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Abstract. The road excitation is one of the major forces which act on the vehi-
cle and affect the passenger’s comfort so it constitutes a crucial field of interest
when suspension systems are designed. Hence, identifying this type of excitation
remains very benefiting since it contributes to study the dynamic behavior of the
vehicle and to apply a controller law in order to ensure the passenger comfort.
Direct recognition techniques (longitudinal profile analyser or laser sensors…)
of the road profile are costly, thus, it is necessary to find other methods such as
numeric ones to recover the road disturbance. In this paper, the inverse problem
theory is employed to pick out the road profile disturbance applied to vehicle. This
proposed technique, known as the Independent Component Analysis (ICA), can
recreate initial excitation sources by using physically measurable signals named
observed signals of the system under study. These signals are obtained numeri-
cally in this study by using the Newmark approach. Starting from these dynamic
responses, the ICA algorithm is applied to a non-linear vehicle model to identify
the road excitations. The performance of this technique is studied using some cri-
teria which are the relative error and the MAC number. The obtained results show
a good relevance between the original signals and the estimated ones.
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1 Introduction

The effect of the road excitation on the suspension’s performance has been the center
of the attention of various scientific papers. One of them is: Hunt (Hunt 1991) has
scrutinized the dynamic response of a vehicle that is subjected to the random excitations.
Furthermore, E. Duni (E. Duni et al. 2003) have investigated the dynamic behavior of
a full vehicle model submitted to different types of road excitations through the use of
finite element method. So, in order to analyze the dynamic response of a vehicle under
real condition, the road profile excitation should be identified accurately in order to its
effect on the ride quality and passenger’s comfort (Yan 2012). Kim (Kim et al. 2002)
have measured the road roughness directly by means of visual inspections. The Monte
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Carlo technique (Harris et al. 2010) has been used to estimate the road profile. Fauriat
(Fauriat et al. 2016) proposed the ‘Augmented Kalman filter’ to derive the road profile
excitation. Mariem (Mariem Miladi et al. 2019) showed that ICA technique has higher
efficiency than other techniques in road identification. The main aim of this paper is to
use the ICA to recover the excitation of the road profile for a non-linear full vehicle
model. This technique was commonly used to evaluate the excitation force in many
studies (Dhief et al. 2016, B. Hassen et al. 2017, Taktak et al. 2012). Its main advantages
are that it is simple to be implemented and has a feature of a real time identification
process. This paper is organized as follows: the first section shows the two axle vehicle
model along with its mathematical formulation. Then the applied method, the ICA, is
modeled. In the third section, the obtained results are showed and finally the efficiency
of the method is confirmed by means of some performance criteria.

2 Two Axle Vehicle Model

The figure (Fig. 1) depicts the full dynamic model of the car studied in Meywerk (2015).

Fig. 1. Two axle vehicle model
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This model consists of four masses. In order for this kind of modeling to yield a
good insight of the actual vibrations of a real vehicle, the following assumptions should
be included:

– The road disturbance is evenly applied to the right and the left wheel. The vehicle is
considered to have symmetrical inertia features (Meywerk 2015).

– The excitations applied to the rear wheels h2(t) are taken identically to those on the
front wheels h1(t), with a short delay as it is mentioned in Fig. 2.

This model is described as follows:

– mw1 and mw2 stand for the masses of the wheels. They are linked to the road by means
of two non-linear springs denoted as kw1 and kw2. The deflections of the two masses
mw1 and mw2 are denoted as zw1 and zw2 respectively.

– zb1 and zb2 represent the vertical displacement of the suspension systems. These
suspensions are composed by non-linear stiffness’s kb1 and kb2 in parallel with the
two dampers are denoted bb1 and bb2.

– zb is symbolized as the center of gravity’s displacement
– ϕb denotes the pitch angle.
– zd stands for the vertical displacement of the driver’s seat.

Taking into account the assumptions described above, zb1 and zb2 are expressed as
follows:

zb1 = zb − l1ϕb (1)

zb2 = zb + l2ϕb (2)

And the coordinate zs is expressed as:

zs = zb − lsϕb (3)

– The non-linear Spring’s excitations are expressed as follows:

Fb1 = kb1�l + β1kb1�l2 + β2kb1�l3 (4)

and

Fb2 = kb2�l1 + β1kb2�l21 + β2kb2�l31 (5)

Where:

• �l stands for the deflection between zb1 and zw1 in Eq. (4) and�l1 is written in Eq. (5)
as the deflection between zb2 and zw2.

• β1, β2 represent two non-linear constants (Li et al. 2011) as β1 = 0.1 and β2 = 0.4
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For the tire, it is designed as a non-linear spring k2. The expression of the non-linear
tire stiffness is taken from Li et al. (2011) as:

Fw1 = kw1�l3 + β3kw1�l23 (6)

And

Fw2 = kw2�l4 + β3kw2�l24 (7)

Where:

• �l3 is the difference betweenkw1 andh1(t) inEq. (6) and �l4 represents the difference
between kw2 and h2(t) in Eq. (7).

• β3 is the non-linear coefficient of the tire. Its value is taken from Li et al. (2011):

β3 = 0.01 (8)

So the equations of motion of the half vehicle model can be written in a matrix form
as: (Ref CMSM DORRA°)

[M]
{
Ẍ

} + [C]
{
Ẋ

} + [K]{X} + {FNL} = {F} (9)

Where {X}, {
Ẋ

}
and

{
Ẍ

}
are respectively displacement, velocity and acceleration

vectors. [M] is the mass matrix [C] is the damping matrix and [K] depicts the stiffness
matrices of the studied system. {F} is the excitation force vector due to road disturbance.
{FNL} is the non-linear spring force vector.

M =

⎡

⎢⎢⎢⎢⎢
⎣

md 0 0 0 0
0 mb 0 0 0
0 0 Jb 0 0
0 0 0 mw1 0
0 0 0 0 mw2

⎤

⎥⎥⎥⎥⎥
⎦

K =

⎡

⎢⎢⎢⎢⎢
⎣

ks −ks ksls 0 0
−ks ks + kb1 + kb2 −ksls − kb1 l1 + kb2 l2 −kb1 −kb2
ksls −ksls − kb1 l1 + kb2 l2 ksl2s + kb1 l

2
1 + kb2 l

2
2 kb1l1 −kb2l2

0 −kb1 kb1 l1 kb1 + kw1 0
0 −kb2 −kb2 l2 0 kb2 + kw2

⎤

⎥⎥⎥⎥⎥
⎦

C =

⎡

⎢⎢⎢⎢⎢
⎣

bs −bs bsls 0 0
−bs bs + bb1 + bb2 −bsls − bb1 l1 + bb2 l2 −bb1 −bb2
bsls −bsls − bb1 l1 + bb2 l2 bsl2s + bb1 l

2
1 + bb2 l

2
2 bb1l1 −bb2l2

0 −bb1 bb1 l1 bb1 0
0 −bb2 −bb2 l2 0 bb2

⎤

⎥⎥⎥⎥⎥
⎦

F =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0

0

0

kw1 h1
kw2h2

⎤

⎥⎥⎥⎥⎥⎥
⎦

The implicit Newmark’s technique coupled with Newton Raphson Method has been
used to resolve the non-linear dynamic equations governing the motion of the system.
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A residue is computed. At each iteration k this residue has the following expression:

Rk
i+1 = [

K
] {X}ki+1 + FkNL − {

F
}
i+1 (10)

With:

[
K

] = [K] + a0 [M] + a1[C] (11)

And:
{
F
}
i+1 = {F} + [M]

(
a0 {Xi} + a2

{
Ẋi

} + a3
{
Ẍi

})

+[C]
(
a1 {Xi} + a4

{
Ẋi

} + a5
{
Ẍi

}) (12)

Where ai (i = 0..5) are the Newmark’s constants.
If the residue is not acceptable i.e. R > ε, a correction should be made for the

displacement vector as following:

{�X} =
(

∂R

∂X

∣∣∣∣∣
k

i + 1

)−1(
−Rk

i+1

)
(13)

So that the displacement will be:

{X}k+1
i+1 = {X}ki+1 + {�X} (14)

The values of the model parameters are presented in the following Table 1:

Table 1. Parameters of the studied vehicle model

Parameters Variable value Variable unit

Mass of the chassis mb = 960 [Kg]

Mass of the tires mw1 = mw2 = 36 [Kg]

Suspension stiffness kb1 = kb2 = 16000 [N/m]

Tire stiffness Kw1 = kw2 = 105 [N/m]

Suspension damping bb1 = bb2 = 100 [Ns/m]

Driver’s mass md = 90 [Kg]

Moment of inertia Jb = 500 [Kg/m2]

Driver seat’s rigidity ks = 2000 [N/m]

Driver seat’s damping bs = 10 [Ns/m]

l1 l1 = 1.8 [m]

l2 l2 = 0.8 [m]
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For the road profile excitation, a random road profile has been included in the first
wheel. For the second the same excitation with a short delay is taken (Fig. 2). This profile
is modeled according to ISO 8608 (ISO 8608) (Table 2) which classifies the profiles to
different classes based on the power spectral density (PSD) (Yan 2012).

Table 2. Road profile classification

Road Class Degree of roughness Gd(n0) (10–6 m3)

Lower limit Geometric mean Upper limit

Road A – 16 32

Road B 32 64 128

Road C 128 256 512

Road D 512 1024 2048

Road E 2048 4096 8192

The Integral White Noise method is employed to create the road roughness. It
considers that the road roughness is the issue of a filtered white noise defined by Eq. 15:

q̇(t) = 2πn0 w1(t)
√
Gd(n0)v (15)

Where: w1(t) stands for the Gaussian white noise with a variance equal to 1, q(t) denotes
the road roughness while v represents the vehicle velocity. The applied road in this paper
is a profile of type A as mentioned in Fig. 2.

Fig. 2. Road profile
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3 Identification Technique: ICA

This algorithm aims to decompose a random signal X in statistically independent com-
ponents (Dhief et al. 2016). This random signal is expressed by the following equation
(Hassen et al. 2017)

X(t) = [A]{S} (16)

Where:
A: The mixing matrix.
S: The source signals’ vector.
The ICA has to estimate A and S based only on the cognition of the vector X. This

estimation requires some assumptions and some pretreatments.
So a matrix W must be searched where the estimated signal y(t) are defined by the

following equation

y(t) = [W]{S} (17)

To find thematrixW the independence criterion are used in the sense of themaximization
of non gaussianity defined by the kurtosis (Eq. 18)

{Y} = [W]H {X} (18)

Where (.)H denotes the conjugate-transpose operator To find the matrix W the indepen-
dence criterion are used in the sense of the maximization of non gaussianity defined by
the kurtosis (Eq. 19) defined by Zarzoso and Comen (ISO 8608) article apac6344 as the
normalized fourth-order marginal cumulate defined by the following equation in order
to guarantee a non-Gaussianity distribution.

K(ka) = E
{|y|4} − 2E2

{∣∣y2
∣∣} − ∣∣E

{
y2

}∣∣2

E2
{∣∣y2

∣∣} (19)

Where E is is the orthogonal matrix of eigenvectors of E
{
XXT

}
.

For more details about this method, the reader can refer to these references (Hassen
et al. 2017; Comon 1994).

4 Numerical Results

The dynamic responses which are the deflections of the two suspensions system (Fig. 3)
are used as the observed signals for the ICA algorithm. Based on the knowledge of these
signals (Noted X1 which is equal to zb−zw1 and X2 which is equal to zb−zw2), the ICA
aims to identify the road profile excitations.
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(a) (b)

Fig. 3. Observed signals (a) X1 (b) X2

After applying the ICA, The results of the road profile estimation are presented by
the following Fig. 4:

(a) (b)

Fig. 4. Estimation of the road profile excitation (a) excitation1 (b) excitation2

Based on these results, it can be said that the ICA can identify the original signals.
The small delay and perturbation are due to the effect of the non-linearity. To study the
efficiency of this method, theMac number and the relative error are computed according
to the following equations. If theMACnumber has a value close to zero, then the obtained
results are not compliant and if it has a value close to 1, then the results are compliant.
Table 3 resumes the obtained results:

Er = 100 ∗ yi − yi
yi

(20)

MACi = (yTi yi)
2

(yTi yi)(y
T
i yi)

(21)

Where yi is the original signal and yi is the estimated one.
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Table 3. Performance criteria

MAC Relative error Er (%)

Profile 1 0.65 4.712

Profile 2 0.71 3.85

It is seen that the Mac value is near to one for the two studied signals and this shows
that the estimated profile is conformed to the original one. Moreover, the values of the
relative error confirm these results.

5 Conclusion

The proposed method ICA gives a good estimation of the road profile excitation even
with the use of the non-linear parameters. The strength of the ICA technique is that it is
applicable with no need to specific road instruments and it is inexpensive.

This method based on the inverse problem, can be used over thousands of kilometers
as a real time estimation which is rapid enough.

This identification processwill help us to choose the adequate controller law in future
work in order to ameliorate the passenger comfort.
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