
Eugenio Cinquemani
Loïc Paulevé (Eds.)

 123

LN
BI

 1
28

81

19th International Conference, CMSB 2021
Bordeaux, France, September 22–24, 2021
Proceedings

Computational Methods
in Systems Biology

Lecture Notes in Bioinformatics 12881

Subseries of Lecture Notes in Computer Science

Series Editors

Sorin Istrail
Brown University, Providence, RI, USA

Pavel Pevzner
University of California, San Diego, CA, USA

Michael Waterman
University of Southern California, Los Angeles, CA, USA

Editorial Board Members

Søren Brunak
Technical University of Denmark, Kongens Lyngby, Denmark

Mikhail S. Gelfand
IITP, Research and Training Center on Bioinformatics, Moscow, Russia

Thomas Lengauer
Max Planck Institute for Informatics, Saarbrücken, Germany

Satoru Miyano
University of Tokyo, Tokyo, Japan

Eugene Myers
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

Marie-France Sagot
Université Lyon 1, Villeurbanne, France

David Sankoff
University of Ottawa, Ottawa, Canada

Ron Shamir
Tel Aviv University, Ramat Aviv, Tel Aviv, Israel

Terry Speed
Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia

Martin Vingron
Max Planck Institute for Molecular Genetics, Berlin, Germany

W. Eric Wong
University of Texas at Dallas, Richardson, TX, USA

More information about this subseries at http://www.springer.com/series/5381

http://www.springer.com/series/5381

Eugenio Cinquemani · Loïc Paulevé (Eds.)

Computational Methods
in Systems Biology
19th International Conference, CMSB 2021
Bordeaux, France, September 22–24, 2021
Proceedings

Editors
Eugenio Cinquemani
Univ. Grenoble Alpes, Inria
Grenoble, France

Loïc Paulevé
Univ. Bordeaux, Bordeaux INP, CNRS,
LaBRI, UMR5800
Talence, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Bioinformatics
ISBN 978-3-030-85632-8 ISBN 978-3-030-85633-5 (eBook)
https://doi.org/10.1007/978-3-030-85633-5

LNCS Sublibrary: SL8 – Bioinformatics

© Springer Nature Switzerland AG 2021
Chapters 9, 11 and 18 are licensed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in
the chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-85633-5
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the papers presented at CMSB 2021, the 19th Interna-
tional Conference on Computational Methods in Systems Biology, held during
September 22–24, 2021 in a hybrid format, allowing for in-person participation in
Bordeaux, France, and for online participation.

The CMSB annual conference series, initiated in 2003, provides a unique discussion
forum for computer scientists, biologists, mathematicians, engineers, and physicists
interested in a system-level understanding of biological processes. Topics covered by the
CMSB proceedings include formalisms for modeling biological processes; frameworks
for model verification, validation, analysis, and simulation of biological systems; high-
performance computational systems biology; model inference from experimental data;
multi-scale modeling and analysis methods; computational approaches for synthetic
biology; machine learning and data-driven approaches; microbial ecology modeling
and analysis; methods and protocols coping with populations and their variability; and
models, applications, and case studies in systems and synthetic biology.

Therewere a total of 54 submissions over the 4 conference tracks (regular papers, tool
papers, highlight presentation proposals, and posters). Every regular paper was reviewed
by at least three Program Committee members, whereas every tool paper was reviewed
by twoProgramCommitteemembers and twoTool EvaluationCommitteemembers. The
latter committee provided a thorough evaluation of the tool quality, in terms of usability,
accessibility, reproducibility, and documentation. The committee decided to accept 13
of the 25 submitted regular papers and 5 of the 7 submitted tool papers for publication
in this volume and presentation. The conference also included 4 of the 7 proposed
highlight presentations and 16 posters not included in the proceedings. The program
of CMSB was further enriched by five notorious invited speakers: Diego di Bernardo
(TIGEM, Italy), Laurence Calzone (Institut Curie, Paris), Giulia Giodano (University of
Trento, Italy), Yang-YuLiu (HarvardMedical School,USA), and Ion Petre (University of
Turku, Finland).Additional information aboutCMSB2021 is available on the conference
website at https://cmsb2021.labri.fr.

We are deeply grateful to the members of the Program Committee, Tool Evaluation
Committee, and the external reviewers for their invaluable contribution to the reviewing
process and the feedback they provided to the authors. Special thanks go to Auriane
Dantès and Isabelle Garcia for taking care of the administrative aspects of the local
organization, to Clémence Frioux, Misbah Razzaq, and Laurent Simon for their help
in scientific and practical organizational matters, to Samuel Pastva as chair of the Tool
Evaluation Committee, and to François Fages and all themembers of the CMSBSteering
Committee, for their advice on the organization and the running of the conference.
We thank EasyChair for the support offered by its conference system in the reviewing
process and the production of these proceedings, and Springer for publishing the CMSB
proceedings in its Lecture Notes in Computer Science series. Finally, we are grateful
to the Laboratoire Bordelais de Recherche en Informatique (LaBRI) for supporting and
hosting CMSB 2021, as well as to CNRS, Université de Bordeaux and its Département

https://cmsb2021.labri.fr

vi Preface

Santé publique, Bordeaux INP, Inria, ANR, and the SysNum cluster of excellence, for
their financial support.

Last but not least, we immensely thank all authors, speakers, and contributors for
making CMSB a first-class scientific event.

September 2021 Eugenio Cinquemani
Loïc Paulevé

Organization

Program Committee

Eugenio Cinquemani (Co-chair) Inria, France
Loïc Paulevé (Co-chair) CNRS/LaBRI, Bordeaux, France
Alessandro Abate University of Oxford, UK
Claudio Altafini Linköping University, Sweden
Paolo Ballarini CentraleSupelec, France
Ezio Bartocci TU Wien, Austria
Luca Bortolussi University of Trieste, Italy
Luca Cardelli University of Oxford, UK
Milan Ceska Brno University of Technology, Czech Republic
Neil Dalchau Microsoft, USA
François Fages Inria, France
Karoline Faust KU Leuven, Belgium
Jerome Feret Inria, France
Christoph Flamm University of Vienna, Austria
Clémence Frioux Inria, France
Ashutosh Gupta TIFR, India
Jan Hasenauer University of Bonn, Germany
Monika Heiner Brandenburg Technical University

Cottbus-Senftenberg, Germany
Jane Hillston The University of Edinburgh, UK
Ina Koch Johann Wolfgang Goethe University Frankfurt am

Main, Germany
Jan Kretinsky Technical University of Munich, Germany
Jean Krivine CNRS, France
Pedro T. Monteiro INESC-ID/IST - Universidade de Lisboa, Portugal
Laura Nenzi University of Trieste, Italy
Jun Pang University of Luxembourg, Luxembourg
Nicola Paoletti Royal Holloway, University of London, UK
Ion Petre University of Turku, Finland
Tatjana Petrov University of Konstanz, Germany
Carla Piazza University of Udine, Italy
Ovidiu Radulescu University of Montpellier 2, France
Andre Ribeiro Tampere University, Finland
Maria Rodriguez Martinez IBM, Zurich Research Laboratory, Switzerland
Olivier Roux LS2N, École Centrale de Nantes, France
Guido Sanguinetti The University of Edinburgh, UK
Heike Siebert DFG Research Center Matheon, Freie Universität

Berlin, Germany
Abhyudai Singh University of Delaware, USA

viii Organization

Scott Smolka Stony Brook Universtiy, USA
Carolyn Talcott SRI International, USA
Adelinde Uhrmacher Universität Rostock, Germany
Andrea Vandin Sant’Anna School of Advanced Studies, Pisa, Italy
Verena Wolf Saarland University, Germany
Christoph Zechner Max Planck Institute of Molecular Cell Biology and

Genetics, Germany
David Šafránek Masaryk University, Czech Republic

Tool Evaluation Committee

Samuel Pastva (Chair) Masaryk University, Czech Republic
Georgios Argyris Technical University of Denmark, Copenhagen,

Denmark
Candan Çelik Comenius University in Bratislava, Slovakia
Laura Cifuentes Fontanals Freie Universität Berlin/Max Planck Institute for

Molecular Genetics, Germany
Aurélien Desoeuvres University of Montpellier, France
Lukrécia Mertová Masaryk University, Laboratory SYBILA,

Czech Republic
Gareth Molyneux University of Oxford, UK
Loïc Paulevé CNRS/LaBRI, Bordeaux, France
Misbah Razzaq Ecole Centrale de Nantes, France

Organization Committee

Auriane Dantès CNRS, LaBRI, France
Clémence Frioux Inria, France
Isabelle Garcia CNRS, LaBRI, France
Misbah Razzaq Inserm BPH, Bordeaux, France
Laurent Simon Bordeaux INP, LaBRI, France

Steering Committee

Alessandro Abate (Guest) University of Oxford, UK
Luca Bortolussi (Guest) University of Trieste, Italy
Luca Cardelli University of Oxford, UK
Eugenio Cinquemani (Guest) Inria Grenoble-Rhône-Alpes, France
Finn Drablos NTNU, Norway
François Fages Inria Saclay île-de-France, France
David Harel Weizmann Institute of Science, Israel
Monika Heiner Brandenburg Technical University

Cottbus-Senftenberg, Germany

Organization ix

Tommaso Mazza IRCCS Casa Sollievo della Sofferenza Mendel,
Italy

Satoru Miyano University of Tokyo, Japan
Loïc Paulevé (Guest) CNRS, LaBRI, France
Ion Petre University of Turku, Finland
Tatjana Petrov (Guest) University of Konstanz, Germany
Gordon Plotkin The University of Edinburgh, UK
Corrado Priami CoSBi/Microsoft Research, University of Trento,

Italy
Guido Sanguinetti (Guest) The University of Edinburgh, UK
Carolyn Talcott SRI International, USA
Adelinde Uhrmacher University of Rostock, Germany
Verena Wolf Saarland University, Germany

Additional Reviewers

Ackermann, Jörg
Backeköhler, Michael
Cairoli, Francesca
Gilbert, David
Klarner, Hannes
Krüger, Thilo
Labarthe, Simon

Mizera, Andrzej

Molyneux, Gareth

Piho, Paul

Regolin, Enrico

Sinzger, Mark

Tonello, Elisa

Contents

Reducing Boolean Networks with Backward Boolean Equivalence 1
Georgios Argyris, Alberto Lluch Lafuente, Mirco Tribastone,
Max Tschaikowski, and Andrea Vandin

Abstraction of Markov Population Dynamics via Generative Adversarial
Nets . 19
Francesca Cairoli, Ginevra Carbone, and Luca Bortolussi

Greening R. Thomas’ Framework with Environment Variables: A Divide
and Conquer Approach . 36
Laetitia Gibart, Hélène Collavizza, and Jean-Paul Comet

Automated Inference of Production Rules for Glycans . 57
Ansuman Biswas, Ashutosh Gupta, Meghana Missula, and Mukund Thattai

Compiling Elementary Mathematical Functions into Finite Chemical
Reaction Networks via a Polynomialization Algorithm for ODEs 74
Mathieu Hemery, François Fages, and Sylvain Soliman

Interpretable Exact Linear Reductions via Positivity . 91
Gleb Pogudin and Xingjian Zhang

Explainable Artificial Neural Network for Recurrent Venous
Thromboembolism Based on Plasma Proteomics . 108
Misbah Razzaq, Louisa Goumidi, Maria-Jesus Iglesias, Gaëlle Munsch,
Maria Bruzelius, Manal Ibrahim-Kosta, Lynn Butler, Jacob Odeberg,
Pierre-Emmanuel Morange, and David Alexandre Tregouet

Neural Networks to Predict Survival from RNA-seq Data in Oncology 122
Mathilde Sautreuil, Sarah Lemler, and Paul-Henry Cournède

Microbial Community Decision Making Models in Batch and Chemostat
Cultures . 141
Axel Theorell and Jörg Stelling

Learning Boolean Controls in Regulated Metabolic Networks:
A Case-Study . 159
Kerian Thuillier, Caroline Baroukh, Alexander Bockmayr,
Ludovic Cottret, Loïc Paulevé, and Anne Siegel

xii Contents

Population Design for Synthetic Gene Circuits . 181
Baptiste Turpin, Eline Y. Bijman, Hans-Michael Kaltenbach,
and Jörg Stelling

Nonlinear Pattern Matching in Rule-Based Modeling Languages 198
Tom Warnke and Adelinde M. Uhrmacher

Protein Noise and Distribution in a Two-Stage Gene-Expression Model
Extended by an mRNA Inactivation Loop . 215
Candan Çelik, Pavol Bokes, and Abhyudai Singh

Aeon 2021: Bifurcation Decision Trees in Boolean Networks 230
Nikola Beneš, Luboš Brim, Samuel Pastva, and David Šafránek

LNetReduce: Tool for Reducing Linear Dynamic Networks with Separated
Timescales . 238
Marion Buffard, Aurélien Desoeuvres, Aurélien Naldi, Clément Requilé,
Andrei Zinovyev, and Ovidiu Radulescu

Ppsim: A Software Package for Efficiently Simulating and Visualizing
Population Protocols . 245
David Doty and Eric Severson

Web-Based Structural Identifiability Analyzer . 254
Ilia Ilmer, Alexey Ovchinnikov, and Gleb Pogudin

BioFVM-X: An MPI+OpenMP 3-D Simulator for Biological Systems 266
Gaurav Saxena, Miguel Ponce-de-Leon, Arnau Montagud,
David Vicente Dorca, and Alfonso Valencia

Author Index . 281

Reducing Boolean Networks
with Backward Boolean Equivalence

Georgios Argyris1 , Alberto Lluch Lafuente1 , Mirco Tribastone2 ,
Max Tschaikowski3 , and Andrea Vandin1,4(B)

1 DTU Technical University of Denmark, Kongens Lyngby, Denmark
2 IMT School for Advanced Studies Lucca, Lucca, Italy

3 University of Aalborg, Aalborg, Denmark
4 Sant’Anna School for Advanced Studies, Pisa, Italy

andrea.vandin@santannapisa.it

Abstract. Boolean Networks (BNs) are established models to qualita-
tively describe biological systems. The analysis of BNs might be infeasi-
ble for medium to large BNs due to the state-space explosion problem.
We propose a novel reduction technique called Backward Boolean Equiv-
alence (BBE), which preserves some properties of interest of BNs. In
particular, reduced BNs provide a compact representation by grouping
variables that, if initialized equally, are always updated equally. The
resulting reduced state space is a subset of the original one, restricted to
identical initialization of grouped variables. The corresponding trajecto-
ries of the original BN can be exactly restored. We show the effectiveness
of BBE by performing a large-scale validation on the whole GINsim BN
repository. In selected cases, we show how our method enables analyses
that would be otherwise intractable. Our method complements, and can
be combined with, other reduction methods found in the literature.

Keywords: Boolean network · State transition graph · Attractor
analysis · Exact reduction · Ginsim repository

1 Introduction

Boolean Networks (BNs) are an established method to model biological sys-
tems [28]. A BN consists of Boolean variables (also called nodes) which represent
the activation status of the components in the model. The variables are com-
monly depicted as nodes in a network with directed links which represent influ-
ences between them. However, a full descriptive mathematical model underlying
a BN consists of a set of Boolean functions, the update functions, that govern the
Boolean values of the variables. Two BNs are displayed on top of Fig. 1. The BN
on the left has three variables x1, x2, and x3, and the BN on the right has two
variables x1,2 and x3. The dynamics (the state space) of a BN is encoded into a

Partially supported by the DFF project REDUCTO 9040-00224B, the Poul Due Jensen
Foundation grant 883901, and the PRIN project SEDUCE 2017TWRCNB.

c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 1–18, 2021.
https://doi.org/10.1007/978-3-030-85633-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_1&domain=pdf
http://orcid.org/0000-0002-3203-0410
http://orcid.org/0000-0001-7405-0818
http://orcid.org/0000-0002-6018-5989
http://orcid.org/0000-0002-6186-8669
http://orcid.org/0000-0002-2606-7241
https://doi.org/10.1007/978-3-030-85633-5_1

2 G. Argyris et al.

state transition graph (STG). The bottom part of Fig. 1 displays the STGs of the
corresponding BNs. The boxes of the STG represent the BN states, i.e. vectors
with one Boolean value per BN variable. A directed edge among two STG states
represents the evolution of the system from the source state to the target one.
The target state is obtained by synchronously applying all the update functions
to the activation values of the source state. There exist BN variants with other
update schema, e.g. asynchronous non-deterministic [47] or probabilistic [43].
Here we focus on the synchronous case. BNs where variables are multivalued, i.e.
can take more than two values to express different levels of activation [46], are
supported via the use of booleanization techniques [18], at the cost, however, of
increasing the number of variables.

x1(t+ 1) = ¬x3(t) ∨ x1(t)
x2(t+ 1) = x1(t) ∨ x2(t) ∨ ¬x3(t)
x3(t+ 1) = x2(t) ∧ ¬x3(t)

========⇒
x1, x2 : BBE

x1,2(t+ 1) = ¬x3(t) ∨ x1,2(t)
x3(t+ 1) = x1,2(t) ∧ ¬x3(t)

Fig. 1. A BN (top-left), its STG (bottom-left), the BBE-reduced BN (top-right) and
its (reduced) STG (bottom-right).

BNs suffer from the state space explosion problem: there are exponentially
many STG states with respect to the number of BN variables. This hampers BN
analysis in practice, calling for reduction techniques for BNs. There exist manual
or semi-automated ones based on domain knowledge. Such empirical reductions
have several drawbacks: being semi-automated, they are error-prone, and do
not scale. Popular examples are those based on the idea of variable absorption,
proposed originally in [34,41,48]. The main idea is that certain BN variables
can get absorbed by the update functions of their target variables by replacing
all occurrences of the absorbed variables with their update functions. Other
methods automatically remove leaf variables (variables with 0 outgoing links)
or frozen variables (variables that stabilize after some iterations independently
of the initial conditions) [4,39]. Several techniques [2,23] focus on reducing the
STGs rather than the BN generating them. This requires to construct the original
STG, thus still incurring the state space explosion problem.

Our research contributes a novel mathematically grounded method to
automatically minimize BNs while exactly preserving behaviors of interest.
We present Backward Boolean Equivalence (BBE), which collapses backward
Boolean equivalent variables. The main intuition is that two BN variables are

Reducing Boolean Networks with Backward Boolean Equivalence 3

BBE-equivalent if they maintain equal value in any state reachable from a state
wherein they have the same value. In the STG in Fig. 1 (left), we note that
for all states where x1 and x2 have same value (purple boxes), the update
functions do not distinguish them. Notably, BBE is that it can be checked
directly on the BN, without requiring to generate the STG. Indeed, as depicted
in the middle of Fig. 1, x1 and x2 can be shown to be BBE-equivalent by
inspecting their update functions: If x1, x2 have the same value in a state,
i.e. x1 (t) = x2 (t), then their update functions will not differentiate them since
x2(t + 1) = x1(t) ∨ x2(t) ∨ ¬x3(t) = x1(t) ∨ x1(t) ∨ ¬x3(t) = x1(t) ∨ ¬x3(t) =
x1(t + 1). We also present an iterative partition refinement algorithm [36] that
computes the largest BBE of a BN. Furthermore, given a BBE, we obtain a BBE-
reduced BN by collapsing all BBE-equivalent variables into one in the reduced
BN. In Fig. 1, we collapsed x1 , x2 into x1 ,2 . The reduced BN faithfully preserves
part of the dynamics of the original BN: it exactly preserves all states and paths
of the original STG where BBE-equivalent variables have same activation sta-
tus. Figure 1 (right) shows the obtained BBE-reduced BN and its STG. We can
see that the purple states of the original STG are preserved in the one of the
reduced BN.

We implemented BBE in ERODE [10], a freely available tool for reducing
biological systems. We built a toolchain that combines ERODE with several tools
for the analysis, visualization and reduction of BNs, allowing us to apply BBE
to all BNs from the GINsim repository (http://ginsim.org/models repository).
BBE led to reduction in 61 out of 85 considered models (70%), facilitating STG
generation. For two models, we could obtain the STG of the reduced BN while
it is not possible to generate the original STG due to its size. We further demon-
strate the effectiveness of BBE in three case studies, focusing on their asymp-
totic dynamics by means of attractors analysis. Using BBE, we can identify the
attractors of large BNs which would be otherwise intractable.

The article is organized as follows: Sect. 2 provides the basic definitions and
the running example based on which we will explain the key concepts. In Sect. 3,
we introduce BBE, present the algorithm for the automatic computation of max-
imal BBEs, and formalize how the STGs of the original and the reduced BN are
related. In Sect. 4, we apply BBE to BNs from the literature. In Sect. 5 we discuss
related works, while Sect. 6 concludes the paper.

2 Preliminaries

BNs can be represented visually using some graphical representation which, how-
ever, might not contain all the information about their dynamics [29]. An exam-
ple is that of signed interaction (or regulatory) graphs adopted by the tool Gin-
Sim [31]. These representations are often paired with a more precise description
containing either truth tables [39] or algebraic update functions [45]. In this
paper we focus on such precise representation, and in particular on the latter.
However, in order to better guide the reader in the case studies, wherein we
manipulate BNs with a very large number of components, we also introduce
signed interaction graphs.

http://ginsim.org/models_repository

4 G. Argyris et al.

Fig. 2. (Left) the BN of cortical area development from [25]; (Right) its signed inter-
action graph.

We explain the concepts of current and next sections using the simple BN
of Fig. 2 (left) taken from [25]. The model refers to the development of the
outer part of the brain: the cerebral cortex. This part of the brain contains
different areas with specialised functions. The BN is composed of five variables
which represent the gradients that take part in its development: the morphogen
Fgf8 and four transcription factors, i.e., Emx2, Pax6, Coup tfi, Sp8. During
development, these genes are expressed in different concentrations across the
surface of the cortex forming the different areas.

Figure 2 (right) displays the signed interaction graph that corresponds to the
BN. The green arrows correspond to activations whereas the red arrows corre-
spond to inhibitions. For example, the green arrow from Sp8 to Pax6 denotes
that the former promotes the latter because variable xSp8 appears (without nega-
tion) in the update function of xPax6 , whereas the red arrow from Pax6 to Emx2
denotes that the former inhibits the latter because the negation of xPax6 appears
in the update function of xEmx2 .

We now give the formal definition of a BN:

Definition 1. A BN is a pair (X,F) where X = {x1, ..., xn} is a set of variables
and F = {fx1 , ..., fxn

} is a set of update functions, with fxi
: Bn → B being the

update function of variable xi.

A BN is often denoted as X(t + 1) = F (X, t), or just X = F (X). In Fig. 2
we have X = {xFgf8 , xPax6 , xEmx2 , xSp8 , xCoup tfi}.

The state of a BN is an evaluation of the variables, denoted with the vector
of values s = (sx1 , . . . , sxn) ∈ B

n . The variable xi has the value sxi . When the
update functions are applied synchronously, we have synchronous transitions
between states, i.e. for s, t ∈ B

n we have s −→ t if t = F (s) = (fx1 (s), . . . , fxn (s)).
Suppose that the activation status of the variables xFgf8 , xEmx2 , xPax6 , xSp8 ,

xCoup tfi is given by the state s = (1, 0, 1, 1, 1). After applying the update func-
tions, we have t = F (s) = (0, 0, 0, 0, 0).

The state space of a BN, called State Transition Graph (STG), is the set of
all possible states and state transitions.

Reducing Boolean Networks with Backward Boolean Equivalence 5

Fig. 3. The STGs of the BN of Fig. 2 and of its BBE-reduction in Fig. 4. We use
GINsim’s visual representation, where self-loops are implicit in nodes without outgoing
edges.

Definition 2. Let B = (X,F) be a BN. We define the state transition graph of
B, denoted with STG(B), as a pair (S, T) with S ⊆ B

n being a set of vertices
labelled with the states of B, and T = {s −→ t | s ∈ S, t = F (s)} a set of directed
edges representing the transitions between states of B.

We often use the notation s −→+ t for the transitive closure of the transition
relation. The cardinality of the set of states is 2n, which illustrates the state
space explosion: we have exponentially many states on BN variables. Figure 3(a)
displays the STG of the BN in Fig. 2.

Several BN properties are identified in STGs, e.g. attractors, basins of attrac-
tion, and transient trajectories [42]. Attractors are sets of states towards which a
system tends to evolve and remain [27]. They are often associated with the inter-
pretation of the underlying system; for example, Kauffman equated attractors
with different cell types [20]. Hence, the main reduction methods that have been
developed in the literature so far concentrate on how they affect the asymptotic
dynamics i.e. the number of attractors and the distribution of their lengths. We
define an attractor as follows:

Definition 3 (Attractor). Let B = (X,F) be a BN with STG(B) = (S, T).
We say that a set of states A ⊆ S is an attractor iff

1. ∀s, s′ ∈ A, s −→+ s′, and
2. ∀s ∈ A,∀s′ ∈ S, s −→+ s′ implies s′ ∈ A.

Attractors are hence just absorbing strongly connected components in the
STG. An attractor A such that |A| = 1 is called a steady state (also named point
attractor). We also denote with |A| the length of attractor A.

6 G. Argyris et al.

3 Backward Boolean Equivalence

Our reduction method is based on the notion of backward equivalence, recast
for BNs, which proved to be effective for reducing the dimensionality of ordinary
differential equations [9,13] and chemical reaction networks [6,8,11]. Section 3.1
introduces Backward Boolean Equivalence (BBE), which is an equivalence rela-
tion on the variables of a BN, and use it to obtain a reduced BN. Section 3.2
provides an algorithm which iteratively compute the maximal BBE of a BN.
Section 3.3 relates the properties of an original and BBE-reduced BN.

We fix a BN B = (X,F), with |X| = n. We use R to denote equivalence
relations on X and XR for the induced partition.

3.1 Backward Boolean Equivalence and BN Reduction

We first introduce the notion of constant state on an equivalence relation R.

Definition 4 (Constant State). A state s ∈ B
n is constant on R if and only

if ∀(xi, xj) ∈ R it holds that sxi
= sxj

.

Consider our running example and an equivalence relation R given by the
partition XR = {{xSp8, xFgf8}, {xPax6}, {xEmx2}, {xCoup tfi}}. The states con-
stant on R are colored in purple in Fig. 3. For example, the state s = (1, 0, 1, 1, 1)
is constant on R because sSp8 = sFgf8 (the first and fourth positions of s, respec-
tively). On the contrary, (1, 0, 1, 0, 1) is not constant on R.

We now define Backward Boolean Equivalence (BBE).

Definition 5 (Backward Boolean Equivalence). Let B = (X,F) be a BN,
XR a partition of the set X of variables, and C ∈ XR a class of the partition.
A partition XR is a Backward Boolean Equivalence (BBE) if and only if the
following formula is valid:

ΦXR ≡

⎛
⎜⎜⎝

∧
C∈XR
x,x′∈C

(
x = x′

)
⎞
⎟⎟⎠ −→

∧
C∈XR
x,x′∈C

(
fx(X) = fx′(X)

)

ΦXR says that if for all equivalence classes C the variables in C are equal,
then the update functions of variables in the same equivalence class stay equal.

In other words, R is a BBE if and only if for all s ∈ B
n constant on R it

holds that F (s) is constant on R. BBE is a relation where the update functions F
preserve the “constant” property of states. The partition XR = {{xSp8, xFgf8},
{xPax6}, {xEmx2}, {xCoup tfi}} described above is indeed a BBE. This can be ver-
ified on the STG: all purple states (the constant ones) have outgoing transitions
only towards purple states.

We now define the notion of BN reduced up to a BBE R. Each variable in
the reduced BN represents one equivalence class in R. We denote by f{a/b} the
term arising by replacing each occurrence of b by a in the function f .

Reducing Boolean Networks with Backward Boolean Equivalence 7

Definition 6. The reduction of B up to R, denoted by B/R, is the BN (XR, FR)
where FR = {fxC

: C ∈ XR}, with fxC
= fxk

{xC′ /xi
: ∀C ′ ∈ XR,∀xi ∈ C ′} for

some xk ∈ C.

The definition above uses one variable per equivalence class, selects the
update function of any variable in such class, and replaces all variables in it
with a representative one per equivalence class. Figure 4 shows the reduction of
the cortical area development BN. We selected the update function of xSp8 as
the update function of the class-variable x{Fgf8 ,Sp8}, and replaced every occur-
rence of xSp8 and xFgf8 with x{Fgf8 ,Sp8}. The STG of such reduced BN is given
in Fig. 3(b).

x{Fgf8 ,Sp8}(t+ 1) = x{Fgf8 ,Sp8}(t) ∧ ¬x{Emx2}(t)
x{Pax6}(t+ 1) = ¬x{Emx2}(t) ∧ x{Fgf8 ,Sp8}(t) ∧ ¬x{Coup tfi}(t)
x{Emx2}(t+ 1) = ¬x{Fgf8 ,Sp8}(t) ∧ ¬x{Pax6}(t) ∧ ¬x{Fgf8 ,Sp8}(t) ∧ x{Coup tfi}(t)

x{Coup tfi}(t+ 1) = ¬x{Fgf8 ,Sp8}(t) ∧ ¬x{Fgf8 ,Sp8}(t)

Fig. 4. The BBE-reducion of the cortical area development network of Fig. 2.

3.2 Computation of the Maximal BBE

A crucial aspect of BBE is that it can be checked directly on a BN without
requiring the generation of the STG. This is feasible by encoding the logical
formula of Definition 5 into a logical SATisfiability problem [3]. A SAT solver
has the ability to check the validity of such a logical formula by checking for
the unsatisfiability of its negation (sat(¬ΦXR)). A partition XR is a BBE if
and only if sat(¬ΦXR) returns “unsatifiable”, otherwise a counterexample (a
witness) is returned, consisting of variables assignments that falsify ΦXR . Using
counterexamples, it is possible to develop a partition refinement algorithm that
computes the largest BBE that refines an initial partition.

The partition refinement algorithm is shown in Algorithm 1. Its input are a
BN and an initial partition of its variables X. A default initial partition that leads
to the maximal reduction consists of one block only, containing all variables. In
general, the modeller may specify a different initial partition if some variables
should not be merged together, placing them in different blocks. The output of
the algorithm is the largest partition that is a BBE and refines the initial one.

We now explain how the algorithm works for input the cortical area develop-
ment BN and the initial partition XR = {{xFgf8 , xEmx2 , xPax6 , xSp8 , xCoup tfi}}.

Iteration 1. The algorithm enters the while loop, and the solver checks if ΦXR is
valid. XR is not a BBE, therefore the algorithm enters the second branch of the if
statement. The solver gives an example satisfying ¬ΦXR : s = (sxFgf8

, sxPax6
, sxEmx2

,
sxSp8 , sxCoup tfi

) = (0, 0, 0, 0, 0). Since t = F (s) = (0, 0, 0, 0, 1), the for loop par-
titions G into XR1 = {{xFgf8 , xPax6 , xEmx2 xSp8}, {xCoup tfi}}. The state
t = (0, 0, 0, 0, 1) is now constant on XR1

.

8 G. Argyris et al.

Algorithm 1: Compute the maximal BBE that refines the initial partition
XR for a BN (X,F)
Result: maximal BBE H that refines XR

H ← XR;
while true do

if ΦH is valid then
return H ;

else
s ← get a state that satisfy ¬ΦH ;
H ′ ← ∅;
for C ∈ H do

C0 = {xi ∈ C : fxi(s) = 0};
C1 = {xi ∈ C : fxi(s) = 1};
H ′ = H ′ ∪ {C1} ∪ {C0};

end
H ← H ′ \ {∅};

end

end

Iteration 2. The algorithm checks if ΦXR1 is valid (i.e. if XR1 is a BBE). XR1

is not a BBE. The algorithm gives a counterexample with s = (0, 0, 0, 0, 1) and
t = F (s) = (0, 0, 1, 0, 1). The for loop refines XR1

into XR2 = {{xFgf8 , xPax6

xSp8}, {xEmx2}, {xCoup tfi}}. XR2
makes t = (0, 0, 1, 0, 1) constant.

Iteration 3. The algorithm checks if G2 is a BBE. The formula ¬ΦXR2 is
satisfiable, so G2 is not a BBE, and the solver provides an example with
s = (1, 1, 0, 1, 1) and F (s) = (1, 0, 0, 1, 0). Hence, XR2

is partitioned into
XR3 = {{xFgf8 , xSp8}, {xPax6} {xEmx2}, {xCoup tfi}}.

Iteration 4. The SAT solver proves that ΦXR3 is valid.
The number of iterations needed to reach a BBE depends on the counterex-

amples that the SAT solver provides. As for all partition-refinement algorithms,
it can be easily shown that the number of iterations is bound by the number of
variables. Each iteration requires to solve a SAT problem which is known to be
NP-complete, however we show in Sect. 4 that we can easily scale to the largest
models present in popular BN repositories.

We first show that given an initial partition there exists exactly one largest
BBE that refines it.1

After that, we prove that Algorithm 1 indeed provides the maximal BBE
that refines the initial one.

Theorem 1. Let BN = (X,F) and XR a partition. There exists a unique max-
imal BBE H that refines XR.

Theorem 2. Algorithm 1 computes the maximal BBE partition refining XR.
1 All proofs are given in the extended version of this paper [1].

Reducing Boolean Networks with Backward Boolean Equivalence 9

3.3 Relating Dynamics of Original and Reduced BNs

Given a BN B and a BBE R, STG(B/R) can be seen as the subgraph of STG(B)
composed of all states of STG(B) that are constant on R and their transitions.
Of course, those states are transformed in STG(B/R) by “collapsing” BBE-
equivalent variables in the state representation. This can be seen by comparing
the STG of the our running example (left part of Fig. 3) and of its reduction
(right part of Fig. 3). The states (and transitions) of the STG of the reduced BN
correspond to the purple states of the original STG.

Let B be a BN with n variables, S ⊆ B
n be the states of its STG, and

R a BBE for B. We use S|R to denote the subset of S composed by all and
only the states constant on R. With STG(B)|R we denote the subgraph of
STG(B) containing S|R and its transitions. Formally STG(B)|R = (S|R, T|R),
where T|R = T ∩ (S|R × S|R).

The following lemma formalizes a fundamental property of STG(B)|R,
namely that all attractors of B containing states constant on R are preserved in
STG(B)|R.

Lemma 1 (Constant attractors). Let B(X,F) be a BN, R be a BBE, and
A an attractor. If A ∩ S|R 	= ∅ then A ⊆ S|R.

We now define the bijective mapping mR : S|R ↔ SR induced by a BBE R,
where SR are the states of STG(B/R), as follows: mR(s) = (vC1 , . . . , vC|X/R|)
where vCj

= sxi
for some xi ∈ Cj . In words mR bijectively maps each state of

STG(B)|R to their compact representation in STG(B/R). Indeed, STG(B)|R
and STG(B/R) are isomorphic, with mR defining their (bijective) relation. We
can show this through the following lemma.

Lemma 2 (Reduction isomorphism). Let B(X,F) be a BN and R be a
BBE. Then, it holds

1. For all states s ∈ S|R it holds FR(mR(s)) = mR(F (s)).
2. For all states s ∈ SR it holds F (m−1

R (s)) = m−1
R (FR(s)).

The previous Lemma ensures that BBE does not generates spurious trajec-
tories or attractors in the reduced system. We can now state the main result
of our approach, namely that the BBE reduction of a BN for a BBE R exactly
preserves all attractors that are constant on R up to renaming with mR.

Theorem 3 (Constant attractor preservation). Let B(X,F) be a BN, R
a BBE, and A an attractor. If A∩S|R 	= ∅ then mR(A) is an attractor for B/R.

4 Application to BNs from the Literature

We hereby apply BBE to BNs from the GINsim repository. Section 4.1 vali-
dates BBE on all models from the repository, while Sect. 4.2 studies the runtime
speedups brought by BBE on attractor-based analysis of selected case studies,
showing cases for which BBE makes the analysis feasible. Section 4.3 compares

10 G. Argyris et al.

Fig. 5. BBE toolchain. (Step 1) We use GINsim [15] to access its model repository, and
(Step 2) export it in the formats of the other tools in the toolchain to perform: STG
generation (PyBoolNet [30]), attractor analysis (BoolSim [19]), and BBE reduction
(ERODE [10]). (Step 3) We export the reduced models for analysis to PyBoolNet and
BoolSim, or to GINsim.

BBE with the approach based on ODE encoding from [11], showing how such
encoding leads to scalability issues and to the loss of reduction power.

The experiments have been made possible by a novel toolchain (Fig. 5)
combining tools from the COLOMOTO initiative [33], and the reducer tool
ERODE [10] which was extended here to support BBE-reduction. For Algo-
rithm 1 we use the solver Z3 [17] which was already integrated in ERODE.

All experiments were conducted on a common laptop with an Intel Xeon(R)
2.80 GHz and 32 GB of RAM. We imposed an arbitrary timeout of 24 h for each
task, after which we terminated the analysis. We refer to these cases as time-out,
while we use out-of-memory if a tool terminated with a memory error.

4.1 Large Scale Validation of BBE on BNs

We validate BBE on real-world BNs in terms of the number of BNs that can be
reduced and the average reduction ratio.

Configuration. We conducted our investigation on the whole GINsim model
repository which contains 85 networks: 29 are Boolean, and 56 are multivalued.
In multivalued networks (MNs), some variables have more than 2 activation
statuses, e.g. {0, 1, 2}. These models are automatically booleanized [14,18] by
GinSim when exporting in the input formats of the other tools in the tool-chain.

Most of the models in the repository have a specific structure [32] where
a few variables are so-called input variables. These are variables whose update
functions are either a stable function (e.g. x(t + 1) = 0, x(t + 1) = 1) or the
identity function (e.g. x(t + 1) = x(t)). These are named ‘input’ because their
values are explicitly set by the modeler to perform experiments campaigns. We
investigate two reduction scenarios relevant to input variables. In the first one,
Algorithm 1 starts with initial partitions that lead to the maximal reduction, i.e.
consisting of one block only. In the second scenario, we provide initial partitions
that isolate inputs in singleton blocks. Therefore, we prevent their aggregation
with other variables, and obtain reductions independent of the values of the
input variables (we recall that BBE requires related variables to be initialized
with same activation value). We call this case input-distinguished (ID) reduction.

Reducing Boolean Networks with Backward Boolean Equivalence 11

Results. By using the maximal reduction setting, we obtained reductions on 61
of the 85 models, while we obtained ID reductions on 38 models. We summarize
the reductions obtained for the two settings in Fig. 6, displaying the distribution
of the reduction ratios rm = Nm/N and ri = Ni/N , where N , Nm and Ni

are the number of variables in the original BN, in the maximal BBE-reduction,
and in the ID one, respectively. We also provide the average reduction ratios
on the models, showing that it does not substantially change across Boolean or
multivalued models. No reduction took more than 3 s.

Average reduction ratios

Maximal ID
BNs 0.66 0.83
MNs 0.68 0.95
ALL 0.67 0.91

Fig. 6. (Left) Distribution of reduction ratios (reduced variables over original ones) on
all models from the GINsim repository using the maximal and ID reduction strategy.
Each bar counts the number of models with that reduction ratio, starting from 15%
up to 90%, with step 5%. (Right) Average reduction ratios for Boolean, Multivalued
and all models.

Interpretation. BBE reduced a large number of models (about 72%). In partic-
ular, this happened in 24 out of the 29 (83%) Boolean models and in 37 out
of 56 (66%) multivalued networks. The average reduction ratio for the maximal
and ID strategies are 0.67 and 0.91, respectively. For the former strategy, we
get trivial reductions in 22 models wherein only input variables are related. In
such trivial cases, the ID strategy does not lead to reduction. In other cases,
the target variables of inputs (i.e. variables with incoming edges only from input
variables considering the graphical representation of variables) appeared to be
backward equivalent together with the input variables. This results in reductions
with large equivalence classes consisting of input variables and their descendants.
These are interesting reductions which get lost using the ID approach, as the
input variables get isolated.

4.2 Attractor Analysis of Selected Case Studies

Hypothesis. We now investigate the fate of asymptotic dynamics after BBE-
reduction, and test the computational efficiency in terms of time needed for
attractor identification in the original and reduced models. We expect that BBE-
reduction can be utilized to (i) gain fruitful insights into large BN models and
(ii) to reduce the time needed for attractor identification.

12 G. Argyris et al.

Configuration. Our analysis focuses on three BNs from the GINsim repository.
The first is the Mitogen-Activated Protein Kinases (MAPK) network [26] with
53 variables. The second refers to the survival signaling in large granular lympho-
cyte leukemia (T-LGL) [51] and contains 60 variables. The third is the merged
Boolean model [40] of T-cell and Toll-like receptors (TCR-TLR5) which is the
largest BN model in GINsim repository with 128 variables.

Results. The results of our analysis are summarized in Table 1 for the original,
ID- and maximal-reduced BN. We present the number of variables (size) and
of Attractors (Attr.), the time for attractor identification on the original model
(An. (s)) and that for reduction plus attractor identification (Red. + An. (s)).

Table 1. Reduction and attractor analysis on 3 selected case studies.

Original model ID reduction Maximal reduction

Size Attr. An.(s) Size Attr. Red.+An.(s) Size Attr. Red.+An.(s)

MAPK Network 53 40 16.50 46 40 15.33 39 17 3.49

T-LGL 60 264 123.43 57 264 86.84 52 6 3.49

TCR-TLR 128 —Time Out— 116 —Time Out— 95 2 31.29

Interpretation. ID reduction preserves all attractors reachable from any combi-
nation of activation values for inputs. This is an immediate consequence of 2,
Theorem 3 and the fact that number of attractors in the original and the ID
reduced BN is the same (see Table 1). Maximal reduction might discard some
attractors. We also note that, despite the limited reduction in terms of obtained
number of variables, we have important analysis speed-ups, up to two orders of
magnitude. Furthermore, the largest model could not be analyzed, while it took
just 30 s to analyze its maximal reduction identifying 2 attractors.

4.3 Comparison with ODE-Based Approach From [11]

As discussed, BBE is based on the backward equivalence notion firstly pro-
vided for ordinary differential equations (ODEs), chemical reaction networks,
and Markov chains [9,11]. Notably, [11] shows how the notion for ODEs can
be applied indirectly to BNs via an odification technique [49] to encode BNs as
ODEs. Such odification transforms each BN variable into an ODE variable that
takes values in the continuous interval [0,1]. The obtained ODEs preserve the
attractors of the original BN because the equations of the two models coincide
when all variables have value either 0 or 1. However, infinitely more states are
added for the cases in which the variables do not have integer value.

Reducing Boolean Networks with Backward Boolean Equivalence 13

Fig. 7. Excerpt of GINsim’s
depict of TCR-TLR.

Scalability. The technique from [11] has been
proved able to handle models with millions
of variables. Instead, the odification technique
is particularly computationally intensive. Due
to this, it failed on some models from the
GINsim repository, including two from [22],
namely core engine budding yeast CC and cou-
pled budding yeast CC, consisting of 39 and 50
variables, respectively. Instead, BBE could be
applied in less than a second.

Reduction Power. Another example is the TCR-
TLR model from the previous section. In this
case, both the ODE-based and BBE techniques
succeeded. However, BBE led to better reduc-
tions due to the added non-integer states in
the ODEs. Intuitively, the ODE-based tech-
nique counts incoming influences from equiva-
lence classes of nodes, while BBE only checks
whether at least one of such influence is present
or not. Figure 7 shows an excerpt of the graphi-
cal representation of the model by GINsim. We
use background colors of nodes to denote BBE
equivalence classes (white denotes singleton classes). We see a large equivalence
class of magenta species, 3 of which (IRAK4, IRAK1, and TAK1) receive two
influences by magenta species, while the others receive only one. This differen-
tiates the species in the ODE-based technique, keeping only the top four in the
magenta block, while all the others end up in singleton blocks. We compare the
original equations of MyD88 and IRAK4 which have 1 and 2 incoming influences
each.

xMyD88 (t + 1) = xTLR5 (t)
xIRAK4 (t + 1) = (¬xMyD88 (t) ∧ xTICAM1 (t)) ∨ (xMyD88 (t))

We see that the two variables are BBE because their update functions depend
only on the BBE-equivalent variables TLR5 and MyD88, respectively. For
IRAK4, the three variables in the update function are BBE. Therefore, they
have same value allowing us to simplify the update function to just MyD88. The
ODEs obtained for the 2 variables are, where x′

− denotes the derivative of x−:

x′
MyD88 = xTLR5 − xMyD88

x′
IRAK4 = xMyD88 + xTICAM1 − xMyD88 · xTICAM1 − xIRAK4

Given that all variables appearing in the equations are backward equivalent,
the two equations coincide with the original ones when all variables have values
either 0 or 1. However, they differ for non-integer values. For example, in case
all variables have value 0.5, we get 0 for the former, and 0.25 for the latter.

14 G. Argyris et al.

5 Related Work

BN reduction techniques belong to three families according to their domain of
reduction: (i) they reduce at syntactic level (i.e. the BN [4,32,34,39,41,48,50]),
(ii) at semantic level (i.e. the STG [2,23]), or (iii) they transform BNs to other
formalisms like Petri Nets [16,44] and ordinary differential equations [49] offering
formalism-specific reductions. However, (semantic) STG-reduction does not solve
the state space explosion whereas the transformation to other formalisms has
several drawbacks as shown in Sect. 4.3.

Syntactic level reduction methods usually perform variable absorption [4,34,
41,48] at the BN. BN variables can get absorbed by the update functions of
their target variables by replacing all occurrences of the absorbed variables with
their update functions. This method was first investigated in [34] wherein update
functions are represented as ordinary multivalued decision diagrams. The authors
consider multivalued networks with updates being applied asynchronously and
iteratively implement absorption. The process, despite preserving steady states
in all synchronization schemas [48], might lead to loss of cycle attractors in the
synchronous schema. However, absorption of variables might lead to introduction
of new attractors in the asynchronous case, i.e., by reducing the number of
variables the number of attractors can stay the same or increase (attractors can
split or new attractors can appear).

A similar study [48] presents a reduction procedure and proves that it pre-
serves steady states. This procedure includes two steps. The first refers to the
deletion of links between variables on their network structure. Deletion of pseudo-
influences is feasible by simplifying the Boolean expressions in update functions.
The second step of the procedure refers to the absorption of variables like in [34].

The difference between studies [48], [34] is that [48] exploits Boolean algebra
instead of multivalued decision diagrams to explain absorption. Moreover, they
refer only to Boolean networks, and do not consider any update schema. In
studies [34,41,48], self-regulated BN variables (i.e. variables with a self-loop in
the graphical representation) can not be selected for absorption. The inability to
absorb self-regulated variables is inherent in the implementation of absorption
in contrast to our method where the restrictions are encoded by the user at the
initial partition and self-regulated variables can be merged with other variables.

In [41] the authors presented a two step reduction algorithm. The first step
includes the absorption of input variables with stable function and the second
step the absorption of single mediator variables (variables with one incoming and
outgoing edge in the signed interaction graph). The first step of the algorithm
in [41] is equally useful and compatible with the first step of [48]. Moreover, if
we combine the first steps of [48] and [41], we may achieve interesting reductions
which exactly preserve all asymptotic dynamics.

The first steps of [41,48] affect only a BN property called stability. Stability
is the ability of a BN to end up to the same attractor when starting from slightly
different initial conditions. In [4], the authors introduced the decimation proce-
dure -a reduction procedure for synchronous BNs- to discuss how it affects sta-
bility. The crucial difference between decimation procedure and BBE-reduction
is that the first was invented to study stability whereas the latter was invented

Reducing Boolean Networks with Backward Boolean Equivalence 15

to degrade state space explosion. The decimation procedure is summarized by
the following four steps: (i) remove from every update functions the inputs that
it does not depend on, (ii) find the constant value for variables with no inputs,
(iii) propagate the constant values to other update functions and remove this
variable from the system, and (iv) if a variable has become constant, repeat
from step (i). The study also refers to leaf variables because their presence does
not play any role in the asymptotic dynamics of a BN. However, both leaf and
fixed-valued variables affect stability. Overall, the decimation procedure exactly
preserves the asymptotic dynamics of the original model since it throws out only
variables considered as asymptotically irrelevant.

6 Conclusion

We introduced an automatic reduction technique for synchronous Boolean Net-
works which preserves dynamics of interest. The modeller gets a reduced BN based
on requirements expressed as an initial partition of variables. The reduced BN can
recover a pure part of the original state space and its trajectories established by
the reduction isomorphism. Notably, we draw connections between the STG of the
original and that of the reduced BN through a rigorous mathematical framework.
The dynamics preserved are those wherein collapsed variables have equal values.

We used our reduction technique to speed-up attractor identification. Despite
that the length of the preserved attractors is consistent in the reduced model, some
of them may get lost. In the future, we plan to study classes of initial partitions that
preserve all attractors. We have shown the analysis speed-ups obtained for attrac-
tor identification as implemented in the tool BoolSim [24]. In the future we plan to
perform a similar analysis on a recent attractor identification approach from [21].

Our method was implemented in ERODE [10], a freely available tool for
reducing biological systems. Related quantitative techniques offered by ERODE
have been recently validated on a large database of biological models [5,37,38].
In the future we plan to extend this analysis considering also BBE. We also plan
to investigate whether BBE can be extended in order to be able to compare
different models as done for its quantitative counterparts [7,12].

Our method could be combined with most of the existing methods found
in literature. Our prototype toolchain consists of several tools from the COLO-
MOTO interoperability initiative. We aim to incorporate our toolchain into the
COLOMOTO Interactive Notebook [35], a unified environment to edit, execute,
share, and reproduce analyses of qualitative models of biological networks.

Multivalued BNs, i.e. whose variables can take more than two activation
values, are currently supported only via a booleanization technique [14,18] that
might hamper the interpretability of the reduced model. In future work we plan
to generalize BBE to support directly multivalued networks.

References

1. Argyris, G., Lafuente, A.L., Tribastone, M., Tschaikowski, M., Vandin, A.: Reduc-
ing boolean networks with backward boolean equivalence - extended version (2021).
https://arxiv.org/abs/2106.15476

https://arxiv.org/abs/2106.15476

16 G. Argyris et al.

2. Bérenguier, D., Chaouiya, C., Monteiro, P.T., Naldi, A., Remy, E., Thieffry, D.,
Tichit, L.: Dynamical modeling and analysis of large cellular regulatory networks.
Chaos. Interdisc. J. Nonlinear Sci. 23(2), 025114 (2013)

3. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfia-
bility: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press,
NLD (2009)

4. Bilke, S., Sjunnesson, F.: Stability of the Kauffman model. Phys. Rev. E 65(1),
016129 (2001)

5. Cardelli, L., Perez-Verona, I.C., Tribastone, M., Tschaikowski, M., Vandin, A.,
Waizmann, T.: Exact maximal reduction of stochastic reaction networks by species
lumping. Bioinformatics (2021). https://doi.org/10.1093/bioinformatics/btab081

6. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward
bisimulations for chemical reaction networks. In: 26th International Conference on
Concurrency Theory, CONCUR 2015, Madrid, Spain, 1–4 September 2015, pp.
226–239 (2015). https://doi.org/10.4230/LIPIcs.CONCUR.2015.226

7. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Comparing chemical
reaction networks: a categorical and algorithmic perspective. In: Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016,
New York, NY, USA, 5–8 July 2016, pp. 485–494 (2016). https://doi.org/10.1145/
2933575.2935318

8. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven
lumping of differential equations. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 93–111. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 6

9. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation
of differential equivalences. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, 20–22 January 2016, pp. 137–150 (2016). https://doi.org/
10.1145/2837614.2837649

10. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the
evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 19

11. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation of
polynomial dynamical systems. Proc. Nat. Acad. Sci. 114(38), 10029–10034 (2017)

12. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Comparing chemical
reaction networks: a categorical and algorithmic perspective. Theor. Comput. Sci.
765, 47–66 (2019). https://doi.org/10.1016/j.tcs.2017.12.018

13. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation
of differential equivalences. Theor. Comput. Sci. 777, 132–154 (2019). https://doi.
org/10.1016/j.tcs.2019.03.018

14. Chaouiya, C., et al.: SBML qualitative models: a model representation format and
infrastructure to foster interactions between qualitative modelling formalisms and
tools. BMC Syst. Biol. 7(1), 1–15 (2013)

15. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory net-
works with ginsim. In: van Helden, J., Toussaint, A., Thieffry, D. (eds.) Bacterial
Molecular Networks, pp. 463–479. Springer, New York (2012). https://doi.org/10.
1007/978-1-61779-361-5 23

16. Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regulatory
networks. J. Discrete Algorithms 6(2), 165–177 (2008)

https://doi.org/10.1093/bioinformatics/btab081
https://doi.org/10.4230/LIPIcs.CONCUR.2015.226
https://doi.org/10.1145/2933575.2935318
https://doi.org/10.1145/2933575.2935318
https://doi.org/10.1007/978-3-662-49674-9_6
https://doi.org/10.1007/978-3-662-49674-9_6
https://doi.org/10.1145/2837614.2837649
https://doi.org/10.1145/2837614.2837649
https://doi.org/10.1007/978-3-662-54580-5_19
https://doi.org/10.1016/j.tcs.2017.12.018
https://doi.org/10.1016/j.tcs.2019.03.018
https://doi.org/10.1016/j.tcs.2019.03.018
https://doi.org/10.1007/978-1-61779-361-5_23
https://doi.org/10.1007/978-1-61779-361-5_23

Reducing Boolean Networks with Backward Boolean Equivalence 17

17. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

18. Delaplace, F., Ivanov, S.: Bisimilar booleanization of multivalued networks. BioSys-
tems 197, 104205 (2020)

19. Di Cara, A., Garg, A., De Micheli, G., Xenarios, I., Mendoza, L.: Dynamic simu-
lation of regulatory networks using squad. BMC Bioinformatics 8(1), 462 (2007)

20. Drossel, B.: Random boolean networks. Rev. Nonlinear Dyn. Complex. 1, 69–110
(2008)

21. Dubrova, E., Teslenko, M.: A sat-based algorithm for finding attractors in syn-
chronous boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(5), 1393–
1399 (2011)

22. Fauré, A., Naldi, A., Lopez, F., Chaouiya, C., Ciliberto, A., Thieffry, D.: Modular
logical modelling of the budding yeast cell cycle. Mol. BioSyst. 5, 1787–96 (2009)

23. Figueiredo, D.: Relating bisimulations with attractors in boolean network models.
In: Botón-Fernández, M., Mart́ın-Vide, C., Santander-Jiménez, S., Vega-Rodŕıguez,
M.A. (eds.) AlCoB 2016. LNCS, vol. 9702, pp. 17–25. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-38827-4 2

24. Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., De Micheli, G.: Synchronous
versus asynchronous modeling of gene regulatory networks. Bioinformatics 24(17),
1917–1925 (2008). https://doi.org/10.1093/bioinformatics/btn336

25. Giacomantonio, C.E., Goodhill, G.J.: A boolean model of the gene regulatory net-
work underlying mammalian cortical area development. PLOS Comput. Biol. 6(9),
1–13 (2010). https://doi.org/10.1371/journal.pcbi.1000936

26. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perles, B., Thi-
effry, D.: Integrative modelling of the influence of MAPK network on cancer cell
fate decision. PLoS Comput. Biol. 9(10), e1003286 (2013)

27. Hopfensitz, M., Müssel, C., Maucher, M., Kestler, H.A.: Attractors in boolean
networks: a tutorial. Comput. Stat. 28(1), 19–36 (2013)

28. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22(3), 437–467 (1969)

29. Klamt, S., Haus, U.U., Theis, F.: Hypergraphs and cellular networks. PLoS Com-
put. Biol. 5(5), e1000385 (2009)

30. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a Python package for the genera-
tion, analysis and visualization of boolean networks. Bioinformatics 33(5), 770–772
(2017)

31. Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., Chaouiya, C.: Logical
modelling of regulatory networks with GINsim 2.3. Biosystems 97(2), 134–139
(2009)

32. Naldi, A., Monteiro, P.T., Chaouiya, C.: Efficient handling of large signalling-
regulatory networks by focusing on their core control. In: Gilbert, D., Heiner, M.
(eds.) CMSB 2012. LNCS, pp. 288–306. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-33636-2 17

33. Naldi, A., et al.: Cooperative development of logical modelling standards and tools
with colomoto. Bioinformatics 31(7), 1154–1159 (2015)

34. Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: Dynamically consistent reduction
of logical regulatory graphs. Theor. Comput. Sci. 412(21), 2207–2218 (2011)

35. Naldi, A., et al.: The colomoto interactive notebook: accessible and reproducible
computational analyses for qualitative biological networks. Front. Physiol. 9, 680
(2018) https://doi.org/10.3389/fphys.2018.00680

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-38827-4_2
https://doi.org/10.1093/bioinformatics/btn336
https://doi.org/10.1371/journal.pcbi.1000936
https://doi.org/10.1007/978-3-642-33636-2_17
https://doi.org/10.1007/978-3-642-33636-2_17
https://doi.org/10.3389/fphys.2018.00680

18 G. Argyris et al.

36. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

37. Pérez-Verona, I.C., Tribastone, M., Vandin, A.: A large-scale assessment of exact
model reduction in the biomodels repository. In: Computational Methods in Sys-
tems Biology - 17th International Conference, CMSB 2019, Trieste, Italy, 18–20
September 2019, Proceedings, pp. 248–265 (2019). https://doi.org/10.1007/978-3-
030-31304-3 13

38. Perez-Verona, I.C., Tribastone, M., Vandin, A.: A large-scale assessment of exact
lumping of quantitative models in the biomodels repository. Theor. Comput.
Sci. (2021). https://doi.org/10.1016/j.tcs.2021.06.026. https://www.sciencedirect.
com/science/article/pii/S0304397521003716

39. Richardson, K.A.: Simplifying boolean networks. Adv. Complex Syst. 8(04), 365–
381 (2005)

40. Rodŕıguez-Jorge, O., et al.: Cooperation between T cell receptor and toll-like recep-
tor 5 signaling for CD4+ T cell activation. Sci. Signal. 12(577), eaar3641 (2019)

41. Saadatpour, A., Albert, R., Reluga, T.C.: A reduction method for boolean network
models proven to conserve attractors. SIAM J. Appl. Dyna. Syst. 12(4), 1997–2011
(2013)

42. Schwab, J.D., Kühlwein, S.D., Ikonomi, N., Kühl, M., Kestler, H.A.: Concepts in
boolean network modeling: what do they all mean? Comput. Struct. Biotechnol.
J. 18, 571–582 (2020). https://doi.org/10.1016/j.csbj.2020.03.001. http://www.
sciencedirect.com/science/article/pii/S200103701930460X

43. Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic boolean net-
works: a rule-based uncertainty model for gene regulatory networks. Bioinformatics
18(2), 261–274 (2002)

44. Steggles, L.J., Banks, R., Shaw, O., Wipat, A.: Qualitatively modelling and
analysing genetic regulatory networks: a petri net approach. Bioinformatics 23(3),
336–343 (2007)

45. Su, C., Pang, J.: Sequential control of boolean networks with temporary and per-
manent perturbations. arXiv preprint arXiv:2004.07184 (2020)

46. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical descrip-
tion. J. Theor. Biol. 153(1), 1–23 (1991)

47. Thomas, R.: Kinetic logic: a Boolean approach to the analysis of complex regula-
tory systems. In: Proceedings of the EMBO Course “Formal Analysis of Genetic
Regulation”, held in Brussels, 6–16 September 1977, vol. 29. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-49321-8

48. Veliz-Cuba, A.: Reduction of boolean network models. J. Theor. Biol. 289, 167–172
(2011)

49. Wittmann, D.M., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D.A., Klamt,
S., Theis, F.J.: Transforming boolean models to continuous models: methodology
and application to T-cell receptor signaling. BMC Syst. Biol. 3(1), 98 (2009).
https://doi.org/10.1186/1752-0509-3-98

50. Zañudo, J.G.T., Albert, R.: An effective network reduction approach to find the
dynamical repertoire of discrete dynamic networks. Chaos Interdiscip. J. Nonlinear
Sci. 23(2), 025111 (2013). https://doi.org/10.1063/1.4809777

51. Zhang, R., et al.: Network model of survival signaling in large granular lymphocyte
leukemia. Proc. Nat. Acad. Sci. 105(42), 16308–16313 (2008)

https://doi.org/10.1007/978-3-030-31304-3_13
https://doi.org/10.1007/978-3-030-31304-3_13
https://doi.org/10.1016/j.tcs.2021.06.026
https://www.sciencedirect.com/science/article/pii/S0304397521003716
https://www.sciencedirect.com/science/article/pii/S0304397521003716
https://doi.org/10.1016/j.csbj.2020.03.001
http://www.sciencedirect.com/science/article/pii/S200103701930460X
http://www.sciencedirect.com/science/article/pii/S200103701930460X
http://arxiv.org/abs/2004.07184
https://doi.org/10.1007/978-3-642-49321-8
https://doi.org/10.1186/1752-0509-3-98
https://doi.org/10.1063/1.4809777

Abstraction of Markov Population
Dynamics via Generative

Adversarial Nets

Francesca Cairoli1(B), Ginevra Carbone1, and Luca Bortolussi1,2

1 Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
francesca.cairoli@phd.units.it

2 Modeling and Simulation Group, Saarland University, Saarbrücken, Germany

Abstract. Markov Population Models are a widespread formalism used
to model the dynamics of complex systems, with applications in Systems
Biology and many other fields. The associated Markov stochastic process
in continuous time is often analyzed by simulation, which can be costly
for large or stiff systems, particularly when a massive number of simu-
lations has to be performed (e.g. in a multi-scale model). A strategy to
reduce computational load is to abstract the population model, replacing
it with a simpler stochastic model, faster to simulate. Here we pursue this
idea, building on previous works and constructing a generator capable of
producing stochastic trajectories in continuous space and discrete time.
This generator is learned automatically from simulations of the original
model in a Generative Adversarial setting. Compared to previous works,
which rely on deep neural networks and Dirichlet processes, we explore
the use of state of the art generative models, which are flexible enough
to learn a full trajectory rather than a single transition kernel.

1 Introduction

A wide range of complex systems can be modeled as a network of chemical reac-
tions. Stochastic simulation is typically the only feasible analysis approach that
scales in a computationally tractable manner with the increase in system size, as
it avoids the explicit construction of the state space. The well known Gillespie
Stochastic Simulation Algorithm [8] is widely used for simulating models, as it
samples from the exact distribution over trajectories. This algorithm is effective
to simulate systems of moderate complexity, but it does not scale well to systems
with many species and reactions, large populations, or internal stiffness. In these
scenarios, a more effective choice is to rely on approximate simulation algorithms
such as tau-leaping [7] and hybrid simulation [14]. Nonetheless, when the num-
ber of simulations required is extremely large and possibly costly, e.g. when one
needs to simulate a large population of heterogeneous cells in a multi-scale model
of a tissue or to simulate many heterogeneous individuals in an population ecol-
ogy scenario, all these methods become extremely computationally demanding,
even for HPC facilities.

c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 19–35, 2021.
https://doi.org/10.1007/978-3-030-85633-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-85633-5_2

20 F. Cairoli et al.

A viable approach to address such problem is model abstraction, which aims
at reducing the underlying complexity of the model, and thus reduce its simu-
lation cost. However, building effective model abstractions is difficult, requiring
a lot of ingenuity and man power. Here we advocate the strategy of learning
an abstraction from simulation data. Our strategy is to frame model abstrac-
tion as a supervised learning problem, and learn an abstract probabilistic model
using state of the art deep learning. The probabilistic model should then be
able to generate approximate trajectories efficiently and in constant time, i.e.,
independent on the complexity of the original system, thus sensibly reducing the
simulation cost.

Related Work. The idea of using machine learning as a model abstraction tool
to approximate and simplify the dynamics of a Markov Population Process has
received some attention in recent years. In [5] the authors use a Mixture Den-
sity Network (MDN) [3] to approximate the transition kernel of the stochastic
process. In [16] the authors extend the previous approach by introducing an auto-
mated search of the MDN architecture that better fit the data. In [4] the authors
present a Bayesian model abstraction technique, based on Dirichlet Processes,
that allows the quantification of the reconstruction uncertainty. In all cases, what
is learned is an approximate transition kernel, i.e., the probabilistic distribution
of a single simulation step.

In this paper we address a more general and more complex problem. Instead
of learning an approximate transition kernel, we learn the distribution of an
entire trajectory of fixed length. This latter problem is not solvable with any
of the previously adopted approaches, and its major goal is to keep abstraction
error under control. In fact, training the abstract model on a full trajectory,
rather than on pairs of subsequent states, allows the abstract model to retain
and capture more information about the dynamics of the Markov process.

Contributions. Our approach leverages Generative Adversarial Nets (GAN),
which are one of the most strong and flexible techniques to learn probabilistic
models. In fact, the GAN-based model abstraction technique is capable of learn-
ing a conditional distribution over the trajectory space, keeping into account the
correlation, both spatial and temporal, among all the different species and condi-
tioning both on initial states and model parameters. All the previous approaches
focus on learning the distribution of the state of the system after a time Δt, the
so called transition kernel. However, such approaches perform poorly when the
time interval is small and the dynamics is transient, showing a clear propagation
of the error as the approximate kernel is applied iteratively to form a trajectory.
Furthermore, producing a full trajectory reduces even more the computational
cost of simulating a large pool of trajectories for different initial settings.

Paper Structure. The paper is organized as follows: in Sect. 2 the relevant back-
ground notions are introduced, in Sect. 3 we describe in detail the abstraction
procedure, Sect. 4 presents the case studies and the experimental evaluation.
Conclusions are drawn in Sect. 5.

Abstraction of MPD via GAN 21

2 Background

2.1 Chemical Reaction Networks

Consider a system with n species evolving according to a stochastic model defined
as a Chemical Reaction Network. Under the well-stirred assumption, the time
evolution can be modelled as a Continuous Time Markov Chain (CTMC) on a
discrete state space. The vector ηt = (ηt,1, . . . , ηt,n) ∈ S ⊆ N

n denotes the state
vector at time t, where ηt,i is the number of individuals in species i at time t. The
dynamics is encoded by a set of m reactions with parametric propensity functions
that depends on the state of the system. Due to the memoryless property of
CTMC, the probability of finding the system in state s at time t given that it was
in state s0 at time t0 can be expressed as a system of ODEs known as Chemical
Master Equation (CME). Since in general the CME is a system with countably
many differential equations, its analytic or numeric solution is almost always
unfeasible. An alternative computational approach is to generate trajectories
using stochastic algorithms for simulation, like the well-known Gillespie’s SSA [8]
which produces statistically correct trajectories, i.e., sampled according to the
stochastic process described by the CME.

2.2 Generative Adversarial Nets

Every dataset can be considered as a set of observations drawn from an unknown
distribution Pr. Generative models aim at learning a model that mimics this
unknown distribution as closely as possible, i.e., learn a distribution Pwg

as sim-
ilar as possible to Pr, in order to then get samples from it that are new but
look as if they could have belonged to the original dataset. Generative Adver-
sarial Nets (GANs) [10] are deep learning-based generative models, that, given
a dataset, are capable of generating new random but plausible examples.

Wasserstein GAN. In this work we consider the Wasserstein version of GAN
(WGAN) [1,11] as it is known to be more stable and less sensitive to the
choice of model architecture and hyperparameters compared to a traditional
GAN. WGANs use the Wasserstein distance (also known as Earth-Mover’s dis-
tance), rather than the Jensen Shannon divergence, to measure the difference
between the model distribution Pwg

and the target distribution Pr. Because
of Kantorovich-Rubinstein duality [17] such distance can be computed as the
supremum over all the 1-Lipschitz functions f : S → R:

W (Pr, Pwg) = sup
||f ||L≤1

(
Ex∼Pr [f(x)] − Ex∼Pwg

[f(x)]
)

. (1)

We approximate these functions f with a neural net Cwc
parametrized by weights

wc. To enforce the Lipschitz constraint we follow [11] and introduce a penalty
over the norm of the gradients. It is known that a differentiable function is 1-
Lipchitz if and only if it has gradients with norm at most 1 everywhere. The
objective function, to be maximized w.r.t. wc, becomes:

L(wc, wg) := Ex∼Pr [Cwc(x)] − Ex∼Pwg
[Cwc(x)] − λEx̂∼Px̂(‖∇x̂Cwc(x̂)‖2−1)2], (2)

22 F. Cairoli et al.

where λ is the penalty coefficient and Px̂ is defined by sampling uniformly along
straight lines between pairs of points sampled from Pr and Pwg

. This is actu-
ally a softer constraint that however performs well in practice [11]. The Cwc

network is referred to as critic and it outputs different scores for real and fake
samples, its objective function (Eq. (2)) provide an estimate of the Wasserstein
distance among the two distributions. On the other hand, the distribution Pwg

is
parametrized by wg; we seek the parameters that make it as close as possible to
Pr. To achieve this, we consider a random variable Z with a fixed simple distribu-
tion PZ and pass it through a parametric function, the generator, Gwg

: Z → S
that generates samples following the distribution Pwg

. Therefore, the WGAN
architecture consists of two deep neural nets, a generator that proposes a dis-
tribution and a critic that estimate the distance between the proposed and the
real (unknown) distribution. Using WGAN brings several important advantages
compared to traditional GAN: it avoids the mode collapse problem, which makes
WGAN more suitable for capturing stochastic dynamics, it drastically reduces
the problem of vanishing gradients and it also have an objective function that
correlates with the quality of generated samples, making the results easier to
interpret.

Conditional GAN. Conditional Generative Adversarial Nets (cGAN) [13] are
a type of GANs that involves the conditional generation of examples, i.e., the
generator produces examples of a required type, e.g. examples that belong to
a certain class, and thus they introduce control over the desired generated out-
put. In our application, we want the generation of stochastic trajectories to be
conditioned on some model parameters and on the initial state of the system.

Furthermore, dealing with inputs that are trajectories, i.e. sequences of fixed
length, requires the use of convolutional neural networks (CNNs) [9] for both the
generator and the critic. The architecture used in this work is thus a conditional
Wasserstein Convolutional GAN with gradient penalty, it is going to be referred
to as cWCGAN-GP.

3 GAN-Based Abstraction

3.1 Model Abstraction

The underlying idea is the following: given a stochastic process {ηt}t≥0 with
transition probabilities Ps0(ηt = s) = P(ηt = s | ηt0 = s0), we aim at finding
another stochastic process whose trajectories are faster to simulate but similar
to the original ones. Time has to be discretized, meaning we fix an initial time
t0 and a time step Δt that suits our problem. We define η̃i := ηt0+i·Δt, ∀i ∈ N.
In addition, given a fixed time horizon H, we define time-bounded trajectories
as η̃[1,H] = s1s2 · · · sH ∈ SH ⊆ N

H×n. Given a state s0 and a set of parame-
ters θ, we can represent a trajectory of length H as a realization of a random
variable over the state space SH . The probability distribution for such random
variable is given by the product of the transition probabilities at each time
step: Ps0,θ(η̃[1,H] = s1s2 · · · sH) =

∏H
i=1 Psi−1,θ(η̃i = si). The CTMC, {ηt}t≥0, is

Abstraction of MPD via GAN 23

now expressed as a time-homogeneous Discrete Time Markov Chain {η̃i}i. An
additional approximation has to be made: the abstract model takes values in
S′ ⊆ R

n
≥0, a continuous space in which the state space S ⊆ N

n is embedded.
In constructing the approximate probability distribution for trajectories we can
decide to restrict our attention to arbitrary aspects of the process, rather than
trying to preserve the full behavior. A projection π from SH to an arbitrary space
UH can be used to reach this purpose, for instance, to monitor the number of
molecules belonging to a certain subset of chemical species, i.e., U ⊆ S. Note
that π(η̃[0,H]) is a random variable over UH . Such flexibility could be extremely
helpful in capturing the dynamics of systems in which some species are not
observable.

Abstraction Accuracy. Another important ingredient is a meaningful quantifica-
tion of the error introduced by the abstraction procedure, i.e., the reconstruction
accuracy. Such quantification must be based on a distance, d, among distri-
butions. We choose the Wasserstein distance, together with the absolute and
relative difference among means and variances of the histograms. Given a dis-
tribution over initial states s0 and a distribution over parameters θ, we would
like to measure the expected error at every time instant ti = t0 + i · Δt with
i ∈ {1, . . . , H}. Formally, we want to measure Es0,θ

[
d
(
π(η[1,H])

∣
∣
i
, π′(η′

[1,H])
∣
∣
i

)]

where π(η[1,H])
∣
∣
i

denotes the i-th time components of the projected trajectory
π(η[1,H]) ∈ UH . To estimate such quantity we use a well-known unbiased esti-
mator, which is the average over the distances computed over a large sample
set of initial settings. Computing the distance among SSA and abstract distri-
butions at each time step quantifies how small the expected error is and, more
importantly, how it evolves in time. As a matter of fact, it shows whether the
error tends to propagate or not and how much each species contributes to the
abstraction error. In practice, we compute H · n distances among distributions
over N as we want to know how each species contributes in the reconstruction
error.

3.2 Dataset Generation

Training Set. Choose a set of Ntrain initial settings and for each setting simulate
ktrain SSA trajectory of length H. The training set is composed of Ntrain ·ktrain

pairs initial setting-trajectory, i.e. pairs (θi, si
0, η

ij
[1,H]) for i = 1, . . . , Ntrain and

j = 1, . . . , ktrain.

Test Set. Choose a set of Ntest initial settings and for each setting simulate a
large number, ktest � ktrain, of SSA trajectory of length H. The test set is
composed of Ntest · ktest pairs initial setting-trajectory, i.e. pairs (θi, si

0, η
ij
[1,H])

for i = 1, . . . , Ntest and j = 1, . . . , ktest.

Partial Observability. In case of partial observability, U ⊆ S, we fix an initial
condition for species in U , and simulate a pool of trajectories each time sampling

24 F. Cairoli et al.

the initial value of species in S � U . As a result, we are learning and abstract
distribution that marginalizes over unobserved variables.

3.3 cWCGAN-GP Architecture

The critic Cwc
takes as input a batch of initial states, s10, . . . , s

b
0, a batch of

parameters, θ1, . . . , θb, and a batch of subsequent trajectories, η1
[1,H], . . . , η

b
[1,H].

For each i ∈ {1, . . . , b} the inputs, ηi
[1,H], si

0 and θi, are concatenated to form an
input with dimension b × (H + 1) × (n + m). Formally, Cwc

: SH+1 × Θ → R.
To enforce the Lipschitz property over Cwc

we add a gradient penalty term
over Px̂. Samples of Px̂ are generated by sampling uniformly along straight lines
connecting points coming from a batch of real trajectories and points coming
from a batch of generated trajectories.

On the other hand, the generator Gwg
takes as input a batch of initial

states, s10, . . . , s
b
0, a batch of parameters, θ1, . . . , θb, and a batch of random

noise, z1, . . . , zb, with dimension k, a user-defined hyper-parameter. For each
i ∈ {1, . . . , b} the two inputs are, once again, concatenated to form an input
with dimension b × (n + m + k). The generator outputs a batch of gener-
ated trajectories η̂1

[1,H], . . . η̂
b
[1,H]. Formally, Gwg

: S × Θ × Z → SH , such
that Gwg

(s0, θ, z) = η̂[1,H] = s1 · · · sH . See the pseudocode for the algorithm
in Appendix E of [6].

3.4 Model Training

The cWCGAN-GP-based model abstraction framework consists in training two
different CNNs. The loss function, introduced in Eq. (2), is a parametric function
depending both on the generator weights wg and the critic weights wc. When
training the critic, we keep the generator weights constant wg, and we maximize
L(wc, wg) w.r.t. wc. Formally, we solve the problem

w∗
c = argmax

wc

{
L(wc, wg)

}
.

On the other hand, in training the generator, we keep the critic weights constant
wc, and we minimize L(wc, wg) w.r.t. wg. Formally, we solve the problem

w∗
g = argmin

wg

{
L(wc, wg)

}
= argmin

wg

{
− Ez,(s0,θ)

[
Cwc

(
Gwg

(z, s0, θ), s0, θ)
]}

.

As mentioned in Sect. 2, the loss function derives from the Wasserstein distance
between the real and generated distributions, see [1,11] for the mathematical
details.

Intuitively, the generator generates a batch of samples, and these, along with
real examples from the dataset, are provided to the critic, which is then updated
to get better at estimating the distance between the real and the abstract distri-
bution. The generator is then updated based on scores obtained by the generated
samples from the critic. An important collateral advantage is that WGANs have
a loss function that correlates with the quality of generated examples.

Abstraction of MPD via GAN 25

Training the cWCGAN-GP has a cost. Nonetheless, once it has been trained,
its evaluation is extremely fast. Details about training and evaluation costs are
discussed in Sect. 4.

Abstract Model Simulation. Once the training is over, we can discard the critic
and focus only on the trained generator G. In order to generate an abstract
trajectory starting from a state s∗

0 with parameters θ∗, we just have to sample a
value z from the random noise variable Z and evaluate the generator on the pair
(s∗

0, θ
∗, z). The output is a stochastic trajectory of length H: G(s∗

0, θ
∗, z) = η̂[1,H].

The stochasticity is provided by the random noise variable, de facto the generator
acts as a distribution transformer that maps a simple random variable into a
complex distribution. In order to generate a pool of p trajectories, we simply
sample p different values from the random noise variable: z1, . . . , zp. Therefore,
the generation of a trajectory has a fixed computational cost.

4 Experimental Results

In this section we validate our GAN-based model abstraction procedure on the
following case studies. More details are provided in Appendix A of [6].

– SIR Model (Absorbing state). The SIR epidemiological model describes
the spread, in a population, of an infectious disease that grants immunity
to those who recover from it. The population is divided in three mutually
exclusive groups: susceptible (S), infected (I) and recovered (R). The possible
reactions, given by the interaction of individuals are infection and recovery.
An important feature is the presence of an absorbing states.

– Ergodic SIRS Model. A SIR model in which the population is not per-
fectly isolated, meaning there is always a chance of getting infected from
some external individuals, and in which immunity is only temporary. As a
consequence, this model has no absorbing state.

– Genetic Toggle Switch Model (Bistability). The toggle switch is a well-
known bistable biological circuit consisting of two genes, G1 and G2, that
mutually repress each other in the production of proteins P1 and P2 respec-
tively. The system displays two stable equilibria.

– Oscillator Model. The circuit consists of three species A, B and C and three
cyclic reactions: A converts B to itself, B converts C to itself, and C converts
A to itself. The concentrations of the three species oscillates in time.

– MAPK Model. The mitogen-activated protein kinase cascade models the
amplification of an output signal (MAKP PP) thorough a multi-level cascade
with negative feedback which is ultra-sensitive to an input stimulus (V1). The
output signal shows either stable or oscillating behaviour, depending on the
input signal.

In order to evaluate the performance of our abstraction procedure we consider
two important measures: the accuracy of the abstract model, evaluated for each
species at each time step of the time grid, and the computational gain compared
to SSA simulation time.

26 F. Cairoli et al.

Experimental Settings. The workflow can be divided in steps: (1) define a CRN
model, (2) generate the synthetic datasets via SSA simulation, (3) learn the
abstract model by training the cWCGAN-GP and, finally, (4) evaluate such
abstraction. All the steps have been implemented in Python. In particular, CRN
models are defined in the .psc format, CRN trajectories are simulated using
Stochpy [12] (stochastic modeling in Python) and PyTorch [15] is used to craft
the desired architecture for the cWCGAN-GP and to evaluate the latter on
the test data. All the experiments were performed on a Intel Xeon Gold 6140
with 24 cores and a 128 GB RAM. The source code for all the experiments
can be found at the following link: https://github.com/francescacairoli/WGAN
ModelAbstraction.

Datasets. For each case study with fixed parameters, the training set consists
of 20K different SSA trajectories. In particular, Ntrain = 2K and ktrain = 10.
The test set, instead, consists of 25 new initial settings and from each of these
we simulate 2K trajectories, so to obtain an empirical approximation of the
distribution targeted by model abstraction. When a parameter is allowed to vary,
the training set consists of 50K SSA trajectories (Ntrain = 1K and ktrain = 50).
We manually choose H and Δt so that the system is close to steady state at
time H ·Δt, without spending there too many steps. The time interval should be
small enough to capture the full transient behavior of the system. For systems
with no steady state, such as the oscillating models, we choose H and Δt so
to observe a full period of oscillation. The chosen values are the following: SIR:
Δt = 0.5, H = 16; e-SIRS: Δt = 0.1, H = 32; Toggle Switch: Δt = 0.1, H = 32;
Oscillator: Δt = 1, H = 32; MAPK: Δt = 60, H = 32.

Data Preparation. Data have been scaled to the interval [−1, 1] to enhance the
performance of the two CNNs and to avoid sensitivity to different scales in
species counts. During the evaluation phase, the trajectories have been scaled
back. Hence, results and errors are shown in the original scale.

4.1 cWCGAN-GP Architecture

The same architecture and the same set of hyper-parameters works well for all
the analyzed case studies, showing great stability and usability of the proposed
solution. The Wasserstein formulation of GANs, with gradient penalty, strongly
contributes to such stability. Traditional GANs have been tested as well, but
they do not have such strength. The details of the architecture follows the best
practice suggestions provided in [11]. The critic network has two hidden one-
dimensional convolutional layers, with n+m channels, each containing 64 filters
of size 4 and stride 2. We use a leaky-ReLU activation function with slope 0.2,
we do layer normalization and at each layer we introduce a dropout with prob-
ability 0.2. An additional dense layer, with linear activation function, is used to
connect the single output node, that contains the critic value. In order to enforce
the Lipschitz constraint on the critic’s model we add a gradient penalty term, as
described in Sect. 2.2. On the other hand, the generator network takes as input

https://github.com/francescacairoli/WGAN_ModelAbstraction
https://github.com/francescacairoli/WGAN_ModelAbstraction

Abstraction of MPD via GAN 27

the noise and the initial settings and it embeds the inputs in a larger space
with Nch channels (512 in our experiments) through a dense layer. Four one-
dimensional convolutional transpose layers are then inserted, containing respec-
tively 128, 256, 256 and 128 filters of size 4 with stride 2. Here we do batch
normalization and use a leaky-ReLU activation function with slope 0.2. Finally,
a traditional convolutional layer is introduced to reduce the number of output
channels to n. The Adam algorithm [2] is used to optimize loss function of both
the critic and the generator. The learning rate is set to 0.0001 and β = {0.5, 0.9}.
The above settings are shared by all the case studies, the only exception is the
more complex MAPK model for which a deeper cWCGAN-GP architecture is
selected: a critic with five layers, each containing 256 filters of size 4 and stride
2, and a generator with five layers, containing respectively 128, 256, 512, 256
and 128 filters of size 4 with stride 2.

Training times depend on the dimension of the dataset, on the size of mini-
batches, on the number of species, and on the architecture of the cWCGAN-GP.
The latter has been kept constant for all the case studies. Batches of 256 sam-
ples have been used and the number of epochs varies from 200 to 500 depending
on the complexity of the model. Moreover, each training iteration of the gen-
erator correspond to 5 iterations of the critic, to balance the power of the two
player. The average time required for each training epoch is around one minute.
Therefore, training the cWCGAN-GP model for 500 epochs takes around 8 h
leveraging the GPU.

4.2 Results

Computational Gain. The time needed to generate abstract trajectories does not
depend on the complexity of the original system. Moreover, as the cWCGAN-GP
architecture is shared by all the case studies, the computational time required to
generate abstract trajectories is the same for all the case studies. In particular,
considering a noise variable of size 480, it takes around 1.75 milliseconds (ms) to
simulate a single trajectory. However, when generating batches of at least 200
trajectories the overhead reduces and the time to generate a single trajectory
stabilizes around 0.8 ms. The same does not hold for the SSA trajectories, whose
computational costs depends on the complexity of the model and on the chosen
reaction rates. In the case studies considered the time required to simulate a sin-
gle trajectory varies from 0.04 to 0.22 s, but it easily increases for more complex
models or for smaller reaction rates, whereas the cost of abstract simulation stays
constant. Details about the computational gain for each model are presented in
Table 1. Computations are performed exclusively on a single CPU processor, to
perform a fair comparison. However, the evaluation of cWCGAN-GP can be fur-
ther sped up using GPUs, especially for large batches of trajectories, but this
would have introduced a bias in their favour. It is important to stress how GPU
parallelization is extremely straightforward in PyTorch and how the time to gen-
erate a single trajectory decrease to 1.9 ×10−5 s when generating a batch of at
least 2K trajectories (see last line of Table 1).

28 F. Cairoli et al.

Table 1. Comparison of the average computational time required to simulate a single
trajectory either via SSA (both direct or approximate methods) or via the cWCGAN-
GP abstraction. 200 trajectories are needed to reduce the CPU (single processor) over-
head, whereas, 2000 trajectories are required for the on GPU overhead.

Model SIR e-SIRS Switch Osc. MAPK

SSA (direct) 0.043 s 0.047 s 0.041 s 0.042 s 0.224 s

- CPU (avg over 200): 0.024 s 0.024 s 0.020 s 0.021 s 0.211 s

SSA (τ -leaping) 0.054 s 0.052 s 0.044 s 0.042 s 0.26 s

- CPU (avg over 200): 0.018 s 0.028 s 0.024 s 0.021 s 0.24 s

cWCGAN-GP 0.00175 s 0.00175 s 0.00175 s 0.00175 s 0.00175 s

- CPU (avg over 200): 0.0008 s 0.0008 s 0.0008 s 0.0008 s 0.0008 s

- GPU (avg over 2000): 10−5× 1.9 s 1.9 s 1.9 s 1.9 s 1.9 s

The training phase introduces a fixed overhead that affects the overall compu-
tational gain. For instance, the training phase of the MAPK model takes around
8 h, which is equivalent to the time needed to generate 140K SSA trajectories. It
follows that, together with the trajectories needed to generate the training set,
the cost of the training procedure is paid off when we simulate at least 200K tra-
jectories. In a typical biological multi-scale scenario in which we seek to simulate
the evolution in time of a tissue containing hundreds of thousands or millions of
cells, simulating also some of their internal pathways, the number of trajectories
needed for the training phase becomes negligible and the training time is soon
paid off.

Measures of Performance. Results are presented as follows. For each model, we
present a small batch of trajectories, both real and abstract. From the plots of
such trajectories we can appreciate if the abstract trajectories are similar to real
ones and if they capture the most important macroscopic behaviors. We also
show the histograms of empirical distributions at time tH for each species to
quantify the behavior over all the 2K trajectories present in the test set (see
Fig. 2–6). Additional plots are shown in Appendix B of [6] (Fig. 7–10).

Measuring Error Propagation. The reconstruction accuracy of the proposed
abstraction procedure is performed on test sets consisting of 25 different initial
settings. For each of these points 2K SSA trajectories represent the empirical
approximation of the true distribution over SH . From each of these initial set-
tings we also simulate 2K abstract trajectories. Given a species i ∈ {1, . . . n} and
a time step j ∈ {1, . . . H}, we have the real one-dimensional distribution ηi,j and
the generated abstract distribution η̂i,j , where ηi,j denotes the counts of species i
at time tj in a trajectory η[1,H]. In order to quantify the reconstruction error, we
compute five quantities: the Wasserstein distance among the two one-dimensional
distributions, the absolute and relative difference among the two means and the
absolute and relative difference among the two variances. By doing so, we are

Abstraction of MPD via GAN 29

(a) eSIRS (b) eSIRS-1P (c) SIR

(d) Oscillator (e) Toggle Switch (f) MAPK

Fig. 1. Plots of the error over time for each model and each species. Errors are com-
puted using the Wasserstein distance over the entire test set. Generated trajectories
have been keep scaled to the interval [−1, 1] so that the scale of the system does not
affect the scale of the error measure.

capable of seeing whether the error propagates in time and whether some species
are harder to reconstruct than others. The error plots for the Wasserstein dis-
tance are shown in Fig. 1. Plots of means and variances distances are provided
in Appendix B of [6] (Fig. 11–14). In addition, for two-dimensional models, i.e.
eSIRS, Toggle Switch and MAPK, we show the landscapes of these five measures
of the reconstruction error at three different time steps: step t1, step tH/2 and
step tH (Fig. 15–17 in Appendix B). We observe that, in all the models, each
species seems to contribute equally to the global error and, in general, the error
stays constant w.r.t. time, i.e., it does not propagate. This was a major concern
in previous methods, based on the abstraction of transition kernels. In fact, in
order to simulate a trajectory of length H the abstract kernel has to be applied
iteratively H times. As a consequence, this results in a propagation of the error
introduced in the approximation of the transition kernel.

30 F. Cairoli et al.

Fig. 2. SIR model: (left) comparison of trajectories generated with a cWCGAN-GP
(orange) and the trajectories generated with the SSA algorithm (blue); (right) com-
parison of the real and generated histogram at the last timestep. Performance on a
randomly chosen test point represented by three trajectories: the top one (species S),
the central one (species I) and the bottom one (species R). (Color figure online)

SIR. The results for the SIR model are presented in Fig. 2 and Fig. 7 (Appendix
B of [6]), which shows the performance on two, randomly chosen, test points.
Each point is represented by three trajectories, the top one is for species S, the
central one is for species I and the bottom one is for species R. The population
size, given by S + I + R, is variable. The abstraction was trained on a dataset
with fixed parameters, θ = {3, 1}. Likewise, in the test set only the initial states
are allowed to vary. We observe that our abstraction method is able to capture
the absorbing nature of SIR trajectories. It is indeed very important that once
state I = 0 or state R = N are reached, the system should not escape from
it. Abstract trajectories satisfy such property without requiring the imposition
of any additional constraint. The empirical distributions, real and generated, at
time tH are almost indistinguishable.

Fig. 3. e-SIRS model with one varying parameter: (left) comparison of trajectories
generated with a cWCGAN-GP (orange) and the trajectories generated with the SSA
algorithm (blue); (right) comparison of the real and generated histogram at the last
timestep. (Color figure online)

Abstraction of MPD via GAN 31

Fig. 4. Toggle Switch model: (left) comparison of trajectories generated with a
cWCGAN-GP (orange) and the trajectories generated with the SSA algorithm (blue);
(right) comparison of the real and generated histogram at the last timestep. Perfor-
mance for a randomly chosen test point represented by a pair of trajectories: the top
one (species P1) and the bottom one (species P2). (Color figure online)

e-SIRS. The e-SIRS model represents our baseline. We train two abstractions:
in the first case the model is trained on a dataset with fixed parameters, θ =
{2.36, 1.67, 0.9, 0.64}, and in the second case we let parameter θ1 vary as well.
Results are very accurate in both scenarios. In the fixed-parameters case, Fig. 8
(Appendix B of [6]), the results are shown for two, randomly chosen, initial states.
In the second case, Fig. 3, the results are shown on two, randomly chosen, pairs
(s0, θ1). Each point is represented by a pair of trajectories, the top one is for
species S and the bottom one is for species I. We performed a further analysis
on the generalization capabilities of the abstraction learned on the dataset with
one varying parameter, using larger test sets and computing mean and standard
deviation of the distribution of Wasserstein distances over such sets. The mean
stays around 0.04 with a tight standard deviation ranges from 0.01 to 0.05,
showing little impact of the chosen conditional setting (see Fig. 18 in Appendix
B of [6]).

Fig. 5. Oscillator model: (left) comparison of trajectories generated with a cWCGAN-
GP (orange) and the trajectories generated with the SSA algorithm (blue);(right)
comparison of the real and generated histogram at the last timestep. Performance on a
randomly chosen test point represented by three trajectories: the top one (species A),
the central one (species B) and the bottom one (species C). (Color figure online)

32 F. Cairoli et al.

Fig. 6. MAPK model: (top) comparison of trajectories generated with a cWCGAN-
GP (orange) and the trajectories generated with the SSA algorithm (blue);(bottom)
comparison of the real and generated histogram at the last timestep. Performance on
three, randomly chosen, test points. Each point is represented by the output species
MAPK PP. (Color figure online)

Toggle Switch. The results for the Toggle Switch model, on two, randomly
chosen, test points, are shown in Fig. 4) and Fig. 9 (Appendix B of [6]). The
abstraction was trained on a dataset with fixed symmetric parameters (kpi =
1, kbi = 1, kui = 1, kdi = 0.01 for i = 1, 2). Likewise, in the test set only the
initial states are allowed to vary. In this model, we tried to abstract only tra-
jectories of the proteins P1 and P2, which are typically the observable species,
ignoring the state of the genes. By doing so, we reduce the dimensionality of the
problem but we also lose some information about the full state of the system.
Nonetheless, the cWCGAN-GP abstraction is capable of capturing the bistable
behaviour of such trajectories. In Fig. 4, each point is represented by two trajec-
tories, the top one is for species P1, whereas the bottom one is for species P2.

Oscillator. The results for the Oscillator model, on two, randomly chosen, test
points, are shown in Fig. 5 and Fig. 10 (Appendix B of [6]). The abstraction
was trained on a dataset with fixed parameter (θ = 1). Likewise, in the test set
only the initial states are allowed to vary. Each point is represented by three
trajectories, the top one is for species A, the central one is for species B and the
bottom one is for species C. The abstract trajectories well capture the oscillating
behaviour of the system.

MAPK. The results for the MAPK model, on three, randomly chosen, test
points, are shown in Fig. 6. The abstraction was trained on a dataset considering
only a varying V1 parameter and the dynamics of species MAPK PP . This case
study represents a complex scenario in which the abstract distribution should
capture the marginalization over the other seven unobserved variables. Moreover,
the emergent behaviour of the only observed variable, MAPK PP , is strongly
influenced by the input parameter V1 and further amplified by the multi-scale
nature of the cascade: for some values of V1 the system oscillates, whereas for
others it stabilizes around an equilibrium. Results show that our abstraction
technique is flexible enough to capture such sensitivity.

Abstraction of MPD via GAN 33

4.3 Discussion

Previous approaches to model abstraction, see Related work in Sect. 1, focus on
approximating the transition kernel, meaning the distribution of possible next
states after a time Δt, rather than learning the distribution of full trajecto-
ries of length H. The main reason for such choice is the limited scalability of
the tool used for learning the abstraction. In fact, learning a distribution over
SH ⊆ N

H×n with a Mixture Density Network is unfeasible even for small H.
Moreover, in learning to approximate the transition kernel one must split the
SSA trajectories of the dataset in pairs of subsequent states. By doing so, a lot
of information about the temporal correlation among states is lost. Having a
tool strong and stable enough to learn distributions over SH allows us to pre-
serve this information and make abstraction possible even for systems with a
complex dynamics, which the abstraction of the transition kernel was failing to
capture. For instance, we are now able to abstract the transient behaviour of
multi-stable or oscillating systems. When attempting to abstract the transition
kernel, either via MDN or via c-GAN, for such complex systems, we did not
succeed in learning meaningful solutions. A collateral advantage in generating
full trajectories, rather than single subsequent states, is that it introduces an
additional computational speed-up in the time required to generate a large pool
of trajectories of length H. For instance, if a cWGAN is used to approximate
the transition kernel, it takes around 31 s to simulate the 50K trajectories of
length 32 present in the test set. Our trajectory-based method takes only 3.4 s
to generate the same number of trajectories. Furthermore, our cWCGAN-GP
was trained with relative small datasets, which leaves room for further improve-
ments where needed. An additional strength of our method is that one can train
the abstract model only on species that are observable, reducing the complexity
of the CRN model while preserving an accurate reconstruction for the species of
interest. Once again, this was not possible with transition kernels and it may be
extremely useful in real world applications.

In general, the cWCGAN-GP approximation does not provide any statistical
guarantee about the reconstruction error. In addition, the set of observations
used to learn the abstraction is rather small, typically 10 samples for each initial
setting. Therefore, it is not surprising that the real and the abstract distributions
are not indistinguishable from a statistical point of view, as shown in Appendix
D of [6]. However, the abstract model is actually capable of capturing, from the
little amount of information provided, the emergent features of the behaviour of
the original system, such as multimodality or oscillations. In this regard, formal
languages can be used to formalize and check such qualitative properties. In
particular, we can check whether the satisfaction probability (of non rare events)
is similar in real and abstract trajectories. Examples are shown in Appendix C
of [6]. Furthermore, such quantification of qualitative properties can be used to
measure how good the reconstruction is. As future work, we intend to use it as
query strategy for an active learning approach, so that the obtained abstract
model is driven in the desired direction.

34 F. Cairoli et al.

5 Conclusions

In the paper we presented a technique to abstract the simulation process
of stochastic trajectories for various CRNs. The WGAN-based abstraction
improves considerably the computational efficiency, which is no more related
to the complexity of the underlying CRN. This would be extremely helpful in all
those applications in which a large number of simulations is required, i.e., appli-
cations whose solution is unfeasible via SSA simulation. It would enable the
simulation of multi-scale models for very large populations, it would speed-up
statistical model checking [18] and it can be used in particular cases of param-
eter estimation, for example when only few parameters have to be estimated
multiple times. In conclusion, the c-WCGAN-based solution to model abstrac-
tion perform well in scenarios that are very complex and challenging, requiring
relatively little data and very little fine-tuning.

As future work, we plan to study how our abstraction technique works on
real data. In this regard, we do not aim at capturing the underlying dynamical
system, but we would rather be able to reproduce the trajectories observed in
real applications. A great strength of our method, compared to state of the art
solutions, is that it is able to generate trajectories only for a subset of the species
present in the system domain, ignoring the information that is not observable,
even during the training phase. Another interesting extension is to adapt our
technique to sample bridging trajectories, where both the initial and the terminal
states are fixed. Typically, the simulation of such trajectories requires expensive
Monte Carlo simulations, which makes clear the benefits of resorting to model
abstraction.

Acknowledgements. This work has been partially supported by the Italian PRIN
project “SEDUCE” n. 2017TWRCNB.

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint
arXiv:1701.07875 (2017)

2. Bengio, Y.: RMSProp and equilibrated adaptive learning rates for nonconvex opti-
mization. Corr abs/1502.04390 (2015)

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York (2006)

4. Bortolussi, L., Cairoli, F.: Bayesian abstraction of Markov population models. In:
Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 259–276. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30281-8 15

5. Bortolussi, L., Palmieri, L.: Deep abstractions of chemical reaction networks. In:
Češka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 21–38. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99429-1 2

6. Cairoli, F., Carbone, G., Bortolussi, L.: Abstraction of Markov population dynam-
ics via generative adversarial nets. CoRR abs/2106.12981 (2021). https://arxiv.
org/abs/2106.12981

http://arxiv.org/abs/1701.07875
https://doi.org/10.1007/978-3-030-30281-8_15
https://doi.org/10.1007/978-3-319-99429-1_2
https://arxiv.org/abs/2106.12981
https://arxiv.org/abs/2106.12981

Abstraction of MPD via GAN 35

7. Dauphin, Y.N., De Vries, H., Bengio, Y.: RMSProp and equilibrated adaptive
learning rates for non-convex optimization. arXiv preprint arXiv:1502.04390v1
(2015)

8. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

9. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT
Press, Cambridge (2016)

10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of Wasserstein GANs. In: Advances in Neural Information Processing Sys-
tems, pp. 5767–5777 (2017)

12. Maarleveld, T.R., Olivier, B.G., Bruggeman, F.J.: StochPy: a comprehensive,
user-friendly tool for simulating stochastic biological processes. PLoS ONE 8(11),
e79345 (2013)

13. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

14. Pahle, J.: Biochemical simulations: stochastic, approximate stochastic and hybrid
approaches. Brief. Bioinform. 10(1), 53–64 (2009)

15. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS-W (2017)
16. Petrov, T., Repin, D.: Automated deep abstractions for stochastic chemical reac-

tion networks. arXiv preprint arXiv:2002.01889 (2020)
17. Villani, C.: Optimal Transport: Old and New. GL, vol. 338. Springer, Heidelberg

(2008). https://doi.org/10.1007/978-3-540-71050-9
18. Younes, H.L., Simmons, R.G.: Statistical probabilistic model checking with a focus

on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

http://arxiv.org/abs/1502.04390v1
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/2002.01889
https://doi.org/10.1007/978-3-540-71050-9

Greening R. Thomas’ Framework
with Environment Variables: A Divide

and Conquer Approach

Laetitia Gibart(B), Hélène Collavizza, and Jean-Paul Comet

University Côte d’Azur, I3S Laboratory, UMR CNRS 7271, CS 40121,
06903 Sophia Antipolis Cedex, France

{laetitia.gibart,helene.collavizza,jean-paul.comet}@univ-cotedazur.fr

When we model a complex biological system, we try to understand the causality
chains that explain the different behaviours observed. However, these observa-
tions are often made under experimental conditions which are not necessarily
comparable since they depend on the culture medium for example. The con-
struction of a right modelisation therefore depends on our ability to take into
account all this information in a single framework.

In this article, we show that well-known R. Thomas’ modelling framework
allows the simulations of successive environmental situations in a unique global
network at the expense of the use of artefacts. Therefore, it becomes possi-
ble to search for parameter settings compatible with biological knowledge for
all environments by just enumerating the parameter settings. Another option
we recommend here, is a green extension of R. Thomas’ framework with the
notion of environments. For each environment, the regulatory network is adapted
and parameter settings compatible with the associated biological knowledge are
searched on a smaller search space. Then, these sets of settings are intersected
to obtain those which yield the traces consistent with observations of all envi-
ronments. This “divide and conquer” approach is amazingly more efficient than
the global approach.

1 Introduction

Modelling a biological system aims at understanding the underlying chains of
causalities which leads the system behave as observed. Biological systems are
called complex because the underlying causalities are difficult to be extracted
from global observation. Thus systems biology can be seen as the study of the
interactions between the components of biological systems, and of the conse-
quences of these interactions on functions and behaviours of these systems. In
order to complicate the portrait of this research field, observations are often made
under experimental conditions which are not necessarily comparable (constant
supply of glucose, and reduced supply of oxygen for example).

Moreover, even in a given modelisation framework, several modelling choices
are possible because different instantiations of dynamical parameters which pilot
the behaviour of the model can lead to traces consistent with all observations.

c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 36–56, 2021.
https://doi.org/10.1007/978-3-030-85633-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-85633-5_3

R. Thomas’ Framework with Environments 37

If the modeller chooses a particular setting, when new information is known,
the parameter identification step must be restarted from the beginning. The
systematic approach would then consist in characterizing, at each step, all of
the parameter settings consistent with current knowledge: when a new observa-
tion becomes available, the modeller just refines the previous set of consistent
parameter settings by selecting only those that are also consistent with this new
information.

In the 70’s, qualitative models based on discrete mathematics [10,19] have
proved useful to understand the main causalities that govern observed pheno-
types [20,21], and the multivalued framework of R. Thomas and H. Snoussi
has become a classic for biological regulatory networks. It aroused new interest
when, in the early 2000s, formal methods came to complete this formalism [2],
as well as that of signaling networks [5]. For example, we developed a geneti-
cally modified Hoare Logic [1] for characterizing the set of parameter settings
making possible a particular trace (if known). If only global temporal properties
are available, these properties are translated into a formal temporal logic and
the right parameter settings are selected via a model checking decision proce-
dure [12]. These two approaches are combined in TotemBioNet , a tool which
enumerates all parameter settings and selects those that are consistent with the
biological properties [4].

The issue addressed in this paper is how to mix up the search for all param-
eter settings that are consistent with the temporal properties of multiple envi-
ronments. The difficulty arises from the very wide diversity of behaviours due
to diverse environments. We consider in this paper that behavioural biological
knowledge have already been translated into a formal temporal logic (here CTL,
Computational Tree Logic) and first show how the classic R. Thomas’ framework
allows the design of a unique regulatory network that mimics the different envi-
ronments. That requires the duplication of the states of the internal variables
to allow different behaviours according to the environments. A global property
encompassing all temporal properties in all environments is built and verified
for each parameter setting.

But we recommend another option based on a “divide and conquer” approach:
a green extension of R. Thomas’ framework with the notion of environments.
During the divide step, a specific (and thus smaller) regulatory network is built
for each environment, and the sets of settings consistent with the associated
temporal property are searched. During the combine step, the intersection of
these sets is compute to obtained the settings which satisfy the properties for
all environments.

Extending R. Thomas’ framework with environments is more efficient than
using a single network which takes into account all environments. When applied
to a network modelling the main regulations of cellular metabolic pathways, the
method based on a single network would only give the result after an unreason-
able time (estimated to 49,1 years), whereas the parameter settings are computed
in 44.6min in this new framework.

38 L. Gibart et al.

Running Example. Pseudomonas æriginosa is an opportunistic bacteria that
can secrete mucus. Mucus production is due to the presence of the protein
mucB which is activated through a genetic element called an operon. More-
over mucB inhibits the operon and the operon activates itself through several
molecules. These individual influences are summarized in the influence graph of
Pseudomonas æriginosa framed in blue in Fig. 1.

Mucus produced by mucoid Pseudomonas æriginosa is composed by alginate
and its accumulation can lead to the creation of bacteria biofilms. When these
bacteria affect the lung, they cause serious infections, particularly for Cystic
Fibrosis (CF) diagnosed patient [16]. Microbiologists discovered that the tran-
sition of bacteria from non-mucoid state to mucoid one is due to a very high
concentration of calcium-ion in the cell environment in lung of CF patients.
This led us to add in Fig. 1 the environment variable Calcium (in green).

Fig. 1. Influence graph and parameters for Pseudomonas æriginosa mucus production
system. Blue frame: initial influence graph. Grey frame: influence graph with environ-
ment variable Calcium (green) playing a role in the lungs of Cystic Fibrosis patients.
(Color figure online)

This article is organised as follows. Section 2 sketches the framework of reg-
ulatory networks. Section 3 is dedicated to the approach based on a unique reg-
ulation network encompassing all environments. Section 4 defines the regulatory
networks with environments and presents the environment by environment app-
roach. Section 5 then compares these two approaches from a theoretical and
efficiency point of view. Finally, Sect. 6 presents the case study based on an
abstract model of the regulation of the cellular metabolism.

2 Adding Environment Variables to Thomas’ Framework

Given a biological system, and some hypothesis on the dynamics of this system,
our modelling approach is to:

R. Thomas’ Framework with Environments 39

– Create an influence graph IG that defines the individual influences between
variables,

– Deduce from IG the set of parameters which express the relative strength of
influences on their common target. These parameters are used to define the
global dynamics of the system, via a parameter setting P ,

– Find an appropriate translation of the biological knowledge in terms of a
temporal logic formula,

– and at the end, use the TotemBioNet tool to find the parameter settings
which make the dynamics based on IG and P consistent with this formula.

In this section, we first define the influence graph, and then introduce param-
eters. These two pieces of information describe the biological system and consti-
tute a regulatory network. The next definitions concern the biological property:
the temporal logic language (CTL) and the models of a CTL formula.

2.1 Regulatory Network with Multiplexes

Multiplexes were introduced in [11], as an extension of R. Thomas’ modelling
framework. They express, via a logic formula, some conditions under which an
influence occurs. For example, if both variables a and b influence the variable
c only when they form a protein complex, then, this coordinated influence can
be represented in a multiplex which allows the effective influence only when
both a and b are simultaneously present. A multiplex then combines in a unique
predecessor some conditions on many variables. As the number of parameters to
be identified depends directly on the number of predecessors, the introduction
of multiplexes reduces the number of parameters (see Definition 2).

Definition 1 (Influence Graph with multiplexes). An influence graph
with multiplexes IG = (V,M,A) is a directed graph such that:

– Vertices are variables in V or multiplexes in M (V ∩ M = ∅),
– With each variable v ∈ V is associated a discrete domain Dv = �vl, vu� where

0 ≤ vl ≤ vu,
– Arcs in A go from multiplexes to variables (A ⊂ M × V),
– With each multiplex m ∈ M is associated a formula ϕm which expresses the

condition under which m influences its target variable(s). The language of
multiplex formulas is defined by:

• Atoms are atomic formulas (v � n) with v ∈ V and n ∈ Dv

• if ϕ, ϕ1 and ϕ2 are multiplex formulas, then ¬ϕ, ϕ1�ϕ2 are also multiplex
formulas, where � is either ∧, ∨ or ⇒.

Given an influence graph, parameters represent the relative strength of influ-
ences on a variable, and by allowing to build the global behaviour of the system.

Definition 2 (Parameters). The parameters of a variable v are denoted Kv,ω

where ω is a subset of the predecessors of v in IG. Kv,ω represents the direction
of evolution of variable v when it is controlled according to the multiplexes in ω.

40 L. Gibart et al.

– A variable v has 2d−(v) parameters where d−(v) is the number of predecessors
of v in IG.

– K(v) denotes the set of parameters of variable v.
– K is the set of all parameters: K = ∪v∈V (K(v)).

Definition 3 (Regulatory network). A Regulatory network is a couple N =
(IG,K).

Pseudomonas æriginosa Regulatory Network. In Fig. 1, variables of IG are rep-
resented by circles and multiplexes (with their associated formulas) by round
rectangles. Parameters are listed in dashed line rectangles, written in the con-
crete syntax of TotemBioNet . For example, K_MucB:prod represents the case where
MucB is influenced by prod while K_Operon:alg:free represents the case where Operon
is influenced by both alg and free.

2.2 Formulas of Biological Properties and Their Models

We focus here on biological properties which express some global behaviour such that
the existence of an attraction basin or a sustained oscillation. For such properties, we
need to talk about future, and about the successive transitions of the system, in other
words, to talk about the paths. Among the different temporal logics we have chosen the
Computational Tree Logic (CTL). Formulas of CTL are inductively built over variables
in V in the usual way, using boolean operators and using modalities on time X (neXt),
F (Future), U (Until), G (Generally), and modalities on paths E (Exists), A (All),
see [7,9] where the semantics of these formulas is formally defined.

Definition 4 (CTL Language). Given an influence graph IG, the language LV of
CTL formulas over V is defined by :

– an atom is either a boolean constant (�, ⊥), or a comparison v�n with v ∈ V ,
n ∈ DV , and � an operator among <, >, ≤, ≥,=

– a CTL formula is either an atom or :
• ¬ϕ1, ϕ1�ϕ2 where � is a boolean operator among ∧, ∨, ⇒, ⇔
• E(ϕ1Uϕ2) or A(ϕ1Uϕ2)
• �ϕ1 where � is in EX, EF, EG, AX, AF, AG

with ϕ1 and ϕ2 CTL formulas

Operon Stable States. From biologists we know that a non-mucoid Pseudomonas
æriginosa will never create mucus, and that when Pseudomonas æriginosa is mucoid,
it cannot turn off again. This can be translated by the following CTL formula:

ϕ0
bacteria ≡ ((Operon = 0) ⇒ AG(¬(Operon = 2))) ∧

((Operon = 2) ⇒ AG(¬(Operon = 0)))

It expresses that starting from a state where Operon = 0 (non-mucoid) then there is
no path leading to a state where Operon = 2 (mucoid), and vice versa.

The dynamics of a regulatory network N = (IG, K) is determined by a valuation
of its parameters in K, which is called a parameter setting. Our aim is therefore to
find the parameter settings which lead to dynamics consistent with the CTL formula
expressing a temporal biological knowledge.

R. Thomas’ Framework with Environments 41

Definition 5 (Parameter Setting). Given a regulatory network N = (IG, K), a
parameter setting P ∈ PN assigns a value in Dv to each parameter Kv,ω associated
with variable v:

P : K → �0, m�
Kv,ω �→ kv,ω ∈ Dv

where m = max{vu| v ∈ V } and PN denotes the set of parameter settings of N .

A parameter setting P ∈ PN sets the global dynamics of the system. On each
state, the possible transitions of the system depend on the applicable parameters of
the variables. Indeed, the applicable parameter of a variable v in a particular state is
determined by the combination of multiplexes targeting v whose formulas are true in
that state. The value given by P to the applicable parameter of a variable defines how
this variable can evolve.

Definition 6 (States). The set of states of the system is the Cartesian product S =
Πv∈V Dv. We denote s ∈ S a state.

Definition 7 (Applicable parameter on a state). The applicable parameter of
variable v on a state s ∈ S, is the only parameter Kv,ω s.t.

– ∀m ∈ ω, ϕm is true on state s,
– ∀m ∈ pred(v), m /∈ ω, ϕm is false on state s (where pred(v) is the set of predeces-

sors of v).

The applicable parameter of v in state s is denoted Kv[s]. Each multiplex m, predecessor
of v, such that ϕm is true on s is called a resource of v in s.

Applicable Parameters for Pseudomonas æriginosa. The applicable parameter of
Operon for state 01 (where 0 is the value of Operon and 1 the value of Mucus)
is K_Operon because neither ϕalg = (Operon ≥ 2) nor ϕfree = ¬(Mucus ≥ 1)
are true. The applicable parameter of MucB for state 21 is K_MucB:prod because
ϕprod = ¬(Operon ≥ 1) is true.

Given a parameter setting P , a variable v and a state s, the value of the applicable
parameter for v on s indicates if, on state s, v tends to increase, decrease or stay stable.
This allows the definition of the (asynchronous) state transition graph which sums up
the global behaviour of the system for this chosen parameter setting.

Definition 8 (ASTG for a parameter setting P). Given a regulatory network N =
(IG, K) whose variables are denoted v1, . . . , vn and P ∈ PN a parameter setting for
N , the associated Asynchronous State Transition Graph ASTGP is defined as follow:

– Vertices are states s ∈ S,
– Loops: there is an arc from s to itself if P (Kvi [s]) = si, ∀i = 1 . . . n. This expresses

that each variable vi has reached its focal value toward which it tends.
– Arcs: there is an arc from sp = (sp

1, ..., s
p
n) to sq = (sq

1, ..., s
q
n) if there exists one

and only one index i s.t. sp
i �= sq

i with either : sq
i = sp

i + 1 and P (Kvi [s
p]) > sp

i or
sq

i = sp
i − 1 and P (Kvi [s

p]) < sp
i . This expresses that vi has not reached its focal

value and will increase (or decrease) by one level.

Finally, the two last definitions characterize what is a model of a property on the
dynamics of the system. They are based on a decision procedure (such as a model
checking procedure).

42 L. Gibart et al.

Definition 9 (Decision procedure for properties on N). Given a regulatory net-
work N and the language LV of CTL formulas over variables of N , checkN is a decision
procedure for formulas in LV :

checkN : PN × Lv → Bool
(P, ϕ) �→ true/false

such that checkN (P, ϕ) = true iff ϕ is true on ASTGP .

Definition 10 (Model of ϕ ∈ LV). P ∈ PN is a model of ϕ in the regulatory
network N iff checkN (P, ϕ) = true. The set of models of ϕ is denoted M(ϕ) = {P ∈
PN | checkN (P, ϕ) = true}.

2.3 Environmental Regulatory Networks

We are now ready to introduce environments, the new concept proposed in this article.
In an influence graph with environments, some variables can be used to set the system
into a specific configuration.

Definition 11 (Influence graph with environment variables). An influence
graph with environment variables IGEV = (V, EV, M, A) is an influence graph s.t.:

– (V, M, A) is an influence graph,
– EV � V is an ordered set of environment variables,
– The environment variables have no predecessors in IG: ∀v ∈ EV, d−(v) = 0,
– Environment variables appear in atoms of multiplex formulas.

Calcium Environment Variable. In the grey frame of Fig. 1, the Calcium variable is
an environment variable which can be set to 0 or 1. It does not have any associated
parameter, but the presence of Calcium adds new parameters to Operon variable which
is targeted by Calcium through the multiplex ca (in the grey dashed-line rectangle).

Definition 12 (Environments). Given IGEV = (V, EV, M, A), an environment
assigns a value to each environment variable of EV . It is a tuple of values (e1, . . . , ep)
s.t. for all k in 1 . . . p, ek ∈ Dvk , where p = |EV | is the number of environment vari-
ables. The set of environments is denoted E.

Definition 13 (Environmental property). An environmental property is a couple
(ϕ, e) where ϕ is a CTL formula in LV \EV , the language of CTL formulas over systemic
variables in V \ EV and e ∈ E is an environment. ϕ expresses a biological temporal
property which occurs under the environmental condition represented by e.

Environmental Properties for Pseudomonas æriginosa. Because Calcium variable can
be set to 0 or 1, there are two environments: e0 when Calcium = 0 and e1 when
Calcium = 1. In e1 the bacteria will become mucoid, expressed by the CTL formula:

ϕ1
bacteria ≡ AG(AF (mucB = 1))

In e0, the bacteria does not change its phenotype: a mucoid (resp. non mucoid)
bacterium will remain mucoid (resp. non mucoid); this is the formula ϕ0

bacteria used to
illustrate Definition 4. Thus, there are two environmental properties (ϕ0

bacteria, e0) and
(ϕ1

bacteria, e1).

R. Thomas’ Framework with Environments 43

Our main objective is now to study a system for which different dynamic behaviours
are known under different environment contexts. So, the temporal biological knowledge
that we search exhaustively for all models is a list of environmental properties Ψ =
[(ϕi, ei)]ni=1. We present in the next sections two ways to compute these models. The
first one is a global approach which uses a modelling artefact to simulate the different
environments in a single network. The second approach begins by defining as many
regulatory networks with environment as there are environments : In each network, the
number of parameters is reduced. It then computes the global models by intersection
of the sets of models found for each of the environments.

3 All Environments’ Coexistence in Thomas’ Framework

In order to handle the biological knowledge on the behaviours of the system in different
environments, the first idea is to design a unique regulatory network that takes into
account the different environments. In this section, we present the formalisation of such
regulatory network.

3.1 Regulatory Network

Because each environment can make the system behave in a peculiar way, the ASTG
under construction has to handle “copies” of the useful states, one copy per environ-
ment. An environment variable is then considered as an inner variable which can take
as many different qualitative levels as imposed by the environment. In the influence
graph with environments presented in the previous section, environment variables have
no predecessors. Then a unique parameter is associated with them, and each environ-
ment variable is attracted towards the value to its unique parameter, whatever its
initial value, leading to an implicit change of value. To guarantee the stability of envi-
ronment variables, we complete the influence graph by adding auto-regulations on each
environment variable.

Auto-regulations for Simulating the Stability of Environment Variables. Let us
suppose that the environment variable v ∈ EV takes its value in �vl, vu�. Then, for
each value n ∈ �vl + 1, vu�, one adds a multiplex An

v whose formula is simply v � n.
Thus when v < n (resp. v � n), the multiplex An

v is not a resource (resp. is a resource)
of v. In Fig. 1, multiplex A allows the variable Calcium to stay at level 0 (resp. 1) when
initialised at 0 (resp. 1).

Multiplexes An
v play a particular role inside this formalisation, because they do not

represent any particular aspect of the biological system: they do allow the ASTG to
simulate the existence of different stable values for the environment variables. In that
meaning, they are artefactual.

Parameters Controlling the Stability of Each Environment. For each environment
variable v ∈ EV , the set of parameters controlling its dynamics is (see Definition 2)

K(v) = {Kv,ω |ω is a subset of the predecessors of v}.

Since v is an environment variable, the only predecessors are the nv = vu−vl artefactual
multiplexes Ak

v , k ∈ �vl+1, vu�. Thus, there are 2nv parameters. Fortunately some of
them are structurally inoperable (not at all useful for determining dynamics) and have

44 L. Gibart et al.

not to be instantiated: Indeed when v = k (k ∈ �vl, vu�), the only resources of v are
the multiplexes Ai

v with i � k. Thus parameters Kv,ω such that Ai
v ∈ ω and Aj

v �∈ ω
with j < i are inoperable. All in all, when v ∈ EV can take its value in �vl, vu�, there
exists exactly vu − vl + 1 operable parameters: Kv, K

v,{A
vl+1
v }, K

v,{A
vl+1
v ,A

vl+2
v }, . . . ,

K
v,{A

vl+1
v ,A

vl+2
v ...A

vu
v }.

Moreover the stability of environment variables are strong properties that impose
the values of previously defined operable parameters. Indeed, when environment vari-
able v is set to k (k ∈ �vl, vu�), it cannot change, leading to deduce that the value of the
effective parameter is k. Thus Kv = vl, K

v,{A
vl+1
v } = vl +1, K

v,{A
vl+1
v ,A

vl+2
v } = vl +2,

. . . , K
v,{A

vl+1
v ,A

vl+2
v ...A

vu
v } = vu.

This regulatory network, including auto-regulations of environment variables and
values of associated parameters that guarantee their stability, is denoted Nglobal in the
sequel.

3.2 Formula Summing Up all Behavioural Properties

Last but not the least, the different behavioural properties have to be expressed for
this regulatory network containing all environments. We consider here that the biolog-
ical knowledge has been summed up in a list of environmental properties [(ϕi, ei)]ni=1.
Obviously, the characterisation of the states corresponding to environment ei is given
by the formula: εi ≡ ∧

vk∈EV
(vk = ei

k) where ei
k represents the value of environment

variable vk in the environment ei. Naturally, the list of environmental properties can
be transcribed in CTL formula:

Φglobal ≡
∧

i∈�1,n�

(
εi ⇒ ϕi

)

where εi characterises initialisation of environment variables. The values of parameters
of environment variables used to build Nglobal guarantee the stability of theses variables.
Finally one can use the decision procedure of TotemBioNet using the modified influence
graph and Formula Φglobal: it enumerates all possible parameter settings, and selects
only those that are consistent with Φglobal.

3.3 Application to Pseudomonas æriginosa

We apply now this global approach for determining all parameter settings consistent
with known behavioural properties of the Pseudomonas æriginosa system. The auto-
regulation of Calcium variable (multiplex and parameters) governing the Calcium
environment variable is represented outside the grey frame in Fig. 1. Variable operon
can take 3 different levels (operon ∈ �0, 2�) and has 3 predecessors (itself, mucB and
Calcium) and thus 23 parameters. Variable mucB can take 2 different levels (mucB ∈
�0, 1�) and has a unique predecessor (operon) and thus 21 parameters. Finally, the
number of parameter settings to consider is: 32

3 × 22
1
= 26, 244.

Finally, the formula Φglobal is defined from ϕ0
bacteria and ϕ1

bacteria of Subsect. 2.3:

Φglobal ≡ ((Calcium = 0) ⇒ ϕ0
bacteria) ∧ ((Calcium = 1) ⇒ ϕ1

bacteria)

R. Thomas’ Framework with Environments 45

4 Divide with Environments, Combine with Intersection

This “divide and conquer” approach works environment by environment. For each envi-
ronment, a smaller regulatory network is used, and only the environmental property
associated with the environment is checked. Afterwards, the models of the global sys-
tem are built by abstracting and then intersecting the models found in each specific
environment.

4.1 Regulatory Networks with Environments

Setting a value for an environment variable reduces the state space to the hyperplane
defined by this value. This has a major impact on the size of the search space: some
parameters of the targets of the environment variables become inoperable, leading to
a drastic reduction of the number of parameter settings to consider.

Definition 14 (State space for an environment). Given an influence graph with
environment variables IGEV = (V, EV, M, A) and an environment e ∈ E, the state
space of the system for e is Se =

∏
v /∈EV Dv × ∏

vk∈EV {ek}.

Definition 15 (Operable parameters for an environment). Given IGEV , and
an environment e ∈ E, a parameter Kv,ω is operable if there exists at least a state
s ∈ Se where Kv,ω is applicable.

Pseudomonas æriginosa’s Operable Parameters. For e0 environment, the operable
parameters are the original parameters in dashed rectangles in the blue frame of Fig. 1.
Since Calcium targets variable Operon, the parameters associated with Operon change
for e1 environment, they are K_Operon:ca, K_Operon:alg:ca, K_Operon:free:ca,
K_Operon:alg:free:ca listed in the grey frame.

Definition 16 (Regulatory network with environment). A regulation network
for environment e ∈ E is the couple Ne = (IGEV , Ke) where Ke ⊂ K is the subset of
operable parameters for e. A parameter setting Pe assigns to each Kv ∈ Ke a value in
Dv.The set of all parameter settings is denoted PN e

Definition 17 (ASTG for a parameter setting Pe in environment e). Given
Ne = (IGEV , Ke) a regulatory network for environment e and Pe ∈ PN e a parameter
setting for Ne, the associated ASTGPe is defined as follow:

– Vertices are states s ∈ Se,
– Loops: there is an arc from s to itself if Pe(Kvi [s]) = si, ∀vi ∈ V \ EV .
– Arcs: there is an arc from sp = (sp

1, ..., s
p
n) to sq = (sq

1, ..., s
q
n) if there exists one

and only one index i s.t. vi ∈ V \ EV , and sp
i �= sq

i with either : sq
i = sp

i + 1 and
Pe(Kvi [s

p]) > sp
i or sq

i = sp
i − 1 and Pe(Kvi [s

p]) < sp
i .

4.2 Formulas and Abstraction of Models

In this approach, for each environmental property (ϕ, e), we successively search the
models of the formulas ϕ associated with e. From a regulatory network with environ-
ment Ne and a particular parameter setting Pe ∈ PN e, the associated transition graph
is built and the decision procedure for formula ϕ is launched on this reduced graph.

46 L. Gibart et al.

Definition 18 (Decision procedure for properties on Ne). Given a regulatory
network Ne, a parameter setting for this network Pe ∈ PN e, the language LV \EV of
CTL formulas over systemic variables in V \ EV , checkNe is defined by:

checkNe : PN e × LV \EV → Bool
(Pe, ϕ) �→ true/false

such that checkNe(Pe, ϕ) = true iff ϕ is true on ASTGPe .

Definition 19 (Model of an environmental property). A model of an envi-
ronmental property (ϕ, e) is the set of parameter settings which validate ϕ in Ne:
Me(ϕ) = {Pe ∈ PN e | checkNe(Pe, ϕ) = true}.

To be able to combine the models Mei(ϕ
i) for several ei, which relate on different

operable parameter sets, one needs to abstract the set of operable parameter settings to
a common superset. Since Kei ⊂ K for all ei, each parameter setting Pei are abstracted
by a subset of parameter settings in PN .

Definition 20 (Abstraction of a parameter setting). Let PN be the set of param-
eter settings for the regulation network with environment variables N = (IGEV , K). Let
Ne = (IGEV , Ke) the regulation network for the particular environment e ∈ E, and
PN e its set of parameter settings.

An abstraction of a parameter setting Pe ∈ PN e to PN is the subset APe ⊂ PN such
that : ∀P ∈ APe, ∀Kv,ω ∈ Ke, P (Kv,ω) = Pe(Kv,ω), and ∀Kv,ω /∈ Ke, P (Kv,ω) ∈ Dv.

In other words, Pe is the projection of APe on parameters of Ke.

Definition 21 (Abstraction of a model). The abstraction of a model of an envi-
ronmental property (ϕ, e) is the union of abstractions of the parameter settings in
Me(ϕ): AMe(ϕ) = ∪

Pe∈Me(ϕ)
APe.

Given a list of environmental properties [(ϕi, ei)]ni=1, the parameter settings satisfying
all these properties is the intersection of the abstractions of the models of each (ϕi, ei).

Definition 22 (Model of environmental properties). Let Ψ = [(ϕi, ei)]ni=1 a list
of environmental properties. The model of Ψ is the set : M(Ψ) =

n∩
i=1

AMei(ϕ
i).

Example of abstraction. Let K = {K1, K2, K3, K4} be the parameters of N with
D1 = �0, 1�, D2 = �0, 2�, D3 = �0, 3� and D4 = �0, 1� the domains of their associ-
ated variables. Assume that Ke1 = {K1, K4} and Ke2 = {K1, K2} are the operable
parameters for environments e1 and e2.

Let Pe1 ∈ PN e1 be a parameter setting of Ne1 which assigns 0 to K1 and 1 to
K4 (denoted Pe1 = (0, −, −, 1)). Let Pe2 ∈ PN e2 , Pe2 = (0, 1, −, −) be a parameter
setting of Ne2 . Then AP = (0, 1, 3, 1) ∈ PN which assigns 0 to K1, 1 to K2, 3 to K3

and 1 to K4 belongs to APe1 and to APe2 . AP ′ = (0, 0, 2, 1) also belongs to APe1 .
Furthermore, if Pe1 is a model of ϕ1 and Pe2 is a model of ϕ2, then AP is a model of
the list of environmental properties [(ϕi, ei)]2i=1.

R. Thomas’ Framework with Environments 47

4.3 Application to Pseudomonas æriginosa

We illustrate here the environment by environment approach on Pseudomonas ærigi-
nosa. According to the values the environment variable Calcium can take, two environ-
mental regulatory networks have to be constructed. Formula ϕ0

bacteria must be checked
on the first one, and ϕ1

bacteria on the second one.
Some parameters become inoperable for some environments (see Def. 15). For exam-

ple here, Operon, has three predecessors in the global approach. But in e0, the multiplex
ca is not a resource anymore, and all parameters containing ca are in that case inop-
erable. This divides by two ther numberof parameter of Operon.

In e0, Operon has 2 predecessors (so has 22 parameters) and can take its value in
DOperon = �0, 2�, thus it has 32

2
parameter settings. mucB is not directly regulated by a

environment variable, so the number of parameters which is 22
1
, does not change com-

pared to a not extended Thomas’ Framework. Thus, for environment e0, the formula
ϕ0

bacteria must be checked on 32
2 × 22

1
= 324 parameter settings. Similarly, there is

the same amount of parameter settings to handle for checking ϕ1
bacteria in e1. Finally,

there are 324 + 324 = 648 parameter settings to consider.

5 Comparing the Two Approaches

5.1 Theoretical Point of View

The question which naturally arises, is to know if the two approaches compute the same
models. The answer relies firstly on the link between the transition graph obtained for
an environment and the subgraph of the global ASTG induced by an environment, and
secondly on the link between the global formula and the environmental formulas.

Lemma 1 (Isomorphism between ASTGPe and a subgraph of ASTGP). For
each environment e, each parameter setting Pe of PN e and each P ∈ APe, there exists
a canonical isomorphism between ASTGPe and the subgraph of ASTGP ∈ Nglobal

reduced to Se.

Proof of the lemma is given in Appendices. Following notations of Subsect. 2.2 and Def-
inition 22, we denote M(Φglobal) the set of models of Φglobal on the regulatory network
completed with auto-regulations on environment variables and associated parameters.

Theorem 1 (M(Ψ) = M(Φglobal)). Given a list Ψ ≡ [(ϕi, ei)]ni=1 of environmental
properties on an influence graph with environment variables IGEV = (V, EV, M, A),
the set M(Ψ) of models of Ψ (computed environment by environment) is equal to the
set of models of Φglobal on Nglobal.

Proof. (1) Let us consider a parameter setting P selected by the environment by
environment approach. P ∈ n∩

i=1
AMei(ϕ

i) (Def. 22). For all i ∈ �1, n�, ϕi is satisfied in

all states of ASTGP
ei

, then, by Lemma 1, ϕi is satisfied in states corresponding to ei

in ASTGP . The formula (εi ∧ AG(εi)) ⇒ ϕi is then satisfied in all states of ASTGP .
We conclude that Φglobal is satisfied (M(Ψ) ⊂ M(Φglobal)).

(2) Conversely, let us consider now a parameter setting P selected by the classical
approach: P ∈ M(Φglobal). Since Φglobal ≡ ∧n

i=1

(
(εi ∧ AG(εi)) ⇒ ϕi

)
, for all i ∈

48 L. Gibart et al.

�1, n�, ϕi is satisfied in all states defining the environment ei. Thus, by Lemma 1,
P ∈ n∩

i=1
AMei(ϕ

i), in other words, M(Φglobal) ⊂ M(Ψ). �
Let us just remark that this proof does not suppose that all ei are different in the

list Ψ . Then, if two behaviours (ϕ1 and ϕ2) are known in a common environment e, one
can represent this information either by a unique environmental property (ϕ1 ∧ ϕ2, e)
or by the list of environmental properties [(ϕ1, e), (ϕ2, e)].

5.2 Practical Results

In this subsection, we illustrate the benefit of the environment by environment approach
in terms of efficiency. We first give a short description of the tools used to search the
models and to compute the intersection.

TotemBioNet : A Tool to Compute the Models of a Formula. The computation of the
models of a formula is implemented in our tool TotemBioNet [4,14], which is dedicated
to the identification of parameters in R. Thomas’ Modelling framework. Its inputs
are an influence graph with environment variables, an environment e, the values of
known parameters, and formalised behaviours, expressed either as Hoare triples for
trace properties or as CTL formulas for temporal properties. TotemBioNet enumerates
the parameter settings and for each Pe ∈ PN e builds the ASTGPe associated with Pe,
and calls the model-checker NuSMV [6] as a decision procedure for a CTL property ϕ.
The final TotemBioNet output is therefore Me(ϕ). Successive environments are treated
by calling TotemBioNet as many times as the number of environments, after having
set the environment variables to their specific values. The outputs are written in .csv
files which are the inputs of the intersection module.

MDDs to Compute the Intersection of Models. We choose to use Multi Valued
Decision Diagrams (MDDs) to compute the intersection of sets of models from different
environments. MDDs provide a compact representation for discrete data sets, with
efficient set operations: intersection, union and set complement. Furthermore, it is easy
(and efficient) to express that inside a common set of variables, certain variables can
take any value. In this way, it is very convenient to abstract and combine sets of
parameter settings which do not relate to the same variables because of inoperable
parameters. TotemBioNet calls the Colomoto mddlib library1 developed by A. Naldi
to compute the intersection of the models obtained in successive environments. This
library was designed for modelling biological systems, and notably to find stable states
and analyse circuits [17].

Pseudomonas æriginosa Execution Time. The 26, 244 parameter settings for the global
approach (see Sect. 3.3) are enumerated and checked against the global formula Φglobal

in 147.238 seconds on a personal computer.2

For the environment by environment approach, consistent parameter settings are
computed by TotemBioNet in about 700ms for each environment. Intersection of sets
of models (using MDD to find the final result) needs 9.61 ms and thus the total time to

1 https://github.com/colomoto/mddlib.
2 All the given execution times are means over 20 TotemBioNet runs on an Intel R©

Core
TM

i7-7700 CPU/3.60GHz × 8, RAM: 32 Go, under Linux. Interested readers
can get the input files and results for the examples presented in this paper: https://
gitlab.com/totembionet/totembionet/-/tree/master/examples/CMSB2021.

https://github.com/colomoto/mddlib
https://gitlab.com/totembionet/totembionet/-/tree/master/examples/CMSB2021
https://gitlab.com/totembionet/totembionet/-/tree/master/examples/CMSB2021

R. Thomas’ Framework with Environments 49

compute the models compatible for the two environments is 1.41 s, which is 105 times
faster.

This example is a very small regulation network which involves only few variables.
It already shows that the second approach is less time consuming. With a bigger reg-
ulatory network involving many environment variables, the relevance of the second
approach is even more visible. The next section chooses a cell metabolism regulatory
network as case study to show the scaling of the approach.

6 Case Study: Cell Metabolism

Cellular metabolism is a set of chemical reactions that occur in living cells. It involves
intertwined biochemical reaction series, better known as metabolic pathways, which
are thinly regulated. These processes allow cells to grow, multiply and maintain their
structures [3]. Starting from classical biological knowledge of an healthy cell, we already
proposed a qualitative regulatory network of the metabolism regulation [8] based on a
precursor model [13]. Blue frame in Fig. 2 in Appendices represents the initial influence
graph when the cell is in a healthy context. Unfortunately, when the context changes
(nutrient lacks for example) some of these regulations are affected.

6.1 Metabolism Regulations According to Environments

Dependence of the metabolism on nutrient availability has been largely studied, and we
decided to incorporate these dependences at a coarse grained level by adding four kinds
of nutrients: sugar, amino acids, lipids and also oxygen. The level of their availability
affects the regulation: For example, with oxygen supply the cell uses the oxidative phos-
phorylation pathway while without oxygen supply it uses fermentative pathways [15].
Grey frame in Fig. 2 incorporates environment variables representing nutrient supplies
(GLC ∈ �0, 2� for sugar, AA ∈ �0, 2� for Amino Acids, exO2 ∈ �0, 1� for oxygen and
FA ∈ �0, 1� for Fatty Acids) and Table 1 (Appendices) lists all operable parameters of
this regulation network. The parameters of variables which do not depend on environ-
ment variables have been all determined from biological knowledge, only parameters
concerning NCD, O2 and GLYC remain to be identified (see below).

Globally, one has to consider 3×3×2×2 = 36 different environments, and for each
environment, some properties are associated. The list Ψ = [(ϕi, ei)]36i=1 of environmental
properties is represented in Tables 2 and 3 (Appendices).

6.2 All Environments Coexistence in Thomas’ Framework

In this approach, the time necessary for extracting all the models of Φglobal essentially
depends on the number of parameter settings which exponentially depends on the
number of unknown parameters. Thus, let us first count the number of unidentified
parameters.

Taking into account FA does not add new multiplex (FA participates to an already
present multiplex). So, it does not increase the number of parameters but the three
others do. GLC acts on GLYC through two distinct multiplexes: glc1 and gl2 which
respectively specify the external sugar at level 1 and 2. Thus, with the 2 previously
existing predecessors, the GLYC in-degree becomes 4 , leading to a number of param-
eters for GLYC equal to 24 = 16 (instead of 22 = 4). Among them, 4 parameters are

50 L. Gibart et al.

structurally inoperable because when the formula of glc2 is true, the formula of glc1
is also true. Consequently, a parameter KGLY C,ω where glc2 ∈ ω and glc1 �∈ ω is not
operable. Finally, GLYC has 12 parameters.

The target of AA, called NCD, gains also 2 predecessors (because AA has three levels)
and has now 3 predecessors: |K(NCD)| = 23 = 8. Two parameters are also structurally
inoperable for NCD, because AA cannot reach level 2 without passing level 1, decreasing
the number of parameters to 6. Finally, the target of exO2, that is O2, has now 2
predecessors leading to |K(O2)| = 22 = 4 parameters.

The number of parameter settings is equal to the product of the numbers of values
that each of the parameters can take: the 12 (resp. 6, 4) parameters associated to
GLYC (resp. NCD, O2) can take 3 (resp. 3, 2) different values (DGLYC = DNCD = �0, 2� and
DO2 = �0, 1�). This gives rise to a number of parameter settings equal to: 312×36×24 =
6, 198, 727, 824.

Knowing that TotemBioNet performs 4.2 decisions checkN (P, Φglobal) per second
(for this regulatory network N , the formula Φglobal and any parameter setting P ∈
NP), enumeration of all parameter settings would take approximatively 49, 1 years.3

6.3 Divide with Environments, Combine with Intersection

The second option treats in an independent way each of the 36 environments on expo-
nentially smaller search spaces, drastically decreasing the number of calls to the decision
procedure.

Indeed, for each environment where ex02= 0 (resp. = 1), the number of oper-
able parameters associated with O2 in only two: K02,∅, K02,{PHOX} (resp. K02,{ex02},
K02,{ex02,PHOX}). It is the same for the other targets of environment variables. For
each environment where AA= 0 (resp. = 1, = 2), the number of operable param-
eters associated with NCD in only two: KNCD,∅ and KNCD,{KREBS} (resp. KNCD,{AA1} and
KNCD,{AA1,KREBS}, KNCD,{AA1,AA2} and KNCD,{AA1,AA2,KREBS}). In a similar manner, for each envi-
ronment where GLC= 0 (resp. = 1, = 2), the number of operable parameters associated
with GLYC in only 4. All in all, in each environment, TotemBioNet has to consider is
34 × 32 × 22 = 2916 parameter settings.

For each environment, the 2916 decisions are computed by TotemBioNet in approx-
imately 74,365 s. For the 36 environments, TotemBioNet needs 2677.142 s. Adding
789ms for the computation of the intersection between all sets of models, the total exe-
cution time for extracting the exhaustive set of models is (2677.142+0.789)/60 = 44.6
min.

This proves the usefulness of the second approach when modelling larger influence
graphs for which the first approach is unable to compute the models in an acceptable
time. This second option is 579,103 times faster.

7 Conclusion

Our “divide and conquer” approach allows to reduce the time necessary for searching
all models of a list of environmental properties in an unthinkable way. In fact, for a
given influence graph, the global execution time quasi-linearly depends on the number
of parameter settings which exponentially depends on the number of unknown param-
eters. The environment by environment approach seeks to reduce as much as possible

3 49.1 = 6, 198, 727, 824/(4.2 × 3600 × 24 × 365.25), where 365.25 is for leap years.

R. Thomas’ Framework with Environments 51

the number of parameters to be identified by taking advantage of the fact that each
environment (and by the way each environmental property) does not involve the whole
set of parameters. This allows us to process large examples that were not yet accessible.

To process even more complex networks, it becomes manifest to parallelise the
whole process: A coarse-grained parallelization is very easy because the searches of the
models for each environment are completely independent.

From a modelling point of view, the environment variables are very powerful,
because they constitute a good tool for exploring hypotheses. In particular, the con-
sequences of Knock-Outs can be studied via such variables: If a Knock-Out leads to
stopping a metabolic pathway, one can add an environment variable regulating this
metabolic pathway, and impose via parameters of its target the decrease in the activ-
ity of its target.

In a longer term perspective, these environment variables constitute a first step
towards a coupling of several sub-systems: Before embarking on the coupling, we can
consider each of the studied subsystems with environment variables which control them
differently in different part of the global phase space.

Appendices

Proof of the lemma. Each state of ASTGPe is trivially unequivocally associated to
a state of ASTGP (see Definitions 6 and 14). Let us show that transitions are the
same. Let us consider a common state s. For determining the applicable parameters
at s in ASTGPe , one has to evaluate the formulas of multiplexes controlling each
non environment variable. Atoms concerning either environment or non environment
variables are evaluated in the same way in ASTGPe and ASTGP (the tuple representing
s in ASTGPe equals the one representing s in ASTGP). Thus applicable parameters
of non-environment variables at s are the same, leading to the same transitions that
do not change the environment variables.

Moreover, because of our choice of parameter values for controling the evolution of
environment variables, there does not exist any transition in ASTGP that change the
values of environment variables.

Thus, when all environment variables are fixed, the subgraph of ASTGP reduced
to the states corresponding to environment e, and ASTGPe are isomorphic. �

52 L. Gibart et al.

Table 1. Operable Parameters associated with the metabolism regulation Influence
Graph. The majority of parameters have been identified from biological knowledge,
only parameters concerning NCD, O2 and GLYC remain to be identified.

Parameters for ATP # Parameters for O2 # Parameters for NADH
KATP = 0 KO2 KNADH = 0
KATP, LBP = 0 KO2, PHOX KNADH, FERM = 0
KATP, nLBP = 0 KO2, exO2 KNADH, PHOX = 0
KATP, LBP nLBP = 0 KO2, exO2 PHOX KNADH, AAS = 0
KATP, PHOX = 1 KNADH, FERM PHOX = 0
KATP, nLBP PHOX = 1 # Parameters for GLYC KNADH, FERM AAS = 0
KATP, LBP nLBP PHOX = 2 KGLYC KNADH, AAS PHOX = 0
KATP, GLYC1 = 0 KGLYC, GR KNADH, FERM AAS PHOX = 0
KATP, GLYC1 nLBP = 0 KGLYC, GLC1 KNADH, FERM KREBS AAS = 0
KATP, GLYC1 LBP nLBP = 2 KGLYC, GLC1 GR KNADH, GLYC AAS PHOX = 0
KATP, GLYC1 GLYC2 = 1 KGLYC, GLC1 GLC2 KNADH, GLYC FERM AAS PHOX = 1
KATP, GLYC1 GLYC2 nLBP = 1 KGLYC, GLC1 GLC2 GR KNADH, KREBS FERM AAS PHOX = 1
KATP, GLYC1 GLYC2 LBP nLBP = 2 KGLYC, COF KNADH, GLYC KREBS FERM AAS PHOX = 1
KATP, GLYC1 PHOX = 1 KGLYC, COF GR KNADH, GLYC KREBS AAS = 0
KATP, GLYC1 nLBP PHOX = 1 KGLYC, COF GLC1 KNADH, FERM GLYC AAS = 0
KATP, GLYC1 LBP nLBP PHOX = 2 KGLYC, COF GLC1 GR KNADH, GLYC KREBS = 0
KATP, GLYC1 GLYC2 PHOX = 1 KGLYC, COF GLC1 GLC2 KNADH, FERM KREBS = 0
KATP, GLYC1 GLYC2 nLBP PHOX = 1 KGLYC, COF GLC1 GLC2 GR KNADH, KREBS AAS = 0
KATP, GLYC1 GLYC2 LBP nLBP PHOX = 2 KNADH, GLYC AAS = 0

Parameters for nLBP KNADH, GLYC PHOX = 0
Parameters for LBP KnLBP = 0 KNADH, FERM GLYC = 0
KLBP = 0 KnLBP, PPP = 1 KNADH, KREBS = 0
KLBP, LS = 1 KnLBP, AAS = 1 KNADH, GLYC = 0
KLBP, BOX = 0 KnLBP, AAS PPP = 1 KNADH, FERM GLYC KREBS AAS = 1
KLBP, LS BOX = 1 KNADH, KREBS PHOX = 1

Parameters for KREBS KNADH, KREBS FERM PHOX = 1
Parameters for NCD KKREBS = 0 KNADH, KREBS AAS PHOX = 1
KNCD KKREBS, AnO = 1 KNADH, GLYC KREBS PHOX = 1
KNCD, KREBS KKREBS, AnO aKG = 2 KNADH, FERM GLYC KREBS PHOX = 1
KNCD, AA1 KKREBS, BOX = 1 KNADH, GLYC KREBS AAS PHOX = 1
KNCD, AA1 KREBS
KNCD, AA1 AA2 # Parameters for PHOX # Parameters for FERM
KNCD, AA1 AA2 KREBS KPHOX = 0 KFERM = 0

KPHOX, PC = 1 KFERM, EP = 1

R. Thomas’ Framework with Environments 53

Fig. 2. Influence Graph with environment variables. Blue frame: initial influence
graph. Grey frame: interaction graph with environment variables. Outside: artefactual
regulations guaranteeing the stability of environment variables. Little squares with a
number s inside are compact descriptions of multiplexes: a positive (resp. negative)
number represents an activation (resp. inhibition) at level s. (Color figure online)

54 L. Gibart et al.

Table 2. CTL formulas for the first 18 environments of the metabolism regulation
influence graph. For each environment, several properties have to be checked. Thus, ϕi

is in fact the conjunction of all formulas in the cell of the table. Note that, formulas are
written in fair-CTL (in which the properties are checked only on fair pathes, that is on
pathes which do not cross an infinite number of times a given state without firetaking
all possible transitions from this state) but fair-CTL formulas are easy to translate into
CTL formulas [18].

#1 (FA=0, exO2=0, GLC=0, AA=0) #2 (FA=0, exO2=0, GLC=0, AA=1) #3 (FA=0, exO2=0, GLC=0, AA=2) #4 (FA=0, exO2=0, GLC=1, AA=0) #5 (FA=0, exO2=0, GLC=1, AA=1) #6 (FA=0, exO2=0, GLC=1, AA=2)

f111=(AF(AG(ATP=0))) f211=(AF(AG(ATP=0))) f311=(AF(AG(ATP=0))) f411=(!(AF(AG(ATP=0))))
f511=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f611=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f121=(AF(AG(O2=0))) f221=(AF(AG(O2=0))) f321=(AF(AG(O2=0))) f421=(AF(AG(O2=0))) f521=(AF(AG(O2=0))) f621=(AF(AG(O2=0)))

f131=(AF(AG(GLYC=0))) f231=(AF(AG(GLYC=0))) f331=(AF(AG(GLYC=0))) f431=(AG(AF(GLYC=0)&AF(GLYC=1))) f531=(AG(AF(GLYC=0)&AF(GLYC=1)))
f631=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f141=(AF(AG(nLBP=0))) f241=(AF(AG(nLBP=0) f341=(AF(AG(nLBP=0))) f461=(!(AF(AG(FERM=0)))) f541=(!(AF(AG(nLBP=0)))) f641=(!(AF(AG(nLBP=0))))
f151=(AF(AG(LBP=0))) f251=(AF(AG(LBP=0))) f351=(AF(AG(LBP=0))) f471=(AF(AG(PHOX=0))) f561=(!(AF(AG(FERM=0)))) f651=(!(AF(AG(LBP=0))))

f161=(AF(AG(FERM=0))) f261=(AF(AG(FERM=0))) f361=(AF(AG(FERM=0)))
f481=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f571=(AF(AG(PHOX=0))) f661=(!(AF(AG(FERM=0))))

f171=(AF(AG(PHOX=0))) f271=(AF(AG(PHOX=0))) f371=(AF(AG(PHOX=0)))
f581=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f671=(AF(AG(PHOX=0)))

f181=(AF(AG(NADH=0)))
f681=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

#7 (FA=0, exO2=0, GLC=2, AA=0) #8 (FA=0, exO2=0, GLC=2, AA=1) #9 (FA=0, exO2=0, GLC=2, AA=2) #10 (FA=0, exO2=1, GLC=0, AA=0) #11 (FA=0, exO2=1, GLC=0, AA=1) #12 (FA=0, exO2=1, GLC=0, AA=2)

f711=(!(AF(AG(ATP=0))))
f811=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f911=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1011=(AF(AG(ATP=0))) f1111=(AF(AG(ATP=0))) f1211=(AF(AG(ATP=0)))

f721=(AF(AG(O2=0))) f821=(AF(AG(O2=0))) f921=(AF(AG(O2=0))) f1021=(!(AF(AG(O2=0)))) f1121=(!(AF(AG(O2=0)))) f1221=(!(AF(AG(O2=0))))
f731=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f831=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f931=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1031=(AF(AG(GLYC=0))) f1141=(AF(AG(nLBP=0))) f1241=(AF(AG(nLBP=0)))

f761=(!(AF(AG(FERM=0)))) f841=(!(AF(AG(nLBP=0)))) f941=(!(AF(AG(nLBP=0)))) f1041=(AF(AG(nLBP=0))) f1151=(AF(AG(LBP=0))) f1251=(AF(AG(LBP=0)))
f771=(AF(AG(PHOX=0))) f861=(!(AF(AG(FERM=0)))) f951=(!(AF(AG(LBP=0)))) f1051=(AF(AG(LBP=0)))
f781=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f871=(AF(AG(PHOX=0)))
F981=(AG(AF(NADH=1)&AF(NADH=2)))

f961=(!(AF(AG(FERM=0)))) f1071=(AF(AG(PHOX=0)))

f881=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f971=(AF(AG(PHOX=0))) f1081=(AF(AG(NADH=0)))

#13 (FA=0, exO2=1, GLC=1, AA=0) #14 (FA=0, exO2=1, GLC=1, AA=1) #15 (FA=0, exO2=1, GLC=1, AA=2) #16 (FA=0, exO2=1, GLC=2, AA=0) #17 (FA=0, exO2=1, GLC=2, AA=1) #18 (FA=0, exO2=1, GLC=2, AA=2)
f1311=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1411=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1511=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1611=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1711=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1811=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1321=(AG(AF(O2>=0)&AF(O2>=1))) f1421=(AG(AF(O2>=0)&AF(O2>=1))) f1521=(AG(AF(O2>=0)&AF(O2>=1))) f1621=(!(AF(AG(O2=0)))) f1721=(!(AF(AG(O2=0)))) f1821=(!(AF(AG(O2=0))))
f1331=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1431=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1531=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1631=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1731=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1831=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1361=(AF(AG(FERM=0))) f1441=(!(AF(AG(nLBP=0)))) f1541=(!(AF(AG(nLBP=0)))) f1641=(AF(AG(nLBP=0))) f1741=(!(AF(AG(nLBP=0)))) f1841=(!(AF(AG(nLBP=0))))
f1371=(!(AF(AG(PHOX=0)))) f1461=(AF(AG(FERM=0))) f1551=(!(AF(AG(LBP=0)))) f1651=(!(AF(AG(LBP=0)))) f1751=(!(AF(AG(LBP=0)))) f1851=(!(AF(AG(LBP=0))))
f1381=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f1471=(AG(AF(PHOX>=0)&AF(PHOX>=1))) f1561=(AF(AG(FERM=0))) f1661=(!(AF(AG(FERM=0)))) f1761=(!(AF(AG(FERM=0)))) f1861=(!(AF(AG(FERM=0))))

f1481=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f1571=(AG(AF(PHOX>=0)&AF(PHOX>=1))) f1671=(!(AF(AG(PHOX=1)))) f1771=(!(AF(AG(PHOX=1)))) f1871=(!(AF(AG(PHOX=1))))

f1581=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f1681=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f1781=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f1881=(AG(AF(NADH=1)&AF(NADH=2)))

Table 3. CTL formulas for the last 18 environments of the metabolism regulation
influence graph.

#19 (FA=1, exO2=0, GLC=0, AA=0) #20 (FA=1, exO2=0, GLC=0, AA=1) #21 (FA=1, exO2=0, GLC=0, AA=2) #22 (FA=1, exO2=0, GLC=1, AA=0) #23 (FA=1, exO2=0, GLC=1, AA=1) #24 (FA=1, exO2=0, GLC=1, AA=2)

f1911=(AF(AG(ATP=0))) f2011=(AF(AG(ATP=0))) f2111=(AF(AG(ATP=0))) f2211=(!(AF(AG(ATP=0))))
f2311=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f2411=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1921=(AF(AG(O2=0))) f2021=(AF(AG(O2=0))) f2121=(AF(AG(O2=0))) f2221=(AF(AG(O2=0))) f2321=(AF(AG(O2=0))) f2421=(AF(AG(O2=0)))

f1931=(AF(AG(GLYC=0))) f2031=(AF(AG(GLYC=0))) f2131=(AF(AG(GLYC=0))) f2231=(AG(AF(GLYC=0)&AF(GLYC=1))) f2331=(AG(AF(GLYC=0)&AF(GLYC=1)))
f2431=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1941=(AF(AG(nLBP=0))) f2041=(AF(AG(nLBP=0))) f2141=(AF(AG(nLBP=0))) f2261=(!(AF(AG(FERM=0)))) f2341=(!(AF(AG(nLBP=0)))) f2441=(!(AF(AG(nLBP=0))))
f1951=(AF(AG(LBP=0))) f2051=(AF(AG(LBP=0))) f2151=(AF(AG(LBP=0))) f2271=(AF(AG(PHOX=0))) f2351=(!(AF(AG(LBP=0)))) f2451=(!(AF(AG(LBP=0))))

f1961=(AF(AG(FERM=0))) f2061=(AF(AG(FERM=0))) f2161=(AF(AG(FERM=0)))
f2281=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f2361=(!(AF(AG(FERM=0)))) f2461=(!(AF(AG(FERM=0))))

f1971=(AF(AG(PHOX=0))) f2071=(AF(AG(PHOX=0))) f2171=(AF(AG(PHOX=0))) f2371=(AF(AG(PHOX=0))) f2471=(AF(AG(PHOX=0)))

f1981=(AF(AG(NADH=0)))
f2381=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f2481=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

#25 (FA=1, exO2=0, GLC=2, AA=0) #26 (FA=1, exO2=0, GLC=2, AA=1) #27 (FA=1, exO2=0, GLC=2, AA=2) #28 (FA=1, exO2=1, GLC=0, AA=0) #29 (FA=1, exO2=1, GLC=0, AA=1) #30 (FA=1, exO2=1, GLC=0, AA=2)

f2511=(!(AF(AG(ATP=0))))
f2611=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f2711=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f2811=(AF(AG(ATP=0))) f2911=(AF(AG(ATP=0))) f3011=(AF(AG(ATP=0)))

f2521=(AF(AG(O2=0))) f2621=(AF(AG(O2=0))) f2721=(AF(AG(O2=0))) f2821=(!(AF(AG(O2=0)))) f2921=(!(AF(AG(O2=0)))) f3021=(!(AF(AG(O2=0))))
f2531=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f2631=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f2731=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f2831=(AF(AG(GLYC=0))) f2941=(AF(AG(nLBP=0))) f3041=(AF(AG(nLBP=0)))

f2561=(!(AF(AG(FERM=0)))) f2641=(!(AF(AG(nLBP=0)))) f2741=(!(AF(AG(nLBP=0)))) f2841=(AF(AG(nLBP=0))) f2951=(AF(AG(LBP=0))) f3051=(AF(AG(LBP=0)))
f2571=(AF(AG(PHOX=0))) f2651=(!(AF(AG(LBP=0)))) f2751=(!(AF(AG(LBP=0)))) f2851=(AF(AG(LBP=0)))
f2581=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f2661=(!(AF(AG(FERM=0)))) f2761=(!(AF(AG(FERM=0)))) f2871=(AF(AG(PHOX=0)))

f2671=(AF(AG(PHOX=0))) f2771=(AF(AG(PHOX=0))) f2881=(AF(AG(NADH=0)))
f2681=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f2781=(AG(AF(NADH=1)&AF(NADH=2)))

#31 (FA=1, exO2=1, GLC=1, AA=0) #32 (FA=1, exO2=1, GLC=1, AA=1) #33 (FA=1, exO2=1, GLC=1, AA=2) #34 (FA=1, exO2=1, GLC=2, AA=0) #35 (FA=1, exO2=1, GLC=2, AA=1) #36 (FA=1, exO2=1, GLC=2, AA=2)
f3111=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f3211=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f3311=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f3411=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f3511=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f3611=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f3121=(AG(AF(O2>=0)&AF(O2>=1))) f3221=(AG(AF(O2>=0)&AF(O2>=1))) f3321=(AG(AF(O2>=0)&AF(O2>=1))) f3421=(!(AF(AG(O2=0)))) f3521=(!(AF(AG(O2=0)))) f3621=(!(AF(AG(O2=0))))
f3131=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f3231=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f3331=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f3431=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f3531=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f3631=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f3161=(AF(AG(FERM=0))) f3241=(!(AF(AG(nLBP=0)))) f3341=(!(AF(AG(nLBP=0)))) f3441=(AF(AG(nLBP=0))) f3541=(!(AF(AG(nLBP=0)))) f3641=(!(AF(AG(nLBP=0))))
f3171=(!(AF(AG(PHOX=0)))) f3251=(!(AF(AG(LBP=0)))) f3351=(!(AF(AG(LBP=0)))) f3451=(!(AF(AG(LBP=0)))) f3551=(!(AF(AG(LBP=0)))) f3651=(!(AF(AG(LBP=0))))
f3181=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f3261=(AF(AG(FERM=0))) f3361=(AF(AG(FERM=0))) f3461=(AG(AF(FERM>=0)&AF(FERM>=1))) f3561=(AG(AF(FERM>=0)&AF(FERM>=1))) f3661=(AG(AF(FERM>=0)&AF(FERM>=1)))

f3271=(AG(AF(PHOX>=0)&AF(PHOX>=1))) f3371=(AG(AF(PHOX>=0)&AF(PHOX>=1))) f3471=(!(AF(AG(PHOX=1)))) f3571=(!(AF(AG(PHOX=1)))) f3671=(!(AF(AG(PHOX=1))))
f3281=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f3381=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f3481=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f3581=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f3681=(AG(AF(NADH=1)&AF(NADH=2)))

R. Thomas’ Framework with Environments 55

References

1. Bernot, G., Comet, J.P., Khalis, Z., Richard, A., Roux, O.F.: A genetically modified
Hoare logic. Theoret. Comput. Sci. 765, 145–157 (2019)

2. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to
biological regulatory networks: extending Thomas’ asynchronous logical approach
with temporal logic. J. Theor. Biol 229(3), 339–347 (2004)

3. Blanco, A., Blanco, G.: Chapter 13 - metabolism. In: Blanco, A., Blanco, G. (eds.)
Medical Biochemistry, pp. 275–281. Academic Press, January 2017. https://doi.
org/10.1016/B978-0-12-803550-4.00013-6

4. Boyenval, D., Bernot, G., Collavizza, H., Comet, J.P.: What is a cell cycle check-
point? the TotemBioNet answer. In: CMSB, pp. 362–372 (2020)

5. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In:
Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36481-1_13

6. Cimatti, A., et al.: NuSMV 2: an OpenSource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_29

7. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

8. Gibart, L., Khoodeeram, R., Bernot, G., Comet, J.P., Trosset, J.Y.: Regulation of
eukaryote metabolism: an abstract model. submitted (2021)

9. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and reasoning about
systems. Cambridge University Press (2000)

10. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22(3), 437–467 (1969)

11. Khalis, Z., Bernot, G., Comet, J.P.: Gene Regulatory Networks: Introduction of
multiplexes into R. Thomas’ modelling. In: Proceedings of the Nice Spring school
on Modelling complex biological systems in the context of genomics, pp. 139–151.
EDP Science, ISBN: 978-2-7598-0437-5 (2009)

12. Khalis, Z., Comet, J.P., Richard, A., Bernot, G.: The SMBioNet method for dis-
covering models of gene regulatory networks. Genes, Genomes Genomics 3(special
issue 1), 15–22 (2009)

13. Khoodeeram, R., Bernot, G., Trosset, J.Y.: An Ockham Razor model of energy
metabolism. In: Amar, P., Képès, F., Norris, V. (eds.) Proceedings of the Thematic
Research School on Advances in Systems and Synthetic Biology, pp. 81–101. EDP
Science (2017), ISBN: 978-2-7598-2116-7

14. Laetitia, G., Bernot, G., Collavizza, H., Comet, J.P.: TotemBioNet enrich-
ment methodology: Application to the qualitative regulatory network of the cell
metabolism. In: BIOINFORMATICS 2021 (2021)

15. Liberti, M.V., Locasale, J.W.: The warburg effect: how does it benefit cancer cells?
Trends Biochem. Sci. 41(3), 211–218 (2016). https://doi.org/10.1016/j.tibs.2015.
12.001

16. Malhotra, S., Hayes, D., Wozniak, D.J.: Cystic fibrosis and pseudomonas aerugi-
nosa: the host-microbe interface. Clin. Microbiol. Rev. 32(3), June 2019. https://
doi.org/10.1128/CMR.00138-18

https://doi.org/10.1016/B978-0-12-803550-4.00013-6
https://doi.org/10.1016/B978-0-12-803550-4.00013-6
https://doi.org/10.1007/3-540-36481-1_13
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1016/j.tibs.2015.12.001
https://doi.org/10.1016/j.tibs.2015.12.001
https://doi.org/10.1128/CMR.00138-18
https://doi.org/10.1128/CMR.00138-18

56 L. Gibart et al.

17. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and
analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.)
CMSB 2007. LNCS, vol. 4695, pp. 233–247. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-75140-3_16

18. Richard, A.: Fair paths in CTL (2008), personnal communication. https://gitlab.
com/totembionet/totembionet

19. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3),
563–585 (1973)

20. Thomas, R.: Logical analysis of systems comprising feedback loops. J. Theor. Biol.
73(4), 631–56 (1978)

21. Thomas, R., Gathoye, A., Lambert, L.: A complex control circuit. Regulation of
immunity in temperate bacteriophages. Eur. J. Biochem. 71(1), 211–227 (1976)

https://doi.org/10.1007/978-3-540-75140-3_16
https://doi.org/10.1007/978-3-540-75140-3_16
https://gitlab.com/totembionet/totembionet
https://gitlab.com/totembionet/totembionet

Automated Inference of Production Rules
for Glycans

Ansuman Biswas2, Ashutosh Gupta1, Meghana Missula1(B),
and Mukund Thattai2

1 IITB, Mumbai, India
2 NCBS, Bengaluru, India

Abstract. Glycans are tree-like polymers made up of sugar monomer
building blocks. They are found on the surface of all living cells, and
distinct glycan trees act as identity markers for distinct cell types. Pro-
teins called GTase enzymes assemble glycans via the successive addition
of monomer building blocks. The rules by which the enzymes operate
are not fully understood. In this paper, we present the first SMT-solver-
based iterative method that infers the assembly process of the glycans
by analyzing the set of glycans from a cell. We have built a tool based
on the method and applied it to infer rules based on published glycan
data.

1 Introduction

The ability to control the assembly of small building blocks into large structures
is of fundamental importance in biology and engineering. Familiar examples of
this process from biology include the synthesis of linear DNA from nucleotide
building blocks and the synthesis of linear proteins from amino-acid building
blocks. In both these examples, the synthesis is templated: the new DNA or
protein molecule is essentially copied from an existing molecule. However, most
biological assembly proceeds without a template. For example, when an adult ani-
mal is grown from a fertilized egg, the genome within the egg contains a dynam-
ical recipe encoding the animal rather than a template. The genome restricts
and controls the set of events that can take place subsequent to fertilization.

While the process of animal development is too complex to study comprehen-
sively, the same themes arise in the synthesis of complex tree-like sugar polymers
known as glycans [1] that are covalently attached to proteins. Unlike linear pro-
teins and DNA, glycans are tree-like structures: their nodes are sugar monomers,
and their edges are covalent carbon-carbon bonds. The tree-like structure of a
glycan is a direct consequence of the fact that a sugar monomer can directly
bond to at least three neighboring sugar monomers (in contrast to nucleotides
or amino acids, which can only bind to two neighbors and are constrained to
make a chain).

A given cell produces a specific set of glycan molecules that are present in the
cell. Since different cells produce different sets of molecules, the assembly pro-
cess must be programmable: the assembly process includes a set of production
c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 57–73, 2021.
https://doi.org/10.1007/978-3-030-85633-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-85633-5_4

58 A. Biswas et al.

rules. The reactions that underlie glycan production are carried out by enzymes
known as GTases [1]. There are hundreds of enzymes present in a given cell:
each enzyme is a protein encoded by a distinct gene, which carries out a distinct
biochemical reaction. The enzymes thus execute the production rules. A glycan
tree is assembled piece by piece in successive steps. At each step, a production
rule adds a small piece of a tree at the leaves or internal nodes of the current
tree. Not all the rules are applicable at all the leaves. The monomer at a leaf
and current surroundings of the leaf controls the applicability of a rule on the
leaf. Identifying the exact set of the production rules by extensive biochemical
experiments are costly and often needs an initial hypothesis for the rules to test.
Biologists must identify the production rules and their control conditions by
manually analyzing the set of observed glycans in a cell and using prior knowl-
edge of biochemistry. We estimate that there may be more then 1070 possible
rule sets if we consider all biological variations.1 This is an error-prone process
since the production rules must generate exactly the set of molecules in the cells
and nothing else; and moreover, the data sets about which glycans are present
in which cells are often incomplete. Manually comprehending all possible tree
generation rules is difficult and ad-hoc. It would be useful to automate the pro-
cess of learning which rules are operating in a given cell, based on incomplete
data.

In this paper, we are presenting the first automated synthesis method for the
production rules. Our method takes the observed glycan molecules in a cell as
input and synthesizes the possible production rules that may explain the obser-
vation. To our knowledge, our work is the first to consider the computational
problem. Our method of synthesis is similar to counterexample guided induc-
tive synthesis(CEGIS) [2]. Several methods for solving problems of searching in
a complex combinatorial space use templates to define and limit their search
space, such as learning invariants of programs [3], and synthesizing missing com-
ponents in programs [4,5]. We also use templates to model the production rules.

Our method is iterative. We first construct constraints encoding that a set
of unknown rules defined by templates can assemble the input set of molecules.
The generated constraints involve Boolean variables, finite range variables, and
integer ordering constraints. We solve the constraints using an off-the-shelf SMT
solver. We call the query to the solver synthesis query. If the constraints are
unsatisfiable, there are no production rules with the search space defined by the
templates. Otherwise, a solution of the constraints gives a set of rules.

However, there is also an additional requirement that a molecule that is not
in the input set must not be producible by the synthesized rules. Therefore, the
method looks for the producible molecules that are not in the input set. Again
the search of the molecule is assisted by a template, which bounds the height of
searched molecules. We generate another set of constraints using the templates
for the unknown molecule. We again solve the constraints using an SMT solver.
We call the query to the solver counterexample query. If there is no such molecule,

1 For a problem having 10 monomers, 10 rules, 3 as rule size, 3 compartments and
fast-slow reactions, the search space is ≈ 1074 rules (210 ∗ (

(10+3−1)
(3−1)

) ∗ 10(2
3−1)∗10).

Automated Inference of Production Rules for Glycans 59

our method reports the synthesized rules. Otherwise, we have found a producible
molecule that is not in the input set.

We append our synthesis constraints with additional constraints stating that
no matter how we apply the synthesized rules, they will not produce the extra
molecule. Since there is a requirement that all possible applications of rules must
satisfy a condition, we have quantifiers in the constraints. We use a solver that
handles quantifiers over finite range variable in the synthesis query. We go to the
next iteration of the method. The method always terminates because the search
space of rules is finite. The set of rules synthesized need not be minimal or unique.
The solver reports the first set which satisfies the constraints. However, our
method is adoptable. We can add various optimization criteria to find optimal
rules for the given objectives, e.g., smallest rule sizes, number of rules, etc.

Our encoding to constraints depends on the model of execution of the rules.
The current biological information is not sufficient to make a precise and definite
model, and do the synthesis. We have also explored the variations of the models.
For example, all rules may apply simultaneously. They apply in batches because
they stay in different compartments. The molecule under assembly may flow
through the compartments. The distribution of the stay of the molecules in
a compartment also affects the execution model. Furthermore, we may have
variations in the type and quality of data available to us. For example, we may
have missed a produced molecule in experiments. We support the variations,
which is presented in the extended version of this paper [6].

We have implemented the method in our tool GlySynth. We have applied
the tool on data sets from published sources (available in the database UniCar-
bKB [7]). The output rules are within the expectations of biological intuition.

We organize the paper as follows. In Sect. 2, we introduce the biological back-
ground. In Sect. 3, we present a motivating example to illustrate our method. In
Sect. 4, we present the formal model of the glycans and their production rules.
In Sect. 5, we present our method for the synthesis problem. In Sect. 6 and 7, we
present our experiments and conclude the paper.

2 Production of Glycans

DNA and RNA are made by copying template DNA, in a process called tran-
scription carried out by an enzyme called RNA polymerase. Proteins are made by
copying a template messenger RNA, in a process called translation carried out by
a molecular machine called a ribosome [8]. In contrast, glycans are grown with-
out a template, in a process called glycosylation. Glycosylation is carried out,
not by a single enzyme, but by a large collection of so-called GTase enzymes
that assemble one sugar monomer at a time into a final glycan tree. This pro-
cess involves an ordered series of reactions, in which an enzyme first recruits
the correct monomer, the enzyme-monomer complex binds to the target glycan
at the appropriate motif, and finally a chemical reaction occurs which serves to
bind the new monomer at the correct place on the glycan. The enzyme’s bind-
ing motif can corresponding to a single monomer, or a large sub-structure of

60 A. Biswas et al.

the entire glycan several nodes deep [9]. This process is reminiscent of a factory
assembly line to make a car [10]. However, the assembly process operates with-
out a blueprint: the final glycan structure is determined by the behavior of the
enzymes themselves.

The process of glycosylation is stochastic, governed by the Poisson statistics
of single-step chemical reactions. One result of this stochasticity is that the
enzymes can operate in different time orders [11]. It is as if factory workers
could operate in many different orders while building the car, first adding doors
and later windows. Moreover, the enzymes are promiscuous: they can add new
monomers to many different places on the growing tree. This is as if the factory
workers could add headlights at many different points on the car. Since there is
no template, the existing tree determines where new monomers are added. Given
the stochastic and promiscuous nature of the GTase enzymes, it is not surprising
that the final product is highly variable [12]. The same set of enzymes can build
many different glycan trees.

This variability is evident in the glycans observed to be produced by living
cells. In a typical experiment, a protein is purified from a cell and the glycans
attached to it are separated and their structure is characterized. Such an exper-
iment produces a spectrum of glycan trees termed the protein’s glycan profile
[12]. A single glycan profile typically contains ten to twenty trees in measurable
abundance, each tree being a tree of depth two to ten bonds.

In [13], the authors had reported a method to infer the production rules when
a single glycan is produced. However, the biologically interesting case is when
the data set contains many glycan trees. This raises the following question: given
a set of glycan trees produced by a cell, can we infer the set of enzymes that
produce the glycans? This is the problem we tackle here.

In Fig. 1, we present details of glycan production. A glycan is a tree-like
sugar tree (nodes linked by edges) attached to a substrate protein at the root
(labeled ‘R’). Distinct edge orientations correspond to covalent bonds of distinct
carbons on the sugar monomer. Curved boxes represent reaction compartments
within cells, which are the site of glycan production. Each step of glycan growth
(black arrows) represents the addition of a single new monomer to a specific
attachment point on the tree. Each such step is catalyzed by an enzyme, labeled
Ei. At any stage of growth, the tree can exit the reaction compartment as an
output. Alternatively, it can be passed to a subsequent reaction compartment
for further growth driven by different enzymes. Note that the enzymatic rule is
sensitive to the two monomers being linked by a bond, as well as any branches.
For example, enzyme E2 will add a Galactose to a GalNAc only if the GlcNAc
branch is present; otherwise, the reaction will not proceed (‘X’). The structures,
reactions, and enzymes shown here are illustrative, and they do not correspond to
any measured data set; see the following section for a real example. In biological
experiments, the combined outputs of every compartment are measured; the
underlying reactions must be inferred.

Automated Inference of Production Rules for Glycans 61

3 Motivating Example

In this section, we first present a motivating example to illustrate our method.
In Fig. 2, we consider the glycan oligomers associated with human chorionic
gonadotropin [14]. The data set has four glycan oligomers (shown in boxes and
numbered). We assume that all these oligomers are built by starting from a root
GalNAc (yellow square) by adding one monomer at a time (lines between glycans
represent monomer addition reactions). At the top of the figure, we illustrate if
all enzymes (rules) operate in a single compartment, a large number of glycans
can potentially be made in addition to the measured ones. In the lower part of
the figure, we illustrate if the enzymes are split into three compartments (sepa-
rated by dotted lines), then certain reactions are prevented from occurring. Thus,
reducing the set of structures. In this case, we assume that only the terminal
(bottom-most) structures will be produced as outputs. Here we have assumed
certain rules of operation that are most consistent with the observed glycan data
set. The goal of this paper is to infer the rules.

Fig. 1. Biological details of glycan production. There are many types of sugar monomer
building blocks; for example, GalNAc (yellow square), GlcNAc (blue square), Galactose
(yellow circle), Sialic Acid (purple diamond), Fucose (red triangle) and so on [1]. (Color
figure online)

Now we consider the synthesis problem. In Fig. 3(a), we present a set of glycan
molecules present in a cell consists of three molecules, which are structurally
similar to the three glycan molecules in Fig. 2. To keep illustration simple, we
have dropped the third glycan molecule from the earlier set. The molecules
contain four types of monomers. As we are considering the abstract case, we
have named them A, B, C, D. Each monomer is associated with an arity, i.e.,
the maximum number of potential children. The arities of the monomers are 2,
1, 1, and 0, respectively.

Let us first consider six rules in Fig. 3(b) that produce the molecules. All the
rules are in the same compartment, i.e., they can be applied in arbitrary order.
The rules have two kinds of nodes. If the circular nodes are present around a node,
the rule is enabled and may append the molecule at the node with the square

62 A. Biswas et al.

Fig. 2. A glycan data set. Figure credit: Anjali Jaiman, PhD thesis. (Color figure
online)

nodes. In Fig. 3(c), we show the steps of generating the last glycan molecule. The
first two steps add two nodes at a time. The last step looks at the two ancestors
before adding a single node.

The second last rule in Fig. 3(b) has a non-trivial condition on the sibling of
the anchor leaf node. It requires, the parent of the new node should be A and
the right sibling must be B. If we do not have the sibling condition, we may
be able to construct the molecule in Fig. 3(d) using the fourth and the modified
fifth rule. The molecule is not in a subtree of any of the three input glycan
molecules. Therefore, there are scenarios where rules must look into the context
before applying themselves.

Our method for synthesis takes the three glycan molecules as input. It also
needs the budget of resources to search for the production rules. If we allow
an arbitrary number of rules, and the rules to look at their context up to an
arbitrary depth, then there is a trivial solution. Therefore, our method limits
the number and size of rules. For this illustration, we searched for the seven
production rules with three as the limit on the rule heights. All rules are in a
single compartment.

GlySynth, the tool that implements the method, reported the synthesized
rules from Fig. 3(b) in 0.85 s. In our tool, we first construct a synthesis query

Automated Inference of Production Rules for Glycans 63

using the templates to encode that a set of rules produces the input molecules.
We call a solver to solve the synthesis query. After the first query, we obtain the
rules presented in Fig. 3(e). The rule set can produce molecules that are not in
input. We need to iterate further. After 8 iterations, our tool synthesizes a set
of rules that satisfies the requirements.

4 Modelling of the Synthesis Problem

In this section, we present the formal model for the synthesis problem. We model
glycan molecules and production rules as labeled trees. The glycan molecules are
assembled by applying the production rules repeatedly. Our synthesis problem
reduces into finding the pieces of trees that represent the production rules.

Fig. 3. (a) A schematic example of a data set that includes three glycan oligomers.
(b) A set of production rules for the glycan molecules (c) The steps of producing the
middle glycan molecule (d) An undesired molecule. (e) The synthesized rules at the
first iteration.

64 A. Biswas et al.

Let S be the set of sugar monomers that builds glycans, the oligomer
molecules. Each s ∈ S is associated with arity m (written arity(s) = m). The
children of the monomers are indexed. We refer to the kth child of s for some
k ≤ arity(s). They correspond to bonds at specific positions in the monomers
where children are connected. Now we define the glycan molecules as labeled
trees. Now onward we refer to the glycans simply as molecules.

Definition 1. A molecule m = (V,M,C, v0) is a labeled tree, where V is a set
of nodes in the tree, M : V → S maps nodes to their label, C : V × N ↪→ V
maps the indexed children of nodes, and v0 ∈ V is the root of m. A molecule
must respect the arity of monomers, i.e., if M(v) = s and C(v, n) = v′ then
n ≤ arity(s).

Let us define notations related to the tree structure. Let m = (V ,M ,C , v0) and
m′ = (V ′,M ′, C ′, v′

0) be molecules. With an abuse of notation, we write v ∈ m
to denote v ∈ V . For each v ∈ m, if (v, n) is not in the domain of C, we write
C(v, n) = ⊥. We assume that C(v, 0) = ⊥. Let NumberOfChildren(v) be
equal to the number of ns such that C(v, n) �= ⊥. A node v ∈ V is a leaf of m if
C(v, n) = ⊥ for each n. Let depth(v) be the length of the path from v0 to v. A
branch of m is a path from v0 to some leaf of m. Let height(m) be the length of
the longest branch in m. We define ancestor relation recursively as follows. Let
ancestor(m, v, 0) = v. For for d > 0, let ancestor(m, v, d) = ancestor(m, v′, d−1)
if C(v′, i) = v for some i.

Since we will be matching the parts of the trees and applying rules to expand
them, let us introduce notations for matching. Let recursively-defined predi-
cate Match(m, v,m′, v′) state that v ∈ m, v′ ∈ m′, s = M(v) = M(v′), and
Match(m,C(v, n),m′, C(v′, n)) for each n ≤ arity(s) such that C(v, n) �= ⊥.
In other words, the subtree in m rooted at v is embedded in m′ at node
v′. Let subtree(m) be the set of molecules such that m′ = (_,_,_, v′

0) ∈
subtree(m) ⇔ Match(m, v0,m

′, v′
0). Let us also define a utility to copy a sub-

tree of a molecule into another molecule. Let Copy(m, v) return a molecule
m′′ = (V ′′,M ′′, C ′′, v′′

0) such that V ′′ is a set of fresh nodes, Match(m, v,m′′, v′′
0),

and Match(m′′, v′′
0 ,m, v). Both the Match conditions say that the trees rooted

at v and v′′
0 are identical.

Now we define the model of the production process of the molecules. A pro-
duction rule expands a molecule m by attaching a new piece of tree at a node
that has a vacant spot among its children if the surroundings of the node sat-
isfy some condition. The rule is modeled as a tree that has two parts. One part
should already be there in m and the other part will be appended to m.

Definition 2. A production rule r = (V,M,C, v0, ve) is a labeled tree, where V
is a set of nodes, M : V → S maps nodes to labels, C : V × N ↪→ V maps the
indexed children of nodes, v0 ∈ V is the root, and ve ∈ V is the root of expanding
part of the rule.

If we apply, a rule r on a molecule m, then it is extended at some node v ∈ m.
A copy of the descendants of ve will be attached to v in m, and the rest of the

Automated Inference of Production Rules for Glycans 65

nodes in the rule have to match v and above. We call the descendants of ve as
expanding nodes and all the other nodes as matching nodes.

Fig. 4. (a) A rule. (b) An applica-
tion of the rule.

Example: In Fig. 4(a), we present a rule. It has
two kinds of nodes. The rule adds the square
node (ve). The circular nodes are the pat-
tern, which must be present in the molecule
to apply the rule. In Fig. 4(b), we present an
application of the rule. The solid tree with
three nodes is the initial molecule. The middle
node A and its right child B form a pattern,
where the rule is applicable. The rule adds a
left child with the label A to the middle node.
The rule is not applicable at the root A due
to pattern mismatch.

We naturally extend the definitions related to molecules, including Match
and Copy, to the production rules. Let us formally define the molecule
productions using the rules. Let m = (V,M,C, v0) be a molecule and
r = (Vr,Mr, Cr, v0r, ve) be a production rule. Let d be such that v0r =
ancestor(r, ve, d), i.e., ve is at the depth d in r. Let i be such that Cr(v′, i) = v0r
for some v′ ∈ r. We apply r on m at node v ∈ m such that C(v, i) = ⊥. We
obtain an expanded molecule as follows. Let (V ′,M ′, C ′, v′

0) = Copy(r, ve). The
expanded molecule is m′ = (V � V ′,M � M ′, C � C ′ � {(v, i) 	→ v′

0}, v0) if
Match(r, v0r,m′, ancestor(m′, v′

0, d)) where � is the disjoint union. The match
condition states that after attaching the new nodes V ′ the rule tree must be
embedded in m′ at the dth ancestor of v′

0. We write m′ = Apply(m, v, r) to
indicate the application of r on molecule m at node v that results in m′. If r is
not applicable at v, we write Apply(m, v, r) = ⊥. We write m′ = Apply(m, r) if
there is a v ∈ m such that m′ = Apply(m, v, r).

Let R be a set of rules. A molecule m is producible by R from a set of
molecules Q if there is sequence of molecules m0, ...,mk such that m0 ∈ Q,
mk = m, and for each 0 < i ≤ k, mi = Apply(mi−1, r) for some r ∈ R. Let
P (Q,R) denote the set of molecules that are producible from rules R from a set
of molecules Q. We have discussed in Sect. 2 that all the production rules are
not applied at the same time. The rules may live in compartments and the rule
sets of the compartments are applied one after another. To model compartments
for the rules, let us suppose we have a sequence R1, ..., Rk of set of rules. Let
P (Q,R1, .., Rk) = P (..P (P (Q,R1), R2), .., Rk) denoting the trees obtained after
applying the rule sets one after another.

In nature, we observe a set of glycan molecules μ present in a cell. However,
we may not know the production rules to produce the molecules. We will be
developing a method to find the rules. The synthesis problem is to find a set R
of production rules such that μ = P (S,R), where S is the set of monomers.

66 A. Biswas et al.

5 Method for the Synthesis Problem

In this section, we present a method to solve the synthesis problem of finding a
set of production rules that produce a given set μ of molecules. Our method Sug-

arSynth is Algorithm 1. Here, we are considering only the single compartment
case. The generalizations are discussed in the extended version [6].

5.1 SUGARSYNTH in Detail

The method assumes that the input set μ is finite. This is a reasonable assump-
tion because even if a set of rules can produce an unbounded number of molecules,
no biology will exhibit an infinite set in a cell. Our method bounds the search
space of production rules. The method also takes two numbers as input: d is
the maximum height of the learned rules and n is the maximum number of
them. If the method fails to find production rules, the user may call the method
with larger parameters. First, the method initializes S with the set of monomers
occurring in μ and sets w to be the maximum arity of any monomer in S.

We use templates to model the search space of rules. A template is a tree that
has a depth and the internal nodes of the tree have the same number of children.
Two variables label each node. One variable is for choosing the sugar at the node

Algorithm 1. SugarSynth(μ, d, n)
Input : μ : molecules, d : maximum rule depth, n : number of rules
Output: R: synthesized rules
1: S := the set of monomers appear in μ, w := the maximum arity of a monomer in

S
2: T := MakeTemplatesRule(S, d, w, n)
3: tCons := RuleTemplateCorrectness(T)
4: Let h is maximum of the heights of molecules in μ
5: m̂ := MakeTemplateMol(S, h, w)
6: mCons := MolTemplateCorrectness(m̂, μ)
7: pCons :=

∧
m∈μ EncodeProduce(m,T)

8: nCons := tt
9: while tt do � while True

10: if a = getModel(tCons ∧ pCons ∧ nCons) then
11: R := readRules(a)
12: else
13: throw Failed to synthesize the rules!
14: end if
15: rCons := EncodeProduce(m̂,Rs)
16: if a = getModel(mCons ∧ rCons) then
17: m′ := getNegMol(m̂, a)
18: nCons :∧= ∀τ, cuts.¬EncodeProduce(m′, T)
19: else
20: return synthesized rules R
21: end if
22: end while

Automated Inference of Production Rules for Glycans 67

and the other is for describing the ‘situation’ of the node. The domain of the
first variables is S∪{⊥}. Let SV ars be the unbounded set of variables with the
domain. We will use the pool of SV ars to add variables to the templates.

A node in a production rule can be in four situations. In Fig. 5, we illustrate
the situations. The first situation is when a node is in the expanding part, which
are shown in dark gray. The second situation is when a node is not in the rule.
The dashed area are the absent nodes. Among the matching nodes, we have two
cases.

v0

ve

v0

veve

Fig. 5. Parts of production
rules in the rule templates.

The third situation is when a node is in
the matching part and has expanding descen-
dants. The nodes on the solid path from v0
to the root ve of the expanding part are in
the third situation. Finally, the fourth situation
is the rest of the nodes in the matching part,
which is in light gray. A variable is mapped
to a node to encode the four situations. Let
K = {Expand,Absent,MatchAns,Match} be
the set of symbols to indicate the situations. Let
KV ars be an unbounded set of variables with domain K. Our templates are suf-
ficiently expressive to cover all aspects of biology, which are defined as follows.

Definition 3. For given integers d and w, a rule template t = (V, ν, κ, C, v0r)
is a labeled full tree with depth d and each internal node has w children, where V
is a set of nodes, ν : V → SV ars maps nodes to distinct sugar choice variables,
κ : V → KV ars maps nodes to distinct situation variables, C : V × N ↪→ V
maps the indexed children of nodes, and v0r ∈ V is the root of the tree.

For a node v in a template if we assign κ(v) = Absent, we call the node absent.
Otherwise, we call the node present. We will also be searching for the molecules
that may be produced by the learned rules. Therefore, we need to define the
search space for the molecules. We use templates for defining the search space.
We limit the template size using a parameter, namely the height of the template.

Definition 4. For given integers h and w, a molecule template m̂ =
(V, ν, C, v0m) is a labeled full tree with height h and each internal node has w
children, where V is a set of nodes, ν : V → SV ars maps nodes to sugar choice
variables, C : V × N ↪→ V maps the indexed children of nodes, and v0m ∈ V is
the root.

In the Algorithm at line 2, we call MakeTemplatesRule(S, d, w, n) to
create n templates for height d and children width w. Since w is the maximum
arity of any sugar, we can map any node to any sugar. Next at line 3, we will
construct constraints that encode the set of valid rules. A valid assignment to the
variables in a template t = (V, ν, κ, C, r) must satisfy the following six conditions.

1. If a node is present, then it is labeled with a sugar.∧
s∈S

∧
v∈V (κ(v) �= Absent ⇒ ν(v) �= ⊥)

68 A. Biswas et al.

2. The children that are at greater arity than that of the label are absent.∧
s∈S

∧
i∈(arity(s),w]

∧
v∈V (ν(v) = s ⇒ κ(C(v, i)) = Absent)

3. If a node is present, then the parent of the node is also present.∧
internal node v∈V

∧
i∈[1,w](κ(C(v, i)) �= Absent ⇒ κ(v) �= Absent)

4. If a node is Expand, then its children are also Expand if present.∧
i∈[1,w]

∧
internal node v∈V (κ(v) = Expand ⇒ κ(C(v, i)) ∈ {Expand,

Absent})
5. If a node is Match, then its children are also Match if present.∧

i∈[1,w]

∧
internal node v∈V (κ(v) = Match ⇒ κ(C(v, i)) ∈ {Match,Absent})

6. If a node is MatchAns, then exactly one child is MatchAns or Expand.∧
v∈V (κ(v) = MatchAns ⇒ ∑

i∈[1,w](κ(C(v, i)) ∈ {MatchAns,Expand}) = 1

The call to RuleTemplateCorrectness at line 3 creates the above con-
straints and stores them in tCons. At line 5, we use the call to MakeTemplate-

Mol(S, h, w) to create a molecule template of height h and children width w.
Our method searches for unwanted producible molecules up to the height of h,
which we set to the maximum of the heights of molecules in μ. The choice of h
is arbitrary. Similar to the rule templates, not all assignments to molecule tem-
plate variables are valid. We add the following conditions for valid assignments
for molecule template m̂ = (V, ν, C, v̂0).
1. If a node is present, then the parent of the nodes is also present.∧

i∈[1,w]

∧
internal node v∈V (ν(C(v, i)) �= ⊥ ⇒ ν(v) �= ⊥)

2. The children count of a node matches with the arity of the labeled sugar.∧
s∈S

∧
i∈(arity(s),w]

∧
v∈V (ν(v) = s ⇒ κ(C(v, i)) = Absent)

3. We find a molecule that is not in μ. We encode
∧

(_,_,_,v0)∈µ Neq(v̂0, v0),
where predicate Neq be recursively defined as follows.
Neq(v, v′) := ν(v) �= M(v′) ∨ ∨

i∈[1,w] Neq(C(v, i), C(v′, i))
Neq(v,⊥) := ν(v) �= ⊥

In our method, the call to MolTemplateCorrectness at line 6 generates the
above constraints and stores them in mCons.

We need to encode that the rules do generate the molecules in μ and do
not generate any other. Using procedure EncodeProduce, we generate the
corresponding constraints. We will discuss the procedure in-depth shortly. Let
us continue with SugarSynth. At line 7, we call EncodeProduce for each
molecule in μ and generate constraints pCons stating that the solutions of the
templates will produce the molecules in μ.

After producing the constraints tCons, mCons, and pCons, the method
enters in the loop. It first checks the satisfiability of conjunction tCons∧pCons∧
nCons, where nCons is tt in the first iteration and will encode constraints
related to counterexample molecules. If the conjunction is unsatisfiable, there
are no rules of the input number and height, and the method returns failure of
synthesis. If it is satisfiable, it constructs the rules at line 11 from and stores
them in R.

At line 15, we construct constraints rCons again using EnocdeProduce

that says that template molecule m̂ is generated by rules R. We check the satis-
fiability of rCons ∧ mCons. If it is not satisfiable, we have found the rules that

Automated Inference of Production Rules for Glycans 69

generate exactly the molecules in μ and the loop terminates. Otherwise, we use
the satisfying assignment to create a counterexample molecule m′. At line 18,
we add constraints to nCons stating that all possible applications of template
rules in T must not produce m′. We use shorthand F :∧= G for F := F ∧ G. As
we will see that EncodeProduce introduces fresh variable maps τ and cuts in
the encoding. Since we negate the returned formula by EncodeProduce and
then we check the satisfiability, we need to introduce universal quantifiers over
the fresh variables. Afterwards, the loop goes to the next iteration.

5.2 ENCODEPRODUCE in Detail

Now let us look at the encoding generated by EncodeProduce. The process of
production of molecules adds pieces of trees one after another. In order to show
that a molecule is producible by a set of production rules, we need to find the
nodes where the production rules are applied, the rules that are applied on the
nodes, and the order of the application of the rules. To model the production
due to the application of the rules, we attach three maps to the molecule nodes.

– Let cuts map each node to a Boolean variable indicating the node is the
point where a rule is applied to expand the molecule. We say points of the
applications of the production rules as cuts of the tree.

– Let rmatch map each node to a rule indicating the rule that is applied to
expand at the node. We need to match a rule to a node if it is a cut point.

– Let τ map each node to an integer variable indicating the time point when
the node was added to the molecule. Since already added nodes in a molecule
decide what can be added later, we need to record the order of the addition.

Algorithm 2 presents function EncodeProduce that returns the encoding.
It takes a molecule m and a set of rules T . Both the inputs can be template or
concrete. Our presentation assumes that the molecule is concrete and the rules
are templates. This will cover the case when the EncodeProduce is called at
line 7 in Algorithm 1. However, at line 15 the molecule is a template and the
rules are concrete, which we will discuss later. EncodeProduce uses the help
of three other supporting functions, EncodeP, MatchTree, and MatchCut.

EncodeProduce returns constraints stating for each node v and rule tem-
plate t, if v is at a cut and t is applied at v, then t must match at the node v.
We require rmatch(v) to be equal to some rule. Since we are matching with a
template rule, we do not know the position of the root of expanding nodes. We
enumerate to all possible depths from 1 to d − 1 for finding the root. For each
� ∈ [1, d), we call EncodeP(v, t, �) to construct the constraints encoding that t
is applied at v and the depth of the root of the expanding nodes is at depth �.

In EncodeP, we can traverse up from v for � steps to find the node to match
the root of t. It returns ff if there is no �th ancestor of v. The variable mark is
the timestamp for v. The variable c collects the constraints as they are generated.
The variable vr is initially equal to the root v0r of t and traverses the nodes in
t. The while loop at line 3 starts with the �th ancestor from v, matches all the

70 A. Biswas et al.

ancestors up to the parent of v. As the loop traverses down, it also traverses t
using variable vr. In each iteration, vr is updated to the jth child due to lines 8
and 13 if the ancestors of v also traverse along the jth child.

Algorithm 2. EncodeProduce(m : molecule (template), T : rule (template))

1: return
∧

v∈m

∧
t∈T

[
rmatch(v) = t ∧ cuts(v) ⇒ ∨

�∈[1,d) EncodeP(v, t, �)
]

EncodeP(v, t = (_, ν, κ, v0r), �)
1: if ancestor(v, �) = ⊥ then return ff end if
2: mark := τ(v), c := tt, vr := v0r, i = �
3: while i > 0 do
4: v′ := ancestor(v, i)
5: c :∧= κ(vr) = MatchAns ∧ ν(vr) = M(v′) ∧ τ(v′) < mark
6: for j ∈ [1, NumberChildren(v′)] do
7: if C(v′, j) = ancestor(v, i − 1) then
8: v′

r := C(vr, j)
9: else

10: c :∧= MatchTree(C(v′, j), C(vr, j), mark,ff)
11: end if
12: end for
13: vr := v′

r, i := i − 1
14: end while
15: c :∧= κ(vr) = Expand ∧ MatchTree(v, vr, mark, tt) ∧ MatchCut(v, vr,ff)
16: return c

MatchTree(v, vr, mark, isExpand)
1: if vr = ⊥ then return tt end if
2: if v = ⊥ then return κ(vr) = Absent end if
3: tCons := isExpand ? (mark ≤ τ(v)) : (τ(v) < mark)
4: c := κ(vr)
= Absent ⇒ tCons ∧ ν(vr) = M(v)
5: c :∧= ∧

i∈[1,NumberOfChidren(v)] MatchTree(C(v, i), C(vr, i), mark, isExpand)
6: return c

MatchCut(v, vr, ruleParentIsNotAbsent)
1: if v = ⊥ then return tt end if
2: if vr = ⊥ then return parentIsNotAbsent ⇒ cuts(v) end if
3: c := ruleParentIsNotAbsent ⇒ (κ(vr) = Absent) = cuts(v)
4: c :∧= ∧

i∈[1,NumberOfChidren(v)] MatchCut(C(v, i), C(vr, i), κ(vr)
= Absent)
5: return cons

Let v′ be the ith ancestor at some iteration of the loop. At line 5, the loop
adds constraints stating that the corresponding node vr in t is MatchAns, sugar
matches in vr and v′, and node v′ was added before mark. The loop at line 6,
iterates over children of v′. If there is a child of v′ that is not along the path to v, it
is matched at line 10 with the corresponding child of vr by calling MatchTree,
which will be discussed shortly. If the jth child of v′ is along the path to v, we
get node v′

r for updating vr for the next iteration of the while loop. After the

Automated Inference of Production Rules for Glycans 71

while loop in EncodeP at line 15, we declare vr is Expand, match the node
v with the corresponding node vr in the template rule by calling MatchTree,
and also call to match the cut pattern at the subtree of v with the template rule.

MatchTree is a recursive procedure and matches sugar assignments
between the molecule and the rule template. If the rule template node vr does
not exist, then there is nothing to match and it returns tt at line 1. At line 2,
we encode if the molecule node v does not exist, then the rule node must also
be flagged absent. Otherwise, we add constraints that if vr is not absent in the
template, then the labels of v and vr must match at line 4. At the same line,
MatchTree also adds constraints tCons that nodes are added in the molecule
in the correct order. The last two inputs of the function are timestamp mark and
a bit isExpand, which tells us that the matching nodes should be added before
or after mark. The calls to MatchTree from EncodeP use the isExpand
appropriately. Afterwords at line 5, the procedure calls itself for the children of
v and vr.

Once a rule is applied to a molecule, all the nodes inside the expanding part
are added together. Therefore, there should be no cuts within the set of added
nodes. Furthermore, if there are children nodes below the added nodes, they must
be added due to the application of some other rule. Therefore, the children are
at the cut points. We call the above requirement cut pattern. MatchCuts is a
recursive function over the trees, and matches cut patterns between the molecule
node v and the rule template node vr. The cuts must occur whenever nodes of
the rule template transition from present to absent. For helping to detect the
transition, the third parameter is a constraint that encodes that the parent of
vr is absent or not. The call to MatchCuts in EncodeP passes ff as the third
input. Even if the parent of vr is present, vr is a cut point adding cut pattern
constraints for the node will create inconsistency. Therefore, we are passing ff .

In the case when we call EncodeProduce with template molecule and
concrete rules. We swap the roles of ν and M at their occurrences at line 5 in
EncodeP and line 4 in MatchTree. Furthermore, κ(vr) is a concrete value.
In the functions, the variable is to be replaced by the evaluated value of κ(vr).

Theorem 1. If SugarSynth(μ, d, n) returns rules R, then if R produces a
molecule that has depth less than h + 1, the it is in μ (soundness). If it fails to
find rules, there are no rule sets within the budget of d and n (completeness).

The soundness is true by construction. At each iteration, at least one solution,
i.e., a set of rules is discarded. In fact, we discard many because in each iteration
we reject all rule sets that may produce a counterexample molecule. Since the set
of all possible rules is finite, we terminate. Therefore, the completeness holds.

72 A. Biswas et al.

Table 1. Results of applying GlySynth on data sets.

#mole
cules

#Rules Rule
depth

#Compart
ments

Success? Time
(in secs.)

#molecules #Rules Rule depth #Compart
ments

Success? Time
(in secs.)

D1 6 7 3 1 Yes 3.02 D5 3 6 2 1 No 0.64
7 4 2 Yes 1.60 7 2 1 Yes 0.72
6 3 3 Yes 9.36 8 4 1 Yes 2.39

D2 3 7 3 2 Yes 14.37 D6 2 5 3 2 Yes 0.86
5 3 2 Yes 7.97 5 3 1 Yes 0.73
5 3 3 Yes 13.42 4 2 1 No 0.69

D3 6 6 4 2 Yes 1.02 D7 3 5 3 2 Yes 0.72
5 2 1 Yes 0.57 5 3 1 Yes 0.65
5 4 1 Yes 0.71 6 2 1 No 0.69

D4 3 8 4 1 Yes 4.35 D8 3 4 3 2 No 0.79
6 3 1 Yes 0.85 5 3 2 Yes 0.84
6 2 2 No 1.17 8 4 3 Yes 1.53

6 Experiments

Implementation: We have implemented SugarSynth in a tool GlySynth [15].
The tool, written in C++, uses Z3[16] as the SMT solver to solve the satisfiability
queries. We ran the experiments on a laptop with 8GB RAM and 2.4GHz CPU.

Benchmark: We have applied our tool to three sets of real data (D1, D2,
D3, D4) and two sets of synthetic data (D5, D6). The molecules have been
obtained from respiratory mucins of a cystic fibrosis patient (D1), horse chori-
onic gonadotropin (D2), SARS-CoV-2 spike protein T323/S325 (D3), and human
chorionic gonadotropin from a cancer cell line (D4) [10,17]. The availability of
clean data, where we are clear about the source, limits our choices (Table 1).

Results: We have applied GlySynth on the data set. For each data set, we
choose several parameter combinations to illustrate the relative performance
of the tool. If we did not budget large enough parameters such as the size of
unknown molecules, number of rules etc., then the tool fails to synthesize the
rules. We present the rules learned after giving minimum resources. However,
the set of rules reported need not be either unique or minimal.

For D1, we synthesize the rules in 1.60 s. Even by reducing the first two
parameters, we were able to synthesize the rules but it took longer time. Giving
an extra compartment in the third row did not impact the performance. We also
observe the trade-off between the number of compartments and the depth of the
rules at the second and third row of D1 and how it impacts performance. We
synthesize the rules for D2, involving runaway reactions, in 7.97 s. For D2, we
also learned large rules, i.e., they are adding many nodes at a single time. We
synthesize the rules for D3 in 0.57 s. We synthesize the rules for D4, which is
also our motivating example, in 0.85 s. However, if we use too many resources
or too little, the tool runs for a long time as the search in combinatorial space
is highly sensitive to the parameters. The synthesis for D5 takes 0.72 s. We can
observe that by reducing the number of rules to learn, the tool fails to learn rules
as it required minimum 7 rules. Our synthesized production is in line with the
reported rules in the literature [10].

Automated Inference of Production Rules for Glycans 73

7 Conclusion and Future Work

We have presented a novel method for synthesizing production rules for glycans.
We have applied our method to real-world data sets. We are planning to work in
biological labs to check the viability of the solutions found by our method. We
are the first to apply formal methods for the synthesis problem.

References

1. Varki, A. (ed.): Essentials of Glycobiology, 3rd edn. Cold Spring Harbor Laboratory
Press, New York (2017)

2. Solar-Lezama, A., Jones, C.G., Bodík, R.: Sketching concurrent data structures.
In: Gupta, R., Amarasinghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, Tucson, AZ,
USA, 7–13 June 2008, pp. 136–148. ACM (2008)

3. Gupta, A., Majumdar, R., Rybalchenko, A.: From tests to proofs. In: TACAS
(2009)

4. Alur, R., et al.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design, FMCAD 2013, Portland, OR, USA, 20-23 October 2013, pp. 1–8 (2013)

5. Solar-Lezama, A., Rabbah, R., Bodík, R., Ebcioğlu, K.: Programming by sketching
for bit-streaming programs. In: Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’05, pp. 281–
294. ACM, New York (2005)

6. Biswas, A., Gupta, A., Missula, M., Thattai, M.: Automated inference of produc-
tion rules for glycans (extended version). http://arxiv.org/abs/2107.02203 (2021)

7. Campbell, M.P., et al.: UniCarbKB: building a knowledge platform for glycopro-
teomics. Nucleic Acids Res. 42(D1), D215–D221 (2013)

8. Alberts, B., et al.: Essential cell biology. Garland Sci. (2013)
9. Biswas, A., Thattai, M.: Promiscuity and specificity of eukaryotic glycosyltrans-

ferases. Biochem. Soc. Trans. 48(3), 891–900 (2020)
10. Jaiman, A., Thattai, M.: Algorithmic biosynthesis of eukaryotic glycans (2018)
11. Spahn, P.N., et al.: A markov chain model for n-linked protein glycosylation -

towards a low-parameter tool for model-driven glycoengineering. Metab. Eng. 33,
52–66 (2016)

12. Spahn, P.N., Lewis, N.E.: Systems glycobiology for glycoengineering. Curr. Opin.
Biotechnol. 30, 218–224 (2014)

13. Jaiman, A., Thattai, M.: Algorithmic biosynthesis of eukaryotic glycans. bioRxiv
(2018)

14. Harrd, K., et al.: The carbohydrate chains of the beta subunit of human chori-
onic gonadotropin produced by the choriocarcinoma cell line BeWo. Novel o-linked
and novel bisecting-GlcNAc-containing n-linked carbohydrates. Eur. J. Biochem.
205(2), 785–798 (1992)

15. Gupta, A., Meghana, M.: GlySynth (2021). https://github.com/ashutosh0gupta/
sugar-synth

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

17. Shajahan, A., Supekar, N.T., Gleinich, A.S., Azadi, P.: Deducing the N- and O-
glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glyco-
biology (2020). cwaa042

http://arxiv.org/abs/2107.02203
https://github.com/ashutosh0gupta/sugar-synth
https://github.com/ashutosh0gupta/sugar-synth
https://doi.org/10.1007/978-3-540-78800-3_24

Compiling Elementary Mathematical
Functions into Finite Chemical Reaction

Networks via a Polynomialization
Algorithm for ODEs

Mathieu Hemery, François Fages(B), and Sylvain Soliman

Inria Saclay Île-de-France, EPI Lifeware, Palaiseau, France
{mathieu.hemery,Francois.Fages,sylvain.soliman}@inria.fr

Abstract. The Turing completeness result for continuous chemical reac-
tion networks (CRN) shows that any computable function over the real
numbers can be computed by a CRN over a finite set of formal molecular
species using at most bimolecular reactions with mass action law kinet-
ics. The proof uses a previous result of Turing completeness for functions
defined by polynomial ordinary differential equations (PODE), the dual-
rail encoding of real variables by the difference of concentration between
two molecular species, and a back-end quadratization transformation to
restrict to elementary reactions with at most two reactants. In this paper,
we present a polynomialization algorithm of quadratic time complexity
to transform a system of elementary differential equations in PODE.
This algorithm is used as a front-end transformation to compile any ele-
mentary mathematical function, either of time or of some input species,
into a finite CRN. We illustrate the performance of our compiler on a
benchmark of elementary functions relevant to CRN design problems in
synthetic biology specified by mathematical functions. In particular, the
abstract CRN obtained by compilation of the Hill function of order 5 is
compared to the natural CRN structure of MAPK signalling networks.

1 Introduction

Chemical reaction networks (CRN) provide a standard formalism in chemistry
and biology to describe, analyze, and also design complex molecular interac-
tion networks. In the perspective of systems biology, they are a central tool to
analyze the high-level functions of the cell in terms of their low-level molecu-
lar interactions. In the perspective of synthetic biology, they constitute a target
programming language to implement in chemistry new functions in either living
cells or artificial devices.

A CRN can be interpreted in a hierarchy of Boolean, discrete, stochastic and
differential semantics [7,13] which is at the basis of a rich theory for the analysis
of their dynamical properties [1,9,14], and more recently, of their computational
power [6,7,11]. In particular, their interpretation by Ordinary Differential Equa-
tions (ODE) allows us to give a precise mathematical meaning to the notion of
c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 74–90, 2021.
https://doi.org/10.1007/978-3-030-85633-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-85633-5_5

Compiling Elementary Mathematical Functions 75

analog computation and high-level functions computed by cells [10,23,25], with
the following definitions:

Definition 1. [11,16,26] A function f : R+ → R+ is generated by a CRN
on some species y with given initial concentrations for all species, if the ODE
associated to the CRN has a unique solution verifying ∀t ≥ 0 y(t) = f(t).

That first definition states that a positive real function of one positive argu-
ment is generated by a CRN for some given initial concentration values, if the
graph of that function is given by the temporal evolution of the concentration
of one molecular species in that CRN.

Definition 2. [11,16]1 A function f : R+ → R+ is computed by a CRN for
some input species x, output species y, and initial concentrations given for all
species apart from x, if for any input concentration value x(0) for x, the ODE
initial value problem associated to the CRN has a unique solution satisfying
limt→∞ y(t) = f(x(0)).

The second definition states that the same function is computed by a CRN
if for any input x ≥ 0, and initialization of the CRN input species to value
x, the CRN output species converges to the result f(x). That definition for
input/output functions computed by a CRN is used in [11] to show the Turing
completeness of continuous CRNs in the sense that any computable function over
the real numbers can be computed by a CRN over a finite set of formal molecular
species using at most bimolecular reactions with mass action law kinetics. The
proof uses a previous result of Turing completeness for functions defined by
polynomial ordinary differential equation initial value problems (PIVP) [2], the
dual-rail encoding of real variables by the difference of concentration between
two molecular species [18,21], and a back-end quadratization transformation
to restrict to elementary reactions with at most two reactants [3,5,19]. This
proof gives rise to a pipeline, implemented in BIOCHAM-42, to compile any
computable real function presented by a PIVP into a finite CRN.

However in practice, it is not immediate to define a PIVP that generates or
computes a desired function. In this article, we solve this problem for elemen-
tary functions over the reals, by adding to our compilation pipeline a front-end
module to transform any elementary function in a PIVP which either generates
or computes that function, as schematized in Fig. 1.

More precisely, we present a polynomialization algorithm to transform any
Elementary ODE system (EODE), i.e. ODE system in explicit form made of
elementary differential functions, into a polynomial one (PODE). This algorithm
proceeds by introducing variables for computing the non-polynomial terms of
the input, eliminating such terms from the ODE by rewriting, and obtaining the
1 For the sake of simplicity of the definition given here, we omit the error control

mechanism that requires one extra CRN species z verifying:
∀t > 1 |y(t) − f(x(0))| ≤ z(t), ∀t′ > t z(t′) < z(t) and limt→∞ z(t) = 0.

2 http://lifeware.inria.fr/biocham/. All experiments described in this paper are avail-
able at https://lifeware.inria.fr/wiki/Main/Software#CMSB21.

http://lifeware.inria.fr/biocham/
https://lifeware.inria.fr/wiki/Main/Software#CMSB21

76 M. Hemery et al.

Fig. 1. Polynomialization step in the complete pipeline for compiling a formally differ-
entiable function f (termination is proved here for elementary functions) into a finite
CRN, either a function of time (plain arrows) or an input/output function (dashed
arrows): P and P are polynomials, and B denotes the set of species introduced by
polynomialization given with initial conditions IC .

ODE for the new variables by formal derivation. The derivation steps may bring
new non-polynomial terms requiring new variables. We show the termination of
that algorithm, with quadratic time complexity, and that only a linear number
of new variables, in terms of the size of the input expression, are actually needed.

Related work includes one method described in [24] to compute some polyno-
mial abstractions of a non-polynomial system. That method progresses top-down
from some set of possible functions given a priori, and progressively sieves them
down to a polynomial system. This permits to choose the degree of the polyno-
mial abstraction, but that method may fail if either the starting set of functions
or the chosen degree are too small. On the other hand, our algorithm proceeds
bottom-up, by introducing the functions when needed, with no choice a priori.
A bottom-up approach closer to ours is also mentioned in [17] but for a very
restricted grammar of functions while we develop here a general algorithm and
prove its termination on the whole class of elementary mathematical functions.
One can also cite the function dpolyform of Maple PDETools package which
returns a PODE in implicit form for which the expression given as input is guar-
anteed to be a solution, but that does not provide a polynomial expression for
the derivative of each variable, i.e. a PODE in explicit form, as required for our
compilation pipeline.

The rest of the paper is organized as follows. In the next section, we
describe the language of elementary function that are accepted as input of our

Compiling Elementary Mathematical Functions 77

compilation pipeline into CRN. In Sect. 3, we present a general polynomialization
algorithm for elementary ODEs, prove its termination, and show its quadratic
time complexity. In Sect. 4 we describe the use of this algorithm as a front-end
transformation in our compilation pipeline to compile any elementary mathe-
matical function into a finite CRN. In Sect. 5 we evaluate this approach on a
benchmark of elementary functions relevant to CRN design problems in syn-
thetic biology used in [19]. In particular, we compare the CRN synthesized for
the Hill function of order 5 to the structure of the natural MAPK signalling
CRNs that have been shown to implement a similar input/output function [20].
Finally, we conclude on the results achieved and several perspectives for future
work.

2 Input Language of Elementary Functions

2.1 Example

Let us consider the problem of synthesizing a CRN to generate the function of
time: A(t) = log(1 + t2) in the sense of Definition 1. The compilation method
described in [11] takes as input a PIVP which admits that function as solution
on variable A. Here, we want to automate the construction of such a PIVP.

The first step of our front-end transformation schematized in Fig. 1, is to
determine an ODE which admits that function of time as solution. For this, one
can simply take the derivative of the equation with respect to time and set as
initial condition the value for the desired function at 0, giving:

dA

dt
=

2t
1 + t2

A(0) = 0

Then we need to transform this ODE into a PODE. Our polynomialization
algorithm will introduce a new variable B = 1

1+t2 , and similarly compute its
derivative and its initial value, as follows:

dB

dt
=

−2t
(1 + t2)2

= −2tB2 B(0) = 1

We also need to introduce a variable T for time with dT
dt = 1 and T (0) = 0.

giving the following PIVP:

dA

dt
= 2.T.B

dB

dt
= −2.T.B2 dT

dt
= 1

A(0) = 0 B(0) = 1 T (0) = 0

Note that the termination of those transformations is not obvious in general. It
is proved in the next section. That PIVP of degree 3 can now be used as input
of our previous compilation pipeline [11]. It is first transformed in quadratic

78 M. Hemery et al.

form [19], in this case by introducing one variable, BT = B.T , and removing the
time T , giving the following quadratic PIVP:

dA

dt
= 2.BT

dB

dt
= −2.BT.B

d(BT)
dt

=
dB

dt
.T + B

dT

t
= −2.BT 2 + B

A(0) = 0 B(0) = 1 BT (0) = 0

One reaction with mass action law kinetics is then generated for each mono-
mial of the ODE. Since in this example the reactions are well-formed and strict
the system is positive (lemma 1 in [12]). There is thus no need to introduce
dual-rail variables for negative values, and the generated elementary CRN (with
rate constants written above the arrow) is:

B + BT 2−→ BT B
1−→ B + BT

2.BT 2−→ BT BT 2−→ A + BT B(0) = 1

Now, it is worth noting that if we want to synthesize a CRN that computes
(instead of generating) the function log(1 + x2) of some input x in the sense of
Definition 2, the general method described in [11,22] consists in introducing a
variable X, initialized to value x, multiplying the terms of the PIVP for gener-
ating the function, and following a decreasing exponential to halt the PIVP on
the prescribed input. The previous PIVP of degree 3 thus becomes a PIVP of
degree 4 by this transformation:

dX

dt
= −X

dA

dt
= 2.T.B.X

dB

dt
= −2.T.B2.X

dT

dt
= X

X(0) = x A(0) = 0 B(0) = 1 T (0) = 0

The quadratization algorithm [19] now introduces new variables BX and TBX
for the corresponding monomials, and removes variables T and B. This generates
the following quadratic PIVP:

dX

dt
= −X

dBX

dt
=

dB

dt
X + B

dX

dt
= −2.BX.TBX − BX

dA

dt
= 2.TBX

dTBX

dt
= BX.X − 2.TBX2 − TBX

X(0) = x BX(0) = x A(0) = 0 TBX(0) = 0

and finally the following elementary CRN which computes the log(1 + x2) func-
tion:

BX + TBX 2−→ TBX X
1−→ ∅ BX 1−→ ∅

BX + X
1−→ BX + TBX + X TBX 1−→ ∅

2.TBX 2−→ TBX TBX 2−→ A + TBX
X(0) = x BX (0) = x A(0) = 0

Compiling Elementary Mathematical Functions 79

2.2 Elementary Functions as Compilation Pipeline Input Language

In mathematics, elementary functions refer to unary functions (over the reals
in our case) that are defined as a sum, product or composition of finitely many
polynomial, rational, trigonometric, hyperbolic, exponential functions and their
inverses. Most of these functions are defined on the real axis but a few exceptions
are worth mentioning: the inverse of some function is restricted to the image of
R by the function (e.g., arccos is only defined on [−1, 1]) and the exponentiation
may be non-analytic in 0 and is thus considered elementary only on an open
interval that does not include 0.

The set of elementary functions of x is formally defined as the least set of
functions containing:

– Constants: 2, π, e, etc.
– Polynomials of x : x + 1, x2, x3 − 42.x, etc.
– Powers of x :

√
x, 3

√
x, x−4, etc.

– Exponential and logarithm functions: ex, lnx
– Trigonometric functions: sinx, cosx, tanx, etc.
– Inverse trigonometric functions: arcsinx, arccosx, etc.
– Hyperbolic functions: sinhx, coshx, etc.
– Inverse hyperbolic functions: arsinhx, arcoshx, etc.

and closed by arithmetic operations (addition, subtraction, multiplication, divi-
sion) and composition. Elementary functions are also closed by differentiation
but not necessarily by integration. On the other hand hyper-geometric func-
tions, Bessel functions, gamma, zeta functions, are examples of (computable)
non-elementary functions.

3 Polynomialization Algorithm for Elementary ODEs

3.1 Polynomialization Algorithm

The core of Algorithm 1 for polynomializing an EODE system is the detection
of the elements of the derivatives that are not polynomial and their introduction
as new variables. Then symbolic derivation and syntactic substitution allow us
to compute the derivatives of the new variables and to modify the system of
equations accordingly.

It is worth noting that the list of substitutions has to be memorized along the
way, therefore handling an algebraic-differential system during the execution of
the algorithm, since they may reappear during the derivation step. This typically
occurs when the derivation graph harbors a cycle like: cos → sin → cos (Fig. 2).

Nevertheless, a particular treatment has to be applied to the case of non-
integer or negative power as they form an infinite set and may thus produce
infinite chains of derivations. This can be seen if we try to apply naively Algo-
rithm 1 on this simple example:

dA

dt
= A0.4

80 M. Hemery et al.

Algorithm 1. Polynomialization of an EODE system
1: Input: A set of ODEs of the form {x′ = fx(x, y, . . .), y

′ = fy(x, y . . .), . . .}.
2: Output: A set of PODEs where the initial variables x, y, . . . are still present and

accept the same solutions.
3: Initialize Transformations ← ∅ and PolyODE ← ∅
4: while ODE is not empty do
5: take and remove V ar′ = Derivative from ODE;
6: NewDerivative ← apply Transformations to Derivative;
7: Terms ← set of maximal non-polynomial subterms of NewDerivative;
8: for all Term in Terms do
9: add (Term �→ NewV ar) to Transformations;

10: TermDerivative ← the symbolic derivative of Term;
11: add (NewV ar′ = TermDerivative) to ODE;
12: PolyDerivative ← apply Transformations to Derivatives;
13: add (V ar′ = PolyDerivative) to PolyODE;
14: return PolyODE

for which we introduce the new variable B = A0.4 with

dB

dt
= 0.4A−0.6 dA

dt
= 0.4A−0.2

At this point, it is tempting to introduce C = A−0.2 but that would lead to an
infinite loop, introducing more and more powers of A.

This can be easily avoided by introducing C = 1
A instead, then:

dB

dt
= 0.4B2 C

dC

dt
= − 1

A2

dA

dt
= −C2B

There is therefore a specific treatment to do when introducing the new variable
of an exponentiation in order to force the algorithm to use the inverse variable
instead of an infinite sequence of variables. For this, when adding the new vari-
able N = Xp to the system, we explicitly replace the expression Xp−1 by N/X
in the derivatives, thus making the use of 1/X a natural consequence. Of course,
this makes the final PODE non analytic in X = 0. This is linked to the fact that
exponentiation apart from the polynomial case is actually not analytic in 0, and
it is thus not surprising that computation fails if we reach a time where X = 0.

3.2 Interval of Definition

Elementary functions are analytic upon open interval of their domain, but may
suffer from non-analyticity on the boundary. For example exponentiation with
a non integer coefficient may be extended by continuity in 0 but is not ana-
lytic here. During our polynomialization, this kind of behaviour may lead to the

Compiling Elementary Mathematical Functions 81

appearance of species that diverge on these points. This is important as it can
be shown that only analytic functions can be generated by a PIVP.

In particular, the absolute value function over the reals is elementary as it can
be expressed as the composition of a power and root of x : |x| =

√
x2. But is not

analytic on 0. Hence, if we consider the EODE dx
dt = |x|, our polynomialization

will introduce the variables y = |x| and z = 1
x , to obtain the PODE:

dx

dt
= y

dy

dt
= y2.z

dz

dt
= −(z2.y)

And when x approaches 0, the variable z, its inverse, will diverge.
The unicity of the solution of a PIVP is constrained by the initial conditions,

but this unicity is not ensured when passing a non-analyticity. A consequence
of this remark is that our compiled solution is defined from its initial condition
(t = 0) up to the first non-analyticity of the compiled function.

3.3 Termination

Before proving the termination of our algorithm for the input set of elementary
functions over the reals, we can show a general lemma for any set F of formally
differentiable, possibly multivariate, real functions. Let F denote the closure of
F ∪ R by addition and multiplication, that is the algebra of F over R.

Lemma 1. For any finite set F of formally differentiable functions over the
reals such that ∀f ∈ F, f ′ ∈ F , Algorithm 1 terminates.

Proof. In the while loop, since we detect all the non-polynomial parts of the
derivatives in one pass, we are sure that the derivative at hand in each while
step becomes polynomial. New variables may however be introduced in such a
step, thus the only possibility of non-termination is to introduce an infinity of
new variables.

The proof of termination proceeds by cases on the structure of the derivatives.
Suppose we have an ODE on the set of variables {Xi} with i ∈ [1, n] and let
us denote by d(Xi) the derivative of Xi. First, it is obvious that if d(Xi) is a
single variable or a constant (numeric or parameter) then we have nothing to do.
Similarly, for every expression composed by addition or multiplication of such
terms, they are already polynomial.

If the new variable is a function of several variables (here 2): Y = f(Xj ,Xk),
we have:

dY

dt
=

∂f(Xj ,Xk)
∂Xj

d(Xj) +
∂f(Xj ,Xk)

∂Xk
d(Xk)

and as the addition is allowed in polynomial, we can consider separately the two
derivatives. Thus, we can restrict ourselves to the case of functions of a single
variable.

For a function of a single variable with no composition we have:

dy

dt
=

df(Xi)
dt

= f ′(Xi)d(Xi)

82 M. Hemery et al.

we have seen that d(Xi) is already polynomial but nothing ensures that f ′ is.
However by definition of our set F , f ′(Xi) may be expressed with other function
of X in the set F , all applied to Xi, since composition is not allowed in the
construction of F . As the set F is finite, we are sure to terminate after intro-
ducing at most |F | variables. It is thus important to not include the closure
by composition in the definition of our set F . Indeed a function such that its
derivative would be of the form: f ′(x) = f(f(x)) may lead to an infinite loop for
our algorithm.

Finally, when facing a composition, e.g. f(g(X)), we replace it by a new
variable, say y, with the standard derivation rule:

dy

dt
=

df(g(Xi))
dt

= f ′(g(Xi))g′(Xi)d(Xi)

We thus have two different chains of variables to introduce: at first f(g(x)),
f ′(g(x)), f ′′(g(x)), etc. and in a second time: g′(x), g′′(x). The important point
to remark is that there is no mixing: all derivatives of f are applied to g(x) and
neither to the derivatives of g. By the same argument as for the case without
composition, the polynomialization of both f ′(g(Xi)) and g′(Xi) terminates.

Fig. 2. Dependency graph of the derivatives for the elementary functions. Each function
is given up to a polynomial composition, hence the derivative of arccosx which is 1√

1−x2

points to the 1√
x

node. Note that the out-degree of each node is 1 as the derivative of
each of these functions is always a single function or the composition of a polynomial
and a single function.

Corollary 1. Algorithm 1 terminates on elementary functions.

Proof. Let F be the set of elementary functions. Figure 2 displays the depen-
dency graph of the set F and its derivatives. Apart from the exponentiation, we
can see that this set obeys to the condition of Lemma 1.

The only difficulty thus comes from the exponentiation as it actually defines
an infinite set of functions of the form f(x) = xα for any real constant α.

Compiling Elementary Mathematical Functions 83

Nevertheless, as explained above, the algorithm terminates also in this case since
we express the derivative in the form:

f ′(x) = αxα−1 = αf(x)
1
x

(1)

and the inverse function is in F , henceforth the case of exponentation also ter-
minates.

3.4 Complexity

To estimate the computational time complexity of Algorithm 1, let us first deter-
mine a bound on the number of new variables introduced in the system.

Proposition 1. Algorithm 1 introduces at most a linear number of variables in
the size of the input.

Proof. For each elementary function f , represented in Fig. 2, we have to intro-
duce recursively all the functions on which rely its derivative, in terms of the
(directed) dependency graph, this is the reachable set starting from f . In this
case the largest reachable set is of cardinal 3. More generally, let us call � the
cardinal of the largest set of reachable nodes starting form a single node. Then,
each elementary function that is not already polynomial introduces at most �
variables.

Hence, we have to introduce at most �F variables where F is the number of
functions used in the ODE. Of course, F is bounded by the size of the input.

Proposition 2. Algorithm 1 has a quadratic time complexity.

Proof. To introduce a new variable, we have to first compute its derivative, and
then substitute its expression in the reminder of the ODE. Both operations are
linear in the size of the current system size, and we just have seen that this
one will grow at most as a linear function of the input size, giving only a linear
dependency. Thus, our algorithm is quadratic in the size of the input.

3.5 Remark on the Compilation of the Exponentiation

In the compilation of the exponentiation described in Sect. 3.1 we introduce two
variables, but this raises an interesting question concerning the conditions under

which a differential equation of the form:
dA

dt
= Aα can be set in polynomial

form by introducing only one variable. Indeed, if we introduce B = Aβ we have:

dB

dt
= βAβ−1 dA

dt
= βAα+β−1

and to be polynomial we need to find four positive integers i, j, k, l such that:

α = i + jβ

α + β − 1 = k + lβ

84 M. Hemery et al.

We thus need that α be of the form: α =
j(k + 1) + i(1 − l)

j + 1 − l
Clearly, only a fractional power can be reduced in one step. Now suppose

that α = p
q then we have by identifying numerator and denominator and setting

l = 2:
j = q − 1 + l = q + 1 and k =

p + i

1 + q
− 1

an equation that always admits solutions with i and k positive. For example
α = 1

3 may be solved with β = −2
3 and i = 3, j = 4, k = 0, l = 2. But this uses

a polynomial of order 7 which may impact negatively the final quadratization
phase [19]. For these reasons, we chose to treat exponentiation by systematically
introducing two variables.

4 CRN Compilation Pipeline for Elementary Functions

4.1 Detailed Example

To illustrate the behavior of our complete pipeline schematized in Fig. 1, let us
consider the compilation of the Hill function H = x

1+x into a CRN that computes
H(x) in the sense of Definition 2, i.e., such that the final concentration of species
H gives the result limt→∞ H(t) = x

1+x .
The first step of the front-end transformation is to introduce a pseudo-time

variable: T = t and replace the input X by T in the expression H = T
1+T , and

then to compute the formal derivative of H to obtain the ODE:

dH

dt
=

1
(1 + T)2

dT

dt
= 1

The second step is to polynomialize that ODE with Algorithm 1. This is
done by examining the right hand side of the derivative of H and introduce as
new variable A = 1

(1+T) which allows us to rewrite dH
dt = A2. We also need to

compute the derivative of this new variable:

dA

dt
= −A2, A(0) = 1

This PIVP generates the time function H(t) in the sense of Definition 1.
Now, we enter the compilation pipeline from PIVP described in [11]. To

compute the function H(x) of input x, a new variable X that obeys a decreasing
exponential is introduced and used to halt all other derivatives at time x:

dH

dt
= A2.X

dX

dt
= −X

dA

dt
= −A2.X

dT

dt
= X

H(0) = 0 X(0) = x

A(0) = 1 T (0) = 0

Compiling Elementary Mathematical Functions 85

Then the quadratization step [19], introduces the new variable B = A.X. Inter-
estingly, intermediary variables X and T are no longer used and removed. We
finally get:

dH

dt
= A.B

dB

dt
= −B − B2 dA

dt
= −A.B

H(0) = 0 B(0) = x A(0) = 1

And the compiled CRN is:

B
1−→ ∅ A + B

1−→ B + H 2.B 1−→ B

A(0) = 1 B(0) = input

4.2 Implementation

Algorithm 1 is implemented by rewriting formal expressions using a simple alge-
braic normal form and standard derivation rules.

The most computationally expensive step of our complete compilation
pipeline in Fig. 1 is the quadratization of the intermediate PIVP to a PIVP
of order at most 2. This step is necessary to restrict ourselves to elementary
reactions with at most two reactants which are more amenable to real imple-
mentations with real enzymes. While the existence of a quadratic form for any
PODE can be simply shown by introducing an exponential number of vari-
ables [5], the problem of minimizing the dimension of that quadratization is
NP-hard [19]. In the implementation of BIOCHAM used in the next section, we
use both the MAXSAT algorithm described in [19] (option sat_species below)
and a heuristic algorithm (option fastnSAT below) to first obtain a subset of
variables guaranteed to contain a quadratic solution, and then call the MAXSAT
solver (RC23) to minimize the dimension in that quadratization.

5 Evaluation

In this section, we consider the benchmark of functions already considered in [19]
for quadratization problems. Table 1 gives some performance figures about the
complete compilation pipeline in terms of total computation time and size of
the synthesized CRNs, with the two options discussed above for quadratization.
It is worth noting that those synthetic CRNs are not unique and that other
CRNs could be synthesized for the same function, by making different choices in
both our polynomialization and quadratization algorithms. Even when imposing
optimality in the number of introduced variables, there may exist several optimal
CRNs. For example, the two CRNs obtained for Hill4 compiled with the two
options for quadratization are different but both have the same number of species
and reactions (Table 1).

3 https://pysathq.github.io/docs/html/api/examples/rc2.html.

https://pysathq.github.io/docs/html/api/examples/rc2.html

86 M. Hemery et al.

Table 1. Performance results on the benchmark of CRN design problems of [19] in
terms of total compilation time, and size of the synthesized CRN with two options for
quadratization.

fastnSAT sat_species
Function Time Number of Number of Time Number of Number of

(ms) species reactions (ms) species reactions

Hill1 80 4 5 85 3 3
Hill2 90 6 10 82 5 8
Hill3 100 6 10 115 6 12
Hill4 100 7 13 162 7 13
Hill5 110 8 16 550 7 11
Hill10 160 13 31 Timeout
Hill20 380 23 61 Timeout
Logistic 80 3 5 85 3 5
Double exp. 80 3 4 85 3 4
Gaussian 85 3 4 85 3 4
Logit 95 4 7 100 4 6

Let us examine the influence graphs of those synthetic CRNs since they pro-
vide a more compact abstract representation of the reaction graph [13]. Figure 3
depicts the influence graphs between molecular species of the synthesized CRNs
for the hill functions of order 3 (Fig. 3A) and 5 (Fig. 3B), the logistic function
(Fig. 3C) and the square of the cosine function (Fig. 3). One can remark on those
examples that the outputs of the synthesized CRN do not participate in any feed-
back reaction. This is however not necessarily the case of the CRNs synthesized
by our pipeline, as shown for instance by the cosine function [11].

More precisely, the Hill3 CRN in Table 1 synthesized with the sat_species
option is the following:

x 1−→ ∅ Ax 1−→ ∅
TAx 1−→ ∅ T2Ax 1−→ ∅

Ax + T2Ax 3−→ T2Ax Ax + x 1−→ Ax + TAx + x

T2Ax + TAx 3−→ T2Ax TAx 2−→ T2A+ TAx

T2A+ T2Ax 3−→ T2Ax TAx + x 2−→ T2Ax + TAx + x

2.T2Ax 3−→ T2Ax Ax + T2A 2−→ Ax + T2A+ hill3
x (0) = input Ax (0) = input

Compiling Elementary Mathematical Functions 87

Fig. 3. Influence graphs of four of the synthetic CRNs of Table 1. A. and B. respectively
implement the Hill function of order 3 and 5. C. corresponds to the logistic function
and D. computes the square of the cosine of the time. In this last example, the output
is only read on Ap but the presence of its negative part Am is actually a crucial part
of the computation despite having an essentially null concentration.

The Hill5 CRN in the table synthesized with the same option is:

x 1−→ ∅ Ax 1−→ ∅
Tx 1−→ ∅ T3x 1−→ ∅

T4Ax 1−→ ∅ A+ T4Ax 5−→ T4Ax + hill5

Ax + T4Ax 5−→ T4Ax 2.x 1−→ Tx + 2.x

2.Tx 3−→ T3x + 2.Tx Ax + T3x 4−→ Ax + T3x + T4Ax

2.T4Ax 5−→ T4Ax x(0) = input
A(0) = 1 Ax (0) = input

From our computational point of view, the Hill5 CRN above is one syn-
thetic analog of the natural MAPK CRN among others. Indeed, the natural
MAPK signalling network has been shown in [20] to compute an ultrasensitive
input/output function which is well approximated by a Hill function of order 4.9.
Both the natural MAPK CRN and the synthetic Hill5 CRN thus compute a sim-
ilar input/ouput function and it makes sense to try to compare their structure.

88 M. Hemery et al.

In term of size, the MAPK model of [20] comprises 22 species and 30 reactions,
while the Hill5 CRN synthesized by our pipeline now uses only 7 formal molec-
ular species and 11 elementary reactions. This shows a huge improvement with
respect to our first results reported in [11] where several tens of reactions were
synthesized for Hill functions. In term of topological structure, we have checked
that there exists (several) subgraph epimorphisms [15] mapping the MAPK CRN
to that Hill5 CRN, meaning that the MAPK CRN somehow contains the core
structure of the synthetic Hill5 CRN in some non-trivial sense. The biological
significance of those relationships is however still unclear, although one could
expect to explain it in terms of robustness properties [4]. It is also worth noting
that in the natural MAPK CRN structure, the input is a catalyst that is not
consumed by the downward reactions, whereas in our CRN synthesis scheme,
the input is generally consumed by the downward reactions. The MAPK net-
work thus illustrates a case of online analog computation which is currently not
treated by our theoretical framework.

6 Conclusion and Perspectives

We have presented an algorithm to transform any system of elementary ordinary
differential equations in a polynomial ordinary differential equation system pre-
serving the solutions of the original variables. This algorithm of quadratic time
complexity introduces at most a linear number of new variables. This algorithm
allows us to automatically compile any elementary mathematical function into a
finite CRN, using a pipeline of transformations starting from the formal deriva-
tion of the elementary function to generate or compute, the polynomialization
of the elementary ODE, and continuing with the previous pipeline of [11] for the
dual-rail encoding of negative values of the PODE [18,21], the quadratization
of the PODE [19], and the synthesis of elementary reactions for the quadratic
ODEs [12].

The implementation in BIOCHAM-4 of this complete pipeline has been used
to illustrate the CRNs synthesized for a variety of elementary mathematical
functions used as specification. In particular, the CRN synthesized for the Hill
function of order 5 provides a synthetic analog of the MAPK signalling net-
work which has been shown to compute a similar ultrasensitive input/output
function [20]. In this compilation process, the quadratization part is the most
complex one since minimizing the dimension of the result is a NP-hard prob-
lem [19]. On the benchmark presented here, our maxSAT implementation is
sufficient but we also use by default a heuristic algorithm that trades optimality
for better performance. It should also be noted that a new algorithm has been
recently proposed for the global optimization problem in [3].

This work may be improved in several directions. We might extend this app-
roach to multivariate functions. This is not trivial as the trick of halting the time
at the input value needs be generalized to several inputs.

Another important point is to investigate is the variety of different CRNs
that can be synthesized by our pipeline. As pointed out earlier, there may be

Compiling Elementary Mathematical Functions 89

several optimal solutions to the quadratization problem and there may similarly
be several polynomializations of a given ODE introducing the same number
of variables. Our pipeline make choices to deterministically propose one solu-
tion, but being able to explore the set of solutions and compare their properties
with respect to metrics like robustness to initial conditions or reaction rates, or
imposing some similarity requirement with a given biological solution would be
interesting.

Furthermore, the comparison to the MAPK network also points to the inter-
esting class of online computation which does not consume the inputs, whereas
in our approach the input species are consumed, and the synthesized CRN would
need to be reinitialized for another computation. This limitation is not a problem
for one-shot CRN programs such as those designed for medical diagnosis applica-
tions [8], but synthesizing a CRN for computing an input/output function online
appears to be a harder problem worthy of further theoretical investigation.

Acknowledgment. We acknowledge fruitful discussions with Olivier Bournez,
François Lemaire, Gleb Pogudin and Amaury Pouly. This work was supported by ANR-
DFG SYMBIONT “Symbolic Methods for Biological Networks” project grant ANR-17-
CE40-0036, and ANR DIFFERENCE “Complexity theory with discrete ODEs” project
grant ANR-20-CE48-0002.

References

1. Baudier, A., Fages, F., Soliman, S.: Graphical requirements for multistationarity
in reaction networks and their verification in biomodels. J. Theor. Biol. 459, 79–89
(2018)

2. Bournez, O., Campagnolo, M.L., Graça, D.S., Hainry, E.: Polynomial differential
equations compute all real computable functions on computable compact intervals.
J. Complexity 23(3), 317–335 (2007)

3. Bychkov, A., Pogudin, G.: Optimal monomial quadratization for ode systems. In:
Proceedings of the IWOCA 2021–32nd International Workshop on Combinatorial
Algorithms, July 2021

4. Cardelli, L.: Morphisms of reaction networks that couple structure to function.
BMC Syst. Biol. 8(84) (2014). https://doi.org/10.1186/1752-0509-8-84

5. Carothers, D.C., Edgar Parker, G., Sochacki, J.S., Warne, P.G.: Some properties of
solutions to polynomial systems of differential equations. Electron. J. Differ. Equ.
2005(40), 1–17 (2005)

6. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with
chemical reaction networks. Natural Comput. 7433, 25–42 (2012)

7. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E
(eds.) Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-540-88869-7_27

8. Courbet, A., Amar, P., Fages, F., Renard, E., Molina, F.: Computer-aided bio-
chemical programming of synthetic microreactors as diagnostic devices. Molecular
Syst. Biol. 14(4), e7845 (2018)

9. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction net-
works: II. The species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338
(2006)

https://doi.org/10.1186/1752-0509-8-84
https://doi.org/10.1007/978-3-540-88869-7_27
https://doi.org/10.1007/978-3-540-88869-7_27

90 M. Hemery et al.

10. Daniel, R., Rubens, J.R., Sarpeshkar, R., Lu, T.K.: Synthetic analog computation
in living cells. Nature 497(7451), 619–623, 05 (2013)

11. Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong turing completeness
of continuous chemical reaction networks and compilation of mixed analog-digital
programs. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 108–
127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1_7

12. Fages, F., Gay, S., Soliman, S.: Inferring reaction systems from ordinary differential
equations. Theoretical Comput. Sci. 599, 64–78 (2015)

13. Fages, F., Soliman, S.: Abstract interpretation and types for systems biology. The-
oretical Comput. Sci. 403(1), 52–70 (2008)

14. Feinberg, M.: Mathematical aspects of mass action kinetics. In: Lapidus, L.,
Amundson, N.R. (eds.) Chemical Reactor Theory: A Review, chapter 1, pp. 1–
78. Prentice-Hall (1977)

15. Gay, S., Soliman, S., Fages, F.: A graphical method for reducing and relating
models in systems biology. Bioinformatics 26(18), i575–i581 (2010). special issue
ECCB’10

16. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals.
J. Complexity 19(5), 644–664 (2003)

17. Chenjie, G.: QLMOR: a projection-based nonlinear model order reduction app-
roach using quadratic-linear representation of nonlinear systems. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 30(9), 1307–1320 (2011)

18. Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. In: Farkas, M. (ed.)
Colloquia Mathematica Societatis János Bolyai, volume 30 of Qualitative Theory
of Differential Equations, pp. 363–379 (1979)

19. Hemery, M., Fages, F., Soliman, S.: On the complexity of quadratization for poly-
nomial differential equations. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB
2020. LNCS, vol. 12314, pp. 120–140. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-60327-4_7

20. Huang, C.-Y., Ferrell, J.E.: Ultrasensitivity in the mitogen-activated protein kinase
cascade. PNAS 93(19), 10078–10083 (1996)

21. Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. IET
Syst. Biol. 5(4), 252–260 (2011)

22. Pouly, A.: Continuous models of computation: from computability to complexity.
PhD thesis, Ecole Polytechnique, July 2015

23. Rizik, L., Ram, Y., Danial, R.: Noise tolerance analysis for reliable analog and
digital computation in living cells. J. Bioeng. Biomed. Sci. 6, 186 (2016)

24. Sankaranarayanan, S.: Change-of-bases abstractions for non-linear systems. arXiv
preprint arXiv:1204.4347 (2012)

25. Sauro, H.M., Kim, K.: Synthetic biology: it’s an analog world. Nature 497(7451),
572–573 (2013)

26. Shannon, C.E.: Mathematical theory of the differential analyser. J. Math. Phys.
20, 337–354 (1941)

https://doi.org/10.1007/978-3-319-67471-1_7
https://doi.org/10.1007/978-3-030-60327-4_7
https://doi.org/10.1007/978-3-030-60327-4_7
http://arxiv.org/abs/1204.4347

Interpretable Exact Linear Reductions
via Positivity

Gleb Pogudin1(B) and Xingjian Zhang2

1 LIX, CNRS, École Polytechnique, Institute Polytechnique de Paris,
Palaiseau, France

gleb.pogudin@polytechnique.edu
2 École Polytechnique, Institute Polytechnique de Paris, Palaiseau, France

xingjian.zhang@polytechnique.edu

Abstract. Kinetic models of biochemical systems used in the modern
literature often contain hundreds or even thousands of variables. While
these models are convenient for detailed simulations, their size is often
an obstacle to deriving mechanistic insights. One way to address this
issue is to perform an exact model reduction by finding a self-consistent
lower-dimensional projection of the corresponding dynamical system.

Recently, a new algorithm CLUE [16] has been designed and imple-
mented, which allows one to construct an exact linear reduction of the
smallest possible dimension such that the fixed variables of interest are
preserved. It turned out that allowing arbitrary linear combinations (as
opposed to zero-one combinations used in the prior approaches) may
yield a much smaller reduction. However, there was a drawback: some of
the new variables did not have clear physical meaning, thus making the
reduced model harder to interpret.

We design and implement an algorithm that, given an exact linear
reduction, re-parametrizes it by performing an invertible transformation
of the new coordinates to improve the interpretability of the new vari-
ables. We apply our algorithm to three case studies and show that “unin-
terpretable” variables disappear entirely in all the case studies.

The implementation of the algorithm and the files for the case studies
are available at https://github.com/xjzhaang/LumpingPostiviser.

Keywords: Exact reduction (lumping) · ODE model · Interpretability

1 Introduction

Dynamical models described by systems of polynomial ordinary differential equa-
tions (PODEs) are frequently used in systems biology and life sciences in general.
One of the major classes of such models is the dynamical models of chemical
reaction networks (CRN) under the mass-action kinetics in which each indeter-
minate corresponds to the concentration of one of the chemical species. Models

Supported by the Paris Ile-de-France region. GP was partially supported by NSF grants
DMS-1853482, DMS-1760448, DMS-1853650, CCF-1564132, and CCF-1563942.

c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 91–107, 2021.
https://doi.org/10.1007/978-3-030-85633-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_6&domain=pdf
https://github.com/xjzhaang/LumpingPostiviser
https://doi.org/10.1007/978-3-030-85633-5_6

92 G. Pogudin and X. Zhang

appearing in the literature often consist of hundreds or thousands of variables.
While the models of this size can incorporate a substantial amount of informa-
tion about the phenomena of interest, it is often hard to use them to derive
mechanistic insights.

One way to address these challenges is to use model reduction algorithms
that replace a model with a simpler one while preserving, at least approximately,
some of the features of the original model. A wide range of methods has been
developed for approximate model reduction, including methods based on singular
value decomposition [1] and time-scale separation [15].

A complementary approach is to perform exact model reduction, that is, lower
the dimension of the model without introducing approximation errors. For exam-
ple, exact linear lumping aims at writing a self-consistent system of differential
equations for a set of macro-variables in which each macro-variable is a linear
combination of the original variables. For important classes of biochemical mod-
els, specialized lumping criteria have been developed (see, e.g., [3,6,9]), allowing
the construction of macro-variables as sums of some of the original variables (that
is, allowing only coefficients zero and one in the linear combinations). A general
lumping algorithm has been proposed in [4,5] which is applicable to any system
of PODEs (not necessarily arising from a CRN). This algorithm partitions the
original variables so that the macro-variables can be the sums of the variables
within the blocks in the partition. Note that the macro-variables are zero-one
linear combinations of the original variables in all these cases.

In [16], an algorithm has been designed (and the corresponding software
called CLUE presented) that, for a given set of linear forms in the state variables
(the observables), constructs a linear lumping of the smallest possible dimen-
sion such that the observables can be written as combinations of the macro-
variables (i.e., the observables are preserved). Unlike the earlier approaches,
the macro-variables produced by CLUE may involve any coefficients, and this
allowed to produce reductions of lower dimensions than it was possible before,
see [16, Table 1]. However, there was a price to pay for this flexibility: the authors
state that some of the produced macro-variables “escape physical intelligibility”
(see [16, Section 4.2]). Indeed, the resulting reduction of the smallest dimension
is uniquely defined up to a linear change of the coordinates, so the coordinates
in the reduced state space chosen by CLUE could be not optimal in the sense of
interpretability.

In this paper, we propose a post-processing step that takes an exact linear
lumping (not necessarily produced by CLUE) and attempts to improve its inter-
pretability by performing a change of variables. It has been observed in [16] that
one of the sources of difficulties for interpretation is the negative coefficients
in the macro-variables. We design and implement an algorithm that finds (if
possible) a linear change of variables in the reduced model so that

1. the coefficients of the representations of the new macro-variables in terms of
the original state variables are nonnegative

2. and the total number of nonzero coefficients in these representations is as
small as possible.

Interpretable Exact Linear Reductions via Positivity 93

Note that interpretability is not a formal mathematical property, and the condi-
tions above is one possible formalization of the notion of a “more interpretable
reduction”. We do not claim that it is universal (e.g., a difference of two state
variables may represent a potential), but we claim that it is useful. To support
this claim, we demonstrate the efficiency of our approach on three case studies
from the literature. Two of these cases are exactly the case studies from [16]
in which issues with interpretability occur. We show that our method provides
interpretable re-parametrizations of the optimal lumpings computed by CLUE
in all three case studies. Our algorithm uses tools from convex discrete geometry
and matroid theory.

2 Methods

2.1 Preliminaries on Lumping

Definition 1 (Lumping). Consider a system of ODEs of the form

x′ = f(x), (1)

where x = (x1, . . . , xn)T , f = (f1, . . . , fn)T , and f1, . . . , fn ∈ R[x]. A linear
transformation y = Lx with y = (y1, . . . , ym)T , L ∈ R

m×n, and rank L = m is
called a lumping of (1) if there exist polynomials g1, . . . , gm ∈ R[y] such that

y′ = g(y), where g = (g1, . . . , gm)T

for every solution x of (1). We say that m is the dimension of the lumping.
The variables y in the reduced system are called macro-variables. We will call a
macro-variable nontrivial if it is not proportional to one of the original variables.

Remark 1. An ODE system may have many lumpings, some of them may be less
useful than others. For example, if m = n, then the lumping is just an invertible
change of variables, so no reduction happens. Another special case is when the
rows of L contain the coefficients of linear first integrals of the system. In this
case, the reduced ODE will be of the form y′ = 0.

Constrained linear lumping introduced in Definition 2 requires to preserve
the dynamics of the variables of interest, and this is one of the ways to say that
reduction is not “too coarse”.

The following example is a substantially simplified version of the case study
from Sect. 3.1 (see also [12]).

Example 1. We will consider a chemical reaction network consisting of

– A chemical species X.
– Species AUU , AUX , AXU , and AXX . Each of them is one of the states of a

molecule A with two identical binding sites, which can be either unbound (U
in the subscript) or bound (X in the subscript) to X.

94 G. Pogudin and X. Zhang

For simplicity, we will assume that all the reaction rates are equal to one. The
dynamics of the network is defined by the following reactions (∗ denotes any of
X and U):

X + AU∗ � AX∗, X + A∗U � A∗X . (2)

Under the laws of the mass-action kinetics, the reactions (2) yield the following
ODE system (where [S] denotes the concentration of the species S):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[X]′ = [AXU] + [AUX] + 2[AXX] − [X]([AXU] + [AUX] + 2[AUU]),
[AUU]′ = [AXU] + [AUX] − 2[X][AUU],
[AXU]′ = [AXX] + [X][AUU] − [X][AXU] − [AXU],
[AUX]′ = [AXX] + [X][AUU] − [X][AUX] − [AUX],
[AXX]′ = [X][AXU] + [X][AUX] − 2[AXX].

(3)

We will show that the following matrix L and the macro-variables y1, y2, y3

L =

⎛

⎝
1 0 0 0 0
0 0 1 1 2
0 2 1 1 0

⎞

⎠ =⇒

⎧
⎪⎨

⎪⎩

y1 = [X],
y2 = [AXU] + [AUX] + 2[AXX],
y3 = 2[AUU] + [AXU] + [AUX].

(4)

yield a lumping of the system (2). Indeed, a direct calculation shows that

⎧
⎪⎨

⎪⎩

y′
1 = [X]′ = [AXU] + [AUX] + 2[AXX] − [X]([AXU] + [AUX] + 2[AUU]) = y2 − y1y3,

y′
2 = [AXU]′ + [AUX]′ + 2[AXX]′ = −y2 + y1y3,

y′
3 = 2[AUU]′ + [AXU]′ + [AUX]′ = y3 − y1y2.

(5)
Since each reaction involves only one binding site, this lumping can be inter-
preted as follows: y2 is the total “concentration” of the bound sites, and y3 is
the total “concentration” of the unbound sites (see also Sect. 3.1).

The lumping matrix L in the example above turns out to exactly preserve
the concentration [X]. In general, one may fix a vector xobs of combinations of
the original variables that are to be recovered in the reduced system.

Definition 2 (Constrained linear lumping) . Let xobs be a vector of linearly
independent forms in x such that xobs = Ax. Then we say that a lumping y = Lx
is a constrained linear lumping with observables xobs if each entry of xobs is a
linear combination of the entries of y.

2.2 The Nonuniqueness/Interpretability Issue

A recent software CLUE [16] allows to find, for a given system (1) and a vector
xobs, a constrained linear lumping of the smallest possible dimension. However,
such an optimal lumping is not unique in the following sense: if y1 = Lx is a
constrained linear lumping of the smallest possible dimension, then, for every
invertible matrix T of the appropriate dimension, y2 = TLx is also such a

Interpretable Exact Linear Reductions via Positivity 95

lumping. Two such lumpings will be called equivalent, and one can show that all
constrained linear lumpings of the smallest possible dimension are equivalent.

Because of this nonuniqueness, the lumping produced by CLUE will be opti-
mal in terms of the dimension but not necessarily optimal in terms of the inter-
pretability of the resulting macro-variables. For example, the macro-variables
constructed by CLUE for the system (3) are:

y1 = [X], y2 = [AXU] + [AUX] + 2[AXX], y3 = [AUU] − [AXX].

The last macro-variable is different from the one in (4) and does not allow for
the “concentration-of-sites” interpretation. Moreover, the reduced ODE system
is more complicated than (5). This issue becomes more serious in more realistic
(and larger) models: for the case studies in [16, Section 4.2] it has been observed
that some of the resulting macro-variables “escaped physical intelligibility”.

2.3 Our Approach via Nonnegativity

It has been already observed in [16, Section 4.2] that the macro-variables involv-
ing negative coefficients (such as [AUU] − [AXX]) may be an obstacle for inter-
pretability. This is partially because such quantities cannot be naturally viewed
as concentrations of some sort since they may take on negative values.

Thus, in order to improve the interpretability of a lumping, we construct an
equivalent lumping with all the coefficients being nonnegative and the number of
nonzero coefficients (that is, the �0-norm ‖·‖0) being the smallest possible under
the nonnegativity constraint. Mathematically, for a given lumping y1 = Lx, we
find (if possible) an equivalent lumping y2 = TLx with invertible T satisfying:

1. the entries of TL are nonnegative and
2. ‖TL‖0 is as small as possible.

As we have mentioned, for fixed observables, all the constrained linear lumpings
of the smallest dimension are equivalent, so the value ‖TL‖0 does not depend on
the choice of L in the case of the optimal constrained linear lumping as in [16].

We hypothesize that the new lumping y2 = TLx will be typically more
interpretable than the original one. We support this hypothesis by three case
studies: multisite protein phosphorylation [18], Fcε-RI signaling pathways [8],
and Jak-family protein tyrosine kinase activation [2]. The first two are exactly
the case studies from [16] for which some of the macro-variables could not be
properly interpreted by the authors.

2.4 Algorithmic Details

In this section, we provide and justify Algorithm 1, an algorithm for computing
a new lumping described in Sect. 2.3. We will use some basic terminology from
convex geometry. We refer the reader to [17, Chapters 7–8] for details. Through-
out the rest of the section, for A being a vector or a matrix, ‖A‖0 denotes the
�0-norm of A, that is, the number of nonzero entries in A.

96 G. Pogudin and X. Zhang

Algorithm 1: Algorithm for constructing new lumping
Input a m × n matrix L with entries in R and linearly independent rows;
Output an invertible m × m matrix T such that

– the entries of TL are nonnegative
– and the number of the nonzero entries is as small as possible.

Returns NO if such matrix T does not exist.

(Step 1) Consider the row space of L and the nonegative orthant in (R�0)
n as

polyhedral cones C1 and C2 in R
n.

(Step 2) Compute a polyhedral cone C = C1 ∩ C2. This can be done, for example,
using the Fourier-Motzkin algorithm [20, Section 1.2].

(Step 3) If dim C < m, return NO
(Step 4) Let E be a set of representatives of the extreme rays of C.
(Step 5) Initialize a 0 × n matrix L1

(Step 6) While E �= ∅

(a) choose e ∈ E such that ‖e‖0 = minv∈E‖v‖0;
(b) if e is not in the row space of L1, append e to L1 as a new row;
(c) remove e from E.

(Step 7) Construct an m × m matrix T such that the i-th column contains the
coordinates of the i-th row of L1 with respect to the rows of L.

Remark 2 (Implementation) . Our implementation of Algorithm 1 in Julia can
be found at https://github.com/xjzhaang/LumpingPostiviser. We used poly-
make [11] for operations with cones (at (Step 2) and (Step 4)) and Nemo [10]
for symbolic linear algebra (at (Step 6)). Table 1 below summarizes the perfor-
mance of the code on the case studies we discuss in this paper. We also provide
timing for obtaining the starting reduction using CLUE. Therefore, the sum of
the last two columns is the total time to obtain the final reduction for the orig-
inal system. The runtimes are measured on a laptop with a 2.20 GHz CPU and
16 GB RAM using @btime macro in Julia. One can see that the models with
hundreds of equations can be tackled in less than a minute on a commodity
hardware.

Table 1. Running times of our implementation.

Model # original
variables (n)

macro-variables (m) Runtime (sec.)

CLUE Algorithm 1

Sect. 3.1, m = 2 18 6 <0.01 <0.01

Sect. 3.1, m = 3 66 6 <0.01 <0.01

Sect. 3.1, m = 4 258 6 0.34 3.4

Sect. 3.2 354 69 3.3 4.7

Sect. 3.3 470 322 72 49

Remark 3 (Choice at (Step 6)a). At the (Step 6)a, if there are several e ∈ E
with ‖e‖0 being minimal possible, we choose the one with the index of the
leftmost nonzero entry being the smallest one. In our experience, this makes the
results slightly easier to analyze.

https://github.com/xjzhaang/LumpingPostiviser

Interpretable Exact Linear Reductions via Positivity 97

Remark 4 (Returning NO). Although Algorithm 1 may, in principle, return NO,
we did not encounter such a situation with models from the literature. We give
an artificial example with this property in Appendix.

Theorem 1 (Correctness of Algorithm 1). For every matrix L over R with
linearly independent rows, Algorithm 1 produces an invertible square matrix T
such that

– TL has nonnegative entries
– and the number of nonzero entries in TL is the smallest possible under the

nonnegativity constraint

if such T exists and returns NO if there is no such T .

Proof. First, we will show that the algorithm returns NO if and only if there is
no such matrix. Assume that there is such a matrix T . Then both C1 and C2

contain the rows of the matrix TL. Therefore, C contains m linearly independent
vectors, so its dimension is at least m. In the other direction, if dimC � m, then
there exist m linearly independent vectors in C = C1 ∩ C2. Let T be the matrix
with the columns being their coordinates with respect to the rows of L. Then
the rows of TL will belong to C2 so that they will be nonnegative.

Now assume that the algorithm does not return NO. We observe that the
entries of L1 are nonnegative because all its rows belong to C2. The rows of L1

belong to C1, so they are linear combinations of the rows of L. Since, by the
construction on (Step 6), the rows of L1 are linearly independent, and there are
dim C of them, we conclude that the row spaces of L1 and L coincide. Therefore,
the coordinates in (Step 7) are well-defined, so the algorithm will produce a
matrix T such that L1 = TL has only nonnegative entries.

It remains to prove that the �0-norm ‖L1‖0 of L1 = TL is the smallest
possible. Consider any set S of m linearly independent elements of the set E of
representatives of the extreme rays of C. Since (Step 7) is a greedy algorithm
on the linear matroid defined by E, [7, (18)] implies that

‖L1‖0 �
∑

e∈S

‖e‖0. (6)

Consider any invertible matrix T̃ such that the entries of L̃1 := T̃L are nonneg-
ative. Since the rows r1, . . . , rm of L̃1 belong to C, each of them can be repre-
sented as a nonnegative combination of the elements of E [17, §8.8]. For each
i = 1, . . . ,m, we fix such a representation for ri and denote Ei ⊆ E the set of ele-
ments of E appearing in the representation with positive coefficients. We apply
the generalized Hall’s theorem [19, Theorem 1] to the family A = {E1, . . . , Em}
of subsets of E and the function μ such that μ(S) is defined to be the dimension
of the linear span of the elements of S for every S ⊆ E. This yields linearly
independent elements e1, . . . , em ∈ E such that ei ∈ Ei for every i = 1, . . . , m.
For every i = 1, . . . , m, ri is a positive combination of ei and maybe some other
elements of E, hence ‖ei‖0 � ‖ri‖0. Using (6), we have

98 G. Pogudin and X. Zhang

‖L1‖0 �
m∑

i=1

‖ei‖0 �
m∑

i=1

‖ri‖0 = ‖L̃1‖0,

and this proves the minimality of the number of the nonzero entries in L1 = TL
for T constructed by the algorithm.

3 Case Studies

In this section, we demonstrate the improvements in physical intelligibility (while
preserving the dimension) of reductions of biochemical models by our Algo-
rithm 1. We analyse the results of the algorithm using models taken from the
literature. We also compare the resulting reduction to the ones obtained by
ERODE [4] which are always defined by zero-one linear combinations.

3.1 Multisite Protein Phosphorylation

Setup. We consider a model of multisite phosphorylation [18]. It describes a pro-
tein with m identical and independent binding sites that simultaneously undergo
phosphorylation and dephosphorylation. Each binding site can be in one of the
four different states (see Fig. 1):

1. unphosphorylated and unbound,
2. unphosphorylated and bound to a kinase,
3. phosphorylated and unbound,
4. phosphorylated and bound to a phosphatase.

Therefore, there are 4m + 2 chemical species in the corresponding reaction net-
work: free kinase and phosphatase, and 4m states of the protein.

Fig. 1. Molecular components and states of the multisite phosphorylation model. a.
Consists of multisite proteins and kinases. This example has m = 3 sites. b. There are
4 possible states for a single site: unphosphorylated and unbound, unphosphorylated
and bound to a kinase, phosphorylated and unbound, phosphorylated and bound to a
phosphatase.

Interpretable Exact Linear Reductions via Positivity 99

Reductions by ERODE and CLUE. In the reduction computed by
ERODE [5] (for m = 2, . . . , 8), the concentrations of protein configurations
are replaced by the sums of the concentrations of configurations differing by
a permutation of the sites. Therefore, the number of macro-variables is equal to(
m+3
3

)
+ 2.

In contrast, the analysis performed by CLUE [16] always results in just six
macro-variables. Two of them were always the concentrations of kinase and phos-
phatase as for ERODE. The other four were linear combinations with protein
configurations. In [16, Section 4.2], for m = 2, interpretation was provided for
the first three of them. However, for the last one, it was remarked that “the
last macro-variable escaped physical intelligibility as it represents the difference
between the free substrate with unphosphorylated sites and protein configura-
tions that appear in the aforementioned lumps.”

Our Results. We applied our algorithm to the cases m = 2, 3, 4, 5 and obtained
new macro-variables, which have again included the concentrations of free kinase
and phosphatase. Moreover, the three interpretable macro-variables from the
analysis in [16] for m = 2 are kept. Each of the four our macro-variables involving
the protein configurations corresponds to a state of a site (e.g., unbounded and
unphosphorylated), and each protein configuration appears with a coefficient
equal to the number of sites in it with this state. Examples of these new macro-
variables are given on Fig. 2 for m = 2 and m = 3.

One way to interpret the result is that the constructed reduction replaces the
concentration of the protein configurations with the “concentrations” of each of
the four states of the sites (see also Example 1). From our interpretation, we
expect that the models with larger m will have a reduction of the same form.

Fig. 2. New macro-variables for m = 2, 3. Each state of a binding site from Fig. 1-b
can be the main state, yielding four macro-variables for each m. The coefficients are
equal to the number of binding sites in a protein that are in the main state.

100 G. Pogudin and X. Zhang

3.2 Fcε-RI Signaling Pathways

Setup. We consider a model for a different kind of multisite phosphorylation
[8], a model for the early events in the signaling pathway of the high-affinity IgE
receptor (FcεRI) in mast cells and basophils.

The model details the rule-based interactions of FcεRI receptor with a biva-
lent ligand (IgE dimer), the Src kinase Lyn, and the cytosolic protein tyrosine
kinase Syk. The model is based on the following sequence of signaling events in
FcεRI [13,14] (the reactions are nicely summarized on [8, Figure 2]):

1. binding of IgE ligand and FcεRI which aggregates at the plasma membrane,
2. transphosphorylation of tyrosine residues in the immunoreceptor tyrosine-

based activation motifs (ITAMs) of the aggregated receptor by constitutively
associated Lyn,

3. recruitment of an extra Lyn/Syk kinase to the phosphorylated ITAM sites,
4. transphosphorylation of Syk by Lyn and Syk on its linker region and activa-

tion loop, respectively.

For visualizing different chemical species occurring in the resulting reaction
network, we use the representation [8, Figure 1] summarized in Fig. 3. In total,
there are 354 of three types: monomers, dimers, and non-receptor states (free
ligand/Lyn and Syk in each of 4 possible states of phosphorylation) (Fig. 4).

Fig. 3. Molecular components and states of the FcεRI signaling events model. a.
IgE dimer is a bivalent ligand. FcεRI consists of α, β, γ subunits. Lyn kinase has
an SH2 domain. Syk kinase has an SH2 domain and two ITAM sites which differ
by the method of phosphorylation: Lyn at the linker region, and Syk at the acti-
vation loop. b. The α subunit can be unbound or bound to a ligand. β can be
unphosphorylated/phosphorylated, with/without associated Lyn. γ can be unphos-
phorylated/phosphorylated, and the phosphorylated form binds to Syk in any of the
four states of phosphorylation.

Interpretable Exact Linear Reductions via Positivity 101

Fig. 4. Examples of a monomer, a dimer, and the free components.

Reductions by ERODE and CLUE. The reduction by ERODE [5] consists
of 105 macro-variables, where all the complexes with the same configuration
except for the phosphorylation state of the Syk units are summed up in a single
macro-variable. We will refer to these macro-variables as Syk-macro-variables.

The model has been reduced using CLUE in [16, Section 4.2] with the observ-
able being the total concentration of the free Syk (in all the four phosphorylation
states). The reduced model had 69 macro-variables, and 51 of them were nontriv-
ial. It has been observed in [16, Section 4.2] that some of these macro-variable
carry a physical interpretation, but in some of them, negative elements were
present, which hinder their physical intelligibility.

Our Results. We apply our algorithm to the reduced model. Among the new
macro-variables, we have 51 nontrivial macro-variables which is the same as for
the CLUE reduction. More precisely, (Step 4) produced 57 nontrivial macro-
variables, and this number has been reduced to 51 when computing a linearly
independent basis on (Step 6). The resulting macro-variable refine the reduction
by ERODE mentioned above in the sense that our new macro-variable are the
sums of the Syk-macro-variables with non-negative coefficients. Therefore, in
our reduction, all the complexes differing only by the phosphorylation state of
the Syk units are in the same macro-variable. For the monomers, we obtain the
same reduction: nontrivial macro-variable involving monomers are of the form
described on Fig. 5.

Fig. 5. The monomer macro-variables. In each of them, α and β are fixed, and we sum
over all the phosphorylation patterns of Syk.

The macro-variable involving dimers are graphically described on Fig. 6.
First, one can see that they are indeed linear combinations of the Syk-macro-
variables. Our interpretation of these new macro-variables is based on two obser-
vations about the set of the reactions in the original model [8, Figure 2]:

102 G. Pogudin and X. Zhang

(Obs. 1) For every reaction involving a dimer, only one of the receptors of the
dimer is affected by the reaction.

(Obs. 2) The γ-chain of the other (not affected) receptor is relevant only for
the reactions of transphosphorylation of Syk.

Since the complexes with different phosphorylation patterns are grouped
together in the Syk-macro-variables, the second observation implies that the
transphosphorylation reactions do not affect the values of the Syk-macro-
variables at all. Therefore, the first observation suggests considering macro-
variables as sums over all the dimer configurations in which one receptor is fixed
(up to the phosphorylation of Syk), and for the other receptor, all the possible
variants of the γ-chain are considered.

With this interpretation in mind, let us take a closer look at the Fig. 6:

– Each of the variables as on Fig. 6a is the sum over the configurations with the
fixed left receptor not carrying Syk and the right receptor having each of the
six possible γ-chains. If one of the complexes in the sum is fully symmetric,
it appears with coefficient 2.

– Each of the variables as on Fig. 6b is a combination of complexes that have:
the same β-chains and Syk on the left receptor, any phosphorylation pattern
of the Syk on the left receptor, and any γ-chain on the right receptor. If the
β-chains on the receptors are equal, the complexes with two Syk’s (which are
symmetric up to Syk phosphorylation) appear with coefficient 2.

Note that the coefficients 2 appearing in the presence of symmetry prevent
ERODE [5] from finding this reduction.

3.3 Jak-Family Protein Tyrosine Kinase Activation

Setup. We study a simplified cellular model of a bipolar “clamp” mechanism
for Jak-family kinase activation [2]. Kinases of the Janus kinase (JAK) family
play an essential role in signal transduction mediated by cell surface receptors,
which lack innate enzymatic activities to dimerize.

The model studies the interactions of Jak2 kinase trans-phosphorylation,
specifically the rule-based dynamics between the Jak2 (J) kinase, the unique
adaptor protein SH2-Bβ (S) with the capacity to homo-dimerize, the growth hor-
mone receptors (R), and a bivalent growth hormone ligand (L). The Jak2 kinase
has two phosphorylation sites, Y1 and Y2. The SH2-Bβ protein contains an
N-terminal dimerization domain (DD) and a C-terminal Src homology-2 (SH2)
domain.

The components can interact in the following ways:

1. binding of ligand and growth hormone receptors which aggregates at the
plasma membrane,

2. constitutive binding of Jak2 kinase to the receptors, which autophosphory-
lates on the phosphorylation sites when two Jak2 kinases are bounded in the
same complex,

Interpretable Exact Linear Reductions via Positivity 103

Fig. 6. Macro-variables involving dimers

3. recruitment of SH2-Bβ protein at the SH2 domain by the Jak2’s autophos-
phorylated Y1 site,

4. dimerization of SH2-Bβ protein through recruitment of an additional SH2-Bβ
protein, engaged at the DD domains.

Receptors can undergo a process of internalization, in which the receptors
can no longer associate with any Jak2, and the existing Jak2 and SH2-Bβ in the
complex can dissociate at the normal rate (Fig. 7).

Fig. 7. Components of the Jak-family protein tyrosine kinase activation model.

104 G. Pogudin and X. Zhang

Fig. 8. Classes of internalized macro-variables. a. equivalent up to the connection
between the ligand and the receptors. b. one receptor fixed.

Fig. 9. Macro-variables for equivalent structures of the bipolar “clamp” mechanism

Reductions by ERODE and CLUE. The reduction obtained by ERODE
in [5, Figure 5] contained 345 macro-variables. It grouped the internalized con-
figurations, which differ by the connections between the receptors and the ligand,
into macro-variables.

The model has been reduced by CLUE in [16], with the observable being the
concentration of the free ligand. The reduced model had 322 macro-variables, and
69 of them were nontrivial. The model has been used in [16] for benchmarking
purposes only, so the macro-variables have not been interpreted. The reduction
included several macro-variables with negative coefficients, including one with
20 nonzero coefficients. We do not see any natural interpretation for them.

Our Results. We apply our algorithm to the reduced model, and among
the produced macro-variables 69 are nontrivial as in the reduction by CLUE
((Step 4) produces 70 macro-variables, and then this number is reduced to 69
at (Step 6)). The nontrivial macro-variables are linear combinations of internal-
ized molecules, and the trivial macro-variables are not internalized. Compared to
the ERODE reduction, some internalized complexes such as the ligand-receptor
(R, RL, RLR) structures in [5, Figure 5(C)], are omitted in our model as they
do not disassociate under internalization and thus do not affect the dynamics of
the free ligand observable. In our reduction, mirrored internalized complexes are
lumped together, which explains all two-element macro-variables. The remaining
nontrivial macro-variables are described on Fig. 8, and are of two types:

– Configurations equivalent up to the connection between the ligand and the
receptors (Fig. 8-a and 9). The structures are equivalent under internalization

Interpretable Exact Linear Reductions via Positivity 105

as the ligand and receptors cannot disassociate and were obtained also by
ERODE [5, Figure 5(D, E)]. They are of two types: single-Jak2-Receptor case
(Fig. 8-a) and “clamp” case (Fig. 9).

– Configurations with one receptor fixed (Fig. 8-b). These are similar to Fig. 6
from the case study in Sect. 3.2: since in the reactions with internalized com-
plexes, only one receptor is affected, and this does not depend on the state of
the other receptor, one can group together the complexes having one of the
receptors the same.
When the receptors are symmetric, the element and its mirrored element are
the same, so the corresponding configuration appears with coefficient 2.

4 Conclusion

We have hypothesized that the interpretability of the macro-variables in an exact
linear reduction may be improved by a change of coordinates making the macro-
variable nonnegative combinations of the original variables and minimizing the
number of nonzero coefficients. We have designed and implemented an algo-
rithm for performing such a transformation and applied it to three models (with
hundreds of variables) for which the result of the reduction by CLUE [16] con-
tained macro-variables without a clear physical interpretation. We have shown
that the resulting macro-variables are interpretable, thus supporting the original
hypothesis and demonstrating the usefulness of our algorithm.

Our results also give insight into the structure of reductions in which not all
the coefficients are zeroes and ones. In particular, we can point out two different
situations:

– The macro-variables are the “concentrations” of parts of molecules as in
Sect. 3.1. The species having several identical pieces may appear with larger
coefficients.

– Some of the molecules appearing in the macro-variable are symmetric (as in
Sect. 3.3) or even partially symmetric (as in Sect. 3.2), and they appear with
a coefficient accounting for the symmetries.

Acknowledgement. The authors are grateful to François Fages, Mathieu Hemery,
Sylvain Soliman, and Mirco Tribastone for helpful discussions and to the referees
for helpful suggestions. GP is grateful to Heather Harrington, Gregory Henselman-
Petrusek, and Zvi Rosen for educating him about the matroid theory.

Appendix: Non-positivizable Reduction

As we have mentioned in Remark 4, we did not encounter examples from the
literature for which Algorithm 1 would return NO. However, one can easily
construct an artificial example with this property. Consider the system

{
x′
1 = x2

1 + x2
2,

x′
2 = 2x1x2.

(7)

106 G. Pogudin and X. Zhang

Then y = x1 −x2 yields a reduced system y′ = y2. However, since any change of
macro-variables is a scaling of y, there is no equivalent lumping with nonnegative
coefficients, so Algorithm 1 (with the input L = (1 − 1)) will return NO.

References

1. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. Advances in
Design and Control, SIAM (2005)

2. Barua, D., Faeder, J.R., Haugh, J.M.: A bipolar clamp mechanism for activation
of Jak-family protein tyrosine kinases. PLoS Comput. Biol. 5(4), e1000364 (2009).
https://doi.org/10.1371/journal.pcbi.1000364

3. Borisov, N., Markevich, N., Hoek, J., Kholodenko, B.: Signaling through receptors
and scaffolds: Independent interactions reduce combinatorial complexity. Biophys.
J. 89(2), 951–966 (2005). https://doi.org/10.1529/biophysj.105.060533

4. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the
evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 19

5. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation
of polynomial dynamical systems. Proc. Nat. Acad. Sci. 114(38), 10029–10034
(2017). https://doi.org/10.1073/pnas.1702697114

6. Conzelmann, H., Fey, D., Gilles, E.: Exact model reduction of combinatorial reac-
tion networks. BMC Syst. Biol. 2(1), 78 (2008). https://doi.org/10.1186/1752-
0509-2-78

7. Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1(1), 127–136
(1971), https://doi.org/10.1007/bf01584082

8. Faeder, J.R., et al.: Investigation of early events in FcεRI-mediated signaling using
a detailed mathematical model. J. Immunol. 170(7), 3769–3781 (2003). https://
doi.org/10.4049/jimmunol.170.7.3769

9. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining
of molecular systems. Proc. Nat. Acad. Sci. 106(16), 6453–6458 (2009). https://
doi.org/10.1073/pnas.0809908106

10. Fieker, C., Hart, W., Hofmann, T., Johansson, F.: Nemo/Hecke: computer algebra
and number theory packages for the Julia programming language. In: Proceedings
of the 2017 ACM on International Symposium on Symbolic and Algebraic Com-
putation, pp. 157–164. ISSAC 2017, ACM, New York (2017). https://doi.org/10.
1145/3087604.3087611

11. Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes.
In: Polytopes - Combinatorics and Computation, pp. 43–73. Birkhäuser Basel
(2000). https://doi.org/10.1007/978-3-0348-8438-9 2

12. Gunawardena, J.: Multisite protein phosphorylation makes a good threshold but
can be a poor switch. Proc. Nat. Acad. Sci. 102(41), 14617–14622 (2005). https://
doi.org/10.1073/pnas.0507322102

13. Metzger, H., Eglite, S., Haleem-Smith, H., Reischl, I., Torigoe, C.: Quanti-
tative aspects of signal transduction by the receptor with high affinity for
IgE. Mol. Immunol. 38(16–18), 1207–1211 (2002). https://doi.org/10.1016/s0161-
5890(02)00065-2

https://doi.org/10.1371/journal.pcbi.1000364
https://doi.org/10.1529/biophysj.105.060533
https://doi.org/10.1007/978-3-662-54580-5_19
https://doi.org/10.1073/pnas.1702697114
https://doi.org/10.1186/1752-0509-2-78
https://doi.org/10.1186/1752-0509-2-78
https://doi.org/10.1007/bf01584082
https://doi.org/10.4049/jimmunol.170.7.3769
https://doi.org/10.4049/jimmunol.170.7.3769
https://doi.org/10.1073/pnas.0809908106
https://doi.org/10.1073/pnas.0809908106
https://doi.org/10.1145/3087604.3087611
https://doi.org/10.1145/3087604.3087611
https://doi.org/10.1007/978-3-0348-8438-9_2
https://doi.org/10.1073/pnas.0507322102
https://doi.org/10.1073/pnas.0507322102
https://doi.org/10.1016/s0161-5890(02)00065-2
https://doi.org/10.1016/s0161-5890(02)00065-2

Interpretable Exact Linear Reductions via Positivity 107

14. Nadler, M.J., Matthews, S.A., Turner, H., Kinet, J.P.: Signal transduction by
the high-affinity immunoglobulin E receptor FcεRI: coupling form to function.
Adv. Immunol. 76, 325–355 (2001). https://doi.org/10.1016/S0065-2776(01)76022-
1. https://www.sciencedirect.com/science/article/pii/S0065277601760221

15. Okino, M., Mavrovouniotis, M.: Simplification of mathematical models of chemi-
cal reaction systems. Chem. Rev. 2(98), 391–408 (1998). https://doi.org/10.1021/
cr950223l

16. Ovchinnikov, A., Verona, I.P., Pogudin, G., Tribastone, M.: CLUE: exact maxi-
mal reduction of kinetic models by constrained lumping of differential equations.
Bioinformatics (2021). https://doi.org/10.1093/bioinformatics/btab010

17. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Blackwell (1986)
18. Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and

coarse-graining of biological complexity with NFsim. Nat. Methods 8(2), 177–183
(2010). https://doi.org/10.1038/nmeth.1546

19. Welsh, D.: Generalized versions of Hall’s theorem. J. Comb. The. Ser. B 10(2),
95–101 (1971). https://doi.org/10.1016/0095-8956(71)90069-4

20. Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995). https://doi.org/
10.1007/978-1-4613-8431-1

https://doi.org/10.1016/S0065-2776(01)76022-1
https://doi.org/10.1016/S0065-2776(01)76022-1
https://www.sciencedirect.com/science/article/pii/S0065277601760221
https://doi.org/10.1021/cr950223l
https://doi.org/10.1021/cr950223l
https://doi.org/10.1093/bioinformatics/btab010
https://doi.org/10.1038/nmeth.1546
https://doi.org/10.1016/0095-8956(71)90069-4
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1

Explainable Artificial Neural Network
for Recurrent Venous Thromboembolism

Based on Plasma Proteomics

Misbah Razzaq1,2(B), Louisa Goumidi3, Maria-Jesus Iglesias5,6,
Gaëlle Munsch1, Maria Bruzelius7,8, Manal Ibrahim-Kosta3,4, Lynn Butler5,6,

Jacob Odeberg5,6, Pierre-Emmanuel Morange3,4,
and David Alexandre Tregouet1,2(B)

1 Univ. Bordeaux, Inserm, BPH, U1219, 33000 Bordeaux, France
misbah.razzaq@inserm.fr,

{gaelle.munsch,david-alexandre.tregouet}@u-bordeaux.fr
2 Laboratory of Excellence GENMED (Medical Genomics), Bordeaux, France

3 Aix Marseille Univ, Inserm, INRAE, C2VN, Marseille, France
{louisa.Goumidi,manal.ibrahim,pierre.morange}@ap-hm.fr

4 Laboratory of Haematology, La Timone Hospital, Marseille, France
5 Science for Life Laboratory, Department of Protein Science, CBH,

KTH Royal Institute of Technology, Stockholm, Sweden
{mariajesus.iglesias,jacob.odeberg}@scilifelab.se

6 Department of Clinical Medicine, Faculty of Health Science,
The Arctic University of Tromsö, Tromsö, Norway

lynn.m.butler@uit.no
7 Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden

maria.bruzelius@sll.se
8 Department of Hematology, Karolinska University Hospital, Stockholm, Sweden

Abstract. Venous thromboembolism (VTE) is the third most com-
mon cardiovascular disease, affecting ∼1,000,000 individuals each year
in Europe. VTE is characterized by an annual recurrent rate of ∼6%,
and ∼30% of patients with unprovoked VTE will face a recurrent event
after a six-month course of anticoagulant treatment. Even if guidelines
recommend life-long treatment for these patients, about ∼70% of them
will never experience a recurrence and will receive unnecessary lifelong
anti-coagulation that is associated with increased risk of bleeding and
is highly costly for the society. There is then urgent need to identify
biomarkers that could distinguish VTE patients with high risk of recur-
rence from low-risk patients.

Capitalizing on a sample of 913 patients followed up for the risk
of VTE recurrence during a median of ∼10 years and profiled for 376
plasma proteomic antibodies, we here develop an artificial neural net-
work (ANN) based strategy to identify a proteomic signature that helps
discriminating patients at low and high risk of recurrence. In a first
stage, we implemented a Repeated Editing Nearest Neighbors algorithm
to select a homogeneous sub-sample of VTE patients. This sub-sample
was then split in a training and a testing sets. The former was used for

c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 108–121, 2021.
https://doi.org/10.1007/978-3-030-85633-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-85633-5_7

Explainable Artificial Neural Network 109

training our ANN, the latter for testing its discriminatory properties. In
the testing dataset, our ANN led to an accuracy of 0.86 that compared
to an accuracy of 0.79 as provided by a random forest classifier. We
then applied a Deep Learning Important FeaTures (DeepLIFT) – based
approach to identify the variables that contribute the most to the ANN
predictions. In addition to sex, the proposed DeepLIFT strategy iden-
tified 6 important proteins (DDX1, HTRA3, LRG1, MAST2, NFATC4
and STXBP5) whose exact roles in the etiology of VTE recurrence now
deserve further experimental validations.

Keywords: Artificial neural network · Interpretation · Thrombosis ·
Proteomics · Imbalanced

1 Introduction

Venous thromboembolism (VTE) is the pathological result of a blood clot
(thrombus) forming in the deep veins of the leg that can obstruct venous circu-
lation (also known as deep vein thrombosis DVT) and that, in approximately
40% of cases, migrates to the lung artery, causing pulmonary embolism (PE). PE
has a 6% mortality rate in the acute phase and a 20% mortality rate after one
year. There is a high likelihood of thrombosis recurrence after the initial event.
Even though the anti-coagulation treatment is effective, studies have shown that
recurrent episodes of thrombosis occur in ∼20% to 30% of cases within the five
years following the first event [11,17,37], and even in ∼4% of patients under
anticoagulant therapy [8,9,43]. Therefore it is essential to understand which
subgroup of patients are at higher risk of thrombosis recurrence. Our objective
here is to identify novel molecular markers associated with VTE recurrence in
order to get insights into the disease pathophysiology.

VTE recurrence is considered to be a multifactorial disease where genetic and
non genetic factors act together to modulate the individual risk of recurrence.
However, so far, limited risk factors of VTE recurrence have been identified [20].
To cite a few, the Factor V Leiden mutation has been proposed to be associated
with ∼ 2-fold increased risk [48]. Increased plasma levels of D-dimer, factor VIII,
and C-Reactive protein have also been shown to be associated with increased
risk of recurrent VTE [44]. However, their ability to predict which VTE patients
will develop a recurrence event are still limited, leaving room for identifying
additional risk markers.

Plasma is an ideal source for discovering novel biomarkers for VTE and its
complications. Indeed, plasma drawing is rather non-invasive, fast and cost-
effective, and this intravascular compartment is the site of disease manifesta-
tion. In this work, we aim at identifying novel plasma proteins that could help
discriminating patients at high or low risk of recurrence by deploying an Arti-
ficial Neural Network (ANN) strategy on 234 proteins measured in the plasma
sample of 913 VTE patients followed up for VTE recurrence during 9.51 years.
ANN is a class of artificial intelligence technique that is increasingly popular in

110 M. Razzaq et al.

the biomedical domain and that have the advantage, among others, to identify
complex non linear relationships between variables [1,4,28,38]. However, their
applications to thrombosis are still sparse. Calazans-Romano et al. [40] built an
ANN model from 44 clinical and biological laboratory variables to predict the
risk of recurrence in 240 DVT patients. More recently, Martins et al. [25] pro-
posed different ANNs to predict VTE recurrence from 39 clinical variables in a
sample of 261 VTE patients. While both studies demonstrated good accuracy for
predicting VTE recurrence using ANN, they do not draw much attention about
novel biological knowledge on molecular players involved in VTE recurrence.

In the present work, we propose an ANN based strategy to predict VTE
recurrence from a larger number of features profiled in a much larger study
of VTE patients. Besides, we implement a recently proposed methodology to
investigate which features contribute the most to the ANN predictions with the
objective to identify novel molecular determinants associated with the risk of
VTE recurrence.

The remainder of the paper is structured as follows. In Sect. 2, we describe
the datasets and the different methods implemented in the proposed workflow.
Results are described in Sect. 3 and Sect. 4 provides general concluding remarks
and perspectives.

2 Materials and Methods

2.1 MARTHA Study

The MARTHA population is composed of ∼2,900 VTE patients recruited
between 1994 and 2012 from the Thrombophilia center of La Timone hospi-
tal (Marseille, France) and free of any chronic conditions and of any well char-
acterized genetic risk factors including antithrombin, protein C or protein S
deficiency, homozygosity for FV Leiden or Factor II 20210A, and lupus anti-
coagulant. Detailed description of the MARTHA population has been provided
elsewhere [10,34].

MARTHA Proteomics Sub-study. Out of ∼2,900 patients, 913 patients
were followed-up for recurrence information among which 162 experienced a
recurrent event during the follow-up. At the time of inclusion in the study, before
the start of the follow-up period, plasma samples were collected for these patients
and were measured for 376 antibodies targeting 234 proteins using high-affinity
bead array technology. The selected proteins were either reported to have an
association to the cardiovascular trait or have shown an important role in the
coagulation and fibrinolysis cascades. The 7 clinical variables, i.e., sex, age, bmi,
smoking, type of first thrombosis, family history, and provoked or unprovoked
thrombosis were selected as part of the learning dataset. These variables have
previously shown to be involved in venous thrombosis. The proteomics data
along with 7 clinical variables forms our initial dataset D. Detailed description
of the technique used for plasma protein profiling can be found here [39]. All

Explainable Artificial Neural Network 111

proteomic data were centered and standardized using the StandardScaler from
scikit-learn [36] before further downstream analyses.

2.2 Proposed Workflow

Data Exploration. VTE recurrence is hypothesized to be a complex disor-
der where multiple players jointly contribute to the individual susceptibility to
develop a recurrent thrombotic event, especially as the biological sources under-
lying the occurrence of the first event are also complex. As a consequence, we
anticipated that the profiling of ∼400 antibodies in the plasma of 913 VTE
patients would not be able to easily discriminate between patients that will
develop recurrence from those that will not. The application of different tech-
niques such as principal component analysis (PCA), t-distributed stochastic
neighbour embedding (t-SNE) [24], and uniform manifold approximation and
projection (UMAP) [27] confirm that no clear separation between the recurrence
and non-recurrence class could be obtained as shown in Fig. 1. This highlights
the need for more complex non linear methodologies, such as ANN, to derive an
accurate classification tool for recurrence.

(a) PCA (b) t-SNE

(c) UMAP

Fig. 1. Visualization of the learning dataset. The class recurrence and non recurrence
are represented by red and green colors, respectively. (Color figure online)

Repeated Edited Nearest Neighbors Algorithm. Classification algorithms
are known to be very sensitive to unbalanced data when the aim is to derive
classification/prediction tools for categorical classes. In general, algorithms will
correctly classify the most frequent classes and lead to higher misclassification
rates for the minority classes which is often the most interesting ones. In the

112 M. Razzaq et al.

MARTHA sample, we have approximately 5 times more patients that did not
experience VTE recurrence than patients that did. Therefore, before implement-
ing an ANN for predicting VTE recurrence, we first deployed an under sampling
algorithm, the repeated edited nearest neighbors algorithm (RENN) [15,47],
to create a more balanced dataset D

′
of recurrent and non-recurrent patients,

while keeping all recurrent patients and selecting a homogeneous, with respect
to plasma proteomic data, sub-sample of non-recurrent patients. The RENN
algorithm starts with the D dataset and iteratively removes the samples which
contradicts with its k nearest neighbors where k is typically an odd number to
avoid ties. These k nearest neighbors are calculated using an Euclidean distance
function. By the completion of this algorithm, we were left with a D

′
dataset

composed of 270 samples including 162 patients with recurrence and 108 with-
out, that was then used to train and test an ANN model for VTE recurrence.

Artificial Neural Network. An ANN is a biologically inspired computing
system composed of different units (neurons). Each unit takes real valued inputs
and transforms it to a single real valued output. It can handle complex and
noisy data, and, unlike classical machine learning methods, can also model non-
linear relationships thanks to the layer-wise architecture of non-linear processing
units. ANN based approaches take raw features (such as images or gene expres-
sion profiles) from large datasets as input to create models identifying hidden
patterns in the data. For example, when deep learning is applied on images, the
first layer learns the simple representation such as edges, the next layer learns
simple object parts, and the next layer can learn more complex and abstract
representations [23,50]. In this work, we use feed forward neural network archi-
tecture to classify patients in two groups using plasma proteomics and clinical
characteristics.

For building an ANN, we used Keras, which is an open-source library to build
neural networks. It enables fast development of neural networks and gives control
over basic building blocks such as layers, objective functions, and optimizers.

In order to learn the artificial neural network (ANN), we started with the
preprocessed dataset D

′
. The training dataset consist of 242 samples with 162

recurrences and 108 non recurrence cases. For the testing, 28 samples were used
with 14 recurrence cases and 14 non recurrence cases.

Hyperparameter tuning was performed using random, Bayesian, hyperband
and manual search methods. Keras-tuner was employed to optimize the number
of layers and nodes [32]. We observed that different techniques work differently
on data as each data is unique [22]. In terms of computation time, the fastest
method was hyperband followed by random search and Bayesian method. All
three methods proposed to use 3 to 4 layers. Each method proposed different
number of nodes in each layer ranging from 192 to 450. The best performing
model was obtained by taking guidance from these methods and by following
the rules of thumb for setting number of neurons. The general rule of thumbs
states that number of neurons in the hidden layer [18,41,49]:

1. should be between the size of input and output neurons.

Explainable Artificial Neural Network 113

2. should not be greater than twice the number of neurons of input layer.
3. should be the 2/3 size of the input and output neurons.

We built a 3 layer artificial neural network. The ReLU activation function [16]
was used to learn non-linear decision boundaries. The softmax activation func-
tion [3] was used to generate probabilities for recurrence and non recurrence class
at the output layer. To avoid overfitting, regularization rate of 0.25 was used.

After fixing the number of nodes, layer and activation function, the process
of training the neural network can start. Starting from random weights, forward
propagation is used to generate the output of all nodes at all layers while moving
from the input to the output layers. The generated final output is compared to
the observed class phenotype and an error is calculated using the cross-entropy
function [19]. Iteratively, this error was then backpropagated using a stochastic
gradient descent method (Adam) [21] with learning rate of 0.004 and batch size
of 32, to update weights according to their contribution to the error.

It is important to note that the model which we get at the end of the training
may not be the best stable model. In order to reduce the over-fitting and get the
best performing model, we used the callbacks feature proposed by the Keras [5].

We have performed the comparison with state of the art method, i.e., random
forest classifier. We used scikit learn API to build a random forest classifier with
preprocessed dataset D

′
. The number of trees were set to 100 as suggested in

literature [33].

DeepLIFT. DeepLIFT (Deep Learning Important FeaTures) is a model spe-
cific heuristic based method that has been proposed to identify important fea-
tures contributing to ANN derived predictions. This method assigns contribution
scores to the features of a particular observation according to a reference point
(i.e. control value). More precisely, it explains the difference in the output from
the reference output in terms of the difference in the input from the reference
input. DeepLIFT basically tries to trace back contributions to the input features
by backpropagating activated neurons. For each sample s, an importance score
ISs,i,j is calculated, representing the contribution of input i to the output j in
a sample s.

The choice of the reference value is crucial, requires a careful consideration,
and relies on domain-specific knowledge. For example, for an image classifica-
tion task, we can use the absence of pixels as a reference value. DeepLIFT uses
a backpropagation-like algorithm that uses chain rules to compute importance
scores. Note that if softmax function is used to generate probabilities at the out-
put layer then the importance score should be mean normalized as recommended
in [42].

DeepLIFT assigns positive scores to the features contributing toward the pre-
dicted class and negative scores to the features contributing against the predicted
class. The magnitude of the importance score of particular feature represents the
strength of the contribution.

A key element for applying DeepLIFT is the definition of the reference values
that are used as control to define which features positively contribute to the

114 M. Razzaq et al.

recurrence class. As such, selecting as control/reference value, the clinical and
proteomics characteristics of a VTE patient that did not experience any recurrent
event during a long period of follow-up appear rather intuitive. However, as it
has been shown that DeepLIFT [42], could be sensitive to the choice of reference
values, the successive application of DeepLIFT with multiple different reference
values has been proposed to obtain more stable results. As consequence, for our
application, we selected 5 independent VTE patients that did not experience a
recurrent VTE event despite a follow up time of more than 18 years. The clinical
and proteomics characteristics of these 5 patients were then used a reference
value for 5 independent run of DeepLIFT.

Most important variables identified by the DeepLIFT methodology were
finally tested for association with VTE recurrence using a delay-entry Cox model
[7,46] adjusted for sex, age at first thrombosis, provoked status and type of VTE
(i.e. DVT vs PE) at the first thrombosis, smoking and anticoagulant therapy at
the inclusion of the status.

3 Results

3.1 MARTHA Study

The original dataset D include 913 VTE patients with 2 different classes, i.e.,
recurrence (Rec) and non recurrence (NonRec). Of these 913 patients, 162 expe-
rienced recurrence during the follow-up and 751 remained free of new thrombotic
events. Clinical characteristics of these individuals are shown in Table 1.

Table 1. Clinical characteristics of the MARTHA proteomics study.

D
′
(Rec) D

′
(NonRec) D − D

′
(NonRec)

N 162 108 643

Age at sampling 44.22 (13.84) 50.26 (14.99) 47.25 (14.64)

Age at first VTE 40.10 (14.09) 42.75 (15.81) 42.00 (15.30)

Pulmonary embolism as first VTE 33 (20%) 29 (27%) 109 (17%)

Male Sex 65 (40%) 43 (40%) 220 (34%)

Oral contraception at sampling 16 (10%) 7 (6%) 38 (5%)

Anticoagulant therapy at sampling 49 (30%) 50 (46%) 220 (34%)

Smokers 30 (19%) 15 (14%) 113 (18%)

BMI 25.38 (4.30) 26.82 (4.87) 25.28 (4.63)

Follow up duration 6.19 (4.95) 10.09 (4.03) 10.25 (4.49)

First event provoked 147 (91%) 98 (91%) 602 (94%)

Data shown correspond to mean (standard deviation) and count (percentage) for

continuous and categorical variables, respectively.

3.2 Constructing and Validation of the ANN

The application of the RENN algorithm led to the selection of a sub-sample D
′

of about 162 patients with recurrence and 108 patients without. The clinical

Explainable Artificial Neural Network 115

characteristics of these patients are shown in Table 1. It can be noticed that non
recurrent patients selected by the under-sampling algorithm are not completely
representative of the whole set of patients that did not experience recurrence
during the follow-up. Indeed, non recurrent patients in the D

′
sample tended to

be, at inclusion in the study, slightly older, more frequently PE patients, more
frequently under anticoagulant therapy and less frequently smokers, than non
recurrent patients that were not selected by the RENN algorithm.

In order to learn our ANN, we started with the preprocessed dataset D
′
. We

divided this dataset into training and testing dataset. The training dataset con-
sist of 242 samples with 148 VTE patients with recurrence and 94 non recurrent
VTE patients. As a consequence, the testing dataset resulted in of 28 samples
including 14 with recurrence and 14 without recurrence.

From the set of 383 features including 376 plasma antibodies and 7 clinical
variables, we implemented a 3 hidden layers neural network. The first hidden
layer contain 383 nodes. The second hidden layer contain 2/3 nodes of the input
layer and finally 3rd layer contains 1/3 nodes of the input layer.

Once trained on the training dataset, the ANN performance was evaluated
on the testing dataset. It led to a accuracy of 0.86 and to F1-scores of 0.86 for
both recurrence/non recurrence classes. The resulting area under the operating
curve (AUC) was 0.91 [0.82 − 0.97]. By comparison, the implementation of a
Random-Forest classifier as described in the Materials and Methods led to an
accuracy of 0.79 and to an AUC of 0.79 [0.63 − 0.93].

3.3 Post-hoc Explainability of ANN

Once a classification model is built, it is often desirable to understand the internal
composition of such model and to identify the most important contributors to
such classification tool. This is indeed a mandatory prerequisite in order to get
insights into the underlying biological/clinical structure and to anticipate any
clinical translation.

As mentioned in the Materials and Methods section, the DeepLIFT method-
ology was applied using 5 different references characterizing non recurrence cases
to identify features (antibodies and clinical variables) that contribute the most
to predict recurrence risk in the D

′
dataset. The top 20 variables with the high-

est average importance score over the 5 runs of DeepLIFT are shown in Fig. 2.
The variable with the highest importance (∼411) was plasma levels of NFATC4,
while Sex, a known risk factor for VTE recurrence [45], ranked 12th in this list
(average importance ∼124). From Fig. 2, it can be deduced that in addition to
the “Sex” variable, 6 antibodies targeting 6 different proteins, DDX1, HTRA3,
LRG1, MAST2, NFACT4 and STXBP5, could be considered as important con-
tributors of our ANN derived predictions for VTE recurrence.

By comparison, the average importance of the “smoking” and “type of first
thrombosis” variables, two additional clinical factors known to associated with
VTE recurrence, over the 5 runs of DeepLIFT were only ∼15 and ∼24.

116 M. Razzaq et al.

Fig. 2. The top 20 important features ordered by importance score.

As a final step, we were interested to assess whether the identified 6 proteins
exert univariate effects on VTE recurrence or whether they were involved in
more complex relationships. From the 6 candidate proteins, only DDX1 demon-
strated significant and homogeneous (between the D

′
sub-sample and in the

whole MARTHA study) association with recurrence, (Table 2). One standard
deviation decrease of DDX1 plasma levels was associated with a Hazard Ratio
(HR) for recurrence of 1.35 [1.11 − 1.64] (p = 3.83 10−3). These observa-
tions strongly suggest that the 5 other candidate proteins would be involved in
recurrence risk in a more complex pattern.

To explore this hypothesis further, we investigated whether these 5 pro-
teins could interact with clinical factors mentioned above and that discrimi-
nate between non recurrent patients selected and non-selected by the under-
sampling strategy. Only one marginal interaction was observed and it relates to
HTRA3 and smoking. While in non-smokers (number of recurrent events = 132
among 755 patients), plasma HTRA3 levels were not associated with recurrence
(HR = 1.02 [0.86 − 1.21], p = 0.84), a strong association was observed in
smokers (number of recurrent events = 30, among 158 patients). In smokers, one
standard deviation decrease of HTRA3 levels was associated with an increased
risk of HR = 1.94 [1.20 − 3.13] (p = 0.007), the test for interaction between
these two HRs being significant at p = 0.013. Beyond this marginal interaction,
no others were detected suggesting that the identified candidate proteins could
interact with other unmeasured clinical factors and/or other proteins including
some that were not in the top list identified by the DeepLIFT approach.

Explainable Artificial Neural Network 117

Table 2. Association of Top proteins identified by the DeepLIFT methodology with
the risk of VTE recurrence in the D

′
sub-sample and whole MARTHA study.

D
′

D

Proteins 162 Rec among 270 VTE patients 162 Rec among 913 VTE patients

HTRA3 0.627 [0.543− 0.723], p = 1.7 10−10 0.903 [0.765− 1.065], p = 0.226

STXBP5 0.686 [0.571− 0.825], p = 5.98 10−5 0.823 [0.6895− 0.982], p = 0.031

LRG1 1.177 [1.007− 1.373], p = 0.039 1.018 [0.8650− 1.200], p = 0.823

NFATC4 0.828 [0.702− 0.978], p = 0.026 0.872 [0.733− 1.038], p = 0.123

DDX1 0.717 [0.586− 0.878], p = 1.29 10−3 0.740 [0.608− 0.902], p = 3.83 10−3

MAST2 0.772 [0.655− 0.911], p = 2.27 10−3 0.892 [0.755− 1.054], p = 0.181

Values shown represent the Hazard Ratio (HR) [95levels. HRs were estimated using
a delay-entry Cox model and were adjusted for adjusted for sex, age at rst thrombo-
sis, provoked status and type (i.e DVT vs PE) of the rst thrombosis, smoking and
anticoagulant therapy at the time of plasma sampling.

4 Conclusion

In this work, we applied an ANN-based strategy on proteomic and clinical
dataset to identify novel molecular markers associated with the risk of recur-
rence. This study was based on a sample of 913 patients profiled for 383 clinical
and proteomic markers, making our work, so far, the largest ANN based study
for VTE recurrence, both in terms of number of patients and of number of
assessed features. Building on a two-step approach, that includes first an under
sampling strategy addressing both the unbalance aspect and the heterogene-
ity of the original dataset, and then a 3 layers ANN, our strategy was able to
derive a prediction model for recurrence with good discriminatory ability char-
acterized by an AUC of 0.91 [0.82 − 0.97], greater than the one achieved by a
standard Random Forest algorithm applied to the same data. To the best of our
knowledge, two ANN based prediction models have been previously proposed
to predict VTE recurrence [25,40]. Unfortunately, as all clinical and biological
variables used to build these prediction models were not available in our study,
it was not possible to compare these models to ours.

Besides, the search for proteomic variables that contribute the most to the
ANN predictions identified a set of 6 candidate proteins, DDX1, HTRA3, LRG1,
MAST2, NFACT4 and STXBP5. These proteins were included in our proteomic
panel because they have been previously proposed to associate with cardio-
metabolic risk factors or the risk of VTE (e.g. MAST2 [29], STXBP5 [30]). How-
ever, their role in the etiology of VTE risk recurrence has never been reported
so far and deserve further epidemiological and experimental validation. Among
these 6 proteins, only DDX1 showed strong association with VTE recurrence in
marginal analyses suggesting that other candidates would interact on the risk
of recurrence in more complex pattern, or could tag for unmeasured molecu-
lar markers, both hypotheses also deserving further investigations. DDX1 was
included in our proteomics analyses because its structural gene has been previ-
ously shown to harbor genetic variations associated with renal dysfunction [35],

118 M. Razzaq et al.

the latter being a risk factor for VTE risk [31]. Our observed association of
DDX1 plasma levels with the risk of recurrence in VTE patients is consistent
with recent findings reporting that chronic kidney disease is associated with the
risk of VTE recurrence [14].

Nonetheless, few limitations of this work should be acknowledged. First, we
started our general workflow by implementing an under sampling algorithm
to overcome the unbalanced aspect of our original dataset with respect to the
number of patients with and without recurrence. However, other methodologies
such as ensemble modeling [12,13] and different performance metrics (Cohen’s
Kappa [6], Matthews Correlation Coefficient [26]) are available to tackle such
issue and investigating how the application of these alternatives may impact the
final results of our ANN workflow deserves further work. Second, our under sam-
pling strategy led to a selection of a non-representative sample of the MARTHA
population for training our ANN model. As a consequence, the identified can-
didate proteins may not be good biomarkers for VTE recurrence in the general
population of VTE patients but only in subgroups of patients. This is illus-
trated by the HTRA3 protein that was selected by the ANN model but that
was finally associated with recurrence only in the subgroup of smokers patients.
Smoking was under represented in the non-recurrent patients used for training
our ANN model and this may have generated an extreme selecting sampling
design facilitating the identification of an interaction [2]. Third, the selection
by the DeepLIFT method of the main features contributing to the ANN pre-
dictions was rather empirical and based on the observed distribution of average
importance. We may have then missed additional proteins that could impact on
VTE recurrence in non linear manner. In particular, we did not find any evi-
dence for direct association of the top protein identified by DeepLIFT, NFATC4,
with recurrence nor identified candidate interaction with clinical factors. This
strongly suggests that NFATC4 could interact with other proteins to modulate
the risk of recurrence and the identification of such interactions deserves further
exploration.

In conclusion, using an original ANN based strategy applied to plasma pro-
teomics data, we identify plasma levels of DDX1 as a new biomarker for VTE
recurrence and propose HTRA3 as an additional candidate in smokers patients.

Acknowledgments. M.R was financially supported by the GENMED Laboratory of
Excellence on Medical Genomics [ANR-10-LABX-0013], a research program managed
by the National Research Agency (ANR) as part of the French Investment for the
Future. DA.T was partially supported by the EPIDEMIOM-VTE Senior Chair from
the Initiative of Excellence of the University of Bordeaux. The proteomics screening
was financed by a grant from Stockholm County Council (SLL 2017-0842) and from
Familjen Erling Perssons Foundation. G.M has benefited from training offered by the
EUR DPH, a PhD program supported within the framework of the PIA3 (Investment
for the future), project reference 17-EURE-0019.

Additional Information. The script to build the model can be found on the following
link: https://github.com/misbahch6/paper script.

https://github.com/misbahch6/paper_script

Explainable Artificial Neural Network 119

References

1. Angermueller, C., Pärnamaa, T., Parts, L., Stegle, O.: Deep learning for compu-
tational biology. Mol. Syst. Biol. 12(7), 878 (2016)

2. Boks, M.P.M., Schipper, M., Schubart, C.D., Sommer, I.E., Kahn, R.S., Ophoff,
R.A.: Investigating gene-environment interaction in complex diseases: increasing
power by selective sampling for environmental exposure. Int. J. Epidemiol. 36(6),
1363–1369 (2007)

3. Bridle, J.S.: Probabilistic interpretation of feedforward classification network out-
puts, with relationships to statistical pattern recognition. In: Soulié, F.F., Hérault,
J. (eds.) Neurocomputing. NATO ASI Series, vol. 68, pp. 227–236. Springer, Hei-
delberg (1990). https://doi.org/10.1007/978-3-642-76153-9 28

4. Ching, T., et al.: Opportunities and obstacles for deep learning in biology and
medicine. J. R. Soc. Interface 15(141), 20170387 (2018)

5. Chollet, F., et al.: Keras (2015). https://keras.io
6. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas.

20(1), 37–46 (1960)
7. Commenges, D., Letenneur, L., Joly, P., Alioum, A., Dartigues, J.-F.: Modelling

age-specific risk: application to dementia. Stat. Med. 17(17), 1973–1988 (1998)
8. Douketis, J.D., Crowther, M.A., Foster, G.A., Ginsberg, J.S.: Does the location of

thrombosis determine the risk of disease recurrence in patients with proximal deep
vein thrombosis? Am. J. Med. 110(7), 515–519 (2001)

9. Douketis, J.D., Kearon, C., Bates, S., Duku, E.K., Ginsberg, J.S.: Risk of fatal pul-
monary embolism in patients with treated venous thromboembolism. Jama 279(6),
458–462 (1998)

10. Drobin, K., Nilsson, P., Schwenk, J.M.: Highly multiplexed antibody suspension
bead arrays for plasma protein profiling. In: Bäckvall, H., Lehtiö, J. (eds.) The
Low Molecular Weight Proteome. MIMB, vol. 1023, pp. 137–145. Springer, New
York (2013). https://doi.org/10.1007/978-1-4614-7209-4 8

11. Farzamnia, H., Rabiei, K., Sadeghi, M., Roghani, F.: The predictive factors of
recurrent deep vein thrombosis. ARYA Atherosclerosis 7(3), 123 (2011)

12. Feng, W., Huang, W., Ren, J.: Class imbalance ensemble learning based on the
margin theory. Appl. Sci. 8(5), 815 (2018)

13. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on
ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based
approaches. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(4), 463–484
(2011)

14. Goto, S., et al.: Assessment of outcomes among patients with venous throm-
boembolism with and without chronic kidney disease. JAMA Netw. Open 3(10),
e2022886–e2022886 (2020)

15. Guan, D., Yuan, W., Lee, Y.-K., Lee, S.: Nearest neighbor editing aided by unla-
beled data. Inf. Sci. 179(13), 2273–2282 (2009)

16. Hahnloser, R.H.R., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.:
Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature 405(6789), 947–951 (2000)

17. Hansson, P.-O., Sörbo, J., Eriksson, H.: Recurrent venous thromboembolism after
deep vein thrombosis: incidence and risk factors. Arch. Intern. Med. 160(6), 769–
774 (2000)

18. Heaton, J.: AIFH, volume 3: deep learning and neural networks. J. Chem. Inf.
Model. 3, Heaton Research Inc (2015)

https://doi.org/10.1007/978-3-642-76153-9_28
https://keras.io
https://doi.org/10.1007/978-1-4614-7209-4_8

120 M. Razzaq et al.

19. Hinton, G.E., Dayan, P., Frey, B.J., Neal, R.M.: The “wake-sleep” algorithm for
unsupervised neural networks. Science 268(5214), 1158–1161 (1995)

20. Jensen, S.B., et al.: Discovery of novel plasma biomarkers for future incident venous
thromboembolism by untargeted synchronous precursor selection mass spectrom-
etry proteomics. J. Thromb. Haemost. 16(9), 1763–1774 (2018)

21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

22. Kong, J., Kowalczyk, W., Nguyen, D.A., Bäck, T., Menzel, S.: Hyperparameter
optimisation for improving classification under class imbalance. In: 2019 IEEE
Symposium Series on Computational Intelligence (SSCI), pp. 3072–3078. IEEE
(2019)

23. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

24. van der Maaten, L., Hinton, G.: Visualizing data using T-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

25. Martins, T.D., Annichino-Bizzacchi, J.M., Romano, A.V.C., Filho, R.M.: Artificial
neural networks for prediction of recurrent venous thromboembolism. Int. J. Med.
Inform. 141, 104221 (2020)

26. Matthews, B.W.: Comparison of the predicted and observed secondary structure of
t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struct. 405(2),
442–451 (1975)

27. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

28. Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Brief. Bioinform. 18(5),
851–869 (2017)

29. Morange, P.-E., et al.: A rare coding mutation in the MAST2 gene causes venous
thrombosis in a French family with unexplained thrombophilia: the Breizh MAST2
Arg89Gln variant. PLoS Genet. 17(1), e1009284 (2021)

30. Morange, P.-E., Suchon, P., Trégouët, D.-A.: Genetics of venous thrombosis:
update in 2015. Thromb. Haemost. 114(11), 910–919 (2015)

31. Ocak, G., et al.: Risk of venous thrombosis in patients with chronic kidney disease:
identification of high-risk groups. J Thromb. Haemost. 11(4), 627–633 (2013)

32. O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al.:
Keras Tuner (2019). https://github.com/keras-team/keras-tuner

33. Oshiro, T.M., Perez, P.S., Baranauskas, J.A.: How many trees in a random forest?
In: Perner, P. (ed.) MLDM 2012. LNCS (LNAI), vol. 7376, pp. 154–168. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31537-4 13

34. Oudot-Mellakh, T., et al.: Genome wide association study for plasma levels of nat-
ural anticoagulant inhibitors and protein C anticoagulant pathway: the MARTHA
project. Br. J. Haematol. 157(2), 230–239 (2012)

35. Pattaro, C., et al.: Genome-wide association and functional follow-up reveals new
loci for kidney function. PLoS Genet. 8(3), e1002584 (2012)

36. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

37. Prandoni, P., et al.: The long-term clinical course of acute deep venous thrombosis.
Ann. Intern. Med. 125(1), 1–7 (1996)

38. Razzak, M.I., Naz, S., Zaib, A.: Deep learning for medical image processing:
overview, challenges and the future. In: Dey, N., Ashour, A.S., Borra, S. (eds.)
Classification in BioApps. LNCVB, vol. 26, pp. 323–350. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-65981-7 12

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1802.03426
https://github.com/keras-team/keras-tuner
https://doi.org/10.1007/978-3-642-31537-4_13
https://doi.org/10.1007/978-3-319-65981-7_12

Explainable Artificial Neural Network 121

39. Razzaq, M., et al.: An artificial neural network approach integrating plasma pro-
teomics and genetic data identifies PLXNA4 as a new susceptibility locus for pul-
monary embolism. medRxiv (2020)

40. Romano, A.V.C., Martins, T.D., Maciel, R., De Paula, E.V., Annichino-Bizzacchi,
J.M.: Artificial neural network for prediction of venous thrombosis recurrence.
Blood 128(22), 3771 (2016). ISSN 0006–4971

41. Gnana Sheela, K., Deepa, S.N.: Review on methods to fix number of hidden neurons
in neural networks. Math. Probl. Eng. 2013 (2013)

42. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. arXiv preprint arXiv:1704.02685 (2017)

43. Siragusa, S., Cosmi, B., Piovella, F., Hirsh, J., Ginsberg, J.S.: Low-molecular-
weight heparins and unfractionated heparin in the treatment of patients with acute
venous thromboembolism: results of a meta-analysis. Am. J. Med. 100(3), 269–277
(1996)

44. Stevens, H., Peter, K., Tran, H., McFadyen, J.: Predicting the risk of recurrent
venous thromboembolism: current challenges and future opportunities. J. Clin.
Med. 9(5), 1582 (2020)

45. Tagalakis, V., et al.: Men had a higher risk of recurrent venous thromboembolism
than women: a large population study. Gender Med. 9(1), 33–43 (2012)

46. Thiébaut, A.C.M., Bénichou, J.: Choice of time-scale in Cox’s model analysis of
epidemiologic cohort data: a simulation study. Stat. Med. 23(24), 3803–3820 (2004)

47. Tomek, I., et al.: An experiment with the edited nearest-neighbor rule. IEEE Trans.
Syst. Man Cybern. SMC–6(6), 448–452 (1976)

48. van Hylckama Vlieg, A., et al.: Genetic variations associated with recurrent venous
thrombosis. Circ. Cardiovasc. Genet. 7(6), 806–813 (2014)

49. Xu, S., Chen, L.: A novel approach for determining the optimal number of hidden
layer neurons for FNN’s and its application in data mining. In: 5th International
Conference on Information Technology and Applications (ICITA) (2008)

50. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

http://arxiv.org/abs/1704.02685
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

Neural Networks to Predict Survival
from RNA-seq Data in Oncology

Mathilde Sautreuil(B) , Sarah Lemler , and Paul-Henry Cournède

Laboratoire MICS, CentraleSupélec, Université Paris-Saclay, 9 rue Joliot Curie,
91190 Gif-sur-Yvette, France

mathilde.sautreuil@centralesupelec.fr

Abstract. Survival analysis consists of studying the elapsed time until
an event of interest, such as the death or recovery of a patient in medical
studies. This work explores the potential of neural networks in survival
analysis from clinical and RNA-seq data. If the neural network approach
is not recent in survival analysis, methods were classically considered for
low-dimensional input data. But with the emergence of high-throughput
sequencing data, the number of covariates of interest has become very
large, with new statistical issues to consider. We present and test a few
recent neural network approaches for survival analysis adapted to high-
dimensional inputs.

Keywords: Survival analysis · Neural networks · High-dimension ·
Cancer · Transcriptomics data

1 Introduction

Survival analysis consists of studying the elapsed time until an event of interest,
such as the death or recovery of a patient in medical studies. This paper aims to
compare methods to predict a patient’s survival from clinical and gene expression
data.

The Cox model [8] is the reference model in the field of survival analysis. It
relates the survival duration of an individual to the set of explanatory covariates.
It also enables to take into account censored data that are often present in
clinical studies. With high-throughput sequencing techniques, transcriptomics
data are more and more often used as covariates in survival analysis. Adding
these covariates raise issues of high-dimensional statistics, when we have more
covariates than individuals in the sample. Methods based on regularization or
screening [10,31] have been developed and used to solve this issue.

The Cox model relies on the proportional hazard hypothesis, and in its clas-
sical version, does not account for nonlinear effects or interactions, which proves
limited in some real situations. Therefore, in this paper, we focus on another
type of methods: neural networks. Deep learning methods are more and more
popular, notably due to their flexibility and their ability to handle interactions
and nonlinear effects, including in the biomedical field [23,26,30]. The use of
c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 122–140, 2021.
https://doi.org/10.1007/978-3-030-85633-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_8&domain=pdf
http://orcid.org/0000-0003-1985-0307
http://orcid.org/0000-0001-6566-296X
http://orcid.org/0000-0001-7679-6197
https://doi.org/10.1007/978-3-030-85633-5_8

Neural Networks to Predict Survival from RNA-seq Data in Oncology 123

neural networks for survival analysis is not recent, since it dates back to the 90’s
([3,11]), but it began being widely used only recently. We can differentiate two
strategies. The first one relies on the use of a neural network based on the Cox
partial log-likelihood as those developed by [6,11,21,22]. The second strategy
consists of using a neural network based on a discrete-time survival model, as
introduced by [3]. [3] have studied this neural network only in low-dimension. In
this paper, our objective is to study and adapt this model to the high-dimensional
cases, and compare its performances to two other methods: the two-step pro-
cedure with the classical estimation of the parameters of the Cox model with
a Lasso penalty to estimate the regression parameter and a kernel estimator of
the baseline function (as in [16]) and the Cox-nnet neural network [6] based on
the partial likelihood of the Cox model. Section 2 recalls the different notations
used in survival analysis and presents the different models. Then, we introduce
the simulation plan created to compare the models. Finally, we underline the
results to conclude with the potential of neural networks in survival analysis.

2 Models

First, we introduce the following notations:

– Yi the survival time
– Ci the censorship time
– Ti = min(Yi, Ci) the observed time
– δi the censorship indicator (which will be equal to 1 if the interest event

occurs and else to 0).

2.1 The Cox Model

The Cox model [8] predicts the survival probability of an individual from
explanatory covariates Xi. = (Xi1, . . . , Xip)T ∈ R

p. The hazard function λ is
given by:

λ(t|Xi.) = α0(t) exp(βT Xi.), (1)

where α0(t) corresponds to the baseline hazard and β = (β1, . . . , βp)T ∈ R
p is

the vector of regression coefficients. A benefit of this model is that only α0(t)
depends on time while the second term of the right hand side of (1) depends
only on the covariates (proportional hazard model). The Cox model structure
can be helpful when we are interested in the prognostic factors because β can
be estimated without knowing the function α0. It is possible thanks to the Cox
partial log-likelihood, which is the part of the total log-likelihood that does not
depend on α0(t), and is defined by:

L (β) =
n∑

i=1

(
βT Xi.

)−
n∑

i=1

δi log

(
∑

l∈Ri

exp
(
βT Xl.

)
)

,

with Ri the individuals at risk at the observation time Ti of individual i, and
δi the censorship indicator of individual i. The Lasso procedure was proposed

124 M. Sautreuil et al.

by [31] for the estimation of β in the high-dimensional setting. The non-relevant
variables are set to zero thanks to the L1− penalty added to the Cox partial
likelihood: L(β) + λ||β||1. However, to predict the survival function S, we need
to fully estimate the hazard risk λ(s|Xi.) since:

S(t) = P(Ti > t|Xi.) = exp
(

−
∫ t

0

α0(s) exp(βT Xi.)ds

)
.

We follow the two-step procedure of [16]: first, we estimate β from the penalized
Cox partial likelihood, and then we estimate α0(t) from the kernel estimator
introduced by [27], in which we have plugged the Lasso estimate of β.

2.2 Neural Networks

The studied neural networks in this paper are fully-connected multi-layer per-
ceptrons. Several layers constitute this network with at least one input layer,
one output layer, and one or several hidden layers.

Cox-nnet. In 1995, [11] developed a neural network based on the proportional
hazards model. The idea of [11] was to replace the linear prediction of the Cox
regression with the neural network’s hidden layer’s output. [11] only applied their
neural network to survival analysis from clinical data, in low dimension. More
recently, some authors revisited this method [6,21,22]. However, only Cox-nnet
[6] was applied in a high-dimensional setting. We will thus use this model as
benchmark in our study.

The principle of Cox-nnet is that its output layer corresponds to a Cox regres-
sion: the output of the hidden layer replaces the linear function of the covariates
in the exponential of the Cox model equation.

To estimate the neural network weights, [6] uses the Cox partial log-likelihood
as the neural network loss:

L(β,W, b) =
n∑

i=1

θi −
n∑

i=1

δi log

(
∑

l∈Ri

exp (θl)

)
(2)

with δi the censoring indicator and θi = βT G(WT Xi. + b), where G is the
activation function of the hidden layer, W = (wdh)1≤d≤p,1≤h≤H with H the
number of neurons in the hidden layer, and β = (β1, . . . , βH)T the weights and b
the biases of the neural network to be estimated. In this network, the activation
function tanh is used. To the partial log-likelihood, [6] adds a ridge penalty in
L2−norm of the parameters. Thus, the final cost function for this neural network
is:

Loss(β,W, b) = L(β,W, b) + λ(‖β‖2 + ‖W‖2 + ‖b‖2). (3)

We maximize this loss function to deduce estimators of β, W and b. The
principle in this neural network is that the activation function for the output
layer is a Cox regression, so that we have:

Neural Networks to Predict Survival from RNA-seq Data in Oncology 125

ĥi = exp

⎛

⎜⎜⎜⎜⎜⎝

H∑

h=1

β̂hG
(
b̂h + ŴT Xi.

)

︸ ︷︷ ︸
θ̂i=β̂T G(ŴT Xi.+b̂)

⎞

⎟⎟⎟⎟⎟⎠
. (4)

The output of the neural network ĥi corresponds to the part of the Cox regression
that does not depend on time. [6] only used ĥi, but in our study, we are interested
in the complete survival function, and thus we need to estimate the complete
hazard function ĥ(xi, t). For that purpose, we estimate the baseline risk α0(t),
with the kernel estimator introduced by [27]. As for the Cox model, we estimate
α0(t) with the two-steps procedure of [16] and this estimator is defined by:

α̂m(t) =
1

nm

n∑

i=1

K

(
t − u

m

)
δi∑

l∈Ri
ĥl

, (5)

with ĥl the estimator defined by (4), K : R → R a kernel (a positive function
with integral equal to 1), m the bandwidth, which is a strictly positive real
parameter. m can be obtained by cross-validation or by the Goldenshluger &
Lepski method [14] for instance, and we choose the latter. We can finally derive
an estimator of the survival function for individual i:

Ŝ(t|Xi.) = exp
(

−
∫ t

0

α̂m(s)ĥids

)
. (6)

Discrete Time Neural Network. [3] has proposed a neural network based
on a discrete-time model. They introduced L time intervals Al =]tl−1, tl], and
build a model predicting in which interval, the failure event occurs. We write
the discrete hazard as the conditional probability of survival:

hil = P (Yi ∈ Al|Yi > tl−1), (7)

with Yi the survival time of individual i. [3] duplicates the individuals as input
of the neural network. The duplication of individuals gives it a more original
structure than that of a classical multi-layer perceptron. The [3]’s neural network
takes as input the set of variables of the individual and an additional variable
corresponding to the mid-point of each interval. Due to the addition of this
variable, the p variables of each individual are repeated for each time interval.
The output is thus the estimated hazard hil = hl(Xi, al) for the individual i at
time al. We schematize the structure of this neural network on Fig. 1. [3] initially
used a 3-layers neural network with a logistic function as the activation function
for both the hidden and output layers. The output of the neural network with
H neurons in the hidden layer and p + 1 input variables is given by:

hil = h(xi, tl) = f2
(
a + βT f1

(
b + WT Xi.

))
,

126 M. Sautreuil et al.

Input #1

Input #2

Input #3

Tk

Output

Hidden
layer

Input
layer

Output
layer

Fig. 1. Structure of the neural network based on the discrete-time model of [3]

where W = (wdh)1≤d≤p+1,1≤h≤H , and β = (β1, . . . , βH)T are the weights of the
neural network, a and b are the biases of the neural network to be estimated, and
f1 and f2 the sigmoid activation functions. The target of this neural network is
the death indicator dil, which will indicate if the individual i dies in the interval
Al. We introduce li ≤ L the number of intervals in which the individual i is
observed, di0, . . . , di(li−1) = 0 whatever the status of the individual i and dili is
equal to 0 if the individual i is censored and 1 otherwise. The cost function used
by [3] is the cross-entropy function and the weights of the neural network can
be estimated by minimizing it:

L(β,W, a, b) = −
n∑

i=1

li∑

l=1

dil log(hil) + (1 − dil) log(1 − hil). (8)

The duplication of the individuals for each time interval increases the sample
size in the neural network, it is an advantage in a high-dimensional framework.
Moreover, [3] added a ridge penalty to their cross-entropy function (8):

Loss(β,W, a, b) = L(β,W, a, b) + λ(‖β‖2 + ‖W‖2 + ‖a‖2 + ‖b‖2), (9)

In [3], λ was chosen by deriving an Information Criteria. We choose instead to
use cross-validation since it improved model the predictive capacity.

After estimating the parameters of the neural network by minimizing the loss
function (9), the output obtained is the estimate of the discrete risk ĥil for each
individual i and the survival function of individual i is estimated using:

Ŝ(Tli) =
li∏

i=1

(1 − ĥil). (10)

Neural Networks to Predict Survival from RNA-seq Data in Oncology 127

This model was only applied for low-dimensional inputs, and this paper inves-
tigates its performance and capacity to adapt to high-dimensional settings. We
denote this network NNsurv. We noticed an improvement of the performance
when using a ReLU activation function for the hidden layers and thus used it
instead of the original sigmoid functions. Moreover, original neural network only
has one hidden layer. We propose to add one supplementary hidden layer to
study if a deeper structure could improve the neural network prediction capac-
ity. We call the deeper version NNsurv-deep. Its structure is similar to the one
schematized in Fig. 1, but with two hidden layers instead of one. The input layer
does not change, and the individuals are always duplicated at the input of the
neural network. The output layer also has a single neuron corresponding to the
discrete hazard estimate. These neural networks are implemented in a package
available on https://github.com/mathildesautreuil/NNsurv.

We will compare the performances of these four models (Cox-Lasso, Cox-
nnet, NNsurv, NNsurv-deep) on simulated data and then to a real dataset.

3 Simulations

We create a simulation design to compare different neural network approaches to
predict survival time in high-dimension. We divide the simulation plan into two
parts. The first part concerns a simulation study based on [2] which proposes to
generate the survival data from a Cox model. Data simulated with this model
naturally favors the two methods based on the Cox model. We also consider a
model with a more complex behavior: the Accelerated Hazards (AH) model [5].
In the AH model, variables will accelerate or decelerate the hazard risk. The
survival curves of the AH model can therefore cross each other. Other choices of
models were also possible, and in the Appendix A, we also present the results for
the Accelerated Failure Time (AFT) model [19] which does not satisfy the pro-
portional risk assumption either, but does not allow the intersection of survival
curves of different patients.

The models’ baseline risk function is assumed known and follows a particular
probability distribution in all cases. We use the Weibull distribution for the Cox
model and the log-normal distribution for the AH model. Several simulations are
considered, by varying the sample size, the total number of explanatory variables,
and the number of relevant explanatory variables considered in the model to be
the closest to the RNA-seq real datasets in oncology. First, we considered a low
number of covariates (10 covariates), representing the case with only clinical
data in survival studies. Then, we considered some simulation cases to look like
RNA-seq data with filtering. The first case corresponds to important filtering
with only 100 covariates, and the second case is a filtering case more realistic
with 1000 covariates. We use the package that we have developed called survMS
and available on CRAN or https://github.com/mathildesautreuil/survMS.

https://github.com/mathildesautreuil/NNsurv
https://github.com/mathildesautreuil/survMS

128 M. Sautreuil et al.

3.1 Generation of Survival Times

Considering the survival models (Cox, AFT, and AH models), the survival func-
tion S(t|X) can be written as:

S(t|X) = exp(−H0(ψ1(X)t)ψ2(X) with (11)

H0 is the cumulative hazard and

(ψ1(X), ψ2(X)) =

⎧
⎨

⎩

(1, exp(βT X)) for the Cox model
(exp(βT X), exp(−βT X)) for the AH model
(exp(βT X), 1) for the AFT model.

The distribution function is deduced from the survival function from the
following formula:

F (t|X) = 1 − S(t|X). (12)

For data generation, if Y is a random variable that follows a probability distri-
bution F, then U = F (Y) follows a uniform distribution on the interval [0, 1],
and (1−U) also follows a uniform distribution U [0, 1]. From Eq. (12), we finally
obtain that:

1 − U = S(t|X) (13)
= exp(−H0(ψ1(X)t)ψ2(X)). (14)

If α0(t) is positive for all t, then H0(t) can be inverted, and we can express
the survival time of each of the models considered (Cox, AFT and AH) from
H−1

0 (u). We write in a general form the expression of the random survival times
for each of the survival models:

T =
1

ψ1(X)
H−1

0

(
log(1 − U)

ψ2(X)

)
. (15)

Two distributions are used for the cumulative hazard function H0(t) to generate
the survival data. If the survival times are distributed according to a Weibull
distribution W(a, λ), the baseline hazard is of the form :

α0(t) = aλta−1, λ > 0, a > 0. (16)

The inverse of the cumulative risk function is expressed as follows:

H−1
0 (u) =

(u
λ

)1/a

. (17)

For survival times following a log-normal distribution LN (μ, σ) with mean
μ and standard deviation σ, the basic risk function is therefore written:

α0(t) =
1

σ
√
2πt

exp
[
− (log t−μ)2

2σ2

]

1 − Φ
[
log t−μ

σ

] , (18)

Neural Networks to Predict Survival from RNA-seq Data in Oncology 129

with Φ(t) the distribution function of a standard Normal distribution. The
inverse of the cumulative hazard function is expressed by:

H−1
0 (u) = exp(σΦ−1(1 − exp(−u)) + μ), (19)

with Φ−1(t) the inverse of the distribution function of a centered and reduced
normal distribution.

3.2 Simulation with the Cox - Weibull Model

Survival Times and Baseline Function: Generating survival times from
a variety of parametric distributions were described by [2]. In the case of a
Cox model with a baseline function distributed from a Weibull distribution, the
inverse cumulative hazard function is H−1

0 (t) = (t
λ)

1
a and the survival time T of

the Cox model is expressed as:

T =
(

− 1
λ

log(1 − U) exp(−Xi.β)
) 1

a

, (20)

where U is a random variable with U ∼ U [0, 1].

Choice of Parameters of the Weibull Distribution: We chose the Weibull
distribution parameters so that our design of simulation is close to real datasets.
The mean and the standard deviation of Breast cancer real dataset (available on
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532) is around 2325 days
and 1304 days respectively. As the survival times follow a Weibull distribution,
the mean and the variance of T write as:

E(T) =
1
a
√

λ
Γ

(
1
a

+ 1
)

and V(T) =
1

a
√

λ2

[
Γ

(
2
a

+ 1
)

− Γ 2

(
1
a

+ 1
)]

,

where Γ is the Gamma function. We set a = 2 and λ = 1.3e−7 to have a mean
and variance of our simulated datasets close to those of the Breast cancer real
dataset.

3.3 Simulation with the AH - Log-Normal Model

Survival Times and Baseline Function: Building on the work of [2], we
also simulate the survival data from the AH model. We perform this simulation
to generate data whose survival curves will intersect. For this simulation, we
consider that the survival times follow a log-normal distribution LN (μ, σ). In
this case, the inverse of the cumulative hazard function is expressed as (19), and
we have:

T =
1

exp(βT Xi.)
σΦ−1

(
log(1 − U)

exp(−βT Xi.)
+ μ

)
(21)

with Φ−1(t) the inverse of the distribution function of a centered and reduced
normal distribution.

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532

130 M. Sautreuil et al.

Choice of Parameters of the Log-Normal Distribution: As in the previ-
ous simulation, we ensure that the distribution of the simulated data is close to
that of the real ones and we use the formulas:

μ = ln(E(T)) − 1
2
σ2 and σ2 = ln

(
1 +

Var(T)
(E(T))2

)
. (22)

Since, the expectation and the standard deviation are respectively 2325 and
1304, the values of μ and σ used for the simulation of the survival data should
be μ = 7.73 and σ = 0.1760. However, to have survival curves crossing rapidly,
we take a higher value of σ: σ = 0.7.

3.4 Metrics

To assess the performance of the survival models, we use two classical metrics,
the Concordance Index (CI) and the Integrated Brier Score (IBS).

Concordance Index. The index measures whether the prediction of the model
under study matches the rank of the survival data. If the event time of an
individual i is shorter than that of an individual j, a good model will predict
a higher probability of survival for individual j. This metric takes into account
censored data, and it takes a value between 0 and 1. If the C-index is equal to
0.5, the model is equivalent to random guessing. The time-dependent C-index
proposed by [1], adapted to non-proportional hazard models, is chosen in this
study.

Consider n individuals, and for 1 ≤ i ≤ n, Ti their observation times
(either survival or censoring times) and δi their censorship indicators. For
i, j = 1, . . . , n i �= j, we define the indicators:

compij = 1{(Ti<Tj ;δi=1)∪(Ti=Tj ;δi=1,δj=0)}

and
conctd

ij = 1{S(Ti|Xi.)<S(Tj |Xj.)}compij ,

The estimate of the time-dependent C-index for survival models is equal to:

Ĉtd =

∑n
i=1

∑
j �=i conctd

ij∑n
i=1

∑
j �=i compij

(23)

If we are in the proportional hazards or linear transformation models’ case, the
metric Ĉtd of the Eq. (23) is equivalent to the usual C-index [12].

Integrated Brier Score. The Brier score measures the squared error between
the indicator function of surviving at time t, 1{Ti≥t}, and its prediction by
the model Ŝ(t|Xi.). [15] adapted the Brier score [4] for censored survival data
using the inverse probability of censoring weights (IPCW) and [13] subsequently

Neural Networks to Predict Survival from RNA-seq Data in Oncology 131

proposed a consistent estimator of the Brier score in the presence of censored
data. The Brier score is defined by:

BS(t, Ŝ) = E

[(
Yi(t) − Ŝ(t|Xi.)

)2]
, (24)

where Yi(t) = 1{Ti≥t} is the status of individual i at time t and Ŝ(t|Xi.) is the
predicted survival probability at time t for individual i. Unlike the C-index, a
lower value of this score shows a better predictive ability of the model.

As mentioned above, [13] gave an estimate of the Brier score in the presence
of censored survival data. The estimate of the Brier score under right censoring
is:

B̂S(t, Ŝ) =
1
n

n∑

i=1

Ŵi(t)(Yi(t) − Ŝ(t|Xi.))2, (25)

with n the number of individuals in the test set. Moreover, in the presence of
censored data it is necessary to adjust the score by weighting it by the inverse
probability of censoring weights (IPCW). This weighting is defined by:

Ŵi(t) =
(1 − Yi(t))δi

Ĝ(Ti|Xi.)
+

Yi(t)

Ĝ(t|Xi.)
, (26)

where δi is the censored indicator equal to 1 if we observe the survival time and
equal to 0 if the survival time is censored, and Ĝ(t|x) is the Kaplan-Meier [20]
estimator of the censored time survival function at time t.

The integrated Brier score [25] summarizes the predictive performance esti-
mated by the Brier score [4]:

ÎBS =
1
τ

∫ τ

0

B̂S(t, Ŝ)dt, (27)

where B̂S(t, Ŝ) is the estimated Brier score and τ > 0. We take τ > 0 as the
maximum of the observed times and the Brier score is averaged over the interval
[0, τ]. As for the Brier score, a lower value of the IBS indicates a better predictive
ability of the model.

4 Results

In this section, we compare the performances of the Cox model with Lasso
(denoted CoxL1) [31], the neural network based on the Cox partial log-likelihood
Cox-nnet [6] presented in Sect. 2, and discrete-time neural networks (NNsurv and
NNsurv-deep), adapted from [3] and also presented in Sect. 2. The performances
are compared on simulated data (with the Cox and AH models, and for several
parametric configurations) and on a real data case presented below. The discrete-
time C-index (Ctd) and Integrated Brier Score (IBS) are used for this purpose.
We can calculate the reference Ctd and IBS values from our simulations based
on the exact model used for the simulation. Note however, that the models under
comparison can sometimes “beat” these reference values by chance (due to the
random generation of survival times).

132 M. Sautreuil et al.

4.1 Simulation Study

n is the number of samples, n ∈ 200; 1000, and p is the number of covariates,
p ∈ 10; 100; 1000. Note that even if our objective is to apply our models to
predict survival from RNA-seq data, we present simulation results up to 1000
covariates (instead of the potential several tens of thousands usually available
with RNA-seq). Indeed, when we performed tests with 10,000 inputs, none of the
model were able to perform well, thus underlining the necessity of a preliminary
filtering as classically done when handling RNA-seq data [7].

Results for the Cox - Weibull Simulation. The Cox-Weibull simulation
corresponds to a Cox model’s data with a baseline risk modeled by a Weibull
distribution. In this simulation, the model satisfies the proportional hazards
assumption. The results of this simulation in Table 1 show that Cox-nnet per-
forms best concerning the Ctd in all settings (regardless of the number of variables
or sample size) and most settings for the IBS. The best IBS values for Cox-
nnet, as we can see from Table 1, are for sample size equal to 200 and number
of variables to 10 and 100 or sample size worth to 1000 and number of variables
is to 100 and 1000. CoxL1 also has the best IBS (i.e. the lowest) for a sample
size of 1000 and 10 variables. These good results of CoxL1 and Cox-nnet are not
surprising because we simulated the data from a Cox model. We can observe in
Table 1 that NNsurv-deep obtains the lowest IBS value for 200 individuals and
1000 variables. We can also see that the IBS values of NNsurv and NNsurv-deep
are very close to the reference IBS values. This phenomenon is also true when
the sample size is equal to 1000, and the number of variables is equal to 100.
Moreover, we can observe in Table 1 that some of the values of Ctd obtained for
NNsurv and NNsurv-deep are close to those of Cox-nnet. We notice notably this
case when the sample size is equal to 200, and the number of variables is equal
to 10, and when the number of samples is 1000 and the number of variables is of
10 and 100. We can see that some of the values of the Ctd for the discrete-time
neural networks are better than those obtained from the Cox model, for exam-
ple, for a sample size equal to 200 and number of variables worth to 100 or for
a sample size worth to 1000 and whatever the number of variables is.

Synthesis: Not surprisingly, Cox-nnet has the best results on this dataset sim-
ulated from a Cox model with a Weibull distribution. However, the neural net-
works based on a discrete-time model (NNsurv and NNsurv-deep) have very
comparable performances, and clearly outperforms the CoxL1 model when the
number of variables increases.

Results for the AH - Log-Normal Simulation. The results presented in
Table 2 are those obtained on the AH simulation with the baseline hazard follow-
ing a log-normal distribution. In this simulation, the risks are not proportional,
and the survival functions of different individuals can cross.

We can observe that the neural networks based on a discrete-time model
have the best performances concerning the Ctd and the IBS, and their values

Neural Networks to Predict Survival from RNA-seq Data in Oncology 133

Table 1. Results of predicting methods on Cox-Weibull simulation

n 200 1000

Method p 10 100 1000 10 100 1000

Reference C�
td 0.7442 0.7428 0.7309 0.7442 0.7428 0.7309

IBS� 0.0471 0.0549 0.0582 0.0471 0.0549 0.0582

NNsurv Ctd 0.7137 0.6224 0.5036 0.7398 0.7282 0.5700

IBS 0.0980 0.0646 0.1359 0.0759 0.0537 0.1007

NNsurv Ctd 0.7225 0.5982 0.5054 0.7424 0.7236 0.5741

deep IBS 0.0878 0.0689 0.1080 0.0591 0.0555 0.1185

Cox Ctd 0.7313 0.6481 0.5351 0.7427 0.7309 0.6110

-nnet IBS 0.0688 0.0622 0.1402 0.0640 0.0498 0.0710

CoxL1 Ctd 0.7292 0.5330 0.5011 0.7419 0.7243 0.5

IBS 0.0715 0.0672 0.1175 0.0541 0.0509 0.0770

are close to the reference Ctd and IBS. This phenomenon is particularly correct
for the IBS when the sample size is equal to 1000, the IBS values of NNsurv
and NNsurv-deep are lower than those of the reference IBS. On the other hand,
the methods based on the Cox partial likelihood have the highest Ctd values for
a small sample size (n = 200) and a small number of variables (p = 10) or, on
the contrary, for a large sample size (n = 1000) and a large number of variables
(p = 1000). For a sample size equal to 200, neural networks based on a discrete-
time model have higher Ctd values than those obtained by CoxL1 and Cox-nnet.
The values obtained for the IBS by the two methods using the Cox partial
likelihood are good. For a small number of individuals (n = 200), the IBS values
of CoxL1 and Cox-nnet are very high. For example, Cox-nnet obtains IBS values
equal to 0.2243 and 0.1609 respectively for 10 and 100 variables, and CoxL1
gets IBS values equal to 0.2278 and 0.1614, respectively. These values are very
high compared to the baseline IBS. CoxL1 and Cox-nnet, therefore, have more
difficulty with a small number of samples. The predictions of these two methods
are not as good as those given by discrete-time neural networks.

Synthesis: On the dataset simulated from an AH model with a log-normal dis-
tribution, neural networks based on the discrete-time model have the best per-
formances in most situations. The deep version of the model is also better than
the one with only one hidden layer. In this simulation, the data do not check the
proportional hazards assumption, and survival curves exhibit complex patterns
for which the more versatile NNsurv-deep appears more adapted.

4.2 Application on Real Datasets

Breast Cancer Dataset

Description of Data: The METABRIC data (for Molecular Taxonomy of
Breast Cancer International Consortiulm) [9] include 2509 patients with early

134 M. Sautreuil et al.

Table 2. Results of predicting methods on AH/Log-normal simulation

n 200 1000

Method p 10 100 1000 10 100 1000

Reference C�
td 0.7225 0.6857 0.7070 0.7225 0.6867 0.7070

IBS� 0.0755 0.0316 0.0651 0.0755 0.0316 0.0651

NNsurv Ctd 0.6863 0.5971 0.5358 0.7084 0.6088 0.5654

IBS 0.1247 0.0780 0.0859 0.0699 0.0347 0.0533

NNsurv Ctd 0.7042 0.5793 0.5325 0.7155 0.6450 0.5702

deep IBS 0.1789 0.2529 0.1554 0.0602 0.0303 0.0484

Cox Ctd 0.7128 0.5812 0.5356 0.7097 0.6047 0.5720

-nnet IBS 0.1342 0.2243 0.1609 0.0843 0.0875 0.0553

CoxL1 Ctd 0.7042 0.5219 0.5112 0.7088 0.5597 0.5

IBS 0.1350 0.2278 0.1614 0.0608 0.0408 0.0553

breast cancer. These data are available at https://www.synapse.org/#!Synapse:
syn1688369/wiki/27311. Survival time, clinical variables, and expression data
were present for 1981 patients, with six clinical variables (age, tumor size,
hormone therapy, chemotherapy, tumor grades and number of invaded lymph
nodes), and 863 genes (pre-filtered). The percentage of censored individuals is
high, equal to 55%.

Results: The comparison results of the METABRIC dataset are summarized in
Table 3. NNsurv-deep manages to get the highest value of Ctd. The Ctd of NNsurv
is equivalent to that of Cox, but Cox-nnet has a lower value. The integrated Brier
score is very close for NNsurv-deep, Cox-nnet, and CoxL1, although the latter
has the lowest IBS value.

On this real dataset, the differences between the models are not striking,
despite the small superiority of NNsurv-deep.

Table 3. Results of different methods on the breast dataset (METABRIC)

CoxL1 Cox-nnet NNsurv-deep NNsurv

Metabric Ctd 0.6757 0.6676 0.6853 0.6728

IBS 0.1937 0.1965 0.1972 0.2038

5 Discussions

This work is a study of neural networks for the prediction of survival in high-
dimension. In this context, usual methods such as the estimation in a Cox model
with the Cox partial likelihood can no longer be performed. Several methods

https://www.synapse.org/#!Synapse:syn1688369/wiki/27311
https://www.synapse.org/#!Synapse:syn1688369/wiki/27311

Neural Networks to Predict Survival from RNA-seq Data in Oncology 135

(such as dimension reduction or machine learning methods, like Random Survival
Forests [18]) have been proposed, but our interest in this study has been directed
towards neural networks and their potential for survival analysis from RNA-seq
data. Two neural-network based approaches have been proposed. The first one is
based on the Cox model but introduces a neural network for risk determination
[11]. The second approach is based on a discrete-time model [3] and its adaptation
to the high-dimensional setting was the main contribution of our work. In Sect. 4,
we compared the standard Cox model with Lasso penalty and a neural network
based on the Cox model (Cox-nnet) with those based on a discrete-time model
adapted to the high dimension (NNsurv, and NNsurv-deep). To evaluate this
comparison rigorously, we created a design of simulations. We simulated data
from different models (Cox, AH, and AFT in appendix) with varying numbers
of variables and sample sizes, allowing diverse levels of complexity. The variation
of parameter numbers enables simulated datasets to be closer to real datasets
(Clinical dataset or RNA-seq dataset with filtering).

We concluded from this study that the best neural network in most situations
is Cox-nnet. It can handle nonlinear effects as well as interactions. However, the
neural network based on discrete-time modeling, which directly predicts the haz-
ard risk, with several hidden layers (NNsurv-deep), has shown its superiority in
the most complex situations, especially in the presence of non-proportional risks
and intersecting survival curves. On the Metabric data, NNsurv-deep performs
the best, but only marginally better than the Cox partial log-likelihood-based
Lasso estimation procedure, suggesting slight non-linearity and interactions.

The Neural networks seem to be interesting methods to predict survival in
high-dimension and, in particular, in the presence of complex data. The effect
of censoring in these models was not studied in this work, but [28] evaluated
several methods to cope with censoring in neural networks models for survival
analysis. For practical applications, a disadvantage of neural networks is the
interpretation difficulty. The Cox model associated with the Lasso procedure
enables identifying the linear factor prognostics and is privileged by the domain’s
users nowadays. The interpretability issue of neural networks is more and more
studied [17,29] and is an exciting research avenue to explore. For example, [29]
propose a neural network, called DeepLIFT, enabling to explain the output
from some ‘reference’ output. They compute the ‘reference’ output from some
‘reference’ input chosen according to the knowledge of the domain’s experts. [17]
propose to use sparse coding, making the connections between layers sparse for
the interpretation ease. The connections within the network not contributing to
minimizing the loss are removed. Further investigation based on these works will
allow us to have better comprehensible survival prediction output and identify
nonlinear factor prognostics.

136 M. Sautreuil et al.

A Appendix: Supplementary Results

A.1 Simulation from the AFT - Log-Normal Model

Survival Times and Baseline Function: To simulate the data from the
AFT/Log-normal model, we relied on [24]. We chose to perform this simulation
to generate survival data that do not respect the proportional hazards assump-
tion. For this simulation, we consider that the survival times follow a log-normal
distribution LN (μ, σ). In this case, the inverse of the cumulative hazard function
is expressed as (19). Survival times can therefore be simulated from:

T =
1

exp(βT Xi.)
exp(σφ−1(U) + μ). (28)

Choice of Parameters of Log-Normal Distribution: We wish the dis-
tribution of the simulated data is close to the real data. We follow the same
approach to choose the parameters σ and μ of the survival time distribution as
for the Cox/Weibull simulation presented above. The value of the parameters is
obtained from the explicit formulas:

μ = ln(E(T)) − 1
2
σ2 and σ2 = ln

(
1 +

Var(T)
(E(T))2

)
. (29)

Given the expectation and the standard deviation are respectively 2325 and
1304, the values of μ and σ used for the simulation of the survival data should
be μ = 7.73 and σ = 0.1760.

A.2 Simulation Study

Results for the AFT - Log-Normal Simulation. This section presents the
results for data simulated from an AFT model with a baseline risk modeled by
a log-normal distribution. The specificity of these simulated data is that they do
not satisfy the proportional hazards assumption, but the survival curves do not
cross.

Table 4 shows that CoxL1 and Cox-nnet have the best results in most con-
figurations considering Ctd or IBS. This good result for Ctd is particularly right
when the sample size is equal to 200 or when the sample size is equal to 1000,
and the number of variables is equal to 10 and 100. The Ctd obtained by the
CoxL1 model is equal to 0.9867 for 200 individuals and ten variables, and the
Ctd obtained for the Cox-nnet model is equal to 0.9060 for 1000 individuals and
100 variables. We can see in Table 4 that the Ctd obtained for the neural net-
works based on a discrete-time model is very close to those obtained by CoxL1
and Cox-nnet and is either higher than the reference one or slightly below. For
example, for a sample size equal to 200 and a number of variables equal to 10,
the Ctd of NNsurv is equal to 0.9832, that of Cox-nnet is equal to 0.9867, and
the reference one is equal to 0.9203. We have the same behavior for 100 variables
and the same sample size or 100 variables and a sample size of 1000.

Neural Networks to Predict Survival from RNA-seq Data in Oncology 137

Moreover, the IBS values are the lowest for the methods based on Cox
modeling in most situations. But the IBS values for NNsurv and NNsurv-deep
are also excellent. They are lower than the reference IBS in many cases and
are very close to CoxL1 and Cox-nnet. We can observe these results when the
number of variables is less than or equal to 100 regardless of the sample size. The
good results of CoxL1 and Cox-nnet might seem surprising, but we can explain
it because we simulate these data from an AFT model whose survival curves
do not cross. A method based on a Cox model will predict survival functions
that do not cross. For this simulation, the survival function prediction obtained
by CoxL1 and Cox-nnet is not cross and is undoubtedly closer to the survival
function of the AFT simulation compared to discrete-time neural networks.

Table 4. Results of predicting methods on AFT/Log-normal simulation

n 200 1000

Method p 10 100 1000 10 100 1000

Reference C�
td 0.9203 0.9136 0.9037 0.9203 0.9136 0.9037

IBS� 0.0504 0.0604 0.0417 0.0504 0.0604 0.0417

NNsurv Ctd 0.9832 0.8349 0.5425 0.9851 0.9038 0.7426

IBS 0.0265 0.0560 0.2577 0.0247 0.0188 0.0642

NNsurv Ctd 0.9786 0.8275 0.5576 0.9857 0.9060 0.7500

deep IBS 0.0295 0.0561 0.1886 0.0261 0.0207 0.0631

Cox Ctd 0.9825 0.8558 0.5979 0.9844 0.9060 0.7085

-nnet IBS 0.0122 0.0906 0.0959 0.0126 0.0374 0.0808

CoxL1 Ctd 0.9867 0.7827 0.5091 0.9856 0.9028 0.5349

IBS 0.0146 0.0965 0.0960 0.0077 0.0182 0.0827

Synthesis: For data simulated from an AFT model with a log-normal distribu-
tion, Cox-nnet is the neural network with the best results in most situations
when the sample size is small. When the sample size increases, NNsurv-deep is
the best model considering the Ctd in most situations. Moreover, NNsurv and
NNsurv-deep also seem to perform well when the number of variables is less than
or equal to 100. We assume that the good results of Cox-nnet are due to the low
level of complexity of the data. Indeed, the survival curves of the individuals in
this dataset never cross.

References

1. Antolini, L., Boracchi, P., Biganzoli, E.: A time-dependent discrimination index
for survival data. Stat. Med. 24(24), 3927–3944 (2005). https://doi.org/10.1002/
sim.2427, https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2427

https://doi.org/10.1002/sim.2427
https://doi.org/10.1002/sim.2427
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2427

138 M. Sautreuil et al.

2. Bender, R., Augustin, T., Blettner, M.: Generating survival times to simulate Cox
proportional hazards models. Stat. Med. 24(11), 1713–1723 (2005). https://doi.
org/10.1002/sim.2059, http://doi.wiley.com/10.1002/sim.2059

3. Biganzoli, E., Boracchi, P., Mariani, L., Marubini, E.: Feed forward neural net-
works for the analysis of censored survival data: a partial logistic regression app-
roach. Stat. Med. 17(10), 1169–1186 (1998). https://doi.org/10.1002/(SICI)1097-
0258(19980530)17:10〈1169::AID-SIM796〉3.0.CO;2-D

4. Brier, G.W.: Verification of forecasts expressed in terms of probability.
Monthly Weather Rev. 78(1), 1–3 (1950). https://doi.org/10.1175/1520-
0493(1950)078〈0001:VOFEIT〉2.0.CO;2, https://journals.ametsoc.org/mwr/
article/78/1/1/96424/VERIFICATION-OF-FORECASTS-EXPRESSED-IN-
TERMSOF

5. Chen, Y.Q., Wang, M.C.: Analysis of accelerated hazards models. J. Am.
Stat. Associ. 95(450), 608–618 (2000). https://doi.org/10.1080/01621459.
2000.10474236, https://www.tandfonline.com/doi/abs/10.1080/01621459.2000.
10474236

6. Ching, T., Zhu, X., Garmire, L.X.: Cox-nnet: an artificial neural network method
for prognosis prediction of high-throughput omics data. PLOS Computational
Biology 14(4), e1006076 (2018). https://doi.org/10.1371/journal.pcbi.1006076,
https://dx.plos.org/10.1371/journal.pcbi.1006076

7. Conesa, A., et al.: A survey of best practices for RNA-seq data analysis. Genome
Biol. 17(1), 1–19 (2016)

8. Cox, D.R.: Regression models and life-tables. J. Royal Stat. Soc. Ser. B (Methodol.)
34(2), 187–220 (1972). https://www.jstor.org/stable/2985181

9. Curtis, C., et al.: The genomic and transcriptomic architecture of 2,000 breast
tumours reveals novel subgroups. Nature 486(7403), 346–352 (2012). https://doi.
org/10.1038/nature10983

10. Fan, J., Feng, Y., Wu, Y.: High-dimensional variable selection for Cox’s
proportional hazards model. Borrowing Strength: Theory Powering Appli-
cations — A Festschrift for Lawrence D. Brown 6, 70–86 (2010). https://
doi.org/10.1214/10-IMSCOLL606, https://projecteuclid.org/ebooks/institute-
of-mathematical-statistics-collections/Borrowing-Strength--Theory-Powering-
Applications--A-Festschrift-for/chapter/High-dimensional-variable-selection-for-
Coxs-proportional-hazards-model/10.1214/10-IMSCOLL606

11. Faraggi, D., Simon, R.: A neural network model for survival data. Stat.
Med. 14(1), 73–82 (1995). https://doi.org/10.1002/sim.4780140108, https://
onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780140108

12. Gerds, T.A., Kattan, M.W., Schumacher, M., Yu, C.: Estimating a time-dependent
concordance index for survival prediction models with covariate dependent cen-
soring. Stat. Med. 32(13), 2173–2184 (2013). https://doi.org/10.1002/sim.5681,
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.5681

13. Gerds, T.A., Schumacher, M.: Consistent estimation of the expected brier score
in general survival models with right-censored event times. Biometrical J. 48(6),
1029–1040 (2006). https://doi.org/10.1002/bimj.200610301, https://onlinelibrary.
wiley.com/doi/abs/10.1002/bimj.200610301

14. Goldenshluger, A., Lepski, O.: Bandwidth selection in Kernel density estimation:
oracle inequalities and adaptive minimax optimality. Ann. Stat. 39(3), 1608–1632
(2011). https://doi.org/10.1214/11-AOS883, https://projecteuclid.org/euclid.aos/
1307452130

https://doi.org/10.1002/sim.2059
https://doi.org/10.1002/sim.2059
http://doi.wiley.com/10.1002/sim.2059
https://doi.org/10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.0.CO;2-D
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://journals.ametsoc.org/mwr/article/78/1/1/96424/VERIFICATION-OF-FORECASTS-EXPRESSED-IN-TERMSOF
https://journals.ametsoc.org/mwr/article/78/1/1/96424/VERIFICATION-OF-FORECASTS-EXPRESSED-IN-TERMSOF
https://journals.ametsoc.org/mwr/article/78/1/1/96424/VERIFICATION-OF-FORECASTS-EXPRESSED-IN-TERMSOF
https://doi.org/10.1080/01621459.2000.10474236
https://doi.org/10.1080/01621459.2000.10474236
https://www.tandfonline.com/doi/abs/10.1080/01621459.2000.10474236
https://www.tandfonline.com/doi/abs/10.1080/01621459.2000.10474236
https://doi.org/10.1371/journal.pcbi.1006076
https://dx.plos.org/10.1371/journal.pcbi.1006076
https://www.jstor.org/stable/2985181
https://doi.org/10.1038/nature10983
https://doi.org/10.1038/nature10983
https://doi.org/10.1214/10-IMSCOLL606
https://doi.org/10.1214/10-IMSCOLL606
https://projecteuclid.org/ebooks/institute-of-mathematical-statistics-collections/Borrowing-Strength--Theory-Powering-Applications--A-Festschrift-for/chapter/High-dimensional-variable-selection-for-Coxs-proportional-hazards-model/10.1214/10-IMSCOLL606
https://projecteuclid.org/ebooks/institute-of-mathematical-statistics-collections/Borrowing-Strength--Theory-Powering-Applications--A-Festschrift-for/chapter/High-dimensional-variable-selection-for-Coxs-proportional-hazards-model/10.1214/10-IMSCOLL606
https://projecteuclid.org/ebooks/institute-of-mathematical-statistics-collections/Borrowing-Strength--Theory-Powering-Applications--A-Festschrift-for/chapter/High-dimensional-variable-selection-for-Coxs-proportional-hazards-model/10.1214/10-IMSCOLL606
https://projecteuclid.org/ebooks/institute-of-mathematical-statistics-collections/Borrowing-Strength--Theory-Powering-Applications--A-Festschrift-for/chapter/High-dimensional-variable-selection-for-Coxs-proportional-hazards-model/10.1214/10-IMSCOLL606
https://doi.org/10.1002/sim.4780140108
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780140108
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780140108
https://doi.org/10.1002/sim.5681
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.5681
https://doi.org/10.1002/bimj.200610301
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.200610301
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.200610301
https://doi.org/10.1214/11-AOS883
https://projecteuclid.org/euclid.aos/1307452130
https://projecteuclid.org/euclid.aos/1307452130

Neural Networks to Predict Survival from RNA-seq Data in Oncology 139

15. Graf, E., Schmoor, C., Sauerbrei, W., Schumacher, M.: Assessment and compari-
son of prognostic classification schemes for survival data. Stat. Med. 18(17–18),
2529–2545 (1999). https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:
17/18〈2529::AID-SIM274〉3.0.CO;2-5, https://onlinelibrary.wiley.com/doi/abs/
10.1002/%28SICI%291097-0258%2819990915/30%2918%3A17/18%3C2529%3A
%3AAID-SIM274%3E3.0.CO%3B2-5

16. Guilloux, A., Lemler, S., Taupin, M.L.: Adaptive Kernel estimation of the baseline
function in the cox model with high-dimensional covariates. J. Multivar. Anal 148,
141–159 (2016)

17. Hao, J., Kim, Y., Mallavarapu, T., Oh, J.H., Kang, M.: Interpretable deep neural
network for cancer survival analysis by integrating genomic and clinical data. BMC
Med. genomics 12(10), 1–13 (2019)

18. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S., et al.: Random survival
forests. Ann. Appl. Stat. 2(3), 841–860 (2008)

19. Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data:
Kalbfleisch/The Statistical. Wiley Series in Probability and Statistics, John
Wiley & Sons, Inc., Hoboken, NJ, USA, August 2002. https://doi.org/10.1002/
9781118032985, http://doi.wiley.com/10.1002/9781118032985

20. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations.
J. Am. Stat. Assoc. 53(282), 457–481 (1958). https://doi.org/10.1080/01621459.
1958.10501452, https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.
10501452

21. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: Deep-
Surv: personalized treatment recommender system using a Cox proportional haz-
ards deep neural network. BMC Med. Res. Methodolo. 18(1), 24 (2018). https://
doi.org/10.1186/s12874-018-0482-1, https://doi.org/10.1186/s12874-018-0482-1

22. Kvamme, H., Borgan, Ø., Scheel, I.: Time-to-event prediction with neural networks
and cox regression. J. Mach. Learn. Res. 20(129), 1–30 (2019). http://jmlr.org/
papers/v20/18-424.html

23. Kwong, C., Ling, A.Y., Crawford, M.H., Zhao, S.X., Shah, N.H.: A clinical
score for predicting atrial fibrillation in patients with cryptogenic stroke or tran-
sient ischemic attack. Cardiology 138(3), 133–140 (2017). https://doi.org/10.1159/
000476030, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683906/

24. Leemis, L.M., Shih, L.H., Reynertson, K.: Variate generation for accel-
erated life and proportional hazards models with time dependent covari-
ates. Stat. Probab. Lett. 10(4), 335–339 (1990). https://doi.org/10.1016/0167-
7152(90)90052-9, https://linkinghub.elsevier.com/retrieve/pii/0167715290900529

25. Mogensen, U.B., Ishwaran, H., Gerds, T.A.: Evaluating random forests for survival
analysis using prediction error curves. J. Stat. Softw. 50(11), 1–23 (2012). https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC4194196/

26. Rajkomar, A., et al.: Scalable and accurate deep learning with electronic health
records. npj Digital Med. 1(1), 18 (2018). https://doi.org/10.1038/s41746-018-
0029-1, https://www.nature.com/articles/s41746-018-0029-1

27. Ramlau-Hansen, H.: smoothing counting process intensities by means of ker-
nel functions. Ann. Stat. 11(2), 453–466 (1983). https://www.jstor.org/stable/
2240560

28. Roblin, E., Cournede, P.-H., Michiels, S.: On the use of neural networks with
censored time-to-event data. In: Bebis, G., Alekseyev, M., Cho, H., Gevertz,
J., Rodriguez Martinez, M. (eds.) ISMCO 2020. LNCS, vol. 12508, pp. 56–67.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64511-3 6

https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0258%2819990915/30%2918%3A17/18%3C2529%3A%3AAID-SIM274%3E3.0.CO%3B2-5
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0258%2819990915/30%2918%3A17/18%3C2529%3A%3AAID-SIM274%3E3.0.CO%3B2-5
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0258%2819990915/30%2918%3A17/18%3C2529%3A%3AAID-SIM274%3E3.0.CO%3B2-5
https://doi.org/10.1002/9781118032985
https://doi.org/10.1002/9781118032985
http://doi.wiley.com/10.1002/9781118032985
https://doi.org/10.1080/01621459.1958.10501452
https://doi.org/10.1080/01621459.1958.10501452
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501452
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501452
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1186/s12874-018-0482-1
http://jmlr.org/papers/v20/18-424.html
http://jmlr.org/papers/v20/18-424.html
https://doi.org/10.1159/000476030
https://doi.org/10.1159/000476030
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683906/
https://doi.org/10.1016/0167-7152(90)90052-9
https://doi.org/10.1016/0167-7152(90)90052-9
https://linkinghub.elsevier.com/retrieve/pii/0167715290900529
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4194196/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4194196/
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1038/s41746-018-0029-1
https://www.nature.com/articles/s41746-018-0029-1
https://www.jstor.org/stable/2240560
https://www.jstor.org/stable/2240560
https://doi.org/10.1007/978-3-030-64511-3_6

140 M. Sautreuil et al.

29. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: International Conference on Machine Learn-
ing, pp. 3145–3153. PMLR (2017)

30. Suo, Q., et al.: Deep patient similarity learning for personalized healthcare. IEEE
Trans. NanoBiosci. 17(3), 219–227 (2018). https://doi.org/10.1109/TNB.2018.
2837622

31. Tibshirani, R.: The Lasso method for variable selection in the Cox
model. Stat. Med. 16(4), 385–395 (1997). https://doi.org/10.1002/(SICI)1097-
0258(19970228)16:4〈385::AID-SIM380〉3.0.CO;2-3

https://doi.org/10.1109/TNB.2018.2837622
https://doi.org/10.1109/TNB.2018.2837622
https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3

Microbial Community Decision Making
Models in Batch and Chemostat Cultures

Axel Theorell and Jörg Stelling(B)

Department of Biosystems Science and Engineering, and SIB Swiss Institute
of Bioinformatics, ETH Zurich, 4058 Basel, Switzerland

joerg.stelling@bsse.ethz.ch

Abstract. Microbial community simulations using genome scale
metabolic networks (GSMs) are relevant for many application areas,
such as the analysis of the human microbiome. Such simulations rely
on assumptions about the culturing environment, affecting if the cul-
ture may reach a metabolically stationary state with constant microbial
concentrations. They also require assumptions on decision making by
the microbes: metabolic strategies can be in the interest of individual
community members or of the whole community. However, the impact
of such common assumptions on community simulation results has not
been investigated systematically. Here, we investigate four combinations
of assumptions, elucidate how they are applied in literature, provide
novel mathematical formulations for their simulation, and show how the
resulting predictions differ qualitatively. Crucially, our results stress that
different assumption combinations give qualitatively different predictions
on microbial coexistence by differential substrate utilization. This funda-
mental mechanism is critically under explored in the steady state GSM
literature with its strong focus on coexistence states due to crossfeeding
(division of labor).

Keywords: Microbial communities · Flux balance analysis · Game
theory

1 Introduction

Microbial communities perform essential functions in diverse environments such
as the soil [11] and the human gut [13]. While the experimental characterization
of community composition is relatively easy with metagenomics methods, this is
not true for the analysis of functional metabolic interactions between community
members [10]. The paradigm of constraint based modelling of metabolism with
genome scale models (GSMs) [4] has therefore become increasingly popular for
the analysis of microbial communities [1,3]. For example, a recent GSM-based
study stipulated that whether a microbial community is cooperative or compet-
itive correlates strongly with the nutrient abundance in its natural habitat [20].

c© The Author(s) 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 141–158, 2021.
https://doi.org/10.1007/978-3-030-85633-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_9&domain=pdf
http://orcid.org/0000-0003-2403-7740
http://orcid.org/0000-0002-1145-891X
https://doi.org/10.1007/978-3-030-85633-5_9

142 A. Theorell and J. Stelling

Approaching community functions with GSMs requires two key ingredi-
ents: models and simulation methods. Models are no longer a main limitation
because of the ease with which large, organism-specific and relatively predictive
GSMs can be derived automatically from genome sequences [15]. However, the
main simulation methods for GSMs such as flux balance analysis (FBA) [16]
and stochastic sampling [14] were originally developed for single species, not
communities.

In single-species FBA, a key assumption is that the simulated species opti-
mizes its fitness (e.g., growth). This can be interpreted as a decision making
problem where the organism needs to optimally control its (evolved) metabolic
network. However, in co-culture, the degree to which one species reaches its
objective may depend on the metabolic activity of all species, for example, when
species compete for nutrients. Dynamic FBA (dFBA) explicitly accounts for
nutrient concentrations and thereby for such interactions; it combines the FBA
principle with iterations over time to reflect changing environmental conditions
[28]. Recently, also scalable methods for dFBA simulation of communities have
been proposed [23]. Yet, a drawback of dFBA is that it requires reliable knowl-
edge on the form and parameters of uptake kinetics. These are hard to obtain
and without them, the simulation results can be unreliable [3].

Incomplete information on uptake kinetics raises a new frontier in decision
making for the simulation of interacting microbes in co-culture: the presence
of multiple decision making entities with potentially conflicting objectives. For
example, in d-OptCom, an influential method for dFBA of a community of
GSMs, decisions are based on a community objective (high community biomass
production) as well as individual objectives (high growth rate) [29]. In other
methods, the emergence of multiple decision makers has stimulated the use of
game theory for the analysis of microbial interactions [24].

To alleviate the dependence on uptake kinetics, community analyses with
GSMs are often restricted to metabolically stationary states (that is, metabolic
fluxes are constant over time) [7,31]. The long term behavior, represented by the
steady states, is the primary interest of most investigations. This makes invest-
ment of computational resources into predicting transient behavior less attrac-
tive. Furthermore, dynamics make the conceptualization of microbial decision
making more complex (raising questions about when a consortium strives to
achieve an objective).

However, as we will detail in Sect. 2, going from one to several microbial
species, the interpretation of the metabolically stationary state assumption in
constraint-based modeling suddenly depends on the type of cultivation envi-
ronment. Moreover, it turns out that differences in the environment also have
implications for models of decision making in FBA-type analyses. In particular,
assumptions on environment and decision making have fundamental impact on
whether organisms in a community of GSMs can coexist or not. These depen-
dencies have not yet been investigated systematically.

Microbial Community Decision Making Models 143

Here, we formulate four methods for simulating metabolically stationary
states, corresponding to combinations of two different environments, batch and
chemostat cultivation, and two different modes of microbial decision making,
distributed (rational agent) and centralized (rational community). In these for-
mulations, we put a novel emphasis on what information (local/global) the
decision makers have access to. The combination steady state batch/rational
community resembles the SteadyCom formulation [8]; the chemostat formula-
tions applicable to GSMs are new. We demonstrate the qualitative differences
between the approaches on two toy-examples, a prisoners dilemma (PD) model
for decision making and a nutrient limitation model for coexistence. As expected,
switching from rational agent to rational community, PD switches from defec-
tion to cooperation. For nutrient limitation, the four models yield qualitatively
different results. We argue that, which model to apply in a practical scenario
should be considered carefully and has to reflect both the chemical environment
and whether the community can be expected to have developed community
strategies. We believe that the chemostat formulations are of particular value
because important microbial environments such as the human gut resemble a
chemostat [9].

Fig. 1. Cultivation systems and their implications for metabolically stationary state
conditions. For definitions of mathematical variables, see Sect. 2.1. (A) Chemostat as an
open system in steady state. Black: time-constant entities; bold arrows: flows; normal
arrows: metabolic fluxes; rounded rectangle: cell. (B) Dynamics in batch cultivation
of cells with a phase of metabolically stationary state (constant growth rate, implying
linear increase of the logarithm of the species concentration, insensitive to external
concentrations) between dashed vertical lines. (C) Metabolically stationary state in
the closed batch system (time-constant entities in black).

2 Concepts

The two main environments for cultivating microbes are (assumed) chemostat
and batch processes. For FBA-based analysis, they imply different concepts of
metabolically stationary state, leading to different forms of microbial coexistence
and of models for decision making.

144 A. Theorell and J. Stelling

2.1 Chemostat vs Batch Environment

In a chemostat as an open system, a fluid flow (dilution rate D) adds nutrients
(inflow concentrations Cin) and flushes out parts of the cultivation medium,
keeping the cultivation volume constant (see Fig. 1A). A metabolically stationary
state requires that metabolic fluxes (ν), species abundances (X), and environ-
mental nutrient concentrations (C) are constant over time (t). For the (non-zero)
absolute microbial species abundances to be constant, the growth rates (μ) must
be equal to the dilution rate D (henceforth called D-growth).

Assuming growth maximization, the growth rate depends on the environmen-
tal nutrient concentrations via uptake kinetic functions that determine the upper
bounds of uptake fluxes. In turn, environmental nutrient concentrations depend
on fluxes and species abundances. Assume that the kinetic functions increase
monotonically with environmental nutrient concentrations. Then, starting from
low species abundances and high environmental nutrient concentrations, growth
rates higher than D (if existent) will increase species abundances and decrease
environmental nutrient concentrations, thereby decreasing the growth rate, until
the growth rate equals D and a (nutrient limited) metabolically stationary state
is reached. As a consequence, to simulate the microbial abundances at which
the nutrient limited steady state(s) occurs, we need an explicit representation of
extracellular substrate concentrations. Different combinations of microbial and
substrate concentrations may give rise to multiple valid steady states. Models
that take the extracellular environment into account are frequent in the chemo-
stat literature [18,19]. However, the illustrative small scale models convention-
ally used in chemostat modelling do not possess intracellular metabolic networks
with degrees of freedom in the fluxes, and are thus not concerned with decision
making in the same way as FBA-models that use internal degrees of freedom to
optimize some objective.

In a batch process as a closed system, all nutrients are provided at the begin-
ning of the cultivation and nothing is flushed out (Fig. 1B, C). Here, a modeled
metabolically stationary state refers to the condition that metabolic fluxes as
well as growth rates are time-constant. This can hold, for example, during expo-
nential growth. It has two important implications: First, relevant environmental
nutrient concentrations are assumed to be in a regime where the kinetic functions
determining the upper bounds of the growth limiting uptake fluxes are insensi-
tive to the nutrient concentrations. This allows for community models without
a representation of environmental nutrient concentrations. Second, the relative
species concentrations must be constant, implying that all species with non-zero
abundance grow at the same rate averaged over time (henceforth called balanced
growth). This allows to properly model inter species crossfeeding of compounds.
Some GSM-based studies of communities apply balanced growth [8,17]. How-
ever, others do not [6,7,30], thus assuming a non-closed system. Throughout
this manuscript, any system operating a metabolically stationary state under
non-limiting extracellular nutrient conditions will be called a steady state batch.
Though such a system may not have to be a batch cultivation, we will use the

Microbial Community Decision Making Models 145

name batch throughout the manuscript, since batch cultivation is the model
system addressed in this manuscript.

2.2 Implications for Coexistence

As demonstrated, in the context of GSMs, chemostat and batch imply distinct
conditions on metabolically stationary states. These distinctions have crucial
consequences for the possibility of co-existence of microbes. For non-interacting
microbes in a batch, balanced growth will only occur if all concerned species
have the exact same growth rate by chance, a situation that never happens in
practice. Therefore, to simulate coexistence in a consortium, an explicit inter-
action between microbes, such as crossfeeding [8] or some form of agreement
to grow at the same rate is mandatory. In contrast, for a chemostat operated
with constant nutrient concentrations in the feed, competing species may coex-
ist under D-growth, if they are limited by different nutrients [2]. Indeed, this
enables models with coexistence states originating from both crossfeeding and
differential nutrient limitations [22].

2.3 Implications for Decision Making

The assumptions on the environment—implying observability of nutrient con-
centrations or lack of observability—also have implications for models of decision
making in FBA-type analyses. As mentioned for the GSM community simulation
method d-OptCom [29], as well as for its metabolically stationary state sibling
OptCom, [30], decision making is modeled as a bi-level optimization problem.
On one level, the community strives towards a fitness goal (high community
biomass production) and on the other level each microbial species optimizes its
own fitness (growth rate). Abstractly, there are two types of decision makers,
one making community decisions and one making decisions for individuals. The
existence of an apparent community decision maker is hypothetical—it could
result from species co-evolution [27,31]. Generally, it has been shown that coop-
erative (generous) strategies are evolutionarily robust in repeated PD games in
simulations [25].

Because community and individual decision makers may follow contradictory
strategies, a principle for conflict resolution is needed. Some possibilities used
for GSMs are: the community strategy takes precedence over individual decision
makers [30], a community strategy must be Pareto optimal for the individual
decision makers [6], and a community strategy must be a Nash equilibrium for
the individual decision makers [7].

In particular, Cai et al. [7] makes the differences in conflict resolution mech-
anisms concrete by converting the so-called called Prisoners Dilemma (PD) [12]
game theory example to a metabolic network setting. PD is a two player sym-
metric game with payoffs shown in Table 1. Mutual cooperation generates the
largest overall benefit, but defection by one player yields a higher payoff for this
player if the other player cooperates. Figure 2 shows a metabolic community ver-
sion of PD, where species 1 and 2 both have the capacity to produce metabolites

146 A. Theorell and J. Stelling

Table 1. Generic prisoners dilemma payoff matrix (numbers unrelated to Fig. 2). The
first and second number in the round brackets denote the payoffs for player 1 and 2,
respectively.

Player 1 Player 2

Cooperate Defect

Cooperate (3, 3) (1, 4)

Defect (4, 1) (2, 2)

A and B and need both to grow, but where species 1 produces A and species
2 produces B at lower yield than the other. Thus, for the community, mutual
cooperation (crossfeeding) will lead to the highest biomass yield, whereas for
the individual species, the highest yield is obtained by not secreting anything,
while still being fed by the other species. PD is a good testing ground for conflict
resolution: it pits the community and individual decision makers against each
other. As expected, the Nash equilibrium mechanism suggested in [7] results in
no crossfeeding, whereas giving the community decision maker precedence [30]
yields crossfeeding. Yeast cells feeding off sucrose may be a biological PD. The
sucrose is hydrolyzed to glucose and fructose extracellularly by the enzyme inver-
tase. It is expected that producing and secreting invertase comes at a metabolic
cost. However, it may also give a growth benefit, if being an invertase producer
means that more sugars will be hydrolyzed close to the producer. If the cost is
relatively high and the benefit relatively low, cheating by producing no invertase
becomes a desirable strategy [7].

Se tS,1 Sc,1

rA,1

Ac,1

rB,1

Bc,1 tB,1

tA,1 Ae

Be

µ1
1 1

2

1

1

1

1 1

1

1

1

1
tB,2

tA,2

Bc,2

rB,2

Ac,2

rA,2

µ2 Sc,2 tS,2 Se11

1

1

2

1

11

1

1

1

1

Fig. 2. A PD microbial consortium [7]. Rectangles are metabolites and diamonds are
reactions. Red rectangles are extracellular metabolites. Numbers next to lines are sto-
ichiometric coefficients. The subscripts c and e denote intra- and extracellular com-
pounds, respectively. Species 1 and 2 (blue and brown symbols) can choose to crossfeed
the compounds A and B to increase their yields by activating the reactions with the
red dashed lines. (Color figure online)

Microbial Community Decision Making Models 147

3 Community Models

To cover the two principal dimensions environment (chemostat vs batch) and
decision making model (rational agent vs rational community), we developed
four models of microbial community growth at metabolically stationary state
using metabolic networks. We first introduce the general system of equations
and differential equations governing the metabolite and species concentrations
that the models are based on. Then we impose assumptions about steady state
conditions and decision making that lead to the models.

3.1 General Consortium Models

We are interested in the time development of the extracellular compound con-
centrations C ≥ 0 ∈ RnC (we denote dimensionalities of variable x by nx)
and the organism concentrations X ≥ 0 ∈ RnX (see also Fig. 1). We consider
a system with inflow rate Din and outflow rate Dout. The inflow has nutrient
concentrations Cin ∈ RnC . The vector of metabolic fluxes (reaction rates) of
microbial species i is denoted νi ∈ Rnνi . One element of each flux vector νi is
the biomass production (growth) rate νμ,i. The matrix Ti ∈ RnC×nνi maps reac-
tions to exchanges of extracellular compounds. Assuming that compounds and
cells are flushed out at a rate proportional to their concentrations, the dynamics
of C and X are described by:

dC

dt
= DinCin − DoutC −

∑

i

TiνiXi (1)

dXi

dt
= Xi(νμ,i − Dout), ∀i . (2)

For steady state, left-hand sides of the system of ordinary differential equations
(ODEs) Eqs. (1–2) are zero.

Common in both FBA and dFBA, as well as used here, is the assump-
tion of intracellular (metabolically) stationary state [16,21]. Modelling reactions
between nS intracellular compounds at constant concentrations, intracellular
stationary state introduces a stoichiometric matrix Si ∈ RnS×nνi for which holds
that

Siνi = 0, ∀i . (3)

Furthermore, for some matrix Ai ∈ RnA×nνi and a vector bi ∈ RnA , the
fluxes have capacity constraints

Aiνi ≤ bi, ∀i . (4)

The steady state models of interest here are chemostat and steady state batch.
In a chemostat at steady state, Din = Dout = D and the steady state algebraic
relations from Eqs. (1)–(4) apply directly.

In contrast, in steady state batch, the extracellular compound concentra-
tions are assumed to have no influence on the fluxes. To avoid infinite uptakes,

148 A. Theorell and J. Stelling

flux exchanges with the environment, modeled by changes in C in Eq. (1), are
captured by a vector of culture uptake bounds, u ∈ RnC . The species concen-
trations X are exchanged for the relative species concentrations x. The change
to relative species concentrations allows them to stay constant over time under
balanced growth. To represent balanced growth, a community growth rate ν�

μ is
introduced. In combination, the steady state batch system is then:

u −
∑

i

Tiνi · xi ≥ 0

Siνi = 0, ∀i

Aiνi ≤ bi, ∀i

xi(ν�
μ − νμ,i) = 0,∀i

∑

i

xi = 1 .

We use these formulations of chemostat and batch in metabolically stationary
state to introduce four models. For ease of comparison, all model equations, plus
extra information such as Karush Kuhn Tucker (KKT) [26] conditions used for
solving the models, can be seen side-by-side in Table A.1.

3.2 Rational Agents

We assume that each cell is a decision making entity, using the extracellular
concentrations as information to maximize its growth rate. As foundation for its
decision making, each cell uses local information, in this case the extracellular
compound concentrations, as well as its own flux constraints Eqs. (3–4). This
assumption seems intuitive for microbial species that do not share an evolution-
ary history of interactions.

Assuming a chemostat environment and denoting variables resulting from an
optimization problem with hat notation ν̂i, the rational agent (CA, where ‘C’
stands for chemostat and ‘A’ for agent) model becomes:

D(Cin − C) −
∑

i

Tiν̂i(C)Xi = 0

Xi(D − ν̂μ,i(C)) = 0, ∀i

C,X ≥ 0
ν̂i(C) = argmax

νi∈Rnνi

νμ,i,∀i

s.t. Siνi = 0, ∀i

Aiνi ≤ bi(C), ∀i .

(5)

Importantly, here the right hand side of the capacity constraints b(C) depends
on the extracellular concentrations C through uptake kinetics. Without imple-
menting a concentration dependency, the optimization problem is independent
of the substrate and organism concentrations. This means that the modeled cells

Microbial Community Decision Making Models 149

do not adapt their growth to changes in extracellular nutrient concentrations. In
most cases, this will imply that no solution will fulfill the D-growth requirement
and only the trivial solution X = 0 will be feasible.

Correspondingly, the steady state batch rational agent (BA) system is:

u −
∑

i

Tiν̂i · xi ≥ 0

xi(ν�
μ − ν̂μ,i) = 0,∀i

∑

i

xi = 1

x ≥ 0
ν̂i = argmax

νi∈Rnνi

νμ,i,∀i

s.t. Siνi = 0, ∀i

Aiνi ≤ bi, ∀i .

(6)

Contrary to practice in the GSM consortium literature [3], the rational agent
assumption does not include the global equations (first lines) in the optimiza-
tion problem. Furthermore, since the extracellular substrate concentrations are
assumed to be constant, the optimization problem is independent of the first two
lines of Eq. (6). Combined with the balanced growth assumption, this means
that coexistence is only possible for organisms that independently developed the
exact same growth rate, a situation that will never occur in practice. The steady
state batch rational agent model is therefore of little practical relevance and we
included it only for completeness.

3.3 Rational Community

The rational community model assumes that, through a time of coexistence,
a community has learnt to optimize its (D- or balanced-) growth rate while
cooperating to create a favourable nutrient environment.

To model a chemostat environment and a rational community (CC), note
that what the community wants to achieve through cooperation, and with it the
formal community objective function, may vary. A biologically relevant commu-
nity objective, so far not formulated as FBA objective, is resistance to invasion
by pathogenic species [5]. Here, for simplicity and in line with the literature [3],
we consider only the community objective of maximizing total biomass produc-
tion. Using a concatenated flux variable ν = [ν1, , , νnX

] ∈ Rnν , the CC model
reads:

150 A. Theorell and J. Stelling

Xi(D − ν̂μ,i(X)) = 0,∀i

X ≥ 0

ν̂(X) = argmax
ν∈Rnν ,C∈RnC

∑

i

νμ,iXi

s.t. D(Cin − C) −
∑

i

TiνiXi = 0

Siνi = 0, ∀i

Aiνi ≤ bi(C), ∀i

C ≥ 0 .

(7)

Contrary to the rational agent models, Eq. (1) is now inside the optimization
problem, and therefore, so are also all instances of the global variables C. This
encodes our assumption that the community has knowledge of and power over
the global cellular exchanges of compounds.

An important detail of the CC model is that the abundances X do not enter
the optimization problem as optimization variables. Since different community
decisions may benefit different organisms (in terms of species abundances and
other factors), having a range of community optimal strategies in terms of fluxes
and extracellular concentrations, but given different species abundances, it is not
possible to know which strategy the community will settle for without detailed
knowledge of the “negotiation” process leading up to a decision. Thus, the step
from rational agent to rational community is not about assuming full knowledge
of how the community decides, but that actively influencing C is taken into
account in its decision, while optimizing some assumed objective.

In the steady state batch rational community (BC) case, having no explicit
representation of C, the community decision maker cannot take C into account
in the optimization problem. Thus, the difference to the rational agent steady
state batch model is that the community takes the macroscopic equation u +∑

i Tiνi · xi ≥ 0 into account in the decision making process, leading to the
system:

xi(ν�
μ − ν̂μ,i(x)) = 0,∀i

∑

i

xi = 1

x ≥ 0

ν̂(x) = argmax
ν∈Rnν

∑

i

νμ,ixi

s.t. u −
∑

i

Tiνi · xi ≥ 0

Siνi = 0, ∀i

Aiνi ≤ bi, ∀i .

(8)

Microbial Community Decision Making Models 151

4 Applications

We tested the CA, CC and BC models on two toy examples: PD (Fig. 2) for
exploring decision making and a competition scenario for exploring coexistence.
For named reactions and compounds in Figs. 2 and 3, such as tS,1 and Se, the
corresponding fluxes and concentrations will be referred to as νtS ,1 and CSe

.
All examples were solved symbolically in Mathematica 9 using the KKT for-
mulations in Table A.1. Notice that the optimization problems in Eqs. (5)–(8)
are all linear in the optimization arguments, implying that KKT provides suf-
ficient conditions for global optimality [26]. By solving the respective systems
symbolically, we are confident that all solutions are found.

4.1 Prisoners Dilemma

For PD (Fig. 2), we are interested in whether, using a specific simulation model,
the community achieves a fitness bonus by utilizing crossfeeding (using reactions
with dashed red arrows in Fig. 2) or whether the organisms refuse to cooperate.
For CA and CC simulations, we set the inflow nutrient concentration mixture
to Cin,Ae

= 0, Cin,Be
= 0 and Cin,Se

= 10. The flow rate was set to D = 0.5.
Similarly for BC, we used the culture uptake bounds uAe

= 0, uBe
= 0 and

uSe
= 10.
Quantitative simulation results are shown in Table 2. As expected, without

a joint objective for the organisms, CA finds no crossfeeding. CC and BC find
crossfeeding solutions, but these solutions differ. In CC, the secretion fluxes
are greater than the uptake fluxes because some of the secreted material will
be flushed out of the chemostat, rather than taken up by another organism.
This generally makes crossfeeding in chemostats less attractive. For example
when increasing the flow rate D from 0.5 to 1.2, the benefit of crossfeeding
vanishes and CC switches to a solution without crossfeeding. In BC, void of an
active out flush mechanism, all secreted material is taken up. Apart from the
symmetric (non-zero) solutions, non-symmetric solutions where one species has
zero abundance occur. These solutions, with only one participating species and
thereby no potential for cooperation, are not considered here.

4.2 Coexistence Microbial Consortium

In a chemostat with two supplied nutrients Ae and Be, coexistence of two distinct
species may emerge if, depending on the supply concentrations, the species reach
a state in which they are limited by different nutrients [2,19]. This (potentially
competitive) coexistence does not rely on direct interactions such as crossfeeding.
For the CA, CC and BC models, we investigated under what circumstances
coexistence emerges for the non-crossfeeding metabolic network models in Fig. 3.
There, species 1 needs more of compound Ac to grow and species 2 needs more
of compound Bc to grow.

For CA and CC, we varied the nutrient composition of the inflow,
(Cin,Ae

/Cin,Be
), linearly from (0/10) to (10/0). We set the flow rate D = 1

152 A. Theorell and J. Stelling

Table 2. Flux values of PD simulations for CA, CC and BC. The variable names
correspond to the reactions in Fig. 2. In the last column, CC was run with a higher
flow rate, D = 1.2.

Variable CA CC BC CC D = 1.2

CAe 0 0.5 0

CBe 0 0.5 0

CSe 1.5 1.13 3.6

X1 1.42 1.97 0.5 1.07

X2 1.42 1.97 0.5 1.07

νtS ,1 1.5 1.13 10 3.6

νtA,1 0 0.5 5 0

νtB ,1 0 −0.627 −5 0

νrA,1 0.5 0 0 1.2

νrB ,1 0.5 1.13 10 1.2

νμ,1 0.5 0.5 5 1.2

νtS ,2 1.5 1.13 10 3.6

νtA,2 0 −0.627 −5 0

νtB ,2 0 0.5 5 0

νrA,2 0.5 1.13 10 1.2

νrB ,2 0.5 0 0 1.2

νμ,2 0.5 0.5 5 1.2

and the uptake flux limitations νtA,i ≤ 2 · CAe
and νtB ,i ≤ 2 · CBe

(symbols
defined in Fig. 3). Lacking a potential to crossfeed, CA and CC generated identi-
cal results. Figure 4A shows identical, horizontally mirrored, zero solutions (ZS),
that is, solutions where only one species exists. The ZS of species 1 starts flat at
zero, which is a regime where the concentration of CAe

is so low that species 1
cannot grow at the flow rate (D = 1); it is flushed out of the chemostat. After
the zero regime comes a regime in which the growth rate of species 1 is lim-
ited by CAe

and the concentration of species 1 increases linearly with Cin,Ae
.

This continues with increasing Cin,Ae
and decreasing Cin,Be

, until CBe
becomes

growth limiting, and the species concentration goes down linearly. A coexistence
solution (CS) exists in one central regime, throughout which species 1 is limited
by CAe

and species 2 is limited by CBe
. At the concentration mixture where the

dark blue curve (CS) goes to zero and ends, the light blue curve (CS) touches
the light green curve (ZS). At this point, where the lower CS goes to zero, the
upper CS becomes a ZS.

For BC, we varied the culture uptake bounds uAe
and uBe

linearly from (0/1)
to (1/0). The uptake bounds were νtA,i ≤ 2 and νtB ,i ≤ 2. The main distinction
from the chemostat scenario is that in BC, the ZSs are identically one (Fig. 4B),
due to the relative species concentrations.

Microbial Community Decision Making Models 153

µ1

Ac,1

Bc,1 tB,1

tA,1 Ae

Be

1

1 1

11

2

1
tB,2

tA,2

Bc,2

Ac,2

µ2

11

1

2

1

1

1

Fig. 3. A coexistence microbial consortium. Rectangles are metabolites and diamonds
are reactions. Red rectangles are extracellular metabolites. The subscripts c and e
denotes intra- and extracellular compounds, respectively. Numbers next to lines are
stoichiometric coefficients. (Color figure online)

Despite the apparent similarity between CA and BC, the interpretation of the
coexistence solutions (CSs) differs. For CA, a CS emerges without interspecies
communication, simply because, at the species level, the growth rates of species 1
and 2 are limited by the uptake rates of Ae and Be, respectively. This is a known
result from chemostat modelling [18]. Thus, at their steady state concentrations,
the species reach a self stabilizing equilibrium, where neither species can grow
faster than D = 1.

In contrast, the growth rates of the species in the CS in BC (Fig. 4B) are
not restricted by individual species uptake fluxes. Figure 4C shows for species
1 (a horizontal mirror image of species 2) that the uptake flux νtA,1 always
remains below its upper bound of 2. Instead, the growth rates are restricted by
the global nutrient restrictions u − ∑

i Tiνi · xi ≥ 0. With regard to the global
nutrient restrictions, the balanced growth solutions, where the species grow at
the same rate are not the only solutions. As shown in Fig. 4C, in the CS, species
1 voluntarily grows at a rate that is lower than its maximal growth rate (CS
max νμ,1 exceeds the take-all solution ZS νμ,1 since it is operating at a lower
relative species concentration). If the species did not communicate that growing
at the same rate maximizes community biomass production, single species would
claim more resources for themselves and break the metabolically stationary state.
Thus, the CS solution we see is a result of the objective function.

To elucidate the dependence of the CSs of CC and BC on the community
objective function, we changed the objective of CC and BC to maximizing the
sum of growth rates,

∑
i νμ,iδ(Xi > 0), rather than total community biomass

production,
∑

i νμ,iXi (Xi is replaced by xi in BC). Figure 4D-E shows that the
changed objective function results in CSs that differ from the ones in Fig. 4A-B.

154 A. Theorell and J. Stelling

Fig. 4. Coexistence results for the network in Fig. 3 for varying environmental conditions
using CA, CC and BC. Abbreviations: ZS - zero solution shows the value of a variable for
one species; for the other species, all variables are zero. CS - coexistence solution shows the
value of a variable for one species, while for the other species, the value of the same variable
is given by the other CS curve. (A) Species concentrations X for changing supply mixtures
Cin in CA or CC; they yield identical solutions. (B) Relative species concentrations x for
changing input flux mixtures u for BC. ZS curves for the two species coincide. (C) Selected
fluxes of species 1 for changing input flux mixtures u for BC. (D) Same information as in
(A), but only using CC and with an alternative objective function. (E) Same information
as in (B), but with an alternative objective function.

5 Discussion

Our study draws heavily on the long tradition of chemostat community models
[19]. We followed in the same spirit: to keep models small and to use them
to demonstrate general system properties, rather than detailed properties of
cells with specific genomes. On the contrary, GSMs facilitate a detailed, species-
specific analysis of intracellular fluxes and related properties. We consider the
work presented here as an early-stage attempt to combine the two worlds.

Microbial Community Decision Making Models 155

To incorporate FBA models in the chemostat community model frame work,
due to the internal degrees of freedom of FBA models, the fundamentally game
theoretic problem of multiple decision makers has to be taken into account [24].
Here, and in line we previous proposals for community modeling, we there-
fore explored two flavors: rational agent and rational community. For our ratio-
nal community models, we allowed the community to optimize both its shared
metabolism and the environmental nutrient concentrations to achieve a commu-
nity objective. However, we did not explicitly optimize the species concentration
variables. This acknowledges that, if different species concentrations favor dif-
ferent species, and thereby yield multiple optima in terms of fluxes and nutrient
concentrations, we do not know which optimum the community would choose.

One would expect that the decision a community takes depends on the over-
arching frame work (here: rational agent and rational community) and on the
particular objective imposed. For example, by maximizing biomass production
of the community, crossfeeding emerges in the PD scenario. However, our com-
munity models demonstrates that also environmental variables play a role. For
example, by increasing the flow rate in the chemostat, the benefit of crossfeed-
ing decreased, so that CC switched from crossfeeding to no crossfeeding. This
phenomenon might be relevant for the gut microbiome, where the significance
of other aspects of flow has been investigated [9].

More specifically, we believe that the qualitative results of PD are relatively
robust to changes in the community objective, such as switching to a sum of
growth rates objective. Contrarily, for the coexistence example, we saw that
changing the community objective function gave a new set of coexistence states.

Our models also suggest that coexistence in batch (BC) relies on a different
mechanism than in chemostat (CA and CC). In BC, the community steady state
is not a consequence of nutrient limitations caused by community growth. Coex-
istence requires agreement to coexist in the community, without any external
enforcement mechanism, contrary to the chemostat models. Agreement without
enforcement may amount to forced altruism, a modelling artifact discussed in
detail in the context of PD by Chan et al. [8]. The emergence of forced altruism
in terms of coexistence at balanced growth, rather than in terms of crossfeeding,
is to our knowledge a new perspective that may be relevant for future community
simulation methods.

A limitation of the present work is that we considered only toy metabolic
networks. This choice was intentional to provide general insights. It also allows us
to solve the problems symbolically, which certified that all roots to the equations
were found. However, this approach is of course not scalable. Before any real
applications can be considered, an efficient numerical solution scheme needs to be
developed. As alternative to solving the KKT equations, one could directly run
corresponding dFBA simulations until stationarity. However, also this approach
would need to be complemented with a mechanism for finding multiple solutions.

Lastly, in the chemostat literature [19], stability of stationary solutions of
ODEs is a central topic, which we did not address. If we assume that the micro-
bial species can make decisions and actively uphold a state or an equilibrium,

156 A. Theorell and J. Stelling

exactly what stability means in this scenario may need additional theoretical
attention. Such concepts may be important to evaluate resistance of microbial
communities to invasion by pathogens.

Acknowledgments. We thank Jakob Vanhoever, Mattia Gollub and Charlotte
Ramon for support and stimulating discussions. This work was supported by the Swiss
National Science Foundation Sinergia project with grant #177164.

Appendix

Table A.1. Models, Lagrangians and KKT formulations. For BA and CA, Lagrangian
multipliers (inequality, λ1, and equality, λ2, multipliers) are introduced on a per species
level (subscript i), whereas for BC and CC, global multipliers are introduced. Dimen-
sionalities of multipliers vary between formulations. Rows #var and #EQ confirm that
the numbers of unknowns and equations are equal.

BA CA BC CC

Eqs

u − ∑

i

Tiν̂i · xi ≥ 0

xi(ν
�
μ − ν̂i,μ) = 0, ∀i
∑

i

xi = 1

x ≥ 0

ν̂i = argmax
νi∈Rnνi

νμ,i, ∀i

s.t. Siνi = 0, ∀i

Aiνi ≤ bi, ∀i

D(Cin − C)

− ∑

i

Tiν̂i(C)Xi = 0

Xi(D − ν̂i,μ(C)) = 0, ∀i

C, X ≥ 0

ν̂i(C) = argmax
νi∈Rnνi

νμ,i, ∀i

s.t. Siνi = 0, ∀i

Aiνi ≤ bi(C), ∀i

xi(ν
�
μ − ν̂i,μ(x)) = 0, ∀i,

∑

i

xi = 1,

x ≥ 0,

ν̂(x) = argmax
ν∈Rnν

∑

i

νμ,ixi,

s.t. u − ∑

i

Tiνi · xi ≥ 0,

Siνi = 0, ∀i,

Aiνi ≤ bi, ∀i

Xi(D − ν̂i,μ(X)) = 0, ∀i

X ≥ 0

ν̂(X) =

argmax
ν∈Rnν ,C∈RnC

∑

i

νμ,iXi

s.t. D(Cin − C)

− ∑

i

TiνiXi = 0

Siνi = 0, ∀i

Aiνi ≤ bi(C), ∀i

C ≥ 0

Lgr

Li(νi) =

−νμ,i + λT
i,1(Aiνi − bi)

+λT
i,2(Siνi), ∀i

Li(νi(C)) =

−νμ,i + λT
i,1(Aiνi − bi(C))

+λT
i,2(Siνi), ∀i

L(ν) =

− ∑

i

νμ,ixi

+λT
1

[
Aν − b

−u +
∑

i Tiνixi

]

+λT
i,2Si

L([ν, C]) =

− ∑

i

νμ,iXi

+λT
1

[
(Aν − b(C))

−C

]

+λT
2

⎡

⎢
⎢
⎢
⎣

S

D(Csupply − C)

−
∑

i

TiνiXi

⎤

⎥
⎥
⎥
⎦

KKT

⎡

⎢
⎢
⎣

0
...

−1

⎤

⎥
⎥
⎦

T

+ λT
i,1Ai

+λT
i,2Si = 0, ∀i,

λi,1 ≥ 0, ∀i,

λT
i,1(Aiνi − bi) = 0, ∀i

⎡

⎢
⎢
⎣

0
...

−1

⎤

⎥
⎥
⎦

T

+ λT
i,1Ai

+λT
i,2Si = 0, ∀i,

λi,1 ≥ 0, ∀i,

λT
i,1(Aiνi − bi(C)) = 0, ∀i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
...

−x1

0
...

−xnx

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

+λT
1

[
A

∑
i Tixi

]

+λT
2 S = 0, ∀i,

λ1 ≥ 0,

λT
1

[
Aν − b

−u +
∑

i Tiνixi

]

= 0

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
...

−X1

0
...

−XnX

0
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

+λT
1

[
A − db(C)

dC

0 − I

]

+λT
2

[
S 0

− ∑
i TiXi − ID

]

= 0, ∀i,

λ1 ≥ 0,

λT
1

[
(Aν − b(C))

−C

]

= 0

#var 1 + nx + nν + nS + nA nC + nX + nν + nS + nA 1 + nx + nC + nν + nS + nA 3nC + nX + nν +
nS + nA

#EQ nx + 1 + nS + nν + nA nC + nX + nS + nν + nA nx + 1 + nS + nν + nC + nA nX + nC + nS + nν +
nC + nA + nC

Microbial Community Decision Making Models 157

References

1. Altamirano, Á., Saa, P.A., Garrido, D.: Inferring composition and function of the
human gut microbiome in time and space: a review of genome-scale metabolic
modelling tools. Comput. Struct. Biotechnol. J. 18, 3897–3904 (2020)

2. Armstrong, R.A., McGehee, R.: Competitive exclusion. Am. Nat. 115(2), 151–170
(1980)

3. Biggs, M.B., Medlock, G.L., Kolling, G.L., Papin, J.A.: Metabolic network model-
ing of microbial communities. Wiley Interdiscip. Rev. Syst. Biol. Med. 7(5), 317–
334 (2015)

4. Bordbar, A., Monk, J.M., King, Z.A., Palsson, B.O.: Constraint-based models pre-
dict metabolic and associated cellular functions. Nat. Rev. Genet. 15(2), 107–120
(2014)

5. Brugiroux, S., et al.: Genome-guided design of a defined mouse microbiota that
confers colonization resistance against salmonella enterica serovar typhimurium.
Nat. Microbiol. 2(2), 1–12 (2016)

6. Budinich, M., Bourdon, J., Larhlimi, A., Eveillard, D.: A multi-objective
constraint-based approach for modeling genome-scale microbial ecosystems. PloS
One 12(2), e0171744 (2017)

7. Cai, J., Tan, T., Joshua Chan, S.: Predicting Nash equilibria for microbial
metabolic interactions. Bioinformatics 36, 5649–5655 (2020)

8. Chan, S.H.J., Simons, M.N., Maranas, C.D.: SteadyCom: predicting microbial
abundances while ensuring community stability. PLoS Comput. Biol. 13(5),
e1005539 (2017)

9. Cremer, J., Arnoldini, M., Hwa, T.: Effect of water flow and chemical environment
on microbiota growth and composition in the human colon. Proc. Natl. Acad. Sci.
114(25), 6438–6443 (2017)

10. Aguirre de Cárcer, D.: Experimental and computational approaches to unravel
microbial community assembly. Comput. Struct. Biotechnol. J. 18, 4071–4081
(2020). https://doi.org/10.1016/j.csbj.2020.11.031

11. Fierer, N.: Embracing the unknown: disentangling the complexities of the soil
microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017). https://doi.org/10.1038/
nrmicro.2017.87

12. Frey, E.: Evolutionary game theory: theoretical concepts and applications to micro-
bial communities. Physica A 389(20), 4265–4298 (2010)

13. Gilbert, J.A., Blaser, M.J., Caporaso, J.G., Jansson, J.K., Lynch, S.V., Knight, R.:
Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).
https://doi.org/10.1038/nm.4517

14. Gollub, M.G., Kaltenbach, H.M., Stelling, J.: Probabilistic thermodynamic analysis
of metabolic networks. Bioinformatics btab194 (2021). https://doi.org/10.1093/
bioinformatics/btab194

15. Gu, C., Kim, G.B., Kim, W.J., Kim, H.U., Lee, S.Y.: Current status and applica-
tions of genome-scale metabolic models. Genome Biol. 20(1), 1–18 (2019)

16. Kauffman, K.J., Prakash, P., Edwards, J.S.: Advances in flux balance analysis.
Curr. Opin. Biotechnol. 14(5), 491–496 (2003)

17. Khandelwal, R.A., Olivier, B.G., Röling, W.F., Teusink, B., Bruggeman, F.J.:
Community flux balance analysis for microbial consortia at balanced growth. PloS
One 8(5), e64567 (2013)

18. Li, Z., Liu, B., Li, S.H.J., King, C.G., Gitai, Z., Wingreen, N.S.: Modeling microbial
metabolic trade-offs in a chemostat. PLoS Comput. Biol. 16(8), e1008156 (2020)

https://doi.org/10.1016/j.csbj.2020.11.031
https://doi.org/10.1038/nrmicro.2017.87
https://doi.org/10.1038/nrmicro.2017.87
https://doi.org/10.1038/nm.4517
https://doi.org/10.1093/bioinformatics/btab194
https://doi.org/10.1093/bioinformatics/btab194

158 A. Theorell and J. Stelling

19. Lobry, C.: The Chemostat. Wiley Online Library (2017)
20. Machado, D., et al.: Polarization of microbial communities between competitive

and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021). https://doi.org/
10.1038/s41559-020-01353-4

21. Mahadevan, R., Edwards, J.S., Doyle III, F.J.: Dynamic flux balance analysis of
diauxic growth in Escherichia coli. Biophys. J. 83(3), 1331–1340 (2002)

22. Nakaoka, S., Takeuchi, Y.: Two types of coexistence in cross-feeding microbial con-
sortia. In: AIP Conference Proceedings, vol. 1028, pp. 233–260. American Institute
of Physics (2008)

23. Popp, D., Centler, F.: μBialSim: constraint-based dynamic simulation of complex
microbiomes. Front. Bioeng. Biotechnol. 8, 574 (2020)

24. Pusa, T., Wannagat, M., Sagot, M.F.: Metabolic games. Front. Appl. Math. Stat.
5, 18 (2019)

25. Stewart, A.J., Plotkin, J.B.: From extortion to generosity, evolution in the iterated
prisoner’s dilemma. Proc. Natl. Acad. Sci. 110(38), 15348–15353 (2013)

26. Sun, W., Yuan, Y.X.: Optimization Theory and Methods: Nonlinear Programming.
Springer Optimization and Its Applications, vol. 1. Springer, Heidelberg (2006).
https://doi.org/10.1007/b106451

27. Van Hoek, M.J., Merks, R.M.: Emergence of microbial diversity due to cross-
feeding interactions in a spatial model of gut microbial metabolism. BMC Syst.
Biol. 11(1), 1–18 (2017)

28. Zhuang, K., et al.: Genome-scale dynamic modeling of the competition between
Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5(2), 305–
316 (2011)

29. Zomorrodi, A.R., Islam, M.M., Maranas, C.D.: d-OptCom: dynamic multi-level
and multi-objective metabolic modeling of microbial communities. ACS Synth.
Biol. 3(4), 247–257 (2014)

30. Zomorrodi, A.R., Maranas, C.D.: OptCom: a multi-level optimization framework
for the metabolic modeling and analysis of microbial communities. PLoS Comput.
Biol. 8(2), e1002363 (2012)

31. Zomorrodi, A.R., Segrè, D.: Genome-driven evolutionary game theory helps under-
stand the rise of metabolic interdependencies in microbial communities. Nat. Com-
mun. 8(1), 1–12 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1038/s41559-020-01353-4
https://doi.org/10.1038/s41559-020-01353-4
https://doi.org/10.1007/b106451
http://creativecommons.org/licenses/by/4.0/

Learning Boolean Controls in Regulated
Metabolic Networks: A Case-Study

Kerian Thuillier1, Caroline Baroukh2, Alexander Bockmayr3,
Ludovic Cottret2, Löıc Paulevé4(B), and Anne Siegel1

1 University of Rennes, Inria, CNRS, IRISA, 35000 Rennes, France
2 LIPME, INRAE, CNRS, Université de Toulouse, Castanet–Tolosan, France
3 Freie Universität Berlin, Institute of Mathematics, 14195 Berlin, Germany

4 University of Bordeaux, Bordeaux INP, CNRS, LaBRI,
UMR5800, 33400 Talence, France

loic.pauleve@labri.fr

Abstract. Many techniques have been developed to infer Boolean reg-
ulations from a prior knowledge network and experimental data. Exist-
ing methods are able to reverse-engineer Boolean regulations for tran-
scriptional and signaling networks, but they fail to infer regulations that
control metabolic networks. This paper provides a formalisation of the
inference of regulations for metabolic networks as a satisfiability problem
with two levels of quantifiers, and introduces a method based on Answer
Set Programming to solve this problem on a small-scale example.

Keywords: Inference · Regulated metabolism · Satisfiability problem

1 Introduction

During the last twenty years, both the amount and the type of available data have
allowed scientists to consider intracellular processes as a whole. Boolean networks
have been refined to include non-deterministic dynamics in order to model the
response of regulatory interactions [2,5,16]. Similarly, the study of metabolism
at steady state has led to various constraint-based approaches [17,19], which
usually assume that internal metabolites are in a quasi-steady-state (QSS). The
classical approach to analyze metabolic networks at steady state is flux balance
analysis (FBA) [19]. In this approach, a linear function, e.g. biomass produc-
tion, is optimized with respect to stoichiometric and thermodynamic constraints,
resulting in a linear programming problem (LP).

However, both the Boolean approach for regulation and the QSS approxima-
tion for metabolism are often developed “in solo”, without considering that cellu-
lar biology is multi-layered in the sense that the metabolic layer interacts through
feed-forward and feedback loops with the regulatory layer [4,9,21,27]. Indeed,
cellular metabolism transforms nutrients into biomass constituents. Metabolic
reactions are catalysed by enzymes, which themselves are controlled by a cas-
cade of regulations involving other proteins, metabolites and abiotic factors,
c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 159–180, 2021.
https://doi.org/10.1007/978-3-030-85633-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-85633-5_10

160 K. Thuillier et al.

such as temperature and pH. A biological system thus has several layers of con-
trol, which mutually depend on each other. It cannot be simply viewed as a
purely hierarchical system because there are regulatory feed-forward and feed-
back mechanisms to inform each layer on the state of the other ones. In concrete
terms, some compounds produced by the metabolic layer have the capability
to block or induce signaling regulation cascades, which themselves can block
or induce transcription of genes leading to changes in the control of the initial
metabolic process.

To figure out how gene expression triggers specific phenotypes depending
on the environmental constraints [3], several constraint-based approaches for
integrating metabolic and regulatory networks have been developed that com-
bine Boolean dynamics for the regulatory layer with quasi-steady-state approx-
imations of the metabolic layer (see [17] for an overview), one of them being
FlexFlux [18], which implements the rFBA framework [9]. A major limitation
when using such frameworks to analyse regulated metabolic models is that they
require a precise description of the regulatory and signaling layers in the form
of Boolean rules. A noticeable exception is [24], where RBA is used to deduce
regulations according to perturbations of the environment. However, to induce
regulations, the authors assume that no feedback from metabolism to regula-
tion occurs, which does not correspond to the functioning of most systems. In
practice, these rules are manually curated from the literature or experimental
data. This has been done for example in the case of E. coli [7,8] and a few other
organisms. But, the need for a manual curation of Boolean rules of regulated
metabolism is a strong limitation to the use of these frameworks.

Signaling and regulatory rules can be identified from transcriptomic or phos-
phoproteomics data by solving combinatorial or MILP problems in order to
optimize data-fitting and parsimony hypotheses [20,22,23,25,26]. In this direc-
tion, the caspoTS and the BoNesis approaches [6,20,22,26] were developed for
inferring Boolean rules to model the response of regulatory and signaling net-
works from multiple time-series data. The goal of this paper is to lay foundation
for the extension of these approaches to the inference of regulatory rules driving
metabolism. This is done by discretizing both the rFBA framework (especially
the QSS approximation) and the metabolic data used as input of the inference
procedure.

This paper is structured as follows. Section 2 gives the background on the
dynamic rFBA framework for the simulation of coupled metabolic and regulatory
networks. In Sect. 3, we define a formal Boolean abstraction of dynamic rFBA
simulations. Then, in Sect. 4, we build on this Boolean abstraction to express
the inference of the logic of metabolic regulations as a satisfiability problem.
Finally, in Sect. 5, we apply the obtained inference framework on a case study
of simplified core carbon metabolism.

Notations. The cardinality of a finite set X is denoted by |X|. Given a vector
x ∈ Dn and a set of indices I ⊆ {1, · · · , n}, xI denotes the vector of dimen-
sion |I| equal to (xi)i∈I . The Boolean domain is denoted by B = {0, 1}. Given
two Boolean vectors x, y ∈ B

n, we write x � y iff ∀i ∈ {1, · · · , n}, xi ≤ yi.

Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study 161

Finally, given a non-negative real vector s ∈ R
n
≥0, we denote by β(s) ∈ B

n its
binarization, i.e. ∀i ∈ {1, . . . , n}, β(s)i = 1, if si > 0, and β(s)i = 0, if si = 0.

2 Background: Regulated Metabolic Networks

2.1 Coupling Metabolic and Regulatory Networks

A regulated metabolic network consists of two layers. The regulatory layer is
modelled by a Boolean network, which controls the metabolites and fluxes of
the metabolic layer, which is characterized by linear equations. Feedbacks are
provided by the components of the metabolic network, which are involved in the
Boolean functions associated with the regulatory layer.

Formally, a metabolic network is given by a set of biochemical reactions
linked together by the metabolites that they consume and produce.

Definition 1. A metabolic network is a tuple N = (Int,Ext,R, S) with a set of
internal metabolites Int, a set of external metabolites Ext, a set R of irreversible
reactions, and a stoichiometric matrix S ∈ R

(|Int|+|Ext|)×|R|.
Given flux bounds lr, ur ∈ R, 0 ≤ lr ≤ ur, for each r ∈ R, a metabolic steady

state is a flux vector v ∈ R
|R| with SInt,R ·v = 0 and lr ≤ vr ≤ ur, for all r ∈ R.

Here SInt,R denotes the submatrix of S whose rows correspond to the internal
metabolites.

For the sake of simplicity, we assume that all reactions are irreversible.
Reversible reactions may be split into a forward and backward reaction if
necessary.

Definition 2 (Input and output metabolites). For an external metabolite
m ∈ Ext, we denote by wm = wm(t) ∈ R≥0 the concentration of m at time t ≥ 0.

An external metabolite m ∈ Ext is called an input (resp. output) metabolite
if there exists a reaction r ∈ R with Smr < 0 (resp. Smr > 0). Here Smr denotes
the stoichiometric coefficient of metabolite m in reaction r. The set of all input
metabolites is denoted by Inp ⊆ Ext.

A regulatory network is a set of biological entities (e.g. genes, reactions,
metabolites) or even abiotic entities (e.g. temperature, pH) that are linked by
causal effects: the activity of some nodes can affect positively or negatively the
activity of other nodes. This activity can be represented by a Boolean network.

Definition 3. A Boolean network (BN) of dimension n is a function f : Bn →
B

n. For each i ∈ {1, . . . , n}, the i-th component fi : Bn → B is called the local
function of i.

The influence graph G(f) of f is a signed digraph (V,E) with V = {1, . . . , n}
and E ⊆ V ×{−,+}×V such that (i, s, j) ∈ E if and only if there exists x ∈ B

n

with xi = 0 such that s · fj(x) < s · fj(x1, · · · , xi−1, 1, xi+1, · · · , xn). In the
following we will slightly abuse notation by identifying G(f) with its edge set,
i.e. G(f) = E.

162 K. Thuillier et al.

A BN f is locally monotone whenever for each influence (i, s, j) ∈ G(f),
there is no influence with opposite sign, i.e. (i,−s, j) /∈ G(f).

We assume here that the fluxes of a metabolic network can be controlled by
the activity of the input metabolites and additional regulatory proteins. More
precisely, the activity of some reactions can be blocked (forced to have a zero flux)
whenever certain conditions on the activity of input metabolites and regulatory
proteins are met. Moreover, we assume that the activity of regulatory proteins is
mediated by the metabolic network only. The resulting model is then supposed to
run on two time scales: the metabolic network is a fast system, which, depending
on the activity of input metabolites and regulatory proteins will converge to a
steady state of the reactions fluxes; the regulatory network is a slow system,
which gets updated once the metabolic network is in steady state.

Definition 4 (Regulated metabolic network). A regulated metabolic net-
work is a triplet (N ,P, f) composed of:

– a metabolic network N = (Int,Ext,R, S) with k input metabolites Inp =
{e1, · · · , ek} ⊆ Ext and m reactions R = {r1, · · · , rm};

– a set of d regulatory proteins P = {p1, . . . , pd}
– a BN f of dimension n = |Inp| + |R| + |P| where {1, . . . , n} = Inp ∪ R ∪ P

such that G(f) is a bipartite graph between P and Inp ∪ R.

In this work, local functions for input metabolites in the BN f are never used
(although the local functions of reactions may depend on them). Therefore we
set arbitrarily fe = 0,∀e ∈ Inp.

The BN f models the regulation of the fluxes in the metabolic network N .
This regulation is always in one direction: either a flux vr is only restricted
by the flux bounds lr ≤ vr ≤ ur, whenever fr(x) = 1, or it is blocked, vr =
0, whenever fr(x) = 0. Following this convention, a reaction r ∈ R is never
regulated whenever fr(x) = 1. As we will define formally in the next section, the
regulations impact the steady states of the metabolic network.

An example of regulated metabolic network is shown in Fig. 1. This example
is based on a highly simplified model of core carbon metabolism, originally pro-
posed in [9]. At the metabolic level (Fig. 1a), there are 9 metabolites and m = 9
reactions. The internal metabolites are Int = {A, D, E, O2, ATP, NADH}, the
external metabolites are Ext = {Carbon1, Carbon2, Oxygen}. All the k = 3
external metabolites are input metabolites, Ext = Inp. The set of irreversible
reactions is R = {Tc1, Tc2, To2, Td, Te, Growth, Rres, R6, R7}. The stoichio-
metric coefficients are also given in Fig. 1a. By default, they are set to 1, except
for the reactions R6 and R7.

The regulatory level (Fig. 1b) of the regulated metabolism introduces d = 2
regulatory proteins: P = {RPcl, RPO2}. Thus, the Boolean network f is of
dimension n = k+m+d = 14. It consists of 14 functions (see Fig. 1b) which map
a Boolean vector x = (xCarbon1, xCarbon2, xOxygen, xRPcl, xRPO2, xTc1, xTc2,
xTo2, xTd, xTe, xGrowth, xRres, xR6, xR7) ∈ B

n to a Boolean value in B. The
local functions associated with regulatory proteins in P involve only external

Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study 163

(a) Metabolic Network

(c) Influence graph G(f) of the regulatory
Boolean network f . Nodes without in-going
or out-going edges are not represented. Pos-
itive edges are drawn in green with a regular
tipping arrow, negative edges are drawn in
red with a bar arrow.

Regulatory proteins Input metabolites
Local function fRPO2(x) fRPcl(x) fCarbon1(x) fCarbon2(x) fOxygen(x)
Boolean rule ¬xOxygen xCarbon1 0 0 0

Reactions
Local function fTc1(x) fTc2(x) fTo2(x) fTd(x) fTe(x) fGrowth(x) fRres(x) fR6(x) fR7(x)
Boolean rule 1 ¬xRPcl 1 1 1 1 ¬xRPO2 1 1

(b) Boolean Network. All Boolean functions equal to 1 correspond to reactions
which are not regulated by the Boolean network.

Fig. 1. Example of regulated metabolic network. In the metabolic network (a),
each node represents a metabolite and each hyperedge a reaction. For instance, the
hyperedge R7 linking {A; NADH} to {E} models the reaction A + 3 NADH → 3 E.
Integer values over hyperedges are stoichiometric coefficients, the default value is 1.
(b) defines the Boolean network regulating the metabolic network in (a), with x ∈ B

n

and n = 14. (c) shows the influence (or regulatory) graph of the Boolean network in
(b), with square nodes denoting the regulatory proteins.

metabolite variables. Among the 9 functions associated with reactions, only two
(Tc2, Rres) are non-constant: they involve the two regulatory proteins.

The influence graph of the network is shown in Fig. 1c. Only the shown
nodes (RPcl, RPO2, Tc2, Rres) have a non-constant local function or are used
in the local function of another node (Carbon1, Oxygen). The influence graph
shows the multi-layered regulations of the network: external input metabolites
(Carbon1, Oxygen) regulate regulatory proteins (RPcl, RPO2), which regulate
reactions (Tc2, Rres).

2.2 Dynamic rFBA

Flux Balance Analysis (FBA) [19] returns an optimal metabolic steady state,
according to a given linear objective function in the reaction fluxes. In the fol-
lowing, we assume that the objective function is to maximize the flux through
a reaction Growth. For regulated metabolic networks, the rFBA framework [9]
allows defining a discrete time series of optimal steady states, where regulatory

164 K. Thuillier et al.

variables can force reaction fluxes to be zero and input metabolite concentrations
define upper bounds on uptake fluxes.

Definition 5. Let (N ,P, f) be a regulated metabolic network with flux bounds
lr, ur ∈ R, 0 ≤ lr ≤ ur, for r ∈ R. A metabolic-regulatory steady state is a
triple (v, w, x) ∈ R

|R| × R
|Ext| × B

|Inp|+|R|+|P| such that

– SInt,R · v = 0,
– for each reaction r ∈ R, lr · xr ≤ vr ≤ ur · xr,
– for each input metabolite m ∈ Inp and each reaction r ∈ R with Smr < 0,

vr ≤ uptake bound(wm), where uptake bound(wm) denotes the maximum flux
through uptake reaction r, given the input metabolite concentration wm.

Two successive metabolic-regulatory steady states (vk, wk, xk) at time tk,
and (vk+1, wk+1, xk+1) at time tk+1, are linked by the following relations:

1. The external metabolite concentrations wk+1 are obtained from the previous
concentrations wk by assuming the constant uptake/secretion fluxes vk for
the whole time period [tk, tk+1].

2. The Boolean state xk+1 is obtained by applying the regulatory function f to
the binarized input metabolites concentrations x′

Inp = β(wk+1
Inp) at time tk+1,

together with the binarized reaction fluxes x′
R = β(vk) and the Boolean

values x′
P = xk

P of the regulatory proteins at time tk, i.e.,

xk+1 = f(x′)

3. (vk+1, wk+1, xk+1) is a metabolic-regulatory steady state maximizing the flux
through the Growth reaction, i.e., there is no metabolic-regulatory steady
state (v′, wk+1, xk+1) such that v′

Growth > vk+1
Growth .

In this paper, we rely on the FlexFlux implementation of rFBA [18], which
assumes a fixed time step τ between successive metabolic-regulatory steady
states (tk+1 − tk = τ for any k). The Growth reaction is assumed to reflect
the growth of the cell. FlexFlux computes the evolution of the total biomass
of the cell as biomassk+1 = biomassk · evk

Growth ·τ (from a given initial biomass0).
The maximum uptake fluxes of input metabolites m ∈ Inp at step k are defined
as

uptake bound(wm) = wm/(biomassk · τ).

Finally, the update of the external metabolite concentrations is computed as

wk+1
m = wk

m − (Smrv
k
r /vk

Growth) · (biomassk − biomassk+1),

where r ∈ R is the uptake/secretion reaction for the external metabolite m
(Smr < 0 or Smr > 0), which is assumed to be unique.

An example of a dynamic rFBA simulation using FlexFlux of the regulated
metabolic network of Fig. 1 is shown in Fig. 2. It uses a time step of 0.01h and is
initialized with 100 mM of Oxygen, 20 mM of Carbon1 and 20 mM of Carbon2.

Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study 165

(a) Simulation showing the evolution of the concentrations of the external metabolites
(Oxygen, Carbon1, Carbon2) and the production of biomass by the Growth reaction.

External metabolites Regulatory proteins Reaction flows
Time wbiomass wCarbon1 wCarbon2 wOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7

0.49 17.05 2.95 20.0 82.95 0 1 10.5 0.0 10.5 0.0 0.0 10.5 10.5 0.0 0.0
0.50 18.95 1.05 20.0 81.05 0 1 6.15 0.0 6.15 0.0 0.0 6.15 6.15 0.0 0.0
0.51 20.10 0.0 20.0 79.90 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.52 20.10 0.0 20.0 79.90 0 0 0.0 10.5 10.5 0.0 0.0 10.5 10.5 0.0 0.0
0.53 22.35 0.0 17.76 77.65 0 0 0.0 10.5 10.5 0.0 0.0 10.5 10.5 0.0 0.0

(b) Focus on the times from 0.49h to 0.53h in the simulation, showing the switch from
Carbon1 to Carbon2 for biomass production.

Fig. 2. Dynamic rFBA simulation of the regulated metabolic network in Fig. 1. The
simulation is done with FlexFlux and is initialized with 100 mM of Oxygen, 20 mM
of Carbon1, and 20 mM Carbon2. Tke time step is set to 0.01h. The flux bounds are
∀r ∈ {Tc1, Tc2}, (lr, ur) = (0, 10.5), ∀r ∈ {Td, Te}, (lr, ur) = (0, 12.0), ∀r ∈ {R6,
R7, Rres, Growth}, (lr, ur) = (0, 9999) and for Oxygen, (lr, ur) = (0, 15.0).

The simulation shown in Fig. 2a is composed of 70 metabolic steady states. By
applying the binarization β, these 70 metabolic steady states correspond to 5
different binarized metabolic steady states, which are shown in Table 1. These
binarized metabolic steady states capture the main features of the simulation.

More precisely, the simulation shows that until 0.5h only Carbon1 and Oxy-
gen are consumed to produce biomass. This corresponds to a first time period
where the behavior of the system is monotone: the binarized metabolic steady
states are equal on this time range. The presence of Carbon1 activates the reg-
ulatory protein RPcl inhibiting the reaction Tc2 according to the regulatory
rules. At 0.5h, Carbon1 is depleted and the current Boolean state x ∈ B

15 is
such that xCarbon1 = 0, xRPcl = 1, xTc2 = 0 (second qualitative behavior with
equal binarization of the metabolic steady states). At 0.51h, as shown in Fig. 2b,
the Boolean state x is updated to x′ so that the Boolean state of RPcl becomes
x′

RPcl = fRPcl(x) = xCarbon1 = 0. The Boolean state of Tc2 remains unchanged
because xRPcl = 1. No biomass is produced at 0.51h. This corresponds to a third
qualitative behavior. At 0.52h, the Boolean state x′ is updated to x′′: all the
node states remain unchanged except for x′′

Tc2 = fTc2(x′) = ¬x′
RPcl = 1. This

166 K. Thuillier et al.

Table 1. Binarization of the metabolic steady states of simulation in Fig. 2. It contains
the binarized values of the metabolic steady state computed by the rFBA simulation. A
timepoint t appears in the table if and only if the binarization of the simulated steady
state is different from the binarized metabolic steady state of time t − 1.

External metabolites Regulatory proteins Reactions

Time wBiomass wCarbon1 wCarbon2 wOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7

0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0

0.1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0

0.51 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0.52 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0

0.59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

corresponds to a fourth qualitative behavior. The reaction Tc2 is not inhibited
anymore, and biomass is produced due to the uptake of Carbon2 and Oxygen
(through Tc2, Growth and Rres) until Carbon2 depletion at t = 0.59h (fifth
qualitative behavior).

3 Boolean Abstraction of Dynamic rFBA

In the previous example, we illustrated how the simulation of a regulated
metabolic network may generate time-periods for which the qualitative behavior
is similar, meaning that the variation of all the metabolic variables is monotone
and the Boolean values of the regulatory proteins are constant. In this section, we
introduce a discrete definition of steady states to capture the monotone behav-
iors observed in rFBA simulations. This allows introducing a discretized form of
rFBA, which will be used in the next section for the reverse-engineering frame-
work.

3.1 Boolean Metabolic Steady States

Given a metabolic network N = (Int,Ext,R, S), we derive a logical charac-
terization of the notion of steady state, considering that reactions are either
inactive or active, and metabolites either absent or present. This will result in a
set of Boolean metabolic steady states that form an over-approximation of the
continuous steady states.

We associate all reactions with propositional variables V = {vr}r∈R. For each
metabolite m ∈ Int
Ext, we introduce a variable zm

+ as a Boolean abstraction
of the production of m and a variable zm

− as a Boolean abstraction of the
consumption of m:

∀m ∈ Int
 Ext, zm
+ def=

∨

r∈R,Smr>0

vr, zm
− def=

∨

r∈R,Smr<0

vr,

(where an empty disjunction is considered to be false).

Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study 167

For each internal metabolite m, we introduce a variable ẑm which is equal
to 1 iff m is in a logical steady state:

∀m ∈ Int, ẑm
def= (zm

+ ⇔ zm
−).

For the external metabolites, we introduce propositional variables Vext =
{zm}m∈Ext indicating whether or not m is present in the environment. The
formula

N̂Ext
def=

∧

m∈Ext

(zm
− ⇒ zm)

then states that an external metabolite can only be consumed if it is present in
the environment.

Definition 6 (Boolean metabolic steady state). A Boolean metabolic
steady state of a metabolic network N = (Int,Ext,R, S) is a Boolean vector
ν̂ ∈ B

|Ext|+|R| which is a satisfying assignment of the following logical steady
state formula:

N̂ def
= N̂Ext ∧

∧

m∈Int

ẑm

We denote by MSSB(N) ⊆ B
|Ext|+|R| the set of all the Boolean metabolic steady

states of the metabolic network N .

As an immediate consequence of this definition, we get the following property:

Property 1. For each metabolic-regulatory steady state (v, w, x) of the regulated
metabolic network (N ,P, f), the binarized value β(w, v) of the external metabo-
lite concentrations w and the reaction fluxes v is a Boolean metabolic steady
state, i.e., β(w, v) ∈ MSSB(N).

Note that the converse is not true: since the logical characterization neglects
the stoichiometry, Boolean metabolic steady states may have no real-valued
counterpart.

Applied to the example, the internal metabolic constraints are the following:
zA

+ = vTc1 ∨ vTc2, zA
− = vR6 ∨ vR7 ∨ vGrowth

zD
+ = vR6, zD

− = vTd, zE
+ = vR7, zE

− = vTe
zO2

+ = vTo2, zO2
− = vRres

zATP
+ = vR6 ∨ vRres, zATP

− = vGrowth

zNADH
+ = vGrowth, zNADH

− = vR7 ∨ vRres

The logical steady state constraints equivalent to N̂ = 1 are obtained by
gathering contraints on internal and external metabolites:

vTc1 ∨ vTc2 = vR6 ∨ vR7 ∨ vGrowth

vR6 = vTd vR7 = vTe vTo2 = vRres

vR6 ∨ vRres = vGrowth vR7 ∨ vRres = vGrowth

vTc1 ⇒ zCarbon1 vTc2 ⇒ zCarbon2 vTo2 ⇒ zOxygen

168 K. Thuillier et al.

From these equations, we deduce that there are 38 Boolean metabolic steady
states for the example shown in Fig. 1. These Boolean metabolic steady states are
detailed in Appendix A. Among them, we recover the five binarized metabolic-
regulatory steady states (Table 1) appearing in the rFBA simulations of Fig. 2.

3.2 Boolean Dynamics

Using the logical characterization of metabolic steady states, we define a Boolean
counterpart of dynamic rFBA (Sect. 2.2). A Boolean state of the regulated
metabolic network (N ,P, f) assigns a Boolean value to external metabolites,
reactions, and regulatory proteins, which gives a Boolean vector of dimension
n = k + m + d. Such a Boolean state x ∈ B

n should match with a Boolean
metabolic steady state. Denoting by M = Ext ∪ R the external metabolites
and reactions, xM should verify the Boolean metabolic steady state constraints
described in the previous section (xM ∈ MSSB(N)). The general idea is then to
capture the possible successions of such Boolean states, subject to the regulations
through the regulatory proteins specified by the Boolean network f .

A key ingredient of dynamic rFBA is the objective function to maximize,
typically the fluxes of reactions producing biomass. However, at the Boolean
level, it is not possible to directly rank metabolic steady states according to their
biomass production, as this will be either absent or present. Thus, a specific
Boolean objective function has to be provided to score a Boolean metabolic
steady state. This takes the form of a function ô mapping Boolean metabolic
steady states to natural numbers: ô : Bk+m → N. The Boolean dynamics will
only select Boolean metabolic steady states maximizing this supplied objective.

When considering possible next states, it is crucial to account for those where
the input metabolites change their value. Hereafter, we consider any possible
change.

The Boolean dynamic rFBA is formalized by a function nextB(N ,P,f,ô) which
associates any Boolean state of the regulated metabolic network to a set of
admissible next states:

Definition 7 (Boolean dynamic rFBA: nextB(N ,P,f,ô) : B
n → 2B

n

). For
any Boolean states x, y ∈ B

n, y ∈ nextB(N ,P,f,ô)(x) if and only if for x′ =
(yInp, xR∪P) ∈ B

n,

1. the values of the regulatory proteins are computed synchronously from x′

according to f : yP = fP(x′),
2. y matches with a Boolean metabolic steady state: yM ∈ Z(x′), and
3. the matching Boolean metabolic steady state maximizes the supplied objective

function: ∀y′
M ∈ Z(x′), ô(yM) ≥ ô(y′

M).

Here Z(x′) = {z ∈ MSSB(N) | zInp = x′
Inp, zR � fR(x′)} is the set of Boolean

metabolic steady states that match with the value of external metabolites and with
the regulations from x′.

Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study 169

Let us consider the regulated metabolic network from Fig. 1. It appears that
the steady states maximizing the growth maximize the input fluxes. Thus, we
set the Boolean objective function ô as the sum of input reactions:

ô(x) = xTc1 + xTc2 + xTo2 .

Consider the Boolean state from Table 1 at time 0, which we name x, and
the next Boolean state at time 0.51, which we name y, with the same input
metabolite values (xInp = yInp). Using the notation from the above definition, we
set x′ = x. Imagine the case where no reactions is regulated, i.e., the regulatory
BN is of the form f ′

r(x) = 1 for every r ∈ R. Among the Boolean metabolic
steady states z matching the input values (zInp = x′

Inp), the ones that maximize
ô always verify zTc2 = 1 (Boolean metabolic steady states 26, 29, 32, 38 in the
Table 3 in Appendix A), which does not match with y. Thus y would not be an
admissible next state.

Considering now the regulatory BN f of Fig. 1, we obtain fTc2(x′) =
¬x′

RPcl = 0 and for each other reaction r ∈ R \ {Tc2}, fr(x′) = 1. The set
Z(x′) contains 4 matching optimal Boolean steady states (rows 25, 28, 31, 37 of
Table A.3), among them the one matching with y. Thus y ∈ nextB(N ,P,f,ô)(x).

Let x be now the Boolean state at time 0.1, and y the next Boolean state
at time 0.51, where the input metabolites have a different state (Carbon1
switched to 0). Let x′ be equal to x except for the input metabolites, which are
equal to yInp. We obtain that fRPO2,RPcl(x′) = (¬x′

Oxygen, x
′
Carbon1) = (0, 0) =

yRPO2,RPcl. Moreover, fTc2(x′) = ¬x′
RPcl = 0 and for each other reaction r ∈ R,

r �= Tc2, fr(x′) = 1. In this case, there is only one Boolean metabolic steady
state z such that zInp = x′

Inp and zR � fR(x′). It appears that it matches with
y, i.e., z = yM; thus y ∈ nextB(N ,P,f,ô)(x).

4 Inference of Regulations from rFBA Time Series

Given sequences of metabolic-regulatory steady states obtained by dynamic
rFBA from a ground-truth regulated metabolic network under different con-
ditions, our objective is to infer all the regulatory Boolean networks that can
reproduce the observed behaviors. Besides the ground-truth model, the inference
may suggest alternative regulatory logics.

Definition 8 (Search domain for BNs). The search domain for BNs,
denoted by F, is constrained by an influence graph G: any candidate f ∈ F

should satisfy G(f) ⊆ G, i.e. uses at most the influences allowed in G. Moreover,
we assume that f is locally monotone.

Typically, G contains the putative influences from and to regulatory pro-
teins. In our case study, G is obtained from the ground-truth regulatory
model f◦ by “forgetting” the sign of influences (for each (i, s, j) ∈ G(f◦),
{(i,+, j), (i,−, j)} ⊆ G), and adding putative influences.

Our inference problem mixes both linear constraints for characterizing the
optimal steady states of the metabolic network with Boolean constraints for

170 K. Thuillier et al.

characterizing the value changes of regulatory proteins. To express the inference
problem, we rely on the Boolean abstraction of dynamic rFBA presented in the
previous section .

4.1 Approximation as a Boolean Satisfiability Problem

We propose a relaxation of the inference problem by the means of the Boolean
dynamic rFBA interpretation given in Sect. 3.

Inputs of the Relaxed Inference Problem. The inputs of the problem are (i)
a metabolic network N and a set of regulatory proteins P, (ii) sequences of
metabolic-regulatory steady states, represented by sets of pairs (st, st+1), with
st = (vt, wt, xt) and st+1 = (vt+1, wt+1, xt+1) following the notation from Def-
inition 5: the observed changes of metabolic-regulatory steady states are given
as T ⊆ S× S with S = R

|Inp|+|R| ×B
|RPs|, (iii) a domain of putative regulatory

BNs F of dimension n = |Inp| + |R| + |P|, (iv) a Boolean state objective score
ô : Bn → N.

Relaxed Inference Problem. The relaxed inference problem consists then in iden-
tifying the f ∈ F such that for each (s, s′) ∈ T ,

β(s′) ∈ nextB(N ,P,f,ô)(β(s)).

Formulation as a Satisfiability Problem. Relying on the Boolean dynamic rFBA
abstraction, the inference problem boils down to a satisfiability problem in propo-
sitional Boolean logic using two levels of quantifiers (2-QBF):

∃f ∈ F, ∀(s, s′) ∈ T,∃y ∈ MSSB(N), yInp = x′
Inp, yP = fP(x′), yR � fR(x′),

∀z ∈ MSSB(N), (zInp �= x′
Inp ∨ zP �= fP(x′) ∨ zR �� fR(x′) ∨ ô(z) ≤ ô(y))

with x′ ∈ B
n defined as x′

Inp = β(s′)Inp and x′
R∪P = β(s)R∪P .

Note that without the Boolean optimization criteria ô (equivalently ô(z) = c),
the problem reduces to a SAT problem where the only constraints relate to the
local functions of the regulatory proteins:

∃f ∈ F, ∃y ∈ MSSB(N), yInp = x′
Inp, yP = fP(x′)

Indeed, yR � fR(x′) is always verified whenever fr(x) = 1 for each r ∈ R.
Since the Boolean dynamic rFBA gives an over-approximation of metabolic

steady states, and even assuming that the Boolean objective function ô matches
with the optimal metabolic steady states, our formulation leads to an approxi-
mation of admissible regulatory BN f : it may happen that a spurious Boolean
metabolic steady state (having no real counter part) has a strictly higher value
with ô than non-spurious ones.

Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study 171

4.2 Implementation in Answer-Set Programming

Answer-Set Programming (ASP) [1,12] is a declarative framework allowing solv-
ing combinatorial satisfaction problems. It relies on the stable model seman-
tics [10]. The basic idea of ASP is to express a problem in a logical format so
that the (logic) models of its representation provide the solutions to the original
problem. Problems are expressed as logic programs (first order logic predicates
expressed with rules with the shape <head> :- <body> .). Stable models of the
logic programs are referred to as answer sets. Although determining whether a
program has an answer set is the fundamental decision problem in ASP, modern
ASP solvers like clingo [13] support various combinations of reasoning modes,
among them, regular and projective enumeration, intersection and union, multi-
criteria optimization and subset minimal and maximal model enumeration [15].

The stable model semantics of ASP combined with disjunctive programming
are the key ingredients that enable expressing two quantification levels Boolean
formulas (2-QBF problem), i.e. ∃x, ∀y, φ(x, y) where φ(x, y) is a quantifier-free
propositional formula (ΣP

2 -complete) [10]. The encoding of 2-QBF relies on the
so-called saturation technique [11,14]. Essentially, for fixed x and y, the encoding
ensures that a maximal (saturated) answer-set is returned if and only if φ(x, y).
Thus, whenever there exists y such that φ(x, y) does not hold (counter-example),
a smaller answer-set is returned. Following the subset-minimal stable semantics,
the 2-QBF problem is satisfiable if and only if only saturated answer-set are
subset-minimal.

5 Case Study

As a proof of concept, we apply our inference framework to the simplified core
carbon metabolism described in Fig. 1. First, from this ground-truth model, we
generate sample dynamic rFBA simulations for different input conditions, repro-
ducing existing biological observations [9]. Next we take these simulations as
input for our method, together with an influence graph extending the one from
the ground truth model with additional putative regulations. Using our infer-
ence method, we then enumerate BNs that are compatible with both the simu-
lations and the influence graph. The results show that the ground truth model
is well recovered, together with some alternative BNs. In particular, a simpler
BN matching the data is identified, which uses fewer regulations. It turns out
that the missing regulation is not needed to reproduce the expected biological
behaviour. Our implementation relying on the ASP solver clingo [13] together
with the case study is available at https://github.com/bioasp/boolean-caspo-
flux. They can be reproduced using the notebooks and docker image at https://
doi.org/10.5281/zenodo.5060984.

Input Simulations. We designed six dynamic r-FBA simulations of the BN of
Fig. 1(b) to mimic the studies of the core carbon metabolism in [9]. They corre-
spond to different sets of initially available input metabolites and regulatory pro-
teins (Table 3a, and Fig. 4 in Appendix B). For instance, Experiment 1 assumes

https://github.com/bioasp/boolean-caspo-flux
https://github.com/bioasp/boolean-caspo-flux
https://doi.org/10.5281/zenodo.5060984
https://doi.org/10.5281/zenodo.5060984

172 K. Thuillier et al.

that all input metabolites (Carbon1, Carbon2, Oxygen) are available. Exper-
iment 2 assumes that Carbon1, Carbon2 are present at initialization but not
Oxygen.

For each case, we use FlexFlux with an initial biomass value of 0.1 and
a time step of 0.01 to simulate the system. Each of the 6 simulations involves
200 metabolic steady states. For initial external metabolite values (zCarbon1,
zCarbon2, zOxygen), the regulatory proteins are initialized such that xRPcl =
zCarbon1 and xRPO2 = ¬zOxygen (Table 3a). Each simulation S = {(v, w, x)0, ...,
(v, w, x)200} includes 201 continuous metabolic-regulatory steady states (1 for
the initialization and 200 for the simulation). The simulations are then binarized
with SB = {(vt, zt) = β((vt, wt)) | ∀vt ∈ S}, and consecutive identical Boolean
states are removed. Table 1 shows the binarized metabolic-regulatory steady
states from the simulation of the first experiment. From the 201 continuous
metabolic steady states, 5 Boolean metabolic-regulatory steady states remain,
corresponding to the time steps {0, 1, 51, 52, 59} (see Table 4 in Appendix B for
the resulting states in each simulation).

Candidate Models. The search domain F for the candidate BNs is delimited
by the influence graph G of Fig. 3b, which extends the influence graph from
the ground-truth model by additional putative regulations, and by relaxing the
sign constraints. Since the influence graph G(f) of the ground-truth BN f is
included in G, we have f ∈ F. In addition, F contains all the BNs such that
fi(x) = 1, for all i ∈ Inp∪R\{Tc1, Tc2, Rres}. Furthermore, fRPcl can depend
on Carbon1, Carbon2, Tc1, and Tc2, fRPO2 can depend on Oxygen, Rres, fTc1

and fTc2 can depend on RPcl, and fRres can depend on Rres. Overall, F contains
1 944 320 BNs.

Input Metabolite Regulatory Protein
Experiment zCarbon1 zCarbon2 zOxygen xRPcl xRPO2

1 1 1 1 1 0
2 1 1 0 1 1
3 0 1 0 0 1
4 1 0 0 1 1
5 1 0 1 1 0
6 0 1 1 0 0

(a) Initial states of the six rFBA simulations used
to create the dataset for the case study.

(b) Influence graph G delimiting
the domain of putative regulatory
BNs F. Nodes without in-going
or out-going edges are not repre-
sented. Black regular tipping ar-
rows are unsigned edges, i.e. both
positive and negative edges.

Fig. 3. Input data for the case study. Table (a) summarizes the experimental conditions
used to generate the input simulations. Figure (b) shows the influence graph delimiting
the search domain for the inference problem.

Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study 173

Table 2. Inferred models having subset minimal local functions. The not
shown local functions fCarbon1(x), fCarbon2(x), fOxygen(x), fTo2(x), fTd(x), fTe(x),
fGrowth(x), fR6(x), fR7(x) are set to 1.

fRPO2(x) fRPcl(x) fTc1(x) fTc2(x) fRres(x) Subset minimal Ground truth

Model 1 ¬xOxygen xCarbon1 1 ¬xRPcl 1 �
Model 2 ¬xOxygen xCarbon1 1 ¬xRPcl ¬xRPO2 �
Model 3 ¬xOxygen xCarbon1 xRPcl ¬xRPcl 1

Model 4 ¬xOxygen xCarbon1 xRPcl ¬xRPcl ¬xRPO2

Boolean Objective Function. Our inference framework requires defining an objec-
tive function ô over the Boolean metabolic steady states. Given the set of
input metabolites Inp = {Carbon1, Carbon2, Oxygen}, the objective function is
defined as ô(x) =

∑
e∈Inp xe,∀x ∈ MSSB(N). This is motivated by the observa-

tion that maximizing biomass production often corresponds to maximizing the
uptake of inputs according to the QSS constraints. Therefore, if an available
input metabolite is not used in the observed Boolean metabolic network, then
this must be explained by at least one regulation. This objective function allows
capturing more refined behaviors at the discrete level than a standard biomass
optimization function, which may be too rough when considering discretized
values.

Results. Applying the constraints from above allows inferring 40 models.
All these models share 3 local functions whose value is not constantly
1 (fRPO2(x), fRPcl(x), fTc2(x)). They also share 9 local functions equal
to 1 (fCarbon1(x), fCarbon2(x), fOxygen(x), fTo2(x), fTd(x), fTe(x), fGrowth(x),
fR6(x), fR7(x)). Finally, 2 functions can be set both to 1 or different from 1
according to the model. The 4 smallest inferred models are described in Table 2.
They can be considered as the smallest because each local function fi of these
4 models is contained in the local function fi of the 36 other models. Note that
the ground truth, i.e. the model used to generate the input data, is correctly
inferred (Model 2).

As we represent the local Boolean functions using their disjunctive normal
form (DNF), we can focus on the simplest models by looking at the subset-
minimal ones: a Boolean function fi is smaller than a Boolean function gi if
each of the clauses of fi is a subset of a clause of gi. In this case study, there is
a single subset-minimal model: the BN 1 of Table 2. The two functions fRres(x),
fTc1(x) are set to 1 due to the subset-minimal constraint. The inferred model is
thus fRPO2(x) = ¬xOxygen, fRPcl(x) = xCarbon1, fTc2(x) = ¬xRPcl and all the
others local functions are set to 1. Note that only fRres(x) differs between the
inferred subset-minimal model and the ground truth model.

In order to check whether this subset-minimal model could be considered as
an alternative to the ground truth one, we performed dynamic rFBA simulations
with the six experimental conditions described in Table 3a. We observe that the
resulting time series are strictly identical to the simulations of the ground truth

174 K. Thuillier et al.

model used to generate the dataset. This suggests that the regulation on Rres
is not necessary to reproduce the observed behaviours. The proposed subset-
minimal model allows inferring all the needed regulations and can be considered
as the simplest regulated metabolic model matching the experimental conditions
of Table 3a. Already in [9], the authors recognize that unlike others regulations,
Rres “regulation is not necessary for the solution”. Biologically, this regulation is
only present to ensure that unnecessary enzymes decay. However, since enzyme
amounts are not explicitly represented in the rFBA framework, the dataset does
not reflect this biologic behavior, making it impossible to infer properly the
regulation. Taking into account enzymatic resources using methods such as r-
deFBA [17], should allow solving this issue. However, the inference approach will
also have to be adapted to this kind of extended metabolic modeling.

6 Discussion

We proposed a formal framework to infer Boolean rules for the regulation of
a metabolic network. The formulation of dynamic rFBA as sequence of steady
states of the regulated metabolic network enables inferring the Boolean rules
from time series under multiple conditions. A proof of concept was performed
on the simulation of the diauxic shift in carbon metabolism on a small model.

Our method builds on a Boolean abstraction of the dynamic rFBA frame-
work. It enables a formulation of the inference problem as a pure Boolean satis-
fiability problem using two levels of quantifiers, which can be efficiently solved
using Answer Set Programming. One important parameter is the Boolean objec-
tive function, which aims at identifying Boolean metabolic steady states that
match the optimal real-valued ones. This function is currently specified manu-
ally, based on biological expertise. Future work may explore how to derive an
objective function automatically. An alternative direction is to solve directly
the inference problem by mixing linear programming and Boolean constraints.
Future work will investigate the scalability of solving these different inference
problems.

Several other perspectives are to be explored. First, all regulations were con-
sidered as synchronous, which may not be the case in vivo, where regulations
can have different time scales. This choice was actually imposed by the use of the
FlexFlux implementation. Nevertheless, our method can be easily adapted to
support fully-asynchronous and asynchronous updating modes, enabling poten-
tial alternative solutions. Second, the production and degradation times of regu-
latory proteins and enzymes were not taken into account. Moreover, the regula-
tions were considered to be binary. However, we know that metabolism proceeds
by finer regulations than the abstraction proposed here, as captured for instance
by regulatory dynamic enzyme-cost FBA [17].

Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study 175

Acknowledgments. Work of LC and CB is supported by the French Laboratory of
Excellence project “TULIP” (grant number ANR-10-LABX-41; ANR-11-IDEX-0002-
02). Work of LP is supported by the French Agence Nationale pour la Recherche (ANR)
in the scope of the project “BNeDiction” (grant number ANR-20-CE45-0001).

A Binarized Metabolic Steady State

Table 3. All the Boolean metabolic steady states admissible for the metabolic network
N show Fig. 1a. The external metabolite Biomass is not shown since its value can be
both 0 and 1 for each Boolean metabolic steady state. The experimentation column
indicates the numbers of the experiments where the Boolean metabolic steady states
occurs.

External metabolites Reactions

zCarbon1 zCarbon2 zOxygen vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7 Experimentation

1 0 0 0 0 0 0 0 0 0 0 0 0 2, 3, 4

2 0 0 1 0 0 0 0 0 0 0 0 0 1, 5, 6

3 0 1 0 0 0 0 0 0 0 0 0 0 2, 3

4 0 1 0 0 1 0 1 1 1 0 1 1 2, 3

5 0 1 1 0 0 0 0 0 0 0 0 0 1, 6

6 0 1 1 0 1 1 0 0 1 1 0 0 1, 6

7 0 1 1 0 1 1 0 1 1 1 0 1

8 0 1 1 0 1 1 1 0 1 1 1 0

9 0 1 1 0 1 0 1 1 1 0 1 1

10 0 1 1 0 1 1 1 1 1 1 1 1

11 1 0 0 0 0 0 0 0 0 0 0 0 4

12 1 0 0 1 0 0 1 1 1 0 1 1 4

13 1 0 1 0 0 0 0 0 0 0 0 0 5

14 1 0 1 1 0 1 0 0 1 1 0 0 5

15 1 0 1 1 0 1 0 1 1 1 0 1

16 1 0 1 1 0 1 1 0 1 1 1 0

17 1 0 1 1 0 0 1 1 1 0 1 1

18 1 0 1 1 0 1 1 1 1 1 1 1

19 1 1 0 0 0 0 0 0 0 0 0 0 2

20 1 1 0 0 1 0 1 1 1 0 1 1

21 1 1 0 1 0 0 1 1 1 0 1 1 2

22 1 1 0 1 1 0 1 1 1 0 1 1

23 1 1 1 0 0 0 0 0 0 0 0 0 1

24 1 1 1 0 1 1 0 0 1 1 0 0

25 1 1 1 1 0 1 0 0 1 1 0 0 1

26 1 1 1 1 1 1 0 0 1 1 0 0

27 1 1 1 0 1 1 0 1 1 1 0 1

28 1 1 1 1 0 1 0 1 1 1 0 1

29 1 1 1 1 1 1 0 1 1 1 0 1

30 1 1 1 0 1 1 1 0 1 1 1 0

31 1 1 1 1 0 1 1 0 1 1 1 0

32 1 1 1 1 1 1 1 0 1 1 1 0

33 1 1 1 0 1 0 1 1 1 0 1 1

34 1 1 1 1 0 0 1 1 1 0 1 1

35 1 1 1 1 1 0 1 1 1 0 1 1

36 1 1 1 0 1 1 1 1 1 1 1 1

37 1 1 1 1 0 1 1 1 1 1 1 1

38 1 1 1 1 1 1 1 1 1 1 1 1

176 K. Thuillier et al.

B Experiments and Simulations

(a) Simulation of experiment 1.

(b) Simulation of experiment 2.

(c) Simulation of experiment 3.

Fig. 4. Simulation made with FlexFlux of the regulated metabolic network in Fig. 1
for each experiment (Table 3a). Time step is set to 0.01. Reaction domains are ∀r ∈
{Tc1, Tc2}, (lr, ur) = (0, 10.5), ∀r ∈ {Td, Te}, (lr, ur) = (0, 12.0), ∀r ∈ {R6, R7,
Rres, Growth}, (lr, ur) = (0, 9999) and for Oxygen, (lr, ur) = (0, 15.0). The same
simulation graphs are obtained using the local function fRres = ¬xRPO2 and fRres = 1.

Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study 177

(d) Simulation of experiment 4.

(e) Simulation of experiment 5.

(f) Simulation of experiment 6.

Fig. 4. (continued)

178 K. Thuillier et al.

Table 4. All the different binarized metabolic steady states of each experiment. They
are the input data used to solve the inference problem.

External metabolites Regulatory proteins Reactions

Experiment Time zBiomass zCarbon1 zCarbon2 zOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7

1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0

51 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

52 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0

59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1

83 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

84 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1

97 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

3 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1

83 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

4 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1

83 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

5 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

1 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0

51 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0

51 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

References

1. Baral, C.: Knowledge Representation. Reasoning and Declarative Problem Solv-
ing., Cambridge University Press, New York (2003)

2. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to
biological regulatory networks: extending thomas’ asynchronous logical approach
with temporal logic. J. Theor. Biol. 229(3), 339–347 (2004). https://doi.org/10.
1016/j.jtbi.2004.04.003

3. Buescher, J.M., et al.: Global network reorganization during dynamic adaptations
of bacillus subtilis metabolism. Science 335(6072), 1099–1103 (2012). https://doi.
org/10.1126/science.1206871

4. Chaves, M., Oyarzún, D.A., Gouzé, J.L.: Analysis of a genetic-metabolic oscillator
with piecewise linear models. J. Theor. Biol. 462, 259–269 (2019). https://doi.org/
10.1016/j.jtbi.2018.10.026

5. Chaves, M., Tournier, L., Gouzé, J.L.: Comparing Boolean and piecewise affine
differential models for genetic networks. Acta Biotheor 58(2–3), 217–232 (2010).
https://doi.org/10.1007/s10441-010-9097-6

6. Chevalier, S., Froidevaux, C., Pauleve, L., Zinovyev, A.: Synthesis of boolean net-
works from biological dynamical constraints using answer-set programming. In:
2019 IEEE 31st International Conference on Tools with Artificial Intelligence
(ICTAI). IEEE (2019). https://doi.org/10.1109/ictai.2019.00014

7. Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., Palsson, B.O.: Integrating
high-throughput and computational data elucidates bacterial networks. Nature
429(6987), 92–96 (2004). https://doi.org/10.1038/nature02456

8. Covert, M.W., Palsson, B.Ø.: Transcriptional regulation in constraints-based
metabolic models of Escherichia coli. J. Biol. Chem. 277(31), 28058–28064 (2002).
https://doi.org/10.1046/j.1462-2920.2002.00282.x

9. Covert, M.W., Schilling, C., Palsson, B.: Regulation of gene expression in flux
balance models of metabolism. J. Theor. Biol. 213(1), 73–88 (2001). https://doi.
org/10.1006/jtbi.2001.2405

https://doi.org/10.1016/j.jtbi.2004.04.003
https://doi.org/10.1016/j.jtbi.2004.04.003
https://doi.org/10.1126/science.1206871
https://doi.org/10.1126/science.1206871
https://doi.org/10.1016/j.jtbi.2018.10.026
https://doi.org/10.1016/j.jtbi.2018.10.026
https://doi.org/10.1007/s10441-010-9097-6
https://doi.org/10.1109/ictai.2019.00014
https://doi.org/10.1038/nature02456
https://doi.org/10.1046/j.1462-2920.2002.00282.x
https://doi.org/10.1006/jtbi.2001.2405
https://doi.org/10.1006/jtbi.2001.2405

Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study 179

10. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995). https://doi.
org/10.1007/bf01536399

11. Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer, pp.
40–110. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-03754-2 2

12. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers (2012)

13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control.
Preliminary report. CoRR abs/1405.3694 (2014)

14. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set pro-
gramming. Theor. Pract. Logic Prog. 11(4–5), 821–839 (2011). https://doi.org/10.
1017/s1471068411000329

15. Gebser, M., Kaufmann, B., Romero, J., Otero, R., Schaub, T., Wanko, P.: Domain-
specific heuristics in answer set programming. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 27, no. 1 (2013). https://ojs.aaai.org/index.
php/AAAI/article/view/8585

16. de Jong, H.: Modeling and simulation of genetic regulatory systems: a lit-
erature review. J. Comput. Biol. 9, 67–103 (2002). https://doi.org/10.1089/
10665270252833208

17. Liu, L., Bockmayr, A.: Regulatory dynamic enzyme-cost flux balance analysis: a
unifying framework for constraint-based modeling. J. Theor. Biol. 501, 110317
(2020). https://doi.org/10.1016/j.jtbi.2020.110317

18. Marmiesse, L., Peyraud, R., Cottret, L.: FlexFlux: combining metabolic flux and
regulatory network analyses. BMC Syst. Biol. 9(1), 1–13 (2015). https://doi.org/
10.1186/s12918-015-0238-z

19. Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nat. Biotech-
nol. 28(3), 245–248 (2010). https://doi.org/10.1038/nbt.1614

20. Ostrowski, M., Paulevé, L., Schaub, T., Siegel, A., Guziolowski, C.: Boolean net-
work identification from perturbation time series data combining dynamics abstrac-
tion and logic programming. Biosystems 149, 139–153 (2016). https://doi.org/10.
1016/j.biosystems.2016.07.009

21. Oyarzún, D.A., Chaves, M., Hoff-Hoffmeyer-Zlotnik, M.: Multistability and oscilla-
tions in genetic control of metabolism. J. Theor. Biol. 295, 139–153 (2012). https://
doi.org/10.1016/j.jtbi.2011.11.017

22. Razzaq, M., Paulevé, L., Siegel, A., Saez-Rodriguez, J., Bourdon, J., Guziolowski,
C.: Computational discovery of dynamic cell line specific boolean networks from
multiplex time-course data. PLOS Comput. Biol. 14(10), e1006538 (2018). https://
doi.org/10.1371/journal.pcbi.1006538

23. Saez-Rodriguez, J., et al.: Discrete logic modelling as a means to link protein
signalling networks with functional analysis of mammalian signal transduction.
Mol. Syst. Biol. 5(1), 331 (2009). https://doi.org/10.1038/msb.2009.87

24. Tournier, L., Goelzer, A., Fromion, V.: Optimal resource allocation enables mathe-
matical exploration of microbial metabolic configurations. J. Math. Biol. 75(6–7),
1349–1380 (2017). https://doi.org/10.1007/s00285-017-1118-5

25. Tsiantis, N., Balsa-Canto, E., Banga, J.R.: Optimality and identification of
dynamic models in systems biology: an inverse optimal control framework. Bioinfor-
matics 34(14), 2433–2440 (2018). https://doi.org/10.1093/bioinformatics/bty139

https://doi.org/10.1007/bf01536399
https://doi.org/10.1007/bf01536399
https://doi.org/10.1007/978-3-642-03754-2_2
https://arxiv.org/abs/1405.3694
https://doi.org/10.1017/s1471068411000329
https://doi.org/10.1017/s1471068411000329
https://ojs.aaai.org/index.php/AAAI/article/view/8585
https://ojs.aaai.org/index.php/AAAI/article/view/8585
https://doi.org/10.1089/10665270252833208
https://doi.org/10.1089/10665270252833208
https://doi.org/10.1016/j.jtbi.2020.110317
https://doi.org/10.1186/s12918-015-0238-z
https://doi.org/10.1186/s12918-015-0238-z
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1016/j.biosystems.2016.07.009
https://doi.org/10.1016/j.biosystems.2016.07.009
https://doi.org/10.1016/j.jtbi.2011.11.017
https://doi.org/10.1016/j.jtbi.2011.11.017
https://doi.org/10.1371/journal.pcbi.1006538
https://doi.org/10.1371/journal.pcbi.1006538
https://doi.org/10.1038/msb.2009.87
https://doi.org/10.1007/s00285-017-1118-5
https://doi.org/10.1093/bioinformatics/bty139

180 K. Thuillier et al.

26. Videla, S., Saez-Rodriguez, J., Guziolowski, C., Siegel, A.: Caspo: a toolbox for
automated reasoning on the response of logical signaling networks families. Bioin-
formatics p. btw738 (2017). https://doi.org/10.1093/bioinformatics/btw738

27. Zañudo, J.G.T., Yang, G., Albert, R.: Structure-based control of complex networks
with nonlinear dynamics. Proc. Natl. Acad. Sci. U.S.A. 114(28), 7234–7239 (2017).
https://doi.org/10.1073/pnas.1617387114

https://doi.org/10.1093/bioinformatics/btw738
https://doi.org/10.1073/pnas.1617387114

Population Design for Synthetic Gene
Circuits

Baptiste Turpin, Eline Y. Bijman, Hans-Michael Kaltenbach,
and Jörg Stelling(B)

Department of Biosystems Science and Engineering (D-BSSE) and SIB Swiss
Institute of Bioinformatics, ETH Zurich, 4058 Basel, Switzerland

joerg.stelling@bsse.ethz.ch

Abstract. Synthetic biologists use and combine diverse biological parts
to build systems such as genetic circuits that perform desirable functions
in, for example, biomedical or industrial applications. Computer-aided
design methods have been developed to help choose appropriate network
structures and biological parts for a given design objective. However,
they almost always model the behavior of the network in an average
cell, despite pervasive cell-to-cell variability. Here, we present a compu-
tational framework to guide the design of synthetic biological circuits
while accounting for cell-to-cell variability explicitly. Our design method
integrates a NonLinear Mixed-Effect (NLME) framework into an exist-
ing algorithm for design based on ordinary differential equation (ODE)
models. The analysis of a recently developed transcriptional controller
demonstrates first insights into design guidelines when trying to achieve
reliable performance under cell-to-cell variability. We anticipate that our
method not only facilitates the rational design of synthetic networks
under cell-to-cell variability, but also enables novel applications by sup-
porting design objectives that specify the desired behavior of cell popu-
lations.

Keywords: Cell-to-cell variability · Synthetic biology ·
Computer-aided design

1 Introduction

Synthetic biology aims at establishing novel functions in biological systems, or
to re-engineer existing ones, in many areas such as new materials or cell-based
therapies that are starting to see real-world applications [21]. The conceptual
core of the field’s rational engineering approach to establish, for example, the
corresponding synthetic gene circuits are a systematic design-build-test cycle
and the use of predictive mathematical models throughout this cycle to design,
analyze, and tune the circuits [14].

Computer-aided design helps identifying suitable network structures (topolo-
gies) as well as biological parts for their implementation to reach a given design

c© The Author(s) 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 181–197, 2021.
https://doi.org/10.1007/978-3-030-85633-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-85633-5_11

182 B. Turpin et al.

B CA

Dose

Re
sp
on

se

Fig. 1. Cell behaviors relate to parameters at the individual and population
level. (A) Dose-response relationships for single cells (lines) drawn from two distinct
populations (red and orange) as well as other cells (gray). The design objective for
individual cells is represented by an ideal reference curve (black). (B) Space of indi-
vidual parameters β, the set of possible parameter values for a single cell. Dots show
parametrizations yielding the behaviors in (A) of the corresponding color. The blue
ellipse encloses the individual viable space where an individual cost measuring consis-
tency of the single-cell behavior with the design objective for individual cells is below a
threshold ε. Red and orange dots encircled by ellipses represent individual cells drawn
from the two distinct cell populations. (C) Space of population parameters γ, where
each parameter vector (dot) describes a full distribution of individual parameters in a
population, typically via mean vector and covariance matrix. The orange (γ) and red
(γ′) dots represent the population parameter vectors that generate the corresponding
populations in (A,B). (Color figure online)

objective. For the commonly applied models in the form of ordinary differen-
tial equations (ODEs), both design problems can be addressed by investigat-
ing the space of model parameters to assess (predicted) circuit behaviors in
relation to design objectives encoded by a reference for the desired behavior.
With sampling-based methods such as (approximate) Bayesian computation,
this defines a ‘viable’ subspace of the parameter space where the behavior is
consistent with the design objective (Fig. 1A,B) [2,10,17].

The ODE-based approach captures the behavior of an ‘average’ cell and thus
only allows design with respect to such an assumed cell. Yet, for the biological
implementation it is critical that a circuit functions under conditions of uncer-
tainty (e.g., in changing environmental conditions or because the models do not
capture relevant interactions between parts or with the cellular context [7]) as
well as cell-to-cell variability that is present even in isogenic populations (e.g.,
due to extrinsic or intrinsic stochastic noise, or different cell cycle phases and
ages of cells in a population [4]). One can account for uncertainty in ODE-based
design, for example, via measures of robustness that quantify parameter uncer-
tainty [10]. It is also possible to tackle cell-to-cell variability with stochastic
models, where temporal logic specifications are written as Continuous Stochas-
tic Logic (CSL) [23]. However, the pure ODE and CSL frameworks are limited
in two main aspects: First, they cannot account for all aspects of cell-to-cell vari-
ability directly; stochastic models do not represent extrinsic variability result-
ing, for example, from variable cell sizes. This is particularly important when

Population Design for Synthetic Gene Circuits 183

an ‘average’ cell poorly represents the population dynamics, for example, when
subpopulations of cells show different qualitative behaviors. Second, and related,
it is not possible to define design objectives for the population, such as requiring
a certain fraction of the cells to have a coherent behavior.

To address these limitations, here we propose a framework for robust syn-
thetic circuit design that takes into account cell-to-cell variability, and clearly
separates it from experimental noise and impact of variable environmental con-
ditions and interacting parts. For this population design, we extend an existing
algorithm for ODE-based design [10] to the NLME (NonLinear Mixed-Effect)
models framework [8]. Specifically, this entails augmenting the ODE model with
a statistical model at the population level that induces probability distributions
over the parameter space at the individual cell level (see Fig. 1B,C). This allows
a designer to impose cell-to-cell variability constraints on synthetic networks. We
demonstrate the approach with the a posteriori analysis of a recently developed
transcriptional controller [1], a class of circuits that is often designed to minimize
cell-to-cell variability.

2 Population Design Framework

Individual Cell Model. For any individual cell, the dynamics of the synthetic
circuit are governed by the individual cell model

Σ(β) :

⎧
⎪⎨

⎪⎩

dx(t)
dt = v(x(t), u(t), α)

x(0) = x0

y(t) = h(x(t)) ,

(1)

where x are the system states such as concentrations of chemical species, v is
a rate function, and u is an input function. Usually, states cannot be observed
directly and the observations y of the system result from a (known) observation
function h. We subsume the parameters α and initial conditions x0 into the
parameter β = (α, x0) ∈ B, where B is a bounded set.

Average Cell Design. We first consider the average cell design problem of
determining the parameter β∗ that minimizes the divergence between the cir-
cuit’s behavior and a desired reference behavior. We model the behavior of Σ
as an input-output map D : R × B × U → R that provides a (time-dependent)
function D(τ ;β, u) in τ for each parameter β ∈ B and any input u ∈ U , where
U is a finite set of relevant inputs. The reference behavior Dref : R × U → R

is a user-specified (time-dependent) function for each u ∈ U that encodes the
desired input-output relation; it need not be realizable by Σ. A simple exam-
ple is a dose-response curve, where a constant input u is mapped to a constant
response for the reference, and to the output at steady state for t → ∞ for the
circuit. Another example identifies D(τ ;β, u) = y(τ) as the observations of Σ at
time τ for a given input and parameter.

184 B. Turpin et al.

We measure the divergence between system and reference behavior by the
individual cost function

s(β) =
1

|U|
∑

u∈U

∣
∣
∣
∣D(τ ;β, u) − Dref(τ ;u)

∣
∣
∣
∣ , (2)

which averages some norm || · || between the system and reference behavior over
the considered inputs.

In principle, the average cell design problem could be solved directly to iden-
tify the optimal average cell parameter β∗ = argminβs(β). However, additional
uncertainties arise due to unmodelled system components and from combin-
ing previously characterized biological parts into a circuit [11]. We account
for these uncertainties by defining a threshold ε > 0 on the cost function
to encode which solutions are ‘good enough’, and determine the viable region
V avg = {β ∈ B | s(β) ≤ ε} of all parameters that fulfill this criterion. An output
of the average cell design problem is then a description of V avg rather than a
single parameter.

Population Model. To capture cell-to-cell variability, we postulate a population
model, where all cells share the same model structure Σ, but each cell i has its
own parameter βi drawn from a common population distribution

βi ∼ Pγ (3)

with population parameters γ ∈ Γ . This is known as a nonlinear mixed-effects
model and Pγ is often chosen to be a normal or log-normal distribution, in which
case γ are the expected values and (co)variances of the parameters in βi.

Population Design. The population model allows us to consider the distribu-
tion of behaviors of a circuit under cell-to-cell heterogeneity. In particular, each
population parameter γ yields a specific distribution Pγ of the individual cell
parameters β, and this induces a distribution over the values of the individual
cost functions s(β). The population design problem then consists of finding a
population parameter that minimizes a corresponding population cost function,
given by a functional

c : {Pγ | γ ∈ Γ} → R
+ . (4)

For example c(γ) = Eγ(s(β)) considers the expected value of the individual costs
over the population, and c(γ) = PPγ

(s(β) ≥ ε) = PPγ
(β �∈ V avg) considers the

percentage of cells whose behavior deviates from the reference by more than a
user-defined threshold ε (cf. Fig. 1B); this percentage depends on the specific
population distribution Pγ , and therefore on the population parameter γ.

Again, the population design problem can in principle be solved directly to
yield γ∗ = argminγc(γ). Here, we again relax this problem and seek to identify
the population viable space V pop = {γ ∈ Γ | c(γ) ≤ δ} to account for additional
uncertainties, where δ is again a user-defined parameter. In particular for design
objectives such as requiring a minimal fraction of cells with ‘acceptable’ behavior
that will have multiple optima, the population viable space also yields equivalent
design alternatives.

Population Design for Synthetic Gene Circuits 185

Fig. 2. Well-tempered controller (WTC) circuit. (A) Schematic representation
of the circuit structure and its parametrization. Rectangles: genes with associated pro-
moters; ellipses: proteins (corresponding color); bold lines with arrows: molecular reac-
tions; normal lines with bar heads: regulatory interactions for inactivation. (B) Sim-
ulated dose-response curves of a population of cells for a given population parameter
γ with a coefficient of variation CV ≈ 10%. Red line: median response; blue to pur-
ple lines: responses of individual cells colored by cost: the lower the cost, the darker
the color; dashed orange line: reference linear dose-response curve, used to compute
the individual cost. (C) Experimental and simulated aTc dose-response curve for the
WTC. Blue: mean (circles) and standard deviation (error bars) of experimental data
obtained by flow cytometry; green line: simulation results for the estimated param-
eter values in Table 1. Additionally, we used estimated values dC = 0.0031 min−1,
dTet = 0.005 min−1, θTet = 1.2 nM, and θTup = 10−4 nM. To match the model output
(Citrine concentration) to fluorescence (a.u.), we determined a scaling factor as in [10].
(Color figure online)

3 Case Study: Design of a Transcriptional Con-
troller

3.1 Overview

To demonstrate the framework, we use a transcriptional controller termed well-
tempered controller (WTC) that was experimentally designed by Azizoglu et al.

186 B. Turpin et al.

[1]. In the WTC (Fig. 2A), expression of the fluorescent protein Citrine—or of
any gene of interest—is regulated by constitutively expressed TetR-Tup1 and
by autorepressed TetR. Anhydrotetracycline (aTc) can bind to both TetR and
TetR-Tup1, thereby inactivating their ability to repress gene expression.

Experimentally, it was shown that cell-to-cell variability in the expression
of Citrine is reduced through the introduction of the TetR-mediated negative
feedback. At the same time, the dose-response curve—obtained by adding dif-
ferent amounts of the inducer molecule aTc—was tuned to approach an ideal
linear dose-response, corresponding to high Input Dynamic Range (IDR) and
high Output Dynamic Range (ODR) [12] (Fig. 2B).

Given that we already know the final network structure of the WTC, we aim
to use our computational framework to determine the acceptable characteristics
of the distribution of circuit parameters in a population of cells, namely their
mean and covariance, such that a large proportion of cells in the population will
display a dose-response curve close to an ideal reference curve. Notably, we wish
to establish whether our framework can identify the relevance of the feedback
mechanism in the context of a population of cells.

3.2 Individual Model

We first formulated an ODE model to describe the behavior of the WTC circuit
(see Fig. 2A). It involves the concentration of the input molecule aTc (a)—which
can be added to the cell culture—and three states for the total concentrations of
the repressor TetR (RTet), the repressor TetR-Tup1 (RTup) and the fluorescent
protein Citrine (C):

dRTet

dt
=

kTet

1 +
(

f ·RT et

θT et

)n

+
(

f ·RT up

θT up

)n − dTet · RTet (5)

dRTup

dt
= kTup − dTup · RTup (6)

dC

dt
=

kC

1 +
(

f ·RT et

θT et

)n

+
(

f ·RT up

θT up

)n − dC · C. (7)

Parameters kTet, kTup and kC are maximal expression constants that capture
both transcription and translation to keep the model simple. Parameters dTet,
dTup and dC are the degradation constants.

For TetR and Citrine production we added a control term representing a
Hill function that depends on the active concentrations of the repressors TetR
and TetR-Tup1. Active TetR and TetR-Tup1 molecules are those that are not
bound to the inducer aTc. Assuming rapid equilibrium for the binding of aTc
to TetR and TetR-Tup1 (as in Lormeau et al. [10]), the fraction of active TetR
and TetR-Tup1 (f) is given by:

f =
1
2

− 1 + Kaa − √
(1 + Ka(RTet + RTup − a))2 + 4Kaa

2Ka(RTet + RTup)
. (8)

Population Design for Synthetic Gene Circuits 187

Experimental data showed that TetR and TetR-Tup1 have different repres-
sion efficiencies [1], represented by θ in the model. We therefore decided to model
the action of the two repressors on their controlled genes as an ‘OR’-gate. This
means that we are not taking into account that the repressors might bind to the
same DNA sequences. In contrast, we do not expect a difference in Hill coefficient
(n) or affinity (Ka) to aTc between TetR and TetR-Tup1.

3.3 Population Model

To simplify computations, we fixed the means of 6 out of 10 parameters of
the ODE model (see Table 1). To obtain these values, we estimated the model
parameters using data from Azizoglu et al. [1] and additional data on the WTC’s
biological parts. As shown in Fig. 2C, the parametrized WTC model captures
the experimental dose-response curve.

The four remaining parameters (dTet, dC , θTet, and θTup) are the protein
degradation constants, and the effective concentrations relative to the repres-
sion (including feedback) mechanisms. We fixed the mean value of dTup because
this parameter is not identifiable together with θTup using only steady-state
information. If dTup were to be sampled along with θTup, the strong negative
correlation of these two parameters would not have any biological meaning. For
the same reason, we fixed production constants and only allowed degradation
constants to vary.

Regarding variances, only the production constants (kTet, kTup, kC) and
degradation constants (dTet, dTup, dC) were assumed to display cell-to-cell vari-
ability. Without data on the variance of these parameters, we assumed that they
all follow a log-normal distribution (to ensure positivity) based on the same
variance σ2 of the underlying Normal distribution. This implies that all the
parameter distributions have the same coefficient of variation CV =

√
eσ2 − 1.

Since σ ≤ 0.1 for our data, we use the approximation CV ≈ σ to simplify our
analysis slightly.

3.4 Design Problem

Reference Dose-Response Curve. Our objective for the behavior of individ-
ual cells endowed with the WTC is a linear dose-response curve over an IDR
of [0 nM, 600 nM] for aTc with a desired ODR of [0 nM, 120 nM]. We encode a
dose-response curve as a reference behavior. It takes the aTc concentration a as
a constant input u(t) ≡ a, and yields a constant response Dref(a) ≡ Dref(τ ; a)
for all τ . We encode the high-IDR, high-ODR objective by defining (a,Dref(a))
to be the straight line between (0 nM, 0 nM) and (600 nM, 120 nM).

Individual Cost. To quantify the deviation between an individual cell’s behav-
ior and the reference curve, we use the individual cost from Eq. 2 based on the
dose-response curve (a,D(τ ;β, a)), where cell i has individual parameter set
βi = (k(i)

Tet, k
(i)
Tup, k

(i)
C , d

(i)
Tup, n, Ka, d

(i)
Tet, d

(i)
C , θTet, θTup), and D(τ ;β, a) ≡

D(β, a) is the steady-state (t → ∞) response to aTc concentration a. In our

188 B. Turpin et al.

Table 1. Parameter specifications for the WTC model. Parameters
kTet, kTup, kC , and dTup are cell-to-cell variable but their mean is fixed to the indi-
cated value.

Fixed parameters

Name Description Units Fixed value Cell-specific

kTet Max production rate of
TetR

nM · min−1 1.115 Yes

kTup Max production rate of
TetR-Tup1

nM · min−1 0.7919 Yes

kC Max production rate of
Citrine

nM · min−1 0.8395 Yes

dTup Degradation constant of
TetR-Tup1

min−1 1.2745 Yes

n Hill coefficient for
promoter repression by
TetR and TetR-Tup1

(–) 1.5656 No

Ka Association constant for
TetR and TetR-Tup1
binding to aTc

nM−1 144.37 No

Sampled parameters

Name Description Units Bounds Explored
in log
space

Cell-specific

dTet Degradation constant of
TetR

min−1 [10−5 10] Yes Yes

dC Degradation constant of
Citrine

min−1 [10−10 10] Yes Yes

θTet Repression coefficient
TetR

nM [10−6 106] Yes No

θTup Repression coefficient
TetR-Tup1

nM [10−6 20] Yes No

implementation, the individual cost function is calculated via a discrete version
of the L2-norm based on N aTc input doses U = {a1, . . . , aN}, regularly spaced
between 0 and 600 nM:

s(β) =

√
√
√
√ 1

N

N∑

k=1

(D(β, ak) − Dref(ak))2 . (9)

We consider an individual cell’s dose-response acceptable if s(β) ≤ ε; the cor-
responding parameters β constitute the viable space. For our analysis, we use
ε = 5nM and ε = 2nM, which represent approximately 5% and 2% of the ODR
we wish to achieve, respectively.

Population Design for Synthetic Gene Circuits 189

Population Cost. For our population design, we consider the percentage of
individual cells in a population with parameter γ that fulfill the criterion Eq. 9
as our population cost function:

c(γ) = PPγ
(s(β) ≥ ε) . (10)

We define the population viable space as those γ that yield at least 80% indi-
vidual cells with behavior sufficiently close to the reference and c(γ) ≤ 20%.

We estimate the population cost by drawing individual parameter sets βi from
the distribution Pγ and by determining the proportion of sampled parameter sets
that yield acceptable individual costs.

Sampling in Parameter Spaces. We sampled from both the individual
parameter space and the population parameter space, according to the individ-
ual cost s and the population cost c, respectively. We used an adaptive version
of the Metropolis-Hastings algorithm [6] in both cases, implemented in the R
[15] package ‘fmcmc’ [20], with pseudo-likelihoods based on individual cost and
population cost. The package ‘deSolve’ [19] was used to solve the ODE model,
with derivatives computed in C code. We defined the pseudo-likelihood for the
individual parameter space as:

l(β) = 1(s(β) ≤ ε) (11)

with ε ∈ {5 nM, 2 nM}, therefore sampling uniformly the viable region V avg =
{β ∈ B | s(β) ≤ ε}. The pseudo-likelihood for the population parameter space
was:

L(γ) = 1(c(γ) ≤ δ) (12)

with δ = 0.2. We then obtain uniformly distributed samples from the population
viable space V pop = {γ ∈ Γ | c(γ) ≤ δ}. Note that, as c(γ) depends on the value
of ε (Eq. 10), L(γ) and the associated population viable space will also depend
on its value.

To compute this population pseudo-likelihood, however, we need to approxi-
mate c(γ), as it is the functional of a distribution (in this case study, a probabil-
ity). For each value of γ, 300 individual parameters were drawn randomly from
the underlying log-normal distribution Pγ . For each individual parameter vector,
we computed the individual cost s and approximated c(γ) as the fraction of sam-
ples with individual costs above the corresponding threshold ε ∈ {5 nM, 2 nM}.
Note that we are interested in the resulting distribution of the individual costs
and not in describing Pγ . Thus, even though we consider 6 cell-to-cell variable
parameters, a sample size of 300 proved sufficient to reliably represent this distri-
bution of individual costs as the underlying distance measure between a constant
reference and the output of an ODE model is sufficiently smooth. An illustration
is given in Fig. 2B, where 300 individual dose-response curves from a population
distribution with high coefficient of variation cover the graph sufficiently.

The log-normal population distribution for our example allows us to reduce
the required amount of random sampling and to provide more consistent results
for the approximation of the population pseudo-likelihood. Note that we can

190 B. Turpin et al.

reconstruct the mean vector μ ∈ R
6 and the 6 × 6 covariance matrix C of the

underlying multivariate Normal distribution from the population parameter γ.
We therefore once generated 300 samples Si from the standard multivariate
Normal distribution N(0, I) in R

6. For each value of γ, we constructed the cor-
responding samples of the individual parameters as βi = μ + C1/2 · Si, where
C1/2 is the lower triangular matrix from a Cholesky decomposition of C. This
ensures that repeated calls to our approximation of the population cost function
with the same population parameter γ yields the same cost and requires only
a single sample of size 300. On a standard laptop with Intel i7 processor, we
obtained ≈900 samples from the population space per hour, corresponding to
≈2.7·105 samples from the individual parameter space.

Example. To illustrate the interplay between the individual and the popula-
tion level in our design problem, Fig. 2B shows an example of the dose-response
relationship of the WTC model for a population of cells. The NLME formula-
tion takes into account the variance in parameters, that is, cell-to-cell variability.
Here, although the median response is close enough to the ideal response, approx-
imately 83% of the response curves are not within the acceptable range due to
variance in the individual parameters. This leads to a population cost of ≈0.83,
given an individual cost threshold of ε = 5 nM (corresponding to approximately
5% deviation from the reference curve). The example illustrates a key difference
between traditional design assuming an ‘average’ cell and population design. If
the design objective were to achieve a median response close to the reference,
the example would be a valid solution, although the vast majority of individual
cells would not comply with the design objective.

3.5 Sampling the Individual Parameters

Figure 3 shows the results of sampling the individual parameter space according
to the value of the individual cost s(·). We first note that the protein degradation
constant of Citrine, dC , displays a substantially narrower marginal distribution
than all other parameters. Citrine is the system response, and therefore this
distribution shape is not surprising: with all other parameters kept identical, a
change in dC will directly impact the shape of the dose-response curve.

In the two-dimensional projections of the joint distribution over the individ-
ual viable space V avg, the two parameters for protein degradation, dTet and dC ,
are correlated, but mainly in the high-viability region. This indicates that either
of the two parameters could be used to fine-tune the circuit.

Most importantly, the pattern of the projection across (θTet, θTup), which
capture the strength of transcriptional repression, reveals insights into the rele-
vance of negative feedback for WTC performance. Specifically, θTet is the param-
eter for auto-repression, whereas θTup is the parameter for constitutive repres-
sion. A smaller value of θTet (resp. θTup) means a stronger auto-repression (resp.
constitutive repression). For the viability threshold of 5 nM used to define the
viable space for the data shown in Fig. 3, most values for both θs are allowed,
including high values that would effectively nullify the corresponding repressive

Population Design for Synthetic Gene Circuits 191

Fig. 3. Viable samples in the individual parameter space. Histograms show
marginal distributions, and scatter plots samples in all two-dimensional projections
of the parameter space. In the projections, samples are colored according to their
individual cost from light blue to purple: a darker blue indicates a lower cost, and
thus a higher consistency of the WTC dose-response with the reference curve for a
given point. Only the parameters present in the plot were allowed to vary, all others
were fixed to values specified in Table 1. Additionally, all parameters were sampled in
log10-scale, and are displayed as such. (Color figure online)

effect. However, the upper right quadrant does not contain viable samples, indi-
cating that at least one type of repression is needed for the circuit to achieve the
desired behavior. Importantly, samples with lower values of the individual cost
are located in the region of low θTet (notice the color gradient). If we wish to
achieve even closer correspondence of the WTC’s dose-response with the refer-
ence curve for an individual cell (e.g., with an individual threshold ε = 2nM),
auto-repression becomes mandatory. Note as well that θTet becomes strongly cor-
related with both degradation constants dTet and dC , whenever auto-repression
is strong. This is logical because auto-repression reduces the mean expression
of TetR and Citrine, and should thus be compensated for by lower degradation
constants to keep mean expressions in the desired range.

3.6 Sampling the Population Parameters

We next applied the population design framework described in Sect. 2 to the
WTC model. Our aim is to obtain design guidelines for a reasonably good tran-

192 B. Turpin et al.

Fig. 4. Viable samples in the population parameter space. Samples in all two-
dimensional projections of the parameter space; note that CV is the common coeffi-
cient of variation for all cell-to-cell variable population parameters. Orange dots: viable
samples for the threshold on the individual cost ε = 5 nM; red dots: viable samples for
ε = 2nM. All parameters are in log10-scale.(Color figure online)

scriptional controller with low cell-to-cell variability in the steady-state dose-
response, which we encode via the population cost Eq. 10 with a threshold of
δ = 20%. The resulting samples according to Eq. 10 are shown in Fig. 4 for
the two individual cost thresholds ε = 5nM (orange) and ε = 2nM (red). For
both values of ε, we ran the Markov Chain Monte-Carlo (MCMC) chain twice
from two different starting points. This explains the apparent density differences
between regions, particularly visible in the planes (dTet, θTup) and (dTet, CV).

Compared to the individual parameter samples (Fig. 3), we observe a clear
upper bound of about 10−2.5min−1 for the population mean of dTet, which needs
to be considered in the population design of the transcriptional controller.

Moreover, we find two distinct ‘modes’ of parameter combinations that lead
to the desired population behavior, clearly visible in the (dTet, θTet) panel of
Fig. 4: if the average degradation constant dTet is large enough, this process
alone ensures a level of TetR compatible with the desired output and the auto-
repression with θTet can be chosen almost arbitrarily. Conversely, a low degrada-
tion constant requires strong auto-repression to achieve the population behav-
ior, and thus low values for θTet. These two modes are connected via a region
with strong correlation between these parameters, indicating that both param-

Population Design for Synthetic Gene Circuits 193

eters need to be tuned simultaneously to achieve the population behavior in
this region. In contrast, a strong auto-repression cannot compensate for a low
degradation of Citrine (parameter dC), while sufficiently high degradation of
Citrine does not require tuning the auto-repression constants, as seen in panels
(dC , θTet) and (dC , θTup).

To generate the data in Fig. 4, we allowed the coefficient of variation (CV,
which is multiplicative in linear space) to vary up to a value of one. However,
viable samples are essentially all below 0.02, pointing to this value as a possi-
ble maximum for the admissible cell-to-cell variability for reaching the design
objective under the model’s assumptions. For future studies, it is, hence, of
interest to experimentally quantify the cell-to-cell variability of the parameters,
and check the results against our inferred value. Note, however, that higher
coefficients of variation would be allowed in the presence of negative correla-
tions between parameters. In the plane (θTet, CV) exists also a slightly decreas-
ing slope for the case ε = 5nM: when the value of θTet increases, leading to
weaker auto-repression, the maximum admissible value for the coefficient of vari-
ation decreases. Indeed, the maximum CV for all samples has a value of ≈1.8%,
whereas the maximum CV for the samples fulfilling the condition θTet > 104 nM
is only ≈0.45%. This indicates that auto-repression can help compensate for cell-
to-cell variability.

Regarding the repression parameters, θTet and θTup, we observe what could
be expected from the individual samples: for ε = 5nM, the pattern of the projec-
tion of the samples over the plane (θTet, θTup) is very similar, if not exactly iden-
tical, to the one observed in Fig. 3. When the individual threshold is decreased
to ε = 2nM, the viable region is reduced to low values of θTet, indicating that
auto-repression becomes necessary to achieve the design objective. Just as in the
individual parameter space, θTet strongly correlates with both degradation con-
stants for low θTet, i.e. for strong auto-repression. This applies particularly for
ε = 2nM. If auto-repression is mandatory in a circuit, as here, particular atten-
tion should be given to tuning repression constants and degradation constants
together.

Finally, we assumed that neither of the two repression parameters θTet and
θTup displays cell-to-cell variability because the corresponding (microscopic)
binding affinities are related to protein and DNA sequences that should be identi-
cal in each cell of an isogenic population. To assess the impact of this assumption,
we performed an analogous sampling where the two parameters were assumed
to vary from cell to cell just as the production and degradation constants; this
yielded results very similar to Fig. 4 (data not shown).

4 Discussion

Nearly all current methods for synthetic circuit design assume an ‘average’ cell
that needs to be optimized to fulfill the design objectives, potentially by consider-
ing parameter variations to achieve robustness of the biological implementation
[10]. Stochastic design frameworks that account for cell-to-cell variability due

194 B. Turpin et al.

to intrinsic noise with low molecule copy numbers are beginning to emerge, but
computational complexity currently limits them to small networks, steady-state,
and homogeneous model parameters in a cell population [18]. Here, we therefore
proposed population design via NLMEs as an alternative to both approaches.
We argue that it has the potential to bring information about cell-to-cell vari-
ability to synthetic biological design in realistic settings, and to help infer the
impact of said variability on the system of interest.

Our case study considers a problem synthetic circuit designers often face,
namely to tune their system in order to reduce cell-to-cell variability [1]. For
the WTC, the population sampling highlighted the importance of fine-tuning
jointly the degradation constant of TetR and its auto-repression constant to
achieve low cell-to-cell variability—the parameters could assume a wider range
of values to achieve mere individual cell viability. Feedback mechanisms were
necessary in both cases, at least under our assumption of a common variance
parameter. This indicates that constitutive repression, and even more so auto-
repression, are useful to linearize dose-response curves of individual cells. While
constitutive repression had no impact on cell-to-cell variability, auto-repression
could increase the admissible CV from ≈0.45% to ≈1.8%. However, we could
not achieve higher values of the CV , most likely because variability reduction
is directly linked to repression strength: increasing repression would decrease
cell-to-cell variability as well as mean expression of the repressed component.
To weaken or eliminate this link between mean and variability, one may need to
consider more complex topologies [3]. Note also that we limited our analysis to
a small number of dimensions. Future studies could include more parameters or
allow all variance parameters to be sampled independently. With independently
sampled variances, it would be particularly interesting to see how autorepression
affects (presumably relaxes) variance constraints across the network.

One limitation of our study (and an impediment to the extended analysis of
the WTC) is the sampling technique we used. MCMC sampling does not scale
well with dimensions, but one could use dedicated methods for sampling in higher
dimensional spaces [22] instead. We also noted a tendency of the MCMC chain
to get stuck in some parameter regions for population sampling, thus requiring
multiple starting points to explore the whole space; this was not needed for the
individual parameter space. However, keeping in mind that the number of vari-
ance parameters (including correlations) grows quadratically with the number
of individual parameters, it is likely that one will not be able to tune the vari-
ance of each parameter individually. As a possible strategy, one could fix the
covariance matrix to an experimentally determined one, for example, by using
well-established NLME inference approaches [4,8] to obtain a parametrization
of the cell-to-cell variability of biological parts. Other (not mutually exclusive)
alternatives include the use of approximation methods for the individual cost [16]
and of small sets sampling techniques such as the sigma-point approximation [9].
A different approach could be to replace exact MCMC sampling by approximate
methods. For example, variational inference can be much faster than MCMC

Population Design for Synthetic Gene Circuits 195

and still provide accurate results, provided that the correlation structure of the
likelihood is properly accounted for [5].

For the present case study, we explored the population parameter space of a
network topology we knew should work for some parameter values. In the broader
context of synthetic biology, a working, simple topology that has the potential
to achieve the design objective is not necessarily known. In many cases, one may
want to explore different topologies and select the one that performs best while
still being simple enough. To achieve this goal while taking into account cell-to-
cell variability, we propose to apply the method described by Lormeau et al. [10]
to the objective function defined at the population level. Briefly, the algorithm
will explore a number of possible topologies by simplifying an initial (complex)
starting network, removing its edges. The viability (existence of parameters mak-
ing the network viable) of each network is assessed. One can then choose robust
networks according to the size of the viable region, for instance. The case study
presented here only aimed at providing a first insight into the relevance of sam-
pling from the population viable space, but we did not sample the population
viable space for multiple topologies. However, our findings for the WTC on the
importance of feedback mechanisms (to achieve the design objective, without
impacting cell-to-cell variability) and of fine-tuning TetR degradation (to reduce
cell-to-cell variability) indicate that the concept is promising.

Overall, the population design framework could then be used to recommend
network structures, together with their parameter values, that are best suited to
fulfill a design objective incorporating cell-to-cell variability. Such an approach
could also help exploring situations where cell-to-cell variability and a given
distribution over behaviors of cells in a population is desirable. One example
is bet-hedging in bacterial populations, where non-genetic variability across a
population increases the chances of survival in the face of antibiotics [13].

5 Conclusion

We propose a general framework we call population design that aims to help
biologists interested in synthetic circuit design to account for cell-to-cell vari-
ability via ODE-based NLMEs. We implemented a simple version of the concept
and demonstrated its usefulness for a transcriptional controller in an a poste-
riori case study. The current implementation is restricted to small models with
few parameters. We hope to augment it with advanced numerical methods and
extend it to the problem of topology design. In perspective, this could enable the
rational design of synthetic gene circuits that induce prescribed (distributions
of) behaviors at the population level, and thereby allow to exploit cell-to-cell
variability for novel applications.

Acknowlegements. We thank Asli Azizoglu and Claude Lormeau for discussions.
This work was supported in part by the Swiss National Science Foundation via the
NCCR Molecular Systems Engineering (grant 182895).

196 B. Turpin et al.

References

1. Azizoğlu, A., Brent, R., Rudolf, F.: A precisely adjustable, variation-suppressed
eukaryotic transcriptional controller to enable genetic discovery. bioRxiv p.
2019.12.12.874461 (2020). https://doi.org/10.7554/eLife.69549

2. Barnes, C.P., Silk, D., Sheng, X., Stumpf, M.P.H.: Bayesian design of synthetic
biological systems. Proc. Nat. Acad. Sci. 108(37), 15190–15195 (2011). https://
doi.org/10.1073/pnas.1017972108

3. Bonny, A.R., Fonseca, J.P., Park, J.E., El-Samad, H.: Orthogonal control of mean
and variability of endogenous genes in a human cell line. Nature Commun. 12(1),
1–9 (2021). https://doi.org/10.1038/s41467-020-20467-8

4. Dharmarajan, L., Kaltenbach, H.M., Rudolf, F., Stelling, J.: A simple and flexible
computational framework for inferring sources of heterogeneity from single-cell
dynamics. Cell Syst. 8(1), 15–26.e11 (2019). https://doi.org/10.1016/j.cels.2018.
12.007

5. Ghosh, S., Birrell, P., De Angelis, D.: Variational inference for nonlinear ordinary
differential equations. In: Banerjee, A., Fukumizu, K. (eds.) Proceedings of The
24th International Conference on Artificial Intelligence and Statistics. Proceedings
of Machine Learning Research, vol. 130, pp. 2719–2727. PMLR (2021). http://
proceedings.mlr.press/v130/ghosh21b.html

6. Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm.
Bernoulli 7(2), 223–242 (2001). https://doi.org/10.2307/3318737

7. Karamasioti, E., Lormeau, C., Stelling, J.: Computational design of biological
circuits: putting parts into context. Mol. Syst. Des. Eng. 2(4), 410–421 (2017).
https://doi.org/10.1039/C7ME00032D

8. Lavielle, M.: Mixed effects models for the population approach: models, tasks,
methods, and tools. CPT: Pharmacometrics Syst. Pharmacol. 4(1), (2015).
https://doi.org/10.1002/psp4.10

9. Loos, C., Moeller, K., Fröhlich, F., Hucho, T., Hasenauer, J.: A hierarchical, data-
driven approach to modeling single-cell populations predicts latent causes of cell-
to-cell variability. Cell Syst. 6(5), 593–603.e13 (2018). https://doi.org/10.1016/j.
cels.2018.04.008

10. Lormeau, C., Rudolf, F., Stelling, J.: A rationally engineered decoder of tran-
sient intracellular signals. Nature Commun. 12(1), 1886 (2021). https://doi.org/
10.1038/s41467-021-22190-4

11. Lormeau, C., Rybiński, M., Stelling, J.: Multi-objective design of synthetic bio-
logical circuits. IFAC-PapersOnLine 50(1), 9871–9876 (2017). https://doi.org/10.
1016/j.ifacol.2017.08.1601

12. Mannan, A.A., Liu, D., Zhang, F., Oyarzún, D.A.: Fundamental design principles
for transcription-factor-based metabolite biosensors. ACS Synth. Biol. 6(10), 1851–
1859 (2017). https://doi.org/10.1021/acssynbio.7b00172

13. Mart́ın, P.V., Muñoz, M.A., Pigolotti, S.: Bet-hedging strategies in expanding pop-
ulations. PLOS Comput. Biol. 15(4), e1006529 (2019). https://doi.org/10.1371/
journal.pcbi.1006529

14. Nielsen, A.A.K., et al.: Genetic circuit design automation. Science 352, 6281
(2016). https://doi.org/10.1126/science.aac7341

15. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2021). https://www.R-project.
org/

16. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press, Cambridge, Mass, Adaptive Computation and Machine Learning (2006)

https://doi.org/10.7554/eLife.69549
https://doi.org/10.1073/pnas.1017972108
https://doi.org/10.1073/pnas.1017972108
https://doi.org/10.1038/s41467-020-20467-8
https://doi.org/10.1016/j.cels.2018.12.007
https://doi.org/10.1016/j.cels.2018.12.007
http://proceedings.mlr.press/v130/ghosh21b.html
http://proceedings.mlr.press/v130/ghosh21b.html
https://doi.org/10.2307/3318737
https://doi.org/10.1039/C7ME00032D
https://doi.org/10.1002/psp4.10
https://doi.org/10.1016/j.cels.2018.04.008
https://doi.org/10.1016/j.cels.2018.04.008
https://doi.org/10.1038/s41467-021-22190-4
https://doi.org/10.1038/s41467-021-22190-4
https://doi.org/10.1016/j.ifacol.2017.08.1601
https://doi.org/10.1016/j.ifacol.2017.08.1601
https://doi.org/10.1021/acssynbio.7b00172
https://doi.org/10.1371/journal.pcbi.1006529
https://doi.org/10.1371/journal.pcbi.1006529
https://doi.org/10.1126/science.aac7341
https://www.R-project.org/
https://www.R-project.org/

Population Design for Synthetic Gene Circuits 197

17. Ryan, E.G., Drovandi, C.C., McGree, J.M., Pettitt, A.N.: A review of modern
computational algorithms for Bayesian optimal design. Int. Stat. Rev. 84(1), 128–
154 (2016). https://doi.org/10.1111/insr.12107

18. Sakurai, Y., Hori, Y.: Optimization-based synthesis of stochastic biocircuits with
statistical specifications. J. Royal Soc. Interface 15,(2018). https://doi.org/10.
1098/rsif.2017.0709

19. Soetaert, K., Petzoldt, T., Setzer, R.W.: Solving differential equations in R: Pack-
age deSolve. J. Stat. Soft. 33(9), 1–25 (2010). https://doi.org/10.18637/jss.v033.
i09

20. Vega Yon, G., Marjoram, P.: fmcmc: A friendly MCMC framework. J. Open Source
Softw. 4(39), (2019). https://doi.org/10.21105/joss.01427

21. Voigt, C.A.: Synthetic biology 2020–2030: six commercially-available products that
are changing our world. Nature Commun. 11, 6379 (2020). https://doi.org/10.
1038/s41467-020-20122-2

22. Zamora-Sillero, E., Hafner, M., Ibig, A., Stelling, J., Wagner, A.: Efficient char-
acterization of high-dimensional parameter spaces for systems biology. BMC Syst.
Biol. 5(1), 142 (2011). https://doi.org/10.1186/1752-0509-5-142

23. Češka, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Informatica 54(6),
589–623 (2017). https://doi.org/10.1007/s00236-016-0265-2

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1111/insr.12107
https://doi.org/10.1098/rsif.2017.0709
https://doi.org/10.1098/rsif.2017.0709
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.21105/joss.01427
https://doi.org/10.1038/s41467-020-20122-2
https://doi.org/10.1038/s41467-020-20122-2
https://doi.org/10.1186/1752-0509-5-142
https://doi.org/10.1007/s00236-016-0265-2
http://creativecommons.org/licenses/by/4.0/

Nonlinear Pattern Matching
in Rule-Based Modeling Languages

Tom Warnke(B) and Adelinde M. Uhrmacher

Institute for Visual and Analytic Computing, University of Rostock,
Rostock, Germany

{tom.warnke,adelinde.uhrmacher}@uni-rostock.de

Abstract. Rule-based modeling is an established paradigm for specify-
ing simulation models of biochemical reaction networks. The expressive-
ness of rule-based modeling languages depends heavily on the expres-
siveness of the patterns on the left side of rules. Nonlinear patterns
allow variables to occur multiple times. Combined with variables used in
expressions, they provide great expressive power, in particular to express
dynamics in discrete space. This has been exploited in some of the rule-
based languages that were proposed in the last years. We focus on pre-
cisely defining the operational semantics of matching nonlinear patterns.
We first adopt the usual approach to match nonlinear patterns by trans-
lating them to a linear pattern. We then introduce an alternative seman-
tics that propagates values from one occurrence of a variable to other
ones, and show that this novel approach permits a more efficient pattern
matching algorithm. We confirm this theoretical result by benchmarking
proof-of-concept implementations of both approaches.

Keywords: Rule-based modeling · Pattern matching · Formal
semantics

1 Introduction

Rule-based modeling is an established paradigm for specifying (simulation) mod-
els of biochemical reaction networks [9]. By using patterns on the left side of rules,
a single rule can express a whole class of reactions, which can additionally be
parametrized with the variables matched in the pattern. Simulation algorithms
find the reactions possible in a given state by matching the patterns to the cur-
rent model state. The expressiveness of a given rule-based modeling language
and the efficiency of the corresponding simulation algorithm depends on what
kind of patterns are allowed. In this paper, we study a particular kind of pat-
terns: patterns in which variables are allowed to occur multiple times, so called
nonlinear patterns.

Rule-based languages employ the patterns on the left rule side to constrain
the reactants participating in a reaction. Thus, nonlinear patterns allow express-
ing the relation between reactants through common attribute values. For exam-
ple, a pattern like A(x) + A(x) → . . . can be used to express that two A enti-
ties can only react if they share an attribute value. The attribute could encode
c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 198–214, 2021.
https://doi.org/10.1007/978-3-030-85633-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_12&domain=pdf
http://orcid.org/0000-0002-8196-2943
http://orcid.org/0000-0001-5256-4682
https://doi.org/10.1007/978-3-030-85633-5_12

Nonlinear Pattern Matching in Rule-Based Modeling Languages 199

the enclosing compartment, effectively requiring that reactants are located in
the same compartment [15]. More generally, nonlinear patterns facilitate expres-
sive left rule sides, in particular if patterns are also allowed to include expres-
sions. Then neighboring locations can be described with a simple pattern like
C(x) + C(x + 1). However, more complex patterns require more sophisticated
pattern matching algorithms that are able to find all pattern matches efficiently.

So far, nonlinear patterns have not been studied explicitly in the context of
(simulation) modeling languages. There is some work on nonlinear patterns in the
context of term rewriting, for example for computer algebra systems and other
kinds of symbolic computing [16]. Algorithmically, nonlinear patterns are typi-
cally matched in a linearized form and the matches are subsequently refined [2].
Oury and Plotkin [20] have proposed a modeling language rooted in term rewrit-
ing, but require patterns to be linear. The Kappa calculus [6] and the BioNet-
Gen language [5] both employ nonlinear patterns to denote existing graph edges
(without calling them such).

In this paper, we study nonlinear patterns as an important ingredient for
rule-based modeling languages. We show that the expressiveness of modeling
languages benefits from including nonlinear patterns, and discuss algorithms to
match nonlinear patterns in simulation algorithms. Our contributions are as
follows:

– We illustrate the usefulness of nonlinear patterns for modeling in computa-
tional biology by surveying examples from existing modeling languages.

– Based on an introduction to rule-based modeling with linear patterns, we
give two definitions of operational semantics for nonlinear pattern matching.
The first approach is the one most commonly used in literature and based on
translating nonlinear patterns to linear ones (linearization). As an alternative,
we introduce an inline substitution approach that propagates matches from
one occurrence of a variable to other occurrences.

– We present two algorithms implementing both semantics definitions and char-
acterize their performance by benchmarking proof-of-concept implementa-
tions. The results suggest that the inline substitution approach allows more
efficient pattern matching than the traditional linearization approach.

A proof-of-concept Scala implementation of the algorithms discussed in
this paper is available at https://git.informatik.uni-rostock.de/mosi/pattern-
matching.

2 Rule-Based Modeling

We start with a short informal introduction of rule-based modeling. Fundamen-
tally, two types of rule-based modeling languages can be distinguished. Some
languages, most prominently Kappa [6] and BNGL [5], are based on the idea of
graph rewriting. In those languages, entities and their bindings form attributed
graphs, and reaction rules use graph patterns to describe the reactants. Mapping
such reaction rules to stochastic graph rewriting rules gives a straightforward

https://git.informatik.uni-rostock.de/mosi/pattern-matching
https://git.informatik.uni-rostock.de/mosi/pattern-matching

200 T. Warnke and A. M. Uhrmacher

interpretation to reaction rules. Textual description of graph patterns in those
languages employ variables to denote edges. Variables always occur once or twice
to denote one end or both ends of a graph edge, which maps directly to graph
patterns and requires no special treatment.

Whereas graph rewriting languages like Kappa and BNGL use pattern vari-
ables to denote edges, multiset rewriting languages can use variables with more
complex domains. Here, the reaction rules operate on multisets of attributed enti-
ties (often called a solution). For example, attributes might denote a position in
continuous space [4] or, with an entity denoting a compartment, the contained
entities [19,21]. In this paper, we focus on languages based on multiset rewriting
with simple integer-valued attributes. Examples for multiset rewriting languages
with formal definitions are CSMMR [20], React(C) [15], ML-Rules [24], or Chro-
mar [14]. The foundation of this approach is equational (associative and commu-
tative) term rewriting, augmented with stochastics [1,21]. Thus, multisets are
typically denoted as terms of entities, where entities are written as function sym-
bols with attribute values as their arguments. For example, given a species A
with two integer attributes, a multiset {|A(1, 1), A(1, 2), 2A(2, 2)|} with four enti-
ties can be written as A(1, 1)+A(1, 2)+2A(2, 2). A pattern on the left side of a
reaction rule may then use variables for attributes, and these variables can then
be used on the right rule side. For example, a rule for the solution above could
be A(x, 1)+A(x, y) −→ A(x, y+1). The pattern on the left rule side is nonlinear,
as the variable x occurs twice. It matches the solution above with the variable
substitution x = 1, y = 2, leading to the successor state {|A(1, 3), 2A(2, 2)|}. In
addition, patterns can contain expressions. For example, a pattern A(x, x + 1)
is nonlinear, as x occurs twice, but the second occurrence of x is wrapped in an
expression.

Syntactically, the different rule-based modeling languages based on multiset
rewriting differ. For example, some languages use a comma instead of a plus to
denote multiset patterns. Another difference is that some languages use nominal
pattern matching (attributes are addressed by name), whereas other languages
use structural pattern matching (attributes are addressed by position). Seman-
tically, the difference between these approaches is minimal [14]. In this paper,
we use the notation as above, with a plus symbol for multiset addition and
structural pattern matching.

Rule-based modeling languages use reaction rules to denote reactions, that is
state transitions of the model. Typically, reaction rules are equipped with a rate
expression, which might depend on the variables matched on the left rule side,
associating each resulting state transition with a propensity. A continuous-time
Markov chain (CTMC) is then defined by interpreting the propensities as the
rate of an exponential distribution of the waiting time until the corresponding
reaction occurs [13]. In addition, mass-action kinetics are often applied to factor
the multiplicity of reactants into the propensity. Simulation runs of a rule-based
model can be executed by sampling a path through the CTMC with a stochastic
simulation algorithm (SSA) [11]. It is important to note that the CTMC is
only well-defined when state transitions with the same source and target state

Nonlinear Pattern Matching in Rule-Based Modeling Languages 201

are conflated by adding their rate [7]. SSAs, however, operate correctly also if
parallel transitions are not conflated. Therefore, we will not consider this caveat
any further in this paper.

3 Nonlinear Patterns in the Wild

The advantages of rule-based modeling are most evident if a single rule can
denote a large number of reactions. Common examples of such situations are
discrete spaces such as 1D or 2D grids, where one rule describes similar reac-
tions in all locations. For example, the publications introducing Chromar [14]
and CSMMR [20] apply the respective languages to model a sequence of loca-
tions in which reactions occur and between which entities diffuse. The presen-
tation of ML-Rules [19] and the protocol of a modeling language “contest” at
a Dagstuhl seminar [10, Sect. 4.4.6] feature entities reacting and diffusing in a
two-dimensional grid.

There are two ways to express such models [20], and both are related to non-
linear patterns. The first variant equips each entity with attributes representing
its location. Then diffusion can be very easily modeled as the change of those
attributes. For example, an entity in a one-dimensional sequence of locations dif-
fusing from one location to the neighboring one can be expressed as A(x) → A(x+
1). However, describing a reaction that occurs between entities in the same loca-
tion requires a nonlinear pattern: A(x) + A(x) → B(x). Alternatively, the loca-
tions can be modeled explicitly as compartments containing entities, where the
compartments now carry their location as attributes. Then, a reaction between
colocated entities is easily expressed as C(x,A+A+rest) → C(x,B+rest). But
in this approach, diffusion requires a nonlinear pattern to capture neighboring
compartments: C(x,A+rest1)+C(x+1, rest2) → C(x, rest1)+C(x+1, A+rest2).
Note that the location attribute of the second compartment C is matched by
the expression x + 1.

In modeling languages that do not support nonlinear patterns, these situa-
tions are typically resolved by linearizing the left rule side. For example, the
pattern A(x) +A(x) is translated to A(x) +A(y) with the additional constraint
that x = y. Compared to the formulation as a nonlinear pattern, this has two
disadvantages. First, the rule is more complex—it has two variables instead of
one as well as an additional constraint. Second, matching the pattern is less effi-
cient, as all combinations of values for x and y need to be checked for whether
they satisfy the constraint [20].

Although the significance of nonlinear patterns is evident from the examples
above, so far the research on rule-based modeling has not focused on them.
In particular, their semantics and their impact on pattern matching algorithms
have not been studied. In the next sections, we formalize the intuitions above and
precisely define linear and nonlinear pattern matching for rule-based modeling
languages. We also relate these definitions to the handling of nonlinear patterns
in existing languages.

202 T. Warnke and A. M. Uhrmacher

4 Linear Pattern Matching

We define the syntax and semantics of a “canonical” rule-based modeling lan-
guage based on multiset rewriting. This is explicitly not intended as the defini-
tion of a novel multiset rewriting language, but rather as a unifying formalization
that captures this notion of rule-based modeling. We start with a simple version
of the language, with linear patterns and no expressions on the left rule side. In
the next section, we add both these features to illustrate the difference in syntax
and semantics.

4.1 Abstract Syntax

First, we assume a number of attributed (chemical) species with a non-negative
arity. Let the set of species be S and ar : S → N0 be the function mapping
each species to its arity. Thus, each entity belonging to species S ∈ S has ar(S)
attributes. The values of the entity’s attributes come from a set V—we do not
type attributes here to keep the definition simple. Let {||} denote the empty
multiset, and � and � denote multiset addition and subtraction, respectively.
Further, for a multiset A and an element a, let nA(a) be the multiplicity of a in
A (how often a is contained in A), and a ∈ A iff nA(a) ≥ 1.

Now we can define a state of our model, a solution, as a multiset of entities:

ent := S(v1, . . . , vn) S ∈ S, n = ar(S), v1, . . . , vn ∈ V
sol := {|ent |} � sol

| {||}
A rule is then a triple of a pattern on the left rule side, a rate expression,

and products on the right rule side. The pattern can contain variables and plain
values for attributes, the products can also contain expressions for attributes. To
define this, we additionally need a set X of pattern variables. We also assume
some set E of expressions over V and X . The syntax also defines a dedicated
symbol ∅ to explicitly denote empty left or right sides of rules. We will usually
omit the ∅ when writing nonempty left or right rule sides.

a := v | x v ∈ V, x ∈ X
pat := S(a1, . . . , an) + pat S ∈ S, n = ar(S)

| ∅
prod := S(e1, . . . , en) + prod S ∈ S, n = ar(S), e1, . . . , en ∈ E

| ∅
rule := pat e−→ prod e ∈ E

The definition of the rule syntax is not complete without restricting which
variables may occur where. Let var be a function that maps each term to the
set of contained variables:

Nonlinear Pattern Matching in Rule-Based Modeling Languages 203

var(v) := {}
var(x) := {x}
var(S(a1, . . . , an) + pat) := var(a1) ∪ . . . ∪ var(an) ∪ var(pat)
var(S(e1, . . . , en) + prod) := var(e1) ∪ . . . ∪ var(en) ∪ var(prod)
var(∅) := {}
var(e) := {x ∈ X | x occurs in e}

Then we require for a rule pat e−→ prod that var(prod) ⊆ var(pat) and
var(e) ⊆ var(pat). For now, we also require that the pattern pat is linear, that
is each variable in pat occurs only once.

4.2 Pattern Matching Semantics

To apply a rule to a solution, the pattern on the left rule side is matched to
the solution. This results in a set of variable substitutions that map the pat-
tern variables to values. Substitutions σ : X ⇀ V are partial functions that
map a finite number of variables to values. The domain of a substitution σ,
that is the variables on which it is defined, is dom(σ). While being defined on
variables, a substitution σ is trivially extended to compound syntactic terms,
where it replaces each variable v ∈ dom(v) with σ(v) and leaves everything else
unchanged. Sometimes it is useful to write a substitution as a set of mappings
x
→ v, with x ∈ X and v ∈ V.

The big-step semantics of matching a linear pattern to a solution is given in
Fig. 1 with an operator ⇓s,σ that is parametrized with the current model state s
(which is a solution) and the variable substitution σ. The big-step operator takes
a rule to a reaction, that is a transition from one solution to another, equipped
with a propensity taking mass-action kinetics into account. As mentioned in
Sect. 2, this is interpreted as a state transition in a CTMC.

The key point in this definition is the composition of the variable assignment
in the rule (PAT), highlighted in red. As the pattern is assumed to be linear, each
variable only occurs once in the pattern. Therefore, variable assignments result-
ing from evaluating subterms (for attributes or recursion to the next pattern)
will never overlap. This can be exploited by combining them via set addition. In
fact, the set of all valid substitutions is the cartesian product of the valid substi-
tutions for all individual variables. The linearity of the patterns is reflected in
the linearity of combining substitutions.

This kind of semantics is used, for example, in Oury’s and Plotkin’s
(C)SMMR [20,21]. Similar as in the semantics defined above, linearity of pat-
terns is exploited there to decompose matching a complex pattern into matching
the subpatterns independently and combining the results.

4.3 Algorithm

The rule (PAT) in the operational semantics suggests a simple algorithm for
matching a pattern and finding all valid substitutions. For each entity in the
pattern and for each entity in the current solution, if both belong to the same

204 T. Warnke and A. M. Uhrmacher

Fig. 1. Operational semantics of linear pattern matching

species, match all attributes and combine the resulting substitutions. Algorithm
1 shows a recursive formulation of this idea in pseudocode. The algorithm decon-
structs a pattern following the abstract syntax and returns all substitutions that
are valid according to the formal semantics, given a solution. In a simulation
algorithm, each substitution can be used to evaluate the rate expression and
products of a rule to instantiate a state transition. Note that the algorithm
recurs at most once (in line 4); thus, it does not backtrack. With n distinct enti-
ties in the solution and m variables in the pattern, the runtime is bounded by
O(nm).

5 Nonlinear Pattern Matching with Expressions

As demonstrated in Sect. 3, nonlinear patterns as well as expressions in the pat-
tern are useful for modeling discrete space. To allow for nonlinear patterns, the
semantics needs to be adapted to allow matching nonlinear patterns containing
expressions. In the following, we first adapt the definition of the syntax and then
present two approaches to define the semantics of pattern matching.

5.1 Abstract Syntax

The abstract syntax of this extended language now does not distinguish between
the left and right rule sides. On both sides, we have lists of entities with expres-
sions for attributes.

Nonlinear Pattern Matching in Rule-Based Modeling Languages 205

Input: A solution sol and a pattern pat
Output: A set of substitutions

1 Function match(sol , pat)
2 switch pat do
3 case S(a1, a2, . . . , an) + pat ′ do
4 tailResults = match(sol , pat ′);
5 subs ← ∅;
6 foreach S(v1, v2, . . . , vn) ∈ sol do // filters by species name

7 if ∀ai ∈ V : ai = vi then
8 foreach r ∈ tailResults do
9 subs ← subs ∪ {r ∪ {ai �→ vi | ai ∈ X}}

10 end
11 end
12 end
13 return subs;
14 end
15 case ∅ do
16 return {∅};
17 end
18 end
19 end

Algorithm 1: An algorithm for matching linear patterns

pat := S(e1, . . . , en) + pat S ∈ S, n = ar(S), e1, . . . , en ∈ E
| ∅

rule := pat l
e−→ patr e ∈ E

We assume V ⊆ E and X ⊆ E , that is the set of expressions includes individual
values and variables.

We now allow variables in pat l to occur multiple times, that is pat l may be
a nonlinear pattern. We still require that var(patr) ⊆ var(pat l) and var(e) ⊆
var(pat l). In addition, however, we must now constrain the pattern on the left
side such that it is possible to match it with reasonable effort. For example, we
want to prohibit rules like A(x+y) k−→ A(x)+A(y) which, depending on the value
range of variables, might yield infinitely many pattern matches. In this paper, we
require that every variable appears at least once in place of an attribute directly
rather than nested in an expression. We call this a direct occurrence. Intuitively,
such a direct occurrence allows us to obtain all possible values for that variable
by looking at the corresponding attribute values in the solution.

Alternatively, we could require that the first occurrence of a variable must be
directly in place of an attribute. This would make the order of the reactants sig-
nificant, and also preclude patterns such as A(x, y+1)+A(x+1, y). This approach
is used (although not documented) in the implementation of ML-Rules [12].

206 T. Warnke and A. M. Uhrmacher

A more ambitious requirement could allow simple algebraic transformations.
For example, the rule A(x + 1) k−→ A(x) could be equivalently expressed as
A(x) k−→ A(x − 1). In this fashion, patterns on the left side can be simplified
automatically. We leave further considerations in this direction to future work.

Finally, note that the extended syntax also facilitates syntactic sugar for
reversible rules, provided the above constraints for variable usage are satisfied
on both rule sides. For example, a pair of rules A

k1−→ B and B
k2−→ A could be

written as A
k1−⇀↽−
k2

B.

5.2 Pattern Matching Semantics

We now present two different ways to define the semantics of nonlinear patterns
with expressions.

Linearization. The first, simplest, and arguably most common approach to
match nonlinear patterns is to “linearize” the pattern. This term refers to the
transformation of a nonlinear pattern to a linear one by replacing all but one
occurrences of a multiply occurring variable with a fresh variable [2]. Chro-
mar [14] uses the same idea and replaces expressions in which variables occur
with fresh variables. That linearized pattern can then be matched according to
the semantics of linear patterns, and the resulting substitutions are then filtered
to obtain those in which the replaced expressions have the same value as the vari-
able they were replaced with. For example, the nonlinear pattern A(x)+A(x+1)
is transformed to the linear pattern A(x) + A(y) with the constraint y = x + 1,
which can be evaluated for any substitution that assigns values to x and y by
matching the pattern A(x) + A(y).

To formalize this idea, we assume a relation lin that associates a nonlinear
pattern pat l with a linear pattern pat l,lin and the set of resulting constraints con.
Then the matches of the linear pattern are defined by the operational semantics
in Sect. 4.2. The resulting substitution σ will map the original and the newly
introduced variables to values, and only if all the constraints hold under σ, it is
a valid result also for the nonlinear pattern.

(LIN)

lin(pat l, pat l,lin , con) pat l,lin
e−→ patr ⇓s,σ s k=⇒ t

for all c ∈ con : σ(con) holds

pat l
e−→ patr ⇓s,σ s k=⇒ t

This is also directly translatable into a three-step algorithm. First, the pat-
tern is linearized, saving the replacements made as constraints. Then, the lin-
earized pattern is matched with the linear pattern matching algorithm from
Sect. 4.3, resulting in a set of substitutions. Those substitutions are then fil-
tered using the saved constraints. Figure 2 shows a schematic visualization of
the matching algorithm.

Nonlinear Pattern Matching in Rule-Based Modeling Languages 207

Fig. 2. Visualization of the linearization algorithm for matching the pattern A(x) +
A(x+1) in the solution {|A(1), A(2)|}. The linearized pattern yields 4 substitutions, of
which only one satisfies the constraints obtained during the linearization.

This procedure is problematic if many of the linear pattern matching results
have to be filtered out [20]. As the constraints are only evaluated in the end, the
intermediate results are produced in any case and only then discarded. For exam-
ple, the pattern A(x) + A(x + 1) matched to a solution {|A(1), A(2), . . . , A(n)|}
has n−1 matches, but the linearized version will produce n2 intermediate results.
In general, the algorithm’s runtime is bounded by O(nm) with n distinct entities
in the solution and m the number of attributes in the pattern that contain at
least one variable occurrence.

In the following, we introduce an algorithm that exploits the links between
different occurrences of the same variable in the pattern to avoid unnecessary
work.

Inline Substitution. So far, we have defined the semantics with an operator
term ⇓s,σ value that includes the variable substitution as a parameter of the rela-
tion. This emphasizes that the variable substitution is created as a by-product of
pattern matching, but has no significant influence on the actual pattern match-
ing process. In the following, we additionally use a relation term | σ ⇓s value | σ′

for defining the matching of the pattern on the left rule side (Fig. 3). It reads
as follows: given a substitution σ, matching term to s results in value and the
modified substitution σ′. This allows us to define how the variable substitution
is created and transformed during pattern matching, similar to how mutable
references are represented in formal semantics of programming languages [22,
Sect. 13]. This alternative evaluation relation is “invoked” in the premises of
(RULE) and resolved in (PAT-L) and (EMPTY-L).

208 T. Warnke and A. M. Uhrmacher

The core of the definition is the rule (PAT-L) which handles the matching
of an entity pattern. The definition is operational in that its premises can be
thought of as successive steps in an algorithm. We walk through them to explain
the rule. (PAT-L) defines how to match an entity pattern S(e1 . . . , en) + pat ,
given a substitution σ. First, we select an entity S(v1 . . . , vn) in the current
solution (i.e. an entity of the same species). Then, we create a new substitution
σ′ that maps all direct variable occurrences among the ei to the corresponding
vi of the selected entity. This substitution σ′ is then applied to the remaining
pattern pat , followed by recursion. The recursion results in a new substitution
σ′′, which is then used to evaluate all ei of the pattern. The evaluation results
must match the vi of the entity selected in the first step.

Naturally, the substitutions play a central role in the semantics of the pattern
matching. In (PAT-L), σ substitutes all variables with direct occurrences left of
the entity pattern currently handled, and has already been applied to the pattern.
σ′ substitutes all variables directly occurring in the current entity pattern, and
σ′′ substitutes all variables.

Fig. 3. Operational semantics of inline substitution

Inline Substitution Algorithm. Algorithm 2 shows an algorithm that imple-
ments the operational semantics of inline substitution. Similarly as the semantics,
the algorithm operates in two phases. In the first phase, all direct occurrences of
variables are found from left to right and all possible values for these variables
are iterated (line 8). When the end of the pattern is reached, the accumulated
substitution contains values for all variables in the pattern (line 27). In the sec-
ond phase now, the recursive calls retreat from right to left through all entity
patterns with the complete substitution. This allows evaluating all expressions

Nonlinear Pattern Matching in Rule-Based Modeling Languages 209

Input: A solution sol , a pattern pat , and a substitution σ (initially ∅)
Output: A set of substitutions

1 Function match(sol , pat , σ)
2 switch pat do
3 case S(e1 . . . , en) + pat ′ do
4 if one of ei is a direct variable occurrence then
5 subs ← ∅;
6 x ← variable with the first direct occurrence in ei;
7 j ← index of the first occurrence of x in ei;
8 foreach S(v1 . . . , vn) ∈ sol do // filters by species name

9 σ′ ← {x �→ vj};
10 pat ′′ ← σ′(S(e1 . . . , en) + pat ′);
11 σ′′ ← match(sol , pat ′′, σ ∪ σ′);
12 subs ← subs ∪ σ′′;
13 end
14 return subs;
15 else
16 tailResults ← match(sol , pat ′, σ);
17 foreach σ′′ ∈ tailResults do
18 ent ← σ′′(S(e1 . . . , en));
19 if ent ∈ sol then
20 subs ← subs ∪ σ′′;
21 end
22 end
23 return subs;
24 end
25 end
26 case ∅ do
27 return {σ};
28 end
29 end
30 end
Algorithm 2: An algorithm for matching nonlinear patterns via inline substi-
tution

to values, obtaining an entity from each entity pattern (line 18). Then the algo-
rithm checks whether that entity exists in the solution (line 19). This last check
can be sped up by using appropriate data structures for representing the solution.
Figure 4 shows a schematic visualization of the matching algorithm.

Note that the algorithm recurs once for every variable in the pattern (in line
11) and backtracks to cover all possible values for that variable. The algorithm
also recurs once for every entity pattern in line 16. Thus, with n distinct enti-
ties in the solution and m variables in the pattern the algorithm’s runtime is
bounded by O(nm) (assuming that the number of entity patterns is small w.r.t.
the number of variables and the lookup in line 19 happens in O(1)).

210 T. Warnke and A. M. Uhrmacher

Fig. 4. Visualization of the inline substitution algorithm for matching the pattern
A(x)+A(x+1) in the solution {|A(1), A(2)|}. The branches denote the iteration in line
8 of Algorithm 2. When substituting x with 2, the pattern A(x + 1) is evaluated to
A(3), which does not exist in the solution; thus, this branch fails. When substituting
x with 1, however, the matching succeeds.

6 Benchmarks

To illustrate the difference in the runtime of the different algorithms, we bench-
marked our proof-of-concept implementations of both the linearization and the
inline substitution approach. We matched the pattern A(x) + A(x + 1), which
expresses neighborhood in a linear chain of entities, in chains A(1) + . . . + A(n)
of increasing length. Figure 5 shows the number of completed pattern matches
per second1. The benchmarks were executed on a standard laptop with an AMD
Ryzen 7 PRO 4750U processor and 32 GB of memory. Note that this bench-
mark is not meant to be representative of real-world uses of pattern matching
in simulation algorithms, but to highlight the impact of the different complexity
classes.

The benchmark results indicate that the linearization approach scales
quadratically with the length of the chain. This is consistent with our classi-
fication of the algorithm’s runtime in O(nm) (Sect. 5.2), where m = 2. The
pattern is translated to A(x) + A(y) (with the constraint y = x + 1). Therefore,
doubling the length of the chain doubles the number of values for x and y each,
leading to a fourfold increase of substitutions to check for whether they satisfy
the constraint.

In contrast, the inline substitution approach scales linearly. Doubling the
length of the chain means that the number of values for x doubles, and that for
each x it has to be checked whether an A(x + 1) exists in the solution. As long
1 The source code repository at https://git.informatik.uni-rostock.de/mosi/pattern-

matching contains instructions on how to reproduce this plot.

https://git.informatik.uni-rostock.de/mosi/pattern-matching
https://git.informatik.uni-rostock.de/mosi/pattern-matching

Nonlinear Pattern Matching in Rule-Based Modeling Languages 211

Fig. 5. Number of completed matches per second for the pattern A(x) +A(x+1) in a
solution of the form A(1) + · · · + A(n) with increasing n.

as this check scales well, the overall approach does as well. In our implementa-
tion, this check is implemented as a lookup in a hash map and is, thus, largely
independent from the length of the chain.

Our performance results have to be interpreted carefully. In fact, simulation
algorithms usually achieve efficiency by avoiding pattern matching as much as
possible. For example, network-based algorithms perform the pattern matching
as a preprocessing step to “unfold” reaction rules to all their instances [23]. But
even network-free algorithms can minimize pattern matching by maintaining a
dependency graph between reaction instances [17]. Benchmarks with a complete
simulation algorithm (and real-world models) would help to characterize the
actual impact of improving the pattern matching’s performance. In addition,
both implementations could be optimized further.

7 Discussion and Conclusion

While nonlinear pattern matching has not been studied in the context of rule-
based modeling languages, it has also not received much attention in other
domains (with a few exceptions, e.g. [2,16]). For example, Haskell and Scala,
which are functional programming languages with good support for pattern
matching, do not allow nonlinear patterns. The reason is that these languages
allow attribute values that are not easily comparable (e.g., functions)2. In rule-

2 See, for example, this discussion on the haskell-cafe mailing list.

https://www.mail-archive.com/haskell-cafe@haskell.org/msg59617.html

212 T. Warnke and A. M. Uhrmacher

based modeling languages, in contrast, attributes hold simple, comparable val-
ues, making nonlinear patterns feasible. A novel programming language that
explicitly focuses on nonlinear pattern matching is Egison [8]. In contrast to
nonlinearity, linearity has recently received a lot of attention in programming
language research. Linear type systems have been introduced in Haskell [3] and
are closely related to Rust’s ownership model [25]. Here, usage of variables is
constrained to achieve safe and efficient usage of resources, most importantly
memory.

As term pattern matching can be considered a special case of unification,
our work is also closely related to logic programming. For example, the logic
programming language Prolog allows expressing the pattern A(x) + A(x + 1)
as a(X), Y is X + 1, a(Y), which is processed from left to right during SLD
resolution [18]. Thus, nonlinear patterns with expressions are expressed in a
linearized form, but the constraints can be embedded into the pattern to evaluate
them during the matching as in our inline substitution algorithm. In the future,
we plan to further investigate the relation of constraint logic programming to
our approach.

In this paper, we have investigated the concept of nonlinear pattern in rule-
based modeling languages for biochemical reaction networks. Although some rule-
based languages including nonlinear patterns have been proposed, the nature of
these patterns was, so far, not studied in detail. We have explored two aspects
of nonlinear patterns.

First, we have shown two ways to formally define the operational semantics of
matching nonlinear patterns to a multiset of attributed entities. This contributes
to defining more expressive rule-based languages formally. As the expressiveness
of rule-based languages depends largely on the allowed patterns on the left rule
side, including nonlinear patterns increases the expressiveness of the language
(as illustrated in Sect. 3).

Second, we have devised and implemented algorithms that implement both
formal definitions. Whereas the linearization approach translates the nonlinear
pattern to a linear one, the inline substitution approach checks the pattern
directly. Based on the algorithms, we can conclude that the inline substitution
approach has a higher potential for computational efficiency. Benchmarks of our
proof-of-concept implementations confirmed this.

As a continuation of this work, the semantics and algorithmics of nonlinear
pattern matching should be studied further. In particular, the impact on real-
world modeling problems should be investigated, referring to expressiveness (i.e.,
how does the model description benefit from allowing nonlinear patterns) as
well as performance (i.e., how much can the simulation efficiency be improved
by matching nonlinear patterns efficiently). This paper should also contribute to
helping to integrate nonlinear pattern matching into existing and future model-
ing language specifications and implementations.

Nonlinear Pattern Matching in Rule-Based Modeling Languages 213

References

1. Baader, F., Nipkow, T., Franz, B.: Term Rewriting and All That. Cambridge Uni-
versity Press, Cambridge (2006)

2. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative-commutative discrimi-
nation nets. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993. LNCS, vol.
668, pp. 61–74. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56610-
4_56

3. Bernardy, J.-P., Boespflug, M., Newton, R.R., Jones, S.P., Spiwack, A.: Linear
haskell: practical linearity in a higher-order polymorphic language. In: Proceedings
of the ACM on Programming Languages, vol. 2, no. POPL, pp. 1–29 (2018)

4. Bittig, A.T., Uhrmacher, A.M.: ML-space: hybrid spatial gillespie and particle sim-
ulation of multi-level rule-based models in cell biology. IEEE/ACM Trans. Comput.
Biol. Bioinf. 14(6), 1339–1349 (2017)

5. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: Bionetgen: software for
rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics 20(17), 3289–3291 (2004)

6. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325(1),
69–110 (2004)

7. De Nicola, R., Latella, D., Loreti, M., Massink, M.: A uniform definition of stochas-
tic process calculi. ACM Comput. Surv. 46(1), 1–35 (2013)

8. Egi, S.: Egison: non-linear pattern-matching against non-free data types (2015)
9. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical

systems with bionetgen. In: Maly, I.V. (ed.) Methods in Molecular Biology, pp.
113–167. Humana Press (2009)

10. Gilbert, D., Heiner, M., Takahashi, K., Uhrmacher, A.M.: Multiscale spatial com-
putational systems biology (dagstuhl seminar 14481) (2015)

11. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

12. Helms, T., Warnke, T., Maus, C., Uhrmacher, A.M.: Semantics and efficient sim-
ulation algorithms of an expressive multi-level modeling language. ACM Trans.
Model. Comput. Simul. 27(2), 8:1–8:25 (2017)

13. Henzinger, T.A., Jobstmann, B., Wolf, V.: Formalisms for specifying markovian
population models. Int. J. Found. Comput. Sci. 22(4), 823–841 (2011)

14. Honorato-Zimmer, R., Millar, A.J., Plotkin, G.D., Zardilis, A.: Chromar, a lan-
guage of parameterised agents. Theor. Comput. Sci. 765, 97–119 (2019)

15. John, M., Lhoussaine, C., Niehren, J., Versari, C.: Biochemical reaction rules
with constraints. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 338–357.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19718-5_18

16. Krebber, M., Barthels, H., Bientinesi, P.: Efficient pattern matching in python.
ACM Press (2017)

17. Köster, T., Warnke, T., Uhrmacher, A.M.: Partial evaluation via code generation
for static stochastic reaction network models. In: Proceedings of the 2020 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation, Miami FL,
Spain, pp. 159–170. ACM (2020)

18. Lloyd, J.W.: Foundations of Logic Programming, (2nd Extended. Springer, Heidel-
berg (1987). https://doi.org/10.1007/978-3-642-83189-8

19. Maus, C., Rybacki, S., Uhrmacher, A.M.: Rule-based multi-level modeling of cell
biological systems. BMC Syst. Biol. 5(1), 166 (2011)

https://doi.org/10.1007/3-540-56610-4_56
https://doi.org/10.1007/3-540-56610-4_56
https://doi.org/10.1007/978-3-642-19718-5_18
https://doi.org/10.1007/978-3-642-83189-8

214 T. Warnke and A. M. Uhrmacher

20. Oury, N., Plotkin, G.D.: Coloured stochastic multilevel multiset rewriting. ACM
Press (2011)

21. Oury, N., Plotkin, G.D.: Multi-level modelling via stochastic multi-level multiset
rewriting. Math. Struct. Comput. Sci. 23(2), 471–503 (2013)

22. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
23. Suderman, R., Mitra, E.D., Lin, Y.T., Erickson, K.E., Feng, S., Hlavacek, W.S.:

Generalizing gillespie’s direct method to enable network-free simulations. Bull.
Math. Biol. 81(8), 2822–2848 (2018)

24. Warnke, T., Helms, T., Uhrmacher, A.M.: Syntax and semantics of a multi-level
modeling language. In: Proceedings of the 2015 ACM SIGSIM Conference on Prin-
ciples of Advanced Discrete Simulation, pp. 133–144. ACM, New York (2015)

25. Weiss, A., Gierczak, O., Patterson, D., Matsakis, N.D., Ahmed, A.: The essence of
rust. Oxide (2020)

Protein Noise and Distribution
in a Two-Stage Gene-Expression Model

Extended by an mRNA Inactivation Loop

Candan Çelik1(B), Pavol Bokes1,2, and Abhyudai Singh3

1 Department of Applied Mathematics and Statistics, Comenius University,
84248 Bratislava, Slovakia

{candan.celik,pavol.bokes}@fmph.uniba.sk
2 Mathematical Institute, Slovak Academy of Sciences, 81473 Bratislava, Slovakia
3 Department of Electrical and Computer Engineering, University of Delaware,

Newark, DE 19716, USA
absingh@udel.edu

Abstract. Chemical reaction networks involving molecular species at
low copy numbers lead to stochasticity in protein levels in gene expres-
sion at the single-cell level. Mathematical modelling of this stochastic
phenomenon enables us to elucidate the underlying molecular mecha-
nisms quantitatively. Here we present a two-stage stochastic gene expres-
sion model that extends the standard model by an mRNA inactivation
loop. The extended model exhibits smaller protein noise than the orig-
inal two-stage model. Interestingly, the fractional reduction of noise is
a non-monotonous function of protein stability, and can be substantial
especially if the inactivated mRNA is stable. We complement the noise
study by an extensive mathematical analysis of the joint steady-state
distribution of active and inactive mRNA and protein species. We deter-
mine its generating function and derive a recursive formula for the protein
distribution. The results of the analytical formula are cross-validated by
kinetic Monte-Carlo simulation.

Keywords: Stochastic gene expression · Master equation · Analytical
distribution · Generating function · Stochastic simulation

1 Introduction

As many other biochemical mechanisms, gene expression in which protein syn-
thesis occurs is inherently stochastic due to random fluctuations in the copy
number of gene products, e.g. proteins [7]. From the viewpoint of biochemical

CÇ is supported by the Comenius University grant for doctoral students Nos.
UK/106/2020 and UK/100/2021. PB is supported by the Slovak Research and Devel-
opment Agency under the contract No. APVV-18-0308 and by the VEGA grant
1/0339/21, and the EraCoSysMed project 4D-Healing. AS acknowledges support by
ARO W911NF-19-1-0243 and NIH grants R01GM124446 and R01GM126557.

c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 215–229, 2021.
https://doi.org/10.1007/978-3-030-85633-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-85633-5_13

216 C. Çelik et al.

reactions, in simplest formulations, gene expression consists of two main steps:
transcription and translation. While RNA polymerase enzymes produce mRNA
molecules in the former, protein synthesis takes place by ribosomes in the lat-
ter, each reaction corresponding to the production and decay of relevant species.
Additionally, the two-stage model can be extended by the regulation of tran-
scription factors, which affect gene expression by modulating the binding rate of
RNA polymerase [3].

Over the last decades, the two-stage model of gene expression has been exten-
sively studied to understand how the stochastic phenomenon in cellular processes
takes place [14,15,19,20]. Specifically, quantifying the number of species in terms
of probability distributions has become an interesting and challenging endeavour
due to the subtleties involved in finding a solution to the underlying problem.
On the other hand, the fluctuations in mRNA and protein levels are consid-
ered as a major source of noise, leading to cell-to-cell variability in gene reg-
ulatory networks [12,16,18]. The noise emerges from different sources, namely
intrinsic and extrinsic noise [25,27]; yet, structural elements such as stem-loops
can also contribute to noise by binding to an untranslated region of mRNA
[6]. The untranslated regions of mRNAs often contain these stem-loops that
can reversibly change configurations making individual mRNAs translationally
active/inactive.

Numerous modelling approaches have been proposed that are based on deter-
ministic and stochastic frameworks, and recently also hybrid ones as a combi-
nation of the preceding two [5,10,23]. Only a few of those provide an explicit
solution to the two-stage gene-expression model [4,20]; most of the studies are
based on Monte Carlo simulations, which are usually computationally expensive.

As a generalisation of the two-stage model, some studies in the literature
consider a set of multiple gene states and investigate the dynamics of stochastic
transitions among these states [11,29]. Nevertheless, to the best of our knowl-
edge, none of these studies takes an mRNA inactivation into account. Here we
extend the two-stage model by an MRNA inactivation loop, by which we mean
that after transcription species can switch between active and inactive states.
In other words, there exists a pair of reversible chemical reactions occurring
at constant rates by turning active mRNA species into inactive ones, and vice
versa. Subsequently, the active mRNA is translated, while the inactive mRNA
stays dormant. The schematic of reactions describing the model is given in (1).
Here we thereafter refer to the aforementioned model as the extended model.
A possible biological scenario that can implement this extended model is by a
regulatory RNA that temporarily blocks mRNA function [17].

This paper is organised as follows. In Sect. 2, the stationary means of active
mRNA, inactive mRNA, and protein are obtained from a deterministic formula-
tion the model; the master equation of the stochastic model is formulated, and
transformed into a partial differential equation for the generating function. In
Sect. 3, the partial differential equation is transformed into one for the facto-
rial cumulant generation function and a power series solution is found; recursive
expressions for the coefficients—the factorial cumulants of the three molecular

Protein Noise and Distribution in a Two-Stage Gene-Expression Model 217

species—are thereby provided. In Sect. 4, the protein Fano factor is expressed in
terms of the first two factorial cumulants, and the noise-reduction effect of the
mRNA inactivation loop is analysed. The generating function of the stationary
distribution of active mRNA, inactive mRNA and protein amounts is repre-
sented in the special-function form in Sect. 5. The marginal protein and active
and inactive mRNA distributions are derived in Sect. 6. The paper is concluded
in Sect. 7.

2 Model Formulation

The extended model involves three species, mRNA, inactive mRNA (imRNA for
short), and protein, and consists of the reactions

∅ λ1−⇀↽−
γ1

mRNA, mRNA
α−⇀↽−
β

imRNA, imRNA
γ̃1−→ ∅,

mRNA λ2−→ mRNA + protein, protein
γ2−→ ∅.

(1)

The reactions in (1) correspond to mRNA transcription and decay, mRNA acti-
vation and inactivation, inactive mRNA decay, protein translation, and protein
decay, respectively.

Due to the linearity of kinetics in (1), the mean levels of the mRNA (m),
inactive mRNA (m̃) and protein (n) exactly satisfy the system of deterministic
rate equations

d〈m〉
dt

= λ1 − (γ1 + α)〈m〉 + β〈m̃〉,
d〈m̃〉
dt

= α〈m〉 − (γ̃1 + β)〈m̃〉,
d〈n〉
dt

= λ2〈m〉 − γ2〈n〉.

(2)

Setting time derivatives in (2) to zero, and solving the resulting algebraic system,
the stationary means are obtained as

〈m〉 =
λ1

γeff
1

, 〈m̃〉 =
α

γ̃1 + β
〈m〉, 〈n〉 =

λ2

γ2
〈m〉, (3)

for the mRNA, inactive mRNA, and protein respectively, where

γeff
1 = γ1 +

αγ̃1

γ̃1 + β
(4)

denotes the effective rate of mRNA decay. Owing to the linearity of reaction
rates, one can find a closed system of differential equations not only for means,
but also for higher-order moments [21,24]; however these equations are typically
less revealing than the mean dynamics. Here we take a different approach and

218 C. Çelik et al.

quantify the protein noise as a by-product of a generating-function analysis in
Sect. 4.

The probability pm,m̃,n(t) of having m mRNA, m̃ inactive mRNA, and n
protein molecules at time t satisfies the chemical master equation

dpm,m̃,n

dt
= λ1(pm−1,m̃,n − pm,m̃,n) + α((m + 1)pm+1,m̃−1,n − mpm,m̃,n)

+ γ̃1((m̃ + 1)pm,m̃+1,n − m̃pm,m̃,n) + λ2m(pm,m̃,n−1 − pm,m̃,n)
+ γ2((n + 1)pm,m̃,n+1 − npm,m̃,n) + γ1((m + 1)pm+1,m̃,n − mpm,m̃,n)
+ β((m̃ + 1)pm−1,m̃+1,n − m̃pm,m̃,n). (5)

Equating the left-hand side of (5) to zero yields the steady-state master equation

0 = λ1(pm−1,m̃,n − pm,m̃,n) + α((m + 1)pm+1,m̃−1,n − mpm,m̃,n)
+ γ̃1((m̃ + 1)pm,m̃+1,n − m̃pm,m̃,n) + λ2m(pm,m̃,n−1 − pm,m̃,n)
+ γ2((n + 1)pm,m̃,n+1 − npm,m̃,n) + γ1((m + 1)pm+1,m̃,n − mpm,m̃,n)
+ β((m̃ + 1)pm−1,m̃+1,n − m̃pm,m̃,n), (6)

We additionally require that the normalising condition
∑

m,m̃,n

pm,m̃,n = 1 (7)

hold.
We aim to find the moments of the probability distribution pm,m̃,n by using

the generating function approach [8]. In order to solve (6)–(7), we employ the
probability generating function

G(x, y, z) =
∑

m,m̃,n

xmym̃znpm,m̃,n (8)

for the probability distribution pm,m̃,n. Multiplying (6) by the factor xmym̃zn

and summing over m, m̃ and n yields

λ1(1 − x)G = (λ2x(z − 1) + γ1(1 − x) + α(y − x))
∂G

∂x

+ (γ̃1(1 − y) + β(x − y))
∂G

∂y
+ γ2(1 − z)

∂G

∂z
. (9)

Equation (9) is subject to
G(1, 1, 1) = 1, (10)

which is implied by the normalisation condition (7).

3 Factorial Cumulant Generating Function

In order to find a particular solution to (9)–(10), we change the variables accord-
ing to

x = 1 + u, y = 1 + v, z = 1 + w, G = exp(ϕ), (11)

Protein Noise and Distribution in a Two-Stage Gene-Expression Model 219

and obtain that the factorial cumulant generating function [9] ϕ = ϕ(u, v, w) is
a solution of the inhomogeneous linear partial differential equation (PDE),

λ1u = (−λ2(1+u)w + γ1u+α(u− v))
∂ϕ

∂u
+(γ̃1v +β(v −u))

∂ϕ

∂v
+ γ2w

∂ϕ

∂w
(12)

subject to
ϕ(0, 0, 0) = 0. (13)

In order to solve (12)–(13) we shall employ the ansatz

ϕ(u, v, w) = ϕ00(w) + uϕ10(w) + vϕ01(w). (14)

We immediately obtain the partial derivatives

∂ϕ

∂u
= ϕ10(w),

∂ϕ

∂v
= ϕ01(w),

∂ϕ

∂w
= ϕ′

00(w) + uϕ′
10(w) + vϕ′

01(w). (15)

Inserting (15) into (12) and rearranging the terms yields an inhomogeneous
system of ODEs

γ2wϕ′
00 − λ2wϕ10 = 0,

γ2wϕ′
10 + (γ1 + α − λ2w)ϕ10 − βϕ01 = λ1,

γ2wϕ′
01 + (γ̃1 + β)ϕ01 − αϕ10 = 0. (16)

Let us assume that the functions ϕ00, ϕ10, and ϕ01 are of the power series form,
i.e.,

ϕ00(w) =
∞∑

k=0

akwk, ϕ10(w) =
∞∑

k=0

bkwk, ϕ01(w) =
∞∑

k=0

ckwk. (17)

The coefficients ak, bk, and ck give the factorial cumulants of the joint molecular
distribution [9]. Note that a0 = 0 follows immediately from the normalisation
condition (13). Evaluating the derivatives in (17) and substituting into (16), we
obtain the following recurrence equations:

ak =
λ2

kγ2
bk−1, k ≥ 1, (18)

(γ1 + α)b0 − βc0 − λ1+
∞∑

k=1

(γ2kbk + (γ1 + α)bk − λ2bk−1 − βck)wk = 0, (19)

(γ̃1 + β)c0 − αb0+
∞∑

k=1

(γ2kck + (γ̃1 + β)ck − αbk)wk = 0. (20)

Since we consider (17) as a solution to (12) then all the coefficients in (19)–(20)
must be zero. Thus, we get

(γ1 + α + γ2k)bk − λ2bk−1 − βck = 0, (21)

220 C. Çelik et al.

(γ̃1 + β + γ2k)ck − αbk = 0, (22)

for bk and ck. Solving the algebraic system (21)–(22) in bk, k ≥ 1, yields

(γ2
2k2 + γ2(γ̃1 + γ1 + β + α)k + γ̃1γ1 + γ1β + γ̃1α)bk = λ2(γ̃1 + β + kγ2)bk−1,

i.e.

bk =
λ2(γ̃1 + β + kγ2)

γ2
2k2 + γ2(γ̃1 + γ1 + β + α)k + γ̃1γ1 + γ1β + γ̃1α

bk−1, (23)

where the zeroth term of the sequence bk is obtained, by equating the terms out
of the sums in (19) and (20) to zero, as

b0 =
λ1(γ̃1 + β)

(γ1 + α)(γ̃1 + β) − βα
=

λ1

γeff
1

. (24)

Equation (24) thus rederives the stationary mRNA mean (3) by means of fac-
torial cumulant analysis; similarly, c0 and a1 can be identified as the stationary
imRNA and protein means. Thus, the sequence bk can be calculated iteratively
from (23) starting from the initial condition (24). Having calculated bk, the
sequence ak and ck can be evaluated via (18) and (22). In Sect. 5, we will utilise
these formulas to obtain a special-function representation of the generating func-
tion. Before doing that, we show that the first two terms of these sequences
determine protein variability.

4 Protein Variability

As outlined in the previous section, the first-order cumulants b0, c0, and a1 (a0 =
0 by normalisation condition), coincide with the stationary mRNA, imRNA,
and protein mean values. In this section, we use the second-order cumulants to
describe the stationary noise in our model. The noise in mRNA and imRNA is
Poissonian (see Sect. 6 for details) and therefore uninteresting: we focus on the
protein noise.

This section is divided into two parts: the first expresses the Fano factor
in terms of the first and second order cumulants (and is independent of the
specifics of the current model); the second part uses the formula to analyse the
noise reduction effect of the inactivation loop.

Expressing the Fano Factor in Terms of the Cumulants. The generating function
is expanded by the Taylor formula as

G(1, 1, z) = G(1, 1, 1) +
∂G

∂z
(1, 1, 1)(z − 1) +

1
2

∂2G

∂z2
(1, 1, 1)(z − 1)2 + O(z − 1)3.

(25)
Differentiating (8) with respect to z and setting (x, y, z) = (1, 1, 1) links the
derivatives of the generating function to the factorial moments:

∂G

∂z
(1, 1, 1) = 〈n〉, ∂2G

∂z2
(1, 1, 1) = 〈n(n − 1)〉. (26)

Protein Noise and Distribution in a Two-Stage Gene-Expression Model 221

Inserting (10) and (26) into (25), we have

G(1, 1, z) = 1 + 〈n〉(z − 1) +
〈n(n − 1)〉

2
(z − 1)2 + O(z − 1)3. (27)

On the other hand, (11), (14), and (17) imply

G(1, 1, z) = exp
(
a1(z − 1) + a2(z − 1)2 + O(z − 1)3

)

=
(

1 + a1(z − 1) +
a2
1

2
(z − 1)2

)(
1 + a2(z − 1)2

)
+ O(z − 1)3

= 1 + a1(z − 1) +
(

a2 +
a2
1

2

)
(z − 1)2 + O(z − 1)3. (28)

Comparing (27) and (28) gives

〈n〉 = a1, 〈n(n − 1)〉 = 2a2 + a2
1.

The Fano factor,

F =
〈n2〉
〈n〉 − 〈n〉 =

〈n(n − 1)〉
〈n〉 + 1 − 〈n〉 =

2a2

a1
+ 1, (29)

is thus expressed in terms of the first two factorial cumulants a1 and a2.

Noise Reduction by mRNA Inactivation Loop. Substituting (18) and (23) into
(29) and simplifying gives

F = 1 +
b1

b0
= 1 +

λ2

γ2 + γ1 + α(γ2+γ̃1)
γ2+γ̃1+β

. (30)

Formula (30) gives the steady-state protein Fano factor as function of the model
parameters (degradation rate constants γ1, γ̃1, γ2 of active/inactive mRNA and
protein; inactivation/activation rate constants α, β; translation rate constant
λ2).

In order to compare the protein noise in the current model to that exhibited
by the classical two-stage model (without the inactivation–activation loop) we
define the baseline Fano factor as

F0 = 1 +
λ2

γ2 + γeff
1

= 1 +
λ2

γ2 + γ1 + αγ̃1
γ̃1+β

, (31)

which can be obtained from (30) by first setting α = 0 (no inactivation) and
then replacing the mRNA decay rate γ1 by its effective value (4). Adjusting the
mRNA decay rate maintains the same species means in the baseline model like
in the full model extended by the inactivation loop. Note that a comparison in
protein variance between the extended and canonical two-stage model can also
be done by the mRNA autocovariance function [28].

222 C. Çelik et al.

Fig. 1. Fractional protein noise reduction by the mRNA inactivation loop as function
of protein stability. The ordinate gives the protein noise (the squared coefficient of
variation) in the two-stage model extended by the mRNA inactivation loop relative to
the protein noise in a baseline two-stage model without the mRNA inactivation loop
(adjusting the mRNA decay rate to obtain the same species means). The protein mean
is set to 〈n〉 = 500; the mRNA mean is 〈m〉 = 10; the imRNA decay rate is either the
same as that of active mRNA (γ̃1 = γ1; dashed line) or set to zero (γ̃1 = 0; solid line).
The inactivation and activation rates are α = 3, β = 3 (left panel) or α = 1, β = 0.1
(right panel); we thereby set γ1 = 1 without loss of generality.

The protein variability formulae (30) and (31) can equivalently be expressed
in terms of the squared coefficient of variation [13,22] CV2 = F/〈n〉 and CV2

0 =
F0/〈n〉. Combining (3) and (30)–(31), we find

CV2 =
1

〈n〉 +
1

〈m〉
γ2

γ2 + γ1 + α(γ2+γ̃1)
γ2+γ̃1+β

, (32)

CV2
0 =

1
〈n〉 +

1
〈m〉

γ2

γ2 + γ1 + αγ̃1
γ̃1+β

(33)

for the protein coefficient of variation and its baseline value (no activation loop).
Comparing (32) to (33), we see that CV2 < CV2

0, allowing us to conclude that
the inclusion of the mRNA inactivation loop decreases protein noise. However,
the two coefficients will be very close in many parameter regimes; the necessary
conditions for observing a significant difference are given by

γ̃1 � min{β, γ2}, max{γ1, γ2} � α, (34)

where by “�” we mean smaller than or of similar magnitude. Thus, in order
to obtain significant reduction of noise, we require that an individual active
mRNA molecule be more likely to be inactivated than degraded, and that an
individual inactive mRNA molecule be more likely to be activated than degraded.
Additionally, we require that inactive mRNA be more stable than protein (which
is possible if inactivation protects the mRNA from decay).

Protein Noise and Distribution in a Two-Stage Gene-Expression Model 223

One particular consequence of the necessary conditions (34) is that the frac-
tion protein noise reduction, CV2/CV2

0, is a non-monotonous function of protein
stability: it tends to one for highly unstable or highly stable proteins, and is less
than one for proteins of optimal stability (cf. Fig. 1). The optimal value of pro-
tein stability critically depends on the rate constant β of mRNA activation. In
case of fast mRNA activation, the optimum noise reduction is achieved by unsta-
ble proteins (less stable than mRNA; Fig. 1, left panel. In case of slow mRNA
activation, the optimum can be achieved by stable proteins (Fig. 1, right panel).
However, slow activation (β � 1) imposes, via (34), a stringent condition on the
stability of inactivated mRNA. Indeed, the right panel of Fig. 1 demonstrates
that there is hardly any reduction of noise if the inactive mRNA is unstable.

In the next section, we go beyond the mean and noise statistics (the first and
second order factorial cumulants), using the higher order cumulants to find a
special-function representation of the generating function of the joint distribution
of mRNA, imRNA, and protein copy numbers.

5 Special-Function Representation

Factorising the second-order polynomial in k in the denominator of (23) gives

bk = λ2
γ̃1 + β + kγ2

γ2
2(k + r1)(k + r2)

bk−1 for k ≥ 1, (35)

where

r1,2 =
γ1 + α + γ̃1 + β ± √

(γ̃1 + β − γ1 − α)2 + 4βα

2γ2
.

Note that the sequence bk in (35) can be rewritten as

bk = b0
(1 + τ)k

(1 + r1)k(1 + r2)k

(
λ2

γ2

)k

, k ≥ 1, (36)

where we set τ = (γ̃1 + β)/γ2 for the sake of simplicity and the polynomial

(x)k = x(x + 1)(x + 2) . . . (x + k − 1), (x)0 = 1

represents the rising factorial, also called the Pochammer symbol.
We next find the remaining sequences ak and ck. Inserting (36) into (18)

gives

ak =
b0r1r2

τ

(τ)k

k(r1)k(r2)k

(
λ2

γ2

)k

, k ≥ 1. (37)

Similarly, substituting (36) into (22) yields

ck =
αb0

γ̃1 + β

(τ)k

(1 + r1)k(1 + r2)k

(
λ2

γ2

)k

, k ≥ 1, (38)

where c0 = αb0
γ̃1+β , which can be obtained by combining (20) and (24).

224 C. Çelik et al.

Having found the sequences in (17), we next return to the original variables
in (11) to obtain the generating function of the stationary distribution of active
mRNA, inactive mRNA, and protein amounts, which is given by

G(x, y, z)

= exp

⎛

⎝
∑

k≥1

ak(z − 1)k + (x − 1)
∑

k≥0

bk(z − 1)k + (y − 1)
∑

k≥0

ck(z − 1)k

⎞

⎠ .

(39)
Equation (39) can be rewritten as

G(x, y, z) = exp
(

b0λ2

γ2

∫ z

1
2F2

(
1, 1 + τ

1 + r1, 1 + r2
;
λ2

γ2
(s − 1)

)
ds

+b0(x − 1)2F2

(
1, 1 + τ

1 + r1, 1 + r2
;
λ2

γ2
(z − 1)

)

+
αb0

γ̃1 + β
(y − 1)2F2

(
1, τ

1 + r1, 1 + r2
;
λ2

γ2
(z − 1)

))
(40)

in terms of the generalised hypergeometric functions defined by [2]

pFq

(
a1, . . . , ap

b1, . . . , bq
; z̃

)
=

∞∑

n=0

(a1)n . . . (ap)n

(b1)n . . . (bq)n

z̃n

n!
. (41)

Equation (39) provides the sought-after special function representation of the
joint generating function. In the following section, we focus on specific one-
dimensional sections of the joint generating function that give the generating
functions of the three marginal distributions.

6 Marginal Distributions

In this section, we use the analytic formula (40) for the generating function to
determine the marginal active and inactive mRNA, and protein distributions.
To do so, we first set y = z = 1 in (40) and obtain

G(x) = G(x, 1, 1) = exp(b0(x − 1))

for the marginal active mRNA distribution. Similarly, setting x = z = 1 in (40)
yields the marginal inactive mRNA distribution

G(y) = G(1, y, 1) = exp
(

αb0

γ̃1 + β
(y − 1)

)
.

Finally, we set x = y = 1 in (40) and get the marginal protein generating function
G(z) as

G(z) = G(1, 1, z) = exp(ψ(z)),

Protein Noise and Distribution in a Two-Stage Gene-Expression Model 225

where ψ is given by

ψ(z) =
b0λ2

γ2

∫ z

1
2F2

(
1, 1 + τ

1 + r1, 1 + r2
;
λ2

γ2
(s − 1)

)
ds. (42)

In order to obtain the marginal protein distribution, we exploit its generating
function

p·,·,n =
Dn(G(z))

n!

∣∣∣∣
z=0

, (43)

where D stands for the differential operator d/dz and pst
·,·,z gives the probability

of having z protein molecules and any number of active and inactive amount of
mRNA. The first derivative of the composite function G(z) in (43) is obtained
by chain rule as

dG(z)
dz

= G(z)
dψ(z)

dz
. (44)

For the n-th derivative, we evaluate the (n − 1)th derivative of (44) according
to the Leibniz rule, thus we have

Dn(G(z)) =
n−1∑

i=0

(
n − 1

i

)
Di(G(z))Dn−i(ψ(z)). (45)

Next, we determine the rth–r is an arbitrary positive integer–derivative of the
function ψ(z), which is given by

Dr(ψ(z)) = b0

(
λ2

γ2

)r (r − 1)!(1 + τ)r−1

(1 + r1)r−1(1 + r2)r−1
2F2

(
r, τ + r

r1 + r, r2 + r
;
λ2

γ2
(z − 1)

)
, (46)

in which we used the formula

ds

dz̃s pFq

(
a1, . . . , ap

b1, . . . , bq
; z̃

)
=

∏p
i=1(ai)s∏q
j=1(bj)s

pFq

(
a1 + s, . . . , ap + s

b1 + s, . . . , bq + s
; z̃

)

for the s-th derivative of the generalised hypergeometric function pFq. Inserting
the derivatives in (46) into (45), taking z = 0, and rearranging the resulting
equation according to (43) gives the formula for the marginal protein probabili-
ties

p·,·,n =
b0λ2

nγ2

n−1∑

i=0

(
λ2

γ2

)n−i−1 (1 + τ)n−i−1

(1 + r1)n−i−1(1 + r2)n−i−1

× 2F2

(
n − i, τ + n − i

n − i + r1, n − i + r2
;−λ2

γ2

)
p·,·,i,

(47)

where the first term of the series is given by

p·,·,0 = G(0) = exp
(

−b0λ2

γ2

∫ 1

0
2F2

(
1, 1 + τ

1 + r1, 1 + r2
;
λ2

γ2
(s − 1)

)
ds

)
. (48)

226 C. Çelik et al.

Fig. 2. Left: Comparison of the probability mass function (47) of the marginal protein
distribution and the probability calculated by Gillespie’s stochastic simulation algo-
rithm (the solid line). Right: A logarithmic scale plot of the probability, out of 105

repeats, obtained by the two approaches. Parameter values: The kinetic parameters
are: λ1 = 5, α = γ1 = β = γ̃1 = γ2 = 1, λ2 = 5.

In order to calculate and compare the marginal protein probabilities (47)
with those obtained by stochastic simulations based on Gillespie’s algorithm,
we implement the recursive formula (47) in a high-level programming language,
Python, together with using its numerical computing library NumPy and plot-
ting library Matplotlib. The probabilities in (47) are calculated iteratively start-
ing from its first term given by (48) up to n = 50. In Fig. 2, the right panel
compares the theoretical probability distribution (47) (blue bars) with the one
obtained using stochastic simulations (solid line) at the timepoint t = 100, while
the left panel shows the same comparison but on a logarithmic scale. The num-
ber of Gillespie iterations was set to 105 in the Python package GillesPy2 [1].
The initial number of active and inactive mRNA and protein was set to 5. A
Python routine mpmath.hyp2f2 used to calculate the generalised hypergeometric
function 2F2 in (47)–(48).

7 Conclusion

In this paper, we analysed a formulation of the two-stage model for gene expres-
sion that extends the classical version [4,26] by an mRNA inactivation loop.
The principal results of our analysis are the characterisation of the mean and
noise behaviour, as well as the underlying probability distribution. The princi-
pal tool is the factorial cumulant generating function and the factorial cumulant
expansion.

The incorporation of the mRNA inactivation loop into the classical two-stage
model for gene expression reduces the protein noise. However, in order for the
reduction be substantial, several restrictions on the parameter rates have to be in
place. In particular, the protein cannot be too stable or unstable, but its stability
has to be optimally chosen. The resulting optimal value of protein stability is
typically unrealistically low (lower than mRNA stability, in particular). In order

Protein Noise and Distribution in a Two-Stage Gene-Expression Model 227

to obtain an optimal stability that is greater than mRNA stability, one has to
assume that inactivation protects the mRNA from degradation and activation
is slow. Thus, our noise analysis points towards a potential role of the mRNA
inactivation loop in gene expression noise control; at the same time, it delineates
the limits of its application.

In addition to the noise analysis, we provide a comprehensive classification
of the underlying probability distributions. Unsurprisingly, the distributions of
the active/inactive mRNA are Poissonian. On the other hand, the protein dis-
tribution is highly non-trivial, and is characterised in terms of the generalised
hypergeometric series. The characterisation is used to derive a recursive expres-
sion for the protein probability mass function. The recursive formula is found
to be consistent with kinetic Monte-Carlo simulation (by means of the Gillespie
direct method).

In summary, the paper provides a systematic mathematical analysis of an
mRNA–protein model for gene expression extended by an inactive mRNA
species, and hints at possible functional roles of mRNA inactivation loop in
the control of low copy number gene-expression noise.

References

1. Abel, J.H., Drawert, B., Hellander, A., Petzold, L.R.: Gillespy: a python package
for stochastic model building and simulation. IEEE Life Sci. Lett. 2, 35–38 (2016).
https://doi.org/10.1109/LLS.2017.2652448

2. Abramowitz, M., Stegun, I.A., Romer, R.H.: Handbook of mathematical functions
with formulas, graphs, and mathematical tables. Am. J. Phys. 56(10), 958–958
(1988). https://doi.org/10.1119/1.15378

3. Bartman, C.R., Hamagami, N., Keller, C.A., Giardine, B., Hardison, R.C., Blobel,
G.A., Raj, A.: Transcriptional burst initiation and polymerase pause release are
key control points of transcriptional regulation. Mol. Cell 73(3), 519–532 (2019).
https://doi.org/10.1016/j.molcel.2018.11.004

4. Bokes, P., King, J.R., Wood, A.T.A., Loose, M.: Exact and approximate distribu-
tions of protein and mRNA levels in the low-copy regime of gene expression. J.
Math. Biol. 64(5), 829–854 (2012). https://doi.org/10.1007/s00285-011-0433-5

5. Bokes, P., King, J.R., Wood, A.T.A., Loose, M.: Transcriptional bursting diversi-
fies the behaviour of a toggle switch: hybrid simulation of stochastic gene expres-
sion. Bull. Math. Biol. 75(2), 351–371 (2013). https://doi.org/10.1007/s11538-013-
9811-z

6. Dacheux, E., Malys, N., Meng, X., Ramachandran, V., Mendes, P., McCarthy,
J.E.G.: Translation initiation events on structured eukaryotic mRNAs generate
gene expression noise. Nucleic Acids Res. 45(11), 6981–6992 (2017). https://doi.
org/10.1093/nar/gkx430

7. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression
in a single cell. Science 297(5584), 1183–1186 (2002). https://doi.org/10.1126/
science.1070919

8. Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social Sciences.
Springer Series in Synergetics, iv. Springer, Heidelberg (2009). www.springer.com/
gp/book/9783540707127

https://doi.org/10.1109/LLS.2017.2652448
https://doi.org/10.1119/1.15378
https://doi.org/10.1016/j.molcel.2018.11.004
https://doi.org/10.1007/s00285-011-0433-5
https://doi.org/10.1007/s11538-013-9811-z
https://doi.org/10.1007/s11538-013-9811-z
https://doi.org/10.1093/nar/gkx430
https://doi.org/10.1093/nar/gkx430
https://doi.org/10.1126/science.1070919
https://doi.org/10.1126/science.1070919
www.springer.com/gp/book/9783540707127
www.springer.com/gp/book/9783540707127

228 C. Çelik et al.

9. Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate Discrete Distributions. John
Wiley & Sons, iii edn., Oct 2005. https://doi.org/10.1002/0471715816

10. Kurasov, P., Mugnolo, D., Wolf, V.: Analytic solutions for stochastic hybrid models
of gene regulatory networks. J. Math. Biol. 82(1), 1–29 (2021). https://doi.org/
10.1007/s00285-021-01549-7

11. Li, J., Ge, H., Zhang, Y.: Fluctuating-rate model with multiple gene states.
J. Math. Biol. 81(4), 1099–1141 (2020). https://doi.org/10.1007/s00285-020-
01538-2

12. Munsky, B., Neuert, G., van Oudenaarden, A.: Using gene expression noise to
understand gene regulation. Science 336(6078), 183–187 (2012). https://doi.org/
10.1126/science.1216379

13. Paulsson, J.: Summing up the noise in gene networks. Nature 427(6973), 415–418
(2004). https://doi.org/10.1038/nature02257

14. Peccoud, J., Ycart, B.: Markovian modeling of gene-product synthesis. Theor.
Popul. Biol. 48(2), 222–234 (1995). https://doi.org/10.1006/tpbi.1995.1027

15. Pendar, H., Platini, T., Kulkarni, R.V.: Exact protein distributions for stochastic
models of gene expression using partitioning of Poisson processes. Phys. Rev. E
87(4), 042720 (2013). https://doi.org/10.1103/PhysRevE.87.042720

16. Raser, J.M., O’Shea, E.K.: Noise in gene expression: origins, consequences, and
control. Science 309(5743), 2010–2013 (2005). https://doi.org/10.1126/science.
1105891

17. Rodŕıguez Mart́ınez, M., Soriano, J., Tlusty, T., Pilpel, Y., Furman, I.: Messenger
RNA fluctuations and regulatory RNAs shape the dynamics of a negative feedback
loop. Phys. Rev. E 81(3), 031924 (2010). https://doi.org/10.1103/PhysRevE.81.
031924

18. Sanchez, A., Choubey, S., Kondev, J.: Regulation of noise in gene expres-
sion. Annu. Rev. Biophys. 42, 469–491 (2013). https://doi.org/10.1146/annurev-
biophys-083012-130401

19. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for
stochastic biochemical kinetics-a tutorial review. J. Phys. A: Math. Theor. 50(9),
093001 (2017). https://doi.org/10.1088/1751-8121/aa54d9

20. Shahrezaei, V., Swain, P.S.: Analytical distributions for stochastic gene expression.
Presented at the (2008). https://doi.org/10.1073/pnas.0803850105

21. Singh, A., Hespanha, J.P.: Approximate moment dynamics for chemically reacting
systems. IEEE Trans. Autom. Control 56(2), 414–418 (2011). https://doi.org/10.
1109/TAC.2010.2088631

22. Singh, A., Bokes, P.: Consequences of mRNA transport on stochastic variability
in protein levels. Biophys. J . 103(5), 1087–1096 (2012). https://doi.org/10.1016/
j.bpj.2012.07.015

23. Singh, A., Hespanha, J.P.: Stochastic hybrid systems for studying biochemical
processes. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 368(1930), 4995–5011
(2010). https://doi.org/10.1098/rsta.2010.0211

24. Soltani, M., Vargas-Garcia, C.A., Singh, A.: Conditional moment closure schemes
for studying stochastic dynamics of genetic circuits. IEEE Trans. Biomed. Circuits
Syst. 9(4), 518–526 (2015). https://doi.org/10.1109/tbcas.2015.2453158

25. Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to
stochasticity in gene expression. Proc. Natl. Acad. Sci. 99(20), 12795–12800 (2002).
https://doi.org/10.1073/pnas.162041399

26. Thattai, M., Oudenaarden, A.v.: Intrinsic noise in gene regulatory networks.
Proc. Natl. Acad. Sci. 98(15), 8614–8619 (2001). https://doi.org/10.1073/pnas.
151588598

https://doi.org/10.1002/0471715816
https://doi.org/10.1007/s00285-021-01549-7
https://doi.org/10.1007/s00285-021-01549-7
https://doi.org/10.1007/s00285-020-01538-2
https://doi.org/10.1007/s00285-020-01538-2
https://doi.org/10.1126/science.1216379
https://doi.org/10.1126/science.1216379
https://doi.org/10.1038/nature02257
https://doi.org/10.1006/tpbi.1995.1027
https://doi.org/10.1103/PhysRevE.87.042720
https://doi.org/10.1126/science.1105891
https://doi.org/10.1126/science.1105891
https://doi.org/10.1103/PhysRevE.81.031924
https://doi.org/10.1103/PhysRevE.81.031924
https://doi.org/10.1146/annurev-biophys-083012-130401
https://doi.org/10.1146/annurev-biophys-083012-130401
https://doi.org/10.1088/1751-8121/aa54d9
https://doi.org/10.1073/pnas.0803850105
https://doi.org/10.1109/TAC.2010.2088631
https://doi.org/10.1109/TAC.2010.2088631
https://doi.org/10.1016/j.bpj.2012.07.015
https://doi.org/10.1016/j.bpj.2012.07.015
https://doi.org/10.1098/rsta.2010.0211
https://doi.org/10.1109/tbcas.2015.2453158
https://doi.org/10.1073/pnas.162041399
https://doi.org/10.1073/pnas.151588598
https://doi.org/10.1073/pnas.151588598

Protein Noise and Distribution in a Two-Stage Gene-Expression Model 229

27. Thomas, P.: Intrinsic and extrinsic noise of gene expression in lineage trees. Sci.
Rep. 9(1), 474 (2019). https://doi.org/10.1038/s41598-018-35927-x

28. Warren, P.B., Tănase-Nicola, S., ten Wolde, P.R.: Exact results for noise power
spectra in linear biochemical reaction networks. J. Chem. Phys. 125(14), 144904
(2006). https://doi.org/10.1063/1.2356472

29. Zhou, T., Liu, T.: Quantitative analysis of gene expression systems. Quantitative
Biol. 3(4), 168–181 (2015). https://doi.org/10.1007/s40484-015-0056-8

https://doi.org/10.1038/s41598-018-35927-x
https://doi.org/10.1063/1.2356472
https://doi.org/10.1007/s40484-015-0056-8

Aeon 2021: Bifurcation Decision Trees
in Boolean Networks

Nikola Beneš, Luboš Brim, Samuel Pastva(B), and David Šafránek

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbenes3,brim,xpastva,safranek}@fi.muni.cz

Abstract. Aeon is a recent tool which enables efficient analysis of long-
term behaviour of asynchronous Boolean networks with unknown param-
eters. In this tool paper, we present a novel major release of Aeon (Aeon
2021) which introduces substantial new features compared to the origi-
nal version. These include (i) enhanced static analysis functionality that
verifies integrity of the Boolean network with its regulatory graph; (ii)
state-space visualisation of individual attractors; (iii) stability analy-
sis of network variables with respect to parameters; and finally, (iv) a
novel decision-tree based interactive visualisation module allowing the
exploration of complex relationships between parameters and network
behaviour. Aeon 2021 is open-source, fully compatible with SBML-qual
models, and available as an online application with an independent native
compute engine responsible for resource-intensive tasks. The paper arte-
fact is available via https://doi.org/10.5281/zenodo.5008293.

1 Introduction

Boolean networks (BNs) provide an effective mathematical formalism to model
regulatory processes in biological systems. A Boolean network consists of Boolean
variables which interact together. These interactions are outlined by a set of regu-
lations, which (with the variables) form the regulatory graph of the network. The
state of the variables is governed by associated Boolean update functions (one
for each variable). We consider that the variables are updated asynchronously,
i.e. every state transition corresponds to execution of a single update function
in the given source state.

The long-term behaviour of a BN, starting from an initial state, has three
possible outcomes. Briefly, the first situation is when the network evolves to
a single stable state. Such states are the fixed points or point attractors (�).
The second situation is that the network periodically oscillates through a finite
sequence of states—an oscillating attractor (�), i.e. the discrete equivalent of
a limit cycle in continuous systems. The third case is what we call a disordered
attractor (�), or chaotic oscillation [18] – an attractor that is neither stable not
periodically oscillating and in which the system may behave unpredictably, due
to the nondeterminism of the asynchronous dynamics of the BN. Together, we
refer to the multiplicity of these three attractor types in a system as its behaviour

c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 230–237, 2021.
https://doi.org/10.1007/978-3-030-85633-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_14&domain=pdf
https://doi.org/10.5281/zenodo.5008293
https://doi.org/10.1007/978-3-030-85633-5_14

Aeon 2021: Bifurcation Decision Trees in Boolean Networks 231

class. Attractors are particularly relevant in the context of biological modelling
as they are used to represent differentiated cellular types or tissues (in the case of
fixed points) [2] and biological rhythms or oscillations (in the case of cycles) [10].

A critical problem of BN modelling is to fully determine the update functions.
In many cases, BNs with incompletely specified update functions have to be used.
We consider parametrised BNs where the unknown information is represented
in terms of logical parameters that appear in logical expressions specifying the
update functions [22]. The long-term behaviour of parametrised BNs is affected
by the logical parameters. This is observed, e.g., in the count and/or quality of
the attractors. A change in the set of attractors (i.e. the behaviour class of the
system) is called a bifurcation. Since there is no natural notion of a bifurcation
point for Boolean networks, we use the so called bifurcation function to describe
the partition of the parameter space into disjoint regions exhibiting the same
behaviour class. Determining the bifurcation function for a network, attractor
bifurcation analysis, is an important task in the analysis of BNs [4].

Several computational tools have been developed for construction, visualisa-
tion and analysis of attractors in non-parametrised BNs. From amongst them,
the established tools include ATLANTIS [20], Bio Model Analyzer (BMA) [6],
BoolNet [17], PyBoolNet [15], lnet [7], The Cell Collective [13], CellNetAna-
lyzer [14], and ASSA-PBN [16]. Another group of existing tools targets the
parameter synthesis problem for parametrised BNs. The most prominent tools
here are GRNMC [12], GINsim [8] (through NuSMV [9]), and TREMPPI [21]. In
general, parameter synthesis tools can be used to identify parameters producing
a specified long-term behaviour (depending on the logics employed), however,
they do not provide a sufficient solution for identification and classification of all
attractors in large parametrised BNs. Finally, [1] takes a slightly different app-
roach to bifurcation analysis of logical models – their goal is to study bifurcations
in a continuous dynamical system derived from the logical model.

In [3], we introduced the tool Aeon for attractor bifurcation analysis of
parametrised BNs. The tool fills the gap in the existing tools by enabling fully
automated bifurcation analysis of BNs. However, the first version suffers from
several problems that limit its practical applications. First, semi-symbolic algo-
rithms allow it to handle BNs with at most 15–20 variables. Second, the presenta-
tion of the results is limited to displaying the classification of attractors without
any possibility to explore the structure of individual attractors, or the behaviour
of variables in them. Third, the results of the attractor bifurcation analysis do
not provide detailed information on the bifurcation function structure.

To address the performance limits of Aeon, we have significantly improved the
algorithmics by introducing a novel fully symbolic solution utilising a powerful
new heuristics [5]. This allows us to analyse parametrised BNs with hundreds of
variables in seconds. The presentation of results, notably the bifurcation function
structure, has been improved by implementing the automated construction of
bifurcation decision trees [4]. These allow visualisation of decisions reflecting the
effect of bifurcations on achieving particular behaviour classes. This ML-based
technology allows the user to comprehend the exhaustive information computed

232 N. Beneš et al.

by the tool. All of these features including the added possibility of visual attrac-
tor exploration and static consistency checking of the model are included in Aeon
2021 as presented in this paper.

Due to space constraints, we omit the formal definitions of parametrised BNs,
their asynchronous semantics, and their attractors in this tool paper. Instead,
we refer the interested reader to the Preliminaries section of [3]. In the follow-
ing, we discuss the novel additions to the Aeon tool and their implementation
aspects. We then show a simple case study that demonstrates the usefulness of
the implemented techniques.

2 Methods

Here we summarise the improvements made to Aeon since its publication in [3].

Regulatory Graph Consistency. A Boolean network typically corresponds
to a regulatory graph that is distributed alongside that network and describes
high-level properties of interactions between network variables. Such properties
typically include the presence of a regulation (essentiality) as well as monotonic-
ity (activation or inhibition). However, especially for large networks, it is easy
to accidentally write a function that violates these declared properties.

In Aeon, the update functions are represented symbolically using BDDs. We
can then algorithmically verify that the function follows the declared properties
by constructing a BDD for each such property, and check that they have a non-
empty intersection with the function BDD. In case of functions with parameters,
we can even compute the exact number of parametrisations that follow these
static constraints. Finally, Aeon can infer which properties are violated, and
show them to the user while the network is being edited.

Example 1. If the user writes an update function B∧(B∨A), Aeon will notify them
that A is not essential in this function, i.e. it has no effect on its output. Similarly,
if B was declared as a negatively monotonous regulation (i.e. an inhibition), Aeon
would notify the user that the function is in fact positively monotonous in B.

While this may seem like a trivial feature, in our experience, most Boolean
network toolboxes do not perform this type of analysis. As a result, we have
encountered numerous instances of large models with subtle inconsistencies like
this in basically all public Boolean network repositories.

Attractor Visualisation. Originally, Aeon was not able to show the state
space of the discovered attractors. In the current version, the interface allows
the user to jump to an interactive visualisation of the attractor state space.
Here, Aeon highlights the behavioural properties of each attractor (stability,
oscillation, disorder), as well as distinguishes the fixed (stable) variables from
the ones whose value changes in different attractor states (unstable).

Aeon 2021: Bifurcation Decision Trees in Boolean Networks 233

The visualisation uses the vis.js JavaScript library and is limited to roughly
5,000 states. If the attractor is larger, Aeon shows a “simplified” view using a
two-state loop, with all unstable variables updating synchronously in one step.
For Boolean networks with parameters, we always show the attractors for one
specific parametrisation only. However the user can specify which behaviour class
should be represented. As an example of attractor visualisation, see Fig. 1.

Fig. 1. The state space of three attractors (using variables v1, v2, v3 and v4, with
matching order in the state labels), labelled with behaviour types. The dashes in labels
represent stable variables in otherwise unstable attractors. In the � attractor, v3 is
always true, whereas in �, v1 and v4 are true while v3 is false (this information was
obtained through other parts of the user interface).

Bifurcation Decision Trees. One of the main challenges when working with
parametrised Boolean networks is the fact that the parameter space can be
enormous and simultaneously high-dimensional (with tens or even hundreds of
parameters). In Aeon, we have long struggled with the visualisation of bifurcation
functions for this very reason. In [4], we have proposed a method for taming the
multidimensionality of the problem using decision trees, which are commonly
used to address this exact problem in machine learning.

The method is now fully implemented in Aeon, with an interactive editor
based on the cytoscape library [11]. The tree consists of three types of nodes:

– A leaf node represents a group of parametrisations that exhibit the same
singular behaviour class (for example, bi-stability, i.e. [�,�]).

– A decision node represents a choice on the value of some parameter. It has
an outgoing positive and negative edge, which lead to the subtrees where the
parameter is fixed to true and false respectively.

– Finally, a mixed node represents a group of parametrisations that exhibit
multiple behaviour classes.

The tree starts as one mixed node associated with a bifurcation function over
all the admissible parametrisations. Then, the user can expand this mixed node
into a decision node by selecting a parameter used as a choice in the newly created

234 N. Beneš et al.

node. The bifurcation function is then split into two, based on this parameter.
If one of the subtrees contains only parametrisations with a singular behaviour
class, it becomes a leaf. Otherwise, a new mixed node is created and the user
can repeat this process until all mixed nodes are expanded. An example of such
a tree is shown in Fig. 2.

The user can revert each decision and test different combinations of choices.
Additionally, the user can make their choice based on various metrics computed
by Aeon for each parameter. These include information gain, total number of
behaviour classes after decision, or a prioritisation of a certain class. The tree
can also be automatically expanded up to a certain level. For each leaf node, a
fully specified witness network and attractor state space can be generated.

Finally, a precision parameter allows the user to enforce leaf nodes even when
only a certain percentage of parametrisations represents the majority behaviour
class. For example, if 98% of parametrisations in a node correspond to a single
type of behaviour, and we select the precision of 97%, this node becomes a leaf
regardless of the remaining 2% of parametrisations. This allows us to quickly
filter out unlikely edge cases and focus on the most prominent behaviour classes.

Stability Analysis. Finally, once the bifurcation decision tree is constructed,
the user can perform stability analysis for any node in the tree. During sta-
bility analysis, Aeon considers all the network variables and all the attractor
states associated with the particular tree node (i.e. the attractors appearing
for the tree node parametrisations). Then, for each variable, it categorises the
parametrisations based on the values appearing in the individual attractors.

Example 2. Consider the attractors shown in Fig. 1. Here:

– v1 switches between unstable (the � attractor) and true (rest).
– v2 also switches between unstable (both the � and �) and true (�).
– v3 switches between being always true (�) and always false (� and �).
– v4 switches between all three cases: true in �, false in � and unstable in �.

As a result, aside from the information about attractor behaviour classes,
the user can also obtain a more fine-grained categorisation of the parameter
space based on whether a particular variable will appear as always true, always
false, unstable or some (nondeterministic) combination of these properties in the
network attractors. For each of such cases, we can again give a non-parametrised
witness network or explore the attractor state space.

3 Case Study

Let us consider the T-LGL model from [19], which we obtained as an SBML
file from the Cell Collective database [13]. The model has 60 variables, out of
which 6 are constant and are automatically recognised by Aeon as parameters.
In this model, a key variable is Apoptosis, which when true indicates normal
cell behaviour, and when false indicates a cancerous disorder.

Aeon 2021: Bifurcation Decision Trees in Boolean Networks 235

In [19], the authors had to fix these 6 constant values and perform other
structural reductions of the network to make their analysis feasible. Aeon can
easily analyse the original network with all input combinations at once in roughly
10 s on a basic laptop. This results in 8 distinct behaviour classes.

Upon loading the results in the bifurcation tree editor, a quick stability check
uncovers 14 parametrisations with Apoptosis always stabilising to true and 50
with a switching behaviour, where Apoptosis is either true or false depending
on the attractor. Importantly, no parametrisations have Apoptosis set always
to false, or attractors in which it is unstable.

Fig. 2. Bifurcation decision tree of the T-LGL [19] model with 6 inputs (produced by
Aeon). The highlighted node contains the parametrisation originally considered in [19].

By expanding the decision tree, we uncover a complete mapping between
parametrisations and attractor phenotypes, as seen in Fig. 2. Here, we see a
clear transition from stable to oscillating and disordered behaviour, and identify
CD45, IL15, and Stimuli as key values leading to this transition. Using stability
analysis, we can also easily observe that the parametrisations where Apoptosis
is always true are exactly the ones with a single stable attractor. The tree then
shows the conditions guaranteeing the presence of this phenotype class. Such
observations could be then used to design experiments and treatments that focus
on ensuring these favourable conditions.

Finally, we compare our findings to those in [19]. We confirm that their setting
of input values (Stimuli = IL15 = PDGF = true and Stimuli2 = CD45 = TAX =
false) indeed leads to a non-trivial oscillating attractor with Apoptosis = false,
and with TCR and CTLA4 being unstable. Note that our decision tree shows the
presence of two attractors of these properties. This is due to the structural
reductions performed in [19] that simplify the model and consequently merge
these two attractors into one. We can also visualise the attractor state space
and see that it matches the results presented in [19].

236 N. Beneš et al.

4 Conclusion

We presented a significant update in the functionality of the tool Aeon, which
enables completely new workflows for analysis of Boolean networks with partially
unknown behaviour. Aeon serves as an interactive editor, simple static analyser,
and, thanks to the underlying symbolic algorithms, gracefully handles even very
large networks. The visualisation of bifurcation decision trees can be used to
uncover interesting dependencies between long-term behaviour and parameters,
as well as stability properties of individual variables.

References

1. Abou-Jaoudé, W., Monteiro, P.T.: On logical bifurcation diagrams. J. Theor. Biol.
466, 39–63 (2019)

2. Baudin, A., Paul, S., Su, C., Pang, J.: Controlling large Boolean networks with
single-step perturbations. Bioinformatics 35(14), i558–i567 (07 2019)

3. Beneš, N., Brim, L., Kadlecaj, J., Pastva, S., Šafránek, D.: AEON: attractor bifur-
cation analysis of parametrised boolean networks. In: Lahiri, S.K., Wang, C. (eds.)
CAV 2020. LNCS, vol. 12224, pp. 569–581. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8 28

4. Beneš, N., Brim, L., Pastva, S., Poláček, J., Šafránek, D.: Formal analysis of qual-
itative long-term behaviour in parametrised boolean networks. In: Ait-Ameur, Y.,
Qin, S. (eds.) ICFEM 2019. LNCS, vol. 11852, pp. 353–369. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-32409-4 22

5. Beneš, N., Brim, L., Pastva, S., Šafránek, D.: Computing bottom SCCs symbol-
ically using transition guided reduction. In: Computer Aided Verification (2021),
accepted. Preprint available from authors

6. rg Benque, D., et al.: Bio Model Analyzer: Visual tool for modeling and analysis of
biological networks. In: Computer Aided Verification. Lecture Notes in Computer
Science, vol. 7358, pp. 686–692. Springer, Heidelberg (2012)

7. Berntenis, N., Ebeling, M.: Detection of attractors of large Boolean networks via
exhaustive enumeration of appropriate subspaces of the state space. BMC Bioinf.
14, 361 (2013)

8. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks
with GINsim. In: Bacterial Molecular Networks, pp. 463–479. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-1-61779-361-5 23

9. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

10. Feillet, C., et al.: Phase locking and multiple oscillating attractors for the coupled
mammalian clock and cell cycle. Proc. Natl. Acad. Sci. 111(27), 9828–9833 (2014)

11. Franz, M., Lopes, C.T., Huck, G., Dong, Y., Sumer, O., Bader, G.D.: Cytoscape.js:
a graph theory library for visualisation and analysis. Bioinformatics 32(2), 309–311
(2015)

12. Giacobbe, M., Guet, C.C., Gupta, A., Henzinger, T.A., Paixão, T., Petrov, T.:
Model checking the evolution of gene regulatory networks. Acta Inf. 54(8), 765–
787 (2017)

13. Helikar, T., et al.: The cell collective: toward an open and collaborative approach
to systems biology. BMC Syst. Biol. 6(96), 1 (2012)

https://doi.org/10.1007/978-3-030-53288-8_28
https://doi.org/10.1007/978-3-030-53288-8_28
https://doi.org/10.1007/978-3-030-32409-4_22
https://doi.org/10.1007/978-1-61779-361-5_23
https://doi.org/10.1007/3-540-45657-0_29

Aeon 2021: Bifurcation Decision Trees in Boolean Networks 237

14. Klamt, S., Saez-Rodriguez, J., Gilles, E.D.: Structural and functional analysis of
cellular networks with Cell NetAnalyzer. BMC Syst. Biol. 1(1), 2 (2007)

15. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a Python package for the genera-
tion, analysis and visualization of Boolean networks. Bioinformatics 33(5), 770–772
(2016)

16. Mizera, A., Pang, J., Su, C., Yuan, Q.: ASSA-PBN: a toolbox for probabilistic
Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinf. (2018)

17. Müssel, C., Hopfensitz, M., Kestler, H.A.: BoolNet-an R package for generation,
reconstruction and analysis of Boolean networks. Bioinformatics 26(10), 1378–1380
(2010)

18. de S. Cavalcante, H.L.D., Gauthier, D.J., Socolar, J.E.S., Zhang, R. : On the origin
of chaos in autonomous Boolean networks (2010)

19. Saadatpour, A., et al.: Dynamical and structural analysis of a T-cell survival net-
work identifies novel candidate therapeutic targets for large granular lymphocyte
leukemia. PLoS Comput. Biol. 7(11), e1002267 (2011)

20. Shah, O.S., et al.: ATLANTIS - attractor landscape analysis toolbox for cell fate
discovery and reprogramming. Sci. Rep. 8(1), 3554 (2018)

21. Streck, A., Thobe, K., Siebert, H.: Comparative statistical analysis of qualitative
parametrization sets. In: Abate, A., Šafránek, D. (eds.) HSB 2015. LNCS, vol. 9271,
pp. 20–34. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26916-0 2

22. Zou, Y.M.: Boolean networks with multiexpressions and parameters. IEEE/ACM
Trans. Comput. Biol. Bioinf. 10, 584–592 (2013)

https://doi.org/10.1007/978-3-319-26916-0_2

LNetReduce: Tool for Reducing Linear
Dynamic Networks with Separated

Timescales

Marion Buffard1,2, Aurélien Desoeuvres1, Aurélien Naldi3, Clément Requilé4,
Andrei Zinovyev5,6, and Ovidiu Radulescu1(B)

1 LPHI UMR CNRS 5235, University of Montpellier, Montpellier, France
ovidiu.radulescu@umontpellier.fr

2 IRCM, ICM, INSERM, University of Montpellier, Montpellier, France
3 Lifeware Group, Inria Saclay-̂Ile de France, Palaiseau, France

4 Department of Mathematics, Uppsala University, Uppsala, Sweden
5 Institut Curie, PSL Research University, INSERM U900, 75005 Paris, France

6 Lobachevsky University, 603000 Nizhny Novgorod, Russia

Abstract. We introduce LNetReduce, a tool that simplifies linear
dynamic networks. Dynamic networks are represented as digraphs
labeled by integer timescale orders. Such models describe determinis-
tic or stochastic monomolecular chemical reaction networks, but also
random walks on weighted protein-protein interaction networks, spread-
ing of infectious diseases and opinion in social networks, communica-
tion in computer networks. The reduced network is obtained by graph
and label rewriting rules and reproduces the full network dynamics with
good approximation at all timescales. The tool is implemented in Python
with a graphical user interface. We discuss applications of LNetReduce
to network design and to the study of the fundamental relation between
timescales and topology in complex dynamic networks.

Availability: the code, documentation and application examples are
available at https://github.com/oradules/LNetReduce.

1 Introduction

In bioinformatics and systems biology, molecular networks are used as mecha-
nistic models of cell physiology and disease with numerous applications in biol-
ogy and medicine. Networks are also used by the complex systems community
to study social interactions, epidemics, or computer communication. Generally,
large scale networks are available as digraphs, in which vertices and edges repre-
sent individuals (for instance molecules) and interactions, respectively. Connec-
tivity is supposed essential for the network properties, therefore a large number
of tools are dedicated to the analysis of network topology [4]. However, net-
work dynamics and timescales are also very important. The simplest model of
dynamic network is obtained by associating to each edge, a number representing
the strength of the interaction or its timescale. For molecular networks, this type
of information can result from quantitative network analysis approaches such as
c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 238–244, 2021.
https://doi.org/10.1007/978-3-030-85633-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_15&domain=pdf
https://github.com/oradules/LNetReduce
https://doi.org/10.1007/978-3-030-85633-5_15

LNetReduce: Tool for Reducing Linear Dynamic Networks 239

modular response analysis, flux balance analysis, or from direct probing of the
interactions by biochemical or biophysical methods. When interaction timescales
are not accurate, one can represent their values by integer orders of magnitude
instead of real numbers. In many cases, it is important to know that one interac-
tion is much faster than another without having to know by precisely how much.
Integer labelled digraphs are thus well suited to study network properties that
depend on timescale orders. In this paper we introduce a tool to simplify such
networks to an extent that qualitative analysis of their dynamics becomes easy.

2 Model

Dynamic networks are represented as integer edge-labeled digraphs G =
(V,A,L), with V the set of vertices, A ⊂ V ×V the set of edges, L : A → O ⊂ N

the label function. The labels can be obtained from timescales as follows. Fixing
a scale basis 0 < ε < 1, to each edge with kinetic constant k and timescale
τ = 1/k and we associate an integer kinetic order g = round(log(k)/ log(ε)),
where round stands for round half down. g is the order of magnitude of k,
as shown by εg+0.5 < k ≤ εg−0.5. The time units are chosen such that the
fastest reaction has k = 1, g = 0, which results in positive integer orders. When
ε = 1/10 one recovers the familiar decimal orders of magnitude. Using this power
parametrisation we can cope with widely distributed rates. Such networks can
be endowed with deterministic or stochastic dynamics.

The deterministic dynamics is defined by a set of ODEs:

ċi =
∑

(i,j)∈A
εgijcj − (

∑

(j,i)∈A
εgji)ci, i ∈ V, gij = L((j, i)). (1)

The stochastic dynamics is a random walk on the network, where the prob-
ability to jump from i to j is proportional to εgji . For continuous time random
walks, (1) is the backward Kolmogorov equation (master equation) and ci is the
probability to be in i.

3 Reduction Algorithm

We are interested in the reduced model valid in the limit ε → 0. This model can
be obtained algorithmically using the following rules [3,5–7]:

1. Pruning. For any node with several successors keep the edge with minimum
order gi = min{gji, j ∈ Succ(i)} and delete all the other edges. We ask for
the condition 1: at a bifurcation the minimum order is attained only once.
The result of this step is the deterministic auxiliary network Aux(G). If the
auxiliary network is acyclic, the algorithm stops after this step.

2. Pooling. If Aux(G) contains cycles, find a maximal set of disjoint irreducible
cycles. Replace these cycles by “glued nodes”. As pooling will eventually apply
several times, it generates hierarchical glued nodes. Each glued node retains
the memory of the cycles it contains (nodes and edges) as follows:

240 M. Buffard et al.

A1

A2

A3 A4

28

6

16 4

13

a)

A1

A2

A3 A4

28

16

13

b)

A1

A2

A3 A4

28

12

16 10

13

c)

A1

A2

A3 A4

28
16 10

13

d)

A1

A2

A3 A4

28

15

16 10

13

e)

A1

A2

A3 A4

28

15

16 10

13

f)

A1

A2

A3 A4

2

15

10

g)

Fig. 1. The successive steps of the reduction algorithm. a) is the initial model; b)
is the auxiliary network resulting from pruning; c) is the result of gluing the cycle
{A1, A2} and rewriting the exit edge labels (the labels 6, 4 become 6 + 8 − 2 = 12,
and 4 + 8 − 2 = 10, respectively); d) is the auxiliary network after one more iteration;
e) results from gluing the cycle {{A1, A2}, A4} and rewriting the exit edge label (12
becomes 12 + 13 − 10 = 15) ; f) results from gluing the cycle {{{A1, A2}, A4}, A3};
g) restoring the single species without their limiting steps starting with the innermost
cycle. Limiting steps of different cycles are represented in red. (Color figure online)

– The glued node inherits all the edges of Aux(G) entering the cycle and
also all the edges of G exiting the cycle.

– The labels of edges from Aux(G) are maintained, while the labels of edges
of G and not in Aux(G) are recomputed according to the rule:

g′ = g + glim − gc (2)

where g′, g is the order after and before gluing, respectively, glim is the
largest order edge in the cycle (limiting step) and gc corresponds to the
in-cycle edge sharing the tail with the exit edge. Here we ask for the
condition 2: the limiting step is unique in all cycles.

If the application of pooling results in a non-deterministic graph, apply prun-
ing again. Iterate until there are no more cycles.

3. Restore glued vertices through the following steps:
– Restore all vertices of the glued cycles.
– Restore all cycle edges except the limiting step.
– An edge exiting the glued cycle and arriving in an unglued node, is

replaced by an edge with the same head and label, but originating from
the tail of the limiting step of the glued cycle.

– An edge exiting the glued cycle and arriving in another glued cycle is
replaced as above using its original head within the glued cycle.

LNetReduce: Tool for Reducing Linear Dynamic Networks 241

The result of restore is path independent: one can start with the most compact
or less compact cycles in the hierarchy.

The top level version of the algorithm is given by Algorithm 1. If conditions
1 and 2 are everywhere satisfied, then the reduced graph is acyclic and deter-
ministic. Exceptions lead to stopping the reduction before eliminating all cycles
and multiple branching. An example of application of the algorithm to “flower”
motifs, consisting of a central hub node and satellite nodes is shown in Fig. 1.

Algorithm 1. Reduce
Require: labeled digraph G

Ensure: reduced labeled digraph

if condition 1 then
Prune, compute auxiliary deterministic graph;

else
break

end if
Ncycles:= number of cycles;
while Ncycles > 1 do

Compute disjoint, irreducible cycles;
if condition 2 then

Glue cycles;
if condition 1 then

Prune, compute auxiliary deterministic graph;
else

break
end if

else
break

end if
Ncycles:= number of cycles;

end while
Restore glued vertices;

The complexity of the reduction algorithm is O(n) in time where n is the
number of nodes, because pruning the full or glued cycles network and computing
the disjoint cycles of the auxiliary network ask for O(n) operations. For its
implementation we have used Networkx [4].

4 Applications

4.1 Connection Between Topology and Dynamics

For a given topology one can have several reduced models, depending on the
kinetic orders. Each reduction corresponds to a particular qualitative dynamics.

242 M. Buffard et al.

In order to illustrate the connection between network topology and its
dynamics in the limit of well-separated rate constants, we made a number
of experiments on fragments of real-life transcription networks extracted from
Dorothea database (https://saezlab.github.io/dorothea/), for the edges of which
we assigned random distinct kinetic orders. For example, we extracted all net-
work neighbours of MYCN transcription factor (see Fig. 2A) and randomly
assigned kinetic orders from 0 to 9, to network reactions. Application of LNetRe-
duce to 10000 random kinetic order assignments led to 51 topologically distinct
(topologically isomorphic with node identity kept) model reductions, where some
reductions were much more frequent than others. Of note, in approximately 7%
cases, LNetReduce met a conflict in the reduction algorithm. In these cases,
two kinetic rates of the same order in the outgoing reaction fork happened at a
stage of reduction process. Interestingly, rare reductions (Fig. 2C, D) were char-
acterized by inefficient activation dynamics of MYCN node. This inefficiency
was manifested either by leaky dynamics of MYCN, with vanishing probabil-
ity at long timescales or by existence of reactions with reversed direction in the
reduced model. By contrast, the most frequent reductions (Fig. 2A, B) were char-
acterized by activating and efficient (fast) MYCN dynamics. Other computation
experiments with fragments of the transcription network are described at the
LNetReduce web-site as Python notebooks.

Fig. 2. Example of LNetReduce application for studying the connection between the
network topology and dynamics, using a small fragment of experimental transcription
regulation network. A) Network fragment. B) Most frequent topologically isomorphic
reduction and its dynamics. C, D) Examples of rarely obtained reductions and their
dynamics. Red arrows show edges whose direction is reverted with respect to A). (Color
figure online)

https://saezlab.github.io/dorothea/

LNetReduce: Tool for Reducing Linear Dynamic Networks 243

4.2 Design of Slow Transients

The reduced graph is a forest of inverted (directed towards roots) trees. In this
case, relaxation timescales defined as times after which something happens are
simply the new labels [3]. However, the relation between initial step timescales gij
and the final labels can be intricate. In particular, relation (2) shows that network
timescales tend to be larger than timescales of the initial steps and complex
networks tend to have very slow transients. Slow transients are important in
biology for a variety of processes from cellular memory to long period circadian
oscillations. We can formulate the following design rule for long transients:

Rule 1. At least at some iteration, the auxiliary network contains cycles such
that the in-cycle step at a cycle exit point is not the limiting step, i.e. glim > gc.
Then, according to (2) g′ > g, new steps are slower than older.

Rule 1 is responsible for the slow transient in Fig. 3. In linear networks with-
out separation of rate constants, slow timescales can result from the addition
of multiple reaction steps, for instance multiple phosphorylations in signaling
networks. This explains why proteins controlling the long 24 h period circa-
dian clock in Neurospora have about one hundred phosphorylation sites [1]. In
the presence of separation, the main slow-down mechanism is the one described
mathematically by Rule 1 and biochemically by futile cycles with rare output.
In such a mechanism, molecules are processed in a cyclic way and the useful,
rare output is generated only after many cycles. Such networks can display the
counter-intuitive behavior that a non-uniform increase of all the rate constants
can lead to slower transients, as noticed for stochastic networks in [2]. Indeed,
it is enough to favor cycling relative to output reactions, thus increasing the
number of cycles needed for obtaining the output.

Fig. 3. Application of LNetReduce to identify slow transient dynamics in networks. The
cascade shown on the left, after fast initial dynamics achieves a very slowly relaxing
state (middle panel). The simulations were done using random initial conditions in
the [0;2] range. The timescales of kinetic rates are shown as numbers on reaction
arcs (the smaller the faster). On the right the result of application of LNetReduce is
shown, explicitly revealing the existence of a very long timescale in the network, four
orders of magnitude larger than any reaction in the initial network (12 vs 8). Using
random permutations of kinetic orders, we estimate the frequency of emergence of slow
transients with this network topology to 4%.

244 M. Buffard et al.

5 Conclusion

We provide a tool allowing to study dynamics of networks with separated rate
constants. This tool implements Algorithm 1 that produces a fully reduced net-
work (forest) if the separation Conditions 1,2 are fulfilled. When these conditions
are not fulfilled, the reduction is partial and results into graphs with cycles and
forks. When the Conditions 1,2 hold, the reduced model provides immediately
the relaxation timescales of the network. In this case we can also compute left
and right eigenvectors of the reduced model, allowing fast computation of traces
[3,5–7]. Although Conditions 1,2 are quite frequent in biology and complex sys-
tems applications, in future work we will consider releasing them at least partially
when computing the eigenvalues and eigenvectors of the reduced model.

For analysis of protein-protein interaction networks using random walk, our
model and tool represent an alternative to uniform jump rate algorithms. For
network design it allows to study the interplay between timescales and topology
for predicting network dynamics and eventually controllability.

Acknowledgements. This work was supported by Agence Nationale de la Recherche,
projects ANR-17-CE40-0036 SYMBIONT and ANR-19-P3IA-0001 (PRAIRIE 3IA
Institute), and by the Ministry of Science and Higher Education of the Russian Feder-
ation (project No. 14.Y26.31.0022).

References

1. Baker, C.L., Kettenbach, A.N., Loros, J.J., Gerber, S.A., Dunlap, J.C.: Quantitative
proteomics reveals a dynamic interactome and phase-specific phosphorylation in the
Neurospora circadian clock. Mol. Cell 34(3), 354–363 (2009)

2. Bokes, P., Klein, J., Petrov, T.: Accelerating reactions at the DNA can slow down
transient gene expression. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB 2020.
LNCS, vol. 12314, pp. 44–60. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-60327-4 3

3. Gorban, A.N., Radulescu, O.: Dynamic and static limitation in multiscale reaction
networks, revisited. Adv. Chem. Eng. 34, 103–173 (2008). https://doi.org/10.1016/
S0065-2377(08)00003-3

4. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Lab. (LANL), Los
Alamos, NM (United States) (2008)

5. Radulescu, O., Gorban, A.N., Zinovyev, A., Noel, V.: Reduction of dynamical bio-
chemical reactions networks in computational biology. Front. Genet. 3, 131 (2012)

6. Radulescu, O., Gorban, A.N., Zinovyev, A.Y., Lilienbaum, A.: Robust simplifica-
tions of multiscale biochemical networks. BMC Syst. Biol. 2, 86 (2008). https://doi.
org/10.1186/1752-0509-2-86

7. Radulescu, O., Swarup Samal, S., Naldi, A., Grigoriev, D., Weber, A.: Symbolic
dynamics of biochemical pathways as finite states machines. In: Roux, O., Bourdon,
J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 104–120. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23401-4 10

https://doi.org/10.1007/978-3-030-60327-4_3
https://doi.org/10.1007/978-3-030-60327-4_3
https://doi.org/10.1016/S0065-2377(08)00003-3
https://doi.org/10.1016/S0065-2377(08)00003-3
https://doi.org/10.1186/1752-0509-2-86
https://doi.org/10.1186/1752-0509-2-86
https://doi.org/10.1007/978-3-319-23401-4_10
https://doi.org/10.1007/978-3-319-23401-4_10

Ppsim: A Software Package for Efficiently
Simulating and Visualizing Population

Protocols

David Doty(B) and Eric Severson

University of California, Davis, CA 95616, USA
{doty,eseverson}@ucdavis.edu

Abstract. We introduce ppsim [28], a software package for efficiently
simulating population protocols, a widely-studied subclass of chemical
reaction networks (CRNs) in which all reactions have two reactants and
two products. Each step in the dynamics involves picking a uniform ran-
dom pair from a population of n molecules to collide and have a (poten-
tially null) reaction. In a recent breakthrough, Berenbrink, Hammer,
Kaaser, Meyer, Penschuck, and Tran [6] discovered a population proto-
col simulation algorithm quadratically faster than the näıve algorithm,
simulating Θ(

√
n) reactions in constant time (independently of n, though

the time scales with the number of species), while preserving the exact
stochastic dynamics.

ppsim implements this algorithm, with a tightly optimized Cython
implementation that can exactly simulate hundreds of billions of reac-
tions in seconds. It dynamically switches to the CRN Gillespie algorithm
for efficiency gains when the number of applicable reactions in a config-
uration becomes small. As a Python library, ppsim also includes many
useful tools for data visualization in Jupyter notebooks, allowing robust
visualization of time dynamics such as histogram plots at time snapshots
and averaging repeated trials.

Finally, we give a framework that takes any CRN with only bimolecu-
lar (2 reactant, 2 product) or unimolecular (1 reactant, 1 product) reac-
tions, with arbitrary rate constants, and compiles it into a continuous-
time population protocol. This lets ppsim exactly sample from the chem-
ical master equation (unlike approximate heuristics such as τ -leaping
or LNA), while achieving asymptotic gains in running time. In linked
Jupyter notebooks, we demonstrate the efficacy of the tool on some pro-
tocols of interest in molecular programming, including the approximate
majority CRN and CRN models of DNA strand displacement reactions.

Keywords: Population protocol · Chemical reaction network

1 Introduction

A foundational model of chemistry used in natural sciences is that of chemical
reaction networks (CRNs) [22]: finite sets of reactions such as A + B → C + D,

Supported by NSF award 1900931 and CAREER award 1844976.

c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 245–253, 2021.
https://doi.org/10.1007/978-3-030-85633-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-85633-5_16

246 D. Doty and E. Severson

representing that molecules A and B, upon colliding, can change into C and
D. This gives a continuous time, discrete state, Markov process [22] modelling
discrete counts1 of molecules.

Population protocols [3], a well-studied model of distributed computing with
limited agents, are a restricted subset of CRNs (with two reactants and two
products in each reaction, and unit rate constants) that nevertheless capture
many of the interesting features of CRNs. Different terminology is used: in reac-
tion A + B → C + D, two agents (molecules), whose states (species types) are
A,B, have an interaction (reaction), changing their states respectively to C,D.
Gillespie kinetics for CRNs. The standard Gillespie algorithm [22] simulates the
Markov process mentioned above. Given a fixed volume v ∈ R

+, the propensity
of a unimolecular reaction r : X

k→ . . . is ρ(r) = k ·#X, where #X is the count of
X. The propensity of a bimolecular reaction r : X +Y

k→ . . . is ρ(r) = k · #X·#Y
v

if X �= Y and k · #X·(#X−1)
2v otherwise. The Gillespie algorithm calculates the

sum of the propensities of all reactions: ρ =
∑

r ρ(r). The time until the next
reaction is sampled as an exponential random variable T with rate ρ, and a
reaction rnext is chosen with probability ρ(rnext)/ρ to be applied.

Population Protocols. The population protocols model comes with simpler
dynamics. At each step, a scheduler chooses a random pair of agents (molecules)
to interact in a (potentially null) reaction. The discrete time model counts each
interaction as 1

n units of time, where n is the population size. A continuous time
variant [18] gives each agent a rate-1 Poisson clock, upon which it interacts with
a randomly chosen other agent. The expected time until the next interaction is
1
n , so up to a re-scaling of time, which by straightforward Chernoff bounds is
negligible, these two models are equivalent. ppsim can use either time model.

There is an important efficiency difference between the algorithms: the Gille-
spie algorithm automatically skips null reactions. For example, a reaction such
as L + L→ L + F , when #L = 2 and #F = n − 2, is much more efficient in the
Gillespie algorithm, which simply increments the time until the L + L → L + F
reaction by an exponential random variable in one step. A näıve population pro-
tocol simulation iterates through Θ(n) expected null interactions (L+F → L+F
and F + F → F + F) until the two L’s react. To better handle cases like
this, ppsim dynamically switches to the Gillespie algorithm when the number of
null interactions is sufficiently large; see documentation [28] for implementation
details.

Other Simulation Algorithms. Variants of the Gillespie algorithm reduce the time
to apply a single reaction from O(|R|) to O(log |R|) [21] or O(1) [31], where |R|
is the number of types of reactions. However, the time to apply n reactions still
scales with n. A common speedup heuristic for simulating ω(1) reactions in O(1)
time is τ -leaping [10,23,24,29,32], which “leaps” ahead by time τ , by assuming
reaction propensities will not change and updating counts in a single batch step
1 Another modelling choice are ODEs that describe real-valued concentrations, the

“mean-field” approximation to the discrete behavior in the large scale limit [26].

Ppsim: A Software Package for Efficiently Simulating Population Protocols 247

by sampling according these propensities. Such methods necessarily approximate
the kinetics inexactly, though it is possible in some cases to prove bounds on
the approximation accuracy [32]. Linear noise approximation (LNA) [11] can
be used to approximate the discrete kinetics, by adding stochastic noise to an
ODE approximation. A speedup heuristic for population protocol simulation
is to sample the number of each interaction that would result from a random
matching of size m, and update species counts in a single step. This, too, is an
inexact approximation: unlike the true process, it prevents any molecule from
participating in more than one of the next m interactions.

The algorithm implemented by ppsim, due to Berenbrink, Hammer, Kaaser,
Meyer, Penschuck, and Tran [6], builds on this last heuristic. Conditioned on
the event that no molecule is picked twice during the next m interactions, these
interacting pairs are a random disjoint matching of the molecules. Define the
random variable C as the number of interactions until the same molecule is
picked twice. Their basic algorithm samples this collision length C according
to its exact distribution, then updates counts in batch assuming all pairs of
interacting molecules are disjoint until this collision, and finally simulates the
interaction involving the collision. By the Birthday Paradox, E[C] ≈ √

n in a
population of n molecules, giving a quadratic factor speedup over the näıve
algorithm. The time to update a batch scales quadratically with q, the total
number of states. The “multibatch” variant, used by ppsim, samples multiple

successive collisions to process an even larger batch, and uses O

(

q
√

logn
n

)

time

per simulated interaction.
See [6] for details. An advantage of such a fast simulator, specifically for

population protocols implementing algorithms, is that the very large population
sizes it can handle (over 1012) allow one to tell the difference (on a log-scale plot
of convergence time) between a protocol converging in time O(log n) versus, say,
O(log2 n).

2 Usage of the Ppsim Tool

We direct the reader to [28] for detailed installation, usage instructions, and
examples. Here we highlight basic usage examples for specifying protocols.

There are three ways one can specify a population protocol, each best suited
for different contexts. The most direct specification of a protocol directly encodes
the mapping of input state pairs to output state pairs using a Python dict

(the following is the well-studied approximate majority protocol, which has been
studied theoretically [4,13] and implemented experimentally with DNA [12]):
1 a,b,u = 'A','B','U'
2 approx_majority = {(a,b):(u,u), (a,u):(a,a), (b,u):(b,b)}

More complex protocols with many possible species are often specified in
pseudocode instead of listing all possible reactions. ppsim supports this by allow-
ing the transition function mapping input states to output states to be computed

248 D. Doty and E. Severson

by a Python function. The following allows species to be integers and computes
an integer average of the two reactants:
1 def discrete_averaging(s: int , r: int):
2 return math.floor((s+r)/2), math.ceil((s+r)/2)

States and transition rules are converted to integer arrays for internal Cython
methods, so there is no efficiency loss for the ease of representing protocol rules,
since a Python function defining the transition function is not called during the
simulation: producible states are enumerated before starting the simulation.

For complicated protocols, an advantage of ppsim over standard CRN simu-
lators is the ability to represent species/states as Python objects with different
fields (as they are often represented in pseudocode), and to plot counts of agents
based on their field values.2

Finally, protocols can be specified using CRN-like notation for CRNs with
reactions that are bimolecular (2-input, 2-output) or unimolecular (1-input, 1-
output), with arbitrary rate constants. For instance, this code specifies the CRN

A + B
0.5�
4

2C, C
5→ D

1 a,b,c,d = species('A B C D')
2 crn = [(a+b | 2*c).k(0.5).r(4), (c >> d).k(5)]

This will then get compiled into a continuous time population protocol that
samples the same distribution as Gillespie. See full paper [14] for details.

Any of the three specifications (dict, Python function, or list of CRN reac-
tions) can be passed to the Simulation constructor. The Simulation can be run
to generate a history of sampled configurations.
1 init_config = {a: 51, b: 49}
2 sim = Simulation(init_config , approx_majority)
3 sim.run(16, 0.1) # 160 samples up to time 16
4 sim.history.plot() # Pandas dataframe with counts

This would produce the plot shown in Fig. 1a. When the input is a CRN,
ppsim defaults to continuous time and produces the exact same distributions as
the Gillespie algorithm. Figure 1b shows a test against the package GillesPy2 [25]
to confirm they sample the same distribution.

3 Speed Comparison with Other CRN Simulators

We ran speed comparisons of ppsim against both GillesPy2 [25] and StochKit2
[30], the latter being the fastest option we found for Gillespie simulation. Figure 2
shows that ppsim is able to reach significantly larger population sizes. Other tests
shown in an example notebook3 show how each package scales with the number
of species and reactions.
2 Download and run https://github.com/UC-Davis-molecular-computing/ppsim/

blob/main/examples/majority.ipynb to visualize such large state protocols.
3 https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/

crn.ipynb shows further plots and explanations.

https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/majority.ipynb
https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/majority.ipynb
https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/crn.ipynb
https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/crn.ipynb

Ppsim: A Software Package for Efficiently Simulating Population Protocols 249

(a) Plot of sim.history. (b) Comparison with Gillespie algorithm.

Fig. 1. Time 5 (dotted line in Fig. 1a) was sampled 106 times with ppsim and GillesPy2
to verify they both sample the same chemical master equation distribution (Fig. 1b).

Fig. 2. Comparing runtime with population size n shows O(n) scaling for Gillespie
(slope 1 on log-log plot) versus O(

√
n) scaling for ppsim (slope 1/2).

4 Issues with Other Speedup Methods

It is reasonable to conjecture that exact stochastic simulation of large-count
systems is unnecessary, since Gillespie is fast enough on small-count systems,
and faster ODE approximation is “reasonably accurate” for large-count sys-
tems. However, there are example large count systems with stochastic effects not
observed in ODE simulation, and where τ -leaping introduces systematic inaccu-
racies that disrupt the fundamental qualitative behavior of the system, demon-
strating the need for exact stochastic simulation. A simple such example is the

250 D. Doty and E. Severson

Fig. 3. The rock-paper-scissors oscillator has qualitative dynamics missed by both ODE
simulation (never goes extinct) and τ -leaping (too quickly goes extinct).

3-state rock-paper-scissors oscillator: B + A → 2B, C + B → 2C, A + C → 2A.
Fig. 3 compares exact simulation of this CRN to τ -leaping and ODEs.

The population protocol literature furnishes more examples, with problems
such as leader election [2,5,7–9,15,17,19,20,34,35] and single-molecule detec-
tion [1,16],4 that crucially use small counts in a very large population, a regime
not modelled correctly by ODEs. See also [27] for examples of CRNs with

4 Download and run https://github.com/UC-Davis-molecular-computing/ppsim/
blob/main/examples/rps oscillator.ipynb to see visualizations of the generalized 7-
state rps oscillator used for single-molecule detection in [16].

https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/rps_oscillator.ipynb
https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/rps_oscillator.ipynb

Ppsim: A Software Package for Efficiently Simulating Population Protocols 251

qualitative stochastic behavior not captured by ODEs, yet that behavior appears
only in population sizes too large to simulate with Gillespie.

5 Conclusion

Unfortunately, the algorithm of Berenbrink et al. [6] implemented by ppsim
seems inherently suited to population protocols, not more general CRNs. For
instance, reversible dimerization reactions A+B � C (used, for example, in [33]
to model toehold occlusion reactions in DNA systems) seem beyond the reach of
the batching technique of [6]. Although such reactions can be approximated by
A + B � C + F for some anonymous “fuel” species F , the count of F influences
the rate of the reverse reaction F + C → A + B, with a different rate than
C → A + B.

Another area for improvement is the handling of null reactions. There could
be a way to more deeply intertwine the logic of the Gillespie and batching algo-
rithms, to gain the simultaneous benefits of each, skipping the null reactions
while simulating many non-null reactions in batch.

References

1. Alistarh, D., Dudek, B., Kosowski, A., Soloveichik, D., Uznański, P.: Robust detec-
tion in leak-prone population protocols. In: Brijder, R., Qian, L. (eds.) DNA 2017.
LNCS, vol. 10467, pp. 155–171. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66799-7 11

2. Alistarh, D., Gelashvili, R.: Polylogarithmic-time leader election in population pro-
tocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9135, pp. 479–491. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47666-6 38

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

4. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distrib. Comput. 21(2), 87–102 (2008)

5. Berenbrink, P., Giakkoupis, G., Kling, P.: Optimal time and space leader elec-
tion in population protocols. In: STOC 2020: Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, pp. 119–129.
Association for Computing Machinery, New York (2020). https://doi.org/10.1145/
3357713.3384312

6. Berenbrink, P., Hammer, D., Kaaser, D., Meyer, U., Penschuck, M., Tran, H.:
Simulating population protocols in sub-constant time per interaction. In: ESA
2020: 28th Annual European Symposium on Algorithms, vol. 173, pp. 16:1–16:22
(2020). https://drops.dagstuhl.de/opus/volltexte/2020/12882

7. Berenbrink, P., Kaaser, D., Kling, P., Otterbach, L.: Simple and efficient leader
election. In: 1st Symposium on Simplicity in Algorithms (SOSA 2018), vol. 61, pp.
9:1–9:11 (2018)

https://doi.org/10.1007/978-3-319-66799-7_11
https://doi.org/10.1007/978-3-319-66799-7_11
https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1145/3357713.3384312
https://doi.org/10.1145/3357713.3384312
https://drops.dagstuhl.de/opus/volltexte/2020/12882

252 D. Doty and E. Severson

8. Bilke, A., Cooper, C., Elsässer, R., Radzik, T.: Brief announcement: population
protocols for leader election and exact majority with O(log2 n) states and O(log2 n)
convergence time. In: PODC 2017: Proceedings of the ACM Symposium on Prin-
ciples of Distributed Computing, pp. 451–453. ACM (2017)

9. Burman, J., et al.: Time-optimal self-stabilizing leader election in population pro-
tocols. In: PODC 2021: Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing (2021)

10. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-
leaping simulation method. J. Chem. Physi. 124(4), 044109 (2006)

11. Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction
networks using linear noise approximation. Biosystems 149, 26–33 (2016). https://
doi.org/10.1016/j.biosystems.2016.09.004, https://www.sciencedirect.com/scie
nce/article/pii/S0303264716302039, selected papers from the Computational
Methods in Systems Biology 2015 conference

12. Chen, Y.J., et al.: Programmable chemical controllers made from DNA. Nat. Nan-
otechnol. 8(10), 755–762 (2013)

13. Condon, A., Hajiaghayi, M., Kirkpatrick, D., Maňuch, J.: Approximate majority
analyses using tri-molecular chemical reaction networks. Nat. Comput. 19(1), 249–
270 (2020)

14. Doty, D., Severson, E.: ppsim: A software package for efficiently simulating
and visualizing population protocols. Technical Report 2105.04702, arXiv (2021).
arXiv:2105.04702

15. Doty, D., Soloveichik, D.: Stable leader election in population protocols requires
linear time. Distrib. Comput. 31(4), 257–271 (2018), special issue of invited papers
from DISC 2015

16. Dudek, B., Kosowski, A.: Universal protocols for information dissemination using
emergent signals. In: Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pp. 87–99 (2018)

17. Elsässer, R., Radzik, T.: Recent results in population protocols for exact majority
and leader election. Bull. EATCS 3(126) (2018)

18. Fanti, G., Holden, N., Peres, Y., Ranade, G.: Communication cost of consensus for
nodes with limited memory. Proc. Natl. Acad. Sci. 117(11), 5624–5630 (2020)

19. Ga̧sieniec, L., Stachowiak, G.: Fast space optimal leader election in population
protocols. In: SODA 2018: ACM-SIAM Symposium on Discrete Algorithms, pp.
2653–2667. SIAM (2018)

20. Ga̧sieniec, L., Stachowiak, G., Uznański, P.: Almost logarithmic-time space optimal
leader election in population protocols. In: SPAA 2019: 31st ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 93–102 (2019)

21. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)

22. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

23. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically react-
ing systems. J. Phys. Chem. 115(4), 1716–1733 (2001)

24. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem.
58, 35–55 (2007)

25. GillesPy2. https://github.com/StochSS/GillesPy2
26. Kurtz, T.G.: The relationship between stochastic and deterministic models for

chemical reactions. J. Phys. Chem. 57(7), 2976–2978 (1972)

https://doi.org/10.1016/j.biosystems.2016.09.004
https://doi.org/10.1016/j.biosystems.2016.09.004
https://www.sciencedirect.com/science/article/pii/S0303264716302039
https://www.sciencedirect.com/science/article/pii/S0303264716302039
http://arxiv.org/abs/2105.04702
https://github.com/StochSS/GillesPy2

Ppsim: A Software Package for Efficiently Simulating Population Protocols 253

27. Lathrop, J.I., Lutz, J.H., Lutz, R.R., Potter, H.D., Riley, M.R.: Population-induced
phase transitions and the verification of chemical reaction networks. In: Geary,
C., Patitz, M.J. (eds.) DNA 26: 26th International Conference on DNA Comput-
ing and Molecular Programming. Leibniz International Proceedings in Informatics
(LIPIcs), vol. 174, pp. 5:1–5:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.DNA.2020.5

28. ppsim Python package. source code (2021). https://github.com/UC-Davis-mole
cular-computing/ppsim API documentation, https://ppsim.readthedocs.io/
Python package for installation via pip: https://pypi.org/project/ppsim/

29. Rathinam, M., El Samad, H.: Reversible-equivalent-monomolecular tau: a leaping
method for “small number and stiff” stochastic chemical systems. J. Comput. Phys.
224(2), 897–923 (2007)

30. Sanft, K.R., Wu, S., Roh, M., Fu, J., Rone, K.L., Petzold, L.R.: Stochkit2: software
for discrete stochastic simulation of biochemical systems with events. Bioinformat-
ics 27(17), 501–522 (2011). https://academic.oup.com/bioinformatics/article/27/
17/2457/224105

31. Slepoy, A., Thompson, A.P., Plimpton, S.J.: A constant-time kinetic monte carlo
algorithm for simulation of large biochemical reaction networks. J. Chem. Phys.
128(20), 05B618 (2008)

32. Soloveichik, D.: Robust stochastic chemical reaction networks and bounded tau-
leaping. J. Comput. Biol. 16(3), 501–522 (2009)

33. Srinivas, N., Parkin, J., Seelig, G., Winfree, E., Soloveichik, D.: Enzyme-free nucleic
acid dynamical systems. Science 358(6369), eaal2052 (2017)

34. Sudo, Y., Masuzawa, T.: Leader election requires logarithmic time in population
protocols. Para. Process. Lett. 30(01), 2050005 (2020)

35. Sudo, Y., Ooshita, F., Izumi, T., Kakugawa, H., Masuzawa, T.: Time-optimal
leader election in population protocols. IEEE Trans. Parallel Distrib. Syst. 31(11),
2620–2632 (2020). https://doi.org/10.1109/TPDS.2020.2991771

https://doi.org/10.4230/LIPIcs.DNA.2020.5
https://github.com/UC-Davis-molecular-computing/ppsim
https://github.com/UC-Davis-molecular-computing/ppsim
https://ppsim.readthedocs.io/
https://pypi.org/project/ppsim/
https://academic.oup.com/bioinformatics/article/27/17/2457/224105
https://academic.oup.com/bioinformatics/article/27/17/2457/224105
https://doi.org/10.1109/TPDS.2020.2991771

Web-Based Structural Identifiability
Analyzer

Ilia Ilmer1(B), Alexey Ovchinnikov2,3, and Gleb Pogudin4

1 Ph.D. Program in Computer Science, CUNY Graduate Center,
New York, NY, USA

iilmer@gradcenter.cuny.edu
2 Ph.D. Programs in Mathematics and Computer Science, CUNY Graduate Center,

New York, NY, USA
3 Department of Mathematics, CUNY Queens College, Queens, NY, USA

aovchinnikov@qc.cuny.edu
4 LIX, CNRS, École Polytechnique, Institute Polytechnique de Paris, Paris, France

gleb.pogudin@polytechnique.edu

Abstract. Parameter identifiability describes whether, for a given dif-
ferential model, one can determine parameter values from model equa-
tions. Knowing global or local identifiability properties allows construc-
tion of better practical experiments to identify parameters from exper-
imental data. In this work, we present a web-based software tool that
allows to answer specific identifiability queries. Concretely, our toolbox
can determine identifiability of individual parameters of the model and
also provide all functions of parameters that are identifiable (also called
identifiable combinations) from single or multiple experiments. The pro-
gram is freely available at https://maple.cloud/app/6509768948056064.

Keywords: Structural identifiability · Identifiability software ·
Differential algebra

1 Introduction and Related Work

A parameter is said to be structurally globally identifiable if, given the input
and output of the experiment, one can uniquely recover the parameter’s value
in the generic case. If the recovered value is not unique but comes from a finite
collection, then we say that such a parameter is locally identifiable. Otherwise,
the parameter is called non-identifiable. In the latter case, one wonders if there is
a function of that parameter that is identifiable. This is useful in several ways, for
instance, it can mitigate the issue of non-identifiability of some parameters [13].

There is a variety of installable packages that deal with parameter identifi-
ability, see, for instance [1,5,10,17,21]. For a more detailed overview of these,
see [4,8] and references therein. A general overview of solving parameter identifi-
ability problems was presented, for instance, in [12,14,20]. Among the available

This work was partially supported by the NSF grants CCF-1564132, CCF-1563942,
DMS-1760448, DMS-1853650, and DMS-1853482, and by the Paris Ile-de-France
Region.

c© Springer Nature Switzerland AG 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 254–265, 2021.
https://doi.org/10.1007/978-3-030-85633-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_17&domain=pdf
https://maple.cloud/app/6509768948056064
https://doi.org/10.1007/978-3-030-85633-5_17

Web-Based Structural Identifiability Analyzer 255

identifiability software, SIAN [7] written in Maple1 is typically the fastest one
for assessing global identifiability of individual parameters (see, e.g., [7, Table 1]).
In the case of the lack of identifiability, one may want to find which functions of
the parameters are identifiable. For this task, DAISY software [1] implemented
in Reduce can be used (under some assumptions, see [15, Remark 3] and [13]).
This state of affairs may be inconvenient for the user because

1) the features of interest are scattered among different packages;
2) packages may require proprietary (Maple) or less popular (Reduce) software

and may not be available for commonly used OS (DAISY is not available for
the UNIX-type systems);

3) finally, the packages should be installed.

These issues have been partially addressed by a web-based tool called COM-
BOS [11] (and its recent refinement COMBOS 2 for linear systems [9]). How-
ever, the backend algorithm appears to be less efficient than SIAN [7, Table 1],
and it relies on the same assumption on the input model as DAISY.

Our main contribution is a web-based toolbox hosted on Maple Cloud for
assessing structural identifiability built upon SIAN and recent software for com-
puting identifiable functions of parameters [13] which uses the Boulier’s BLAD
software package [2] incorporated into the Maple’s Differential Algebra
package. The key features are

1) efficiency. We use SIAN for assessing identifiability of individual parameters
efficiently. For computing identifiable functions, we use the code from [13]
which we speed up by exploiting the results of the computation performed by
SIAN.

2) versatility. The toolbox allows assessing local and global identifiability of the
parameters and initial conditions and compute the identifiable functions in
parameter both in the single- and multi-experiment setup. We do not make
any assumptions on the input system unlike DAISY or COMBOS.

3) availability. The toolbox is a web app, so it can be used in a browser in one
click and does not require installing anything.

In Sect. 3, we outline several scenarios in which our application is essential
for assessing identifiability of parameters and parameter combinations. We also
illustrate the speedup achievable using output from each of its parts. The web-
application2 can be used at https://maple.cloud/app/6509768948056064 and is
also available for download.

2 Input-Output Specification

Let us define the specific form of state-space input ODE that our application
accepts.
1 For a Julia implementation, see https://github.com/alexeyovchinnikov/SIAN-Julia.
2 The Maple implementations of each underlying algorithm are available on GitHub

at https://github.com/pogudingleb/SIAN and https://github.com/pogudingleb/
AllIdentifiableFunctions.

https://maple.cloud/app/6509768948056064
https://github.com/alexeyovchinnikov/SIAN-Julia
https://github.com/pogudingleb/SIAN
https://github.com/pogudingleb/AllIdentifiableFunctions
https://github.com/pogudingleb/AllIdentifiableFunctions

256 I. Ilmer et al.

Definition 1 (Model in the state-space form). A model in the state-space
form accepted by the application is a system

Σ :=

⎧
⎪⎨

⎪⎩

x′ = f(x,µ,u),
y = g(x,µ,u),
x(0) = x∗,

where f = (f1, . . . , fn) and g = (g1, . . . , gn) with fi = fi(x,µ,u), gi = gi(x,µ,u)
are rational functions over the field of complex numbers C.

The vector x = (x1, . . . , xn) represents the time-dependent state variables
and x′ represents the derivative. The vector-function u = (u1, . . . , us) repre-
sents the input variable. The m-vector y = (y1, . . . , yn) represents the out-
put variables. The vector µ = (μ1, . . . , μλ) represents the parameters and
x∗ = (x∗

1, . . . , x
∗
n) defines initial conditions of the model.

Below we specify the input format and possible outputs of our toolbox. Note
that while used in descriptions below, some outputs, such as number of solutions
for each parameter, are not listed here for brevity. The app also provides addi-
tional logs for debugging purposes. In Appendix B, we provide more specification
examples.

In: A model in state-space form, see Definition 1.

Out: Globally : Globally identifiable parameters, that is
ones uniquely recoverable for a given system.

Locally not Globally : Locally but not globally identifiable
parameters, with finitely many recoverable values.

Non-Identifiable : Non-identifiable parameters, these can have
infinitely many values.

Single-Experiment : Single-Experiment identifiable functions of
parameters, i.e. identifiable from k ≤ 1 experiments.

Multi-Experiment : Multi-Experiment identifiable functions of
parameters, i.e. identifiable from k ≤ β experiments.

β : Bound on the number of experiments.

Note that the single- and multi-experiment identifiable combinations returned
by the app generate all single- and multi-experiment functions of parameters,
respectively. We return them in the algebraically simplified form. In addition,
the app reports number of solutions per each globally or locally identifiable
parameter, which is not explicitly reflected here due to space limitations.

3 Use Cases for Structural Identifiability Toolbox

3.1 Globally Identifiable Example (Two-Species Competition
Model)

Let us consider a simple two-species competition model based with logistic
growth in homogeneous environment and assume that we are interested in
identifiability properties of all parameters and initial conditions:

Web-Based Structural Identifiability Analyzer 257

⎧
⎪⎪⎨

⎪⎪⎩

x′
1 = r1x1

(
1 − x1+x2

k1

)
,

x′
2 = r2x2

(
1 − x1+x2

k2

)
,

y1 = x1, y2 = x2

with population densities x1, x2 being time-dependent state variables, and intrin-
sic growth rates r1, r2 and carrying capacities k1, k2 being constant. To run the
toolbox for this system, we would write the following into the input field:

In: diff(x1(t),t) = r1*x1(t)*(1 - (x1(t) + x2(t))/k1);
diff(x2(t),t) = r2*x2(t)*(1 - (x1(t) + x2(t))/k2);
y1(t) = x1(t);
y2(t) = x2(t)

Out: Globally : [x1(0), x2(0), r1, r2, k1, k2]
Locally not Globally : []
Non-Identifiable : []

To determine the identifiability for this model, we keep default “Check global/lo-
cal identifiability” and “Print Number of Solutions” options on. After entering
the system and running the application, the output field contains the results.
In this model, all parameters and initial conditions are globally (and locally)
identifiable. One can now proceed to data collection and further experiments.

3.2 Locally Identifiable Model (SIRS Model with Forcing)

Consider an example of a seasonal epidemic model with a periodic forcing term:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

s′ = μ − μs − b0(1 + b1x1)i · s + g · r,

i′ = b0(1 + b1x1)i · s − (ν + μ)i,
r′ = νi − (μ + g)r,
x′
1 = −Mx2,

x′
2 = Mx1,

y1 = i, y2 = r.

The model is taken from [3] and is built into the application as one of the illus-
trating examples. Assume that we are interested in identifiability of parameters
of this model. Without changing default settings, running the application yields
the result of b1, x1(0), x2(0) being unidentifiable, and b0, g, μ, ν, s(0), i(0), r(0) as
globally identifiable. At the same time, we observe that M which defines oscil-
lation of the term x1 is the only parameter identifiable locally, not globally. By
checking the number of solutions, we see that only two can be found for M with
probability p = 0.99. Since M represents the oscillation frequency, it is assumed
to be positive in practice, hence globally identifiable. Note that we only needed
a single section of the app and the result has been obtained in about 7.2 s.

258 I. Ilmer et al.

3.3 Identifiable Combination of Non-identifiable Parameters
(Tumor Targeting)

In this example, we consider system 3 from [16, Section 3] with unknown initial
conditions. The example describes a compartmental model describing tumor
targeting with antibodies, see [18]. To arrive at the system below, we suppose
equations (B) and (D) are identically zero and that 5V 36

V 3 = 1. The functions
xi, i = 1, . . . , 5 represent concentrations, ki, i = 3, . . . , 7 and a, b, d represent rate
constants.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1 = −(k3 + k7)x1 + k4x2,

x′
2 = k3x1 − (k4 + (a + bd)k5)x2 + k6(x3 + x4) + k5x2(x3 + x4),

x′
3 = ak5x2 − k6x3 − k5x2x3,

x′
4 = bdk5x2 − k6x4 − k5x2x4,

x′
5 = k7x1,

y1 = x5.

For this model, after computing identifiability properties using SIAN, we
observe that everything except parameters a, b, d, x3(0), x4(0) is globally or
locally identifiable. To investigate further, we consider computation with “Com-
pute Identifiable Combinations” option turned on. Running the program with
this additional setting, we see that while parameters a, b, d are not identifiable,
their combination a + bd can be identified from at most one experiment. This is
especially beneficial since one can connect the meaning of expression a+bd to the
overall biological sense of the model’s underlying phenomenon. For instance, in
the original paper [18], constant a and a product bd may be attributed to total
binding sites on normal tissue and number of binding sites on tumor making
a + bd the total number of binding sites in the system. Further, one could apply
a substitution of the form x̂3 = x3 + x4, p̂ = a + bd so that in the new system
we only have equations for x1, x2, x̂3, x5 and the parameter combination a + bd
will now be globally identifiable as a parameter p̂.

3.4 System with a Non-identifiable Parameter (Lotka-Volterra
Model)

Let us consider the following Lotka-Volterra model
⎧
⎪⎨

⎪⎩

x′
1 = ax1 − bx1x2

x′
2 = −cx2 + dx1x2

y = x1

(1)

By running the application for (1) using only SIAN, we see that param-
eter b and initial condition x2(0) are non-identifiable, and the parameters
a, b, d and the initial condition x1(0) are globally identifiable. Furthermore,
since a is identifiable and x1 is observed, from the first equation we conclude

Web-Based Structural Identifiability Analyzer 259

that bx2(0) = a − x′
1(0)/x1(0) is identifiable. This implies that we have an

output-preserving scaling transformation b → λb, x2 → x2/λ. Therefore, the
reparametrization x̂2 := bx2 makes the model globally identifiable.

3.5 Refining Multi-experiment Identifiability Bound (Slow-Fast
Ambiguity in a Chemical Reaction Network)

Consider the following system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
A = −k1xA,

x′
B = k1xA − k2xB ,

x′
C = k2xB ,

e′
A = e′

C = 0,

y1 = eAxA + eBxB + eCxC ,

y2 = xC , y3 = eA, y4 = eC .

This model is based on a kinetic reaction A
k1−→ B

k2−→ C from [19] and has
an extra output equation y2. The functions xA, xB, xC are concentrations and
eA, eB with constant eC represent molar extinction coefficients. In addition,
parameters include unknown rate coefficients k1, k2. The application reports
global identifiability for xC(0), eA(0), eC(0) and local identifiability for every-
thing else.

It is then of interest to check identifiable parameter combinations. The app
reports single-experiment identifiability for k1k2, k1 + k2. This implies that the
parameters k1 and k2 are identifiable up to a permutation, so it is possible to
infer the reaction rates from an experiment but not which rate corresponds to
which reaction. Interestingly, the app reports that eB , k1, k2 become globally
identifiable if one performs at most 3 experiments. Can we do better? To answer
this, we turn on the option “Try to Refine Bound” with default number of refining
attempts being 4. As a result, the app reports a new bound for the number of
experiments being 2.

Let us illustrate this point in another way. Recall that we can tell SIAN
to consider multiple copies of the system when analyzing identifiability. In this
mode, SIAN does not output initial conditions for brevity. We observed that
the refined bound for parameters eB , k1, k2 was 2. If we set the “Number of
experiments (copies of the input system)” to 2, SIAN yields global identifiability
of eB , k1, k2, which verifies our earlier finding. Moreover, turning off “Attempt
Bypass using SIAN” option in the search for combinations, we observe that the
application still returns eB , k1, k2 as identifiable with 3 experiments, however,
single experiment check overwrites this result, yielding bound of 1.

Acknowledgements. We are grateful to Joseph DiStefano III, Jürgen Gerhard, John
May, Maria Pia Saccomani, and Eduardo Sontag for fruitful discussions, useful feed-
back, and technical assistance.

260 I. Ilmer et al.

A Details on the Underlying Algorithms

The application solves two problems: identifiability properties of individual
parameters and that of combinations (functions) of parameters. Note that we
return generators of the field of all identifiable functions.

The input for both problems follows the same structure where we pass a
collection of ODEs and output functions. For querying identifiability of indi-
vidual parameters and initial conditions we use SIAN [7]. In short, it expresses
the Taylor coefficients of output functions in terms of the initial conditions and
parameters and checks whether the parameters or initial conditions of interest
can be expressed via these coefficients. For better efficiency, this is checked for a
randomly sampled solution of the system. The probability that such a solution
will exhibit the generic behavior is quantified in [8]. Therefore, the overall algo-
rithm is randomized Monte Carlo, that is the result is guaranteed correct with
user-specified probability p.

To answer the question on identifiability of parameter functions we take
advantage of work [13]. Note that our application distinguishes single- and multi-
experiment identifiable combinations as opposed to existing methods for iden-
tifiable combination queries. The latter is equivalent to having multiple copies
of original ODE system sharing the parameters, outputs, and inputs. We also
provide a bound on the number of experiments which can be refined by changing
ordering of variables in the underlying algorithm.

We compute the input-output equations, that is, differential equations relat-
ing inputs, outputs, and parameters of the differential model. Identifiable func-
tions of parameters are then extracted from the coefficients of these equations
using methods of differential algebra and computational algebraic geometry,
including Gröbner basis computation. To minimize the computational overhead,
we take advantage of the Gröbner walk procedure, by changing the order from
total degree reverse to pure lexicographic. This algorithm is deterministic or a
Monte Carlo probabilistic, depending on how/which of the Gröbner basis imple-
mentation is used.

To achieve maximal speed of computation without compromising the func-
tionality of the application, we take advantage of the fact that SIAN is typically
faster than the algorithm from [13] and its output can be sometimes used to
obtain the output of [13] without further computation. More precisely, if all
parameters are reported as globally identifiable with probability p, then, with
the same probability, we report these parameters as their own identifiable com-
binations and an example of this is presented in Appendix B.5.

With the current implementation, the application does not support specifying
initial conditions, however this functionality is planned for future versions.

B Systems in Structural Identifiability Toolbox Input
Form

Below we present input and output form for examples discussed in this paper
(see also Figs. 1 and 2). The input is shown in the Maple syntax form. The
toolbox also supports a different input format:

Web-Based Structural Identifiability Analyzer 261

Fig. 1. Main view of the application. The dial on the right side indicates whether an
app is running. The arrows are clickable and show additional settings for each section
of the program as well as documentation.

Fig. 2. Output fields of the application. We present individual parameters’ results and
identifiable combinations with the bound separately. The white field on the left displays
number of solutions per identifiable parameter.

dx1/dt = a*x1 + x2*b + u(t);

dx2/dt = x2*c + x1;

y = x2

where inputs u(t) are required to have argument written explicitly.

262 I. Ilmer et al.

B.1 Example from Sect. 3.2

In: diff(s(t), t) = mu - mu*s(t) - b0*(1 + b1*x1(t))*i(t)*s(t)
+ g(t)*r(t);
diff(i(t), t) = b0*(1 + b1*x1(t))*i(t)*s(t) - (nu+mu)*i(t);
diff(r(t), t) = nu*i(t) - (mu + g)*r(t);
diff(x1(t), d) = -M*x2(t);
diff(x2(t), d) = M*x1(t);
y1(t) = i(t);
y2(t) = r(t)

Out: Globally : [b0, g, mu, nu, s(0), i(0), r(0)]
Locally not Globally : [M]
Non-Identifiable : [b1, x1(0), x2(0)]

B.2 Example from Sect. 3.3

In: diff(x1(t),t) = -(k3 + k7)*x1(t) + k4*x2(t);
diff(x2(t), t) = k3*x1(t) - (k4 + (a + b*d)*k5)*x2(t)
+ k6*(x3(t) + x4(t)) + k5*x2(t)*(x3(t) + x4(t));
diff(x3(t), t) = a*k5*x2(t) - k6*x3(t) - k5*x2(t)*x3(t);
diff(x4(t), t) = b*d*k5*x2(t) - k6*x4(t) - k5*x2(t)*x4(t);
diff(x5(t), t) = k7*x1(t);
y1(t) = x5(t)

Out: Globally : [k3, k4, k5, k6, k7, x1(0), x2(0), x5(0)]
Locally not Globally : []
Non-Identifiable : [a, b, d, x3(0), x4(0)]
Single-Experiment : [k3, k4, k6, k7, k5/k7, bd+a]
Multi-Experiment : [k3, k4, k6, k7, k5/k7, bd+a]
β = 1

B.3 Example from Sect. 3.4

In: diff(x1(t), t) = a*x1(t) - b*x1(t)*x2(t);
diff(x2(t), t) = -c*x2(t) + d*x1(t)*x2(t);
y(t) = x1(t)

Out: Globally : [a, c, d, x1(0)]
Locally not Globally : []
Non-Identifiable : [b, x2(0)]
Single-Experiment : [a, c, d]
Multi-Experiment : [a, c, d]
β = 1

Web-Based Structural Identifiability Analyzer 263

B.4 Example from Sect. 3.5

In: diff(xA(t), t) = -k1*xA(t);
diff(xB(t), t) = k1*xA(t) - k2*xB(t);
diff(xC(t), t) = k2*xB(t);
diff(eA(t), t) = 0;
diff(eC(t), t) = 0;
y1(t) = eA(t)*xA(t) + eB*xB(t) + eC(t)*xC(t);
y2(t) = xC(t);
y3(t) = eA(t);
y4(t) = eC(t)

Out: Globally : [xC(0), eA(0), eC(0)]
Locally not Globally : [eB, k1, k2, xA(0), xB(0)]
Non-Identifiable : []
Single-Experiment = [k1k2, k1+k2]
Multi-Experiment = [eB, k1, k2]
β = 3

B.5 Example of Speedup with Bypasses

Consider the system from [6]
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1 = −k1x1x2 + k2x4 + k4x6,

x′
2 = k1x1x2 + k2x4 + k3x4,

x′
3 = k3x4 + k5x6 − k6x3x5,

x′
4 = k1x1x2 − k2x4 − k3x4,

x′
5 = k4x6 + k5x6 − k6x3x5,

x′
6 = −k4x6 − k5x6 + k6x3x5,

y1 = x3,

y2 = x2.

This is an example of a mixed-mechanism network, where the state func-
tions xi(t), i = 1, . . . , 6 are concentrations and the parameters ki, i = 1, . . . , 6
are rate constants. The app returns global and local identifiability for all param-
eter in under 4 s. This is used to conclude that multi-experiment identifiable
combinations with the bound of 1 are parameters themselves. If we turn off
the “Attempt Bypass” function, the multi-experiment identifiable combinations
k1, k3, k5, k6,

−k2k4+k3k5
k2+k3

, k2 − k3 with bound 1 are returned in 433 s. The input
form for this example is presented below

264 I. Ilmer et al.

In: diff(x1(t), t) = -k1*x1(t)*x2(t) + k2*x4(t) + k4*x6(t);
diff(x2(t), t) = k1*x1(t)*x2(t) + k2*x4(t) + k3*x4(t);
diff(x3(t), t) = k3*x4(t) + k5*x6(t) - k6*x3(t)*x5(t);
diff(x4(t), t) = k1*x1(t)*x2(t) - k2*x4(t) - k3*x4(t);
diff(x5(t), t) = k4*x6(t) + k5*x6(t) - k6*x3(t)*x5(t);
diff(x6(t), t) = -k4*x6(t) - k5*x6 (t)+ k6*x3(t)*x5(t);
y1(t) = x3(t);
y2(t) = x2(t)

Out: Globally : [k1, k2, k3, k4, k5, k6,
x1(0), x2(0), x3(0),
x4(0), x5(0), x6(0)]

Locally not Globally : []
Non-Identifiable : []
Single-Experiment : [k1, k2, k3, k4, k5, k6]
Multi-Experiment : [k1, k2, k3, k4, k5, k6]
β = 1

References

1. Bellu, G., Saccomani, M.P., Audoly, S., D’Angiò, L.: DAISY: A new software tool to
test global identifiability of biological and physiological systems. Comput. Methods
Programs Biomed. 88(1), 52–61 (2007). https://doi.org/10.1016/j.cmpb.2007.07.
002

2. Boulier, F.: BLAD–bibliothèques lilloises d’algèbre différentielle (2014). https://
cristal.univ-lille.fr/∼boulier/pmwiki/pmwiki.php/Main/BLAD

3. Capistrán, M.A., Moreles, M.A., Lara, B.: Parameter estimation of some epidemic
models. the case of recurrent epidemics caused by respiratory syncytial virus. Bull.
Math. Biol. 71(8), 4890 (2009). https://doi.org/10.1007/s11538-009-9429-3

4. Chiş, O.-T., Banga, J.R., Balsa-Canto, E.: Structural identifiability of systems
biology models: A critical comparison of methods. PLoS ONE 6(11), e27755 (2011).
https://doi.org/10.1371/journal.pone.0027755

5. Chiş, O.-T., Banga, J.R., Balsa-Canto, E.: GenSSI: a software toolbox for struc-
tural identifiability analysis of biological models. Bioinformatics 27(18), 2610–2611
(2011). https://doi.org/10.1093/bioinformatics/btr431

6. Conradi, C., Shiu, A.: Dynamics of posttranslational modification systems: Recent
progress and future directions. Biophys. J. 114(3), 507–515, 2018. ISSN 0006–3495.
https://doi.org/10.1016/j.bpj.2017.11.3787

7. Hong, H., Ovchinnikov, A., Pogudin, G., Yap, C.: SIAN: software for structural
identifiability analysis of ODE models. Bioinformatics 35(16), 2873–2874 (2019).
https://doi.org/10.1093/bioinformatics/bty1069

8. Hong, H., Ovchinnikov, A., Pogudin, G., Yap, C.: Global identifiability of differ-
ential models. Commun. Pure Appl. Math. 73(9), 1831–1879 (2020). https://doi.
org/10.1002/cpa.21921

9. Yazdi, A.K., Nadjafikhah, M., Distefano, J.III.: COMBOS2: an algorithm to
the input-output equations of dynamic biosystems via gaussian elimination. J.
Taibah University Sci. 14(1), 896–907 (2020). https://doi.org/10.1080/16583655.
2020.1776466

https://doi.org/10.1016/j.cmpb.2007.07.002
https://doi.org/10.1016/j.cmpb.2007.07.002
https://cristal.univ-lille.fr/~boulier/pmwiki/pmwiki.php/Main/BLAD
https://cristal.univ-lille.fr/~boulier/pmwiki/pmwiki.php/Main/BLAD
https://doi.org/10.1007/s11538-009-9429-3
https://doi.org/10.1371/journal.pone.0027755
https://doi.org/10.1093/bioinformatics/btr431
https://doi.org/10.1016/j.bpj.2017.11.3787
https://doi.org/10.1093/bioinformatics/bty1069
https://doi.org/10.1002/cpa.21921
https://doi.org/10.1002/cpa.21921
https://doi.org/10.1080/16583655.2020.1776466
https://doi.org/10.1080/16583655.2020.1776466

Web-Based Structural Identifiability Analyzer 265

10. Ligon, T.S., et al.: GenSSI 2.0: multi-experiment structural identifiability analy-
sis of SBML models. Bioinformatics 34(8), 1421–1423 (2018). https://doi.org/10.
1093/bioinformatics/btx735

11. Meshkat, N., Kuo, C.E., DiStefano, J.III.: On finding and using identifiable param-
eter combinations in nonlinear dynamic systems biology models and COMBOS: a
novel web implementation. PLoS One 9(10), e110261 (2014). https://doi.org/10.
1371/journal.pone.0110261

12. Miao, H., Xia, X., Perelson, A.S., Hulin, W.: On identifiability of nonlinear ODE
models and applications in viral dynamics. SIAM Rev. 53(1), 3–39 (2011). https://
doi.org/10.1137/090757009

13. Ovchinnikov, A., Pillay, A., Pogudin, G., Scanlon, T.: Computing all identifiable
functions for ODE models. arXiv preprint arXiv:2004.07774 (2020). https://arxiv.
org/abs/2004.07774

14. Raue, A., Karlsson, J., Saccomani, M.P., Jirstrand, M., Timmer, J.: Comparison
of approaches for parameter identifiability analysis of biological systems. Bioinfor-
matics 30(10), 1440–1448 (2014). https://doi.org/10.1093/bioinformatics/btu006

15. Saccomani, M., Audoly, S., D’Angiò, L.: Parameter identifiability of nonlinear sys-
tems: the role of initial conditions. Automatica 39, 619–632 (2003). https://doi.
org/10.1016/S0005-1098(02)00302-3

16. Saccomani, M.P., Audoly, S., Bellu, G., D’Angiò, L.: Examples of testing global
identifiability of biological and biomedical models with the DAISY software. Com-
put. Biol. Med. 40(4), 402–407 (2010). https://doi.org/10.1016/j.compbiomed.
2010.02.004

17. Saccomani, M.P., Bellu, G., Audoly, S., d’Angió, L.: A new version of DAISY to
test structural identifiability of biological models. In: Bortolussi, L., Sanguinetti,
G. (eds.) CMSB 2019. LNCS, vol. 11773, pp. 329–334. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31304-3 21

18. Thomas, G.D., et al.: Effect of dose, molecular size, affinity, and protein binding
on tumor uptake of antibody or ligand: a biomathematical model. Cancer Res.
49(12), 3290–3296 (1989). http://www.ncbi.nlm.nih.gov/pubmed/2720683

19. Vajda, S., Rabitz, H.: Identifiability and distinguishability of first-order reac-
tion systems. J. Phys. Chem. 92(3), 701–707 (1988). https://doi.org/10.1021/
j100314a024

20. Villaverde, A.F.:. Observability and structural identifiability of nonlinear biological
systems. Complexity (2019). https://doi.org/10.1155/2019/8497093

21. Villaverde, A.F., Barreiro, A., Papachristodoulou, A.: Structural identifiability of
dynamic systems biology models. PLoS Comput. Biol. 12(10) (2016). https://doi.
org/10.1371/journal.pcbi.1005153

https://doi.org/10.1093/bioinformatics/btx735
https://doi.org/10.1093/bioinformatics/btx735
https://doi.org/10.1371/journal.pone.0110261
https://doi.org/10.1371/journal.pone.0110261
https://doi.org/10.1137/090757009
https://doi.org/10.1137/090757009
http://arxiv.org/abs/2004.07774
https://arxiv.org/abs/2004.07774
https://arxiv.org/abs/2004.07774
https://doi.org/10.1093/bioinformatics/btu006
https://doi.org/10.1016/S0005-1098(02)00302-3
https://doi.org/10.1016/S0005-1098(02)00302-3
https://doi.org/10.1016/j.compbiomed.2010.02.004
https://doi.org/10.1016/j.compbiomed.2010.02.004
https://doi.org/10.1007/978-3-030-31304-3_21
http://www.ncbi.nlm.nih.gov/pubmed/2720683
https://doi.org/10.1021/j100314a024
https://doi.org/10.1021/j100314a024
https://doi.org/10.1155/2019/8497093
https://doi.org/10.1371/journal.pcbi.1005153
https://doi.org/10.1371/journal.pcbi.1005153

BioFVM-X: An MPI+OpenMP 3-D
Simulator for Biological Systems

Gaurav Saxena1(B) , Miguel Ponce-de-Leon1(B) , Arnau Montagud1(B) ,
David Vicente Dorca1(B) , and Alfonso Valencia1,2(B)

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{gaurav.saxena,miguel.ponce,arnau.montagud,david.vicente,

alfonso.valencia}@bsc.es
2 Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Llúıs

Companys 23, 08010 Barcelona, Spain

Abstract. Multi-scale simulations require parallelization to address
large-scale problems, such as real-sized tumor simulations. BioFVM is
a software package that solves diffusive transport Partial Differential
Equations for 3-D biological simulations successfully applied to tissue and
cancer biology problems. Currently, BioFVM is only shared-memory par-
allelized using OpenMP, greatly limiting the execution of large-scale jobs
in HPC clusters. We present BioFVM-X: an enhanced version of BioFVM
capable of running on multiple nodes. BioFVM-X uses MPI+OpenMP to
parallelize the generic core kernels of BioFVM and shows promising scal-
ability in large 3-D problems with several hundreds diffusible substrates
and ≈0.5 billion voxels. The BioFVM-X source code, examples and doc-
umentation, are available under the BSD 3-Clause license at https://
gitlab.bsc.es/gsaxena/biofvm x.

Keywords: Multi-scale modeling · Lattice-free modeling · OpenMP ·
MPI · Shared-memory · Distributed-memory · Parallelization

1 Introduction

Advances in understanding complex biological systems such as tumors require
multi-scale simulations that integrate intracellular processes, cellular dynamics,
and their interaction with the environment. Computational biologists use a wide
range of approaches to simulate how single cells affect multi-cellular systems’
dynamics [17,24]. Nevertheless, large-scale multi-scale modeling still needs tools
to accurately simulate the environment in an efficient manner.

BioFVM [8] is a Finite Volume Method (FVM) [20] based simulation soft-
ware for solving Partial Differential Equations (PDEs) [29] that model complex
processes like the uptake, release and diffusion of substrates for multi-cellular
systems such as tissues, tumors or microbial communities. Apart from being
a self-contained callable library that can be used to implement and simulate
biological models, BioFVM forms the core component of PhysiCell [9] - a flexi-
ble, lattice-free, agent-based multi-cellular framework capable of simulating cell
c© The Author(s) 2021
E. Cinquemani and L. Paulevé (Eds.): CMSB 2021, LNBI 12881, pp. 266–279, 2021.
https://doi.org/10.1007/978-3-030-85633-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85633-5_18&domain=pdf
http://orcid.org/0000-0001-7667-5053
http://orcid.org/0000-0002-7496-844X
http://orcid.org/0000-0002-7696-1241
http://orcid.org/0000-0002-1584-1182
http://orcid.org/0000-0002-8937-6789
https://gitlab.bsc.es/gsaxena/biofvm_x
https://gitlab.bsc.es/gsaxena/biofvm_x
https://doi.org/10.1007/978-3-030-85633-5_18

BioFVM-X: An MPI+OpenMP 3-D Simulator for Biological Systems 267

mechanics, such as cell movement, cell-cell interaction and different cell pheno-
types, as well as the micro-environment consisting of diffusing substrates, signal-
ing factors, drugs, etc. BioFVM is capable of handling multiple substrates and
can simulate chemical and biological processes using both cell and bulk sources.
The following diffusive PDE on a computational domain Ω (and boundary ∂Ω)
is solved for a substrate density vector ρ:

∂ρ

∂t
= ∇ · (D ◦ ∇ρ) − λ ◦ ρ + f , (1)

with the boundary condition (D ◦ ∇ρ) · n = 0 on ∂Ω and the initial condi-
tion ρ(x, t0) = g in Ω. In (1) above, D is the matrix of (constant) diffusion
coefficients, λ is the decay rate, f is the net source term and ◦ is the term-
wise product of vectors [8]. Without loss of generality, the substrate density ρ
can represent any kind of molecule such as a nutrient, a by-product, a signal
molecule or a drug. As a consequence, modeling complex environments requires
simulating many densities, posing a challenging scaling problem. Simulating the
environment requires the numerical solution of the linear system obtained by
a Finite Volume Discretization of the PDE given by Eq. (1), which BioFVM
solves using the Thomas algorithm [31] - a fast, direct solver for tridiagonal
systems. BioFVM’s biggest scalability limitation is that it cannot execute on
multiple nodes of an HPC cluster to solve a single, coherent problem and thus
the problem must fit into the memory of a single node.

We present BioFVM-X1: an enhanced distributed version that uses MPI
(Message-Passing Interface [21]) to parallelize the core kernels of BioFVM -
enabling one to solve very large problems which were not previously solvable
using the shared-memory only version. This contribution represents the first and
the most critical step on the road to a distributed implementation of PhysiCell.

2 Related Work

Different agent-based approaches have been proposed to model and simulate
multi-cellular systems, including on-lattice cellular automata, the Cellular-Potts
model [10] and overlapping spheres, among others [23]. BioFVM [8,9] was created
with the goal of achieving simplicity of usage, flexibility in expressing cell mod-
els, and optimizing execution speed while minimising dependencies on external
libraries but is only shared-memory parallelized using OpenMP [22].

For realistic, complex simulations, the need is to simulate billions of cells
and dynamic, complex 3-D environments, only achievable by optimal, full scale
utilization of parallel systems [12,14]. Biocellion [14] is a flexible, discrete agent-
based simulation framework that uses MPI for inter-node communication, as well
as other dependencies, such as PNNL Global Arrays [25], CHOMBO [3], the Intel
TBB [11] and the iterative Multigrid solver [2,32]. Nevertheless, Biocellion has
fixed routines to describe system behaviors, is dependent on external libraries

1 Available at: https://gitlab.bsc.es/gsaxena/biofvm x under BSD 3-Clause license.

https://gitlab.bsc.es/gsaxena/biofvm_x

268 G. Saxena et al.

Fig. 1. Key classes in BioFVM, along with their member data and functions. Func-
tions are distinguishable by a leading parenthesis i.e. (). Names are arbitrary but
convey semantic information. Solid, thick arrow with an un-shaded triangle represents
inheritance and dashed arrows denote a pointer or class relationship - the class (or its
pointer) being pointed to by the arrow is a data member of the class from which the
arrow originates.

and is closed source, which might deter potential users. Chaste is an open-source,
general purpose simulation package for modeling soft tissues and discrete cell
populations [18] that can be used with MPI using PETSc [1] but which itself
suffers from multiple dependencies. Timothy [4,5] is another open-source, MPI
based tool but with several dependencies, such as Zoltan [6], Hypre [7] and
SPRNG [19].

3 Internal Design and Domain Partitioning

The simplicity, flexibility, minimal dependence on external libraries, execution
speed and openness of BioFVM make it an ideal experimental candidate for dis-
tributed parallelization. In BioFVM, the 3-D simulation domain is divided into
Voxels (Volumetric pixels). The principal classes depicting the internal architec-
ture and their relationship in BioFVM is shown in Fig. 1.

The top-level biological entities along with related classes (see Fig. 1) are: (1)
Biological Environment (Microenvironment and Microenvironment Options),
(2) Physical Domain represented as 2-D/3-D Mesh (General Mesh,
Cartesian Mesh and Voxel), and (3) Cells (Basic Agent and Agent
Container). The data members of some classes are either the objects or the point-
ers of another class type (see dashed arrows in Fig. 1). The Microenvironment
class sets the micro-environment name, the diffusion/decay rates of sub-
strates, defines constants for the Thomas algorithm, contains an object of
Cartesian Mesh, a pointer to the Agent Container class and performs I/O.

BioFVM-X: An MPI+OpenMP 3-D Simulator for Biological Systems 269

A group of resizing functions that determine the global/local voxels are mem-
bers of the Cartesian Mesh class. The Microenvironment Options class helps
to set oxygen as the first default substrate and the default dimensions of the
domain/voxel. The Cartesian Mesh class is publicly derived from General Mesh
(thick arrow in Fig. 1). The Basic Agent class forms an abstraction of a cell. An
object of the Basic Agent class can either act as a source or sink of/for substrates.
Each agent has a unique ID, a type, and maintains the local/global index of its cur-
rent voxel.

We initialize MPI with the MPI THREAD FUNNELED thread support level and
after domain partitioning [27,28], assign the sub-domains to individual MPI pro-
cesses. Our implementation as of now supports only a 1-D x-decomposition (see
AppendixA). The randomly generated positions of basic agents are mapped to
respective processes (see Appendix B) after which they are created individually
and in parallel on the MPI processes. Each MPI process initializes an object of
the Microenvironment class, maintains the local and global number of voxels,
local (mesh index) and global voxel indices (global mesh index) and the cen-
ter of each local voxel’s global coordinates. A 1-D x-decomposition permits us
to employ the optimal serial Thomas algorithm [30,31] in the undivided y and
z dimensions. This enables all threads within a node to simultaneously act on
elements belonging to different linear systems.

The Thomas algorithm is used to solve a tridiagonal system of linear equa-
tions in serial and consists of two steps, namely, Forward Elimination (FE) step
followed by a Backward Substitution (BS) step. Unfortunately, both the steps
involve serial and dependent operations and thus, the solver is inherently serial
and cannot be fully (trivially) parallelized. Although we decompose data in the
x−direction, the solver still runs serially i.e. MPI process rank i must finish
the FE before this step can begin on MPI process rank i + 1. Thus, the per-
formance of this multi-node but serial Thomas solver is expected to be worse
than a single-node Thomas solver due to the overhead of communication. The
performance penalty is least in the x−direction as the data is contiguous in the
memory as compared to the y and z direction where the data in the voxels’ vector
is non-contiguous. Thus, we decompose data only in the x−direction and avoid
decomposition in the other directions. We expect to replace this non-optimized
implementation by a modified, MPI+OpenMP version of the modified Thomas
algorithm [15] in future versions.

4 Experiments

We used the MareNostrum 4 (MN4) supercomputer at the Barcelona Supercom-
puting Center (BSC) for all our experiments. Each node has two 24-core Intel
Xeon Platinum 8160 processors and a total memory of 96 GB. BioFVM-X only
requires a C++ compiler and an MPI implementation for compilation. We used
GCC 8.1 and OpenMPI 3.1.1 running atop the SUSE Linux Enterprise Server
12 SP2 OS. The parallel file system is the IBM General Parallel File System
and the compute nodes are interconnected with the Intel Omni-Path technology

270 G. Saxena et al.

with a bandwidth of 100 Gbits/s. We pinned the threads to individual cores and
bind each MPI process to a single processor (socket). We set the OpenMP envi-
ronment variables OMP PROC BIND=spread, OMP PLACES=threads [26] and used
the --map-by ppr:1:socket:pe=24 notation to allocate resources (see https://
gitlab.bsc.es/gsaxena/biofvm x).

We used a cubic physical domain and cubic voxels for all our tests. Our imple-
mentation assumed that the total number of voxels in the BioFVM’s x-direction
are completely divisible by the total number of MPI processes. The example
that we used to demonstrate the benefits of Hybrid parallelism is tutorial1 in
the BioFVM/examples directory. This example: (1) Initializes and resizes the
micro-environment (μ-environment, MC kernel) (2) Creates a Gaussian profile
(GPG kernel) of the substrate concentration (3) Writes the initial and final
concentrations to a .mat file (I/O kernel) (4) Creates Basic Agents (Sources
and Sinks, BAG kernel) and (5) Simulates Sources/Sinks and Diffusion (Solver
kernel).

Figure 2 presents timing results for the MC, GPG, BAG, I/O and Solver
kernels on physical domains of sizes 10003, 19203 and 38403. Cubic voxels had
a volume of 103 with 5 × 102 sources and 5 × 102 sinks in this example. We
denote the Hybrid implementation as “Hyb (n = a)”, where “a” denotes the total
number of nodes. For example, with Hyb (n = 2), we obtain a total of 2 (nodes) ×
2 (MPI processes) × 24 (OpenMP threads) = 96 OpenMP threads, as we always
run 2 MPI processes per node and 24 OpenMP threads per MPI process. Instead
of 8 MPI processes for the domain of size 10003, we used 10 MPI processes due
to a divisibility problem. Figure 3 shows the initial and final concentration of the
diffusing substrate (oxygen) for a domain of size 10003. The simulation plots were
obtained with Hyb (n = 1) by executing the cross section surface.m Matlab
script bundled with BioFVM.

In summary for Hyb (n = 1), both MC and BAG kernels took advantage
of the multiple MPI processes as initialization of the Microenvironment and
Basic Agent class objects were simultaneously carried out on separate processes
in BioFVM-X as opposed to a single thread in BioFVM. The (MPI) I/O ker-
nel showed significant performance gains over serial I/O for the tests considered
(Fig. 2). Nevertheless, the Solver kernel execution run-times did not reflect a sig-
nificant gain in the Hybrid version. An extended analysis of these results can be
found in AppendixC. Note that it is generally very difficult for an MPI+OpenMP
implementation to outperform the pure OpenMP implementation on a single
node, as is the case of Fig. 2, due to the additional memory footprint of MPI
and the cost of message-passing/synchronization. Our aim in the current work
was to tackle very large problems that cannot fit into the memory a single node
and to reduce their time to solution in a multi-node scenario.

After testing with increased voxels and basic agents, we run a performance
test to evaluate the scalability in the number of substrates. We found that the
pure OpenMP BioFVM version is incapable of executing a simulation of 400
substrates on a domain of 15003 due to memory limitations. Nonetheless, we
successfully run a Hybrid simulation using 400, and even 800 substrates, on a
domain of 15003 by distributing the computation between 2 nodes.

https://gitlab.bsc.es/gsaxena/biofvm_x
https://gitlab.bsc.es/gsaxena/biofvm_x

BioFVM-X: An MPI+OpenMP 3-D Simulator for Biological Systems 271

10003 19203 38403
0

20

40

60

80

Problem Size

T
im

e
(s
ec
)

OpenMP
Hyb(n=1)
Best Hybrid

(a) μ-environment

10003 19203 38403

0.2

0.4

0.6

0.8

Problem Size

T
im

e
(s
ec
)

OpenMP
Hyb(n=1)
Best Hybrid

(b) Gaussian

10003 19203 38403

0.4
0.8
1.2
1.6
2

2.4 ·10−3

Problem Size

T
im

e
(s
ec
)

OpenMP
Hyb(n=1)
Best Hybrid

(c) Agent Generation

10003 19203 38403
4
8
12
16
20
24
28

Problem Size

T
im

e
(s
ec
)

OpenMP
Hyb(n=1)
Best Hybrid

(d) File I/O

10003 19203 38403
15
45
75
105
135
165
195

Problem Size

T
im

e
(s
ec
)

OpenMP
Hyb(n=1)
Best Hybrid

(e) Thomas solver

Fig. 2. Pure OpenMP Vs Hybrid MPI execution times for increasing problem sizes.
Hyb (n = 1) represents the time when a single node with 2 MPI processes and 24 threads
is used. The Best Hybrid represents the least time for that kernel for any number of
experimental nodes considered.

0

0.2

0.4

0.6

0.8

1000

substrate1

y (µm)

1000

500

1

500
x (µm)

0 0

0.2

co
nc

en
tr

at
io

n

0.8

0.6

0.4

(a) Initial Concentration

0

1000

1000

substrate1

0.05

0.1

0.15

0.2

y (µm)
500

0.25

500
x (µm)

0 0

0.05

co
nc

en
tr

at
io

n

0.2

0.15

0.1

(b) Final Concentration

Fig. 3. 3-D concentration density of oxygen simulated using Hyb (n = 1) for a domain
of size 10003 and 1000 Basic Agents.

To further showcase BioFVM-X capabilities, we run a parallelized version of
the model of tumor growth in a heterogeneous micro-environment from BioFVM
[8]. We verified that the BioFVM-X distributed-memory 3-D tumor example
yielded the exact same results as the shared-memory one (see Appendix D and
Fig. 8). This is further proof that BioFVM-X correctly distributes the original
BioFVM models with a boost in performance due to the load distribution and the
potential of scaling simulations to a cluster of nodes, thus enabling researchers

272 G. Saxena et al.

Table 1. Time (in seconds) of execution for the pure OpenMP and the Hybrid version
for a problem of size 7680 × 7680 × 7680 (≈0.5 billion voxels). The pure OpenMP
version terminates while throwing Out Of Memory error.

7680 × 7680 × 7680 OpenMP Hyb (n = 4) Hyb (n= 8)

Build μ-environment - 141.98 67.81

Gaussian profile - 0.916 0.448

Initial file write - 2.56 4.1

Agent generation - 0.1060 0.0023

Source/sink/diffusion - 1109.69 1210.41

Final file write - 4.83 3.32

Total time - 1260 1286.1

to address bigger, more complex problems. In addition, with a problem of size
76803, the memory consumption of the pure OpenMP version reaches ≈97% of
the total memory of the node (96 GB) and the simulation terminates with a bus
error. For the same problem size, the Hybrid code on 4 (with 192 threads) and
8 nodes (with 384 threads) executes successfully (Table 1).

5 Conclusion and Future Work

Multi-scale modeling has already proven its usefulness in a diversity of large-
scale biological projects [9,16,24], but these efforts have been hampered by
a scarcity of parallelization examples [4,12,14]. We present BioFVM-X - an
enhanced MPI+OpenMP Hybrid parallel version of BioFVM capable of run-
ning on multiple nodes of an HPC cluster. We demonstrate that BioFVM-X
solves very large problems that are infeasible using BioFVM as the latter’s exe-
cution is limited to a single node. This allows BioFVM-X to simulate bigger,
more realistic in-silico experiments. Further, despite the fact that our solver is
only partially parallelized, we see performance gains in multiple execution ker-
nels. In the future, we aim to replace the solver in the x-direction with a parallel
modified Thomas algorithm [15].

BioFVM-X is open source under the BSD 3-Clause license and freely available
at https://gitlab.bsc.es/gsaxena/biofvm x. Even though it can be used to easily
implement and simulate biological models in a self-contained manner, BioFVM-
X also forms the lower layer of our ongoing efforts to have a parallel large-scale
and multi-scale modeling framework termed PhysiCell-X, based on PhysiCell [9]
- a framework that is under active development and has multiple stable releases.

Acknowledgements. The research leading to these results has received funding from
EU H2020 Programme under the PerMedCoE project, grant agreement number 951773
and the INFORE project, grant agreement number 825070. The authors would like to
thank Paul Macklin and Randy Heiland from Indiana University for their constant
support and advice regarding BioFVM.

https://gitlab.bsc.es/gsaxena/biofvm_x

BioFVM-X: An MPI+OpenMP 3-D Simulator for Biological Systems 273

Appendix A 1-D Pure x-Domain Decomposition

Figure 4 shows a 1-D x-direction domain partition of a 3-D domain (x-direction
is the unit-stride dimension).

ZY

X

Fig. 4. A 3-D domain of dimensions 4 × 4 × 4 visualized as four 2-D plates (shaded
gray) of dimension 4 × 4 arranged one after the other. A 1-D domain partition (shown
with blue, red and green planes) of 4 MPI processes in the x-direction divides the
voxels numbered 1 to 64 into 4 parts. Rank 0, Rank 1, Rank 2, and Rank 3 processes
contain voxel IDs numbered 4n + 1, 4n + 2, 4n + 3, and 4n + 4 respectively, where
n = 0, 1, 2, . . . , 15. Data is contiguous in the x-direction and the distance between 2
consecutive elements in the y and z directions is 4 and 16, respectively. (Color figure
online)

Figure 5 shows the algorithm for domain partitioning where voxels are
assigned to each MPI process. First, the domain dimensions (e.g. xmin, xmax)
and the voxel dimensions (Δx) are used to decide the total number of global
voxels (g x nodes). Given the total number of MPI processes (P), the voxels
per MPI process (l x nodes) in the x-direction are computed next. This is fol-
lowed by the computation of the global coordinates for the centers of voxels (for
brevity, lines 1–6 in Fig. 5 show this for the x−direction only, with the treatment
of remaining directions being analogous to the x−direction). Further, since each
MPI process must maintain the local and corresponding global voxel index, the
global mesh index of the first voxel (l strt g index) is computed on each pro-
cess - used subsequently to assign the global mesh index to each voxel on that
process (see the triply nested loop in Fig. 5). In addition to the assignment of
a local/global voxel index on each process, a list of the immediate directional-
neighbours of each voxel is also maintained (not shown in Fig. 5). In parallel,

274 G. Saxena et al.

Require: xmin, xmax, d[] (Topology Dimensions), c[] (Process Coordinates), Δx
(Voxel x-length)

1: g x nodes ← (xmax−xmin)
Δx

� y and z analogous
2: l x nodes ← g x nodes

d[1]

3: l x start ← xmin + (c[1] × l x nodes × Δx)
4: i ← 0
5: while i++ ≤ l x nodes − 1 do
6: x c[i] ← l x start + (i + 0.5) ∗ Δx

7: zl ← c[2] × g x nodes × g y nodes × l z nodes
8: yl ← (d[0] − c[0] − 1) × g x nodes × l y nodes
9: xl ← c[1] × l x nodes
10: l strt g index ← xl + yl + zl

11: n, i, j, k ← 0
12: while k++ < l z nodes do
13: zk ← k × g x nodes × g y nodes
14: while j++ < l y nodes do
15: yj ← j × g x nodes
16: while i++ < l x nodes do
17: vxl[n].cntr[0] ← x c[i]
18: vxl[n].cntr[1] ← y c[j]
19: vxl[n].cntr[2] ← z c[k]
20: vxl[n].g indx ← l strt g index + zk + yj + i
21: n ← n + 1

Fig. 5. Assignment of voxels to MPI processes in 1-D x-Domain Decomposition. Only
partitioning of x-dimension is shown (same for y and z-directions). Prefixes l and g
stand for “local” and “global”, respectively. Array d[] contains the topology dimensions
and array c[] contains MPI process coordinates [21]. The triply nested loop sets the
global voxel (vxl) centers (cntr) and the global voxel index (indx).

such a scheme must accommodate for the cases when there is no local x, y or z
neighbour but a global neighbour exists on the neighbouring process or when the
process is aligned to the physical boundary of the domain. In BioFVM, a list for
the Moore neighbourhood is also built for each voxel. The Moore neighbourhood
equates to a 9-pt stencil in 2-D and a 27-pt stencil in 3-D [13].

Appendix B Mapping Basic Agents to a Voxel

A mapping that relates the position coordinates of the Basic Agent to the local
index of a process-specific voxel is illustrated with the help of an algorithm in
Fig. 6. Given the positions vector (denoted by p[] in Fig. 6) of a Basic Agent, first
the MPI Cartesian coordinates of the MPI process that contains the Basic Agent
are computed (denoted by xp, yp and zp). This is followed by the computation
of the global x, y and z index (denoted by firstx, firsty and firstz) of the first
voxel of the MPI process that contains the Basic Agent. After calculating the
directional i.e. x, y and z global indices of the voxel (denoted by voxx, voxy and

BioFVM-X: An MPI+OpenMP 3-D Simulator for Biological Systems 275

Require: xmin, ymin, zmin, d[] (Topology Dimensions), d[] (MPI Cartesian
dimensions),p[] (Agent position coordinates), Δx, Δy, Δz (Voxel x/y/z-length)

1: xp ← d[0] − 1 − �(p[1] − ymin)/(l y nodes ∗ Δy)�
2: yp ← (p[0] − xmin)/(l x nodes ∗ Δx)
3: zp ← (p[2] − zmin)/(l z nodes ∗ Δz)
4: firstx ← yp ∗ l x nodes
5: firsty ← (d[0] − 1 − xp) ∗ l y nodes
6: firstz ← zp ∗ l z nodes
7: voxx ← �(p[0] − xmin)/Δx�
8: voxy ← �(p[1] − ymin)/Δy�
9: voxz ← �(p[2] − zmin)/Δz�
10: dx ← voxx − firstx

11: dy ← voxy − firsty

12: dz ← voxz − firstz

13: l index ← (dz ∗ l y nodes + dy) ∗ l x nodes + dx

Fig. 6. Mapping the position of a Basic Agent (in array p[]) to the process-local index
(l index) of a voxel that contains p[]. Prefix l stands for “local”. Array d[] contains the
MPI Cartesian topology dimensions. l x/y/z nodes give the number of process local
voxels and Δx, Δy, Δz denote voxel dimensions (generally Δx = Δy = Δz).

voxz) that contains the Basic Agent, indices of the “first” voxel of the MPI pro-
cess computed above is subtracted from the directional indices to obtain a local
offset (denoted by dx, dy and dz) of voxel indices in each direction. Subsequently,
to obtain the local index of the process-specific voxel (l index), the directional
local offsets are appropriately multiplied by the number of process-local voxels.

Appendix C Extended Results

For an 8x increase in the number of voxels, the OpenMP MC, GPG, BAG and
I/O kernels show a 7.86 − 8.67x, 3.29 − 7.05x, 1.15 − 1.3x and 6.78 − 8.51x
increase, respectively (Fig. 2). The increase in the corresponding kernels for the
best overall Hybrid version are: 8.7−9.4x, 3−7.78x, 0.77−1.14x and 3.14−6.68x,
respectively (Fig. 2). Both MC and BAG kernels can take advantage of the mul-
tiple MPI processes as initialization of the Microenvironment and Basic Agent
class objects are simultaneously carried out on separate processes in BioFVM-X
as opposed to a single thread in BioFVM. The (MPI) I/O kernel shows sig-
nificant performance gains over serial I/O for the tests considered. For an 8x
increase in the mesh resolution, the 6.78 − 8.11x increase for Hybrid version in
the Solver kernel looks promising as compared to the 9.24−15.93x pure OpenMP
increase, but the Hybrid version’s absolute execution run-times do not reflect a
significant gain. To help solve this, future versions of BioFVM-X will use the
parallel modified Thomas solver [15] in the x-direction.

276 G. Saxena et al.

Appendix D Correctness Checking

To verify the correctness of the simulation, we run a simulation on a domain
of size 10003 but increase the number of Basic Agents to 2 × 106 (Fig. 7 and
Table 2).

(a) OpenMP (48 threads) (b) Hybrid(n=1)

Fig. 7. 2-D cross-section of the final concentration density of a given substrate with
2 × 106 agents on a domain of size 10003 using (a) Pure OpenMP (b) Hybrid MPI +
OpenMP

Table 2. Time (in seconds) of execution of simulation for the OpenMP version and
the Hybrid version in a domain of size 1000 × 1000 × 1000 with 2 × 106 Basic Agents.

1000 × 1000 × 1000 OpenMP Hyb (n= 1)

Build μ-environment 1.14 1.03

Gaussian profile 0.0157 0.0117

Initial file write 0.219 0.084

Agent generation 2.46 1.45

Source/sink/diffusion 7.48 5.88

Final file write 0.22 0.063

Total time 11.56 8.54

To further underline the correctness of BioFVM-X, we compared the results
of a tumor growth model in a heterogeneous environment from BioFVM [8]
available at this link. In this model a 2-D tumor growth is driven by a substrate
supplied by a continuum vascular system and cells die when it is insufficient.
Additionally, the tumor cells have motility and can degrade the vascular system.
We first expanded this example to a 3-D example (instead of the original 2-D)
and specified the domain as 80× 80× 80 voxels for a total of 512 000 voxels. We
choose two different configurations:

http://www.mathcancer.org/blog/biofvm-warmup-2d-continuum-simulation-of-tumor-growth/

BioFVM-X: An MPI+OpenMP 3-D Simulator for Biological Systems 277

– a shared-memory configuration (OpenMP) of 48 threads
– a hybrid shared and distributed-memory configuration (MPI+OpenMP) of 2

MPI processes running 24 threads each on a single node.

The comparison of the shared-memory and distributed-memory simulations
yields identical results as shown in Fig. 8, further confirming that BioFVM-
X provides the same results as BioFVM. The code to reproduce the figure is
available on the BioFVM-X code repository.

(a) Initial densities at z=2.025 (b) Final densities at z=2.025

Fig. 8. 2-D cross-section of the (a) initial and (b) final concentration densities of three
substrates from the 3-D tumor growth model on a domain of size 80 × 80 × 80 vox-
els using shared-memory (OpenMP d*) and distributed-memory with MPI+OpenMP
(Hybrid d*).

References

1. Balay, S., et al.: PETSc Users Manual. No. ANL-95/11-Revision 3.15 (2021).
https://www.mcs.anl.gov/petsc

2. Briggs, W.L., McCormick, S.F., et al.: A Multigrid Tutorial, vol. 72. SIAM (2000)
3. Adams, M., et al.: Chombo Software Package for AMR Applications - Design Doc-

ument. Lawrence Berkeley National Laboratory Technical Report LBNL-6616E
4. Cytowski, M., Szymanska, Z.: Large-scale parallel simulations of 3d cell colony

dynamics. Comput. Sci. Eng. 16(5), 86–95 (2014). https://doi.org/10.1109/MCSE.
2014.2

https://gitlab.bsc.es/gsaxena/biofvm_x/-/blob/master/matlab/plotting_microenv_tumor.py
https://www.mcs.anl.gov/petsc
https://doi.org/10.1109/MCSE.2014.2
https://doi.org/10.1109/MCSE.2014.2

278 G. Saxena et al.

5. Cytowski, M., Szymanska, Z.: Large-scale parallel simulations of 3d cell colony
dynamics: the cellular environment. Comput. Sci. Eng. 17(5), 44–48 (2015).
https://doi.org/10.1109/MCSE.2015.66

6. Devine, K.D., Boman, E.G., Leung, V.J., Riesen, L.A., Catalyurek, U.V.: Dynamic
load balancing and partitioning using the Zoltan toolkit (2007). https://www.osti.
gov/biblio/1147186

7. Falgout, R.D., Yang, U.M.: hypre: a library of high performance preconditioners.
In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002.
LNCS, vol. 2331, pp. 632–641. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-47789-6 66

8. Ghaffarizadeh, A., Friedman, S.H., Macklin, P.: Biofvm: an efficient, parallelized
diffusive transport solver for 3-d biological simulations. Bioinformatics 32(8), 1256–
1258 (2015)

9. Ghaffarizadeh, A., Heiland, R., Friedman, S.H., Mumenthaler, S.M., Macklin, P.:
PhysiCell: an open source physics-based cell simulator for 3-d multicellular systems.
PLOS Computat. Biol. 14(2), e1005991 (2018)

10. Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-
dimensional extended Potts model. Phys. Rev. Lett. 69(13), 2013 (1992)

11. Intel: Intel R©Thread Building Blocks | Intel R©Software. https://software.intel.com/
en-us/tbb

12. Jiao, Y., Torquato, S.: Emergent behaviors from a cellular automaton model for
invasive tumor growth in heterogeneous microenvironments. PLOS Comput. Biol.
7(12), e1002314 (2011)

13. Kamil, S., Chan, C., Oliker, L., Shalf, J., Williams, S.: An auto-tuning framework
for parallel multicore stencil computations, pp. 1–12. IEEE (2010)

14. Kang, S., Kahan, S., McDermott, J., Flann, N., Shmulevich, I.: Biocellion: acceler-
ating computer simulation of multicellular biological system models. Bioinformatics
30(21), 3101–3108 (2014)

15. Kim, K.H., Kang, J.H., Pan, X., Choi, J.I.: PaScaL TDMA: a library of parallel
and scalable solvers for massive tridiagonal systems. Comput. Phys. Commun. 260,
107722 (2021)

16. Letort, G., et al.: PhysiBoSS: a multi-scale agent-based modelling framework
integrating physical dimension and cell signalling. Bioinformatics 35, 1188–1196
(2019). https://doi.org/10.1093/bioinformatics/bty766

17. Macklin, P.: Key challenges facing data-driven multicellular systems biology. Giga-
Science 8(10), giz127 (2019)

18. Maini, P., et al.: Chaste: cancer, heart and soft tissue environment. J. Open Source
Softw. 5(47), 1848 (2020)

19. Mascagni, M., Srinivasan, A.: Algorithm 806: SPRNG: a scalable library for pseu-
dorandom number generation. ACM Trans. Math. Softw. (TOMS) 26(3), 436–461
(2000)

20. Mazumder, S.: Numerical Methods for Partial Differential Equations: Finite Dif-
ference and Finite Volume Methods. Academic Press (2015)

21. Message Passing Interface Forum: MPI: A message-passing interface standard ver-
sion 3.1 (June 2015). https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

22. OpenMP Architecture Review Board: OpenMP application program inter-
face version 5.0 (November 2018). https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf

23. Osborne, J.M., Fletcher, A.G., Pitt-Francis, J.M., Maini, P.K., Gavaghan, D.J.:
Comparing individual-based approaches to modelling the self-organization of mul-
ticellular tissues. PLOS Comput. Biol. 13(2), e1005387 (2017)

https://doi.org/10.1109/MCSE.2015.66
https://www.osti.gov/biblio/1147186
https://www.osti.gov/biblio/1147186
https://doi.org/10.1007/3-540-47789-6_66
https://doi.org/10.1007/3-540-47789-6_66
https://software.intel.com/en-us/tbb
https://software.intel.com/en-us/tbb
https://doi.org/10.1093/bioinformatics/bty766
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

BioFVM-X: An MPI+OpenMP 3-D Simulator for Biological Systems 279

24. Ozik, J., Collier, N., Heiland, R., An, G., Macklin, P.: Learning-accelerated dis-
covery of immune-tumour interactions. Mol. Syst. Des. Eng. 4(4), 747–760 (2019)

25. Pacific Northwest National Laboratory: PNNL: Global Arrays Toolkit. https://
hpc.pnl.gov/globalarrays/

26. Van der Pas, R., Stotzer, E., Terboven, C.: Using OpenMP–The Next Step: Affinity,
Accelerators, Tasking, and SIMD. MIT Press (2017)

27. Saxena, G., Jimack, P.K., Walkley, M.A.: A cache-aware approach to domain
decomposition for stencil-based codes, pp. 875–885. IEEE (2016)

28. Saxena, G., Jimack, P.K., Walkley, M.A.: A quasi-cache-aware model for optimal
domain partitioning in parallel geometric multigrid. Concurrency Comput. Pract.
Exp. 30(9), e4328 (2018)

29. Strauss, W.A.: Partial Differential Equations: An Introduction. Wiley (2007)
30. Süli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge Uni-

versity Press (2003)
31. Thomas, L.: Elliptic Problems in Linear Differential Equations Over a Network.

Watson Scientific Computing Laboratory. Columbia University, NY (1949)
32. Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Elsevier (2000)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://hpc.pnl.gov/globalarrays/
https://hpc.pnl.gov/globalarrays/
http://creativecommons.org/licenses/by/4.0/

Author Index

Argyris, Georgios 1

Baroukh, Caroline 159
Beneš, Nikola 230
Bijman, Eline Y. 181
Biswas, Ansuman 57
Bockmayr, Alexander 159
Bokes, Pavol 215
Bortolussi, Luca 19
Brim, Luboš 230
Bruzelius, Maria 108
Buffard, Marion 238
Butler, Lynn 108

Cairoli, Francesca 19
Carbone, Ginevra 19
Çelik, Candan 215
Collavizza, Hélène 36
Comet, Jean-Paul 36
Cottret, Ludovic 159
Cournède, Paul-Henry 122

Desoeuvres, Aurélien 238
Doty, David 245

Fages, François 74

Gibart, Laetitia 36
Goumidi, Louisa 108
Gupta, Ashutosh 57

Hemery, Mathieu 74

Ibrahim-Kosta, Manal 108
Iglesias, Maria-Jesus 108
Ilmer, Ilia 254

Kaltenbach, Hans-Michael 181

Lemler, Sarah 122
Lluch Lafuente, Alberto 1

Missula, Meghana 57
Montagud, Arnau 266

Morange, Pierre-Emmanuel 108
Munsch, Gaëlle 108

Naldi, Aurélien 238

Odeberg, Jacob 108
Ovchinnikov, Alexey 254

Pastva, Samuel 230
Paulevé, Loïc 159
Pogudin, Gleb 91, 254
Ponce-de-Leon, Miguel 266

Radulescu, Ovidiu 238
Razzaq, Misbah 108
Requilé, Clément 238

Šafránek, David 230
Sautreuil, Mathilde 122
Saxena, Gaurav 266
Severson, Eric 245
Siegel, Anne 159
Singh, Abhyudai 215
Soliman, Sylvain 74
Stelling, Jörg 141, 181

Thattai, Mukund 57
Theorell, Axel 141
Thuillier, Kerian 159
Tregouet, David Alexandre 108
Tribastone, Mirco 1
Tschaikowski, Max 1
Turpin, Baptiste 181

Uhrmacher, Adelinde M. 198

Valencia, Alfonso 266
Vandin, Andrea 1
Vicente Dorca, David 266

Warnke, Tom 198

Zhang, Xingjian 91
Zinovyev, Andrei 238

	 Preface
	 Organization
	 Contents
	Reducing Boolean Networks with Backward Boolean Equivalence
	1 Introduction
	2 Preliminaries
	3 Backward Boolean Equivalence
	3.1 Backward Boolean Equivalence and BN Reduction
	3.2 Computation of the Maximal BBE
	3.3 Relating Dynamics of Original and Reduced BNs

	4 Application to BNs from the Literature
	4.1 Large Scale Validation of BBE on BNs
	4.2 Attractor Analysis of Selected Case Studies
	4.3 Comparison with ODE-Based Approach From ch1cardelli2017maximal

	5 Related Work
	6 Conclusion
	References

	Abstraction of Markov Population Dynamics via Generative Adversarial Nets
	1 Introduction
	2 Background
	2.1 Chemical Reaction Networks
	2.2 Generative Adversarial Nets

	3 GAN-Based Abstraction
	3.1 Model Abstraction
	3.2 Dataset Generation
	3.3 cWCGAN-GP Architecture
	3.4 Model Training

	4 Experimental Results
	4.1 cWCGAN-GP Architecture
	4.2 Results
	4.3 Discussion

	5 Conclusions
	References

	Greening R. Thomas' Framework with Environment Variables: A Divide and Conquer Approach
	1 Introduction
	2 Adding Environment Variables to Thomas' Framework
	2.1 Regulatory Network with Multiplexes
	2.2 Formulas of Biological Properties and Their Models
	2.3 Environmental Regulatory Networks

	3 All Environments' Coexistence in Thomas' Framework
	3.1 Regulatory Network
	3.2 Formula Summing Up all Behavioural Properties
	3.3 Application to Pseudomonas æriginosa

	4 Divide with Environments, Combine with Intersection
	4.1 Regulatory Networks with Environments
	4.2 Formulas and Abstraction of Models
	4.3 Application to Pseudomonas æriginosa

	5 Comparing the Two Approaches
	5.1 Theoretical Point of View
	5.2 Practical Results

	6 Case Study: Cell Metabolism
	6.1 Metabolism Regulations According to Environments
	6.2 All Environments Coexistence in Thomas' Framework
	6.3 Divide with Environments, Combine with Intersection

	7 Conclusion
	References

	Automated Inference of Production Rules for Glycans
	1 Introduction
	2 Production of Glycans
	3 Motivating Example
	4 Modelling of the Synthesis Problem
	5 Method for the Synthesis Problem
	5.1 SugarSynth in Detail
	5.2 EncodeProduce in Detail

	6 Experiments
	7 Conclusion and Future Work
	References

	Compiling Elementary Mathematical Functions into Finite Chemical Reaction Networks via a Polynomialization Algorithm for ODEs
	1 Introduction
	2 Input Language of Elementary Functions
	2.1 Example
	2.2 Elementary Functions as Compilation Pipeline Input Language

	3 Polynomialization Algorithm for Elementary ODEs
	3.1 Polynomialization Algorithm
	3.2 Interval of Definition
	3.3 Termination
	3.4 Complexity
	3.5 Remark on the Compilation of the Exponentiation

	4 CRN Compilation Pipeline for Elementary Functions
	4.1 Detailed Example
	4.2 Implementation

	5 Evaluation
	6 Conclusion and Perspectives
	References

	Interpretable Exact Linear Reductions via Positivity
	1 Introduction
	2 Methods
	2.1 Preliminaries on Lumping
	2.2 The Nonuniqueness/Interpretability Issue
	2.3 Our Approach via Nonnegativity
	2.4 Algorithmic Details

	3 Case Studies
	3.1 Multisite Protein Phosphorylation
	3.2 Fc-RI Signaling Pathways
	3.3 Jak-Family Protein Tyrosine Kinase Activation

	4 Conclusion
	References

	Explainable Artificial Neural Network for Recurrent Venous Thromboembolism Based on Plasma Proteomics
	1 Introduction
	2 Materials and Methods
	2.1 MARTHA Study
	2.2 Proposed Workflow

	3 Results
	3.1 MARTHA Study
	3.2 Constructing and Validation of the ANN
	3.3 Post-hoc Explainability of ANN

	4 Conclusion
	References

	Neural Networks to Predict Survival from RNA-seq Data in Oncology
	1 Introduction
	2 Models
	2.1 The Cox Model
	2.2 Neural Networks

	3 Simulations
	3.1 Generation of Survival Times
	3.2 Simulation with the Cox - Weibull Model
	3.3 Simulation with the AH - Log-Normal Model
	3.4 Metrics

	4 Results
	4.1 Simulation Study
	4.2 Application on Real Datasets

	5 Discussions
	A Appendix: Supplementary Results
	A.1 Simulation from the AFT - Log-Normal Model
	A.2 Simulation Study

	References

	Microbial Community Decision Making Models in Batch and Chemostat Cultures
	1 Introduction
	2 Concepts
	2.1 Chemostat vs Batch Environment
	2.2 Implications for Coexistence
	2.3 Implications for Decision Making

	3 Community Models
	3.1 General Consortium Models
	3.2 Rational Agents
	3.3 Rational Community

	4 Applications
	4.1 Prisoners Dilemma
	4.2 Coexistence Microbial Consortium

	5 Discussion
	References

	Learning Boolean Controls in Regulated Metabolic Networks: A Case-Study
	1 Introduction
	2 Background: Regulated Metabolic Networks
	2.1 Coupling Metabolic and Regulatory Networks
	2.2 Dynamic rFBA

	3 Boolean Abstraction of Dynamic rFBA
	3.1 Boolean Metabolic Steady States
	3.2 Boolean Dynamics

	4 Inference of Regulations from rFBA Time Series
	4.1 Approximation as a Boolean Satisfiability Problem
	4.2 Implementation in Answer-Set Programming

	5 Case Study
	6 Discussion
	A Binarized Metabolic Steady State
	B Experiments and Simulations
	References

	Population Design for Synthetic Gene Circuits
	1 Introduction
	2 Population Design Framework
	3 Case Study: Design of a Transcriptional Controller
	3.1 Overview
	3.2 Individual Model
	3.3 Population Model
	3.4 Design Problem
	3.5 Sampling the Individual Parameters
	3.6 Sampling the Population Parameters

	4 Discussion
	5 Conclusion
	References

	Nonlinear Pattern Matching in Rule-Based Modeling Languages
	1 Introduction
	2 Rule-Based Modeling
	3 Nonlinear Patterns in the Wild
	4 Linear Pattern Matching
	4.1 Abstract Syntax
	4.2 Pattern Matching Semantics
	4.3 Algorithm

	5 Nonlinear Pattern Matching with Expressions
	5.1 Abstract Syntax
	5.2 Pattern Matching Semantics

	6 Benchmarks
	7 Discussion and Conclusion
	References

	Protein Noise and Distribution in a Two-Stage Gene-Expression Model Extended by an mRNA Inactivation Loop
	1 Introduction
	2 Model Formulation
	3 Factorial Cumulant Generating Function
	4 Protein Variability
	5 Special-Function Representation
	6 Marginal Distributions
	7 Conclusion
	References

	Aeon 2021: Bifurcation Decision Trees in Boolean Networks
	1 Introduction
	2 Methods
	3 Case Study
	4 Conclusion
	References

	LNetReduce: Tool for Reducing Linear Dynamic Networks with Separated Timescales
	1 Introduction
	2 Model
	3 Reduction Algorithm
	4 Applications
	4.1 Connection Between Topology and Dynamics
	4.2 Design of Slow Transients

	5 Conclusion
	References

	Ppsim: A Software Package for Efficiently Simulating and Visualizing Population Protocols
	1 Introduction
	2 Usage of the Ppsim Tool
	3 Speed Comparison with Other CRN Simulators
	4 Issues with Other Speedup Methods
	5 Conclusion
	References

	Web-Based Structural Identifiability Analyzer
	1 Introduction and Related Work
	2 Input-Output Specification
	3 Use Cases for Structural Identifiability Toolbox
	3.1 Globally Identifiable Example (Two-Species Competition Model)
	3.2 Locally Identifiable Model (SIRS Model with Forcing)
	3.3 Identifiable Combination of Non-identifiable Parameters (Tumor Targeting)
	3.4 System with a Non-identifiable Parameter (Lotka-Volterra Model)
	3.5 Refining Multi-experiment Identifiability Bound (Slow-Fast Ambiguity in a Chemical Reaction Network)

	A Details on the Underlying Algorithms
	B Systems in Structural Identifiability Toolbox Input Form
	B.1 Example from Sect.3.2
	B.2 Example from Sect.3.3
	B.3 Example from Sect.3.4
	B.4 Example from Sect.3.5
	B.5 Example of Speedup with Bypasses

	References

	BioFVM-X: An MPI+OpenMP 3-D Simulator for Biological Systems
	1 Introduction
	2 Related Work
	3 Internal Design and Domain Partitioning
	4 Experiments
	5 Conclusion and Future Work
	A 1-D Pure x-Domain Decomposition
	B Mapping Basic Agents to a Voxel
	C Extended Results
	D Correctness Checking
	References

	Author Index

