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Abstract. There is an ever-increasing amount of devices getting con-
nected to the internet, and so is the volume of data that needs to be pro-
cessed - the Internet-of-Things (IoT) is a good example of this. Stream
processing was created for the sole purpose of dealing with high volumes of
data, and it has proven itself time and time again as a successful approach.
However, there is still a necessity to further improve scalability and per-
formance on this type of system. This work presents SDD4Streaming, a
solution aimed at solving these specific issues of stream processing engines.
Although current engines already implement scalability solutions, timehas
shown those are not enough and that further improvements are needed.
SDD4Streaming employs an extension of a system to improve resource
usage, so that applications use the resources they need to process data in
a timely manner, thus increasing performance and helping other applica-
tions that are running in parallel in the same system.

1 Introduction

The increasing amount of devices connected with each other created a big
demand for systems that can cope with the high volume that needs to be pro-
cessed and analyzed according to certain criteria. Great examples of this are
smart cities [6], operational monitoring of large infrastructures, and the Internet-
of-Things (IoT) [13]. Since most of this data is most valuable closest to the time
it was generated, we need systems that can, in real-time, process and analyze
all of the data as quickly as possible. To enable this, the concept of stream
processing and its solutions were created.

First, we should explain what the stream processing paradigm is. It is equiva-
lent to dataflow programming [12], event stream processing [4] and reactive pro-
gramming [2], but simplifying software and hardware parallelization by restrict-
ing the parallel computation that can be performed. For a given sequence of
data elements (a stream), this is achieved by applying a series of operators to
each element in the stream.

Even though this paradigm simplifies the processing of variable volumes of
data through a limited form of parallel processing, it still has quite some issues
that need to be tackled in order to have a resilient and performant system. Since
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the volume of data is ever-changing, the system needs to be able to adapt in order
to accommodate and process this data accordingly in a timely manner, while also
being resilient so that no data is lost while any stream is being processed.

We present SDD4Streaming as an extension to Flink to improve resource
usage efficiency, so that applications use only the resources needed to process
data in a timely manner, therefore increasing overall performance by freeing
resources for other applications running in parallel in the same system.

The rest of this document is structured as follows. Section 2 briefly describes
the fundamentals and state-of-the-art works on stream processing, resource man-
agement and input/processing management. Section 3 describes the architec-
ture and the resource management algorithm that compose SDD4Streaming.
Section 4 presents the evaluation of our SDD4Streaming solution, showing its
performance on applications. Finally, Sect. 5 wraps up the paper with our main
conclusions.

2 Related Work

We present related work first giving insight on what stream processing is and
how it works. After that we explain how one relevant stream processing system
works, namely Apache Flink which is the system we have developed our solution
against. We then provide a brief explanation of two different solutions that solve
specific issues inherent to stream processing.

Stream Processing. Taking into account that stream processing systems
are parallel and distributed data processing systems, stream processing can be
decomposed in various dimensions/aspects which need to be addressed to cre-
ate a functional system offering good Quality-of-Service (QoS). For our solution,
the most important dimension that we focus on solving is scalability, which we
address next.

For a system that is constantly dealing with data and with clients that
are expecting a certain Quality-of-Service1 from the system, we need to have
a degree of scalability to be prepared for any type of situation that might hap-
pen. Scalability is thus an important property that a system must have - to
be elastic [10] (the ability to adapt) to accommodate its requirements and the
ever-changing amount of work it receives. This involves a change in the number
of resources available, consisting of either growing whenever there is more work
than resources available, or shrinking when the amount of work decreases over
time and we have more resources than the ones needed.

As an example, we can imagine an API that internally has a load-balancer
that redirects the requests to the worker machines which will then process them.
Suppose such a system supports 1000 requests per second at a certain point in
time. Three situations can then occur: a) receiving fewer requests than the limit
supported by the system, and thus wasting resources (e.g. incurring unnecessary

1 https://www.networkcomputing.com/networking/basics-qos.
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billing, etc.); b) having the exact supported amount of requests, which would be
the perfect situation for the system (although it is not a real scenario that we
should take into account as it usually only happens for a really small amount of
time); c) receiving a number of requests exceeding the limit of what the system
supports and so a bottleneck shall occur and the QoS will decrease while latency
increases.

For examples of other systems, we note Aurora [1] and Medusa [3] which,
despite aiming for scalability as stream processing engines, still have some issues
for which there are explanations and solution proposals in the literature [7].

2.1 Apache Flink

Apache Flink2 [5] offers a common runtime for data streaming and batch pro-
cessing applications. Applications are structured as arbitrary directed acyclic
graph DAGs, where special cycles are enabled via iteration constructs. Flink
works with the notion of streams onto which transformations are performed.
A stream is an intermediate result, whereas a transformation is an operation
that takes one or more streams as input, and computes one or multiple streams.
During execution, a Flink application is mapped to a streaming dataflow that
starts with one or more sources, comprises transformation operators, and ends
with one or multiple sinks (entities in the dataflow which represent outputs).
Although there is often a mapping of one transformation to one dataflow opera-
tor, under certain cases, a transformation can result in multiple operators. Flink
also provides APIs for iterative graph processing, such as Gelly.

The parallelism of Flink applications is determined by the degree of paral-
lelism of streams and individual operators. Streams can be divided into stream
partitions whereas operators are split into sub-tasks. Operator sub-tasks are exe-
cuted independently from one another in different threads that may be allocated
to different containers or machines.

The state of the streaming applications is stored at a configurable place
(such as the master node, or HDFS). In case of a program failure, Flink stops
the distributed streaming dataflow. The system then restarts the operators and
resets them to the latest successful checkpoint. The input streams are reset to
the point of the state snapshot. Any records that are processed as part of the
restarted parallel dataflow are guaranteed to not have been part of the previously
checkpointed state.

SpinStreams for Resource Management. When developing a stream pro-
cessing application/job, the programmer will define a DAG with all the opera-
tions that will be performed on received inputs. The right choice for this topology
can make a system go from very performant with high throughput to very slow
with high latency and bottlenecks. Due to this, the literature has seen proposals
such as SpinStreams [11], a static optimization tool able to leverage cost models

2 https://flink.apache.org/.

https://flink.apache.org/
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that programmers can use to detect and understand the potential inefficiencies of
an initial application design. SpinStreams suggests optimizations for restructur-
ing applications by generating code to be run on a stream processing system. For
the testing purposes of SpinStreams, the streaming processing system Akka [9]
was used.

There are two basic types of restructuring and optimization strategies applied
to streaming topologies:

– Operator fission. Pipelining is the simplest form of parallelism. It consists
of a chain (or pipeline) of operators. In a pipeline, every distinct operator pro-
cesses, in parallel, a distinct item; when an operator completes a computation
of an item, the result is passed ahead to the following operator. By construc-
tion, the throughput of a pipeline is equal to the throughput of its slowest
operator, which represents the bottleneck. A technique to eliminate bottle-
necks applies the so-called pipelined fission, which creates as many replicas of
the operator as needed to match the throughput of faster operators (possibly
adopting proper approaches for item scheduling and collection, to preserve
the sequential ordering).

– Operator fusion. A streaming application could be characterized by a topol-
ogy aimed at expressing as much parallelism as possible. In principle, this
strategy maximizes the chances for its execution in parallel, however, some-
times it can lead to a misuse of operators. In fact, on the one hand, the
operator processing logic can be very fine-grained, i.e. much faster than the
frequency at which new items arrive for processing. On the other hand, an
operator can spend a significant portion of time in trying to dispatch output
items to downstream operators, which may be too slow and could not tem-
porarily accept further items (their input buffers are full). This phenomenon
is called back pressure and recursively propagates to upstream operators up to
the sources.

The SpinStreams workflow [11] is summarized as follows. The first step is
to start the GUI by providing the application topology as input. It is expected
that the user knows some profiling measures, like the processing time spent on
average by the operators to consume input items, the probabilities associated
with the edges of the topology, and the operator selectivity parameters. This
information can be obtained by executing the application as is for a sufficient
amount of time, so that metrics stabilize, and by instrumenting the code to
collect profiling measures.

SmartFlux for Input and Processing Management. A stream processing
application will usually be used for a certain type of data (e.g. data being gener-
ated by sensors in a smart city) and not for a range of applications. So with this,
we can create an application that depends on the input it receives and, based on
previous training (machine learning), it decides whether or not it should process
them or just simply return the last results. For certain applications where the
workflow output changes slowly and without great significance in a short time
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window, resources are inefficiently used, making the whole process take a lot
longer than it needs to while the output remains moderately accurate.

To overcome these inefficiencies, SmartFlux [8] presents a solution that
involves looking at the input the system receives, training a model using machine
learning and using the model to check and analyze (with a good confidence level)
if the received input needs to be processed all over or not. This is done through a
middleware framework called SmartFlux which affects a component (the work-
flow management system) of a stream processing engine in order to intercept the
way the workflows are being processed.

3 Architecture

SDD4Streaming3 was designed as a stream processing engine extension, focused
on improving scalability and overall performance. We seek to accomplish these
improvements while trying to minimize the loss of output accuracy which is usually
inherent to adaption during the run-time of complex stateful systems.

Stream processing involves processing a variable volume of time-sensitive
data and the system needs to be prepared to handle the issues stemming from
it. We can take as guaranteed from the underlying system many things such as
reliability and low-level resource management (at the task level), so we do not
need to further address these specific aspects.

Since Flink already handles these issues, it is not necessary to focus on
low-level aspects related to resource usage and system alterations, which would
otherwise be needed. Overall, we adapt the execution of jobs by changing the
used level of parallelism. On these systems, multiple jobs can be executed at the
same time, each taking a percentage of the total resources and the number of
resources needed to process the input changes through time. We propose two
ways to handle these two aspects.

When creating, a job we can define the level of parallelism we want, changing
how Flink handles tasks (transformations/operators, data sources, and sinks).
The higher parallelism we have, the higher amount of data that can be processed
at a time on a job. However, this also creates an overhead on overall memory
usage due to more data needing to be stored for savepoints/checkpoints.

Before acting on the system, it is necessary for the client application to
provide information to base decisions on, and this is defined in our Service Level
Agreement (SLA). The SLA is comprised of:

– Maximum number of task slots. What is the maximum amount of par-
allelism or number of task slots allowed for the job in order to avoid a job
scaling up indefinitely?

– Resource Usage. What is the maximum resource usage allowed in the sys-
tem?

– Input coverage. What is the minimum amount of inputs that should be
processed?

3 https://github.com/PsychoSnake/SDD4Streaming.

https://github.com/PsychoSnake/SDD4Streaming
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This SLA will allow us to make decisions according to the type of performance
the client needs from the system. This is essential because every client has an
idea of how the system should behave, which our proposed extension, as an
external element, is not aware of. This is the basis of our resource management
component that on these values will check against the metrics obtained from the
system and decide what to do in order to improve performance and scalability.
To try and mitigate overhead caused by our solution, a decision was made to
separate responsibilities into the two following parts:

– SDD4Streaming library. Responsible for communicating with our server
and overriding Flink operator functions;

– Resource management server. Responsible for handling all metric-related
information as well as deciding the state of known jobs and their adapta-
tion;

With these, the system where the client application runs will be able to use
its resources in a more efficient manner, focusing solely on the computation it
was designed to do. Most of our contribution is structured on the server, where
our major features are located.

Regarding the two parts explained above, they can further be divided into
the following components:

– SDD4Streaming library
• Middleware. Responsible for extending the Flink programming model in

order to override the operator functions;
– Resource Management Server

• Metric Manager. Component responsible for handling all metric related
information, from fetching it from Flink to storing it in our data structure
for later use;

• Resource Manager. Component responsible for making decisions based
on the system state through the use of stored metrics and altering the
system based on them;

Fig. 1. Relation between client application and our components.
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Figure 1 depicts the relation between the client application and the two
components above. Explaining each of these components entails going over the
employed data structures.

Data Structure. SDD4Streaming has two major sets of data structures
necessary for its execution. These consist of data that the client application
provides about the overall system where execution will take place, as well as
metrics fetched from said system.

Initialization Data. To be able to achieve anything at all in the system, some
initialization data is first necessary, and it comes directly from the client applica-
tion using our solution. These will provide the means to query the system about
its resources as well as enable dynamically changing it. This structure has the
following elements:

– Service Level Agreement (SLA). Details the optimal performance the
clients want the system to have;

– Job name. Used to identify a running job;
– Server base URL. The base URL for where our web server is running;
– Client base URL. The base URL for the JobManager where the job shall

be executed;
– JAR archive name. Name of the JAR used to create the job;

System Metrics. Apache Flink provides an extensive REST API that can be
used to query or modify the system in various ways. We make use of this API to
fetch metrics about the resources being used in the system. To accomplish this,
it is necessary to map the necessary endpoints from the API, according to the
data that must be sent and received for each one. On some elements this is not so
simple and so, instead of directly determining the relation between components,
it is necessary to gather this information ourselves.

A job in Apache Flink has multiple levels and we are able to gather different
information on each one of them. The levels important for our solution are as
follows:

– JobManager. Orchestrator of a Flink Cluster;
– Job. The runtime representation of a logical graph (also often called dataflow

graph);
– TaskManager. Supervises all tasks assigned to it and interchanges data

between then;
– Task: Node of a Physical Graph. Its the basic unit of work.
– SubTask. A Task responsible for processing a partition of the data stream;

For our solution, we will use and store data about the JobManager,
TaskManagers and the tasks still running from the known jobs. While on Flink’s
API these elements are not directly related to each other, they are connected in
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our data structure to enable easily checking all elements required of the job in
order to make decisions.

Regarding the kinds of data obtainable from these elements, the Flink API
provides a valuable degree of information with different representations. Infor-
mation can be gathered either on a collection of items (e.g. the metrics for all
task managers in the system) or for a specific element, which may then be used
to store in our internal structure.

Our data structure will be comprised of these elements with the following
relation: JobManager < − > TaskManager < − > Task.

Fig. 2. SDD4Streaming metric data structure.

As shown in Fig. 2, each structure is visible, as well as relations between each
other. For the JobManager, we will store the available and total amount of task
slots it has available. This is necessary to know if a job can be scaled up or
not, because on Flink, whenever a job does not have enough slots available for
its parallelism level, it will stay waiting until any slot frees up to achieve the
required level.

We then have the TaskManager which will store the CPU load on the system.
This load represents the average load between all the TaskManagers the job is
affecting, meaning all those where tasks are being executing.

Finally we have the Task, which the TaskManager will store a collection of,
with each one having the buffer usage for input and output, which are then used
to identify back pressure issues (e.g. possible bottlenecks).

Middleware. To work as expected, our solution requires that the user specifies
(intended to be simple) modifications to its application. These will involve using
our components instead of the ones Flink offers, as well as providing initializa-
tion data with information about the overall system the client created.

For the middleware component of the solution, we can create our own versions
of the operators Flink provides so we can override their functionality. We do this
so we can verify how the system is behaving and act upon it and to seamlessly
handle resource management without our solution having to make any extra
communication with the client application.
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Besides this, SDD4Streaming also has internal metric management with
the information obtained from an API Flink provides. This API not only pro-
vides metrics about each component running in the system (e.g. Jobs, Tasks
and others), it also allows the system to be adapted. This allows for the creation
of an internal data structure that supports decision-making, and then it is also
possible to act on the system with the same API.

Metric Manager. SDD4Streaming’s decisions and actions are based on
information gathered from the system through our Metric Manager. This com-
ponent is responsible for getting metrics on the current system from Flink and
organizing them according to our data structure.

Flink allows its clients to fetch system metrics through various means. For
SDD4Streaming, we find that the provided REST API is the best way to
achieve this. This API supplies details on every level and component of the
system without requiring extra work to identify these. Another way of getting
this information from the system is through the Java Management Extensions
(JMX) but for this to work it is necessary to know the port for each running com-
ponent, and there is no easy way to find out programmatically, so this solution
was not adopted.

For the API, each of the endpoints deemed to be useful were internally
mapped to obtain the needed information. These are ones corresponding to the
components the system has running at any point in time. We are able to gather
information from the highest level (the job itself) to the lowest one (the sub-tasks
generated by Flink from the operators the client is using).

Resource Manager. For SDD4Streaming, the Resource Manager compo-
nent is the most important one and where all the decisions on the system will
happen. This component will make use of the metrics received from the Metric
Manager and make decisions depending on the system’s compliance with the
SLA.

To avoid performance issues, the system must make the best of the resources
it has available. Whenever needed, the system will undergo changes to accom-
modate the ever-changing needs for processing the incoming data. The system
can be affected in two different ways. Either by re-scaling the assigned job or by
suppressing inputs for the sake of performance at the cost of result accuracy.

Algorithm 1 presents the pseudo-code for checking the job-related metrics
and adapting the system accordingly. For every input received, the state of the
job will be analyzed. First, the Metric Manager is checked to find what are the
current metrics for the job. If there are no metrics available or the job is getting
re-scaled, true is returned (line 1) since there is nothing that can be done at
that point. If there are metrics currently available and the job is not getting
re-scaled, then our solution checks the job state and also if it is compliant with
the defined SLA.

This allows SDD4Streaming to make the decision of simply passing the
control back to the user code and processing the input or to satisfy the need to
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Algorithm 1. Decision Algorithm
Input: taskInfo
Output: shouldProcessInput

1 if !JobGettingRescaled(taskInfo) OR !areMetricsAvailable() then
2 return true

3 if isJobDegraded(taskInfo) then
4 if shouldUpScaleJob() then
5 upscaleJob() return true

6 if shouldSuppressInput() then
7 return false

8 if shouldDownScaleJob() then
9 downscaleJob()

10 return true

act upon the system first. If the system is running smoothly, before control is
passed to the user code, it checks if the job can be scaled down (lines 9–10). If
the system is running abnormally, it means changes must be made, but before
a decision may be made in that direction, the appropriate corrections must be
determined. Three possible actions may take place at this point, depending on
the decision undertaken:

– Process Input
– Suppress Input
– Re-scale Job

If enough resources are available in the system, it is possible to simply re-
scale the job (lines 4–6). This will help solve bottlenecks and decrease the load
on each task, thus helping to reduce performance degradation. But the current
job is re-scaled only if no other re-scaling operation is happening on the job. If
not enough resources are available for this operation, then a different approach
must take place. The other approach is suppressing the input partially and not
processing it (lines 7–8). This will decrease the load and help reduce performance
degradation. But this comes with the cost of reducing the accuracy of the output
data, which is why there is a rule for it the SLA, where the user may declare
what is the minimum accuracy (i.e. the percentage of the input subject to pro-
cessing/reflected in the output) required at all times. Lastly, if all of the other
approaches are not possible, then the control will have to be passed to the user
code and allow it to process the input as normal (line 12). Even though this will
increase the load in the system, there is nothing more that can be done without
breaking the SLA with the user.

4 Evaluation

To evaluate SDD4Streaming system, we want to look at its core focus, the
increase in performance while decreasing possible bottlenecks and a dynamic



Smart Distributed DataSets for Stream Processing 259

resource usage depending on the needs of the system at any point in time. Our
tests are based on how applications behave with our solution, comparing them
with the scenario of exclusively using what Flink provides to see how much
improvement is achieved.

We start by looking into the used workloads, then we document the dataset
we used as well as the transformations necessary to make the data viable. We
then move on to an analysis of the metrics we intended to gather, and present
and analyse the results.

Workloads. For the workload we have an application that is able to demon-
strate how our solution behaves. This workload involves sending a variable vol-
ume of data to the job and checking how our solution will scale the job and the
overall performance of the system.

The producer of data will be Kafka [14], an open-source stream-processing
software platform developed by the Apache Software Foundation that aims to
provide a unified, high-throughput, low-latency platform for handling real-time
data feeds.

Initially, Kafka is prepared with a big volume of data which the application
will read from upon starting. Since the volume of data is so high, after the
application finishes processing it, there is a waiting period after which we check
if our solution down-scales the job since its load at the time will be very low.
Finally after the waiting period, another large volume of data will be sent over
to Kafka to see if our solution is able to adapt the system to support the new
load.

Dataset. For the explained workload, we will use a dataset provided by the
University of Illinois System. This dataset represents the taxi trips (116 GB of
data) and fare data (75 GB of data) from the year 2010 to 2013 in New York.

Filtering and Data Cleanup. The dataset of the taxi rides/fares is extensive,
totalling 116 GB, of which we need not use everything in order to cause a heavy
load on the system. For this reason, we decided to use the latest available data
which is for the year 2013. Before the data can be used by the application, it
requires cleanup.

The data must be analyzed to remove rows that are missing essential infor-
mation since these will provide nothing for our results, and to map the columns
which are necessary for our execution.

Metrics. For each execution, we look to extract two key groups of data: system
performance and overhead caused by our solution. The following lists (perfor-
mance and overhead) describe these in more detail:
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System Performance:

– Resource utilization. This metric assesses whether or not the solution is
scaling the system accordingly. The resources used by tasks scale to keep up
with the input rate;

– Latency. If the input is taking too long to be processed;
– Throughput. How much data is being processed per period of time;
– Accuracy. Observes variation of application accuracy over time to assess

Quality-of-Service fulfillment.
– CPU usage. Checks percentage of CPU being used by tasks in the cluster

as well as CPU that is reserved but not used (assesses resource waste and
costs).

Solution Overhead:

– CPU load. This metric assesses how much of the CPU is affected by the
execution of our solution;

– Memory load. This metric assesses how much of the memory is affected by
storing our data structures by our solution.

Testbed Configuration. We designed the test runs to be executed in managed
infrastructure (commonly known as cloud services). The cloud service used for
this was the Google Cloud Platform (GCP). This service provides 300 credits in
a free trial per account, which for our use case is enough to perform the necessary
tests.

The setup consisted of 3 VMs each with two vCPUs, 4 GiB of RAM and 20
GiB of storage. Each of these machines will be responsible for each part necessary
for testing. One will host the Flink cluster where the job will run, the other will
host the data that the job will read from and the third one will host our web
server.

Besides this, we also needed a way to gather the metrics from the system while
our jobs were running. To accomplish this we decided to use a metric reporter4,
having chosen Prometheus5. Prometheus is a time series database (TSDB) com-
bined with a monitoring and alerting toolkit. The TSDB of Prometheus is a
non-relational database optimized for storing and querying of metrics as time
series and therefore can be classified as NoSQL. Prometheus mainly uses the
pull method where every application that should be monitored has to expose a
metrics endpoint in the form of a REST API either by the application itself or
by a metrics exporter application running alongside the monitored application.
The monitoring toolkit then pulls the metrics data from those endpoints in a
specified interval. This tool was executed in the authors’ personal computers to
avoid using more credits on GCP than were needed.

4 https://ci.apache.org/projects/flink/flink-docs-release-1.9/monitoring/metrics.
html#reporter.

5 https://prometheus.io/.

https://ci.apache.org/projects/flink/flink-docs-release-1.9/monitoring/metrics.html#reporter
https://ci.apache.org/projects/flink/flink-docs-release-1.9/monitoring/metrics.html#reporter
https://prometheus.io/
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Results. For both tests Apache Flink was configured to have one JobManager
and one TaskManager. The JobManager was configured to 1024 MiB memory
while the TaskManager which is responsible for managing all the tasks (the units
of work) has double that amount at 2048 MiB. The amount of available tasks
are 50 and each of the tests are started with a parallel level of 20, therefore using
20 of the 50 total slots.

First we go over the metrics resulting from the test where the application is
running without using SDD4Streaming. All figures below for this test belong
to the same time interval and have a duration of 23 min.

Fig. 3. CPU load on the TaskManager.

Fig. 4. Amount of records getting processed by each sub-task per second (throughput).

Figure 3 showcases high CPU usage for the tested workload. Besides the first
minutes where data is fetched from Kafka, the load is mostly constant overall,
with occasional fluctuations. For throughput in Fig. 4, behavior similar to the
CPU load graph is shown, which is to be expected because higher throughput
means that more data is being processed, and for that to happen, higher CPU
load is expected. These figures depict an initial very high throughput which then
decreases after a few minutes but remains constant. Also when comparing the
first volume of data sent and the second one, it can be observed that the CPU
load and throughput are fairly similar.
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Fig. 5. Heap memory usage.

Fig. 6. Non-heap memory usage.

Memory usage by the TaskManager/Tasks for heap and non-heap memory
is shown in Figs. 5 and 6 respectively.

For the test where the application runs incorporated with our solution, the
configurations are the same as the other test but there is an extra configuration
of SDD4Streaming. The important part needed before showing the results is
the SLA used for this test:

– Max number of task slots: 22;
– Resource usage: 50%
– Input coverage: 80%;

All figures below for this test belong to the same time interval and have a
duration of 30 min.

CPU load and throughput are shown in Figs. 7 and 8 respectively. The graphs
show that the execution was very different from the one without our solution.
For example, there are visible drops in both of them that mostly represent when
the job was getting re-scaled, since at that point no input will be processed and
so throughput will drop to 0 and CPU will be mostly used by the TaskManager
that is adapting the job.
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Fig. 7. CPU load on the TaskManager.

Fig. 8. Amount of records getting processed by each sub-task per second (throughput).

Figures 9 and 10 show the memory usage for the heap and non-heap respec-
tively. From these it can be seen that the non-heap memory is very similar to
the previous test, but for the heap memory quite different results are obtained.
Since our solution will adapt the system in runtime, the TaskManager will need
to use more memory in order to do the re-scaling of the jobs. And due to this

Fig. 9. Heap memory usage.
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Fig. 10. Non-heap memory usage.

Fig. 11. Number of available task slots.

we observe a higher average use of memory as well as the maximum amount of
memory used overall.

Finally, specifically for the test with our solution we have in Fig. 11 the
number of available slots throughout the execution of the job.

5 Conclusion

SDD4Streaming was devised to serve as an extension of the scalability and per-
formance capabilities of a stream processing engine such as Flink. Results show
it is able to adapt, in run-time, to current application requirements, supporting
current load and improving efficiency. Through the separation of responsibilities
between the library and the server we are able to mitigate most of the overhead
that our solution causes on the system. In future work, we intend to address
similar issues in the Gelly graph library and also in the Spark [15] engine.
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