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Abstract. Deep neural networks (DNNs) are playing an increasingly
important role in our daily life. Since the size of DNNs is continuously
growing up, it is highly important to train them effectively by distribut-
ing computation on multiple connected devices. The efficiency of training
depends on the quality of chosen parallelization strategy. Being able to
find a good parallelization strategy for a DNN in a reasonable amount of
time is not trivial. Previous research demonstrated the possibility to sys-
tematically generate good parallelization strategies. However, systematic
partitioning still suffers from either a heavy preprocessing or poor qual-
ity of parallelization. In this paper, we take a purely symbolic analysis
approach by leveraging the features of DNNs like dense tensor balanced
computation. We propose the Flex-Edge Recursive Graph and the Dou-
ble Recursive Algorithm, successfully limiting our parallelization strategy
generation to a linear complexity with a good quality of parallelization
strategy. The experiments show that our solution significantly reduces
the parallelization strategy generation time from hours to seconds while
maintaining the parallelization quality.

Keywords: Distributed algorithm · Distributed machine learning ·
Neural network partitioning

1 Introduction

The past decade has witnessed the dramatic development of deep learning in
almost every domain in our daily ife. On one hand, DNN fra meworks like [1–3]
increase the efficiency of DNN development by automating DNN training based
on the user’s description of the network. On the other hand, the increase of
computing power, driven by the availability of new accelerators, enables the
design of larger and more complex deep neural networks (DNNs) [4,5]. Deeper
and wider DNNs enable new applications but require efficient distribution of
computation on connected devices for accelerating the training process.
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A DNN consists of hundreds or even thousands of operators whose inputs and
outputs are tensors (i.e., multidimensional arrays). A DNN can be represented
as a computation graph whose vertices are the operators and whose edges are
the tensors. A parallelization strategy defines how to partition the data and the
operators of a DNN into multiple devices. The most commonly used paralleliza-
tion strategy approach is Data Parallelism [6]. In data parallelism, each device
holds a replica of the entire network and trains it with a subset of training data.
This approach is efficient because the subsets of training data are independent,
hence there is no communication during the computation of the operators. Data
parallelism is not suitable for the layers with large parameter tensors (e.g., fully
connected layers) due to a long parameter synchronization time. Another widely
used approach is Model Parallelism [7] where the DNN operators and tensors
are distributed over the computing devices. For a given operator, there exist
different model parallelisms that introduce different extra communications.

The Hybrid Parallelism approach [8,9] has been recently proposed to over-
come the disadvantages of data and model parallelism. The hybrid parallelism
implements either data or model parallelism on different operators to achieve bet-
ter performance. By using hybrid parallelism, communication overhead caused
by inconvenient parallelization strategies is reduced. Meanwhile, hybrid paral-
lelism introduces data redistribution between operators if two connected oper-
ators are assigned different parallelization strategies. Based on the preceding
information, the efficiency of hybrid parallelism depends on the parallelization
strategy of each operator. Searching for an optimal parallelization strategy for a
DNN is a combinatorial problem: the number of strategies grows exponentially
with the number of operators and polynomially with the number of devices.
Therefore, it is difficult to find the optimal parallelization strategy within an
acceptable time regarding the size of the search space. Directly comparing all
the possible parallelization strategies of a DNN by profiling is not realistic. For
instance, profiling a 21-layer VGG16 [10] network already takes more than 24 h
[11].

Many DNN frameworks provide good functionalities on data loading, compu-
tational graph execution, and fault tolerance. Some of the frameworks support
hybrid parallelism with a manually configured parallelization strategy. However,
automatically offering the optimal hybrid parallelization strategy is still one of
the biggest challenges for these frameworks. In this paper, we thus focus on how
to choose efficient hybrid parallelization strategies for DNNs.

FlexFlow [12] uses a randomized Markov Chain Monte Carlo algorithm to
circumvent the parallelization strategy complexity. However, these approaches
cannot guarantee the searching time nor the optimality of the result. OptCNN
[11] proposes a dynamic programming searching algorithm that reduces the com-
plexity w.r.t. the number of operators from exponential to polynomial. Analyzing
a large DNN like ResNet [4] only takes few hours. The algorithm mixes profil-
ing and cost model to estimate the global execution time of the training. The
cost model is composed of the profiled execution time of each operator and the
estimated communication time. However, the execution time of an operator may
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vary with DNN configuration changes as well as dataset changes. As a result, new
profiling and searching need to be processed after each modification of the model
or dataset. Moreover, extra profiling and searching time may offset the gain of
DNN training time by using more devices. The estimated communication time
in OptCNN is the product of the communication bandwidth and data quantity.
However, the communication capacity of a parallel machine is not only domi-
nated by the bandwidth but also other factors such as latency, network topology,
etc. A unique bandwidth used in OptCNN may induce substantial errors in the
evaluation of a strategy and lead to a wrong decision in the choice. Another
drawback of OptCNN solution is that the dynamic programming algorithm is
designed for handling fork-join graphs, which are suitable for convolution neural
networks used in computer vision classification. But the algorithm cannot han-
dle multi-input or multi-output graphs used in other areas like natural language
processing, recommendation systems, and image segmentation.

To avoid profiling issues, we introduce a purely symbolic cost model based on
the semantics of each operator in Sect. 2. We observed that tensors in DNNs are
dense multi-dimension arrays and the operators are typically balanced. Inspired
by SGL [13], we proposed a 2-part recursive partitioning to eliminate the influ-
ence of a machine’s communication capacity. Besides, we introduce a Flex-Edge
Recursive Graph (FER Graph) to reduce the searching complexity in Sect. 3.
We leverage DNN features to let the traversing of FER Graph be topology-
independent. We intend to visit the vertices according to their importance. In
this way, we can guarantee the quality of the generated strategies. Double Recur-
sive Algorithm (D-Rec), presented in Sect. 4, includes Inner Recursion and Outer
Recursion. Inner Recursion is designed to partition the computation graph into
two parts. Outer Recursion recursively applies Inner Recursion p times to par-
tition the neural network into 2p parts.

2 Symbolic Cost Model

The cost of a distributed parallel program is the summation of local computa-
tion cost and the communication cost: Cost = Costcomp + Costcomm. The local
computation is the process executed locally on each device without external
data. The communication denotes data communicating between devices. Ten-
sors in DNNs are dense multi-dimensional arrays. The operators (e.g., Matmul,
Conv, Add, etc.) are massively parallelizable computations which are evenly com-
puted among the devices. Therefore, the number of operations to perform is con-
stant for any distributed strategy and a fixed number of devices. DNN platforms
allow load-balancing of the computation operations among the devices such that
Costcomp is equal for any chosen algorithm on a given number of devices. There-
fore, our asymptotic analysis can focus only on Costcomm.

The communication cost is determined by two factors: the communication
capacity of the chosen machines, denoted by g, and the quantity of data needed
to be transferred denoted by q. To achieve better performance, modern com-
puter clusters, like supercomputers [14,15] and AI accelerator clusters [16,17],
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have a hierarchical architecture. A unique g cannot describe precisely the com-
munication capacity of modern machines. Valiant [18] proposed to use different
g for each hierarchical level. The communication cost can be calculated by the
summation of each level contribution: Costcomm =

∑
i(gi × qi), where i is the

hierarchical level. We noticed that the hierarchical architectures are also typi-
cally symmetric [19]. Inspired by SGL [13], a hierarchical and symmetric machine
can be abstracted in a recursive way. For example, a typical GPU architecture
shown on the left of Fig. 1, can be described by an abstract machine on the right.
The abstract machine has a tree structure, where the leaves are the computing
devices and the branch nodes model the hierarchical structure. The commu-
nication is analyzed by a recursion. Each recursion step is a level of the tree
whose communication capacity is shared as gi. For each level, gi does not affect
the choice of the parallelization strategy. Therefore, the communication can be
recursively analyzed with only the quantity of communicated data qi, where i
becomes the recursion step.

Fig. 1. A typical GPU architecture described by a recursive tree

Parallelization strategy determines how tensors are distributed into devices.
We formalize our analysis by logically setting that input and output tensors of
operators are evenly distributed among the devices (e.g., GPU0-7 in Fig. 1). The
analysis of parallelization strategy is thus equivalent to the analysis of commu-
nication quantity. In other words, less communication quantity leads to a bet-
ter parallelization strategy. Communication and computing overlap techniques
[20,21] are orthogonal to our cost analysis: our goal is to find the minimized
communication cost regardless of whether overlap techniques are applied.

For each level of the recursive tree, the number of branches depends on the
architecture. A specific number of branches acquires a specific set of cost func-
tions. Designing so many cost functions is not realistic. However, each level of
the recursive tree is homogeneous, like GPU0-3 in Fig. 1. It can be transformed
again into a multi-level tree. Besides, in real academic and industrial practice,
the number of devices is usually a power of 2 to achieve the best performance.
Therefore, the recursive tree can be transformed into a full binary tree and
the partitioning of the symmetric architectures can be realized by recursively
dichotomy. As a result, we choose 2-part cost functions to model the cost of par-
titioning an operator into two parts. Our goal is to find the optimal parallelism
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policy, so we assume that all devices operate normally and ignore small perfor-
mance differences between the same devices. In addition, the heterogeneity of
symmetric architecture can be decomposed. Based on the above assumptions,
homogeneity is applied to all the 2-part analyses in this paper.

It is obvious that partitioning an operator evenly into 2p part can be done
by dichotomy with p recursions. Take a matrix as an example of a tensor, a
matrix partitioned into four parts along columns can be the result of partitioning
into two parts along column recursively twice; a matrix can be partitioned into
2 × 2 grid by firstly partitioning along column and then recursively along row.
Therefore the recursive 2-part partitioning can be well mapped to the symmetric
architecture.

In order to realize the 2-part partitioning, tensors are partitioned along
one of the tensor’s dimensions at each recursion step. An operator has several
input/output tensors, but only a few combinations of tensors’ 2-part partitions
may lead to optimal communication. For example, partitioning the two input
tensors of MatMul along column dimension will never lead to optimal commu-
nication: all the data need to be communicated. These combinations of tensors’
2-part partitions are defined as Possible Partition Dimensions (PPDs). For each
PPD, a cost function is defined to return the communication data quantity. The
training of DNN is an iterative process that consists of forward and backward
propagation. Forward Propagation computes the operators with the intermedi-
ate parameters from input to output and gets a loss that estimates the distance
between the output and the expected value. Backward Propagation will update
the intermediate parameters from output to input based on the loss using an
optimizer like Adam [22].

There exist two kinds of data communication during the DNN training:

– Qop is the quantity of data needed to be transferred inside an operator. It
is composed of Qf and Qb. Qf is the communication quantity between two
groups of devices during the forward propagation. Qb denotes the communi-
cation for updating the parameters during the backward propagation process.

– Qredist is the communication quantity between two connected operators. In
fact, the output tensor of the previous operator is the same as the input
tensor of the second operator. However, as this tensor may have different
parallelization strategies for the two connected operators, the data may need
to be redistributed. Qredist models this specific communication.

2.1 Communication Inside Operators: Qop

An operator is defined by a type that describes its computational task (e.g.,
Type = Add, Conv, MatMul, Relu, etc.). It takes tensors as input and produces
tensors as output. We denote Type.DP = {D0,D1, . . . Dk} the set of PPDs for
each type of operator. Each PPD can be converted to the partition dimensions
of all the tensors in an operator. We denote d0, d1, ... the dimensions of a tensor.
For example for the MatMul (Matrix Multiplication) operator MatMul .DP =
{i, k, j}. The two input tensors are respectively of i × k and k × j dimensions
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and the output tensor is of i × j dimension. As shown in Fig. 2 (bottom), PPD
i corresponds to partition the first input tensor and output tensor along d0 and
the second input tensor along either d0 or d1.

We define the following notions:

– shape(tensor) denotes the shape of a tensor (e.g., shape(t) = [4; 4]).
– shape(D) denotes the shape of a PPD of an operator (e.g., shape(i) = 4).
– shape(d) denotes the shape of a dimension of a tensor (e.g., shape(d0) = 4).
– inputn denotes an input tensor according to its index.
– Qop(D) denotes the Qop of a PPD where Qop(D) = Qf (D) + Qb(D).
– Qredist (d , d ′) denotes the operator’s Qredist from the partition dimension d

of its tensor and another dimension d′ of the its connected operators’ tensor.

Qf Communication occurs when an operator is executed on multiple devices.
Each device possesses only a part of data. Therefore, data need to be moved
between devices to perform the whole computation. We detail here the most
representative operators.

Fig. 2. MatMul semantics (Color
figure online)

MatMul OP is the operator for Matrix
Multiplication, described as:

output[i][j] →
∑

k

input0[i][k] × input1[k][j].

If we cut according to the output-
independent dimension, a reduction still needs
to occur to combine the partial results. The
dimension cut is not specified for the output
(represented with a diagonal dashed line on
purple in Fig. 2) but still exists. Hence, for any
dimension cut, each device is responsible for
computing half of the output tensor. To this end, each device preserves half of
its data and communicates the other half to the other device. As we assume
both communications can happen simultaneously, the communication cost will
be proportional to the amount of data communicated by one of them. The 2-part
cost function is as follows:

Qf (k) =
shape(i) × shape(j)

2
.

If we cut according to an output-dependent dimension, partial results simply
have to be concatenated. However, one input is wholly needed by each device
to compute their partial result. As this input will be cut eventually, each device
must receive the half that it does not possess. The 2-part cost functions are
presented below:

Qf (i) =
shape(j) × shape(k)

2
,

Qf (j) =
shape(i) × shape(k)

2
.
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Conv OP represents N-dimension convolutions operators. We name one of
the inputs as kernel. b, ci, co are batch, input channel, output channel dimensions
respectively. x and z are computing dimensions. s is stride and d is dilation rate.
Bold italic refers to vector. The description is as follows:

output[b][x][co] →
∑

zci

(kernel[z][ci][co]

× input0[b][x0s0 + d0z0]...[xn−1sn−1 + dn−1zn−1][ci]).

If we cut according to an output-dependent dimension:

Qf (b) =
∏

shape(kernel)
2

, Qf (k) =
∏

shape(input0)
2

,

∀i ∈ x, Qf (i) =
∏

shape(kernel)
2

+
∏

shape(input0)
2

.

If we cut according to a output-independent dimension:

∀i ∈ z, Qf (i) =
∏

shape(input0)
2

+
∏

shape(output)
2

,

Qf (q) =
∏

shape(output)
2

.

Elementwise OP computes each element independently without any com-
munication, for example, Add, Sub, Mul, ReLU, Log, etc. The description of Add
is: output[µ] → input0[µ] + input1[µ] and the cost will be ∀i ∈ µ, Qf (i) = 0.

Qb is the communication quantity at the end of each backward propagation.
Certain operators’ need to update one of its tensors during the training. These
tensors are referred as Parameters. When the batch dimension is chosen, param-
eters hosted by each device need to be communicated to compute the average
value. We group the parameter tensors as param. The communication quantity
of a 2-part partitioning is defined Qb =

∏
shape(param)

2 .

2.2 Communication Between Operators: Qredist

For two connected operators, the output tensor of the first one is the same ten-
sor as the input tensor of the second one. If the two operators choose different
partition dimensions for this tensor, it needs to be redistributed which induces
communication cost named Qredist. Figure 3 shows two simple situations of redis-
tribution cost.
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Fig. 3. Redistribution cost
(Color figure online)

If the partition strategy of an operator’s input
tensor and its connected output tensor of the pre-
vious operator are equal, Qredist(d0, d0) = 0. Oth-
erwise, Qredist(d0, d1) = (shape(d0) × shape(d1))/4.
As shown in the second part of Fig. 3, the blue part
and red part respectively represent the data stored
in the first and second devices. In this situation, a
half of the blue part needs to be transferred to the
second device while a half of the red part needs to
be transferred to the first device. The cost equals
to the max value between them because both transfers happen simultaneously.
More generally for the typical operators in DNNs, Qredist is computed from the
shape of the tensor.

3 Flex-Edge Recursive Graph

Choosing the optimal strategy for a DNN necessitates to consider all the oper-
ators together. For each operator, the redistribution cost depends on the paral-
lelization strategies of its connected operators. It leads to an exponential search-
ing complexity with regard to the number of operators. We propose a topology-
independent graph structure named Flex-Edge Recursive Graph (FER Graph)
and a traversal order to avoid backtracking on the graph traversal in this section.

3.1 Preliminary Definitions

An operator in the computation graph is defined as Op. Each Op has its type
Op.Type. The shape of Op is defined by Op.Shape = [(di ∈ Op.Type.DP :
int) | 0 ≤ i ≤ m − 1] where m is the number of dimension names. Also taking
MatMul as an example, if its shape is [(i : 10), (k : 20), (j : 30)], the operator
computes the product of a 10 × 20 matrix by a 20 × 30 matrix.

Definition 1. The partition strategy of an operator is defined by

Op.Strategy = [dj | dj ∈ Op.Type.DP ]

Op.Strategy is a sequence of dimension names that indicates that the operator
is partitioned firstly in its d0 dimension, secondly in the d1 dimension, and so
on. The dimension names in Op.Strategy are not necessarily different.

Definition 2. A computation graph is defined as G = (V,E) where V is
a set of Vertices and E is a set of Edges. A vertex v ∈ V is a tuple
(Op.Type,Op.Shape,Op.Strategy). An edge e is defined as a tuple (v1, v2, i1, i2)
where v1, v2 ∈ V and i1, i2 ∈ N. It means that the i2 input tensor of the operator
of v2 corresponds to the i1 output tensor of the operator of v1.
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As an example, MatMul with two input matrices whose shapes are respec-
tively e.g., 20 × 30 and 30 × 40. It can be represented as such vertex in the
computation graph: (Op.Type : MatMul ,Op.Shape : [(i : 20)(k : 40)(j : 30)],
Op.Strategy : ∅). Note that the MatMul operator has three PPDs {i, k, j}.
Op.Strategy is empty at the beginning of the algorithm and will be filled with
chosen parallelization strategies by the double recursive algorithm discussed in
Sect. 4. A Strategy = [i, i, i, k] indicates that the strategies chosen for this oper-
ator are along i dimension three times first and then along k dimension once.

3.2 FER Graph

Suppose G = (V,E) a computation graph of a DNN to be partitioned.

Definition 3. Let σ denote an order on the vertices v ∈ V such that σi(V ) ∈ V
is the ith visited vertex. From σ order, the Flex-Edge Recursive Graph (FER
Graph) Gf can be redefined as

Gf = (σ(V ), E)

Associated with the FER graph Gf a list of sub-graphs is defined in order to
establish a traversal rule. This list is built thanks to a concatenation operator
denoted ++ .

Definition 4. Let the FER graph Gf = (σ(V ), E), the list of sub-graphs G =
[Gi

f = (σ(Vi), Ei)] is defined as G0
f = (<>, {}) and Gi

f = Gi−1
f ++σi(V ) with

∣
∣
∣
∣
∣
∣
∣
∣

Vi = Vi−1 ∪ σi(V )
Ei = Ei−1 ∪ Ēi

Ēi = {ej ∈ E | j < i, ej = (σi(V ), σj(V ), k1, k2)}
∪ {ej ∈ E | j < i, ej = (σj(V ), σi(V ), k1, k2)}

Fig. 4. Traversal of Flex-Edge graph (the
number after the colon denotes the order of
the vertex. v2 : 3 means v2 is ordered at the
third place).

Figure 4 illustrates an example
where the upper left corner is a
FER Graph with ordered vertices
< v1, v4, v2, v3 >. The traversal is a
process of reconstructing the origi-
nal FER Graph from an empty one.
The vertex v1 is added first. None
of the other vertices connected to
v1 is added, so no edge is added to
G1

f , then vertex v4 is added. Sim-
ilarly, no edge is together visited
with v4. When v2 is added, their
neighbors v1 and v4 are already
in the graph. Therefore, e1, e3 are
added with v2. After all the concatenations, G = [(<>, {}), (< v1 >, {}),
(< v1, v4 >, {}), (< v1, v4, v2 >, {e1, e3}), G)].
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3.3 Traversing Order

Before discussing the traversal order, we first define the minCost function to
compare the quality of strategies and to choose the optimal one. The function
takes a vertex and its together visiting edges as inputs, then searches the pos-
sible partition dimensions and finds the optimal strategy which minimizes the
communication cost.

Let Gi−1
f , Gi

f ∈ G such that Gi
f = Gi−1

f ++σi(V ) = (σ(Vi), Ei), let op the
operator associated to σi(V ). We defined the cost function for an operator:
Cost(d, σi(V ), Ēi) = Qop(d) +

∑
e∈Ēi

Qredist (e, d).
Function minCost(σi(V ), Ēi) returns the chosen strategy dr which

minimizes the cost function s.t. Cost(dr, σi(V ), Ēi) = MINd∈σi(V ).Type.DP

Cost(d, σi(V ), Ēi).
The idea of our traversal order is to find the optimal strategy for the new

sub-graph Gi
f when concatenating a vertex σi(V ) to a sub-graph Gi−1

f . So that
by finding the optimal strategy for every sub-Graph recursively, we can ensure
the optimal strategy for the whole graph.

For a vertex, dopmin denotes a dimension in DP , such that Qop(dopmin) =
MINd′∈DP

Qop(d′). If there is no Qredist cost between σi(V ) and Gi−1
f , the optimal

strategy of Gi
f is the union of the optimal strategy of Gi−1

f and the dopmin of
σi(V ). However, if Qredist is large, either σi(V ) or Gi−1

f needs to change its
strategy. In order to avoid backtracking, we define the order σ(V ) to ensure
that it is always the strategy of σi(V ) that needs to be changed. This change
of strategy is referred as a compromise. Recall that Qredist is either 0 or a fixed
positive value. The compromise consists in changing the dopmin to a strategy
dredist s.t. Qredist = 0. In this way, the price of reducing an operator’s Qredist to
zero is the increment of its Qop. Therefore, the compromise price of an operator
(i.e., the price to change the strategy of an operator) is defined as γσi(V ) =
Qop(dredist ) − Qop(dopmin). The order σ(V ) of the operators is in descending
order of their compromise price γop .

Definition 5. Let Gf = (σ(V ), E) a FER graph such that the number of V is
n, such that

∀ 0 ≤ j < k ≤ n, σj(V ) is ordered before σk(V ) if γσj(V ) < γσk(V )

The list of sub-graphs of Gf is referred as G = [Gi
f = (σ(Vi), Ei)].

We define compromise price of the sub-graph Gi−1
f as γGi−1

f
. It is obvious that

γGi−1
f

≥ γσi−1(V ) ≥ γσi(V ). As a result, if we can order the vertices in descending
order according to its compromise price, the minimized communication cost can
be guaranteed.

However, it is not trivial to find the dredist because Qredist relies on the con-
nected vertices. It seems that we return back to the original complexity problem,
but the features of DNN help us to handle it. Actually, what we really need is
the value of Qop(dredist) instead of dredist. For typical operators, we can find
their compromise price γ because of the characteristics of their semantics.
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MatMul OP. MatMul has three PPDs {i, j, k}. It needs to compromise when
its dopmin leads to a large Qredist . However, no matter dopmin is i, j or k, when
it compromises to the other two dimensions, Qredist becomes 0.

The compromise price of MatMul is defined as γ = min(Qop(d0), Qop(d1))−
Qop(dopmin). d0,d1 are defined as the other two PPDs except dopmin.

Conv OP. Although Conv has many possible partition dimensions, in cur-
rent real Convolution Neural Networks (e.g., VGG [10], ResNet [4]), only batch
dimension b and input channel dimension k will be chosen to cut. The reason is
that in a DNN, the size of the kernels is very small so that partitioning kernel
tensor usually leads to a super large communication cost. Besides, the channel
number increases from input to output of DNN, so that the size of the output
tensor is always much bigger than the input.

As there remain only two possible partition dimensions, let d0 denotes
the other dimension except dopmin . The compromise price is defined as γ =
Qop(d0) − Qop(dopmin).

Elementwise OP. Qop of Elementwise OP is always 0, it is evident they do
not have compromise price. When an Elementwise OP is located between two
operators who have Qredist between them, it will hide Qredist between the two
neighbors. However, it is not true since the Elementwise OP cannot be adapted to
both neighbor operators. To avoid this problem, Elementwise OP are eliminated
before the strategy searching. They will reuse one of neighbor’s strategy.

Other OP. Except MatMul, Conv, and Elementwise OP, all the other operators
(MaxPool, ReduceMean, ReduceSum, ReduceMax, Squeeze... etc.), we noticed
in the real DNNs, may have multiple dimensions but they only have two values
of Qop . In other words, Qop of several dimensions has the same value. Let d0
denotes the dimension which has a different Qop as dopmin . The compromise
price is defined as γ = Qop(d0) − Qop(dopmin).

4 Double Recursive Algorithm

Algorithm 1 describes D-Rec composed of Inner Recursion and Outer Recursion.
The traversing of FER Graph is called Inner Recursion which takes charge of
choosing a dimension in each vertex to partition it into two parts while Outer
Recursion is responsible for extending this 2-part partitioning to all devices.

Outer Recursion takes a FER Graph Gf with an empty strategy and the
number of partition times N as inputs and returns the strategy assigned Graph
as the output. The initial N is obtained from the number of devices. The function
Reorder sorts the vertex in FER Graph Gf according to the compromise price
(see Sect. 3.3). At each Outer Recursion step, all the operators in the graph
are partitioned into two parts with Inner Recursion. The function ShapeUpdate
updates the Shape of each Vertex in Gf according to the chosen Strategy. N is
decreased by one at each recursion step. Outer Recursion ends when N = 0.

Inner Recursion takes the sub-graph list G and an empty FER Graph Gf in

as inputs at each Outer Recursion step. pop end() denotes the operation on G
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that pops the last graph in the list: G = pop end(G),G ← G−G. In Algorithm 1,
vG denotes the visited vertex to construct G from its predecessor and ĒG denotes
the added new edges. At each step of Inner Recursion, a sub-graph G is popped,
and the strategy of its vertices will be chosen by minCost(vG, ĒG) according
to the symbolic cost model. The reconstructed Graph G′

f in is composed by
concatenating the strategy updated vertex vG. The process is recursively applied
on the sub-graph list G. The recursion ends when all vertices have been visited.

Algorithm 1. Double-Recursive Algorithm
Input: FER Graph Gf whose Strategy is empty. The number of partition times N .
Output: FER Graph Gf with chosen strategy.
1: function OuterRecursion(Gf , N)
2: if N = 0 then
3: return Gf

4: else
5: (σ,G) = Reorder(Gf )
6: Gf in = InnerRecursion(G, (∅, ∅))

7: G
′
f = ShapeUpdate(Gf in)

8: return OuterRecursion(G
′
f , N − 1)

9: end if
10: end function
11:
12: function InnerRecursion(G, Gf in)
13: if G = ∅ then
14: return Gf in

15: else
16: G = pop end(G)
17: dr = minCost(vG, ĒG)
18: vG.OP .Strategy + [dr]
19: G′

f in = Gf in ++ vG
20: return InnerRecursion(G, G′

f in)
21: end if
22: end function

5 Experiments

This section aims at evaluating the searching efficiency of D-Rec and the quality
of the found strategy. The accuracy and training loss of the DNN are not dis-
cussed because our approach does not change the semantics of the DNN. These
two metrics remain the same as training on a single node.

5.1 Environment Setup

The experiments in this section were run on either an Atlas 900 AI cluster [23]
or a GPU cluster. Each node of the Atlas cluster is composed of two ARM
CPUs and eight Huawei Ascend910 accelerators. Each Ascend 910 accelerator
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is equipped with a network module, and all Ascend 910 accelerators are inter-
connected directly even from a different node. Each node of the GPU cluster
is composed of two Intel Xeon E5-2680 CPUs and eight NVIDIA V100 GPUs.
All GPUs of a node communicate with each other via the PCIe (e.g., Fig. 1).
Our D-Rec was run on CPU, and the DNN training was run on accelerators. We
used MindSpore1 as the DNN training platform to implement our proposal2.
We also implemented a dynamic programming (DP) algorithm of OptCNN [11]
to compare with. The Imagenet dataset3 was used to train image classification
DNNs like ResNet and VGG.

5.2 Searching Efficiency

We took ResNet101 [4] and BERT [5], two representative DNNs, to validate
the strategy searching speed of D-Rec. The computation graph of ResNet101
was fixed, and we varied the number of devices from 2 to 1024 (Fig. 5(a)). The
searching time of D-Rec on ResNet101 increases linearly from 0.383 s to 0.825 s.
DP took nearly 2 h to find a strategy for 16 devices, 3.5 h for 32 devices and
failed to find any strategy for 64 devices after hours.

We then fixed the number of devices to 8 and varied the number of hidden
layers of BERT from 4 to 24 (Fig. 5(b)) since the number of operators in pro-
portion to the number of hidden layers. The searching time of D-Rec on the
variants of BERT is between 4.5 s and 27.7 s. DP does not work on these multi-
input graph networks. The experiments showed that D-Rec could handle general
large computation graphs in few seconds with a linear growth trend.
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Fig. 5. Training efficiency

5.3 Strategy Quality

Training throughput, often defined as the capacity of processing Images Per
Second (IPS), is used to evaluate the quality of a parallelization strategy. DP is
1 https://www.mindspore.cn/en.
2 https://github.com/mindspore-ai/mindspore/tree/master/mindspore/ccsrc/

frontend/parallel/auto parallel/rec core.
3 http://image-net.org/.

https://www.mindspore.cn/en
https://github.com/mindspore-ai/mindspore/tree/master/mindspore/ccsrc/frontend/parallel/auto_parallel/rec_core
https://github.com/mindspore-ai/mindspore/tree/master/mindspore/ccsrc/frontend/parallel/auto_parallel/rec_core
http://image-net.org/


214 H. Wang et al.

used as the benchmark because with sufficient profiling its result can be regarded
as the state of the art.

The IPS of VGG16, VGG19, ResNet50, ResNet101, and ResNet152 were sim-
ilar between the parallelization strategies generated by D-Rec and by sufficient-
profiled DP (Fig. 6(a)). It validates the quality of the parallelization strategy
generated by D-Rec for different DNNs. However, the strategies generated by
insufficient-profiled DP on VGG led worse IPS (blue bars in Fig. 6(a)). Thanks
to our symbolic approach, D-Rec does not rely on such time-consuming profiling
that DP requires.
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We then fixed the DNN model as ResNet101 and varied the architecture of
the training machine. We first varied the number of Ascend 910 accelerators
from 2 to 32. Then we used the GPU cluster to compare with the Atlas cluster.
Lastly we varied the communication topology on the GPU cluster (Fig. 6(b)).
In all the above cases, D-Rec obtained a similar IPS as DP. The experiments
consistently validate the strategy quality of D-Rec. It shows that our 2-part
partitioning recursion on symmetric architectures could eliminate the communi-
cation capacity g without impact on the strategy quality.

We observed from Fig. 6(b) that by increasing the number of devices, IPS
increases while the training time decreases. However, Fig. 5 shows that using
more training devices makes strategy searching slower. The searching time may
thus overcome the training time. Thanks to the efficiency of D-Rec, DNNs can
be trained on large clusters without such issues.

6 Conclusion

We presented a symbolic cost analysis with FER Graph and D-Rec to generate a
parallelization strategy of DNN training. The FER Graph data structure and its
traversal ordering successfully guarantee the quality of generated parallelization
strategy. Meanwhile, D-Rec reduces the searching complexity dramatically from
exponential (i.e., OptCNN [11]) down to linear while preserving the paralleliza-
tion strategy quality with FER Graph. Our experiments validate our claims and
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show that the optimal parallelization strategies can be generated in seconds.
Not only CNNs but also general large DNNs can now be trained efficiently in
parallel.

Our symbolic cost analysis could be used to discover better parallel algo-
rithms for DNN training. The main limitation of our approach is that we do not
consider inter-layer partitioning (e.g., pipeline parallelism). So we may obtain
sub-optimal strategies for very large natural language processing networks like
GPT-3 [24]. Extending our symbolic cost analysis for pipeline parallelism is
planned for future work. It could also be extended to exploit new possibilities to
accelerate DNN computing such as operator fusion in the future. Further studies
to find out the way to cover heterogeneous architectures are desirable too.
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