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Abstract. Evaluation of a novel user-performance model’s fitness
requires comparison with baseline models, yet it is often time consum-
ing and involves much effort by researchers to collect data from many
participants. Crowdsourcing has recently been used for evaluating novel
interaction techniques, but its potential for model comparison studies has
not been investigated in detail. In this study, we evaluated four existing
Fitts’ law models for rectangular targets, as though one of them was a
proposed novel model. We recruited 210 crowd workers, who performed
94,080 clicks in total, and confirmed that the result for the best-fit model
was consistent with previous studies. We also analyzed whether this con-
clusion would change depending on the sample size, but even when we
randomly sampled data from five workers for 10,000 iterations, the best-
fit model changed only once (0.01%). We have thus demonstrated a case
in which crowdsourcing is beneficial for comparing performance models.
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1 Introduction

It has recently become common for researchers to employ workers through
crowdsourcing services for user experiments on graphical user interfaces (GUIs)
[8,12,21,25,34]. However, those works focused mainly on designing better GUIs
and evaluating novel interaction techniques in comparison with baseline meth-
ods. In this paper, we explore the potential utility of crowdsourced experiments
to evaluate user performance models. Deriving a novel model to predict operation
times on GUIs is a common topic in the human-computer interaction (HCI) field,
but model evaluation is typically conducted in lab-based experiments with 10 or
20 university students, i.e., a limited subset of all computer users. If we instead
used crowdsourcing for model comparison, it would save time for researchers and
improve the evaluation validity because of the large number and diversity of the
participants.

It is unclear, however, that we can use crowdsourcing as an alternative to
lab-based experiments. For example, crowd workers use different mice, displays,
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operating systems (OSs), and so on. Also, it is known that there are many digi-
tal and non-digital distractors that can break workers’ focus [17]. Even so, can
crowdsourced experiments give the same conclusions on model evaluation as
lab-based experiments? To investigate this, we replicated a model-comparison
experiment that was previously conducted through lab-based experiments; i.e.,
the answer on the best model is already known. This enabled us to examine
whether we could reach the same conclusion obtained in the lab-based experi-
ments.

Specifically, we examined a bivariate (rectangular) target pointing task,
which is modeled by modified versions of Fitts’ law [13]. Because Fitts’ law
tasks have a well-structured methodology, are easy to conduct in desktop envi-
ronments, and take a short time (typically less than 10 min), they are suitable for
crowdsourced user experiments. Also, several formulations have been proposed
for bivariate pointing tasks, but Accot and Zhai’s weighted Euclidean model [2]
is already considered the best-fit model; thus, we could determine whether a
crowdsourced experiment would lead to the same conclusion on the best model.
In other words, if Accot and Zhai’s model were “our proposed novel model” and
we identified it as the best in a crowdsourced experiment, we could conclude
that our finding on the best model was consistent with the lab-based finding.

Our contributions are as follows.

– We conducted a crowdsourced mouse-pointing experiment with rectangular
targets. In total, we recorded 94,080 clicks performed by 210 crowd workers. In
line with previous studies, we confirmed that Accot and Zhai’s model showed
the best fit (adjusted R2 = 0.9631).

– We simulated how the number of participants, NP , affected the conclusion
on the best-fit model. By randomly sampling worker data for NP values from
5 to 100 (interval: 5) and testing the model fitness over 100 iterations, we
found that the best model never changed. Because the model fitness had
larger variability when the NP was smaller, we also performed this simulation
with NP = 5 over 10,000 iterations. Even in that case, the best-fit model
changed only once (i.e., with a 0.01% chance), which showed the robustness
of crowdsourced model comparison even for a small sample size, at least in
one case (bivariate pointing).

2 Related Work

2.1 Fitts’ Law and Modified Versions for Bivariate Pointing

Fitts’ law expresses the notion that the movement time MT to point to a target
is related to the index of difficulty in bits, ID , as follows [13]:

MT = a + b · ID , (1)

where a and b are empirical regression constants. The Shannon formulation of
the ID [22] is widely used in HCI:

ID = log2

(
A

W
+ 1

)
, (2)
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Fig. 1. Pointing tasks with different target shapes.

where the distance between the target centers is A, and the target size (or width)
is W . As shown in Fig. 1a, a traditional Fitts’ law task has two ribbon-shaped
targets; thus, participants do not need to pay attention to the cursor’s y-axis
movements. It is also common to use circular targets, which constrain the y-axis
movements, as shown in Fig. 1b. In both (a) and (b), the target shape is defined
by its width W alone; i.e., the target is univariate. In contrast, more realistic
targets such as buttons and icons have another dimension, the height H; i.e.,
they are bivariate targets, as shown in Fig. 1c.

Crossman proposed the first model to predict the MT for such rectangular
targets, which used another empirical regression constant c [9]:

MT = a + b · log2

(
A

W
+ 1

)
+ c · log2

(
A

H
+ 1

)
. (3)

To make the regression expression clearer, we modify this model as follows:

MT = a + b ·
[
log2

(
A

W
+ 1

)
+ c′ · log2

(
A

H
+ 1

)]
, (4)

where c′ = c/b (b cannot be zero). Crossman’s original formulation did not include
the “+1” factors. For fair comparison with other models, however, we consistently
include these “+1” factors, as in Accot and Zhai’s work [2]. This decision does not
affect our conclusion because it has little effect on model fitness [16,27].

MacKenzie and Buxton [23] and Hoffmann and Sheikh [19] independently
proposed the same model using the smaller of W and H:

MT = a + b · log2

(
A

min(W,H)
+ 1

)
. (5)

This model indicates that the time is solely affected by the more difficult dimen-
sion. Accot and Zhai proposed another successful model for bivariate pointing,
called the weighted Euclidean model:

MT = a + b · log2

⎛
⎝

√(
A

W

)2

+ c ·
(

A

H

)2

+ 1

⎞
⎠ , (6)

where c is a weight for the target height with respect to the width. Hoffmann
et al. identified this model as the best for bivariate pointing with a physical
stylus [18], while Accot and Zhai used a mouse.
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There are other variations for bivariate pointing, such as integrating the
cursor’s movement angle factor θ [4,23,36,38]. To limit our focus in this study,
and to limit the task time for crowd workers, our experiment used only single-axis
movements. This choice is consistent with previous studies [2,9,18,19].

2.2 Crowdsourced Studies on GUI Tasks and Model Evaluations

There have been reports on the consistency between lab-based and crowdsourced
experiments involving GUI operations. For menu selection and target pointing
tasks in desktop environments, Komarov et al. found that crowdsourced and lab-
based experiments gave the same findings on user performance, such as the find-
ing that novel techniques were better than baseline operations [21]. Yamanaka
et al. tested the effects of target margins on touch-pointing tasks, and they
reported that the same effects were consistently found in crowdsourced and lab-
based experiments. For example, in both kinds of experiments, wider margins
decreased the MT but increased the error rate [34]. In contrast, by using more
powerful statistical analysis methods and recruiting many more participants for
lab-based experiments, Findlater et al. showed that crowd workers had signifi-
cantly shorter average task completion times and higher average error rates in
both mouse- and touch-pointing tasks [12]. Thus, they cautioned against assum-
ing that crowdsourced data from GUI performance experiments directly reflects
lab-based data.

As for Fitts’ law fitness analyses, Findlater et al. reported that crowd workers
had average values of r = 0.926 with mice and r = 0.898 with touchscreens [12].
Schwab et al. conducted a crowdsourced scrolling task in desktop and mobile
environments [28]. The results showed that Fitts’ law fit the operation times
with R2 = 0.983 and 0.972 for the desktop and mobile cases, respectively (note
that scrolling operations follow Fitts’ law well [39]). Overall, these reports suggest
that Fitts’ law is valid for crowdsourced data, regardless of the operation style.

To our knowledge, the only literature on using crowdsourcing to determine
a best-fit model was the work by Goldberg et al. [15]1. They implemented Fitts’
law tasks in an applet on their website and let visitors to the site perform the
tasks. More than 5,000 visitors performed 78,410 clicks in total. Their focus was
on whether the best-fit model would change depending on the A/W ratio. For
example, when A/W was less than 5, Meyer et al.’s model (ID =

√
A/W ) [26]

was significantly better, while for harder tasks, the Shannon formulation (Eq. 2)
was better.

There are several differences in focus between our work and Goldberg et al.’s
work. First, they were interested in how model fitness differences depend on the
task difficulty. This is important for understanding user behaviors in pointing tasks
[14,26], but typically, model fitness is evaluated in terms of the regression expres-
sion for all A/W data points. Also, they mainly compared Meyer et al.’s square-

1 We found this previous work as part of a Ph.D. thesis by one of these authors
(Faridani) [11]. He defined this Fitts’ law study as a crowdsourced task, and thus
we introduce it here.
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root-based model with the Shannon (logarithmic) model, which can be mathe-
matically approximated [27]. Because their comparison cannot clearly reveal the
effectiveness of crowdsourced model-comparison experiments, it is not applicable
to our purpose in this study. Moreover, their participants were unpaid volunteers,
and thus they called their study an “uncontrolled user study.” In comparison, we
paid our workers and thus assumed they were motivated to follow our experimental
controls (i.e., instructions). Therefore, our results are more relevant for researchers
who use crowdsourcing services such as Amazon MTurk.

In summary, no previous studies are directly related to our research question
of how useful crowdsourced user experiments are for comparing novel perfor-
mance models with baselines. If we can demonstrate the potential of crowd-
sourced model comparison, at least for one example task (bivariate pointing), it
will enable future researchers to investigate novel performance models with less
recruitment effort, more diversity of participants, and less time-consuming data
collection; this is our motivation for this work.

3 Experiment

We conducted a pointing experiment with rectangular targets by using Yahoo!
Crowdsourcing2. The experimental system was developed with the Hot Soup
Processor programming language (version 3.5). The crowd workers were asked
to download and run an executable file from a URL on the recruitment page.

3.1 Task, Design, and Procedure

The task was to click a red target that had width W and height H. The study
was a 4 × 7 within-subjects design: four W values (30, 40, 60, and 90 pixels)
and seven H values (10, 20, 30, 40, 60, 100, and 200 pixels). The target distance
was fixed to 640 pixels to limit the number of task condition combinations.
Using only one A value is consistent with previous studies on bivariate pointing
[6,9,19]. A session consisted of 21 cyclic clicks back and forth between the left
and right targets with a fixed W × H condition. Each participant completed 28
(= 4W × 7H) sessions.

The first target was on the left side. If the participant clicked the target,
the red target and white nontarget rectangles switched colors, as illustrated in
Fig. 2a. If the participant missed the target, it flashed yellow, and the participant
had to keep trying until he or she successfully clicked it. We did not give auditory
feedback for success or failure, as not all the participants would have been able to
hear sound during the task. After completing 21 successful clicks, the participant
saw the results of the session and a message to take a break, as shown in Fig. 2b.

After finishing 28 sessions, the participants completed a questionnaire on
their age (numeric), gender (free-form to allow nonbinary or arbitrary answers),
handedness (left or right), Windows version (free-form), input device (free-form),

2 https://crowdsourcing.yahoo.co.jp.

https://crowdsourcing.yahoo.co.jp
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Session:
3/28

Targets:
17/21

Errors: 3

Time: 11.41 sec

Result of Session 3:
Time: 14.59 sec
Errors: 3

Take a break now if needed.
Click this area to go to the next session.

a b

Fig. 2. (a) In the task, participants clicked alternately on each target when it was red.
(b) At the end of a session, the results and a message to take a break were shown.

and history of PC use (numeric in years). The questionnaire also included a free-
form response for comments on the task and their impressions.

To measure the central tendency of each participant’s performance, it is rec-
ommended to require 15 to 25 clicks under each condition [30]. Thus, we treated
the first five clicks as practice and the remaining 16 clicks (8 clicks on each tar-
get) as data. The order of the 28 W × H conditions was randomized. In total,
we recorded 4W × 7H × 16clicks × 210workers = 94,080 data points.

3.2 Participants and Recruitment

We recruited workers who used Windows Vista or a later version to run our
system. We used the “white list” option in the crowdsourcing platform to screen
newly created accounts and prevent multiple entries. This option enabled us to
offer the task only to workers who were considered reliable from their previous
task history; however, criteria such as the approval rate were not available on
the platform.

In the recruitment page, we asked the workers to use a mouse if possible. We
made this request because, in our data analysis, we randomly selected a number
of participants (e.g., 10) to examine the model fitness. If different devices were
used (e.g., six mice, two touchpads, and two trackballs), we might have wondered
if a poor fit was due to the device differences. Nevertheless, to avoid a possible
false report that all the workers used mice, we did not limit them to using mice.
Instead, we specified that any device was acceptable and then removed the non-
mouse users from the analysis.

Once a worker accepted the task, he or she was asked to read the online
instructions, which stated that the worker should perform the task as rapidly
and accurately as possible. After a worker finished all 28 sessions and completed
the questionnaire, the log data was exported to a csv file. The worker uploaded
the file to a server and then received a payment of JPY 100 (≈ USD 0.96). The
main pointing task typically took 8 or 9 min to complete, and thus the effective
hourly payment was approximately JPY 700 (≈ USD 6.7).

In total, 225 workers completed the task, including 210 mouse users. The
mouse users’ demographics were as follows. Age: 20 to 64 years, with M =
43.5 and SD = 8.70. Gender: 160 male, 47 female, and 3 chose not to answer.



82 S. Yamanaka

Handedness: 18 were left-handed and 192 were right-handed. Windows version:
26 used Win7, 4 used Win8, 4 used Win8.1, and 176 used Win10. PC usage
history: 3 to 47 years, with M = 21.0 and SD = 6.86.

4 Results

4.1 Outlier Data Screening

Following previous studies [12,24], we removed spatial trial-level outliers if (1)
the distance of the first click position was shorter than A/2 or (2) the click
position of the x-coordinate was more than 2W away from the target center.
We also applied the latter criterion to the y-coordinate: trials in which the click
position was more than 2H away from the target center were removed.

To detect trial-level temporal outliers, we used a robust means of outlier
detection called the inter-quartile range (IQR) method [10]. The IQR is defined
as the difference between the third and first quartiles of the MT . Trials in which
the MT was more than 3IQR higher than the third quartile or more than 3IQR
lower than the first quartile were removed. This calculation was run for each
session.

For participant-level outliers, we calculated the mean MT across all 28 condi-
tions (4W × 7H) for each participant. Then, using each participant’s mean MT ,
we again applied the IQR method. Note that the trial- and participant-level
outliers were independently detected and removed.

As a result, among the 94,080 trials, we found 1,043 trial-level outliers
(1.11%). We also found one participant-level outlier worker. While the other
participants’ mean MT was 838 ms, this worker’s mean MT was 1,487 ms,
and nine of the worker’s trials had MT > 3,000 ms. Accordingly, all 448
(= 16clicks × 4W × 7H) data points for this worker were removed. He or she
also had trial-level outliers (i.e., there were overlaps); as a result, 1,487 data
points were removed in total (1.58%).

4.2 Analyses of Dependent Variables

After the outliers were removed, 92,593 data points (98.4%) were analyzed. The
dependent variables were the error-free MT and the error rate ER. Hereafter,
any MT value represents error-free data.

Movement Time. The Shapiro-Wilk test (α = 0.05) showed that among the
4W ×7H×209workers = 5852 conditions, 4983 MT data points passed the normal-
ity test (85.2%). Hence, to meet the normality assumption, we log-transformed
the data before applying repeated-measures ANOVA. We used Bonferroni’s p-
value adjustment method for pairwise comparisons. For the F statistic, the
degrees of freedom were corrected using the Greenhouse-Geisser method when
Mauchly’s sphericity assumption was violated (α = 0.05).
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Fig. 3. (a, b) Main effects and (c) interaction for the MT . The error bars show 95%
CIs. The horizontal bars show significant differences (p < 0.05 at least).

We found significant main effects of W (F2.540,528.243 = 1876.778, p < 0.001,
η2
p = 0.900) and H (F3.247,675.285 = 851.453, p < 0.001, η2

p = 0.704) on MT . A
significant interaction was found for W ×H (F13.603,2829.404 = 52.468, p < 0.001,
η2
p = 0.201). As the W increased, the MT decreased, and all pairwise tests (six

combinations) showed significant differences (Fig. 3a). In contrast, the effect of
H on MT plateaued gradually, and the pairwise tests for H ≥ 60 showed no
significant differences (Fig. 3b).

As for the interaction effect, for the largest H (200 pixels), the effect of W on
MT was more clearly observed, as seen in Fig. 3c; this means that the effect of
W was dominant. As the H decreased, however, the MT differences among the
four W values were reduced, because H was dominant. For example, the largest
difference for H = 10 pixels was 1059 − 978 = 81 ms (7.6%), while that for
H = 200 pixels was 914−678 = 236 ms (26%). This result demonstrates that we
should integrate the interaction effect of W × H to predict the MT accurately.

Error Rate. Error-rate data are typically nonparametric; thus, we used a non-
parametric ANOVA with the Aligned Rank Transform [31] and Tukey’s p-value
adjustment method for pairwise tests. We found significant main effects of W
(F3,624 = 15.146, p < 0.001, η2

p = 0.068) and H (F6,1248 = 49.095, p < 0.001,
η2
p = 0.191) on ER. A significant interaction was found for W × H (F18,3744 =

3.670, p < 0.001, η2
p = 0.017). As the W increased, the MT gradually decreased

(Fig. 4a), while for the H, the ER for 10 pixels was remarkably high, as seen in (b).
For the interaction effect (c), when the H was small (10 or 20 pixels), the pairwise
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Fig. 4. (a, b) Main effects and (c) interaction for the ER. The error bars show 95%
CIs. The horizontal bars show significant differences (p < 0.05 at least).

tests for W showed no effects, which indicates the dominance of H. Then, as the H
increased, it lost the effect to impose errors; thus, the W had the dominant effect
on ER.

4.3 Canonical Analysis

In addition to the ANOVAs, we ran a canonical analysis to examine how {W ,
H} affected the two dependent variables of {MT , ER} concurrently. We used
the CCA function provided by the sklearn.cross decomposition library in
Python. The Pearson’s r values for the first and second dimensions were 0.8974
and 0.4238, respectively. For the independent variables, the canonical loadings
were [0.9962, 0.0873], [−0.0873, 0.9962]. Thus, W had a stronger effect on the
dependent variables than H; this is consistent with previous studies [2,18].
For the dependent variables, the canonical loadings were [−0.9385, 0.4091],
[−0.5869,−0.8096]. Thus, MT was affected by the independent variables more
sensitively than ER. As shown in Fig. 4a–b, while the H = 10 pixels condition
is an exception, W and H did not largely change the ER.

4.4 Model Fitness

Figure 5 summarizes the results of model fitness for the four candidate models.
Because the numbers of free parameters in the models (a, b, and c) are different,
it was necessary to use the adjusted R2 rather than R2. In addition, to compare
the model fitness more statistically, the figure shows the Akaike information
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y = 123.62x + 388.77
R² = 0.4045
AIC = 331

y = 111.5x + 359.25
R² = 0.7505
AIC = 306

y = 184.65x + 92.004
R² = 0.9658
c = 0.1858
AIC = 253

y = 123.62x + 185.46
R² = 0.7404
c = 0.4091
AIC = 310

Fig. 5. Regression results for the four candidate models: (a) Shannon from Eq. 2, (b)
Crossman from Eq. 4, (c) “min(W,H)” from Eq. 5, and (d) weighted Euclidean from
Eq. 6.

criterion (AIC ) values [3]. The AIC enabled us to determine comparatively
better models in terms of the number of parameters, via the following brief
rule of thumb: (a) a model with a lower AIC value is better, and the one with
the minimum AIC (AICminimum) is thus the best; (b) a model with AIC ≤
(AICminimum + 2) is comparable with the better models; and (c) a model with
AIC ≥ (AICminimum + 10) can be safely rejected [7]. To simplify the discussion
in this paper, we consider an AIC difference greater than 10 to be significant.

As shown in Fig. 5a, the baseline model (Shannon) could not capture the
fact that the MT depended on the H, because it considers only the W . The
data points’ vertical spread shows that the H significantly affected the MT .
The modified Crossman and “min(W,H)” models (Fig. 5b and c, respectively)
showed improved model fitness. The points spread farther horizontally, and more
points thus lay on the regression lines as compared with the Shannon model.
The adjusted R2 values increased from 0.38 to at least 0.7, and the AIC values
significantly decreased from 331 to 310 or lower.

Among the four candidates, Accot and Zhai’s model showed the best fit for
both the adjusted R2 and AIC values (0.9631 and 253, respectively). All the
points lay close to the regression line, and we could thus visually confirm that
the MT can be predicted most accurately with this model.
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4.5 Answers to the Free-Form Questionnaire

Among the 210 workers, 15 mentioned the effects of target size on task difficulty,
e.g., “Small bars were difficult to click.” Also, two workers explicitly mentioned
the target height: “Horizontally long bars were more difficult to click than verti-
cally long ones,” which clearly indicates that the effect of H on task performance
was dominant rather than W . Five workers stated that “It was easier to click
horizontally long buttons” and one of them stated that “The frequency of click-
ing outside targets was lower for horizontally long bars,” which indicates that a
larger W had a positive effect on lowering the error rate. This result partially
supports the result that the weight for W was heavier than H in model fitting
(i.e., in Fig. 5d, the weight for W was 1 vs. 0.1858 for H).

4.6 Discussion on Model Fitness

Through this experiment, we confirmed that our crowdsourced data gave the
same conclusion obtained in lab-based experiments. However, this result might
have depended on the large number of participants: for example, even if some
participants ignored the instructions [12] or did multiple tasks [17], we can com-
press such noisy data after recruiting over 200 workers. This easy recruitment is
an advantage of crowdsourced user experiments, but it means that researchers
might have to pay a high cost to obtain less noisy data. If we could reach the
same conclusion with a much lower number of workers, such as 10% of the total
here, it would also demonstrate the utility of crowdsourcing services. However,
it is currently unclear how the sample size NP affects the conclusion on model
fitness. To assess this issue, we ran the simulation study described in the next
section.

5 Simulation of Sample Size Effect on Model Fitness

Through this simulation, we analyzed how the number of participants, NP ,
affects the model fitness and the conclusion on the best-fit model. We randomly
selected NP participants’ data from the 210 crowd workers and computed the
model fitness in terms of the adjusted R2 and AIC . To handle the randomness,
we repeated the simulation over 100 iterations for a single NP value. Then, we
computed the average and SD of the adjusted R2 and AIC for the 100 itera-
tions3.

Figure 6 shows the results of this simulation, in which we varied the NP

from 5 to 100 with an interval of 5 (i.e., 20NP
× 100iterations = 2000 simulation

trials). Regardless of the NP , Accot and Zhai’s model (green lines) was the best
in terms of both the adjusted R2 and the AIC . In addition, we could visually
confirm that the mean adjusted R2 values became stable after the NP reached

3 The simulation included data from the outlier worker detected in the analysis of the
main experiment, because that worker’s status as an outlier depends on the other
sampled workers’ results.
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Fig. 6. Model fitness in terms of the (a) adjusted R2 and (b) AIC , depending on the
sample size. Each point shows the Mean ± 1SD obtained through 100 iterations. (In
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upper] of the adjusted R2 and AIC . The 95% CI was used for estimating the true
value, but our goal here is to discuss how the sample size affects the mean and the
variability of model fitness; thus, we show the Mean ± 1SD in this figure.)

approximately 20 or 25 for all the model candidates. This was also true for
the AIC result. Throughout the 2000 simulation trials, Accot and Zhai’s model
showed the lowest AIC values, and the difference from the second-best model
was always greater than 10; i.e., Accot and Zhai’s model was consistently and
significantly the best.

According to Fig. 6, as the NP decreased, the variabilities in the adjusted R2

and AIC increased (larger error bars). Thus, we assumed the possibility that one
of the other three candidates could become the best-fit model. To examine this
assumption, we ran the simulation again with NP = 5 over 10,000 iterations.
The results showed only one trial in which Accot and Zhai’s model had a lower
adjusted R2 value than the min(W,H) model: 0.559 vs. 0.592, respectively. For
the AIC , however, there was no significant difference: 308 vs. 305. In contrast, in
9,998 simulation trials, Accot and Zhai’s model was significantly the best model
according to the AIC .

In conclusion, note that it would have been possible to observe the “opposite”
conclusion from lab-based experiments, in which Accot and Zhai’s model is not
the best, but the probability of that situation was only 0.01%. Also, as the NP

increases, this probability should approach zero according to our simulation,
which showed that the variabilities in model fitness became quite small.

Ideally, we would try all combinations of selecting NP = 5 participants’ data
among the 210 crowd workers. However, our simulation of only 10,000 iterations
took approximately 28 min; testing the 210C5 = 3,244,032,792 combinations for
this case would take 17 years, which is not feasible. Also, the simulation took
longer times with larger NP values for various reasons, such as random selec-
tion, averaging of more MT values, detection of outlier workers, and nonlinear
regressions; thus, we tested only the remarkable case of the greatest variability
in model fitness.
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6 General Discussion

6.1 Benefits of Using Crowdsourcing for Model Comparison

In this study, we explored the potential of crowdsourcing for GUI operation
model evaluation studies in desktop environments. As an example of a funda-
mental and well-structured experiment, a Fitts’ law task with bivariate targets
was used. The results obtained from 210 crowd workers showed that the best
fit was achieved by the weighted Euclidean model proposed by Accot and Zhai
(Eq. 6): adjusted R2 = 0.9631 and AIC = 253. This conclusion on the best
model was consistent with previous studies [2,18].

Although comparison of GUI operation models through crowdsourcing is not
common in HCI research, we have demonstrated its effectiveness, at least for
one example (bivariate pointing). This is a motivating result for future studies
on evaluating novel user-performance models. Also, according to a follow-up
simulation, our conclusion on the best-fit model would not have changed in
most cases, even if we had conducted this crowdsourced experiment with only
five workers. An experiment that size would cost only JPY 500 (≈ USD 4.8),
thus enabling easy model fitness comparison at low cost. Furthermore, as the
sample size increased, we observed a more robust, stable model fitness (i.e., less
variability in the adjusted R2 and AIC ). Hence, if researchers can pay more to
recruit more workers (e.g., NP = 100) to improve the reliability of the data,
such large model fitness studies can easily be performed through crowdsourcing,
while lab-based experiments of that size are comparatively difficult.

6.2 Limitations and Future Work

Our claims are limited to the task we chose and its design. We emphasized the
usefulness of crowdsourced user experiments for model comparison, but we only
tested GUI operation models with mice. Even within the scope of Fitts’ law
tasks, we purposely limited the task design to horizontal movements and a fixed
target distance so that the parameters W and H could be reasonably varied. We
will need further studies on the applicability to other kinds of models such as
cognitive ones and other input devices such as touchscreens.

Another possible limitation of our data analysis is that we used a single crite-
rion for outlier detection, particularly for spatial outliers. While our criterion was
based on 2W and 2H (see Sect. 4.1), some previous studies have used different
criteria, e.g., 8W [37]. Thus, we ran a pseudo-ablation study: the click position
of the x-coordinate was more than NW away from the target center (and also
for the y-axis), where N ranged from 1 to 10 (the severest outlier criterion to the
most relaxed one, respectively). As a result, among the 94,080 trials, we found
1,142 trial-level outliers (1.214%) when N = 1. This changed to 1,031 outliers
(1.096%) when N = 10. This 0.1-point difference did not affect our conclusion.
For example, Accot and Zhai’s model showed adjusted R2 = 0.9729 and 0.9728
for N = 1 and 10, respectively. This additional analysis demonstrates that our
outlier detection criteria do not change our main claim.
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A crowdsourcing-specific limitation for GUI tasks is that we cannot check
if workers really follow the given instruction. For example, a previous study
has mentioned that an experimenter could not check whether workers tapped a
target with their thumb as instructed (e.g., some workers might have used their
index finger when tapping a small target) [34]. Taking this into consideration, we
cannot recommend measuring Fitts’ law fitness and computing the throughput
for comparing the performance of various devices such as mouse vs. trackball [30]
because some workers might not use the specified device and the data reliability
is thus questionable.

As a more important argument, we tested four model candidates and com-
pared their model fitness as though our proposed model was Accot and Zhai’s
weighted Euclidean model. Because the results of lab-based experiments are
already known (i.e., the finding that Accot and Zhai’s model is the best), this
study design enabled us to examine whether the crowdsourced user experiment
gave the same conclusion. However, if future researchers conduct crowdsourced
user experiments to evaluate their novel models with respect to baselines, it is
unknown whether the conclusion on the best-fit model will be the same as in
lab-based experiments. In this case, there will be no choice but to believe the
best model as-is.

Still, such results obtained by crowdsourcing would motivate further lab-
based experiments if more controlled conditions (e.g., the same device set-
tings and no interruptions) and reliable participants who follow instructions are
needed. Therefore, crowdsourced and lab-based experiments have different char-
acteristics, and our purpose in this paper is not to state a binary claim on which
choice is better. Rather, we seek to open up a new possibility of using crowd-
sourcing as a tool for HCI studies, particularly for human motor performance
modeling.

In this study, we focused on a mouse pointing task. Other potential examples
to use crowdsourcing for model evaluation include the steering law [1] and its
refined versions for other path conditions [29,32,33], and Fitts’ law for finger
touching [5] and its refined versions [20,35]. Findlater et al. found that Fitts’
law held well for touchscreens [12], and thus it is promising to use crowdsourc-
ing for evaluating new models on touchscreen interactions. To demonstrate this
generalizability to other tasks, more experiments under different conditions are
required.

7 Conclusion

We conducted a crowdsourced user experiment to compare model fitness on a
bivariate Fitts’ law task. By analyzing the data obtained from 210 crowd workers,
we found that the conclusion on the best model was consistent with previous
studies. In addition, even when we randomly selected a limited number of workers
from 5 to 100, we consistently reached the same conclusion. Although the model
fitness variability was comparatively large when the random sample size was
small, when we analyzed data from five randomly chosen participants over 10,000
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iterations, the best-fit model changed only once, without a significant difference
from the second-best model. Thus, we empirically demonstrated the robustness
of data obtained through a crowdsourced model-comparison experiment, at least
for our task of bivariate pointing. This work will contribute to research on novel
GUI operation models, and it will motivate us to conduct further studies on
exploring other applicable tasks.
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