
A Necessity Measure of Fuzzy Inclusion
Relation in Linear Programming

Problems

Zhenzhong Gao(B) and Masahiro Inuiguchi(B)

Osaka University, Osaka 560-8531, Japan
zhenzhong@inulab.sys.es.osaka-u.ac.jp, inuiguti@sys.es.osaka-u.ac.jp

Abstract. A programming problem with linear equality constraints can
be generalised to the one with linear inclusions when coefficients are
imprecisely given as possible ranges. In the problem with linear inclu-
sions, the possible ranges of linear function values should always fluctuate
within given ranges. In this paper, we investigate the programming prob-
lem with linear inclusions with coefficients being triangular fuzzy sets.
To treat it, we introduce a new necessity measure, a linear extension
of the one defined by the Dienes implication function, for the degree
of the inclusions, and formulate a necessity measure maximisation prob-
lem. We propose a solution method based on the trade-off ratio and show
that the maximisation problem becomes a regular linear programming
problem in a particular condition. In general conditions, we also propose
an algorithm utilising its properties and give a numerical example to
demonstrate the solution procedure.

Keywords: Fuzzy linear programming · Necessity measure · h-level
set · Trade-off ratio

1 Introduction

In applications, a linear programming problem (LPP) with coefficients impre-
cisely given by possible ranges can be modelled by linear inclusion relationships.
Generally, one can study the set-inclusion constraints by building a maximum
range that contains all possible ranges [9]. By utilising the set-inclusion relation-
ships, Bard [1,2] constructed the LP problems with inexact coefficients described
by crisp sets. Furthermore, in the view of interval linear programming, Hlad́ık [3]
also considered the same question and tried to solve it by shrinking or expanding
the interval space.

However, using set-inclusion constraints is still too rough to describe an
acceptable solution. Instead of giving a degree of trade-off ratio, it can only
identify whether an inclusion relationship is valid or not. Hence, we need a more
comprehensive estimation to assess an acceptable solution.
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Negoita [8] firstly considered such a problem by fuzzy sets called robust pro-
gramming. He introduced fuzzy inclusive constraints expressed by inclusion rela-
tions between possible ranges and allowable ranges. Namely, the left-hand side
fuzzy sets show the possible ranges with various level of estimation (from the
narrowest to the widest) while the right-hand side fuzzy sets shows the allow-
able range for each different level of possible range estimation. However, he only
concentrated on the inclusion relationships of discrete finite h-level sets, mak-
ing the estimation still too rough. To treat the roughness, Inuiguchi and Tanino
[7] applied a necessity measure approach to estimate the degree continuously.
Furthermore, Inuiguchi et al. [5] tried several implication functions and modifier
functions for more accurate estimation. However, the utilisation of modifier func-
tions makes the model hard to calculate. To overcome the difficulty, Inuiguchi [4]
proposed a simplified way to construct a necessity measure representing the deci-
sion maker’s requests on fuzzy set-inclusive constraints in the setting of linear
programming with uncertain coefficients.

Inspired by the tabular [4], we propose a fuzzy LPP to represent the original
problem. Instead of considering the fuzziness representing the ambiguousness,
we denote it as one’s preference on the trade-off. For generality, we divide the
constraints into hard and soft ones, where the hard is the one that should be
fully satisfied, while the soft can be relaxed to a certain extent.

To represent the softness, we utilise symmetric triangular fuzzy numbers,
enabling one to build a maximisation problem by the h-level sets. To treat the
problem, we convert the set-inclusion constraints to a series of inequalities and
form a non-linear model. We show that if only the right-hand-side coefficients
contain softness, one can regard the model as a regular LPP by including the
degree as one of the state variables. We also study the structure of the non-linear
model generally and propose an algorithm linearly.

We organise the paper as follows. In Sect. 2, we give a brief preliminary about
the fuzzy LP and NM. In Sect. 3, we propose the method for conversion and give
the approach to solve it. In Sect. 4, we give a numerical example for illustrations,
and finally, we briefly conclude our research with future work.

2 Preliminaries

2.1 Fuzzy LPP

Since we aim at the solution of an LPP, we regard it as a procedure to solve the
following solution set:

S(A, b) := {0 ≤ x ∈ R
n : Ax = b} (1)

where A ∈ R
m×n and b ∈ R

m are the coefficients in constraints.
Due to an objective function being trivial, we concentrate on the solution set

of the corresponding fuzzy LPP. Since Inuiguchi et al. [6] have illustrated the
fuzzy number in details, we only review the h-level set.
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Definition 1 ( h-level set). An h-level set [A]h and a strong h-level set (A)h
of a fuzzy subset A are crisp sets defined as below, respectively:

[A]h := {r : μA(r) ≥ h}, (A)h := {r : μA(r) > h}, (2)

where μA(r) denotes the membership function of A.

By Definition 1, it can be inferred that for any fuzzy subset A, ∀ 0 ≤ h1 ≤
h2 ≤ 1, [A]h2 ⊆ [A]h1 . In a sense, the higher h is, the more precise the infor-
mation to describe A is. Therefore, one can regard h as the reliability degree to
describe a fuzzy subset, and when treating h, it is preferable to have it as large
as possible.

By converting the LPP (1) into a fuzzy one, we have the solution set as:

S(Ã, b̃) := {0 ≤ x ∈ R
n : Ãx = b̃}, (3)

where Ã ⊆ R
m×n and b̃ ⊆ R

m denote the fuzzy coefficients.
Since S(Ã, b̃) becomes a fuzzy subset, we prefer a non-empty one with the

greatest reliability degree, which is estimated by a necessity measure.

2.2 Necessity Measure

Possibility measure (PM) and necessity measure (NM) are techniques to measure
the relation between two events by logical reasoning. Mathematically, given the
information r ∈ A, a possibility (necessity) measure is to measure how possible
(necessary) it can be for the condition r ∈ B.

Since PM is too weak, we only give a review of NM. Intuitively, an NM should
follow the remark [5] below:

Remark 1. An NM should follow that

(i) NA(B) = 1 iff cl(A)0 ⊆ [B]1,
(ii) NA(B) > 0 iff [A]1 ⊆ cl(B)0,

where cl(·) denotes the closure of a set.

In Remark 1, the first condition means for all x ∈ A in the weakest sense
implies x ∈ B in the strongest sense, and the second condition means for all
x ∈ A in the strongest sense implies x ∈ B in the weakest sense. Since there exist
multiple ways to define an NM, we review the original one by using membership
functions.

Definition 2 (Necessity Measure). An NM of a fuzzy subset B on another
fuzzy subset A, which measures what extent x ∈ B is certain when given x ∈ A
or what extent x ∈ A implies x ∈ B, is defined as

NA(B) = inf
x∈X

I(μA(x), μB(x)), (4)

where I : [0, 1] × [0, 1] → [0, 1] is an implication function (IF) and satisfies
I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.
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The most wide-spread type is the one using Dienes IF as ID(a, b) = max{1−
a, b} such that ND

A (B) = infx∈X max{1 − μA(x), μB(x)}. If one prefers to use
the h-level set to represent the Dienes type, we have the result with its proof
found in [6].

Proposition 1. For the NM using Dienes IF, we have:

ND
A (B) ≥ h ⇐⇒ cl((A)1−h) ⊆ [B]h (5)

Proposition 1 suggests the way to use h-level sets to accomplish an NM,
which is more comprehensive than using membership functions. For example,
the necessity measure using Gödel IF [5] can be expressed more intuitively by
h-level sets as NG

A (B) = h∗ ⇐⇒ ∀h < h∗, (A)h ⊆ (B)h.

3 Model Conversion

3.1 Fuzzy LPP by Inclusion Relation

As Remark 1 shows the methodology of an NM by h-level sets, we notice that
it is possible to have a more general expression. Instead of using a single h in an
NM, we can separate it into two variables at both sides of the equation. Namely,
we construct a fuzzy inclusion relationship of [A]1−v ⊆ [B]w with two h-levels v
and w. Hence, we have the following lemma1.

Lemma 1. An inclusion measure [A]1−v ⊆ [B]w where v, w ∈ [0, 1] implies
[A]1−v′ ⊆ [B]w′ for all v′ ≤ v and w′ ≤ w.

Proof. It is apparent that ∀v′ ≤ v, [A]1−v′ ⊆ [A]1−v and ∀w′ ≤ w, [B]w ⊆ [B]w′ ,
which gives out the final result. �

Unfortunately, such a manipulation constructs a multi-objective problem.
Hence, we use weighted factors to convert it back to a single one, which gives
out the following problem equivalent to Model (3).

max
0≤x∈Rn

{αv + βw : [A]1−vx ⊆ [b]w, v, w ∈ [0, 1]}, (6)

where α and β are non-negative constants and α + β = 1.
Moreover, for the simplification of using h-level sets in a fuzzy LPP, we prefer

the fuzzy coefficients all being symmetric triangular fuzzy numbers, which are
defined as

Definition 3 (Symmetric Triangular Fuzzy Number). In this paper, we
define a symmetric triangular fuzzy number as a fuzzy subset with symmetric and
linear reference functions. Moreover, it could always be re-written by its h-level
sets as

[A]h = [Ac − (1 − h)Ar, Ac + (1 − h)Ar] (7)

1 For the sake of simplicity, we always consider [A]0 = cl(A)0 in this paper.



An NM Using Fuzzy Inclusion Relation for LPPs 135

where Ac and Ar denote the centre and radius of cl((A)0), respectively. Mathe-
matically, they equal to:

Ac =
1
2
(sup (A)0 + inf (A)0), Ar =

1
2
(sup (A)0 − inf (A)0)

3.2 Conversion Principles

Before continuing the procedure of solving the fuzzy problem, it is essential to
have a discussion on the principle of conversion.

At first, if the original LPP is infeasible, the result of Problem (6) should
always be strictly less than 1. If it equals to 1, then v, w = 1, which indicates
there exists a feasible solution x ≥ 0 such that [A]0x ⊆ [b]1. According to
Remark 1, it implies the necessity measure is 1, which contradicts the premise
that the LP problem is infeasible.

Then, by the inclusion relation of two interval sets as A ⊆ B ⇐⇒ AL ≥
BL & AU ≤ BU , as well as the assumption such that A and B are sym-
metric triangular fuzzy subsets, we have the following conclusion that for all
i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n},

(i) The larger cl((bi)0) is, the easier to have a solution.
(ii) The smaller cl((Aij)0) is, the easier to have a solution.

Due to the complexity, one should not try to enlarge cl((A)0). Alternatively,
keeping A being constant may be a better choice for both model construction
and calculation. Because of this, it is preferred to set β > α, and when A is
constant, we set α = 0.

Hence, to use the fuzziness in representing the preference of a decision-maker,
one should follow the several principles in the conversion.

(i) If a constraint is a hard one, keep the original coefficients constant and do
not apply fuzziness on it.

(ii) If a constraint is a soft one, convert the coefficients into symmetric trian-
gular fuzzy subsets.

(iii) Focus on b preferentially instead of A, and remember that the softer a
constraint is, the larger cl((b)0) should be.

After the conversion to the fuzzy problem in Model (6), we can continue to
the solving approach.

4 Algorithm for the Fuzzy LP

Instead of considering the general condition with both fuzzy A and b, it would
be better to analyse the problem with only either of them at first. As it is
indicated that focusing on b is preferential, we assume that only b contains
fuzzy coefficients, which gives a constant A.
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4.1 Special Case with Constant A

Assume a decision-maker has already set up fuzzy coefficients b with a constant
matrix A, then Problem (6) equals to:

max w

s.t. − Asx ≤ −[bs]Lw
Asx ≤ [bs]Uw
Ahx = bh

(8)

where As and Ah, bs and bh represent the soft and hard constraints, respectively.
Since each fuzzy entry in b is a symmetric triangular fuzzy number, one can

write the h-level set by Definition 3 as ∀h ∈ (0, 1],

[b]h = [bc − (1 − h)br, bc + (1 − h)br] (9)

where bc denote the only entry in [b]1 and br denotes the radius of cl((b)0).
Consequently, we have the following model equivalent to Problem (8):

max w

s.t. Ahx = bh

− Asx ≤ −bcs + (1 − w)brs
Asx ≤ bcs + (1 − w)brs

(10)

By denoting w as a state variable, Problem (10) becomes a regular LPP. If it
is infeasible, the tolerance given to b is still too narrow to make LPP (1) feasible
even in the worst case.

4.2 General Case

After having the result with a constant A, we can proceed to study the situation
with a fuzzy one. Similar to Problem (8), let us assume a decision-maker has set
up α, β and the symmetric triangular fuzzy entries in A and b, then the model
becomes:

max αv + βw

s.t. Ahx = bh

(−Ac
s + vAr

s)x ≤ −bcs + (1 − w)brs
(Ac

s + vAr
s)x ≤ bcs + (1 − w)brs

(11)

Therefore, Problem (11) is equivalent to:

max{αv + βw : (A1 + vA2)x + b2w = b1 + b2} (12)

where A1, A2, b1, b2 are conveniently defined from Problem (11).
Since Problem (12) is non-linear, we may have to apply some non-linear tech-

niques for it. However, if we regard v or x as a constant variable at a specific
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step during the calculation, the system becomes linear. As an linear problem
tends to be simpler than a non-linear one, solving the problem linearly is pref-
erential. Hence, before applying non-linear algorithms directly, we prefer to do
some analysis on Problem (12) at first.

Assume that we already have a pair of v∗ and w∗ at a specific step, and
we want to improve the objective value. However, we cannot increase both v∗

and w∗ simultaneously because they are the intermediate solutions to Problem
(12). Hence, the only way is to increase v∗ with sacrificing w∗ or the opposite
direction. Since the situation with constant A gives the preference to have a
larger w and α < β, we usually have a large w∗ and a small v∗ at startup.
Hence, let us consider the one by improving v∗ and sacrificing w∗.

Let Δv > 0 and Δw > 0 denote the improvement such that α(v∗ + Δv) +
β(w∗ − Δw) > αv∗ + βw∗, which results in Δw < (α/β)Δv. Moreover, to make
the analysis more illustrative, we only consider the soft constraints and remove
the slack variables in Problem (12). Then we have the constraints as:

(A1
s + vA2

s)x + b2sw ≤ b1s + b2s (13)

By adding Δv and Δw, Constraint (13) becomes:

(A1
s + v∗A2

s)x + b2sw
∗ + ΔvA2

sx − b2sΔw ≤ b1s + b2s (14)

To avoid the possibility that x may become infeasible, let Δv,Δw → 0+.
Then inequalities in (14) becomes ΔvA2

sx ≤ b2sΔw. Combined with Δw <
(α/β)Δv, it becomes the one as below:

A2
sx <

α

β
b2s (15)

Condition (15) implies that, if the current solution x does not satisfy it, then
v∗ and w∗ at current step are already optimal to Problem (12) and cannot be
improved. Due to A2

s, x and b2s being all non-negative, Condition (15) is usually
hard to be achieved, especially with a large ratio α/β.

Therefore, we can have the algorithm as below:

Algorithm 1. - Algorithm for Model (11)

v <-- 0

value, x, w <-- Solve LP problem (12) with v

IF Condition (14) with x is not satisfied:

OUTPUT x, v, w, value

TERMINATE

ELSE: #Apply bisection method

v_0 <-- v; w_0 <-- w; x_0 <-- x; value_0 <-- value

v_1 <-- 1

value_1, x_1, w_1 <-- Solve LP problem (12) with v_1

WHILE v_1-v_0 >= delta:

v_c = (v_1+v_0)/2

value_c, x_c, w_c <-- Solve LP problem (12) with v_c
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IF value_c <= value_1 AND value_1 == 1:

OUTPUT x_1, v_1, w_1, value_1

ELSE IF value_c > value_1:

v_0 <-- v_c; w_0 <-- w_c

x_0 <-- x_c; value_0 <-- value_c

ELSE:

v_1 <-- v_c; w_1 <-- w_c

x_1 <-- x_c; value_1 <-- value_c

OUTPUT x_1, v_1, w_1, value_1

TERMINATE

5 Numerical Example

We propose the following example:

Find 0 ≤ x ∈ R
n

s.t. 3x1 + 4x2 = 7
9x1 + 8x2 = 16
x1 − x2 = 1

Since the number of constraints is over the variables, the system is obviously
infeasible. At first, we only consider the right-hand-side vector being fuzzy one.
Assuming Constraint 1 is a hard one, while Constraint 2 has higher priority than
Constraint 3, we give 2 and 3 as (16, 14, 18)LL and (1,−3, 5)LL, respectively.
Hence we have the following system by introducing slack variables:

max w ∈ [0, 1]

s.t.

⎡
⎢⎢⎢⎢⎣

3 4 0
−9 −8 2

9 8 2
−1 1 4

1 −1 4

⎤
⎥⎥⎥⎥⎦

⎡
⎣

x1

x2

w

⎤
⎦ +

⎡
⎢⎢⎢⎢⎣

0
y1
y2
y3
y4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

7
−16 + 2

16 + 2
−1 + 4

1 + 4

⎤
⎥⎥⎥⎥⎦

By the Simplex method, the solution is w = 0.6935 with the solution being
x1 = 0.871, x2 = 1.097.

If one sets α = 0.05 and β = 0.95, and considers fuzziness in A with A21 =
(9, 8.95, 9.05)LL, A22 = (8, 7.98, 9.02)LL and A31 = (1, 0.999, 1.001)LL, then the
Model becomes:

max 0.05v + 0.95w

s.t.

⎡
⎢⎢⎢⎢⎣

3 4 0
−9 −8 2

9 8 2
−1 1 4

1 −1 4

⎤
⎥⎥⎥⎥⎦

⎡
⎣

x1

x2

w

⎤
⎦ + v

⎡
⎢⎢⎢⎢⎣

0 0
0.05 0.02
0.05 0.02
0.001 0
0.001 0

⎤
⎥⎥⎥⎥⎦

[
x1

x2

]
+

⎡
⎢⎢⎢⎢⎣

0
y1
y2
y3
y4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

7
14
18
3
5

⎤
⎥⎥⎥⎥⎦
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By Algorithm 1, we first solve v∗ = 0 and w∗ = 0.6935 with the solutions
being x1 = 0.871, x2 = 1.097. Then, we check Condition (15), where in this
example, A2

s = [0.05 0.02; 0.001 0], b2s = [2; 4], and α/β = 0.05/0.95. Hence we
find that A2

sx < (α/β)b2s, which means we can do the improvement.
The following table is the result, which implies v∗ = 1 and w∗ = 0.6861, and

the optimal solution is x1 = 0.854, x2 = 1.109.

v∗ w∗ αv∗ + βw∗ x1 x2

0 0.6935 0.6588 0.871 1.097

1 0.6861 0.7018 0.854 1.109

0.5 0.6898 0.6803 0.863 1.103

6 Conclusion

In this paper, we present a fuzzy model for an LPP with linear equalities. To
get a desired solution, we utilise fuzziness to imply one’s preference and priority,
which results in an NM based on an h-level set. we obtain a non-linear program-
ming problem, which can be linear if we only consider the right-hand-side part
containing fuzziness. To solve the system, we first solve the linear case by stan-
dard LP techniques. Instead of applying non-linear tools directly, we analyse the
structure of the system at first. The analysis suggests that we can still deal with
it linearly, where we find an extra condition to identify whether it is possible to
improve the optimal value. To illustrate our work, we give a numerical example
in both situations.

For future progress, we separate our work into two sections. The first one is
concerned with computational complexity. Since it still needs a bisection method
to get the solution, we wonder if it is possible to have a direct one without
iteration. As the space formed by w and v depends on the solved solution x,
we do not know whether it is always connected and convex. If it is, we can
accomplish our goal with v = 0 and v = 1. However, if it is not, the algorithm
may not give a globally optimised solution.

The second one is concerned with the solution set. Since we consider a fuzzy
LPP to treat an infeasible LPP, we always have a fuzzy solution set. However,
in this paper, we only solve one solution with the most significant reliability
degree. Namely, we only solve one fuzzy solution in a fuzzy solution set, which
is not enough for some situations. Hence, the result of the whole fuzzy solution
set would become our goal of the following research and study.
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