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Abstract. Diagnosis and prognosis of mechanical components are important for
critical rotating machinery found in the power generation, mining, and aviation
industries. Data-driven diagnosis and prognosis methods have much potential;
however, their performance is dependent on the quality of historical data . Usually
only limited historical data are available for newly commissioned parts and for
parts that do not go through a full degradation cycle before being replaced. Physics-
based diagnosis and prognosis methods require assumptions of the underlying
physics; the governing equations need to be derived and solved; and the model
needs to be calibrated for the underlying system. Physics-based methods require
extensive domain knowledge and could have modelling biases due to missing
physics. Hybrid methods for diagnosis and prognosis of mechanical components
have the potential for improving the accuracy and precision of remaining useful
life (RUL) estimation when historical fault data are scarce. This is because hybrid
methods combine data-driven and physics-based models to alleviate the short-
comings of the respective methods. For these reasons, hybrid methods are getting
more attention in the condition monitoring community as a solution for diagnosis
and prognosis tasks. Therefore, in this chapter, we present a review of the state-
of-the-art implementations of physics-based, data-driven, and hybrid methods for
diagnosis and prognosis. The methods are organised using a condition monitor-
ing framework and contributions of various techniques are discussed. We identify
gaps in the hybrid diagnosis and prognosis field that could be the focus of future
research projects.
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1 Introduction

Mechanical components such as bearings, gears or turbomachine blades are affected by
different degradation mechanisms. These degradation mechanisms include, but are not
limited to creep, wear, and fatigue crack growth (Cubillo et al. 2016). Remaining useful
life (RUL) is defined as the time or number of cycles the damage in a component will
remain within the specified limits set by the engineer (“ISO 13381-1” 2015). RUL is
one of the most important aspects of predictive maintenance. In predictive maintenance
strategies engineers need to know the condition of the component and the RUL of the
component tomake decisions that either (i) ensure safety against unplanned failure or (ii)
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maximise the component’s use before unnecessarily replacing the component (Saxena
2010). Condition monitoring is collection of techniques that use sensors to determine
the damage of a component while the component is in operation. It forms an integral part
of diagnosis and prognosis. Lee et al. (2018) reviewed different condition monitoring
techniques applied to rotating mechanical components. The focus of this review was
on vibration sensors and acoustic emission sensors. According to the review, vibration-
based condition monitoring methods are the most popular for mechanical components
(Lee et al. 2018).

Methods for estimating the condition and the RUL of mechanical components from
condition monitoring data are often categorised into either (i) physics-based, or (ii) data-
driven methods (An et al. 2015). Physics-based methods use first principles to model
the damage in the component and to model the response of the system. In contrast,
data-driven methods only rely on the available data to find relationships between the
different correlated variables and do not account for the underlying physical mecha-
nisms that generate the data. Both physics-based methods and data-driven methods have
their limitations (Khan and Yairi 2018). Physics-based can contain model errors, while
data-driven methods require historical fault data. Hybrid methods can improve existing
methods by addressing the drawbacks of the other methods.

In this chapter, we organise the contribution of different authors into a generalised
framework and highlight the applications of hybrid methods in this framework. The
objective of this chapter is to present the state-of-the-art methods in diagnosis and prog-
nosis of mechanical components. We identify areas that still need to be addressed, which
are presented in Sect. 4 of this chapter.

2 Diagnosis and Prognosis Using Condition Monitoring Data

Figure 1 presents a summary of the condition monitoring process and the various parts
that are required to estimate RUL. The most common vibration-based condition mon-
itoring techniques are broadly categorised as (i) machine learning techniques or (ii)
Fourier-based methods (Lee et al. 2018). The purpose of these methods is to relate the
characteristics of the vibration of the system to the condition of the component.

Diagnosis refers to the identification, localisation, and quantification of the damage.
Identification and localisation (otherwise known as anomaly detection) refer to detect-
ing the damaged component, the degradation mechanism, and the exact location of the
damage. Anomaly detection is usually performed in early stages of the component’s con-
dition monitoring process (Carden and Fanning 2004). Wang et al. (2016) demonstrated
the use of spectral kurtosis as an anomaly detection method for determining faults in
gear teeth from accelerometer data. Quantification refers to an estimation of the extent
of the damage (e.g., the crack length in a steam turbine blade). An accurate estimate of
the damage severity is essential for making the appropriate maintenance decisions. The
accuracy of the estimate can be quantified by its bias and its variance. The estimate’s
variance is influenced by electrical, mechanical, and environmental noise sources. The
bias is typically influenced by incorrect measurement models (i.e., the model that relates
the underlying state to themeasured data). Continuous conditionmonitoring applications
enable the implementation of Bayesian filtering algorithms to update and improve the
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Fig. 1. Condition-based maintenance process from sensor data collection to RUL estimation of
critical mechanical components

estimate of the damage severity over time (Jouin et al. 2016). The purpose of a Bayesian
filtering algorithm is to improve the diagnosis using a known degradation model, which
is critical for RUL prediction.

Prognosis, refers to the estimation of RUL. Sankararaman andGoebel (2014) empha-
sise the treatment of uncertainty when RUL is estimated and the ways that uncertainty
is represented and interpreted from the models. Physics-based models, for instance, are
deterministic in nature. Uncertainty can be introduced in these methods by implement-
ing an ensemble of physics-based methods. Data-driven methods, on the other hand,
can measure the RUL uncertainty only when enough representative data are collected.
RUL estimates from physics-based methods and data-driven methods are limited by the
models and data that capture the uncertainty of the component’s degradation.

3 Hybrid Methods for Diagnosis and Prognosis of Mechanical
Components

Lei et al. (2018) highlight that one of the largest drawbacks of data-driven methods is
the availability of run-to-failure data for mechanical components. Mechanical systems
are becoming more complex as requirements for flexible manufacturing become more
prevalent. As a result, prognostics has reached a tipping point where insufficient data are
available for training, particularly for newly commissioned components. Physics-based
models, on the other hand, require data to validate their accuracy since they are limited
by themodelling assumptions (An et al. 2015).Model inadequacy, where themodel does
not capture all of the physics of the system, could also be detrimental to the performance
of physics-based methods. Liao and Köttig (2014) suggest the use of hybrid techniques
for cases where data are scarce and simplified physics-based models are available. We
distinguish between hybrid combination frameworks (that is, combinations of different
model types for unique purpose in a conditionmonitoring framework); and hybrid fusion
models (that is, different types of models that are combined for the same purpose). An
example of a hybrid fusion model is illustrated by Coppe et al. (2012) whereby physics-
based crack growth models (e.g. Paris’ law) are combined with data-driven observations
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of the crack length to form a hybrid crack growth prediction model. Most of the models
that Liao and Köttig (2014) propose are hybrid combination frameworks. An example of
a hybrid combination framework is exhibited by Sanchez et al. (2016) for determining
the RUL of wind turbine blades. Sanchez et al. (2016) proposes a physics-based method
for determining the stiffness of a blade from the blades’ vibration characteristics and
a data-driven method for predicting the changes in the blades’ stiffness due to crack
growth at the root of the blade.

3.1 Diagnosis: Estimating Current Damage

Diagnosis requires condition indicators that unique identify the component and the
damage mechanism present in the component (Lei et al. 2018). Incorrect identification
may cause all other methods to fail and could result in unnecessary maintenance costs.
Hence, anomaly detection methods often form part of the diagnosis procedure. Serafini
et al. (2019) use simulated data to detect localised stiffness reduction of helicopter blades
from strain gauge measurements.

Physics-based diagnosismodels, model the relationship between the condition indi-
cator and the damage using a first-principles approach. Zeng et al. (2018) demonstrated
using finite element simulations that there is a comparable difference in the vibration
characteristics of a compressor rotor blade with and without a crack. Elshamy et al.
(2018) used the first three natural frequencies of a cantilever beam to uniquely identify
the depth and location of cracks. Corrado et al. (2018) expanded on this idea to diagnose
multiple cracks and the locations of these crack from only the mode shape. The methods
only use finite element simulations to construct these models.

Data-driven diagnosis, on the other hand, apply machine learning techniques to
quantify the damage mode and the extend of the damage. Here we refer to the data
as collections of the condition indicators and the damage histories. Kaloop and Hu
(2015) detected and localised faults in stayed-cable bridges from accelerometer data. Jia
et al. (2016) and Zhang et al. (2018) demonstrated the use of deep neural networks and
convolutional neural networks respectively for classifying types and severity of faults in
bearings from raw accelerometer data. The accuracy of the data-driven diagnosis method
surpasses the accuracy ofmost physics-based diagnostics models (Khan andYairi 2018).
This is because the performance of data-driven methods scale well with the size of the
data (Bishop 2006). The more data that is available, the less likely a complex model will
overfit the data.

There is however a gap in the literature for methods that diagnose the damage from
condition indicators using hybrid fusion models. In a hybrid fusion diagnosis model,
the physics-based diagnosis and data-driven diagnosis models are combined to improve
the quantification of the damage during condition monitoring. That is, after determining
the condition indicators from vibration sensors a diagnostics model should quantify
the damage and estimate the uncertainty of this quantification. There is presently very
limited literature on hybrid fusion diagnosticsmodels. Thismay be attributed toBayesian
filtering techniques that are used to update the estimation of the current damage from
known degradationmodels. As a result, most researchers deem it unnecessary to improve
the quantification of the current damage twice. We discuss these Bayesian filtering
techniques next.
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3.2 Improved Diagnosis: Bayesian Inference Methods

It has become standard practice to useBayesianfilteringmethods in conditionmonitoring
methods (Corbetta et al. 2018a, b) . The purpose of Bayesian filtering is outlined by Jouin
et al. (2016): A Bayesian filtering method is only used for improving state estimation
and has no predictive capabilities. Since, models that describe the rate of degradation
are often a function of damage in the component (Cubillo et al. 2016) it is important to
improve the diagnostics obtained from regular condition monitoring to improve RUL
estimation.

Let xk denote the hidden health state estimate at the k th condition monitoring step.
The condition indicators at all condition monitoring steps are denoted y1:k . A Bayesian
filter typically consists of two steps. Firstly, predict the probability of the health state at
the using the k th condition monitoring step with

p(xk |y1:k−1) =
∫

p(xk |xk−1)p(xk−1|yk−1)dxk−1 (1)

This is also called the Chapman-Kolmogorov equation. Secondly, update the prob-
ability distribution of the health state using all the condition monitoring measurements
until step k using Bayes’ rule

p(xk |y1:k) = p(yk |xk)p(xk |y1:k−1)

p(yk |y1:k−1)
(2)

The normalising constant is determined from

p(yk |y1:k−1) =
∫

p(yk |xk)p(xk |y1:k−1)dxk (3)

Jouin et al. (2016) show that there are analytical and approximate solutions to these
equations. Corbetta et al. (2018a, b) used particle filter-based methods for perform-
ing Bayesian filtering. Particle filters are approximate inference methods that solve the
update and predict equation, using Monte Carlo methods. These particle filters can be
degenerate under some modelling assumptions. Therefore, using non-additive process
noise is advised. Valeti and Pakzad (2017) and Zaidan et al. (2015) applied particle
filtering methods to cracks in wind turbine blades and aerospace gas turbine engines.

3.3 Prognosis: Estimating RUL

RUL is estimated from the posterior distribution of the Bayesian filter. The estimated
damage at the last condition monitoring step is propagated using a degradation model.
Cubillo et al. (2016) presented an extensive summary of physics-based degradation
models for creep, wear, and fatigue crack growth. These models are mostly derived in
the form of a differential equation

dx

dt
= f (x, u(t)) (4)

where f (x, u) denotes the non-linear function that describes degradation rate from the
currently estimated damage x, and the future operating condition u(t). The Paris-Erdogan
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law is an example of this model where x = a denotes the crack length and u(t) = �S(N )

denotes the stress amplitude as a function of the number of loading cycles, N , instead
of time, t. The equation

da

dN
= C(�K)m = C

(
F(a)�S(N )

√
πa

)m
(5)

predicts the crack growth rate from material parameters C and m, and the geometric
factor F(a). Keprate et al. (2017) presented a Gaussian processes regression surrogate
model to quickly evaluating the stress intensity factor range �K , in offshore pipelines.
Typically, finite element simulations or empirical formulas are used for determining the
stress intensity factor range using a physics-based approach. Integrating the degradation
model analytically or numerically will solve the degradation path (that is, the damage
as a function of time). When the degradation path crosses the fault-specification-limit,
the RUL is recorded.

Wang et al. (2020) present a collection of data-driven methods that do not directly
measure the condition of the component. The methods estimate the RUL from the con-
dition indicators directly using a relevance vector machine. Data-driven prognostics
methods often use run-to-failure data to predict RUL directly from condition indicators
without a diagnosis of the component. Khan and Yairi (2018) demonstrate the capabili-
ties of data-drivenmethods that can perform classification and regression from very little
understanding of the data. However, these models do not address uncertainty, which is
a critical aspect for RUL estimation.

Hybrid-fusion-based prognostics methods have become popular since the introduc-
tion of damage propagation model parameters as part of the Bayesian filter step. Coppe
et al. (2010, 2012) first introduced the concept by introducing Paris’s law parameters as
part of the hidden state to model cracks in a large plate. When introducing the model
parameters as part of the hidden state, a posterior probability distribution of the model
parameters can be inferred from regular diagnosis. Thus, a physics-based model is aug-
mented with condition monitoring data to improve the model. Corbetta et al. (2018a,
b) applied a similar technique to multi-degradation modes of fibre reinforced lami-
nates with matrix cracks and delamination. Corbetta et al. (2018a, b), further termed
these types of models as artificial dynamics models. (Chen et al. 2018; Saidi et al. 2018)
applied the artificial dynamics approaches to attachment lugs and wind turbine bearings,
respectively.

4 Future Aspects of Hybrid Methods

In Fig. 2 we present our hypothesis for the performance of hybrid techniques for RUL
predictions. Performancemetrics ofRULestimation refer to the accuracy, precision, con-
sistency and robustness of estimating the true RUL of a mechanical component (Saxena
et al. 2010); hence, we omit the scale of the dependent axis in Fig. 2. Physics-based
models that do not rely on the data for model updating do not change in performance. A
Bayesian approach to hybrid diagnosis and prognosis is expected to use physics-based
models as a prior model and augment the model with data. Thus, it is expected that
hybrid methods will have increased performance compared to physics-based models.
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Data-driven methods, on the other hand, are also expected to increase with the accu-
mulation of data. After a certain amount of data is collected data-driven methods will
meet the performance of hybrid methods since the likelihood will be very localised and
therefore most dominant in the posterior probability of the RUL (Khan and Yairi 2018).

Future applications of condition monitoring methods will require automated diagno-
sis and prognosis of critical assets. Even though data-driven models could theoretically
enable automatic diagnosis and prognosis, mechanical assets typically do not have rep-
resentative failure data available to properly train data-driven models. This means that
the machines will operate on the left end of the graph in Fig. 2 and therefore hybrid
methods will be essential for future diagnosis and prognosis tasks.

Fig. 2. A hypothesis of the performance of hybrid methods compared to data-driven and physics-
based methods.

Corbetta et al. (2017) andLe et al. (2015) investigated hybrid prognostics frameworks
for co-existing damage modes. Treatment of degradation modes on an individual basis
has some severe consequences since the co-existing damagemodes ‘fuel’ the degradation
process and consequently the component may fail earlier than predicted. Cubillo et al.
(2016) mentioned that fatigue crack growth and creep are stimulated by one-another.
Therefore, futurework in diagnosis should not only identify a single fault in a component
but also identify when multiple failures occur simultaneously.

The future development of hybrid methods is, however, not limited to improvements
of diagnosis and prognosis. Sikorska et al. (2011) presented a review of prognostics
options for industry and listed many limitations of practically implementing these meth-
ods. Most of these problems have since then been addressed. However, possible actions
that maximise the RUL of a component based on diagnosis and prognosis is still a devel-
oping field. Methods for optimising the RUL by proposing potential actions that could
stop, remove, or slow down the failure rate of the component. Gao and Liu (2021) refer
to these techniques as resilient control strategies and propose the use of RUL estimation
in control systems to reduce the rate of crack growth in wind turbine blades.

5 Conclusion

In this chapter, we presented a review of hybrid methods using a condition monitoring
framework. Hybrid methods are identified at the different steps of the frameworks. It
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is emphasised that the purpose of hybrid methods is to improve the estimation of the
health state and the RUL. Two potential gaps for future research are identified namely (i)
the effect that hybrid-fusion-based diagnosis has on the RUL estimation of a component
and (ii) suggesting actions based on the diagnosis and prognosis to maximise the RUL
of the component.
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