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Abstract. It is important to develop reliable fault diagnosis and prog-
nosis methods for critical mechanical assets such as wind turbines. Reli-
able fault diagnosis and prognosis methods ensure that the damage is
detected early, the damage modes are accurately characterised, and the
correct remaining life is inferred. This enables the appropriate main-
tenance decisions to be made and can decrease the risk of unexpected
breakdowns. Identifiability is an important criterion for the development
of new fault diagnosis and prognosis methods. Therefore, in this work, we
present the identifiability problem for fault diagnosis and prognosis on
academic examples and we place a specific emphasis on gearbox applica-
tions. This chapter provides an overview of the concepts and is intended
for neophytes to experienced researchers and practitioners. Hence, the
examples are purposefully simple. We specifically highlight the impor-
tance of sensor positioning and also discuss the influence of varying
operating conditions on the diagnosis and prognosis steps. Thereafter,
we present the fundamental steps in the fault diagnosis and prognosis
process and highlight the associated challenges with identifiability. We
also propose potential solutions for these challenges. Lastly, we propose
requirements for the different phases of the fault diagnosis and prognosis
steps, which could be beneficial when developing new methods.
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1 Introduction

Condition-Based Maintenance (CBM), which comprises diagnosis and prognosis
tasks, is important for expensive machine assets such as wind turbines [1]. Wind
turbines, for example, are prone to gearbox, brake and rotor blade failures that
result in long downtimes [1]. In CBM, condition monitoring data such as temper-
ature, vibration, and pressure measurements are acquired from the machine and
subsequently used to infer the health of the machine (i.e. diagnosis) and to deter-
mine the remaining useful life of the machine (i.e. prognosis) [1]. Vibration-based
methods are most commonly used to monitor the condition of rotating machine
components such as bearings and gears [2,3]
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Usually, the damaged assets result in subtle changes in the condition mon-
itoring data that are difficult to detect [2]. This makes processing the data
into more meaningful representations essential. Several signal processing and
learning-based1 condition monitoring methods have been developed (e.g. Ref
[4,5]) to address the challenges posed by the weak signal components-of-interest.
Here, extraneous signal components, time-varying operating conditions, and non-
Gaussian noise mask the components-of-interest and impede diagnosis [3,6].

Ultimately, the diagnosis and prognosis steps are used to inform maintenance
decisions and therefore the diagnosis and prognosis methods should be carefully
designed. In the diagnosis step, the damaged component and damage severity are
inferred from the condition monitoring data and used for prognosis algorithms
to predict the remaining useful life. Many data-driven prognosis approaches are
proposed in the literature [7]. However, the methods require representative his-
torical fault data from the different damage modes, which are difficult to obtain
in practice [8]. Hence, inferring the relevant fault information is critical.

Therefore, in this work, we highlight that identifiability is essential for devel-
oping fault diagnosis and prognosis methods. Firstly, we present the identifia-
bility problem for rotating machine condition monitoring in Sect. 2, whereafter
we highlight the different tasks in the fault diagnosis and prognosis process in
Sect. 3. In Sect. 4, we propose requirements for the development of fault diagnosis
and prognosis methods, whereafter we conclude the work in Sect. 5.

2 Identifiability for Condition Monitoring

2.1 The Condition Monitoring Problem

Figure 1(a) shows the condition monitoring problem for a gearbox with four
bearings (B1, B2, B3, B4), a gear, a pinion and two events E1 and E2. In
Fig. 1(b), the sources of the events are shown: The pinion is damaged, resulting
in event E1, and the outer race of the bearing is damaged, resulting in event
E2. In this example, two sensors are placed on the casing of the gearbox S1
and S2. Ultimately, we would like to infer the gearbox’s condition from one
(or both) sensor(s) measurements. In this example, actual measurements from
different sensors on a gearbox are shown to emphasise the influence of the sensor
positions.

The excitations due to the damage should travel between the source (i.e.
the events) and the sensors [9], with possible transmission paths highlighted in
Fig. 1(c). The time domain signals can be decomposed as follows:

x1(t) = h11(t) ⊗ e1(t) + h12(t) ⊗ e2(t) + n1(t), (1)
x2(t) = h21(t) ⊗ e1(t) + h22(t) ⊗ e2(t) + n2(t), (2)

1 We refer to statistical learning, machine learning and deep learning methods as
learning-based methods.
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Fig. 1. The condition monitoring problem: (a) The gearbox, two events inside the
gearbox E1 and E2, four bearings B1, B2, B3, B4 and two sensors, S1 and S2, are
shown. (b) The two damage components causing the events are shown. (c) Some of the
transmission paths between the events and the sensors are shown. (d) Example signals
are shown for the two sensors. These were acquired from two sensors on the test-rig
described in Ref. [3]. (e) The legend for the events and the transmission paths.
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where xi(t) and ni(t) are the vibration signal and the extraneous components2

in the ith sensor signal, respectively. The jth event, attributed to the excitation
at the source of the damage (e.g. the rolling element’s interaction with a spall), is
denoted ej . The impulse response function that captures the transmission path
between event j and sensor i is denoted by hij . The measured vibration signal is
discrete and denoted x = [x(0), x(Δt), x(2 · Δt), . . .], where Δt is the sampling
period. By using the convolution theorem, it is possible to decompose the signals
as follows: [

X1(f)
X2(f)

]
=

[
H11(f) H12(f)
H21(f) H22(f)

] [
E1(f)
E2(f)

]
+

[
N1(f)
N2(f)

]
, (3)

where Hij , Xi, Ej , Ni are the Fourier transforms of hij , xi, ej and ni respec-
tively. Changes in the signal Xi can potentially be influenced by changes in the
frequency response function Hi1 and Hi2; the events E1 and E2; and/or the noise
components Ni. Therefore, it is important to carefully interpret the changes in
the raw signal and its statistics. Ultimately, we desire to extract or enhance the
event information Ej to perform diagnosis and prognosis.

2.2 Identifiability Problem

Identifiability and observability are closely related; observability indicates
whether we can infer the latent state of the system from the system’s response,
while identifiability indicates whether we can infer the system’s parameters from
its response [10]. In condition monitoring, we typically would like to infer the
parameters of the damage (e.g. size of the damage) and therefore we present this
discussion in an identifiability context. We will use Eq. (3) to present the iden-
tifiability problem for condition monitoring, without accounting for estimation
errors (e.g. the influence of finite length signals). We can write Eq. (3) in matrix
form

X(f) = H(f) · E(f) + N(f), (4)

and leverage elementary linear algebra theory to gain insight into the identifia-
bility of the events. The following four interesting cases are considered here for
highlighting the identifiability problem:

H1 =
[

a 0
0 b

]
, H2 =

[
a c
c b

]
, H3 =

[
a a
a a

]
, H4 =

[
a 0
0 0

]
. (5)

where a ∈ C, b ∈ C, c ∈ C. If the frequency response function matrix H = H1,
the events will feature independently in the sensors. Therefore, different sensors
can be used to characterise specific events. If H = H2 and assuming det(H) �= 0,
the matrix is invertible and therefore we obtain two signals with independent
event information using

H−1(f) · X(f) = E(f) + H−1(f) · N(f), (6)
2 Extraneous components refer to signal components attributed to physical mech-

anisms (e.g. healthy gear mesh components), environmental conditions and noise
that are not related to the fault components-of-interest.
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where H−1(f) ·X(f) is the spectrum of the processed signal. Note, that unless
we know N(f), we cannot identify the events Ej , but only scaled and translated
versions of the events, i.e. α · Ej + β. This is often sufficient for most condition
monitoring tasks. If H = H3, the rows are linearly dependent, which means
that the sensors contain duplicate information (e.g. the sensors are symmetric
for the structure and the excitations) and H3 is not invertible. This means that
we cannot recover the original events from the response. Lastly, if H = H4,
it is only possible to identify the information concerning event 1; event 2 is
not identifiable irrespective of the signal processing algorithm used. These four
academic examples highlight the importance of sensor positioning to obtain well-
conditioned matrices.

Many condition monitoring algorithms (e.g. [2,3,11]) only utilise the infor-
mation from a single sensor to infer the machine’s condition. In some classes of
condition monitoring algorithms (e.g. [12,13]), we aim to design filters Pij(f)
that can be applied to the data of a single sensor Xj(f) so that the jth event is
identifiable from the processed signals. The spectrum of these processed signals
can be decomposed as follows:

[
Pi1(f)
Pi2(f)

]
Xi(f) =

[
α1 0
0 α2

]
·
[

E1(f)
E2(f)

]
+

[
β1

β2

]
, (7)

where Pij(f) · Xi(f) is the spectrum of the processed signal aiming to extract
event Ej , αi is a scaling term and βi is an offset term. The scaled events Ej are
identifiable if we can design a filter

Pij(f) = k · Hij(f), (8)

where k �= 0 and Hi1(f) · Hi2(f) = 0, i.e. the frequency response functions
of the two events are independent. This is possible if the two events manifest
in two separate narrow frequency bands. Targeted informative frequency band
identification methods (e.g. [11,12]) and targeted blind deconvolution algorithms
[13] aim to find the optimal filters Pij(f) to extract the events-of-interest.

In conclusion, the measurement signal (and its processed signal) is influenced
by the [9]:

– transmission path, which means that it is influenced by the sensor loca-
tion and the damaged component’s location. Planetary gearboxes have time-
varying transmission paths between the planet gears and the sensors [14].

– excitation characteristics (e.g. if there is a bearing crack or a bearing spall in
the inner race or outer race).

– the extraneous components (e.g. dominant healthy gear mesh components,
impulsive environmental noise).

All these effects can impede identifiability of the events and therefore impede
the fault diagnosis and prognosis tasks discussed in the next section.
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3 Fault Diagnosis and Prognosis

3.1 Overview of Diagnosis and Prognosis Steps

The diagnosis and prognosis problems are shown in Fig. 2 using the available
information from a selected sensor. In the condition inference problem, we infer
the actual condition (i.e. the damaged component, the damage mode and the
size of the damage) from the processed condition monitoring data. The esti-
mated condition is subsequently used with an appropriate degradation model
(e.g. Paris’ law) to estimate the system’s remaining useful life. The reliability of
the remaining useful life estimation process depends on our ability to diagnose
the machine.

Fig. 2. The conventional diagnosis and prognosis problem. (a) Condition monitoring
and data processing; (b) Diagnosis; (c) Prognosis.

In summary, the following steps need to be followed to perform diagnosis
(Steps 1–4) and prognosis (Step 5):

1. Damage detection (Presented in Sect. 3.1)
2. Damage component identification (Presented in Sect. 3.2)
3. Damage mode identification (Presented in Sect. 3.3)
4. Fault severity quantification (Presented in Sect. 3.4)
5. Remaining useful life estimation (Presented in Sect. 3.5)

3.2 Damage Detection

In the damage detection phase, changes in the condition monitoring data due
to the deteriorating machine are detected and flagged by comparing condition
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Fig. 3. (a) The generic fault detection problem is shown for a single threshold and
fault detection point. (b) The influence of operating conditions on fault detection.
Abbreviations: OC - Operating Condition.

indicators against thresholds as shown in Fig. 3(a). For example, the threshold
can be determined using the statistical methodology proposed by Antoni and
Borghesani [4]. In learning-based methods, the detection threshold is usually
determined from the reference density obtained from healthy historical data [5].
However, time-varying operating conditions could influence the condition indica-
tor and could therefore influence the time of detection (i.e. our ability to identify
the damage) and increase the false positive rate (i.e. detecting changes due to
operating condition as opposed to changes in machine condition). This is high-
lighted in Fig. 3(b). This problem can be alleviated by using the appropriate
pre-processing of the signal (e.g. [15]) or post-processing of the condition indi-
cators (e.g. [16]). For example, in Ref. [15], the amplitude modulation caused
by the changes in the operating conditions is estimated and attenuated, while
retaining the damage information. In contrast, Zimroz et al. [16] first obtain the
relationship between a condition indicator and the wind turbine’s power using
a regression model . Thereafter, changes in this model are used for condition
monitoring. It is expected that the sensitivity of the condition indicator to the
operating conditions (e.g. power) is dependent on the condition of the machine
and can therefore be used for damage detection.

3.3 Damage Component Identification

The damage component identification (also referred to as damage localisation)
problem is shown in Fig. 4 for the example gearbox in Fig. 1. As shown in
Fig. 4(a), the measured signal x can be generated by multiple potential events
(e.g. a single damage mode or multiple simultaneous damage modes) and con-
tains extraneous components n = [n(0), n(Δt), . . . , ]. The damaged component
is identifiable if we can process the signals x to extract the scaled events α·ei+β.
This is shown in Eq. (7) with the spectral representation. Methods to identify
the damaged component include:
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Fig. 4. The damage component identification problem: (a) The signal generation pro-
cess for the gearbox in Fig. 1; (b) The damage subcomponent identification problem
with bearing 3 identified using a Processing step; (c) Some of the potential bearing
damage cases; (d) Some of the potential gear damage cases.

– The synchronous average can be used to extract synchronous deterministic
components. If there are extraneous synchronous components, these compo-
nents would contaminate the synchronous average and impede the damaged
component’s identifiability.

– The synchronous average of the squared envelope does not facilitate identi-
fiability as it is sensitive to non-synchronous changes in the signal [3]. The
synchronous median of the squared envelope and the synchronous geometric
average of the squared envelope are much better suited as they are robust to
non-synchronous impulsive components [3].

– Cyclostationary analysis tools such as the squared envelope spectrum, the
spectral correlation and the improved envelope spectrum can be used to
determine the characteristics of the component-of-interest [2]. Cyclostation-
ary analysis methods for time-varying speed conditions are proposed in Refs.
[17] and cyclostationary analysis methods for impulsive noise conditions are
proposed in Ref. [6,18].

– In discrepancy analysis, the anomalies’ localised behaviour is used to deter-
mine the source of the anomalous behaviour [19].

– In contrast to blind condition indicators, targeted condition indicators make
it possible to focus on specific cyclic orders and can be used to target specific
mechanical components [11]. The RMS for example is sensitive to any energy
changes in the data and cannot be used to identify the damaged component
and would therefore not be a reliable estimate of the fault severity.

To be able to perform damage identification, the rotational speed of a reference
shaft and the system’s kinematics (e.g. the gear mesh frequencies, the ball-pass
outer race component of the bearing) need to be known [19]. The damaged
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component identifiability is also impeded if two components have the same sta-
tistical behaviour (e.g. both are first-order cyclostationary) and have very similar
characteristic frequencies, e.g. if the same bearings are located on the same shaft.
However, using multiple sensors might separate the contributions of the different
sources if H in Eq. (4) is invertible.

3.4 Damage Mode Identification

Fig. 5. The damage mode identifiability problem is illustrated when gear damage is
present and only three damage modes are considered. The measured signal is processed
to either identify (a) a tooth chip, (b) a tooth crack, or (c) pitting, with the tooth crack
identified in this example.

In the damage mode identification phase, the mode of degradation (e.g. crack
propagation in the gear tooth, pitting formation and spalling generation) is
identified. The damage identification problem is shown in Fig. 5 for the case
where there is gear damage in the gearbox. The degradation mode influences
the remaining useful life of the system and therefore it is important to identify
this for prognosis. Feng et al. [20] could distinguish between changes in the signals
due to abrasive wear and pitting and therefore the damage mode is identifiable
with their proposed procedure.

3.5 Fault Severity Quantification

In the fault severity quantification phase, the damage’s size is estimated (e.g.
characteristic crack length, material loss due to wear). This is important as the
remaining useful life depends on the size of the damage [21] and this information
needs to be known when using the appropriate degradation model. The ICS2
indicator, which measures the degree of second-order cyclostationarity, has a
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Fig. 6. The typical behaviour of condition indicators are shown. (a) The fault severity
is identifiable for this specific case. (b) A condition indicator where the fault severity
is not identifiable. (c) The fault severity is non-identifiable when a condition indicator
is used that is sensitive to varying operating conditions. This behaviour is shown for
three Operating Conditions (OC).

good correlation with the severity of the abrasive wear and pitting [20]. Three
cases are shown in Fig. 6. These problems are often addressed in classification-
based fault diagnosis, where the raw or processed data are mapped to a damage
mode and/or a fault severity. The problem with this is that the degradation is
continuous, not discrete, and often we do not have sufficient historical fault data
to train the models [8]. Physics-based models can potentially aid with this task,
but model calibration becomes an important consideration.

3.6 Remaining Useful Life (RUL) Estimation

The remaining useful life estimation process is shown in Fig. 7(a) for the ideal
case and in Fig. 7(b) for the practical scenario. The larger the variance of the

Fig. 7. The Remaining Useful Life (RUL) estimation process: (a) The conventional
RUL estimation process is shown for a known threshold, a known degradation path
and a known Time-Of-Failure (TOF). (b) The practical prognosis problem is illustrated
as a population of failure thresholds, with the Probability Density Function (PDF)
denoted by PDFt, and a population of degradation paths. This makes us uncertain of
the actual TOF, which is described by PDFtof.
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potential degradation path and the appropriate threshold (i.e. the more uncer-
tain we are), the more difficult it becomes to identify the remaining useful life.
Hence, it is important to perform the diagnosis phase properly to ensure that
the remaining useful life estimates are reliable. Data-driven prognosis methods
estimate the remaining useful life from the raw or processed signals directly
using the available historical data [7,22]. However, a representative historical
fault dataset is difficult to obtain; there are many potential failure modes and
sufficient representative samples of each failure mode are required. Therefore,
purely data-driven prognostics methods are difficult to implement in practice,
which highlights the need for hybrid prognosis strategies [23].

4 Proposed Requirements for Fault Diagnosis and
Prognosis Methods

In this work, the following requirements are proposed for the different phases of
fault diagnosis and prognosis:

– Sensor placement: The sensors should be placed to ensure that the matrix
H in Eq. (4) is as well-conditioned as possible. This means that if more
sensors are added to the monitored machine, it should be ensured that the new
sensor is as informative as possible (e.g. that the damage detection accuracy
is increased [24]).

– Damage detection: Condition indicators should only change when the machine
degrades and should be robust to changes in operating conditions. Robustness
against varying operating conditions is possible by pre-processing the signals
(e.g. [15]) or processing the condition indicators (e.g. [16]).

– Damage component identification: Condition indicators should only be sen-
sitive to the presence of a subset of possible damage events (e.g. different
bearing damage modes) to ensure that the condition indicators can be prop-
erly interpreted. A method to perform this task is presented in Ref. [3].

– Damage mode identification: Condition indicators should provide a unique
representation for the different damage modes to ensure the damage mode is
identifiable. The appropriate degradation model can subsequently be selected
or inferred.

– Remaining useful life estimation: The RUL estimate should only be dependent
on the component-of-interest and should not be influenced by changes in the
condition of other machine components or changes in the machine’s operating
conditions. This can be performed by using a robust condition indicator.

The damage mode identification problem is especially challenging because the
damage often manifests as weak components in the signal and there might be
subtle differences between the different damage modes. However, Eq. (4) high-
lights that by using multiple well-placed sensors and by having some prior knowl-
edge about the transmission paths (e.g. from a physics-based model) it could be
possible to have a better view of the events, which could aid in identifying the
damage mode and the severity of the damage.
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5 Conclusions

In this work, we presented the identifiability problem for rotating machine fault
diagnosis and prognosis and highlighted its significance for the different fault
diagnosis and prognosis tasks. The importance of sensor location and the impor-
tance of using the appropriate signal processing methods are emphasised. We
also proposed requirements for the development and implementation of fault
diagnosis and prognosis methods. We believe these requirements can help to
develop reliable condition-based maintenance methods for machinery such as
wind turbines and will be investigated in more detail in future work.
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