
Algorithm Design for Tensor Units

Rezaul Chowdhury1, Francesco Silvestri2(B) , and Flavio Vella3

1 Stony Brook University, New York, USA
rezaul@cs.stonybrook.edu

2 University of Padova, Padova, Italy
silvestri@dei.unipd.it

3 Free University of Bozen, Bolzano, Italy
flavio.vella@unibz.it

Abstract. To respond to the intense computational load of deep neural
networks, a plethora of domain-specific architectures have been intro-
duced, such as Google Tensor Processing Units and NVIDIA Tensor
Cores. A common feature of these architectures is a hardware circuit
for efficiently computing a dense matrix multiplication of a given small
size. In order to broaden the class of algorithms that exploit these sys-
tems, we propose a computational model, named the TCU model, that
captures the ability to natively multiply small matrices. We then use the
TCU model for designing fast algorithms for several problems, including
matrix operations (dense and sparse multiplication, Gaussian Elimina-
tion), graph algorithms (transitive closure, all pairs shortest distances),
Discrete Fourier Transform, stencil computations, integer multiplication,
and polynomial evaluation. We finally highlight a relation between the
TCU model and the external memory model.

1 Introduction

Deep neural networks are nowadays used in several application domains where
big data are available. The huge size of the data set, although crucial for improv-
ing neural network quality, gives rise to performance issues during the train-
ing and inference steps. In response to the increasing computational needs, sev-
eral domain-specific hardware accelerators have been recently introduced, such
as Google’s Tensor Processing Units (TPUs) [11] and NVIDIA’s Tensor Cores
(TCs) [16]. These compute units have been specifically designed for accelerating
deep learning. Although such accelerators significantly vary in their design, they
share circuits for efficiently multiplying small and dense matrices of fixed size,
which is one of the most important computational primitives in deep learning.

A preliminary draft appeared as brief announcement at SPAA 2020 [5]. This work
was partially supported by NSF grant CNS-1553510, UniPD SID18 grant, PRIN17
20174LF3T8 AHeAd, UniBZ-CRC 2019-IN2091 Project, and INdAM-GNCS Project
2020 NoRMA. Some results are based upon work performed at the AlgoPARC Work-
shop on Parallel Algorithms and Data Structures, in part supported by NSF Grant
CCF-1930579.

c© Springer Nature Switzerland AG 2021
L. Sousa et al. (Eds.): Euro-Par 2021, LNCS 12820, pp. 353–367, 2021.
https://doi.org/10.1007/978-3-030-85665-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85665-6_22&domain=pdf
http://orcid.org/0000-0002-9077-9921
http://orcid.org/0000-0002-5676-9228
https://doi.org/10.1007/978-3-030-85665-6_22

354 R. Chowdhury et al.

By using the terminology introduced in [8], we refer to all accelerators support-
ing hardware-level dense matrix multiplication as Tensor Core Units (TCUs) (or
simply tensor units). By focusing on a specific computational problem, namely
matrix multiplication, TCUs exhibit both high performance and low energy con-
sumption which set them apart from traditional CPU or GPU approaches [11].
Although TCUs were developed for deep neural networks, it would be interesting
and profitable to extend their application domain, for instance by targeting linear
algebra and graph analytics. A similar scenario appeared with the introduction
of GPUs for general purpose computations. Will domain-specific architectures
have the same wide impact as GPUs? Some recent results are providing insights
in this direction: TCUs have been indeed used for accelerating scans and pre-
fix sums [8], the Discrete Fourier Transform [15,19], linear algebra kernels and
graph analytics on sparse matrices [9,22], dimensionality reduction and similar-
ity join [2].

The goals of this paper are to present a framework for designing and analyzing
algorithms for TCUs, and to further expand the class of algorithms that can
exploit TCUs from a theoretical perspective. We propose a computational model
for tensor core units, named (m, �)-TCU, that captures the main features of
tensor units. We then design TCU algorithms for matrix multiplication (sparse
and dense), Gaussian Elimination, graph algorithms (transitive closure, all pairs
shortest distances), Discrete Fourier Transform, stencil computations, integer
multiplication and polynomial evaluation. Finally, we observe that some lower
bounds on the I/O complexity in the external-memory model [21] translate into
lower bounds on TCU time. We refer to the extended version of this paper [6]
for all proofs and more details.

2 The (m, �)-TCU Model

We propose a computational model for tensor core units that captures the fol-
lowing three properties.

(1) Matrix acceleration. The hardware circuits implement a parallel algorithm
to multiply two matrices of a fixed size, and the main cost is dominated by
reading/writing the input and output matrices. For a given hardware parameter
m, the multiplication of two

√
m × √

m matrices A and B requires O (m) time.
With time, we mean the running time as seen by the CPU clock and it should not
be confused with the total number of operations executed by the unit, which is
always Θ

(
m3/2

)
(no existing tensor unit implements fast matrix multiplication

algorithms, e.g. Strassen [20]). The matrix multiplication operation is called by
an instruction specifying the memory addresses of the input and output matrices,
and data will be loaded/stored by the tensor unit.

(2) Latency cost. A call to the tensor unit has a latency cost. As the state of
the art tensor units use systolic algorithms, the first output entry is computed in
Ω (

√
m) time. There are also initial costs associated with activation, which can

significantly increase when the unit is not connected to the CPU by the internal

Algorithm Design for Tensor Units 355

system bus. We thus assume that the cost of the multiplication of two matrices
of size

√
m × √

m is O (m + �), where � > 0 is the latency cost.

(3) Asymmetric behavior. As tensor units are designed for improving training
and inference in deep networks, the two matrices in the multiplication A × B
are managed differently. Matrix B represents the model (i.e., the weights of the
deep neural network), while the rows of matrix A represent the input vectors to
be evaluated. As the same model can be applied to n vectors, with n >>

√
m, it

is possible to first load the weights in B and then to stream the n rows of A into
the tensor unit (possibly in chunks of

√
m rows), reducing thus latency costs.

Thus, we assume in our model that two matrices of size n × √
m and

√
m × √

m
are multiplied in time O (n

√
m + �), where the number n of rows is defined by

the algorithm and n ≥ √
m.

More formally, we define the Tensor Core Unit (TCU) model as follows. The
(m, �)-TCU model is a standard RAM model where the CPU contains a circuit,
named tensor unit, for performing a matrix multiplication A×B of size n×√

m
and

√
m × √

m in time O (n
√

m + �), where m ≥ 1 and � ≥ 0 are two model
parameters and n ≥ √

m is a value (possibly input dependent) specified by
the algorithm. The matrix operation is initialized by a constant-size instruction
containing the addresses in memory of the two input matrices A and B, of the
output matrix C, and the row number n of A. The running time of a TCU
algorithm is given by the total cost of all operations performed by the CPU,
including all calls to the tensor unit. We assume no concurrency between tensor
unit, memory and CPU, and hence at most one component is active at any time.
Each memory word consists of κ bits and, if not differently stated, we assume
κ = Ω (log n) where n is the input size.

Discussion on the Model. The goal of this work is to understand how to exploit
architectures able to multiply matrices of fixed size. We then do not include
in the model some characteristics of existing hardware accelerators, like limited
numerical precision and parallel tensor units. In particular, the modeling of only
a single tensor unit can be seen as a major weakness of our model since existing
boards contain a large number of tensor cores (e.g., more than 500 cores in the
Nvidia Titan RTX). However, we believe that the first step to exploit tensor
accelerators is to investigate which problems can benefit of matrix multiplica-
tion circuits; we have then opted for a simple model with only a TCU. Moreover,
existing hardware accelerators use different parallel architectures and intercon-
nection networks, while they agree on matrix multiplication as main primitive.

We now make some considerations on how Google TPUs and NVIDIA TCs
fit our model. In the Google TPU (in the version described in [11]), the right
matrix B has size 256× 256 words (i.e., m = 65536). The left matrix A is stored
in the local unified buffer of 96k × 256 words; thus, TPUs can compute the
product between two matrices of size 96k × 256 and 256 × 256 in one (tensor)
operation. The number of rows of the left matrix in the TCU model is a user
defined parameter (potentially a function of the input size); on the other hand,
the number of rows of the left matrix in the TPU is user defined but it is upper
bounded by a hardware-dependent value (i.e., 96K). Being this bound relatively

356 R. Chowdhury et al.

large, a TPU better exploits a tall left matrix than a short one, as in our TCU
model. The systolic array works in low precision with 8 bits per word (κ = 8).
The bandwidth between CPU and TPU was limited in the first version (16 GB/s),
but it is significantly higher in more recent versions (up to 600 GB/s). Although
TPU has a quick response time, the overall latency is high because the right hand
matrix has to be suitably encoded via a TensorFlow function before loading it
within the TPU: in fact, the TPU programming model is strongly integrated
with TensorFlow, and it does not allow to use bare matrices as inputs. The
programming model of NVIDIA TCs (specifically, the Volta architecture) allows
one to multiply matrices of size 16×16, although the basic hardware unit works
on 4 × 4 matrices; we thus have m = 256. Memory words are of κ = 16 bits.
TCs exhibit high bandwidth and low latency, as data are provided by a high
bandwidth memory shared with the GPU processing units. Matrices A and B
can be loaded within TCs without a special encoding as in Google TPUs, since
the NVIDIA TCs natively provide support for matrix multiplication. Finally we
observe that, as TCs are within a GPU, any algorithm for TCs has also to take
into account GPU computational bottlenecks [1,13].

3 Algorithms

3.1 Matrix Multiplication

Dense Matrix Multiplication. A Strassen-like algorithm for matrix multi-
plication is defined in [4] as a recursive algorithm that utilizes as base case an
algorithm A for multiplying two

√
n0 × √

n0 matrices using p0 element multipli-
cations and O (n0) other operations (i.e., additions and subtractions); we assume
n0 = O (p0). Given two

√
n×√

n matrices with n > n0, a Strassen-like algorithm
envisions the two

√
n × √

n matrices as two matrices of size
√

n0 × √
n0 where

each entry is a submatrix of size
√

n/n0 × √
n/n0: then, the algorithm recur-

sively computes p0 matrix multiplications on the submatrices (i.e., the p0 element
multiplications in A) and then performs O (n) other operations. For given param-
eters p0 and n0, the running time of the algorithm is T (n) = O (nω0), where1

ω0 = logn0
p0. By setting n0 = 4 and p0 = 8, we get the standard matrix multi-

plication algorithm (ω0 = 3/2), while with n0 = 4 and p0 = 7 we get the Strassen
algorithm (ω0 = log4 7 ∼ 1.403). Any fast matrix multiplication algorithm can
be converted into a Strassen-like algorithm [17].

The TCU model can be exploited in Strassen-like algorithms by ending the
recursion as soon as a subproblem fits the tensor unit: when n ≤ m, the two
input matrices are loaded in the tensor unit and the multiplication is computed
in O (m) time. We assume m ≥ n0, otherwise the tensor unit would not be used.

Theorem 1. Given a Strassen-like algorithm with parameters n0 and p0, then
there exists a TCU algorithm that multiplies two

√
n×√

n matrices on an (m, �)-
TCU model, with m ≥ n0, in O

((
n
m

)ω0 (m + �)
)
time.

1 We observe that ω0 corresponds to ω/2, where ω is the traditional symbol used for
denoting the exponent in fast matrix multiplication algorithms.

Algorithm Design for Tensor Units 357

The running times of the standard recursive algorithm and of the
Strassen algorithm are O

(
n3/2/

√
m + (n/m)3/2�)

)
and O(n1.4037/m0.4037+

(n/m)1.4037�).
We now show how to decrease the latency cost, i.e., (n/m)3/2�, in the TCU

algorithm based on the standard algorithm. The idea is to keep as much as
possible the right matrix B within the tensor unit by using a tall left matrix
A. We split the left matrix A and the output matrix C into

√
n/m blocks Ai

and Ci of size
√

n×√
m (i.e., vertical strips of width

√
m), and the right matrix

B into square blocks Bi,j of size
√

m × √
m, with 0 ≤ i, j <

√
n/m. Then, we

compute Ci,j = Ai · Bi,j for each 0 ≤ i, j <
√

n/m using the tensor unit in time
O (n

√
m + �). The final matrix C follows by computing the

√
n × √

m matrices

Ci =
∑√

n/m−1

j=0 Ci,j .

Theorem 2. There exists an algorithm that multiplies two
√

n × √
n matrices

in the (m, �)-TCU model in Θ
(

n3/2√
m

+ n
m�

)
time. The algorithm is optimal when

only semiring operations are allowed.

From the previous Theorem 2, we get the following corollary for rectangular
matrices (a similar result holds also when using the algorithm for fast matrix
multiplication in Theorem 1).
Corollary 1. A

√
n × r matrix can be multiplied by an r × √

n matrix in the
(m, �)-TCU model in Θ

(
rn√
m

+ r
√

n
m �

)
time, assuming n, r2 ≥ m.

Sparse Matrix Multiplication. A TCU algorithm to multiply two sparse
matrices follows from the work [10] that uses as a black box a fast matrix multi-
plication algorithm for multiplying two

√
n×√

n matrices in O
(
nω/2

)
time. Let

I be the number of non-zero entries in the input matrices A and B, and let Z be
the number of non-zero entries in the output C = A · B. We consider here the
case where the output is balanced, that is there are Θ (Z/

√
n) non-zero entries

per row or column in C; the more general case where non-zero entries are not
balanced is also studied in [10] and can be adapted to TCU with a similar argu-
ment. The algorithm in [10] computes the output in time Õ

(√
nZ(ω−1)/2 + I

)

with high probability. The idea is to compress the rows of A and the columns of
B from

√
n to

√
Z using a hash function or another compression algorithm able

to build a re-ordering of the matrix A. Then the algorithm computes a dense
matrix multiplication between a

√
Z × √

n matrix and a
√

n × √
Z matrix using

the fast matrix multiplication algorithm. By replacing the fast matrix multipli-
cation with the TCU algorithm of Theorem 1, we get the following claim.

Theorem 3. Let A and B be two sparse input matrices of size
√

n × √
n with

at most I non-zero entries, and assume that C = A · B has at most Z non-
zero entries evenly balanced among rows and columns. Then, there exists an
algorithm for the (m, �)-TCU model requiring O

(√
n
Z

(
Z
m

)ω0 (m + �) + I
)
time,

when Z ≥ m and where ω0 = logn0
p0 is the exponent given by a Strassen-like

algorithm.

358 R. Chowdhury et al.

Fig. 1. TCU algorithm for Gaussian elimination without pivoting which is called as
GE-forward(c), where c is the

√
n × √

n matrix representing a system of
√

n − 1
equations with

√
n − 1 unknowns.

3.2 Gaussian Elimination Without Pivoting

Gaussian elimination without pivoting is used in the solution of systems of linear
equations and LU decomposition of symmetric positive-definite or diagonally
dominant real matrices [7]. We represent a system of r − 1 equations in r − 1
unknowns (x1, x2, . . . , xr−1) using an r × r matrix c, where the i-th (1 ≤ i < r)
row represents the equation ai,1x1 + ai,2x2 + . . . + ai,r−1xr−1 = bi:

c =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a1,1 a1,2 . . . a1,r−1 b1
a2,1 a2,2 . . . a2,r−1 b2

...
...

. . .
...

...
ar−1,1 ar−1,2 . . . ar−1,r−1 br−1

0 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The method proceeds in two phases. In the first phase, an upper triangular
matrix is constructed from c by successive elimination of variables from the equa-
tions. This phase requires Θ

(
r3

)
time. In the second phase, the values of the

unknowns are determined from this matrix by back substitution. It is straight-
forward to implement this second phase in Θ

(
r2

)
time, so we will concentrate

on the first phase.
Our TCU algorithm for the forward phase of Gaussian elimination without

pivoting is shown in Fig. 1. The algorithm is invoked as GE-forward(c),
where c is the

√
n × √

n matrix representing a system of
√

n − 1 equations with√
n − 1 unknowns (i.e. r =

√
n). In the proposed algorithm only the calls to

Algorithm Design for Tensor Units 359

Fig. 2. TCU algorithm for computing transitive closure of an n-vertex graph which
is called as Transitive-Closure(d), where d is the n × n adjacency matrix of the
graph with d[i, j] = 1 if vertices i and j are adjacent and d[i, j] = 0 otherwise.

function D (in line 10), which multiplies
√

m × √
m matrices, are executed on

the TCU. In each iteration of the loop in line 8, X ′
j is loaded into the TCU as the

weight matrix, and the
(√

n/m − k
) √

m =
√

n − k
√

m rows of the
√

n/m − k

submatrices Xik inside the loop in line 9 are streamed through the TCU.

Theorem 4. The forward phase of Gaussian elimination without pivoting
applied on a system of

√
n − 1 equations with

√
n − 1 unknowns can be per-

formed in the (m, �)-TCU model in Θ
(

n3/2√
m

+ n
m� + n

√
m

)
time. This complex-

ity reduces to the optimal cost of multiplying two dense
√

n × √
n matrices (see

Theorem 2) when
√

n ≥ m.

3.3 Graph Transitive Closure

For an n-vertex directed graph G, its transitive closure is given by an n×n matrix
c[1..n, 1..n], where for all i, j ∈ [1, n], c[i, j] = 1 provided vertex j is reachable
from vertex i and c[i, j] = 0 otherwise. An algorithm for computing transitive
closure is similar to the iterative matrix multiplication algorithm except that
bitwise-AND (∧) and bitwise-OR (∨) replace multiplication (×) and addition
(+), respectively (Fig. 2). However, we observe that function D which updates
block X using data from blocks Y and Z that are disjoint from X can be imple-
mented to use “×” and “+” instead of “∧” and “∨”, respectively, provided we set
X[i, j] ← min (X[i, j], 1) for all i, j after it completes updating X. Function D is
invoked in line 11 of Transitive-Closure almost n2

m times. We execute lines

360 R. Chowdhury et al.

1– 4 of function D (which represent standard multiplication of two
√

m × √
m

matrices) on a TCU. In each iteration of the loop in line 8, Xkj is loaded into
the TCU as the weight matrix, and the (n/

√
m − 1)

√
m =

√
n − √

m rows of
the n/

√
m − 1 submatrices Xik inside the loop in line 9 are streamed through

the TCU.

Theorem 5. The transitive closure of an n-vertex directed graph can be com-
puted in the (m, �)-TCU model in Θ

(
n3√
m

+ n2

m � + n2
√

m
)
time. This complex-

ity reduces to the optimal cost of multiplying two dense n × n matrices (see
Theorem 2) when n ≥ m.

3.4 All Pairs Shortest Distances (APSD)

We discuss TCU implementation of Seidel’s algorithm [18] for computing APSD
in an unweighted undirected graph G = (V,E), where n = |V | and vertices are
numbered by unique integers from 1 to n. Let A be the adjacency matrix of G.
The adjacency matrix A(2) of the squared graph G(2) = (V,E(2)) is obtained
by squaring A and replacing all non-zero entries in the square matrix by 1.
Indeed, for any given pair of vertices u, v ∈ V , (u, v) ∈ E(2) (i.e., A(2)[u, v] = 1)
provided there exists a vertex w ∈ V such that (u,w), (w, v) ∈ E (i.e., A[u,w] =
A[w, v] = 1). Let δ(u, v) and δ(2)(u, v) represent the shortest distance from u
to v in G and G(2), respectively. Seidel shows that if all δ(2) values are known
one can correctly compute all δ(u, v) values from them. Let D(2) be the distance
matrix of G(2) and let C = D(2)A. Then Seidel shows that for any pair u, v ∈ V ,
δ(u, v) = 2δ(2)(u, v) provided

∑
(w,v)∈E D(2)[u,w] = C[u, v] ≥ deg(v)×D(2)[u, v],

and δ(u, v) = 2δ(2)(u, v) − 1 otherwise, where deg(v) is the number of neighbors
of v in G. Thus the distance matrix D of G can be computed from D(2) by
computing C = D(2)A. The D(2) matrix is computed recursively. The base case
is reached when we encounter G(h) where h =
log2(n)�. Its adjacency matrix
A(h) has all 1’s, and it’s distance matrix is simply D(h) = A(h) − In. Clearly,
there are h levels of recursion and in each level we compute two products of two
n × n matrices. Hence, using Theorem 1 we obtain the following.

Theorem 6. All pairs shortest distances of an n-vertex unweighted undirected
graph can be computed in the (m, �)-TCU model in O

((
n2

m

)ω0

(m + �) log n
)

time.

3.5 Discrete Fourier Transform

The Discrete Fourier Transform y of an n-dimensional (column) vector x can be
defined as the matrix-vector product y = xT ·W , where W is the Fourier matrix
(or DFT matrix) and T denotes the transpose of a matrix/vector. The Fourier
matrix W is a symmetric n × n matrix where the entry at row r and column c
is defined as: Wr,c = e−(2πi/n)rc. This solution was used in [15] to compute the
DFT on a server of Google TPUs: however, a matrix-vector multiplication does
not fully exploit tensor cores, which are optimized for matrix multiplication.

Algorithm Design for Tensor Units 361

Better performance can be reached by computing batches of DFTs since the
DFT of n vectors xi, . . . xn can be computed with the matrix multiplication
XT · W , where the i-th column of X denotes the i-th vector. We now describe
a more efficient hybrid approach based on the algebraic formulation and the
Cooley-Tukey algorithm.

The Cooley-Tukey algorithm is an efficient and recursive algorithm for com-
puting the DFT of a vector. The algorithm arranges x as an n1 × n2 matrix X
(in row-major order) where n = n1 · n2; each column X∗,c is replaced with its
DFT and then each entry Xr,c is multiplied by the twiddle factor wrc

n ; finally,
each row Xr,∗ is replaced by its DFT and the DFT of x is given by reading the
final matrix X in column-major order. For simplicity, we assume that the TCU
model can perform operations (e.g., addition, products) on complex numbers;
this assumption can be easily removed with a constant slow down in the running
time: for instance, the multiplication between

√
m × √

m complex matrices can
be computed with four matrix multiplications and two sums of real values. To
compute the DFT of x using a (m, �)-TCU, we use the Cooley-Tukey algorithm
where we set n1 =

√
m and n2 = n/

√
m (we assume all values to be integers).

Then, we use the tensor unit for computing the n2 DFTs of size n1 =
√

m by
computing XT · W√

m. Then, we multiply each element in X by its twiddle fac-
tor and transpose X. Finally, we compute the n1 DFTs of size n2: if n2 >

√
m,

the DFTs are recursively computed; otherwise, if n2 ≤ √
m, the n1 DFTs are

computed with the multiplication XT · Wn2 by using the tensor unit.

Theorem 7. The DFT of a vector with n entries can be computed in the (m, �)-
TCU in O ((n + �) logm n) time.

The above algorithm generalizes the approach in [19] for computing a DFT
on an NVIDIA Volta architecture: in [19], the vector is decomposed using n1 = 4
and n2 = n/4 and subproblems of size 4 are solved using a tensor core.

3.6 Stencil Computations

Stencil computations are iterative kernels over a d-dimensional array, widely used
in scientific computing. Given a d-dimensional matrix A, a stencil computation
performs a sequence of sweeps over the input: in a sweep, each cell is updated
with a function f(·) of the values of its neighboring cells at previous sweeps. An
example of stencil computation is the discretization of the 2D heat equation,
where each entry at time t is updated as follows:

At[x, y] = At−1[x, y]+

+
αΔt

Δx2
(At−1[x − 1, y] + At−1[x + 1, y] − 2At−1[x, y])

+
αΔt

Δy2
(At−1[x, y − 1] + At−1[x, y + 1] − 2At−1[x, y])

where α,Δt,Δx2,Δy2 are suitable constant values given by the heat diffusion
equations and by the discretization step.

362 R. Chowdhury et al.

The algorithm given in this section works for periodic stencils, e.g., the sten-
cil obtained by replacing x− 1, x+1, y − 1, and y +1 with (x− 1+N) mod N ,
(x + 1) mod N , (y − 1 + N) mod N , and (y + 1) mod N , respectively, where
N × N is the size of the grid. Our algorithm is based on the shared-memory
parallel algorithm given in [3]. For the sake of simplicity, we assume d = 2 and
that each update depends only on the values of the cell and of its eight (ver-
tical/horizontal/diagonal) neighbors at previous sweep. However, the presented
techniques extend to any d = O (1) and to any update function that depends on
a constant number of neighbors.

Given n, k ≥ 1, an (n, k)-stencil computation, over an input
√

n×√
n matrix

A is the matrix Ak obtained by the following iterative process: let A0 = A
and 1 ≤ t ≤ k; matrix At is defined by computing, for each 0 ≤ i, j <

√
n,

At[i, j] = f(i, j, At−1) where f is a suitable function of cells At−1[i + α, j + β]
with α, β ∈ {−1, 0, 1}. We say that a stencil computation is linear if f is a linear,
that is At[i, j] =

∑
α,β∈{−1,0,1} wα,βAt−1[i + α, j + β] where wα,β are suitable

real values. The above stencil computation for approximating heat equations is
linear. We assume k to be even and that all values are integers.

By unrolling the update function of a linear (n, k)-stencil computation, each
entry Ak[i, j] can be represented as a linear combination of O

(
k2

)
entries of A,

specifically all entries (i′, j′) in A where |i − i′| ≤ k and |j − j′| ≤ k. That is,
there exists a (2k+1)×(2k+1) matrix W such that At[i, j] =

∑
−k≤α,β≤k W [k+

α, k + β]A[i + α, j + β].
We now show that a linear (n, k)-stencil on a matrix A reduces to Θ

(
n/k2

)

convolutions of size O
(
k2

)
, which are then computed with the TCU algorithm

for DFT in Theorem 7. Let matrix A be split into submatrices Ar,c of size k ×k,
with 0 ≤ r, c <

√
n/k; similarly, let Ak,r,c denote the k × k submatrices of Ak.

For each Ar,c, we define the following matrix A′
r,c of size 3k × 3k:

A′
r,c =

⎡

⎣
Ar−1,c−1 Ar−1,c Ar−1,c+1

Ar,c−1 Ar,c Ar,c+1

Ar+1,c−1 Ar+1,c Ar+1,c+1

⎤

⎦ .

where we assume that a matrix Ai,j is a zero matrix when i and j are not in
the range [0,

√
n/k). We then compute the circular discrete convolution A∗

r,c =
A′

r,c � W ′, where W ′ is a 3k × 3k matrix obtained by flipping W and by adding
k/2 (resp., k/2−1) rows and columns of zeros on the left and top (resp., right and
bottom) sides of W .2 Finally, we set Ak,r,c to be the k ×k matrix obtained from
A∗

r,c by selecting the i-row and j-th column for all k ≤ i, j < 2k. By repeating
the following procedure for each submatrix Ar,c, we get the output matrix Ak.

Each convolution can be efficiently computed by exploiting the convolution
theorem and the DFT algorithm of Theorem 7. We indeed recall that a 2-
dimensional DFT is given by computing a 1-dimensional DFT for each row and
for each column. If W is given, we have the following claim:
2 With a slight abuse of notation, given two n × n matrices A and B with n even,

we define (A � B)[i, j] =
∑

α,β∈[−n/2,n/2) A[(i+α) mod n, (j +β) mod n]W [n/2−
α, n/2 − β]. In the paper, we omit the mod operation from the notation.

Algorithm Design for Tensor Units 363

Lemma 1. Given a linear (n, k)-stencil computation and its weight matrix W ,
then the stencil can be computed in the (m, �)-TCU in O ((n + �) logm k) time.

The weight matrix W can be trivially computed in O
(
k3

)
time by recursively

unrolling function f . However, as soon as k ≥ (n logm k)1/3, the cost for com-
puting W dominates the cost of the stencil algorithm. A more efficient solution
follows by representing W as the powering of a bivariate polynomial and then
using the DFT to compute it, with O

(
k2 logm k + � log k

)
total time. Therefore,

given Lemma 1 and the computation of W , we get the following result:

Theorem 8. Given a linear (n, k)-stencil computation with k ≤ n, then the
stencil can be computed in the (m, �)-TCU in O (n logm k + � log k) time.

3.7 Integer Multiplication

We now study how to multiply two long integers by exploiting tensor cores. The
input is given by two integers a and b of n bits each (without loss of generality,
we assume both integers to be positive and n > m), and the output is the binary
representation of c = a ∗ b, of size 2n − 1. For this problem, we introduce in
the design a third parameter κ, which is the bit length of a memory word in
the TCU model. We assume that κ = Ω (log n), that is there are enough bits
in a word to store the input/output size. It is easy to see that the tensor unit
can multiply matrices of (positive) integers of κ′ = κ/4 bits without overflow:
the largest integer in the output matrix using κ′ bits is 22κ′√

m which requires
2κ′ + log

√
m < κ (if n >> m, then κ′ = κ/2 − 1 suffices).

We initially show how to speed up the long integer multiplication algo-
rithm [14], also known as the schoolbook algorithm, by exploiting the tensor
unit. Then, we will use this algorithm to improve the recursive Karatsuba algo-
rithm [12]. Let A(x) =

∑n′−1
i=0 Aix

i be a polynomial where n′ = n/κ′ and
Ai = (a(i+1)κ′−1 . . . aiκ′)2 is the integer given by the ith segment of κ′ bits of a.
Let B(x) be defined similarly for b. We have that a = A(2κ′

) and b = B(2κ′
).

We define C(x) = A(x) · B(x) and we observe that c is given by evaluating
C(2κ′

). Note that A(X) and B(X) have degree n′ − 1, while c has degree at
most (2n − 1)/κ′ ≤ 2n′ − 1. The coefficients of C(x) can be computed with the
matrix multiplication C = A · B where:

– B is the column vector with the n′ coefficients of B(X);
– A is a (2n′ − 1) × n′ matrix where Ai,j = An′−i+j−1 and we assume that

Ah = 0 if h < 0 or h ≥ n′.

The product C = A·B cannot exploit TCU since B is a vector. To fully exploit
an (m, �)-TCU, we calculate C coefficients via the multiplication C ′ = A′ · B′

where A is a (n′ +
√

m − 1) × √
m matrix and B is a

√
m × n′/

√
m matrix.

– Matrix B′ follows by considering vector B as the column major representation
of a

√
m × n′/

√
m matrix, that is B′

i,j = Bn′−i−j
√

m−1.

364 R. Chowdhury et al.

– Matrix A′ is given by considering all segments of length
√

m in the sequence
0√

m−1, A0, A1, . . . An′−1, 0√
m−1, where 0√

m−1 denotes a sequence of
√

m−1
zeros. More formally, the ith row A′

i,∗ is [An′−i−1, An′−i−2, . . . An′−i−√
m],

where we assume again that Ah = 0 if h < 0 or h ≥ n′.

Then, we compute C ′ = A′ · B′ with the algorithm for dense matrix mul-
tiplication of Theorem 2 (or equivalently Theorem 1): We decompose B′ into
into n′/m submatrices of size

√
m × √

m and then compute n′/m products of a
(n′ +

√
m − 1) × √

m matrix with a
√

m × √
m matrix. The coefficient of the xh

indeterminate in C(x), for each 0 ≤ h < 2n′ − 1, follows by summing all entries
in C ′

i,j such that h = 2(n′ − 1) − i − j
√

m. Finally we compute c = C(2κ′
).

Theorem 9. Two integers of n bits can be multiplied in a (m, �)-TCU with κ-bit
operations in O

(
n2

κ2
√

m
+ n

κm�
)
time.

The Karatsuba algorithm is a well-known algorithm that computes c = a ·
b by recursively computing three integer multiplications of size n/2 and then
combining the solution in O (n/κ) time. If we stop the recursion as soon as
the input size is n ≤ k

√
m and solve the subproblem with the algorithm of

Theorem 9, we get the following result.

Theorem 10. Two integers of n bits can be multiplied in a (m, �)-TCU with

κ-bit operations in O

(((
n

κ
√

m

)log 3
) (√

m + �√
m

))
time.

3.8 Batch Polynomial Evaluation

We now show how to exploit tensor cores for evaluating a given polynomial of
A(x) =

∑n−1
i=0 aix

i of degree n − 1 on p points pi, with 0 ≤ i < p. For simplicity
we assume n to be a multiple of

√
m, p ≥ √

m, and that the polynomial can be
evaluated without overflow on the memory word available in the TCU. We ini-
tially compute for each pi the powers p0i , p

1
i , . . . p

√
m−1

i and p
√

m
i , p

2
√

m
i , . . . p

n−√
m

i ,
that is pj

i for each j ∈ {0, 1, . . . ,
√

m−1}∪{k
√

m,∀k ∈ {1, . . . , n/
√

m−1}}. We
define the following matrices:

– A matrix X of size p × √
m where the ith row is Xi,∗ = [p0i , p

1
i , . . . , p

√
m−1

i]
for each 0 ≤ i < p.

– A matrix A of size
√

m × n/
√

m where Ai,j = ai+j
√

m for each 0 ≤ i <
√

m
and 0 ≤ j < n/

√
m. Stated differently, we consider the sequence a0, . . . , an−1

as the column major representation of A.

We then compute C = X · A by exploiting the tensor unit: we decompose A
into

√
m × √

m submatrices and then solve n/m multiplications. Then, for each
pi, the values A(pi) follows by the sum

∑n/
√

m−1
j=0 Ci,jp

j
√

m
i .

Theorem 11. A polynomial of degree n − 1 can be evaluated on p points in the
(m, �)-TCU in O

(
pn√
m

+ p
√

m + n
m�

)
time.

Algorithm Design for Tensor Units 365

4 Relation with the External Memory Model

In this section we highlight a relation between the external memory model and
the TCU model. We recall that the external memory model (also named I/O
model and almost equivalent to the ideal cache model) is a model capturing the
memory hierarchy and it consists of an external memory of potential unbounded
size, of an internal memory of M ≥ 1 words, and a processor. The proces-
sor can only perform operations with data in the internal memory, and moves
(input/output) blocks of B ≥ 1 words between the external memory and the
internal memory. The I/O complexity of an algorithm for the external memory
model is simply the number of blocks moved between the two memories. We
refer to the excellent survey in [21] for a more exhaustive explanation.

The time of some of the previous TCU algorithms recall the I/O complexity of
the respective external memory algorithms. For instance, the cost of dense matrix
multiplication with only semiring operations (Theorem 2) is O

(
n3/2/

√
m

)
when

� = O (1), while the I/O complexity for the same problem in the external memory
model is O

(
n3/2/

√
M

)
when B = O (1) [21].

The multiplication of two matrices of size
√

m × √
m requires O (m) I/Os to

load and storing the input in an internal memory with M = 3m and B = O (1).
Therefore any call to the tensor unit in a TCU can be simulated in the external
memory of size M = 3m with Θ (m) I/Os. Leveraging on this claim, we show that
a lower bound in the external memory model translates into a lower bound in a
weaker version of the TCU model. In the weak TCU model, the tensor unit can
only multiply matrices of size

√
m×√

m (i.e., we cannot exploit tall left matrices).
Any algorithm for the original TCU model can be simulated in the weak version
with a constant slowdown when � = O (m): indeed, the multiplication between
an n × √

m matrix with a
√

m × √
m can be executed in the weak model by

splitting the n × √
m matrix into n/

√
m matrices of size

√
m × √

m and then
performing n/

√
m matrix multiplications with total time O (n

√
m).

Theorem 12. Consider a computational problem P with a lower bound FP on
the I/O complexity in an external memory with memory size M = 3m + O(1)
and block length B = 1. Then, any algorithm for P in the weak TCU model
requires Ω (FP) time.

5 Open Questions

The paper leaves several open questions that we plan to investigate in the future.
First, the TCU model should be experimentally validated by analyzing the per-
formances of our algorithms on state-of-the-art tensor cores, such as Google
TPUs and Nvidia TCs, to understand the gap between the theoretical model
and actual accelerators. Second, the class of algorithms that may benefit from
such architectures should be further extended by addressing, for instance, com-
putational geometry and data mining. Finally, new tensor accelerators support

366 R. Chowdhury et al.

low numerical precision and structured sparsity (e.g., Nvidia Ampere): includ-
ing these features in the TCU model in the TCU algorithm design is an open
question.

References

1. Afshani, P., Sitchinava, N.: Sorting and permuting without bank conflicts on GPUs.
In: Proceedings European Symposium on Algorithms (ESA), pp. 13–24 (2015)

2. Ahle, T.D., Silvestri, F.: Similarity search with tensor core units. In: Proceedings of
the 13th International Conference on Similarity Search and Application (SISAP),
vol. 12440, pp. 76–84 (2020)

3. Ahmad, Z., Chowdhury, R., Das, R., Ganapathi, P., Gregory, A., Zhu, Y.: Fast
stencil computations using fast Fourier transforms. In: Proceedings of the 33rd
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) (2021)

4. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Graph expansion and communi-
cation costs of fast matrix multiplication. J. ACM 59(6), 32:1–32:23 (2013)

5. Chowdhury, R., Silvestri, F., Vella, F.: Brief announcement: a computational model
for tensor core units. In: Proceedings of the 32nd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA) (2020)

6. Chowdhury, R.A., Silvestri, F., Vella, F.: A computational model for tensor core
units arxiv preprint arxiv: 1908.06649 (2020)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, Cambridge (2001)

8. Dakkak, A., Li, C., Xiong, J., Gelado, I., Hwu, W.M.: Accelerating reduction and
scan using tensor core units. In: Proceedings of the International Conference on
Supercomputing (ICS), pp. 46–57 (2019)

9. Firoz, J.S., Li, A., Li, J., Barker, K.: On the feasibility of using reduced-precision
tensor core operations for graph analytics. In: 2020 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–7 (2020)

10. Jacob, R., Stöckel, M.: Fast output-sensitive matrix multiplication. In: Proceedings
of European Symposium on Algorithms (ESA), pp. 766–778 (2015)

11. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit.
In: Proceedings of the 44th International Symposium on Computer Architecture
(ISCA), pp. 1–12 (2017)

12. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Physics Doklady 7, 595 (1963)

13. Karsin, B., Weichert, V., Casanova, H., Iacono, J., Sitchinava, N.: Analysis-driven
engineering of comparison-based sorting algorithms on GPUs. In: Proceedings of
the 32nd International Conference on Supercomputing (ICS), pp. 86–95 (2018)

14. Kleinberg, J., Tardos, E.: Algorithm Design. Addison Wesley, Boston (2006)
15. Lu, T., Chen, Y., Hechtman, B.A., Wang, T., Anderson, J.R.: Large-scale discrete

Fourier transform on TPUs. In: arXiv preprint arXiv: 2002.03260
16. Nvidia Tesla V100 GPU architecture. http://images.nvidia.com/content/volta-

architecture/pdf/volta-architecture-whitepaper.pdf
17. Raz, R.: On the complexity of matrix product. SIAM J. Comput. 32(5), 1356–1369

(2003)
18. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs.

J. Comput. Syst. Sci. 51(3), 400–403 (1995)

http://arxiv.org/abs/1908.06649
http://arxiv.org/abs/2002.03260
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Algorithm Design for Tensor Units 367

19. Sorna, A., Cheng, X., D’Azevedo, E., Won, K., Tomov, S.: Optimizing the fast
Fourier transform using mixed precision on tensor core hardware. In: Proceedings
of the 25th International Conference on High Performance Computing Workshops
(HiPCW), pp. 3–7 (2018)

20. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356
(1969). https://doi.org/10.1007/BF02165411

21. Vitter, J.S.: Algorithms and data structures for external memory. Found. Trends
Theor. Comput. Sci. 2(4), 305–474 (2006)

22. Zachariadis, O., Satpute, N., Gómez-Luna, J., Olivares, J.: Accelerating sparse
matrix–matrix multiplication with GPU tensor cores. Comput. Electr. Eng. 88,
106848 (2020)

https://doi.org/10.1007/BF02165411

	Algorithm Design for Tensor Units
	1 Introduction
	2 The (m,)-TCU Model
	3 Algorithms
	3.1 Matrix Multiplication
	3.2 Gaussian Elimination Without Pivoting
	3.3 Graph Transitive Closure
	3.4 All Pairs Shortest Distances (APSD)
	3.5 Discrete Fourier Transform
	3.6 Stencil Computations
	3.7 Integer Multiplication
	3.8 Batch Polynomial Evaluation

	4 Relation with the External Memory Model
	5 Open Questions
	References

