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Preface

The first “International Workshop on MOdelling and Simulation of COmplex
Systems for Sustainable Energy Efficiency” MOSCOSSEE’2021 was organized by
the LAboratory of Mechanics, Modelling and Production (LA2MP) from
University of Sfax, Tunisia, and the Department of Mechanical and Aeronautical
Engineering at the University of Pretoria, on 25 and 26 February 2021. This
workshop is in the framework of a Tunisian South-African research project entitled
“Design, Modelling and Diagnostic of Wind Turbines for Sustainable Energy
Efficiency.” It was scheduled online due to the COVID-19 pandemic. The
MOSCOSSEE’2021 workshop comprised high-level contributions in the fields of
complex systems for sustainable energy efficiency in order to promote communi-
cation and collaboration between participants. Three plenary sessions were pre-
sented by eminent scientists who kindly agreed to share their knowledge in the
workshop field. The organizers of the conference were honored by their partici-
pation with very interesting keynotes, namely

– Prof. José ANTUNES, Applied Dynamics Laboratory (ADL), Superior
Technical Institute Lisbon, Portugal.

– Prof. Abdelkhalek ELHAMI, Mechanical Engineering Department, National
Institute of Applied Sciences in Rouen (INSA de Rouen), France.

– Prof. Mohamed Amine BEN SOUF, National School of Engineers of Sfax,
Tunisia.

This book contains 24 chapters selected from the presented papers by eminent
scientists which were rigorously peer reviewed. During the 2 days of the workshop,
oral communications discussed several topics such as

– Sustainable energy efficiency,
– Vibrations of complex systems,
– Structural and machine dynamics,
– Fault diagnosis and prognosis,
– Nonlinear dynamics,
– Vibration field measurements,
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– Material behavior in dynamics,
– etc.

The editors are grateful to all participants from Tunisia, South Africa, Poland,
Portugal and France, as well as the reviewers of the chapters. We acknowledge the
financial support of the Ministry of Higher Education and Scientific Research in
Tunisia and the National Research Foundation in South Africa under the Tunisia
South Africa Agreement for Cooperation in Science and Technology. We would
also like to thank Springer for their support of the MOSCOSSEE’2021 workshop.

Ahmed HammamiFebruary 2021
Philippus Stephanus Heyns

Stephan Schmidt
Fakher Chaari

Mohamed Slim Abbes
Mohamed Haddar

vi Preface



Contents

Numerical Assessment of the Structural Performance
of a Segmented Wind Turbine Blade . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Majdi Yangui, Salma Thabti, Slim Bouaziz, and Mohamed Haddar

Identifiability Considerations for Rotating Machine Fault Diagnosis
and Prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Stephan Schmidt, P. Stephan Heyns, and Daniel N. Wilke

Comparative Study Between Experimental and Theoretical
Frictional Power Losses of a Geared System . . . . . . . . . . . . . . . . . . . . . 21
Maroua Hammami, Olfa Ksentini, Nabih Feki, Mohamed Slim Abbes,
and Mohamed Haddar

Early Damage Detection in Planetary Gear Transmission
in Down-Time Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Ayoub Mbarek, Ahmed Hammami, Alfonso Fernández Del Rincón,
Fakher Chaari, Fernando Viadero Rueda, and Mohamed Haddar

The Role of Untangled Latent Spaces in Unsupervised Learning
Applied to Condition-Based Maintenance . . . . . . . . . . . . . . . . . . . . . . . . 38
Daniel N. Wilke, P. Stephan Heyns, and Stephan Schmidt

Modal Analysis of the Differential Bevel Gear with Uncertainties . . . . . 50
Wassim Lafi, Fathi Djmal, Ali Akrout, Lassad Walha,
and Mohamed Haddar

Effect of Non-linear Suspension on the Recognition of the
Road Disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Dorra Ben Hassen, Mariem Miladi, Mohamed Slim Abbes,
S. Caglar Baslamisli, Fakher Chaari, and Mohamed Haddar

Learning-Based Methods for Vibration-Based
Condition Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Ryan Balshaw, P. Stephan Heyns, Daniel N. Wilke, and Stephan Schmidt

vii



Parametric Study for PCM-Based Heat Sinks:
A Numerical Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Bessem Debich, Ahmed Yaich, Wajih Gafsi, Abdelkhalak El Hami,
Lassaad Walha, and Mohamed Haddar

Modeling and Simulation of a Swarm Robot Application Using MBSE
Method and Multi-agent Technology: Monitoring Oil Spills . . . . . . . . . 96
Khalil Aloui, Moncef Hammadi, Amir Guizani, Thierry Soriano,
and Mohamed Haddar

Diagnosis and Prognosis of Mechanical Components Using
Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Brian Ellis, P. Stephan Heyns, and Stephan Schmidt

Time Domain Identification of Multi-stage Planetary Gearbox
Characteristic Frequencies Using Piezoelectric Strain Sensor . . . . . . . . . 116
O. Graja, K. Dziedziech, A. Jablonski, A. Ghorbel, F. Chaari, T. Barszcz,
and M. Haddar

Study of the Stiffness of a Polymer Pinion Tooth in a Polymer-Metallic
Spur Gear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Ala Eddin Chakroun, Chaima Hammami, Ahmed Hammami,
Ana De-Juan, Fakher Chaari, Alfonso Fernandez, Fernando Viadero,
and Mohamed Haddar

Generalized Prototype Bootstrapping for Nonlinear System
Identification in an Accelerated Fatigue Testing Context . . . . . . . . . . . . 131
J. Crous, S. Kok, D. N. Wilke, and P. S. Heyns

Adaptive On-Line Estimation of Road Profile
in Semi-active Suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Maroua Haddar, Fathi Djmal, Riadh Chaari, S. Caglar Baslamisli,
Fakher Chaari, and Mohamed Haddar

A Parametric Study to Investigate the Dynamic Behavior
of Worm Gear with Plastic Wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Chaima Hammami, Ala Eddin Chakroun, Ahmed Hammami,
Ana De-Juan, Fakher Chaari, Alfonso Fernandez, Fernando Viadero,
and Mohamed Haddar

A Review of Singular Spectral Analysis to Extract Components
from Gearbox Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Daniel N. Wilke, Stephan Schmidt, and P. Stephan Heyns

Experimental and Numerical Analysis of Frequency Responses
of Sandwich Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Hamamed Najah, Hentati Hamdi, Bouaziz Slim, Haddar Mohamed,
El Guerjouma Rachid, and Yaakoubi Nourdin

viii Contents



Hybrid Diagnostics and Prognostics of Planetary Gearboxes . . . . . . . . . 182
Douw G. Marx, P. Stephan Heyns, and Stephan Schmidt

Vibration Analysis of Planetary Gear Connected by Flexible
Coupling Using Substructuring Methodology . . . . . . . . . . . . . . . . . . . . . 198
Marwa Bouslema, Taher Fakhfakh, Rachid Nasri, and Mohamed Haddar

A Comparison Between Independent Component Analysis
and Established Signal Processing Methods for Gearbox Fault
Diagnosis Under Time-Varying Operating Conditions . . . . . . . . . . . . . . 207
Stephan Schmidt, Daniel N. Wilke, and P. Stephan Heyns

Simulation of the Acoustic Fields and Directivities Radiated from
a Set of Elementary Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Dhouha Tounsi, Maryam Bedoui, Mohamed Taktak, Chafik Karra,
and Mohamed Haddar

Time Synchronous Averaging Based Detection of Bearing Defects . . . . . 233
Mohamed Habib Farhat, Xavier Chiementin, Fakher Chaari,
Fabrice Bolaers, and Mohamed Haddar

A Short Review of Gear Fault Modelling in a Hybrid
Modelling Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Luke van Eyk, P. Stephan Heyns, and Stephan Schmidt

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Contents ix



Numerical Assessment of the Structural
Performance of a Segmented Wind

Turbine Blade

Majdi Yangui(B), Salma Thabti, Slim Bouaziz, and Mohamed Haddar

Mechanics, Modelling and Production Laboratory (LA2MP), Mechanic Department,
National School of Engineers of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia

mohamed.haddar@enis.rnu.tn

Abstract. Segmented wind turbine blade (SWTB) development remains a major
challenge for constructors so as to reduce blade transport andmanufacturing costs.
The blade structural properties must be examined in the design stage to enhance
their mechanical behavior and fatigue life. This paper presents a numerical investi-
gation of a SWTB prototype. Teeth inserted in holes at the interfaces of segments,
were designed to avoid relative displacements between the segments assembled
along a spar. Modal and fatigue analysis were established using ANSYS Work-
bench software to evaluate the structural performance of the investigated wind
turbine blade (WTB). This work covers the impact of the assembly force and the
rotation velocity effect on the blade fatigue life. Previous findings of an experi-
mental study, of the SWTB at rest, were considered to validate the blade finite
element model. To assess the used spar location, along the blade segments, the
edgewise and flapwise deflections of the blade under assembly force effects were
analysed. This study reveals the significant impact of the exerted assembly force
on the SWTB fatigue life versus the rotation velocity effects. Interestingly, the
obtained results indicate that a segments assembly force must be respected in the
blade assembling to ensure the optimum service life.

Keywords: Fatigue analysis ·Modal analysis · Segmented wind turbine blade ·
Finite element modeling

1 Introduction

In recent years, the concerns about the global warming consequences, caused essentially
by the excessive fossil energy production, hasmade renewable energy developmentmore
and more indispensable for a sustainable future. In this context, wind energy is treated
as one of the most profitable clean energy sources. Actually, power generation efficiency
and cost represent the primary factors which govern wind turbine development. Thus,
maintenance and manufacturing cost reduction remains a primary need. Undoubtedly,
thewind turbine blades are themost crucial parts, in terms of performance and cost, of the
wind power system. For this reason, many works have analysed the rotor blades fatigue
and vibration, aiming to extend their service life. Shokrieh and Rafiee (2006) studied

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hammami et al. (Eds.): MOSCOSSEE 2021, ACM 20, pp. 1–7, 2022.
https://doi.org/10.1007/978-3-030-85584-0_1
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the fatigue phenomena of a 23 m wind turbine blade (WTB) manufactured by the Vestas
Company to predict its lifetime. By adopting a stochastic approach, the service life of
the selected blade has been predicted to be limited to 18.66 years. Jensen et al. (2006)
tested to failure, a compositeWTB, under flapwise loading. The structure displacements
were registered throughout the loading history. The experimental measurements and
the numerical simulation results were processed to determine the location of the initial
failure.

Recently, because of the intricacy of manufacturing and transport processes of the
longWTBs, the blade fragmentation was proposed to solve such issues (Abdulaziz et al.
2018). Yangui et al. (2020) developed a numerical model of a SWTB using shell ele-
ments. To update the used material properties in the numerical model from the natural
frequencies identified experimentally, an iterative technique was followed based on the
substructuring technique. Dutton et al. (2001) tested a segmented form of a 13.4 m
blade with a connecting tube to investigate the durability of the advanced fragmentation
method. Static load tests, in the edgewise and flapwise directions were performed and
repeated after a five million cycle fatigue test in the flapwise direction. The blade inspec-
tion shows that no damage was occurring in the segment interfaces and connections.
Static and fatigue analysis of a SWBT were performed by Bhat et al. (2015) to evaluate
its structural performance. The determined numerical results, of the non-segmented and
the segmented blade, indicate that the effect of the fragmentation on the entire structural
performance is minimal. Nevertheless, the outcomes of the load applied to assemble the
segments were neglected. Yangui et al. (2019) performed an experimental analysis to
inspect the effects of the assembly force adjusted by a nut on theWTB dynamical behav-
ior. The determined experimental results, using the Eigen-system Realization Algorithm
(ERA) modal identification method, showed the notable influence of the assembly force
change on the blade eigenfrequencies versus the effects resulting from the blade rotation.
Nevertheless, the impacts of the applied force on the blade shape and lifetime were not
addressed.

In the present paper, an attempt to address this issue has been made by investigating
the displacements and the fatigue life of a SWTB taking into account the mounting
force of the segments. Based on previous experimental modal identification, the blade
numerical model developed using Ansys Workbench software was validated. Static and
fatigue analysis were performed to assess the effects resulting from the assembly force
and the rotation velocity on the SWTB structural performance.

2 Blade Finite Element Modeling

A SWTBmodel, consisting of 5 segments assembled along a spar, was designed as seen
in Fig. 1.
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Fig. 1. Segmented blade CAD model

The full length of the designed blade is 500 mm and the segment skin thickness is
about 3 mm. Regarding to the assembly, a spar with a length of 420 mm and a diameter
of 4 mm was used. The material properties of the SWTB components are presented in
the following Table 1.

Table 1. Material properties of the blade components.

Parameters Material Density (kg/m3) Poisson’s ratio Elastic modulus (GPa)

Blade segments PC-ABS 1070 0.3879 2.25

Spar Steel 7850 0.3 210

UsingANSYSWorkbench finite element software, solid elements with three degrees
of freedom per node and a free mesh were adopted to model the blade structure. Con-
sidering the blade segment’s complex shape, the tetrahedral finite element was used. For
the spar, the mesh was simplified by adopting the quadratic element as shown in Fig. 2.

Fig. 2. Segmented blade mesh

To simulate the contact between the different parts of the blade, a frictional contact
was defined between the segments and the spar and at the interfaces of segments. The
contact between the tip and the root segments of the blade and the spar was bonded.

To validate the established numerical model, modal analysis was carried out without
applying the assembly force. The assembled blade structure was clamped at its root.
To optimise the mesh size, a convergence study was conducted for various mesh sizes.
Accordingly, 979306 nodes and 613326 elements were generated. The natural frequen-
cies, obtained numerically and those reached experimentally by Yangui et al. (2019),
are given in Table 2.
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Table 2. Segmented blade natural frequencies.

Present work Yangui et al. (2019) Error %

1st natural
frequency

17.9 17.4 2.87

2nd natural
frequency

23.5 24.8 5.24

3rd natural
frequency

80.9 85.7 5.60

An acceptable agreement is found, between the simulated and experimental findings,
where the maximum error is about 5.6%. Thus, the introduced numerical model can be
reliably employed to evaluate the fragmented blade structural performance.

3 Structural Performance Assessment

TheWTB efficiency depends essentially on the blade shape. Thus, the segments mount-
ing force and the spar location must be primarily treated during the blade design to avoid
structural distortion. Figure 3 shows the blade tip edgewise and flapwise displacements
for different assembly loads. In this section, only the static assembly load of the blade
segments was exerted.

Fig. 3. Edgewise and flapwise displacements as a function of the assembly load.

The displacement amplitudes proved the negligible influence of the assembly force
on the blade shape, where, up to a significant assembly effort of 125 N, the maximum
deflection does not exceed 0.005 mm. Therefore, the spar location along the blade is
well designed.

To assess the impact of the assembly force on the lifetime of the WTB structure,
fatigue analysis was performed using Ansys Workbench fatigue module. Stress life
type analysis was adopted based on Stress-Cycle (S-N) curves of the segments and spar
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materials. A bending load, in the flapwise direction, equal to 5 Nwas applied on the third
blade segment as illustrated in Fig. 4. Based on the results obtained from the static load
analysis, the fatigue analysis was performed where the zero-based constant amplitude
loading type was assumed.

Fig. 4. Blade bending and assembly loads.

Figure 5 represents the SWTB lifetime change as a function of the applied assembly
load.

Fig. 5. Segments assembly load impact on the blade fatigue life.

It is observed that the lifetime of the blade is significantly dependent on the assembly
load. The maximum fatigue life of the blades, equal to 2273 cycles, is obtained by
applying an assembly load equal to 59 N. For an assembly load higher than 60 N, the
blade cycles of fatigue life start to decrease.

To analyse the rotation velocity results on the blade fatigue life, a constant assembly
load equal to 59 N was applied. The rotational velocity direction was performed as seen
in Fig. 6.

Fig. 6. Rotating blade model
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Based on a static analysis, the blade fatigue life investigation was performed assum-
ing a ratio loading type with a tolerance of 10%. Thus, the alternating load, provoked
by the blade spinning velocity, was limited to 10% of the static load amplitude. The
prediction of the rotating blade fatigue life is presented in Fig. 7.

Fig. 7. Rotation velocity effects on the blade fatigue life.

Clearly, the increase of theWTB rotation velocity from 2 rad/s to 15 rad/s engenders
a negligible loss of the blade fatigue life. Thus, the spar is well localized along blade
segments in a way that it did not generate an important bending force component in the
centrifugal load produced by the blade rotation.

4 Conclusion

In the present study, numerical analysis were performed to evaluate the structural per-
formance of a SWTB. The numerical model of the blade was validated by reference
to experimental analysis. The blade deflections, at rest, under the assembly load were
determined the prove the satisfactorily location of the spar along the blade segments.
Static and fatigue analysis were also performed to inspect the impacts of the segments
assembly force and the rotation velocity on the blade fatigue life. Findings show that
an assembly load must be respected during the WTB mounting to ensure the maximum
service life, and thus, the sustainability of the wind turbine system. Again, the designed
spar location was perfectly assessed by the negligible effects of the rotation velocity on
the blade lifetime. In this work, only the flapwise bending fatigue was treated. There-
fore, this research can be extended through the development of a dual-axis, edgewise
and flapwise, fatigue testing.

References

Abdulaziz, A.H., Elsabbagh, A., Elnady, T.: Testing and validation of a novel segmented wind
turbine blade. J. Test. Eval. 47(5), 3719–3739 (2018)

Bhat, C., Noronha, D.J., Saldanha, F.A.: Structural performance evaluation of modularized wind
turbine blade through finite element simulation. J. Energy Econ. Dev. 1(1), 79 (2015)



Numerical Assessment of the Structural Performance of a SWTB 7

Dutton, A.G., Kildegaard, C., Dobbe, T.: Design, structural testing, and cost effectiveness of
sectional wind turbine blades. Technical Report JOR3970167 (2001)

Jensen, F.M., Falzon, B.G., Ankersen, J., Stang, H.: Structural testing and numerical simulation
of a 34 m composite wind turbine blade. Compos. Struct. 76(1–2), 52–61 (2006)

Shokrieh, M.M., Rafiee, R.: Simulation of fatigue failure in a full composite wind turbine blade.
Compos. Struct. 74(3), 332–342 (2006)

Yangui, M., Bouaziz, S., Taktak, M., Debut, V., Antunes, J., Haddar, M.: Numerical and exper-
imental analysis of a segmented wind turbine blade under assembling load effects. J. Theor.
Appl. Mech. 57(1), 85–97 (2019)

Yangui, M., Bouaziz, S., Taktak, M., Haddar, M.: Experimental updating of a segmented wind
turbine blade numerical model using the substructure method. J. Strain Anal. Eng. Des. 56(2),
67–75 (2020)



Identifiability Considerations for Rotating
Machine Fault Diagnosis and Prognosis

Stephan Schmidt(B), P. Stephan Heyns, and Daniel N. Wilke

Centre for Asset Integrity Management, Department of Mechanical and Aeronautical
Engineering, University of Pretoria, Pretoria, South Africa

stephan.schmidt@up.ac.za

Abstract. It is important to develop reliable fault diagnosis and prog-
nosis methods for critical mechanical assets such as wind turbines. Reli-
able fault diagnosis and prognosis methods ensure that the damage is
detected early, the damage modes are accurately characterised, and the
correct remaining life is inferred. This enables the appropriate main-
tenance decisions to be made and can decrease the risk of unexpected
breakdowns. Identifiability is an important criterion for the development
of new fault diagnosis and prognosis methods. Therefore, in this work, we
present the identifiability problem for fault diagnosis and prognosis on
academic examples and we place a specific emphasis on gearbox applica-
tions. This chapter provides an overview of the concepts and is intended
for neophytes to experienced researchers and practitioners. Hence, the
examples are purposefully simple. We specifically highlight the impor-
tance of sensor positioning and also discuss the influence of varying
operating conditions on the diagnosis and prognosis steps. Thereafter,
we present the fundamental steps in the fault diagnosis and prognosis
process and highlight the associated challenges with identifiability. We
also propose potential solutions for these challenges. Lastly, we propose
requirements for the different phases of the fault diagnosis and prognosis
steps, which could be beneficial when developing new methods.

Keywords: Gearbox · Diagnosis · Prognosis · Identifiability ·
Bearing · Gears · Signal processing

1 Introduction

Condition-Based Maintenance (CBM), which comprises diagnosis and prognosis
tasks, is important for expensive machine assets such as wind turbines [1]. Wind
turbines, for example, are prone to gearbox, brake and rotor blade failures that
result in long downtimes [1]. In CBM, condition monitoring data such as temper-
ature, vibration, and pressure measurements are acquired from the machine and
subsequently used to infer the health of the machine (i.e. diagnosis) and to deter-
mine the remaining useful life of the machine (i.e. prognosis) [1]. Vibration-based
methods are most commonly used to monitor the condition of rotating machine
components such as bearings and gears [2,3]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hammami et al. (Eds.): MOSCOSSEE 2021, ACM 20, pp. 8–20, 2022.
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Usually, the damaged assets result in subtle changes in the condition mon-
itoring data that are difficult to detect [2]. This makes processing the data
into more meaningful representations essential. Several signal processing and
learning-based1 condition monitoring methods have been developed (e.g. Ref
[4,5]) to address the challenges posed by the weak signal components-of-interest.
Here, extraneous signal components, time-varying operating conditions, and non-
Gaussian noise mask the components-of-interest and impede diagnosis [3,6].

Ultimately, the diagnosis and prognosis steps are used to inform maintenance
decisions and therefore the diagnosis and prognosis methods should be carefully
designed. In the diagnosis step, the damaged component and damage severity are
inferred from the condition monitoring data and used for prognosis algorithms
to predict the remaining useful life. Many data-driven prognosis approaches are
proposed in the literature [7]. However, the methods require representative his-
torical fault data from the different damage modes, which are difficult to obtain
in practice [8]. Hence, inferring the relevant fault information is critical.

Therefore, in this work, we highlight that identifiability is essential for devel-
oping fault diagnosis and prognosis methods. Firstly, we present the identifia-
bility problem for rotating machine condition monitoring in Sect. 2, whereafter
we highlight the different tasks in the fault diagnosis and prognosis process in
Sect. 3. In Sect. 4, we propose requirements for the development of fault diagnosis
and prognosis methods, whereafter we conclude the work in Sect. 5.

2 Identifiability for Condition Monitoring

2.1 The Condition Monitoring Problem

Figure 1(a) shows the condition monitoring problem for a gearbox with four
bearings (B1, B2, B3, B4), a gear, a pinion and two events E1 and E2. In
Fig. 1(b), the sources of the events are shown: The pinion is damaged, resulting
in event E1, and the outer race of the bearing is damaged, resulting in event
E2. In this example, two sensors are placed on the casing of the gearbox S1
and S2. Ultimately, we would like to infer the gearbox’s condition from one
(or both) sensor(s) measurements. In this example, actual measurements from
different sensors on a gearbox are shown to emphasise the influence of the sensor
positions.

The excitations due to the damage should travel between the source (i.e.
the events) and the sensors [9], with possible transmission paths highlighted in
Fig. 1(c). The time domain signals can be decomposed as follows:

x1(t) = h11(t) ⊗ e1(t) + h12(t) ⊗ e2(t) + n1(t), (1)
x2(t) = h21(t) ⊗ e1(t) + h22(t) ⊗ e2(t) + n2(t), (2)

1 We refer to statistical learning, machine learning and deep learning methods as
learning-based methods.
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Fig. 1. The condition monitoring problem: (a) The gearbox, two events inside the
gearbox E1 and E2, four bearings B1, B2, B3, B4 and two sensors, S1 and S2, are
shown. (b) The two damage components causing the events are shown. (c) Some of the
transmission paths between the events and the sensors are shown. (d) Example signals
are shown for the two sensors. These were acquired from two sensors on the test-rig
described in Ref. [3]. (e) The legend for the events and the transmission paths.
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where xi(t) and ni(t) are the vibration signal and the extraneous components2

in the ith sensor signal, respectively. The jth event, attributed to the excitation
at the source of the damage (e.g. the rolling element’s interaction with a spall), is
denoted ej . The impulse response function that captures the transmission path
between event j and sensor i is denoted by hij . The measured vibration signal is
discrete and denoted x = [x(0), x(Δt), x(2 · Δt), . . .], where Δt is the sampling
period. By using the convolution theorem, it is possible to decompose the signals
as follows: [

X1(f)
X2(f)

]
=

[
H11(f) H12(f)
H21(f) H22(f)

] [
E1(f)
E2(f)

]
+

[
N1(f)
N2(f)

]
, (3)

where Hij , Xi, Ej , Ni are the Fourier transforms of hij , xi, ej and ni respec-
tively. Changes in the signal Xi can potentially be influenced by changes in the
frequency response function Hi1 and Hi2; the events E1 and E2; and/or the noise
components Ni. Therefore, it is important to carefully interpret the changes in
the raw signal and its statistics. Ultimately, we desire to extract or enhance the
event information Ej to perform diagnosis and prognosis.

2.2 Identifiability Problem

Identifiability and observability are closely related; observability indicates
whether we can infer the latent state of the system from the system’s response,
while identifiability indicates whether we can infer the system’s parameters from
its response [10]. In condition monitoring, we typically would like to infer the
parameters of the damage (e.g. size of the damage) and therefore we present this
discussion in an identifiability context. We will use Eq. (3) to present the iden-
tifiability problem for condition monitoring, without accounting for estimation
errors (e.g. the influence of finite length signals). We can write Eq. (3) in matrix
form

X(f) = H(f) · E(f) + N(f), (4)

and leverage elementary linear algebra theory to gain insight into the identifia-
bility of the events. The following four interesting cases are considered here for
highlighting the identifiability problem:

H1 =
[

a 0
0 b

]
, H2 =

[
a c
c b

]
, H3 =

[
a a
a a

]
, H4 =

[
a 0
0 0

]
. (5)

where a ∈ C, b ∈ C, c ∈ C. If the frequency response function matrix H = H1,
the events will feature independently in the sensors. Therefore, different sensors
can be used to characterise specific events. If H = H2 and assuming det(H) �= 0,
the matrix is invertible and therefore we obtain two signals with independent
event information using

H−1(f) · X(f) = E(f) + H−1(f) · N(f), (6)
2 Extraneous components refer to signal components attributed to physical mech-

anisms (e.g. healthy gear mesh components), environmental conditions and noise
that are not related to the fault components-of-interest.
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where H−1(f) ·X(f) is the spectrum of the processed signal. Note, that unless
we know N(f), we cannot identify the events Ej , but only scaled and translated
versions of the events, i.e. α · Ej + β. This is often sufficient for most condition
monitoring tasks. If H = H3, the rows are linearly dependent, which means
that the sensors contain duplicate information (e.g. the sensors are symmetric
for the structure and the excitations) and H3 is not invertible. This means that
we cannot recover the original events from the response. Lastly, if H = H4,
it is only possible to identify the information concerning event 1; event 2 is
not identifiable irrespective of the signal processing algorithm used. These four
academic examples highlight the importance of sensor positioning to obtain well-
conditioned matrices.

Many condition monitoring algorithms (e.g. [2,3,11]) only utilise the infor-
mation from a single sensor to infer the machine’s condition. In some classes of
condition monitoring algorithms (e.g. [12,13]), we aim to design filters Pij(f)
that can be applied to the data of a single sensor Xj(f) so that the jth event is
identifiable from the processed signals. The spectrum of these processed signals
can be decomposed as follows:

[
Pi1(f)
Pi2(f)

]
Xi(f) =

[
α1 0
0 α2

]
·
[

E1(f)
E2(f)

]
+

[
β1

β2

]
, (7)

where Pij(f) · Xi(f) is the spectrum of the processed signal aiming to extract
event Ej , αi is a scaling term and βi is an offset term. The scaled events Ej are
identifiable if we can design a filter

Pij(f) = k · Hij(f), (8)

where k �= 0 and Hi1(f) · Hi2(f) = 0, i.e. the frequency response functions
of the two events are independent. This is possible if the two events manifest
in two separate narrow frequency bands. Targeted informative frequency band
identification methods (e.g. [11,12]) and targeted blind deconvolution algorithms
[13] aim to find the optimal filters Pij(f) to extract the events-of-interest.

In conclusion, the measurement signal (and its processed signal) is influenced
by the [9]:

– transmission path, which means that it is influenced by the sensor loca-
tion and the damaged component’s location. Planetary gearboxes have time-
varying transmission paths between the planet gears and the sensors [14].

– excitation characteristics (e.g. if there is a bearing crack or a bearing spall in
the inner race or outer race).

– the extraneous components (e.g. dominant healthy gear mesh components,
impulsive environmental noise).

All these effects can impede identifiability of the events and therefore impede
the fault diagnosis and prognosis tasks discussed in the next section.
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3 Fault Diagnosis and Prognosis

3.1 Overview of Diagnosis and Prognosis Steps

The diagnosis and prognosis problems are shown in Fig. 2 using the available
information from a selected sensor. In the condition inference problem, we infer
the actual condition (i.e. the damaged component, the damage mode and the
size of the damage) from the processed condition monitoring data. The esti-
mated condition is subsequently used with an appropriate degradation model
(e.g. Paris’ law) to estimate the system’s remaining useful life. The reliability of
the remaining useful life estimation process depends on our ability to diagnose
the machine.

Fig. 2. The conventional diagnosis and prognosis problem. (a) Condition monitoring
and data processing; (b) Diagnosis; (c) Prognosis.

In summary, the following steps need to be followed to perform diagnosis
(Steps 1–4) and prognosis (Step 5):

1. Damage detection (Presented in Sect. 3.1)
2. Damage component identification (Presented in Sect. 3.2)
3. Damage mode identification (Presented in Sect. 3.3)
4. Fault severity quantification (Presented in Sect. 3.4)
5. Remaining useful life estimation (Presented in Sect. 3.5)

3.2 Damage Detection

In the damage detection phase, changes in the condition monitoring data due
to the deteriorating machine are detected and flagged by comparing condition



14 S. Schmidt et al.

Fig. 3. (a) The generic fault detection problem is shown for a single threshold and
fault detection point. (b) The influence of operating conditions on fault detection.
Abbreviations: OC - Operating Condition.

indicators against thresholds as shown in Fig. 3(a). For example, the threshold
can be determined using the statistical methodology proposed by Antoni and
Borghesani [4]. In learning-based methods, the detection threshold is usually
determined from the reference density obtained from healthy historical data [5].
However, time-varying operating conditions could influence the condition indica-
tor and could therefore influence the time of detection (i.e. our ability to identify
the damage) and increase the false positive rate (i.e. detecting changes due to
operating condition as opposed to changes in machine condition). This is high-
lighted in Fig. 3(b). This problem can be alleviated by using the appropriate
pre-processing of the signal (e.g. [15]) or post-processing of the condition indi-
cators (e.g. [16]). For example, in Ref. [15], the amplitude modulation caused
by the changes in the operating conditions is estimated and attenuated, while
retaining the damage information. In contrast, Zimroz et al. [16] first obtain the
relationship between a condition indicator and the wind turbine’s power using
a regression model . Thereafter, changes in this model are used for condition
monitoring. It is expected that the sensitivity of the condition indicator to the
operating conditions (e.g. power) is dependent on the condition of the machine
and can therefore be used for damage detection.

3.3 Damage Component Identification

The damage component identification (also referred to as damage localisation)
problem is shown in Fig. 4 for the example gearbox in Fig. 1. As shown in
Fig. 4(a), the measured signal x can be generated by multiple potential events
(e.g. a single damage mode or multiple simultaneous damage modes) and con-
tains extraneous components n = [n(0), n(Δt), . . . , ]. The damaged component
is identifiable if we can process the signals x to extract the scaled events α·ei+β.
This is shown in Eq. (7) with the spectral representation. Methods to identify
the damaged component include:
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Fig. 4. The damage component identification problem: (a) The signal generation pro-
cess for the gearbox in Fig. 1; (b) The damage subcomponent identification problem
with bearing 3 identified using a Processing step; (c) Some of the potential bearing
damage cases; (d) Some of the potential gear damage cases.

– The synchronous average can be used to extract synchronous deterministic
components. If there are extraneous synchronous components, these compo-
nents would contaminate the synchronous average and impede the damaged
component’s identifiability.

– The synchronous average of the squared envelope does not facilitate identi-
fiability as it is sensitive to non-synchronous changes in the signal [3]. The
synchronous median of the squared envelope and the synchronous geometric
average of the squared envelope are much better suited as they are robust to
non-synchronous impulsive components [3].

– Cyclostationary analysis tools such as the squared envelope spectrum, the
spectral correlation and the improved envelope spectrum can be used to
determine the characteristics of the component-of-interest [2]. Cyclostation-
ary analysis methods for time-varying speed conditions are proposed in Refs.
[17] and cyclostationary analysis methods for impulsive noise conditions are
proposed in Ref. [6,18].

– In discrepancy analysis, the anomalies’ localised behaviour is used to deter-
mine the source of the anomalous behaviour [19].

– In contrast to blind condition indicators, targeted condition indicators make
it possible to focus on specific cyclic orders and can be used to target specific
mechanical components [11]. The RMS for example is sensitive to any energy
changes in the data and cannot be used to identify the damaged component
and would therefore not be a reliable estimate of the fault severity.

To be able to perform damage identification, the rotational speed of a reference
shaft and the system’s kinematics (e.g. the gear mesh frequencies, the ball-pass
outer race component of the bearing) need to be known [19]. The damaged
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component identifiability is also impeded if two components have the same sta-
tistical behaviour (e.g. both are first-order cyclostationary) and have very similar
characteristic frequencies, e.g. if the same bearings are located on the same shaft.
However, using multiple sensors might separate the contributions of the different
sources if H in Eq. (4) is invertible.

3.4 Damage Mode Identification

Fig. 5. The damage mode identifiability problem is illustrated when gear damage is
present and only three damage modes are considered. The measured signal is processed
to either identify (a) a tooth chip, (b) a tooth crack, or (c) pitting, with the tooth crack
identified in this example.

In the damage mode identification phase, the mode of degradation (e.g. crack
propagation in the gear tooth, pitting formation and spalling generation) is
identified. The damage identification problem is shown in Fig. 5 for the case
where there is gear damage in the gearbox. The degradation mode influences
the remaining useful life of the system and therefore it is important to identify
this for prognosis. Feng et al. [20] could distinguish between changes in the signals
due to abrasive wear and pitting and therefore the damage mode is identifiable
with their proposed procedure.

3.5 Fault Severity Quantification

In the fault severity quantification phase, the damage’s size is estimated (e.g.
characteristic crack length, material loss due to wear). This is important as the
remaining useful life depends on the size of the damage [21] and this information
needs to be known when using the appropriate degradation model. The ICS2
indicator, which measures the degree of second-order cyclostationarity, has a
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Fig. 6. The typical behaviour of condition indicators are shown. (a) The fault severity
is identifiable for this specific case. (b) A condition indicator where the fault severity
is not identifiable. (c) The fault severity is non-identifiable when a condition indicator
is used that is sensitive to varying operating conditions. This behaviour is shown for
three Operating Conditions (OC).

good correlation with the severity of the abrasive wear and pitting [20]. Three
cases are shown in Fig. 6. These problems are often addressed in classification-
based fault diagnosis, where the raw or processed data are mapped to a damage
mode and/or a fault severity. The problem with this is that the degradation is
continuous, not discrete, and often we do not have sufficient historical fault data
to train the models [8]. Physics-based models can potentially aid with this task,
but model calibration becomes an important consideration.

3.6 Remaining Useful Life (RUL) Estimation

The remaining useful life estimation process is shown in Fig. 7(a) for the ideal
case and in Fig. 7(b) for the practical scenario. The larger the variance of the

Fig. 7. The Remaining Useful Life (RUL) estimation process: (a) The conventional
RUL estimation process is shown for a known threshold, a known degradation path
and a known Time-Of-Failure (TOF). (b) The practical prognosis problem is illustrated
as a population of failure thresholds, with the Probability Density Function (PDF)
denoted by PDFt, and a population of degradation paths. This makes us uncertain of
the actual TOF, which is described by PDFtof.
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potential degradation path and the appropriate threshold (i.e. the more uncer-
tain we are), the more difficult it becomes to identify the remaining useful life.
Hence, it is important to perform the diagnosis phase properly to ensure that
the remaining useful life estimates are reliable. Data-driven prognosis methods
estimate the remaining useful life from the raw or processed signals directly
using the available historical data [7,22]. However, a representative historical
fault dataset is difficult to obtain; there are many potential failure modes and
sufficient representative samples of each failure mode are required. Therefore,
purely data-driven prognostics methods are difficult to implement in practice,
which highlights the need for hybrid prognosis strategies [23].

4 Proposed Requirements for Fault Diagnosis and
Prognosis Methods

In this work, the following requirements are proposed for the different phases of
fault diagnosis and prognosis:

– Sensor placement: The sensors should be placed to ensure that the matrix
H in Eq. (4) is as well-conditioned as possible. This means that if more
sensors are added to the monitored machine, it should be ensured that the new
sensor is as informative as possible (e.g. that the damage detection accuracy
is increased [24]).

– Damage detection: Condition indicators should only change when the machine
degrades and should be robust to changes in operating conditions. Robustness
against varying operating conditions is possible by pre-processing the signals
(e.g. [15]) or processing the condition indicators (e.g. [16]).

– Damage component identification: Condition indicators should only be sen-
sitive to the presence of a subset of possible damage events (e.g. different
bearing damage modes) to ensure that the condition indicators can be prop-
erly interpreted. A method to perform this task is presented in Ref. [3].

– Damage mode identification: Condition indicators should provide a unique
representation for the different damage modes to ensure the damage mode is
identifiable. The appropriate degradation model can subsequently be selected
or inferred.

– Remaining useful life estimation: The RUL estimate should only be dependent
on the component-of-interest and should not be influenced by changes in the
condition of other machine components or changes in the machine’s operating
conditions. This can be performed by using a robust condition indicator.

The damage mode identification problem is especially challenging because the
damage often manifests as weak components in the signal and there might be
subtle differences between the different damage modes. However, Eq. (4) high-
lights that by using multiple well-placed sensors and by having some prior knowl-
edge about the transmission paths (e.g. from a physics-based model) it could be
possible to have a better view of the events, which could aid in identifying the
damage mode and the severity of the damage.
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5 Conclusions

In this work, we presented the identifiability problem for rotating machine fault
diagnosis and prognosis and highlighted its significance for the different fault
diagnosis and prognosis tasks. The importance of sensor location and the impor-
tance of using the appropriate signal processing methods are emphasised. We
also proposed requirements for the development and implementation of fault
diagnosis and prognosis methods. We believe these requirements can help to
develop reliable condition-based maintenance methods for machinery such as
wind turbines and will be investigated in more detail in future work.
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Abstract. In this study, a frictional dynamic gearmodel is propounded for a lubri-
cated FZG C40 spur gear pairs. The proposed nonlinear dynamic model accounts
the actual time variable gear mesh stiffness with considering the frictional effects
of meshing gear teeth. This developed model aims to predict with high accuracy
the gear power losses and to highlight the influence of the friction coefficient. Two
listed caseswere considered through introducing a constant friction coefficient and
a local coefficient of friction in the developed dynamic model. The influence of
the constant and local coefficient of friction on the frictional spur gears power
losses has been evaluated. All key parameters like axle gear oil dynamic and kine-
matic viscosity, contact conditions betweenmeshing gear teeth through equivalent
radius of curvature, slide-to-roll ratio, maximum Hertzian pressure and tooth pro-
file deviations on which the local friction coefficient depends are introduced in
the model formulation. The simulation results were obtained through solving the
motion equations of the generalized translational torsional coupled dynamic sys-
tem by an iterative implicit scheme of Newmark. The results of simulation were
compared to experimental results investigated on an FZG test rig under several
operating conditions of load and speed.

Keywords: Frictional dynamic model · Coefficient of friction · Tooth profile
deviations · FZG test rig

1 Introduction

The industry provides worldwide efforts to optimise mechanical systems aiming to
decrease the energetic efficiency of equipment and save resources (Touret et al. 2020).
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These systems suffer in their operation from power losses which occur in the main
mechanical components and especially in the gear transmissions. For that, it is crucial to
study the gear efficiency inside gearbox under dynamic conditions which can be useful
to design reliable and efficient gearboxes.

In the reviewed studies, several dynamicmodels were developed. Their focuswas the
transmission errors, the dynamic overloads, the critical speed and mainly the vibration
and noise behavior (Velex and Cahouet 2000, Wang et al. 2003, Diab et al. 2006, Tounsi
et al. 2016). New details are introduced in gears dynamic models like the varying mesh
stiffness, frictional effects and more degrees of freedom. The friction is a critical factor
in the gear power loss estimations since it affects the gear life of the geared system. It
influences not only vibration and noise behavior of the mechanical system but also its
efficiency. For that, it is interesting to estimate the frictional power losses considering
real operating conditions like dynamic effects, variable coefficient of friction under a
range of load and speed.

The work aims to exploit the proposed dynamic model for C 40 spur gears to assess
the dynamic and frictional effects in gears power loss at different operating conditions
using two distinct coefficients of friction formulations (average and local COF). Power
losses are investigated as they are proportional to the friction coefficient in the gear
contact. A local friction coefficient is inserted in the mathematical formulation based
on EHL approach (Xu and Kahraman 2007) and an average COF is determined through
validation and calibration of quasi-staticmodel based on experimental results (Hammami
et al. 2018). A comparison between the predicted gear power losses in dynamic steady
conditions using two friction coefficient approacheswith experimental results performed
using an FZG test rig are exposed and investigated.

2 Geared System Model

Thedevelopedgeared systemmodel is described inFig. 1.The totalmodel comprises four
nodes with three degrees-of-freedom (DOFs) per node corresponding to 2 translational
(vj,wj) and 1 torsional (θj) displacements. This dynamic model is composed of four
main elements: (1) a motor and a load imposing the input torque (Cm) at the first node of
the gear shaft and the resisting load (Cr) at the last node of the pinion shaft, respectively,
(2) the input shaft 1 and the output shaft 2 are modelled by two-node Timoshenko beam
elements with circular cross-sections, (3) the pinion gear pair simulated as two rigid
cylinders related with nonlinear mesh stiffness (Km(t)) and a dampener (Cm), (4) four
rolling bearings supporting shafts introduced as lumped damping (Cxj,Cyj) and stiffness
(Kxj,Kyj) components.

To evaluate the spur gear frictional dynamic behavior, an equation of motion of
the generalized translational torsional coupled dynamic system was developed from
Lagrange principle considering frictional effects (average and local coefficient of friction
(μ). This motion equation does not consider gyroscopic and centrifugal effects. Tear
surface roughness variation is introduced in the model by the tooth profile errors (e(Mi))
through the local coefficient of friction.
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Fig. 1. 3D dynamic gear model (12 DOFs) (Hammami et al. 2019b).

After executing the differentiations in Lagrange equation the differential equation
of the system is obtained:

MẌ + CẊ + (
K(t,X ) + Kμ(t,X , μ)

)
X = F1(t,X , μ) + F2(t,X , e(M )) (1)

whereX = {
v1,w1, θ1, vg,wg, θg, vp,wp, θp, v2,w2, θg

}
is theDOF’s vector;M ,C,

K(t,X ) and Kμ(t,X , μ) are the total mass, proportional damping, time-dependent non-
linear stiffness and frictional stiffness matrices, respectively; F1(t,X , μ) is the input and
resisting torques vector depending on internal frictional excitation and F2(t,X , e(M ))

is a tooth shape deviations excitation vector.
The variable tooth profile error along the action contact line and the theoretical

contact line is considered similar for all teeth (see Fig. 2).
The corresponding tooth profile error defined as the difference between the theoret-

ical and the real tooth profiles is induced at the point Mi using an estimated roughness
profile for C 40 spur gear as shown in Fig. 3.
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Fig. 2. Estimated tooth profile error (Feki et al. 2020)

Fig. 3. C40 pinion root mean square roughness (Rq) in radial direction.

The local coefficient of friction (μ) formulation based on EHL model that experi-
mentally validated by Xu (Xu 2005) is inserted in the gear dynamic simulations using
the following equation:

μ = ef (SR,Ph,ν0,S)Pb2
h |SR|b3Vb6

r μ
b7
0 Rb8 (2)

f (SR,Ph, ν0, S) = b1 + b4|SR|Phlog10(ν0) + b5e
−|SR|Pk log10(ν0) + b9e

S (3)

where SR,Ph, ν0, S,Vr, μ0,R are respectively the slide to roll ratio, maximum
Hertzian pressure, oil dynamic viscosity, surface roughness (e(Mi)), rolling veloc-
ity, oil kinematic viscosity and equivalent radius of curvature. More details about
Xu formulation can be found in reference (Xu 2005). The coefficients used in
this formulation from b1 to b9 in Eqs. (2) and (3) are given as follow bi:1..9 =
{−8.916465; 1.03303; 1.036077;−0.354068; 2.812084;−0.100601; 0.752755;
−0.390958; 0.620305}.
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3 Experimental set-up

In this study, a back-to-back FZG machine was used. It is composed of slave and test
gearboxes in a locked mechanical loop (see Fig. 4). The test gearbox contains type C
standard gears (characterized in Table 1). Detailed Gear description can be found in Ref.
(Hammami et al. 2018). The gear set is splash lubricated with commercial 75W90-A oil
whose properties are presented in Table 2.

ETH DRDL torque meter is used to measure the resistive torque generated in the
system. Type K thermocouples are placed in the oil sump and outside of the gearbox
to measure the operating temperature in several locations. Both the slave and the test
gearbox will suffer from frictional gears power loss during experimental tests. Mea-
suring friction in the contact of only test gearbox is challenging, especially in a closed
mechanical loop such as the FZG test rig.

Fig. 4. Cross section representation FZG back-to-back gear test rig

During the test, the friction evolution in the gear contact will be measured based on
the total torque loss values. As the rotational speed is controlled, power losses are imme-
diately extracted from torque measurements. To study the correlation between friction
and the variations of power losses, an experimental C40 gears power loss lubricated with
75W90-A oil and an average coefficient of friction were determined and validated in
author previous work (Hammami et al. 2018). Experimental conditions are detailed in
Table 3. The selected load stages K5, K8 and K11 were characterized with a constant
torque on the test pinion. The constant torque is obtained through using calibratedweight
of the FZG machine (Hammami et al. 2018).
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Table 1. FZG type C40 gear definition

Type C gear set

Parmeters Symbol Pinion value Wheel value Unit

Tooth width B 40 [mm]

Number of teeth Zi 16 24 [–]

Module M 4.5 [mm]

Operating center distance A 91.5 [mm]

Pressure angle A 20 [deg]

Contact ratio εα 1.44 [–]

Surface roughness Rq 0.5 [μm]

Table 2. Oil properties (Hammami et al. 2019a)

Oil properties

Reference 75W90-A Unit

Density 870 [kg/m3]

Kinematic viscosity@70 36.7 [cSt]

Kinematic viscosity@100 16.37 [cSt]

Table 3. Operating conditions during experimental tests

Load stage K5 K8 K11

Pinion torque [Nm] 70 172 319

Oil temperature [°C] 80

Wheel rotating speed [rpm]

250 500 1000 1750

4 Experimental and theoretical results

To validate the dynamic proposed models, several measurements were performed on the
FZG test rig.

The simulation results shown in this work are presented under stabilized operating
conditions. As an example, the total power loss for C40 gear at 1000 rpm under K8 load
stage considering local COF presented some variations at the beginning as transient
regime and became steady from a definite time value (see Fig. 5).

The analytical dynamic model results are presented and quantified under only a
stable regime. Before, the power loss predictions, an important key parameter should be
quantified which the local coefficient of friction is considering the tooth profile error.
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Fig. 5. Total frictional power loss considering local coefficient of friction for C40 at K8–1000 rpm

The experimental (average COF found in (Hammami et al. 2019b)) and simulated (local
COF) coefficient of friction behavior along the path of contact for C 40 spur gear is
shown in Fig. 6.

Fig. 6. Average and local coefficients of friction for the C40 gear geometry: (a) COF at
K8/500 rpm, (b) COF at K8/1750 rpm.

These results are performed under K8 load stage and at the following rotational
speed: (a) 500 rpm, (b) 1750 rpm. Under the same load, the COF values slightly decrease
with increasing rotational speed. The shape and the amplitudes are significantly different
between the constant and localCOFwhich can be explainedwith the no-time dependency
of the average COF. The local COF is expected to evolve with surface roughness. It can
be observed that the predicted μ values are influenced by the dynamic effects. The local
COF is close to zero in the pitch point where no relative sliding velocity and show lager
oscillations when the contact takes place near the edge where the contact pressure is
high.
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Fig. 7. Average of the RMS of the experimental gears power loss vs. dynamic model simulation
of RMS gears power loss considering average COF and local COF for C40 spur gears: (a) RMS
gears power losses at 250 rpm, (b) RMS gears power losses at 500 rpm, (c) RMS gears power
losses at 1000 rpm and (d) RMS gears power losses at 1750 rpm

Since the friction coefficient is quantified, it is possible to calculate the frictional
meshing gear power loss which can be directly calculated from the gear dynamic model
using the following equation (Hammami et al. 2018):

PVZP(Mi) = FN (Mi).μ(Mi).V12(Mi)

where μ(Mi) represents the average or the local friction coefficient, V12(Mi) is the
instantaneous sliding velocities and FN (Mi) is the dynamic normal load.

The comparison between the simulated gear power losses using local and average
COF and the experimental results are presented in Fig. 7.

In this figure, the RMS of the power losses under three FZG load stages (K5, K8 and
K11) and four rotational speed (250, 500, 1000 and 1750 rpm) at stable conditions are
exposed.

From K5 (Cm = 69, 98 Nm) to K11 (Cm = 319, 15 Nm), the RMS power losses
increases due to the increase of μ values which are directly related to the pressure of the
contact surfaces.

The presented results show high values when the rotational speed increases from
250 rpm to 1750 rpm because of the increased sliding velocities.

A relevant error is observed over 57% between the RMS power loss using average
COF and the experimental results proving the limited prediction of this dynamic model
(see Table 4). A constant COF should be used carefully since it was limited to certain
system parameters.
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However, promising results are expected since a local coefficient of friction was
developed for large ranges of parameters study like gears operating conditions, surface
roughness and contact surfaces. It is noticed that the introduction of the local COF in the
dynamic model to account all relevant factors mainly the tooth profile errors increases
impressively the prediction of the developed dynamic model.

The RMS power loss using local COF presents closer results to experimental values
with low errors (see Table 4). A significant reduction between error 1 (PVZP_average
COF/PVZP Exp) and error 2 (PVZP_Local COF/PVZP Exp) is observed. Since the gear
power loss is an important key to evaluate the systemmechanical efficiency, the frictional
gears dynamic model with the highest prediction accuracy should be used.

Table 4. Errors between experiments and simulations of anRMS friction power loss using average
and local COF for C40 spur gears for all operating conditions.

Rotational speed [rpm] Load stage [–] Error 1 [%]
(PVZP_average
COF/PVZP Exp)

Error 2 [%]
(PVZP_Local
COF/PVZP Exp)

250 K5 58.04 9.67

K8 58.15 0.4

K11 58.16 15.33

500 K5 57.88 7.84

K8 57.91 0.19

K11 57.92 16.39

1000 K5 57.33 0.45

K8 57.32 4.77

K11 57.47 24.23

1750 K5 58.39 6.9

K8 58.51 10.21

K11 58.51 35.1

5 Conclusion

A dynamic gear model for C40 spur gear was developed to evaluate the total power loss
considering frictional effects through a constant and local friction coefficient. The friction
coefficient shows an important role in the prediction of an accurate meshing spur gear
power loss. To validate the developed dynamic model, several experimental results were
used. A clear difference between simulations with local and constant COF is revealed.
This observation supports the time COF dependency affecting the Hertzian pressure and
the tooth profile deviations. Furthermore, a good correlation is presented between the
predicted frictional gears power loss using EHL formulation with experimental results.
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Abstract. Planetary Gear systems (PGs) are widely used in many mechanical
engineering applications such as industrial robots, mining machinery and aircraft
transmission. During their fitness they can be affected by several kinds of damage
for example crack and spalling that are the most systematic malfunction. As those
systems are frequently provoked in non-stationary condition defined as variable
loading and variable speed regimes, their diagnosis under these regimes using the
vibration response presents a huge challenge for research and investigation. In this
work, the vibration response of two-stage planetary gears in presence of spalling
faults are investigated during the down-time excitation regime. The system is
already preloaded, and a ramp of speed is applied on the system using a frequency
inverter and the sensors are mounted on the ring gear components. A series of
measurements tests are carried out using an experimental test bench where a
spalling defect is introduced to one of the planet components. The paper examines
the damages detection using time domain, frequency domain and order domain
analysis approaches. In the end, the obtained results that are processedwith angular
order domain analysis based on the angle domain order tracking method shows
an interesting result compared to others method.

Keywords: Two stages planetary gear · Spalling defect · Down-time regime ·
Vibration signal

1 Introduction

Planetary gear transmissions are extensively used in many industrial and mechanical
engineering applications like CNC machines, car transmissions and wind turbine gear-
boxes. During their service, they are confronting several running conditions. During
the last few decades, diagnosis and condition monitoring of planetary gear systems
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become a challenge for research and industrial manufacturing with the aim of reduc-
ing maintenance cost. Many research papers were published in which the authors focus
on modelling of defects and, the impact of defects on the system using numerical or
experimental data signal processing tools. Also, some authors focus on prognostics [1].
Concerning the modelling of spalling defects, Saxena et al. [2] studied the influence of
rectangular spalling shape and its location onmeshing function.Other researchers agreed
that the presence of tooth spalling failure can be considered by a decrease in amplitude
on meshing functions [3, 4]. The influences of gear failure on dynamic behaviour are
studied bymany researchers. InMa andChen [5], the time domain and spectrum analysis
are considered to study the influence of spalling failure on the dynamic response of one
stage gear transmission.

Moreover, many studies addressed gear fault diagnostic is addressed [6, 7]. First,
the focus was either on extracting the frequency [7, 8]. In a second context, features of
the frequency domain were used to determine the failure gear [9]. A third, the wavelet
transformation methods were developed for failure detection [10–12]. In addition, in
Hong and Dhupia [13], a novel approach for gear failure detection based on.

A novel approach for gear failure detection was based on combining the kurtosis and
the fast-dynamic time warping method is proposed [13]. Other analsis trategies were
using the Hilbert Huang transform to characterize the gear faults in cases of variable
speed condition. In this context, an experimental study focused on the dynamic behaviour
of a planetary gear system in a downtime regime in the presence of a spalling defect is
analysed using the order tracking method [14].

2 Experimental Test Bench

To study the impact of tooth failure on the vibration response of planetary gear transmis-
sion, a spalling damage on one of the teeth of planet gear was artificially manufactured
using an electro erosion machine. Figure 1 displays the test bench where the tests are
achieved. This bench was used for several research purposes by Mbarek et al. [15] and
it is well described in [16, 17] (Fig. 2).

Fig. 1. Experimental test bench
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Fig. 2. Experimental test bench

Table 1. Basic dimension planetary gear

Sun Planet (3) Ring Carrier

Number of teeth 16 24 65 –

Module m] 0.004 0.004 0.004 –

Base diameters m] 0.06 0.09 0.24 0.1

Tip diameters m] 0.06 0.10 0.25 0.1

Mass kg] 0.4 1.2 28.1 3.6

Moment of inertia kg·m2] 35 · 10−6 20 · 10−6 69 · 10−6 21 · 10−6

3 Results

Measurement tests are carried out when the system is exited in a downtime regime,
during this regime, a ramp of speed is imposed on the motor according to the speed
profile given in [6]. Figure 3 shows that the vibration amplitude decreases with the time
that is explained by the fact that the period of the gear mesh stiffness increase as the
speed decrease.

Results presented in Fig. 3 shows that time analysis cannot give a piece of interesting
information about the faulty components. Therefore, a time-frequency analysis based
on STFT is used to determine the features of the sapling defect as illustrated in Fig. 4.

The presence of an oblique segment that shows the evolution of the gear meshes
frequency in time. In addition, the system can be excited by critical resonances frequency
presented by the vertical lines like the lines presented on the frequencies 152Hz, 346Hz.

The STFT presentation is limited; there is no indication about the damaged tooth
component. For this reason, an angular approach is adopted. Figure 5 shows the order
map of the acceleration of the test ring; a vertical line shows the meshing order which
is surrounded by their harmonic.
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Respecting the number of teeth of each component displayed in Table 1 and the
formula given by Mbarek et al. [14], the order associated with the planet is Op 0,4 and
the mesh order Om. To well visualize the order associated with the spalling defects, a
caption around an order bandwidth [0-10] is established as displayed in Fig. 6.

The orders related to the faulty planet are presented as mentioned by the black
cursor (Fig. 6). This fact is explained by that the damaged tooth enters in contact with
the other component; the fault is reflected by a reduction of the meshing function. In
this case, the reduction is presented in the ring planet and the sun planet mesh function
which influences directly on the accelerations. Also, the meshing order is well observed
around the 9th order as shown in Fig. 6. In fact, order domain presentation shows a good
capability to detect faults in non-stationary condition, based on gear order features; this
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Fig. 6. Zoom of the order map

method gives a piece of information about the faulty components compared to the time
and the spectrum response.

4 Conclusion

In this work, an experimental study on the dynamic behaviour of planetary gear transmis-
sion was investigated. A series of measurements were carried out using an experimental
test bench composed of two-stage PGs mounted back-to-back in presence of a spalling
defect. This failure was introduced to one of the three planets and the system was driven
during the down-time regime. In fact, the recorded time response signal of the test ring
is presented and analysed via different method. First, the time response proved that
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the signal is characterized by higher vibration amplitude due to the defect. It is worth
noting that this analysis approach is limited because it is not informative enough when
it consernes fault component. For this reason, frequency-time analysis based on STFT
presentation is adopted in the next step, this technique reveals the evolution of the gear
mesh frequency in the time-frequency domain while there is no clear indication of the
defect. In addition, an order tracking method based on the angular method was used
and adopted using the signal of the tachometer. Based on the formula related to each
component, order map presentation indicates the defect’s location as well as the mesh-
ing order. Additional work need to be realized in order to model and include defect in a
munerical model. Also, the Order tracking method will be modelled to processed with
the theoretical signal.
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Abstract. Advances in signal processing are complemented by advances
in machine and deep learning and vice versa. In general, machine and
deep learning are employed as discriminative models within a supervised
setting. Progress in unsupervised generative modelling allows for genera-
tive models to be employed in discriminative (discrete classes) and devi-
ation (continuous deviation from a baseline) tasks. This only requires
the samples to be chronological. Discriminative and deviation analysis
is usually based on the reconstruction loss. However, this is limited as
it offers only a single scalar from which inference can be made. Genera-
tive models do, however, learn a latent representation of the data from
which additional scalars can be derived. Whether these derived scalars
are informative depends on the quality of the latent representations.
Most learning algorithms derive a latent representation that efficiently
explains the variance in the data, which can be informative when the
property of interest is well explained by variance. Alternatively, a lesser
known class of learning algorithms aim to learn a latent representation
that aims to identify sources in the data. Hence, given the same data,
an infinite number of latent representations are possible, of which only a
fraction are informative. We consider three classes of latent spaces that
are stochastic, entangled and untangled. Furthermore, we highlight the
importance of untangled latent spaces to obtain informative signals for
condition monitoring.

Keywords: Signal processing · Generative modelling · Unsupervised
learning · Latent variable · Untangled latent spaces

1 The Intersection Between Signal Processing and
Learning Models

Signal processing in condition-based maintenance (CBM) is primarily concerned
with extracting and analysing informative features from raw time-series data
that enable diagnosis and prognosis to prevent asset failure and downtime, as
shown in Fig. 1. Given sensor data, x(t), two questions are raised:
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Fig. 1. Signal processing viewed as the encoding of useful or informative information
from raw sensed signal data that the analyst can analyse. Signal processing is contrasted
against the typical autoencoding training of generative models.

1. What is the information content of the signal, i.e. what of the physical system
can be identified from the signal, and

2. Is the identifiable information in the signal captured such that the informa-
tiveness is maximised?

In signal processing, the analyst aims to isolate identifiable information from
x(t) for analysis. The main aim is to extract useful information that informs
an assets’ condition. This task of separating identifiable information or extract-
ing relevant information for the condition monitoring problem can be seen as
encoding, followed by the encoded signal analysis.

The analyst’s encoding task is equivalent to finding a transformation or rep-
resentation that enhances specific information and attenuates extraneous signal
components. This makes it possible to process the raw time-series signal into
a more meaningful representation. Examples include the wavelet transform and
the spectral coherence of the signal [1,2].

Alternatively, a time-series signal can be viewed as high dimensional data, i.e.
as an n-dimensional vector, x(t) ∈ R

n, where n corresponds to the number of data
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points in the signal. The analyst is now tasked with finding a lower-dimensional
representation or features that is/are informative. A single n-dimensional obser-
vation x(t) does not in itself enable the analyst to find a lower-dimensional rep-
resentation. However, several strategies exist and have been employed to recast a
single n-dimensional observation into multiple correlations/observations of high
dimensional data. The auto-correlation matrix recasts x(t) into XAC(t) ∈ R

n×n

[3], while through a sliding window approach X(t) ∈ R
m×l recasts x(t) into m

observations of window length l [4–6]. This approach is also used to obtain the
Hankel matrix. Given some X(t), the aim is to find a lower-dimensional represen-
tation that enhances specific information and suppresses components unrelated
to the component of interest.

In signal processing, irrespective of whether the data is being transformed
or projected, the analyst is essentially conducting the following operations: find-
ing informative transformations (e.g. [7]) and features or condition indicators
(e.g. [8]), whereafter they are analysed for damage. This requires knowledge and
mastering of signal processing principles, experience and extensive knowledge of
the physical mechanisms that generate the measured signals.

In artificial intelligence, statistical learning [9], machine learning [10] and
deep learning [11] are sub-domains that focus on developing generative models.
Incidentally, generative modelling is the task of transforming high-dimensional
data to a lower-dimensional representation or latent space through encoding,
as shown in Fig. 1. Samples in this latent space can be resonstructed back to
the high-dimensional space through decoding. This encoding-decoding process
is used in training where the error between the original signal x(t) and the
reconstructed signal x̄(t) is minimised. Hence, the task of encoding is common
between generative modelling and signal processing. An additional intersection
being the analysis of the latent variables to inform on the condition of an asset.

Therefore, it is critical to find latent spaces that are informative and ensure
that the latent space components correspond to distinct physical processes. In
CBM under the effects of time-varying environmental and operational conditions
(EOCs), this implies that time-varying components can be isolated and identi-
fied as independent latent representations [12,13]. The challenge in generative
modelling is to encode informative latent spaces. Hence, by applying generative
modelling with untangled latent spaces to CBM, the aim is to automate signal
processing tasks that require extensive domain knowledge.

2 Process of Lower-Dimensional Representations

The process of finding lower-dimensional representations entails two steps, as
shown in Fig. 2. Firstly, by finding an informative, low dimensional coordinate
system, and secondly, by projecting the high dimensional data onto the low
dimensional coordinate system. Depending on the generative modelling, the coor-
dinate system can be linear (see Fig. 2), i.e. the coordinate system forms a basis
that a set of vectors can describe. Some transformation function can describe a
nonlinear or curvilinear coordinate system (see Fig. 2).
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Statistical learning specifically aims to alleviate the analyst from finding fea-
tures to merely supervising the task of finding features, a.k.a. feature engineer-
ing. In particular, statistical learning restricts itself to finding a linear coordinate
system, i.e. linear basis to represent the latent space. Machine learning has sim-
ilar aims, but the latent space is described by nonlinear coordinate systems to
which the raw signals can be transformed. This enables the analyst to focus
on analysing the projected signals instead of first finding informative features.
Deep learning has more ambitious goals. It aims to automate the processing,
feature engineering, and analysis of raw time-series signals, i.e., automate the
entire signal processing value chain.

Hence the task of statistical, machine and deep learning is to find a coordinate
system to represent the latent space onto which a time-series signal can be
projected for analysis. This is achieved by defining an appropriate optimisation
problem. Here, the analyst needs to decide a proper optimisation model, e.g.
primal problem formulation or dual problem formulation, to solve a formulated
min-max, maximisation or minimisation problem [14]. The choice of the loss
function, norm (e.g. l1-norm and l2-norm), regulariser (e.g. l2-norm weight norm
penalty (ridge regression), or l1-norm weight penalty (LASSO for sparsity)) and
constraints (e.g. orthogonality of coordinates) allows the analyst to craft and
target specific characteristics in the data that are assumed to be informative.
This problem can be cast within a statistical language by assuming a distribution
for the noise (e.g. Laplacian or Gaussian, which are related to the l1-norm and l2-
norm, respectively) and prior distribution (e.g. Laplacian or Gaussian, which are
associated with the l1-norm weight norm penalty and l2-norm weight penalty).
The process of solving a formulated optimisation problem is known as training,
see Fig. 1.

To summarise, data science, particularly generative modelling, requires the
formulation of an optimisation that can be solved to find informative coordinate
systems onto which high-dimensional data can be projected.

3 Supervised, Semi-supervised and Unsupervised
Learning

The availability and type of data dictate which learning strategies are available
for the analyst. In the context of anomaly or fault detection, supervised learn-
ing requires signals that were taken when a physical asset was known to be in a
healthy and damaged state. This is referred to as labelled data. In turn, unsuper-
vised learning only requires physical asset data without knowing whether it was
taken while the physical asset was healthy or damaged. However, we distinguish
between data where the samples are chronologically ordered for unsupervised
learning, i.e. measured samples are time-stamped, or not, i.e. each sample is
chronological but no time-stamps were recorded for the samples. Lastly, semi-
supervised learning relates the learning with predominantly unsupervised data
and access to few supervised samples. The most prevalent data in CBM is unsu-
pervised data with chronological samples without prior knowledge of a machine’s
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Fig. 2. Encoding a raw signal viewed as finding a coordinate system onto which the
data is projected for analysis.

initial state. Data is selected to represent a reference state on which to train a
model [13]. This reference state is often referred to as “healthy” when the initial
data in the chronological data flow was used to train on [13]. Hence, unsuper-
vised learning with chronologically sorted data is an ideal learning framework
to train statistical, machine and deep learning models, which we will explore in
more detail.

4 Unsupervised Generative Learning with
Chronologically Sorted Data

Unsupervised generative learning can be achieved primarily by one of two learn-
ing principles, namely,

1. auto-associative learning [15], or
2. generative adversarial learning [16],

thereby enabling the training of generative models in an unsupervised
fashion.
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4.1 Auto-associative Learning

Auto-associative learning [15] or autoencoding [17] is pervasive in statistical,
machine and deep learning and follows the process of encoding and decoding
outlined in Fig. 1. In essence, autoencoding aims to reconstruct the input signal
by encoding the signal in a lower-dimensional coordinate system. It reconstructs
the signal back to the same dimensionality as the input signal through decod-
ing. This lower-dimensional encoding is often referred to as the bottleneck, an
essential mechanism to find an informative lower-dimensional signal. The aim is
to learn to regenerate the samples X without memorizing the samples.

This is exemplified by considering m, l-dimensional samples arranged in
matrix X ∈ R

m×l. Given that we have centred the data X, which we denote
C, we aim to find a coordinate system described by a l × k matrix W. Here,
CW encodes the data C into a k-dimensional coordinate system W, whereas
(CWWT), decodes the projected data CW back to the original l-dimensional
space.

Given k = l with W = I then encoding results in CI = C, and decoding
gives CIT = C perfect reconstruction. However, using W = I is equivalent to
memorising the data instead of learning useful information about the data, again
highlighting the importance of a lower-dimensional latent space k � l.

Learning algorithms can be constructed to optimally reconstruct signals. For
this case, the aim is to maximise the variance explained in a dataset by finding
an optimal lower-dimensional coordinate system to reconstruct signals. Strate-
gies that focus on reconstruction include principal component analysis (PCA),
autoencoders (AE) and variational autoencoders (VAE) [15,18,19]. Alterna-
tively, learning algorithms can be constructed to find an informative lower-
dimensional coordinate system [20–24], or an informative latent space. Latent
focussed approaches include independent component analysis (ICA) and beta-
variational autoencoders (β-VAEs) [5,25].

Autoencoding with a Reconstruction Focus: Principal component anal-
ysis (PCA) [19] and singular value decomposition (SVD) [26] encapsulate the
foundation of autoencoding that aims to maximise the variance explained or
aimed at reconstructing the signal as efficiently as possible.

Given C, we aim to find a new orthogonal coordinate system described by a
l×k matrix W. With k � l to describe the data, we can achieve it by minimising
the following constrained optimisation problem:

W∗ = arg min
WTW=I

(
(CW)WT − C

)
:
(
(CW)WT − C

)
. (1)

CW encodes the data C into a k-dimensional coordinate system W, whereas
WT(CW)WT decodes the projected dataCW back to the original l-dimensional
space. Since C ∈ R

m×l, we require a double contraction, denoted: to reduce the
expression to a scalar. Autoencoding (AE) [15], Variational Autoencoding (VAE)
[27] and Singular Spectrum Analysis (SSA) [28] aim to find a coordinate system
that is efficient at explaining the variance in the signal, which in some cases can
be informative if the aspect of interest manifests as the variance. It is untangled
if it is the sole aspect to do so, however, this is seldom the case.
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Autoencoding with a Latent Space Focus: Independent component analy-
sis (ICA) [20,29,30] complements autoencoding that aims to have an informative
latent space or aims to find an informative decomposition. ICA terminology often
refers to the components of such latent spaces as the sources [31]. The application
of ICA in prognostic maintenance of renewable energy systems is well known,
but the connection to untangling is not that well established [32].

Machine learning and deep learning offer improved abilities to untangle latent
spaces over linear models [33], but remain largely unexplored for CBM applica-
tions. Most time-series studies are focussed on human speech and animal acous-
tics [34].

Given C, we aim to find an informative new coordinate system l × k matrix
W, such that the projected data

S ≈ CW (2)

is maximally statistically independent and non-Gaussian, according to some
measure of non-Gaussianity. The measures of non-Gaussianity define the charac-
teristics of the expected sources, such as kurtosis and negentropy [20,30,35,36].
Damaged signals often manifest as non-Gaussian sources in the measured data
[21,24,37], making ICA useful for fault diagnosis. This is also aligned with
the developments of the signal processing community, where different mea-
sures of non-Gaussianity are used to identify damaged machine components
[21,24,37,38].

Note, the reconstruction of the given data is given by

SW−1 ≈ C, (3)

but was obtained by finding statistically independent latent variables, which
implies that S is uncorrelated

SST = I. (4)

Hence, ICA aims to find a statistically independent latent space during training
in contrast to the reconstruction-based focused models. Each latent component
represents an isolated physical process or source contributing to the measured
signal. This directly implies a latent space that is untangled and informative as
the measured signal is decomposed into independent components that can be
readily analysed and interpreted.

In machine learning and deep learning, an extension of variational autoen-
coders (VAE) towards an untangled latent space is β–VAE [25].

4.2 Generative Adversarial Learning

The premise of adversarial training is to transform the unsupervised generative
modelling problem into a supervised classification problem. This is achieved by
introducing two sub-models in the adversarial learning framework: a generator
and a discriminator model. The generator model generates new samples a priori
from a chosen latent space, while the discriminator classifies between actual
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Fig. 3. Adversarial training turns an unsupervised learning problem into supervised
learning by introducing a discriminator between actual x(t) and the reconstructed x̃(t)
signals. Training constructs a decoding network and discriminator network. Evaluation
then uses the discriminator to evaluate whether a signal x(t) is from the training set
data or not by analysing, Ac, the discriminator signal.

signals and generated signals. In an adversarial framework, the two models are
trained together.

In a basic adversarial framework, the latent space is chosen to be stochas-
tic without any structure enforced. The implication is that the latent space is
uninformative. However, the adversarial framework makes an additional measure
available in the form of the discriminator.

A generative adversarial network (GAN) discriminator can be informative
in condition monitoring applications [13]. However, an informative latent space
would supplement adversarial learning approaches. Ref. [12] extended on the
work of Ref. [13] with latent space conditioning semi-supervised learning for
CBM applications. Improvements to construct informative latent spaces for
GANs include adversarial latent autoencoders [39].

5 Latent Representations

Recall, the latent representations given the same data are not all equivalent.
Let us consider concrete manifestations of latent representations using a foun-
dational example. Since faults or environmental and operating conditions can
manifest in several variations from a nominal signal, e.g. variations in ampli-
tude, frequency, phase, and offset, we consider a simple sine wave signal with
amplitude magnitude variation (between 1 (black) and 5 (white)) as shown in
Fig. 4. A low-frequency signal over 10 s is purposefully constructed for clarity.
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Fig. 4. Foundational example of amplitude magnitude change in a sine wave signal
from 1 (black) to 5 (white).

(a)

(b)

(c)

Fig. 5. Latent representations for the amplitude variation from 1 (black) to 5 (white)
of the sine wave given as (a) stochastic, (b) entangled and (c) untangled.
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Let us focus on finding latent representations highlighting the variation in
amplitude magnitude (given by the colour variation of the data points from black
(amplitude magnitude of 1) to white (amplitude magnitude of 5)) for the sine
wave. We depict a two-dimensional latent space representation for a stochastic
latent space in Fig. 5(a), entangled latent space in Fig. 5(b) and untangled latent
space in Fig. 5(c).

Given, we obtain a stochastic latent space signal, as the amplitude varies in
the sine wave. It is clear that the stochastic latent space signal does not inform
the amplitude variation, i.e. the latent space is uninformative. Suppose we would
instead obtain an entangled latent space signal, as the amplitude varies in the
sine wave. The entangled latent space signal does contain some information of
the amplitude variation. In this case, some analysis may be required to interpret
the amplitude variation from this entangled latent signal. Lastly, the untangled
latent space signal informs the amplitude variation independent of any other
variation in the latent signal, resulting in an informative latent signal requiring
no additional or minimalistic processing for analysis and interpretation.

Given a condition monitoring problem, where damage is variance or ampli-
tude driven (e.g. modulation due to bearing impacts), we may find similar per-
formance between reconstruction focussed (e.g. SSA, AE or VAE) and latent
focussed autoencoding (e.g. ICA or β–VAE) as the variance is a good indepen-
dence measure for damage in this example. Here, we will obtain an entangled
or untangled latent space depending on the additional variations in the signal.
However, should damage manifest weakly in the signal’s variance, we may find
that untangled latent spaces are restricted to latent focussed autoencoding. An
untangled latent space is also critical in CBM under the effects of time-varying
environmental and operational conditions (EOCs). It allows for informative time-
varying components to be identified and isolated [12,13], or uninformative com-
ponents to be identified and suppressed.

6 Conclusions

This study explored the role of untangled latent spaces obtained with semi-
supervised or unsupervised learning. An infinite number of latent spaces exist,
of which only a fraction are informative. Significant effort is required to obtain an
untangled and informative latent space. However, the additional latent signals
available for analysis given an untangled and informative latent space make this
endeavour all worthwhile. In some cases, the variance may be a good proxy for
statistical independence, given that the fault of interest manifests in the variance
of a sensed signal. In these cases, a reconstruction-focused learning strategy may
result in a partially untangled latent space that is informative. However, should
the fault of interest not manifest in the signal variance or under time-varying
operating conditions, then a latent focussed learning strategy is imperative to
obtain an untangled and informative latent space.
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Abstract. The application of a differential mechanism is widespread
in automotive applications. Its importance stems from the fact that a
vehicle cannot take a curve safely without the presence of the differen-
tial. Deterministic dynamic analysis can be misleading due to the pres-
ence of uncertainties in the system. Such study can lead to catastrophic
events since the natural frequencies are sensitive to errors in measure-
ment, assembly lines or parameter modellings. In this case, resonance
can occur, which may jeopardize the main purpose of using the system.
Thus, it is fundamental to take into account the uncertainties in the
system. In this chapter, the modal analysis of the differential system
is investigated with the presence of uncertain parameters. The polyno-
mial chaos expansion is used to represent the uncertain parameters. The
inverse power method (IPM) is utilized to solve the stochastic eigen-
value problem. Besides, the effects of the uncertain parameter on the
natural frequencies and the modal properties are scrutinized. A perfect
match is found between the results determined by the IPM and that of
Monte Carlo method. This study highlights the main dynamic features
of the system, and it can provide important insight into the design and
vibration control of the differential system.

Keywords: Automotive differential · Modal analysis · Straight bevel
gear · Inverse power method · Natural frequencies

1 Introduction

The presence of a differential mechanism in automotive applications is inevitable
due to the fact that it allows a vehicle to take a curve without posing the axle
under excessive stress. Its vitality comes at the expense of toughness in ana-
lyzing the dynamic properties of the system due to its unique configuration.
Such system has two planet gears that possess two angular velocities about two-
nonparallel axes. To make the matter worse, some physical parameters of the
system cannot be attributed to deterministic values. The prediction of the modal
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properties of the mechanical system with deterministic parameters is straightfor-
ward. Although this kind of study could help us to determine the unique features
of the dynamic behavior of the system, it gives us only partial knowledge of the
dynamic behavior in question because we don’t have any clue about how the sys-
tem will behave if the deterministic parameters are assigned to different values.
Thus, uncertainties in some parameters should be taken into account in order to
determine the dynamic properties of the system that accurately reflect reality.

In contrast to the parallel gear systems [1–7], there is scarcity of the scientific
papers that have tackled the dynamic properties of the mechanical system made
up by a set of bevel gears.

Driss et al. [8] scrutinized the dynamic properties of the two-stage straight
bevel gear system with and without defects. In their studies, the Lagrange-
Euler formulation has been used to derive the dynamic equations. Accurate
descriptions of the geometric features of the straight bevel gear have been used
to describe the variation of the contact point along the spherical involute.

Lafi et al. [9] have analyzed the same system, but the mesh stiffness for
the straight bevel gear has been determined by means of the slice theory and
potential energy method. Besides, the mesh stiffness function has been assumed
as time-varying uncertain parameter. The non-probabilistic interval method has
been used to investigate the effects of the uncertain time-varying mesh stiffness
in the dynamic properties of the system.

Morselli et al. [10] proposed the reduced and detailed dynamic models to
simulate four types of differential. The aim of the detailed model is to simu-
late and to scrutinize the internal phenomena that can significantly modify the
differential dynamics. On the other hand, the purpose of the reduced model is
tailored only to highlight the essential features of the differential. The authors
used the reduced model to compare the four differentials dynamically.

Shi et al. [11] have conducted design analysis on a differential bevel gear
unit under light torque condition and investigated its NVH features. Wang and
Liu [12] have scrutinized the differential system to investigate its strength and
capability under load. The authors used dynamic software LS-Dyna to inves-
tigate gear strength. Safarov et al. [13] have conducted a study on the way
of adjusting the satellites and gears. To do so, the authors used the universal
method.

Bond graph modeling technique [14–17] has been used many times in scientific
articles in order to derive the equations of motion for differential.

Lafi et al. [18] have investigated the dynamic properties of the simple config-
uration of the differential system. The analytical expression of the mesh phasing
relation has been derived. The dynamic equations have been derived by means
of the newton-Euler formulation. The assembly error of the planet has been
incorporated in the mechanism to investigate its effect on the dynamic response.
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The aim of this chapter is twofold. The first is to derive the dynamic modeling
of the such system by means of Lagrange-Euler method. The second is to use the
inverse stochastic method to scrutinize the stochastic eigenvalue problems and
to investigate the natural frequencies of the system with the presence of various
uncertain parameters.

2 Dynamic Model of the Differential Mechanism

The differential system studied in this chapter is composed of a set of straight
bevel gears. The kinematic representation of the system is depicted in Fig. 1.

Fig. 1. Kinematic representation of the differential mechanism

To facilitate the comprehension of the mechanism, the system has been dis-
mantled in four blocks. The wheel (11), the gear (12) and the shaft (1) linking
them together make up the first block. The second block is composed of the
carrier to which two planets are attached and the gear (21). The block (3) and
(4) have identical components in order to make sure that even torque must be
distributed equally between the two side wheels (denoted by the wheel (32) and
the wheel (42)). Each of them consists of a wheel, a gear and a shaft that make
them attached.

The lumped parameter of the system is represented in Fig. 2.
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Fig. 2. Lumped parameter of the differential model

Due to the presence of various deformed elements in the system, the system
possesses 39 degrees of the freedom. The bearings supporting various blocks
in the system have been represented by the three springs placed along three
directions. For each gear meshing process in the system, the elastic liaison that
represents the contact between the gear teeth is represented by the spring acting
along the line of action and perpendicular to the active surfaces of the gear teeth.
The spring in question behaves as mesh stiffness that tackles the variation of the
number of the gear pair in contact. The mesh stiffness for the straight bevel in
this chapter has been calculated by dint of the potential energy method. The
proportional damping method is used in this chapter so there is no need to depict
the damping symbol in Fig. 2. The trajectory of a vehicle can have significant
impact on the dynamic behavior of the system. For the reason of conciseness,
the analysis of the system will be conducted for the case in which the vehicle is
taking a curve.

3 Dynamic Equations of the System

The Lagrange-Euler formulation has been used to derive the dynamic equations
governing the motion of the mechanism. The dynamic equation in matrix from
is written as follows:

Mq + Cq + (K (t) + Ks)q = Fext (1)
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Where: the generalized coordinates of the differential mechanism are listed in
vector q that can be written:

q = [q1,q2,q3,q4] (2)

qj represents the generalized coordinates collecting the degrees of the freedom
for block (j).

M denotes the mass matrix that collects all masses of the components of the
system. The time-varying mesh matrix is denoted by K (t) while the bearing
stiffnesses and the torsional stiffnesses of the shafts are listed in the matrix Ks.
The damping matrix is denoted by C.

4 Modal Analysis of the Differential System with
Uncertainties

Eigenvalue analysis is a fundamental step in the dynamic analysis of a system.
Its importance stems from the fact that natural frequencies of the system can
be revealed, which can enlighten the engineers about the critical speeds that
should be avoided. Presently, the eigenvalues and eigenvectors can be computed
easily for deterministic problems. On the other hand, in various cases, physical
features are not deterministic. Uncertainties can be incorporated in the mass,
geometries, stiffness and other features in the structures. Such uncertainties may
induce deleterious issues such as resonance occurrence. That is ascribed to the
fact that the impact of the uncertainties is generally unclear. Safety assessment
of structures is one of the main reasons to analyze the modal analysis with uncer-
tainty. Once the uncertainties are introduced in the physical structures of the
system, it will propagate to the output of the system through its mathematical
formulation. The computation of these random results is generally denoted as
stochastic analysis. To do so, the analysis in question computes the statistical
feature of the stochastic system outputs in the form of their mean values and
standard deviations.

4.1 Representation of the Random Variables

In this paper, the bearing stiffnesses, mesh stiffnesses and masses of the compo-
nents making the system are considered as random variables. Their expressions
can be written as:

ki (θ) = k0,i + σb
i θ.

ki (t, θ) = kmean,i (t) + σi (t) θ.

mi (θ) = m0,i + σm
i θ.

(3)

where: k0,i, kmean,i (t) and m0,i stand for the mean value of the uncertain bear-
ing stiffness, the uncertain mesh stiffness and the uncertain mass respectively.
σb

i , σi (t) and σm
i are the standard deviations of the uncertain bearing stiffness,

the uncertain mesh stiffness and the uncertain mass respectively. Subscript i
indicates the index of the uncertain parameter in the system. The uncertain
parameters in Eq. 3 are written in the function of a set of random variables
θ = {θi}i=k

i=1 .
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4.2 Response Surface by Polynomial Chaos Expansion

In this chapter, the approximation of the stochastic response is achieved by Her-
mite polynomial function. Therefore, a random response surface Y (θ) is gener-
ally written in the function of a random variable as can be seen in the following
expression:

Y (θ) =
P∑

i=0

yiψi (θ). (4)

ψi (θ) stands for ith basis function modeled by Hermite polynomial of the random
variables (θ). yi denotes the deterministic coefficient that must be determined
in order to compute the response surface. It is important to remember that
hermite polynomials are a set of polynomials that two different polynomials are
orthogonal to each other with respect to W (θ) as can be seen in the following
expression: ∫

D

ψi (θ)ψj (θ)W (θ) dθ =
〈
ψ2

i (θ)
〉
δij . (5)

Where D stands for the domain of standard normal random variable
(−∞ < θi < +∞), and δij denotes the Kronecker-Delta property.

If Hermite polynomials are utilized as basis functions, the expression of
weight function W (θ) which stands for the probability density function of the
standard normal distribution [19] is written as:

W (θ) =
1√

(2π)n e− 1
2 θT θ (6)

The general expression of hermite polynomial is written as:

ψn (θ) = (−1)n
e
{ 1

2 θT θ} ∂ne{ 1
2 θT θ}

∂θ1...∂θn
(7)

These orthogonal basis functions must satisfy the following equation:

〈ψm (θ)〉 =
∫

D

ψm (θ) W (θ) dθ = 0 for m = 1, 2, ....., p (8)

The expression of the standard deviation and the mean of the stochastic response
Eq. 4 can be written as [19]:

μY = E [Y ] = 〈Y 〉 = y0 (9)

σY =
√

var [Y ] =
√〈

(Y − E [Y ])2
〉

=

√√√√
p∑

i=1

y2
i 〈ψ2

i (θ)〉 (10)

After representing the input random variable and showing important parameters
used to model the stochastic system, we move on now to present the stochastic
eigenvalue problem.
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4.3 Stochastic Eigenvalue Problem Formulation

The general eigenvalue problem is given by:

Ku = λMu (11)

K stands for a deterministic stiffness matrix, and M denotes the deterministic
mass matrix of the gear system. λ stands for an eigenvalue of the system while
u denotes the corresponding eigenvector. In order to simplify the analysis of the
system, the previous Eq. 11 can be written as:

Au = λu (12)

Incorporating the uncertainties in the system can alter the expression of the
eigenvalue problem. Its new expression is defined as:

Ā (θ) ū (θ) = λ̄ (θ) ū (θ) . (13)

The new expressions of the matrices, the eigenvalue and the eigenvectors are
written in the function of their deterministic values along with Hermite orthog-
onal polynomials and random variables.

Ā (θ) =
n1−1∑

i=0

Aiψi (θ), (14)

ū (θ) =
n1−1∑

i=0

uiψi (θ), (15)

λ̄ (θ) =
n1−1∑

i=0

λiψi (θ). (16)

Superscript (̄) denotes the expression of the uncertain parameter in the function
of hermite polynomials and random variables.

The parameter n1 can be determined as follows:

n1 =
(N + k)!

k!N !
(17)

Where: k stands for the number of random variables while N denotes the order
of polynomial chaos expansions.
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Plugging the above equations into the generalized stochastic eigenvalue prob-
lems, it gives the following expressions:

n1−1∑

i=0

Aiψi (θ)

⎛

⎝
n1−1∑

j=0

ujψj (θ)

⎞

⎠ =
n1−1∑

i=0

λiψi (θ)

⎛

⎝
n1−1∑

j=0

ujψj (θ)

⎞

⎠ (18)

Then, ψt (θ)W (θ) dθ should be multiplied in both sides. After simple simplifi-
cation, the updated form of the above equation is written as:

n1−1∑

i=0

n1−1∑

j=0

Aiuj 〈ψi (θ)ψj (θ)ψt (θ)〉 =
n1−1∑

i=0

n1−1∑

j=0

λ
′
uj 〈ψi (θ) ψj (θ) ψt (θ)〉

where t = 0, ......., n1 − 1.

(19)

The corresponding eigenvectors should be normalized so that:

uT
j

(θ)uj (θ) = 1. (20)

The matrix form of the above equations is written as :
⎡
⎢⎢⎢⎢⎣

A
′′
00 . . . A

′′
0(n1−1)

.

.

.
.
. .

.

.

.

A
′′
(n1−1)0 . . . A

′′
(n1−1)(n1−1)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u
′
0
.
.
.

u
′
(n1−1)

⎤
⎥⎥⎥⎥⎦

=

(n1−1)∑
i=0

λ
′
i

⎡
⎢⎢⎢⎢⎣

c
′′
i00I . . . c

′′
i0(n1−1)I

.

.

.
.
. .

.

.

.

c
′′
i(n1−1)0I . . . c

′′
i(n1−1)(n1−1)I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u
′
0
.
.
.

u
′
(n1−1)

⎤
⎥⎥⎥⎥⎦

.

(21)
where:

A
′′
tj =

n1−1∑

i=0

A
′
i 〈ψi (θ)ψj (θ)ψt (θ)〉

cijt = 〈ψi (θ) ψj (θ)ψt (θ)〉
(22)

The stochastic eigenvectors should be normalized such as:

ūT
j (θ) ūj (θ) = 1 (23)

Same as Eq. 19, multiplying both sides by ψt (θ) W (θ) dθ, and integrating the
above equation from −∞ to +∞ yields the following expression.

n1−1∑

i=0

n1−1∑

k=0

uT
j,iuj,k 〈ψi (θ)ψk (θ)ψt (θ)〉 − 〈ψt (θ)〉 = 0 t = 0, 1, 2...... (n1 − 1) .

(24)
The above Eqs. 19 and 24 can be solved by means of Newton-Raphson method.
However, it poses difficulty in the sense that how to solve it. The difficulty stems
from the fact that nonlinear equations are very elusive to solve especially about
predicting the initial guess of the nonlinear equations.
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initialize: uo,A

The deterministic in-
verse power method

Stochastic inverse
power method

Stochastic Wielandt
deflation method

i=i+1

i > N

end

yes

no

Fig. 3. The algorithm of the stochastic inverse power method and the wielandt deflation
method.

Alternatively, the stochastic inverse algorithm along with Wielandt deflation
method will be used to solve the nonlinear equations. By means of that algorithm,
the initial guess can be bypassed. What follows is the account of the proposed
algorithm used to solve stochastic eigenvalue problem.

4.4 Stochastic Method to Solve Stochastic Eigenvalue Problem

As aforementioned, the inverse power method along with Wielandt deflection
method can be used in order to determine the stochastic eigenvalues without
resorting to predict the initial solution.

Figure 3 shows the diagram of the algorithm to solve stochastic eigenvalue
problem.
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To do so, two sub-algorithms should be used simultaneously. The first one
is the stochastic inverse method. Its role is to determine the minimum random
eigenvalue as shown in Fig. 4.

initialize: uo,A

Step1: λ
′(q+1)
t = 1

〈ψ2
t (θ)〉

n∑
i=0

n∑
j=0

n∑
k=0

u
′T (q)
i A

′(q+1)
k u

′(q)
j 〈ψi (θ) ψj (θ) ψk (θ) ψt (θ)〉

Step2:

⎡

⎢⎣
Ω00 . . . Ω0n

...
. . .

...
Ωn0 . . . Ωnn

⎤

⎥⎦

⎡

⎢⎢⎣

u
′(q+1)
0

...
u

′(q+1)
n

⎤

⎥⎥⎦ =

⎡

⎢⎣
ξ0
...

ξn

⎤

⎥⎦

Step3: u
′(q+1) →

n+p1∑
i=0

u
′′(q+1)
i ψi (θ)

Step4: ε =

∣
∣
∣V

(q+1)
λ −V

(q)
λ

∣
∣
∣

∣
∣
∣V

(q)
λ

∣
∣
∣

q=q+1

ε > ε∗

Memorize: λ∗
i ,ui

∗

yes

no

Fig. 4. The algorithm of the stochastic inverse power method.

In order to determine the other values, the dimension of the matrix should
be reduced, and the stochastic inverse power should be re-used once again to
determine the minimum eigenvalue of the new matrix as shown in Fig. 5.
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Fig. 5. The algorithm of the stochastic Wielandt deflation method.

The algorithm will work like that until reach the final eigenvalue.
The algorithm is thoroughly described in [20].

5 Numerical Results

In this section, the modal properties of the differential bevel gear with uncer-
tainties will be scrutinized. The eigenvalue problem will be solved by means of
the stochastic inverse method. It is important to analyze the eigenvalue of the
system in hopes that the system will bypass resonance from the occurrence.
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Table 1. Essential parameters of the differential mechanism

Parameters Block (1) Block (2) Planet(i) Side block

Rotational stiffness of the shaft (j)

kθ (N m rad−1 × 105)

3 – – 3

Axial stiffness of bearing (j) kp
j

(N m−1 × 108) p ∈ {x, y, z}
8 – – 8

Number of the teeth of gear (ji) Z12 = 42 Z21 = 52 Zpi = 18 Z31 = 22

Tooth width (m) × 10−3 W = 40 W = 40 W = 20 W = 20

Mass of the block (j) (kg) m1 = 21.072 m2 = 24.8160 mp1 = 2.8 m3 = 18.4

Rotational inertia of block (j)

(kgm2)

I12 = 7.2e − 2 I21 = 0.1693 Ip1 = 0.01 I31 = 0.024

External torque (N m) T11 = 100 – – T31 = −61.9048

Table 1 lists all essential parameters of the system. When the uncertainty
is incorporated in the differential system, it will propagate to the outputs of
the system. Thus, the eigenvalues of the system will be regarded as random
parameters. As mentioned in the previous sections, the uncertainty has been
incorporated into the bearing stiffnesses, mesh stiffnesses and the masses of the
components making up the system whose expressions are written in Eq. 3.

In this paper, the standard deviation of each uncertain variable is assumed
to be equal to 10% of the mean value of the uncertain parameter.
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Fig. 6. Comparison between PDF of λ2 calculated by Polynomial chaos expansion and
that of λ2 calculated by Monte Carlo method
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The uncertain outputs are represented by their probability density functions
and their mean values. For this reason, the stochastic eigenvalues and their corre-
sponding eigenvectors will be depicted by means of their probability distribution
functions. Their mean values will be represented with respect to the variation of
the random variable. To this end, two method will be used.

The first is the polynomial chaos method, and the second is the well-known
Monte Carlo method.

The latter method is used in this paper as reference method to test the
accuracy of the polynomial chaos expansion method used to handle the gear
systems with random variables. Monte Carlo Simulation is regarded as a sta-
tistical method applied in dynamic modeling of a gear system that cannot be
solved easily due to the interference of a random variable. The simulation is
based on the repeated random samples to yield numerical results. It can be used
to assimilate the influence of uncertainty and randomness in gear models.

Figure 6 presents the probability distribution function of the eigenvalue λ2

that is determined by two methods.
It is safe to conclude from the data depicted in Fig. 6 that there is a perfect

match between the results derived from the proposed method and that of Monte
Carlo method.

The perfect match can only occur when the order of polynomial is higher
enough. Thus, the higher the order of polynomial is, the more accurate the
result is.
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Fig. 7. The variation of the eigenvalue λ2 with respect to the random variable.



Modal Analysis of the Differential Bevel Gear with Uncertainties 63

The analytical expression of the stochastic eigenvalue λ2 can be written as:

λ2 (ξ) = 9.105e + 06ψ0 (ξ) + 2.06e + 04ψ1 (ξ) + 1.19e + 03ψ2 (ξ) + 7.123e + 02ψ3 (ξ)
(25)

The variation of the eigenvalue λ2 with respect to the random variable ξ is
represented in Fig. 7. This study can be used to analyze the sensitivity of the
eigenvalue λ2 with respect to the uncertain parameters.

6 Conclusion

The stochastic eigenvalue problem of the differential system has been scrutinized
in this chapter. The uncertainty has been incorporated in the mean values of
the mesh stiffness, the bearing stiffnesses used in this system and masses of
various components making up the system. We have found that the eigenvalue
problem has become difficult to be solved by conventional method. Thus, we
have proposed the inverse power method to achieve this aim. First of all, we
have determined the probability density function of the second eigenvalue of the
system. The obtained result has been compared with the result derived by Monte
Carlo method and we have found a perfect match between them, which makes
the proposed the algorithm adequate to solve stochastic eigenvalue of the gear
system. However, the order of polynomial chaos expansion can play significant
role in increasing the accuracy of the analysis. We have found out also that the
eigenvalue of the system is very sensitive to the random value, which sheds the
light on the importance of analyzing the dynamic properties of the system with
taking into account the uncertainties.
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Abstract. The road excitation is one of the major forces which act on the vehi-
cle and affect the passenger’s comfort so it constitutes a crucial field of interest
when suspension systems are designed. Hence, identifying this type of excitation
remains very benefiting since it contributes to study the dynamic behavior of the
vehicle and to apply a controller law in order to ensure the passenger comfort.
Direct recognition techniques (longitudinal profile analyser or laser sensors…)
of the road profile are costly, thus, it is necessary to find other methods such as
numeric ones to recover the road disturbance. In this paper, the inverse problem
theory is employed to pick out the road profile disturbance applied to vehicle. This
proposed technique, known as the Independent Component Analysis (ICA), can
recreate initial excitation sources by using physically measurable signals named
observed signals of the system under study. These signals are obtained numeri-
cally in this study by using the Newmark approach. Starting from these dynamic
responses, the ICA algorithm is applied to a non-linear vehicle model to identify
the road excitations. The performance of this technique is studied using some cri-
teria which are the relative error and the MAC number. The obtained results show
a good relevance between the original signals and the estimated ones.

Keywords: Non-linear vehicle model · Road excitation · Inverse problem

1 Introduction

The effect of the road excitation on the suspension’s performance has been the center
of the attention of various scientific papers. One of them is: Hunt (Hunt 1991) has
scrutinized the dynamic response of a vehicle that is subjected to the random excitations.
Furthermore, E. Duni (E. Duni et al. 2003) have investigated the dynamic behavior of
a full vehicle model submitted to different types of road excitations through the use of
finite element method. So, in order to analyze the dynamic response of a vehicle under
real condition, the road profile excitation should be identified accurately in order to its
effect on the ride quality and passenger’s comfort (Yan 2012). Kim (Kim et al. 2002)
have measured the road roughness directly by means of visual inspections. The Monte

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hammami et al. (Eds.): MOSCOSSEE 2021, ACM 20, pp. 65–74, 2022.
https://doi.org/10.1007/978-3-030-85584-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85584-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-85584-0_7


66 D. Ben Hassen et al.

Carlo technique (Harris et al. 2010) has been used to estimate the road profile. Fauriat
(Fauriat et al. 2016) proposed the ‘Augmented Kalman filter’ to derive the road profile
excitation. Mariem (Mariem Miladi et al. 2019) showed that ICA technique has higher
efficiency than other techniques in road identification. The main aim of this paper is to
use the ICA to recover the excitation of the road profile for a non-linear full vehicle
model. This technique was commonly used to evaluate the excitation force in many
studies (Dhief et al. 2016, B. Hassen et al. 2017, Taktak et al. 2012). Its main advantages
are that it is simple to be implemented and has a feature of a real time identification
process. This paper is organized as follows: the first section shows the two axle vehicle
model along with its mathematical formulation. Then the applied method, the ICA, is
modeled. In the third section, the obtained results are showed and finally the efficiency
of the method is confirmed by means of some performance criteria.

2 Two Axle Vehicle Model

The figure (Fig. 1) depicts the full dynamic model of the car studied in Meywerk (2015).

Fig. 1. Two axle vehicle model
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This model consists of four masses. In order for this kind of modeling to yield a
good insight of the actual vibrations of a real vehicle, the following assumptions should
be included:

– The road disturbance is evenly applied to the right and the left wheel. The vehicle is
considered to have symmetrical inertia features (Meywerk 2015).

– The excitations applied to the rear wheels h2(t) are taken identically to those on the
front wheels h1(t), with a short delay as it is mentioned in Fig. 2.

This model is described as follows:

– mw1 and mw2 stand for the masses of the wheels. They are linked to the road by means
of two non-linear springs denoted as kw1 and kw2. The deflections of the two masses
mw1 and mw2 are denoted as zw1 and zw2 respectively.

– zb1 and zb2 represent the vertical displacement of the suspension systems. These
suspensions are composed by non-linear stiffness’s kb1 and kb2 in parallel with the
two dampers are denoted bb1 and bb2.

– zb is symbolized as the center of gravity’s displacement
– ϕb denotes the pitch angle.
– zd stands for the vertical displacement of the driver’s seat.

Taking into account the assumptions described above, zb1 and zb2 are expressed as
follows:

zb1 = zb − l1ϕb (1)

zb2 = zb + l2ϕb (2)

And the coordinate zs is expressed as:

zs = zb − lsϕb (3)

– The non-linear Spring’s excitations are expressed as follows:

Fb1 = kb1�l + β1kb1�l2 + β2kb1�l3 (4)

and

Fb2 = kb2�l1 + β1kb2�l21 + β2kb2�l31 (5)

Where:

• �l stands for the deflection between zb1 and zw1 in Eq. (4) and�l1 is written in Eq. (5)
as the deflection between zb2 and zw2.

• β1, β2 represent two non-linear constants (Li et al. 2011) as β1 = 0.1 and β2 = 0.4
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For the tire, it is designed as a non-linear spring k2. The expression of the non-linear
tire stiffness is taken from Li et al. (2011) as:

Fw1 = kw1�l3 + β3kw1�l23 (6)

And

Fw2 = kw2�l4 + β3kw2�l24 (7)

Where:

• �l3 is the difference betweenkw1 andh1(t) inEq. (6) and �l4 represents the difference
between kw2 and h2(t) in Eq. (7).

• β3 is the non-linear coefficient of the tire. Its value is taken from Li et al. (2011):

β3 = 0.01 (8)

So the equations of motion of the half vehicle model can be written in a matrix form
as: (Ref CMSM DORRA°)

[M]
{
Ẍ

} + [C]
{
Ẋ

} + [K]{X} + {FNL} = {F} (9)

Where {X}, {
Ẋ

}
and

{
Ẍ

}
are respectively displacement, velocity and acceleration

vectors. [M] is the mass matrix [C] is the damping matrix and [K] depicts the stiffness
matrices of the studied system. {F} is the excitation force vector due to road disturbance.
{FNL} is the non-linear spring force vector.

M =

⎡

⎢⎢⎢⎢⎢
⎣

md 0 0 0 0
0 mb 0 0 0
0 0 Jb 0 0
0 0 0 mw1 0
0 0 0 0 mw2

⎤

⎥⎥⎥⎥⎥
⎦

K =

⎡

⎢⎢⎢⎢⎢
⎣

ks −ks ksls 0 0
−ks ks + kb1 + kb2 −ksls − kb1 l1 + kb2 l2 −kb1 −kb2
ksls −ksls − kb1 l1 + kb2 l2 ksl2s + kb1 l

2
1 + kb2 l

2
2 kb1l1 −kb2l2

0 −kb1 kb1 l1 kb1 + kw1 0
0 −kb2 −kb2 l2 0 kb2 + kw2

⎤

⎥⎥⎥⎥⎥
⎦

C =

⎡

⎢⎢⎢⎢⎢
⎣

bs −bs bsls 0 0
−bs bs + bb1 + bb2 −bsls − bb1 l1 + bb2 l2 −bb1 −bb2
bsls −bsls − bb1 l1 + bb2 l2 bsl2s + bb1 l

2
1 + bb2 l

2
2 bb1l1 −bb2l2

0 −bb1 bb1 l1 bb1 0
0 −bb2 −bb2 l2 0 bb2

⎤

⎥⎥⎥⎥⎥
⎦

F =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0

0

0

kw1 h1
kw2h2

⎤

⎥⎥⎥⎥⎥⎥
⎦

The implicit Newmark’s technique coupled with Newton Raphson Method has been
used to resolve the non-linear dynamic equations governing the motion of the system.
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A residue is computed. At each iteration k this residue has the following expression:

Rk
i+1 = [

K
] {X}ki+1 + FkNL − {

F
}
i+1 (10)

With:

[
K

] = [K] + a0 [M] + a1[C] (11)

And:
{
F
}
i+1 = {F} + [M]

(
a0 {Xi} + a2

{
Ẋi

} + a3
{
Ẍi

})

+[C]
(
a1 {Xi} + a4

{
Ẋi

} + a5
{
Ẍi

}) (12)

Where ai (i = 0..5) are the Newmark’s constants.
If the residue is not acceptable i.e. R > ε, a correction should be made for the

displacement vector as following:

{�X} =
(

∂R

∂X

∣∣∣∣∣
k

i + 1

)−1(
−Rk

i+1

)
(13)

So that the displacement will be:

{X}k+1
i+1 = {X}ki+1 + {�X} (14)

The values of the model parameters are presented in the following Table 1:

Table 1. Parameters of the studied vehicle model

Parameters Variable value Variable unit

Mass of the chassis mb = 960 [Kg]

Mass of the tires mw1 = mw2 = 36 [Kg]

Suspension stiffness kb1 = kb2 = 16000 [N/m]

Tire stiffness Kw1 = kw2 = 105 [N/m]

Suspension damping bb1 = bb2 = 100 [Ns/m]

Driver’s mass md = 90 [Kg]

Moment of inertia Jb = 500 [Kg/m2]

Driver seat’s rigidity ks = 2000 [N/m]

Driver seat’s damping bs = 10 [Ns/m]

l1 l1 = 1.8 [m]

l2 l2 = 0.8 [m]
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For the road profile excitation, a random road profile has been included in the first
wheel. For the second the same excitation with a short delay is taken (Fig. 2). This profile
is modeled according to ISO 8608 (ISO 8608) (Table 2) which classifies the profiles to
different classes based on the power spectral density (PSD) (Yan 2012).

Table 2. Road profile classification

Road Class Degree of roughness Gd(n0) (10–6 m3)

Lower limit Geometric mean Upper limit

Road A – 16 32

Road B 32 64 128

Road C 128 256 512

Road D 512 1024 2048

Road E 2048 4096 8192

The Integral White Noise method is employed to create the road roughness. It
considers that the road roughness is the issue of a filtered white noise defined by Eq. 15:

q̇(t) = 2πn0 w1(t)
√
Gd(n0)v (15)

Where: w1(t) stands for the Gaussian white noise with a variance equal to 1, q(t) denotes
the road roughness while v represents the vehicle velocity. The applied road in this paper
is a profile of type A as mentioned in Fig. 2.

Fig. 2. Road profile
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3 Identification Technique: ICA

This algorithm aims to decompose a random signal X in statistically independent com-
ponents (Dhief et al. 2016). This random signal is expressed by the following equation
(Hassen et al. 2017)

X(t) = [A]{S} (16)

Where:
A: The mixing matrix.
S: The source signals’ vector.
The ICA has to estimate A and S based only on the cognition of the vector X. This

estimation requires some assumptions and some pretreatments.
So a matrix W must be searched where the estimated signal y(t) are defined by the

following equation

y(t) = [W]{S} (17)

To find thematrixW the independence criterion are used in the sense of themaximization
of non gaussianity defined by the kurtosis (Eq. 18)

{Y} = [W]H {X} (18)

Where (.)H denotes the conjugate-transpose operator To find the matrix W the indepen-
dence criterion are used in the sense of the maximization of non gaussianity defined by
the kurtosis (Eq. 19) defined by Zarzoso and Comen (ISO 8608) article apac6344 as the
normalized fourth-order marginal cumulate defined by the following equation in order
to guarantee a non-Gaussianity distribution.

K(ka) = E
{|y|4} − 2E2

{∣∣y2
∣∣} − ∣∣E

{
y2

}∣∣2

E2
{∣∣y2

∣∣} (19)

Where E is is the orthogonal matrix of eigenvectors of E
{
XXT

}
.

For more details about this method, the reader can refer to these references (Hassen
et al. 2017; Comon 1994).

4 Numerical Results

The dynamic responses which are the deflections of the two suspensions system (Fig. 3)
are used as the observed signals for the ICA algorithm. Based on the knowledge of these
signals (Noted X1 which is equal to zb−zw1 and X2 which is equal to zb−zw2), the ICA
aims to identify the road profile excitations.
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(a) (b)

Fig. 3. Observed signals (a) X1 (b) X2

After applying the ICA, The results of the road profile estimation are presented by
the following Fig. 4:

(a) (b)

Fig. 4. Estimation of the road profile excitation (a) excitation1 (b) excitation2

Based on these results, it can be said that the ICA can identify the original signals.
The small delay and perturbation are due to the effect of the non-linearity. To study the
efficiency of this method, theMac number and the relative error are computed according
to the following equations. If theMACnumber has a value close to zero, then the obtained
results are not compliant and if it has a value close to 1, then the results are compliant.
Table 3 resumes the obtained results:

Er = 100 ∗ yi − yi
yi

(20)

MACi = (yTi yi)
2

(yTi yi)(y
T
i yi)

(21)

Where yi is the original signal and yi is the estimated one.
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Table 3. Performance criteria

MAC Relative error Er (%)

Profile 1 0.65 4.712

Profile 2 0.71 3.85

It is seen that the Mac value is near to one for the two studied signals and this shows
that the estimated profile is conformed to the original one. Moreover, the values of the
relative error confirm these results.

5 Conclusion

The proposed method ICA gives a good estimation of the road profile excitation even
with the use of the non-linear parameters. The strength of the ICA technique is that it is
applicable with no need to specific road instruments and it is inexpensive.

This method based on the inverse problem, can be used over thousands of kilometers
as a real time estimation which is rapid enough.

This identification processwill help us to choose the adequate controller law in future
work in order to ameliorate the passenger comfort.
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Abstract. In this chapter, the fundamentals of learning-based tech-
niques are introduced in a condition monitoring context. The objective is
to provide a general overview of learning-based techniques and detail how
these techniques are used in vibration-based condition monitoring. This
chapter introduces learning-based techniques and introduces the notable
distinctions between the supervised and unsupervised learning frame-
works. The distinctions between the learning-based techniques are high-
lighted as the implications of these distinctions are crucial for industrial
applicability. Specifically, the assumption of a learning-based methodol-
ogy of access to a labelled historical fault dataset is often infeasible in
industrial applications. Popular methodologies such as supervised learn-
ing, semi-supervised learning and transfer learning all require access to a
labelled fault dataset. Unsupervised learning techniques offer the oppor-
tunity to circumvent the labelled fault data requirements and provide
useful condition monitoring insights for condition inference. Under suit-
able data evaluation strategies, where the preservation of the temporal
structure present in time-series data is key, unsupervised learning offers
health indicators that can be investigated for fault detection and iso-
lation purposes. Finally, the complementary nature of signal processing
and learning-based approaches in an unsupervised learning setting is
discussed.

Keywords: Supervised learning · Semi-supervised learning ·
Unsupervised learning · Latent variable models · Learning-based
condition monitoring · Temporal latent variable analysis

1 Introduction to Vibration-Based Condition Monitoring

Condition monitoring (CM) is a research field dedicated to improving and max-
imising industrial asset productivity. The generalised CM research objective is
to develop techniques that can accurately infer a physical asset’s state to opti-
mise maintenance decision-making tasks [1]. To initialise this inference process,
data is required that captures aspects of the asset’s state. This data can be
obtained through various sensors, of which vibration data is the most prevalent
[2]. In vibration data, faults typically manifest in the signal covariates, and CM

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hammami et al. (Eds.): MOSCOSSEE 2021, ACM 20, pp. 75–86, 2022.
https://doi.org/10.1007/978-3-030-85584-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85584-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-85584-0_8


76 R. Balshaw et al.

techniques aim to use these covariates for condition inference tasks. However,
monitoring these covariates in complex applications, such as wind turbine gear-
boxes, is non-trivial [2]. In this chapter, focus is given to vibration-based CM
techniques. This chapter provides an overview of the current learning-based liter-
ature and gives a general overview of how learning-based techniques are applied
in vibration-based CM.

There are two main research categories in learning-based CM: supervised
learning and unsupervised learning. There are two general classes of CM prob-
lems that are typically addressed: categorical problems and continuous problems.
The main difference between the research categories is the assumption of access
to a set of labels y, which may be fault categories or continuous variables such
as the remaining useful life (RUL) in CM applications. However, as Schmidt
and Heyns [3] detailed, there is often a mismatch between the CM problem and
how it is addressed. For example, categorical strategies are often used to solve
continuous problems. [3] critically discussed the efficacy of supervised learning
techniques. The assumption that data labels can only originate from the class
labels in a historical fault dataset is highlighted as a clear drawback in supervised
learning tasks. Furthermore, the natural transition between healthy or faulty
states cannot be modelled using conventional supervised learning techniques.
Typical supervised learning techniques develop distinct boundaries between each
of the historical dataset fault labels. To further develop the CM discussion in
this chapter, a basic set of requirements must be detailed for CM techniques,
whereby it should be possible to:

• Estimate or infer the damage severity or level of damage.
• Identify the damaged component from the vibration data.
• Estimate the time until the asset is no longer useful.
• Deal with steady and time-varying operating conditions.
• Deal with non-damage related impulsiveness in vibration data due to harsh

operating environments.

These requirements are simple enough to isolate but are by no means trivial in
nature, as each is an investigation category [4]. To detect damage or estimate the
level of damage severity is referred to as the diagnostics problem. This approach
typically requires a health indicator (HI) to indicate deviance in the state of an
asset. To estimate the time until critical asset failure, otherwise referred to as
the RUL, is known as the prognostics problem. The diagnostics problem is often
a precursor to the prognostics problem, as some estimate of the damage severity
is required to infer the RUL [5]. The reliability requirement for operating and
environmental conditions (OECs) exists as sensitivity to OECs can significantly
hinder the CM technique’s practical applicability [6,7].

Signal processing and learning-based techniques are two dominant fields in
CM, aiming to address the requirements above [1,8]. Both of these approaches
entail i) methods, ii) training, and iii) evaluation, as shown in Fig. 1. How-
ever, the two approaches differ in focus, with signal processing techniques pre-
dominantly focusing on the methods used and how time-series data is evalu-
ated. The training component in signal processing techniques is defined through
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expert knowledge obtained through years of experience. Learning-based tech-
niques focus on the methods used and the training procedures required to max-
imise method performance.

Industrial assets are complex, and extensive knowledge and experience are
required to interpret vibration data when using signal processing-based methods.
Learning-based methods could reduce some of these requirements and have much
potential for vibration-based CM.

Fig. 1. A basic relationship model for CM methodologies. Signal processing research
is predominantly focused on the methods used and the evaluation procedure applied
to time-series data. In contrast, learning-based research is predominantly focused on
the methods used and the training procedure used.

2 Introduction to Learning-Based Techniques

In this section, an introduction to learning-based techniques is given. Note
that the umbrella term “learning-based techniques” includes statistical learning,
machine learning and deep learning as sub-concepts of the category [9,10]. It is
essential to note the differences between these sub-concepts as there is an under-
lying philosophical difference. Statistical learning uses a predefined hypothesis
and domain knowledge to formulate linear models that facilitate automatic deci-
sion making. Machine learning increases the flexibility of the model by introduc-
ing non-linear models to maximise model performance. In contrast, deep learn-
ing attempts to reduce the requirement for domain knowledge by using powerful
parametric models to learn important features automatically. Learning-based
techniques, as a type of data-driven technique, are sometimes referred to as dig-
ital twins [11]. A digital twin broadly refers to a virtual model that encapsulates
and represents a physical system. This virtual model is updated over time in an
online setting as more data becomes available from the physical system.

In learning-based applications, the two common approaches of interest are
supervised learning and unsupervised learning [9,12]. These techniques both
require access to a set of data x, but how this data is handled differs. Super-
vised learning is a framework for predicting a target label y for a given sample
x from the data distribution p(x) [13]. Unsupervised learning is a framework
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where the common objective is to perform density estimation to capture the
data distribution p(x) [9]. From a probabilistic perspective, these approaches
are fundamentally different.

2.1 Supervised Learning

In the supervised learning framework, the distribution of interest is the condi-
tional distribution p(y|x). Supervised learning exists as two sub-frameworks, a
discriminative framework that aims to model p(y|x) directly, or a generative
framework that aims to model p(y,x), and then evaluate p(y|x) using Bayes’
theorem. Although there are apparent differences between these sub-frameworks,
the end goal is still to evaluate p(y|x). The target variable y is either a discrete
or continuous variable, with the variable type dictated by the application to
categorical or continuous problems, respectively.

To use the discriminative supervised learning framework in practice, it is com-
mon to assume that a parametric discriminative function fθ(x), with parameters
θ, parametrises the conditional distribution p(y|x). This requires one to make
explicit choices for the form of this distribution [9]. This function is then opti-
mised using a historical dataset D = {X,Y}, where X = [x1,x2, . . . ,xn]T ,
Y = [y1,y2, . . . ,yn]T and N is the dataset size. This optimisation occurs by
maximising the conditional likelihood

θ̃ = arg max
θ

p(Y|X, θ) i.i.d= arg max
θ

N∏

n=1

p(yn|xn, θ), (1)

where i.i.d stands for the independently and identically distributed random vari-
ables. It is also common to maximise the log-likelihood to avoid numerical under-
flow problems and simplify gradient computations [9].

2.2 Unsupervised Learning

In the unsupervised learning framework, the distribution to be captured is p(x)
through a density estimation process. To facilitate this process, latent variable
model (LVM) methods are a cornerstone. LVMs utilise a latent variable z to
define the generative distribution p(x|z), which implies that observed data x is
conditioned on some unobserved latent variable z [9]. The data distribution is
then obtained through the marginalisation of the joint distribution p(x, z) with
respect to z

p(x) =
∫

z

p(x, z)dz =
∫

z

p(x|z)p(z)dz. (2)

For sample generation, it is common to assume that it is simple to sample from
the prior p(z). Once a latent sample z ∼ p(z) is obtained, data samples can be
obtained by sampling from the generative distribution x ∼ p(x|z). Finally, the
posterior distribution p(z|x) can also be evaluated using Bayes’ theorem.
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Two fundamental learning frameworks commonly employed in LVMs are:
i) auto-associative learning, where Principal Component Analysis (PCA) [9,14]
and Variational Auto-Encoders (VAEs) [15] are standard methods, and ii) gen-
erative adversarial learning, where Generative Adversarial Networks (GANs) are
the defacto standard [16]. The differences in these learning frameworks are illus-
trated in Fig. 4. As shown in the model training step in Fig. 4, the principle
behind auto-associative methods is to use an encoding function fφ to take data
x ∈ R

data and map it to a latent space z ∈ R
latent, and then reconstruct this

data using a decoding function gθ. The latent space is a manifold embedded
in the original data space, often assumed to be in an under-complete repre-
sentation (Rlatent < R

data) that captures the intrinsic features and important
information in the observed data [9]. This auto-encoding process is commonly
optimised using an Lp norm error objective function, where the L1 or squared
L2 norm are two typical choices [8,17–19]. It is also common to regularise the
encoding function fφ to conform to the prior p(z) [15]. Generative adversarial
learning uses two competing players in a non-cooperative game. A discriminative
function determines whether observed data is real or fake, and a generative func-
tion tries to generate realistic samples to fool the discriminative function [16].
The non-cooperative game allows each player to improve until the discriminative
function cannot distinguish between real and generated samples.

3 Learning-Based Techniques in Condition Monitoring

This section discusses and identifies the differences between learning-based
frameworks in vibration-based CM. In Fig. 2, the differentiation between super-
vised and unsupervised learning is highlighted. To use learning-based approaches
in CM, the supervised learning framework aims to perform fault classification
or RUL estimation [5,18]. In the unsupervised learning framework, the aim is
to estimate the likelihood of unobserved data from a reference distribution. It is
common to assume that this reference distribution captures an asset in a healthy
state [11].

3.1 Time-Series Data Processing

To use learning-based techniques in vibration data applications, typically, the
first step is data collection. Time-series data, however, is sampled at a sampling
rate Fs for a length of time t, and this gives signals of high dimensionality R

t×Fs .
Due to computational limitations, it is often infeasible to use an entire signal as
an input to a model. Fortunately, several processing techniques exist that alter
the form of the data presented to the model to obtain a data representation x
that satisfies computational limitations.

Manual Feature Selection: Expert knowledge can be used to extract fea-
tures from time-series data using three domains: i) the time domain, ii) the
frequency domain, and iii) the time-frequency domain. This includes, but is not
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Fig. 2. The relationship between supervised learning and unsupervised learning, given
a set of data x, where the former predicts the corresponding labels y while the lat-
ter does not. Note that the reference asset distribution p(x) is a distribution of the
available condition monitoring data for a reference asset state, and the model category
decision boundary or RUL can be obtained from both the discriminative and generative
supervised learning frameworks.

limited to: i) mean, median, maximum, minimum, root-mean-square, peak-to-
peak ratio, variance, skewness or kurtosis features ii) mean frequency, root vari-
ance frequency, spectral skewness or spectral kurtosis features, and iii) wavelet
energy or energy entropy features [8,18]. These scalar features are combined to
represent x.

Raw Time-Series Transformations: To negate the requirement for expert
knowledge during the processing stage, the raw time-series data can be used
directly. Several time-series transformations can be applied to time-series data.
These transformations aim to make time-series data accessible to the model by
reducing the dimensionality of time-series signals. Typically, time-series data is
transformed into a data matrix H by arranging time-series data into a matrix
using a model window length Lw and with a window overlap controlled by a
shifting parameter Lsft [11,20,21]. This process is given as

H[xi(n)] =

⎡

⎢⎣
xi(0) xi(1) xi(2) · · · xi(Lw)

xi(Lsft) xi(Lsft + 1) xi(Lsft + 2) · · · xi(Lw + Lsft)
...

. . .
...

⎤

⎥⎦ , (3)

where H ∈ R
Nobs×Lw and Nobs is the number of windows extracted from a single

signal. The rows of H are then used as model input vectors.

Alternative Transformations: The data matrix transformation step is often
implicit in some alternative transformations. Suppose the Fourier transform is
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used on each signal segment in the rows of H, where it is common to use the
magnitude of the complex Fourier coefficients. In that case, it can be decided
to either use the local or global Fourier coefficient magnitude content as input
to the model. For the former case, the model input data is the signal segment
frequency content, while for the latter, the input data is a Spectrogram [8,18]. It
is important to note that the local Fourier case produces vector representations,
while the global Fourier case, the Spectrogram, produces matrix representations.

Feature Scaling: After the raw time-series data is transformed, it is expected
to perform feature scaling to ensure that the learning-based model is not biased to
the magnitude of the features [9]. Standard feature scaling techniques include min-
max scaling, mean normalisation, standardisation and unit vector scaling [22].

3.2 Approaches in Supervised Learning

In the supervised learning framework, fault classification is an important research
task as it tackles point one of the requirements mentioned in Sect. 1. Many
supervised learning techniques exist in the literature to evaluate p(y|x), such as
linear discriminant analysis, k-nearest neighbours, support vector machines or
classification neural networks [9,18]. However, these techniques are dependent on
how the fault category information is reflected in x. During the initial stages of
supervised learning research, manual feature extraction practices, as detailed in
Sect. 3.1, are prevalent [18,23]. This manual feature extraction process relies on
extensive domain knowledge. Naturally, it reduces the information available for
the condition inference task, as explicit decisions are made into which features
benefit performance [18].

Deep Learning-Based Diagnosis. Although a sufficient starting point, the
feature engineering process is subject to issues such as a lack of generic feature
importance, a result of CM problem diversity, and requires expert knowledge to
discern which features are informative to a given problem. The development of
powerful computational resources naturally leads to the deep learning era, aiming
to utilise powerful network architectures to perform automatic feature extrac-
tion. This process, generally, includes a feature extraction component and a clas-
sification component, and is commonly referred to as a semi-supervised learning
framework, as shown in Fig. 3 [12,19,24–27]. The feature extraction component
is often fundamentally based on auto-associative methods as a dimensionality
reduction technique [18,19]. In this framework, as shown in Fig. 3, the training
and evaluation procedure followed is different. The latent representation of the
processed time-series data is fed to the discriminative or generative supervised
learning model to predict the asset’s categorical fault state [8,18].

3.3 The Data Labelling Problem

An immediate drawback of the supervised learning framework is the requirement
for fault labels [3,18]. Industrial assets typically operate for long periods in a
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Fig. 3. A generalised semi-supervised learning framework with automatic feature
extraction. Note that x̃recon is the model reconstruction of the input x. There is a
clear difference between model training and evaluation. During evaluation, the decod-
ing step is often disregarded, and the predicted labels ỹ are the focus.

healthy state, and there are often significant financial costs required to obtain
fault labels [18]. This is referred to in this work as the data labelling problem.

Transfer learning tackles the data labelling problem by reusing the diag-
nosis task knowledge from one asset for another asset [18]. This transfer can
occur between identical machines or between different machines. A fundamen-
tal assumption to transfer learning techniques is asset distribution overlap. It is
common to reduce the asset distribution discrepancy using some shared infor-
mation space, such that a shared classifier can be used. It is clear that transfer
learning still requires access to fault labels.

3.4 Metrics and Applications of Latent Variable Models

However, if the objective is to completely negate the requirement for fault labels,
supervised learning methods cannot be applied. Unsupervised learning methods,
such as LVMs, can capture an asset’s probabilistic representation in a healthy
condition, whereby this distribution can be used to measure any deviations in the
asset state. LVMs introduce HIs that can be used to track the departure from
the healthy asset state. In Fig. 4, the training and evaluation stages of LVMs
are shown. During the model training stage, raw time-series transformations,
as detailed in Sect. 3.1, are used to process healthy time-series data into a data
matrix with Lsft > 1. The model parameters are then optimised. During the
evaluation stage, HI measures are obtained from the model. The HI measures
are then either compared to the healthy HI distribution or evaluated to preserve
the temporal characteristics of time-series data.

A common LVM HI is the reconstruction negative log-likelihood, which mea-
sures the error between a sample x and its reconstruction x̃recon [28]. If a GAN
is used, the discriminator can be used to measure whether the observed data is
from the healthy distribution, as shown in the work of Booyse et al. [11]. These
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metrics focus on the information and covariates in the data x. However, the
latent manifold is also a representation of the healthy asset state, and thus it
is expected that damage is equivalently detectable in this space. For the latent
manifold to be informative, the latent space must be disentangled; otherwise,
the presence of damage may be hidden in the latent manifold dynamics [20].
A disentangled manifold allows the model to separate and identify non-damage
related changes, such as the operating conditions, from damage, which is crucial
for condition inference [6]. Baggeröhr [20] used a latent adversarial framework
with a Wasserstein GAN critic [29] to produce a HI on the latent space. In the
work of Balshaw [21], a set of model agnostic latent HIs were proposed that
showed that damage is directly detectable in the latent manifold.

Non-Preserved Temporal Analysis. In a conventional application of LVMs
in CM, it is common to process time-series data into a data matrix with Lsft > 1.
In the model evaluation step, the data used for model training and validation is
used to obtain time-independent HI measures and construct a healthy reference
HI distribution. The HI measures are time-independent as the segment samples
are obtained randomly from the data, and thus, time is not preserved. From
this, any new data is processed in the same manner, fed through the model and
the new HI measures are evaluated against the reference healthy distribution, as
shown in Fig. 4. Akin to hypothesis testing, HIs that lie in low healthy density
likelihood regions indicate that the asset has deviated in some way from the
reference asset state [11,20]. It is important to note that this deviation cannot
always be directly linked to damage. For example, if the asset is to operate in
an operating condition cycle that the model has not seen before, it would be
expected that the HI could indicate this deviation.

Preserved Temporal Analysis. In the work of Balshaw [21], it was shown
that LVMs could be used to isolate and identify the cause of damage. This
development arose through the realisation that the model evaluation step is
incomplete for applications involving time-series data. It was shown that by
preserving the temporal structure in time-series data during model evaluation, by
processing data into H with Lsft = 1, the temporal characteristics of time-series
data are transferred to the HIs to produce discrepancy signals, a term commonly
used in discrepancy analysis literature [3,30]. This difference is highlighted in the
HI evaluation step in Fig. 4. These HI signals can then be analysed to not only
show that faults are detectable using LVMs, but it is also possible for an analyst
to isolate the root cause of the fault in localised fault applications using signal
processing techniques. This unites signal processing and unsupervised learning
in a complementary manner, whereby signal processing enriches the LVM driven
CM inference procedure. This result highlighted that the evaluation method is
carefully considered when using time-series data, thereby bringing all three facets
from Fig. 1 to learning-based CM.
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Fig. 4. A general overview of LVM learning’s training and evaluation stages for CM
applications. Note that auto-associative learning learns both fφ and gθ while GANs only
learn gθ. Auto-associative methods typically assume that the posterior and generative
distributions are represented by Gaussian distributions [9,15]. However, GANs make
implicit distribution assumptions, which increases the flexibility of gθ as it can capture
more complex distributions [16].

4 Conclusion

Learning-based CM is an exciting and rapidly evolving field of research for CM.
However, a firm grasp on the underlying concepts of the techniques used is a
necessity for those who would like to meaningfully contribute to this field. In
this chapter, the application of learning-based techniques has been discussed for
vibration-based CM. The formulations of supervised learning and unsupervised
learning were discussed from a fundamental perspective to identify the two fields
underlying conceptual components for CM applications under the data labelling
problem.

For learning-based research, the importance of industrial applicability can-
not be understated. The dependence on fault labels for supervised learning tech-
niques cannot be realistically scaled for the industry. LVMs overcome the data
labelling problem, detect damage, and can uncover the root cause of a fault in
localised fault applications. This is achieved by preserving the temporal struc-
ture during the model evaluation stage, which is an essential deviation from
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conventional analysis methods. LVM-based CM research is an emerging field,
and there are still numerous CM requirements that need to be investigated. The
research will improve the performance, reliability and interpretability of LVMs
for CM, which could enable mainstream adoption in industry.
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Abstract. Studying thermal management of mechatronic components
presents a great challenge for researchers in several domains in the last
few decades. In most cases, classical cooling systems may not be suffi-
cient. To this end, phase change material-based heat sinks are well rec-
ommended for a passive cooling problem. In this paper, we present an
efficient thermal energy management of a PCM-based round pin-finned
heat sink that leads to provide its optimal configuration. The numerical
results compare relatively well with that of the experimental. A detailed
parametric study is based on the effect of several uncertain parameters
which are in relation with boundary conditions, geometry and materi-
als. This study leads to determine that salt hydrate has the ability to
store more thermal energy of the presented cooling system comparing
to n-Eicosane and paraffin wax. Furthermore, a heat sink with a 2 mm
pin diameter presents the optimal heat sink geometry for the charging
phase under a uniform heat flux about 2800 W/m2. Also, increasing the
input heat power leads to decrease the latent heating period and then
decreasing the ability to store a high amount of thermal energy. Finally,
the parametric study leads to determine an optimal configuration with
an efficient thermal energy behavior. Thermal performance of each con-
figuration is determined for the charging phase of the electronic device.

Keywords: Thermal energy storage · PCM-based heat sink · Finite
element analysis · Heat flux · Latent heating phase

1 Introduction

Recently, thermal energy storage presents the most important factor for
researchers in several domains, particularly in the field of mechatronics such
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A. Hammami et al. (Eds.): MOSCOSSEE 2021, ACM 20, pp. 87–95, 2022.
https://doi.org/10.1007/978-3-030-85584-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85584-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-85584-0_9


88 B. Debich et al.

as smartphones, laptops automobile and even planes. Due to the development of
new technologies, devices packages become even smaller. In fact, an overheating
of electronic components may lead to reduce their lifetime or even their failure.
For this reason, a good thermal energy management is extremely needed to avoid
its deterioration.

In this context, classical cooling methods are not sufficient. Therefore, many
methods of passive cooling by heat dissipation are developed and some of them
are based on Phase Change Materials (PCM) [1–3]. In fact, it has been con-
firmed that PCMs are more efficient particularly with components that operate
intermittently [4]. Recently, PCM-based heat sink is recommended to increase
the performance of the cooling system as well as to extend its lifetime. In fact,
PCMs are characterized by their high latent heat of fusion, high specific heat
and very small variation in volume during the phase change. It can be noted
also that PCMs have the ability to store a large quantity of thermal energy ben-
efiting from its thermophysical properties and then to release it back later. An
experimental investigation is studied by Arshad et al. [1] to ensure and improve
the functionality and reliability of the installed structures. In this study, a para-
metric analysis is proposed to ameliorate the thermal behavior of PCM-based
heat sink by changing the diameter of pin-fin as well as PCM volume fraction at
different heat fluxes. In [5,6], a Reliability-Based Design Optimization (RBDO)
studies are developed in order to determine an efficient and optimal model of a
PCM-based heat sink cooling system where 2D and 3D Finite Element Analysis
(FEA) are established respectively.

In this paper, a parametric analysis is proposed to determine an optimal
model of PCM-based round pin-fin heat sink. This study is verified and vali-
dated experimentally [1]. It consists in comparing the thermal behavior of the
proposed PCM-based heat sink for charging phase when changing: input power
level, heat sink geometry, PCM thermo-physical properties as well as its volume
fraction. Finally, an optimal and efficient configuration is then proposed and it
presents an efficient thermal energy management.

2 Studied Cooling System Model: Governing Equations

The thermal energy generated by the heat source is transmitted to all heat sink
surfaces. In fact, PCMs have the ability to absorb and store thermal energy
during the charging phase until its total melting. For the discharging phase, the
stored thermal energy will be dissipated in the ambient air by convection and
radiation.

• Energy conservation equation

PCM thermophysical properties are supposed independent of temperature. It
can be assumed that only conduction equation is considered, as follow:

∂
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Note that Cp, ρ and λ are the specific heat, the density and the thermal con-
ductivity, respectively.

The latent heat storage can be defined by the energy source term Sh due to
melting and it can be written as follow:

Sh = − ∂

∂t
(ρΔH) (2)

The sum of the latent heat ΔH and specific enthalpy hs presents the total
enthalpy of PCM:

H = ΔH + hs. (3)

And the specific enthalpy hs is mathematically defined by:

hs = hs,ref +
∫ T

Tref

CpdT. (4)

In addition, the latent heat ΔH can be defined by:

ΔH = βLf where β =

⎧⎪⎨
⎪⎩

0 if T ≤ Tsol
T−Tsol

Tmel−Tsol
if Tsol < T < Tmel

1 if T ≥ Tmel

(5)

Note that, β and Lf present the liquid fraction and the latent heat of fusion of
PCM.

• Mass conservation

∂(ρu)
∂x

+
∂(ρv)
∂y

+
∂(ρw)

∂z
= 0 (6)

Note that u, v and w are the velocity components in x, y and z directions,
respectively.

• Momentum conservation
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3 Numerical Results: Physical Description of the
Problem

A detailed 3D design is presented in Fig. 1 of the studied PCM-based round
pin-fin heat sink. It is composed by 11 × 12 pins heat sink matrix with an
overall dimension of 114 × 114 × 25 mm3. It is made from aluminum which
is characterized by its high thermal conductivity and its lower density.

Fig. 1. PCM-based heat sink model: a 3-D assembly.

To minimize thermal losses, an insulator is applied to exterior heat sink walls,
except the superior area. The top surface of the heat sink is covered using per-
spex sheet and silicon gasket for monitoring control PCM phase changes during
the simulation. Note that these parts are not taken into account in the numeri-
cal model. A three-dimensional numerical model is considered to compare trends
detected in the experimental study [1]. A constant heat flux is applied from the
heat source to the heat sink bottom.

Table 1. Thermo-physical properties of each material

Material Th. con-

ductivity

(W/mK)

Specific

heat

(kJ/kgK)

Latent

heat

(kJ/kg)

Solidification

point (◦C)

Melting

point

(◦C)

Density

(kg/m3)

Aluminum 201 0.9 - - 606.4 2700

Rubber pad 0.043 1.23 - - - 2500

Paraffin Wax 0.212 (s) 2.8 173.6 56 58 880 (s)

0.167 (l) 790 (l)
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The thermophysical properties of each material is presented in Table 1. To
study the round pin-fin heat sink behavior fulfilled with PCM, a Finite Element
(FE) computing software ANSYS is proposed. A uniform heat flux (Q = 2800
W/m2) is applied at the bottom of the heat sink.

The temperature-time profile is presented in Fig. 2 for a 3 mm pin-fin heat
sink diameter. Note that black and blue curves correspond to numerical and
experimental results respectively, throughout the charging phase under Q =
2800 W/m2.

For the charging phase, three zones can be distinguished: solid, liquid and
latent heating region.

Fig. 2. Temperature-time profile for both experimental and numerical results Q = 2800
W/m2.

It can be seen that numerical results compare relatively well with the exper-
imental data found by Arshad et al. [1]. Therefore, the parametric analysis can
be then proceeded.

4 Parametric Analysis

4.1 PCM Selection

For the PCM-based heat sink cooling technology, the melting temperature is con-
sidered the most essential factor for PCM thermophysical properties. The ther-
mophysical properties of each studied PCM material are presented in Table 2.

Figure 3 presents the temperature-time evolution measured at the bottom of
the heat sink under a uniform heat flux Q = 2800 W/m2. In this figure, ther-
mal energy performance is studied for n-Eicosane, paraffin wax and salt hydrate
presented respectively by the black, red and blue curves.
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Table 2. PCMs thermo-physical properties

Material Th. con-

ductivity

(W/mK)

Specific

heat

(kJ/kgK)

Latent

heat

(kJ/kg)

Solidification

point (◦C)

Melting

point (◦C)

Density

(kg/m3)

Paraffin Wax 0.212 (s) 2.8 173.6 56 58 880 (s)

0.167 (l) 790 (l)

n-Eicosane 0.39 (s) 1.9 (s) 237.4 35.5 36.5 810 (s)

0.157 (l) 2.2 (l) 770 (l)

Salt hydrate 0.6 2 200 27 32 1500

It can be considered that salt hydrate is one of the best PCM material com-
paring with other PCMs. In fact, salt hydrate has the ability to store more
thermal energy than other PCM benefiting from higher thermal conductivity as
well as its higher density.

Fig. 3. Temperature-time profile for the studied PCMs.

At t = 90 min, it can be clearly seen that the maximum reached temperature
for salt hydrate is about 67 ◦C and it presents the lower temperature comparing
with other ones. Then, salt hydrate will be taken as PCM for the following
sections.
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Fig. 4. Temperature-time evolution for each pin diameter variation.

4.2 Pin Diameter Variation

The configuration of the studied heat sink is a 11 × 12 round pin-finned matrix.
Figure 4 shows the temperature-time profile for each pin-fin diameter. Noting
that red, blue and green curves present the temperature evolution for d = 2
mm, d = 3 mm and d = 6 mm pin-fin diameter.

This study demonstrates that the configuration with a pin diameter of 2 mm
presents the best thermal energy behavior in term of thermal energy storage as
well as maximum reached temperature.

Fig. 5. Temperature-time evolution for different heat fluxes load.
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4.3 Power Level Variation

The temperature-time profile history is presented in Fig. 5 for different heat
loads: 2000, 2400, 2800 and 3200 W/m2. It can be noted that salt hydrate is
used as PCM. Referring to Fig. 4, it can be clearly seen that the latent heating
phase, which it the period where PCM changes from the solid state to its melting,
decreases when the heating power increases. For Q = 2000 W/m2, PCM reaches
its melting phase at t = 75 min but it ends within t = 40 min for a heat power
about Q = 3200 W/m2.

5 Adopted Parameters for the Studied Cooling System

The parametric analysis leads to investigate the thermal performance as well as
to determine an optimal design which has the ability to give a minimal reached
temperature for the charging phase. Several parameters are studied to give the
best thermal energy management. In this study, a PCM-based 11×12 round pin-
fin heat sink matrix is carried out. A parametric study shows that salt hydrate
has the ability to store a high thermal energy comparing with n-Eicosane as well
as paraffin wax. In addition, a heat sink with a 2 mm pin-fin diameter presents
the optimal heat sink geometry.

6 Conclusion

In this study, a finite element simulation of a cooling system is carried out to
quantify the thermal energy behavior of a PCM-based round pin-fin heat sink
fulfilled with PCM. This study presents the impact of parameters (PCM selec-
tion, pin diameter and input heat flux) on thermal energy performance of the
studied model. In fact, salt hydrate is considered as the best PCM which has
the ability to store more thermal energy during the charging phase compar-
ing to other PCMs (n-Eicosane and Paraffin Wax). Increasing the heat power
level has the same effect on the maximum temperature measured at the end of
charging phase. Otherwise, the latent heating phase, which is the period where
PCM changes from the solid state to its melting, decreases when the heat power
increases. Numerical results confirm the benefits of finite element simulations for
passive cooling applications especially for PCM-based heat sink case. This study
provides an optimal design and it presents an efficient thermal energy manage-
ment. An experimental study is required to ameliorate the optimal obtained
configuration and to determine all studied physical parameters of the optimal
model.
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Abstract. Swarm Robotics is a new approach to the coordination of a large num-
ber of robots inspired by nature. This approach aims to design collective behaviors
for many robots. Several researchers have tried to develop structured design meth-
ods, but unfortunately, these methods are still limited. Today, swarm robotics are
used in many fields that include agriculture, medicine, industrial, etc. One of the
most important fields that require swarm robots is surveillance. In this chapter,
we present in the first section some methods of designing swarm robot systems
by identifying swarm engineering based on a model (MBSE) and multi-agent
simulation. Then, we study the energy problem of these robotic systems and the
solution proposed by the researchers. In the second section, we present an appli-
cation for detecting oil in the sea and cleaning it using swarm robots. We will
model this application using the MBSE method with the SysML language. We
will use the different diagrams of SysML to specify the system requirements and
model the functions offered by the system. Finally, we will simulate the models on
a multi-agent tool to identify the functional and structural architecture of the sys-
tem. Throughout this approach, we check the transition from one step to another
to ensure the consistency and continuity of the method.

Keywords: Swarm robotic · SysML language ·MBSE method · Multi-agent
technology · Sustainable energy

1 Introduction

1.1 Swarm Robotics Criteria

Swarm robotics is a new approach to coordinate a group of robots inspired by social
insects (Şahin 2005). It aims to design a scalable, robust and flexible collective behav-
iors for the coordination of a large group of robots. This approach is often inspired from
social animals such as bees, ants, fish and birds (Dorigo et al. 2007). Indeed, swarm
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robotics tends to develop a robotics system that are similar to behaviors of social ani-
mals. In particular, swarm robotics systems are meant to be robust, scalable and flexible
(Camazine et al. 2003). Scalability can be defined as the ability to generate modularized
solutions to different tasks that work well with different group sizes. In swarm robotics,
scalability is promoted by local detection and communication. Robustness can be defined
as the ability to operate despite failures in individuals. In swarm robotics, robustness
is the redundancy and the absence of a leader. Flexibility can be defined as the ability
to operate under a wide range of different environments and tasks. The simplicity of
behaviors and mechanisms represent flexibility in swarm robotics.

1.2 Swarm Robotics Advantages

A swarm robotic system is characterized by its members’ autonomy. These robots must
be homogeneous. In some cases, there may be different types of robots in the swarm,
but these groups should not be too large. In addition, the number of robots in the swarm
must be large. These robots must have distributed coordination. Ultimately, robots must
collaborate to achieve or improve the performance of a primary task that cannot be
solved by a single robot since the detection range of a group of robots is wider than
that of a single robot (Navarro et al. 2013). Groups of robots can make decomposable
tasks more efficient when they use parallelism. Moreover, a single robot is unable to
operate in different places simultaneously while a group of robots can do that. Another
advantage is fault tolerance (i.e. thanks to the redundancy of the system, the task remains
accomplished despite the failure of a single robot within a group). There are also several
drawbacks of swarm robot systems, such as uncertainty about other robots’ intentions
(i.e., coordination requires knowing what other robots are doing. If this is not clear,
robots can compete instead of cooperating). Due to collisions, robots can interfere with
each other in a group. Finally, the system’s overall cost is very high since the use of more
than one robot can increase the economic cost (Arkin et al. 1998).

1.3 Swarm Robotics Applications

Several real-world issues require the application of swarm robots, such as monitoring
an environmental accident. A swarm robot system can instantly monitor and detect
hazardous events, such as a chemical spill due to its distributed detection capability. A
swarm robot system can focus on one problem. First, the swarm identifies the nature of
the problem. It mobilizes its members towards the problem’s source. Second, the swarm
forms a patch that blocks the leak using its self-assembly characteristic (Şahin 2005).

Depending on the given mission, the swarm robot systems can increase or decrease
their number of individual robots. For example, during an oil spill, a swarm robot system
will be built to contain an initial spill in the area. We will study this case in the rest of
this paper.

2 Design Methods

The design of the swarm robot system means the planning and development of a swarm
system from the initial specifications and requirements. Unfortunately, there is no precise
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and structured methodology for designing desired collective behavior through individ-
ual behaviors. The main ingredient in developing these types of systems is always the
designer’s intuition (Ammar et al. 2018).

Traditionally, many designers have used the code-and-fix approach to develop robot
swarms. It is a bottom-up method means that the developer creates and improves the
individual behaviors of the robots until the desired collective behavior is achieved.
Kazadi et al. (2007) applied the swarm engineering methodology called the “Hamil-
tonian method” to the problem of artificial physics. This methodology is used to create
swarms of predefined global properties. They apply this methodology to the problem of
artificial physics which locally creates hexagonal grids of agents. Brambilla et al. (2014)
presented a new top-down design method for swarms of robots based on prescriptive
modeling and model verification called “Property Driven Design”. This method consists
of four phases: first, the designer specifies the requirements of the robot swarm. Second,
the designer creates a normative model of the swarm. He uses model verification to
verify that this normative model satisfies the desired properties; third, the designer sim-
ulates the model and implement the simulated version to validate the developed model;
fourth, the designer implements the desired robot swarm to validate the previous steps.
Aloui et al. (2020) improved the “Property Driven Design” design method. They used
the SysML language for the specification and modeling of the Swarm robotic system.
They used SysML state machine diagrams to describe robot behaviors. Then, the robot
behavior models described with SysML are implemented with a multi-agent technique
(Guizani et al. 2017).

2.1 Model-Based Systems Engineering MBSE

In general, the model is a simplified version of a concept, relation or phenomenon to
facilitate understanding of a structure or system. In the field of swarm robotics, it is
possible to use theMBSEmethod (Model-Based Systems Engineering) to model swarm
robot systems to understand behavioral analysis, performance analysis, requirements
traceability, system architecture, simulation, testing, etc. (Mhenni et al. 2014). Model-
based systems engineering (MBSE) is a formalized methodology that is used to support
the requirements, design, analysis, verification, and validation associated with the devel-
opment of complex systems. A simplified definition ofMBSE is provided byMellor et al.
(2003) as “…is simply the notion that we can construct a model of a system that we
can transform into the real thing”. The main advantage of a model-based approach is
to determine the scope of the problem. That is, the developed robot swarm best meets
expectations when the properties are clear and complete with the models. The detailed
description of the requirements by the models reduces the risk of developing “the wrong
robot swarm”. To ensure model-based swarm engineering, the swarm developer can use
the graphical modeling language SysML. SysML is a visual modeling language that sup-
ports the specification, design, analysis, verification, and validation of complex systems.
SysML is used with different methodologies including object orientation, structured
analysis, and others (Hause et al. 2006). This language includes diagrams that can be
used to specify system requirements, system behavior, system structure, and parametric
relationships.
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2.2 Multi-Agent Simulation MAS

Recently, several researchers have started to use multi-agent systems in different fields,
such as automobile design (Guizani et al. 2015), power electronics (Hammadi et al.
2011) and aerospace design. A multi-agent system is a field of artificial intelligence (AI)
(Guizani et al. 2014) are focused on the agent and his autonomy. They defined the agent
as a computer system located in its environment and able to act autonomously in order to
achieve its design goals. The study of swarm robotic systems has been considered today
as a study of multi-agent systems. Developers of swarm robot systems use realistic
simulators to test and accelerate the development of new design methods. They use
simulators to model the interactions between robots and the interactions of robots with
their environment (Şahin et al. 2008). Luke designed a multi-agent simulation toolkit
called MASON to present a many multi-agent simulation tasks ranging from machine
learning and swarm robotics to environments of social complexity (Luke et al. 2005).
Anylogic is another multi-agent simulation tool developed by The AnyLogic Company.
It is a graphical modeling language that makes it easy to extend the simulation model
with Java code (Borshchev et al. 2002).

2.3 Sustainable Energy Efficiency of Swarm Robots

Each time the groups of robots in the swarm recharge to their maximum level. Swarm
robot systems do not estimate the energy needed for their next task. They require a
method tominimize the overall energy cost in a swarm and simultaneouslymaximize the
performance of the swarm.However, in the current literature, only a few articles consider
energy efficiency in a swarm. Labella et al. (2004) have developed an adaptation method
whichmanages the number of robots foraging in the environment. Indeed, they efficiently
use energy when needed, but they measure only the time needed to complete the mission
without measuring the amount of energy already allocated. Liu et al. (2006) focused on
energy efficiency. They modify the foraging time for each robot. Stirling et al. (2010)
have worked on flying swarms in indoor environments. They proposed a new approach
to find energy-efficient search algorithms. They noticed that the progressive launch of
the robots increases the search time and reduces the total energy consumption and the
collision rate. Chen et al. (2019) propose a method that improves the efficiency of energy
management methods. This method uses upper and lower battery very rapid thresholds.

In the next section, we will model a swarm robot application for oil spill monitoring
using the different SysML diagrams. Then, we will simulate this application on a multi-
agent tool.

3 Case Study: Oil Spill Monitoring

An oil spill in the areas has both immediate and long-term effects on the environment.
The fauna of these areas can be directly exposed: either by swimming in the oil, by
inhaling its toxic fumes, or by swallowing food affected by the oil. This exposure to
petroleum can cause serious health problems and even lead to death. Thus, researchers
are still trying to find solutions to clean up the affected environment (Şahin 2005). We
use the different SysML diagrams to model this application.
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3.1 Requirement Specification

The requirements diagram shown in Fig. 1 specifies the application requirements for
detecting environmental pollutants and cleaning them. Detecting environmental pollu-
tants requires exploring the entire environment by deploying all the robots that detect
and clean these pollutants. Cleaning should be quick and efficient using autonomous
robots.

Fig. 1. Requirements diagram

3.2 Functional Architecture

In this step, we describe the functional scenario using the different collective behaviors
of swarm robots. Figure 2 shows this scenario. First, members of the swarm begin
to explore the entire region. Then they detect environmental pollutants. Finally, they
regroup in these areas, form groups and clean up.

To model this case study, some collective behaviors of swarm robots are used:

• Collective exploration: The swarmof robots cooperatively navigates the environment
in order to explore andmonitor it. First, the swarm is initialized with random positions
and constant speeds. If the robots locate spilled oils, they send positive information
to the control center. If they detect obstacles or other robots within their reach, they
avoid the collision. Otherwise, they send negative information to the control center
indicating that there is no oil leak in that area. Subsequently, they update their speeds.

• Collective localization:Allows the robots in the swarm to find their position and ori-
entation in relation to each other by establishing a local coordinate system throughout
the swarm.

• Aggregation: Individual robots gather spatially in a specific regionof the environment.
This behavior is used to ensure that the robots are assembled in the area to be cleaned.
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Fig. 2. Descriptive model for cleaning an oil leak

• Task allocation: Assignment of tasks dynamically assigned emerging tasks to indi-
vidual robots in the swarm. Its objective is to maximize the performance of the entire
swarm system. In this case study, there are 4 groups of robots distributed throughout
the area to completely clean the contaminated area.

After identifying the functional model of the system, we simulate the model using
AnyLogic.

3.3 Swarm Simulation

In this step, AnyLogic is used as a multi-agent software tool to implement the swarm
simulation model. In this case study, we chose 100 robots to do this mission. As shown
in Fig. 3, we have divided the region into four zones according to the degree of contam-
ination: zone A and D are the two most polluted zones. So, the swarm of robots must be
directed towards them more. Zone B is the moderately polluted zone and finally, Zone
E is the smallest contaminated zone. Figure 3 gives the initial number of robots in each
zone.

Fig. 3. Initial distribution of robots in zones

Each time, the swarm of robots must return to the boat to dispose of the captured
pollutants. The initial speed of each robot is 20 km/h. In fact, we have the right to direct
the swarm by adjusting the probability values of the robots passing from the boat to
different areas. The exploration time for the whole area is 1 h, the service time in each
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area is 50 min, and the time to dispose of the pollutants in the boat is 30 min. In addition,
the robots must form swarms of 10 robots in each area. At first, robots begin to explore
the entire region to identify contaminated areas. They then regroup in these areas, form
groups and do the cleaning (Fig. 4).

Fig. 4. Simulation of an oil spill cleanup in the ocean (a): Robots explore the entire region. (b)
Robots clean the different areas

Figure 5 represents the indicators of system performance: The red curve represents
the number of robots that clean area A. This number is always greater than 15 robots.
Likewise, the green curve represents the number of robots that clean the area D. This
number is always greater than 10 robots. This means that the characteristics specified
initially have been validated (i.e., the robotic swarm is already directed towards the two
most polluted regions). In addition, the robotic swarm treated the two less polluted areas
B and E with the fewest robots. The yellow curve indicates the number of robots that
return to the boat and throw the oil into the storage tanks. The most important main step
is to contain the spill to as small an area as possible because the oil diffusion is very
rapid. Each robot swarm was made up of 10 robots that scatter throughout the region
and soak up the spilled oil.

Fig. 5. System performance indicators
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3.4 Structural architecture

In this section, the block definition diagram shown in Fig. 6 is used to define the various
components of the system. The swarm consists of a group of individual autonomous
robots. Several values are defined, such as the size of the swarm, the area covered by the
robots, the initial position and the duration of the mission.

Fig. 6. The swarm architecture

In Fig. 7, the individual robots that form the swarm are described in the block
definition diagram. Indeed, each robot consists of a movement system that ensures the
robot swimming in the sea, a power system, and a communication and control system.
At this level, the various sensors and electronic components are defined to design the
system.

Fig. 7. Block definition diagram of a swarm of robots

Finally, it is necessary to verify that the components of the system described in the
BDD correspond to the various functions of the system. The allocation matrix shown in
Fig. 8 relates each component of the system to its functions.

Finally, the swarm developer chooses the implantation system (like the ROS plat-
form) to implement this system on real robots. Researchers can realize the task of
implementation in further research and next steps.
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Fig. 8. Allocation matrix component-function

4 Conclusion

Swarm robotics is a new approach to robot coordination inspired by social insects. This
approach aims to design evolving, robust, and flexible collective behaviors for many
robots. Unfortunately, the design methods for these systems are still limited. Several
researchers have proposed approaches to simplify design techniques, but this field is
still limited.

This chapter has described swarm robotics: their main definition, their areas of appli-
cation, their design methods, and their sustainable energy efficiency. Then, we presented
the modeling and simulation methods of multi-agent systems. We modeled an oil spill
detection application using the MBSE method with SysML diagrams. Finally, we sim-
ulated this application on a multi-agent tool to determine the robot swarm’s functional
and structural architecture. The implementation of real robots and the production of
prototypes can be the subject of future papers.
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Abstract. Diagnosis and prognosis of mechanical components are important for
critical rotating machinery found in the power generation, mining, and aviation
industries. Data-driven diagnosis and prognosis methods have much potential;
however, their performance is dependent on the quality of historical data . Usually
only limited historical data are available for newly commissioned parts and for
parts that do not go through a full degradation cycle before being replaced. Physics-
based diagnosis and prognosis methods require assumptions of the underlying
physics; the governing equations need to be derived and solved; and the model
needs to be calibrated for the underlying system. Physics-based methods require
extensive domain knowledge and could have modelling biases due to missing
physics. Hybrid methods for diagnosis and prognosis of mechanical components
have the potential for improving the accuracy and precision of remaining useful
life (RUL) estimation when historical fault data are scarce. This is because hybrid
methods combine data-driven and physics-based models to alleviate the short-
comings of the respective methods. For these reasons, hybrid methods are getting
more attention in the condition monitoring community as a solution for diagnosis
and prognosis tasks. Therefore, in this chapter, we present a review of the state-
of-the-art implementations of physics-based, data-driven, and hybrid methods for
diagnosis and prognosis. The methods are organised using a condition monitor-
ing framework and contributions of various techniques are discussed. We identify
gaps in the hybrid diagnosis and prognosis field that could be the focus of future
research projects.

Keywords: Hybrid methods · Diagnosis · Prognosis · Remaining useful life

1 Introduction

Mechanical components such as bearings, gears or turbomachine blades are affected by
different degradation mechanisms. These degradation mechanisms include, but are not
limited to creep, wear, and fatigue crack growth (Cubillo et al. 2016). Remaining useful
life (RUL) is defined as the time or number of cycles the damage in a component will
remain within the specified limits set by the engineer (“ISO 13381-1” 2015). RUL is
one of the most important aspects of predictive maintenance. In predictive maintenance
strategies engineers need to know the condition of the component and the RUL of the
component tomake decisions that either (i) ensure safety against unplanned failure or (ii)
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maximise the component’s use before unnecessarily replacing the component (Saxena
2010). Condition monitoring is collection of techniques that use sensors to determine
the damage of a component while the component is in operation. It forms an integral part
of diagnosis and prognosis. Lee et al. (2018) reviewed different condition monitoring
techniques applied to rotating mechanical components. The focus of this review was
on vibration sensors and acoustic emission sensors. According to the review, vibration-
based condition monitoring methods are the most popular for mechanical components
(Lee et al. 2018).

Methods for estimating the condition and the RUL of mechanical components from
condition monitoring data are often categorised into either (i) physics-based, or (ii) data-
driven methods (An et al. 2015). Physics-based methods use first principles to model
the damage in the component and to model the response of the system. In contrast,
data-driven methods only rely on the available data to find relationships between the
different correlated variables and do not account for the underlying physical mecha-
nisms that generate the data. Both physics-based methods and data-driven methods have
their limitations (Khan and Yairi 2018). Physics-based can contain model errors, while
data-driven methods require historical fault data. Hybrid methods can improve existing
methods by addressing the drawbacks of the other methods.

In this chapter, we organise the contribution of different authors into a generalised
framework and highlight the applications of hybrid methods in this framework. The
objective of this chapter is to present the state-of-the-art methods in diagnosis and prog-
nosis of mechanical components. We identify areas that still need to be addressed, which
are presented in Sect. 4 of this chapter.

2 Diagnosis and Prognosis Using Condition Monitoring Data

Figure 1 presents a summary of the condition monitoring process and the various parts
that are required to estimate RUL. The most common vibration-based condition mon-
itoring techniques are broadly categorised as (i) machine learning techniques or (ii)
Fourier-based methods (Lee et al. 2018). The purpose of these methods is to relate the
characteristics of the vibration of the system to the condition of the component.

Diagnosis refers to the identification, localisation, and quantification of the damage.
Identification and localisation (otherwise known as anomaly detection) refer to detect-
ing the damaged component, the degradation mechanism, and the exact location of the
damage. Anomaly detection is usually performed in early stages of the component’s con-
dition monitoring process (Carden and Fanning 2004). Wang et al. (2016) demonstrated
the use of spectral kurtosis as an anomaly detection method for determining faults in
gear teeth from accelerometer data. Quantification refers to an estimation of the extent
of the damage (e.g., the crack length in a steam turbine blade). An accurate estimate of
the damage severity is essential for making the appropriate maintenance decisions. The
accuracy of the estimate can be quantified by its bias and its variance. The estimate’s
variance is influenced by electrical, mechanical, and environmental noise sources. The
bias is typically influenced by incorrect measurement models (i.e., the model that relates
the underlying state to themeasured data). Continuous conditionmonitoring applications
enable the implementation of Bayesian filtering algorithms to update and improve the
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Fig. 1. Condition-based maintenance process from sensor data collection to RUL estimation of
critical mechanical components

estimate of the damage severity over time (Jouin et al. 2016). The purpose of a Bayesian
filtering algorithm is to improve the diagnosis using a known degradation model, which
is critical for RUL prediction.

Prognosis, refers to the estimation of RUL. Sankararaman andGoebel (2014) empha-
sise the treatment of uncertainty when RUL is estimated and the ways that uncertainty
is represented and interpreted from the models. Physics-based models, for instance, are
deterministic in nature. Uncertainty can be introduced in these methods by implement-
ing an ensemble of physics-based methods. Data-driven methods, on the other hand,
can measure the RUL uncertainty only when enough representative data are collected.
RUL estimates from physics-based methods and data-driven methods are limited by the
models and data that capture the uncertainty of the component’s degradation.

3 Hybrid Methods for Diagnosis and Prognosis of Mechanical
Components

Lei et al. (2018) highlight that one of the largest drawbacks of data-driven methods is
the availability of run-to-failure data for mechanical components. Mechanical systems
are becoming more complex as requirements for flexible manufacturing become more
prevalent. As a result, prognostics has reached a tipping point where insufficient data are
available for training, particularly for newly commissioned components. Physics-based
models, on the other hand, require data to validate their accuracy since they are limited
by themodelling assumptions (An et al. 2015).Model inadequacy, where themodel does
not capture all of the physics of the system, could also be detrimental to the performance
of physics-based methods. Liao and Köttig (2014) suggest the use of hybrid techniques
for cases where data are scarce and simplified physics-based models are available. We
distinguish between hybrid combination frameworks (that is, combinations of different
model types for unique purpose in a conditionmonitoring framework); and hybrid fusion
models (that is, different types of models that are combined for the same purpose). An
example of a hybrid fusion model is illustrated by Coppe et al. (2012) whereby physics-
based crack growth models (e.g. Paris’ law) are combined with data-driven observations
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of the crack length to form a hybrid crack growth prediction model. Most of the models
that Liao and Köttig (2014) propose are hybrid combination frameworks. An example of
a hybrid combination framework is exhibited by Sanchez et al. (2016) for determining
the RUL of wind turbine blades. Sanchez et al. (2016) proposes a physics-based method
for determining the stiffness of a blade from the blades’ vibration characteristics and
a data-driven method for predicting the changes in the blades’ stiffness due to crack
growth at the root of the blade.

3.1 Diagnosis: Estimating Current Damage

Diagnosis requires condition indicators that unique identify the component and the
damage mechanism present in the component (Lei et al. 2018). Incorrect identification
may cause all other methods to fail and could result in unnecessary maintenance costs.
Hence, anomaly detection methods often form part of the diagnosis procedure. Serafini
et al. (2019) use simulated data to detect localised stiffness reduction of helicopter blades
from strain gauge measurements.

Physics-based diagnosismodels, model the relationship between the condition indi-
cator and the damage using a first-principles approach. Zeng et al. (2018) demonstrated
using finite element simulations that there is a comparable difference in the vibration
characteristics of a compressor rotor blade with and without a crack. Elshamy et al.
(2018) used the first three natural frequencies of a cantilever beam to uniquely identify
the depth and location of cracks. Corrado et al. (2018) expanded on this idea to diagnose
multiple cracks and the locations of these crack from only the mode shape. The methods
only use finite element simulations to construct these models.

Data-driven diagnosis, on the other hand, apply machine learning techniques to
quantify the damage mode and the extend of the damage. Here we refer to the data
as collections of the condition indicators and the damage histories. Kaloop and Hu
(2015) detected and localised faults in stayed-cable bridges from accelerometer data. Jia
et al. (2016) and Zhang et al. (2018) demonstrated the use of deep neural networks and
convolutional neural networks respectively for classifying types and severity of faults in
bearings from raw accelerometer data. The accuracy of the data-driven diagnosis method
surpasses the accuracy ofmost physics-based diagnostics models (Khan andYairi 2018).
This is because the performance of data-driven methods scale well with the size of the
data (Bishop 2006). The more data that is available, the less likely a complex model will
overfit the data.

There is however a gap in the literature for methods that diagnose the damage from
condition indicators using hybrid fusion models. In a hybrid fusion diagnosis model,
the physics-based diagnosis and data-driven diagnosis models are combined to improve
the quantification of the damage during condition monitoring. That is, after determining
the condition indicators from vibration sensors a diagnostics model should quantify
the damage and estimate the uncertainty of this quantification. There is presently very
limited literature on hybrid fusion diagnosticsmodels. Thismay be attributed toBayesian
filtering techniques that are used to update the estimation of the current damage from
known degradationmodels. As a result, most researchers deem it unnecessary to improve
the quantification of the current damage twice. We discuss these Bayesian filtering
techniques next.
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3.2 Improved Diagnosis: Bayesian Inference Methods

It has become standard practice to useBayesianfilteringmethods in conditionmonitoring
methods (Corbetta et al. 2018a, b) . The purpose of Bayesian filtering is outlined by Jouin
et al. (2016): A Bayesian filtering method is only used for improving state estimation
and has no predictive capabilities. Since, models that describe the rate of degradation
are often a function of damage in the component (Cubillo et al. 2016) it is important to
improve the diagnostics obtained from regular condition monitoring to improve RUL
estimation.

Let xk denote the hidden health state estimate at the k th condition monitoring step.
The condition indicators at all condition monitoring steps are denoted y1:k . A Bayesian
filter typically consists of two steps. Firstly, predict the probability of the health state at
the using the k th condition monitoring step with

p(xk |y1:k−1) =
∫

p(xk |xk−1)p(xk−1|yk−1)dxk−1 (1)

This is also called the Chapman-Kolmogorov equation. Secondly, update the prob-
ability distribution of the health state using all the condition monitoring measurements
until step k using Bayes’ rule

p(xk |y1:k) = p(yk |xk)p(xk |y1:k−1)

p(yk |y1:k−1)
(2)

The normalising constant is determined from

p(yk |y1:k−1) =
∫

p(yk |xk)p(xk |y1:k−1)dxk (3)

Jouin et al. (2016) show that there are analytical and approximate solutions to these
equations. Corbetta et al. (2018a, b) used particle filter-based methods for perform-
ing Bayesian filtering. Particle filters are approximate inference methods that solve the
update and predict equation, using Monte Carlo methods. These particle filters can be
degenerate under some modelling assumptions. Therefore, using non-additive process
noise is advised. Valeti and Pakzad (2017) and Zaidan et al. (2015) applied particle
filtering methods to cracks in wind turbine blades and aerospace gas turbine engines.

3.3 Prognosis: Estimating RUL

RUL is estimated from the posterior distribution of the Bayesian filter. The estimated
damage at the last condition monitoring step is propagated using a degradation model.
Cubillo et al. (2016) presented an extensive summary of physics-based degradation
models for creep, wear, and fatigue crack growth. These models are mostly derived in
the form of a differential equation

dx

dt
= f (x, u(t)) (4)

where f (x, u) denotes the non-linear function that describes degradation rate from the
currently estimated damage x, and the future operating condition u(t). The Paris-Erdogan
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law is an example of this model where x = a denotes the crack length and u(t) = �S(N )

denotes the stress amplitude as a function of the number of loading cycles, N , instead
of time, t. The equation

da

dN
= C(�K)m = C

(
F(a)�S(N )

√
πa

)m
(5)

predicts the crack growth rate from material parameters C and m, and the geometric
factor F(a). Keprate et al. (2017) presented a Gaussian processes regression surrogate
model to quickly evaluating the stress intensity factor range �K , in offshore pipelines.
Typically, finite element simulations or empirical formulas are used for determining the
stress intensity factor range using a physics-based approach. Integrating the degradation
model analytically or numerically will solve the degradation path (that is, the damage
as a function of time). When the degradation path crosses the fault-specification-limit,
the RUL is recorded.

Wang et al. (2020) present a collection of data-driven methods that do not directly
measure the condition of the component. The methods estimate the RUL from the con-
dition indicators directly using a relevance vector machine. Data-driven prognostics
methods often use run-to-failure data to predict RUL directly from condition indicators
without a diagnosis of the component. Khan and Yairi (2018) demonstrate the capabili-
ties of data-drivenmethods that can perform classification and regression from very little
understanding of the data. However, these models do not address uncertainty, which is
a critical aspect for RUL estimation.

Hybrid-fusion-based prognostics methods have become popular since the introduc-
tion of damage propagation model parameters as part of the Bayesian filter step. Coppe
et al. (2010, 2012) first introduced the concept by introducing Paris’s law parameters as
part of the hidden state to model cracks in a large plate. When introducing the model
parameters as part of the hidden state, a posterior probability distribution of the model
parameters can be inferred from regular diagnosis. Thus, a physics-based model is aug-
mented with condition monitoring data to improve the model. Corbetta et al. (2018a,
b) applied a similar technique to multi-degradation modes of fibre reinforced lami-
nates with matrix cracks and delamination. Corbetta et al. (2018a, b), further termed
these types of models as artificial dynamics models. (Chen et al. 2018; Saidi et al. 2018)
applied the artificial dynamics approaches to attachment lugs and wind turbine bearings,
respectively.

4 Future Aspects of Hybrid Methods

In Fig. 2 we present our hypothesis for the performance of hybrid techniques for RUL
predictions. Performancemetrics ofRULestimation refer to the accuracy, precision, con-
sistency and robustness of estimating the true RUL of a mechanical component (Saxena
et al. 2010); hence, we omit the scale of the dependent axis in Fig. 2. Physics-based
models that do not rely on the data for model updating do not change in performance. A
Bayesian approach to hybrid diagnosis and prognosis is expected to use physics-based
models as a prior model and augment the model with data. Thus, it is expected that
hybrid methods will have increased performance compared to physics-based models.
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Data-driven methods, on the other hand, are also expected to increase with the accu-
mulation of data. After a certain amount of data is collected data-driven methods will
meet the performance of hybrid methods since the likelihood will be very localised and
therefore most dominant in the posterior probability of the RUL (Khan and Yairi 2018).

Future applications of condition monitoring methods will require automated diagno-
sis and prognosis of critical assets. Even though data-driven models could theoretically
enable automatic diagnosis and prognosis, mechanical assets typically do not have rep-
resentative failure data available to properly train data-driven models. This means that
the machines will operate on the left end of the graph in Fig. 2 and therefore hybrid
methods will be essential for future diagnosis and prognosis tasks.

Fig. 2. A hypothesis of the performance of hybrid methods compared to data-driven and physics-
based methods.

Corbetta et al. (2017) andLe et al. (2015) investigated hybrid prognostics frameworks
for co-existing damage modes. Treatment of degradation modes on an individual basis
has some severe consequences since the co-existing damagemodes ‘fuel’ the degradation
process and consequently the component may fail earlier than predicted. Cubillo et al.
(2016) mentioned that fatigue crack growth and creep are stimulated by one-another.
Therefore, futurework in diagnosis should not only identify a single fault in a component
but also identify when multiple failures occur simultaneously.

The future development of hybrid methods is, however, not limited to improvements
of diagnosis and prognosis. Sikorska et al. (2011) presented a review of prognostics
options for industry and listed many limitations of practically implementing these meth-
ods. Most of these problems have since then been addressed. However, possible actions
that maximise the RUL of a component based on diagnosis and prognosis is still a devel-
oping field. Methods for optimising the RUL by proposing potential actions that could
stop, remove, or slow down the failure rate of the component. Gao and Liu (2021) refer
to these techniques as resilient control strategies and propose the use of RUL estimation
in control systems to reduce the rate of crack growth in wind turbine blades.

5 Conclusion

In this chapter, we presented a review of hybrid methods using a condition monitoring
framework. Hybrid methods are identified at the different steps of the frameworks. It
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is emphasised that the purpose of hybrid methods is to improve the estimation of the
health state and the RUL. Two potential gaps for future research are identified namely (i)
the effect that hybrid-fusion-based diagnosis has on the RUL estimation of a component
and (ii) suggesting actions based on the diagnosis and prognosis to maximise the RUL
of the component.
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Abstract. Nowadays, condition monitoring of gearboxes is based on
analyzing vibration signal (mostly acceleration, velocity; fewer strain)
measured from mechanical components or on analyzing acoustic emission
and temperature data. Strain sensors are rarely used because of their
high cost, mounting difficulties and their sensitivity harsh environment.
They are based on strain gage technology which implements ‘Wheatstone
Bridge Conditioner’ to be able to measure strain values. This bridge
circuit, unfortunately, becomes non-linear out of the measurement range
resulting in significant errors. To avoid those errors, a new technology
of piezoelectric strain sensors, relatively new to condition monitoring,
emerges: they have good precision since the accuracy is improved and
provide good results especially when attempting to do measurements at
extremes of the range. In this work, a piezoelectric strain sensor mounted
on an industrial planetary gearbox (PG) in vertical direction is used to
acquire time domain signals. This latter is introduced to focus on the
importance of the new time domain representation of a gearbox dynamic
behavior by a such sensor. Finally, an analysis of the RHM sensor time
domain data is conducted to identify the PG characteristic frequencies.

Keywords: Planetary gearbox · Vibration signal · Piezoelectric ·
Strain

1 Introduction

Planetary gearbox are widely used either in automobiles and in industrial
machinery in order to transmit the power from input shaft to output shaft with a
high ratio in a compact space. Many researchers tried to characterize its dynamic
behavior. It was a hard task because of the complexity of its design and motions
of its parts, especially the motion of planets. They used sensors and microphones
which acquire signal (vibration or acoustic) to be processed in order, for instance,
to cancel the noise (masking signal) which makes analysis of the signal easier.
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Noll et al. [1] applied a piezoelectric strain sensor (SG) on the external hous-
ing of the fixed ring gear. They experienced a piezoelectric sensor in AC- and
DC-coupling. Results show that strain signals can be obtained even down to
0.002 Hz (low spin). The work of S. Kiddy et al. [2] shows that the surface strain
is collected by the use of Fiber-Bragg-sensor mounted on the ring gear of a bell
helicopter OH-58C gearbox. They compared signals for healthy and damaged
cases and it was demonstrated that strain signal are useful to detect damages.
Due to the proper reproducibility of the signal, there is no need to average the
signal over multiple revolutions as done for signals issued from accelerometers.
Zhang et al. [4] did an excessive use of strain gauges. They mounted 6 strain sen-
sors along a shaft system test rig to identify the load on each bearing supporting
the shaft. They developed a strain gauge method which can reduce the modeling
error taking into account the best location of sensors where the strain is sensitive
to the change of the bearing load. Oskoueian et al. [5] monitor a Mitsubishi 4
cylinders internal combustion engine block by taking measurement with strain
sensor. After processing signals captured by strain sensors, they were able to
localize in which cylinder the mechanical wear is. In another research focused on
gear root bending stress analysis, Lisle et al. [6] used strain gauges method to val-
idate a numerical finite element analysis (ANSYS) highlighted the advantageous
of this method and to compare it with ISO 6336:2006 and AGMA 2101-D04.
Yoon et al. [7] proposed a new methodology for the diagnosis of planetary gear-
box faults. Considering that the amplitude modulation is less effecting strain
signals, the proposed method is based essentially on processing strain signals.
So, they used a piezoelectric strain sensor mounted on the external surface of
a planetary gearbox ring gear. Results show that all faults made in the gear-
box were identified and they were fruitful compared with whom conducted from
acceleration analysis. As mentioned in literature, strain sensors (classical and
piezoelectric) are used for many purposes, for instance to compare different sig-
nals acquired from the same sensor with different coupling [1], identification of
health condition and fault diagnosis as investigated in [3] and [7]. This work is
focused on identification of vibration sources in a multi-stage planetary gear-
box in healthy case using a piezoelectric strain sensor by analyzing only the
time data. This paper is organised as follows. Section 2 is dedicated to present
the experimental setup. Section 3 analyses time domain signal issued from the
piezoelectric strain sensor. Conclusion is drawn at the end of the paper.

2 Experimental Setup

Figure 1 presents the Test rig used to investigate the dynamic behavior of a
three stages planetary gearbox (PG) given by its kinematic scheme in Fig. 2.
The motor is operating at 1008 rpm. Passing through parallel gearbox (ratio
= 1/2.91), the speed is reduced to 346,4 rpm and it is reduced again passing
through the planetary gearbox to achieve 1,73 rpm at its output.
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Fig. 1. Test rig

A quartz strain gage RHM-240A02 is attached to the PG to measure strain
on Y direction as indicated in Fig. 1. It incorporates a built-in MOSFET micro-
electronic amplifier. This serves to convert the high impedance charge output
into a low impedance voltage signal for analysis or recording. ICP quartz strain
sensors, powered from a separate constant current source, operate over long
ordinary coaxial or ribbon cable without signal degradation. The low impedance
voltage signal is not affected by tribo-electric cable noise or environmental con-
taminants.

Fig. 2. Kinematic scheme of three stages planetary gearbox
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Since the experimental conditions are given, the PG characteristic frequencies
can be calculated. Those latter are given in Table 1. For more information about
experimental setup, the reader can refer to the work of Zghal et al. [8].

Table 1. Characteristic frequencies of the three stages planetary gearbox when the
motor was operating at 1008 rpm, (∗):Parallel Gearbox

Fr(Hz) Description 1st stage 2ed stage 3ed stage

fsi Sun gear frequency 5.77 0.72 0.15

fci Carrier frequency 0.7223 0.15 0.03

fpi Planet frequency 1.68 0.39 0.08

fppi Planet pass frequency 2.16 0.45 0.12

fgi Gear mesh frequency 60.67 12.13 2.43

fb1 Sun bearing frequency 5.77 – –

fbpi Planet bearing frequency 0.96 0.25 0.05

fb3 Carrier bearing frequency – – 0.03

fin Pa.G(∗) input frequency 16.78

fout Pa.G output frequency 5.77

fgpg Pa.G gearmesh frequency 386.4

3 Time Domain Identification

In the previous section, all PG characteristic frequencies are calculated theoret-
ically by using equations based on its kinematics. In this section, data collected
from the Piezoelectric strain sensor RHM240A02 is presented. The chosen time
signal is analyzed in order to identify the calculated frequencies in the previous
section. This step will allow us checking the efficiency and robustness of the use
of the strain sensor in describing PG vibration sources. The processing is simple
and described as the following: we present the row signal than we do multiple
zoom section to identify repetitive behavior. Figures 3 and 4 present all repetitive
oscillations in the acquired strain signal.
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Fig. 3. First three zoom sections

Identified frequencies are summarized in Table 2.
The checked values are those identified previously. As shown, almost 40% of

characteristic frequencies are identified from only the time domain representa-
tion. Hence, this piezoelectric strain sensor shows 40% of the planetary gearbox
dynamic behaviour since the collected time signal reproduces with a good accu-
racy what was really happening inside the gearbox.

Table 2. Summary of the identified frequencies

Frequencies(Hz) Description 1st stage 2ed stage 3ed stage

fsi Sun gear frequency 5.77 0.72 � 0.15 �
fci Carrier frequency 0.72 � 0.15 � 0.03

fpi Planet frequency 1.68 0.39 0.08 �
fppi Planet pass frequency 2.16 0.45 � 0.12

fgi Gear mesh frequency 60.64 � 12.13 � 2.43

fb1 Sun bearing frequency 5.77 – –

fbpi Planet bearing frequency 0.96 0.25 0.05

fb3 Carrier bearing frequency – – 0.03
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4 Conclusion

In this work, experimental measurement was done on a real industrial gearbox
which is mounted on test rig. Strains of the housing surface of the ring gear were
measured to identify characteristic frequencies of the PG in order to investigate
its dynamic behaviour. The time signal collected using the piezoelectric strain
sensor has a high SNR and an excellent reproducibility of periodic component
of the signal especially in lower frequencies. In the way of future research, a
supplementary analysis will be focused on the detection of gear faults using time
signal acquired by using a strain gauge in order to investigate the capability of
this sensor in damage cases.
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Abstract. Over the years, the gear mesh stiffness is being studied extensively by
researchers due to its ability to give a better understanding of a gear box dynamic
behaviour. Many studies have used various methods to model the mesh stiffness
of metallic spur gears such as square wave signal and finite element modelling.
These models are based on combining the mesh stiffness pattern of each tooth
involved in the gear meshing. This has proven to be effective in case of metallic
gears. However, due to the viscoelastic behaviour of polymer, it is no longer
possible to model the contact stiffness of a polymer pinion paired with a metal
gear as a square-wave signal. In this study, the viscoelastic behaviour is taken
into consideration. A Rheological model based on parallel Maxwell cells, called
generalized Maxwell model, is used to model the contact behaviour of a polymer
gear tooth. This model is ideal for steady-state harmonic excitation, which is the
case of spur gears. The proposed approach is applied in the case of a pure nylon
6,6 gear paired with a metal pinion. It is then compared to the contact behaviour
of a metallic gear tooth also paired with a metallic pinion.

Keywords: Gear · Stiffness · Polymer · Generalized Maxwell Model ·
Viscoelastic behaviour

1 Introduction

The modelling of the dynamic behaviour of gear pairs depends on many parameters.
Hence the rigidity of the material used to manufacture the gears. In general, steel is
considered to be a rigid body. For steel spur gears, square wave signals (Farhat et al.
2020) and finite element models (Rincon et al. 2013) are used to model the gear mesh
stiffness. It is also possible to model the stiffness with a linear spring. This spring is
a direct application of Hook’s law. The materials modelled by this approach are called
Hookean materials.
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It is not possible to model non-Hookean materials with Hook’s law. For this study,
it is proposed to use polymer as pinion material and steel as gear material. The polymer
is considered to be viscoelastic. Its viscoelastic behaviour can be modelled using rheo-
logical models. These models are considered as a combination of springs and dashpots
connected in various configurations.

TheMaxwellmodel is a combination of a spring and a dashpot in series. In thismodel,
the stress applied to the elements is the same on each element but the strain is equal to the
sum of the strains applied on the two elements. In this model, the stress tends to infinity
when applying a constant strain. Also, the damper cannot retract itself after releasing the
stress. For this reason, Maxwell’s model can give a basic modelling of viscoelasticity
but cannot model a real viscoelastic behaviour (Guedes 2019). The Kelvin-Voight model
is a combination of a spring and a dashpot in parallel. In this model, the applied stress
is the sum of the stresses in each element while the strain is the same for each element.
In this model a stepwise strain excitation leads to infinite stress (Guedes 2019). Zener
or standard solid model is a combination between Kelvin-Voight and Maxwell models.
It is a spring connected in parallel with a Maxwell element. The relaxation is described
as exponential behaviour which is not the case in experimental measurements. Also, the
exponential results conduct rapid variations that cannot be observed experimentally.

Generalized models are also used. The best known are Generalized Maxwell Model
(GMM) and generalized Kelvin model (GKM). GMM is a combination ofMaxwell cells
connected in parallel. In the study of Jrad et al. (2013), it is mentioned that depending
on amplitude, frequency and preload, this model provides an accurate description and
a good knowledge of the dynamic behaviour of viscoelastic components. It also can
characterize stiffness and damping during steady-state harmonic excitation. Jrad et al.
(2017) mentioned that for GMM, it is impossible to identify the creep when applying
constant stress. GKM is a combination ofKelvin cells connected in series. It ismentioned
that only GKM explains the results of tests under forced vibration. The latter statement
is mentioned in the study of Hiltcher et al. (2006). The choice of the best model depends
on the system to be modelled. In the case of gear teeth, for one cycle, a tooth enters
loading phase for a meshing period. Then it has a second phase of no applied load.
This harmonic excitation is what makes GMM the best choice to model the viscoelastic
behaviour of the pinion teeth made with polymer.

In this study, GMM is used to model the viscoelastic behaviour of pure nylon 6,6.
This polymer is chosen for a spur pinion coupled to a spur metal gear. It is proposed to
study the behaviour of a tooth of the pinion for a cycle of engagement and disengagement
with the gear. The stiffness of the polymer is negligible compared to that of the metal.
Thus, it is considered that all deformations occur in the pinion. Strain and stiffness are
determined from a constant and variable stress applied to the pinion tooth. For future
work, gear mesh stiffness will be deduced from this work with performing an overlay
on the stiffness of all the teeth of the pinion.

2 Generalized Maxwell Model (GMM)

Rheological models are made basically with linear springs and linear dashpots. The
spring is used to model elastic behaviour. Its response to an instantaneous stress σ is an
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instantaneous strain ε. The relation is given in Eq. (1) where E is the Young modulus.

σ = εE (1)

The dashpot is used to model viscous behaviour. The relation between stress σ and
strain ε is given in Eq. (2) where η is the coefficient of viscosity.

σ = η
dε

dt
(2)

Maxwell model is a combination of a spring and a dashpot connected in series. It is
presented in Fig. 1. In this study, it is aimed to obtain the creep-recovery behaviour of
the material. So, this response can be obtained by the following Eq. (3).

ε(t) = σ0

E
+ σ0

η
t (3)

Fig. 1. Maxwell cell

Fig. 2. Generalized Maxwell model.

The unlimited deformation resultedwithMaxwell model under a constant stress over
time do not give the real behaviour of a viscoelastic material. Moreover, the behaviour
after releasing the stress cannot be modelled using this model. That is due to the fact
that the spring can retract and return to its initial state. But there is no available load
to retract the dashpot. In order to ameliorate these results, GMM are used instead of
Maxwell model.
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It consists of multiple Maxwell cells connected in parallel. A single spring can also
be added in parallel to make it possible for the dashpots to retract after releasing the
stress. The rheological presentation is given in Fig. 2 where i ∈ [1n] and n is the number
of Maxwell cells. The use of multiple springs and dashpots can give more accurate
viscoelastic results. Yet, the complexity of themodel is related to the number of elements
used. The more elements used the more model parameters to identify.

The rheological formulation of the impedance of GMM is given in Eq. (4).

Z(ω) = E0 +
n∑

i=1

jωEiηi

Ei + jωηi
(4)

Where ω is the angular frequency. E0 is the elastic modulus at ω = 0. Ei and ηi
are the ith elastic modulus and the ith viscous modulus, respectively. The viscoelastic
behaviour is then modelled using this equation. Multiple results can be found such as
elasticity, viscous flow, creep with various retardation times and relaxation with various
relaxation times (Guedes 2019).

3 Application of the GMM to Model the Polymer Gear Viscoelastic
Behaviour

GMM is used in this study to model the stiffness of a tooth of a polymer pinion paired
with a metal gear. The metal gear is considered as non-deformable solid. That was
considered based on the fact that polymer will receive all the deformation because of its
low stiffness in comparison with metal.

In the numerical simulation, Pole-Zero identification method was used to identify
GMMparameters. It is an asymptote-based optimization algorithm useful to identify the
parameters of transfer functions such as the Eq. (4) of GMM. The identification method
is detailed in the study of Jrad et al. (2013). The mentioned study used a non-linear
GMM whereas in this study linear model is used. The choice is based on the material
used. In the study of Jrad et al., the non-linear spring is used to model the nonlinear
dynamic behaviour of rubber. This is not the case in this study which considers polymer
as material of the pinion. The only difference is the parallel spring E0. It is considered
non-linear in the study of Jrad et al. whereas in this study it is considered constant.
Figure 3 shows the steps followed in order to identify the parameters of GMM. Initial
values such as the elastic modulus E0 atω = 0 are identified from a dynamic mechanical
analysis (DMA) test. Using Pole-Zero equation depands on poles and zeroes.

The chosen polymer is pure nylon 6,6. The identification of the parameters of
the GMM is based on a DMA of the said polymer. The results of the DMA test are
extracted from the study of Almagableh et al. (2008). The numerical GMM showed a
good corrolation with the results of the DMA test of the study of Almagableh et al.

After the determination of the impedance Z , its real part is used to model the creep
while its imaginary part is used to model the recovery. The applied stress variation is
determined from the load-sharing factor proposed in the study of (Raghuwanshi and
Parey 2016). The load-sharing factor used in this study is shown in Fig. 4. The strain is
then determined from Eq. (1) considering two results. The creep and the recovery are
determined from the real part and the imaginary part of the impedance Z respectively.
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on the DMA test and material parameters

Fig. 3. Steps of the identification of the GMM parameters.
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4 Numerical Results

The numerical parameters of the studied gear pair are given in Table 1. The behaviour
presented in Fig. 5 shows the creep-recovery of the tooth for a constant stress. It behaves
differently in compared to metallic tooth behaviour that can be modelled as a square
shape.
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Fig. 5. Creep-recovery of the pinion tooth for a meshing period
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Table 1. Parameters of the spur gear pair.

Pinion Gear

Teeth numbers 20 30

Material Pure nylon 6,6 Steel

Base circle (mm) 18.8 28.2

Torque (N m) 1000 −1500

Rotation speed
(rpm)

3000 2000

Module (mm) 2

Pressure angle 20°

Teeth width
(mm)

23

Contact ratio c = 1.6

It takes the tooth from the engagement to the disengagement a period of cTe as
shown in Fig. 6. The mesh period Te is divided in two periods. The first period is equal
to (c − 1)Te when two pair of teeth are engaged, where c = 1.6 is the contact ratio.
The second period is when only one pair of teeth is engaged. It is equal to (2 − c)Te.
These details are mentioned in the study of Chaari et al. (2008). The shape of stiffness
of one tooth shown in Fig. 6 is used to model steel spur gear pairs. In this study, it is
modelled using GMM. The result of GMMgiven by Eq. (4) is used to measure the GMS.
This measurement relates the material properties with the geometry of the teeth. The

Fig. 6. Time varying gear mesh stiffness computation.
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deflection occurs mainly due to the characteristics of the polymer. For this fact, it is the
only deflection considered.

(a)

(b)

(c)

Fig. 7. (a) Stress, (b) strain and (c) stiffness of a pair of teeth in a meshing period with a variable
stress.

To addmore credibility the result, a variable stress applied to a tooth of a gear system
that have parabolic shape as shown in Fig. 7(a). This variation is the result of having the
stress shared by the teeth engaged in themeshing. This variation goes from themaximum
value of the stress applied by the system on one tooth to the half of this value that is
shared by a pair of teeth. The viscoelastic behaviour of the tooth shown in Fig. 7(b) is
totally different from the one shown in Fig. 6. The stiffness shown in Fig. 7(c) is also
different in comparison of metallic tooth that is shown in Fig. 6. It showed a delay in the
beginning of the contact between teeth. This delay is the result of the viscous character
of the polymer. This difference can have a big influence on the dynamic behaviour of
the system.

This new approach can give a totally different understanding to the behaviour of
polymer gears. Also, an overlay can be executed in order to deduce the gear mesh
stiffness. This is the aim of a future work using the approach proposed in this study.
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5 Conclusion

Polymer gears have a totally different behaviour in compared with metallic gears. The
GMM is used and gives a realistic behaviour of the proposed polymer based on the
DMA test carried out by the study of Almagableh et al. (2008). The proposed approach
of modelling viscoelastic behaviour of nylon 6,6 with GMM gave a new understanding
to dynamic behaviour of a polymer pinion tooth paired with a metallic gear tooth. This
new understanding can lead to better investigations results such as gear mesh stiffness. It
is known that investigating gear mesh stiffness can detect gear defects without the need
to turn off the system. In future works, it is proposed to deduce the gear mesh stiffness
of a nylon 6,6 paired with a metallic gear and compare it with metallic gear pair.
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Spanish Ministry of Economy, Industry and Competitiveness.
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Abstract. The Prototype Bootstrapping Method (PBM) is a sampling tech-
nique for nonlinear system identification specifically when applied to Accelerated
Fatigue Testing (AFT). This application requires the number of samples taken
to be limited as much as possible to preserve the integrity of the test. The work
presents a generalization of this technique by removing system specific require-
ments from the algorithm. The generalized method is developed and tested in this
paper. Various numerical experiments are conducted. These experiments show
that Generalized PBM (GPBM) outperforms other sampling techniques, being
5.4 times more accurate. Through these experiments, the importance of sampling
in this application is emphasized.

Keywords: Nonlinear system identification · Bootstrapping · Accelerated
Fatigue Testing setting · Statistical learning

1 Introduction

In this work, we consider mechanical systems under realistic loadings for a short dura-
tion. Typically, field tests are conducted in hours while a system is designed to last years.
During field testing, measurements to identify high fatigue incidents are taken. Acceler-
ated fatigue testing then attempts to recreate these high fatigue incidents in a laboratory
environment. Servo hydraulic actuators are used to excite a laboratory equivalent of the
mechanical system. The challenge is to reproduce the high fatigue incidents in the lab-
oratory system. The challenge arises due to the large number of measurements required
to model the system accurately (as a highly nonlinear system) under severe operating
conditions. A large number of measurements of the system compromises the integrity
of the fatigue test. The focus of this work is to develop a technique that identifies a small
number of measurements with which the system is identified. The identified system is
then used to infer what input is required to recreate the target response in the system.

Accelerated fatigue testing (AFT) is performed as part of the design phase to identify
the system’s degradation patterns when in harsh operating conditions. This includes
determining the system’s longevity when exposed to a high fatigue environment for
prolonged periods on time [1]. To ensure that the system’s fatigue matches that of an
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equivalent field operated specimen, the response of the system has to be reproduced as
accurately as possible [1–4].

Since the system is modelled under severe operating conditions, nonlinear system
identification is required. The identification of nonlinear systems has been extensively
studied over the past few decades (see [5] and references), with particular emphasis
on predicting the behavior of the system [6]. This is usually done in conjunction with
sophisticated control strategies that are formulated to compensate for model errors in
the predicted model [7].

Although well-established [5], the field of nonlinear system identification has expe-
rienced a change in direction due to the growing success of machine learning techniques
[8] applied to control and system identification. In recent years a strong line of research
in this field has been to successfully incorporate machine learning strategies into exist-
ing system identification strategies [9–15]. Continuing along this line of research, the
authors have developed an alternative approach to nonlinear system identification. The
proposed approach follows a well-established line of thought found in machine learning
research where an unstructured regularized high dimensional regression technique is
employed to model complex data [4, 8]. The approach views essential events in the time
series as high dimensional features. A high dimensional feature map is then constructed
to map the excitation signal to the response signal. This approach has been shown to
outperform current techniques when applied to highly nonlinear systems.

Furthermore, it has been shown that greater performance gains are possible if the
data presented to the regression algorithm is sampled correctly [4]. To this end, this
paper presents a generalized sampling method explicitly designed for the AFT context:
samples are drawn such that events closely resemble the target response. The system’s
dynamics are identified only to the extent required to describe the system’s behavior
when operating under the condition that generated the target response.

2 Sampling

The sampling process, forming part of the design process, is vitally important to a
successful experimental design. Latin Hypercube Sampling (LHS) has gained popularity
in Design and Analysis of Computer Experiments (DACE), where evaluations of the
function to be computed are computationally expensive [16]. LHS has been successfully
implemented in variousDACEproblems [17]. LHSdivides the sample space into disjoint
subsets of equal probability. This results in a space-filling sampling strategy where
samples are distributed uniformly in the sample space.

DACE applies LHS to the entire sample space. In the current work, nonlinear system
identification for AFT leads to early saturation of the residual: more samples do not
significantly improve the predictions. Instead, PBM shrinks down the sample space to
identified regions of interest. These regions are then sampled using LHS.

3 System Identification

The authors have developed an alternative approach to nonlinear system identification
in previous work [4, 15]. This approach, which uses Event-Based Mapping (EBM),
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follows a well-established line of thought in machine learning literature where complex
data can be represented by regularized linearmodels in high dimensional space. AnEBM
approach views the time series as a sequence of events. Each event is considered as high
dimensional features of independent variables. An event consists of two features: an
input feature and the corresponding response feature. EBM constructs a mapping from
the feature that excites the system, the input feature, the corresponding response, and
the output feature. Causality can be modelled implicitly by using multivariate methods
to construct the mapping [18].

This is different from a differential equation type approach where the correlation
between time steps is modelled explicitly. NARX models, and all their variants, assume
a structure for the correlation between time steps [5].Most time seriesmodelling, includ-
ing that done with machine learning techniques, make this basic assumption [6, 8].
One shortcoming of this approach is that when highly nonlinear systems are modelled,
complex representations of the systems are required [5, 6, 10, 13, 19, 20].

Multivariate Principal Component Regression (MPCR) was identified as an efficient
algorithm to construct the EBM. MPCR traces the change in the basis functions from
the input to the output space using a set of rotation and scaling matrices. For a brief
description ofMPCR,1 we recommend [21], amore in-depth discussion on the algorithm
is presented in [18].

4 Simulations

When a system operated in the field is brought into a laboratory environment, the system
is fixed to servo-hydraulic actuators and excited. To do this, parts of the system are often
removed. Furthermore, the direction of excitation is chosen to be the dominant one. This
implies that the system in the laboratory environment is not the same as the field operated
one.

A half car and quarter car model are used to simulate this process: A half-car model
is used to represent the field operated system where the target response is generated.
The simpler quarter car model to represent the laboratory system where the number of
degrees of freedom in the system has been reduced.

The nonlinearities in the half and quarter car models arise for the cubic stiffening
springs and the quadratic dampers. Further details of the quarter and half car models
and the parameters used for these experiments can be found in [18]. The displacements
reported in this work for the half car are the vertical displacement of the center of mass
and the sprung mass for the quarter car model.

To ensure that the models are operating in regions where the nonlinearities will be
significant, a roadprofile of classG is generated using the ISO8608 standard (Mechanical
Vibration - Road surface profiles - Reporting measured data)2 [22].

1 MPCR is used to construct the event mapping in this work, however, any suitable mapping
algorithm can used.

2 The ISO 8608 standard provides a means to classify road profiles according to different damage
levels.
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5 Prototype-Based Bootstrapping

In this section, the prototype-based bootstrappingmethod for sampling is discussed. This
is a high dimensional sampling technique due to the nature of the system identification
technique used in this work, as outlined in Sect. 3. The subsequent sections describe the
various stages of the algorithm.

5.1 Generating the Initial Signal

The bootstrapping algorithm is initiated by using a low-frequency signal with gradually
increasing amplitude. This is used to estimate the magnitude of the input signal required.
Having identified an initial region of interest an initial estimate, Ytarget , of the response
is computed by fitting MPCR to the low-frequency inputs, Xinitial , and outputs, Yinitial .

When generating road profiles with ISO 8608, the road profile classes specify the
lower and upper limits to the Spatial Power Spectral Density (SPSD) amplitudes as a
function of position x for a specific road class. To generate the artificial road profiles,
one uses a stochastic representation, a function of the SPSD of vertical displacements.
This SPSD is obtained through a Fourier Transform of the auto-correlation function of
the stochastic process describing the road profile [23]. In general, an input profile can
be generated using this approach with the following equation

Xin(t) =
k∑

n=1

(
1

n

)m

R(t) cos(ω(n)t + φi) (1)

The function R(t) is the ramp-up function, which starts small and ramps up to maxi-
mum amplitude. Finally, the exponentm changes the weighting of the frequency content
to placemore emphasis on low frequencies asm increases. In this work,mwas selected to
be 1.75, thus giving smooth low-frequency signals with some discontinuities. Figure 1
presents initial signals generated in this way and the corresponding response for the
half-car model.

Fig. 1. Initial signal and the corresponding response. The response was generated using the half-
car model discussed in Sect. 5.3.

This initial signal aims to find the magnitudes of the input signals and to this end
crude low-frequency estimations are sought. Figure 2 shows the response to the estimated
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input signal and the target response. Note that the low-frequency content of the target
response is already captured.

Fig. 2. Response generated from the initial estimate of the input with the target response for the
half-car model driving on a road.

5.2 Finding Prototypes

The prototype bootstrapping problem is an unsupervised learning problemwhere feature
prototypes represent a cluster of features. In this particular application, the features
describe events that explain important behaviors of the system. Initially, these feature
prototypes are centroids of the clusters and are low dimensional estimates of the required
inputs. As more information is obtained, as discussed in Sect. 4.3, these estimations
improve by shifting the centroid in the input space.

In this work, three different clustering algorithms were used: K-means, K-medoids
and spectral clustering. All three of the spectral clustering methods presented by Von
Luxburg in [25] are used in this work.

The configuration of the algorithm is based on the choice of clustering algorithm and
the associated metric. When performing AFT, one is confronted with a new system for
which the best configuration is unknown. Running tests to determine this is not feasible
due to the fatigue life accrued while taking these measurements. A consistent and robust
configuration is therefore preferred.

K-means clustering minimizes the square distance between points to find a centroid
for a cluster. K-medoids, however, minimizes the sum of dissimilarities and chooses an
existing data point at the center of a cluster to be the centroid. In general K-medoids are
more robust to noise and outliers compared toK-means clustering [26]. In this application
this attribute was found to be a disadvantage since the high dimensional space is large
and the data is sparse, causing a resilience to outliers to diminish the overall performance
of PBM.

Spectral clustering constructs a similarity graph for the data set. From this similarity
graph a graph Laplacian is constructed. This process transforms the data into a sparse
representation of similarities and pairwise distances of the data. The eigenvectors of
the graph Laplacian are then used to represent the data which is then clustered using
K-means clustering. Due to the sparse nature of the input and output spaces, the sparse
characteristic of centroids foundby spectral clustering could be beneficial. For a thorough
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tutorial on spectral clustering, we refer the interested reader to the text cited above by
Von Luxburg [25].

Previous work showed that working in high dimensional space with fewer clusters
performed better than a large number of clusters in a low dimensional space [4]. The
feature lengths for generating the data were 1000 variables each.

5.3 Generating New Input Signals

In order to populate the input space, the centroids are perturbed at locations spaced
equally far apart. At each of these locations, samples are drawn based on an LHS tech-
nique. This ensures initial perturbations are not clumped together around these locations
but rather are spread out.

Since the target response is known, the error between the response of the predicted
inputs and the target response is actively monitored. When the residuals of the target
response saturate or increases, the number of perturbation locations is increased. As
the algorithm progresses and the number of perturbation locations increases, the input
signals become better approximations. The smoothness of the perturbation is determined
by the interpolation method used. In this work, cubic splines were used for interpolating
between the samples drawn.

The number of perturbation locations on the centroid determines the frequency con-
tent of the perturbation. Starting with a small number of locations results in a low-
frequency input signal. As the number of locations is gradually increased, higher fre-
quency content is added to the input signal. Figure 3 shows a low-frequency input signal
resulting from a small number of perturbation locations. Figure 4 shows an input signal
with low and high-frequency content produced by adding many perturbation locations.

Fig. 3. A low dimensional perturbation of a road profile. The small number of locations at which
the centroid is perturbed results in a smooth low-frequency signal.

When a small number of locations are perturbed on the input signal, a subset of
variables of the feature vector is varied. Therefore, this is called a low dimensional per-
turbation as the centroid is varied based on a small subset of the variables. Alternatively,
when a large number of variables are varied, it is termed a high dimensional perturba-
tion. Using LHS at each location implies the variables of the feature vector is assumed
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to follow a uniform distribution. Since the amount of information available is scarce,
this is a valid assumption. Future work will investigate a Bayesian update mechanism
by which the posterior distributions of the variables can be estimated.

Fig. 4. A high dimensional perturbation of a road profile.

Once new samples are generated, the responses to these inputs are generated. The
input and output feature spaces are updated with the new data, and a new centroid in
the input space is found given the new information. Generally, a gradual shifting of
the centroids is seen. This is controlled by the amplitude of the perturbations and the
weighting assigned to new data versus old data.

The amplitude of the perturbations is determined dynamically based on a linearity
assumption: we assume that the scale of the residuals can be translated to the perturbation
amplitudes. First, the difference between the responses is determined, then this difference
is scaledusing the ratio between the input and response amplitudes.This scaleddifference
is then used to perturb the centroids.

The algorithm progresses by constructing a batch of input signals, generating the
responses from these inputs and supplementing the dataset with the new data generated.
The number of samples drawn from each cluster is determined by how many times
a centroid is perturbed. This is done by measuring the information entropy of each
cluster [27]. The information entropy of each cluster is then used to dynamically weight
the number of samples drawn from each centroid. The higher the entropy of a cluster
compared to the other clusters, the larger the number of samples drawn from it in that
iteration. At each iteration, the entropy is computed, and the distribution of the samples
is adjusted.

The process for populating the input space once the initial centroids have been
computed is:

• Prototypes of the input events are determined using a clustering algorithm.
• The computed prototypes are perturbed based on the information entropy of the
associated cluster.

• Generate the responses for the batch of input signals generated.
• Update the estimated input signal using MPCR.
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6 Numerical Experiments

Section 6.1 presents a comparison between the performance of PBM and DACE for
generating data to identify the half-car model, a highly nonlinear model. Section 6.2
uses both the half car and quarter car model to introduce model error into the system by
attempting to reconstruct the response of the half-car model in the quarter car model.
Finally, Sect. 6.3 discusses the effect of over or under regularization of the chosen
regression algorithm.

6.1 Half-Car Model Excited by a Road

The half-car model is excited by a 200m long road profile while travelling at 60 km/h.
The process of reconstructing the vertical response, x(t), for the car’s center of mass
starts with an initial signal generated from Eq. (1). The half-car model’s response to the
generated input signal is shown in Fig. 5.

Fig. 5. Input signal and half car model’s corresponding response to an initial signal generated
using Eq. (1).

MPCR is used to map the responses to the input events. The number of samples
generated during testing is restricted to 1 h. Batch samples are 1 min in duration, MPCR
is fitted to each of these batches to update the centroid positions. The Mean Squared
Error (MSE) of the response generated from the estimated inputs is reported in Table 1.
Each of the simulations is repeated five times to quantify the variance in the output target
error.

From Table 1, it is seen that the spectral clustering normalized according to Malik
performed best. Thus, both the clustering algorithm and the associated metric had a
significant influence on PBM’s performance.

DACE is applied by first finding the subspace within which the target response was
generated. Then, following the initial estimate, the identified subspace is populated using
an LHS approach.

Figure 6 presents the response generated by the system, the estimated input using
samples generated using DACE and PBM. For PBM, a spectral clustering algorithm
normalized according to Malik, and a Euclidean distance metric was used. The MSE
when using PBM is 5.33 × 10−4 compared to 4.2 × 10−3 when using DACE.
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Table 1. MSE of the response of estimated inputs for clustering algorithms considered in this
study

Metric K-means K-Medoids Malik Unnormalized
(Normal)

Unnormalized
(Mutual)

Ng
(Normal)

Ng
(Mutual)

City block 7.44 ×
10−4

6.43 ×
10−4

5.65 ×
10−4

5.94 × 10−4 6.43 × 10−4 6.75 ×
10−4

5.66 ×
10−4

Euclidean 6.30 ×
10−4

5.91 ×
10−4

5.13 ×
10−4

6.00 × 10−4 6.40 × 10−4 6.38 ×
10−4

6.17 ×
10−4

Cosine 6.64 ×
10−4

6.65 ×
10−4

6.48 ×
10−4

7.66 × 10−4 5.59 × 10−4 6.97 ×
10−4

6.96 ×
10−4

Correlation 5.84 ×
10−4

6.64 ×
10−4

5.07 ×
10−4

5.52 × 10−4 5.48 × 10−4 6.49 ×
10−4

6.65 ×
10−4

Fig. 6. Response generated from inputs estimated using the PBM and LHS, respectively.

One shortcoming of theDACE sampling strategy in this setting is the high variance of
theMSE3. The results are therefore unreliable. For example, the 98% confidence interval
for DACE in this experiment is [1.2 × 10−3, 7.1 × 10−3]. Furthermore, the MSE does
not decrease consistently when drawing more samples using LHS and the high variance
of the residuals persists throughout. This is due to the curse of dimensionality, showing
that a space-filling sampling technique in a high dimensional space is not feasible when
the number of samples is small compared to the dimensionality of the space.

6.2 Response Reconstruction When a Model Error is Present

When performing AFT model, an error is usually present since the field setup is not the
same as the laboratory setup. Due to not all the degrees of freedom being excited or only
part of the system being tested in the laboratory.

In this experiment, the half-car model’s responses represent the field system. On the
other hand, the quarter car model represents the laboratory system and introduces model

3 High variance for DACE persists in the residual throughout the sampling process. Of particular
concern however is highvariance at the terminal residual, this beinghigh implies that the accuracy
of the final response would vary greatly from one simulation to the next.
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error into the system identification problem. The displacement of the center of gravity
of the half-car model is then to be reconstructed in the displacement of the sprung mass
of the quarter car model.

Figure 7 shows the MSE for the input and output of PBM when reconstructing the
half-car model’s response in the quarter car model. The increase of the input signal MSE
is due to the quarter car model’s input signal being different from that of the half-car
model. Figure 8 shows the response reconstructed in the system using PBM and DACE
to estimate the target inputs.

Fig. 7. MSE of the input and output target for reconstructing the half-car model response in the
quarter model.

Fig. 8. Response generated from inputs estimated using the PBM and LHS respectively on the
quarter car model when reconstructing half-car model’s response.

The responses reconstructed when exciting the quarter car model through inputs
generated using PBM and DACE had anMSE of 1.06× 10−3 and 5.64× 10−3 and 98%
confidence intervals of [9.78 × 10−4, 1.14 × 10−3] and [4.45 × 10−3, 6.83 × 10−3]
respectively. These results show that the model error resulted in a 72.2% and 85.9%
decrease in performance when using the PBM and DACE.

In the AFT setting, PBM is shown to perform better than DACE: First, the accuracy
of PBM is 81.2%higher than theDACE. Second, PBMhas higher precision, as seen from
the smaller confidence interval. Finally, the input residuals of PBM are seen to improve
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consistently as more samples were drawn, while for DACE, the residuals saturated early
in the sampling process.

6.3 Importance of Regularization in PBM

In this section, a discussion on the importance of regularization when using PBM is pre-
sented. The number of components to use inMPCR is crucially linked to the performance
of the algorithm. Although regularization is applied, the main item in this discussion
is sufficient regularization. To this end, there are three cases to consider: insufficient,
sufficient and over regularization. K-fold cross-validation is used in each of these cases.
However, in the range of identified components, the minimum or maximum identified
values are used in the over and under regularized cases.

In the first case, too little regularization gives rise to sudden jumps in the MSE.
Figure 9 illustrates theMSE for estimating the target inputs at various degrees of regular-
ization for the half-car model. This occurs when the variance of the fit is not constrained,
which results in PBM proposing an input to the system that falls outside the known data
set. The result of this is that shortly afterwards, the algorithm remarkably recovers. This
is an artefact of the exploration aspect of PBM. If this property is managed, it improves
overall performance. However, the main issue is that if left unattended, these jumps can
occur at any time. This makes the final solution unpredictable.

The other extreme is where the regression algorithm is over regularized. PBM is too
constrained and thus does not suggest inputs far from the inputs included in the data set.
Due to this limitation, PBM does not yield the same improvement after each iteration,
as seen with the under-regularized case. However, it is also noted that the MSE curves
are smooth, and no sudden jumps are observed.

Fig. 9. MSE for the input error of half-car model when under, over and sufficiently regularized

In the case where sufficient regularization is applied at every iteration, PBM can
improve. The optimal regularization lies between the two cases mentioned above. A
hybrid strategy was adopted to obtain better results: PBM is under-regularized during
the first half of the sampling process. This allows PBM to suggest inputs sufficiently
far away from existing data to make improvements. After the initial exploration phase
is over, PBM is over-regularized, ensuring that the residual stabilizes and the variance
between runs is low.
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7 Conclusion

In this work, PBM and DACE are compared in two important numerical experiments:
The first is in reconstructing the input signal for a highly nonlinear system, the half-car
model. The response reconstructed in the half-car model using PBM was an order of
magnitude more accurate than DACE. This showed that PMB is more effective than
DACE in reconstructing the response in a highly nonlinear system.

The second numerical experiment compared PBM and DACE when a model error
is present: reconstructing the half-car model’s response in the quarter car model. This
is important for the AFT context, where the system is changed when moving for field
tests to a laboratory environment. In this case, the target reconstructed using PBM was
5.3 times more accurate compared with DACE. Furthermore, the confidence intervals
for PBM compared to DACE was 5.2 times smaller compared to DACE, indicating that
PBM was more reliable in reconstructing an accurate input signal.

Finally, different clustering methods and distance metrics were compared for the
PBMmethod. A Euclidian metric and Malik’s version of spectral clustering showed the
best performance. The clustering algorithm and metric affected performance with up to
19.8% and 24.1%, respectively.
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Abstract. Anon-line algebraic estimator for parameter identification is integrated
a recent road profile estimator. The classical version of a road profile estimator that
is based transmission characteristics suffered from parametric variation. Sprung
mass is variable by changing theweight of passengers and baggage’s. Furthermore,
the damping of semi-active suspension does change rapidly during vehicle driving.
The challenge is to identify all imperceptible modifications that can threaten the
vehicle performances and to keep the credibility of road profile estimator online. A
Differential algebra and operational calculus rules can be helpful to overcome the
impact of variation in real time. The algebraic estimator has the fastest detection
time and non-asymptotic behavior. In literature, the algebraic observers shown a
good estimation of vehiclemass uncertainties.Additionally, this estimator requires
a lower number of sensors and has a lower computational overhead.Measurements
of vertical accelerations are only required to algebraically identify the sprung
mass and damping coefficient of a quarter car model. Some numerical simulation
results in time domain and frequency domain are provided. This new version of
adaptive estimator can be integrated with the active controller in the future with
easy implementation.

Keywords: Road profile · Algebraic estimator · Parametric identification ·
Sprung mass · Damping coefficient

1 Introduction

Several research methods have been proposed to identify road profiles and to get precise
information about road service ability. Indeed, road profile excitation is classified as one
of the main exogenous perturbation that acts on road vehicles’ ride dynamics.

This chapter is focused on the proposed scheme based on the principle transmission
characteristics of the system proposed by (Liu et al. 2020). The basic idea is to use
vehicle dynamic responses in order to reconstruct the road profile with one sensor. The
algorithm requires only the unspring mass, hence the whole process straightforward to
tune and is not expensive to implement. This technique is can replace traditional methods
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of estimations. However, for getting a good estimation, a new concept of algebraic
parametric estimators will be integrated to previous road profile estimators. The main
advantage of this technique, only one setting parameter can be manually adjusted to
improve the quality of the estimated road profile. The identification method based on
the algebraic parametrical technique was first introduced by (Fliess and Sira-Ramirez
2003).

Actually, the use of operational calculus rules in combination with differential alge-
bra creates an effective methodology for the estimation of dynamic system parameters.
Major contributions of the proposed technique have been made in fields such as intel-
ligent controller design (Haddar et al. 2019). The choice of the differential-algebraic
theory for estimation is based on characteristic features of finite-time algebraic estima-
tors (non-asymptotic state estimation).In fact, the influence of the initial conditions is
indeed removed as claimed by (Beltrán-Carbajal and Silva-Navarro 2013). This truly
is an improvement over the classical observers, which need the right initial conditions.
Unknown or incorrect initial conditions invariably entail slow convergence of recursive
type of observers. In addition, the presence of integrals in the estimation procedure
acts like a low pass filter, which naturally reduces the influence of noise and external
perturbation and hence is good at estimating vehicle parameters from a noisy signal.

The organization of the paper is as follows: a simple car model and the description of
the proposed schemeof road profile estimator are presented in Sect. 2. Section 3 describes
the algebraic parametric estimator and its principle rules for implementation process.
The effectiveness of the proposed algebraic estimator in enhancing the credibility of
road profile estimator is illustrated in Sect. 4. Finally, the conclusion is given in Sect. 5.

2 Scheme of Road Profile Estimation

Amodel of a vehicle with two degrees of freedom is considered as the most basic model
that could describe the automotive suspension (Fig. 1). It consists of an assumption based
on considering that the totalmass of vehicle is equally distributed among the fourwheels.
Only vertical movements are considered. Dampers or springs prevent the amplification
of disturbances caused by the road profile while maintaining good road contact. The
selected simplified model is helpful, for a first study, to validate the proposed estimator.
The dynamic behavior of a quarter-car model with a semi-active suspension is described
by:

ms
··
xs = −ds(

·
xs − ·

xu) − ks(xs − xu) (1)

mu
··
xu = ks(xs − xu) + ds(

·
xs − ·

xu) − kt(xu − xr) (2)

where, xs, xu and xr are the sprung mass displacement, unsprung mass displacement and
road profile excitation, respectively. The chassis is represented by ms, the wheel and the
tire are represented by mu. ks is the suspension stiffness and kt is the tire stiffness. The
damper ds in this case, called “controllable damper” and is variable.

The road excitation will be estimated from information’s given by the un-sprung
mass acceleration and the transmission characteristics of the quarter car model:

T (s) = ··
xu(t) (3)
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Fig. 1. Semi-active quarter car model

After a Laplace transformation of equation of motion and get rid of the sprung mass
expression, we can get the following equation:

(
mss

2 + dss+ ks + kt
)
xu(s) − (ks + dss)2

mss2 + dss+ ks
xu(s) = ktxr(s) (4)

The relationship between input signal and output signal of Eq. (4), allow us to write
a transfer function between road excitation and un-sprung mass acceleration can be
created:

xr(s)

T (s)
= msmus4 + (msds + muds)s3 + (msks + muks + mskt)s2 + ktdss+ ktks

mskts4 + ktdss3 + ktkss2
(5)

It is observable that the road excitation can be estimated directly by measuring only
the vertical wheel acceleration.

3 Estimator of Vehicle Parameters

As we know, the sprung mass is variable and can affects the vehicle dynamics. Further-
more, the damping of semi-active suspension can change rapidly during vehicle driving.
In order to estimate failures, we try to incorporate on-line the coefficient of the transfer
function for reducing the sensitivity of proposed estimator.

A parametric algebraic estimator is proposed for obtaining the sprung mass and
damping coefficient values. Starting by Laplace transformation of the first equation of
motion (1):

ms

[
s2Xs(s) − sxs(0) − ·

xs(0)
]
+ ds[sXs(s) − xs(0) − sXu(s) + xu(0)] = −ks[Xs(s) − Xu(s)]

(6)

A double differentiation with respect to s is required for get rid of initial conditions:

ms

[
2Xs + 4s

dXs
ds

+ s2
d2Xs
ds2

]
+ ds

[
2
dXs
ds

+ d2Xs
ds2

− 2
dXu
ds

− d2Xu
ds2

]
= −ks

[
d2Xs
ds2

− d2Xu
ds2

]

(7)
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No high power is allowed in order to attenuate the impact of noise:

ms

[
2s−2Xs + 4s−1 dXs

ds
+ d2Xs

ds2

]
+ ds

[
2s−2 dXs

ds
+ s−1 d

2Xs

ds2
− 2s−2 dXu

ds
− s−1 d

2Xu

ds2

]

= −ks

[
s−2 d

2Xs

ds2
− s−2 d

2Xu

ds2

]
(8)

From Laplace domain to time domain, we can get the following relation based on
iterated integrals and required only verticals displacements xs and xu:

ms

[
2
¨

xs dt + 4
∫

t xs dt + t x2s

]
+ ds

[
2
¨

t xs dt +
∫

t2 xs dt − 2
¨

t xu dt −
∫

t2 xu dt

]

= −ks

[¨
t2 xs dt −

¨
t2 xu dt

]
(9)

The last Eq. (9), after somemore integrations, leads to the linear system of equations:

A(t)θ = B(t) (10)

where θ = [ms, ds]T denotes the parameter that should be identified online, A(t) and
B(t) are 2× 2 and 2× 1 matrices respectively;

A(t) =
[
a11 a12
a21 a22

]
and B(t) =

[
b11
b12

]
.

whose components are time functions defined as

a11 = 2
¨

xs dt + 4
∫

t xs dt + tx2s , a12 = 2
¨

t xs dt +
∫

t2 xs dt − 2
¨

t xu dt −
∫

t2 xu dt,

b11 = −ks

[¨
t2 xs dt −

¨
t2 xu dt

]
, a21 =

∫
a11, a22 =

∫
a12, b12 =

∫
b11

By solving system (10) one obtains the parameter vector θ as

θ =
[
a11 a12
a21 a22

]−1[
b11
b21

]
= 1

�

[
�1

�2

]
(11)

with

� = a11a22 − a12a21 (12)

�1 = a22b11 − a12b21 (13)

�2 = a11b21 − a21b11 (14)

For avoiding singularities, we propose the following algebraic identifier (Beltrán-
Carbajal and Silva-Navarro 2013)

m
∧

s =
˜

�1˜
�

, d
∧

s =
˜

�2˜
�

(15)
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4 Numerical Simulation

To check the performance of the road profile estimator in the presence of algebraic
parametric identifier, some numerical simulations were performed on a 2-DOF quarter
car model characterized by the parameters given in Table 1.

The verticle road exciataion is selected according to model presented byMúčka et al.
(2020).

Table 1. Parameters of suspension model.

Parameters Value

Body mass ms 317.5–635 kg

Wheel mass mu 45.5 kg

Damping coefficient ds 1000–7000 N.s/m

Spring stiffness ks 20000 N/m

Tire stiffness kt 192000 N/m

Figure 2 and Fig. 3 show the comparison between the real road disturbance and
estimated profile in the time domain and frequency domain, respectively. It is perceivable
from the Fig. 2 that the road information obtained from transfer function of Eq. (5)
gives a good tracking of the original input road (The relative error is equal to 2%).
Furthermore the power spectra density (PSD) verifies the effectiveness of the proposed
road disturbance estimator Fig. 3.
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Fig. 2. Estimated road profile



Adaptive On-Line Estimation of Road Profile 149

0.1 0.2 0.5 1 2 5 10
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

Ω [rad/m]

G
H

( Ω
) [

m
3 /ra

d]

Real PSD
Estimated  PSD

Fig. 3. PSD of estimated road profile

However, the vehicle parameters are able to be changed. The influence of variation
is depicted in Fig. 4 and Fig. 5 under different cases:

Estimated 1: ms = 317.5 kg, ds = 7000N .s/m.
Estimated 2: ms = 338 kg, ds = 1000N .s/m.
Estimated 3: ms = 635 kg, ds = 7000N .s/m.
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Fig. 4. Estimated road profile with parametric variation

Figure 4 and Fig. 5 shown the sensitivity of transfer function to quarter car model
and specially to damping coefficient. The damping is varying in semi active suspen-
sion implementation. Sometimes, this change is very rapid. Therefore, it will be with a
significant impact of damping variation on the estimate.
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Fig. 5. PSD of estimated road profile with parametric variation

Then, the road disturbance estimator should be adjust the transfer function in real-
time according to the variation of sprung mass and the damping coefficient, so as to
obtain accurate estimation results.

Figure 5 shows the sprung mass and damping coefficient variations using the alge-
braic identifiers (15). RungeKuttamethodwith fixed small step time of 0.001s were used
in the simulation implementation with Simulink (Haddar et al. 2017). Fast parameter
estimation before t = 0.1 s.

In Fig. 6 the values of the estimated parameters were inserted in the transfer function
online after 2 s in the case 3 (where ms = 635 kg, ds = 7000N .s/m). Before 2 s, it is
shown that the estimation results of the road disturbance in time-domain is deteriorated
by the variation of vehicle parameters. However, the estimation results can still well
follow the road input in the presence of algebraic identifier (Fig. 7).
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5 Conclusion

In this chapter, the credibility of modified on-line estimation technique of road profile
were tested by changing the sprung mass and damping coefficient The numerical results
show that the algebraic estimator can well adjust the transfer function to the variation
of model parameters. The proposed scheme can be useful in the case of all process with
damping varying, the algebraic estimator always transmits the damping coefficient to the
road profile estimator in real-time. In previous work, it is noted that in fact, the damping
of the shock absorber cannot be obtained directly during vehicle driving. For exemple,
in the case of magnetorheological (MR), only the control current of MR damper can
be directly obtained. The corresponding calculation is required to obtain the damping
coefficient. However, the proposed scheme is able to avoid this kind of problem and
estimate directly the damping coefficient.
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Abstract. Plastic gears use is in an increasing growth. Plastic material has many
interesting characteristics that cannot be found in metallic ones. Searching for
more efficiency, combining advantages of metallic and plastic components of
worm gears sets is thus employed. Most of the researches done for years had
focused on the phenomena that occur in the contact area between the worm and
the wheel. In this paper, a parametric approach is presented to, quickly and effi-
ciently, investigate the vibration levels of worm gears including plastic wheel
and metallic worm. A dynamic model is first described to establish equations of
motion. The viscoelasticity of the worm gear’s material is then taken into con-
sideration. It is described by two parameters: The storage modulus describing the
elastic behavior; and the loss factor describing the viscous one. The dependency of
viscoelasticmaterials on frequency and temperature is considered. A parametrized
linear viscoelastic problem is thus investigated here. Finally, numerical simulation
based on modal analysis is established. The result is an estimation of the evolu-
tion of natural frequencies regarding the variation of the viscoelastic material’s
parameters. Consequently, it can give the range of frequencies that can reach a
worm gear model including a specific plastic material.

Keywords: Worm gear · Dynamic · Viscoelastic · Parametric study · Modal
analysis

1 Introduction

Worm gear set is widely used in several mechanical applications. It is used in power
transmission to its highest reduction ratio and quieter level compared to other gears. To
reduce cost manufacturing and deal with high sliding in the mesh gear, plastic material is
introduced inwormgear (Tsukamoto 1995). Plasticmaterialwill also add dissipation that
limits the vibration level and then enhance the general performance. It is also resistant
to wear as it has low friction coefficient, and it is self-lubricated. Both components or
just the wheel can be plastic. The worm gear is also characterized by its rather complex
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geometry. This reflected on the number of publications that is not important as the case
of spur gears for example.

Among the works that have been done on worm gears with plastic components,
works described below here: The study of the quasi-static loaded behavior of a worm
gear with a steel worm and a nylon wheel using Kelvin’s model (Hiltcher et al. 2006).
Kim et al. (2012) proposed amethod to calculate the efficiency ofwormgearswith plastic
wheel. This was performed through several steps including experiments to measure the
nylon6 friction coefficient according to normal contact pressure. Koide et al. (2014)
determined the effects of worm tooth forms on the strength of the plastic helical wheels
by running fatigue tests. Liu et al. (2014) investigated about the mesh performance of
steel worm with plastic involute cylindrical gear using finite element method. Jiaxing
and Ilie (2014) proposed a calculation method to determine the gear shear strength with
different geometry and material based on experimental test. Liang et al. (2019) studied
a plastic worm against metallic wheel to estimate the contact stress of tooth. Yun et al.
(2019) developed an approach to analyze the load distribution for plastic helical gear
meshed with steel worm. Recently, Shi et al. (2021) proposed an inequal pitch theory to
have more reliable design theory for plastic worm gears. This can improve the meshing
area condition.

Through all the works that have been done, scientists showed interest specially on
the phenomena that occur in the meshing area. They investigated about the load sharing
and the heat generation that cause wear and impact the gear lifetime.

In this paper, the dynamic of the worm gear set is under investigation. a parametric
study is established on worm gear model to focus on the viscoelastic behavior of plastic
material used in it. Through this study, a simplified approach is developed. It describes
the variation, in frequency domain, of the characteristics of viscoelastic material. It also
illustrates its effect on the dynamic behavior of worm gear and consequently on vibration
levels.

In the first section, the dynamic model of a worm gear where components are in
perfect rotation motion around their axis, is described. Using Lagrange method, the
equations of motion are established.

In the second section, a parametric approach describing viscoelasticity in the fre-
quency domain is detailed. The parameter studied is the storage modulus of the plas-
tic material. Small displacements and not preloaded configurations are taken into
consideration.

In the third section, numerical simulation is presented. Through a modal analysis,
the effect of the viscoelastic behavior on natural modes is illustrated.

2 Dynamic Model

The dynamic model used in this paper and shown in Fig. 1 is composed of a steel worm
(w) and awheel called alsowormgear (g) in plasticmaterial.One can assume in this study
a perfect configuration, that can be enhanced in future works. The clearance between
teeth is ignored. No error on the gear/ worm tooth profile is taken into consideration.
The worm is single thread. There are no translational degrees of freedom. Only rotations
around components axis are considered.
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Fig. 1. Dynamic model of the worm gear and loads on the meshed teeth

Loads transmitted in the meshing gear between teeth are the normal load Fn and the
friction load Ff . These loads depend on the contact points varying along the action line
with rotation by time. The model under investigation here is a lumped one then Fn =
Fn(t). In this study, considering that Ff = μFn with μ the friction coefficient. Every
force exerted on the worm can be decomposed into three orthogonal force components
written as follows (Yeh and Wu 2009):

Fx = Fncosφsinλ + Ff cosλ (1)

Fy = Fncosφcosλ − Ff sinλ (2)

Fz = Fnsinφ (3)

Where, φ is the pressure angle and λ is the lead angle of the worm.
Two rotational equilibrium equations can be expressed for the model above for every

component. For theworm in rotation θw around his axis, the equation ofmotion iswritten:

Iw θ̈w = −FxRw + Tw (4)

Where, Iw is the inertia moment, Rw is the pitch radius and Tw is the input torque
respectively of the worm. For the worm gear in rotation θg around his axis, the equation
of motion is written:

Ig θ̈g = FyRg + Tg (5)

Where, Ig is the inertia moment, Rg is the pitch radius and Tg is the output torque
respectively of the worm gear.
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The deflections δi(i = w, g) on the teeth of worm and worm gear in contact during
the meshing period are calculated by:

δw(t) = Fn(t)

kw(t)
(6)

δg(t) = Fn(t)

kg(t)
(7)

Where, ki(t) is the stiffness of the component i = w, g. To simplify the writing of
next equations, the dependence on time of different quantities will not be taken into
consideration. The assumption of Eqs. (6) and (7) gives:

δw + δg = Fn

(
kg + kw
kgkw

)
(8)

Teeth are modelled as springs. Eachmeshing gear pair is so composed of two springs
joined in series. The total mesh stiffness kgw is then equal to the stiffness of set of springs
ki joined in parallel. This equivalent stiffness is varying periodically in time and with
the number of meshing gear pair.

kgw = kg + kw
kgkw

(9)

To maintain the contact of teeth, the total displacement must be the same for each
teeth pair in contact simultaneously. Profile error is considered negligible, so one can
write (Chung and Shaw 2007):

lwθw − δw

sin
(

π
2 − λ

) = Rgθg + δg

sin
(

π
2 − λ

) (10)

Where lw is the lead of the worm. This leads to:

lwθw − Rgθg = δw + δg

sin
(

π
2 − λ

) (11)

Combining Eq. (8) with (11), one can obtain:

lwθw − Rgθg = Fn
kgw

sin
(

π
2 − λ

) (12)

The normal load can then be expressed as follows:

Fn =
(
lwθw − Rgθg

)
sin

(
π
2 − λ

)
kgw

(13)

Replacing the normal load Fn in Eq. (1) by its expression above, Eq. (4) can be
written as:

Iw θ̈w = −(
lwθw − Rgθg

)
k1gw + Tw (14)
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Where,

k1gw = Rw

kgw
(cosφ.sinλ + μcosλ)sin

(π

2
− λ

)
(15)

The same procedure applied for the gear’s Eq. (5) leads to:

Ig θ̈g = (
lwθw − Rgθg

)
k2gw + Tg (16)

Where,

k2gw = Rg

kgw
(cosφ.cosλ − μ.sinλ)sin

(π

2
− λ

)
(17)

The total equation of motion of the worm gear model can then be written in the
matrix form as:

[
Iw 0
0 Ig

]{
θ̈w

θ̈g

}
+

[
lwk1gw −Rgk1gw

−lwk2gw Rgk2gw

]{
θw

θg

}
=

{
Tw
Tg

}
(18)

Equation (18) has the form of:

[M ]{q̈(t)} + [K(t)]{q(t)} = {W } (19)

Where, [M ] is the total mass matrix, [K(t)] is the time-varying total stiffness matrix,
{q(t)} is the generalized displacements vector and {W } is the forces vector.

3 Modelling of viscoelasticity’s Parameters in the Frequency
Domain

The plastic material is characterized by the viscoelasticity that combines the advantage
of elasticity and damping that limits the vibrations levels. To define viscoelasticity, the
relation between stress and deformation must be defined.Many rheological models were
developed to describe this relation. It can be represented by a set of springs and dashpots.
The rheological model used here is the structural damping, composed of complex stiff-
ness matrix Z(s) = E(1+ iη), where E is the storage modulus describing elasticity and
η is the loss factor of the material describing damping. The worm gear set is considered
as a structure when components are in contact. The parameters of this mating are under
investigation here.

In this study, the large deformation and prestressed components defining the non-
linear viscoelastic behavior are not taken into consideration. Only the linear behavior of
viscoelastic materials is considered. Therefore, the dependence on history and tempera-
ture is treated. This dependence can in the frequency domain be represented as a complex
modulus E(s,T ) which depends on frequency and temperature. For a specific value of
a temperature, when assembling a model, one can group elements affected by a given
modulus and rewrite the dynamic stiffness as a linear combination of fixed matrices with
frequency dependent coefficients (Hammami et al. 2016).
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In the frequency domain, the equation of motion (18) is written:

[Z(s)]{q(s)} =
[
Ms2 + K(s)

]
{q(s)} = [b]{u(s)} (20)

where q is the degree of freedom vector, the load is the product of the input shape matrix
b and the input u(s), Z is the dynamic stiffness matrix combining the mass M and the
frequency dependent complex stiffness K .

To investigate the dynamic behavior of the model described in the previous section,
natural modes will be calculated as:

{q(t)} = Re
{{

ψj
}
eλj t

}
(21)

Where ψj and λj are the eigenvector and the eigenvalue of the j th mode, respectively.
Complex modes are obtained as solutions of these equations:

[Z(λj)]
{
ψjR

} = {0} and {
ψjL

}t[Z(λj)] = {0} (22)

Where, ψjR is the right eigenvector and ψjL is the left one.
Dynamic stiffness Z(s) is an analytical function of the complex plan. One can then

write under the Laurent series shape around the poles of its inverse:

[Z(s)]−1 =
∑
j

{
ψjR

}{
ψjL

}t
αj(s − λj)

(23)

where, αj is the normalization coefficient generally considered equal to one to simplify
resolution.

In this paper, the goal is to establish a parametric study to simplify the dynamic
behavior investigation of a model containing viscoelastic material. The parameters cho-
sen here are the storage modulus E and the loss factor η depending on frequency. The
stiffness of the gear can thus be written, around a reference point defined by a specific
real modulus E0, as:

kg(s) = E(s)
kg(E0)

E0
(24)

By scanning a wide range of storage modulus E and loss factor η, a parametric
representation of modes defined by the couple

{
λj(E), {ψj(E)}} and dependent on the

complex modulus E(s) = E(1 + iη) is constructed.

4 Numerical Simulation

The parametric approach detailed above, is numerically simulated under MATLAB
software. The worm gear set design’ parameters used are detailed in Table 1.

To detect the effect of the variation of the storage modulus on the dynamic of the
worm gear set, a range of storage modulus values in the interval [103, 2.106]MPa is
scanned around the reference point describing the Nylon 6 material. This interval is
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Table 1. Model design parameters

Worm Worm gear

Module (mm) 3

teeth number 1 20

Inertia moment (kg.mm2) 17.92 73.12

Angle of pressure 20°

Worm’s lead angle 3°55′

Normal pressure angle 14°33′

Worm’s lead (mm) 9.4

Pitch radius (mm) 8 30

Fig. 2. Evolution of the first natural frequency with the variation of the storage modulus

chosen to cover themaximum ofmodulus values possibly reached with a plastic material
by frequency variation. Natural modes are then calculated for a specific value of loss
factor η = 1. The first natural frequency (after the rigid one), shown in Fig. 2, illustrates
the limitation of vibration level with viscoelastic material with lowmodulus. It also gives
an estimation of the range of frequencies that can be obtained with a specific material.

The loss factor is an important characteristic of the viscoelastic material. It depends
on frequency as the storage modulus. Thus, to have a reliable representation of the
viscoelastic behavior, the evolution of the dynamic behavior of the worm gear must be
done against both the storagemodulus and the loss factor variation.Amapof isovalues, in
a space storagemodulus/loss factor, can be thus produced to have a complete information
about modal damping and frequencies of the model.

5 Conclusion

A parametric approach to study the dynamic behavior of a worm gear set with plastic
material is presented along this paper. The parameters of the study are the storage mod-
ulus and the loss factor of the worm gear’s viscoelastic material. These characteristics
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depends on frequency. Describing the dynamic equations of motion in the frequency
domain was the first step. A modal analysis was then done through a numerical simula-
tion to illustrate the effect of the variation of the storagemodulus on the natural frequency
of the model. The estimation of the frequencies range values that can be reached with
the viscoelastic material is established. A more completed model including all the trans-
lation and rotation degrees of freedom can make a continuity of this work. Profile error
and spalling or tooth breakage can also be taken into consideration.
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Abstract. Condition monitoring for rotating machines under time-
varying environmental and operating conditions remains an important
research problem for several industries, including wind turbines within
the renewable energy sector; ship, train and freight transport within the
supply-chain sector; crushing and grinding comminution within the min-
ing sector. Proposed methods to solve this problem include synchronous
statistics, the squared envelope spectrum, the order-frequency spectral
coherence and the integrated squared spectral coherence. Singular Spec-
tral Analysis (SSA) offers a non-parametric alternative to automatically
identify potential components of interest. The components of interest
are obtained from the resultant matrices, which are computed from
grouping elementary matrices. Their contribution to signal reconstruc-
tion is achieved through diagonal averaging. SSA is fundamentally a
reconstruction-focused linear latent variable model aiming at efficiently
explaining the variance in the signal. Firstly, we expect SSA to be more
informative when the component of interest manifests strongly in the sig-
nal’s variance. Secondly, we only expect SSA to isolate the component of
interest from the other components in the signal, if variance can isolate
its contribution. However, the latter is rather unlikely. Although Singu-
lar Spectral Analysis (SSA) is a well-established technique, it has not
been critically analysed for its ability to separate components for a dam-
aged gearbox under time-varying operating conditions. This work shows
that SSA can separate a damaged gearbox under time-varying operat-
ing conditions into various components. Furthermore, SSA is shown to
decompose vibration signals from a damaged gearbox into various signal
components that could aid fault diagnosis.

Keywords: Singular Spectral Analysis · Component extraction ·
Gearbox fault detection · Time-varying operating conditions

1 Introduction

Growing fleets of high-value assets within the renewable energy sector that include
wind turbines [1], tidal turbines and paddles [2], geothermal power plants [3] and
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biomass reactors [4] demand reliable fault diagnosis methods. Several methods
have been developed to address some of the challenges in gearbox diagnostics and
prognostics [5–7]. Fault diagnosis under time-varying and impulsive noise condi-
tions [6,8,9] remains challenging. In particular, when damaged components man-
ifest in low energy bandwidths, time-varying operating conditions and extraneous
impulsive events dominate the raw signal and its processed representations. Data-
driven methods for machinery fault diagnosis [10], have recently started to comple-
ment established signal processing approaches [6,11–13]. However, several estab-
lished data-driven time series approaches from the 1980s include singular spectral
analysis, a.k.a. singular system analysis (SSA) [14], and independent component
analysis (ICA) [15] as part of a larger family of spectral methods. These meth-
ods aim to decompose a time-series signal into separate informative components.
These components can then be further analysed for condition-based maintenance
applications. SSA uses variance as a separability measure, whereas ICA uses sta-
tistical independence to identify sources.

Spectral methods comprise two main steps, namely, decomposition or encod-
ing and reconstruction or decoding. Both approaches find a suitable lower-
dimensional coordinate system to decompose a signal into components and recon-
struct the original signal back during decomposition. Singular spectrum analysis
(SSA) is a non-parametric spectral estimation approach that combines time-series
analysis elements with multivariate statistics. The singular spectrum relates to the
singular values of the singular value decomposition (SVD) of a covariance matrix
that aids the decomposition of a time-series signal into components that can easily
be interpreted. Since SSA relies on SVD, these components are:

1. extracted based on explaining maximum variance per coordinate, and
2. coordinates that are mutually orthogonal.

This is in contrast to independent component analysis (ICA) that extract signals
based on:

1. non-Gaussianity of the components, and
2. components that are statistically independent.

As a result, SSA separates a signal into informative components using vari-
ance as an appropriate proxy to extract information that is independent and
informative. In contrast, ICA extracts informative components if the degree of
non-Gaussianity of the signal is a sensible proxy to extract independent and
informative information. SSA does not attempt to explicitly untangle the latent
space into independent and informative components or independent sources. SSA
may only realise partially untangled latent spaces by using variance as a sensi-
ble proxy for independent sources. Although SSA has been applied in isolated
cases to bearing defect detection [16], internal-combustion engine sound analy-
sis [17], automobile gearbox vibration analysis [17] and waste-water treatment
plants [18], its wide-spread adoption remains elusive. It can complement signal
analysis techniques such as the Squared Envelope Spectrum (SES) [11] and the
Synchronous Median of the Squared Envelope (SMSE) [13].
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Fig. 1. A historical outline for SSA is shown from inception in 1795 with Prony’s
method to the first time-series analysis application.

Historically, SSA is a sub-space based method or latent variable model (LVM)
based on the Whitney embedding theorem that states that any function from
an n-dimensional manifold to an m-dimensional manifold can be approximated
by a smooth embedding as long as m > 2n [19]. For time-series data, this
was extended into the delay embedding theorem of Mane-Takens after Pickard
inspired the field with his paper entitled the Geometry of time series. A his-
torical outline of SSA and related approaches are presented in Fig. 1, with SSA
often referred to as the PCA for time series. As proposed by [14], SSA is prin-
cipal component analysis (PCA) applied to the time domain, or also known
as the Karhunen–Loeve decomposition. It is related to spectral decomposition,
empirical orthogonal function (EOF) and empirical mode decomposition (EMD)
[20–23]. SSA is an alternative to wavelet shrinkage to denoise mixtures of trends,
transients and Gaussian noise that have only recently been employed in condition
monitoring applications [24–27].

In Sect. 2, the SSA method is introduced. The process of applying SSA to an
experimental signal from a damaged gearbox is studied in Sect. 3, followed by a
conclusion of the study and recommendations for future work in Sect. 4.
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Fig. 2. SSA is shown for a single measured vibration signal that is 1) embedded,
2) lagged covariance matrices are constructed, 3) whereafter the decomposition step
is performed. After that, 4) diagonal averaging and 5) the reconstruction of source
components is performed.

2 Singular Spectral Analysis (SSA)

The general five steps of SSA, shown in Fig. 2, are listed:

1. embedding a discrete signal x = [x1, . . . , xN ] ∈ R
N ,

2. computing the lagged covariance matrices,
3. decomposition through a singular-value decomposition (SVD),
4. reconstruction of source components through

(a) eigentriple (ET) grouping,
(b) diagonal averaging, and

5. analysis of the decomposed sources and reconstructed signal x̃ ∈ R
N .

These five steps are now discussed in detail.

2.1 Embedding

Given a signal x(t) that is discretely sampled N times to obtain x =
[x1, . . . , xN ] ∈ R

N , which is subsequently embedded as a two-dimensional tra-
jectory, lag or Hankel matrix X ∈ R

L×K . K lagged vectors of dimension win-
dow length L are arranged as columns in the embedding matrix to form the
L-trajectory matrix

X =

⎛
⎜⎜⎜⎝

x1 x2 · · · xK

x2 x3 · · · xK+1

...
...

. . .
...

xL xL+1 · · · xN

⎞
⎟⎟⎟⎠ ,

where the first column is the first L components of the original signal, the second
column is the one-stepped lag vector of the first column etc. The columns are
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referred to as L-lagged vectors. Alternatively, each row represents a K-lagged
vector of dimension K, where K = N − L + 1.

The embedding matrix is also known as the trajectory or Hankel matrix.
Here, 2 < L < N/2, should be chosen sufficiently large to reconstruct the min-
imum frequency of interest and to cover the maximum periodicity of interest
[28].

2.2 Lagged Covariances

The lagged-covariance matrices of the embedding matrix are then calculated as
CU = XXT ∈ R

L×L and CV = XTX ∈ R
K×K .

2.3 Decomposition

The eigendecomposition of CU = UΣUT and CV = VΣVT reconstructs

X = UΣTV, (1)

with the singular values ordered in the L × K diagonal matrix Σ = [σ1 ≥ σ2 ≥
· · · ≥ σL]. Consequently, the SVD decomposes the embedding matrix X into
a sum of rank-one matrices X =

∑L
i=1 X̄i =

∑L
i=1 σiUiVT

i , where X̄i is the
elementary matrix generated from the i-th eigentriple (ET) set, (σi,Ui,Vi).
The standard deviation σ̄ contribution of the ith ET is given by:

σ̄i =
√

σi∑L
i=1

√
σi

(2)

2.4 Reconstruction

SSA specifically focuses on grouping ETs to be informative. The elementary
matrices are usually grouped based on singular and period spectra criteria [29].

ETs grouping is based on the separability measure of variance to untangle the
original signal into the trend, weak fluctuations and noise. Sources of the signal
are extracted based on their contributions towards explaining the variance of
the original signal.

Instead of reconstructing the entire signal, SSA first divides the elementary
matrices X̄i into M groups. In each group, the elementary matrices are added
together to give a resultant matrix Ri ∈ R

L×K . Hence, the embedded matrix
can now be computed from X =

∑M
j=1 Rj .

Groups are selected based on information to detect weak separability. This is
contained in the w-correlation matrix, which contains weighted cosines of angles
between the reconstructed time-series components as entries. The w-correlation
matrix is a standard approach to identify weak separability between elementary
time-series components [30]. Strongly correlated elementary time-series compo-
nents are usually grouped.
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Fig. 3. The diagonal averaging depicted to reconstruct contributions of some L-
trajectory matrix A to the signal x.

Diagonal Averaging (DA) is performed, as depicted in Fig. 3 on some L-
trajectory matrix A ∈ R

L×K , which represents either an elementary or resultant
matrix. As shown, by computing the diagonal averages, DA reconstructs the
contribution of A ∈ R

L×K to x̃ ∈ R
N .

Hence, when this diagonalisation operation or Hankelisation operator is
applied to the resultant matrices Rj , j = 1, . . . , M , it computes the contribution
of each resultant matrix towards the reconstructed signal x̃j.

2.5 Decomposed Sources

The original signal is now decomposed into trends, weak fluctuations and noise
as represented by the reconstructed ETs that can be analysed and interpreted
for condition-based maintenance applications. It is important to note that the
decomposition uses variance as the proxy to find informative ETs, with the
grouping of the ETs, influenced by both variance and periodicity of the ETs.

3 Experimental Case Study

The experimental test rig in the Centre for Asset Integrity Management labo-
ratory of the University of Pretoria is shown in Fig. 4. The setup consists of an
electrical motor that drives the system and an alternator to control the applied
load to the system using independent speed controllers. Four varying operating
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Fig. 4. (a) Experimental test rig. (b) The rotational speed of the input shaft of the
monitored gearbox. (c) Load at the input shaft of the monitored gearbox. (d) Gear
before the experiment started (0% complete). (e) Gear after the experiment was com-
pleted (100% complete).

conditions (OC1 to OC4) are shown in Figs. 4(b) and 4(c). The test rig also
contains three helical gearboxes, with the centre gearbox being monitored for
damage. For the measurements considered in this work, the gear was damaged
with a seeded slot shown in Fig. 4(d) and operated under varying operating
conditions until the gear tooth failed, as shown in Fig. 4(e).

The measurement under consideration was acquired after the experiment was
approximately 90% complete and used to illustrate the SSA process’s important
steps. The raw signal, x, of the segment considered in this study is depicted in
Fig. 5.

3.1 SSA of the Experimental Signal

One measurement, acquired from OC 1 in Fig. 4, is used to evaluate the SSA
method’s performance (Sect. 2).
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Fig. 5. Raw time-series signal considered in this study.

The trajectory matrix shown in Fig. 7 is computed from the raw time-series
signal x, shown in Fig. 5. The raw time-series signal covers 0.195 s and contain
5000 samples, giving a sampling rate (SR) of 25.6 kHz and a Nyquist frequency
of 12.8 kHz. In turn, the lowest detectable frequency f0 is given by

f0 = 5
SR

L
. (3)

A window length of L = 256 was used, resulting in frequency f0 = 500 Hz and a
time resolution of around 0.002 s.

Lagged covariance matrices are computed from the trajectory matrix.

Eigendecomposition of the lagged covariance matrices gives the ETs in the
form of L × L and K × K unitary matrices and the L × K rectangular diagonal
matrix with the L singular values of the trajectory matrix.

Reconstruction of the sources requires the computation of the elementary
matrices from the ETs. The variance contributed to reconstructing the trajectory
matrix by elementary matrix is shown in Fig. 6. Similar variances are shared
amongst some elementary matrices that include

{
X̄0, X̄1

}
,

{
X̄2, X̄3, X̄4, X̄5

}
and

{
X̄6, X̄7, X̄8, X̄9, X̄10, X̄11

}
.

The first thirty computed elementary matrices from the ETs are depicted
in Fig. 8. Although the elementary matrices are mainly distinct, similarities are
exhibited amongst some matrices that include {X̄0, X̄1}, {X̄2, X̄3}, { ¯̄X4, X̄5},
{X6, X̄7} and {X̄8, X̄9}. An additional analysis of the elementary matrices are
shown in Fig. 9, which confirms the coherence in the period spectrum amongst
{X̄0, X̄1}, {X̄2, X̄3}, {X̄4, X̄5}, {X̄6, X̄7} and {X̄8, X̄9}. The energy in the spec-
tra decreases as the variance explained decreases.

Grouping of the ETs is usually done based on strong correlations in the
w-correlation matrix. The w-correlation matrix is depicted in Fig. 10. From
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Fig. 6. The relative contributions of elementary matrix X̄i in reconstructing the tra-
jectory matrix X.

Fig. 7. The trajectory matrix, X.

the w-correlation matrix, 19 resultant matrices R0–R18, are identified. The
components for four selected resultant matrices include R0 :

{
X̄0, X̄1

}
, R1 :{

X̄2, X̄3, X̄4, X̄5

}
, R3 :

{
X̄8, X̄9

}
, and R4 :

{
X̄10, X̄11

}
.

The magnitude of the transfer functions for all the groupings is depicted
in Fig. 11. Just above 7.5 kHz, groups 1, 5, 14, 15, 16, 18 highlight energy in
the signal. These frequency bands are associated with the dominant impulsive
components that impede damage detection [13]. Groups 1, 5, 16 and 18 have
well-separated energy, whereas, for groups 14 and 15, energy is present at lower
and higher frequencies.

Fig. 8. The magnitude of the first twelve elementary matrices. The x and y axes of
each subfigure represent the rows and columns of its associated elementary matrix.



SSA for Gearbox Fault Diagnosis 169

Fig. 9. The magnitude of the fast Fourier transforms (FFTs) of the diagonal averaged
elementary matrices X̄i for i = 0, . . . . , 29, with a window length of L = 256.

Fig. 10. The weighted correlation (w−correlation) matrix indicates the weighted cor-
relation amongst the reconstructed signal of elementary matrices X̄i.

Fig. 11. The magnitude of the transfer functions of the first 19 diagonal averaged
resultant matrices.



170 D. N. Wilke et al.

Fig. 12. The diagonalised averaged resultant matrices for R0, R1, R3 and R4.

Fig. 13. The magnitude of the transfer functions for the diagonal averaged resultant
matrices R0, R1, R3 and R4.

Consider the diagonalised averaged resultant matrices for R0, R1, R3 and
R4 in Fig. 12, with their respective transfer function magnitudes depicted in
Fig. 13. SSA can identify different signal components in the data. This enables
the different signal components (e.g. impulsive components at 8 kHz) to be
isolated in the signal by using the variance as a basis for decomposition. This
is useful for condition monitoring as weak and damaged components can be
identified and isolated.

4 Conclusion

Singular spectrum analysis (SSA) is demonstrated to separate a gearbox sig-
nal under time-varying operating conditions into predominantly isolated com-
ponents. This is achieved by grouping elementary matrices to construct resultant
matrices. The resultant matrices contribution to signal reconstruction is achieved
through diagonal averaging. We showed that SSA could enhance interpretabil-
ity under time-varying operating conditions given a suitable eigentriples (ETs)
grouping. Future work will focus on studying additional separability measures to
automatically group the ETs and enhance the interpretation of the components
using signal processing techniques. Lastly, SSA offers a convenient framework
that could be extended towards other linear latent variable techniques.
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Abstract. Among the infinite field of micro system of sandwich structure appli-
cations, biomedical devices are mainly vital due to their effect on society and on
our health. Many technologies have been industrialized and developed to provide
efficient system, including nano and micro electro mechanical systems (NEMS
andMEMS) for piezoelectric applications. In this work, experimental and numer-
ical analysis of the frequency responses of two micro electro mechanical systems
are presented. The micro piezoelectric cantilever beam was used as a micro elec-
tro mechanical system. It is very useful for low frequency vibration sensors. The
second system is a transducer. It is as an audio prosthesis and consists of a MEMS
membrane made of an isolating interface; a AlN film acting as acoustic active
material of the transducer. The finite element analysis is implemented, calculating
the natural frequencies and eigenmodes of sandwich structures. We present the
effect of the thickness on frequency responses for the cantilever beam. We show
a good agreement between numerical results and experimental ones obtained by
laser vibrometer measurements.

Keywords: Frequency response · FEM · Experimental results ·MEMS

1 Introduction

Dynamic behavior and fracture of components of mechanical structures are an important
problem especially in the aeronautical and automobile fields due to dynamic loadings.
Numerical and experimental studies are interested in this research field (Silberschmidt
2016, Wu et al. 2020). We are focused on looking at the dynamic behavior of micro-
electro-mechanical systems (MEMS), particularly the piezoelectric sandwich structures
(Heyliger and Saravanos 1995, Leung et al. 2008). Their dynamic response andmechani-
cal behavior until damage due to vibrations and shocks has been less studied. At material
level, the use of composite sandwich structures is developed in the last years, to differ-
ent engineering problems. This type of structures has been widely used in aerospace
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and automotive applications, because of their superior mechanical properties, such as
the strength-to-weight ratio. It represents an important factor in the choice of materials
and dimensions in the design and manufacturing processes. Finite-element modeling
is a powerful tool to predict the dynamic responses of microstructures (Wu and Lin
1990, Shu and Della 2004, Umesh and Ganguli 2008). It allows the optimization of
structures before the design and realization steps. Many studies have focused numeri-
cally and experimentally on predictingmechanical characteristics of sandwich structures
(Tsopanos et al. 2010, Mines et al. 2013). These structures are very complex and include
imperfections over the surface of micro beams and different dimensions. These faults
affect the mechanical responses of the MEMS structure.

Indeed, this study presents the finite element modeling of two sandwich structures:
cantilever beam and a membrane structure. We analyze their frequency responses and
their Eigenmodes. The finite element (FE)model is implemented in COMSOL software.
In addition, an experimental analysis of frequency responses is presented in order to
define the vibration response of the both structures.With the aim to validate the numerical
model, a comparison between the numerical and experimental results was developed.

2 Geometrical and Material Properties

Two structure will be studied. The firs geometry (Fig. 1) is a cantilever beam.

Fig. 1. Cantilever beam geometry

It is made up of two layers that composed on silicon and Cobalt-Nickel with 2.5 µm
and 1µm respectively as thickness.

Co/Ni
Si

Fig. 2. Different layers composing the cantilever beam
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Table 1 represents mechanical characteristics of the cantilever beam materials:

Table 1. Mechanical characteristics of the cantilever beam materials

Silicon Co/Ni

Young modulus 170 MPa 180 MPa

Poisson’s ratio 0.28 0.35

The second geometry is the membrane piece, which is shown in Fig. 3.

Fig. 3. Membrane geometry

This structure is a MEMS transducer adapted for in vivo implantation as audio
prosthesis. The transducer is a piezoelectric sandwich structure. It contains a silicon (Si)
membrane with 2 µm as thickness and 500 µm as radius, an isolating oxide interface
layer with 2 µm as thickness and 400 nm as radius. It contains also two platinum (Pt)
electrodes (thickness of 2 µm and radius of 150 nm), a piezoelectric layer of aluminum
nitride (AlN) (thickness of 1 µm and radius of 400 µm) and a passivation layer for
device protection Si3N4/SiO2 (700 nm/400 nm).

Fig. 4. Different layers composing the membrane
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Table 2 represents mechanical characteristics of this membrane:

Table 2. Mechanical characteristics of the cantilever beam

Pt Aln SiO2 Si3N4

Young modulus 100 MPa 169 MPa 70 MPa 250 MPa

Poissons’s ratio 0.38 0.28 0.17 0.28

3 Numerical Models

The modelling and study of free vibration response of sandwich MEMS are carried out
through the commercial FE code COMSOLMultiphysics 5.3. The FE model consists of
two parts: cantilever beam and piezoelectric sandwich structure. The contact between the
different parts is considered perfect. The free vibration analysis is carried out, obtaining
the displacement and the eigenvalues. The cantilever beam structure is discretized using
a fine triangle element and a swept mesh with a distribution (21786 elements). It is
fixed from a part and free in the other. Furthermore, in order to validate the membrane
sandwich discretizationwith tetrahedral elements, we implemented the FEmodel using a
3D element to mesh this structure (29218 elements). In this case, an extra fine tetrahedral
volumetricmeshwas used.As boundary conditions, the edge of themembrane Si is fixed.

The validation of experimental results (Hamamed et al. 2021), which are taken by the
MSA-500 Micro System Analyzer for the membrane and the cantilever beam structures
was released by numerical stimulation.

In the first step, a comparison between numerical and experimental results for the
3D and beam structures is carried out, in order to validate the both numerical models.
Subsequently, we show the first three eigenmodes of the two undamaged structures. In
the second step, the values of the displacement (µm) for the three first modes shape and
the frequency responses in the undamaged structures will be used to analyze.
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4 Comparison Between Numerical and Experimental Results

4.1 Cantilever Beam Structure

As mentioned above, a simplified model is developed in order to reduce the computa-
tional cost. We consider the 2D-node beam elements to represent the Cantilever beam
structure. With the aim to validate the beam model, a comparison between the results
obtained with numerical and experimental tests is developed. By considering the first
three eigenmodes, the comparison is made by determine the Eigenfrequencies of vibra-
tion for the beam. Two values of the thickness of beam 250µm and 300µm) are studied.
The different results are shown in Fig. 5.

Fig. 5. Comparison between experimental and numerical Eigenfrequencies values
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We represent in Fig. 6, the displacement fields for the first three modes of the
cantilever beam structures.

Mode Beam 300 µm Beam 250 µm

1

2

3

Fig. 6. Displacement (µm) for the first tree modes shape of the cantilever beam
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4.2 Membrane Structure

We illustrate in Fig. 7, the first three eigenmodes for the piezoelectric sandwich structure.

Fig. 7. Comparison between experimental and numerical Eigenfrequencies values

We noticed that the thickness of the silicon layer is the most influencing parameter.
For that, the numerical results are sensible for the choice of this geometric parameter.
The small difference between experimental and numerical value of the thickness of the
silicon layer may modify our results.

Furthermore, after validate the 3D model, we represent in Fig. 8, the displacement
fields for the first three modes of the piezoelectric sandwich structure.
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Mode Shape mode
1

2

3

Fig. 8. Displacement (µm) for the first tree modes shape of the piezoelectric sandwich structure
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5 Conclusion

In this work, we have used COMSOL Multiphysics software to design sandwich struc-
tures geometries and to validate thosemodels experimentally. The vibration responses of
the different sandwich structures was calculated by the finite element method. The dif-
ferent experimental tests are taken by the MSA-500 Micro System Analyzer. It measure
the vibrations for different micro structures.

We showed in this paper a good agreement between the 2D and the 3D simulation
and experimental results given by the laser vibrometer. This small difference between
different results is explained by the fact that we do not know exactly all the properties
of all layers (dimensions, homogeneity, isotropy…).
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Abstract. The effective condition monitoring of planetary gearboxes
is important for making informed maintenance decisions and mini-
mizing machine downtime. Traditional physics-based and data-driven
approaches for condition monitoring of planetary gearboxes have inher-
ent shortcomings that limit their practical application for remaining use-
ful life prediction. Hybrid approaches show unique potential for per-
forming diagnostics and prognostics of planetary gearboxes in situa-
tions where failure data is not available. Hybrid methods incorporate
both physics-based and data-driven models that exploit their respective
advantages. This work starts with a brief overview of the various chal-
lenges associated with vibration-based condition monitoring of planetary
gearboxes and the characteristics of planetary gearboxes that complicate
the condition monitoring process. Thereafter, the potential of hybrid
methods to address these challenges is discussed. The respective advan-
tages and disadvantages of physics-based and data-driven approaches are
summarized and a short review of the use of hybrid methods in condi-
tion monitoring is presented. Finally, various considerations for devel-
oping hybrid methods for planetary gearbox diagnostics and prognos-
tics are discussed. This includes considerations for selecting an appro-
priate hybrid framework, pre-processing of the measured vibration sig-
nal, physics-based modelling of a planetary gearbox, model calibration,
health state estimation, and health state prediction.

Keywords: Planetary gearboxes · Diagnostics · Prognostics · Hybrid
methods

1 Vibration-Based Condition Monitoring of Planetary
Gearboxes

Condition-based maintenance (CBM) of planetary gearboxes has become
increasingly important in recent years. The rapidly growing wind energy indus-
try requires that the planetary gearboxes used in wind turbines operate reliably
with a minimum amount of downtime [1]. CBM can reduce maintenance cost by
eliminating unnecessary preventive maintenance operations [2] and increasing
machine availability [3].
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Consequently, the development of CBM strategies that can identify damaged
components, diagnose fault severity, and predict the remaining useful life (RUL)
of planetary gearboxes are an important field of research [4–6].

A common goal of CBM for planetary gearboxes is to infer the gearbox fault
severity measurement using a diagnostics model, whereafter the RUL is predicted
from the inferred health state by a prognostics model.

Vibration-based condition monitoring is a popular measurement technique
for rotating machines such as gearboxes. Vibration-based condition monitoring
relies on the assumption that a machine’s vibration signature will be altered
when the machine health changes [5].

However, the diagnostics and prognostics of planetary gearboxes remain chal-
lenging. The overall success of RUL prediction depends on how accurately the
heath state is inferred and our ability to predict the future machine operation
and machine degradation. This challenge is exacerbated by the unique struc-
ture of planetary gearboxes, which invalidate established condition monitoring
methods developed for conventional fixed-axis gearboxes [4].

Fig. 1. A schematic of the important components in a planetary gearbox.

Characteristics that complicate the condition monitoring process arise
from the planetary gearbox design as shown in Fig. 1. These characteristics
include [4]:

1. Planetary gearboxes have multiple planet gears that simultaneously mesh
with the sun and ring gears. The presence of multiple synchronous excitation
sources can lead to the cancellation of vibration components attributed to
damage.

2. There are multiple, time-varying vibration transmission paths between the
origin of vibration and an accelerometer mounted to the gearbox housing.
This could mask subtle changes in the vibration signature caused by damaged
components.

3. The frequency spectra of both healthy and damaged planetary gearboxes is
characterised by asymmetric sidebands around the gear mesh frequency and
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its harmonics. The presence of sidebands around the gear mesh frequency
and its harmonics can therefore not be used to diagnose faults in planetary
gearboxes in the same way as done in conventional fixed axis gearboxes.

4. The high transmission ratio of many planetary gearboxes leads to gearbox
components rotating at low rotational speeds. Low-frequency components
associated with these low rotational speeds are generally masked by heavy
noise, further complicating fault diagnostics.

The above-mentioned characteristics of planetary gearboxes require that
more advanced condition monitoring techniques should be applied for diagnosing
faults and predicting the RUL.

2 Motivation for Hybrid Methods

Two of the most common model types used for diagnostics and prognostics are
data-driven models and physics-based models.

Data-driven models rely on previously observed data to create a mapping
between measured vibration and the underlying health state (diagnosis) and
RUL (prognosis). In contrast, physics-based models are mathematical models
derived from first principles, that model the dynamics and degradation of a
damaged gearbox. Unknown parameters for the physics-based models can be
inferred in a model calibration process. Usually, this is performed with statistical
methods such as Bayesian updating or regression [7].

Physics-based and data-driven models have unique advantages and disadvan-
tages for diagnostics and prognostics which are summarized in Table 1.

The purpose of hybrid methods also referred to as integrated methods, is to
overcome the shortcomings of the individual models and improve their perfor-
mance by exploiting their respective advantages. There are several variants of
hybrid methods [7] but the combination of physics-based and data-driven mod-
els appear to have unique advantages for the planetary gearbox diagnostics and
prognostics problem.

For instance, hybrid methods can exploit the extensive research [10] on
physics-based vibration and degradation models. Furthermore, data-driven
methods can be used to quantify uncertainty in the model, the inferred model
parameters and ultimately, the predicted RUL.

In fact, several authors have applied hybrid methods for CBM of different
machines with various failure modes. For fixed axis gearboxes, hybrid methods
have been studied for the crack growth [11,14,15], and surface wear [16] failure
modes. For planetary gearboxes, hybrid methods have been applied to sun gear
cracks [17], planet carrier cracks [18,19], planet gear cracks [20] and surface wear
[20,21]. Hybrid methods have also been successfully applied outside the domain
of gearbox CBM in for instance crack growth in aircraft fuselage panels [22] and
Lithium-Ion batteries [23].

Although the hybrid methods applied in the above-mentioned investigations
serve as proof that hybrid methods can be effectively be applied for CBM, in
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Table 1. The advantages and disadvantages of physics-based and data-driven models

Data-driven Physics-based

Examples: Bayesian state
estimation [8], machine
learning methods [9]

Examples: Finite element models,
Lumped mass models [3,10]

Advantages
– Can model non-linear, non-
monotonic degradation [7]
– An in-depth understanding
of the complex physics that
governs the degradation is not
required [7]

Advantages
– Can be used in circumstances where fail-
ure data is not available
– Allows for the incorporation of the oper-
ating conditions of the machine [11]. This
makes physics-based methods valuable
when working with time-varying operat-
ing conditions or for making predictions
for operating conditions or health states
for which training data is not available
– Model output has a physical meaning,
is understandable and explainable

Disadvantages
– Black-box models do not
explain the inherent physics of
the problem [7]. This makes
this approach ill-suited for
extrapolation since the influ-
ence of a fault on the machine
response is not incorporated
in the model
– Requires large amounts of
representative training data
over the entire life cycle of the
machine [7]. This is generally
not available with insufficient
historical fault data and many
potential modes of failure
– Is not guaranteed to gener-
alize well to operating condi-
tions for which training data
is not available [12]

Disadvantages
– Requires in-depth domain knowledge
[13]
– Physics-based models are intrinsically
deterministic. As a result, they cannot be
used in isolation for uncertainty quantifi-
cation and risk assessment
– It is difficult to estimate model param-
eters through the optimisation of non-
linear physics-based models [13]
– A given physics-based model applies to
only a small set of problems [13] and
requires extensive modeling effort to
create

most cases, either the methods used to infer the health state or the methods
used to predict RUL, rely on the availability of historical failure data.

The remainder of this work is dedicated to discussing the challenges and
considerations associated with applying hybrid methods to planetary gearbox
prognostics where an abundance of healthy data is available, but no failure data
is available.
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Section 3.1 lists considerations for choosing an appropriate hybrid framework
and Sect. 3.2 discusses potential pre-processing of the measured vibration signal.
Thereafter, model calibration and health state estimation considerations are dis-
cussed in Sect. 3.4 with RUL prediction considerations listed in Sect. 3.5. Finally,
recommendation for future work is presented in Sect. 4.

3 Considerations for Using Hybrid Methods for
Planetary Gearbox Prognostics

This section lists different considerations for developing hybrid prognostics meth-
ods for planetary gearboxes. Figure 2 shows a roadmap of this section based on
the hybrid framework suggested in Sect. 3.1. The section numbers associated
with a given component are indicated on the figure.

3.1 Hybrid Framework

For the CBM of planetary gearboxes, the prediction of the RUL can be divided
into two main sub-problems, namely diagnosis and prognosis (see Fig. 2).

Fig. 2. A hybrid framework for diagnostics and prognostics in planetary gearboxes.

In the diagnosis phase, the current health state (e.g. the crack length in
the tooth of a planet gear) is inferred from vibration data (Sect. 3.4). Health
state estimation models are therefore used to define a mapping between the
(possibly pre-processed, Sect. 3.2) measured condition monitoring data and the
health state of the gearbox.
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This mapping can consist of an ensemble of physics-based models, a data-
driven model, or a combination of physics-based and data-driven models in the
form of a hybrid model.

If the health state estimation model is data-driven, failure data is required to
establish a mapping between the measured variable and the underlying health
state. Although prior work have successfully implemented health state estimation
models [18,23,24], knowledge of the underlying heath state was required to create
this mapping. Consequently, if failure data is not available, the health state
estimation model has to be physics-based or hybrid, incorporating a physics-
based component, and a data-driven component trained on healthy data.

For a hybrid health state estimation model, it is important that phenom-
ena modeled by the data-driven component is not dependent on the underlying
health state. This would ensure that a data-driven component of the health state
estimation model would remain applicable under degraded health state condi-
tions, even though it is trained on healthy data only. Of course, it is also possible
to skip the health state estimation step altogether and construct a data-driven
mapping between the measured gearbox vibration response and the RUL. How-
ever, this would only be possible if large amounts of failure data is available.

The second sub-problem of the CBM process is remaining useful life esti-
mation (Sect. 3.5). If the diagnostics model is capable of reliably estimating the
health state from the condition monitoring measurements, a health state pre-
diction or prognostics model can be used to predict future health states, and
ultimately, the RUL.

Unless failure data is available and a data-driven state prediction model can
be used, a physics-based health state prediction model needs to be used. There-
fore, if failure data is not available, an in-depth understanding of the physics of
failure is required so that a health state prediction model can be defined. Fortu-
nately, for a planetary gearbox, failure modes like crack growth are accurately
modeled by the Paris law [18] and the surface wear failure mode is modeled by
the Archard wear model [21]. In circumstances where a failure model has not
yet been derived for a given failure mode, physics-based health state prediction
is more difficult and a degradation model such as exponential degradation must
be assumed.

Additional to the health state estimation and health state prediction mod-
els, a hybrid prognostics model can incorporate pre-processing (Sect. 3.2) and
uncertainty quantification components. The measured vibration signal is often
contaminated with noise and signal components that do not contribute use-
ful information related to the underlying health state. To remove these signal
components, the measured variable can be pre-processed before health state esti-
mation. For physics-based models, pre-processing can involve signal processing
that removes signal components and noise that are not explicitly modelled in
the physics-based model. For data-driven models, pre-processing can include the
reduction of the dimensionality of the measured variable through the calcula-
tion of features that are expected to correlate well with a change in the gearbox
health state.
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Additional to signal processing, an uncertainty quantification component can
be included in a hybrid method.

Bayesian state estimation techniques such as particle filters and Kalman fil-
ters can be used to update the health state and model parameter probabil-
ity densities as health state measurements become available through the health
state estimation model [15,18,21,22]. In this way, measured data under dam-
aged conditions can be incorporated into the model without the availability of
run-to-failure data.

Considerations for each of the respective components of a hybrid prognostics
framework are now discussed in more detail.

3.2 Pre-processing of the Measured Vibration Signal

Signal processing and analysis methods form an integral part of conventional
fault diagnosis methods [4]. In the context of hybrid prognostics of planetary
gearboxes, signal processing methods can also be used as the first step in a hybrid
framework. Signal processing enhances the fault information in the signal and
for some techniques, such as the synchronous average, it ensures that physics-
based models do not have to account for complex non-synchronous phenomena
that are difficult to model or do not carry fault information.

However, excessive pre-processing could impede the identifiably of the dam-
age component since a non-unique representation exists between the damage
and the processed data. This means that the underlying health state cannot be
uniquely inferred resulting in an erroneous prediction of the RUL. A vector of
features extracted from vibration data is therefore mostly useful when used in
conjunction with a data-driven model or when the vector is compared to the
same features from a physics-based model response.

A potential pre-processing technique that preserves physics-based meaning
in planetary gearboxes is the time-synchronous average [25]. The goal of the
time-synchronous average is to separate the vibration components related to the
planet gears from the overall vibration of the machine. This technique assumes
that for small measurement windows, the periodic transfer function that leads to
amplitude changes in the vibration signal as the planet gear passes the accelerom-
eter remains constant [25].

Therefore, if physics-based meaning should be preserved in the measured
signal, it can make sense to calculate the synchronous average as an initial pre-
processing step for planetary gearboxes prognostics frameworks that employ
physics-based health state estimation models. Alternatively, if a data-driven
model trained on healthy data is used as the first component of the state esti-
mation model, a vector of features that are expected to correlate well with the
damage state can be calculated as a pre-processing step.

3.3 Physics-Based Modelling

Physics-based models are particularly useful in hybrid prognostics models where
historical fault data is not available. Examples of physics-based models that are
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useful for planetary gearbox prognostics are shown in Figs. 3 and 4. Figure 3a
shows a crack growth simulation to calculate the crack growth path and stress
intensity factors in a planet gear. The crack growth path is compared to an
experimental crack growth path shown in Fig. 3b. The simulated crack profile
can then be used in a subsequent time-varying mesh stiffness (TVMS) simulation
(Fig. 4) with the stess intensity factors being used in RUL prediction using the
Paris crack propagation law.

In this section, considerations for the physics-based modelling of a planetary
gearbox are presented.

(a) Simulated crack growth (b) Experimental crack growth

Fig. 3. Crack growth simulation vs. experimental crack growth.
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Fig. 4. TVMS simulation for a planetary gearbox

Physics-based models are useful for defining both the mapping between the
health state severity and the measured gearbox response as well as the mapping
between the current health state severity and the expected RUL of the gearbox.
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Two methods are typically used to model the vibration response of plane-
tary gearboxes subject to a given failure mode and fault severity. These include
phenomenological models and dynamic, lumped mass models (LMM). With phe-
nomenological models, the gearbox is described using algebraic equations based
on empirical observations. On the other hand, with physics-based dynamic mod-
els laws of the gearbox vibration are defined by differential equations [26]).

Although phenomenological models have been successfully applied to explain
the frequency and time domain response of planetary gearboxes [27,28], the
parameters that govern the output of phenomenological models do not have
physical meaning. Phenomenological models are therefore capable of demon-
strating the way in which a fault would manifest in the vibration response, but
are not useful for inferring the underlying health state of the planetary gearbox.

It is therefore important that the physics-based models used in the health
state estimation model are defined by physical parameters so that the underlying
health state can be inferred from the measured vibration response. A dynamic
lumped mass model is, therefore, a more appropriate choice of physics-based
model for hybrid models since there is a connection between the physical param-
eters of the gearbox and the model response [29].

An example of where lumped mass models are useful for modelling the vibra-
tion response is the crack growth failure mode. The physics of cracked gear sys-
tems have been studied extensively [10]. A fatigue crack in a gear tooth will
lead to a decrease in gear tooth stiffness [30] where the stiffness reduction is
a function of the crack length and crack path in the gear tooth. This reduced
gear tooth stiffness will in turn influence the time-varying mesh stiffness and
lead to a vibration response that is different from that of an undamaged gear
system [10,31].

When the TVMS for a damaged gear pair is known, it can be used in an LMM
to model the expected vibration response of the gearbox due to the excitation
caused by the TVMS.

Considerations that have to be kept in mind when applying physics-based
models in the health state estimation part of a prognostics framework are now
presented.

– A commonly used family of 2D dynamic lumped mass models for planetary
gearboxes is based on that of Kahraman [32] which has been used with some
adaption by others [29,33–36]. For a planetary gearbox with three planet
gears, a planar LMM with three DOFs for each lumped mass will have 18
degrees of freedom in total. Many degrees of freedom make the numerical
solution of the non-linear differential equations that govern the problem, very
expensive to compute. This also complicates the solution of the inverse prob-
lem (see Sect. 3.4) where the crack length should be inferred from the vibra-
tion response.

– All translations of lumped masses in the planetary gearbox LMM are typically
defined relative to a rotating reference frame fixed to the planet carrier. As
such, the vibration response obtained from the LMM is not directly compa-
rable to the response measured by an accelerometer mounted to the gearbox
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housing. Consequently, a transfer function is required to model the transmis-
sion path between the gearbox components in the rotating reference frame
and the measured response at the accelerometer [37]. This can be modeled
in different ways [29,38], but ideally, the complex physics associated with
this transmission path would be modeled by a data-driven model trained on
healthy data. Alternatively, this mapping could be omitted entirely if torsional
vibration is measured rather than axial vibration on the gearbox housing.

– The choice of the appropriate degree of model fidelity is further important.
Different authors extend the basic capabilities of planetary gearbox LMMs to
model various physical phenomena such as gyroscopic and centrifugal forces
[29] or the influence of a flexible ring gear [36]. Similarly, the time-varying
mesh stiffness for a faulty gear can be modeled using various analytical and
finite element methods [10] of different fidelity. However, as the model fidelity
is increased, the required modelling effort and computational cost of solving
for the model response also increases. The extent to which increased model
fidelity contributes to the accuracy of health state estimation should therefore
be critically evaluated. Since there are many sources of uncertainty in the
modelling of the planetary gearbox, an increased model fidelity of a given
model component could be rendered useless by a different, low fidelity model
component.

– Model inadequacy [39] will be present if the physics-based model is not flexible
enough to model the complexities of the true system. Although high fidelity
models could potentially model more complex systems, it is unlikely that a
model would ever perfectly describe a planetary gearbox.

For different failure modes, the physics of the health state degradation is
well understood and a physics-based model can be used during health state
prediction. For the crack growth failure mode, for instance, the Paris law [40]
can be used to predict the crack length in the gear tooth after some time has
elapsed.

3.4 Model Calibration and Health State Estimation

After an appropriate model is created to serve as a health state estimation model,
the model must be calibrated to ensure that it is representative of reality. Since
data in damaged conditions are not available, the model is calibrated on healthy
data only, relying on the physics-based components of the model to generalize
to damaged conditions. The health state estimation model has many unknown
parameters. These unknown parameters either need to be chosen by experts, or
they should be inferred through the calibration process.

The calibration process involves solving the inverse problem of finding the
optimal model parameters given the pre-processed measured vibration response.
After the model is calibrated, the current health state can be inferred in a similar
way with all other model parameters remaining fixed at the values obtained from
model calibration.

There are several considerations that need to be kept in mind when calibrat-
ing the health estimation model.
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– For each degree of freedom, there are unknown mass, stiffness, and damping
values that must either be chosen and fixed or inferred from measurement.
The large number of design variables in the optimisation problem presents
some challenges. It is difficult to find the optimal values for many free param-
eters in the optimisation problem, and it becomes easy to over-fit the model
to the data. Furthermore, if the initial conditions for the differential equation
need to be inferred from the measured vibration, the optimisation problem is
further complicated since each degree of freedom in the LMM requires a dis-
placement and velocity initial condition. Initial conditions can be eliminated
from the set of free parameters in the optimisation problem by starting with
random initial conditions and discarding the transient part of the solution
when comparing the model response to the measured response. For example,
the first 50 mesh cycles of a solution can be discarded to obtain the steady-
state response of an LMM [41]. Depending on how quickly steady state is
reached, it can be computationally expensive to evaluate the solution for a
long enough time period for all transients to die out. For complex models,
the response can also be sensitive to the choice of initial conditions. [42] show
that an LMM of a multi-stage planetary gear system exhibits complex motion
that leads to period-doubling, demonstrating that the system is sensitive to
the choice of the initial condition.

– The model parameters and health state are not necessarily identifiable. This
means that there is uncertainty in the true system parameters and that these
parameters cannot be uniquely be inferred from the measured system response
[43]. The positioning of accelerometers on the gearbox housing and the time-
varying vibration transfer paths are examples of factors that can influence
the parameter identifiably.

– The total number of parameters can be reduced by setting parameters that
are expected to be equal to the same free parameter or making use of pro-
portional damping to eliminate some of the unknown damping free parame-
ters. Additionally, a sensitivity analysis [44] can be conducted to determine
which parameters most greatly affect the model response. The most sensitive
parameters can then be used as free parameters in the calibration problem
with fewer sensitive parameters remaining fixed.

– During the optimisation process, many function evaluations are required to
compute the optimisation cost associated with each candidate solution. For a
planetary gearbox lumped mass model, each function evaluation requires the
solution of a differential equation. The solution to the differential equation
is computationally expensive and reduces the feasibility of using high fidelity
LMMs with many degrees of freedom.

– Choosing a good starting point for the optimisation algorithm and defining
accurate parameter bounds is critical for converging to the global minimum in
a reasonable amount of time. Relative constraints between parameters can be
added to express an understanding of the relative size of model parameters.
Furthermore, the use of multiple starting points can increase the chances of
converging to a global optimum.
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– The TVMS used in the LMM also contributes to the calibration challenges.
The TVMS introduces a non-linearity in the LMM differential equation. This
non-linearity requires that small solution time steps should be taken by a
numerical differential equation solver, increasing the overall computational
expense of model calibration.

– The solution to LMM tends to be sensitive to certain model parameters such
as damping coefficients. In the context of solving the optimisation problem of
fitting the LMM to measured data, the algorithm could easily propose a can-
didate solution that would lead to an unstable LMM response. Although this
candidate solution would typically incur a high optimisation cost and would
typically not be selected as the optimum, the computation of the unstable
solution with the numerical differential equation solver can take a long time.

3.5 Remaining Useful Life Prediction

If the current health state can be successfully inferred through the heath state
estimation model, the health state prediction model can be used to predict the
remaining useful life of the machine. For the crack growth failure mode, the
propagation of a crack in isotropic and linear elastic materials can be modeled
by the Paris law [40]. The Paris law is a physics-based model that defines a
relationship between the crack growth rate and stress state in materials with
cracks in the stable crack growth region.

The simplest variant of the Paris law is given by

da

dN
= C(ΔK)m (1)

where da
dN is the crack growth rate, ΔK is the stress intensity range, and C

and m are experimentally determined constants.
To achieve accurate RUL predictions, the appropriate Paris law parameters

C and m and stress intensity range ΔK must be used. Due to the unavailability
of failure data, obtaining the model parameters, C and m from an experimental
fit is not an option. Consequently, there exists a degree of uncertainty in the true
Paris law parameters. To reduce this uncertainty, Bayesian sequential inference
can be used to update prior probability densities of the Paris law parameters as
more measurements of the crack length become available during the course of
the machine’s lifetime.

The sequential Bayesian inference problem consists of two parts. During
model-based prediction, an a-priori estimate of a future state is obtained by
projecting the current state through the discretized Paris crack growth law. As
measurements containing information about the true system state become avail-
able, the current belief of the system state, as calculated by the prediction step,
can then be updated with the measurement information in an update step [8].

An example of the mean and standard deviation for crack growth RUL pre-
dictions as computed by the Bayesian state estimation is shown in Fig. 5.
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Fig. 5. RUL predictions versus true RUL

4 Recommendation for Future Work in Hybrid
Prognostics of Planetary Gearboxes

From the set of considerations listed in the previous section, it is clear that the
planetary gearbox prognostics problem present many challenges.

Prognostics approaches that incorporate physics-based health state predic-
tion laws such as the Paris law or the Archard wear model together with Bayesian
state estimation techniques are successful in predicting the RUL of a gearbox
[15,16,18,21,22]. However, it is likely that the overall success of vibration-based
hybrid prognostics methods applied to planetary gearboxes would largely be
reliant on the ability of the state estimation model to infer the current health
state from the vibration response.

As a result, the development and validation of physics-based or hybrid models
capable of inferring the underlying health state in a planetary gearbox from a
measured vibration signal can be most valuable to future research in planetary
gearbox prognostics.

5 Conclusion

Hybrid approaches for prognostics of planetary gearboxes have the potential
to outperform traditional physics-based or data-driven models under conditions
where failure data is not available. However, several factors have to be considered
when developing hybrid prognostics methods for planetary gearboxes.

Some of the considerations associated with the hybrid prognostics of plane-
tary gearboxes include selecting an appropriate hybrid framework comprised of
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physics-based and data-driven components, pre-processing of the vibration sig-
nal, physics-based modeling of the planetary gearbox, model calibration, health
state estimation and health state prediction.
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Abstract. The modeling of a reducer stage coupled the planetary stage through
a flexible connection was established in this research. The studied system was
made by lumped parameter model. The behavior of connecting elements affect
the overall dynamic characteristics for instance natural frequencies and response
characteristics. Therefore, the implementation of frequency based sub-structuring
methodology (FBS) was aimed to identify the total dynamics behavior of a linked
transmission system and to discuss the contribution of an elastic coupling on trans-
mission system vibration. For this reason, this approach was considered for dual
numerical issues with rigid and elastic coupling. A comparative examination of
a rigid coupling results with one another flexible case was elaborated to discuss
their sensitivity on the response. Then, different couplings models was suggested
to test their impact on the sub-structuring response. In the interest of determining
the goal of this research, a parametric study is conducted to inspect the sensibility
of various values of flexible link for instance (kc= 1e+4, 1e+5 and 1e+6) on sub-
systems FRFs. As a conclusion, the obtained simulations illustrate that the elastic
connection affects the achieve results of different subsystem in rotational direc-
tion. Additionally, the impact of coupling will relates to the selected of different
subsystems.

Keywords: Transmission system · Sub-structuring technique · Different
subsystems · Flexible coupling

1 Introduction

A mechanical system composed of many sub-systems, which are connected together
through different categories of joints (for example, sliding joints, bolted joints, coupling,
etc.). Mechanical coupling are essential parts in the planetary-coupled subsystems.

The global system response is depend on the FRF of all subsystem. Joints might
have significant effects on the overall assembly behavior, such as natural frequencies,
mode shapes, and response characteristics.

Previously, researchers like the machine tools field Erturk et al. (2006, 2009), have
investigated the different joints properties. Researchers presented several approach for
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identification of complicated systems. The receptance coupling (RC) was employed to
linked subsystems with a joint component made from the FRFs Park (2003). The latter
is applied to detect dynamic characteristics coupling. Numerous authors suggested this
technique, for instance, Liu and Ewins (2002) have used their to discover the joint prop-
ertiesmodeled by nonlinear spring. Others like Ewins (2000) have used themethodology
of substructure for the identification of joints dynamic properties using coupled FRFs.

Recently, The singularity issue was implemented by El Mahmoudi et al. (2020)
when considered flexible connection by means of substructures inside the (LM-FBS)
coupling procedure. Zhao et al. (2016) showed that the transmitted torque amplitude
was influenced by disc coupling stiffness in the field of compressor.

Indeed, the inspect of linked system is important for explaining the flexible
connection impact. In fact, this kind of coupling minimizes the vibration.

In the other hand, Hmida et al. (2017) investigated the effect of introducing an elastic
connection on the modal properties of spur gearbox system.

In the present paper, the receptance coupling like the process of the substructuring
is tested in the situation of a reducer stage linked to a planetary gear stage through the
flexible coupling to discover its dynamic characteristics.

The goal of this research is to identify the impact of the rotational coupling, which
connects the subsystems together on the assembled system FRF.

First, the receptance technique is presented. Then, the studied system description
is performed. Finally, a comparison among rigid and elastic coupling FRF responses is
implemented.

2 Receptance Coupling Theory

The investigation of the RC method is concentrated on the dynamic result of a flexible-
coupled system. The global system FRF is determined by compound the FRF of each
subsystem.

2.1 Frequency Response Functions (FRFs)

Zhen et al. (2004) described the FRF coupling method. The motion equation of a linear
subsystem is expressed by:

[M ]
{
Ü (t)

} + [K]{U (t)} = {F(t)} (1)

where [M ] and [K] are the mass and stiffness matrices of subsystem respectively.
{U (t)} and {F(t)} denote the displacement and the excitation force, respectively. A
Fourier transformation is applied to Eq. (1). The FRF of study system can be defined by
realizing an FRF synthesis depend on a mode shapes and natural frequencies. The FRF
matrix expression Hjk(w) is defined by:

Hqs(w) =
n∑

r=1

r�qr�s

w2
r − w2 + j2ξrwrw

(2)

where Hqs(w) is the steady state displacement at the coordinate q due to a harmonic
force excitation at the coordinate s, n is the total of dof. r�j is the mass-normalized
mode shape.
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2.2 Receptance Coupling Method

The principal idea of this technique is to utilize individual uncoupled subsystem FRFs
to compose the entire system response via either a receptance or an impedance compu-
tational equation. The developing of coupling problem is expressed mathematically in
Liu and Ewins (2002).

Jetmundsen (1988) expressed the receptance matrices of subsystems ‘A’ and ‘B’ in
partitioned form as:

[
AUi

AUc

]

=
[

AHii AHic

AHci AHcc

][
Afi

Afc

]

(3)

[
BUj

BUc

]

=
[

BHjj BHjc

BHcj BHcc

][
Bfj

Bfc

]

(4)

The subscripts “i” and “j” indicate the uncoupled dof and the subscript “c” denotes
the coupling dof. The connection of subsystem A to subsystem B by flexible connector
at DoF c. A general expression of a both assembled system linked by flexible connector
is presented as stated on Zhen et al. (2004):

⎡

⎣
Haa Hac Hab

Hca Hcc Hcb

Hab Hbc Hbb

⎤

⎦ =

⎡

⎣
AHii AHic 0

AHci AHcc 0
0 0 BHjj

⎤

⎦ −
⎡

⎣
AHic

AHcc

BHic

⎤

⎦
[
[AHcc]+ [BHcc]+ [Kc]

−1
]−1

⎡

⎣
AHic

AHcc

BHic

⎤

⎦

T

(5)

Where [AH ] and [BH ] are the FRF matrices of subsystems A and B.
[Kc] is described by the coupling rigidity matrix within the coupling DoF of dual

subsystems.
For the rigid joint, the matrix [AHcc]+ [BHcc]+ [Kc]−1 replaced by [AHcc]+ [BHcc].

The sub-matrices of assembled system where established by Liu and Ewins (2002). The
FRF matrice was determinate using Eq. (5).

3 Studied System

A planetary gear related by flexible coupling forms the present transmission system.
The studied system were modeled by adopting the lumped parameter model (Fig. 1).
The planetary gear train components are supposed to be rigid bodies. Each one of these
components has three DOFs. In this Figure, ui, vi, and wi ((i = r, s, c that can be the
ring gear, sun, and the carrier, respectively) illustrate the displacements in two radials
and rotational directions.
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Two various dynamic models studied the coupling response. A rigid coupling model
characterizes the start study. The coupling is modeled as a rigid disc, with equal parts at
the coordinates related the coupling to the adjoining shafts corresponding to the coupling
inertia. The second study used the connected system with an elastic coupling, which
is approached by Krämer model with torsional stiffness (Kθ). The flexible coupling
connected the second shaft reducer to the sun shaft.

Bouslema et al. (2017) established the coupling planetary system models related by
a rigid coupling.

Fig. 1. A planetary gear linked by a flexible coupling to a reducer stage

4 Numerical Applications

The modeling of joint is explored for the coupling systems. The influence of flexible
joint on different subsystems FRFs was discussed. Table 1 contained the studied system
parameters.
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Table 1. Parameters of parallel stage (i = 1, 2) and planetary gear.

Wheel and pinion mass (kg) mi = 2
Wheel and pinion inertia moment (kg) Ii/(ri)2 = 0.58
Wheel and pinion inertia moment (kg) Ji/(ri)2 = 1.16
Torsional shaft flexibilities (N/m) kbρyi/(ri)2 = 108

Bearings stiffness (N/m) kyi = 3.5 × 108, kzi = 108

Pressure angle α1 = α2 = 20
Module of Teeth (m) m = 4 × 10−3

Average mesh stiffness (N/m) k1moy = k2moy = 2 × 108

Inertia coupling (kg m2) I A = 4.48 × 10−8

Sun Ring Carrier Planet
Number of  Teeth 30 70 - 20

Width of Teeth (mm) 25 25 - 25
Module 1.7 1.7 - 1.7
I/r2 (Kg) 0.272 0.759 1.5 0.1
Mass (Kg) 0.46 0.588 3 0.177
Radius of base (m) 0.024 0.056 - 0.016
Helix Angle 0 0 - 0
Planet Gear mesh stiffness

(N\m)
Ksp = Krp = 2.108

Bearing stiffness in u and v 
direction (N/m)

Kp = Ksu,v = Kru,v = 108

Torsional stiffness of the ring, 
sun and carrier (N/m)

krw = 109; Ksw =105; Kcw = 0

Pressure angle (°) s = r = 21.34

4.1 Coupling Stiffness Effect on the Coupled Subsystem (B) FRF

The sensibility of elastic connection on the frequencies values is investigated for the
reducer stage example. Figure 2 depict the FRF of a coupled subsystem B with various
stiffness values of coupling in the axial and the rotational directions of the second bearing
and the shaft.

The four curves are superposed, which displays that the coupling rigidity don’t affect
the FRFs frequency of subsystem B in the axial Direction.

In the rotational direction, the both models of coupling represents a difference in the
frequency. The decreasing of frequencies as reason of decreasing in coupling stiffness.
The frequencies of connection shafts appear in the flexible case because of the inertia
value as compared to the rigid case. The two frequency of two values connection shafts
which appear in the flexible case for the three value of the torsional stiffness (Kc= 1e+4,
1e+5, 1e+6) are located respectively at (5500 Hz, 9000 Hz), (6400 Hz, 10050 Hz) and
7200 Hz. The high frequencies of the connection shaft was neglected in the rigid case. It
is observed that when the rigidity of coupling is important, the system response is close
to the rigid case.
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Fig. 2. FRF of a coupled system B with rigid and flexible coupling: (a) axial direction, (b)
rotational direction.
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Figure 3 appear the FRF of subsystem B linked to coupling with different stiffness
values. The frequencies of connection shafts appear with high amplitude.

Fig. 3. FRF at coupling DoF.

4.2 Coupling Stiffness Effect on the Coupled Subsystem (A) FRF

The vibratory responses of subsystem A is appeared in Fig. 4. The FRF of flexible
coupling model are compared to the rigid coupling.

The FRF of subsystem A is displayed in Fig. 4. The subsystem A FRF is not influ-
enced by the connection rigidity in axial-direction (difference in the magnitude). In the
rotational direction, it appears the connection frequency for the flexible coupling case.
The peak appearing at around 5000 is due to the couplingDoF. The appearance of a novel
frequency because of the elasticity of coupling conform to the connection frequency of
planetary gear. In the rigid case, this frequency is localized out of the frequency range.

As a conclusion, the rotational and the coupling directions are sensitive to flexible
coupling system. In fact, the curve FRF shows a current eigen-frequency, which rep-
resents the connection frequency. The flexibility of coupling affects the transmission
reducer because of the low inertia than the inertia of planetary. The sensibility of joint
on the distinct subsystems selected.



Vibration Analysis of Planetary Gear Connected by Flexible Coupling 205

Fig. 4. FRFof coupled systemAwith various stiffness value: (a) radial direction, (b) sun rotational
direction.

5 Conclusion

Thismanuscript presents themethodology of receptance to be apply for transmission sys-
tem. For the studied system that composed of planetary gear linked by flexible coupling
to parallel stage, this suggested technique is designed to predict their behavior dynamics
through subsystems FRF. By comparing the rigid- flexible coupling FRF, we obtained
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different results in the frequencies. Hence, the elastic coupling affects the achieve results
of different subsystem in rotational direction.

The sensibilities of coupling approach to perturbation flexible connection will be the
subject of the future work. Furthermore, the analysis of double planetary gear linked
with flexible connection will be investigated.
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Abstract. Reliable condition monitoring methods are required for
rotating machines operating under time-varying operating conditions.
The measured vibration signals typically contain information related to
the different interacting components (e.g. gear mesh components, bearing
fault components), the transmission paths between the excitation sources
and the sensors, the environmental conditions (e.g. changes in temper-
ature) and the operating conditions of the machine. Hence, multiple
sources could be present in the measured signals, which could impede the
detection of weak sources attributed to incipient damage. Several meth-
ods have been proposed to solve this problem, including, synchronous
statistics (e.g. time-synchronous averages, synchronous average of the
squared envelope, synchronous median of the squared envelope), the
squared envelope spectrum, the order-frequency spectral coherence and
the integrated squared spectral coherence (e.g. the enhanced envelope
spectrum and the improved envelope spectrum). Independent Compo-
nent Analysis (ICA) is a well-established technique that has not been
compared against the aforementioned methods. In this work, we com-
pare the performance of ICA against the performance against established
signal analysis methods for fault detection under time-varying operating
conditions. We show that ICA performs well against established sig-
nal analysis-based condition monitoring methods for machines operating
under time-varying conditions.

Keywords: Independent Component Analysis · Order-frequency
spectral coherence · Improved envelope spectrum · Gearbox fault
detection · Time-varying operating conditions

1 Introduction

Reliable fault diagnosis methods are required for critical assets in the renewable
(e.g. wind turbines) and mining (e.g. ball mills) industries [1,2]. Several signal
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processing methods have been developed in the past few decades to address the
challenges in gearbox diagnostics [3–5].

It is especially challenging to perform fault diagnosis under time-varying
and impulsive noise conditions [2,4,6]. This is because the damaged components
often manifest in low energy bands, with time-varying operating conditions and
extraneous impulsive events dominating the raw signal and its processed rep-
resentations (e.g. spectral coherence). The Squared Envelope Spectrum [7], the
Order-Frequency Spectral Coherence [4], the Improved Envelope Spectrum [8],
and the Synchronous Median of the Squared Envelope [9] of the raw and pro-
cessed signals are well-established methods for fault diagnosis under varying
operating conditions.

Independent Component Analysis (ICA) was actively researched in the 1990s
for extracting statistically independent non-Gaussian sources from data [10].
ICA is also useful for fault diagnosis, as damaged signals often manifest as non-
Gaussian sources in the measured data. This is proven by the papers on ICA for
gearbox condition monitoring [11–15], with the first papers using ICA published
in the early 2000s. According to the best of our knowledge, ICA has not been
compared against established signal processing methods for gearboxes operating
under time-varying operating conditions. Hence, in this work, we compare ICA
against established signal processing methods for fault detection under time-
varying operating conditions.

In Sect. 2, the ICA method is introduced, whereafter a brief overview of the
established signal processing methods are presented in Sect. 3. The methods are
compared on two experimental signals in Sect. 4, followed by a conclusion of the
study in Sect. 5.

2 Independent Component Analysis (ICA)

ICA is used to extracted statistically independent, linear mixed sources from
vibration signals. In this work, we define a source as a statistical independent
signal component caused by an excitation mechanism (e.g. bearing damage) in
the system. In gearbox diagnosis, ICA has been applied on multiple sensor obser-
vations [12,13,16], used on the wavelet decomposition of a single accelerometer
signal [15], and used on windowed vibration signals [11]. The investigated ICA
fault diagnosis methodology is shown in Fig. 1. A similar procedure is used in
Ref. [11]. The measured vibration signal x ∈ R

1×N is acquired from a rotating
machine in an unknown condition. The windowing process transforms the signal
from a vector x ∈ R

1×N to a matrix X ∈ R
M×L with the process shown in

Fig. 2. The window length parameter, L, and the stride, S, need to be selected.
Before ICA is performed, the windowed signal is whitened. In Fig. 1 the whitened
data are denoted Xw ∈ R

M×L.
Independent component analysis aims to extract Z sources S ∈ R

M×Z from
the signal Xw ∈ R

M×L. In the formulation, we assume

Xw = SW T , (1)
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Fig. 1. The investigated methodology is shown for a single measured vibration signal
x ∈ R

1×N . The windowed signal X ∈ R
M×L and the sources S ∈ R

M×Z are shown,
where M is the number of windows and Z is the number of sources. The encoder is
denoted by E and the decoder is denoted by D.

Fig. 2. The windowing process is illustrated. (a) The measured vibration signal x1×N

has N equally spaced points. (b) The vibration signal is windowed into four windows.
The window length is denoted L, the stride is denoted s, and the overlap is denoted o,
with L = s + o. (c) The windowed signal is a matrix X ∈ R

4×L.

where the unknown weights (also known as the projection matrix or mixing
matrix) of Z sources is denoted W ∈ R

L×Z . The source matrix can be written
in terms of Z sources

S = [s1 s2 . . . sZ ] , (2)

where the ith source is denoted si ∈ R
M×1. In ICA, the sources S and the

weights W are unknown. Therefore, to find the unknown weight matrix, the
sources are assumed to be statistically independent and non-Gaussian [10]. Sta-
tistical independence implies that the joint distribution can be factored, i.e.
p(s1, s2, . . . , sz) =

∏Z
i=1 p(si), while non-Gaussianity defines the characteris-

tics of the expected sources. Specifically, the sources are selected to maximise
non-Gaussianity according to some selected measure subject to being uncorre-
lated. Measures of non-Gaussianity include kurtosis and negentropy, with kurto-
sis tending to be sensitive to outliers. Several algorithms have been developed to
compute independent components and include FastICA [17], InfoMax [18] and
Extended InfoMax [19] that generalise source distributions to be sub- and super-
Gaussian. Vibration signals typically become more leptokurtic as the machine
degrades. This is because damaged components such as bearings are impulsive
events in the signals [20] and therefore focusing on non-Gaussian sources are
sensible.

As opposed to analysing the reconstruction error, we only investigate the
sources in this work. Therefore, after the sources S are determined, each source
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Fig. 3. The processing procedure of the sources: The Squared Envelope Spectrum
(SES) and the Synchronous Average of the Squared Envelope (SASE) of the source
signal are calculated and used for diagnosis. The unfolded gear, with the highlighted
damaged tooth, is shown below the SASE.

si is separately processed with the procedure shown in Fig. 3. Firstly, the sig-
nal is order tracked to transform the time domain signal to an angle domain
representation. This is important as the signals are known to be angle peri-
odic (instead of time-periodic) due to the angle-locked excitations in rotating
machines. In a computed order tracked signal, the angle-periodic information
is preserved under time-varying speed conditions. Computed order tracking is
performed with a phase reference (e.g. optical probe focused on a zebra tape
shaft encoder). Tacholess order tracking methods are useful when the reference
phase information cannot be measured or it is not available (e.g. it is impractical
to install a tachometer) [21].

Damage events (e.g. bearing cracks) often create abrupt excitations, which
manifest as amplitude modulation in the signals. The amplitude modulation’s
periodicity can be seen in the Squared Envelope Spectrum. The SES of the ith
source

SESi(α) = |Fθ→α

{|si(θ)|2
} |, (3)

is calculated from the Fourier transform Fθ→α of the squared source |si(θ)|2. The
Fourier transform Fθ→α, transforms the angle variable θ to an order variable
α. The SES indicates the periodicity of the modulation components. Since the
signal is order tracked, the x-axis of the SES is measured in number of events
per revolution (e.g. number of bearing impulses per shaft rotation).

If the cyclic order of the component-of-interest is known, it is possible to
visualise the modulation caused by the damage with the Synchronous Average
of the Squared Envelope (SASE). The SASE of the ith source

SASEi(θ;Θ) =
1

Nr

Nr−1∑

n=0

|si(θ + n · Θ)|2, (4)

is calculated over the preselected period Θ. For example, if the gear rotates at
one shaft order (i.e. it is synchronous with the reference shaft), then Θ = 1.0
rotation or 2π radians.
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3 Established Signal Processing Methods

Four established signal processing methods are considered in this work, namely,
the Synchronous Statistics (SS), the Squared Envelope Spectrum (SES), the
Order-Frequency Spectral Coherence (OFSCoh), and the integrated OFSCoh.
Only a brief overview of the methods is presented here, with the appropriate
references given for more detailed information.

3.1 Synchronous Statistics (SS)

The Synchronous Average of the Squared Envelope (SASE) and the Synchronous
Median of the Squared Envelope (SMSE) are capable of visualising the modu-
lation caused by the damaged components [9]. Synchronous statistics are calcu-
lated in two steps:

– The synchronous angle domain data, with a predefined period Φ, are collected
in a synchronous matrix Xs ∈ R

Nr×Ns , where Nr is the number of rotations
and Ns is the number of samples per rotation of the component-of-interest.
The period of rotation Φ is the reciprocal of the cyclic order of the component-
of-interest. The matrix Xs can be obtained with the windowing procedure
explained in Fig. 2 using a window length of Ns and a window overlap of 0.

– The statistic (e.g. average, median) is taken over the rows of each column to
find a synchronous vector with R

Ns .

The SMSE is obtained by windowing the squared envelope and calculating the
median across the rows of the matrix Xs. In contrast to the SASE, the SMSE is
not sensitive to extraneous1 impulsive components and, therefore, more reliable
to visualise the modulation due to damage [9]. Both are considered in this work
to show that the SASE of the sources perform better than the SASE and the
SMSE of the raw signals.

3.2 Squared Envelope Spectrum (SES)

The SES is the most commonly used method for bearing diagnostics [3]. The
SES visualises the periodicity of the damaged components making it possible to
detect bearing and gear damage. It is also possible to determine the damaged
component (e.g. inner race vs. outer race bearing damage). A detailed analysis of
the SES for bearing diagnostics under time-varying speed conditions is presented
in Ref. [7]. Usually, the signal is pre-processed with cepstrum pre-whitening [22]
or the deterministic components are subtracted from the signal [7]. However,
the squared envelope spectrum of the raw signal is considered in this work for
simplicity’s sake.

1 We refer to extraneous events as signal components (deterministic, stationary, or
cyclostationary) that impede damage detection.
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3.3 Order-Frequency Spectral Coherence (OFSCoh)

The OFSCoh is a cyclic order α spectral frequency f representation of the signal
[4]. The OFSCoh, denoted γ(α, f) ∈ C, contains magnitude and phase informa-
tion. The OFSCoh makes it possible to visualise the periodicity of the modulation
caused by the damage and the carrier frequency bands. It is a generalisation of
the squared envelope spectrum, where the squared envelope spectrum is obtained
from [8]

SES(α) =

∣
∣
∣
∣
∣

∫ fs/2

0

γ(α, f)df

∣
∣
∣
∣
∣
, (5)

where fs is the sampling frequency. The OFSCoh contains all of the fault infor-
mation, however, it can be difficult to interpret. Therefore the integrated squared
OFSCoh is often used for diagnosis.

3.4 Integrated Squared OFSCoh

The integrated squared OFSCoh representations are considered here. The
Enhanced Envelope Spectrum (EES)

EES(α) =
∫ fs/2

0

|γ(α, f)|2 df, (6)

is better suited for damage detection than the SES. This is because it is more
capable of enhancing small damage components [8]. The Improved Envelope
Spectrum (IES) is defined in this work by

IES(α; fl, fh) =
∫ fh

fl

|γ(α, f)|2 df. (7)

If the integration band [fl, fh] is appropriately selected, it can improve the
signal-to-noise ratio of the damaged components [8]. In this work, we distin-
guish between the EES and the IES as follows: The EES is calculated over the
full frequency bandwidth of the signal, while the IES is obtained by integrating
over a predefined frequency band. The IESFOgram is a frequency band identifi-
cation method that automatically finds the optimal frequency bands to calculate
the IES [23]. This is performed by maximising a feature such as the strength of
the cyclostationary components. However, to apply the IESFOgram as proposed
in Ref. [23], the characteristic cyclic order of the component-of-interest needs to
be specified, which is not always possible. In addition to this, the damaged com-
ponent might not be targeted and therefore the damage will not be detected [23].
Blind informative frequency band identification methods overcome the need to
specify the characteristic order of the component-of-interest, but do not perform
as well as targeted methods [5,24].

The IES, obtained by selecting an informative frequency band is considered
state-of-the-art in this work and will be used to benchmark the performance of
the ICA method. Since we know the informative frequency band from previous
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investigations (e.g. targeted frequency band identification methods were used in
Refs. [5,25] to identify the informative frequency band), we used this information
to specify the frequency band to calculate the IES in this work.

4 Experimental Case Study

In Fig. 4, the experimental test-rig in the Centre for Asset Integrity Management
laboratory of the University of Pretoria is shown. It contains an electrical motor
that drives the system and an alternator that applies a load to the system.
The motor’s speed and the alternator’s load are independently controlled from a
personal computer and used to enforce the varying operating conditions shown
in Figs. 4(b) and 4(c). The test-rig also contains three helical gearboxes, with the
centre gearbox being monitored for damage. For the measurements considered
in this work, the gear was damaged with seeded slot shown in Fig. 4(d) and
operated under varying operating conditions until the gear tooth failed as shown
in Fig. 4(e). The gearbox under consideration has 37 gear teeth and 20 pinion
teeth, which means that it has a gear ratio of 1.85 and it has a gear mesh order
of 37 when using the input shaft, i.e. S2 in Fig. 4, as a reference.

Two measurements are used to compare the performance of the ICA method
(Sect. 2) against the established signal processing methods (Sect. 3). The first
measurement was taken after the experiment was approximately 30% complete,
while the second measurement was taken after the experiment was approximately
90% complete, i.e. the gear tooth was close to failure.

4.1 Measurement 1

The raw vibration signal and its power spectral density are shown in Figs. 5(a)
and (b) respectively. The signal is dominated by impulse components that man-
ifest in the 8 kHz frequency band shown in Fig. 5(b). The power spectral density
of the order tracked signal is shown in Fig. 5(c) with a zoomed view shown in
Fig. 5(d). The lower orders are dominated by components associated with S4
as the associated shaft was slightly unbalanced. The Gear Mesh Order (GMO)
is small, since the helical gears result in lower excitations due to its smoother
operation.

The SASE, SMSE and the SES are compared in Fig. 6. Extraneous impulsive
components, with a cyclic order of approximately 5.72 shaft orders, dominate
the SASE and the SES and therefore impede damage detection. The SMSE is
more robust to the extraneous impulsive components, with the damage seen at
approximately 135◦.

The squared magnitude of the OFSCoh is presented on a linear and logarith-
mic scale in Fig. 7. The extraneous impulsive components at 5.72 shaft orders
also dominate the OFSCoh in the linear scale plot, and therefore the logarithmic



214 S. Schmidt et al.

Fig. 4. (a) Experimental test-rig with the shaft numbers S1–S4 superimposed on the
figure. (b) Rotational speed of the input shaft of the monitored gearbox (i.e. shaft S2).
(c) Load at the input shaft of the monitored gearbox (i.e. shaft S2). (d) Gear before
the experiment started (0% complete). (e) Gear after the experiment was completed
(100% complete).

scale is used in the subsequent discussion. The OFSCoh contains many dominant
frequency bands that are unrelated to the damaged component under consider-
ation. This makes detecting the damage in the lower frequency bands (between
250–700 Hz in Fig. 5) difficult.
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Fig. 5. The raw acceleration signal in [m/s2] (a); the power spectral density of the raw
signal (b); and the power spectral density of the order tracked signal (c - d) are shown
for Measurement 1. Abbreviations: S2 - Shaft 2 (input shaft of the monitored gearbox);
S3 - Shaft 3 (output shaft of the monitored gearbox) S4 - Shaft 4 (input shaft to the
alternator); GMO - Gear Mesh Order. See Fig. 4 for the locations of the shafts.
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Fig. 6. The Synchronous Statistics (SS) and the Squared Envelope Spectrum (SES) of
Measurement 1.
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Fig. 7. The Order-Frequency Spectral Coherence (OFSCoh) of Measurement 1 on a
linear scale (left) and on a logarithmic scale (right).

Therefore, the integrated squared OFSCoh is investigated. The EES in Fig. 8
is also dominated by the 5.72 shaft order components, and the gear damage
at 1.0 shaft order and its harmonics are not observed. The IES in Fig. 8 is
calculated over a spectral frequency band between 250 and 700 Hz. The damage
is prominent and is therefore easy to detect. We can determine the integration
band [fl, fh] with the following options:

– Prior knowledge about the damage frequency band can be used. However,
the spectral frequency band of the damaged component could vary between
damaged components, and we will not know these bands for new machines.

– Targeted informative frequency band identification methods can be used.
However, targeted informative frequency band identification methods require
the cyclic order of the component-of-interest to be specified, which might not
always be possible or we might not target the correct components.

– Blind informative frequency band identification methods can be used. How-
ever, these methods do not perform as well as the targeted methods [5,24]
and are mostly dominated by the extraneous impulsive component at 5.72
shaft orders in this work.

In this work, 16 sources were extracted with the ICA procedure with a win-
dow length of 256 and an overlap of 255. We used FastICA in Ref. [17,26].
The results for the investigated ICA procedure are presented in Fig. 9. The two-
dimensional SASE map is obtained by following the procedure in Fig. 3 for each
source. The gear damage is most prominent in the fourth source, with the SASE
and the SES of the fourth source, also presented in Fig. 9. The damage is more
prominent in the SASE of Fig. 9 when compared to the SASE and the SMSE
in Fig. 6. The SES in Fig. 9 also contains the damaged gear components at 1.0
shaft order and performs better than the SES in Fig. 6 and the EES in Fig. 8.
The IES performs the best of the considered methods. However, its performance
depends on our ability to determine the frequency band of interest. If the wrong
frequency band is selected or if the frequency band is too large, the gear damage
will not be detected.
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Fig. 8. The Enhanced Envelope Spectrum (EES) and the Improved Envelope Spectrum
(IES) of Measurement 1. The dashed line indicates the shaft orders of the theoretical
fault components.
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Fig. 9. The Synchronous Average of the Squared Envelope (SASE) of the sources map
is shown on the left. On the right, the SASE and the Squared Envelope Spectrum
(SES) of the source with the damage information are shown for Measurement 1.

4.2 Measurement 2

For the second measurement, the synchronous statistics, the squared envelope
spectrum and the OFSCoh performed similarly to the previous measurement.
Therefore, their results are excluded for brevity’s sake. Hence, in this section,
we only compare the EES (which is better than the SES for damage detection
[8]) and the IES against the investigated ICA procedure. The EES and the IES
are presented in Fig. 10 for the second measurement. Even though the damage is
more severe in this measurement, the EES is still dominated by the extraneous
signal components with the damaged gear components at 1.0 shaft order and its
harmonics not seen. The IES, which was calculated over the same frequency band
as the previous measurement, performs well. The damaged gear components at
1.0 shaft order and its harmonics are easily visualised.

The same ICA procedure is applied in this section as the first measurement,
with the results shown in Fig. 11. The SASE sources map in Fig. 11 contains
the gear damage in the 1st source. The damaged gear tooth is prominent in
the SASE of the 1st source and the cyclic orders of the damaged gear tooth is
prominent in the SES.
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Fig. 10. The Enhanced Envelope Spectrum (EES) and the Improved Envelope Spec-
trum (IES) of Measurement 2.
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Fig. 11. The Synchronous Average of the Squared Envelope (SASE) of the sources
map is shown on the left. On the right, the SASE and the Squared Envelope Spectrum
(SES) of the source with the damage information are shown for Measurement 2.

The SASE and the SES of the appropriate ICA sources perform better than
the SASE, SMSE, OFSCoh, and the EES of the raw data. Even though ICA does
not perform as well as the IES, it has significant potential for damage diagnosis
as it does not require the fault frequency to be known a priori. The cyclic order of
the fault components can be inferred from the SES of the appropriate source. In
the next section, a quantitative comparison between the different cyclic spectra
is performed.

4.3 Quantitative Comparison

In this section, we quantitatively compare the performance of the different cyclic
spectra:

1. Squared Envelope Spectrum (SES) of the raw signal.
2. Enhanced Envelope Spectrum (EES) of the raw signal.
3. Improved Envelope Spectrum (IES) of the raw signal.
4. SES of each source that was extracted from the signal using ICA. In this

work, we extracted 16 sources and therefore 16 SES will be considered.



ICA for Gearbox Fault Diagnosis 219

For a specific cyclic spectrum, we denote the amplitude of the ith harmonic
of the component-of-interest as Ai. The average amplitude of the first NQ com-
ponents is given by

Ā =
1

NQ

NQ∑

i=1

Ai. (8)

In this work, we calculate Ā using the first five harmonics of the gear component,
i.e. NQ = 5.

The noise floor of the cyclic spectrum is denoted by An and approximated
by the median of the cyclic spectrum. The median is used in this work, since it
is more robust to sparse components than the mean. Therefore, the median will
be less affected by the presence of large amplitude components (e.g. components
due to damage, extraneous cyclostationary components). This median is also
used in Ref. [5] to estimate the noise floor. The maximum amplitude in the
cyclic spectrum is denoted by Amax.
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Fig. 12. The amplitude of the component-of-interest Ai (i.e. the ith harmonic of the
gear component), the estimated noise level An and the maximum component Amax are
superimposed on the EES and the IES of Measurement 1. These components are used
in Eqs. (8)–(10).

To visualise these terms, we present the amplitudes of the first five compo-
nents Ai, the estimated noise floor An, and the maximum amplitude Amax for
the EES and the IES of measurement 1 in Fig. 12. The damage is much more
prominent in the IES than the EES as highlighted by:

– The magnitude of the component-of-interest is much larger than the average
noise level in the IES.

– The magnitude of the component-of-interest has the same order of magnitude
as the most dominant component. In the EES, the most dominant component,
which is not attributed to gear damage, dominates the cyclic spectrum and
makes the damaged components difficult to observe.

Two metrics are used to quantify the two observations. Metric 1

φ1 =
Ā

An
, (9)
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measures the relative magnitude of the components-of-interest with respect to
the noise floor and is an indication of the prominence of the damage. This metric
is also used in Ref. [5] to identify informative frequency bands. Metric 2

φ2 =
Ā

Amax
, (10)

compares the average magnitude of the component-of-interest against the mag-
nitude of the most dominant component. The larger this value is, the easier it
will be to observe the damage in the spectrum.

We calculated these metrics for the different cyclic spectra and included
the results in Table 1. The IES has the largest values for both metrics, which
corroborates the previous observations that the IES performs the best when
the cyclic order of the component-of-interest is known a priori. ICA performs
second best, with more prominent damaged components when compared to the
SES and the EES of the raw signals. Since the damage components only manifest

Table 1. A quantitative comparison between the different cyclic spectra using metric 1
(φ1), defined in Eq. (9), and metric 2 (φ2), defined in Eq. (10). The bold values indicate
the maximum values in the columns. The italic values indicate the ICA sources with
the damage components.

Measurement 1 Measurement 2

φ1 φ2 φ1 φ2

SES (Raw) 1.561 0.023 2.498 0.07

EES 1.298 0.019 1.945 0.043

IES 14.781 0.307 42.453 0.797

SES (ICA source 1) 1.372 0.041 6.475 0.242

SES (ICA source 2) 1.895 0.032 2.413 0.071

SES (ICA source 3) 1.365 0.038 2.528 0.107

SES (ICA source 4) 4.234 0.096 1.783 0.209

SES (ICA source 5) 2.287 0.03 1.515 0.057

SES (ICA source 6) 1.565 0.043 1.525 0.057

SES (ICA source 7) 1.592 0.029 6.063 0.247

SES (ICA source 8) 4.031 0.095 2.336 0.051

SES (ICA source 9) 1.521 0.037 1.632 0.06

SES (ICA source 10) 1.625 0.032 1.776 0.207

SES (ICA source 11) 1.76 0.032 2.339 0.05

SES (ICA source 12) 2.289 0.03 2.526 0.105

SES (ICA source 13) 2.088 0.066 2.052 0.087

SES (ICA source 14) 2.12 0.07 1.634 0.06

SES (ICA source 15) 1.751 0.032 2.402 0.071

SES (ICA source 16) 1.885 0.032 2.041 0.088
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in a subset of the sources, it is important to identify the informative sources for
further processing. Automatic source selection methods will be considered in
future work.

5 Conclusion

Independent Component Analysis (ICA) is a well-established technique for gear-
box fault diagnosis. However, its performance has not been compared against
established fault diagnosis methods under time-varying operating conditions. In
this work, we showed for two experimental measurements that ICA is capable
of extracting informative signal components from the vibration signals and per-
forms very well when compared to established fault diagnosis methods under
time-varying operating conditions. ICA has several benefits, e.g. it is blind (i.e.
we do not have to specify the orders of the damaged component) and simple to
perform. Hence, its underutilisation by the condition monitoring community is
unclear to the authors. We speculate that the lack of mainstream adoption is
attributed to ICA being incorrectly perceived as a solution to the cocktail party
problem, which implies that ICA is only useful when combining multiple vibra-
tion channels, when using time-frequency decompositions or when performing
feature selection. Hence, our recommendation is that ICA should be considered
when testing new condition monitoring methods under time-varying operating
conditions, especially in circumstances where blind methods are required. Future
work will focus on automatically resolving the hyperparameters (e.g. number of
sources) of the ICA method.
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Abstract. Acoustic radiation of sound sources is a major problem in applied and
industrial acoustics which affects many disciplines. This tool can be used for the
optimization of these sources (types, distribution, etc.…). In industry, machines
and processes are composed of various sources of noise such as rotors, stators,
gears, fans, vibrating panels, circulation of turbulent fluid, impact processes, elec-
trical machines, internal combustion engines, etc. To simplify the computation of
the acoustic fields radiated from these sources; these ones can be simply mod-
eled by elementary or punctual sources consisting in pulsing spheres. This allows
the computation of the radiated acoustic field easily. In the context the proposed
work in this paper presents the results of the simulation of the acoustic fields (the
acoustic pressure, intensity and directivity) in the case of two and four elementary
sources for different configurations (vertical and horizontal linear arrangements).
The cases when sources are in phase or in phase opposition are studied. For each
configuration, these fields are plotted and analyzed to understand the acoustic
behavior of each one. The effect of the geometric distribution of the sources is
analyzed also using the directivity which indicates the acoustic behavior of each
studied case (isotropic, bipolar, quadripolar).

Keywords: Acoustic radiation · Acoustic radial speed · Acoustic propagation ·
Directivity

1 Introduction

Inmachines and industrial environments, there are various sources of noise such as rotors,
stators, gears, fans, vibrating panels, turbulent fluid circulation, impact processes, elec-
trical machines, internal combustion engines, etc. Manufacturers and public authorities
have been worried about noise from workshops for decades (Goelzer et al. 1995). It
is possible to compute the acoustic field radiated of these sources. The acoustic field
radiation is a generally a complex problem. To simplify this computation, real sources
can be modeled as an arrangement of punctual elementary sources. The acoustic pres-
sure, velocity or intensity field are then obtained by the summation of the corresponding

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Hammami et al. (Eds.): MOSCOSSEE 2021, ACM 20, pp. 224–232, 2022.
https://doi.org/10.1007/978-3-030-85584-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85584-0_22&domain=pdf
https://doi.org/10.1007/978-3-030-85584-0_22


Simulation of the Acoustic Fields and Directivities Radiated 225

acoustic quantity radiated from each source at a given position and frequency. The sound
pressure level of each source depends on the type of the noise of the source, the distance
between the source and the receiver and the nature of the propagation medium. This
kind of problem was studied in previous works like (Lim Choi and Lee 2006), (Liu and
Yi 2011) and (Wang et al. 2015).

To study acoustic radiation, there are two used approaches:

– Consider elementary sources (monopole sources and their combinations) such as, the
pulsating sphere, which has a simple description as presented in (Lim Choi and Lee
2006), (Liu and Yi 2011).

– -Take into account the geometry and the real characteristics of the radiating source as
presented in (Wang et al. 2015).

The objective of the present work is the computation of acoustic fields in the case
of linear vertical and horizontal antennas approaching real arrangement of acoustic
sources. For each case of these configurations, the acoustic pressure radiation speed,
acoustic intensityas well as acoustic directivity are computed and plotted.. The studied
cases are presented by (MolleJuhln 2011), (Vallier Brasier 2018), (Bruneau 1998) who
studied elementary sources much smaller than the wavelength of the used sound. They
studied the acoustic radiation from point sources and their interactions. Their work is
based primarily on the equations of pressure field, acoustic radial velocity, intensity and
of the sound radiated by elementary sources. The studied cases consist on linear antenna
composed by two and four elementary sources.

2 Acoustic Radiation from Elementary Sources

The simplest source to be mathematically modeled is an extremely small pulse sphere.
Such a source is called a monopoly, point source or simple source. Any source that
changes volume as a function of time can be approached by an elementary point source
at frequencies where its radius is smaller than the wavelength. A closed loudspeaker is
an example of a point source in this category (low frequencies). Any source of noise
can be assimilated by a succession of elementary sources. In the proposed work, the two
studied cases are the linear arrangements of elementary sources in vertical and horizontal
line.

2.1 Case of Two Point Sources

It is easy to calculate the sound field generated by a combination of point sources. Since
they are infinitely small, they do not interfere with each other and therefore the sound
fields are simply added (Valier Brasier 2018).

Figure 1 present two point sources separated by 2d distance oscillating with flow
rates q1 and q2.
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Fig.1. Representation of two distant sources (MollerJuhln 2011)

Two cases can be obtained:

Two Punctual Sources in Phase: The pressure field resulting from the radiation of two
sources in phasewith the sound flow rates of each are equal q1 = q2 = q has the following
expression:

p(r, θ) = ρ0 q

4π
(
exp(−ik

√
r2 + d2 + 2dr cos(θ))

√
r2 + d2 + 2dr cos(θ)

+ exp(−ik
√
r2 + d2 − 2dr cos(θ))

√
r2 + d2 − 2dr cos(θ)

)

(1)

Taking into account the following approximations:

– far field: d / r << 1
– The wavelength is greater than the distance d, that is, if k.d << 1, then the sound
pressure can be put in the form:

p(r) = iωρ0q0
4πr

exp(−ikr) (2)

The radial component of the acoustic particle velocity having the expression:

U (r, θ) = q

4π
(
1

r2
+ ik

r
) exp(−ikr) (3)

The acoustic intensity is then given by the relation:

I(r, t) = 1

2
Re[p(r, t) ∗ U ∗

r (r, t)] = (cos(kd cos(θ))2I1 (4)

Two Punctual Sources in Phase Opposition: The combination of two identical
monopolies placed close to each other and expanding and contracting in phase opposi-
tion constitutes a dipole (Valier Brasier 2018). In this case, the acoustic flows of each
opposed q1 = −q2 = q.

The acoustic pressure field therefore has the expression:

p(r, θ) = ρ0 q

4πr
ikd cos(θ) exp(−ikr) (5)
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The factor cos(θ ) represents the directivity of the pressure field radiated by a dipole:

D(θ) = cos θ (6)

The acoustic particle radial velocity having the expression (MollerJuhl 2011):

Ur(r) = ikd cos(θ)
q0
4π

(
1

r2
+ ik

r
) exp(−ikr) (7)

The sound intensity is therefore equal to:

I(r, θ) = 1

2
Re[p(r, t) ∗ U ∗

r (r, t)] = [kd cos(θ)]2I1(r) (8)

2.2 Case of Four Punctual Sources

The studied cases with four punctual sources are presented in Fig. 2.

(a)                                                                          (b) 

2d

2d

Q1 

Q2 

Q3 

Q4 

2d 2d 2d

Q1 Q2 Q3 Q4 

Fig. 2. The two studied linear arrangements: (a) Vertical four sources arrangement (b) Horizental
four sources (MollerJuhl 2011)

Vertical Quadruple
The pressure field resulting from the radiation of the four vertical sources has the
approximate expression in the far field (MollerJuhl 2011):

p(r, θ) = 1

2

ρ0 q

4πr
exp(−ikr)(kd)

2
sin(2θ) (9)

So the directivity factor is equal to:

D(θ) = sin(2θ) (10)

The radial component of the acoustic particle velocity having the expression:

U (r, θ) = 1

2

q

4π
(
1

r2
+ ik

r
) exp(−ikr)(kd)

2
sin(2θ) (11)
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The acoustic intensity is then given by the relation (MollerJuhl 2011):

I(r, t) = 1

2
Re[p(r, t) ∗ U ∗

r (r, t)] = 1

4
[(kd)2sin(2θ)]2I1(r) (12)

Horizontal Quadruple
In the far field, the acoustic pressure generated by four aligned horizontal sources has
the approximate expression (MollerJuhl 2011):

p(r, θ) = 2
ρ0 q

4πr
(kd)2 exp(−ikr) cos2(θ) (13)

The horizontal quadruple directivity therefore has the following expression:

D(θ) = cos(θ)2

The radial component of the acoustic velocity has the expression (MollerJuhl 2011):

U (r, θ) = 2
q

4π
(
1

r2
+ ik

r
)(kd)2 exp(−ikr) cos2(θ) (14)

The acoustic intensity is then given by the relation:

I(r, q) = 1

2
Re[p(r, t) ∗ U ∗

r (r, t)] = 1

4
[(kd) cos(q)]4I1(r) (15)

3 Results and Discussions

3.1 Combination of Two Point Sources

Two spherical sources are placed in the middle of the 10 × 10 m2 space. These sources
are characterized by the same radius (a = 0.009m) and acoustic radial velocity in (r =
a): V0 = 0.5m/s at the frequency f = 1 kHz. The Fig. 3, 4 and 5 present respectively the
sound pressure field (in Pa), the pressure level (in dB) and the directivity of each studied
case (when the two sources are respectively in phase and phase opposition.

The Figs. 3, 4 and 5 show that the radiation of the acoustic pressure and the acoustic
intensity is isotropic for the case of sources in phase, but not isotropic in the case of
source in phase opposition. In addition, the amplitudes of the waves radiated at a certain
point far from the sources are different in the two cases. These results are confirmed by
the acoustic directivities of the studied cases which demonstrate the isotropic behavior
in the first case and the dipole one in the second case as presented in Fig. 6.
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Fig. 3. The acoustic Sound pressure field of: (a) two point sources in phase and (b) two point
sources in phase opposition.

Fig. 4. The acoustic pressure level in dB: (a) two point sources in phase and (b) two point sources
in phase opposition

Fig. 5. The acoustic intensity (a) two point sources in phase and (b) two point sources in phase
opposition
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Fig. 6. The directivity diagram (a) two point sources in phase and (b) two point sources in phase
opposition

3.2 Combination of Four Point Sources

The considered sources are four vertical or horizontal sources as presented in Fig. 2.
We consider four spherical sources placed in the middle of space. These sources are
characterized by the same radius (a = 0.05m) and acoustic radial velocity in (r = a) and
the frequency ƒ = 1 kHz.

Fig. 7. Sound pressure level (a) from four lateral and (b) longitudinal sources.

Figure 7 presents the acoustic pressure level respectively of the vertical arrangement
(a) and horizontal one (b). It is observed that the acoustic pressure level of four lateral
sources varies between 10 dB and 100 dB and have a large variation in the axes x = 0
and y = 0. However for longitudinal sources, the acoustic pressure level varied between
0 and 100 dB and it has the same shape like the case of two sources in phase opposition.
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The modulus of the directivity factor D of four side sources is plotted in Fig. 8 as
a function of the angle θ. It appears that the acoustic radiation has a maximum in θ =
π /4, 3π/4, 5π/4, 7π/4 and is zero in θ = 0, π/2, π, 3π/2. While it is maximum in θ =
0 and π and is zero in θ = π/2, 3π/2 for four longitudinal sources. So, the behavior of
the acoustic radiation from the four sources is quadrupolar.

Fig. 8. Directivity diagram (a) of four lateral sources and (b) longitudinal.

3.3 Influence of the Distance Between the Sources

Fig. 9. The acoustic pressure field of two sources in phase (a) d = 0.025m and (b) d = 0.05m.

In this part, the influence of the distance between sources on the acoustic behavior of
the sources systems is presented. This distance is varied between the two sources and
the influence on the distribution of the pressure field is displaying in Fig. 9.

Figure 9 shows that if the distance between sources increases the pressure field values
increase and it is no longer isotropic. This result is confirmed by the directivities plots
presented in Fig. 10 which shows that when the distance between the sources increases,
the directivity is no longer the same for all angles. It changes shape, and it becomes
elliptical, which confirms that the field is no longer isotropic.
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Fig. 10. The directivity diagram of two sources in phase (a) d = 0.025m and (b) d = 0.05m.

4 Conclusion

The simulation of acoustic radiation is a very important issue today. Indeed it allows to
optimize the acoustic quality or even to reduce the noise in the workshops. So the work
presented in this paper deals with the simulation of acoustic pressure and intensity as
well as the determination of directivity radiated by elementary sources which can model
real applications in the industry. Also, the influence of the distance between the sources
on the radiated pressure level and on the directivity is studied. From the obtained results,
it can be seen that the alignment of the sources (longitudinally or even laterally) and the
positioning of the sources (in phase or in phase opposition) considerably influences the
propagation of acoustic radiation.
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Abstract. Rolling element bearings are the most important rotating guide ele-
ments used in industry. They are used in a wide range of speeds and loads. They
are found at very low speeds (actuator bearings), at high speeds (turbine shaft bear-
ings) and are able to support high loadswhilemaintaining a reasonable tolerance to
misalignment. However, rolling element bearings are recognized among the crit-
ical components in rotating machinery and their failures can lead to catastrophic
losses. This makes its efficiency a major requirement. Among all the diagnostic
tools for machines used in the industry, vibration analysis remains the ultimate
tool used for diagnosing bearing health. However, early detection of bearing fail-
ures based on vibration analysis remains challenging, especially for machines
with multiple excitation sources. In this chapter the time synchronous averaging
technique (TSA) is updated and used for the early detection of bearing defects. A
dynamicmodel of a shaft bearing system is used to simulate the vibration response
of ball bearing in the case of tiny defect localized in the baring outer race. The
simulated signals are used to validate the effectiveness of the proposed technique.
The results confirm the effectiveness of the adopted approach in the early detection
of bearing defects.

Keywords: Bearings · Time synchronous averaging · Defects · Diagnosis ·
Detection

1 Introduction

Vibration monitoring of rotating machinery has become a subject of growing interest in
modern industry. Bearings are the most frequent component in rotating machines and
mastering their vibration behavior can considerably improve the machines diagnostic
process, (Farhat et al. 2021).Many signal processing techniques are successfully adopted
in the literature to highlight the impact of defects in vibration signals, namely filtering
(Boudraa and cexus 2007), trend elimination (Smulko 2019) and de-noising (Chegini
et al. 2019). Under special conditions, i.e. low speed shaft rotations, these conventional
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processing methods cannot be applied confidently for bearing fault diagnosis (Mishra
et al. 2016). In fact, bearings vibration signatures are generally low and dissolving in the
operation noise (Farhat et al. 2020). In addition, under real operation conditions bearing
defects usually begin with infinitesimal dimensions, making it difficult to early reveal
their presence from vibration signals.

In general, the vibration signals measured from rotating machines contain three
important components: the periodic frequencies, their harmonics and the operation noise
(Wang et al. 2014). Averaging the signal synchronously to the rotation of the drive shaft
can highlight the cyclic components of the signal and reduce its random disturbances.
This is the principle of the Time-Synchronous Averaging technique (TSA), which has
proven its effectiveness in the early detection of gear faults under constant or nearly
constant operation speed condition (Halim et al. 2008). The synchronizationwith respect
to the shaft rotation angle adopted in TSA highlights the components that occur in
exactly the same way during each complete revolution of the shaft. This makes from
this technique very effective for the detection of localized defects in gears. The impulses
distribution of localized bearing defects, in contrast, are not the same for all shaft rotation
cycles (same shape but shifted) (Mishra et al. 2016). This limit the effectiveness of the
conventional shaft synchronous rotation-based TSA in the early detection of localized
bearing defects. In this chapter, TSA has been updated and used as a part of an original
unsupervised classification-based diagnosis approach developed for the early detection
of bearing defects. The unsupervised classification algorithm used is DBSCAN (density-
based spatial clustering of applications with noise). The latter has proven to be effective
in the early detection of bearing defects in the work of (Kerroumi et al. 2013).

The paper is divided in 3 sections without considering the introduction. Section 2
presents the proposed methodology used for the early detection of bearing defects. In
Sect. 3 the proposed approach has been validated. Conclusions are performed in Sect. 4.

2 Methodology

In this work, the TSA technique is updated and used in bearing early fault detection
approach.

2.1 Update of TSA

Bearing failures are usually caused by defects localized in the outer ring, inner ring, or
the rolling element. Under stationary conditions, bearing defect pulses occur at constant
frequencies (Wang et al. 2014). The typical frequency associated with bearing are: the
Ball Pass Frequency Outer Race (BPFO), the Ball Pass Frequency Inner Race (BPFI),
the Ball Spin Frequency (BSF) and the fundamental Train Frequency (FTF).

The basic TSA algorithm consists to divide the signal into time intervals correspond-
ing to the shaft rotation time periods and then compute their average. This method has
proven to be effective in gear defects detection for the case of a constant operation
speed. In fact, gear defect impulses exhibit at the same angular position in each shaft
revolution. Therefore, averaging the signal corresponding to complete shaft revolution
intervals will reinforce their presence and attenuate the non-synchronous components,
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such as measurement and mechanical noises. Bearing localized defects frequencies are
proportional to the frequency of the shaft rotation. Despite this, and contrary to the case
of gear defects, the distribution of bearing fault impulses is not the same at each complete
revolution of the shaft. In fact, depending on the location of the fault (in the outer ring,
inner ring or ball), bearing defect impulses tend to shift by a constant angle within each
complete shaft revolution (while keeping the same occurring order). This shift would
cause a loss in bearing defects vibration signature using the classical TSA.

To overcome this problem, TSA is updated in this work. The update consists to
average the signal synchronously with the defects accruing cycles instead of shaft rev-
olutions, avoiding the smearing due to accumulation of minor phase shifts. For the case
of bearing race defects, the defect accruing cycle is defined as the intervals between 2
consecutive passage of a same ball over the defect. In the case of an outer race defect,
the latter correspond to a complete revolution of the cage. Figure 1 illustrates (with
exaggeration) the difference between the application of conventional and updated TSA
in the case of an outer race defect.

The rotational speed of the cage is deduced mathematically from the speed of the
driving shaft (speed of the inner ring of the bearing). The relationship between the
instantaneous speed of the cage and the shaft is:

FTF = Rf

2

(
1 − Bd

Pd
.cos(α)

)
(1)

Where: Bd is the ball diameter, Pd and α represents the pitch diameter of the bearing
and its contact angle respectively, (α is equal to zero in the current case), and Rf is the
shaft rotation frequency.

2.2 Approach for the Early Detection of Bearing Defects

The approach proposed for the early detect of bearing degradation is described in Fig. 2.
The latter consists to preprocess the bearing vibration data using the updated TSA in

order to highlight faults and minimize noise. Then, referring to the literature, effective
bearing fault diagnosis features are extracted from the preprocessed data. Once features
are extracted, Kernel Principal Component Analysis (KPCA) is applied to obtain the
features combination that better presents the signals by eliminating redundancy. The
extracted combination is taken as input to the DBSCAN classifier, used to perform the
diagnosis. This classifier is chosen for its ability to be used without prior knowledge of
data. It takes a decision on the newly acquired data if it corresponds to a healthy state or
if it is degraded. For more details on DBSCAN, see the work of (Kerroumi et al. 2013).

3 Result and Discussion

This section is devoted to validate the proposed bearing defects early detection approach.
The vibration signals used in the validation process are simulated by a dynamic model of
a shaft bearing system previously developed by authors. The effectiveness of the updated
TSA will be evaluated by comparing the performance of two DBSCAN classifiers fed
with data processed using conventional TSA and updated TSA respectively in early
bearing fault Detection.
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Fig. 1. Exaggerated example of conventional and updated TSA applied to outer race defect sig-
nals: (a) four signal with imperfect shifts with respect to the shaft rotation, (b) four signals with
no shifts with respect to the cage rotation, (c) signal averaged synchronously to the shaft rotation
(d) signal averaged synchronously to the cage rotation

Fig. 2. Proposed bearing defects early detection approach.

3.1 Dynamic Model Simulation

In this study, the dynamic model of a shaft bearing system, proposed by (Farhat et al.
2021), shown in Fig. 3, is used to simulate bearing vibration signals. The latter consists
of a synchronous electric motor driving a rotating shaft, supported by two ball bearings
type 6206 and charged radially by a load-controllable hydraulic actuator.

This model dynamic is presented using 9 nodes (see Fig. 3). Here authors are lim-
ited to 3° of freedom (DOFs) in each node: two translation (DOFs) which represents
deflection in −→v and −→w direction and one rotational (DOF) representing the torsion in
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Fig. 3. Dynamic model of a shaft bearing system, (Farhat et al. 2021).

−→u direction. All the simulation carried out in this chapter are realized in the node 6,
direction −→v . The sampling frequency is fixed to 20 kHz. The motor rotation speed is
fixed to 2000 rpm and the radial load Fv is fixed to 100 KN.

In total 100 signals of 1s each are generated: 20 signals corresponding to healthy
bearing and 80 signals corresponding to 80 severities of a localized defect in the outer
race of the load-side bearing. The first considered defect present a width d = 0.01mm.
Then the defect width increases by 0.025 mm from one severity to another, so that the
last severity corresponds to 0.01+79∗0.025 ≈ 2mm.White noise of constant amplitude
is added to all generated signals to simulate real operation noise.

3.2 Pre-processing

All the simulated signals corresponding to the healthy and defective cases, respectively,
are preprocessed using the conventional and the updatedTSA.The preprocessing process
is further clarified in this section using the vibration signal shown in Fig. 4, which
corresponds to a simulated vibration data for a defective bearing with an outer race
defect of severity 40 (defect width = 0.985 mm).

From the raw vibration signal shown in Fig. 4, it is difficult to detect the presence
of fault impulses, those are mostly masked by noise. A single peak corresponding to the
fundamental frequency of the bearing outer race defect, BPFO = 118.9Hz, is detected
in the raw signal spectrum. Conventional and updated TSA are respectively applied to
the considered signal. The conventional TSA-based pre-processed signal and its envelop
spectrumare given inFig. 5. TheupdatedTSA-basedpre-processed signal and its envelop
spectrum are given in Fig. 6.

From Fig. 5 and Fig. 6, the defect impulses in the time signal, the fundamental
defect frequency, BPFO = 118.9Hz, in the spectrum and its harmonics are clearer when
performing the updated TSA pre-processing.

3.3 Features Extraction

Considering their effectiveness in the diagnosis of bearing vibration signals, 10 fea-
tures from the time domain are considered to be extracted from simulated signals. The
expressions of the chosen features are summarized in Table 1.
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Fig. 4. Case of outer race defect of severity 40: (a) raw vibration signal and (b) squared envelope
spectrum

Fig. 5. Case of outer race defect of severity 40: (a) conventional TSA averaged vibration signal
and (b) squared envelope spectrum

3.4 Classification

The DBSCAN classification algorithm is used to detect the degradation from the con-
sidered bearing signals. Referring to (Kerroumi et al. 2013), the DBSCAN imputation
parameters Eps and Minpts are set to 10 and 4 respectively. Figure 7(a) and Fig. 7(b)
shows the classification results of the DBSCAN algorithm for the case of input signals
processed with the conventional TSA and with the updated TSA, respectively. The green
stars correspond to signals classified as healthy and the red stars correspond to signals
classified as defective.
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Fig. 6. Case of outer race defect of severity 40: (a) conventional TSA averaged vibration signal
and (b) squared envelope spectrum

Table 1. The computed features, x represents the digitized signal, xi is the sample number. i ∈
(1, 2… N).
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(a) (b) 

Fig. 7. DBSCAN classification result: (a) case of conventional TSA-based preprocessing and (b)
case of updated TSA-based processing. KPC: Kernel Principal Component.

For the classifier fed with data processed using the classical TSA, the degradation
is detected from signal number 46, i.e. the first detected fault is of severity 26. On the
other hand, for the one fed with data processed with the updated TSA, the first detected
fault is of severity 9. Confirming the effectiveness of the updated TSA technique in the
early detection of bearing defects.

4 Conclusion

In this chapter, an original approach is investigated for the early detection of bearing
defects. First, the conventional TSA preprocessing technique is updated and applied
to bearing outer ring defect signals. Then, the preprocessed signals are used to feed a
DBSCAN classifier used for fault detection. Therefore, the effectiveness of the proposed
features is evaluated based on the performance of the constructed classifier. The proposed
approach has proven to be effective in early detection of bearing faults.

In the following work, the proposed approach will be tested on experimental
degradation data.
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Abstract. Gears are commonly used in many critical engineering appli-
cations and vulnerable to various modes of failure. Prognostic health
management (PHM) of these components is therefore often desirable.
Accurate physical models of the gearboxes and its failure modes that
are fast to compute have several benefits for PHM. Therefore, analytical
gear fault modelling methods, obtained from the potential energy method
(PEM) received significant attention. This is because it aims to deliver
the accuracy of finite element methods, whilst being much faster to solve.
Hence, it is suitable for PHM. This chapter gives a short overview of the
modelling philosophy behind spur gears. This philosophy includes the
theory behind the PEM and the methods used to induce faults to these
physical gear models. The chapter continues by reviewing state-of-the art
root crack, chip, surface pit, spall and broken tooth models and show-
cases the expected meshing stiffness phenomena expected for each fault
type. Finally, this chapter gives recommendations for the gear fault mod-
elling field and proposes the use of a generalised stiffness model, which
would simultaneously benefit both the PHM task and the gear modelling
research community.

Keywords: Gear fault modelling · Physical modelling · Potential
energy method · Prognostic health management · Time-varying mesh
stiffness

1 Introduction

Gears are very commonly found in many critical engineering applications such
as large wind turbines. Prognostic health management (PHM) of these gears is
therefore often highly desirable and financially justified. PHM usually require
some form of physical modelling of the gears and their dynamic interactions
with each other. For gears, these models may be complex because they are often
subjected to various modes of failure.

Conventional PHM methods are either data-driven or physics-based mod-
elling, which have several shortcomings for practical applications. Recently,
hybrid methods for PHM of geared systems have taken root (Sun et al. 2020).
Such hybrid methods combine physics-based models with data-driven models.
This requires generalized low computational cost physics-based gear models that
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are digital representations of the physical system. This enables the generation
of digital condition monitoring data under different health and operating condi-
tions and therefore makes it possible to perform the inverse diagnosis problem,
i.e. infer the health state from the available measurements. The models need to
be calibrated to ensure that the predicted response is the same as the measured
response of the physical system under equivalent measurement conditions. Once
a hybrid model has been created and calibrated, this forms an integral part of
the remaining useful life estimation part of PHM.

The vibration signals acquired from gearboxes are dominated by gear mesh
interactions. The interactions are usually modelled with one of the following
methods:

– The Square Waveform Method (SWM)
– The Potential Energy Method (PEM)
– The Finite Element Method (FEM)

As the gears rotate, the gear teeth transmit forces between shafts. Depending on
the rotational angle of the shaft, either one or two gear teeth pairs are in contact
(See Fig. 1). This causes the stiffness between gears to discontinuously jump up
and down as a single or a double tooth pair comes into contact. This behaviour
is modelled by the SWM (see Fig. 2, left). A second phenomenon occurs, namely
that as a gear rotates, the angle and position of the applied force changes over
the tooth face. This causes a secondary stiffness variation effect, which the PEM
tries to account for (see Fig. 2, middle). The FEM automatically accounts for
both meshing effects as a result of the stiffness matrix from the FEM (see Fig. 2,
right).

(a) Single tooth pair meshing (b) Double tooth pair meshing

Fig. 1. Illustration of the two gear tooth pair meshing cases that need to be modelled:
on the left one observes that only a single pair of teeth are in contact. On the right
one observes that two pairs of gear teeth are simultaneously in contact. The teeth in
contact are shown in green shadings.

The SWM is limited in its flexibility to model different damage modes but
serves as a good phenomenological starting point that is very easy to implement.
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Fig. 2. Time-varying gear mesh stiffnesses for the same gear pair given for the three
main methods. On the left is the square waveform method, in the middle, the potential
energy method, and on the right, the finite element method

In the SWM, the damage is modelled as a percentage reduction in gear mesh
stiffness. However, the gear mesh stiffness reduction is not connected to quan-
tifiable damage parameters (e.g. crack sizes), which makes it ill-suited for health
severity estimation and prognostics.

The FEM is considered to be the most accurate method of determining gear
meshing stiffness and has the advantage that it can be used to calculate criti-
cal stresses for remaining useful life estimation. However, due to the non-linear
phenomena in the gearbox (e.g. contacts between gear teeth), it is much more
difficult to solve and is also computationally slow.

The PEM is capable of modelling the gear mesh stiffness with the same
accuracy as the FEM while having the same computational speed as the SWM.
The PEM relates changes in the physical dimensions of the damage (e.g. crack
length) to changes in gear mesh stiffness, which makes it is especially well-suited
for PHM. For this reason, a large amount of literature is available on the PEM
and this constitutes the focus of this chapter.

2 The Potential Energy Method

The potential energy method aims to derive the stiffness terms between gears by
calculating the stored potential energy between the two gear teeth during mesh-
ing. This method was first introduced by Yang and Lin (1987). The meshing
stiffness is inversely proportional to the potential energy, and thus through apply-
ing the potential energy method we may indirectly also determine the meshing
stiffness. The meshing stiffness is usually derived through three main physical
means, namely a beam stiffness term, a Hertzian contact stiffness term and a
gear foundation stiffness term (Mohammed and Rantatalo 2020).

The beam stiffness term is derived directly from cantilever beam theory,
where one models the gear tooth is modelled as a non-uniform cantilevered
beam (See Fig. 3). From beam theory, three beam stiffness terms are considered,
namely the axial compressive, bending and shear stiffnesses. The comprehensive
equations of these beam stiffness terms (based on Fig. 3) are given below:
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In the model of Fig. 3, d1, x and d refer to the horizontal fillet length, the
horizontal distance from the tooth root and the horizontal distance of the applied
force from the tooth root, respectively. The hx and h parameters refer to the
tooth height from the centreline at the horizontal distance x and the tooth height
from the centreline and the applied force point. Rr, Rb and Rh respectively refer
to the tooth root radius, base radius and hub radius. The angular values of α1,
α, α2 and α3 refer to the angular equivalents of h, hx, d1 and Rr respectively,
where the angles are always determined by extending from the contact point
on the tooth surface to be tangent to the tooth base. The only exception is α3,
which is defined in reference to the root circle. Finally, Fa and Fb refer to the
decomposed force vectors experienced by the tooth.

Fig. 3. Gear tooth modelled as a cantilever beam.

Given the non-uniform nature of the gear tooth, the beam stiffness integrals
do not have any clear anti-derivatives and are thus reported in integral form and
solved numerically.
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The Hertzian contact stiffness is focussed on describing the contact line stiff-
ness which occurs due to local deformation at the contact line across the width
of the gear tooth pair. The contact surfaces are assumed to be cylindrical. The
Hertzian contact potential energy may thus be described as:

Uh =
F 2

2kh
=

F 2

2
· 4(1 − ν2)

πEL
(4)

Finally, the gear foundation stiffness tries to account for the deflection the gear
body (the portion beneath the tooth root and above the hub radius) undergoes
due to forces applied to the gear teeth. This is given as:

Uf =
F 2

2kf
=

F 2

2
· cos2 α1

EL

[
L∗

(
μf

Sf

)2

+ M∗
(

μf

Sf

)
+ P ∗(1 + Q∗ tan2 α1)

]
(5)

where μf , Sf , L∗, M∗, P ∗ and Q∗ are determined by following the approach in
Sainsot et al. (2004).

It is important to take note that the foundation stiffness is derived under the
assumption of single tooth pair engagement. Thus, for the case of double tooth
pair engagement, the foundation stiffness contribution is overestimated, since
it is added to the overall stiffness of the gear mating process twice - one term
for each gear pair. This double addition overestimates the overall stiffness, as it
assumes that each mating gear pair has its own gear body, where in reality both
teeth pairs are sharing the same bodies. Since no analytical correction exists,
it is important to follow the procedure outlined in Ma et al. (2016), where the
double tooth region fillet terms are calibrated through FEM, leading to a more
realistic overall stiffness.

This concludes the description of the meshing stiffness terms, which are solved
by substituting expressions for Fa, Fb, d, x, Ax and Ix into Eqs. (1)–(3). Clear
definitions of these expressions are given in Meng et al. (2021). Notice, however,
that the beam terms in Eqs. (1)–(3) have Ax and Ix terms, and the Hertzian
term in Eq. (4) has an L term. It will shortly be shown that these are the key
quantities that are varied over the tooth profile to simulate faults.

3 Development of Gear Fault Modelling

Gear fault modelling using the potential energy method has received significant
attention. Many fault types have been modelled and in this work, the state-of-
the-art for five types of gear faults are summarised, namely:

– Root Crack Faults
– Broken Tooth Faults
– Chipping Faults
– Spalling Faults
– Surface Pitting Faults
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For all of these fault types, the hx term in Fig. 3 is firstly parameterised as a
function of the location on the tooth x. Thereafter, the Ax and Ix terms in the
integrals of Eqs. (1)–(3) are updated to reflect the local surface area and area
moment of inertia of the damaged tooth. This manifests as a reduction in the
mesh stiffness.

Furthermore, some fault types aim to reduce the effective width of the tooth
(L), which again directly affects Eqs. (1)–(3), but also the Hertzian term from Eq.
(4). The gear foundation term given in Eq. (5) is not reduced for the considered
fault types.

The following sub-sections will give a short overview of the state-of-the-art
models being employed for each fault type mentioned above, with comparisons
given against older methods. These sub-sections will conclude with gear mesh
stiffness profiles to indicate what the expected effect of a fault type may be on
the meshing stiffness. Although it is generally of great importance to validate any
numerical results, the validation is beyond the scope of this work. This is because
the purpose of this chapter is to review existing models for gear fault modelling.
In this chapter, we show the behaviour of the gear mesh stiffness profiles for
different damage models. These models were published in the literature and
presented without experimental validation.

3.1 Crack Fault Modelling

Gear crack modelling received much attention in the literature, and the state-
of-the-art gear crack models are quite flexible and advanced (Mohammed et al.
2013). The models discussed here refer to gear tooth root cracks, which if allowed
to progress, lead to another fault type, namely a broken tooth fault.

Before reviewing the literature briefly, it is useful to describe how crack faults
are generally implemented. Referring to Fig. 4(a), note that the height of the
gear tooth above the centreline is defined as hx. However, one assumes that the
effective useful area of the tooth is reduced when a crack enters the tooth root -
thus the effective tooth material that has been lost due to the crack is highlighted
in red. Notice the parameter hq, which defines the new effective height of the
tooth. Thus, for any integration values where hx would have otherwise been
larger than hq, we set hx = hq.

The first gear crack model utilising the PEM was proposed by Tian (2004),
where the gear crack is assumed to be a full width crack, with a constant crack
angle. The constant crack angle assumption is generally deemed accurate enough
according to experimental results from Lewicki (2002). In the model, the depth of
the crack could be varied, in turn affecting only the hx term during integration as
discussed above. However, due to the way in which forces are applied to the gear
tooth, the fault is only allowed to affect the bending and shear terms, not the
axial compressive stiffness. It is assumed that the axial compressive stiffness will
be unaffected as the crack is assumed to still bear the load of axial compressive
forces.
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(a) Illustration of how the effective
height of the tooth is assumed to be
reduced within the crack depth re-
gion seen in red. We define a crack
depth (q0) and angle (ν) which deter-
mine how much material is virtually re-
moved from the tooth stiffness. Figure
adapted from Chen & Shao (2011).

(b) Illustration of how the varying
crack width is modelled.Here z de-
scribes the position on the tooth width,
and q(z) defines the variable crack
depth (which was previously assumed
as a constant q0) as a function of the
tooth width. Figure adapted from Chen
& Shao (2011).

Fig. 4. Illustration of the model used to define constant width cracks (a) and the
methodology proposed by Chen and Shao (2011) to improve upon this method (b).

As Tian (2004) only considered a crack depth above that of the central line
of the tooth, Wu et al. (2008) extended the model to include cracks beyond
the tooth midpoint, extending to below the centreline as well. Up to this point,
neither Tian (2004) nor Wu et al. (2008) considered the fillet foundation effect.
In Chaari et al. (2009) this effect is considered, and the crack methodology using
PEM is shown to correlate very well with FEM results. However, Chaari et al.
(2009) do not assume that a crack affects the full effective height of the tooth,
but only affects the root area where the crack occurs.

Chen and Shao (2011) extended the crack formulation to include a variable
width crack by utilising a parabolic distribution along the tooth width (See
Fig. 4b). This allowed for more flexible crack shapes to be modelled. This is an
important addition to the crack modelling process, as from practical experience,
teeth do not always experience a uniform load across the tooth face, leading to
cracks that propagate in depth and width. Chen and Shao (2011) managed to
validate their updated model against the FEM results from Chaari et al. (2009).

Mohammed et al. (2013) developed a novel method to reduce the effective
height of the tooth. Previously, in the cracked region, a constant height value
of hq was assumed across all x values as seen in Fig. 5(a). However, Mohammed
et al. (2013) noted that as the tooth cracks, it will deflect, also changing the area
available for carrying axial compressive, bending and shear loads. They generated
a formulation which generates a new parabolic curve for hq as a function of x,
which was shown to be noticeably more accurate for cracks that are deeper than
30% of the gear thickness. An illustration of the new improved method is given
in Fig. 5(b).



Gear Fault Modelling in a Hybrid Modelling Context 249

(a) Previous method of effective
tooth height reduction assuming a
straight reduction line

(b) Updated effective tooth height
reduction according to a parabolic
shape

Fig. 5. Illustration of the old (a) and new (b) method of modelling effective tooth
height as described by Mohammed et al. (2013).

Finally, Ma et al. (2014) did an in-depth study comparing different combi-
nations of gear fault modelling methodologies to FEM. The conclusion was that
the method described by Mohammed et al. (2013) should be used. Furthermore,
their works show that there is no appreciable difference between modelling the
crack propagation path as a curve as opposed to a straight line. This is in line
with what has been found experimentally from Lewicki (2002).

Although many other improvements have been made in the literature, they
are mainly focussed on the overall stiffness modelling and not the crack modelling
itself. Therefore, the model from Mohammed et al. (2013) is still deemed the
standard on which gear root crack models should be based.

A mesh stiffness sample from a cracked tooth (varying width effect but not
using parabolic limiting line and assuming a linearly growing crack) may be seen
in Fig. 6.

Fig. 6. Effect of a cracked gear tooth on the gear meshing stiffness
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3.2 Broken Tooth Modelling

There are two simple methods to model a broken tooth. Firstly, a broken tooth
can be modelled as a full-width crack with the crack model described in the
previous section. Alternatively, one may recognise that for a broken tooth, one
tooth’s entire meshing period will contribute no stiffness. Thus, one may set up
the healthy gear meshing stiffness array and simply subtract the broken tooth’s
contribution to the stiffness array, as implemented in Tian (2004). Effectively
we set Eqs. (1)–(5) to ∞ for the broken tooth, as the stiffness is inversely pro-
portional to these energy terms. What one sees in the stiffness results, is that
during the first double tooth pair meshing region, the stiffness starts decreas-
ing rapidly, as only one tooth pair is carrying the load. During the single tooth
meshing region, there is no stiffness contribution, and the stiffness terms are
zero. Finally, during the last double meshing period, the one tooth is still unable
to contribute, and the other tooth pair is left to carry all the load, leading to
a reduced stiffness. A mesh stiffness example from a broken tooth is shown in
Fig. 7.

Fig. 7. Effect of a broken tooth on the gear meshing stiffness.

3.3 Chip Modelling

Tooth chip modelling has received relatively little attention in literature and the
progression of this field can briefly be summarised in three key works. Initially,
Tian (2004) proposed a methodology that assumed that the depth of chips were
negligible, and the only effect to be accounted for would be the effective tooth
width (L) reduction on the Hertzian stiffness term.

Since then, works from Chaari et al. (2008) accounted for the depth of the
chipping fault, further affecting the axial compressive, bending and shear stiff-
nesses due to the newly affected Ax and Ix terms. However, in their modelling of
the chipping parameters, Chaari et al. (2008) assume the tooth surface fracture
curves to be linear in nature.

Liu et al. (2021) mention that the linear fracture curve assumption from
Chaari et al. (2008) may lead to large deviations from the true fracture shape
when the chips are deep. Therefore, Liu et al. (2021) developed an analytical
geometry method that describes the fracture curves precisely. This method was
validated against FEM results, and is currently the state of the art in chip
modelling. An illustration of the chipping modelling may be seen in Fig. 8. Notice
that we have full control over setting the location (on the vertices) of crack
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nodes A, B and C. The method automatically determines the connecting curves
between these points. Furthermore, we note that the red region corresponds to
the now missing material, which as mentioned before affects the Ax, Ix and L
terms.

Fig. 8. Illustration of the state-of-the-art chip model. Each letter represents a different
parameter that can be varied to describe the chip shape. The resulting fracture curves
are an inherent property of the analytical geometry method. Figure adapted from Liu
et al. (2021).

A mesh stiffness sample from a chipped tooth (as implemented by Tian
(2004)) may be seen in Fig. 9.

Fig. 9. Effect of a chipped gear tooth on the gear meshing stiffness

3.4 Spalling Fault Modelling

From the outset, it should be mentioned that there is an overlap between spall
and pit modelling. For this review we assume that a pit refers to a small piece
of regularly shaped material that is removed from a gear tooth. Pits generally
occur in groups. Spall refers to a large piece of material that is missing from a
tooth face, usually caused by the accumulation of the smaller pits. Thus, for this
review, although spalling and pitting are covered in different sections, they are
somewhat interchangeable with the main difference between the two being the
fault size and amount.
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Chaari et al. (2008) proposed the first analytical method to induce a spall
defect on a gear tooth. This was done by defining the spall as a rectangular cut-
out from the tooth profile, meaning that one can fully define the fault through
the rectangle width, height, depth and starting point along the tooth length.
Note once again that for Eqs. (1)–(3), the hx term will be affected, and in turn
thus the Ax and Ix terms. Furthermore, for Eqs. (1)–(4), the effective length L
will also be affected, therefore affecting the stiffness terms.

The next major work on the PEM would only come in 2016, when Sax-
ena et al. (2016) took all of the previously disjunct literature and formulated it
into the PEM implementation. Furthermore, they derived a new stiffness term
for torsional effects due to unsymmetric defects on gear teeth. They presented
three spall models in this work: The rectangular shape from Chaari et al. (2008)
(Fig. 10a), a circular shape from Jia and Howard (2006) (Fig. 10b) and finally
a V-shape from various other authors (Fig. 10c). This work included a well doc-
umented analytical method of implementing these three fault shapes.

(a) Rectangular spall
model

(b) Circular spall model (c) V-shape spall model

Fig. 10. Illustration of the three constant depth modelling techniques with the specified
parameters. These figures are adapted from Saxena et al. (2016).

Luo et al. (2018) further improved the spall modelling field by introducing a
spherical cut-out instead of the rectangular, circular or V-shaped models. The
spherical cut-out could be modelled using four positioning and shape parameters.
The spherical model was more realistic, as it implied a gradually deepening
spall depth, as opposed to the abrupt depth changes introduced by the models
presented by Saxena et al. (2016). In the same year, Luo et al. (2018) improved
upon this model, by adding another parameter to allow the spherical cut-out
shape to be extended to an ellipsoidal shape. This made the shape of the spall
more flexible and realistic. This ellipsoidal model was also validated against
FEM, and correlated well with the FEM results.

Luo et al. (2019) did important work in generalising the spall model. The
authors generated a formulation where virtually any spall shape could be mod-
elled by using only the effective length information and effective depth infor-
mation of a spall. The authors showed that this method reproduces older spall
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models, but was also capable of modelling very complex spall shapes with good
agreement with FEM. The only limiting assumption this method made was that
the varying spall depth is uniform throughout the tooth’s width. For the more
complicated spall shapes with a non-analytical description of spall width and
depth variation, a discrete sampling and fit method (DSFM) was employed,
where regularly measured intervals of the spalls were fitted with a polynomial
curve to approximate the shape. This was shown to work well. This model is fur-
ther capable of modelling pitting defects. For the pit modelling, the authors pre-
sented a Gaussian-based approach to distribute a limited number of fixed fault
sizes by sampling their locations. Multiple Gaussians could further be used to
describe multiple different pitting zones. This method showed promising results.

El Yousfi et al. (2019) presented a novel method to determine spalling faults’
effect on the gear mesh stiffness of a gear. Their method was capable of mod-
elling everything that Luo et al. (2019) could, with the addition that a varying
fault depth in the tooth width direction could also be accounted for. In this
method, the tooth was discretised as a two-dimensional matrix. The width and
length of the tooth is given as an m × n matrix with the entries in position
[m,n] corresponding to the tooth height at that coordinate. This implies that
integration must now be done across two directions. The benefit of this approach
is that analytical equations for the fault types are no longer needed, with the
fault shape modelled by modifying the entries of the m × n matrix. It is found
that during the integration phase (still employing PEM stiffness terms), the stiff-
ness reduction is an inherent property of the discretised modelling approach. It
must be mentioned that due to the formulation of this approach, a new algo-
rithm, namely the contact detection algorithm needed to be built, complicating
the modelling process slightly. This method was validated against Chaari et al.
(2009), which inherently also serves as a FEM validation. The computational
speed of this method is subject to how finely the tooth discretisation is done,
implying it provides the researcher control over the solving speed/simulation
accuracy trade-off.

To complete this section, a mesh stiffness sample from a spalled tooth using
the method from Chaari et al. (2008) may be seen in Fig. 11.

Fig. 11. Effect of a spalled gear tooth on the gear meshing stiffness
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3.5 Surface Pit Modelling

Surface pit modelling has received some attention by authors, but less than
crack modelling. This is surprising because pitting faults are more common than
cracking faults (Liang et al. 2016; Liu et al. 2020). Pitting is generally seen to
start beneath the pitch line of the tooth due to this being the region where single
tooth pair meshing starts. The single tooth pair meshing region is associated with
higher stresses and thus offers a more conducive environment for pits (Lei et al.
2018).

Traditionally, pitting models were initially employed as spalling models,
which as we have already seen has been handled as a separate occurrence in the
previous section. Essentially, pits were modelled as a single fault/dent on the
tooth surface, with the dent shape being different across different approaches.
These spalling-based approaches are however unrealistic as pitting faults have
several dents in various locations across the tooth.

The first instance that the authors found where pitting defects were extended
to multiple pits was in the work of Liang et al. (2016). The authors modelled a
single pit as a cylindrical piece of material removed from the gear tooth. Three
parameters were used to define a single fault, namely the pit radius, pit depth
and pit location (in the length direction) on the tooth. The width information
for the pit is not required, as it is assumed that the location of the pit across
the width of the tooth is of no consequence to the overall stiffness. The fault
was induced by subtracting the effective length (L), cross-sectional area (Ax)
and moment of inertia (Ix) of material removed from the beam (Eqs. (1)–(3))
and Hertzian stiffness (Eq. (4)) terms. After setting up a formulation for the
singular pit case, Liang et al. (2016) extended the pit modelling approach by
inducing multiple spall defects, all with identical radii and depth. The authors
superimposed the multitude of pits’ effective length, area and moment of inertia
reductions to achieve an equivalent length, area and moment of inertia reduction
term which could be subtracted from the healthy case. The authors proved their
case to coincide very well with a FE model of their geometry.

Lei et al. (2018) improved upon the work from Liang et al. (2016) by noting
that pits should be distributed probabilistically below the pitch line of the tooth.
Liang et al. (2016) ‘hardcoded’ the pits around the pitch line, whereas Lei et al.
(2018) defined the pit location parameters along the tooth length using a normal
distribution (See Fig. 12a).

Furthermore, Lei et al. (2018) addressed a further shortcoming: Liang et al.
(2016) assumed constant pit sizes for all severity cases. Lei et al. (2018) presented
an analytical method by which one can increase a fault severity number and
in turn grow the size of existing pits (in depth and radius) but also generate
new smaller pits according to the normal distribution mentioned above (See
the different pit sizes corresponding to different colours in Fig. 12a). This was
seen to be a more realistic fault severity progression modelling approach. When
validated against FEM, this approach differed by less than 0.65%.

Chen et al. (2019) also utilised the cylindrical pitting model with multiple
faults, but generated a new methodology of describing where the pits should be
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formed, modelling pits as local clusters described by two-dimensional overlapping
Gaussian distributions.

Liu et al. (2020) followed an approach similar to Lei et al. (2018) in terms
of methodology but implemented spherical pits as opposed to cylindrical shaped
pits. Unfortunately, the parametrisation of this method was not detailed.

Meng et al. (2021) also proposed a spherical pitting model, which is described
in great detail. Their model is very similar to that of Lei et al. (2018), but
only employing a spherical model as opposed to a cylindrical model. Meng
et al. (2021) also showed that their model correlates well with FEM. The authors’
model utilised only three parameters to define the fault, but instead of the radius
and depth parameter, a spherical radius and angle parameter were utilised. This
model can be seen in Fig. 12(b).

(a) Illustration of how pits are dis-
tributed across the tooth face using a
Gaussian distribution. Figure adapted
from Lei et al. (2018).

(b) Illustration of the state of the art
pitting model. Only three parameters,
namely u, r and θ are required to fully
define a fault. Figure adapted from
Meng et al. (2021).

Fig. 12. Illustration of the distribution of pitting defects in (a), and the model used
to describe the pits themselves in (b).

An implementation of the model by Meng et al. (2021) was done, and a
meshing stiffness sample from a severely pitted tooth may be seen in Fig. 13.

Fig. 13. Effect of a severely pitted gear tooth on the gear meshing stiffness
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4 Prospects for Gear Fault Modelling Going Forward

Significant advances have been made in the field of gear fault modelling. However,
due to a large number of novel ideas and approaches, the literature is quite
disjunct in its formulation of the meshing stiffness terms. Although all fault types
inherently aim to modify the tooth height (hx) or width (L) to model damage
to a gear tooth, it is found that different authors utilise different symbols, and
utilise different substitutions for formulating faults in Eqs. (1)–(4).

This makes the field of gear tooth fault modelling daunting to neophytes.
Furthermore, it may be found that not all authors agree upon which terms to
apply the damage parameters to, as is the case with gear crack modelling, where
some authors do not consider the axial compressive stiffness as being affected
by a root crack. Finally, it is also seen that not all authors consider the fillet
foundation effect (Eq. (5)) in their works, and as such have results which can
not be compared to one another.

For a hybrid-based PHM approach, it would be extremely useful if a simpler,
generalised model existed where one could simply ‘plug and play’ different fault
types into the stiffness equations and get the resulting stiffness effects. Currently
one has to implement each author’s model with their own unique formulation to
the fault modelling to obtain the correct gear meshing stiffness results.

From this perspective, the focus should be geared more towards modelling
the stiffness reduction shape of different faults accurately, rather than getting
the exact amplitude of the stiffness reduction correct. This will anyhow be
adjusted during a calibration process to get correspondence between the mod-
els and experimental data as part of the hybrid modelling process. Therefore,
the authors believe that gear condition monitoring could greatly benefit from a
generalised stiffness model, which can account for several fault types that can
simply be induced with a term in Eqs. (1)–(4).

A generalised model would have a twofold benefit:

1. It would lead to a stronger, more flexible physics-based approach that could
more easily integrate with data-driven approaches, leading to a powerful
hybrid model.

2. It would allow for authors to more easily compare their works with one
another if they utilised the same generalised model.

Although a generalised model is advantageous, it is important to consider
that many works do not validate their results against any physical experiments.
Thus, to increase the value of the generalised model, it must not only be validated
against existing works or FEM, but also against experiments.

Work from Luo et al. (2019) shows a good first step towards a generalised
model, but is currently limited to spalling faults. The work from El Yousfi
et al. (2019) also addresses the generalisation idea, however, the method utilises
node-based approaches which could suffer from the same computational burden
of FEM.

Even though some work has been done towards generalising fault models
for spalling failures, it is the authors’ opinion that a PEM model which can
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simultaneously model various fault types is missing in the field of gear fault
modelling.

The models considered here focus on capturing the dynamic response of the
gears correctly. For remaining useful life calculations a further step is required to
build a degradation model, which takes force/stress inputs from the hybrid model
and utilises these values to propagate faults. The RUL can then be determined
as an output from the fault progression prediction. This equips the user with
powerful diagnostic knowledge from the hybrid model, being able to identify fault
types and intensities, and powerful prognostic knowledge from the degradation
model, which can be used to predict the RUL of an asset.
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