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Abstract. Advances in signal processing are complemented by advances
in machine and deep learning and vice versa. In general, machine and
deep learning are employed as discriminative models within a supervised
setting. Progress in unsupervised generative modelling allows for genera-
tive models to be employed in discriminative (discrete classes) and devi-
ation (continuous deviation from a baseline) tasks. This only requires
the samples to be chronological. Discriminative and deviation analysis
is usually based on the reconstruction loss. However, this is limited as
it offers only a single scalar from which inference can be made. Genera-
tive models do, however, learn a latent representation of the data from
which additional scalars can be derived. Whether these derived scalars
are informative depends on the quality of the latent representations.
Most learning algorithms derive a latent representation that efficiently
explains the variance in the data, which can be informative when the
property of interest is well explained by variance. Alternatively, a lesser
known class of learning algorithms aim to learn a latent representation
that aims to identify sources in the data. Hence, given the same data,
an infinite number of latent representations are possible, of which only a
fraction are informative. We consider three classes of latent spaces that
are stochastic, entangled and untangled. Furthermore, we highlight the
importance of untangled latent spaces to obtain informative signals for
condition monitoring.

Keywords: Signal processing · Generative modelling · Unsupervised
learning · Latent variable · Untangled latent spaces

1 The Intersection Between Signal Processing and
Learning Models

Signal processing in condition-based maintenance (CBM) is primarily concerned
with extracting and analysing informative features from raw time-series data
that enable diagnosis and prognosis to prevent asset failure and downtime, as
shown in Fig. 1. Given sensor data, x(t), two questions are raised:
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Fig. 1. Signal processing viewed as the encoding of useful or informative information
from raw sensed signal data that the analyst can analyse. Signal processing is contrasted
against the typical autoencoding training of generative models.

1. What is the information content of the signal, i.e. what of the physical system
can be identified from the signal, and

2. Is the identifiable information in the signal captured such that the informa-
tiveness is maximised?

In signal processing, the analyst aims to isolate identifiable information from
x(t) for analysis. The main aim is to extract useful information that informs
an assets’ condition. This task of separating identifiable information or extract-
ing relevant information for the condition monitoring problem can be seen as
encoding, followed by the encoded signal analysis.

The analyst’s encoding task is equivalent to finding a transformation or rep-
resentation that enhances specific information and attenuates extraneous signal
components. This makes it possible to process the raw time-series signal into
a more meaningful representation. Examples include the wavelet transform and
the spectral coherence of the signal [1,2].

Alternatively, a time-series signal can be viewed as high dimensional data, i.e.
as an n-dimensional vector, x(t) ∈ R

n, where n corresponds to the number of data
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points in the signal. The analyst is now tasked with finding a lower-dimensional
representation or features that is/are informative. A single n-dimensional obser-
vation x(t) does not in itself enable the analyst to find a lower-dimensional rep-
resentation. However, several strategies exist and have been employed to recast a
single n-dimensional observation into multiple correlations/observations of high
dimensional data. The auto-correlation matrix recasts x(t) into XAC(t) ∈ R

n×n

[3], while through a sliding window approach X(t) ∈ R
m×l recasts x(t) into m

observations of window length l [4–6]. This approach is also used to obtain the
Hankel matrix. Given some X(t), the aim is to find a lower-dimensional represen-
tation that enhances specific information and suppresses components unrelated
to the component of interest.

In signal processing, irrespective of whether the data is being transformed
or projected, the analyst is essentially conducting the following operations: find-
ing informative transformations (e.g. [7]) and features or condition indicators
(e.g. [8]), whereafter they are analysed for damage. This requires knowledge and
mastering of signal processing principles, experience and extensive knowledge of
the physical mechanisms that generate the measured signals.

In artificial intelligence, statistical learning [9], machine learning [10] and
deep learning [11] are sub-domains that focus on developing generative models.
Incidentally, generative modelling is the task of transforming high-dimensional
data to a lower-dimensional representation or latent space through encoding,
as shown in Fig. 1. Samples in this latent space can be resonstructed back to
the high-dimensional space through decoding. This encoding-decoding process
is used in training where the error between the original signal x(t) and the
reconstructed signal x̄(t) is minimised. Hence, the task of encoding is common
between generative modelling and signal processing. An additional intersection
being the analysis of the latent variables to inform on the condition of an asset.

Therefore, it is critical to find latent spaces that are informative and ensure
that the latent space components correspond to distinct physical processes. In
CBM under the effects of time-varying environmental and operational conditions
(EOCs), this implies that time-varying components can be isolated and identi-
fied as independent latent representations [12,13]. The challenge in generative
modelling is to encode informative latent spaces. Hence, by applying generative
modelling with untangled latent spaces to CBM, the aim is to automate signal
processing tasks that require extensive domain knowledge.

2 Process of Lower-Dimensional Representations

The process of finding lower-dimensional representations entails two steps, as
shown in Fig. 2. Firstly, by finding an informative, low dimensional coordinate
system, and secondly, by projecting the high dimensional data onto the low
dimensional coordinate system. Depending on the generative modelling, the coor-
dinate system can be linear (see Fig. 2), i.e. the coordinate system forms a basis
that a set of vectors can describe. Some transformation function can describe a
nonlinear or curvilinear coordinate system (see Fig. 2).
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Statistical learning specifically aims to alleviate the analyst from finding fea-
tures to merely supervising the task of finding features, a.k.a. feature engineer-
ing. In particular, statistical learning restricts itself to finding a linear coordinate
system, i.e. linear basis to represent the latent space. Machine learning has sim-
ilar aims, but the latent space is described by nonlinear coordinate systems to
which the raw signals can be transformed. This enables the analyst to focus
on analysing the projected signals instead of first finding informative features.
Deep learning has more ambitious goals. It aims to automate the processing,
feature engineering, and analysis of raw time-series signals, i.e., automate the
entire signal processing value chain.

Hence the task of statistical, machine and deep learning is to find a coordinate
system to represent the latent space onto which a time-series signal can be
projected for analysis. This is achieved by defining an appropriate optimisation
problem. Here, the analyst needs to decide a proper optimisation model, e.g.
primal problem formulation or dual problem formulation, to solve a formulated
min-max, maximisation or minimisation problem [14]. The choice of the loss
function, norm (e.g. l1-norm and l2-norm), regulariser (e.g. l2-norm weight norm
penalty (ridge regression), or l1-norm weight penalty (LASSO for sparsity)) and
constraints (e.g. orthogonality of coordinates) allows the analyst to craft and
target specific characteristics in the data that are assumed to be informative.
This problem can be cast within a statistical language by assuming a distribution
for the noise (e.g. Laplacian or Gaussian, which are related to the l1-norm and l2-
norm, respectively) and prior distribution (e.g. Laplacian or Gaussian, which are
associated with the l1-norm weight norm penalty and l2-norm weight penalty).
The process of solving a formulated optimisation problem is known as training,
see Fig. 1.

To summarise, data science, particularly generative modelling, requires the
formulation of an optimisation that can be solved to find informative coordinate
systems onto which high-dimensional data can be projected.

3 Supervised, Semi-supervised and Unsupervised
Learning

The availability and type of data dictate which learning strategies are available
for the analyst. In the context of anomaly or fault detection, supervised learn-
ing requires signals that were taken when a physical asset was known to be in a
healthy and damaged state. This is referred to as labelled data. In turn, unsuper-
vised learning only requires physical asset data without knowing whether it was
taken while the physical asset was healthy or damaged. However, we distinguish
between data where the samples are chronologically ordered for unsupervised
learning, i.e. measured samples are time-stamped, or not, i.e. each sample is
chronological but no time-stamps were recorded for the samples. Lastly, semi-
supervised learning relates the learning with predominantly unsupervised data
and access to few supervised samples. The most prevalent data in CBM is unsu-
pervised data with chronological samples without prior knowledge of a machine’s
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Fig. 2. Encoding a raw signal viewed as finding a coordinate system onto which the
data is projected for analysis.

initial state. Data is selected to represent a reference state on which to train a
model [13]. This reference state is often referred to as “healthy” when the initial
data in the chronological data flow was used to train on [13]. Hence, unsuper-
vised learning with chronologically sorted data is an ideal learning framework
to train statistical, machine and deep learning models, which we will explore in
more detail.

4 Unsupervised Generative Learning with
Chronologically Sorted Data

Unsupervised generative learning can be achieved primarily by one of two learn-
ing principles, namely,

1. auto-associative learning [15], or
2. generative adversarial learning [16],

thereby enabling the training of generative models in an unsupervised
fashion.
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4.1 Auto-associative Learning

Auto-associative learning [15] or autoencoding [17] is pervasive in statistical,
machine and deep learning and follows the process of encoding and decoding
outlined in Fig. 1. In essence, autoencoding aims to reconstruct the input signal
by encoding the signal in a lower-dimensional coordinate system. It reconstructs
the signal back to the same dimensionality as the input signal through decod-
ing. This lower-dimensional encoding is often referred to as the bottleneck, an
essential mechanism to find an informative lower-dimensional signal. The aim is
to learn to regenerate the samples X without memorizing the samples.

This is exemplified by considering m, l-dimensional samples arranged in
matrix X ∈ R

m×l. Given that we have centred the data X, which we denote
C, we aim to find a coordinate system described by a l × k matrix W. Here,
CW encodes the data C into a k-dimensional coordinate system W, whereas
(CWWT), decodes the projected data CW back to the original l-dimensional
space.

Given k = l with W = I then encoding results in CI = C, and decoding
gives CIT = C perfect reconstruction. However, using W = I is equivalent to
memorising the data instead of learning useful information about the data, again
highlighting the importance of a lower-dimensional latent space k � l.

Learning algorithms can be constructed to optimally reconstruct signals. For
this case, the aim is to maximise the variance explained in a dataset by finding
an optimal lower-dimensional coordinate system to reconstruct signals. Strate-
gies that focus on reconstruction include principal component analysis (PCA),
autoencoders (AE) and variational autoencoders (VAE) [15,18,19]. Alterna-
tively, learning algorithms can be constructed to find an informative lower-
dimensional coordinate system [20–24], or an informative latent space. Latent
focussed approaches include independent component analysis (ICA) and beta-
variational autoencoders (β-VAEs) [5,25].

Autoencoding with a Reconstruction Focus: Principal component anal-
ysis (PCA) [19] and singular value decomposition (SVD) [26] encapsulate the
foundation of autoencoding that aims to maximise the variance explained or
aimed at reconstructing the signal as efficiently as possible.

Given C, we aim to find a new orthogonal coordinate system described by a
l×k matrix W. With k � l to describe the data, we can achieve it by minimising
the following constrained optimisation problem:

W∗ = arg min
WTW=I

(
(CW)WT − C

)
:
(
(CW)WT − C

)
. (1)

CW encodes the data C into a k-dimensional coordinate system W, whereas
WT(CW)WT decodes the projected dataCW back to the original l-dimensional
space. Since C ∈ R

m×l, we require a double contraction, denoted: to reduce the
expression to a scalar. Autoencoding (AE) [15], Variational Autoencoding (VAE)
[27] and Singular Spectrum Analysis (SSA) [28] aim to find a coordinate system
that is efficient at explaining the variance in the signal, which in some cases can
be informative if the aspect of interest manifests as the variance. It is untangled
if it is the sole aspect to do so, however, this is seldom the case.
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Autoencoding with a Latent Space Focus: Independent component analy-
sis (ICA) [20,29,30] complements autoencoding that aims to have an informative
latent space or aims to find an informative decomposition. ICA terminology often
refers to the components of such latent spaces as the sources [31]. The application
of ICA in prognostic maintenance of renewable energy systems is well known,
but the connection to untangling is not that well established [32].

Machine learning and deep learning offer improved abilities to untangle latent
spaces over linear models [33], but remain largely unexplored for CBM applica-
tions. Most time-series studies are focussed on human speech and animal acous-
tics [34].

Given C, we aim to find an informative new coordinate system l × k matrix
W, such that the projected data

S ≈ CW (2)

is maximally statistically independent and non-Gaussian, according to some
measure of non-Gaussianity. The measures of non-Gaussianity define the charac-
teristics of the expected sources, such as kurtosis and negentropy [20,30,35,36].
Damaged signals often manifest as non-Gaussian sources in the measured data
[21,24,37], making ICA useful for fault diagnosis. This is also aligned with
the developments of the signal processing community, where different mea-
sures of non-Gaussianity are used to identify damaged machine components
[21,24,37,38].

Note, the reconstruction of the given data is given by

SW−1 ≈ C, (3)

but was obtained by finding statistically independent latent variables, which
implies that S is uncorrelated

SST = I. (4)

Hence, ICA aims to find a statistically independent latent space during training
in contrast to the reconstruction-based focused models. Each latent component
represents an isolated physical process or source contributing to the measured
signal. This directly implies a latent space that is untangled and informative as
the measured signal is decomposed into independent components that can be
readily analysed and interpreted.

In machine learning and deep learning, an extension of variational autoen-
coders (VAE) towards an untangled latent space is β–VAE [25].

4.2 Generative Adversarial Learning

The premise of adversarial training is to transform the unsupervised generative
modelling problem into a supervised classification problem. This is achieved by
introducing two sub-models in the adversarial learning framework: a generator
and a discriminator model. The generator model generates new samples a priori
from a chosen latent space, while the discriminator classifies between actual
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Fig. 3. Adversarial training turns an unsupervised learning problem into supervised
learning by introducing a discriminator between actual x(t) and the reconstructed x̃(t)
signals. Training constructs a decoding network and discriminator network. Evaluation
then uses the discriminator to evaluate whether a signal x(t) is from the training set
data or not by analysing, Ac, the discriminator signal.

signals and generated signals. In an adversarial framework, the two models are
trained together.

In a basic adversarial framework, the latent space is chosen to be stochas-
tic without any structure enforced. The implication is that the latent space is
uninformative. However, the adversarial framework makes an additional measure
available in the form of the discriminator.

A generative adversarial network (GAN) discriminator can be informative
in condition monitoring applications [13]. However, an informative latent space
would supplement adversarial learning approaches. Ref. [12] extended on the
work of Ref. [13] with latent space conditioning semi-supervised learning for
CBM applications. Improvements to construct informative latent spaces for
GANs include adversarial latent autoencoders [39].

5 Latent Representations

Recall, the latent representations given the same data are not all equivalent.
Let us consider concrete manifestations of latent representations using a foun-
dational example. Since faults or environmental and operating conditions can
manifest in several variations from a nominal signal, e.g. variations in ampli-
tude, frequency, phase, and offset, we consider a simple sine wave signal with
amplitude magnitude variation (between 1 (black) and 5 (white)) as shown in
Fig. 4. A low-frequency signal over 10 s is purposefully constructed for clarity.
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Fig. 4. Foundational example of amplitude magnitude change in a sine wave signal
from 1 (black) to 5 (white).

(a)

(b)

(c)

Fig. 5. Latent representations for the amplitude variation from 1 (black) to 5 (white)
of the sine wave given as (a) stochastic, (b) entangled and (c) untangled.



Untangled Latent Spaces in Signal Processing 47

Let us focus on finding latent representations highlighting the variation in
amplitude magnitude (given by the colour variation of the data points from black
(amplitude magnitude of 1) to white (amplitude magnitude of 5)) for the sine
wave. We depict a two-dimensional latent space representation for a stochastic
latent space in Fig. 5(a), entangled latent space in Fig. 5(b) and untangled latent
space in Fig. 5(c).

Given, we obtain a stochastic latent space signal, as the amplitude varies in
the sine wave. It is clear that the stochastic latent space signal does not inform
the amplitude variation, i.e. the latent space is uninformative. Suppose we would
instead obtain an entangled latent space signal, as the amplitude varies in the
sine wave. The entangled latent space signal does contain some information of
the amplitude variation. In this case, some analysis may be required to interpret
the amplitude variation from this entangled latent signal. Lastly, the untangled
latent space signal informs the amplitude variation independent of any other
variation in the latent signal, resulting in an informative latent signal requiring
no additional or minimalistic processing for analysis and interpretation.

Given a condition monitoring problem, where damage is variance or ampli-
tude driven (e.g. modulation due to bearing impacts), we may find similar per-
formance between reconstruction focussed (e.g. SSA, AE or VAE) and latent
focussed autoencoding (e.g. ICA or β–VAE) as the variance is a good indepen-
dence measure for damage in this example. Here, we will obtain an entangled
or untangled latent space depending on the additional variations in the signal.
However, should damage manifest weakly in the signal’s variance, we may find
that untangled latent spaces are restricted to latent focussed autoencoding. An
untangled latent space is also critical in CBM under the effects of time-varying
environmental and operational conditions (EOCs). It allows for informative time-
varying components to be identified and isolated [12,13], or uninformative com-
ponents to be identified and suppressed.

6 Conclusions

This study explored the role of untangled latent spaces obtained with semi-
supervised or unsupervised learning. An infinite number of latent spaces exist,
of which only a fraction are informative. Significant effort is required to obtain an
untangled and informative latent space. However, the additional latent signals
available for analysis given an untangled and informative latent space make this
endeavour all worthwhile. In some cases, the variance may be a good proxy for
statistical independence, given that the fault of interest manifests in the variance
of a sensed signal. In these cases, a reconstruction-focused learning strategy may
result in a partially untangled latent space that is informative. However, should
the fault of interest not manifest in the signal variance or under time-varying
operating conditions, then a latent focussed learning strategy is imperative to
obtain an untangled and informative latent space.
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