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Abstract. Although major cloud providers have captured and pub-
lished workload executions in the form of traces, it is not clear how to
use them for workload generation on a wide range of existing platforms.
A methodological challenge that remains is to generate and execute real-
istic datacenter workloads on any infrastructure, using information from
available traces. In this paper, we propose Tracie, a methodology address-
ing this challenge, and introduce the tool supporting its implementation.
We present all the necessary steps starting from a trace up to workload
execution: analysis of datacenter traces, extraction of parameters, appli-
cation selection, and scaling of a workload to match the capabilities of
the underlying infrastructure. Our evaluation validates that Tracie can
generate executable workloads that closely resemble their trace-based
counterparts. For validation, we correlate the recorded system metrics
of a trace against the actual execution. We find that the average system
metrics of synthetic workloads differ at most 5% compared to the trace
and that they are highly correlated at 70% on average.

Keywords: Trace · Workload · Simulation · Cloud computing ·
Benchmarking

1 Introduction

The generation and execution of realistic cloud workloads constitute a signifi-
cant methodological challenge in cloud computing. There have been two main
directions towards addressing this challenge: (1) benchmark suites with popular
cloud applications [10,19] and (2) simulators that rely on workload descriptions
extracted from publicly available datacenter traces [2]. The first approach has the
advantage that one can execute the workload on an existing platform, making it
amenable to parameter tuning for specific purposes. However, the correlation of
the resulting workload to the available datacenter traces is unclear and generally
remains the responsibility of the user to validate and demonstrate it. The second
approach directly connects to datacenter workloads; however, given only a trace,
it is not possible to execute on an existing platform, limiting its applicability.
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This paper presents a robust and practical methodology, Tracie, to generate
executable workloads from datacenter traces and sets of sample applications.
The resulting workloads match key statistical characteristics derived from the
respective traces. Towards this goal, we first determine which trace parameters
characterize the trace and we include them in the generated actual executions.
Parameter selection is not straightforward because each trace contains hundreds
of parameters, such as job start time, number of tasks per job, etc. Second,
we develop models of these parameters for the generation of the datacenter
workload. Finally, we define a trace-specific application pool for the execution of
the generated workloads. Workload execution is a real challenge because traces
do not contain all the necessary variables to execute a workload. For example,
we do not know the application types that were executed during trace creation.

To determine which variables of the trace are significant, we organize them
into three categories: (1) variables that are inherent to the workload, for example,
the arrival time of an application; i.e. workload variables, (2) variables that are
induced to the workload, for example, the CPI of an application; i.e. execution
variables, and (3) variables that refer to the infrastructure, for example, number
of cores of server in the infrastructure; i.e. infrastructure variables. Then, we
select the workload variables for the workload generation and the execution
variables for the workload execution. Variables concerning the infrastructure
are not crucial for describing the workload; hence, we omit them from further
consideration. We model the workload as a random set of instances of the selected
variables. Hence, we consider that each variable follows a different probability
distribution function (PDF) and we estimate each PDF by processing the trace.

For workload execution, it is not feasible to precisely select the types of appli-
cations and the corresponding data, since this information is not part of the trace.
Realistically, the best approximation we can achieve is to choose applications
with similar micro-architectural characteristics, e.g. cycles per instruction (CPI).
Towards this objective, we first estimate the PDF of each micro-architectural
parameter available in the trace. We then measure the micro-architectural char-
acteristics of several applications, executing them individually. Finally, we select
from the available pool of application kernels the subset that best matches the
micro-architectural characteristics extracted from the trace.

Overall, Tracie provides the methodology for the generation, execution, and
validation of datacenter workloads resembling the source traces. Unlike prior
related work, Tracie manages to generate realistic workloads on a wide range of
existing platforms, starting from an analysis of a datacenter trace and leading
up to the actual execution and monitoring of units of work selected from a pool of
available application kernels. For validation, we define a method to statistically
compare how close the execution of a workload generated by Tracie matches
the original one captured in the trace. This is essential because the workload
execution is affected by execution variables not included in the trace, e.g. inter-
ference of co-located applications and the dependencies of tasks belonging to an
application.
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In our evaluation, we use three types of containerized applications: (1) ser-
vices that execute for a long time, e.g. a web server, (2) client applications
that emulate the incoming requests of a service, e.g. the ab benchmark [1] issu-
ing requests to a web server, and (3) batch applications that perform a spe-
cific amount of work, e.g. running a machine learning algorithm. Our evalua-
tion shows that our PDF estimations of workload and execution characteristics
match closely the histograms of these characteristics as captured in the traces.
Correlation is 75% on average for workload parameters and 70% on average for
micro-architectural parameters of applications.

The main contributions of this paper are as follows:

– Extraction of common parameters for datacenter traces that unify the descrip-
tion of traces from different cloud providers.

– A method for selecting a representative subset of parameters from a pool of
available application kernels to match micro-architectural characteristics of
applications used by traces.

– A method to validate that workload generated by Tracie match the exe-
cution of the captured workload trace, particularly in terms of key micro-
architectural characteristics.

– A practical and easy to use workload generator that can generate executable
workloads starting from a set of applications, or kernels.

2 Trace Analysis

We summarize the notions used in a trace as follows:

– A task is an indivisible unit of work that executes on a single processing unit.
Task duration may vary significantly across tasks, from milliseconds to hours.

– A job is a set of tasks. For instance, in a web server, each user request is a
job and consists of many tasks. Different Spark jobs in a Spark application
appear in the trace as individual jobs.

– An application is a set of jobs that execute in batch mode, i.e. we are interested
in the completion time of the full application and not individual jobs or tasks.

– A service is a set of user-facing jobs, i.e. we are interested in the completion
time of individual jobs, as well as the job rate. Typically, services are assumed
to run continuously.

– A workload is a set of applications and services.

Starting with the traces Google 2011 [29], Alibaba [24], and Google 2019 [30],
we summarize the main events captured as follows:

– Job events represent changes in the state of a job, e.g. when a job is submitted
or begins execution.

– Task events represent changes in the state of a task, similar to jobs. Task
events may also contain constraints, e.g. when a task should (not) run on a
specific server or task affinity with data.
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– Machine events represent changes in the hardware or the software of the
infrastructure, e.g. when a server is added, a kernel is updated, or a server
fails. Machine, events, may also contain machine attributes, e.g. the amount
of DRAM available in a server.

– Resource events represent the resources reserved or used by jobs and tasks
within the interval, e.g. average CPU utilization over 10s. We exclude from
this category events that refer to cumulative machine use, and instead, we
include these in machine events.

Job, task, machine, and resource reservation events are point events, whereas
resource usage events are periodic and refer to intervals. The above categoriza-
tion, which is the default in traces, mixes inherent workload events with events
that depend on the infrastructure and the scheduler. In the context of this paper,
such categorization does not help because workload events originate exclusively
from users, while the rest depend on the executing environment. Apart from
that, there is information in the trace that does not add value to a workload
generator, e.g., the user’s username that submitted a job. Therefore, propose a
different categorization for the trace that is more suitable for our goal:

– Workload events, about inherent workload characteristics. They include the
submission times of jobs and tasks.

– Execution events, with information about the induced execution in a specific
environment. They include the schedule time and the finish time of a job/task.

2.1 Workload and Execution Events

Next, we show how to select the workload and execution events, focusing on the
Google’11 trace for illustration purposes. We follow the same procedure for all
traces, and summarize our findings in Table 1.

Table 1. Selected events of Google’11, Alibaba, and Google’19 traces.

Category Type Information

Workload Job submitted [time, job-id, sched class]

Execution Job scheduled, finished [time, job-id, priority]

Job usage [start, end, job-id, task-id, resources, metrics]

Task submitted,
scheduled, finished

[time, job-id, task-id, resources]

Job submit events are affected neither by the underlying infrastructure nor
by the job/task scheduler. They originate from user requests and are static to
recorded workloads. Therefore, we consider the job submit as workload events,
while the rest as execution events. We choose only the events in the common
path of a workload execution from the rest events, i.e. job “schedule, finish” and
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task “submit, schedule, finish” events. Additionally, we select information about
the event time, and the type of the jobs, either batch or UF, for the submit
events. For the schedule and finish events, we select information about the event
time, the resource usage, and the system metrics they cause. We omit the events
that concern failures or kill events, as they are specific to the recorded workload.

3 Tracie Model

We model a workload as a set of running tasks with certain parameters. To
simplify the modeling procedure and without loss of generality, we consider that
a workload is a mix of independent, batch (abbreviated as B, below), and user-
facing jobs (abbreviated as UF ), originating either from applications or services.
We also assume that all tasks in each job are identical, therefore, tasks have
the same duration and execute the same code. Typically jobs today, repetitively
perform similar tasks. For instance, a Spark job contains tasks that perform
the same computation on different partitions of a Resilient Distributed Dataset
(RDD) [33]. Different jobs consist of different tasks.

We consider that the aforementioned assumptions still leave enough flexibility
for expressing other types of workloads. For example, a job that contains tasks
that are not identical can be modelled by Tracie as a collection of jobs, one for
each type of task it contains. If we wish to model a job where all tasks are of a
different type, we can do so by replacing it with as many one-task jobs as the
different task types in the original job.

Therefore, our model consists of the following entities:

– A workload W is a list of jobs along with their arrival time [Job, JAT ].
– A job J is a tuple [J, JN , JD, B/UF, (Task, TAT )], where J is the job type,
JN is the number of job tasks, JD is the duration of the job, B/UF indicates
if a job is batch or UF, and [Task, TAT ] is a list of task instances along with
their arrival time.

– A task T is a tuple [T, TD, TR], where T is the task type, TD is the duration
of the task, and TR are the resource allocation requests.

Table 2 summarizes the parameters we use in our model and their corre-
spondence to trace events. JAT [UF ] and JAT [B] parameters correspond to the
timestamp of a submit job event of UF and batch jobs. JN [UF ] and JN [B]
parameters correspond to the number of finish events of tasks belonging to the
same UF and batch job. TAT [UF ] and TAT [B] parameters are the timestamps of
a submit UF and batch task event. Finally, TD[UF ], TD[B], JD[UF ], and JD[B]
are calculated as the difference in the timestamp of schedule and finish events
for UF and batch tasks and jobs respectively.
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Table 2. Parameter definition and PDF estimation for Google 11, Alibaba, and Google
19 traces.

Params Desc Trace event Google’11 Alibaba Google’19

Workload JAT [UF ] UF job arrival Timestamp of submit
job event

Chi2(0.3,−1.5e−10,
1.3e15)

N(1.3e12, 7.2e11) B(0.9, 1.1,
−8.14e−11, 2.5e12)

JAT [B] Batch job arrival R(2, 1.3e12, 1.3e12) R(713, 80, 2.4e4) B(0.4, 4565,
−7.4e−11, 1.7e5)

JN [UF ] UF job task cnt Task finish event of the
same job

T (0.2,−1.5e5, 6.6e7) Exp(−2.5e12, 2e12) N(−5e11, 7.64e11)

JN [B] Batch job task cnt T (0.3, 1, 1.5e−20) KDE(N, 2) KDE(N, 2)

Execution TAT [UF ] UF task arrival Timestamp of submit
task event

T (0.5, 0.006, 0.006) B(212, 2.6e4,
−4.8e15, 5.8e17)

N(6.8e13, 6.8e14)

TAT [B] Batch task arrival KDE(N, 2.5) KDE(B, 1.6) KDE(N, 1.8)

TD[UF ] UF task duration Difference in the
timestamp of

KDE(N, 1.9) KDE(B, 23) KDE(N, 1.98)

TD[B] Batch task duration schedule and finish task
events

KDE(N, 2.1) KDE(B, 2.1) KDE(N, 2.09)

JD[UF ] UF job duration Difference in the
timestamp of

B(0.3, 4e3,
−2.3e−27, 3.7e3)

Chi2(0.2, −1.1e−25, 21) N(1.3, 11)

JD[B] Batch job duration schedule and finish job
events

T (0.2,−1.9e5, 6.8e6) B(8506, 16.6,
−2.2e17, 2.2e17)

N(−1.9e13, 5.1e14)

Next, we use the traces to extract appropriate values for each parameter. We
model parameters as independent random variables. For each trace, we extract
the histograms of the events that correspond to our parameters. Then, we iden-
tify the PDFs that best fit the histogram in whole or piece-wise and we use these
PDFs as the value distributions of our model parameters. Table 2 summarizes
the PDF that corresponds to each model parameter for each trace.

Depending on the histogram, we follow two different methods. If the his-
togram matches a common probability distribution, such as Normal, R, Chi-
squared, T, Beta, Log-normal, Gamma, F, Exponential, Cauchy, Laplace, log-
gamma, Chi, we apply Parametric Density Estimation (PDE) [14,31] to cal-
culate its specific parameters, such as mean value and variance. To figure out
which PDF to use, we perform multiple PDE tests with different PDF types and
select the best fitting PDF that exhibits the minimum distance (least squares)
with the given data-set. If the minimum distance is above 0.5, we consider that
the histogram does not match a single probability distribution, and we resort
to a Non-parametric Density Estimation (NDE) [20] technique, Kernel Density
Estimation (KDE). KDE [16] models random variables as the concatenation of
multiple instances of a single PDF kernel. KDE divides the histogram into fixed-
size intervals (bandwidth), with each interval represented by the same kernel and
different kernel parameters. KDE first identifies the kernel and bandwidth from
the histogram [17] and then identifies the kernel parameters similar to PDE for
each interval.

For Google 2011, we find that JAT [UF ] follows a Chi-squared distribution
with parameters (0.31,−1.5e−10, 1.26e15). JAT [UF ] follows a R distribution with
parameters (1.98, 1.25e12, 1.25e12). JN [UF ], JN [B], TAT [UF ], and JD[B] follow
a T-distribution with parameters (0.16,−1.45e5, 6.63e7), (0.25, 1.0, 1.53e−20),
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(0.48, 0.006, 0.006), and (0.18,−1.91e5, 6.8e6). JD[UF ] follows a beta distribu-
tion with parameters (0.18,−1.91e5, 6.8e6). Finally, for TAT [B], TD[UF ], and
TD[B], we apply KDE because they do not map well to any of PDF types we
use for PDE. We find that these parameters match a Gaussian kernel, with
respective bandwidths 2.46, 1.91, and 2.1.

3.1 Workload Scaling

We intend to run the generated workloads on different setups and infrastructure
sizes. Therefore, there is a need to scale the workloads to match the intended
infrastructure. The model parameters and their value distributions as extracted
from available traces typically refer to large scale infrastructures, with task and
job durations that exceed hours or even days, which is not practical or possible
to follow on research prototypes and specific research problems. Running the
workload on a different infrastructure requires scaling the workload to adjust
the number of jobs, job durations, job arrival times, or data-set sizes. To achieve
workload scaling, we introduce the following scaling factors:

– The total number of jobs in a workload, WN . With WN , we control the
number of jobs per server and per time unit.

– A parameter for the scaling of job arrival times, WSAT . With WSAT , we
control how loaded the servers will be during execution.

– A parameter for the scaling of the duration of batch and UF jobs, JSD. JSD

parameter changes the dynamics of the batch and UF jobs in a workload.
This parameter is useful to investigate how the infrastructure and the system
software copes with changes in the behavior of the workload. For instance,
when throughput is more important than latency, i.e. when the duration of
batch jobs is significantly higher than UF jobs and vice versa.

3.2 Application Selection

In this step, we select the application types that will be used for executing
the trace-based workload. We base the selection of applications on several trace
events and the characteristics they represent: 1) maximum and average CPU,
2) memory, disk, and network utilization, 3) cycles per instruction and 4) mem-
ory accesses per instruction. First, we process each trace individually to gen-
erate histograms for these parameters. Then we perform dimensionality reduc-
tion, using Principal Component Analysis (PCA) [21]. This step is essential for
application selection because of the large number of parameters, which compli-
cates application type estimation. After dimensionality reduction, we perform
PDF estimation, similar to our model parameters (Sect. 3). Table 3 shows the
resulting parameters with their corresponding PDF type and parameters for
each trace. The procedure to define the trace application pool requires access
to various application types. For the purposes of this work, we select the batch
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applications from the Rodinia benchmark suite [9] and the TPC family [26]. Also,
we select services among the following cloud services: NGINX [27], Redis [5],
CouchDB [3], and Memcached [4]. However, it is not in the scope of this work
to provide representative UF or batch applications. We assume that users pro-
vide suitable application pools depending on their use cases. In addition, we do
not further differentiate the importance of some application types over others.
Therefore, during workload execution, we uniformly select an application out of
such a pool.

Table 3. Application selection features extracted for WTs.

Params Desc Google’11 Alibaba Google’19

ACU Avg. CPU T (0.8, 2e−11, 2.7e−11) T (1, 1e−11, 3.7e−11) T (0.3, 3, 1.3e−9, 6.6e−11)

MU Avg. Mem Norm(0.01, 0.05) B(0.5, 674,−6.3e−30, 2.2) B(0.05,−3.5e−32, 1.2)

MM Max Mem G(0.05,−3.5e−32, 1.2) Exp(0.0, 4.4) N/A

NIN Net in N/A Exp(0.03, 0.2) Exp(0.5, 0.8)

NOUT Net out N/A B(0.2, 11.3,−1.2e−25, 1.4) B(0.5, 203,−3.5e−33, 5.4)

IO IO B(0.6, 172,−6.7e−33, 1.56) N/A B(0.3, 490,−9.9e−33, 0.9)

PG Page cache Exp(0.02, 0.03) N/A N/A

PG Page cache N/A N/A G(0.6,−1.1e−31, 0.07)

3.3 Similarity Validation

To validate the similarity of the generated execution-based workloads to the
corresponding trace characteristics, we capture system metrics from the actual
execution of the generated workload and compare them to the trace events, for
each model parameter. To compare the two data-sets, trace vs. measured, we
use the Pearson correlation coefficient [8].

rxy =
∑n

i=1(xi − x)(yi − y)
√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (1)

where n is the total number of samples for both data-sets, xi is the i-th sample
of the first data-set and x its corresponding mean value, yi is the i-th sample
of the second data-set and y its corresponding mean value. The range of values
that rxy can take is [−1, 1].

For this computation, the two data-sets need to have the same size. Therefore,
we randomly divide the data-set of the trace to N subsets with a size equal to the
synthetic workload data-set, and calculate their Pearson correlation coefficients.
N is the quotient of the size of the trace data-set to the size of the synthetic
data-set. We then calculate the mean value of the resulting rxy coefficients. If
rxy is close to 1 (or −1), then the two data-sets are highly correlated (positively
or negatively). If rxy is close to 0, the two data-sets are not linearly correlated.
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4 Implementation

Tracie is a Python script that produces executable workloads. The user can gen-
erate a workload based on one of the trace profiles of Tracie. A profile mainly
contains the type of PDFs and their parameters for the random variables of
Table 2. Each profile is stored in a separate directory which becomes a param-
eter to Tracie, e.g. ./wlGenerator.py –profile = “Google 2011”. We expect that
Tracie will be augmented over time with additional profiles from new traces,
based on our methodology of Sect. 3. After specifying a profile, users can scale
the workload to match their setup with three parameters: 1) the number of jobs,
2) factor for job arrival time, and 3) factor for the job duration of batch and UF
jobs. The number of jobs defines how many jobs the generator will create, e.g.
./wlGenerator.py −n = 80, will create 80 jobs. The factor for job arrival time is
a number that is multiplied by the arrival time of a job, e.g. ./wlGenerator.py
–wSat = 2, will double the arrival times of jobs. Finally, the factor for the dura-
tion of the jobs is a number that changes the number of tasks to change the
duration of jobs, e.g. ./wlGenerator.py –jSD = 2, will double the number of job
tasks. Therefore, Tracie allows users to execute diverse workloads of the same
load factor and run a workload at different load factors (scales). The emphasis
in the former is that every time the generator selects different tasks and other
parameters (based on PDF profiles). In the latter case, users can fix other param-
eters and change the induced load. In both cases, the generated loads will run
on the given infrastructure using the sample applications provided along with
Tracie.

Tracie consists of two main modules: the workload generator and the workload
executor. The workload generator receives as input the workload profile, encoded
in custom data type wlProfile. Further inputs are J , which is the number of
desired jobs in the workload. The workload generator (Pseudocode 1) produces
a job sequence as output. This output contains a sequence of job instances,
specifying the characteristics for each instance. The workload generator is used
offline to produce a job trace before a test run is performed.

To calculate a job duration JD, we create by N = JD/TD tasks. The output
of the workload generator is two files: (1) a sequence of jobs where each line
describes a single job, i.e. J = [JAT, JT , T ] and (2) a sequence of tasks per
job, where each line is list of timestamps defining their arrival time within jobs.
The workload executor parses the generated job sequence and the task arrival
sequence to generate and execute the tasks for each job. The tasks within a job
execute the same code on the same data.
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Algorithm 1. Workload generation.
1: procedure wlGenerator(wlProfile WP , int J , int F )

2: int jc, N := 0 � job counter, number of tasks, respectively
3: time ts, ttotal, JD, AD := 0 � job timestamp, total time, job dura-

tion, application duration, respec-
tively

4: Boolean S � scheduling class, may either be B, indicating batch job, or UF,
indicating user-facing job

5: appType T � Application name, out of pool of codes available to the tool

6: jobTypeSeq W � A sequence of jobs, the workload to output
7: while jc < J do

8: rand := random number between 0 and 100
9: if rand < PB then
10: < T, JN , ts > := generateJob(B, WP , ttotal)

11: else

12: < T, JN , ts > := generateJob(UF , WP , ttotal)

13: end if
14: ttotal := ts
15: W.append(< jc, T, JN , F, ts >)

16: end while

17: return W
18: end procedure

Workload execution

19: function executeWorkload(Boolean S, wlProfile WP , time ttotal)
20: if S = batch then

21: JD = WP.JD[B](WP.λB)
22: else

23: JD = WP.JD[UF ](WP.λUF )
24: end if

25: Select an app A of type T and its configuration out of pool of available apps,
determine its duration AD.

26: JN = JD/TD

27: ts = ttotal + WP.JAT (WP.λAT )
28: return < J, JN , ts >

29: end function

5 Experimental Evaluation

In this section, we first evaluate our methodology for PDE, KDE, and application
selection. Afterwards, we use Tracie to reproduce synthetic workloads based on
Google and Alibaba traces. In our experiments, we use a server with three 16-
core AMD Opteron 6200 64-bit processors, running at 2.1 GHz, and 48 GB of
DDR-III DRAM. For storage, we use a Samsung EVO 850 128 GB SSD.
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Fig. 1. Histogram and estimated PDFs using PDE for Google’11.

Table 4. Parameter similarity of PDFs and histograms (Google’11).

Parameter JAT [B] JN [B] JD[B] TAT [B] JAT [UF ] JN [UF ] JD[UF ] TAT [UF ]

Similarity (%) 94% 88% 72% 61% 91% 78% 55% 59%

5.1 Evaluating PDE

This section evaluates the accuracy of the PDFs computed by Tracie concerning
the histograms of the corresponding parameters extracted from traces. Figure 1
compares the histograms of Google’11 parameters with the corresponding PDFs
of Tracie. We observe that only the JD[UF ] parameter is not very close to
the histogram. To measure the similarity between PDFs and histograms, we
compute their mean square distance. Table 4, shows the percentage of differences
between histograms and PDFs. Tracie achieves the best distance for parameter
JAT [B], for which the PDF and the histogram are 94% similar. The worst case is
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JD[UF ], for which the PDF is only 55% similar to the histogram, and on average,
the PDFs are 75% similar to their histograms. Therefore, the characteristics of
synthetic workloads of Tracie are quite close to the ones of the originating trace.

5.2 Dimensionality Reduction for Application Pools

Tracie reduces a large number of event types in each trace to a smaller number
that can be used for application selection using PCA. Table 5 summarizes the
importance of each event type as characterized by PCA. Event coefficients in
bold indicate the most critical event types for each trace. We show with bold font
the events of the traces that we select for application selection. The parameters
average CPU and average memory usage are significant for all traces. Apart
from that, max memory usage is critical for Google’11 and Alibaba traces while
net in and net out for Alibaba and Google’19 trace. Finally, page cache usage
and max IO usage are significant for Google’11 trace, while max CPU usage for
Google’19. At most 6 parameters are sufficient to represent at least 75% of the
micro-architectural characteristics of all traces. Cloud applications are diverse
and can vary in all of these characteristics significantly. To reduce the parameter
space, we focus only on the trace critical micro-architectural parameters.

Table 5. Applying PCA on execution parameters.

Parameter avg cpu mem usage page cache max mem avg disk IO disk space max cpu

Google’11 0.242 0.162 0.1 0.168 0.0783 0.095 0.024

Alibaba 0.176 0.12 0.0718 0.12 0.053 0.078 0.018

Google’19 0.136 0.098 N/A 0.054 0.099 0.035 0.24

Parameter max IO net in net out cpi mai cpu distr cpu tail distr

Google’11 0.113 N/A N/A 0.005 0.018 N/A N/A

Alibaba 0.075 0.124 0.147 0.004 0.013 N/A N/A

Google’19 0.049 0.107 0.103 0.003 0.01 0.014 0.052

Table 6. Applying PCA on execution parameters: Importance of each parameter
selected for workload execution.

Parameter avg cpu mem usage page cache max mem avg disk IO disk space max cpu

Google’11 0.791 0.5 0.623 0.886 0.614 0.463 0.838

Alibaba 0.696 0.74 0.877 0.645 0.841 0.837 0.822

Parameter max IO net in net out cpi mai cpu distr cpu tail distr

Google’11 0.5 0.655 0.613 0.706 0.531 0.77 0.734

Alibaba 0.834 0.655 0.568 0.757 0.636 0.739 0.829
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5.3 Emulating the Google and the Alibaba Trace

This section generates and executes synthetic workloads of Tracie, based on
Google and Alibaba. We then validate how representative the execution of these
workloads is by comparing the system metrics of the synthetic workload execu-
tion to the ones in the trace. Figure 2 shows the results of two experiments, where
we execute a workload based on the Google trace and a workload based on the
Alibaba trace. By applying our validation methodology in both traces, we get
a similarity coefficient among all usage parameters above 0.46 and, on average,
0.69. Table 6 shows the correlation coefficients for all parameters, for both work-
loads. Additionally, comparing the two synthetic workloads, we observe that the
Alibaba workload is more bursty than the Google trace, which is why it results
in a worse tail latency for the user-facing tasks. Moreover, we observe that the
workload of the Alibaba trace has 100% load in the first 120 s and afterwards
cools down, while in the Google trace load is more balanced over time.

(a) Tail latency (b) CPU utilization

Fig. 2. Two Workloads inspired by the Google and Alibaba traces, emulating the
average server in each trace. (a) Tail latency of the tasks, (b) CPU utilization.

Google: According to the Google trace analysis [28], the average server is 50%
utilized, the batch to user-facing job duration ratio is 0.5, and has 38% batch
jobs. We create a workload using Tracie that follows the statistics of the Google
trace for a single server and set 35 s as the average batch job duration. To
scale down the workload, we estimate the scaling factors of Tracie, i.e. number
of jobs, job arrival time, duration ratio of batch vs. UF jobs, by calculating the
corresponding average values of Google servers. Tracie produces a workload with
52% CPU utilization and an average job arrival time of 10 s.

The trace released by Google has been studied extensively in several pub-
lications e.g. [6,11,12,22,23,25,28,29]). The trace has over 670, 000 jobs and
25 million tasks executed over 12, 500 hosts during 1-month time period [13].
Around 40% of submissions recorded are less than 10 ms after the previous sub-
mission even though the median arrival period is 900 ms. The tail of the arrival
times distribution is power-law-like, though the maximum job arrival period is
only 11 min. Jobs shorter than two hours account represent more than 95% of
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the jobs, and half of the jobs run for less than 3 min. The majority of jobs runs
for less than 15 min [23].

Alibaba: Correspondingly, in Alibaba trace, the average server is 40% utilized,
the batch to user-facing job duration ratio is 0.05, and it contains 53% batch
jobs. Similarly, we create a workload with Tracie, selecting 4 s for the average
batch job duration. The workload results in 45% CPU utilization and average
job arrival time 680 ms. In both cases, the workload generated by Tracie is very
close to the average statistics of servers as per the original traces.

The Alibaba trace is analyzed in [24]. It contains 11089 user-facing jobs and
12951 batch jobs, which run over a time period of 12 h. This places the batch
job versus the user-facing job ratio at 53.9% to 46.1%. User-facing jobs in the
Alibaba trace are long-running service jobs, in this particular case spanning
the entire duration of the trace. On the contrary, batch jobs in the trace are
predominantly short-running, with about 90% of batch jobs running in less than
0.19 of an hour, while a total of 98.1% of batch jobs runs in less than an hour.
Overall, 47.2% of total jobs are long, whether batch or user-facing.

5.4 Investigating How Scaling Affects the Tail Latency

Finally, we show that with Tracie we can easily explore how the workload is
affected when we change one of its scaling factors. In this experiment, we produce
a workload that emulates the workload of a Google server according the Google
trace on average. We examine how scaling the job arrival time affects the tail
latency of jobs by running the workload 3 times with a different value scaling
factor of JAT . Figure 3 summarizes these three runs. Figure 3(a) shows the tail
latency of all the user-facing tasks starting from 70th to the 100th percentile,
while Fig. 3(b) shows the corresponding CPU utilization. In the first experiment
(green line), we target a load of 25% on average. In the second (orange line), we
target 50%, and in the third (blue line), we target 100%. The average utilization
of the system is 31%, 46%, and 95% respectively, which indicates that we can
successfully control the utilization of the system with Tracie, by just changing

(a) Tail latency (b) CPU utilization

Fig. 3. Trade-off between CPU utilization and tail latency: (a) Tail latency of user-
facing applications, for increasing system load. (b) CPU utilization.
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the JAT scaling factor. Moreover, the total execution time of the experiment
changes almost in reverse proportion to the load of the system. The experiment
finishes in 700 s for 25% load, 400s for 50% load, and 200 s for 100% load. Tail
latency is not affected for the runs with 25% and 50% load. However, for the
case with 100% load, tail latency suffers a 2× deterioration as we approach the
100-percentile of the tasks. It is not straightforward to increase the utilization
of the system while still achieving low tail latency for the user-facing tasks.

6 Related Work

We classify prior work on workload generation in two main categories: (a) Bench-
mark suites with popular cloud applications to generate workloads mixes.

Benchmark Suites: BigDataBench [15] is a benchmark suite that provides
benchmarks for online services, offline analytics, graph analytics, AI, data ware-
house, NoSQL, and streaming. Contrary to our work, which focuses on using
kernels as computation units, BigDataBench combines commonly occurring data
characteristics (data motifs) with a set of micro-benchmarks to form computa-
tional building blocks. Subsequently, it uses the most common data motifs to
compose complex workloads for a real-life software stack. DCMIX [32] combines
a set of characteristic computation units to come up with a collection of bench-
marks. DCMIX resembles Tracie in that it provides the functionality to execute
a workload, as specified in a configuration file. However, Tracie also provides the
capability to create arbitrary synthetic workloads, and goes one step further by
profiling real-life datacenter traces to provide a collection of realistic parameter
values. HiBench [19] is a benchmark suite for Hadoop. Compared to Tracie, Big-
DataBench, DCMIX, and HiBench do not consider real-life datacenter traces to
provide parameter values based on realistic loads.

Workload Traces and Trace Generators: Several synthetic workload gener-
ators provide benchmarks that target specific operation aspects of a datacenter.
BigBench [10] is a work that, similarly to ours, deals with the extraction of char-
acteristics of realistic workloads and their use to generate synthetic workloads.
However, BigBench focuses on a particular use case, a system handling the trans-
actions of a big retailer, both physical and online. As such, the result is rather
restricted to workloads that consist of database queries, contrary to our work,
which aims at producing synthetic workloads for a more generic application
domain. Some more generic efforts to produce synthetic workloads with real-
istic characteristics appear elsewhere in the literature. Due to the wide-spread
use of this particular computing paradigm, two prominent synthetic workload
generation examples, [7] and [2], deal with the synthesis of MapReduce work-
loads. GridMix [7] is a benchmarking tool by Apache Hadoop, which creates
synthetic workloads suitable for testing Hadoop clusters. These traces are used
as input to GridMix, which in turn outputs a synthetic workload. The load can
be scaled up or down by adjusting the intervals between job submission. Several
inherent and run-time characteristics of the jobs, such as memory usage, input



52 Y. Sfakianakis et al.

data size, or job type, can be modeled. Similarly, SWIM [2] generates synthetic
workloads based on the traces released by Facebook in 2009 and 2010. SWIM
aims to produce workloads of shorter duration than the original traces while
still maintaining their essential characteristics. CloudMix [18] is a benchmarking
tool that synthesizes cloud workloads with realistic characteristics. Similar to
our use of a pool of kernels, CloudMix relies on a repository of reducible work-
load blocks (RWBs), representing different mixes of assembly-level computations
designed to mimic micro-architectural usage characteristics of tasks found in
the Google trace. Workload scale-down is possible by reducing job and trace
durations. Unlike our work, CloudMix is more concerned with reproducing the
run-time behavior (in terms of micro-architectural characteristics) observed in
the trace.

7 Conclusions

In this paper, we determine characteristics that describe datacenter workload
traces. We use these characteristics to develop a methodology for generating
synthetic workloads to execute on existing systems. We implement this method-
ology in Tracie and validate that the execution of applications in such workloads
exhibits similar micro-architectural characteristics as the ones captured in the
original trace. The flexibility of our methodology and Tracie lies in that they
are not designed to mimic one particular datacenter workload. Instead, they
can be configured to reproduce any desired profile, starting from a set of sta-
tistical characteristics extracted from traces. Furthermore, while we employ a
specific set of application kernels as sample binaries for task execution, neither
the methodology nor the supporting tools are hard-wired to this selection.
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