Mathematics,
Charles University, Malostranské nám. 25, 11800 Prague, Czech Republic

hladik@kam.mff.cuni.cz
2 Faculty of Informatics and Statistics, Department of Econometrics,

University of Economics, W. Churchill’s Sq. 4, 130 67 Prague, Czech Republic
miroslav.rada@vse.cz

https://kam.mff.cuni.cz/~hladik

Abstract. We consider the horizontal linear complementarity problem
and we assume that the input data have the form of intervals, represent-
ing the range of possible values. For the classical linear complementarity
problem, there are known various matrix classes that identify interest-
ing properties of the problem (such as solvability, uniqueness, convexity,
finite number of solutions or boundedness). Our aim is to characterize the
robust version of these properties, that is, to check them for all possible
realizations of interval data. We address successively the following matrix
classes: nonnegative matrices, Z-matrices, semimonotone matrices, col-
umn sufficient matrices, principally nondegenerate matrices, R0-matrices
and R-matrices. The reduction of the horizontal linear complementarity
problem to the classical one, however, brings complicated dependencies
between interval parameters, resulting in some cases to higher computa-
tional complexity.

Keywords: Linear complementarity · Interval analysis · Special
matrices · NP-hardness

1 Introduction

The Linear Complementarity Problem (LCP). The classical LCP problem is a
feasibility problem

y = Mz + q, y, z ≥ 0, (1a)

yT z = 0, (1b)

Supported by the Czech Science Foundation Grants P403-18-04735S (M. Hlad́ık) and
P403-20-17529S (M. Rada).

c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 350–360, 2021.
https://doi.org/10.1007/978-3-030-85672-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_26&domain=pdf
http://orcid.org/0000-0002-7340-8491
http://orcid.org/0000-0002-1761-897X
https://doi.org/10.1007/978-3-030-85672-4_26

The Horizontal LCP and Robustness of Matrix Classes 351

where M ∈ R
n×n and q ∈ R

n are given and y, z ∈ R
n are variables. Condition

(1a) is linear, but the (nonlinear) complementarity condition (1b) makes the
problem NP-hard [2]. The LCP is called feasible if (1a) is feasible, and it is
called solvable if (1a)–(1b) is feasible. The LCP appears in many optimization
and operations research models such as quadratic programming, bimatrix games,
or equilibria in specific economies. For more properties and algorithms for LCP
see, e.g., the books [4,21].

The Horizontal Linear Complementarity Problem. The horizontal LCP [3] is a
slight generalization of LCP, first formulated by Samelson et al. [25]. It reads

Ay = Bz + q, y, z ≥ 0, (2a)

yT z = 0, (2b)

where A,B ∈ R
n×n and q ∈ R

n are given and y, z ∈ R
n are variables. Clearly,

provided A is nonsingular, we easily reduce the problem to LCP by multiplying
A−1

y = A−1Bz + A−1q, y, z ≥ 0, (3a)

yT z = 0, (3b)

Otherwise, a reduction is possible only under certain conditions [7,28]. In our
context, it is better to consider the horizontal form separately since the form
A−1B brings complicated correlations into the matrix. Notice that for the hor-
izontal and other extended forms of LCP, certain LCP-related matrix classes
were generalized [26]. For the horizontal LCP, also special algorithms were devel-
oped [18,19,29].

Interval Uncertainty. Properties of the solution sets of LCP and horizontal LCP
relate with properties of the constraint matrices. In this paper, we study the
situation when the matrix entries are not precisely known, but we have interval
type uncertainty. A justifications of using intervals for modelling uncertainty is
provided in [14,15] and many books, e.g., [20,22].

Formally, an interval matrix is a set

A := {A ∈ R
m×n; A ≤ A ≤ A},

where A,A ∈ R
m×n, A ≤ A, are given matrices and the inequality is understood

entrywise. The corresponding midpoint and radius matrices are defined as

Ac :=
1
2
(A + A), AΔ :=

1
2
(A − A).

The set of all interval m×n matrices is denoted by IR
m×n. Following the notation

by Fiedler et al. [5], we introduce special matrices in A. Given sign vectors
s ∈ {±1}m and t ∈ {±1}n, denote

As,t = Ac − DsAΔDt ∈ A,

352 M. Hlad́ık and M. Rada

where Ds stands for the diagonal matrix with entries s1, . . . , sm and similarly for
Dt. For more results and properties of interval computation, including interval
arithmetic, we refer the readers, e.g., to books [20,22].

The LCP with interval uncertainties was investigated in [1,17], among others.
They addressed the problem of computing an outer approximation of the solution
set of all possible realizations of interval entries. Our goal is different – in this
paper, we focus on the interval matrix properties that are related to the LCP.

Problem Statement. Let A,B ∈ IR
n×n be given. We consider a class of the

horizontal LCP problems with A ∈ A and B ∈ B. Let P be a matrix property
related to the (horizontal) LCP. We say that P holds strongly if it holds for each
A ∈ A and B ∈ B.

Our aim is to characterize strong versions of several fundamental matrix
classes appearing in the context of the (horizontal) LCP. If property P holds
strongly for an interval matrix A, then we are sure that P is provably valid
whatever are the true values of the uncertain entries. Therefore, the property
holds in a robust sense for the (horizontal) LCP problem.

Notation. We use the shortage [n] = {1, . . . , n}. Given a matrix M ∈ R
n×n and

index sets I, J ⊆ [n], MI,J denotes the restriction of M to the rows indexed
by I and the columns indexed by J ; it is the empty matrix if I or J is empty.
Similarly xI denotes the restriction of a vector x to the entries indexed by I.

The identity matrix of size n is denoted by In, and the spectral radius of a
matrix M by ρ(M). The symbol Ds stands for the diagonal matrix with entries
s1, . . . , sn and e = (1, . . . , 1)T for the vector of ones. The relation x � y between
vectors x, y is defined as x ≥ y and x �= y. Inequalities and the absolute value of
matrices and vectors are understood entrywise.

2 Particular Matrix Classes

In the following sections, we consider important classes of matrices appearing in
the context of the (horizontal) LCP. We characterize their strong counterparts
when entries are interval valued. Other matrix properties were discussed, e.g.,
in [6,11–13,16] and in the context of LCP in Hlad́ık [10].

Basically, due to reduction (3), we will tackle the matrix A−1B for A ∈ A
and B ∈ B. The expression A−1B imposes complicated dependencies between
interval parameters, so that is why we have to deal with them carefully. A simple
evaluation by interval arithmetic (and estimation of the inverse) leads to (possi-
bly high) overestimation. For the sake of simplicity of exposition, we denote by
A−1B the set

{A−1B; A ∈ A, B ∈ B}.

Throughout the paper we assume that A is strongly nonsingular. For character-
ization of nonsingularity and sufficient conditions see [23,24], for instance.

The Horizontal LCP and Robustness of Matrix Classes 353

2.1 S-matrices

A matrix M ∈ R
n×n is an S-matrix if there is x > 0 such that Mx > 0. The

importance of this class is that the LCP is feasible for each q ∈ R
n if and only

if M is an S-matrix.

Proposition 1. We have that A−1B is strongly S-matrix if and only if the
system

As,ez = B−s,ex, x > 0, z > 0. (4)

is feasible for each s ∈ {±1}n.

Proof. We want to characterize feasibility of

(A−1B)x > 0, x > 0

for each A ∈ A and B ∈ B. Substitute y ≡ Bx and z ≡ A−1y. Then Az = y =
Bx and we reduced the problem to strong solvability of the interval system

Az = Bx, x > 0, z > 0. (5)

By [5,8], we obtain (4). �	
The problem of checking strong S-matrix property is computationally

intractable, which justifies the exponential formula 4.

Proposition 2. Checking strong S-matrix property of A−1B is co-NP-hard
even in the case when A is real.

Proof. By [5], checking solvability of the system

|Mx| ≤ e, eT |x| ≥ 1 (6)

is NP-hard even on a class of problems with M nonnegative positive definite.
This is equivalent to weak solvability (i.e., solvability for at least one realization)
of the interval system

|Mx| ≤ e, [−e, e]T x ≥ 1,

or to weak solvability of

Mx ≤ ey, −Mx ≤ ey, [−e, e]T x ≥ y, y > 0.

By Farkas’ lemma, it is equivalent to the situation that the interval system

(−M M [−e, e]
eT eT −1

)⎛
⎝u

v
w

⎞
⎠ =

(
0

−1

)
, u, v, w ≥ 0 (7)

354 M. Hlad́ık and M. Rada

is not strongly solvable. We claim that strong solvability of this system is equiv-
alent to strong solvability of

(
0 −M M [−e, e]
1 eT eT −1

)
⎛
⎜⎜⎝

z
u
v
w

⎞
⎟⎟⎠ =

(
0
0

)
, z, u, v, w > 0. (8)

If (8) has a solution (z, u, v, w), then 1
z (u, v, w) solves (7). Conversely, let (u, v, w)

be a solution of (7). Situation w = 0 cannot happen since otherwise the second
equation is violated. Thus we have w > 0. If u, v > 0, then we put z := 1 and
(z, u, v, w) solves (8). Otherwise we put u := u + e, v := v + e and z := 2n + 1
and (z, u, v, w) solves (8).

Eventually, we obtained the interval system in the form of (5), where

A =
(

0 −M
1 eT

)
, B =

(−M [−e, e]
−eT 1

)
.

Obviously, A is nonsingular. �	

2.2 Nonnegative Matrices

Nonnegative matrices are important in the LCP since they represent an effi-
ciently recognizable subclass of copositive matrices.

Proposition 3. We have that A−1B is strongly nonnegative if and only if the
system

As,eX = B−s,e, X ≥ 0 (9)

is feasible for each s ∈ {±1}n.

Proof. We need to characterize feasibility of

AX = B, X ≥ 0

for each A ∈ A and B ∈ B. Thus we arrived at strong solvability of the interval
matrix system. Fortunately, for strong solvability, the fact that the system is a
matrix equation system makes no harm and we can simply call the characteri-
zation from [8], producing (9). �	

It is an open problem if checking strong nonnegativity is intractable; we
suspect it is.

2.3 Z-matrices

A matrix M ∈ R
n×n is called a Z-matrix if mij ≤ 0 for each i �= j. Z-matrices

emerge in the context of Lemke’s complementary pivot algorithm, because it
processes any LCP with a Z-matrix.

Recall that Dy denotes the diagonal matrix with entries y1, . . . , yn, which in
the following proposition play the role of variables.

The Horizontal LCP and Robustness of Matrix Classes 355

Proposition 4. We have that A−1B is strongly a Z-matrix if and only if the
system

As,eX − A−s,eDy = Bs,e, X ≤ 0, y ≤ 0 (10)

is feasible for each s ∈ {±1}n.

Proof. We need to characterize feasibility of

AX = B, Xij ≤ 0 i �= j

for each A ∈ A and B ∈ B. We express the diagonal of X as a difference of
two nonpositive variables, which is an equivalent operation in view of [9]. Thus
in matrix form we have X
→ X − Dy, where X ≤ 0 and y ≤ 0. By [8] strong
feasibility of this system is equivalent to feasibility of (10) for each s ∈ {±1}n.

�	

2.4 Semimonotone Matrices

A matrix M ∈ R
n×n is semimonotone if for each x � 0 there is k such that

xk > 0 and (Mx)k ≥ 0. By [4], we can state two equivalent conditions of
semimonotonicity. First, the LCP has a unique solution for each q > 0. Second,
for each index set ∅ �= I ⊆ [n] the system

MI,Ix < 0, x ≥ 0 (11)

is infeasible. From the computational complexity perspective, checking whether
M is semimonotone is a co-NP-hard problem [27].

Proposition 5. We have that A−1B is strongly semimonotone if and only if
for each index set ∅ �= I ⊆ [n] the system

A[n],IzI + (A[n],J)−e,szJ ≤ B[n],Ix, (12a)
A[n],IzI + (A[n],J)e,szJ ≥ B[n],Ix, (12b)

DszJ ≤ 0, zI < 0, x ≥ 0 (12c)

is infeasible for each s ∈ {±1}|J|, where J = [n] \ I.

Proof. Let ∅ �= I ⊆ [n]. We need to characterize infeasibility of

(A−1B)I,Ix < 0, x ≥ 0. (13)

Substitute y ≡ B[n],Ix and z ≡ A−1y. Then Az = y = B[n],Ix. Since
(A−1B)I,I = A−1

I,[n]B[n],I , we can equivalently write (13) as follows

Az = B[n],Ix, zI < 0, x ≥ 0.

Since this system should be infeasible for each A ∈ A and B ∈ B, we obtain
by [5,8] the characterization (12). �	

356 M. Hlad́ık and M. Rada

2.5 Principally Nondegenerate Matrices

A matrix M ∈ R
n×n is principally nondegenerate if all its principal minors

are nonzero. A principally nondegenerate matrix implies that the problem has
finitely many solutions (including zero) for every q ∈ R

n.

Proposition 6. We have that A−1B is strongly principally nondegenerate if
and only if for each index set ∅ �= I ⊆ [n] and s ∈ {±1}n the system

(A[n],I)s,e + (A[n],J)s,eZ
1 − (A[n],J)−s,eZ

2 = (B[n],I)s,−eX
1 − (B[n],I)s,−eX

2,
(14a)

Z1, Z2,X1,X2 ≥ 0. (14b)

is feasible, where J = [n] \ I.

Proof. Let ∅ �= I ⊆ [n] and k = |I|. We need to characterize regularity of
(A−1B)I,I . For any particular instance, the system

A−1
I,[n]B[n],IX = Ik

should be feasible. Substitute Y ≡ B[n],IX and Z ≡ A−1
J,[n]Y . Then A[n],I +

A[n],JZ = Y = B[n],IX. Thus we arrive at strong solvability of the interval
matrix system

A[n],I + A[n],JZ = B[n],IX.

By [5,8], we obtain the characterization (14). �	

2.6 Column Sufficient Matrices

A matrix M ∈ R
n×n is column sufficient if for every x ∈ R

n

[xi(Mx)i ≤ 0 ∀i] ⇒ [xi(Mx)i = 0 ∀i].

Equivalently, by [4], for each pair of disjoint index sets I, J ⊆ [n], I ∪ J �= ∅, the
system

(
MI,I −MI,J

−MJ,I MJ,J

)
x � 0, x > 0 (15)

is infeasible. Notice that the above constraint matrix reduces to MJ,J when
I = ∅, and similarly it reduces to AI,I when J = ∅.

It is known [27] that checking column sufficiency is a co-NP-hard problem,
which justifies necessity of inspecting all index sets I, J in (15). In the context
of LCP, column sufficiency guarantees that for any q ∈ R

n the solution set of
the LCP is a convex set (including possibly the empty set).

The Horizontal LCP and Robustness of Matrix Classes 357

Proposition 7. We have that A−1B is strongly column sufficient if and only
if the system

A[n],IzI + A[n],JzJ ≤ B[n],IxI − B[n],JxJ , (16a)

A[n],IzI + A[n],JzJ ≥ B[n],IxI − B[n],JxJ , (16b)

zI ≤ 0, zJ ≥ 0, z �= 0, x > 0. (16c)

is infeasible for each admissible I, J .

Proof. Let admissible I, J be given. We want to characterize infeasibility of
system

(
(A−1B)I,I −(A−1B)I,J

−(A−1B)J,I (A−1B)J,J

)(
xI

xJ

)
� 0, x > 0.

Substitute

y ≡ B[n],IxI − B[n],JxJ , z ≡ A−1y.

Then Az = y = B[n],IxI − B[n],JxJ , so one can write the system as follows

Az = B[n],IxI − B[n],JxJ , zI ≤ 0, zJ ≥ 0, z �= 0, x > 0.

By means of [5,8], infeasibility of this system for each A ∈ A and B ∈ B is
characterized by (16). �	

Notice that system (14) can easily be expressed as a system of linear inequal-
ities. So checking its feasibility is a tractable problem by means of linear pro-
gramming (for fixed I, J).

2.7 R0-matrices

A matrix M ∈ R
n×n is an R0-matrix if the LCP with q = 0 has only the trivial

solution y = z = 0. Equivalently, for each index set ∅ �= I ⊆ [n], the system

AI,Ix = 0, AJ,Ix ≥ 0, x > 0 (17)

is infeasible, where J = [n] \ I. The decision problem of a given matrix to be
a R0-matrix is a co-NP-hard [27] problem. If M is an R0-matrix, then for any
q ∈ R

n the LCP has a bounded solution set.

Proposition 8. We have that A−1B is strongly R0-matrix if and only if system

A[n],JzJ ≤ B[n],IxI , (18a)

A[n],JzJ ≥ B[n],IxI , (18b)

zJ ≥ 0, x > 0 (18c)

is infeasible for each admissible I, J .

358 M. Hlad́ık and M. Rada

Proof. Let admissible I, J be given. We want to characterize infeasibility of
system

(A−1B)I,Ix = 0, (A−1B)J,Ix ≥ 0, x > 0.

Substitute y ≡ B[n],IxI and z ≡ A−1y. Then Az = y = B[n],IxI and the system
reads

Az = B[n],IxI , zI = 0, zJ ≥ 0, x > 0

or

A[n],JzJ = B[n],IxI , zJ ≥ 0, x > 0.

This system is infeasible for each A ∈ A and B ∈ B if and only if system (18)
is infeasible; see [5,8]. �	

2.8 R-matrices

A matrix M ∈ R
n×n is an R-matrix if for each index set ∅ �= I ⊆ [n], the system

MI,Ix + et = 0, MJ,Ix + et ≥ 0, x > 0, t ≥ 0 (19)

is infeasible w.r.t. variables x ∈ R|I| and t ∈ R, where J = [n] \ I. In the context
of the LCP, when M is an R-matrix, then for any q ∈ R

n the LCP has a solution.
Despite the (visual) similarity with R0-matrix, the R-matrix property is much

harder in the interval setting and for particular index sets I, J .

Proposition 9. We have that A−1B is strongly R0-matrix if and only if system

−A[n],Iet + (A[n],J)e,szJ ≤ B[n],IxI , (20a)
−A[n],Iet + (A[n],J)e,−szJ + et ≥ B[n],IxI , (20b)

DszJ ≥ 0, zJ + et ≥ 0, x > 0, t ≥ 0 (20c)

is infeasible for each admissible I, J and s ∈ {±1}|J|.

Proof. Let admissible I, J be given. We want to characterize infeasibility of
system

(A−1B)I,Ix + et = 0, (A−1B)J,Ix + et ≥ 0, x > 0, t ≥ 0.

Substitute y ≡ B[n],IxI and z ≡ A−1y. Then Az = y = B[n],IxI and the system
reads

Az = B[n],IxI , zI + et = 0, zJ + et ≥ 0, x > 0

or

−A[n],Iet + A[n],JzJ = B[n],IxI , zJ + et ≥ 0, x > 0, t ≥ 0.

This system is infeasible for each A ∈ A and B ∈ B if and only if system(20) is
infeasible for each s ∈ {±1}|J|; see [5,8]. �	

The Horizontal LCP and Robustness of Matrix Classes 359

3 Conclusion

We considered various matrix classes that appear in the context of the LCP and
ensure that the problem has favourable properties (in view of its solvability and
properties of the solution set). We fully characterized stability of these matrices
on an interval domain and in the case the matrices originate from the horizon-
tal LCP. Practically it brings characterization of robustness of these matrices
because whatever are the realizations of the interval data, we are sure that the
corresponding property is satisfied.

Several open problems emerged, too. For copositivity and P-matrix property,
we presented no closed form characterization and we leave it for future research.
Next, notice that many matrix properties are computationally hard to verify
even in the real case, so the interval case cannot be easier. Therefore it would
be interesting to investigate some polynomially recognizable cases or to come up
with suitable sufficient conditions.

References

1. Alefeld, G., Schäfer, U.: Iterative methods for linear complementarity problems
with interval data. Computing 70(3), 235–259 (2003). https://doi.org/10.1007/
s00607-003-0014-6

2. Chung, S.J.: NP-completeness of the linear complementarity problem. J. Optim.
Theor. Appl. 60(3), 393–399 (1989)

3. Cottle, R.W.: Linear complementarity since 1978. In: Giannessi, F., Maugeri, A.
(eds.) Variational Analysis and Applications, NOIA, vol. 79, pp. 239–257. Springer,
Boston (2005). https://doi.org/10.1007/0-387-24276-7 18

4. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem.
revised ed of the 1992 original edn. SIAM, Philadelphia, PA (2009)

5. Fiedler, M., Nedoma, J., Ramı́k, J., Rohn, J., Zimmermann, K.: Linear Optimiza-
tion Problems with Inexact Data. Springer, New York (2006)

6. Garloff, J., Adm, M., Titi, J.: A survey of classes of matrices possessing the interval
property and related properties. Reliab. Comput. 22, 1–10 (2016)

7. Gowda, M.: Reducing a monotone horizontal LCP to an LCP. Appl. Math. Lett.
8(1), 97–100 (1995)

8. Hlad́ık, M.: Weak and strong solvability of interval linear systems of equations and
inequalities. Linear Algebra Appl. 438(11), 4156–4165 (2013)

9. Hlad́ık, M.: Transformations of interval linear systems of equations and inequalities.
Linear Multilinear Algebra 65(2), 211–223 (2017)

10. Hlad́ık, M.: Stability of the linear complementarity problem properties under inter-
val uncertainty. Cent. Eur. J. Oper. Res. 29, 875–889 (2021)

11. Hlad́ık, M.: Tolerances, robustness and parametrization of matrix properties
related to optimization problems. Optimization 68(2–3), 667–690 (2019)

12. Hlad́ık, M.: An overview of polynomially computable characteristics of special
interval matrices. In: Kosheleva, O., et al. (eds.) Beyond Traditional Probabilis-
tic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applica-
tions, Studies in Computational Intelligence, vol. 835, pp. 295–310. Springer, Cham
(2020)

https://doi.org/10.1007/s00607-003-0014-6
https://doi.org/10.1007/s00607-003-0014-6
https://doi.org/10.1007/0-387-24276-7_18

360 M. Hlad́ık and M. Rada

13. Horáček, J., Hlad́ık, M., Černý, M.: Interval linear algebra and computational
complexity. In: Bebiano, N. (ed.) MAT-TRIAD 2015. SPMS, vol. 192, pp. 37–66.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49984-0 3

14. Kreinovich, V.: Why intervals? a simple limit theorem that is similar to limit
theorems from statistics. Reliab. Comput. 1(1), 33–40 (1995)

15. Kreinovich, V.: Why intervals? why fuzzy numbers? towards a new justification.
In: Mendel, J.M., Omori, T., Ya, X. (eds.) 2007 IEEE Symposium on Foundations
of Computational Intelligen, pp. 113–119 (2007)

16. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and
Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht
(1998)

17. Ma, H., Xu, J., Huang, N.: An iterative method for a system of linear comple-
mentarity problems with perturbations and interval data. Appl. Math. Comput.
215(1), 175–184 (2009)

18. Mezzadri, F., Galligani, E.: Splitting methods for a class of horizontal linear com-
plementarity problems. J. Optim. Theor. Appl. 180(2), 500–517 (2019)

19. Mezzadri, F., Galligani, E.: A modulus-based nonsmooth Newton’s method for
solving horizontal linear complementarity problems. Optimization Letters 15(5),
1785–1798 (2019). https://doi.org/10.1007/s11590-019-01515-9

20. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM,
Philadelphia, PA (2009)

21. Murty, K.G., Yu, F.T.: Linear Complementarity, Internet Linear and Nonlinear
Programming (1997)

22. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

23. Rex, G., Rohn, J.: Sufficient conditions for regularity and singularity of interval
matrices. SIAM J. Matrix Anal. Appl. 20(2), 437–445 (1998)

24. Rohn, J.: Forty necessary and sufficient conditions for regularity of interval matri-
ces: A survey. Electron. J. Linear Algebra 18, 500–512 (2009)

25. Samelson, H., Thrall, R.M., Wesler, O.: A partition theorem for euclidean n-spaces.
Proc. Am. Math. Soc. 9, 805–807 (1958)

26. Sznajder, R., Gowda, M.: Generalizations of P0- and P-properties; extended ver-
tical and horizontal linear complementarity problems. Linear Algebra Appl. 223–
224, 695–715 (1995)

27. Tseng, P.: Co-NP-completeness of some matrix classification problems. Math. Pro-
gram. 88(1), 183–192 (2000)

28. Tütüncü, R.H., Todd, M.J.: Reducing horizontal linear complementarity problems.
Linear Algebra Appl. 223–224, 717–729 (1995)

29. Zheng, H., Vong, S.: On convergence of the modulus-based matrix splitting itera-
tion method for horizontal linear complementarity problems of H+-matrices. Appl.
Math. Comput. 369(124890), 1–6 (2020)

https://doi.org/10.1007/978-3-319-49984-0_3
https://doi.org/10.1007/s11590-019-01515-9

Incorporating User Preferences
in Multi-objective Feature Selection
in Software Product Lines Using
Multi-Criteria Decision Analysis

Takfarinas Saber1,2(B), Malika Bendechache1,3, and Anthony Ventresque1,2

1 Lero – the Irish Software Research Centre, Limerick, Ireland
2 School of Computer Science, University College Dublin, Dublin, Ireland

{takfarinas.saber,anthony.ventresque}@ucd.ie
3 School of Computing, Dublin City University, Dublin, Ireland

malika.bendechache@dcu.ie

Abstract. Software Product Lines Engineering has created various
tools that assist with the standardisation in the design and implementa-
tion of clusters of equivalent software systems with an explicit represen-
tation of variability choices in the form of Feature Models, making the
selection of the most ideal software product a Feature Selection prob-
lem. With the increase in the number of properties, the problem needs
to be defined as a multi-objective optimisation where objectives are con-
sidered independently one from another with the goal of finding and
providing decision-makers a large and diverse set of non-dominated solu-
tions/products. Following the optimisation, decision-makers define their
own (often complex) preferences on how does the ideal software prod-
uct look like. Then, they select the unique solution that matches their
preferences the most and discard the rest of the solutions—sometimes
with the help of some Multi-Criteria Decision Analysis technique. In
this work, we study the usability and the performance of incorporating
preferences of decision-makers by carrying-out Multi-Criteria Decision
Analysis directly within the multi-objective optimisation to increase the
chances of finding more solutions that match preferences of the decision-
makers the most and avoid wasting execution time searching for non-
dominated solutions that are poor with respect to decision-makers’ pref-
erences.

Keywords: Feature selection · Software product line · Multi-objective
evolution algorithm · Multi-Criteria Decision Analysis

1 Introduction

Software Engineering is divided into multiple domains [1]. One of these domains
is Software Product Lines (SPL) which considers groups of related software sys-
tems as a whole, rather than dealing with every single one of them separately
c© Springer Nature Switzerland AG 2021
B. Dorronsoro et al. (Eds.): OLA 2021, CCIS 1443, pp. 361–373, 2021.
https://doi.org/10.1007/978-3-030-85672-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85672-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-85672-4_27

362 T. Saber et al.

[2]. Feature Models (FMs) is the most recurrent representation of SPLs.
Furthermore, the FM holds a listing of all the possible feature configura-
tions/combinations which could be viewed as constraints. Therefore, making the
FM a representation of all valid software products that could be made out the
features in the SPL. Building a software product out of a particular SPL requires
the selection of features that respect the desired software configuration. With
the multiple characteristics/objectives that are interesting to decision-makers
in practice (e.g., cost, technical feasibility, or reliability), the problem of find-
ing the ‘best’ feature configuration is seen as an instance of a multi-objective
optimisation problem [3,4].

Evolutionary algorithms have long been used to efficiently optimise problems
in various domains from Computer Networks (e.g., [5–7]) to Intelligent Transport
Systems (e.g., [8]), to Software Engineering, based on analytical/mathematical
(e.g., [5,6]) or simulated (e.g., [8,9]) models. Evolutionary algorithms are partic-
ularly effective when dealing with multi-objective optimisation problems in soft-
ware engineering (e.g., [10–13]). This is also the case for multi-objective feature
selection in SPL for which the state-of-the-art SATIBEA [3] is an Indicator-
Based Evolutionary Algorithm (IBEA) that uses a SAT solver as a mutation
operator to correct infeasible solutions.

Multi-objective optimisation techniques result in a set of non-dominated
products/solutions from which decision-makers select the product that fits their
preferences the most. Given that the number of solutions in the set of non-
dominated solutions is often large and that preferences of decision-makers are
often complex, decision-makers are usually assisted by Multi-Criteria Decision
Analysis (MCDA) tools to accomplish this task [14]. There exist multiple MCDA
techniques that take decision-makers’ preferences (each of them with its degree
of preference expressibility) and return the product that match them the most.
We show in this paper that: (i) some MCDA techniques are simplistic and can
only handle a limited number of preference types (e.g., only take weights into
accounts such as ELECTRE-IV), but they are fast, whereas (ii) other more elab-
orate MCDA techniques handle larger preference variations (e.g., they enable the
use of different utility functions such as PROMETHEE-II), but they are slower
and more time-consuming.

In this paper, we aim to include preferences of the decision-makers directly
in the multi-objective search process to avoid spending a precious execution
time searching for solutions that are (despite being non-dominated) far from
decision-makers’ preferences. In this paper, we study the effects of using MCDA
techniques in the selection process of SATIBEA instead of the Indicator-Based
technique (i.e., based on the contribution in Hypervolume of each solution).
Particularly, we would like to evaluate the impact in terms of both: (i) the
execution time overhead that it would induce, and (ii) quantity of non-dominated
solutions matching preferences of decision-makers missed by SATIBEA.

This paper makes the following contributions:

– We propose SAT MCDA EA, a hybrid algorithm that includes decision-
makers preferences in an MCDA form directly in the evolutionary search
process.

Incorporating User Preferences in Multi-objective Feature Selection 363

– We show that using MCDA techniques as a selection operator has an insignif-
icant impact in terms of execution time overhead in comparison to the exe-
cution time taken by one generation of SATIBEA.

– We also show that using MCDA techniques (particularly PROMETHEE-II)
enables finding a large number of solutions which better match preferences of
decision-makers and that are missed by SATIBEA (despite not outperforming
SATIBEA on most of the multi-objective performance metrics).

Combining MCDA techniques with multi-objective evolutionary algorithms
has already been attempted in a few recent works (e.g., [15–17]). However, to
the best of our knowledge, this is the first time it is attempted in the Software
Engineering domain in general and on the multi-objective feature selection in
FM in particular.

The remainder of this paper is organised as follows: Sect. 2 presents the back-
ground of our study. Section 3 describes some common MCDA techniques and
details our SAT MCDA EA approach. Section 4 provides our overall set-up and
benchmark for multi-objective feature selection in SPL. Section 5 reports the
results of our evaluation in terms of execution time overhead and performance
of SAT MCDA EA against SATIBEA. Finally, Sect. 6 concludes the paper.

2 Background

In this section, we detail two aspects that make up the background of our work.

2.1 Software Product Line Engineering

Software Product Line Engineering is the paradigm that attempts to man-
age software variations more systematically and provide tools that cover the
domain engineering and the application engineering processes with their multi-
ple phases/activities [18]. In SPL, all software artefacts (i.e., variations of the
same feature) could be picked and put together to form a particular product as
long as they are compatible.

Feature Models is a way to represent an SPL. FMs represent the set of all
available features with their variations and incompatibilities (i.e., constraints).
Figure 1 shows a toy FM example with ten inter-connected features. It shows, for
example, that the final product requires a ‘Screen’. It also shows that there exist
three ‘Screen’ types (i.e., ‘Basic’, ‘Colour’ or ‘High Resolution’) and only one of
them could be selected for the final product. To build a software product from
the SPL, we need to select a subset of features S ⊆ F such that constraints of
the FM F are satisfied. Constraints of the FM can be modelled as a satisfiability
(SAT) problem for instantiating Boolean variables to true or false (in our case,
every variable represents a feature) in a way that satisfies all the constraints. A
variable fi ∈ {true, false} is set to true if the feature Fi ∈ F is picked to be part
of S, and false otherwise.

364 T. Saber et al.

An FM can be represented in a conjunctive normal form (CNF). There-
fore, searching for a valid software product in the SPL is equivalent to search-
ing for a feasible solution to the SAT problem. For instance, the FM in Fig. 1
describes the screen alternatives in its SAT model with these clauses: (Basic ∨
Colour∨High resolution)∧(¬Basic∨¬Colour)∧(¬Basic∨¬High resolution)∧
(¬Colour ∨ ¬High resolution).

Fig. 1. Example of a feature model

2.2 Multi-Objective Optimisation

Multi-Objective Optimisation (MOO) considers the optimisation of more than
two objective functions at the same time. Software products can be seen from
various perspectives (e.g., development cost, reliability, performance). There-
fore, by considering each of the perspectives as independent objectives, feature
selection in SPL is a suitable candidate for MOO [14].

As a meaningful sample case, we use a set of commonly used optimisation
objectives in the literature [19–21]:

– Correctness – reduce the number of violated constraints.
– Richness of features – increase the number of picked features (have products

with more functionality, minimisation of its negative value is considered).
– Features used before – reduce the number of picked features that were not

used before.
– Known defects – reduce the number of known defects in picked features.
– Cost – reduce the cost of the picked features.

3 State-of-the-Art and Proposed Approach

In this section, we describe the state-of-the-art algorithm SATIBEA and our
proposed approach.

Incorporating User Preferences in Multi-objective Feature Selection 365

3.1 SATIBEA

SATIBEA [3] is an extension to the Indicator-Based Evolutionary Algorithm
(IBEA) which guides the optimisation through a quality indicator selection pro-
cess (in this case, the Hypervolume); a SAT solver has been introduced as a
mutation operator to assist IBEA.

Note that there are multiple algorithms designed to address the multi-
objective feature selection in SPL problem. Most of these algorithms perform in
a similar fashion as SATIBEA (evolutionary algorithm + exact algorithm such as
SMT [20] or MILP [21,22]). In this work, we do not compare to them as we do not
aim to design an algorithm that is better in terms of multi-objective metrics (even
if we report the performance with respect to those metrics below). Instead, our
goal is to showcase the fact that including preferences of the decision-makers in
the evolutionary search process is worth considering when decision-makers have
complex preferences as: (i) it only adds a marginal execution time overhead,
and (ii) it finds solutions that are interesting with respect to decision-makers’
preferences, but missed by particular IBEA algorithms (in our case SATIBEA).

3.2 Multi-Criteria Decision Analysis

Providing a set of non-dominated solutions, decision-makers explore them to
find their preferred one. Given the large size of the non-dominated sets that
are obtained after performing the multi-objective optimisation, decision-makers
take advantage of MCDA techniques to select the ideal solution with respect to
their preferences.

MCDA deals with decision-making constrained by multiple and often con-
flicting criteria (or objectives or goals). MCDA has been broadly divided into
two categories [14]: (i) Outranking Methods: builds a preference relation, and
(ii) Multiple Attribute Utility and Value Theory: the ‘utility’ of every action is
scored based on its utility.

In this work, we select three commonly used MCDA techniques: two outrank-
ing methods (ELECTRE-IV [23] and PROMETHEE-II [24]) and one Multiple
Attribute Utility and Value Theory method (MAUT [25]).

We propose in this paper to substitute the Indicator-Based selection oper-
ator in the original SATIBEA algorithm by one of the aforementioned MCDA
techniques (i.e., ELECTRE-IV, PROMETHEE-II or MAUT) to create what we
call SAT MCDA EA. Therefore, we are creating three distinct algorithms under
the same umbrella of SAT MCDA EA: (i) SAT ELECTRE-IV EA, where we use
ELECTRE-IV as the selection operator, (ii) SAT PROMETHEE-II EA, where
we use PROMETHEE-II as the selection operator, and (iii) SAT MAUT EA,
where we use MAUT as the selection operator.

4 System Set-Up

This section presents the different elements that we have used in our experi-
ments: the dataset, the multi-objective performance metrics, the parameters of

366 T. Saber et al.

the genetic algorithms (i.e., SATIBEA and SAT MCDA EA), the parameters we
use for the MCDA techniques, and the hardware configuration.

4.1 System and Algorithms Set-Up

We use the implementation of SATIBEA that is made available to us by its
creators (implemented in Java) and implement our approach on top of it. We
conduct our experiments on a machine with a 4 core CPU (our algorithms use
a core at a time though) and 16 GB of RAM. We ran all our algorithms and
determined the average results over 30 runs for each instance.

We use the same parameters for SATIBEA as those defined by its authors
(e.g., population size: 300, crossover rate: 0.8, mutation rate of each feature selec-
tion: 0.001, and solver mutation rate: 0.02). We also use the same parameters as
SATIBEA for our SAT MCDA EA approach. Furthermore, we define addition
parameters for the MCDA techniques to simulate preferences of decision-makers.
Note that the chosen preferences are only selected to showcase different capa-
bilities of each MCDA method. Therefore, it will be worth performing a more
robust analysis with different kinds of preferences and a full parameters sweeping
for each of these MCDA methods in a future work.

– ELECTRE-IV: requires a parameter triplet (optimisation threshold, prefer-
ence threshold, and indifference threshold) for every objective. We set these
triplets to (5, 6, 5), (3, 4, 3), (0.1, 0.3, 0.1), (1, 2, 1) and (3, 4, 3) for Correct-
ness, Richness of features, Feature used before, Known defects, and Cost.

– PROMETHEE-II: requires a parameter pair (weight and preference function)
for each objective. We set equal weights for all objectives and set their prefer-
ence functions to Level, Linear, Linear, Level, and Gaussian for Correctness,
Richness of features, Feature used before, Known defects, and Cost.

– MAUT: only requires one parameter per objective (weight) that we set equally
for all the objectives.

Based on the parameters that each of the MCDA techniques requires, we
see that PROMETHEE-II is the most expressive between them as it enables
decision-makers to design their own custom utility function for each objective
and feed it to the MCDA.

4.2 Dataset

For our experiments, we use the five of the largest open source FMs we could
find [20]. Table 1 shows the version and the size of each of the FMs that we
consider in our experiments. The table also reports the number of features and
the size of the SAT problem necessary to represent the FM in a conjunctive
normal form (in terms of number of variables and number of clauses). Similarly
to the SATIBEA paper [3], we set the execution time on the Linux Kernel to
1,200s. For the other datasets, we use smaller execution times based on the
convergence time of SATIBEA [19,26].

Incorporating User Preferences in Multi-objective Feature Selection 367

Table 1. Versions and characteristics of the feature models used in our experiments.

Dataset Version #Features #Variables #Clauses Time (s)

Linux kernel 2.6.28.6 5,701 6,888 343,944 1,200

eCos 20100825 1,244 1,244 3,146 50

Fiasco 2011081207 300 1,638 5,228 200

FreeBSD 8.0.0 1,396 1,396 62,183 200

µClinux 3.0 616 1,850 2,468 100

4.3 Multi-objective Performance Metrics

To assess the performance of our algorithms we use 5 multi-objective perfor-
mance metrics: 4 quality metrics (Hypervolume, Epsilon, Generation Distance,
and Inverted Generation Distance) and 1 diversity metric (Spread).

– Hypervolume (HV): computes the volume (measured in k dimensions of the
problem’s search space) that is dominated by the Pareto front (to maximise).

– Epsilon (ε): evaluates the smallest distance that is needed for every solution
in Pareto front to dominate the Reference front (to minimise).

– Generation Distance (GD): evaluates the smallest distance needed for every
solution in Pareto front to dominate the Reference front (to minimise).

– Inverted Generation Distance (IGD): evaluates average distance between
every solution in Reference front and its closest solution in Pareto front (to
minimise).

– Spread (S): computes the solutions’ distribution to evaluate their extent
spread in Pareto front (to maximise).

5 Evaluation

5.1 Execution Time Overhead

One of the major issues that kept designers of evolutionary algorithms away
from using MCDA techniques within the search process is the excessive execution
time that these techniques require. More researchers and practitioners favour less
time-consuming indicator-based methods. This is even more true with problems
that are only given a few seconds as a total optimisation time budget. In this
section, we evaluate the overhead execution time that is introduced by the use
of MCDA techniques. We compare the execution time of MCDA techniques to
the execution time needed to evolve a full generation and also to the execution
time of the default indicator-based method (in our case, the Hypervolume).

Table 2 shows the average execution time in millisecond over 30 iterations
of the second generation of SATIBEA (the generation following the evolution
of the randomly generated initial population) using the default indicator-based

368 T. Saber et al.

Table 2. Average execution time (ms) of the second generation of SATIBEA, indicator-
based selection, and MCDA selection methods.

Dataset Generation Indicator-Based ELECTRE-IV MAUT PROMETHEE-II

Linux Kernel 53,788 30.50 1.71 62.75 101.23

eCos 1,235 30.22 1.93 60.33 114.82

Fiasco 12,477 44.49 1.42 59.68 149.04

FreeBSD 12,742 29.57 1.56 71.28 127.30

uClinux 1,197 31.6 1.55 58.09 96.44

(Hypervolume). The table also shows the average execution time of each partic-
ular selection technique from Indicator-Based, to the three considered MCDA
techniques (i.e., ELECTRE-IV, MAUT, and PROMETHEE-II).

We clearly see that the execution time of a full SATIBEA generation is very
large in comparison to the execution time of the different selection operators
(148 times larger on average than the largest selection time per instance). A
single generation takes on average 531, 11, 84, 100, and 12 times larger execu-
tion times than the most time-consuming selection process (in this case, using
PROMETHEE-II) on the instances Linux Kernel, eCos, Fiasco, FreeBSD and
uClinux respectively. This is a clear indication that using any of the studied
MCDA techniques is less likely to add a significant execution time overhead.
The execution time of the section process is particularly insignificant when deal-
ing with the large instances (Linux Kernel, Fiasco and FreeBSD).

We see that with the exception of ELECTRE-IV, MCDA techniques (i.e.,
MAUT and PROMETHEE-II) necessitate a larger execution time than the
default Indicator-Based selection. This is one of the main reasons why the sim-
plistic weighted-sum is the de-facto go to in absence of a pure multi-objective
optimisation (keeping objectives separate with no aggregation). However, we
notice in our usecase that the order by which the execution time of these MCDA
techniques exceed the Indicator-Based selection is rather small (∼0.9 and ∼2.5
more execution time on average for MAUT and PROMETHEE-II respectively).

Therefore, we could claim that from an execution time perspective and in the
context of multi-objective feature selection in large software product lines such
as the ones studied in our paper, decision-makers should no longer be reluctant
to provide their preferences in advance to be embedded in the multi-objective
optimisation process.

5.2 Multi-objective Performance Metrics

Knowing that using MCDA techniques in the multi-objective optimisation pro-
cess does not add a significant execution time overhead is good, but obtaining
improved results is better –despite not being the most important in our case
as our goal is to find more solutions that match decision-makers’ preferences.
Therefore, we would like to evaluate the impact of our approach in terms of

Incorporating User Preferences in Multi-objective Feature Selection 369

performance and quantify it using the different multi-objective metrics seen in
Sect. 4.

Table 3 shows the average performances achieved by SATIBEA and SAT -
MCDA EA techniques (i.e., SAT ELECTRE-IV EA, SAT MAUT EA, SAT -
PROMETHEE-II EA) with respect to the quality metrics HV, IGD, GD, Epsilon
and Spread. We put in bold the best achieved performances per instance and
per metric. We also put (*) when results are not statistically significant between
SATIBEA and the best performing SAT MCDA EA technique (p-value < 0.05
when evaluated using the non-parametric two-tailed Mann-Whitney U test).

Table 3 clearly shows that SATIBEA achieves the best performances on the
metrics HV and IGD on all instances. SATIBEA also achieves the best perfor-
mances on Epsilon in 4 out of 5 instances on average. This is a clear indication
that SATIBEA maintains its supremacy with regards to very important multi-
objective performance metrics. This is quite understandable as SATIBEA’s aim
by design is to cover most of the search space, which yields better multi-objective
quality metrics performances. However, SAT MCDA EA algorithms target solu-
tions that better match the predefined preferences of the decision-makers and
leave large parts of the search space unprobed, which yields low multi-objective
quality metrics performances.

Table 3 also shows that SATIBEA does not always achieve the best results
with respect to the Spread metric. SAT ELECTRE-IV EA achieves the best
performance on Spread on 3 out of 5 instances on average. Although, Spread is a
secondary metrics and should not be interpreted alone without the other quality
metrics. Looking at SAT ELECTRE-IV EA’s performance in terms of HV, we
see that it is poor, which reduces the importance of its Spread performance.

Table 3 also shows that SATIBEA is not achieving the best GD on any
instance (achieved by SAT PROMETHEE-II EA). This is an indication that
most of the solutions that are found by SAT PROMETHEE-II EA are non-
dominated by the solutions found by the other algorithms. However, given that
the performance of SAT PROMETHEE-II EA in terms of HV is poor, we can
deduce that its solutions are not diverse enough. While this might seem nega-
tive, we believe that this is a good characteristic. Decision-makers would rather
be provided with several non-dominated solutions that are similar and better
match their preferences, rather than a set of non-dominated solutions covering
a larger space, but match their preferences less. Furthermore, SAT MAUT EA
also achieves a better performance than SATIBEA in terms of GD on 3 out of
5 instances on average.

5.3 SAT MCDA EA’s Strictly Non-Dominated Solutions

With SAT PROMETHEE-II EA and SAT MAUT EA achieving good GD per-
formances, we would like to measure the ratio of non-dominated solutions found
by SAT MCDA EA algorithms, but missed by SATIBEA. We gather all non-
dominated solutions found over all iterations by each algorithm and perform a
pairwise non-dominance comparison. Table 4 shows the ratio (in percentage) of

370 T. Saber et al.

Table 3. Comparison of the average performances achieved by SATIBEA and the
various SAT MCDA EA algorithms.

Dataset Metric SATIBEA SAT ELECTRE-
IV EA

SAT MAUT EA SAT PROMETHEE-
II EA

Linux Kernel HV 0.136 0.124 0.123 0.134

IGD 0.010 0.016 0.016 0.012

GD 0.030 0.130 0.012 0.007

ε 1982 2047 2051 1991

S 1.16 1.24 1.21 1.19

eCos HV 0.252 0.206 0.188 0.085

IGD 0.0071 0.0072 0.008 0.016

GD 0.0722 3.8714 0.0935 0.0031

ε 147 260 217 149

S 1.51∗ 1.30 1.33 1.55

Fiasco HV 0.195 0.133 0.132 0.124

IGD 0.009 0.022 0.024 0.018

GD 0.065 0.237 0.076 0.008

ε 277 917 950 171

S 1.58 1.14 1.16 1.27

FreeBSD HV 0.24 0.18 0.18 0.08

IGD 0.006 0.011 0.012 0.018

GD 0.091 0.156 0.066 0.004

ε 133 303 308 498

S 1.21 1.23∗ 1.20 1.21

uClinux HV 0.893 0.89 0.891 0.805

IGD 0.054 0.055 0.056 0.060

GD 0.043 0.016 0.015 0.012

ε 598∗ 611 604 1199

S 1.067 1.229 1.198 1.003

Table 4. Ratio (in per cent) of strictly non-dominated solutions found over the 30
iterations by SATIBEA using one of the MCDA methods in comparison with the
solutions found by SATIBEA when using the default Indicator-Based method.

Dataset SAT ELECTRE-IV EA
vs SATIBEA

SAT MAUT EA
vs SATIBEA

SAT PROMETHEE-II EA
vs SATIBEA

Linux Kernel 40 41 66

eCos 33 42 90

Fiasco 27 59 94

FreeBSD 26 48 92

uClinux 5 34 73

Incorporating User Preferences in Multi-objective Feature Selection 371

solutions found by each SAT MCDA EA that are strictly non-dominated (nei-
ther equal nor dominated) by any solution found by SATIBEA.

Table 4 confirms our assumption that many solutions found by SAT MAUT -
EA and SAT PROMETHEE-II EA are strictly non-dominated by those found
by SATIBEA. We see that SAT PROMETHEE-II EA finds the largest number
of solutions non-dominated by those found by SATIBEA (∼83% non-dominated
solutions on average, and 94% on Fiasco). Therefore, if decision-makers have
a prior knowledge of what makes a good software, they are better off using
PROMETHEE-II as a selection operator. While this will not yield optimal multi-
objective metrics, it will yield more solutions matching their preferences.

6 Conclusion and Future Work

In this paper, we proposed using MCDA techniques directly within the multi-
objective search process by employing them as the selection operator. We have
evaluated their impact both in terms of induced execution time overhead and in
terms of quality of the obtained solutions. We have seen that using the MCDA
techniques introduces a non-significant overhead execution time with respect to
the execution time of the other operators that make up the evolution. How-
ever, we have also seen that using the MCDA techniques within the search
process impacts negatively the performance of the algorithm with respect to
various multi-objective performance metrics with the exception of GD. We have
confirmed that the SAT MCDA EA algorithms perform particularly well with
respect to GD as they find a large number of solutions that match their pref-
erences but that are not dominated by the solutions found by SATIBEA. The
insight obtained from this study encourages us to deepen the investigation of
combining MCDA techniques with the multi-objective feature selection in SPL.

Acknowledgement. This work was supported, in part, by Science Foundation Ireland
grants No. 13/RC/2094 P2 (Lero) and 13/RC/2106 P2 (ADAPT).

References

1. Ramirez, A., Romero, J.R., Ventura, S.: A survey of many-objective optimisation
in search-based software engineering. J. Syst. Softw. 149, 382–395 (2019)

2. Metzger, A., Pohl, K.: Software product line engineering and variability manage-
ment: achievements and challenges. In: FSE, pp. 70–84. ACM (2014)

3. Henard, C., Papadakis, M., Harman, M., Le Traon, Y.: Combining multi-objective
search and constraint solving for configuring large software product lines. In: ICSE,
pp. 517–528 (2015)

4. Yadav, H., Chhikara, R., Kumari, A.C.: A novel hybrid approach for feature selec-
tion in software product lines. Multimed. Tools Appl. 80(4), 4919–4942 (2021).
https://doi.org/10.1007/s11042-020-09956-6

5. Lynch, D., Saber, T., Kucera, S., Claussen, H., O’Neill, M.: Evolutionary learning of
link allocation algorithms for 5G heterogeneous wireless communications networks.
In: GECCO, pp. 1258–1265 (2019)

https://doi.org/10.1007/s11042-020-09956-6

372 T. Saber et al.

6. Saber, T., Fagan, D., Lynch, D., Kucera, S., Claussen, H., O’Neill, M.: A hierar-
chical approach to grammar-guided genetic programming: the case of scheduling
in heterogeneous networks. In: Fagan, D., Mart́ın-Vide, C., O’Neill, M., Vega-
Rodŕıguez, M.A. (eds.) TPNC 2018. LNCS, vol. 11324, pp. 225–237. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-04070-3 18

7. Saber, T., Fagan, D., Lynch, D., Kucera, S., Claussen, H., O’Neill, M.: A multi-level
grammar approach to grammar-guided genetic programming: the case of scheduling
in heterogeneous networks. Genet. Program Evol. Mach. 20(2), 245–283 (2019).
https://doi.org/10.1007/s10710-019-09346-4

8. Saber, T., Wang, S.: Evolving better rerouting surrogate travel costs with
grammar-guided genetic programming. In: IEEE CEC, pp. 1–8 (2020)

9. Bendechache, M., et al.: Modelling and simulation of elastic search using cloudsim.
In: DS-RT, pp. 1–8 (2019)

10. Saber, T., Gandibleux, X., O’Neill, M., Murphy, L., Ventresque, A.: A compara-
tive study of multi-objective machine reassignment algorithms for data centres. J.
Heuristics 26(1), 119–150 (2020). https://doi.org/10.1007/s10732-019-09427-8

11. Saber, T., Delavernhe, F., Papadakis, M., O’Neill, M., Ventresque, A.: A hybrid
algorithm for multi-objective test case selection. In: CEC, pp. 1–8 (2018)

12. Saber, T., Ventresque, A., Brandic, I., Thorburn, J., Murphy, L.: Towards a multi-
objective VM reassignment for large decentralised data centres. In: UCC, pp. 65–
74. IEEE (2015)

13. Saber, T., Ventresque, A., Gandibleux, X., Murphy, L.: GeNePi: a multi-objective
machine reassignment algorithm for data centres. In: Blesa, M.J., Blum, C., Voß,
S. (eds.) HM 2014. LNCS, vol. 8457, pp. 115–129. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-07644-7 9

14. Mjeda, A., Wasala, A., Botterweck, G.: Decision spaces in product lines, decision
analysis, and design exploration: an interdisciplinary exploratory study. In: VaMoS,
pp. 68–75. ACM (2017)

15. Mohammed, A., Harris, I., Soroka, A., Nujoom, R.: A hybrid MCDM-fuzzy multi-
objective programming approach for a G-resilient supply chain network design.
Comput. Ind. Eng. 127, 297–312 (2019)

16. Kapsoulis, D., Tsiakas, K., Trompoukis, X., Asouti, V., Giannakoglou, K.: Evo-
lutionary multi-objective optimization assisted by metamodels, kernel PCA and
multi-criteria decision making techniques with applications in aerodynamics. Appl.
Soft Comput. 64, 1–13 (2018)

17. Jafarian-Namin, S., Kaviani, M.A., Ghasemi, E.: An integrated MOEA and MCDM
for multi-objective optimization (case study: control chart design). In: IEOM
(2016)

18. Horcas, J.M., Pinto, M., Fuentes, L.: Software product line engineering: a practical
experience. In: SPLC, pp. 164–176 (2019)

19. Saber, T., Brevet, D., Botterweck, G., Ventresque, A.: Is seeding a good strategy in
multi-objective feature selection when feature models evolve? Inf. Softw. Technol.
95, 266–280 (2018)

20. Guo, J., et al.: SMTIBEA: a hybrid multi-objective optimization algorithm for
configuring large constrained software product lines. Softw. Syst. Model. 18(2),
1447–1466 (2019). https://doi.org/10.1007/s10270-017-0610-0

21. Saber, T., Brevet, D., Botterweck, G., Ventresque, A.: Reparation in evolutionary
algorithms for multi-objective feature selection in large software product lines. SN
Comput. Sci. 2(3), 1–14 (2021). https://doi.org/10.1007/s42979-021-00541-8

https://doi.org/10.1007/978-3-030-04070-3_18
https://doi.org/10.1007/s10710-019-09346-4
https://doi.org/10.1007/s10732-019-09427-8
https://doi.org/10.1007/978-3-319-07644-7_9
https://doi.org/10.1007/978-3-319-07644-7_9
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.1007/s42979-021-00541-8

Incorporating User Preferences in Multi-objective Feature Selection 373

22. Saber, T., Brevet, D., Botterweck, G., Ventresque, A.: MILPIBEA: algorithm for
multi-objective features selection in (evolving) software product lines. In: EvoCOP,
pp. 164–179 (2020)

23. Govindan, K., Jepsen, M.B.: ELECTRE: a comprehensive literature review on
methodologies and applications. Eur. J. Oper. Res. 250(1), 1–29 (2016)

24. Brans, J.-P., De Smet, Y.: PROMETHEE methods. In: Greco, S., Ehrgott, M.,
Figueira, J.R. (eds.) Multiple Criteria Decision Analysis. ISORMS, vol. 233,
pp. 187–219. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-
3094-4 6

25. Allah Bukhsh, Z., Stipanovic, I., Klanker, G., O’Connor, A., Doree, A.G.: Network
level bridges maintenance planning using multi-attribute utility theory. Struct.
Infrastruct. Eng. 15(7), 872–885 (2019)

26. Brevet, D., Saber, T., Botterweck, G., Ventresque, A.: Preliminary study of multi-
objective features selection for evolving software product lines. In: Sarro, F., Deb,
K. (eds.) SSBSE 2016. LNCS, vol. 9962, pp. 274–280. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-47106-8 23

https://doi.org/10.1007/978-1-4939-3094-4_6
https://doi.org/10.1007/978-1-4939-3094-4_6
https://doi.org/10.1007/978-3-319-47106-8_23

Author Index

Abreu, Salvador 294
Amodeo, Lionel 203
Avetisyan, Arutyun 241
Aydin, Mehmet Emin 29

Babenko, Mikhail 241
Bastos-Filho, Carmelo J. A. 144
Beauthier, Charlotte 254
Becerra-Rozas, Marcelo 74
Bendechache, Malika 361
Berghe, Greet Vanden 229
Bernard, Nicolas 101
Blanchard, Julien 254
Boukhobza, Taha 156
Burman, Vibhati 132
Büskens, Christof 62

Carletti, Timoteo 254
Castillo, Mauricio 74
Chen, Zixi 14
Chitic, Raluca 101
Cisternas-Caneo, Felipe 74
Cortés-Mendoza, Jorge M. 241
Crawford, Broderick 74

de la Fuente-Mella, Hanns 74
Deridder, Nathan 101
Díaz, Daniel 294
Dupin, Nicolas 14
Duque, Jonathan 294
Durgut, Rafet 29

Etminaniesfahani, Alireza 86

Ferro, Francesco 115
Fischetti, Matteo 3

Golimblevskaia, Elena 241
Gu, Hanyu 86, 190

Hanne, Thomas 173
Hladík, Milan 350
Huang, Jiangnan 14
Hung, Nguyen Viet 241

Jaber, Ahmed 337

Karimi-Mamaghan, Maryam 45
Keller, Benjamin 173
Kolb, Markus 173
Korthals, Timo 115
Krueger, Volker 216
Kumar, Rajan 132

Lach, Luca 115
Lachmann, Malin 62
Lafon, Pascal 337
Lardeux, Frédéric 267
Lemus-Romani, José 74
Leprévost, Franck 101
Lins, Anthony 144

Mäckel, Dominik 283
MacMillan, Lucy 190
Malec, Jacek 216
Marinho, Matheus 144
Meier, Danny 173
Meyer, Patrick 45
Mohammadi, Mehrdad 45
Monfroy, Eric 267
Múnera, Danny A. 294

Ouazene, Yassine 310
Oxenstierna, Johan 216

Palma, Wenceslao 74
Pant, Millie 324
Pasdeloup, Bastien 45
Pulido-Gaytan, Bernardo 241

Rada, Miroslav 350
Ramanan, Sharadha 132
Ritter, Helge 115

Saber, Takfarinas 361
Salehipour, Amir 86
Schilling, Malte 115
Schumacher, Christin 283

Shiryaev, Egor 241
Singh, Meenu 324
Smaïl-Tabbone, Malika 156
Soto, Ricardo 74
Stringher, Matteo 3

Tapia, Diego 74
Tchernykh, Andrei 241
Terzi, Mourad 310
Truong, Cong Tan Trinh 203

Vaginay, Athénaïs 156
Van Lancker, Michiel 229

van Rensburg, Louis Janse 216
Vashishtha, Rajesh Kumar 132
Ventresque, Anthony 361

Wauters, Tony 229
Winkels, Jan 283

Yalaoui, Alice 310
Yalaoui, Farouk 203, 310
Younes, Rafic 337

Zhang, Yefei 190
Zinder, Yakov 190

376 Author Index

	Preface
	Organization
	Contents
	Synergies Between Optimization and Learning
	Embedding Simulated Annealing within Stochastic Gradient Descent
	1 Introduction
	2 Simulated Annealing
	2.1 A Naive Implementation for Training Without Gradients

	3 Improved SGD Training by SA
	4 Computational Analysis of SGD-SA
	5 Conclusions and Future Work
	References

	Comparing Local Search Initialization for K-Means and K-Medoids Clustering in a Planar Pareto Front, a Computational Study
	1 Introduction
	2 Problem Statement and Notations
	3 Initialization Heuristics
	3.1 Generic Initialization Strategies
	3.2 Initialization Using 2D PF Indexation
	3.3 Initialization Using p-Dispersion for 2D PF
	3.4 Initialization Using 1D Dynamic Programming

	4 Computational Experiments and Results
	4.1 Data Generation
	4.2 Computational Experiments and Conditions
	4.3 Analyses of Computational Results

	5 Conclusions and Perspectives
	References

	Reinforcement Learning-Based Adaptive Operator Selection
	1 Introduction
	2 Adaptive Operator Selection
	2.1 Operator Selection
	2.2 Credit Assignment

	3 Proposed Approach: Adaptive Selection with Reinforced-Clusters
	4 Experimental Results
	5 Conclusion
	References

	Learning for Optimization
	A Learning-Based Iterated Local Search Algorithm for Solving the Traveling Salesman Problem
	1 Introduction
	2 Literature Review
	3 Preliminaries
	3.1 Traveling Salesman Problem
	3.2 Iterated Local Search
	3.3 The Q-Learning Algorithm

	4 Proposed Q-ILS Algorithms
	4.1 Q-ILS-1 Algorithm
	4.2 Q-ILS-2 Algorithm

	5 Results and Discussion
	5.1 Experimental Design
	5.2 Numerical Results

	6 Conclusion
	References

	A Hybrid Approach for Data-Based Models Using a Least-Squares Regression
	1 Introduction
	2 Data-Based Modeling Approach
	2.1 Data-Based Modeling with Least-Squares Regression
	2.2 Introducing Hybrid Models

	3 Experimental Results Comparing Non-hybrid and Hybrid Models on Real-World Data
	3.1 Setup and Data
	3.2 Comparing Non-hybrid and Hybrid Models on Real-World Data
	3.3 Checking the Models' Plausibility

	4 Conclusion
	References

	A Comparison of Learnheuristics Using Different Reward Functions to Solve the Set Covering Problem
	1 Introduction
	2 Set Covering Problem
	3 Reinforcement Learning
	3.1 Q-Learning
	3.2 Reward Function

	4 Sine Cosine Algorithm
	4.1 Learnheuristic Framework
	4.2 Balancing Exploration and Exploitation

	5 Experimental Results
	6 Conclusion
	References

	A Bayesian Optimisation Approach for Multidimensional Knapsack Problem
	1 Introduction
	2 Two-Level Model for MKP
	3 Bayesian Optimisation and Acceleration
	3.1 Variable Domain Tightening
	3.2 Initialisation with Genetic Algorithm
	3.3 Optimisation Landscape Smoothing

	4 Implementation
	5 Computational Experiments
	6 Conclusion and Future Work
	References

	Machine Learning and Deep Learning
	Robustness of Adversarial Images Against Filters
	1 Introduction
	2 VGG-16 Trained on CIFAR-10
	3 Target and Untargeted Scenarios, and Design of EAL2target
	4 Obtention of the Adversarial Images: Running EAL2target
	5 Selection of Filter
	6 Filtering the Ancestor and the Adversarial Images
	7 The Variant EAL2target, F
	8 Conclusion
	References

	Guiding Representation Learning in Deep Generative Models with Policy Gradients
	1 Introduction
	2 Related Work
	3 Combination of Reinforcement and Representation Learning Objectives
	3.1 Reinforcement Learning with Policy Optimization
	3.2 Learning Representations Using Variational Auto-Encoders
	3.3 Joint Objective Function

	4 Experiments
	4.1 Data Collection and Pre-Processing
	4.2 Pre-training the Variational Auto-Encoder
	4.3 Jointly Learning Representation and Policy
	4.4 Analyzing the Value Function Gradients

	5 Conclusion
	A Appendix
	A.1 Stable Policy Learning with Proximal Policy Optimization
	A.2 Hyperparameter Tables
	A.3 Choosing Appropriate Values for

	References

	Deep Reinforcement Learning for Dynamic Pricing of Perishable Products
	1 Introduction
	2 Related Work
	3 MDP Formulation for Dynamic Pricing of Perishables
	4 Methodology
	5 Experimental Results
	6 Conclusion
	References

	An Exploratory Analysis on a Disinformation Dataset
	1 Introduction
	2 Related Work
	3 Background Theory
	3.1 Hierarchical Clustering
	3.2 t-SNE

	4 Methodology
	4.1 Fake.br Corpus
	4.2 Pre-processing
	4.3 Agglomerative Clustering
	4.4 Brazilian Disinformation Corpus
	4.5 Outsiders Analysis

	5 Results
	6 Conclusion
	References

	Automatic Synthesis of Boolean Networks from Biological Knowledge and Data
	1 Introduction
	2 Boolean Networks and Their Synthesis
	2.1 Prior Knowledge Network (PKN)
	2.2 Boolean Networks (BNs)
	2.3 Synthesis of BNs from PKN and Multivariate TS

	3 State-of-the-Art Methods of BN Synthesis from PKN and TS
	4 Our Approach: ASKeD-BN
	4.1 Details of the Approach
	4.2 Illustration on the Toy Example

	5 Datasets and Procedure for the Comparative Evaluation
	5.1 Datasets
	5.2 Details on the Evaluation Procedure

	6 Results
	6.1 Results on Systems with Real PKN and Experimental Multivariate TS
	6.2 Results on Systems with Generated Multivariate TS

	7 Conclusion and Perspectives
	References

	Transportation and Logistics
	Solving Inventory Routing Problems with the Gurobi Branch-and-Cut Algorithm
	1 Introduction
	2 Literature Survey
	3 Model
	3.1 Problem Description and Formulation
	3.2 Mathematical Formulation
	3.3 Test Instances

	4 Algorithm
	4.1 Implementation of Subtour Elimination Constraints

	5 Results
	5.1 Algorithm Optimization Results
	5.2 Computation Results

	6 Conclusions
	References

	Iterated Local Search with Neighbourhood Reduction for the Pickups and Deliveries Problem Arising in Retail Industry
	1 Introduction
	2 Problem Statement
	3 ILS with Neighbourhood Reduction
	3.1 INITIAL Procedure
	3.2 PERTURB Procedure

	4 Computational Study
	5 Conclusion
	References

	A Genetic Algorithm for the Three-Dimensional Open Dimension Packing Problem
	1 Introduction
	2 Problem Formulation
	3 Genetic Algorithm
	3.1 Solution Encoding and Decoding
	3.2 Solution Construction
	3.3 Evolutionary Process

	4 Computational Experiments
	5 Conclusion
	References

	Formulation of a Layout-Agnostic Order Batching Problem
	1 Introduction
	2 Literature Review
	3 Problem Formulation
	3.1 Preliminaries
	3.2 General OBP Formulation
	3.3 Single Batch OBP Formulation

	4 Experimental Results
	5 Conclusion
	References

	Optimization
	Neighborhood Enumeration in Local Search Metaheuristics
	1 Introduction
	2 Iterative Improvement, Neighborhoods and Selection
	3 Neighborhood Enumeration
	3.1 Parameter Spaces
	3.2 Enumeration Order

	4 Experimental Evaluation
	5 Discussion
	6 Conclusion
	References

	Cryptographic Primitives Optimization Based on the Concepts of the Residue Number System and Finite Ring Neural Network
	1 Introduction
	2 Modular Arithmetical Operations
	2.1 Addition, Subtraction, Multiplication, and Division
	2.2 Euclidean Division

	3 Modular Logical Operations
	4 Scaling RNS Numbers by Base Extension
	5 Experimental Results
	6 Conclusion
	References

	Investigating Overlapped Strategies to Solve Overlapping Problems in a Cooperative Co-evolutionary Framework
	1 Introduction
	2 Related Work
	2.1 Cooperative Co-evolutionary Algorithms
	2.2 Recursive Differential Grouping

	3 Proposed Algorithm
	3.1 Overlapped Recursive Differential Grouping
	3.2 Overlapped CC Framework

	4 Experimental Settings and Results
	5 Discussion
	References

	Improved SAT Models for NFA Learning
	1 Introduction
	2 Modeling the Problem in SAT
	3 Improving the SAT Model
	4 Experimental Results
	5 Conclusion
	References

	Applications of Learning and Optimization Methods
	Synthesis of Scheduling Heuristics by Composition and Recombination
	1 Introduction
	2 Classification of Machine Scheduling Problems
	3 Related Work
	3.1 Machine Scheduling Algorithms for Flow Shops and Job Shops
	3.2 Giffler & Thompson Algorithm
	3.3 Combinatory Logic Synthesizer

	4 Implementation
	5 Results
	6 Conclusion
	References

	Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics
	1 Introduction
	2 Related Work
	3 DPA-QAP Method
	3.1 Metaheuristics Used in the DPA-QAP Method

	4 Automatic Parameter Adaption in DPA-QAP
	4.1 Metaheuristics Performance Metrics
	4.2 Performance Evaluation

	5 Experimental Evaluation
	5.1 Evaluation on QAPLIB
	5.2 Evaluation on Harder Instances

	6 Conclusions and Future Work
	References

	Theoretical Analysis of a Dynamic Pricing Problem with Linear and Isoelastic Demand Functions
	1 Introduction
	2 Problem Description
	3 Resolution Approach
	3.1 Case with Linear Demand Function
	3.2 Case with Isoelastic Demand Function

	4 Numerical Experiments
	5 Conclusion
	References

	A Hybrid FLP-AHP Approach for Optimal Product Mix in Pulp and Paper Industry
	1 Introduction
	2 Literature Review
	3 Methodology
	4 Case Study
	4.1 Background

	5 Mathematical Model
	5.1 Formulation of FLP
	5.2 AHP

	6 Results and Discussions
	6.1 Sensitivity Analysis
	6.2 Decision Making Through AHP

	7 Conclusion
	References

	An Application of BnB-NSGAII: Initializing NSGAII to Solve 3 Stage Reducer Problem
	1 Introduction
	2 3 Stage Reducer Problem
	3 BnB-NSGAII
	3.1 General Concept of BnB-NSGAII
	3.2 BnB Legacy Feature
	3.3 An Application of BnB-NSGAII

	4 Numerical Experiment
	4.1 Results and Discussion

	5 Conclusion
	A 3SR Problem Constraints
	A.1 Closure Condition
	A.2 Mechanical Constraint for One Stage of the Mechanism

	References

	The Horizontal Linear Complementarity Problem and Robustness of the Related Matrix Classes
	1 Introduction
	2 Particular Matrix Classes
	2.1 S-matrices
	2.2 Nonnegative Matrices
	2.3 Z-matrices
	2.4 Semimonotone Matrices
	2.5 Principally Nondegenerate Matrices
	2.6 Column Sufficient Matrices
	2.7 R0-matrices
	2.8 R-matrices

	3 Conclusion
	References

	Incorporating User Preferences in Multi-objective Feature Selection in Software Product Lines Using Multi-Criteria Decision Analysis
	1 Introduction
	2 Background
	2.1 Software Product Line Engineering
	2.2 Multi-Objective Optimisation

	3 State-of-the-Art and Proposed Approach
	3.1 SATIBEA
	3.2 Multi-Criteria Decision Analysis

	4 System Set-Up
	4.1 System and Algorithms Set-Up
	4.2 Dataset
	4.3 Multi-objective Performance Metrics

	5 Evaluation
	5.1 Execution Time Overhead
	5.2 Multi-objective Performance Metrics
	5.3 SAT_MCDA_EA's Strictly Non-Dominated Solutions

	6 Conclusion and Future Work
	References

	Author Index

