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Chapter 3
Smart Cities Consumers in Search 
of the Potential Sustainability

Manuel Villa-Arrieta and Andreas Sumper

Abstract Due to the increase in the urban population concentration, cities can be 
considered representative of the energy consumption and the energy sustainability of 
their countries, and, therefore, sustainability depends on the energy consumption 
behavior of the urban population. In the first urban agglomerations, primary energy 
resources (renewable) were transformed locally to supply a relatively low demand 
for energy. However, with the increase in demand, centralized energy facilities that 
took advantage of non-renewable energy resources were required. The use of these 
energy resources has caused the loss of energy sustainability. Parallel to the objec-
tive of solving environmental problems through the use of renewable energy 
resources in decentralized generation facilities, the smart city strategy seeks to opti-
mize the power system and make operation more flexible by empowering the con-
sumer. However, just as sustainability depends on the urban population’s consumption 
behavior, the effectiveness of smart cities depends on the active participation of con-
sumers. Faced with increased demand and the need to obtain a clean and uninter-
rupted energy supply, the recovery of potential sustainability depends on the 
consumer taking advantage of the technological deployment of smart cities and 
becoming a smart consumer. Based on studies on demand-side response, electrifica-
tion, and energy self-consumption in cities, this chapter addresses the effectiveness 
of smart cities. The conclusions highlight the fact that energy sustainability is not 
inherent in smart cities: it depends on the consumer participation. Therefore, the 
effectiveness of smart cities must address the design of incentives for the participa-
tion of the population from a holistic approach and be linked to the heterogeneity of 
consumers and circularity in the efficient management of resources.
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 Introduction

This chapter is based on the doctoral thesis “Energy Sustainability of Smart Cities” 
(see Villa-Arrieta 2019) and is comprised of studies that the authors have previously 
published. Our intention is to use this chapter to extend the conclusions of the said 
thesis and contribute to the study of smart cities with a single concise piece. In this 
introduction, the importance of cities in the energy transition is discussed. Then, the 
mechanisms that these urban areas use to contribute to energy sustainability are 
identified, and in the following sections, these mechanisms are discussed before 
presenting the results and conclusions of this research.

 The Importance of Cities in the Energy Transition

Cities are home to more than half of the world’s population (United Nations 2018) 
and consume between 60% and 80% of the world’s total energy production. Because 
energy is responsible for two-thirds of total greenhouse gas (GHG) emissions 
(OECD/IEA, IRENA 2017), urban areas emit 75% of global CO2 emissions (pri-
mary GHG) (United Nations Environment Programme (UNEP) 2012). As seen in 
the United Nations projections for up to 2050 (projections before the COVID-19 
pandemic), if the current urban population growth trend continues, global urbaniza-
tion will represent 67% of the total population (United Nations 2013), and cities 
will demand a more significant amount of energy.

Covering this energy demand with the current model based on fossil resources 
will increase GHG emissions, and the consequences of global warming will put the 
planet’s environmental sustainability at risk (IPCC 2018). Therefore, guaranteeing 
the security and quality of the energy supply to provide urban services using the 
planet’s resources will pose an enormous challenge in terms of our ability to man-
age and restore the natural assets upon which all life depends (OCDE 2012).

The rhythm of the technological change of the systems for transforming primary 
energy to final energy has marked the pace of development and economic growth of 
cities. This final energy, mainly consumed as electricity, has improved the quality of 
life for humanity in the modern era but has led to the environmental consequences 
mentioned above. As seen in Fig. 3.1 (which includes data from after the 1973 oil 
crisis), electricity consumption has a more significant correlation with urban popu-
lation growth rather than with the total population growth. It can be concluded, 
therefore, that GHG emissions are linked to urban energy consumption.

To address this problem, the world’s leading economies have launched an energy 
transition process to move from the current economic model to one that is decarbon-
ized and competitive. (The relationship between the COVID-19 pandemic and the 
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energy transition has been studied by (Quitzow et al. 2021) and concludes that this 
crisis has deepened the gap between the countries that are leading the global energy 
transition and those which are progressing more slowly, which exacerbates the 
existing imbalances in an uneven energy transition landscape.)

The mechanisms to promote the energy transition are to decentralize and make 
the power system more flexible in order to save energy, increase energy efficiency, 
and replace the use of fossil energy with renewable energy. The flexibility of the 
system involves monitoring it in order to adjust the energy demand to the intermit-
tency that characterizes renewable energies. Decentralization seeks to take advantage 
of distributed energy resources and bring generation closer to where energy is used.

This means that solar energy plays a remarkable role, given the uniformity of its 
distribution on a global scale (Check et al. 2015). Therefore, cities play a fundamen-
tal role in the energy transition process (Kammen and Sunter 2016), despite being 
the source of a worldwide environmental problem. Within cities, buildings use 
31.43% of the total energy consumption, which is more than industry, transport, and 
other consumptions (International Energy Agency (OECD/IEA) 2018). In addition 
to focusing on energy consumption, buildings have a high margin of action to 
increase energy savings, energy efficiency, and the use of renewable energy through 
energy self-consumption. Flexibilization of the energy system also seeks to empower 
consumers so that through demand-side response (DSR) mechanisms, this agent 
can expand its participation in the power market.

 Smart City and Energy Sustainability as Strategies

From a development of the society’s point of view, advancing in the energy transi-
tion will lead to the sustainability of energy supply: reducing the negative impact of 
energy consumption on the environment will allow us to ensure the well-being of 
future generations. In this sense, there is a global consensus in defining the smart 
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city concept as a critical strategy to address energy transition in cities and achieve 
energy sustainability (IRENA 2016).

Both the studies of energy sustainability and smart cities are extensive (EIB, 
UPM 2017; Sustentable Citiess Index. Sustainable Cities Index 2016; World Health 
Organization. The Rise of Modern Cities 2010). Energy sustainability is a field of 
knowledge which has been studied in depth. Similarly, smart cities has attracted the 
economic interest of the technological, industrial, and service sectors as well as 
governmental and supranational organizations in search of the competitiveness of 
cities and as a strategy to face climate change (Caragliu et al. 2011; Bakici et al. 
2013). In this sense, there are several methodologies for assessing smart cities 
(rankings or benchmarking of cities as in the studies (IESE Business School 2014; 
JLL and The Business of Cities 2017) and the energy sustainability of cities (see 
International Telecommunications Union 2019).

The smart city strategy seeks to guarantee the efficacy of the energy service in 
cities to provide other services and efficiently manage available resources (energy 
and economic resources and infrastructures) (Villa-Arrieta and Sumper 2019a). The 
synergies between smart technologies (smart grids, distributed generation facilities, 
and smart meters) will make it possible to provide the energy service that citizens 
require as well as efficiently manage the resources needed to provide them (Lund 
et al. 2017). In particular, the deployment of smart meters in households and the 
energy self-consumption of nearly or net zero energy buildings (n/NZEB) will 
increase energy saving and efficiency and make the most of the local renewable 
energy resources (International Energy Agency (IEA) 2017a; International Energy 
Agency (IEA) 2017b; Ackermann et al. 2001).

In terms of sustainable development, sustainable energy is a source of the devel-
opment and growth of societies and seeks a balance between economic, social, and 
environmental variables (Council HR and Germany 2007). According to the World 
Energy Council (WEC), energy sustainability at a country level relies on a balance 
between three pillars: energy security, energy equity, and environmental impact 
mitigation (Kim et al. 2013). The inclusion of smart technologies will allow involv-
ing those who take part in the management of the cities to find the balance between 
the these three pillars. Figure 3.2 shows the energy transition characteristics needed 
to meet the energy demands of a growing world and urban population: the smart city 
and energy sustainability concepts are constantly being evaluated to achieve the 
decarbonization targets.

 Scalable Study of Energy Sustainability

The main contribution of the studies addressed in this chapter is the analysis of the 
scalability of urban energy sustainability up to the country level (see Fig. 3.3), as a 
new evaluation approach based on the hypothesis that cities tend to be representa-
tive of the country’s population, energy consumption, and GHG emissions. Due to 
the trend of an increasing population concentration in cities, it can be argued that 
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urban centers are to be representative of energy consumption and are responsible for 
GHG emissions. It can therefore be concluded that energy sustainability of cities is 
representative of the energy sustainability of their countries.

Based on a close relationship between the smart city and energy sustainability 
strategies, the cities’ capacity to advance in energy saving and the use of solar 
energy resources are described below. The objective is to explain the contribution of 
smart technology elements to the increase of energy efficiency and urban self- 
consumption of cities, both of which are critical components of the energy transi-
tion to combat climate change.
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 Activation of Energy Saving

One of the drawbacks of electricity from solar energy is that solar radiation is maxi-
mal when many homes are empty, and household electricity usage peaks when there 
is no solar radiation. However, through DSR and the use of smart meters, consumers 
exercise active management over their demand. This is a process in which the 
response to energy information feedback (price signals, gamified plans, or environ-
mental information) can be reflected in the decrease of peak demand (peak clip-
ping), the change of consumption from the peak periods to the off-peak periods 
(load shifting), or in the energy-saving (strategic conservation). Therefore, with the 
deployment of smart meters, it is possible to activate the measures of DSR (see 
Fig. 3.4): the flexibility of the power system depends on the data around consumers 
(Kim et al. 2013).

The replacement of electromechanical meters with electronic ones is the first 
step in the process of empowerment, so that more meaningful and better informa-
tion concerning energy consumption that leads to changes in the energy manage-
ment of households can be collected (Barbu et al. 2013). Although end users were 
passive actors of the power system until now, with the introduction of new services 
that allow more significant involvement of consumers, users have begun to be an 
essential part of the use and management of energy.

Although the DSR peak clipping and load shifting measures offer specific advan-
tages to achieve flexibility in power systems, strategic conservation is the set of 
saving efforts that modify the load curve in its entirety. Regarding the DSR of the 
residential sector, this conservation strategy groups households’ efforts to change 
their consumption patterns in response to consumption and/or price signal. The 
results studied in this section focus on the study of this measure because it is one of 
the main energy strategies of countries or regions dependent on external energy.
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 Experimental Results of the Strategic Conservation

It would seem that the use of smart meters would allow consumers to manage their 
demand more efficiently (Frederiks et al. 2015). However, unless users are proac-
tive, it will not be possible for them to take advantage of the opportunities provided 
by new technologies. Domestic energy consumption is mainly based on routines 
and habits that are difficult to change. Therefore, it will be necessary to deepen the 
technical, psychological, social, and economic aspects that allow consumer partici-
pation and behavior adjustment (Batalla-Bejerano et al. 2020). This is precisely the 
field in which researchers from different disciplines seek to identify the aspects that 
determine consumer participation through empirical studies.

To explore this, a review of empirical works that have tried to quantify the results 
concerning energy savings has been carried out. This review analyzes 116 empirical 
studies on the strategic conservation of the DSR (to see results on peak clipping and 
load shifting, see (Batalla-Bejerano et al. 2020)). These studies, comprised of sur-
veys (S), analytics (A), experiments (E), and simulations (L), looked at the indirect 
and direct feedback of information related to electricity consumption through smart 
meters. Indirect feedback includes electric bills and consumption readings, and 
direct feedback consists of the use of additional technologies such as smart meters 
(digital) that make it easier for users to check their consumption and participate in 
energy-saving programs. According to the results, households respond to the provi-
sion of direct and indirect information by using less electricity.

Figure 3.5 and Table 3.1 compile these results. The installation of smart meters 
alone in households does not guarantee the reduction of electricity consumption in 
the broad spectrum of their socioeconomic conditions, and it is necessary to take 
advantage of digital technology to ensure that households understand and react to 

Direct 
feedback

• In-home Display (IHD)
• Web/Mobile Apps

SC

Indirect
feedback

• Electric bill
• Consumption reading

Demand
Response

Smart 
Meter

Smart 
Meter

1)
2-2.9% 2)

8-19% 3)
20%

1)
2-20%

Demand
Response

2)
21-25% 3)

32%

Fig. 3.5 Results on strategic conservation (SC) of the empirical works reviewed. Note: See 
Table 3.1. (Source: Adapted from Villa-Arrieta 2019)
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Table 3.1 Strategic conservation results using indirect and direct feedback

Indirect feedback
Figure 
3.5 [Reference] Country (Methodological approach) Result

1) (Allcott 2011) US (E-A) 2.0%; (Ayres et al. 2009) US (E) 2.1%; (Anderson and Lee 
2016) US (E-L) 2.2%; (Schwartz et al. 2013) US (E-S) 2.7%; (Allcott and Rogers 
2012a) US (E-L) 2.6 and 2.9%*

2) (Gans et al. 2013) Northern Ireland (E) 11–17%; (Asensio and Delmas 2015) US (E) 
8–19%

3) (Bariss et al. 2014) Latvia (E) 20.0%; (Poznaka et al. 2015) Latvia (E-S) 23.0%
P (Allcott and Rogers 2012b) US (E); (Ek and Söderholm 2010) Sweden (E); (Laicane 

et al. 2013) Latvia (S); (Lossin et al. 2016) Switzerland (E-S); (Kang et al. 2012) South 
Korea (S); (Rausser et al. 2018) Ireland (S); (Qingbin Wang 2016) US (S)

Direct feedback
Figure 
3.5

[Reference] Country (Methodological approach) Result

1) (Reeves et al. 2015) US (E-S) 2.0%; (Quintal et al. 2013) Europe (E-S) 2.0%; (Fenn 
et al. 2012) Germany (E-L) 3.0%; (Rettie et al. 2014) UK (E-S) 3.0%; (Schleich et al. 
2011) Germany and Austria (E-S) 3.7%; (Erickson et al. 2013) US (E-S) 3.7%; 
(Schleich et al. 2012) Austria (E-S) 4.5%; (Spagnolli et al. 2011) Europe (E) 5.0%; 
(Schleich et al. 2017) Austria (E) 5.0%; (Houde et al. 2012) US (S-E-S) 5.7%; (Bager 
and Mundaca 2017) Denmark (E) 5–7%; (Stinson et al. 2015) Scotland (E-S) 7.0%; 
(Shimada et al. 2014) Japan (E) 7.6%; (van Dam et al. 2010) Netherlands (S-E-S) 7.8%; 
(Grønhøj and Thøgersen 2011) Denmark (S-E-S) 8.1%; (Peschiera and Taylor 2012) 
US (E) 8.8%; (Schultz et al. 2015) US (E) 7–9%; (Jain et al. 2013a) US (E-L) 10.0%; 
(Nye et al. 2010) UK (E-S) 5–10%; (Chen et al. 2015) US (E) 11.0%; (Anderson et al. 
2017) South Korea (E) 14.0%; (Gosnell et al. 2019) UK (E) 4–12%; (Alahmad et al. 
2012) US (E-S) 12.0%; (Wood and Newborough 2003) UK (E) 15.0%; (Chen et al. 
2014) US (E-S) 20.0%; (Delmas and Lessem 2014) US (E) 20.0%

2) (Maan et al. 2011) Netherlands (E) 21.0%; (Laicane et al. 2015) Latvia (E-L) 6–23%; 
(Adnane Kendel 2015) France (E-S) 23.3%; (Bager and Mundaca 2017) Denmark (E) 
7–25%

3) (Costanza et al. 2012) UK (E-S) 5–32%; (Petersen et al. 2007) US (E-S) 32.0%
P (Peschiera et al. 2010) US (S-E-S)*; (Foster et al. 2010) UK (E-S); (Strengers 2011) 

Australia (E-S); (Karjalainen 2011) Finland (S); (Brewer et al. 2011) US (S-E-S); 
(Ellegård and Palm 2011) Sweden (E-S); (Petkov et al. 2012) Australia (S); (Chiang 
et al. 2012) UK (E); (Chen et al. 2012) US (E-L); (Oltra et al. 2013) Spain (E-S); (Chen 
et al. 2013) US (E-L); (Jain et al. 2013b) US (E-L); (Loock and Staake 2013) 
Switzerland (E); (Buchanan et al. 2014) UK (S); (Schwartz et al. 2015) UK (E-S); 
(Bager and Mundaca 2015) Denmark (E); (Mogles et al. 2017) US (E-S)

Source: Adapted from Villa-Arrieta (2019)
Notes: US, United States; UK, United Kingdom; P, positive result; S, surveys; A, analytics; E, 
experiments; L, simulations
* Two experiments
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the direct feedback of energy information. Empirical evidence shows that it is pos-
sible to reduce electricity consumption by up to 32% using such means.

 Electrification and Self-Consumption in Cities

 Electrification

As described previously, the deployment of smart technologies will allow cities to 
increase electricity generation from renewable sources to decarbonize the economy. 
However, according to the WEC, energy sustainability depends on the balance 
between energy security, energy equity and the mitigation of environmental impact. 
Therefore, given the intermittence of renewable energies and depending on the 
characteristics of each country and city (possibly similar between regions), “smart” 
electrification without energy storage technologies may lead to an imbalance in 
energy sustainability in that, although environmental benefits are possible, energy 
security could be at risk.

To help address this issue, the researchers studied the effect that electrification 
may have on countries’ energy sustainability using the ETI’s interactive Pathway 
Calculator tool. This tool can be used to determine what is necessary to improve the 
ranking position and understand the impact of policymaking on achieving a sustain-
able energy future (World Energy Council 2017). Figure 3.6 presents its elements. 
The procedure followed involved setting the tool variables to maximum and mini-
mum values in order to identify the variation in the energy sustainability result of 
the 125 countries of the ETI 2017. This exercise was the first step to determine the 
photovoltaic (PV) generation capacity of cities of these countries, which will be 
addressed in the section below.

According to the results obtained, countries could obtain better energy sustain-
ability by reducing energy imports and increasing the diversity of the electric gen-
eration and the diversity of the primary energy (PE) supply (see Fig.  3.7). This 
indicates that the use of local energy resources, such as PV electricity generation, 

Energy 
Trilemma 

Index
(WEC)Energy equity

Energy security

Environmental 
sustainability

Concentration (reduced diversity) of total primary energy supply

Change in energy consumption in relation to GDP growth

Import dependence

Concentration (reduced diversity) of electricity generation

Access to electricity (% population)

Industry electricity price (US cents per kWh)

CO2 intensity (kCO2 per US$)

GHG emissions from energy sector (MtCO2e)

Fig. 3.6 Structure of the indicators of the Pathway Calculator of the World Energy Council 
(WEC). (Source: Adapted from Villa-Arrieta and Sumper 2019a)
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would lead to the improvement of energy sustainability of the 125 ETI-2017 
countries.

 Photovoltaic Energy Self-Consumption Capacity of Cities

As mentioned above, cities are at the center of the energy transition. Given the uni-
formity of the solar resource, cities have the capacity to generate electricity near the 
same consumption points. By deploying PV systems, cities can cover part of their 
electricity demand and contribute to the use of local energy resources in their coun-
tries. Thus, PV generation is the leading technology to move toward the energy 
sustainability of cities.

To advance in this field, the contribution of urban PV generation to the energy 
sustainability of the ETI 2017 countries (see Villa-Arrieta and Sumper 2019a) was 
studied. The process was as follows:

 1. Calculate the PV generation capacity of the rooftops of the most populated cities 
of the ETI 2017 countries (183 cities of 123 countries) taking the usable area of 
the Barcelona rooftops, global tilted irradiation data, and a 16% efficiency for 
PV panels as a reference.

 2. Calculate the distribution of the electricity generation mix of the studied coun-
tries with data from the International Energy Statistics of the US Energy 
Information Administration (EIA) (Meyer 1991), and calculate CO2 emissions 
using emission factors from International Energy Agency (IEA) 
(Ecometrica 2011).

 3. Calculate how much fossil fuel and nuclear and hydroelectric generation (in that 
order) was replaced by solar power and the increases in the country’s renewable 
energy generation without increasing the balance of its electric mix.

 4. Calculate the Herfindahl-Hirschman Index (HHI) with the generation values 
obtained from each source within the electric mix in order to obtain the concen-
tration of the generation in a single source (high HHI result).

 5. Normalize the results of HHI (0–100) to compare them with the values pub-
lished for each country in the 2017 ETI results.

Worst Same Better N/A

0% 50% 100%

Diversity of the electric mix

Diversity of the PE supply

Import dependence

0% 20% 40% 60% 80% 100%
Maximization 

0% 20% 40% 60% 80% 100%
Minimization

Fig. 3.7 Result of energy sustainability by variation of critical indicators. (Source: Adapted from 
Villa-Arrieta and Sumper 2019a)
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The results of this showed that the 125 ETI 2017 countries vary the concentration 
(reduced diversity) of electricity generation by an average of −15.94% due to the 
hypothetical increase in their urban PV generation. This would have an impact on 
the reduction of 56.31% of the electric power generation from fossil fuels and con-
sequently on the reduction of 64% of the CO2 emissions of these countries. The use 
of the local solar resource would allow these countries to improve their sustainabil-
ity due to the reduction of the dependence on energy imports. Although the diversity 
of the primary energy supply would be reduced in some countries (toward concen-
tration), increased consumption of renewable resources would allow them to reduce 
CO2 emissions. Table 3.2 summarizes the results obtained.

From the results, two groups of countries were identified: one group of countries 
that increases the diversity of electricity generation and another that reduces it. In 
the former, the increase in PV generation allows 87 countries to diversify the elec-
tricity mix by up to 43% concentration. On the contrary, 38 countries increase the 
concentration of the electricity mix to 97%. Although in both cases, following the 
ETI definition, as environmental protection improves, energy security can be put at 
risk. It should be noted that the second group of countries is made up of countries 
with a large proportion of hydroelectric generation in their mix, which is a technol-
ogy with low intermittency.

Table 3.2 Average results of the effect of the diversification of the electric mix with urban PV 
generation in the ETI 2017 countries

Indicator Initial value Result

Number of countries analyzed 125 125
Average concentration* of electricity generation 
(0–100)

66.41 N/A

… after the urban PV generation (0–100) N/A 55.16
Average variation [%] N/A −15.94
Number of countries that diversify electricity 
generation

N/A 87

Average variation of concentration* [%] N/A −42.44
Number of countries that concentrate electricity 
generation

N/A 38

Average variation of concentration* [%] N/A 44.73
Average variation of the consumption of fossil fuels 
[%]

N/A −56.31

Average variation in CO2 emission [%] N/A −64.00

Source: Adapted from Villa-Arrieta and Sumper (2019a)
Note: * Reduced diversity

3 Smart Cities Consumers in Search of the Potential Sustainability
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 An Economic Evaluation of the Use 
of Self-Consumption Capacity

Energy self-consumption is the strategy that seeks to take advantage of the local 
renewable generation capacity. In the case of cities, although each of them has dif-
ferent characteristics, any use of local energy resources will reduce the consumption 
of primary external energy of fossil origin. In this sense, energy-importing countries 
will be able to equilibrate their energy balance with energy self-consumption in 
their cities. This type of distributed generation includes nearly/net zero energy 
buildings (n/NZEB), which are dependencies of consumers. Therefore, the advance 
of energy self-consumption in cities and consequently the reduction of energy 
imports in the countries, if it were to be the case, depend on the investment of con-
sumers in n/NZEB.

In order to study the advancement of n/NZEB in cities from the investment point 
of view, the authors previously carried out technical-economic simulations with an 
evaluation model of self-consumption in buildings scalable to study self- 
consumption in cities (nearly zero energy cities, NZEC). The results of these studies 
are presented below.

 Evaluation Model

The model, called nZEC-EATEP (see (Villa-Arrieta and Sumper 2019b)), allows 
evaluating the economic performance of the energy self-sufficiency process of cit-
ies. Also, it enables to jointly assess distributed generation facilities, or n/NZEB or 
neighborhoods with energy surpluses (positive energy neighborhoods). Figure 3.8 
conceptualizes its methodology, which is based on the relationship between the 
energy transition, the urban energy transition, the increase in the consumption of 
local energy resources to the detriment of the external ones due to the advance of the 
n/NZEB, and the economic calculation of the future value of this process.

 Case Study: Barcelona

The objective of this study was to analyze the scope of the investment in the PV 
self-consumption of buildings in order to promote prosumer communities. The 
model included 82,652 buildings and simulated 37 years (2013–2050) of energy 
and economic performance: in 38,700 (34.7% of 238,213 buildings with PV genera-
tion capacity data), the investment of six packages of energy rehabilitation measures 
and PV self-consumption (prosumer’s buildings) was studied, and in 43,952 the 
investment in PV generation (PV extra generation) was studied. Cross-referencing 
with public data on the city, the PV generation capacity of the 82,652 buildings, the 
electricity consumption of the prosumers, and the investment cost in the energy 
rehabilitation measure packages were identified as well as the electricity 

M. Villa-Arrieta and A. Sumper



47

consumption of buildings extra PV generation (PV_Extra). Table 3.3 summarizes 
these results.

With the nZEC model studied, the city has the ability to reduce up to 9.68% of 
its primary energy demand, which means a reduction of up to 12.25% in energy 
costs and up to 11.43% in emissions of CO2. The total investment required to 
achieve these savings includes the initial value and the replacement of the PV sys-
tems and the rehabilitation measures. This investment can be 1.32 times the total 
energy cost of the city in the same 37 years of evaluation.

Energy model

Nearly/Net 
Zero Energy 

Buildings

Nearly Zero 
Energy CitiesExternal energy 

resources

Consumers

Local energy 
resources

Prosumers
Prosumers with Storage

Producers
Producers with Storage

Urban Energy Transition

ygrene
cirtcelE

Year 0 Timeline

Global Investment 

Global Energy Cost

Global Running Cost

Economic model

Global Cost:

t = 0 t = 1 t = n t = T Final Value

Data from
nZEC-Model

MWh x Tariff
MWh x Tariff

MWh x Tariff

Fig. 3.8 Technical-economic evaluation of nearly zero energy cities (nZEC). (Source: Adapted 
from Villa-Arrieta and Sumper 2019b)

Table 3.3 Number of buildings and electric energy consumption of nZEC model for Barcelona

No. of 
buildings

Electric energy consumption 
[GWh/Year]

Prosumers 38,700 969.363
Consumers (domestic, commercial and 
services, and other services

N/A 3225.927

PV_Extra 43,952 N/A
Total 82,652 4189.32

Source: Adapted from Villa-Arrieta and Sumper (2019b)
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 Results

The results of the studies summarized in this chapter have demonstrated the remark-
able capacity that cities have to contribute to the energy sustainability of their coun-
tries with the deployment of smart technologies. Table 3.4 summarizes the results 
obtained:

Regarding the activation of the energy-saving capacity of cities, the results com-
piled from the empirical works reviewed showed the importance of the feedback of 
energy information to reduce electricity consumption in the residential sector: the 
provision of direct and indirect information helps households to use less electricity 
(see Batalla-Bejerano et al. 2020). Regarding electrification capacity, reducing the 
concentration of electricity generation would allow 113 of the 125 countries from 
different economic regions of the world to obtain a better balance in their security 
of supply, energy equity, and environmental protection. If this electrification pro-
cess in introduced and incorporates the use of the PV generation capacity of the 
rooftops of the buildings of their cities, these countries could improve sustainability 
thanks to the reduction of the dependence on energy imports (see Villa-Arrieta and 
Sumper 2019a). In the specific case of a study city, taking advantage of this electric-
ity self-consumption capacity through distributed generation, the creation of pro-
sumers and positive energy neighborhoods helps reduce primary energy consumption 
and CO2 emissions with the joint investment in energy rehabilitation measures of 
buildings (see Villa-Arrieta and Sumper 2019b).

This means that energy sustainability and smart city strategies would allow for 
progress in the transition toward a decarbonized economy. Uniting the pillars of 
these strategies, it can be argued that smart technologies enable cities to be effective 
in the provision of urban energy service, efficiently managing available local 
resources to achieve a balance between energy security and equity and environmen-
tal protection. However, according to the results described above, without consumer 

Table 3.4 Compilation of results

Capacity of… Countries Cities Results

Energy saving >19 >19 Reduction of between 2% and 32% of electricity 
consumption

Electrification 125 N/A 113 improve energy sustainability
PV self-consumption 
in cities

125 183 • All countries reduce on average 64% of CO2 
emissions.
• 87 countries diversify the electricity mix up to 
43% concentration

nZEC 1: Spain 1: 
Barcelona

With 34.7% of the buildings with PV generation 
and 16.2% of prosumer buildings:
• Reduction of up to 9.68% in primary energy 
demand.
• Reduction of up to 12.25% in energy costs.
• Reduction of up to 11.43% of CO2 emissions.

Source: Adapted from Villa-Arrieta (2019)
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participation, it is not possible to save energy or take advantage of the energy self- 
consumption capacity of cities through investment in buildings with almost zero 
energy consumption. Figure 3.9 summarizes the dependency between these layers 
of the energy transition.

 Conclusions

The studies compiled in this chapter have been based on the study of the scalability 
of energy sustainability through the smart city technological strategy, from the level 
of buildings to that of a country. This study approach is a novel proposal to address 
the fact that due to the increase in the concentration of the urban population, cities 
tend to be representative of the energy sustainability of their countries. Smart tech-
nologies are crucial elements to keeping the balance between energy security, 
energy equity, and environmental sustainability of cities and their countries. The 
energy effectiveness of smart cities is the efficacy provision of urban energy service 
and the efficient management of resources around distribution systems. Smart cities 
allow the urban population to participate in its own sustainability, which in the con-
text of the current energy transition process means empowering the consumer in 
terms of their demand to make operating the system more flexible and to optimize 
the efficient management of the local resources.

Of course, there are drivers that encourage consumers to participate in the 
achievement of global social and environmental goals, such as the sustainable 
development goals. However, based on specific incentive strategies for responsible 
consumption, consumers will exercise their participation in smart cities and in the 
market, helping the sustainability of local geographic frameworks that will ulti-
mately have an impact on global sustainability. As discussed in this chapter, the 
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Fig. 3.9 Layers of the link between energy transition and consumer participation
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information incentives to activate the demand-side response and the possibility as 
an incentive of pouring surplus energy into the grid in self-consumption systems are 
specific strategies that have an impact on energy sustainability. However, this is the 
particular case of the energy sector, and the incentive for responsible consumption 
is broader.

There are three main conclusions that can be drawn from this chapter. The first is 
that energy sustainability is not inherent in smart cities: it depends on the participa-
tion of the consumer to be effective in this city model. Thus, energy sustainability 
must be activated at an urban level to include consumers in the management of 
demand and consumption of local energy resources. Passing this responsibility on 
to consumers makes them smart consumers, or smart city consumers (SCC) at a city 
level. The SCC is, therefore, the future of energy sustainability and, consequently, a 
promoter of sustainable development. The philosophy behind the existence of the 
SCC is to encourage responsible consumption: that is, to promote the efficient use 
of resources (energy and other) and the effective acquisition of products and ser-
vices with a positive impact on society and the environment.

The second conclusion is that the difficulty in reaching the SCC sustainability 
potential is related not only to the difference between the systems that exist in cities 
(different economic activities, mobility systems, types of buildings, urban charac-
teristics, etc.) but also with the heterogeneity of consumers. Not only do cities have 
building owners but they also have tenants, the elderly, the student population, and 
short-term residents. Therefore, the decarbonization of the economy must go beyond 
technological innovation and address social innovation to include the heterogeneity 
of consumers and their different living conditions. Similarly, there must be regula-
tory innovation in addition to social and technological innovation in markets where 
there are regulatory barriers that prevent disruptive new business models within the 
energy transition. The objective is to obtain incentives, instruments of empower-
ment, and protection mechanisms for different types of consumers.

The third conclusion is related to the political implications that emerge from the 
conclusions above. There is a very clear need to design policies, enablers, monitor-
ing metrics, and incentives for energy sustainability with a holistic and bottom-up 
approach to the economy and society, from consumers to countries. Just as sustain-
ability is transversal to all economic activity, incentives to participate in sustain-
ability must also be transversal to the economy, interconnecting different sectors 
and objectives. In this regard, two new topics must be addressed in the SCC: the 
decentralization of the administration and traceability of information through 
Blockchain technology and the inclusion of energy in the transformation toward 
circularity of the economy to maximize the use of resources, including the reintro-
duction of waste in the production chains. The design of incentive mechanisms for 
consumers that include the advantages of Blockchain technology to be able to cross 
sector borders within the framework of the circular economy will be the focus of 
future research by the authors.
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