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Abstract. Lattice Boltzmann method (LBM) is a promising approach
to solving Computational Fluid Dynamics (CFD) problems, however, its
nature of memory-boundness limits nearly all LBM algorithms’ perfor-
mance on modern computer architectures. This paper introduces novel
sequential and parallel 3D memory-aware LBM algorithms to optimize its
memory access performance. The introduced new algorithms combine the
features of single-copy distribution, single sweep, swap algorithm, prism
traversal, and merging two temporal time steps. We also design a paral-
lel methodology to guarantee thread safety and reduce synchronizations
in the parallel LBM algorithm. At last, we evaluate their performances
on three high-end manycore systems and demonstrate that our new 3D
memory-aware LBM algorithms outperform the state-of-the-art Palabos
software (which realizes the Fuse Swap Prism LBM solver) by up to 89%.

Keywords: Lattice Boltzmann method · Memory-aware algorithms ·
Parallel numerical methods · Manycore systems

1 Introduction

Computational Fluid Dynamics (CFD) simulations have revolutionized the
design process in various scientific, engineering, industrial, and medical fields.
The current Reynolds averaged Navier-Stokes (RANS) methods can solve steady
viscous transonic and supersonic flows, but are not able to reliably predict turbu-
lent separated flows [28]. Lattice Boltzmann method (LBM) is a young and evolv-
ing approach to solving these problems in the CFD community [2]. It originates
from a mesoscale description of the fluid (based on the Boltzmann equation), and
directly incorporates physical terms to represent complex physical phenomena,
such as multi-phase flows, reactive and suspension flows, etc. Besides, many col-
lision models have been developed for LBM to improve its stability to the second
order of numerical accuracy when simulating high Reynolds number flows [2].

c© Springer Nature Switzerland AG 2021
L. Sousa et al. (Eds.): Euro-Par 2021, LNCS 12820, pp. 519–535, 2021.
https://doi.org/10.1007/978-3-030-85665-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85665-6_32&domain=pdf
http://orcid.org/0000-0003-2453-9310
http://orcid.org/0000-0001-7382-093X
https://doi.org/10.1007/978-3-030-85665-6_32


520 Y. Fu and F. Song

However, it is challenging to achieve high performance for LBM algorithms,
since LBM has large data storage costs and is highly memory-bound on cur-
rent architectures [24]. Driven by our prior work [5] to merge multiple collision-
streaming cycles (or time steps) in 2D, this study aims to augment the memory-
awareness idea to support parallel 3D LBM to optimize data re-utilization.
Although it might seem to be straightforward to move from the 2D space to 3D
space, it is significantly much more difficult to design an efficient 3D memory-
aware LBM algorithm. In this paper, we target solving the following three main
challenges. (1) As geometries change from 2D to 3D, the required data stor-
age increases from O(N2) to O(N3), meanwhile data dependencies of the lat-
tice model becomes much more complicated. There exist single-copy distribu-
tion methods to reduce data storage cost by half, but they require following
a particular traversal order. Can we combine the best single-copy distribution
method with our idea of merging multiple collision-streaming cycles to design a
3D memory-aware LBM with higher performance? (2) If the combination is pos-
sible, since normal 3D tiling [21] does not apply to this case, how to additionally
explore the spatial locality? (3) When designing the parallel 3D memory-aware
LBM, a non-trivial interaction occurs at the boundaries between threads, how
to guarantee thread safety and avoid race conditions? Although some existing
works use wavefront parallelism to explore the temporal locality, they insert fre-
quent layer-wise synchronizations among threads every time step [11,27]. In this
paper, we aim to reduce the synchronization cost among parallel threads.

To the best of our knowledge, this paper makes the following contributions.
First, we design both sequential and parallel 3D memory-aware LBM algorithms
that combine five features: single-copy distribution, loop fusion (single sweep),
swap algorithm, prism traversal, and merging two collision-streaming cycles.
Second, we present a parallelization method to keep the thread safety on the
intersection layers among threads and reduce the synchronization cost in parallel.
At last, two groups of experiments are conducted on three different manycore
architectures, followed by performance analysis. The first group of sequential
experiments (i.e., using a single CPU core) shows that our memory-aware LBM
outperforms the state-of-the-art Palabos (Fuse Swap Prism LBM solver) [17] by
up to 19% on a Haswell CPU and 15% on a Skylake CPU. The second group
evaluates the performance of parallel algorithms. The experimental results show
that our parallel 3D memory-aware LBM outperforms Palabos by up to 89% on
a Haswell node with 28 cores, 85% on a Skylake node with 48 cores, and 39%
on a Knight Landing node with 68 cores.

2 Related Work

Existing research on designing efficient LBM algorithms mainly focuses on opti-
mizing memory accesses within one time step of LBM due to its iterative nature.
For instance, a few LBM algorithms (e.g., swap [13,25], AA [1], shift [19], and
esoteric twist [6], etc.) retain a single copy of the particle distribution data (i.e.,
“single-copy distribution”), and optimize the memory access pattern in the LBM
streaming kernel, but each of the algorithms needs to follow a set of constraints
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(e.g., swap requires predefined order of discrete cell velocities [9], AA requires
distinguishing between even and odd time steps, shift requires extra storage [9],
esoteric twist requires only one version of the LB kernel [29], etc.) [26] uses
a moment-based representation with extra distribution pseudo domain to fur-
ther reduce the storage cost. Some works hide the inter-process communication
cost on multicore accelerators [3], and achieve large-scale parallelization on HPC
systems [20] and GPU [1]. [31] introduces a cache oblivious blocking 3D LBM
algorithm, but it has an irregular parallelism scheme due to its recursive algo-
rithm design. In summary, the above methods focus on optimizations within one
time step. Differently, our 3D memory-aware LBM aims to adopt the efficient
single-copy distribution scheme, and design new methodologies to merge two
collision-streaming cycles to explore both temporal and spatial data locality at
the same time for achieving higher performance.

Another category of works manages to accelerate LBM by wavefront par-
allelism, which generally groups many threads to successively compute on the
same spatial domain. [11] presents a shared-memory wavefront 2D LBM together
with loop fusion, loop bump, loop skewing, loop tiling, and semaphore opera-
tions. But due to its high synchronization cost incurred by many implicit barriers
in wavefront parallelism, their parallel performance has only 10% of speedup on
average. [7] presents a shared-memory wavefront 3D LBM with two-copy distri-
butions, and does not use spatial locality techniques such as loop fusion and loop
blocking. [27] presents a shared-memory wavefront 3D Jacobi approach together
with spatial blocking. It uses two-copy distributions and has simpler 6-neighbors
dependencies (rather than the 19 or 27 neighbors in 3D LBM). [12] combines
the wavefront parallelism with diamond tiling. By contrast, our 3D memory-
aware LBM does not use the wavefront parallelism, but judiciously contains
three light-weight synchronization barriers every two collision-streaming cycles.
In addition, we partition the simulation domain and assign a local sub-domain
to every thread, rather than all threads work on the same sub-domain in wave-
front parallelism. In each sub-domain, each thread in our algorithm computes
multiple time steps at once, rather than one thread computes one time step at
a time in wavefront parallelism. In addition, each of our threads also utilizes
prism techniques to optimize spatial locality. This strategy in particular favors
new manycore architectures, which tend to have increasingly larger cache sizes.

Modern parallel software packages that support LBM can be classified into
two categories based upon their underlying data structures. One category adopts
matrix-based memory alignment at the cell level (e.g., Palabos [10], OpenLB [8],
HemeLB [14], HemoCell [30]). Since neighbors can be easily found through sim-
ple index arithmetics in this case, they are more suitable for simulations with
dense geometries. The other category adopts adjacent list data structures (e.g.,
Musubi [15], waLBerla [4], HARVEY [20]). They are often used for simulating
domains with sparse and irregular geometries, but their cells require additional
memory of pointers, and double the memory consumption in the worst case. In
this study, we choose the widely-used and efficient matrix-based data structure in
the LBM community, and select the state-of-the-art Palabos library as the base-
line, since Palabos provides a broad modeling framework, supports applications
with complex physics, and shows high computational performance.
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[18] designs a locally recursive non-locally asynchronous (LRnLA) conefold
LBM algorithm, which uses recursive Z-curve arrays for data storage, and recur-
sively subdivides the space-time dependency graph into polytopes to update
lattice nodes. However, our work uses a more directly accessible matrix-based
data storage and has a regular memory access pattern. Besides, our prism traver-
sal can independently or integrate with merging two time steps to operate on
the lattice nodes, while [18] operates on the dependency graph.

3 Baseline 3D LBM Algorithm

The baseline 3D LBM algorithm in this paper is called Fuse Swap LBM as
shown in Algorithm 1, which involves three features: single-copy distribution,
swap algorithm, and loop fusion. We choose the swap algorithm [13] since it is
relatively simpler than the other single-copy distribution methods, and is more
efficient to use simple index arithmetic to access neighbors in the matrix-based
memory organization. The swap algorithm replaces the copy operations between
a cell and its neighbors in the streaming kernel by a value swap, thereby it is
in-place and does not require the second copy. But when combining it with loop
fusion, we must guarantee that the populations of neighbors involved in the swap
are already in a post-collision state to keep thread safety [9].

The work-around solution is to adjust the traversal order of simulation
domains with a predefined order of discrete cell velocities [9]. Thus each cell
can stream its post-collision data by swapping values with half of its neigh-
bors pointed by the “red” arrows (1–9 directions for D3Q19 in Fig. 1a), if those
neighbors are already in post-collision and have “reverted” their distributions.
We define this operation as “swap stream”. The “revert” operation in Fig. 1b
lets a cell locally swap its post-collision distributions to opposite directions.
To make the Fuse Swap LBM more efficient, Palabos pre-processes and post-
processes the boundary cells on the bounding box at line 2 and 7, respectively,
so that it can remove the boundary checking operation in the inner bulk domain.
Thus Algorithm 1 is divided into three stages in every time step as follows.
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Fig. 1. Two operations and three stages computation used in sequential 3D fuse swap
LBM. (Color figure online)
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Algorithm 1. 3D Fuse Swap LBM
1: for iT = 0; iT < N; ++iT do
2: Stage I: collide and revert on the bounding box, i.e., 6 surfaces of cuboid (1,1,1) to (lx, ly, lz)

// Stage II: bulk domain computation
3: for iX = 2; iX ≤ lx − 1; ++iX do
4: for iY = 2; iY ≤ ly − 1; ++iY do
5: for iZ = 2; iZ ≤ lz − 1; ++iZ do
6: collide & swap stream on (iX, iY, iZ) to half of its neighbors

7: Stage III: boundary swap stream on the bounding box

4 The 3D Memory-Aware LBM Algorithm

4.1 Sequential 3D Memory-Aware LBM

We design and develop the sequential 3D memory-aware LBM (shown in
Algorithm 2), based on the latest efficient Fuse Swap LBM, by adding two more
features: merging two collision-streaming cycles to explore the temporal locality,
and introducing the prism traversal to explore the spatial locality. Figure 2 shows
an example on how to merge two collision-streaming cycles given a 4×4×4 cube:

1. Figure 2a shows the initial state of all cells at the current time step t. Green
cells are on boundaries, and blue cells are located in the inner bulk domain.

2. In Fig. 2b, we compute the first collide, revert and boundary swap stream
row by row on the bottom layer iX = 1. After a cell completes the first
computation, we change it to orange.

3. In Fig. 2c, we compute the first collide and boundary swap stream row by
row till cell (2,2,1) on the second layer iX = 2.

4. In Fig. 2d, cell (2,2,2) completes its first collide and swap stream, so we
change it to red since they are inner cells. Then we observe that cell (1,1,1)
is ready for the second collide, so we change it to yellow.

5. In Fig. 2e, we execute the second collide and boundary swap stream on cell
(1,1,1), and change it to purple.
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Fig. 2. 3D sequential two-step memory-aware LBM on a 4 × 4 × 4 cube lattice.
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To further increase data reuse, we optimize the algorithm’s spatial locality by
designing a “prism traversal” method, since the shape of this traversal constructs
a 3D pyramid prism or a parallelpiped prism. We use an example to explain its
access pattern in a 4 × 16 × 16 cuboid with stride tile = 4. Figure 3a–d are the
four separate 16×16 layers of the cuboid from bottom to top. The cells with the
same number on the four layers construct a prism (e.g., the cells with number
1 in Fig. 3a–d construct a pyramid-shape “Prism 1”). In each prism, we still
firstly go along Z-axis, then along Y-axis, and upward along X-axis at last. Then
we traverse prism-wise from Prism 1 to Prism 30. Finally, if a cuboid is much
larger than this example, the majority of prisms are “parallelpiped” shapes like
Prism 9 and 10 in Fig. 3e. The reason why the planar slice of a prism is either
triangles or parallelograms is due to the swap stream operation. When cutting
Fig. 1a (swap stream) along the Y-Z plane, we have a planar slice as shown
in Fig. 3f. We observe that a cell (star) swaps with its lower right neighbor
(orange) at direction 9. In other words, when the orange cell swaps with the
upward row, its neighbor “shifts” one cell leftward. Similarly, if cutting Fig. 1a
(swap stream) along the X-Y plane, when a cell swaps data with the upward
row, its neighbor “shifts” one cell forward. Thus when we traverse tile number
of cells on Z-axis at row iY , they can swap with tile number of cells but shifted
one cell leftward at row iY +1, thereby we get parallelograms in Fig. 3a–d. When
the shift encounters domain boundaries, we truncate the parallelograms and get
isosceles right triangles or part of parallelograms. At last, we can safely combine
“prism traversal” with merging two collision-streaming cycles, since the cell at
left forward down corner has been in a post-collision state and ready to compute
the second computation when following the above traversal order.

Algorithm 2 presents the sequential 3D memory-aware LBM. Lines 6–10 tra-
verse the domain prism-wise with stride tile. Lines 11–14 merge two time steps
computation. The first stream starting from the bottom layer iX = 1 in Line 10
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Algorithm 2. 3D Sequential Memory-aware LBM
1: tile := stride of the prism traversal
2: for iT = 0; iT < N; iT += 2 do
3: for outerX = 1; outerX ≤ lx; outerX += tile do
4: for outerY = 1; outerY ≤ ly + tile - 1; outerY += tile do
5: for outerZ = 1; outerZ ≤ lz + 2* (tile - 1); outerZ += tile do
6: for innerX=outerX; innerX ≤ MIN(outerX+tile-1, lx); ++innerX, ++dx do
7: minY = outerY - dx; maxY = minY + tile - 1; dy = 0; /* forward shift */
8: for innerY=MAX(minY, 1); innerY ≤ MIN(maxY, ly); ++innerY, ++dy do
9: minZ = outerZ - dx - dy; maxZ = minZ + tile - 1; /* leftward shift */
10: for innerZ=MAX(minZ, 1); innerZ ≤ MIN(maxZ, lz); ++innerZ do

/* (1) First computation at time step t. */
11: adaptive collide stream(innerX, innerY, innerZ);

/* (2) Second computation at time step t + 1. */
12: if innerX > 1 && innerY > 1 && innerZ > 1 then
13: adaptive collide stream(innerX-1, innerY-1, innerZ-1);

/* (3) Second computation of neighbors at certain locations. */
14: boundary neighbor handler(innerX, innerY, innerZ);

15: Second collide, revert & boundary swap stream on the top layer iX = lx.

16: function boundary cell comp(iX, iY, iZ)
17: collide, revert, & boundary swap stream on (iX, iY, iZ) to half of its neighbors;

18: function adaptive collide stream(iX, iY, iZ)
19: if (iX, iY, iZ) is on the boundary then
20: boundary cell comp(iX, iY, iZ);
21: else
22: collide & swap stream on (iX, iY, iZ) to half of its neighbors;

23: function boundary neighbor handler(iX, iY, iZ)
// Handle the second computation of (iX, iY, iZ)’s neighbors at certain locations.

24: if iZ == lz then // (iX, iY, iZ) is the last cell of a row.
25: boundary cell comp (iX-1, iY-1, iZ);

26: if iY == ly && iZ > 1 then // (iX, iY, iZ) is in the last row of a layer.
27: boundary cell comp(iX-1, iY, iZ-1);

28: if iY == ly && iZ == lz then // (iX, iY, iZ) is the last cell on a layer.
29: boundary cell comp(iX-1, iY, iZ);

is necessary due to the data dependency for the second computation. In particu-
lar, the if-statement in Line 13 ensures that the cell to compute at time step t+1
is in a post-collision state, no matter using D3Q15, D3Q19, D3Q27 or extended
lattice models. For simplicity, Lines 16–29 define three helper functions.

4.2 Parallel 3D Memory-Aware LBM

To support manycore systems, we choose OpenMP [16] to realize the parallel 3D
memory-aware LBM algorithm1. Figure 4 illustrates its idea on a 8×4×4 cuboid,
which is evenly partitioned by two threads along the X-axis (height). Then each
thread traverses a 4 × 4 × 4 sub-domain with prism stride tile = 4. Line 4 in
Algorithm 3 defines the start and end layer index of each thread’s sub-domain,
thus the end layers myEndX are “intersections” (e.g., layer 4 and 8). Figure 4a
shows the initial state at time step t. In addition, the parallel 3D memory-aware
Algorithm 3 consists of three stages: Preprocessing, Sub-domain computation,
and Post-processing.
1 [23] states that when the minimum effective task granularity (METG) of parallel

runtime systems are smaller than task granularity of large-scale LBM simulations,
all of these runtime system can deliver good parallel performance.
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Fig. 4. Parallel 3D two-step memory-aware LBM on a 8 × 4 × 4 cuboid.

1. Stage I (Preprocessing) line 5 in Algorithm 3: In Fig. 4b, thread 0 and
1 compute the first collide and revert on the “intersection” layers 4 and 8,
respectively, and then change them to pink.

2. Stage II (Sub-domain computation) handles five cases from step 2 to 7.
In case 0 (lines 15–17 in Algorithm 3), when thread 0 and 1 access the cells
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Algorithm 3. Parallel 3D Memory-aware LBM
1: for iT = 0; iT < N; iT += 2 do
2: #pragma omp parallel default(shared){
3: sub h = lx/nthreads; // height of each thread’s sub-domain
4: myStartX = 1 + thread id × sub h; myEndX = (thread id + 1) × sub h;

/* Stage I: First collide & revert on the intersection layer.*/
5: collide & revert on all ly × lz cells on layer iX = myEndX;
6: #pragma omp barrier

/* Stage II: Main computation in each thread’s sub-domain.*/
7: for outerX = myStartX; outerX ≤ myEndX; outerX += tile do
8: for outerY = 1; outerY ≤ ly + tile - 1 ; outerY += tile do
9: for outerZ = 1; outerZ ≤ lz + 2 * (tile - 1); outerZ += tile do
10: for innerX=outerX; innerX≤MIN(outerX+tile-1, myEndX); ++innerX, ++dx do
11: minY = outerY - dx; maxY = minY + tile - 1; dy = 0; /* forward shift */
12: for innerY=MAX(minY, 1); innerY≤MIN(maxY, ly); ++innerY, ++dy do
13: minZ = outerZ - dx - dy; maxZ = minZ + tile - 1; /* leftward shift */
14: for innerZ = MAX(minZ, 1); innerZ ≤ MIN(maxZ, lz); ++innerZ do

// Case 0: First collide & stream on the first row and column of each layer except the
intersection layers.

15: if innerX != myEndX && (innerX == 1 or innerY == 1 or innerZ == 1) then
16: First boundary cell comp(innerX, innerY, innerZ);
17: continue;

// Case 1: First collide & stream on layer myStartX:
18: if innerX == myStartX then
19: First adaptive collide stream(innerX, innerY, innerZ);

// Case 2: First collide & stream on myStartX +1; Second collide & revert on myStartX:
20: else if innerX == myStartX + 1 then
21: First adaptive collide stream(innerX, innerY, innerZ);
22: Second collide & revert on (innerX-1, innerY-1, innerZ-1);
23: Handle the second collide & revert of neighbors at certain boundary locations;

// Case 3: First stream on layer myEndX; Second collide & stream under one layer:
24: else if innerX == myEndX then
25: First adaptive stream(innerX, innerY, innerZ);
26: Second adaptive collide stream(innerX-1, innerY-1, innerZ-1);
27: boundary neighbor handler (innerX, innerY, innerZ);

// Case 4: first collide & stream on other layers; Second collide & stream under one layer:
28: else
29: First adaptive collide stream(innerX, innerY, innerZ);
30: Second adaptive collide stream(innerX-1, innerY-1, innerZ-1);
31: boundary neighbor handler(innerX, innerY, innerZ);

32: #pragma omp barrier
/* Stage III: second collide & stream on the intersection; then second stream on the layer
myStartX. */

33: adaptive collide stream at all ly × lz cells on layer iX = myEndX;
34: #pragma omp barrier
35: stream at all ly × lz cells on layer iX = myStartX;
36: }

on the first row and column of each layer except the “intersection” layers, we
execute the first boundary cell comp on them and change them to orange.

3. Figure 4c shows case 1 (lines 18–19 in Algorithm 3). When thread 0 and 1
access the cells on layer myStartX (iX = 1 & 5), respectively, we execute the
adaptive collide stream on them to compute at time step t, and then change
the boundary cells to orange and the inner cells to red.

4. Figure 4d shows case 2 (lines 20–23 in Algorithm 3). When thread 0 and 1
are on layer myStartX + 1 (iX = 2 & 6), respectively, we execute the first
adaptive collide stream at time step t and change boundary cells to orange
and inner cells to red. Meanwhile, cell (5,1,1) and (1,1,1) have collected the
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Fig. 5. Handle thread safety on intersection layers.

data dependencies to collide at time step t+1, we execute the second collide
and revert but without stream on them, and change to light purple.

5. Figure 4e shows that when continuing traversal in Prism 1, thread 0 and 1
are on layer iX = 3 & 6. Since the cells traversed in this figure are in the first
row and column, case 0 is used here, otherwise, case 4 is used.

6. Figure 4f shows case 3 (lines 24–27 in Algorithm 3). When thread 0 and 1
are on the intersection layers (iX = 4 & 8), we execute the remaining first
stream at time step t due to preprocessing in Stage I. Then if cells under
one layer (iX = 3 & 7) collect their data dependency at time step t + 1, we
execute the second adaptive collide stream on them.

7. Figure 4g shows case 4 (lines 28–31 in Algorithm 3). When thread 0 and 1 are
on the other layers of sub-domain, we conduct the first adaptive collide stream
on (innerX, innerY, innerZ) at time step t, and then the second adap-
tive collide stream on (innerX-1, innerY-1, innerZ-1) at time step t + 1.
Then we call boundary neighbor handler to compute the neighbors of (innerX,
innerY, innerZ) at certain locations at time step t + 1.

8. Stage III (Post-processing) lines 33–35 in Algorithm 3: Firstly, since
Stage I and case 3 have completed the first computation on intersection lay-
ers, we wrap up the second collide and stream on intersections. Secondly,
since case 2 have executed the second collide and revert on the first layers
myStartX of each sub-domain, the second stream remains to be executed.

How to Handle Thread Safety near Intersection Layers: We aim to keep
thread safety and minimize the synchronization cost during parallel executions.
To this end, we need to carefully design the initial state of each thread so that the
majority of computation stays in each threads’ local sub-domain. The left part
of Fig. 5 shows the view of Fig. 4 along X-Z axis, and layer 4 is the intersection
layer that partitions two threads’ sub-domains. The right part shows the data
dependencies near the intersection layer in two time steps. In the figure, the
red block represents Stage I of Algorithm 3, yellow blocks Stage II, and green
blocks Stage III. The arrows indicate that data are transferred from layer A
to B by using a procedure (or B depends on A). There are three non-trivial
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dependencies requiring to handle thread safety near intersection layers. (1) Since
the swap algorithm only streams data to half of the neighbors under one layer,
the swap stream on layer 5—the first layer of thread 1’s sub-domain—should
be delayed after the revert on layer 4 in thread 0’s sub-domain. Thus, in Stage
I, we pre-process collide and revert at time step t but without stream on layer
4, since stream on layer 4 depends on the post-collision on layer 3, which has
not been computed yet. (2) In Stage II, the second swap stream on layer 6
called by the case 4 procedure should be delayed after the second revert but
without swap stream on layer 5. This is because thread 1 cannot guarantee
that thread 0 has completed the second swap steam on layer 4. To keep thread
safety, swap stream on layer 5 is delayed to Stage III. (3) Thus, in Stage III,
the second swap stream on layer 5 is delayed after the second swap stream
on layer 4. Above all, since the major computation happens in Stage II of each
thread’s sub-domain, we avoid the frequent “layer-wise” thread synchronizations
that occur in the wave-front parallelism. Besides, we only synchronize at the
intersection layers every two time steps, hence the overhead of three barriers of
Algorithm 3 becomes much less.

5 Experimental Evaluation

In this section, we first present the experimental setup and validations on our 3D
memory-aware LBM. Then we evaluate its sequential and parallel performance.

5.1 Experiment Setup and Verification

The details of our experimental hardware platforms are provided in Table 1.
To evaluate the performance of our new algorithms, we use the 3D lid-driven
cavity flow simulation as an example. The 3D cavity has a dimension of lz ×
ly × lx, and its top lid moves with a constant velocity v. Our 3D memory-
aware LBM algorithms have been implemented as C++ template functions,
which are then added to the Palabos framework. For verification, we construct
a cavity with the same procedure, and then separately execute four algorithms
on it, i.e., Palabos solvers fuse() and fuse prism() for N time steps, and our
memory-aware algorithms two step prism() and two step prism omp() for N/2
time steps. Then, we compute the velocity norm of each cell and write to four
separate logs. At last, we verify that our algorithms produce the same result as
Palabos for guaranteeing software correctness.

5.2 Performance of Sequential 3D Memory-Aware LBM

The first set of experiments with 3D cavity flows compare the sequential perfor-
mance of four different LBM algorithms, which are the Fuse Swap LBM (with/
without prism traversal), and the Two-step Memory-aware LBM (with/without
prism traversal). For simplicity, we use the abbreviations of fuse LBM, fuse prism
LBM, 2-step LBM and 2-step prism LBM, respectively. The problem input are
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Table 1. Details of our experimental platforms.

Microarchitecture Bridges at PSC Stampede2 at TACC

Haswell’14 Skylake’17 Knight Landing’16

Intel CPU product code Xeon E5-2695v3 Xeon Platinum 8160 Xeon Phi 7250

Total # Cores/node 28 on 2 sockets 48 on 2 sockets 68 on 1 socket

Clock rate (GHz) 2.1–3.3 2.1 nominal (1.4–3.7) 1.4

L1 cache/core 32KB 32KB 32KB

L2 cache/core 256KB 1MB 1MB per 2-core tile

L3 cache/socket 35MB 33MB (Non-inclusive) 16GB MCDRAM

DDR4 Memory (GB)/node 128 (2133MHz) 192 (2166MHz) 96 (2166MHz)

Compiler icc/19.5 icc/18.0.2

AVX extension AVX2 AVX512

3D cubes with edge size L = 64–896. Every algorithm with a prism stride config-
uration is executed five times, and the average MFLUPS (millions of fluid lattice
node updates per second) is calculated. For the “prism” algorithms, different prism
strides (ranging from 8, 16, 32,. . ., to 448) are tested, and we select the best per-
formance achieved.

(a) Haswell. (b) Skylake. (c) Knight Landing.

Fig. 6. Sequential performance using four LBM algorithms on three types of CPUs.

Figure 6 shows the sequential performance on three types of CPUs. When
we use small edge sizes (e.g., L = 64, 128), 2-step LBM is the fastest. But when
L ≥ 256, 2-step prism LBM performs the best and is up to 18.8% and 15.5%
faster than the second-fastest Palabos (Fuse Prism LBM solver) on Haswell and
Skylake, respectively. But since KNL does not have an L3 cache, 2-step prism
LBM is only 1.15% faster than Palabos (Fuse Prism LBM solver).

We observe that the performance of algorithms without prism traversal starts
to drop when L ≥ 384. Since the swap algorithm streams to half of its neighbors
on its own layer and the layer below, 23.9 MB/layer×2 layers = 47.8 MB (when
L = 384), which exceeds the L3 cache size (35 MB per socket on Haswell).
Thus we need to use spatial locality by adding the feature of prism traversal.
Consequently, on Haswell and Skylake, fuse LBM is improved by up to 71.7%
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and 58.2%, respectively, 2-step LBM is improved by up to 28.6% and 50.4%,
respectively. When only adding the feature of merging two steps, 2-step LBM
is faster than Palabos (Fuse) by up to 53.3% on Haswell and 20.5% on Skylake.
Hence, we conclude that both prism traversal and merging two steps significantly
increase cache reuse on the large domain.
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Fig. 7. Memory usage on two sockets of a Haswell node.

In Fig. 6, we observe that the performance of all algorithms starts to drop
when L ≥ 768 on Haswell and L = 896 on Skylake. To find out the reason,
we use Remora [22] to monitor the memory usage on each socket of the Haswell
node. As L increases from 640 to 896, the memory usage on socket 1 (red area) in
Fig. 7a–c has enlarged from 2.4 GB to 63.9 GB. When memory usage exceeds the
64 GB DRAM capacity per socket on the Haswell node, foreign NUMA memory
accesses are involved, thus the sequential performance reduces. Similar results
also happen on the Skylake node. However, because the KNL node only has one
socket, the performance on KNL does not drop.

5.3 Performance of Parallel 3D Memory-Aware LBM

Given N cores, Palabos LBM solvers partition the simulation domain evenly
along three axes by Nz ×Ny ×Nx = N MPI processes, which follows the under-
lying memory layout of cells along the axis of Z, then Y, and X at last. But our
3D memory-aware LBM partitions a domain only along X-axis by N OpenMP
threads. Hence, Palabos LBM solvers have a smaller Y-Z layer size per core
than our algorithm and have closer memory page alignment especially for a
large domain. To exclude the factor caused by different partition methods, when
the input of Palabos LBM solvers still uses cubes, 3D memory-aware LBM will
take two different inputs. Firstly, it takes the input of the “equivalent dimension”
of those cubes, such that a thread in our algorithm and a process in Palabos will
compute a sub-domain with the same dimension after the respective partition
method. Secondly, it simply takes the identical input of those cubes.

Figure 8 shows the strong scalability of three LBM algorithms on three types
of compute nodes. The input of Palabos LBM solvers use cubes with edge size
L from small to large. Table 2 gives an example of the equivalent input used by
3D memory-aware LBM when Palabos LBM solvers use a cube with L = 840
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Table 2. Equivalent input used by 2-step prism LBM when the input of Palabos LBM
solvers is a cube with L = 840 on a Haswell node.

Cores 1 2 4 6 8 10 12 14 20 24 28

lx (height) 840 1680 3360 5040 3360 8400 5040 11760 8400 10080 11760

ly (width) 840 840 420 420 420 420 420 420 420 420 420

lz (length) 840 420 420 280 420 168 280 120 168 140 120

(a) Haswell L = 112. (b) Haswell L = 448. (c) Haswell L = 840.

(d) Skylake L = 192. (e) Skylake L = 576. (f) Skylake L = 960.

(g) KNL L = 272. (h) KNL L = 476. (i) KNL L = 680.

Fig. 8. Strong scalability performance on three types of compute nodes. “2-step prism
eqv” = Parallel 3D memory aware LBM takes the equivalent input of cubes.

on a Haswell node. We observe that the 2-step prism LBM scales efficiently and
always achieves the best performance in all cases. (1) When using the equivalent
input of cubes, for small scale cubes (with L = 112, 192, 272) in Fig. 8a, d and g,
3D memory-aware LBM (green legend) is faster than the second-fastest Palabos
(Fuse Prism) (orange legend) by up to 89.2%, 84.6%, and 38.8% on the Haswell,
Skylake, and KNL node, respectively. Missing L3 cache on KNL prevents the
similar speedup as other two CPUs. In Fig. 8b, e and h, for the middle scale cubes
(with L = 448, 576, 476), it is still faster than Palabos (Fuse Prism) by up to
37.9%, 64.2%, and 28.8% on three CPU nodes, respectively. Due to unbalanced
number of processes assigned on three axes, we observe that the performance of
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Palabos Fuse and Fuse Prism drop on some number of cores. In Fig. 8c, f and i,
for the large scale cubes (with L = 840, 960, 680), it is still faster than Palabos
(Fuse Prism) by up to 34.2%, 34.2%, and 31.8%, respectively. (2) When using
the identical input of cubes, although our 3D memory-aware LBM has larger Y-Z
layer sizes, it is still faster than Palabos (Fuse Prism) but with less speedup than
before, i.e., by up to 21.1%, 54.7%, and 30.1% on three CPU nodes, respectively.
The less speedup suggests our future work to partition a 3D domain along three
axes to utilize closer memory page alignment on smaller Y-Z layer size.

6 Conclusion

To address the memory-bound limitation of LBM, we design a new 3D par-
allel memory-aware LBM algorithm that systematically combines single copy
distribution, single sweep, swap algorithm, prism traversal, and merging two
collision-streaming cycles. We also keep thread safety and reduce the synchro-
nization cost in parallel. The parallel 3D memory-aware LBM outperforms state-
of-the-art LBM software by up to 89.2% on a Haswell node, 84.6% on a Skylake
node and 38.8% on a Knight Landing node, respectively. Our future work is to
merge more time steps on distributed memory systems and on GPU.
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