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Preface

This volume contains papers presented at the 18th International Conference onModeling
Decisions forArtificial Intelligence (MDAI 2021), celebrated online at UmeåUniversity,
Sweden, September 27–30, 2021.

This conference followed MDAI 2004 (Barcelona), MDAI 2005 (Tsukuba), MDAI
2006 (Tarragona), MDAI 2007 (Kitakyushu), MDAI 2008 (Sabadell), MDAI 2009
(Awaji Island), MDAI 2010 (Perpinyà), MDAI 2011 (Changsha), MDAI 2012 (Girona),
MDAI 2013 (Barcelona), MDAI 2014 (Tokyo), MDAI 2015 (Skövde), MDAI 2016
(Sant Julià de Lória), MDAI 2017 (Kitakyushu), MDAI 2018 (Mallorca), and MDAI
2019 (Milano).

The aim of MDAI is to provide a forum for researchers to discuss different facets
of decision processes in a broad sense. This includes model building and all kinds
of mathematical tools for data aggregation, information fusion, and decision-making;
tools to help make decisions related to data science problems (including, for example,
statistical and machine learning algorithms as well as data visualization tools); and
algorithms for data privacy and transparency-aware methods so that data processing
procedures and the decisionsmade from themare fair, transparent, and avoid unnecessary
disclosure of sensitive information.

The MDAI conference included tracks on the topics of (a) data science, (b) machine
learning, (c) data privacy, (d) aggregation functions, (e) human decision-making, (f)
graphs and (social) networks, and (g) recommendation and search.

The organizers received 50 papers from 20 different countries, 24 of which are
published in this volume. Each submission received at least three reviews from the
ProgramCommittee and a few external reviewers.Wewould like to express our gratitude
to them for their work.

The conference was supported by the Dept. of Computing Sciences, Umeå
University, the European Society for Fuzzy Logic and Technology (EUSFLAT), the
Catalan Association for Artificial Intelligence (ACIA), the Japan Society for Fuzzy
Theory and Intelligent Informatics (SOFT), and the UNESCO Chair in Data Privacy.

July 2021 Vicenç Torra
Yasuo Narukawa



Organization

General Chair

Vicenç Torra Umeå University, Sweden

Program Chairs

Vicenç Torra Umeå University, Sweden
Yasuo Narukawa Tamagawa University, Japan

Advisory Board

Didier Dubois Institut de Recherche en Informatique de
Toulouse, CNRS, France
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xii Contents

Enhancing Social Recommenders with Implicit Preferences and Fuzzy
Confidence Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Camilo Franco, Nicolás Hernández, and Haydemar Núñez

A Necessity Measure of Fuzzy Inclusion Relation in Linear Programming
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Zhenzhong Gao and Masahiro Inuiguchi

Machine Learning

Mass-Based Similarity Weighted k-Neighbor for Class Imbalance . . . . . . . . . . . . 143
Anh Hoang, Toan Nguyen Mau, and Van-Nam Huynh

Multinomial-Based Decision Synthesis of ML Classification Outputs . . . . . . . . . 156
Alan J. Michaels and Lauren J. Wong

Quantile Encoder: Tackling High Cardinality Categorical Features
in Regression Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Carlos Mougan, David Masip, Jordi Nin, and Oriol Pujol

Evidential Undersampling Approach for Imbalanced Datasets
with Class-Overlapping and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Fares Grina, Zied Elouedi, and Eric Lefevre

Well-Calibrated and Sharp Interpretable Multi-Class Models . . . . . . . . . . . . . . . . . 193
Ulf Johansson, Tuwe Löfström, and Henrik Boström

AutomatedAttributeWeighting Fuzzy k-Centers Algorithm for Categorical
Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Toan Nguyen Mau and Van-Nam Huynh

q-Divergence Regularization of Bezdek-Type Fuzzy Clustering
for Categorical Multivariate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Yuchi Kanzawa

Automatic Clustering of CT Scans of COVID-19 Patients Based on Deep
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Pierluigi Bemportato, Gabriella Casalino, Giovanna Castellano,
and Gennaro Vessio

Network Clustering with Controlled Node Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Yukihiro Hamasuna, Shusuke Nakano, and Yasunori Endo



Contents xiii

Data Science and Data Privacy

Fairly Private Through Group Tagging and Relation Impact . . . . . . . . . . . . . . . . . . 259
Poushali Sengupta and Subhankar Mishra

MEDICI: A Simple to Use Synthetic Social Network Data Generator . . . . . . . . . 273
David F. Nettleton, Sergio Nettleton, and Marc Canal i Farriol

Answer Passage Ranking Enhancement Using Shallow Linguistic Features . . . . 286
Bahadorreza Ofoghi and Armita Zarnegar

Neural Embedded Dirichlet Processes for Topic Modeling . . . . . . . . . . . . . . . . . . . 299
Miguel Palencia-Olivar, Stéphane Bonnevay, Alexandre Aussem,
and Bruno Canitia

Density-Based Evaluation Metrics in Unsupervised Anomaly Detection
Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Rui Maia and Cláudia Antunes

Explaining Image Misclassification in Deep Learning via Adversarial
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Rami Haffar, Najeeb Moharram Jebreel, Josep Domingo-Ferrer,
and David Sánchez

Towards Machine Learning-Assisted Output Checking for Statistical
Disclosure Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Josep Domingo-Ferrer and Alberto Blanco-Justicia

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347



Invited Papers



Andness-Directed Iterative OWA Aggregators

Jozo Dujmović(B)

Department of Computer Science, San Francisco State University,
1600 Holloway Avenue, San Francisco, CA 94132, USA

jozo@sfsu.edu

Abstract. In this paper we introduce andness-directed iterative OWA aggrega-
tors. Iterative OWA aggregators belong to the family of OWA aggregators, where
the aggregated value of additive aggregators is a scalar product of the sorted vec-
tor of arguments and the vector of logic weights that determine conjunctive or
disjunctive properties of OWA aggregators. The overall logic properties of any
OWA aggregator are characterized by andness (a conjunction degree) and orness
(a disjunction degree), as well as the presence/absence of support for annihila-
tors 0 and 1. In this paper we present iterative OWA aggregators where all logic
weights are explicit functions (simple polynomials) of andness or orness. In such
a way, the desired andness of aggregator is explicitly visible and easily adjustable,
yielding ultimate simplicity in applications. Iterative OWA aggregators can also
be weighted with importance weights.

Keywords: Iterative aggregation · Andness-directedness · Soft aggregators ·
Hard aggregators · ItOWA · SItOWA · HItOWA

1 Introduction

The simplest logic aggregators of two logic variables x1 ∈ I = [0, 1] and x2 ∈ I are
y = c(x1 ∧ x2) + d(x1 ∨ x2) and y = (x1 ∧ x2)c(x1 ∨ x2)d , where c ∈ I , d ∈ I , and
c + d = 1. If 0 < c < 1. The additive form is “soft” (it supports no annihilators), and
the multiplicative form is “hard” (it is used only for high values of c because it always
supports the annihilator 0). The parameters c (the conjunction degree or andness) and d
(the disjunction degree or orness) are used to provide a continuous transition in a selected
range of andness between conjunction and disjunction. The resulting aggregators are
idempotent, i.e. means.

These simple bivariate functions yield the obvious question: how to make the same
aggregators in the case of n > 2 variables? The first idea, introduced in [1], was to
expand the additive form, creating a scalar product of the vector of sorted arguments and
the vector of logic weights. The second idea, introduced in [2], was to iteratively apply
the elementary bivariate additive form to various pairs of arguments, so that in each
iteration the dispersion of the set of n arguments reduces, and after several iterations
converges to the resulting aggregated value.

© Springer Nature Switzerland AG 2021
V. Torra and Y. Narukawa (Eds.): MDAI 2021, LNAI 12898, pp. 3–16, 2021.
https://doi.org/10.1007/978-3-030-85529-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85529-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-85529-1_1


4 J. Dujmović

Let X = (x1, ..., xn) denote an array of logic variables: xi ∈ I , i = 1, ..., n.
According to [3], all integrable aggregators A(X), X = (x1, ..., xn), n ≥ 2 can be
both geometrically and logically characterized using the global andness α, or the global
orness ω, which are defined as follows:

α = n−(n+1)V
n−1 ∈ [0, 1],ω = (n+1)V−1

n−1 ∈ [0, 1],V = ∫
In A(X)dx1 · · · dxn,α+ω = 1.

These definitions were first introduced in 1974 and used in multi-criteria decision
making and decision-support software systems for characterizing all logic aggregators
based on Bajraktarević means and their numerous descendants (quasi-arithmetic means,
exponential means, power means, Gini means, etc.). Generally, they are applicable to
all integrable aggregators.

The OWA aggregator OWA(X; α), as an idempotent model of simultane-
ity/substitutability, was proposed by R.R. Yager in [1] as follows:

OWA(X; α) = v1x(1) + · · · + vnx(n), max(X) = x(1) ≥ · · · ≥ x(n) = min(X) ,

v = (v1, ..., vn), vi ∈ I , i = 1, ..., n, v1 + · · · + vn = 1 .

The arguments are sorted and x(i) denotes the i-th largest argument. The logic prop-
erties of the OWA aggregator are characterized by the OWA andness α and the OWA
orness ω, as follows:

α = [v2 + 2v3 + · · · + (n − 2)vn−1 + (n − 1)vn]/(n − 1)

ω = [(n − 1)v1 + (n − 2)v2 + · · · + vn−1]/(n − 1) ; α ∈ I , ω ∈ I , α + ω = 1.

The logic weights v = (0, ..., 0, 1), (1/n, ..., 1/n), (1, 0, ..., 0) respectively reduce
OWA to the pure conjunction min(X), the arithmetic mean (x1 + · · · + xn)/n, and
the pure disjunction max(X). We use the terms “logic weights” or “OWA weights”
because they adjust the logic properties of OWA aggregator (modeling simultaneity
or substitutability). We use the term “importance weights” for weights that reflect the
importance of inputs.

By selecting appropriate values of the OWA weights v, it is possible to make a
continuous transition from conjunction to disjunction. The conjunctive properties of
OWA aggregator are obtained by adjusting the logic weights to emphasize the impact
of small values of arguments, and disjunctive properties are obtained by adjusting the
logic weights to emphasize the impact of large values of arguments.

When OWA was introduced in 1988, it was not known that the OWA andness and
orness are identical to the previously used global andness and orness. Ten years after the
introduction of OWA, Marichal [4] proved that the OWA andness/orness is equivalent
to the global andness/orness. Consequently, we can use the same notation α,ω for the
global andness/orness and the OWA andness/orness.

In the case of OWA aggregator the andness and orness must be computed from the
selected values of OWAweights. Thus,α andω are not explicitly visible input parameters
of theOWAaggregator. On the other hand, in decision engineering practice, both andness
and orness are inputs, and consequently it is indispensable to have aggregators that use
andness/orness as explicitly visible and easily adjustable input parameters [5, 7, 13].
Such aggregators are called graded andness-directed logic aggregators. Thus, there is
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a strongly justifiable interest in the following (soft additive, or hard multiplicative)
andness-directed OWA:

Yn(X;α) =
n∑

i=1

wni(α)x(i), or Yn(X;α) =
n∏

i=1

xwni(α)
(i) ,

n∑

i=1

wni(α) = 1,Yn(X; 0) = x(1) ≥ x(2) ≥ · · · ≥ x(n) = Yn(X; 1), n > 1.

If wni(α) are simple functions (e.g. polynomials) of α, then such aggregators have
andness α as a visible and adjustable parameter, and in this paper, our goal is to develop
such functions.

All andness-directed aggregators, including Yn(X;α), satisfy the obvious condition

α = n

n − 1
− n + 1

n − 1

∫

In
Yn(X;α)dx1 · · · dxn, n ≥ 2.

This condition strictly holds for all exact theoretical forms of andness-directed
aggregators. On the other hand, if Yn(X;α) is an approximation, then the quality of
approximation can be characterized using the following error function:

En(α) =
∣
∣
∣
∣ α − n

n − 1
− n + 1

n − 1

∫

In
Yn(X;α)dx1 · · · dxn

∣
∣
∣
∣ , n ≥ 2.

For example, assuming that wni(α;pni) is a real polynomial of α, and pni is a vector
of its coefficients, we could define the following error function:

En(α;pn1, ...,pnn) =
∣
∣
∣
∣
∣
α − n

n − 1
− n + 1

n − 1

∫

In

(
n∑

i=1

wni(α;pni)x(i)

)

dx1 · · · dxn
∣
∣
∣
∣
∣
, n ≥ 2.

Then, we can find the array of optimum coefficients poptn1 , ...,poptnn so that
En(α;poptn1 , ...,poptnn ) satisfies a given optimization criterion, e.g. the smallest value of
max

0 ≤α ≤1
En(α;poptn1 , ...,poptnn ). This brute force optimization problem is not simple and

deserves to be avoided.
This paper presents a simple solution of this optimization problem, based on iterative

OWA functions (ItOWA) introduced in [2]. It complements the analysis of andness-
directedness for classic OWA aggregators presented in [5, 6, 17]. The proposed ItOWA
aggregators can be soft or hard and have directly adjustable andness.

The paper is organized as follows. A soft ItOWA aggregator and its weights are
presented in Sect. 2. Andness-directedness of soft and hard ItOWAaggregators is studied
in Sect. 3. Section 4 shows a simple technique to introduce importance weights in ItOWA
aggregators, and Sect. 5 offers conclusions.

2 The Soft Iterative SItOWA Aggregator and a Recursive Method
for Computing Its Weights

Similarly to OWA, the soft iterative OWA aggregator (SItOWA) [2, 7] uses the sorted
list of arguments (x(i) denotes the ith largest argument) and applies logic weights that
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affect the andness α: SItOWA(X; c) = vn1(c)x(1) + · · · + vnn(c)x(n). The weights are
functions of the parameter c, and consequently the andness α is also a function of c.
Since α = fn(c), where f is an invertible function, it follows that the andness-directed
SItOWA (presented in Sect. 3) can be obtained using c = f −1

n (α): SItOWA(X; α) =
wn1(α)x(1)+· · ·+wnn(α)x(n),wni(α) = vni(f −1

n (α)), i = 1, ..., n. The additive structure
of both OWA and SItOWA makes them soft for all 0 < α < 1. In addition, both OWA
and SItOWA are means, and consequently idempotent aggregators.

SItOWA is characterized by the conjunction degree c ∈ [0, 1] and the disjunction
degree d = 1 − c, used in the bivariate case. For both OWA and SItOWA, in the case
of two variables x1, x2, the parameters c and d are the global andness and orness, as
follows:

y2(x1, x2; c) = d max (x1, x2) + cmin (x1, x2) = (1 − α)x(1) + αx(2),

c = α, d = 1 − α = ω.

In the case of n > 2 variables we can iteratively apply the basic bivariate aggregator
to various pairs of variables xi, xj, i ∈ {1, ..., n}, j ∈ {1, ..., n}, i �= j, and
replace them with the aggregated value xij = d max(xi, xj) + cmin(xi, xj). We will now
show that after iteratively applying this procedure, the dispersion of xij points quickly
decreases; the iterative process converges, and yields the resulting aggregated value
yn(x1, ..., xn; c). Since the aggregation process is fully controlled by the conjunction
degree c the conjunctive/disjunctive properties of the bivariate aggregator penetrate and
systematically infiltrate in the multivariate aggregation process, yielding unique values
of the ItOWA logic weights. We will start with the case n = 3 variables.

In the case of three variables x(1) ≥ x(2) ≥ x(3), the basic bivariate aggregator is
iteratively applied to all pairs of inputs as follows:

while x(1) − x(3) ≥ ε do //ε = small positive error (e.g.10−6)

t12 = (1 − c)x(1) + cx(2); //x(1) ≥ t12 ≥ x(2)

t13 = (1 − c)x(1) + cx(3); //x(1) ≥ t13 ≥ x(3) ; x(1) ≥ t12 ≥ t13
t23 = (1 − c)x(2) + cx(3); //x(2) ≥ t23 ≥ x(3) ; t13 ≥ t23 ≥ x(3)

x(1) = t12; x(2) = t13; x(3) = t23; //t12 − t23 ≤ x(1) − x(3) ⇒ convergence

end

y3 = x(2); //the middle value x(2) is the desired value of function y3(x1, x2, x3; c)
In each iteration, this process keeps the order x(1) ≥ x(2) ≥ x(3) and reduces the size

of triplet x(1) − x(3). The temporary values t12 ≥ t13 ≥ t23 are closer to the resulting
value than the initial triplet x(1) ≥ x(2) ≥ x(3). When the size of triplet becomes less than
an arbitrary small error ε 	 1 the iterative process terminates and returns the middle
value y3 = x(2). The fast converging of the iterative process for c = 0.25, 0.5, 0.75 and
x(1) = 1, x(2) = 1/2, x(3) = 0 is shown in Fig. 1, where the precise final answer is
obtained in less than 10 iterations.

In the case of n variables, we might apply the convergent pairwise aggregation
process to n(n − 1)/2 pairs of points but that would produce a quadratic growth of
points and inefficient O(n2) aggregation. However, the presented idea of reducing the
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aggregation of three variables to three aggregations of two variables can be generalized
in a recursive way: the aggregation of n variables can be organized as n aggregations of
n − 1 variables. Below, we present this method and use it to compute andness-directed
weights of aggregators of n = 3, 4, 5 variables.
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Fig. 1. Iterative aggregation of three variables for three different conjunction degrees

For n = 3, the iterative aggregation process can be written in the following matrix
notation:

⎡

⎣
y3
y3
y3

⎤

⎦ = lim
k→∞

⎡

⎣
1 − c c 0
1 − c 0 c
0 1 − c c

⎤

⎦

k⎡

⎣
x(1)

x(2)

x(3)

⎤

⎦ =
⎡

⎣
v31 v32 v33
v31 v32 v33
v31 v32 v33

⎤

⎦

⎡

⎣
x(1)

x(2)

x(3)

⎤

⎦

This is a convergent process that returns the following result [2]:

y3 = (1 − c)2x(1) + c(1 − c)x(2) + c2x(3)

1 − c + c2
.

Consequently, SItOWA of three variables can be written as follows:

y3(x1, x2, x3; c) = v31(c)x(1) + v32(c)x(2) + v33(c)x(3),

v31(c) = (1 − c)2/(1 − c + c2),

v32(c) = c(1 − c)/(1 − c + c2),

v33(c) = c2/(1 − c + c2),

v31(c) + v32(c) + v33(c) = 1,

y3(x1, x2, x3; 0) = x(1),

y3(x1, x2, x3; 1) = x(3),

y3(x1, x2, x3; 1/2) = (x(1) + x(2) + x(3))/3.
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These formulas validate the example shown in Fig. 1 as follows:

y3(1, 1/2, 0; c) = (1 − c)2 + c(1 − c)/2

1 − c + c2
=

⎧
⎨

⎩

0.808 , c = 0.25
0.5 , c = 0.5

0.192 , c = 0.75

In the case of 4 variables x(1) ≥ x(2) ≥ x(3) ≥ x(4) we can continue recursive
aggregation by applying the weights v31(c), v32(c), v33(c) to four triplets that can be
denoted as the highest (x(1) ≥ x(2) ≥ x(3)), the high (x(1) ≥ x(2) ≥ x(4)), the low
(x(1) ≥ x(3) ≥ x(4)), and the lowest (x(2) ≥ x(3) ≥ x(4)), as follows:

⎡

⎢
⎢
⎣

y4
y4
y4
y4

⎤

⎥
⎥
⎦ = lim

k→∞

⎡

⎢
⎢
⎣

v31 v32 v33 0
v31 v32 0 v33
v31 0 v32 v33
0 v31 v32 v33

⎤

⎥
⎥
⎦

k ⎡

⎢
⎢
⎣

x(1)

x(2)

x(3)

x(4)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

v41 v42 v43 v44
v41 v42 v43 v44
v41 v42 v43 v44
v41 v42 v43 v44

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x(1)

x(2)

x(3)

x(4)

⎤

⎥
⎥
⎦

The results for 4 variables are the following [7]:

y4(x1, x2, x3, x4; c) = v41(c)x(1) + v42(c)x(2) + v43(c)x(3) + v44(c)x(4) ,

v41(c) = (1 − c − c2 − c3 + 4c4 − 2c5)/(1 + 4c4) ,

v42(c) = c(1 − c2 − 2c3 + 2c4)/(1 + 4c4) ,

v43(c) = c2(1 + c − 2c3)/(1 + 4c4) ,

v44(c) = c3(1 + 2c + 2c2)/(1 + 4c4) .

Similarly, for 5 variables:

y5(x1, x2, x3, x4, x5; c) = v51(c)x(1) + v52(c)x(2) + v53(c)x(3)+v54(c)x(4) + v55(c)x(5),

v51(c) = (1 − c − c2 − c3 − c4 + 11c5 − 8c6 − 3c7 + 2c8 + 2c9 − c10)/(1 + 11c5 − c10)

v52(c) = c(1 − c2 − 2c3 − 3c4 + 8c5 − 3c7 − c8 + c9)/(1 + 11c5 − c10).

v53(c) = c2(1 + c − 2c3 − 5c4 + 3c5 + 3c6 − c8)/(1 + 11c5 − c10).

v54(c) = c3(1 + 2c + 2c2 − 5c4 − 2c5 + c6 + c7)/(1 + 11c5 − c10).

v55(c) = c4(1 + 3c + 5c2 + 5c3 − 2c5 − c6)/(1 + 11c5 − c10).

The coefficients vij(c) introduced in [2] and presented in [7] were recently verified
and expanded to any number of variables in [8] and [9]. Troiano and Díaz [8] proved
that SItOWA(X; c) can generally be written as follows:

SItOWA(X; c) = vn1(c)x(1) + · · · + vnn(c)x(n) =
∑n

i=1 (1 − c)n−ici−1x(i)∑n
i=1 (1 − c)n−ici−1 , n ≥ 2.
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3 Andness-Directed SItOWA and HItOWA Aggregators

The conjunction degree c can be used as a degree of simultaneity or substitutability of
the SItOWAaggregator. However, the conjunction degree c is equal to the global andness
α only for n = 2. For n > 2, there are differences between c and α. According to [10]
there are nine versions of andness/orness that can be used for adjustment of degrees of
simultaneity or substitutability of logic aggregators, and for each of them, evaluators can
be trained to adapt to their properties and use them efficiently in various applications.
It is possible to use the SItOWA conjunction and disjunction degrees (c and d), but
it is more convenient to parameterize SItOWA aggregators using the standard global
andness α. Therefore, let us numerically analyze the differences between the SItOWA
conjunction/disjunction degrees and the global andness/orness, with intention to express
the coefficients vn1, ..., vnn, n ≥ 2 as explicit functions of the global andness α, and
create desired andness-directed aggregators.

For the most frequently used values n = 2, 3, 4, 5 the global andness of SItOWA
α(c) = [n − (n + 1)Vn(c)]/(n − 1) can be determined using a numerical computation
of the volume Vn(c) = ∫ 1

0 · · · ∫ 1
0 yn(x1, . . . , xn; c)dx1 · · · dxn. The corresponding results

are shown in Fig. 2. If n = 2 we have α = c, but for n > 2 we have nonlinear
relationships α = fn(c), where fn(0) = 0, fn(1/2) = 1/2, and fn(1) = 1. The function
c �→ fn(c) is strictly increasing and invertible. Since these are numerical relationships
we can compute inverse functions c = f −1

n (α) and approximate them with polynomials
as follows:

c(α) =

⎧
⎪⎨

⎪⎩

3.044α5 − 7.6122α4 + 7.7913α3 − 4.0731α2 + 1.8498α + 8 · 10−5 , n = 3
6.9006α5 − 17.265α4 + 16.984α3 − 8.2002α2 + 2.5761α + 0.0023 , n = 4
11.078α5 − 27.712α4 + 26.623α3 − 12.21α2 + 3.2114α + 0.0045 , n = 5.
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Fig. 2. Global andness of the SItOWA aggregator
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After inserting c(α) in weights vni(c) we get the andness-directed SItOWA with the
global andness-directed coefficients. In the case n = 3, we have

y3(x1, x2, x3;α) = v31(c(α))x(1) + v32(c(α))x(2) + v33(c(α))x(3)

= (1 − c(α))2x(1) + c(α)(1 − c(α))x(2) + c(α)2x(3)

1 − c(α) + c(α)2

= V31(α)x(1) + V32(α)x(2) + V33(α)x(3)

In the case of three variables, the aggregator y3(x1, x2, x3;α) has the global andness
that is sufficiently close to the desired andness α:

Dmax
3 = max

0≤α≤1

∣
∣
∣
∣ α −

[

1.5 − 2
∫ 1

0

∫ 1

0

∫ 1

0
y3(x1, x2, x3;α) dx1dx2dx3

] ∣
∣
∣
∣ = 0.00158.

The characteristic shapes of the andness-directed weights Vni(α) = vni(c(α)), i =
1, .., n for n = 3 are shown in Fig. 3. These curves are rather smooth and can be
numerically approximated by the following simple polynomials:

w31(α) = 0.8916α4 − 1.7754α3 + 1.7641α2 − 1.8798α + 0.9994 ≈ V31(α)

w32(α) = −1.7791α4 + 3.5585α3 − 3.5471α2 + 1.7677α + 0.0007 ≈ V32(α)

w33(α) = 0.8876α4 − 1.7832α3 + 1.783α2 + 0.1121α − 0.00009 ≈ V33(α).

In this way it is possible to reduce computational complexity because both vni(c) and
c(α) can be intricate polynomials, while the coefficients wni(α) are significantly simpler
polynomials and it is possible to show that their use is not reducing the accuracy and
applicability of the resulting SItOWA aggregator. Therefore, we can use the following
simplest approximate form of the andness-directed SItOWA aggregator for n = 3:
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Y3(x1, x2, x3;α) = w31(α)x(1) + w32(α)x(2) + w33(α)x(3)

= (0.8916α4 − 1.7754α3 + 1.7641α2 − 1.8798α + 0.9994)max(x1, x2, x3)

+ (−1.7791α4 + 3.5585α3 − 3.5471α2 + 1.7677α + 0.0007)mid(x1, x2, x3)

+ (0.8876α4 − 1.7832α3 + 1.783α2 + 0.1121α − 0.00009)min(x1, x2, x3)

≈ y3(x1, x2, x3;α) .

This aggregator provides the explicitly visible and easily adjustable desired andness
α. Evaluation of the quality of approximation Yn(x1, ..., xn;α) can be defined similarly
as for yn(x1, ..., xn;α):

En(α) =
∣
∣
∣
∣ α −

[
n

n − 1
− n + 1

n − 1

∫ 1

0
· · ·

∫ 1

0
Yn(x1, ..., xn;α) dx1 · · · dxn

] ∣
∣
∣
∣

Emax
n = max

0≤α≤1
En(α) , Emean

n =
∫ 1

0
En(α)dα , n > 1 .

The aggregator Y3(x1, x2, x3;α) is appropriate for all practical purposes, because the
maximum absolute error of this approximation is sufficiently low:

Emax
3 = max

0≤α≤1

∣
∣
∣
∣ α −

[

1.5 − 2
∫ 1

0

∫ 1

0

∫ 1

0
Y3(x1, x2, x3;α)dx1dx2dx3

] ∣
∣
∣
∣ = 0.00095.

The presented procedure for 3 variables can be used in the cases of 4 and 5 variables
and it yields the following andness-directed aggregators and their approximations:

y4(x1, x2, x3, x4;α) =v41(c(α))x(1) + v42(c(α))x(2) + v43(c(α))x(3) + v44(c(α))x(4)

= V41(α)x(1) + V42(α)x(2) + V43(α)x(3) + V44(α)x(4)

Dmax
4 = max

0≤α≤1

∣
∣
∣
∣ α −

[
4

3
− 5

3

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
y4(x1, x2, x3, x4; α)dx1dx2dx3dx4

] ∣
∣
∣
∣ = 0.00458

w41(α) = −2.4999α5 + 7.7635α4 − 8.957α3 + 5.5225α2 − 2.83α + 0.9989

w42(α) = −2.1683α6 + 10.955α5 − 19.955α4 + 17.955α3 − 9.3454α2

+ 2.5529α + 0.0033

w43(α) = −2.0541α6 + 1.7637α5 + 2.548α4 − 4.3959α3 + 1.8141α2

+ 0.3297α − 0.0022

w44(α) = 2.451α5 − 4.6474α4 + 2.8613α3 + 0.2325α2 + 0.1036α − 0.002

Y4(x1, x2, x3, x4;α) = w41(α)x(1) + w42(α)x(2) + w43(α)x(3) + w44(α)x(4)

Emax
4 = max

0≤α≤1

∣
∣
∣
∣ α −

[
4

3
− 5

3

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
Y4(x1, x2, x3, x4; α)dx1dx2dx3dx4

] ∣
∣
∣
∣ = 0.0053.

y5(x1, x2, x3, x4, x5; α) = v51(c(α))x(1) + v52(c(α))x(2) + v53(c(α))x(3)
+ v54(c(α))x(4) + v55(c(α))x(5)

=V51(α)x(1) + V52(α)x(2) + V53(α)x(3) + V54(α)x(4) + V55(α)x(5)
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Dmax
5 = max

0≤α≤1

∣
∣
∣
∣
∣
α −

[

1.25 − 1.5
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
y5(x1, x2, x3, x4, x5; α)dx1dx2dx3dx4dx5

] ∣
∣
∣
∣
∣

= 0.0108 .

w51(α) = 4.0901α6 − 17.781α5 + 29.916α4 − 24.791α3 + 11.434α2

− 3.8697α + 0.9998

w52(α) = − 8.5825α6 + 31.475α5 − 45.76α4 + 34.399α3 − 14.695α2

+ 3.155α + 0.0065

w53(α) = 8.6623α6 − 25.976α5 + 29.529α4 − 15.778α3 + 3.1181α2

+ 0.4444α − 0.0019

w54(α) = − 8.4138α6 + 19.554α5 − 16.657α4 + 5.3454α3 − 0.0174α2

+ 0.1992α − 0.0027

w55(α) =4.2376α6 − 7.2514α5 + 2.95α4 + 0.8358α3 + 0.1573α2

+ 0.0716α − 0.0017

Y5(x1, x2, x3, x4, x5;α) =w51(α)x(1) + w52(α)x(2) + w53(α)x(3) + w54(α)x(4)

+ w55(α)x(5)

Emax
5 = max

0≤α≤1

∣
∣
∣
∣
∣
α −

[

1.25 − 1.5
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
Y5(x1, x2, x3, x4, x5;α) dx1dx2dx3dx4dx5

] ∣
∣
∣
∣
∣

= 0.00602 .

The andness-directed SItOWA weights for 4 and 5 variables are presented in Fig. 4.
Generally, the andness-directed SItOWA is a version of OWA that has weights that

are explicit functions of desired global andness, as follows:

Yn(x1, ..., xn;α) = wn1(α)x(1) + wn2(α)x(2) + · · · + wnn(α)x(n) , x(1) ≥ x(2) ≥ · · · ≥ x(n) ,

Yn(x1, ..., xn; 0) = x(1) , Yn(x1, ..., xn; 1) = x(n) , Yn(x1, ..., xn; 1/2) = (x(1) + · · · + x(n))/n .

There are no theoretical obstacles to continue the presented process and to create
SItOWA aggregators for n > 5. However, for practical purposes, taking into account
human limitations [12] and the experiences with decision support applications [11], it
is sufficient to have aggregators up to n = 5.

Additive SItOWA aggregators are soft but they can be used in the whole range of
andness, from 0 to 1. As opposed to that, multiplicative ItOWA aggregators (denoted
HItOWA) are strictly hard. Consequently, it is meaningful to use them only in the range
of hard aggregators, i.e. for αθ ≤ α ≤ 1, where, according to experiments reported in
[13], the threshold andness should be αθ ≈ 3/4.

Andness-directed HItOWA aggregators can be realized using the same approxi-
mation technique we used for SItOWA. The following results include andness-directed
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Fig. 4. SItOWA weights in the cases of 4 and 5 variables

HItOWAaggregators yn(x1, ..., xn;α) for n = 2, 3, 4, 5, and the correspondingmean and
maximum absolute differences between the desired and the achieved andness, computed
for the whole range 0 ≤ α ≤ 1:

n = 2 :

⎧
⎪⎨

⎪⎩

c(α) = 0.4678α3 − 0.0409α2 + 0.5723α − 0.003

y2(x1, x2; α) = x1−c(α)
(1) xc(α)

(2) ; x(1) ≥ x(2)
Dmean
2 = 0.0018, Dmax

2 = 0.0063 .

n = 3 :

⎧
⎪⎨

⎪⎩

c(α) = 5.0604α5 − 11.131α4 + 9.4977α3 − 3.8368α2 + 1.4027α − 0.0022

y3(x1, x2, x3; α) = xv31(c(α))
(1) xv32(c(α))

(2) xv33(c(α))
(3) ; x(1) ≥ x(2) ≥ x(3)

Dmean
3 = 0.0025, Dmax

3 = 0.0046 .

n = 4 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(α) = 13.646α6 − 31.207α5 + 23.524α4 − 4.0538α3 − 2.6779α2 + 1.7519α + 0.0043

y4(x1, x2, x3, x4; α) = xv41(c(α))
(1) xv42(c(α))

(2) xv43(c(α))
(3) xv44(c(α))

(4) ;
x(1) ≥ x(2) ≥ x(3) ≥ x(4);Dmean

4 = 0.0048, Dmax
4 = 0.0098.

n = 5 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(α) = 18.198α6 − 40.085α5 + 26.912α4 − 1.0673α3 − 5.329α2

+2.3445α + 0.0074

y5(x1, x2, x3, x4, x5; α) = xv51(c(α))
(1) xv52(c(α))

(2) xv53(c(α))
(3) xv54(c(α))

(4) xv55(c(α))
(5) ;

x(1) ≥ x(2) ≥ x(3) ≥ x(4) ≥ x(5);Dmean
5 = 0.0093, Dmax

5 = 0.021 .

A complete andness-directed ItOWA aggregator can be realized recursively, by
combining SItOWA, HItOWA, and De Morgan duality, as shown in the following
pseudocode:

ItOWA(x1, ..., xn;α)

{ if α ≥ αθ then return HItOWA(x1, ..., xn;α)

elsif α > 1 − αθ then return SItOWA(x1, ..., xn;α)

else return 1 − ItOWA(1 − x1, ..., 1 − xn; 1 − α)

}



14 J. Dujmović

It is important to note that this aggregator is an OWA version of the Graded Con-
junction/Disjunction (GCD, [11, 14]). It is a model of hard partial conjunction for
αθ ≤ α ≤ 1, soft partial conjunction for 1/2 < α < αθ , neutrality for α = 1/2, soft
partial disjunction for 1 − αθ < α < 1/2, and the hard partial disjunction for 0 ≤ ∝ ≤
1−∝θ . If∝θ =3/4 then the corresponding aggregator is a uniformGCD(UGCDbased on
ItOWA), where all soft and hard segments have equal size of andness (25%). Of course,
SItOWA and HItOWA are different operators and, when increasing andness, there is no
continuous transition between them. However, if we use equidistant discrete degrees of
andness, the corresponding aggregators are fully applicable. This is shown inFig. 5where
we aggregate x and 1-x using UGCD/ItOWA and α = 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1.
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Fig. 5. Uniform UGCD/ItOWA with 7 levels of andness aggregating x and 1-x

4 Weighted ItOWA Aggregators

Let n = 2 and let wx1,wx2 denote the importance weights of variables x1 and x2
respectively. In the case of desired andness α the SItOWA aggregator can be written
as follows:

z =
{

αx1 + (1 − α)x2, x1 < x2
αx2 + (1 − α)x1, x1 ≥ x2

A weighted SItOWA for n = 2 can be defined using multiplicative importance
weights as follows:

z =
{

αwx1x1+(1−α)wx2x2
αwx1+(1−α)wx2

, x1 < x2
αwx2x2+(1−α)wx1x1

αwx2+(1−α)wx1
, x1 ≥ x2

This multiplicative approach is based on justifiable assumption that both the relative
importance of an input, and the highest value of andness/orness (α ∨ω), simultaneously
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contribute to both the objective ability to produce impact, and the intuitive percept of
the overall importance of an input [11]. This concept can be directly applied to the case
of SItOWA/HItOWA of n variables, as follows:

Yn(x1, ..., xn;w, α) =
{
Wn1(α)x(1) + Wn2(α)x(2) + · · · + Wnn(α)x(n) , 1 − αθ < α < αθ

xWn1(α)
(1) × xWn2(α)

(2) × · · · × xWnn(α)
(n) , α ∈ [0, 1 − αθ ] ∪ [αθ , 1]

Wni(α) = wx(i)wni(α)

wx(1)wn1(α) + wx(2)wn2(α) + · · · + wx(n)wnn(α)
, i = 1, ..., n .

In the above aggregators we have the following interpretation of weights:
wni(α) = positional logic weight that corresponds to the ith largest argument.
wx(i) = private importance weight that corresponds the argument that occupies

the ith position.
Wni(α) = resulting compound ItOWA weight;Wn1(α) + Wn2(α) + · · · + Wnn(α) = 1.

It is necessary to note that the presented methodology is not the only way to extend
simple bivariate means to weighted multivariate means. The problem of extension of
bivariate means to weighted means of several arguments can be solved using the method
of binary trees [15, 16]. The comparison of these two approaches is one of topics for the
future work.

5 Conclusions

The andness-directedness, annihilator selectability, and importance weight adjustability
are three indispensable properties of logic aggregators. The andness-directed SItOWA
and HItOWA aggregators, and the corresponding ItOWA-based GCD, offer these fun-
damental properties at the minimum level of mathematical sophistication. The ultimate
simplicity of these aggregators makes them attractive for many applications in decision
support systems. Future work should compare these aggregators with other members
of the OWA family of aggregators, and with aggregators obtained using OWA-based
binary trees. It is also necessary to investigate the properties and applicability of com-
poundaggregation structures basedonSItOWAandHItOWA. Inparticular, it is necessary
to investigate properties and applicability of ItOWA-based conjunctive and disjunctive
partial absorption aggregators.

Our version of HItOWA is based on weighted geometric mean, but it is obvious
that the same aggregation effects can be achieved using the weighted harmonic mean,
or other similar forms of weighted power mean, as well as any other bivariate mean
that supports the annihilator 0 and provides a controlled emphasis of minimum and
maximum values. Future work should investigate whether replacing the geometric mean
with another similar hard aggregator could yield some new benefits.

ItOWA is an andness-characterized aggregator, and the analysis and comparison of
such aggregators presented in [5] shows several competitive aggregators; ItOWA should
be compared with all of them. In particular, future theoretical and experimental work
should compare ItOWA with segmented andness-directed interpolative GCD, which is
the most convenient of general logic aggregators because it covers the whole range
from drastic conjunction to drastic disjunction: hyperconjunction, hard and soft partial
conjunction, neutrality, soft and hard partial disjunction, and hyperdisjunction.
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15. Beliakov, G., Dujmović, J.: Extension of bivariate means to weighted means of several argu-
ments by using binary trees. Inf. Sci. 331, 137–147 (2016). https://doi.org/10.1016/j.ins.2015.
10.040
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Abstract. We give a graphical reinterpretation of the seeds algorithm
to explore the tree of numerical semigroups. We then exploit the seeds
algorithm to find all the Eliahou semigroups of genus up to 65. Since all
these semigroups satisfy the Wilf conjecture, this shows that the Wilf
conjecture holds up to genus 65.

1 Introduction

A numerical semigroup is a cofinite submonoid of N0. See [5] for a general refer-
ence on numerical semigroups. The elements in the complement of a numerical
semigroup in N0 are denoted the gaps of the semigroup. The genus of the semi-
group is the number of its gaps.

If a numerical semigroup Λ is {λ0 = 0 < λ1 < . . . }, define its multiplicity as
m(Λ) = λ1. Define its Frobenius number F (Λ) as its largest gap and its conductor
c(Λ) as its largest gap plus one. If c(Λ) = λL, then the elements λ0, λ1, . . . , λL−1

are called the left elements of Λ.
An element λs ≥ c(Λ) is an order-i seed of Λ if λs + λi �= λj + λk for all

i < j ≤ k < s. The right primitive elements of a numerical semigroup are
its order-0 seeds. In general, the primitive elements (or minimal generators) of
a numerical semigroup are those elements of the semigroup that can not be
obtained as a sum of two smaller semigroup elements.

In 1978, Hebert S. Wilf conjectured that for any numerical semigroup with
conductor c, with L left elements and with set of primitive elements equal to P ,
it holds c ≤ L · #P [6]. More than forty years later the conjecture is still open.
It has been verified for all semigroups of genus up to 60 by Jean Fromentin
and Florent Hivert [4]. An important step to approach the Wilf conjecture is a
sufficient condition found by Shalom Eliahou [3]. Semigroups not satisfying it
are very unusual. We denote them Eliahou semigroups.

If we take away a primitive element from a numerical semigroup we obtain
another semigroup with genus increased by one. We can organize all numerical
semigroups in an infinite tree rooted at N0 and such that the children of a node
are the semigroups obtained taking away one by one its right primitive elements.
In Fig. 1 one can see the lowest genus semigroups organized in the semigroup
tree. Each semigroup is represented by its non-gaps which are either colored with
dark gray if they are right primitive elements or with light gray if they are not.
c© Springer Nature Switzerland AG 2021
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0 1 . . . 0 2 3 . . .

0 2 4 5 . . . 0 2 4 6 7 . . . 0 2 4 6 8 9 . . . 0 2 4 6 8 10 11 . . .

0 3 4 5 . . .

0 3 4 6 7 . . .

0 3 5 6 7 . . .

0 3 5 6 8 9 . . .

0 3 6 7 8 9 . . .

0 3 6 7 9 10 11 . . .

0 3 6 8 9 10 11 . . .

0 4 5 6 7 . . .

0 4 5 6 8 9 . . .

0 4 5 7 8 9 . . . 0 4 5 8 9 10 11 . . .

0 4 6 7 8 9 . . .

0 4 6 7 8 10 11 . . .

0 4 6 8 9 10 11 . . .

0 4 7 8 9 10 11 . . .

0 5 6 7 8 9 . . .

0 5 6 7 8 10 11 . . .

0 5 6 7 9 10 11 . . .

0 5 6 8 9 10 11 . . .

0 5 7 8 9 10 11 . . .

0 6 7 8 9 10 11 . . .

Fig. 1. Lowest depth nodes of the semigroup tree.

In Sect. 2 we recall the seeds algorithm [1] to explore the semigroup tree. In
Sect. 3 we give a graphical explanation of the algorithm by running it over a
particular example. In Sect. 4 we give the list of Eliahou semigroups output by
our algorithm. This list allows to verify the Wilf conjecture for genus up to 65.

2 The Bitstream of Gaps and the Bitstream of Seeds of a
Numerical Semigroup

A bitstream is a finite sequence a = a0 . . . a� where ai is either 0 or 1 for every
i. For our purposes, we can indistinctly use a for a0 . . . a� and for any bitstream
of the form a0 . . . a� 0 . . . 0

︸ ︷︷ ︸

k

for any positive integer k.

Suppose a semigroup Λ has conductor c. We encode its gaps as the bitstream

G(Λ) = g0 . . . gc−1

with gi = 0 if i + 1 ∈ Λ is a gap and gi = 1 otherwise. We encode its seeds as
the bitstream

S(Λ) = s0 . . . sc−1

with si = 1 if i − λj is an order-j seed of Λ where j is the unique non-negative
integer such that λj ≤ i < λj+1.

In [1] we presented an algorithm to explore the tree of numerical semigroups
by recursively computing the bitstream of gaps and the bitstream of seeds of a
numerical semigroup from those of its parent.

In Fig. 2 one can see the sequences G and S for the lowest genus semigroups
organized in the semigroup tree. To make it easier to read, we represented each
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1 in the sequences with a dark circle with its position written inside, and each 0
in the sequence with a light gray circle with its position also written inside.

0
0

0 1
0 1

0 1 2 3
0 1 2 3

0 1 2 3 4 5
0 1 2 3 4 5

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

0 1 2
0 1 2

0 1 2 3 4 5
0 1 2 3 4 5

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

0 1 2 3 4 5
0 1 2 3 4 5

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

0 1 2 3
0 1 2 3

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6
0 1 2 3 4 5 6

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

0 1 2 3 4 5
0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6
0 1 2 3 4 5 6

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6
0 1 2 3 4 5 6

0 1 2 3 4 5
0 1 2 3 4 5

Fig. 2. Bitstream of gaps and bitstream of seeds of the semigroups in the lowest depth
nodes of the semigroup tree.

The updating algorithm is based on the next results, which are proved in
[1]. Suppose that λs is a right primitive element of Λ (hence, s ≥ L) and let
Λ̃ = Λ\{λs}.

1. Old-order recycled seeds:
Suppose i < L. Any order-i seed λt of Λ with t > s is also an order-i seed of
Λ̃.

2. Old-order new seeds: Suppose i < L. Then, λt > λs, with λt not an order-i
seed of Λ, is an order-i seed of Λ̃ if and only if either

– i < L − 1, λt = λs + λi+1 − λi and λs is an order-(i + 1) seed of Λ
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– i = L − 1, λs = c, and either
{

λt = λs + λL − λL−1
λt = λs + λL − λL−1 + 1

– i = L − 1, λs = c + 1, and λt = λs + λL − λL−1.
3. New-order seeds: Suppose i ≥ L. Then,

– If i < s − 2, then Λ̃ has no order-i seeds.
– If i = s − 2, then the only order-i seed of Λ̃ is λs + 1.
– If i = s − 1, then the only order-i seeds of Λ̃ are λs + 1 and λs + 2.

3 A Graphical Explanation of the Algorithm by an
Example

For the algorithm in [1] the bitstream of seeds is splitted in a table with L rows,
indexed from 0 to L − 1, with the ith row containing s(λi), s(λi+1) . . . , s(λi+1−1).

Now we are going to graphically explain the algorithm with an example.
Consider the numerical semigroup Λ = {0, 8, 16, 18, 19, 24, 26, 27, 30, . . . }. Its
table of seeds is as follows, where seeds are represented by black boxes and non-
seeds are represented by white boxes. Notice that its conductor is 30 and it has
three right primitive elements which are 30, 31, 33.

Suppose we want to take away the generator c + 0 = 30 + 0 = 30.

Draw the contour of the new table of seeds.

Move the old values to the left of the table and fix the old-order recycled
seeds.
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Obtain the old-order new seeds.

Set the last two elments in the last row of the table as old-order new seeds.

Suppose that now we want to take away the generator c + 1 = 30 + 1 = 31.

Draw the contour of the new table of seeds.

Discard the values corresponding to elements that are smaller than the new
Frobenius number, keep shadowed the values corresponding to the new Frobenius
number.
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Move the old values to the left of the table and fix the old-order recycled
seeds.

Obtain the old-order new seeds.

Set the last elment in the last but one row of the table as one old-order new
seed and set the two elements in the last row as two new-order seeds.
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The remaining empty boxes are non-seeds.

Suppose that now we want to take away the generator c + 3 = 30 + 3 = 33.

Draw the contour of the new table of seeds.

Discard the values corresponding to elements that are smaller than the new
Frobenius number, keep shadowed the values corresponding to the new Frobenius
number.

Move the old values to the left of the table and fix the old-order recycled
seeds.
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Obtain the old-order new seeds.

Set the unique element in the last but one row of the table and the two
elements in the last row of the table as new-order seeds.

The remaining empty boxes are non-seeds.
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4 Eliahou Semigroups and Wilf Conjecture Verification
Extended up to Genus 65

Fix a numerical semigroup Λ with conductor c and multiplicity m. Let q = � c
m�,

and let ρ = qm − c be the remainder of the division of c by m. Suppose that the
left elements of Λ are {λ0, . . . , λL} and suppose that P is the set of primitive
elements of Λ. The Eliahou constant is defined as

E(Λ) = #(P ∩ {λ0, . . . , λL})L − q(m − #(P\{λ0, . . . , λL})) + ρ.

Shalom Eliahou proved that if E(Λ) ≥ 0 then Λ satisfies the Wilf conjecture
[3]. Semigroups for which the Eliahou constant is negative are very unusual.
We will denote them Eliahou semigroups. According to the same reference, it
was computed by Jean Fromentin that the unique Eliahou semigroups of genus
g ≤ 60 are exactly

– 〈14, 22, 23〉 |56,
– 〈16, 25, 26〉 |64,
– 〈17, 26, 28〉 |68,
– 〈17, 27, 28〉 |68,
– 〈18, 28, 29〉 |72
for genus 43, 51, 55, 55 and 59, respectively, where 〈a, b, c〉 |κ means the minimum
semigroup containing a, b, c and all integers larger than or equal to κ.

Using a parallelized version of the seeds algorithm we found that the unique
Eliahou semigroups with genus between 61 and 65 are exactly,

{0, 19, 29, 31, 38, 48, 50, 57, 58, 60, 62, 67, 69, 76, . . . } = 〈19, 29, 31〉 |76
and

{0, 19, 30, 31, 38, 49, 50, 57, 60, 61, 62, 68, 69, 76, . . . } = 〈19, 30, 31〉 |76
Using p for the number of primitive elements and r for the number of right

primitive elements, the parameters of these semigroups are

– {0, 19, 29, 31, 38, 48, 50, 57, 58, 60, 62, 67, 69, 76, . . . }
• g = 63,
• c = 76,
• m = 19,
• p = 12,
• r = 9,
• L = 13,
• q = 4,
• ρ = 0.
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– {0, 19, 30, 31, 38, 49, 50, 57, 60, 61, 62, 68, 69, 76, . . . }
• g = 63,
• c = 76,
• m = 19,
• p = 12,
• r = 9,
• L = 13,
• q = 4,
• ρ = 0.

This allows us to state the next result.

Lemma 1. The Wilf conjecture holds for all semigroups of genus up to 65.

We notice that for all Eliahou counterexamples of genus up to 65, l = 13,
q = 4, ρ = 0, g = 3 modulo 4.

Manuel Delgado constructed in [2], for each integer number, infinite fami-
lies of numerical semigroups having Eliahou constant equal to that number. In
particular, he constructed infinite families of semigroups with negative Eliahou
constant. The semigroups in these families are of the form

S(i,j)(p, τ) = 〈m(i,j), g(i,j), g(i,j) + 1〉 |c(i,j) ,
for p an even positive integer and τ, i, j non-negative integers, where

m(i,j) =
p2

4
+ p(

τ

2
+ 2) + 2 + j

p

2

g(i,j) =
p2

2
+ p(τ +

7
2
) − τ + j(p − 1) + im(i,j)

c(i,j) =
p3

4
+ p2(

τ

2
+ 2) + 2p − τ + j

p2

2
+ i

(p

2
+ 1

)

m(i,j)

One can check that none of the two semigroups listed above is of this kind. In
the first case it is easy to see, since the difference between the second and third
generator is not one. In the second case, we use that ρ = τ [2, Lemma 5.4.8] and
see, by exhaustive search that there is no combination of a positive even integer
p and non-negative integers i, j such that

19 =
p2

4
+ 2p + 2 + j

p

2

30 =
p2

2
+

7
2
p + j(p − 1) + 19i

76 =
p3

4
+ p2(

τ

2
+ 2) + 2p + j

p2

2
+ 19i

(p

2
+ 1

)
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5. Rosales, J.C., Garćıa-Sánchez, P.A.: Numerical Semigroups. Developments in Math-
ematics, vol. 20. Springer, New York (2009). https://doi.org/10.1007/978-1-4419-
0160-6

6. Wilf, H.S.: A circle-of-lights algorithm for the “money-changing problem”. Am.
Math. Mon. 85(7), 562–565 (1978)

https://doi.org/10.1007/s00209-017-1902-3
https://doi.org/10.1007/978-1-4419-0160-6
https://doi.org/10.1007/978-1-4419-0160-6


Are Sequential Patterns Shareable?
Ensuring Individuals’ Privacy

Miguel Nunez-del-Prado1(B) , Julián Salas2,4 , Hugo Alatrista-Salas5 ,
Yoshitomi Maehara-Aliaga1 , and David Meǵıas3,4
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Abstract. Individuals’ actions like smartphone usage, internet shop-
ping, bank card transaction, watched movies can all be represented in
form of sequences. Accordingly, these sequences have meaningful fre-
quent temporal patterns that scientist and companies study to under-
stand different phenomena and business processes. Therefore, we tend
to believe that patterns are de-identified from individuals’ identity and
safe to share for studies. Nevertheless, we show, through unicity tests,
that the combination of different patterns could act as a quasi-identifier
causing a privacy breach, revealing private patterns. To solve this prob-
lem, we propose to use ε-differential privacy over the extracted patterns
to add uncertainty to the association between the individuals and their
true patterns. Our results show that its possible to reduce significantly
the privacy risk conserving data utility.

Keywords: Sequential pattern mining · Data privacy · Uniqueness ·
Edge-differential privacy

1 Introduction

Sequential pattern mining is a technique allowing the extraction of frequent
sequences from temporal datasets. To achieve this, events are grouped by time,
forming sequences representing the temporal evolution of events. Later, using
a threshold σ, the sub-sequences appearing at least σ times are extracted as
patterns. This technique was widely used in different domains [1,5,13,27].

Patterns extracted from temporal datasets stand for a part of the whole
dataset, which semantically represents frequent behaviors. The utility of these
patterns is vast, e.g., for prediction tasks [3,16,24]. However, these patterns
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can hide sensible information, as each of them represents common behaviors.
Indeed, depending on the number of times a pattern appears in the database, it
can represent more or fewer objects with the same behavior. For example, if some
of the consumption patterns of an individual in terms of purchase categories are
known, it is possible to search the original database to find the customers with
such patterns. If there is only one such consumer, then these patterns act as
an identifier for such a consumer, causing a privacy breach [12]. This privacy
breach could outrage the customers if they buy, for instance, anticancer drugs or
baldness products. Thus, the question is: how can we publish sequential patterns
without compromising data privacy? To answer this question, different works in
the literature [6,7,25,26,28] add Laplacian noise to the prefix tree while building
the sequential patterns. This approach is complex and computationally time-
consuming since depending on the sequence search Depth-first search or Breadth-
first search, the first levels of the prefix tree have a strong influence on the pattern
sequence construction. This is solved by truncating the sequence pattern length
or post-processing the patterns to increase data utility. Nonetheless, the post-
processing also adds complexity and computational time to the privacy-aware
sequential pattern mining process. To simplify this process, we propose a new
approach to apply ε-differential privacy over the extracted sequential patterns
using a bipartite graph approach. Finally, we measure the performance of our
approach in terms of information loss and data utility.

The rest of the paper is organized as follows. Section 2 describes the related
work in the literature while Sect. 3 introduces the background for this work. Sec-
tions 4 and 5 present how our approach works and the results of the performed
experiments. Finally, Sect. 6 concludes the paper and presents new research
avenues.

2 Related Work

In the present section, we describe the works on privacy-aware sequential pat-
tern mining. For instance, Chen et al. [7] propose a privacy-aware prefix span
algorithm for publishing sequential patterns data. The algorithm takes as input
a privacy budget ε and a tree height h for the Prefixspan algorithm to construct
the sanitized prefix tree by adding Laplacian noise to the prefix tree count in each
h level. Once the prefix tree is built, the sanitized sequences are extracted. Thus,
the authors test their approach using data from individuals count in Canada’s
metro and bus networks. They evaluate their proposal using count queries and
frequent sequential pattern mining to quantify the model’s data utility. Cheng
et al. propose a n-gram algorithms [6] to release sequential patterns providing a
privacy guarantee level. The authors use an exploration tree to find the counts
of occurrences of grams in the dataset. Then, they applied Laplacian noise to
the counts using a privacy budget of ε/n, where n is the maximal size of the con-
sidered sequences. Authors use the page views of msnbc.com (i.e., MSNBC)
and the records sequences of stations visited by passengers in time order in the
Montreal transportation system (i.e., STM) datasets. Xu et al. [25,26] propose
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the PFS 2 privacy-aware algorithm for extracting frequent patterns. The idea
behind the algorithm is to add Laplacian noise to the support of all frequent
sequence candidates. Once the noise is applied, the algorithm extracts frequent
patterns based on their noisy supports. Authors use MSNBC, BIBLE, and House
Power datasets to measure the F-score, and Relative error for the proposed PFS 2

compared to Prefix [7] and n-gram [6] algorithms.
Zhou and Lin [28] propose to truncate frequent patterns to add noise to the

pattern support based on a bilateral geometric distribution to satisfy epsilon-
differential privacy. The authors use two datasets for the experiments, one con-
taining semantic trajectories of 14909 users living in New York and 48564 dis-
tinct places; another used dataset is the Internet Information Server logs for
msnbc.com and news-related portions of msn.com for the entire day of September
28, 1999 (Pacific Standard Time). Each sequence in the dataset corresponds to
a user’s page views during that twenty-four-hour period (MSNBC). The author
shows the outperformance of their approach compare to the PFS2 algorithm [26]
in terms of False Negative Rate and Relative Support Error. Bonomi [4] describes
a two-phase algorithm to achieve Laplacian differential privacy in sequential
pattern mining. The first phase extracts the prefix tree T ′ where the noise is
added using ε budget. The second phase takes as input the k most important
patterns from the T ′ sanitized tree and compares them to patterns extracted
from the original dataset to measure the change’s sensitivity and calibrate this
noise to improve data utility. The drawback is that the author does not present
experiments.

In [17] it was proved that the mobility patterns are very unique, and four
spatiotemporal points are enough to identify 95% of the individuals in a dataset
of fifteen months of a pseudonymized mobile phone dataset of 1.5M of users. The
uniqueness of purchase patterns was studied in [18] with similar results, consid-
ering the shops and prices of transactions. Considering that unicity quantifies
the intrinsic reidentification risk of a data set. However, it has been pointed out
in [22] that being unique in a sample does not necessary implies being unique in
a population, as it has also been previously observed in [8].

In this regard, Rocher et al. [19] propose a generative copula-based method
to estimate the likelihood of a given individual to be re-identified, even in an
incomplete dataset. The basic idea is to use marginal distributions from sampled
datasets to build a copula for re-identifying the complete dataset. Authors use
five different census and UCI Machine Learning repository datasets, namely
USA, MERNIS, ADULT, MIDUS, and HDV. Their method reaches a uniqueness
ranging from 0.84 to 0.97, with a low false-discovery rate.

3 Background

In the present section, we introduce the definitions of Pattern Mining (Sub-
sect. 3.1), Edge-Differential Privacy (Subsect. 3.2), Disclosure Risk (Subsect. 3.3),
and Information Loss as well as Utility (Subsect. 3.4).
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3.1 Pattern Mining

To illustrate the definitions, we use a sample of sequence database sDB, rep-
resented in Table 1. The temporal dimension is represented by parentheses.
The domain of the column ClientID contains all different clients we have in
the database, i.e., dom(ClientID) = {Client1, Client2, Client3}. The domain
of purchases is composed by all different items belonging the database, i.e.,
dom(items) = {I1, I3, I4, I7, I9, I10, I11, I12, I13, I15}.

Table 1. Example of sequences database sDB

ClientID Sequence of itemsets

Client1 [(I1 I10 I12) (I1 I10 I11) (I3 I10 I12 I13)]

Client2 [(I1 I10 I12) (I3 I10 I11) (I3 I4 I12)]

Client3 [(I3 I10 I9 I15) (I1 I7 I11) (I3 I7 I9 I13)]

Definition 1. Item and Itemset. An item I, is a literal value for purchase
categories. An itemset, IS = (I1 I2 . . . Iu), is a non empty set of items such
that Ii ∈ dom(items) ∀ i ∈ [1..u − 1].

Definition 2. Inclusion of itemsets. An itemset IS = (I1 I2 . . . Iu) is
included, denoted ⊆, in another itemset IS′(I ′

1 I ′
2 . . . I ′

v), iff ∀Ik ∈ IS, ∃ ik,
such that Ik = I ′

ik
.

Definition 3. Sequence. A sequence S is an ordered list of itemsets, denoted
S = [IS1 IS2 . . . ISv] where ISi, ISi+1 satisfy the constraint of temporal sequen-
tiality for all i ∈ [1..v − 1].

Definition 4. Inclusion of sequences. A sequence S = [IS1 IS2 . . . ISu]
is included in another sequence S′ = [IS′

1IS′
2 . . . IS′

v], denoted as S ⊆ S′, iff
∃ i1 < i2 < . . . < iu such that IS1 ⊆ IS′

i1
, IS2 ⊆ IS′

i2
, . . . , ISu ⊆ IS′

iu
.

Definition 5. Support of a sequence. We define the support of a sequence
S, denoted as supp(S), as the number of sequences in the database sDB that
include S.

Definition 6. Problem of sequential pattern mining. Given a positive
integer σ (minimal support) and a sequence in the database sDB, a sequence
can be considered frequent if its support supp(S) is greater than or equal to σ,
i.e., supp(S) ≥ σ. All frequent sequences are called sequential patterns and they
are stored in a pattern database pDB.

In Table 1, (I1 I10 I12) is an itemset that belongs to Client1’s sequence. The
sequence [(I1 I10 I12) (I3 I10 I11) (I3 I4 I12)] represent the temporal evolu-
tion of a set of purchases for client C2 in three different times. The sequence
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[(I1 I10) (I3)] is included in the sequence of Client2 because (I1 I10) ⊆
(I1 I10 I12) and (I3) ⊆ (I3 I10 I11). Finally, supp([(I1 I10) (I3)]) = 2 because
it appears in Client1 and Client2. In the same manner supp([(I1) (I13)]) = 3
because it appears in all sequences. For σ = 3, sequence [(I1 I10)] is not frequent
because supp([(I1 I10)]) = 2. On the contrary, [(I1) (I13)] is frequent because
supp([(I1) (I13)]) = 3.

3.2 Differential Privacy and Noise Graph Mechanism

After extracting the frequent patterns, we represent the pattern database pDB
as a graph with n nodes that correspond to the clients in dom(ClientID) and
m nodes that correspond to the patterns in pDB. We add an edge between
Clienti ∈ dom(ClientID) and Pj ∈ pDB if Pj is a pattern of Clienti. Using
such representation, allows us to apply differential privacy to protect the pattern
database pDB.

Intuitively differential privacy [11] tries to reduce the privacy risk when some-
one has their data in a dataset to the same risk of not giving data at all. For
protecting graph structured data, edge-differential privacy may be defined as
follows:

Definition 7. A randomized algorithm A is said to be ε-edge-differential pri-
vate if for two graphs G1 and G2 that differ in one edge and all outputs
O ⊆ Range(A):

Pr[A(G1) ∈ O] ≤ eεPr[A(G2) ∈ O]

The larger the value of the ε parameter, the weaker the algorithm’s privacy
guarantee. Therefore, ε usually takes a small values [15].

For publishing pDB with differential privacy we will use An,m,p the Bipartite
Noise-Graph Mechanism [21]. It is based on adding random graphs g sampled
from G(n,m, p), through the Noise-Graph addition technique [23].

Note that for any graph g ∈ G(n,m, p), each of the n × m possible edges
in g is present with probability p, this random graph model is known as the
Erdös-Rényi (or Gilbert) model for bipartite graphs.

Theorem 1 [21]. The noise-graph mechanism An,m,p is ln( 1−p
p )-edge-

differentially private.

3.3 Disclosure Risk

For the Disclosure Risk assessment of sequential patterns, we consider that an
adversary knows a subset P of a client’s patterns P (Clientx) and aims to link
this knowledge to the corresponding record in the published data set. Thus,
the size of the anonymity set for such adversarial knowledge P will be useful
to measure the risk of disclosure. We define the anonymity set for sequential
patterns as follows.
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Definition 8. Anonymity Set. The anonymity set for Clientx, given adver-
sarial knowledge P ⊂ P (Clientx), is the set of Clienty’s in the database such
that P ⊂ P (Clienty).

In this terminology, a unique record is one with an anonymity set of size one,
and the term uniqueness refers to the amount of unique records in the data set.
We remark that a sample unique is not necessarily a population unique; however,
if the adversary knows that the client belongs to the published data, finding
a unique record will lead to re-identification. Hence, we consider the identity
disclosure risk as the uniqueness obtained considering that an adversary knows
a number of patterns of each user.

Then, we measure the amount of accurate information that an adversary
will possibly learn after re-identification. For this evaluation, we consider an
adversary that was able to link the patterns that he/she knows about Clientx
to the corresponding record in the protected patterns database ˜pDB. We define
the Pattern Risk of Disclosure to measure the probability that such an adversary
will learn accurate patterns of Clientx by assuming that all of the published
patterns P̃ (Clientx) belong to the true patterns P (Clientx).

Definition 9. Pattern Risk of Disclosure. Let ˜pDB the published protected
version of the pattern database pDB. We define the Pattern Risk of Disclosure
for a Clientx ∈ ˜pDB as the proportion of his/her true patterns published, over
all published patterns:

dRisk(Clientx) =
|P̃ (Clientx) ∩ P (Clientx)|

|P̃ (Clientx)|
As an example, we suppose that P (Clientx) = {P1, P2} and the published

patterns are P̃ (Clientx) = {P1, P3}, in this case dRisk(Clientx) = |{P1}|
|{P1,P3}| = 1

2 .
This value, shows that 1

2 of Clientx published patterns are true patterns.
We note that in the case of generalization the published patterns always

contain the true patterns, i.e., P (Clientx) ⊂ P̃ (Clientx) and dRisk(Clientx) =
|P (Clientx)|
|P̃ (Clientx)| . This is equal to the sensitive attribute risk of disclosure measure
defined in [20].

3.4 Information Loss and Utility

In the Statistical Disclosure Control (SDC) literature, simple, generic and intu-
itive information loss measures can be defined to compare the original and
masked datasets, their covariance or correlation matrices. This is done by cal-
culating either their Mean Absolute Error (MAE), Mean Squared Error or their
Mean Variation among the corresponding matrices [9,10].

From these possible metrics, we consider that the MAE is the best suited for
our evaluation, since it directly measures how many patterns in average where
added or removed to each client to obtain the protected pattern database ˜pDB
from pDB. Hence, to carry out this evaluation we represent the client-pattern
database pDB as a sparse matrix M .
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Definition 10. Client-Pattern Matrix. We define M = (xij) for pDB, as
the matrix with n rows (number of clients in pDB) and m columns (number of
patterns in pDB), where row i represents the Clienti and column j represents
the pattern Pj, and xij = 1 if and only if Pj ⊂ P (Clienti).

Definition 11. Information Loss. We define the Information Loss for ˜pDB
as:

IL(˜pDB) = MAE(M, ˜M) = 1/n
∑

i=1,...,n

|xij − x̃ij |,

where xij and x̃ij are the entries of the client-pattern matrices M and ˜M for
pDB and ˜pDB, respectively.

Definition 12. Data Utility. Let ˜pDB the published protected version of the
pattern database pDB. We use the Normalized Discounted Cumulative Gain
(NDCG) [14] to measure the change of relevance, in the top n sequences. Accord-
ingly, We define the Data Utility for ˜pDB as:

DU(˜pDB) =
DCG

˜pDB

DCGpDB

where DCG is defined as:

DCG =
|p|
∑

i=1

2rel
i − 1

log2(i + 1)

where reli is the relevance of the position of the pattern in position i.

4 Methodology

In the present section, we describe the multi-step process depicted in Fig. 1.
Thus, the process has four steps: pattern mining, uniqueness evaluation, privacy
protection, and result evaluation.

Fig. 1. Process to measure the frequent sequences privacy on data associated to con-
sumer preferences
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Pattern Mining - first, we extract sequential patterns from a sequence database
sDB. In this step, several minimal supports were used to evaluate this con-
straint’s impact on the privacy guarantees. Later, to identify the individuals fol-
lowing the behavior represented by each pattern, we created the pattern database
pDB, which consists of two dictionaries {client : pattern} and {pattern : client}.
Indeed, to measure the uniqueness is essential to know which pattern corresponds
to a client and vice-versa.

Disclosure Risk Assessment - in this step from the {client : pattern} dictionary,
clients having patterns greater than or equal to a value s are filtered. Then,
a random sample containing t patterns is generated for each customer. After
obtaining all the samples, each partition is counted using the {pattern : client}
dictionary. Once the counts are obtained, they are filtered according to a thresh-
old s, the anonymity set’s size. From this filter, it is possible to assess the Dis-
closure Risk considering an adversary that knows t random patterns of a user
for re-identification.

Privacy Protection - to provide differential privacy to the client-pattern database
pDB, we generate a bipartite graph G of clients U , patterns P with |U | = n,
|P | = m, from the dictionary {client : pattern}.

Next, we choose a probability p = 0.005, 0.05, 0.1, 0.2, 0.3, 0.4, sample 10
bipartite random graphs g ∈ G(n,m, p), and apply the noise-graph mechanism
An,m,p to G, which by Theorem1, is ε-edge-differentially private for ε = ln( 1−p

p ).
This yields the corresponding values of ε = 5.29, 2.94, 2.19, 1.38, 0.84 and 0.40.
However, we will focus on the values of p, since it is more interpretable, for
example, the information loss may be directly calculated as in (1). Then, we get
the protected client-pattern database ˜pDB from An,m,p(G).

Results Evaluation - finally, we evaluate the privacy protection step through
three metrics: information loss, disclosure risk, and utility analysis of patterns.

5 Experiments and Results

This section describes the dataset we used for experiments and discusses our
main results.

In this effort, we use two datasets from a financial institution containing
5 000 and 50 000 individuals’ sequences representing the temporal evolution
product purchase categories based on Classification of Individual Consumption
According to Purpose (COICOP)1 for July 2017 grouped by days.

The WinCopper algorithm [2] was used to extract sequential patterns under
temporal constraints. The algorithm was executed on two datasets through dif-
ferent minimal supports. While the minimal support is high, the extracted pat-
terns are few. When minimal support is low (e.g., 0.1), the number of patterns
increases.
1 https://unstats.un.org/unsd/iiss/Classification-of-Individual-Consumption-Accord

ing-to-Purpose-COICOP.ashx.

https://unstats.un.org/unsd/iiss/Classification-of-Individual-Consumption-According-to-Purpose-COICOP.ashx
https://unstats.un.org/unsd/iiss/Classification-of-Individual-Consumption-According-to-Purpose-COICOP.ashx
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Disclosure Risk Assessment. We evaluate the Disclosure Risk considering the
anonymity set sizes depending on the adversarial knowledge prior to any pri-
vacy protection. Thus, Fig. 2 shows the cumulative distribution of the number of
customers and the size of the anonymity set grouped by the number of patterns
that an adversary knows. We notice that the larger the sample of patterns an
adversary has, the greater are his opportunities to re-identify unique customers.

Fig. 2. Size of the Anonymity sets depending on the adversarial knowledge with 5000
and 50000 clients.

We remark that even if an adversary re-identifies a record, the customer
will be protected if his/her patterns do not correspond to their actual patterns.
Thus we measure the amount of protection provided by the differentially private
mechanism applied to the data by measuring the Pattern Disclosure Risk. In
this case we are assuming that the adversary has correctly linked his knowledge
to a unique record and tries to learn additional patterns of the client.

Fig. 3. Pattern Disclosure Risk for datasets with 5000 and 50000 clients.

Figure 3 shows the Pattern Disclosure Risk distributions for the datasets
with 5 000 and 50 000 clients. Therefore, increasing the probability of p of
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randomization moves the density towards the left, decreasing the disclosure risk
for the published patterns. We also observe that for the value of p = 0.005
(ε = 5.29), most of the patterns remain intact. Hence the privacy provided by
such ε is limited.

Information Loss and Data Utility Evaluation. For this evaluation, we measure
the information loss and data utility in function of the p = 1

eε−1 for ε-differential
privacy added to the dataset. The information loss may be measured without
the need for any experiments by observing that the MAE(M, ˜M) corresponds to
the client nodes’ average degree in the bipartite Noise-Graph Mechanism. Since
we sampled the noise-graphs g from G(n,m, p), then, in expectation, the average
degree for the client nodes in g is p × m, for p = 0.005, 0.05, 0.1, 0.2, 0.3, 0.4 and
m = 190. That is, the information loss will be:

IL(˜pDB) = p × m (1)

To quantify the data utility, we rely on the NDCG metric. Thus, we measure
how the patterns changed in the most frequent rank position based on the noise
introduced for the top 10, top 20, top 50, and top 100 most frequent patterns.
Figure 4 illustrates the influence of the probability p of randomization in the
data utility in both datasets. We note that, the smaller p (i.e., high epsilon
ε value), the higher the utility. Thus, the patterns’ support is less affected by
the noise introduced by the differential privacy mechanism. Please note that for
every value of p, we measure the average NDCG for the ten repetitions. Finally,
we note that the probability p of randomization defines the privacy guarantee
to be achieved.

Fig. 4. Pattern Data Utility measure for datasets with 5000 and 50000 clients.

6 Conclusion and Future Work

In the present work, we apply an ε-edge-differentially private mechanism to pro-
tect a client-pattern database for sequential pattern sharing, built from a dataset
containing individual purchases. The mechanism is implemented using bipartite
random graphs to add noise over the client-pattern representation. The results
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show that the privacy mechanism is able to protect users’ privacy while keeping
low information loss and good data utility. As future work, we plan to compare
our method to other privacy mechanisms and use graph embedding to represent
the bipartite graph.
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14. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)

15. Lee, J., Clifton, C.: How much is enough? Choosing ε for differential privacy. In:
Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 325–340. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24861-0 22

16. Lien, Y.C.N., Wu, W.J., Lu, Y.L.: How well do teachers predict students’ actions
in solving an ill-defined problem in stem education: a solution using sequential
pattern mining. IEEE Access 8, 134976–134986 (2020)

17. de Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the
crowd: The privacy bounds of human mobility. Sci. Rep. 3, 1–5 (2013)

18. de Montjoye, Y.A., Radaelli, L., Singh, V.K., Pentland, A.: Unique in the shopping
mall: on the reidentifiability of credit card metadata. Science 347(6221), 536–539
(2015)

19. Rocher, L., Hendrickx, J.M., De Montjoye, Y.A.: Estimating the success of re-
identifications in incomplete datasets using generative models. Nat. Commun.
10(1), 1–9 (2019)

20. Salas, J.: Sanitizing and measuring privacy of large sparse datasets for recom-
mender systems. J. Ambient Intell. Humaniz. Comput. (2019). https://doi.org/10.
1007/s12652-019-01391-2

21. Salas, J., Torra, V.: Differentially private graph publishing and randomized
response for collaborative filtering. In: Proceedings of the 17th International Joint
Conference on e-Business and Telecommunications, ICETE 2020-V2: SECRYPT,
Lieusaint, Paris, France, 8–10 July 2020, pp. 415–422. ScitePress (2020)

22. Sánchez, D., Mart́ınez, S., Domingo-Ferrer, J.: Comment on “unique in the shop-
ping mall: on the reidentifiability of credit card metadata”. Science 351(6279),
1274 (2016)

23. Torra, V., Salas, J.: Graph perturbation as noise graph addition: a new perspective
for graph anonymization. In: Pérez-Solà, C., Navarro-Arribas, G., Biryukov, A.,
Garcia-Alfaro, J. (eds.) DPM/CBT -2019. LNCS, vol. 11737, pp. 121–137. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-31500-9 8

24. Wright, A.P., Wright, A.T., McCoy, A.B., Sittig, D.F.: The use of sequential pat-
tern mining to predict next prescribed medications. J. Biomed. Inform. 53, 73–80
(2015)

25. Xu, S., Cheng, X., Su, S., Xiao, K., Xiong, L.: Differentially private frequent
sequence mining. IEEE Trans. Knowl. Data Eng. 28(11), 2910–2926 (2016)

26. Xu, S., Su, S., Cheng, X., Li, Z., Xiong, L.: Differentially private frequent sequence
mining via sampling-based candidate pruning. In: 2015 IEEE 31st International
Conference on Data Engineering, pp. 1035–1046. IEEE (2015)

27. Zheng, Z., Wei, W., Liu, C., Cao, W., Cao, L., Bhatia, M.: An effective contrast
sequential pattern mining approach to taxpayer behavior analysis. World Wide
Web 19(4), 633–651 (2016). https://doi.org/10.1007/s11280-015-0350-4

28. Zhou, F., Lin, X.: Frequent sequence pattern mining with differential privacy. In:
Huang, D.-S., Bevilacqua, V., Premaratne, P., Gupta, P. (eds.) ICIC 2018. LNCS,
vol. 10954, pp. 454–466. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-95930-6 42

https://doi.org/10.1007/978-3-642-24861-0_22
https://doi.org/10.1007/s12652-019-01391-2
https://doi.org/10.1007/s12652-019-01391-2
https://doi.org/10.1007/978-3-030-31500-9_8
https://doi.org/10.1007/s11280-015-0350-4
https://doi.org/10.1007/978-3-319-95930-6_42
https://doi.org/10.1007/978-3-319-95930-6_42


Aggregation Operators and Decision
Making



On Two Generalizations for k-Additivity

Ryoji Fukuda1(B), Aoi Honda2, and Yoshiaki Okazaki3

1 Oita University, 700 Dan-noharu, Oita, Oita 870-1192, Japan
rfukuda@oita-u.ac.jp

2 Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
aoi@ai.kyutech.ac.jp

3 Fuzzy Logic Systems Institute, 680-41 Kawazu, Iizuka, Fukuoka 820-0067, Japan
okazaki@flsi.or.jp

Abstract. There are two generalizations for k-additive set functions:
constructive k-additivity and formulaic k-additivity. We study some
properties around these concepts and their relations. A constructively
k-additive set function is always formulaic k-additive. For a distorted
measure, these two concepts are equivalent. Under certain conditions of
“bounded variation” and “continuity at the ∅,” we prove the constructive
k-additivity for a formulaic k-additive set function.

Keywords: Fuzzy measure · Monotone measure · k-order additivity ·
Möbius transform · Distorted measure

1 Introduction

The concept of k-order additivity was originally introduced for a monotone mea-
sure on a finite set using the Möbius transform (see for example [1–3]). This is
an important concept to reduce the complexity of non-additive measures. As an
example for the identification of a non-additive measure, we need 2n −1 parame-
ters to express a general set function defined on a set with cardinality n; however,
only (n2 + n)/2 parameters are required for a two-additive measure. Assuming
that one uses linear regression for the identification of a non-additive measure,
we use a covariance matrix. For the covariance matrix for a 10 elements’ set, the
number of elements can be reduced to 3025 from 1048576.

There are two approaches to define the k-additivity for non-discrete set func-
tions. One is a constructive approach and the other uses a formulaic relation
among the terms of the Möbius transform. R. Mesiar gave the first generaliza-
tion for a k-additive non-additive measure [4] through the constructive approach.
Fukuda, Honda, and Okazaki [5] proved a monotone decreasing convergence
theorem for the Pan Integral with respect to a monotone measure of this type.
Such monotone measures can be described by several σ-additive signed measures
defined on set spaces, the precise definition of which will be given in Sect. 2, and
this is suitable to estimate integral values. Honda, Fukuda, and Okazaki [6] gave
the definition of formulaic k-additivity. The Möbius transform was extended to
c© Springer Nature Switzerland AG 2021
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non-discrete set functions for this definition, and the definition and some equiva-
lent conditions were described using this Möbius transform. A distorted measure
μ is a set function, which can be represented by μ(A) = f(m(A)) using a proba-
bility measure m(·) and a non decreasing function f . The formulaic k-additivity
is essentially equivalent to the fact that the distortion function f is a k-order
polynomial [6].

Briefly, constructive k-additivity is useful for estimations or calculations, and
formulaic k-additivity is a natural extension of k-additivity for the finite ele-
ment case. The present study attempts to show that these two definitions are
essentially the same. This problem is naturally valid on a finite set or on a finite
σ-algebra. We analyze the structures of our settings in the finite case and describe
the relations between the two generalizations for k-additivity. There are some
natural conditions for this extension. A σ-additive measure satisfies continuity
from above and below, and this is a key property for the extension of measures.
A non-additive set function is not always continuous from above or below, but
we assume these continuities.

Under these settings, we show the following properties in this paper.

(a) All constructive k-additive set functions are formulaic k-additive.
(b) A distorted measure is formulaic k-additive if and only if it is constructively

k-additive.
(c) Consider a set function μ defined on a countably generated σ-algebra.

Then, if a formulaic k-additive set function μ satisfies certain conditions
of “bounded variation” and “fine continuity at ∅,” μ is constructively k-
additive.

By showing the above problems, we will try to make sure the richness of the
concepts of k-additivity.

2 Definitions and Notations

Throughout this paper, (X,B) denotes a measurable space, that is, X is a non-
discrete set and B is a σ-algebra (B ⊂ 2X). We assume that any set function
μ defined on B satisfies μ(∅) = 0. We also assume that all one-point sets are
measurable. Let n be a positive integer. We define an n-set space X(n) as follows.

X(n) = {{xk}n
k=1 ⊂ X, xj �= xk if j �= k}.

X(n) can be also represented by

X(n) = {(x1, . . . , xn) ∈ Xn : xj �= xk if j �= k}/ ∼,

where the equivalence relation ∼ is defined by:

(x1, . . . , xn) ∼ (y1, . . . , yn).
⇐⇒ Two sets {x1, . . . , xn} and {y1, . . . , yn} are identical.
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Let Bn denote a standard product σ-algebra on Xn, and let B(n) be the σ-algebra
on X(n) determined by the restriction (each element is different) and the equiva-
lence relation ∼. This is one of the easiest way to construct a σ-algebra on the set
spaces. These may be too fine to satisfy the uniqueness of σ-additive measures.
Then, the structures of the set spaces may not be optimal for a constructively
k-additive measure. At this step, we select one possible setting.

For a measurable set A ∈ B, we define

A(n) = {(x1, . . . , xn) ∈ X(n) : xj ∈ A, j ≤ n}.

Moreover, for U ∈ B(j) and V ∈ B(k), we define

U(×)V = {(x�)
j+k
�=1 ∈ X(j+k) : (xφ(1), . . . , xφ(j)) ∈ U, (xφ(j+1), . . . , xφ(j+k))

∈ V for some permutation φ of (1, . . . , j + k)}.

We remark that U(×)V is an element of B(j+k) if U ∈ B(j) and V ∈ B(k).
We mainly deal with these set operations for infinite (measurable) sets. For

finite sets, if their cardinality is very small, A(n) or U(×)V can be empty.
Now we are prepared to define constructive k-additivity.

Definition 1 (constructive k-additivity [5]). A set function μ on B is con-
structively k-additive (k ∈ N), or μ has constructive k-additivity, if there exists
a σ-additive signed measure μj on (X(j),B(j)) for each j = 1, 2, . . . , k such that:

μ(A) =
k∑

j=1

μj(A(j))

for any A ∈ B.

Consider the case where B is a finite family and X essentially is a finite set.
Then, the classical Möbius transform and the inverse formula are available in
this situation. Our generalization for the Möbius transform is a natural extension
of Möbius transform for finite sub σ-algebras.

Definition 2 (generalized Möbius transform [6]). Let μ be a set function
on B and set Dn = {{A1, A2, · · · , An} : Aj ∈ B, Aj ∩ Ak = ∅, j, k ≤ n, j �=
k} for any n ∈ N, that is, Dn is the family of all n disjoint measurable sets’
combinations. A generalized Möbius transform {νn} of μ, which is a sequence of
functions on Dn, is defined as follows.

(a) ν1(A) = μ(A), ∀A ∈ B.

(b) νn(A1, A2, . . . , An) = μ(A1 ∪ A2 ∪ · · · ∪ An) −
{

n−1∑

j=1

∑

1≤i1<···<ij

νj(Ai1 , · · · ,

Aij
)

}
, ∀{A1, A2, . . . , An} ∈ Dn.

We call νj() the j-order adjusting function for each j ∈ N.
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Using these concepts, another generalization for k-additivity is given as follows.

Definition 3 (formulaic k-additivity [6]). Let μ be a set function on B and
{νn} be the generalized Möbius transform of μ. μ satisfies formulaic k-additivity
(or μ is a formulaic k-additive set function) if νj(A) = 0 for any A ∈ Dj and
j ≥ k + 1.

Formulaic k-additivity satisfies the following equivalent conditions.

Proposition 1 [6] (Theorem 10)
Let μ be a set function on B, and let {νn} be its generalized Möbius transform.
Then, the following are equivalent.

(a) μ is formulaic k-additive.
(b) νn = 0 for any n > k.
(c) Assume that (A1, · · · , Ak−1, B1), (A1, · · · , Ak−1, B2) ∈ Dk, and B1∩B2 = ∅.

Then

νk(A1, · · · , Ak−1, B1 ∪ B2) = νk(A1, · · · , Ak−1, B1) + νk(A1, · · · , Ak−1, B2).

Remark. Using condition (b), a formulaic k-additive set function is also formulaic
k′-additive for any k′ ≥ k.

3 Formulaic k-Additivity of a Constructively k-Additive
Set Function

In this section, we prove the formulaic k-additivity of a constructively k-additive
set function.

Proposition 2. Let μn be a σ-additive signed measure on (X(n),B(n)), and μ
be a set function on B defined by

μ(A) = μn(A(n)).

Then, for each k ≤ n, νk is represented by

νk(A1, . . . , Ak) =
∑

i1 + · · · + ik = n
1 ≤ i1, . . . , ik

μn(A(i1)
1 (×) · · · (×)A(ik)

k ).

Proof. We will prove this property by induction on k. For k = 1, this property is
easily given by the fact that ν1(A1) = μ(A1) = μn(A(n)). Assume the assertion
for k ≤ k0 − 1. Then, we have
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νk0(A1, · · · , Ak0)

= μ(A1 ∪ · · · ∪ Ak0) −
k0−1∑

j=1

∑

1≤�1<···<�j≤k0

νj(A�1 , . . . , A�j
)

= μn((A1 ∪ · · · ∪ Ak0)
(n)) −

k0−1∑

j=1

∑

1≤�1<···<�j≤k0

νj(A�1 , . . . , A�j
)

=
∑

j1+···+jk0=n

μn(A(j1)
1 (×) · · · (×)A(jk0 )

k0
)

−
k0−1∑

j=1

∑

1≤�1<···<�j≤k0,

∑

i1+···+ij=n

μn(A(i1)
�1

(×) · · · (×)A(ij)
�j

) (1)

=
∑

j1+···+jk0=n

μn(A(j1)(×) · · · (×)A(jk0 ))

−
∑

i1+···+ik0=n,∃j,ij=0

μ(A(i1)
�1

(×) · · · (×)A(ik0 )

�k0
)

=
∑

j1 + · · · + jk0
= n

1 ≤ j1. · · · , jk0

μn(A(j1)
1 (×) · · · (×)A(jk0 )

k0
)

We obtain formula (1) by the induction hypothesis. This implies the assertion
for k = k0 and concludes the proof. ��
Theorem 1. For any n ∈ N, a constructive n-additive set function satisfies
formulaic n-additivity.

Proof. We consider the case of

μ(A) = μn(A(n)).

Using Proposition 2, for any disjoint sets A1, . . . , An−1, B1, B2 ∈ B C we have:

νn(A1, . . . , An−1, B1 ∪ B2) = μn(A1(×) · · · (×)An−1(×)B1 ∪ B2)
= μn(A1(×) · · · (×)An−1(×)B1) + μn(A1(×) · · · (×)An−1(×)B2)
= νn(A1, . . . , An−1, B1) + νn(A1, . . . , An−1, B2).

Then, the above formula follows the formulaic n-additivity of μ using
Proposition 1.

Generally, μ can be represented by

μ =
n∑

k=1

μk(A(k))

using signed measures μk on (X(k),B(k)). By the above arguments, A �→ μk(A(k))
satisfies formulaic k-additivity. Then these are formulaic n-additive since k ≤ n
(Recall the remark after Proposition 1). ��
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4 k-Additivity of Distorted Measure

A set function μ on B is a distorted measure if there is a probability measure
m on (X,B) and non-decreasing continuous function f on R with f(0) = 0 such
that

μ(A) = f(m(A))

for any A ∈ B. The non-decreasing function f is called “a distortion function”.
A distorted measure is monotone measure, that is, μ(A) ≤ μ(B) if A ⊂ B. If a
distorted measure is formulaic k-additive measure, the distortion function must
be a polynomial.

Proposition 3 [6] (Theorem 17)
Let m be a probability measure on (X,B). Let f be the distortion function of
a distorted measure μ(A) = f(m(A)) (A ∈ B). We assume that, for any t, s ∈
{m(A) : A ∈ B} and A ∈ B with m(A) = t, there exists B ⊂ A such that μ(B) =
s (this property is called “strong Darboux property”). Then, μ is formulaic k-
additive if and only if f is a k-degree polynomial.

In the case where the distortion function of a distorted measure μ is a k-degree
polynomial, then μ is constructively k-additive. This property was essentially
proven by R. Mesiar [4], and we explain this using our notations.

Proposition 4 (R. Mesiar [4])
Let m be a positive finite σ-additive measure on (X,B) and μ be a distorted
measure given by μ(A) = f(m(A)) (A ∈ B) using a distortion function f . If f
is a k-th degree polynomial, then μ is constructively k-additive.

Proof. We only need to prove this proposition for f(x) = xk. The product mea-
sure mk (defined on (Xk,Bk)) can be easily reduced to the set space (X(k),B(k)),
which concludes the proof. ��
Summing up the propositions in this section, we arrive at the following theorem.

Theorem 2. Let μ be a distorted measure on (X,B) and k ∈ N. Assume that
the distortion function satisfies the strong Darboux property. Then, μ is con-
structively k-additive if and only if μ is formulaic k-additive. ��

5 k-Additivity in a General Case

We have proved that any constructively k-additive set functions are formulaic
k-additive. In this section, we consider whether the reverse statement is true.

First, we consider the case where B is a finite family. As we mainly deal with
infinite measurable spaces, the hypothesis “all one-point sets are measurable”
must be removed, and the definition of the n-th power set A(n) should be modi-
fied. For an element x of X, let [x] denote the smallest measurable set including
x. Then, the definition of A(n) is modified by:

A(n) = {(x1, x2, . . . , xn) ∈ An : if j �= j′, xj′ �∈ [xj ]}.
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Remark 1. Let B be a finite σ-algebra. Then, there exists a family of atoms
D = {D1,D2, · · · ,DL}, that is, D ⊂ B is a disjoint family satisfying B = σ(D).
B(n) (n ∈ N) can be expressed as follows:

B(n) = σ ({Di1(×) · · · (×)Din
: 1 ≤ i1 < · · · < in ≤ n}) .

{Di1(×) · · · (×)Din
: 1 ≤ i1 < · · · < in ≤ n} is the family of all atoms in B(n).

Proposition 5. Let (X,B) be a measurable space with the finite σ-algebra B.
Assume that a set function μ is formulaic k-additive. Then, for each j ≤ k, we
can construct a measure μj on each set space (X(j),B(j)) satisfying

μ(A) =
k∑

j=1

μj(A(j)).

Proof. Because the σ-algebra B is a finite set family, there exists a finite partition
{Dj}n

j=1 of X such that B = σ({Dj}n
j=1). Then, any A ∈ B can be represented

by

A =
L⋃

�=1

Di�
, 1 ≤ i1 < · · · < iL ≤ n.

Let j ≤ k be a positive integer. Then, B(j) (the σ-algebra of the set space X(j))
can be represented as

B(j) = σ
({Di1(×) · · · (×)Dij

: 1 ≤ i1 < · · · < ij ≤ n}) ,

and an element in B(j) can be represented by a finite union of some subset of
{Di1(×) · · · (×)Dij

: 1 ≤ i1 < · · · < ij ≤ n}.

Without loss of generality, we assume that �i = i for each i ≤ L. Then, the j-th
power set is given by

A(j) =
⋃

1≤�1<�2<···<�j≤L

D�1(×) · · · (×)D�j
.

Let {νj} be a Möbius transform of the set function μ. Then, νj = 0 for any
j ≥ k + 1. We define a measure μj on (X(j),B(j)) by

μj(Di1(×) · · · (×)Dij
) = νj(Di1 , · · · ,Dij

)
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for each (i1, . . . , ij) (1 ≤ i1 < · · · < ij ≤ n).

μ(A) = μ(
L⋃

�=1

D�)

=
k∑

j=1

∑

1≤i1<···<ij≤L

ν(Di1 , · · · ,Dij
)

=
k∑

j=1

∑

1≤i1<···<ij≤L

μj(Di1(×) · · · (×)Dij
)

=
k∑

j=1

μj(A(j)).

Thus we have proved the proposition. ��
For further discussion, we will give some notations. Recall that Dj (j ∈ N)

denotes the family of j-disjoint measurable sets. Let D be an element of Dj

(D = {D1, · · · ,Dj} ∈ Dj). Set

νj(D) = ν(D1, · · · ,Dj),

and
(×D) = D1(×) · · · (×)Dj ⊂ X(j).

Now, we give the following definitions.

Definition 4. Let μ be a set function on B and {νj} be its Möbius transform.
We define the j-th order total variation of νj as follows.

‖νj‖ = sup{
L∑

�=1

|ν(D�)| : L ∈ N,D� ∈ Dj , � ≤ L, (×D�) ∩ (×D�′) = ∅ if �= �′}.

Then, μ is said to have k-th order bounded variation if ‖νj‖ < ∞ for any j ≤ k.

Next, we define the fine continuity of μ at ∅.

Definition 5. Let μ be a set function on B and {νj} be its Möbius transform.
Then, the j-th adjusting function νj has fine continuity at ∅ if, for any sequence

{{D
(�)
i }N�

i=1}∞
�=1 of the disjoint finite set family in Dj satisfying

N�⋃

i=1

(×D
(�)
i ) ↘ ∅ as � → ∞,

νj satisfies

lim
�→∞

N�∑

i=1

|νj(D
(�)
i )| = 0.

Moreover, μ is said to have k-order fine continuity at ∅ iff νj has fine continuity
at ∅ for j ≤ k.
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Using these concepts, we will show the constructive k-additivity of a formulaic
k-additive set function. To prove the existence of the corresponding σ-additive
measure, we use the following extension theorem. This is well known for a non-
negative measure (see [7] for example); however, using standard additional argu-
ments, the statement is valid in the following form.

Theorem 3 [Caratheodory’s extension theorem]. Let A be an algebra on X and
μ be a finitely additive signed measure on (X,A). Assume that

sup

{
n∑

i=1

|μ(Ai)| : n ∈ N, {Ai}n
i=1is a disjoint family in A

}
< ∞,

and
Nn∑

i=1

μ(A(n)
i ) → 0 (n → ∞),

for an arbitrary sequence of the disjoint family {{A(n)
i }Nn

i=1}∞
n=1, Nn ∈ N for each

n ∈ N, for which the union
Nn⋃

i=1

A
(n)
i decreases to an empty set. Then, there exists

an extension μ̃ on (X,σ(A)) satisfying μ̃(A) = μ(A) for any A ∈ A.

Using these concepts and the above extension theorem, we arrive at the
following theorem.

Theorem 4. Let A be a countable algebra, and assume that B = σ(A). Let μ
be a set function defined on B and k be a positive integer satisfying the following
properties.

(a) μ is a formulaic k-additive set function on (X,B).
(b) μ has k-oder bounded variation.
(c) μ has k-oder fine continuity at ∅.
(d) μ is continuous from below and above.

Then, μ is constructively k-additive on (X,σ(A)).

Proof. For a countable algebra A, we can construct a sequence {An}n∈N of
increasing finite algebras, which satisfies A =

⋃
n∈N

An. Then, A(j) =
⋃∞

n=1 A(j)
n

for any j ≤ k. Using Proposition 5, for each n ∈ N, there exist σ-additive
measures μ

(n)
j on (X(j),A(j)

n ) (j ≤ k) satisfying

μ(A) =
k∑

j=1

μ
(n)
j (A(j)), A ∈ An.

Let us define an extension μ̃
(n)
j of μ

(n)
j as follows.

μ̃
(n)
j (U) =

{
μ
(n)
j (U) if U ∈ A(j)

n

0 if U �∈ A(j)
n , U ∈ A(j).
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Then, for each j ≤ k and U ∈ A, the sequence {μ̃(n)
j (U)}∞

n=1 is bounded by the
assumption (b). In general, a bounded sequence has a convergent sub-sequence.
Thus, by countably selecting sub-sequences many times, there exists a sub-
sequence μ

(n�)
j such that {μ

(n�)
j (U)}� converges for any U ∈ A and j ≤ k.

Thus, we define a set function

μj(U) = lim
�→∞

μ
(n�)
j (U).

Any element U ∈ A belongs to An for a sufficiently large n ∈ N and μ
(n)
j is finitely

additive on An. Then, the limit μj is also finitely additive on A. Assumptions
(b) and (c) imply that μj satisfies the assumptions of Theorem 3 and μj can be
extended on (X(j),B(j)) as a σ-additive signed measure for j ≤ k.

On a finite σ algebra constructive k-additivity is derived from formulaic k-
additivity. Thus, constructive k-additivity is valid on A, and using the continuity
from above and below (condition (d)), this property can be extend to the minimal
monotone class including A. It is well known that this class is same with σ(A)
(see [8] for example). Then, we obtain constructive k-additivity on (X,σ(A)). ��

6 Conclusion

In this study, we discussed the relation between constructive and formulaic
k-additivity. A constructively k-additive set function is always formulaic k-
additive. A distorted measure is constructively k-additive if and only if it is
formulaic k-additive, if the corresponding distortion function satisfies the strong
Darboux property. We defined “k-order bounded variation” and “fine continuity
at ∅” for a set function, and using these concepts, we gave a sufficient condition
for constructive k-additivity for a formulaic k-additive measure.

Constructive k-additivity must be useful for further arguments. The existence
of a σ-finite measure is important, for example, to construct an Lp-theory for
functional analysis on non additive monotone measure spaces. There remain
several problems for the advance of these concepts. To show the uniqueness of
the σ-additive measure on the set spaces, to make the structure of σ-algebra of
the set spaces clear, and other detailed problems. We have to try to solve these
problems.
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1 IRIT - CNRS, Université de Toulouse, Toulouse, France
{dubois,fargier,romain.guillaume}@irit.fr
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Abstract. Probabilistic and possibilistic models of sequential decision
problems are known to possess good behavioral and algorithmic proper-
ties. In this paper, the range of models of problems of sequential decision
under uncertainty that are dynamically consistent, consequentialist and
allow for tree reduction is enlarged by considering a representation of
uncertainty that is both probabilistic and possibilistic. The correspond-
ing utility functional is expected utility for highly likely states, and an
optimistic or pessimistic possibility-based criterion for unlikely states.

Keywords: Decision tree · Possibility theory · Fuzzy measures · Belief
functions

1 Introduction

In sequential decision making a strategy is a conditional plan that assigns a
(possibly non deterministic) action to each state where a decision has to be
made (also called “decision node”). Each strategy leads to a compound lottery,
following Von Neuman and Morgenstern’s terminology [12] - roughly, it is a tree
representing the different possible scenarios, and thus the different possible final
states that the plan/strategy may reach. The optimal strategy is then the one
that minimizes a criterion whose value depends on utilities of final states and
the resulting compound lottery.

Three assumptions are desirable in order to accept an optimal strategy with-
out questioning its meaning. Those assumptions are:

– Dynamic Consistency: when reaching a decision node, following an optimal
strategy, the best decision at this node is the one that had been considered
so when computing this strategy, i.e. prior to applying it.

– Consequentialism: the best decision at each step of the problem only depends
on potential consequences at this point.

– Tree Reduction: a compound lottery is equivalent to a simple one, assigning
probabilities to final states.
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Those three assumptions are instrumental to enable an optimal strategy to be
computed using dynamic programming [10].

When the decision maker is able to provide a probability distribution on the
possible states and considers that the utilities are additive, a classical approach
is the one based on expected utility. Under this strong assumption, the above
three assumptions are satisfied.

When the problem is pervaded with possibilistic uncertainty, two families
of criteria make sense: a Sugeno integral-based criterion [5] and the Choquet
integral [6]. The criterion based on Choquet integral turns out to be incompatible
with the above assumptions: it may happen that none of the optimal strategies
is dynamically consistent nor consequentialist The possibilistic criteria based on
Sugeno integral do not meet such difficulties. Nor does the generalization of both
optimistic and pessimistic possibilistic Sugeno proposed by [7]. It aggregates
optimistic and pessimistic criteria by means of a uninorm [13], a semi-group
operation whose identity plays the role of a degree of optimism. Contrary to
other criteria that account for a degree of optimism, like the Hurwicz criterion,
the criterion proposed in [7] satisfies the three assumptions governing a good
behavior of the decision tree.

In the present paper, we are looking for new decision criteria, beyond
expected utility and possibilistic integrals, that can apply to decision trees and
respect the three properties recalled above (Dynamic Consistency, Consequen-
tialism and Tree Reduction).

2 Decision Trees

A convenient language to introduce sequential decision problems is the one of
decision trees [10]. This framework proposes an explicit graphical model, repre-
senting each possible scenario by a path from the root to the leaves of a tree.
Formally, a decision tree T = (N , E) is such that N contains three kinds of
nodes (see Fig. 1 for an example):

– D is the set of decision nodes (depicted by rectangles).
– LN is the set of leaves, that represent final states in S; such states can be

evaluated by a utility function: ∀si ∈ S, u(si) is the degree of satisfaction of
eventually being in state si (of reaching the corresponding node in LN ). For
the sake of simplicity we assume, without loss of generality, that only leaf
nodes are attached utilities.

– X is the set of chance nodes (depicted by circles).

For any node ni ∈ N , Succ(ni) ⊆ N denotes the set of its children. In a decision
tree, for any decision node di, Succ(di) ⊆ X : Succ(di) is the set of actions that
can be chosen when di is reached. For any chance node xi, Succ(xi) ⊆ LN ∪ D:
Succ(xi) is the set of possible outcomes of action xi - either a leaf node is
observed, or a decision node is reached (and then a new action should be chosen).

Solving a decision tree amounts to building a strategy, i.e. a function δ that
associates to each decision node di an action (i.e. a chance node) in Succ(di):
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Fig. 1. A possibilistic decision tree.

δ(di) is the action to be executed when decision node di is reached. Let Δ be the
set of strategies that can be built for T . We shall also consider the subtree Tn of
T rooted at node n ∈ T , and denote by Δn its strategies: they are subtrategies
of the strategies of Δ.

The satisfaction of the decision maker for a consequence (on a leaf of the
tree) is captured by a utility degree on a totally ordered scale. The scale [0, 1] is
generally chosen for these degrees, but any ordered set can be used.

Here, we focus on the case where the information at each chance node is
fully captured by a distribution over outcomes of the chance nodes, namely a
possibility distribution π and/or a probability distribution p. When bearing on
the leaf nodes, such distributions define simple lotteries on the utility degrees.
More formally:

– A simple probabilistic lottery Lp [12]: is a probability distribution p on a set
of utility degrees, Λ = {λ1, ..., λn}. The probabilistic lotteries will be written
as Lp = <p1/λ1, ..., pn/λn> with pi ∈ [0, 1],

∑n
i=1 pi = 1.

– A simple possibilistic lottery Lπ [5] is a normalized possibility distribution π
on a set of utility degrees, Λ, both being expressed in the same ordered scale.
The possibilistic lotteries will be written as Lp = <π1/λ1, ..., πn/λn> with
πi ∈ [0, 1],maxn

i=1 πi = 1.

In a lottery Lπ (resp. Lp), the value πi (resp. pi) is the possibility (resp. proba-
bility) degree of getting utility λi according to the decision strategy captured by
the lottery. For the sake of brevity, the λi’s such that πi = 0 (resp. pi = 0) are
often omitted in the notation of a lottery (e.g., (<1/0.8>) denotes the lottery
that provides utility 0.8 for sure, all the other utility degrees being impossible).

The expected utility of probabilistic simple lotteries was proposed by Von
Neuman and Morgernstern [12] as a decision criterion under risk: E(Lp) =
∑

λi∈Λ λi · pi. Dubois and Prade [5] proposed to use optimistic and pessimistic
possibilistic criteria, denoted by UPes and UOpt in this paper, to evaluate the
global utility of a possibilistic lottery using UPes(Lπ) = minλi∈Λ max(1 − πi, λi),

and UOpt(Lπ) = maxλi∈Λ min(πi, λi).
Let us now consider full-fledged strategies. A strategy in Δ can be viewed as

a connected subtree of T where there is exactly one edge (and thus one chance
node) left at each decision node - skipping the decision nodes, we get a chance tree
or, using von Neuwman and Morgernstern’s terminology, a compound lottery:
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like simple lotteries, which are distributions over utilities, compound lotteries
are distributions over (simple or compound) lotteries.

The idea is to define a simple lottery equivalent to the original, compound
one and to apply the decision criterion to this simple lottery.

Definition 1 (Reductionp). For any probabilistic compound lottery of the form
Lp = <p1/Lp

1, . . . , pm/Lp
m>, Redp(Lp) is the simple lottery that associates to

each λi the probability degree pi =
∑

j=1,...,m pj · pj
i , where pj

i denotes the prob-
ability of getting λi though lottery Lp

j and pj the probability of getting Lp
j .

Definition 2 (Reductionπ). For any possibilistic compound lottery of the form
Lπ = <π1/Lπ

1 , . . . , πm/Lπ
m>, Redπ(Lπ) is the simple lottery that associates to

each λi the possibility degree πi = maxj=1,...,m min(πj , π
j
i ), where πj

i denotes the
possibility of getting λi though lottery Lπ

j and πj the possibility of getting Lπ
j .

The principle of lottery reduction allows the comparison of compound lot-
teries: L is preferred to L′ iff its reduction is preferred to the one of L′ and
optimality can then be soundly defined:

– δ ∈ Δ is optimal for a decision tree T iff ∀δ′ ∈ Δ,C(Red(Lδ)) � C(Red(Lδ′)),

for a criterion C. The principle of monotonicity and the one of decomposition
[12] are valid for expected utility, and also for UPes and UOpt in a weak form:

Definition 3 (Weak monotonicity). A preference criterion C over possi-
bilistic/probabilistic lotteries is said to be weakly monotonic iff whatever L, L′

and L′′, whatever a normalized possibility/probability distribution w, v:

C(L) ≤ C(L′) ⇒ C(<w/L, v/L′′>) ≤ C(<w/L′, v/L′′>). (1)

Importanty, all approaches that satisfy weak monotonicity, and in particular
in the approach considered in this paper, also satisfy Dynamic Consistency, Con-
sequentialism and Tree Reduction. This guarantees coherence with the intuition
of rationality; this is also important from the algorithmic point of view, since it
allows to find an optimal strategy by dynamic programming.

In the following we consider decision trees where uncertainty is captured by
set functions that are more general than probability and possibility measures,
while taking into account a degree of optimism of the decision maker, although
without giving up the monotonicity principle.

3 Hybrid Possibility-Probability Measures

The three previous criteria (expected utility, pessimistic and optimistic possi-
bilistic utility functionals) are particular instances of generalized integrals (Cho-
quet integral for expected utility, Sugeno integral for the other ones) based on
fuzzy measures.
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Definition 4. A fuzzy measure is a set function μ : 2S → [0, 1], satisfying the
following axioms:

– μ(∅) = 0; μ(S) = 1 (limit conditions)
– μ(A ∪ B) ≥ μ(A) (monotony)

Fuzzy measures include, among others, probability measures, necessity mea-
sures and possibility measures.1

However, we look for special fuzzy measures representable by means of lot-
teries (or, equivalently, by distributions on utility values). Hence they must be
decomposable:

Definition 5 [4]. A decomposable fuzzy measure is a fuzzy measure μ for which
there is a t-conorm2 S such that μ(A ∪ B) = S(μ(A), μ(B)) whenever A and B
are disjoint.

Possibility measures are max-decomposable (for the t-conorm max), while prob-
ability measures are additively decomposable using the �Lukasiewicz t-conorm
min(a + b, 1). To define lottery reduction, we also need a generalization of the
notion of independence between events.

Definition 6. Let T be a triangular norm. Two events A and B are said to
be T -separable with respect to a fuzzy measure μ if and only if μ(A ∩ B) =
T (μ(A), μ(B)) for a t-norm T .

If A and B are disjoint events T -separable from another event C, then, since
(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C), a decomposable fuzzy measure should satisfy

T (S(μ(A), μ(B)), μ(C)) = S(T (μ(A), μ(C)), T (μ(B), μ(C)),

which requires a property called Conditional Distributivity of T over S. This
property is essential for enabling the reduction of generalised lotteries.

Definition 7. A t-norm T is conditionally distributive over a t-conorm S if for
all x, y, z ∈ [0, 1] we have

(CD)T (x, S(y, z)) = S(T (x, y), T (x, z)), whenever S(y, z) < 1.

In [3], it has been proved that the only family of pairs (t-conorm, t-norm) that
satisfy the condition (CD) are built from the pairs (max, T ) and (min(a+b, 1),×)
[3,9], where T is an arbitrary continuous t-norm. It is a parametric family of pairs
denoted by (Sα, Tα), with parameter α, where Sα (resp. Tα) is the ordinal sum [9]
of max and min(x+y, 1) (resp. T and product) represented on Fig. 2 for T = min.

1 Given from a possibility distribution π over a set S, the possibility and the necessity
of any event A ⊆ S are defined by Π(A) = maxs∈A π(s), N(A) = 1 − Π(Ā) =
1 − maxs/∈A π(s).

2 A t-conorm is a non-decreasing semi-group operation on [0, 1] with identity 0 and
absorbing element 1. A t-norm is a non-decreasing semi-group operation on [0, 1] with
identity 1 and absorbing element 0. T-norms and t-conorms are gradual models of
conjunction and disjunction. See [9] for more details.
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Fig. 2. Sα and T α

The pairs (Sα, Tα) where Tα is distributive on Sα are thus of the form

Sα(x, y) =

{
x + y − α if x > α, y > α

max(x, y)
(2)

Tα(x, y) =

{
α + (x−α)(y−α)

1−α if x > α, y > α

min(x, y) otherwise.
(3)

An Sα-decomposable fuzzy measure, denoted by ρα, is a hybrid function between
possibility and probability measures defined as follows:

Definition 1 (Hybrid π-p measure [3]). A hybrid possibility-probability mea-
sure ρα is a fuzzy measure such that, for disjoint sets A and B:

ρα(A ∪ B) = Sα(ρα(A), ρα(B)) (4)

The fuzzy measure ρα is clearly a probability measure (rescaled on [α, 1]) for
likely events, and a possibility measure if one of the events is unlikely. The
hybrid π-p measure is an example of level-dependent capacity [8]. For events
that can be considered independent A,B, we have

ρα(A ∩ B) = Tα(ρα(A), ρα(B)) (5)

The limit condition ρα(Ω) = 1 comes down to enforcing, for any event A
and its complement Ac, the duality condition ρα(A) + ρα(Ac) = 1 + α, when
min(ρα(A), ρα(Ac)) > α and max(ρα(A), ρα(Ac)) = 1 otherwise.

Because it is decomposable, ρα is completely defined by a distribution of
weights ρα on the singletons of the referential S. Applying (4) to the union of
singletons yields the normalization condition suggested in [3]:

Proposition 1. A distribution ρα on S defines a normalised Sα-decomposable
fuzzy measure if and only if

∑

s:ρα(s)>α

ρα(s) = 1 + (card(C+
α ) − 1) × α (6)

where C+
α = {s, ρα(s) > α}.
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Proof (not given in [3]). Let C+
α = {s, ρα(s) > α}. Then, by associativ-

ity and commutativity we have ρα(S) = Sα
s (ρα(s)) = max(maxs �∈C+

α
ρα(s),

Sα
s∈C+

α
(ρα(s)), and the latter term is Sα

s∈C+
α
(ρα(s)) =

∑
s∈C+

α
ρα(s)−(card(C+

α )−
1)α > α ≥ maxs �∈C+

α
ρα(s). Clearly Sα

s (ρα(s)) = Sα
s∈C+

α
(ρα(s)) = 1 yields condi-

tion (6).

Note that C+
α = ∅. For otherwise, ρα(S) < 1. If card(C+

α ) = 1, then ρα(S) =
maxs ρα(s) = 1, i.e. ρα is a possibility measure. If card(C+

α ) = n, then ρα(S) = 1
reads

∑
s ρα(s) − (n − 1)α = 1, hence

∑n
s ρα(s) = 1 + (n − 1)α and the fuzzy

measure ρα is additive.

Example 1. Consider the S0.7-decomposable fuzzy measure ρ0.7 on the
set {sa, sb, sc, sd}, defined by the distribution ρ0.7(sa) = 0.5 ρ0.7(sb) = 0.5
ρ0.7(sc) = 0.8 ρ0.7(sd) = 0.9. Here, C+

α = {sc, sd}. One can check that
ρ0.7(Ω) = 0.8 + 0.9 − 0.7 = 1. It is normalized.

More generally it is easy to express the value of ρα on general events:

ρα(A) =

⎧
⎪⎨

⎪⎩

∑
s∈A ρα(s) − α(card(A) − 1) if A ⊆ C+

α ,

maxs∈A ρα(s) if A ⊆ C+
α ,

∑
s∈A∩C+

α
ρα(s) − α(card(A ∩ C+

α ) − 1) otherwise.

Note that the third case (C+
α ∩ A = ∅) covers the first. We can moreover prove

that any measure ρα is a plausibility measure in the sense of Shafer [11] obtained
as a probabilistic mixture between a possibility measure and a probability
measure.

Proposition 2. For any hybrid possibility-probability function ρα, there exists
a possibility measure Π with possibility distribution π and a probability measure
P with distribution p such that ρα(s) = απ(s) + (1 − α)p(s) where ∀s, π(s) < 1
implies p(s) = 0. Moreover ∀A, ρα(A) = α maxs∈A π(s) + (1 − α)

∑
s∈A p(s).

Proof. For events, if A∩C+
α = ∅, ρα(A) = α maxs∈A π(w) = αΠ(A)+(1−α)P (A)

since P (A) = 0. Otherwise, if A ∩ C+
α = ∅:

ρα(A) =
∑

s∈A∩C+
α

ρα(s) − α(card(A ∩ C+
α ) − 1)

=
∑

s∈A∩C+
α

(α(1 − p(s)) + p(s)) − α(card(A ∩ C+
α ) − 1)

= αcard(A ∩ C+
α ) − αP (A ∩ C+

α ) + P (A ∩ C+
α ) − α(card(A ∩ C+

α ) − 1)

= α + (1 − α)P (A ∩ C+
α ) = αΠ(A) + (1 − α)P (A)

since Π(A) = 1 and p(w) = 0 for s ∈ C+
α . �

Note that the dual of ρα (ρα(A) = 1 − ρα(A)) is a convex combination of
a necessity measure and a probability measure. Indeed, we have ρα(A) = 1 −
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αΠ(A)−(1−α)P (A) = α(1−Π(A))+(1−α)(1−P (A)) = αN(A)+(1−α)P (A).
When the possibility distribution is vacuous (C+

α = S), it is a special case
of Shafer discounting scheme [11], and is known in the imprecise probability
literature as the linear-vacuous model [1]. In particular, ρα = απ + (1 − α)p is a
normalized ρα distribution.

Hybrid π-p distributions combine models of two extreme behaviors in uncer-
tain contexts, namely when the knowledge can be expressed through a possibility
distribution and when it is can be expressed through a probability distribution.
Hybrid distributions behave like probabilities only on the states with maxi-
mum possibility. As seen above the hybrid model must satisfy the constraint
P (s) = 0 if π(s) < 1,∀s. It is clear that C+

α is the core of π. Then from both
distributions and a given threshold α, we can build the hybrid one ρα using a
weighted average ρα(s) = απ(s)+(1−α)p(s). The idea is that the decision-maker
provides a standard probability distribution (e.g., frequencies) on normal states.
Then she considers that there is a subjective probability α that the actual state
has not been observed, and defines a possibility measure on the states of zero
probability, an idea in agreement with the handling of zero probability events in
De Finetti approach to subjective probability (see [2]).

4 Decision Making on Hybrid π-p Decision Trees

Back to our problematics of decision making under uncertainty, let us consider
hybrid π-p simple lotteries L = <ρ/λ1, ..., ρn/λn>. We define two utility func-
tionals ESOpt and ESPes based on such hybrid π-p distributions:

ESOpt(L) = Sα
i=1,...,n(Tα(ρα,L

i , λi)) (7)

ESPes(L) = 1 − Sα
i=1,...,n(Tα(ρα,L

i , 1 − λi)) (8)

Considering a lottery Lρ = <ρ1/λ1, ..., ρn/λn> we define a lottery (1 − L)ρ

by (1−L)ρ = <ρ1/(1−λ1), ..., ρn/(1−λn)>. We have the following semi-duality
relation

ESPes(Lρ) = 1 − ESOpt((1 − L)ρ). (9)

This property will be useful for some proofs in the following. For the sake of
brevity, we will drop α from Sα and Tα in the sequel.

4.1 Hybrid Utility Functional and Decision Maker Behavior

Let us rewrite ESOpt(L) and ESPes(L) more explicitly so as to lay bare its
meaning.

Proposition 3

ESOpt(L) =

{
UOpt(L) if �i s.t. λi > α with ρα

i > α

EOpt(L) = α +
∑

i|λiρα
i

>α(λi−α)(ρα
i −α)

1−α otherwise
(10)
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ESPes(L) =

{
UPes(L) if �i s.t. λi < 1 − α with ρα

i > α

EPes(L) = 1 − α −
∑

i|1−λi,ρα
i

>α(1−λi−α)(ρα
i −α)

1−α otherwise
(11)

Proof. If �i s.t. λi > α with ρα
i > α then ∀i, T = min is used and S = max too.

So we are back to the UOpt(L) criterion. If there is only one i s.t. λi > α with
ρα

i > α, then ESOpt(L) = Tα(ρα
i , λi) = α + (λi−α)(ρα

i −α)
1−α . For the general case

where there are several i such that min(ρα,L
i , λi) > α, say a set I+ of indices

then T (ρα,L
i , λi) > α, i ∈ I+ only. Then ESOpt(L) =

∑
i∈I+(α+ (λi−α)(ρα

i −α)
1−α )−

(card(I+)−1)α = α+
∑

i∈I+( (λi−α)(ρα
i −α)

1−α ). Using semi-duality between ESPes

and ESOpt we get the expression of the former. �
From Proposition 3 it is easy to check that:

Proposition 4. ESOpt(L) ≤ α iff ESOpt(L) = UOpt(L).
Likewise, ESPes(L) ≥ 1 − α iff ESPes(L) = UPes(L).

Fig. 3. ESOpt(L) and ESPes(L)

In other words, the criterion ESOpt(L) is possibilistic optimistic (= UOpt(L))
so long as entries (utilities or plausibilities) are below the threshold α (distribu-
tion included in blue area on Fig. 3). Otherwise, we get an expected value over
states with plausibilities and utilities greater than α (see green area in Fig. 3,
left). Likewise, with ESPes(L), we get an expected value over states with utility
less than 1−α and with high enough plausibility i.e. greater than α. We get the
pessimistic possibilistic criterion UPes(L) otherwise (with either high utilities or
low plausibilities); see green area in Fig. 3 right side.

Example 2. let D1, D2 and D3 be decisions with ρ0.70 distribution on {a, b, c, d}
with λa = 0.2, λb = 0.6, λc = 0.8, λd = 1, D1 = <0.7/λa, 0.9/λb, 0.6/λc,
0.5/λd>, D2 = <0.75/λa, 0.90/λb, 0.75/λc, 0.5/λd> and D3 = <0.75/λa,
0.85/λb, 0.75/λc, 0.75/λd>. If the DM is optimistic, we can see that the D1

is in the possibility area since ρ0.7
D1

(c) and ρ0.7
D1

(c) are ≤ 0.7 while D2 and D3 are
in EU area ESOpt. We have D3 � D2 � D1. Note that D3 is preferred to D2

since the expected utility to be in the green square Fig. 3 is greater. If the DM
is pessimistic, D1 is in possibility area while D2 and D3 are in EU area since
ρ0.7

D2
(a) = ρ0.7

D2
(a) < 1 − λ and the preference relation is D1 � D2 ∼ D3.
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4.2 Decision Trees with Hybrid π-p Distributions

Consider now decisions tree. We now know how to compare simple lotteries.
In order to compare strategies, i.e. compound lotteries, we define a principle of
reduction of hybrid π-p compound lotteries:

Definition 8 (Reductionρ). For any compound lottery of the form L =
<ρα

1 /Lρα

1 , · · · , ρα
m/Lρα

m >, Redρ(L) is the simple lottery that associates to each
λi the weight ∀λi, ρ

α
i = Sm

j=1T (ρα
j , ρα,j

i ), where ρα,j
i denotes the confidence value

of getting λi though lottery Lρα

j and ρα
j the confidence value of getting Lρα

j .

It is easy to get the following result:

Proposition 5

ρα
i =

⎧
⎨

⎩

maxj=1,...,m min(ρα
j , ρα,j

i ) if �j s.t. ρα
j > α, ρα,j

i > α

α +

∑

j|ρα
j

,ρ
α,i
j

>α
(ρα

j −α)(ρα,i
j −α)

1−α otherwise
(12)

The following proposition states the main result of this paper:

Proposition 6. Given a decision tree with ρα measure, the hybrid criteria
ESOpt and ESPes satisfy the weak monotonicity property.

Proof. We propose a proof for ESOpt, the proof is similar for ESPes. For each
lottery L, we have two cases: (a) �i such that ρi > α and λi > α and (b) ∃i such
that ρi > α and λi > α. Let us explore all possible configurations.

1. L, L′ and L′′ are in (a): ∀i the t-norm min and t-conorm max are used so we
are in possibility case and the weak monotonicity property holds.

2. L and L′ in (a) and L′′ in (b), we need to distinguish two cases:
i) if v ≤ α then we are again in the case with t-norm min and t-conorm

max so the weak monotonicity property holds.
ii) if v > α then <u/L, v/L′′> and <u/L′, v/L′′> are in (b) so

ESOpt(<u/L, v/L′′>) = ESOpt(<u/L′, v/L′′>) so the weak monotonic-
ity is satisfied.

3. L, L′ and L′′ in (b), we need to distinguish three cases:
i) if v ≤ α and u > α then <u/L, v/L′′> and <u/L′, v/L′′> are in (b)

so ESOpt(<u/L, v/L′′>) = α +
∑

i|λi,T P (ρ
α,L
i

,u)>α
(λi−α)×(T P (ρα,L

i ,u)−α)

1−α

= α + (u − α)
∑

i|λi,ρ
α,L
i

>α
(λi−α)×(ρα,L

i −α)

(1−α)2 ≤ ESOpt(<u/L′, v/L′′>)

= α + (u − α)

∑

i|λi,ρ
α,L′
i

>α
(λi−α)×(ρα,L′

i −α)

(1−α)2 so the weak monotonicity is
satisfied.

ii) if v > α and u ≤ α we are in a similar situation as in 2) ii)
iii) if v > α and u > α then we have

ESOpt(<u/L, v/L′′>) = (u − α)ESOpt(L)
(1−α) + (v − α)ESOpt(L′′)

(1−α) − α ≤
ESOpt(<u/L′, v/L′′>) = (u − α)ESOpt(L′)

(1−α) + (v − α)ESOpt(L′′)
(1−α) − α
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4. L′′ in (a) and L, L′ in (b), we need to distinguish two cases: if u > α the
proof is similar to the one in 3) i) and if u ≤ α similar to the one in 2) i).

5. L, L′′ in (a) and L′ in (b), we need to distinguish two cases:
i) if u > α, ESOpt(<u/L, v/L′′>) ≤ α and ESOpt(<u/L′, v/L′′>) > α.
ii) if u ≤ α then ESOpt(<u/L, v/L′′>) ≤ ESOpt(<u/L′, v/L′′>) the proof

is similar to the one in 2) i) since u/L′ is in (a).
6. L in (a) and L′, L′′ in (b), we need to distinguish three cases:

i) if u ≤ α and v > α then the proof is similar to the one in 2) ii).
ii) if u > α and v ≤ α then <u/L, v/L′′> in (a) and <u/L, v/L′′> in (b)

from Proposition 4 the weak monotonicity property holds.
iii) if u > α and v > α then ESOpt(<u/L, v/L′′>) = (v − α)ESOpt(L′′)

(1−α) ≤
ESOpt(<u/L′, v/L′′>) = (u − α)ESOpt(L′)

(1−α) + (v − α)ESOpt(L′′)
(1−α) − α so the

weak monotonicity property holds. �

From Proposition 6, when the decision maker provides a ρ-style decision tree,
ESOpt and ESPes satisfy the three basic properties required in the introduction:
consequentialism, dynamic consistency and lottery reduction.

4.3 Composing Possibilistic and Probabilistic Lotteries

According to Proposition 2, a (compound) lottery can be viewed as two (com-
pound) lotteries, a possibilistic one Lπ = <π1/Lπ

1 , . . . , ππ
m/Lm>, and a proba-

bilistic one Lp = <p1/Lp
1, . . . , pm/Lp

m>, both on the same decision tree. Assume
that πi < 1 implies pi = 0, i = 1, . . . m. We are interested in merging them into
a hybrid lottery, given the parameter α. Proposition 2 leads to define a fusion
operation:

F (π, p, α) =

{
ρα

i = απi if πi < 1,

ρα
i = α + (1 − α)pi otherwise.

(13)

Merging the possibility and probability distributions locally should be equiv-
alent to merging the reduced lotteries at the global level. Moreover, the fusion
operation must be distributive over the reduction operator.

Property 1 (Distributivity over reduction). Let L = (Lπ, Lp) be a
pair of possibilistic and probabilistic compound lotteries on the same decision
tree. Operator F is said to satisfy the distributivity property iff F (Redπ(Lπ),
Redp(Lp), α) = Redρ(<F (π1, p1, α)/F (Lπ

1 , Lp
1, α), . . . , F (πm, pm, α)/F (Lπ

m,
Lp

m, α)>).

Proposition 7. F (π, p, α), defined by Eq. (13), satisfies Property 1.

Proof. When applying reduction to the probability tree followed by F , we
obtain ρi = α + (1 − α)

∑
j pj × pi

j ,∀i s.t. ∃j with pi
j > 0, pj > 0 and

ρi = α maxj min(πj , π
i
j) otherwise. When applying F first: if ∃j with pi

j >

, pj > 0 then ρα,i
j > α, ρα

j > α. From Proposition 5, the ρα-reduction is ρα
i =

α + (1 − α)
∑

j pj × pi
j . Otherwise, the ρα-reduction is maxj=1,...,n min(ρα,i

j , ρα
j )

with min(ρα,i
j , ρα

j ) = απi
j or απj so we obtain ρi = α maxj min(πj , π

i
j). �
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This result ensures the dynamic consistency of the hybrid π-p approach to
sequential decision-making under uncertainty.

5 Conclusion

In this paper, we try to improve the range of decision trees that can be solved
by dynamic programming and respect consequentialism as well as dynamic con-
sistency, beyond standard probabilistic decision trees, and possibilistic ones. We
have shown that everything relies on i) defining the uncertainty measure by
means of a generalized weight distribution on utility values; 2) the possibility
of reducing compound lotteries into simple ones; 3) the definition of a utility
functional by means of a generalized integral. This paper proposes a solution to
this problem, and shows that it leads to a very restricted family of decomposable
measures with respect to a specific family of t-conorms, due to the conditional
distributivity property required to ensure lottery reduction. The paper proves
that the obtained utility functionals satisfy the weak monotonicity property,
which ensures computability of optimal decisions via dynamic programming.
The kind of uncertainty function laid bare in this study turns out to be a Shafer
plausibility (resp. belief) function obtained as a convex mixture of probabil-
ity and possibility (resp.necessity) functions, which opens the way to a natural
interpretation of these uncertainty measures.

References

1. Augustin, T., Coolen, F., De Cooman, G., Troffaes, M.: Introduction to Imprecise
Probabilities. Wiley, Hoboken (2014)

2. Coletti, G., Scozzafava, R.: Probabilistic Logic in a Coherent Setting. Kluwer Aca-
demic Publishers, Dordrecht (2002)

3. Dubois, D., Pap, E., Prade, H.: Hybrid probabilistic-possibilistic mixtures and
utility functions. In: Fodor, J., De Baets, B., Perny, P. (eds.) Preferences and
Decisions Under Incomplete Knowledge. Studies in Fuzziness and Soft Computing,
vol. 51, pp. 51–73. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-
7908-1848-2 4

4. Dubois, D., Prade, H.: A class of fuzzy measures based on triangular norms. Int.
J. Gen Syst 8(1), 43–61 (1982)

5. Dubois, D., Prade, H.: Possibility theory as a basis for qualitative decision theory.
In: Proceedings of the IJCAI, vol. 95, pp. 1924–1930 (1995)

6. Dubois, D., Rico, A.: New axiomatisations of discrete quantitative and qualitative
possibilistic integrals. Fuzzy Sets Syst. 343, 3–19 (2018)

7. Fargier, H., Guillaume, R.: Sequential decision making under ordinal uncertainty:
a qualitative alternative to the Hurwicz criterion. Int. J. of Approx. Reason. 116,
1–18 (2020)

8. Greco, S., Matarazzo, B., Giove, S.: The Choquet integral with respect to a level
dependent capacity. Fuzzy Sets Syst. 175(1), 1–35 (2011)

9. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic, Dor-
drecht (2000)

https://doi.org/10.1007/978-3-7908-1848-2_4
https://doi.org/10.1007/978-3-7908-1848-2_4


66 D. Dubois et al.

10. Raiffa, H.: Decision Analysis: Introductory Lectures on Choices Under Uncertainty.
Addison-Wesley, Reading (1968)

11. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

12. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior.
Princeton University Press, Princeton (1944)

13. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80(1),
111–120 (1996)



Numerical Comparison of Idempotent
Andness-Directed Aggregators

Jozo Dujmović(B)
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Abstract. The goal of this paper is to investigate similarities between andness-
directed graded logic aggregators. Our analysis is based on idempotent soft dis-
junctive aggregators because the differences between hard aggregators are prov-
ably smaller.We propose three difference indicators and use them to compare three
popular andness-directed aggregators: weighted power mean, exponential mean,
and OWA. The results of analysis show that differences between aggregators are
regularly low, and frequently negligible, taking into account the limited precision
of arguments of graded logic aggregators used in decision support systems. This
situation has consequences that are also discussed in the paper.

Keywords: Logic aggregators · Comparison of aggregators · Means · Soft
partial disjunction · OWA

1 Introduction

Andness-directed aggregators are graded logic functions that are widely used in decision
support systems. According to graded logic conjecture [1], in the process of creating
logic aggregation structures, it is necessary and sufficient to have ten basic graded logic
functions: seven idempotent aggregators (pure conjunction, hard partial conjunction, soft
partial conjunction, neutrality, soft partial disjunction, hard partial disjunction, and pure
disjunction), two nonidempotent aggregators (hyperconjunction and hyperdisjunction)
and the standard negation. All logic aggregators are special cases of the graded con-
junction/disjunction (GCD) function. GCD should be andness-directed and weighted:
its properties are adjusted by selecting the desired andness (conjunction degree) and
the desired weights (importance degrees) of arguments. This process is consistent with
observable properties of intuitive human reasoning. So, it is natural to ask the following
questions:

(1) What are the basic aggregators that are suitable for building logic aggregation
structures and how they compare to each other?

(2) How many basic aggregators are necessary to satisfy practical needs of decision
engineering?
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In this paper our goal is to provide some answers to these questions.
The most frequently used idempotent special case of GCD is the hard (partial or

full) conjunction. In the case of n arguments X = (x1, . . . , xn), n ≥ 2, xi ∈ I =
[0, 1], i = 1, . . . , n, this aggregator has the global andness α ∈ [αθ , 1], αθ ∈ ]0.5, 1[
and normalized weights W = (w1, . . . ,wn), wi ∈ ]0, 1[, i = 1, . . . , n, w1 + . . . +
wn = 1. The hard conjunction satisfies internalityA(x1, . . . , xn;W, α) ∈ I , and supports
idempotency and annihilator 0, as follows:

∀x ∈ I , ∀α ∈ I ⇒ A(x, . . . , x;W, α) = x;

∀α ∈ [αθ , 1],∀i ∈ {1, . . . , n}, xi = 0 ⇒ A(x1, . . . , xn;W, α) = 0;

α = n

n − 1
− n + 1

n − 1

∫
In
A
(
x1, . . . , xn;W, α

)
dx1 . . . dxn,W =

(
1

n
, . . . ,

1

n

)
.

The most frequent (and the most practical) value of the threshold andness αθ is
0.75; it provides equal space for soft and hard aggregators. The idempotency condition,
and the n variables that support annihilators create n + 1 restrictive conditions where
all hard conjunctive aggregators are identical. In the vicinity of n + 1 conditions x1 =
0, . . . , xn = 0 and x1 = . . . = xn all hard conjunctive aggregators are “almost identical”.
Consequently, the inevitable question is what happens in the space between these regions
of almost complete sameness? Obviously, the differences between various aggregators
are limited. Thus, our goal is to investigate the range of these differences and their impact
on results of aggregation in decision support systems.

The rest of this paper is organized as follows. In Sect. 2 we briefly survey the reasons
for imprecision of arguments of logic aggregators, and estimate the range of correspond-
ing errors. In Sect. 3 we investigate soft idempotent disjunctive aggregators as the class
of aggregators that offers most diversity between individual aggregators. Experiments
with such aggregators are presented in Sect. 4 and the corresponding conclusions are
presented in Sect. 5.

2 Imprecision and Uncertainty of Human Percepts

Decision making is usually the selection of the most suitable among several alternatives.
The percept of suitability is not an objectivelymeasurable physical property – it is created
in the human mind, and verbally expressed using a rating scale, i.e. a scale of ordered
linguistic labels [2–5]. According to the concept of “magical number seven plus orminus
two” [6] such scales can be reliably used if they have up to 5 or 7 or 9 labels. The number
of labels is regularly odd to have the mean value (labeled medium or average or fair)
present as the median of the scale.

In the case of differentiating 5 degrees of suitability, a convenient rating scale would
be [lowest < low < medium < high < highest]. Typical 7 and 9 degrees rating scales
are [unacceptable < very poor < poor < average < good < very good < excellent]
and [lowest < verylow < low < mid-low < medium < mid-high < high < very high
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< highest]. Linguistic labels can be interpreted as crisp values, fuzzy sets with interval,
triangular or trapezoid membership functions [1], or in the context of type-2 fuzzy
sets [5]. The simplest possible interpretation is that the range [0, 100%] is divided
in n ∈ {5, 7, 9} equal intervals and the respective ranges of indistinguishable human
percepts are 20%, 14%, or 11% of the total range. In other words, the precision of
inputs and parameters of aggregation models is regularly rather low and the variations
in absolute value of 10% or more can be frequently encountered. This conclusion is
consistent with results reported in [7] and [8].

In real life applications, the input values of logic aggregators are imprecise. Conse-
quently, minor differences in aggregator properties cannot discernibly reduce the appli-
cability of results of aggregation of significantly more imprecise inputs. In the case of
aggregators that are imprecise and aggregate imprecise inputs, what is the difference of
aggregator properties that can be considered insignificant or significant? This question
can be answered based on numeric experiments that are presented below.

Imprecision and uncertainty of human percepts also limits the number of inputs of
a single aggregator n. The LSP method [1] suggest 2 ≤ n ≤ 5 in order to facilitate
the comparison and selection of n weights. For larger values of inputs we assume the
associative use of multiple aggregators.

3 The Worst Case Analysis: Soft Idempotent Disjunctive
Aggregators

In the case of hard aggregators of n arguments (either conjunctive or disjunctive) each
aggregator must satisfy n+ 1 conditions that have geometric interpretation: the surface
of idempotent aggregator z = A(x1, . . . , xn;W, α)must contain n+1 straight lines: hard
conjunctive aggregators contain n coordinate axeswhere xi = 0 = z and hard disjunctive
aggregators contain n lines where xi = 1 = z. Then, all such aggregators contain the
idempotency line x1 = . . . = xn = z. In addition, all idempotent aggregators for α = 1
become min (x1, . . . , xn), for α = 0 become max(x1, . . . , xn), and for α = 1/2 become
the arithmetic mean (x1 + . . . + xn)/n. Therefore, the hard (conjunctive or disjunctive)
aggregators share n + 4 common properties. It is more than obvious that with so many
inevitable common properties such functions must be very similar. Thus, it is justifiable
to ask whether in practice we need more than one such an aggregator (with adjustable
weights and andness) for aggregating imprecise human-generated inputs.

To answer the question of the reason for variety of aggregators, it is useful to inves-
tigate the strictly soft idempotent disjunctive aggregators because their variability is
higher than the variability of hard aggregators. Indeed, the soft disjunctive aggregators
contain only the idempotency line and reduce to disjunction for α = 0, and to the arith-
metic mean for α = 1/2. Therefore, they share only 3 common properties. The presence
of significantly smaller number of common properties makes soft disjunctive aggrega-
tors convenient for a worst case analysis: if the differences between various strictly soft
idempotent disjunctive aggregators are sufficiently small, then it is reasonable to expect
that the differences between hard aggregators and hard/soft aggregators are significantly
smaller.
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The general conjunction/disjunction (GCD, see segmented interpolative examples in
[1, 12]) is a continuous graded logic aggregator that usually has the threshold andness
αθ = 0.75 and satisfies the following hard/soft properties:

A(x1, . . . , xn;W, α) = 0, αθ ≤ α ≤ 1, xi = 0, i ∈ {1, . . . , n} (hard con),
A(x1, . . . , xn;W, α) > 0, 0.5 < α < αθ , xi > 0, i ∈ {1, . . . , n} (soft con),
A(x1, . . . , xn;W, α) > 0, 1 − αθ < α < 0.5, xi > 0, i ∈ {1, . . . , n} (soft dis),
A(x1, . . . , xn;W, α) = 1, 0 ≤ α ≤ 1 − αθ , xi = 1, i ∈ {1, . . . , n} (hard dis).

By definition, GCD also satisfies De Morgan duality:

A(x1, . . . , xn;W, α) = 1 − A(1 − x1, . . . , 1 − xn;W, 1 − α).

Some aggregators are naturally strictly soft disjunctive, i.e. they don’t have natural hard
disjunctive properties. Such aggregators satisfy the following properties:

A(x1, . . . , xn;W, α) > 0, 0 < α < 0.5, xi > 0, i ∈ {1, . . . , n} (strictly soft dis),
A(x1, . . . , xn;W, α) < 1, 0 < α < 0.5, xi < 1, i ∈ {1, . . . , n} (strictly soft dis).

Examples of such aggregators are the weighted power mean [9, 10], the weighted expo-
nential mean [1, 9], and OWA [11]. Taking into account that the hard aggregators share
n + 4 common properties, and GCD aggregators combine hard and soft aggregation, it
follows that the strictly soft disjunctive aggregators, in the whole range α ∈ [0, 0.5],
share only 3 common properties: idempotency, the reduction to the arithmetic mean,
and the reduction to the pure disjunction. Thus, the strictly soft disjunctive aggregators
permit the highest variability of aggregators and consequently they can be used as the
worst case in the numerical analysis of the differences between similar aggregators.

4 Experiments with Strictly Soft Idempotent Disjunctive
Aggregators

In decision support applications, the graded logic aggregators are supposed to be andness
directed [12], i.e. to have the global andness as explicitly visible and easily adjustable
parameter. Consequently, the analysis of differences between aggregators must be per-
formed for all values of global andness, and in the case of disjunctive aggregators that
means for 0 ≤ α ≤ 0.5.

In the simplest case, let us compare three single parameter continuous aggregators:
the weighted power mean (WPM), the weighted exponential mean (EXM), and OWA.
Other candidate means either don’t have adjustable parameters, or are strictly bivariate
(e.g. Heronian and Centroidal means), have multiple parameters (e.g. Gini and Sto-
larsky means), or do not support nondecreasing monotonicity (counter-harmonic mean).
Consequently, in the case of equal weights and n = 2 we can use the following three
means:

AWPM (x1, x2; α) =
(
0.5xr2(α)

1 + 0.5xr2(α)
2

)1/r2(α)
, (hard : r2(α) ≤ 0, soft : r2(α) > 0)
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AEXM (x1, x2;α) = 1

t2(α)
ln

[
0.5 exp(t2(α)x1) + 0.5 exp(t2(α)x2)

]
,

AOWA(x1, x2;α) = αmin(x1, x2) + (1 − α)max(x1, x2).

In the case of OWA the global andness is explicitly visible. For WPM and EXM,
functions α �→ r2(α) and α �→ t2(α) are polynomial approximations (taken from [1]),
that provide the desired value of andness (andness directedness) of WPM and EXM
aggregators. The difference between aggregators for n ≥ 2 can be expressed using the
following three indicators (D,M and V ):

DWPM /EXM (α) = 100
∫ 1

0
. . .

∫ 1

0
|AWPM (x1, . . . , xn;α) − AEXM (x1, . . . , xn;α)|dx1 . . . dxn

DOWA/EXM (α) = 100
∫ 1

0
. . .

∫ 1

0
|AOWA(x1, . . . , xn; α) − AEXM (x1, . . . , xn; α)|dx1 . . . dxn

DWPM /OWA(α) = 100
∫ 1

0
. . .

∫ 1

0
|AWPM (x1, . . . , xn;α) − AOWA(x1, . . . , xn; α)|dx1 . . . dxn

MWPM /EXM (α) = 100 max
0≤x1≤1,...,0≤xn≤1

|AWPM (x1, . . . , xn;α) − AEXM (x1, . . . , xn;α)|

MOWA/EXM (α) = 100 max
0≤x1≤1,...,0≤xn≤1

|AOWA(x1, . . . , xn;α) − AEXM (x1, . . . , xn;α)|

MWPM /OWA(α) = 100 max
0≤x1≤1,...,0≤xn≤1

|AWPM (x1, . . . , xn;α) − AOWA(x1, . . . , xn;α)|

VWPM /EXM (α) = 100
∫ 1

0
...

∫ 1

0

|AWPM (x1, . . . , xn; α) − AEXM (x1, . . . , xn; α)|
AWPM (x1, . . . , xn; α) + AEXM (x1, . . . , xn; α)

dx1 . . . dxn

VOWA/EXM (α) = 100
∫ 1

0
....

∫ 1

0

|AOWA(x1, . . . , xn;α) − AEXM (x1, . . . , xn;α)|
AOWA(x1, . . . , xn;α) + AEXM (x1, . . . , xn;α)

dx1 . . . dxn

VWPM /OWA(α) = 100
∫ 1

0
....

∫ 1

0

|AWPM (x1, . . . , xn; α) − AOWA(x1, . . . , xn;α)|
AWPM (x1, . . . , xn; α) + AOWA(x1, . . . , xn;α)

dx1 . . . dxn

DWPM /EXM = 2
∫ 0.5

0
DWPM /EXM (α)dα, DOWA/EXM = 2

∫ 0.5

0
DOWA/EXM (α)dα,

DWPM /OWA = 2
∫ 0.5

o
DWPM /OWA(α)dα,

MWPM /EXM = 2
∫ 0.5

0
MWPM /EXM (α)dα,MOWA/EXM = 2

∫ 0.5

0
MOWA/EXM (α)dα,

MWPM /OWA = 2
0.5∫
0
MWPM /OWA(α)dα

VWPM /EXM = 2
∫ 0.5

0
VWPM /EXM (α)dα,VOWA/EXM = 2

∫ 0.5

0
VOWA/EXM (α)dα,

VWPM /OWA = 2
∫ 0.5

0
VWPM /OWA(α)dα,
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Themean difference indicatorsD(α) show the average proximity between two aggre-
gators. The maximum difference indicatorsM (α) show the maximum distance between
two aggregators inside the whole aggregation domain [0, 1]n. Similarly to the statistical
coefficient of variation, the mean variation V (α) shows the mean ratio of the absolute
half-difference of two values and their mean values. E.g., for values p and q, their mean
value is (p + q)/2 and the deviation from that value is |p − q|/2, yielding the percent
variation 100|p − q|/(p + q). To summarize results for all values of andness, we use the
overall mean values D,M ,V which express the differences between analyzed aggrega-
tors using a single numeric indicator. For convenience, all indicators use the multiplier
100, to be expressed as percentages of the whole range, which is 100%.

The results of aggregator comparison, as functions of andness α, are presented in
Fig. 1. The consequences of comparison of the hard partial conjunction (WPM) and
the soft partial conjunction (either EXM or OWA) are presented in Figs. 1a and b.
Unsurprisingly, for α > 0.5, the differences are very large because soft EXM and OWA
cannot provide properties expected from hard aggregators. However, for 0 ≤ α ≤ 0.5,
WPM, EXM, and OWA are soft and the differences between these aggregators are
sufficiently small, as shown in Figs. 1c–f. The soft aggregators EXM and OWA are
self-dual, and therefore comparable in the whole range 0 ≤ α ≤ 1, as shown in Fig. 1c.

Assuming that inputs of aggregators are imprecise at the level of 10% or more, it
follows that the analyzed three aggregators of two arguments, in the area of soft partial
disjunction, are sufficiently precise and practically equivalent. In other words, there are
no reasons to use more than one of them and evaluators can easily adapt to both the
properties and the use of the selected aggregator.
In the case of three arguments and α ∈ [0, 0.5], we use the following andness directed
strictly soft aggregators:

AWPM (x1, x2, x3;α) =
(
3−1xr3(α)

1 + 3−1xr3(α)
2 + 3−1xr3(α)

3

)1/r3(α)

,

AEXM (x1, x2, x3; α) = 1

t3(α)
ln

[
3−1 exp(t3(α)x1) + 3−1 exp(t3(α)x2) + 3−1 exp(t3(α)x3)

]
.

AOWA(x1, x2, x3;α)

= ((((0.8916α − 1.7754)α + 1.7641)α − 1.8798)α + 0.9994)max(x1, x2, x3)

+((((−1.7791α + 3.5585)α − 3.5471)α + 1.7677)α + 0.0007) mid(x1, x2, x3)

+((((0.8876α − 1.7832)α + 1.783)α + 0.1121)α − 0.00009) min(x1, x2, x3)

We now use the andness directed soft iterative OWA proposed in [13] and derived in
the presented form in [14], and polynomial approximations of functions α �→ r3(α) and
α �→ t3(α) taken from [1]. The main results of comparison of these aggregators are
shown in Fig. 2 and Table 1.

Using the results presented in Fig. 1 and Fig. 2 and their summary shown in Table 1,
we can derive the following observations:

1. As expected, all differences between strictly soft idempotent disjunctive aggregators
depend on andness and have consistent shapes that attain maximum values in the
middle area of the [0, 0.5] domain of andness.
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Fig. 1. Differences between WPM, EXM, and OWA in the case of 2 variables
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Fig. 2. Differences between soft disjunctive WPM, EXM, and OWA in the case of 3 variables

Table 1. A summary of comparison of soft disjunctive aggregators for all α ∈ [0, 0.5]

2. Mean overall differences between analyzed aggregators (D,M ,V ) for soft partial
disjunction are very low (e.g. the overall mean values of absolute difference and
variation, computed for all values of andness in Table 1, are below 2%). These values
should be compared to imprecision caused by uncertainty of input arguments, which
is regularly of the order of 5–15%.



Numerical Comparison of Idempotent Andness-Directed Aggregators 75

3. Distribution of absolute differences between analyzed aggregators, for all values of
andness, has a characteristic shape exemplified in Fig. 2d. Small differences are very
frequent and large differences are very rare and can be considered exceptional cases
(for n = 3 almost all differences are below 4%).

4. Maximum differences between analyzed aggregators (shown in Figs. 1c and e,
Fig. 2b and Table 1) can attain values comparable or above the imprecision of input
arguments, but according to Fig. 2d they are expected to be unlikely exceptional
cases.

5. The most similar disjunctive aggregators are WPM and EXM. Their difference from
OWA is slightly larger, but still not significant.

6. The differences between aggregators slightly increase when the number of variables
increases, but not to the extent that indicates the possibility of different conclusions
of our analysis.

7. Mean difference variation indicators preserve their values when the number of
variables increases. Their overall mean values are regularly below 2%.

5 Conclusions

Graded logic aggregators are the class of idempotent aggregators characterized by and-
ness. They can be conjunctive (models of simultaneity) or disjunctive (models of sub-
stitutability), and hard (supporters of annihilators) or soft (without support for annihila-
tors). That gives four basic combinations, observable in human intuitive reasoning: hard
conjunctive, soft conjunctive, soft disjunctive and hard disjunctive aggregators. Such
aggregators can be viewed from two different points of view: theoretical and practical.

Theoretical interest does not need to be justified by high applicability of theoretical
results. Thus, the theory of aggregation is a wide area with thousands of research con-
tributions. The practical value of logic aggregators is much more modest, and they are
primarily used in decision making, as components of decision support systems. In this
modest role, graded logic aggregators must satisfy the minimum set of six fundamental
necessary conditions: they must be andness-directed (having andness as an explicitly
visible and easily adjustable parameter), and providing four fundamental combinations
of conjunctive/disjunctive and soft/hard behavior, as well as noncommutativity based on
adjustable importance weights.

The basic logic aggregators are idempotent, and consequently, they are means. There
are hundreds of known means and none of them naturally satisfies the minimum set of
six necessary conditions of graded logic aggregation. This inconvenient situation is the
motivation for building logic aggregators as interpolative combinations of segments that
satisfy some of the six necessary conditions [12]. So, we face the problem of selecting the
most suitable member functions supporting some of desired properties. In other words,
we need to compare similar aggregators and analyze differences between them. That is
the motivation for this paper.

The largest differences can be expected fromaggregators that have the least restrictive
properties. Among logic aggregators the least restrictive are soft aggregators because
they are not required to support annihilators. The graded logic aggregators are regularly
defined as functions that satisfy De Morgan duality. Consequently, the special case of
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the soft partial disjunction which is strictly soft in the whole domain of andness from
0 to 0.5, is the most suitable for studying the differences between aggregators because
there are several well-known functions in this category. It is convenient to base such
analysis on the weighted power mean, exponential mean, and OWA.

The numerical analysis of differences between the selected three popular soft dis-
junctive aggregators shows a very high similarity between seemingly different functions.
Of course, it is necessary to have a criterion for declaring that a difference is high or
low. Such criterion is naturally based on imprecision of arguments that are in decision
support systems aggregated by logic aggregators. Based on the wide use of rating scales,
the imprecision of inputs is estimated to be close to 10% and if the soft aggregators on
the average differ for less than 2%, then such aggregators can be considered equivalent
and equally applicable from the practical point of view. This conclusion is additionally
supported by the fact that real interpolative aggregators include hard segments that yield
higher similarity than the strictly soft aggregators. In other words, in practical evalu-
ation projects, the number of candidate graded logic aggregators is very small, and to
satisfy necessary logic conditions, they must be combined in segmented interpolative
structures. From this standpoint, it is also possible to conclude that individual logic
aggregators frequently attract more research attention than they deserve.

The future theoretical work in this area could include more detailed studies of dis-
tributions of difference between selected aggregators, and identification of infrequent
special cases of larger differences, as well as analyses of differences for n > 3, and
studying the impact of weights. That might be of interest in some applications where it
is provable that it is not necessary to support both soft and hard aggregators. The numer-
ical results of this paper indicate that such attention would be undeserved for most
applications in graded logic and decision support systems, where aggregators must be
conjunctive and disjunctive, soft and hard, commutative and noncommutative, andness-
directed, idempotent and nonidempotent, with adjustable threshold andness and orness.
These conditions can only be satisfied by segmented interpolative aggregators, and not
by a single aggregation function of n variables. In such cases, all complex aggregation
structures are built using superposition of aggregators with small number of inputs that
support simplicity, specifiability, and readability.
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Abstract. In the paper we study the multiple testing problem for which
individual hypotheses of interest correspond to conditional independence
of the two variables X and Y given each of the several conditioning vari-
ables. Approaches to such problems avoiding inflation of probability of
spurious rejections are widely studied and applied. Here we introduce
a direct approach based on Joint Mutual Information (JMI) statistics
which restates the problem as a problem of testing of a single hypothe-
sis. The distribution of the test statistics JMI is established and shown
to be well numerically approximated for a single data sample. The cor-
responding test is studied on artificial data sets and is shown to work
promisingly when compared to general purpose multiple testing methods
such as Bonferroni or Simes procedures.

Keywords: Conditional independence · Joint mutual information ·
Multiple testing · Weighted chi square distribution · Dichotomous
behaviour · Markov blanket · Dependence analysis

1 Introduction

We focus here on multiple testing problem consisting in testing of conditional
independence of two random variables given the third one, the later belonging to
a group of variables of interest. The applications in this context are wide rang-
ing. In studying human diseases one might be interested in checking whether
occurrences of two diseases are independent given a third disease, where the lat-
ter belongs to the group of diseases of interest possibly interacting with the first
two. The same question may be asked when conditioning variables are charac-
teristics of a patient such as age, gender or results of medical tests. Formally,
the problem can be stated as testing p individual hypotheses

H0,i : X andY are conditionally independent given Zi, (1)
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where X ∈ X , Y ∈ Y and Zi ∈ Zi are some observed discrete random variables
for i = 1, . . . , p. We want to construct a test which controls type I error under
so called global null H0 = ∩p

i=1H0,i when all null hypotheses are true; i.e. we
stipulate that P (V ≥ 1,H0,i true, i = 1, . . . , p) is smaller than the fixed level
of significance α when V is the number of rejected hypotheses. Note also that
simultaneous testing of (1) may be used as a proxy for testing the hypothesis
H̃0 : X ⊥ Y |Z1, Z2, . . . , Zp i.e. conditional independence of X and Y given all
Z1, . . . , Zp. This is beneficial in the cases when the number of observations per
one cell of Z1 = z1, . . . , Zp = zp is small and the conditional independence tests
loose power due to the curse of dimensionality. E.g. it is usually advised to have
5 observations per cell while using conditional chi-square test which results in
number of observations at least 5 × 2p on average when all variables are binary,
whereas the use of the proposed test will require much less observations as the
conditioning is done given individual variables. As a toy example of such situation
consider binary random variables Z0, Z1, . . . , Zp+1, where Z0 = Y and Zp+1 = X
which form a Markov chain Z0 → Z1 . . . → Zp+1 such that P (Zi+1 = 1|Zi = k) is
q or 1−q depending on whether k = 1 or k = 0. Then X and Y are conditionally
independent given any individual Zi, i = 1, . . . , p but they are dependent.

Note that the problem of testing H0 is a special case of the multiple testing
problem, which due to its importance is analysed intensively in machine learn-
ing and statistics [1,2,7,13]. There are several off-the-shelf generic methods of
testing multiple hypotheses H0,i such as Bonferroni correction or Simes method
described below which are known to perform well when test statistics for individ-
ual tests are mutually independent. This in case of testing (1) is hardly realistic
and would require having independent samples for testing the individual hypoth-
esis (see [11]). In general such methods may perform rather poorly at detecting
violations of H0 when no strong signal is available for any i resulting in low
rejection rate in such situation. Thus true weak associations may be overlooked.
In the special case of testing (1) for all i we show that it is possible to design
a special purpose test statistic which would control type I error rate and have
high true rejection rate when moderate and weak signals occur.

The paper is structured as follows: we introduce some information-theoretic
concepts and define Joint Mutual Information (JMI) statistic designed for test-
ing H0. In Sect. 3 we establish asymptotic distribution of sample JMI which
leads to a novel test of H0 (Sect. 4). In Sect. 5 the behaviour of the test proce-
dure is investigated using synthetic and real data sets. The main contribution is
to show that introduced JMI-based test of simultaneous conditional indepen-
dence usually works better that the generic tests.

2 Preliminaries

2.1 Conditional Mutual Information

We introduce some information theoretic concepts leading to the conditional
mutual information definition for discrete random variables.
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We denote by p(x) := P (X = x), x ∈ X a probability mass function cor-
responding to X, where X is a domain of X and |X | is its cardinality. Joint
probability will be denoted by p(x, y) = P (X = x, Y = y) and p(x, y|z) is
P (X = x, Y = y|Z = z). The sample estimate of p(x) is denoted by p̂(x).

The mutual information (MI) between X and Y is

I(X,Y ) = H(X) − H(X|Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
, (2)

where H(X) and H(X|Y ) are the entropy and the conditional entropy, respec-
tively [5]. This can be interpreted as the amount of uncertainty in X which
is removed when Y is known, which is consistent with an intuitive meaning of
mutual information as the amount of information that one variable provides
about another. MI is non-negative and equals 0 if and only if X and Y are
independent. We can extend the definition of I(X,Y ) to the conditional mutual
information I(X,Y |Z = z) of X and Y given Z = z by replacing unconditional
probabilities appearing in (2) by their conditional counterparts given Z = z.
Then averaging I(X,Y |Z = z) wrt distribution of Z yields the conditional
mutual information (CMI)

I(X,Y |Z) = EZ=z(I(X,Y |Z = z)) =
∑

x,y,z

p(x, y, z) log
(

p(x, y|z)
p(x|z)p(y|z)

)
. (3)

It follows from MI = 0 being equivalent to independence that I(X,Y |Z) = 0 if
and only if X and Y are conditionally independent given Z which will be denoted
by X ⊥ Y |Z in the following. The construction of the test statistic JMI below
relies on this fundamental fact. Moreover, the following chain rule holds:

I((X,Z), Y ) = I(X,Y ) + I(X,Y |Z). (4)

For more properties of the basic measures described above we refer to [5].

2.2 Multiple Conditional Independence Testing and JMI Statistic

Intuitively, specially designed statistic should measure the cumulative effect of
violating several null hypotheses H0,i. In accordance with this heuristics we
define

JMI =
1
p

p∑

i=1

I(X,Y |Zi). (5)

Note that as the summands in (5) are non-negative, JMI averages violation
effects of H0,i. Note that for p = 1 JMI reduces to CMI. JMI has been
introduced in [15] in the context of feature selection when Y is a target vari-
able to be explained by a subset of potentially useful predictors, (Zi)

p
i=1 are

predictors already chosen and X is a potential candidate. It is also shown to
be an approximation of I(X,Y |Z1, . . . , Zp) under certain dependence condi-
tions imposed on (X,Y,Z1, . . . , Zp) [14]. We stress however, that testing H0
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is not equivalent to testing H̄0 of conditional independence of X and Y given
(Z1, . . . , Zp) although for many dependence structures the former implies the lat-
ter (see e.g. [4], Sect. 13.6). We also note that testing H0 requires less data than
testing H̄0 as the number of elements satisfying Zi = zi for fixed zi is usually
larger than satisfying Z1 = z1, Z2 = z2, . . . Zp = zp. The following lemma states
some properties of JMI (with the proof confined to the online supplement1).
Define χ2 measure of conditional dependence between X and Y given Zi as

χ2
i =

∑

x,y,zi

(p(x, y, zi) − p(x|zi)p(y|zi)p(zi))2

p(x|zi)p(y|zi)p(zi)
.

Lemma 1.
(i) JMI = 0 ⇐⇒ H0 = ∩iH0i holds,

(ii) JMI = I(X,Y ) +
1
p

p∑

i=1

(I(X,Zi|Y ) − I(X,Zi)),

(iii)
1

2

p∑

i=1

( ∑

x,y,zi

|p(x, y, zi) − p(x|zi)p(y|zi)p(zi)|
)2 ≤ p × JMI ≤

p∑

i=1

log(χ2
i + 1)

and both inequalities are tight when H0 holds.

Observe that statistics defined as
∑p

i=1 χ2
i also enjoys analogous property to (i).

Let us mention that JMI statistic is frequently used in feature selection and
Markov blanket discovery (see e.g. [3]) in order to test conditional independence
of the response and the candidate predictor given the already chosen predic-
tors. Here our aim is different as we want to test multiple individual conditional
independence hypotheses. Given a sample (Xi, Yi, Zi), i = 1, . . . , n of indepen-
dent observations sampled from distribution PX,Y,Z we denote by ̂JMI plug-in
counterpart of JMI defined above obtained by replacing I(X,Y |Zi) by their
empirical versions Î(X,Y |Zi). For p = 1 ̂JMI reduces to the empirical CMI.
In this case, provided conditional independence of X and Y given Z holds, it is
asymptotically chi square distributed with (|X |−1)(|Y|−1)(|Z|) degrees of free-
dom (see e.g. [10]). We will derive the distribution of ̂JMI in the next section:
note that it does not follow in straightforward manner from the latter result as
the summands Î(X,Y |Zi) of ̂JMI are dependent.

3 Main Result: Dichotomous Behaviour of Test Statistic
Statistic ̂JMI

In the following we explicitly state the asymptotic distribution of ̂JMI when
H0 holds. The general formula for distribution of ̂JMI has been already stated
in [9]. We derive below its explicit form which is amenable to computations for

1 github.com/lazeckam/JMI GlobalNull.

https://github.com/lazeckam/JMI_GlobalNull/blob/main/supplement.pdf
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moderate p and derive some of its properties. Moreover, we indicate that when
H0 fails the behaviour of ̂JMI and its distribution is fundamentally different
from that under H0 suggesting that the resulting test should have a reasonable
power.

Let K = |X | × |Y| × ∏p
i=1 |Zi| be the number of levels of random variable

(X,Y,Z1, . . . , Zp) and z = (z1, . . . , zp). Let Ax′,y′,z′
x,y,z denote the element of K×K

matrix A with the row index x, y, z and the column index x′, y′, z′. Finally, Hc
0,i

is the opposite hypothesis to H0,i. I(A) denotes the indicator function of set A:

Theorem 1. (i) Assume that the global null H0 holds. Then

2n ̂JMI
d−→

K∑

i=1

λi(M)Z2
i , (6)

where Zi are independent N(0, 1) random variables and λi(M), i = 1, . . . , K are
eigenvalues of matrix M with the elements

Mx′,y′,z′
x,y,z =

1
p
p(x′, y′, z′)

p∑

i=1

[
I(zi = z′

i)
p(zi)

− I(x = x′, zi = z′
i)

p(x, zi)
(7)

− I(y = y′, zi = z′
i)

p(y, zi)
+

I(x = x′, y = y′, zi = z′
i)

p(x, y, zi)

]
,

where z = (z1, . . . , zp) and z′ = (z′
1, . . . , z

′
p). Moreover, the trace of M equals

p−1(|X | − 1)(|Y| − 1)
∑

i |Zi|.
(ii) Assume that the alternative H1 = ∪p

i=1H
c
0,i to the global null is valid and Y

is binary. Then

σ2
̂JMI

= Var
(

1
p

log
p∏

i=1

p(X,Y,Zi)p(Zi)
p(X,Zi)p(Y,Zi)

)
> 0

and
n1/2( ̂JMI − JMI) d−→ N(0, σ2

̂JMI
). (8)

The result above states an exact dichotomy of asymptotic behaviour which makes
the construction of the test possible: the asymptotic distribution of ̂JMI is either
that of quadratic form in normal variables as in (6) or normal (cf. (8)) depending
on whether H0 is satisfied or not.

Proof. (i) Let f(p) = p−1
∑p

i=1 p(x, y, zi) log(p(x, y, zi)p(zi)/p(x, zi)p(y, zi)),
where p = p(x, y, z1, . . . , zp). Note that when H0 holds then σ2

̂JMI
= 0 and

it follows from the delta method (cf. Corollary 1 in [9]) that the asymptotic dis-
tribution of 2n ̂JMI is the distribution of ZT MZ where Z ∈ Rp has N(0, I) dis-
tribution, M = HΣ, Σx′y′z′

xyz = p(x′, y′, z′)(I(x = x′, y = y′, z = z′)−p(x, y, z))/n
and H = D2f(p) is the Hessian of f(p). By direct calculation we have

Df(p)xyz =
1
p

p∑

i=1

log
(

p(x, y, zi)p(zi)
p(x, zi)p(y, zi)

)
,
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Hx′y′z′
xyz = D2f(p)x′y′z′

xyz =
1
p

p∑

i=1

[
I(zi = z′

i)
p(zi)

− I(x = x′, zi = z′
i)

p(x, zi)

− I(y = y′, zi = z′
i)

p(y, zi)
+

I(x = x′, y = y′, zi = z′
i)

p(x, y, zi)
,

]

where z = (z1, . . . , zp) and M is obtained by the direct multiplication of H and Σ
resulting in (7). The trace of M equals p−1

∑
x,y,z

∑p
i=1

(
p(x, y|zi)− p(x|y, zi)−

p(y|x, zi) + 1
)

which yields the result. (ii) is proved in Corollary 1 in [9].

4 Asymptotic Versus Generic Methods

4.1 Asymptotic Method

For a given sample chosen from PXY Z we calculate ̂JMI and plug-in estimator
M̂ of matrix M defined in Theorem 1. We use now the fact that the asymptotic
distribution W of ̂JMI under H0 given in (6) is determined by the eigenvalues
λi(M) and we approximate it by Ŵ plugging in λi(M̂) for λi(M), where λi(M̂)
are numerically calculated. Then the rejection region for a given significance
level α is given by { ̂JMI ≥ q

̂W,1−α
}, where q

̂W,1−α
is quantile of the order 1−α

of Ŵ . A function eigen from R package base has been used to calculate the
eigenvalues and package CompQuadForm [6] for quantiles of Ŵ .

4.2 Generic Methods

We use two generic methods to cope with controlling type I error while perform-
ing multiple tests, namely Bonferroni correction and Simes method (see e.g. [12]
and [7]).

– Bonferroni correction: individual tests are performed with level of significance
α/p, where p is the number of tests performed thus bounding probability
P (V ≥ 1,∀i H0i true) by α. It is known to work well when the test statistics
used to test individual hypotheses are independent, but in a general case is
conservative leading to the low power when H0 fails. Individual tests are M̂I-
based tests based on chi square benchmark distribution described at the end
of Sect. 2.2.

– Simes method: p-values of individual test p1, . . . , pp are calculated and
ordered: p(1) ≤ p(2) ≤ · · · ≤ p(p). H0 is rejected when for certain i ≤ p
we have p(i) ≤ iα/p, or equivalently if mini p(i)/i ≤ α/p. Individual tests
considered are the same as for Bonferroni correction method.

5 Simulation Study

5.1 Artificial Data Sets

We discuss first the dependence structures which we use to generate data (see
Fig. 1). Below Z ∼ Bern(p) stands for Z being distributed as the Bernoulli
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distribution with probability of success p and Φ is the cumulative distribution
function (CDF) of the standard normal distribution.

– Model A. Parameters: αx ≥ 0, αy ≥ 0
Zi ∼ Bern(0.5) for i ∈ {1, 2, . . . , p}, Z̄ := 1

p

∑p
i=1 Zi

X|Z̄ = z ∼ Bern
(
1 − Φ(αx( 12 − z))

)
, Y |Z̄ = z ∼ Bern

(
1 − Φ(αy( 12 − z))

)

Model A’ is a modification of model Model A for which Z̄ := 1
s

∑s
i=1 Zi

and s < p. Zi ⊥ (X,Y ) for i ∈ {s + 1, s + 2, ..., p}.
– Model B. Parameters: αx ∈ [0, 1], αz ≥ 0

X ∼ Bern(0.5) and Y ∼ Bern(0.5),
Zi|(αxX + (1 − αx)Y ) = w ∼ Bern(1 − Φ(αz( 12 − w)) for i ∈ {1, 2, ..., p}
Model B’ is a modification of model Model B for which the dependence
of Zi on X and Y defined above holds only for i ∈ {1, 2, ..., s}, for i ∈
{s + 1, s + 2, ..., p} Zi ⊥ (X,Y ) and Zi ∼ Bern(0.5)

– Models C. Parameters: q ∈ [0, 1], qXY ∈ [0, 1]
C(q): Y ∼ Bern(0.5), Z1|Y = y ∼ Bern(qy(1 − q)1−y), Zi+1|Zi = z ∼
Bern(qz(1 − q)1−z) for i ∈ {1, 2, . . . , p} and Zp+1 = X.
C(q,qXY): while retaining the conditional distribution PX|Zp

as above, the
distribution of (X,Y ) is modified so that H1 is satisfied:
P (X = z, Y = z|Zp = z) = q − P (X = z, Y = 1 − z|Zp = z) = qXY q,
P (X = 1 − z, Y = 1 − z|Zp = z) = 1 − q − P (X = 1 − z, Y = z|Zp = z) =
qXY (1 − q).

Model A corresponds to the situation when variables Z1, . . . , Zp influence X
and Y simultaneously. Parameters αx and αy control how strong the dependence
between the variables Zi and X or Y is. If at least one of the parameters equals
zero then X and Y are independent and conditionally independent given any
Zi, otherwise X and Y are (conditionally) dependent. In Model A′ the role of
parameter p is taken over by s and the additional variables Zi, i = s + 1, . . . , p
are independent of X and Y . In Model B the dependence structure is reversed
and both variables X and Y influence variables Zi. The parameter αx measures
the strength of influence of X compared to that of Y , whereas the parameter αz

controls the strength of the joint dependence of Y and X on Zi. In the model
X and Y are independent but they are conditionally dependent given Zi unless
αx ∈ {0, 1} or αz = 0. Model B’ is constructed analogously to A’. Model C(q)
is a Markov chain for which due to Markov property X and Y are conditionally
independent given any in-between variable Zi. Here, q denotes the probability
that the previous variable equals the next one. If q = 0.5, then any two adjacent
variables are independent and if it increases (decreases) the variables become
positively (negatively) dependent. By introduction of an additional parameter
qXY , we obtain model C(q, qXY ) for which H0 is violated.

Our main aim is to study the actual type I error of the considered procedures
(i.e. probability rejection when H0 is true) and the power (probability of rejection
when H0 is false) for the assumed significance level α using the fractions of
rejections for artificial data sampled from the above models. We also studied
ROC-type curves for all three considered procedures. ROC-type curves are based
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on two models: the one for which H0 holds and the second for which H1 is true,
and the report the actual type I error and the power approximated by means of
simulations for varying α. In this way y values of three ROC curves for the fixed
x value correspond to the power for the same actual type I error (see Fig. 5).

We present results in Figs. 2, 3, 4, 5 and Table 1 (the chosen parameters repre-
sent various strengths of dependence for the structures considered, see discussion
in the online supplement). Figure 2 shows the behaviour of the true asymptotic
distribution of ̂JMI (see (6)) and its estimate. The left panel depicts boxplots of
sorted eigenvalues λi(M̂), the right compares averaged CDFs corresponding to
λi(M̂) and 90% confidence bands for the true CDF based on them with the true
asymptotic CDF and the empirical CDF based on ̂JMI values. In Figs. 3 and
4 the behaviour of the power of the considered procedures is compared against
one of the model’s varying parameters when the remaining ones are held fixed
and the significance level is set to α = 0.05. Table 1 indicates how the power and
the type I error for the considered procedures depend on the sample size n.

Z1 Z2 . . . Zp

X Y

(i) Model A

Z1 Z2 . . . Zs Zs+1 . . . Zp

X Y

(ii) Model A’

Z1 Z2 . . . Zp

X Y

(iii) Model B

Z1 Z2 . . . Zs Zs+1 . . . Zp

X Y

(iv) Model B’

Y Z1 Z2 . . . Zp X

(v) Model C

Fig. 1. Graphical representation of the dependence structures

Results. For the sample sizes n = 500 and larger the eigenvalues of the esti-
mated matrix M̂ approximate very closely the eigenvalues of the theoretical
matrix M and therefore the plots of the averaged CDFs based on eigenvalues
λi(M̂) and CDF using eigenvalues λi(M) almost overlap (Fig. 2). Such sample
sizes are sufficient to ensure the adequate approximation of the distribution of
̂JMI by its asymptotic counterpart. It follows from Table 1 that starting from
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Table 1. Estimated powers and type I errors based on N = 5000 simulations for
varying n and the tests considered. Parameters in Models A, B and C are the same as
in Fig. 5.

Mod. Proc. Estimated power Estimated type I error

n = 50 100 250 500 1000 2000 n = 50 100 250 500 1000 2000

A Bonf. 0.115 0.157 0.368 0.676 0.945 0.999 0.056 0.035 0.037 0.037 0.038 0.033

Simes 0.129 0.185 0.419 0.732 0.964 1.000 0.063 0.043 0.043 0.043 0.042 0.038

JMI 0.159 0.249 0.541 0.828 0.983 1.000 0.064 0.052 0.048 0.048 0.052 0.047

B Bonf. 0.147 0.241 0.487 0.807 0.983 1.000 0.058 0.074 0.053 0.050 0.047 0.046

Simes 0.162 0.259 0.524 0.837 0.987 1.000 0.062 0.078 0.056 0.052 0.048 0.048

JMI 0.276 0.333 0.649 0.907 0.997 1.000 0.212 0.089 0.056 0.053 0.049 0.053

C Bonf. 0.083 0.106 0.180 0.335 0.667 0.952 0.051 0.054 0.040 0.039 0.044 0.039

Simes 0.096 0.116 0.200 0.363 0.696 0.957 0.060 0.058 0.045 0.042 0.048 0.042

JMI 0.178 0.139 0.238 0.408 0.747 0.971 0.135 0.072 0.058 0.051 0.050 0.044

the moderate sample sizes (n ≥ 250) JMI controls well type I error whereas Bon-
ferroni and Simes methods are conservative in some cases (such as Model A for
n = 1000, 2000). Moreover, it consistently yields the largest power among these
three methods. For Fig. 3 H1 holds and in models A, B (on-line supplement)
and C JMI-based test on the whole works better than mutual information-
based individual tests with correction applied. As expected, when there is only
one strong signal i.e. null hypothesis X ⊥ Y |Zi is strongly violated for just one
i (model B′ with s = 1, middle panel of Fig. 4), Bonferroni correction and Simes
procedure work well. The novel test does not detect the dependence as frequently
as the other two. The situation changes, however, when number of hypotheses
that should be rejected increases (see Fig. 4, panels 1 and 3). Comparison of the
ROC curves in Fig. 5 indicates that even when the actual significance levels of
the three tests are matched, JMI-based test remains the most powerful (H1

hypotheses for the panels correspond to the first column of Fig. 4 for p = 5).
This is also reflected in the largest values of Area Under Curve (AUC) for JMI.

5.2 Medical Data Set Example

We show an example of the application of the novel test and Bonferroni and
Simes procedures to a real medical dataset MIMIC-III [8]. The dataset contains
information about patients requiring intensive care and it includes, among oth-
ers, 10 binary variables representing the presence or absence of the following dis-
eases: hypertension, kidney failure (kidney), disorders of fluid electrolyte bal-
ance (fluid), hypotension, disorders of lipoid metabolism (lipoid), liver disease
(liver), diabetes, thyroid disease (thyroid), chronic obstructive pulmonary dis-
ease (copd) and thrombosis. We select two diseases, liver disease and thrombosis
for which conditional mutual informations given any of the other eight diseases are
approximately the same (see the first panel of Fig. 6) to analyse the situation for
which all null hypotheses are rejected with approximately the same strength for
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Fig. 3. Power against the changing number of variables and the parameter values for
models A and C based on N = 1000 simulations.

the whole data set consisting of 10000 observations. In the second panel of Fig. 6
we present how often the null hypothesis that liver disease and thrombosis are
conditionally independent is rejected for smaller sample size scenarios for which
conditional dependencies are much harder to reject. The estimation is based on
N = 200 samples randomly sub-sampled from the original data set for each n rang-
ing from 250 to 5000. The asymptotic test works uniformly better than Bonferroni
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and Simes procedures. This holds even for small sample sizes for which approxi-
mation of the distribution of ̂JMI by its limit is likely to be worse than for larger
sample sizes.
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5.3 Conclusion

In the paper we have constructed a test for multiple conditional independence
which relies on approximating the asymptotic distribution of ̂JMI. It follows
from numerical experiments that ̂JMI-based test is a promising alternative to
procedures based on individual test which are modified for multiple testing,
especially when one expects several weak violations of individual conditional
independence hypotheses. The proposed test has consistently the largest power
in such cases, while controlling for type I error. Its superiority is retained even
when Bonferroni and Simes methods are calibrated to have exactly the same
value of type I error as JMI-based test. The method is numerically stable and
reasonably quick for p ≤ 8, for larger p eigen function has to be modified.
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Abstract. The Monty Hall problem is a classic puzzle that, in addition
to intriguing the general public, has stimulated research into the founda-
tions of reasoning about uncertainty. A key insight to understanding the
Monty Hall problem is to realize that the specification of the behavior of
the host (i.e. Monty) of the game is fundamental. Here we go one step
further and reason, in Bayesian way, in terms of epistemic uncertainty
about the behavior of host, assuming subjective probabilities.

We also consider several generalizations of the classic Monty Hall
problem considering different priors for the doors, several doors instead
of three, and different ways the host can choose which door to open
when several are possible. We show that in these generalized versions,
the player faces a sequential decision problem, since the choice of the
first door is key. We provide a general solution for the most general case
using decision trees and determine the optimal policy.

1 Introduction

The Monty Hall problem [12–14] is a classic puzzle that, in addition to intriguing
the general public, has stimulated research [1,2] into the foundations of reasoning
about uncertainty. It is stated as follows:

Suppose you’re on a game show, and you’re given the choice of three doors:
Behind one door is a car; behind the others, goats. You pick a door, say
No. 1, and the host, who knows what’s behind the doors, opens another
door, say No. 3, which has a goat. He then says to you, “Do you want to
pick door No. 2?” Is it to your advantage to switch your choice?

The commonly accepted answer is that it is best to switch. Indeed, assuming
that the prize is placed behind a door according to a uniform distribution, by
choosing to switch the player obtains probability 2

3 of getting the prize.
This is true however under a particular assumption about the behavior of

the host: the host always opens a door; this door is different than the one that
the player has chosen and from the one with the prize behind it. Indeed, several
c© Springer Nature Switzerland AG 2021
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authors have argued [1,2,10] that the answer to the puzzle crucially depends on
the behavior of the host.

In this paper we go one step further and consider uncertainty over which
protocol Monty might be following. We reason about Monty’s behavior using
subjective probabilities about the possible protocols; therefore we move from
representing uncertainty over the placement of the doors, to representing our
epistemic uncertainty over the behavior of the host. Moreover, we consider some
generalizations of the Monty Hall problem supposing that the position of the
car might be not distributed uniformly. When considering these generalized set-
tings, we realize that the solution to the problem is a policy dictating which
door should we choose at each step of the game. While the Monty Hall problem
has been extensively studied before in the computer science and applied mathe-
matics literature [1,5–7,10,11,15], we do not know any works that consider the
generalized settings that we address here.

2 Epistemic Uncertainty over Monty’s Protocol

T

O

R

Fig. 1. A Bayesian network formalizing
the Monty Hall problem with uncer-
tainty over the host’s protocol.

T

O

Fig. 2. Simplified Bayesian network for the
Monty Hall problem. The uncertainty over
Monty’s protocol is now integrated in the
conditional probability P (O|T ).

In this Section we consider the Monty Hall Problem (MHP) with 3 doors and we
explicitly reason in terms of epistemic uncertainty about the host’s (i.e. Monty’s)
behavior. We assume for the moment that the car is equally likely to be behind
any of the doors. Different assumptions about the host’s protocol can be made:

– AO (always open): this is the “classic” Monty’s behavior. The host always
opens a door that has a goat behind it and hasn’t been picked by the player
(if the player initially picked the door with the car, then he randomly chooses
one of the two other doors);

– RO (open at random): Monty randomly chooses a door and, if there is no car
behind it and it has not been picked by the player, then open it, while no
door is opened if the randomly chosen door hides the car;

– SO (selective open): the choice of opening a door depends on specific condi-
tions (whether the player picked the door with the prize). In particular we
consider “benevolent” Monty (opens a door whenever the player is pointing
at a door with a goat, and not when the player picked the door with the car;
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this behavior is dubbed SO+) and “adversarial” Monty (opens a door only
when the player is pointing at the car; SO−)

While under the AO protocol the player has an advantage to switch, under
RO, switching gives no advantage, as it has been noticed several times (see, for
instance, exercise 3.9 in the book of MacKay [8] on page 57 and its solution on
page 61). Obviously under SO+ it is always beneficial to switch and under SO−
one should never switch (see also Halpern’s book [2] on pages 216–217).

We now assume now that Monty’s behavior is a situation of epistemic uncer-
tainty: the player does not know exactly which protocol Monty has adopted and
this uncertainty is represented by a probability distribution. This means that,
from the point of view of the player, Monty is behaving according to a mixture
of the protocols above. This mixture is given by the parameters θ = (θAO, θRO,
θSO+ , θSO−), where θAO is the probability of adopting the AO protocol, and so
on; in other words θ is the subjective probability distribution of Monty’s behav-
ior. Actually, our model allows for the possibility that Monty itself is behaving
according to a mixture of the protocols, but the player has no access to the true
mixture parameters and makes use of subjective probabilities instead.1

We formalize the Monty Hall problem using the Bayesian network depicted
in Fig. 1 with three nodes: T , R, and O. Node T represents the event “the
player has pointed to the door with the car behind”, R takes value in R =
{AO,RO, SO+, SO−}, that is the set of possible protocols. O is the event “Monty
opened a door”.

Assuming that the car is uniformly distributed between the three positions,
we write the values of the Conditional Probability Tables (CPTs) for the nodes
of the Bayesian network. For node T we have:

P (T ) =
1
3

P (¬T ) =
2
3

and for R:

P (R) = θR ∀R ∈ {AO,RO, SO+, SO−}.

We now write the probability of the event O (the host opens a door) conditioned
on T (the player has pointed at door with the car) and on the protocol. These
are the CPT values associated with the node O in Fig. 1.

P (O|T,AO) = 1 P (O|¬T,AO) = 1
P (O|T,RO) = 0.66 P (O|¬T,RO) = 0.33
P (O|T, SO+) = 0 P (O|¬T, SO+) = 1
P (O|T, SO−) = 1 P (O|¬T, SO−) = 0

1 A possible extension of this work could investigate the use of Bayesian hierarchical
models, adopting prior distributions on the mixture’s parameters.
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From the belief θ we can determine the probability of the host opening a door
(event O) given the initially chosen door conceals the car (T ) or the goat (¬T ):

P (O|T ) =
∑

r∈R
θrP (O|T, r) = θAO +

2
3
θRO + θSO− (1)

P (O|¬T ) =
∑

r∈R
θrP (O|¬T, r) = θAO +

1
3
θRO + θSO+ (2)

The above equations allow us to reduce our problem to the simplified Bayesian
network given in Fig. 2 (where θ can be seen as a vector of parameters).

Using basic probability calculus and Bayes theorem, we can derive a condition
on θ for when switching is advantageous. We compute the probability (from the
point of view of the player) that the car is behind the initially picked door
conditioned to observing that the host has opened another door, using Bayes
theorem:

P (T |O)=
P (O|T )P (T )

P (O)
=

P (O|T )P (T )

P (O|T )P (T )+P (O|¬T )P (¬T )
=

P (O|T )

P (O|T ) + 2P (O|¬T )

If the player sticks to his initial guess, then P (T |O) is the probability
of getting the car. If the player switches, the car is found with probability
P (¬T |O) = 1 − P (T |O). Switching is then advantageous when

P (¬T |O) > P (T |O) ⇐⇒ P (O|¬T )P (¬T ) > P (O|T )P (T ) (3)

⇐⇒ P (O|¬T ) >
1
2
P (O|T ). (4)

Since we want to know under what condition with respect to θ switching is
advantageous, we now expand the expression above using Eqs. (1) and (2):

2
3
(θAO +

1
3
θRO + θSO+) >

1
3
(θAO +

2
3
θRO + θSO−) (5)

⇐⇒ 1
3
θAO +

2
3
θSO+ − 1

3
θSO− > 0 (6)

We note that in the computation just above, we were only interested in
determining when switching is beneficial2; that is, we did not considered the
situations in which no door is opened, and no choice if offered. Considering a
game episode starting with the initial door selection, we are now interested in
computing the total expected payoff of the two policies “switch” (switch door
when possible) and “keep”, where we define payoff as 1 if the player gets the car
at the end of the game, and 0 otherwise. Note that the two policies imply the
same outcome when Monty does not open a door (and therefore does not offer
the possibility to switch choice).

2 Indeed the original statement of the MHP concerns the specific decision of what to
do when offered the possibility of switching.
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– The policy “keep” obviously achieves expected payoff 1
3 .

– The policy “switch” achieves expected payoff.

P (T,¬O) + P (¬T,O) = P (T )P (¬O|T ) + P (¬T )P (O|¬T )

since the car is won if the player initially picked the right door and the host
does not open any door (there is no option to switch, and therefore the car is
obtained), or if the initial guess is wrong but the host does open a door thus
offering the chance to switch (the offer is then accepted, since we’re following
the “switch” policy, and the car is obtained). Therefore, since P (T ) = 1

3 , the
payoff of the “switch” policy is 1

3 − 1
3P (O|T ) + 2

3P (O|¬T ) or, equivalently,
1
3 + 1

3θAO − 1
3θSO− + 2

3θSO+ .

We observe that in the 3-doors setting, with Monty uniformly random when
the player chooses the door with the car in the first round, there are really just
two parameters: P (O|T ) and P (O|¬T ). Given these two values, the distribution
over the protocol R is identified according to Eqs. (1) and (2); note however that
different θ may project to the same P (O|T ) and P (O|¬T ) values.

The following proposition summarizes our analysis:

Proposition 1. The payoffs of the two policies “keep” and “switch” are:

V (keep) =
1
3

V (switch) =
1
3

− 1
3
P (O|T ) +

2
3
P (O|¬T ) =

1
3

+
1
3
θAO − 1

3
θSO− +

2
3
θSO+

Switching is advantageous when P (O|T ) < 2P (O|¬T ), or equivalently, when
1
3θAO + 2

3θSO+ − 1
3θSO− > 0.

Example 1. Assume the player is not given any information about the host’s
behavior. The player reasons that the host might be following one of the
four protocols AO, RO, SO+ and SO−. In absence of any prior information,
a reasonable way for the player to proceed is to consider a uniform prior
on the host’s protocol: with θ = (0.25, 0.25, 0.25, 0.25), thus we have that
1
3θAO + 2

3θSO+ − 1
3θSO− = 1

6 > 0, so switching is advantageous according to
Proposition 1.

Another reasonable uninformative prior is to suppose P (O|T ) = P (O|¬T ) =
0.5; this also means that switching is advantageous.

Example 2. Assume now that the player has access to the history of past behav-
iors of the host in n previous games. The player can use Laplace’s rule (equivalent
to assuming a Beta prior) to estimate the probability of opening a door. Let nT

the number of episodes where the initially picked door hid the car; n = nT +n¬T .
Let oT be the number of observations consisting in the host opening a door
when the initially picked one is correct. The player estimates the probabilities:
p̂O|T = oT+1

nT+2 and p̂O|¬T = o¬T+1
n¬T+2 . Equation 4 is then used with these estimations

to decide whether to switch or not.
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3 Different Priors for Doors

We now consider the situation3 where each door is associated with a prior prob-
ability pi of concealing the prize (for short we will use the term probability of a
door). We still consider that there are three doors and delay the extension to an
arbitrary number of doors to Sect. 4.

Unlike the original statement of the puzzle, the choice of the first door is
critical (since doors cannot anymore treated as indistinguishable). The behavior
of the player is fully specified by a decision policy; with 3 doors a policy is a
pair (i, a), where i is the index of a door and a is either “switch” or “keep” (in
case Monty offers such possibility). We still assume that the host is not biased,
in the sense that, if the player initially picks the door with car, the host, if he
decides to open a door, is just as likely to open any of the two remaining doors.

We now compute the expected payoff V of the strategy (i, switch) using the
observation that the car is obtained in two cases i) if the door i conceals the car
and the host does not open a door (and so he does not offer to switch) and ii) if
the door i does not conceal the car and the host does offer to switch; hence:

V (i, switch) = P (¬O, T ) + P (O,¬T )
= P (¬O|T )pi + P (O|¬T )(1 − pi)
= (1 − αT )pi + α¬T (1 − pi)
= (1 − αT − α¬T )pi + α¬T

where we let αT := P (O|T ) and α¬T := P (O|¬T ). On the other hand, the payoff
of strategy (i, keep) is obviously pi:

V (i, keep) = pi.

The following inequality gives the condition that makes switching beneficial.

V (i, switch) > V (i, keep) ⇐⇒ (1 − αT − α¬T )pi + α¬T > pi (7)

⇐⇒ pi <
α¬T

αT + α¬T
(8)

Equation (8) provides a condition to check to determine whether (i, keep) or
(i, switch) is best. However, in order to identify the best policy, we need to
account as well the choice of i, i.e. the first door. There are 6 possible policies,
but in fact some are dominated: among the “keep” policies, the best one is to
pick the door i+ associated with highest prior p+ = maxi∈{1,2,3} pi. On the other
hand, if we switch, it is not so obvious if the initial choice should be a door with
high or with low prior probability. We therefore consider several different cases.

– If αT + α¬T > 1 then the payoff V (i, switch) decreases when pi increases;
hence among all policies that switch door in the second step, the best one is

3 Rosenhouse [11] also addresses the case where the car is not placed behind the doors
with equal probability, but assuming the fixed “always open” protocol for Monty.
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to pick, in the first round, the door with lowest prior probability.
Therefore to determine the optimal policy we compare p+ (the payoff of
selecting the door with highest p and then keeping this choice) and (1 −
αT − α¬T )p− + α¬T , the value of the payoff obtained by picking door i− =
arg mini pi and then switching. The condition to check is

(1 − αT − α¬T )p− + α¬T > p+.

In other words: we pick i− and switch in the case p++(αT +α¬T −1)p−−αT <
0; otherwise we pick i+ and keep the same choice.

– If αT + α¬T = 1 then, assuming that we switch, it does not matter which
door we select initially: the payoff V (i, switch) will be always α¬T for any
i = 1, 2, 3. Hence, if p+ > α¬T we select the door with highest prior and keep
this choice, and otherwise choose any door and switch.

– If αT + α¬T < 1 then the payoff V (i, switch) increases when pi increases.
We therefore initially pick i+, the door with highest prior, and we compare
the payoff of either switching or keeping. Hence, if p+ > αT

αT+α¬T
then the

optimal policy is (i+, keep) otherwise it is (i+, switch).

Proposition 2. The payoff of the policies are as follows:

V (i, keep) = pi

V (i, switch) = (1 − αT − α¬T )pi + α¬T

Obviously this model generalizes that of the previous section. Indeed, if we
substitute pi = 1

3 in Eq. (8) we determine the condition αT

α¬T
< 2 for switching

being advantageous, as shown in the previous section in Eq. (4).
We now consider, as examples, two particular cases.

Example 3. Assume three doors with prior probability p1, p2, p3 and that the
host behaves according to the AO protocol of Sect. 2 (the player may know this
having observed previous games), that means αT = α¬T = 1. Now, if you pick
door i initially, switching gives 1− pi; keeping the same choice gives you pi. The
best policy is to pick the door with least value of the prior probability, wait for
the host action and then switch door; the optimal payoff is:

V ∗ = 1 − min
i

pi.

This value is strictly higher than the value of the policy of picking the door with
highest pi and not switching, unless maxi pi = 1.

Example 4. We now consider, as special case of the scenario studied in this
section, that the host does not allow to switch with probability q, regardless of
whether the player points at the right door or not; the host opens a door allowing
to switch with probability 1 − q. In other words αT = α¬T = 1 − q. The payoff
of (i, switch), the policy “pick door i and switch when offered”, is then:

V (i, switch) = qpi + (1 − q)(1 − pi) = (2q − 1)pi + 1 − q.
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We analyze the different cases:

– If q < 0.5 and p+ ≥ (2q − 1)p− + 1 − q then (i+, keep) is an optimal policy
– If q < 0.5 and p+ ≤ (2q − 1)p− + 1 − q then (i−, switch) is an optimal policy
– If q = 0.5 and p+ ≤ 0.5 then (i, switch), for all i ∈ {1, 2, 3}, are optimal

policies
– If q = 0.5 and p+ ≥ 0.5 then (i+, keep) is an optimal policy
– If q > 0.5 and p+ ≥ 0.5 then (i+, keep) is an optimal policy
– If q > 0.5 and p+ ≤ 0.5 then (i+, switch) is an optimal policy.

For the last two cases, notice that when q > 0.5, the condition V (i+, keep) ≥
V (i+, switch) simplifies to p+ ≥ 0.5.

4 General Setting: n Doors and General Response Model

In this section we analyze the general formulation of the MHP and develop a
model based on sequential decision making. We consider the general situations
with n doors and arbitrary prior probabilities pi. Monty may decide not to open
any door. Moreover, in this section we allow for Monty to be biased with respect
to which door to open when he can choose among several unopened doors. Note
that the models discussed in the previous Sections can be seen as special cases
of this general model.

The problem is solved with a decision tree; an excerpt of the general tree is
shown in Fig. 3. Note that we use a different notation from previous Sections,
since the generalized problem does not enjoy the symmetries that simplified the
treatment of the former models. Each node of the tree is labeled with the variable
(either a decision or a random variable) that it represents.

The decision node S represents the initial door choice, with possible choices
in {S1, . . . , Sn}. For each Sj , there is a chance node O, with outcomes in {O∅}∪
{Oi}i�=j representing whether and which door the host opens; in our notation
O∅ is the event no door is opened, and Oi means that the door i is opened; then:

– In case no door is opened, O = O∅, the position of the car is revealed to be at
a position k in a chance node T, with outcomes in {T1, . . . , Tn}. In the leaf
nodes, utility is 1 if j = k, and 0 otherwise.

– If, instead, the event Oi happens, we face the decision node F , with possible
choices in {Fl}l �=i, representing the final door choice4, with the choice that
must be different from i. Then, the chance node T, with outcomes in {T}k �=i,
reveals the car’s position; utility is 1 if the choice for node F is the same as
the outcome of T .

Let αi,j,k := P (Oi|Sj , Tk) to be the probability of Monty opening door i given
player’s selection of door j and car in door k. The vector

(αi,j,k)i,j,k∈{1,...,n}
4 In this generalized model, switching occurs when the choice at node F is a different

door from the one chosen at the root S.
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S

O

door 1

O
door 2

...

door 3

O

door n

...

T

do not open

1

0

T1

T2, . . . , Tn

F
open 2

T
choose 1

1

0

T1

T3, . . . , Tn

T

choose 3

...

1

0

T3

T1, T4, . . . , Tn

F

open 3

T
choose 1

1

0

T1

T2, . . . , Tn

T

choose 2

1

0

T2

T1, T4, . . . , Tn

...

...

...

Fig. 3. The decision tree corresponding to the generalized Monty Hall problem. The
root, the decision node S, is displayed on the left. In a chance node, the information
available up to that point is used to condition the distribution; for example, if the
player selected door 1 initially, the variable O is distributed according to P (O|S1),
that can be computed using Eq. 9. Similarly, if the player chooses door i and the host
does not open any door, the probability of Ti is given by P (Ti|Si, O∅).
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fully describes Monty’s behavior from the point of view of the player. Note that
because Monty never opens the door chosen by the player, we have αi,i,k = 0,
and because Monty never opens the door with the car, we have αk,j,k = 0.

Note that, in this decision tree, the probabilities associated to chance nodes
represent the epistemic uncertainty of the player about the behavior of Monty
and as well the position of the car.

A solution to a decision tree is a strategy that specifies how the player should
act at the various decision nodes. The optimal strategy can be found by the
“averaging out and fold back” method (see, for instance, the book of Jensen
and Nielsen [4]). The probability of Monty opening one specific door i, when the
player has picked door j, can be determined by marginalization:

P (Oi|Sj) =
n∑

k=1

P (Oi|Sj , Tk)P (Tk) =
n∑

k=1

αi,j,kpk. (9)

This means that, from the point of view of the player (that does not know where
the car is located), Monty does not open any door with probability

βj := 1 −
n∑

i=1

P (Oi|Sj) = 1 −
n∑

k=1

n∑

i=1

αi,j,kpk

when the player chooses door j initially.
We now solve the decision tree starting the evaluation from the nodes at

the bottom. For the T nodes, we use Bayes in order to determine the posterior
probability of each door. We determine the value p′

k := P (Tk|Oi, Sj), the pos-
terior probability of the car being placed behind door k after having observed
that Monty opened door i and after having initially picked door j:

p′
k = P (Tk|Oi, Sj) =

P (Oi|Sj , Tk)P (Tk|Sj)
P (Oi|Sj)

=
αi,j,kpk∑n

k′=1 αi,j,k′pk′

where we used P (Tk|Sk) = P (Tk), since the selection of a door does not influence
where the car lies.

At each of the F nodes, we need to choose the door with highest posterior
p′

k given our initial choice S and the host’s action. This means picking the door
giving maxk p′

k = maxk P (Tk|Oi, Sj).
At the O nodes, the host is acting. He might not open any door (probability

βj) or open a door i with probability P (Oi|Sj).

– If the host is not opening any door, the player is successful only if the door
with the car is the one that he initially picked. The probability of this is

P (Tj |O∅, Sj) =
P (O∅|Sj , Tj)P (Tj)

P (O∅|Sj)
=

(1 − ∑
i αi,j,j)pj

βj

and the contribution to the O node is P (Tj |O∅, Sj) times P (O∅|Sj).
– If, instead, the host opens door i, the contribution to the value of the node

is P (Oi|Sj)maxk P (Tk|OiSj).
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This gives the following value for a node of type O:

P (O∅|Sj)P (Tj |O∅, Sj) +
n∑

i=1

P (Oi|Sj)max
k

P (Tk|Oi, Sj) (10)

= βj
(1 − ∑

i αi,j,j)pj

βj
+

n∑

i=1

P (Oi|Sj)max
k

αi,j,kpk

P (Oi|Sj)
(11)

=
(
1 −

n∑

i=1

αi,j,j

)
pj +

n∑

i=1

max
k

αi,j,kpk (12)

At the root, we have the decision node S where we take the door j that maxi-
mizes the value of Eq. (12).

Proposition 3. The optimal policy achieves expected payoff:

V ∗ = max
j=1,...,n

[(
1 −

n∑

i=1

αi,j,j

)
pj +

n∑

i=1

max
k

αi,j,kpk

]
.

Example 5. We now consider classic Monty with response bias, that is the sce-
nario with 3 doors and uniform priors, P (Ti) = 1

3 , the host always open one
door (AO protocol), but when the player chooses the door with the car behind
in the first step, then the host may not be following an uniform distribution in
deciding which door to open (see also [2], pages 216–217).

In the following description let i, j and k to be distinct; i.e. (i, j, k) is a
permutation of (1, 2, 3). We have αi,j,k = 1 and αi,j,j + αk,j,j = 1. Now, assume
that the player selects door j and the host opens door i. Observe that the total
probability of opening door i is P (Oi|Sj) = 1

3 (1 + αi,j,j). We then determine
the posterior probabilities for positions j and k (the car cannot be behind door
i since this door was opened): P (Tk|Sj , Oi) = αi,j,kpk

αi,j,jpj+αi,j,kpk
= 1

αi,j,j+1 and
P (Tj |Sj , Oi) = αi,j,jpj

αi,j,jpj+αi,j,kpk
= αi,j,j

αi,j,j+1 . The best decision in the second stage
of the game consist in picking the door j or k associated with the higher posterior.
Now, consider the decision at the root. The payoff V (Sj) of selecting door j,
assuming that then choosing optimally in the second step, is:

V (Sj) =
∑

i�=j

αi,j,j + 1
3

max{ 1
αi,j,j + 1

,
αi,j,j

αi,j,j + 1
} =

1
3

∑

i�=j

max{1, αi,j,k} =
2
3

Since this value does not depend on j, the first door can be chosen in an arbitrary
way. It turns out that the best policy in this case is “pick any door randomly and
then, after that the host opens a door, switch choice to other unopened door”.
The optimal value of the optimal policy is V ∗ = 2

3 .

5 Discussion and Conclusions

The Monty Hall Problem (MHP) is a puzzle that has raised a lot of attention and
is frequently used as a didactic tool for explaining how to reason with subjective
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probabilities. Some interesting variations of the Monty Hall problem have been
analyzed by Lucas et al. [6,7]; we refer the reader to the book of Rosenhouse
that provide an excellent review of materials on the Monty Hall problem [11].

In computer science, the Monty Hall problem has stimulated a variety of
research activities, including works on epistemic logic [5] and reasoning about
uncertainty [2]; we also mention the interpretation given by Viappiani and
Boutilier (in the appendix of [16]) in terms of preferences and choice. On the
other hand, psycologhists have used the Monty Hall problem to study how human
people reason with probabilities [15].

In this paper we provided an analysis of the Monty Hall problem and some
of its extensions emphasizing the role of dealing with epistemic uncertainty. We
have considered policies that determine which door to select in the first round,
and whether to keep the same choice or to switch in the second. We provided
the characterization of the optimal policy in several generalizations of the MHP:
considering different prior subjective probabilities for the position of the prize
behind the doors, considering uncertainty over the possible host’s behaviors and
considering n doors. We mention some interesting further extensions of the MHP
worth studying: considering the generalization m rounds, and the case where the
number of rounds is uncertain.

We now provide some brief comments on how the Monty Hall problem is
related to several areas of artificial intelligence. First of all, notice that the tools
we have used (Bayesian reasoning, Bayesian networks, and decision trees) are
typically used in AI. Moreover, some of the ideas behind our work are relevant
to research in multi-agent systems since agents often have to reason about other
agents’ behaviour. In some sense, the MHP can be seen as an emblematic case of
an agent reasoning about another agent’s behavior, a key aspect of multi agent
system research; we advocate that it often worth to consider a wide variety of
possible behaviors and not just a single one, and to consider mixture of such
possible behaviors (as we did in our treatment of the MHP). This could be of
relevance for opponent modeling in games, for instance.

The Monty Hall problem has connections with the statistical areas of selec-
tively reported data and missing data; in particular the missing at random
hypothesis in machine learning [3]. In the case of recommender systems based
on collaborative filtering where users rate items such as movies, the missing at
random hypothesis imputes missing ratings as the result of a random process
that selects the items that are rated or not. This assumption might not be valid
[9], causing the system to underperform. Indeed it is possible that an item, let’s
say a movie, is watched and then rated for a variety of reasons:

– the movie is popular (and the user often watches popular movies; although
he might not necessarily like them),

– the movie is perceived by the user as similar to others seen in the past,
– the user thinks (based on his knowledge) that he might like the movie and

therefore decide to watch it,
– the movie was recommended to the user (perhaps by a competitor), etc.
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Therefore, instead of a simple probabilistic model, one could consider a richer
model accounting for a mixture of all such different “user protocols” and the
associated uncertainties in terms of subjective probabilities (allowing to model
the interplay between the user habits, the popularity of movies, the beliefs of the
user about which movies he might like, etc.). Of course, learning such a proba-
bilistic model would be challenging. We believe that the design of recommender
systems dealing with such “protocol uncertainty” is an important research
direction.
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Abstract. Classical F-transform for lattice-valued fuzzy sets can be
defined using the Zadeh’s power set monad and a special monadic rela-
tion. In this paper we use the fact that power set structures of hesitant
fuzzy sets, fuzzy soft sets or intuitionistic fuzzy sets also define power
set monads and we show how by selecting appropriate monadic relations
the F-transforms for these fuzzy type structures can be defined.

1 Introduction

Fuzzy transform represents a method in fuzzy set theory, which is used in many
applications in signal and image processing [4,5], signal compressions [22,26],
numerical solutions of ordinary and partial differential equations [9,27], data
analysis [6,23] and many other applications. This concept was introduced for
the first time in [21] both for classically defined [0, 1]-valued fuzzy sets and L-
valued fuzzy sets, where L is a complete residuated lattice. The F-transform
method represents a special transformation map based on a system of fuzzy sets
defined on a given universe, which is called a fuzzy partition. In general, any
variant of a fuzzy partition then represents a pair (X,A), where X is a set and
A = {Ai : i ∈ I} is a set of fuzzy sets in X. Based on a fuzzy partition (X,A),
the F-transform is then a special map transforming fuzzy sets from a set X to
fuzzy sets in the index set I of a fuzzy partition A. This procedure makes it
possible to significantly simplify the work with the original fuzzy sets, especially
in those areas, such as methods for image processing, where the original set X is
huge, while the index set I from the fuzzy partition can be significantly smaller.

Fuzzy sets, both classical and with values in lattices, are not the only tool
that allows us to work with uncertainty, both theoretically and with a num-
ber of practical applications. Currently, there is a whole range of theories and
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theoretical structures which are based on the principles of fuzzy set theory but
create their own tools and methods for solving theoretical and practical prob-
lems. These theories undoubtedly include the theory of intuitionistic fuzzy sets,
the theory of fuzzy soft sets and the theory of hesitant fuzzy sets. The common
feature of these three theories is, among other things, a large number of current
publications dealing with theoretical properties and application possibilities of
these theories. For a basic overview of these theories and their applications, see,
e.g., [1,2,30,32] for intuitionistic fuzzy sets, [7,11,12,19] for fuzzy soft sets and
[25,28,29,31] for hesitant fuzzy sets.

In our previous paper [17] we tried to unify some of methods used in all
these theories. For this purpose, we used a special tool from the theory of cate-
gories, namely the theory of power set monads (see, e.g., [14,16]), which allows
to unify not only various types of relations but also transformation operators
defined by these relations. In this paper we use this result about the existence of
power set monads defined by fuzzy soft sets, hesitant fuzzy sets or intuitionistic
fuzzy sets and using suitable monadic relations in these monads we define F-
transform operators for these fuzzy type structures. We will also show how these
F-transform operators can be defined axiomatically. All these results then rep-
resent generalizations and extensions of results from the theory of F-transform
for classical lattice-valued fuzzy sets. Transformation operations based on the
F-transform principle in these fuzzy type structures make it possible to simplify
the use of these structures in real applications, because with the help of these
transformations the size of the sets on which these structures are defined can be
significantly reduced. For example, F-transform for fuzzy soft sets can be effec-
tively used in the method of the color segmentation of images, published in [18].
For hesitant fuzzy sets theory, F-transform can be used in clustering [33], where
the reduction of data structures for clustering could be of importance, and for
intuitionistic fuzzy sets the importance of F-transform is practically the same as
for classical fuzzy sets.

In the paper we present only theoretical background of this theory, other
details and proofs will be published elsewhere.

2 Preliminaries and Categorical Tools

A basic membership structure of fuzzy sets in the paper is a complete residu-
ated lattice (see e.g. [20]), i.e. a structure L = (L,∧,∨,⊗,→, 0L, 1L) such that
(L,∧,∨) is a complete lattice, (L,⊗, 1L) is a commutative monoid with operation
⊗ isotone in both arguments and → is a binary operation which is residuated
with respect to ⊗. Recall that a negation of an element a in L is defined by
¬a = a → 0L.

In the case of intuitionistic fuzzy sets we use a special example of a residuated
lattice L, namely, an MV -algebra [3], i.e., a structure L = (L,⊕,⊗,¬, 0L, 1L)
satisfying the following axioms:

(i) (L,⊗, 1L) is a commutative monoid,
(ii) (L,⊕, 0L) is a commutative monoid,
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(iii) ¬¬x = x, ¬0L = 1L,
(iv) x ⊕ 1L = 1L, x ⊕ 0L = x, x ⊗ 0L = 0L,
(v) x ⊕ ¬x = 1L, x ⊗ ¬x = 0L,
(vi) ¬(x ⊕ y) = ¬x ⊗ ¬y, ¬(x ⊗ y) = ¬x ⊕ ¬y,
(vii) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x,

for all x, y ∈ X.
If we put

x ∨ y = (x ⊕ ¬y) ⊗ y, x ∧ y = (x ⊗ ¬y) ⊕ y, x → y = ¬x ⊕ y,

then (L,∧,∨,⊗,→, 0L, 1L) is a residuated lattice. MV -algebra is called a com-
plete, if that lattice is a complete lattice.

If L is a complete residuated lattice, an L-fuzzy set in a crisp set X is a map
f : X → L.

We recall the notions of hesitant, soft and intuitionistic L-fuzzy sets.

Definition 1 [2,11,29]. Let X be a set.

1. Let K be a set of all possible criteria. A pair (E, s) is called an L-fuzzy soft
set in a space (X,K), if ∅ 	= E ⊆ K and s : E → LX . By T (X,K) we denote
the power set of all L-fuzzy soft sets in (X,K).

2. A hesitant L-fuzzy set in X is a mapping h : X → 2L, i.e., for x ∈ X, h(x) ⊆ L.
By H(X) we denote the power set of all hesitant L-fuzzy sets in X.

3. An intuitionistic L-fuzzy set in a set X is a pair (u, v) of L-fuzzy sets on
X, such that ¬u ≥ v. By J(X) we denote the power set of all intuitionistic
L-fuzzy sets in X.

For basic information about the category theory see [8,10]. In what follows,
categories will be denoted by bold letters and morphisms in a category K will
be called K-morphisms.

As we mentioned in the introduction, the main tool from the category theory
we will use is the monad. We use the following modified version called the power
set monad, which is a generalization of standard Zadeh’s power set structure.

Definition 2 [17]. A structure T = (T,♦, η,W ) is called a power set monad in
a category K, if

1. T : obj(K) → obj(K) is mapping between objects of K,
2. W : K → Set is a functor,
3. For arbitrary object X in K, a structure of a complete

∨
-semilattice is defined

on a set W (T (X)),
4. For K-morphisms f : X → T (Y ) and g : Y → T (Z) there exists their compo-

sition g♦f : X → T (Z), (called the Kleisli composition) which is associative,
5. For arbitrary K-morphisms f, f ′ : X → T (Y ), g, g′ : Y → T (Z), the following

implications hold

W (g) ≤Y W (g′) ⇒ W (g♦f) ≤Z W (g′♦f),
W (f) ≤Y W (f ′) ⇒ W (g♦f) ≤Z W (g♦f ′),

where ≤Y ,≤Z are point-wise pre-order relations defined by ordering on
W (T (Y )) or W (T (Z)), respectively.
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6. η is a system of K-morphisms ηX : X → T (X), for any object X of K,
7. For any K-morphism f : X → Y , the K-morphism

f→
T := ηY .f♦1T (X) : T (X) → T (Y )

is such that W (f→
T ) is also

∨
-preserving map with respect to ordering defined

in 3, where 1T (X) is the identity K-morphism T (X) → T (X) in K.
8. For any K-morphism f : X → T (Y ), ηY ♦f = f holds,
9. ♦ is compatible with composition of K-morphisms, i.e., for K-morphisms

f : X → Y , g : Y → T (Z), we have g♦(ηY .f) = g.f .

Let us consider the following classical example of a monadic power set theory.

Example 1 [24]. Let L be a complete residuated lattice. The power set monad
Z = (Z,�, χ, 1Set) is defined by

1. Z : Set → Set is an object function defined by Z(X) = LX and 1Set : Set →
Set is the identity functor,

2. On LX the order relation is defined point-wise,
3. For each X ∈ Set, χX : X → Z(X) is the characteristic map of elements

from X, i.e., for x, y ∈ X, χX(x)(y) = χX
{x}(y) =

{
1L, x = y,

0L, x 	= y
,

4. For each f : X → Z(Y ) and g : Y → Z(V ) in Set, g � f : X → Z(V ) is
defined by

(g � f)(x)(z) =
∨

y∈Y

f(x)(y) ⊗ g(y)(z).

In the paper [17] we proved the existence of power set monads based on power
sets T (X,K),H(X) and J(X), respectively. Due to the limited scope of the
paper, we will present here only the basic structure of these power set monads,
without any technical details (for more information see [17]).

Let Set∗ be the subcategory of the product category Set×Set, where objects
of Set∗ are all pairs (X,K) such that K contains a special object � (called a
trivial criterium) and morphisms are pairs (f, α) : (X,K) → (Y,M) such that
f : X → Y and α : K � M is a surjective map with α(�) = �.

Theorem 1 [17]. Let T̃ = (T̃ ,�, ξ,W ) be defined by

1. T̃ : obj(Set∗) → obj(Set∗) is a mapping defined by T̃ (X,K) = (T (X,K),K),
where

T (X,K) = {(E, s) : � ∈ E ⊆ K, s : E → LX}.

2. W : Set∗ → Set is the functor such that W (X,K) = X, W (f, α) = f .
3. An order relation � is defined on T (X,K) = W (T̃ (X,K)) by (E, s), (F, t) ∈

T (X,K), (E, s) � (F, t) iff E ⊆ F , (∀e ∈ E)s(e) ≤ t(e) in LX .
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4. If (f, α) : (X,K) → T̃ (Y,M) and (g, β) : (Y,M) → T̃ (Z,N) are morphisms
in Set∗, the Kleisli composition � is defined by

(g, β)�(f, α) = (g � f, β.α) : (X,K) → T̃ (Z,N),

where g � f : X → T (Z,N) is defined in [17]; Theorem 1.
5. For (X,K) ∈ Set∗, the Set∗-morphism ξ(X,K) : (X,K) → T̃ (X,K) is defined

by ξ(X,K) = (ξX , 1K), ξX : X → T (X,K), ξX(x) = (K, ηX
x ), where ηX

x : K →
LX is defined by ηX

x (k)(z) = χX
{x}(z), k ∈ K, z ∈ X.

Then T̃ is a power set monad in the category Set∗.

Theorem 2 [17]. The structure H = (H, �, σ, 1Set) is defined by

1. The object function H : obj(Set) → obj(Set) is defined by H(X) = {h|h :
X → 2L}.

2. The set H(X) is ordered by the relation

h, g ∈ H(X), h � g ⇔ (∀x ∈ X)h(x) ⊆ g(x).

3. If f : X → H(Y ) and g : Y → H(Z) are Set-morphisms, for arbitrary
x ∈ X, z ∈ Z we set

g � f : X → H(Z),

g � f(x)(z) =
⋃

y∈Y

f(x)(y) ⊗ g(y)(z) ⊆ L,

where for A,B ⊆ L, A ⊗ B = {α ⊗ β|α ∈ A, β ∈ B} and A ⊗ ∅ = ∅.
4. For X ∈ Set, σX : X → H(X) is defined by

x, z ∈ X, σX(x)(z) =

{
{1L}, x = z

∅, x 	= z
.

Then H is a power set monad in the category Set.

Theorem 3 [17]. Let L be an MV -algebra and let the structure J = (J,�,
η, 1Set) be defined in the category Set by

1. J : obj(Set) → obj(Set) is a mapping defined by

J(X) = {(u, v)|u, v ∈ LX ,¬u ≥ v}.

2. The set J(X) is ordered by the relation � such that

(u, v), (s, t) ∈ J(X), (u, v) � (s, t) ⇔ u ≤ s, v ≥ t,

where ≤ is a point-wise order relation on LX .
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3. If f : X → J(Y ) and g : Y → J(Z) are Set-morphisms, g � f : X → J(Z) is
defined by

x ∈ X, g � f(x) = ((g � f)x, (g � f)x) ∈ J(Z),

where for z ∈ Z,

(g � f)x(z) =
∨

y∈Y

fx(y) ⊗ gy(z),

(g � f)x(z) =
∧

y∈Y

fx(y) ⊕ gy(z).

4. For X ∈ Set, ηX : X → J(X) is defined by

x ∈ X, ηX(x) = (χX
{x},¬χX

{x}).

Then J is a power set monad in the category Set.

With the help of monadic power set theory in a category, we can now define
the concept of a monadic relation. This construction was first explicitly men-
tioned in the paper of Manes [15] and has recently proven to be a universal
construction of relations for many fuzzy type structures (e.g., see [16]). We use
the following form of a monadic relation in a category.

Definition 3 [15]. Let K be a category and let T = (T,♦, η,W ) be a power set
monad in K.

1. A T-relation R from an object X to an object Y in K, in symbol R : X � Y ,
is a K-morphism R : X → T (Y ) in the category K.

2. If R : X � Y and S : Y � Z are T-relations, their composition is a T-
relation S♦R : X � Z.

In fuzzy mathematics and its applications, various types of approximation
and transformation operators are very often used, which convert fuzzy objects
defined over the basic structure X to fuzzy objects over the other structure
Y . Many of these transformation operators are special examples of a general
transformation operator defined by T-relations as it is defined in the following
definition.

Definition 4 [16]. Let T = (T,♦, ξ,W ) be a power set monad in a category K
and let R : X � Y be a T-relation from X to Y . Then a R-transformation of
objects from T (X) is a K-morphism

R↑ = R♦1T (X) : T (X) → T (Y ).

We recall a basic definition of a F-transform for L-fuzzy sets.

Definition 5 [21]. Let X be a set and let A = {Ai : i ∈ I} ⊆ LX . Then

1. A is called a fuzzy partition, if {core(Ai) : i ∈ I} is a partition of X,
where core(A) = {x ∈ X : A(x) = 1L}, i.e.,

⋃
i∈I core(Ai) = X,

core(Ai) ∩ core(Aj) = ∅, if i 	= j.
2. A transformation FX,A : LX → LI is called a F-transform, if for s ∈ LX , i ∈

I, FX,A(s)(i) =
∨

x∈X s(x) ⊗ Ai(x).
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3 F-Transform for Hesitant, Soft and Intuitionistic
L-Fuzzy Sets

In order to be able to define the F-transform for the mentioned three fuzzy type
structures, it is important to realize that the F-transform for L-fuzzy sets can
be equivalently defined by a power set monad Z = (Z,�, χ, 1Set) in the category
Set from Example 1. In fact, for a fuzzy partition (X,A), A = {Ai : i ∈ |A|},
and the monad Z we can consider a Z-relation ZA : X � |A|, such that for
x ∈ X, i ∈ |A|, ZA(x)(i) = Ai(x). Then, it can be proven that for the F-
transform FX,A : LX → L|A|, it holds

FX,A = ZA � 1Z(X).

In order to be able to use this construction to define a monadic version of an F-
transform in a category K with a power set monad T = (T, η,♦,W ), we should
emphasise that this monadic F-transform will be defined by the composition
functor W.T : K → Set. To define a F-transform, we need

1. For an arbitrary object X ∈ K to define a suitable fuzzy type partition
A ⊆ W.T (X),

2. For (X,A) to define an appropriate T-relation TA : X � |A|.
Then a F-transform based on (X,A) can be defined by using a K-morphism

FX,A = TA♦1T (X) : T (X) → T (|A|).

In the rest of this section we want to show how these two constructions can
be realized for the above mentioned fuzzy structures and how the resulting F-
transform is defined. Details of these constructions and proofs will be published
elsewhere.

3.1 Hesitant F-Transform

We will now apply this procedure to the power set monad H = (H, �, σ, 1Set)
from Theorem 2. Let X ∈ Set and h ∈ H(X). We define the core of h by

core(h) = {x ∈ X : 1L ∈ h(x)}.

Then a subset A = {hi : i ∈ |A|} ⊆ H(X) is called a hesitant L -fuzzy partition
of X, if {core(hi) : i ∈ |A|} is a partition of a set X. It follows that there exists
a surjective mapping

iA : X � |A|,
such that x ∈ core(hiA(x)). Then according to [17]; Lemma 2.1, we can define a
H-relation HA : X � |A| such that

x ∈ X, i ∈ |A|, HA(x)(i) = hi(x) ⊆ L.
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Definition 6. If A = {hi : i ∈ |A|} is a hesitant L-fuzzy partition of X, then
a hesitant F-transform HFX,A : H(X) → H(|A|) defined by (X,A) is such that
for h ∈ H(X), i ∈ |A|,

HFA = H↑
A = HA � 1H(X),

HFX,A(h)(i) = (HA � 1H(X))(h)(i) =
⋃

x∈X

h(x) ⊗ hi(x) ⊆ L.

Hesitant F-transform can be equivalently defined axiomatically as a general hes-
itant transformation system:

Definition 7. A triple (Y, u,G) is called a hesitant transformation system of
X ∈ Set, if

1. Y ∈ Set and u : X � Y is a surjective mapping,
2. G : H(X) → H(Y ) is a mapping, such that

(a) G is
∨

-preserving with respect to ordering in H(X),
(b) For all α ∈ L, g ∈ H(X), G(α ⊗ g) = α ⊗ G(g),
(c) For all x ∈ X, y ∈ Y , 1L ∈ G(σX(x)) ⇔ u(x) = y.

Then the following theorem describes an axiomatic definition of a hesitant F-
transform.

Theorem 4. Let X,Y ∈ Set, u : X � Y and G : H(X) → H(Y ). Then the
following statements are equivalent.

1. (Y, u,G) is a hesitant transformation system of X.
2. There exists a hesitant L-fuzzy partition A = {hy : y ∈ Y } of X such that

(a) For all x ∈ X, y ∈ Y , u(x) = y ⇔ x ∈ core(hy),
(b) G = HFX,A.

3.2 Intuitionistic F-Transform

The same procedure we can apply to the power set monad J = (J,�, η, 1Set)
from Theorem 3. Let L be a MV -algebra and let X ∈ Set and (u, v) ∈ J(X).
We define the core of (u, v) by

core(u, v) = {x ∈ X : u(x) = 1L}.

If x ∈ core(u, v), then we have v(x) = 0L. Then a subset A = {(si, ti) : i ∈
|A|} ⊆ J(X) is called an intuitionistic L -fuzzy partition of X, if {core(si, ti) :
i ∈ |A|} is a partition of X. It follows that there exists a surjective map

iA : X � |A|

such that x ∈ core(siA(x), tiA(x)). We use the following notation:
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1. For (u, v) ∈ J(X), x ∈ X, (u, v)(x) = (u(x), v(x)) ∈ L2,
2. For α ∈ L, (u, v) ∈ J(X), α ⊗ (u, v) = (α ⊗ u,¬α ⊕ v) ∈ J(X),
3. For (α, β) ∈ L2,¬α ≥ β, (α, β) ⊗ (u, v) = (α ⊗ u, β ⊕ v) ∈ J(X).

Then, according to [17]; Lemma 3, we can define an J-relation JA : X � |A| by

x ∈ X, i ∈ |A|, JA(x)(i) = (si(x), ti(x)).

Using the monad J and the J-relation JA, according to [17]; Proposition 5, we
can define an intuitionistic F-transform JFX,A.

Definition 8. If A = {(si, ti) : i ∈ |A|} is an intuitionistic L-fuzzy partition of
X, then an intuitionistic F-transform JFX,A : J(X) → J(|A|) defined by (X,A)
is such that for (u, v) ∈ J(X), i ∈ |A|,

JFX,A = J↑
A = JA � 1J(X),

JFX,A(u, v)(i) = (JA � 1J(X))(u, v)(i) = (
∨

x∈X

u(x) ⊗ si(x),
∧

x∈X

v(x) ⊕ ti(x)).

Intuitionistic F-transform can be equivalently defined axiomatically as a general
intuitionistic transformation system:

Definition 9. A triple (Y, u,G) is called an intuitionistic transformation system
of X ∈ Set, if

1. Y ∈ Set and u : X � Y is a surjective mapping,
2. G : J(X) → J(Y ) is a mapping, such that

(a) G is
∨

-preserving with respect to ordering in J(X),
(b) For all (α, β) ∈ L2,¬α ≥ β, (u, v) ∈ J(X), G((α, β)⊗ (u, v)) = (α, β)⊗

G(u, v),
(c) For all x ∈ X, y ∈ Y , G(ηX(x))(y) = (1L, 0L) ⇔ u(x) = y.

Then the following theorem describes an axiomatic definition of an intuitionistic
F-transform.

Theorem 5. Let L be a MV -algebra and let X,Y ∈ Set, u : X � Y be a
surjective map and G : J(X) → J(Y ). Then the following statements are equiv-
alent.

1. (Y, u,G) is an intuitionistic transformation system of X.
2. There exists an intuitionistic L-fuzzy partition A = {(sy, ty) : y ∈ Y } of X

such that
(a) For all x ∈ X, y ∈ Y , u(x) = y ⇔ x ∈ core(sy, ty),
(b) G = JFX,A
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3.3 Soft F-Transform

To define a soft version of a F-transform we use the power set monad T̃ in the
category Set∗ from Theorem 1. In that case the soft F-transform will be defined
by the functor W.T̃ = T from Theorem 1. We use the following notations for
(E, s) ∈ T (X,K), α ∈ L and ϕ ∈ LE and x ∈ X, e ∈ E:

(E, s)(e)(x) = s(e)(x), α ⊗ (E, s) = (E,α ⊗ s),
ϕ ⊗ (E, s) = (E,ϕ ⊗ s), (ϕ ⊗ s)(e)(x) = ϕ(e) ⊗ s(e)(x),

core(E, s) = {x ∈ X : ∀e ∈ E, s(e)(x) = 1L},

χE
{−}(e) : E → L, χE

{−}(e)(n) =

{
1L, n = e,

0L, n 	= e.

By a L-fuzzy soft partition of (X,K) we understand a set A = {(Ei, pi) : i ∈
|A|} ⊆ T (X,K), such that

1. {core(Ei, pi) : i ∈ |A|} is a partition of X and
2.

⋃
i∈|A| Ei = K.

It follows that there exists a surjective map

iA : X � |A|
such that x ∈ core(EiA(x), piA(x)) For an L-fuzzy soft partition A of (X,K) we
can defined a T̃-relation T̃A = (TA, 1K) : (X,K) � (|A|,K) by

TA : X → T (|A|,K),
x ∈ X, TA(x) = (EiA(x), i

→
A .piA(x)),

where i→A is the Zadeh’s extension of a mapping iA : X → |A| to the mapping
LX → L|A|. Now, using a fuzzy soft partition A and a T̃ relation T̃A we can
defined the notion of a soft F-transform SF(X,K),A of (X,K) defined by A as
follows:

Definition 10. If A = {(Ei, pi) : i ∈ |A|} is an L-fuzzy soft partition of
(X,K), then a soft F-transform of (X,K) is a mapping SF(X,K),A : T (X,K) →
T (|A|,K) such that

SF(X,K),A = T ↑
A = TA � 1T (X,K),

(E, s) ∈ T (X,K), SF(X,K),A(E, s) = (E, s) ∈ T (|A|,K),

s(n)(i) = (E, s)(n)(i) =
∨

z∈X,n∈EiA(z)

s(n)(z) ⊗ i→A (piA(z)(n))(i)

for n ∈ E, i ∈ |A|.
The soft F-transform can be equivalently defined axiomatically as a general soft
transformation system:
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Definition 11. A triple (Y, u,G) is called a soft transformation system of
(X,K) ∈ Set∗, if

1. Y ∈ Set and u : X � Y is a surjective mapping,
2. G : T (X,K) → T (Y,K) is a mapping, such that

(a) G is
∨

-preserving with respect to ordering in T (X,K),
(b) For all α ∈ L, G(α ⊗ (E, s)) = α ⊗ G(E, s),
(c) For all e ∈ K, G((E, s) ⊗ χE

{−}(e)) = G(E, s) ⊗ χE
{−}(e),

(d) G(K, ηX
x )(e)(y) = 1L ⇔ w(x) = y,

(e) G preserves the criteria set of objects from T (X,K).

In the following theorem we present an equivalent axiomatic definition of a soft
F-transform.

Theorem 6. Let X,Y ∈ Set, u : X � Y be a surjective map and G :
T (X,K) → T (Y,K) be a map. Then the following statements are equivalent.

1. (Y, u,G) is a soft transformation system of (X,K).
2. There exists a L-fuzzy soft partition A = {(Ey, py) : y ∈ Y } of (X,K) such

that
(a) For all x ∈ X, y ∈ Y , u(x) = y ⇔ x ∈ core(Ey, py),
(b) G = SF(X,K),A
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17. Močkoř, J., Hýnar, D.: On unification of methods in theories of fuzzy sets, hesitant
fuzzy set, fuzzy soft sets and intuitionistic fuzzy sets. Mathematics 9(4), 447, 1–26
(2021)
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Abstract. In this paper we explore the use of fuzzy confidence functions
for enhancing the performance of social recommenders with implicit pref-
erences, focusing on K-Nearest Neighbors (KNN) collaborative filtering
algorithms. Firstly, we measure the effects of including social relations
for enhancing the performance of the algorithms with either explicit
or implicit preferences, expecting to verify better results when social
attributes are considered in the relevant neighborhood estimation. Sec-
ondly, it is proposed to enhance the social recomenders with implicit
preferences by fuzzy confidence functions. An application is developed
to measure the effects of including social relations and to illustrate our
proposal on the fuzzy modeling of implicit preferences, recommending
courses based on the students socio-demographic and academic infor-
mation. As a result, the best recommendations are accomplished with
socially-enhanced algorithms that make use of implicit preferences and
fuzzy confidence functions, obtaining a FCP in test of 0.68.

Keywords: Recommendation systems · Collaborative filtering ·
K-nearest neighbors · Social closeness · Explainability

1 Introduction

Recommendation systems allow applying machine learning techniques in a per-
sonalized and useful fashion, building preference models with a great range of
applications. Examining user-based collaborative filtering algorithms as a first-
basic type of social recommender, building recommendations from similar user
rating behavior, it is noted that the inclusion of relevant social information
should only improve the systems’ recommendations by accomplishing higher per-
formance scores. From this standing point, the use of fuzzy confidence functions
is explored for estimating implicit preferences and improving socially-enhanced
recommendation systems.
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There is an already important body of knowledge supporting the claim that
social information allows enhancing the performance of intelligent systems (see,
e.g., [5]). Perhaps the most popular implementations of recommender systems
with Collaborative Filtering (CF) make use of Matrix Factorization (MF) algo-
rithms, enhancing their predictive capability by incorporating the knowledge
contained in social data sources, either through social regularization (see e.g.
[13]), or directly including social analysis for identifying similar users [11,14].

A rather less developed body of literature can be found on K-Nearest Neigh-
bors (KNN) collaborative filtering, making use of social and relevant neighbor
information for estimating the users’ preferences. One example can be found for
recommending academic conferences with implicit-binary preferences [3], which
builds the users’ explicit ratings according to the number of papers published.
Another example of enhanced-social KNN-CF can be found in [1], with the nov-
elty of estimating the reliability of the neighborhood and implicit preferences by
Dempster-Shafer theory, having significant effects on users holding insufficient
relationships with their neighbors.

Developing socially enhanced KNN-CF algorithms, we include social infor-
mation through a social similarity function, which takes into account the social
background between users, and consider both implicit and explicit preferences.
In this sense, an explicit framework allows interpreting users’ preferences directly
from an observed rating, which can be regarded (although it is not always prop-
erly specified) as a bipolar univariate, Likert-type scale, where 1 star reveals an
absolute negative preference, 3 stars stand for absence of preference and 5 stars
correspond with absolute positive preference (on this semantic issue, see e.g.
[7]). On the other hand, implicit preferences refer to some binary knowledge on
a user being interested in an item, just because there was some interaction with
that item. But implicit preferences can be modeled in a more expressive and
informative way, according to the confidence that users express on preferring a
specific item (as suggested in [9]). Here we propose a fuzzy representation of such
a confidence, gradually incorporating information on the implicit preference in
a monotonically increasing manner.

There are multiple examples in literature dealing with techniques for estimat-
ing implicit-binary preferences from the users’ behavior and the context of the
user-item interaction (see e.g. [2,12]), but not necessarily taking into account the
strength or degree of confidence of such an implicit preference (as stated above
in the sense of [9]). Following the original proposal of [9], where it is acknowl-
edged that beliefs or preferences are associated with varying confidence levels,
we examine the use of a fuzzy representation of confidence for implicit feedback.
Hence, a certain graduality is introduced, obtaining a smoothed estimation of
the confidence in observing the implicit preference for an item, also contributing
to the transparency and explainability of the system. For illustrating the use of
fuzzy confidence functions, a case study is developed for academic course recom-
mendation, where the proxy for confidence is given by the qualification or grade
that the students achieve for the course.
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This particular application for course recommendation is chosen not only to
illustrate our proposal on fuzzy confidence functions, but also because it allows
modelling the recommendation problem both from the perspective of having
explicit preferences, taking as proxy of such preferences the grade obatined for
a given course; and from the perspective of having implicit preferences, where
the grade is used as the input of a fuzzy function for estimating the confidence
for a given binary preference (see e.g. [4,6], for other applications for academic
course recommendation). Hence, it can be tested if the recommendations can be
enhanced by using fuzzy confidence functions, and at the same time, offering evi-
dence on the relevance of including social information among users. As a result,
the use of social information, together with the fuzzy modeling of confidence for
estimating implicit preferences, obtains the best results for our application in
course recommendation.

For presenting the complete methodology and the case study, the following
paper is organized as follows. In Sect. 2 we present the data for our course rec-
ommendation application, as well as the social-enhanced KNN-CF algorithms
that are going to be examined in this study and the evaluation metrics. Then, in
Sect. 3 the fuzzy representation of confidence is introduced, necessary for com-
puting the KNN-CF algorithms with implicit preferences. Finally, in Sect. 4, the
results are presented, comparing the performance of the explicit/implicit KNN-
CF recommenders with and without social information, and in Sect. 5, some final
comments are given for future research.

2 Methodology

In the following section, the recollection of data for the course recommendation
application is explained, as well as the socially-enhanced KNN-CF algorithms.

2.1 Data Recollection and Experimental Setting

Data was gathered from the historical information on students’ characteristics
and performance for courses between the first semester of 2016 and the second
semester of 2018. This database has socio-demographic and academic informa-
tion. For the former, it includes the anonymous ID of the students, along with
their sex, age, city and region (department) from origin, the academic level (BA,
MSc, PhD), and previous school (before beginning the university). Here, schools
have an extra attribute consisting in their calendar, A or B, depending on the
beginning and end of their academic year.

For the latter, information consisted on the course code, the grade of the
student for that course, the semester in which the course was taken, the course
department and faculty, and the credits for the course. In total there were 24862
students and 539130 courses taken by students with their respective grades.

Here it should be noted, as it will be better explained in Sect. 3, that the
grade does not necessarily represent a rating as such, as it is not a subjective
judgment of preference from the user, but rather an approximated degree of
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enjoying the course. For our explicit preference models we shall make the sim-
plifying assumption that the grade is in itself the revealed rating between 0 and
5, but for our implicit preference approach, we shall take it as the proxy of con-
fidence on the preference for the course, represented according to a given fuzzy
membership function.

In order to evaluate the recommendation algorithms, we take 70% of the
available ratings for training, and leave the remaining 30% for testing. For sys-
tems working with explicit preferences, the Root Mean Squared Error (RMSE)
allows measuring the performance of the models regarding their predicted rat-
ing. However, with implicit preferences, a different type of measure is required,
which allows grading the pertinence or accuracy of the binary recommendations.
For doing this, the Fraction of Concordant Pairs (FCP) is going to be used [10],
as it allows to take the preference value not on its cardinal value, but on its
ordinal one. The FCP is defined by,

FCP =
nc

nc + nd
(1)

where the number of concordant items nc =
∑

u nu
c is given for every user u,

and pair of items (i, j), by nu
c = |{(i, j)r̂ui > r̂uj and rui > ruj}| where rui is the

rating of user u to item i, and the number of discordant items nu
d is analogously

given for every user u, and pair of items (i, j), by nu
d = |{(i, j)r̂ui > r̂uj and rui <

ruj}|.
In this way, the FCP allows capturing when an item is assigned a high position

in the recommendation ranking at least as good as the one actually assigned
by the user. Furthermore, the FCP can be used to compare the algorithm’s
performance for both explicit and implicit feedback.

2.2 Social-Enhanced KNN-CF Algorithms

KNN-CF is a common approach to develop user-user recommendation systems,
where unknown preferences can be predicted from similarly, like-minded, users,
or what can be referred as the user neighborhood. Central to this approach is
the estimation of weights for combining the members of the user neighborhood.
Those weights are commonly computed by similarity functions, measuring the
tendency of users to rate common items in a similar or concordant fashion.

Then, the objective of the KNN-CF algorithm consists in predicting the
unobserved rating of user u for item i, given by rui, by means of the weighted
average of the ratings from u’s neighborhood, i.e., the k nearest neighbors of u.
In this way, based on a given similarity measure sim(u, v), let’s define Nk

i (u) as
the set of all the k users which are most similar to u according to their preference
for a given item i, and take the predicted value of rui as a weighted average of
the ratings of neighboring users.

The basic KNN is modelled by Eq. (2).

r̂ui =

∑
v∈Nk

i (u) sim(u, v) · rvi
∑

v∈Nk
i (u) sim(u, v)

. (2)
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In case neighborhood information is totally or almost absent, i.e., where users
do not have that much items in common, the baseline extension can be a better
option, as in Eq. (3), taking into account the mean rating of user u for item i,

r̂ui = bui +

∑
v∈Nk

i (u) sim(u, v) · (rvi − bvi)
∑

v∈Nk
i (u) sim(u, v)

(3)

where bui = μ + bu + bi, and bu and bi indicate the observed deviations of user
u and item i, respectively, from the total average rating μ.

It should be here noted that for explicit preferences, the rating rui will cor-
respond in our course recommendation application to the grade obtained by
student u in course i, while for our implicit preference implementation, the rat-
ing rui will be taken as a proxy of the confidence for the preference on a given
course (according to the grade achieved by the student), as it will be explained
in Sect. 3.

Lastly, the similarity function sim(u, v) is here taken for every pair of users
(u, v) as the Pearson correlation coefficient, which is computed by

ρ(u, v) =

∑
i∈Iuv

(rui − μu) · (rvi − μv)
√∑

i∈Iuv
(rui − μu)2 ·

√∑
i∈Iuv

(rvi − μv)2
(4)

where Iuv stands for the set of items in common between users u and v.
Extending the KNN-CF approach to a hybrid-social KNN-CF system, the

similarity function has to be extended to make use of social attributes for prop-
erly identifying such a neighborhood. In the first place, social ties can be repre-
sented by a graph G = (E, V ), where the nodes in V are individuals (students)
and the edges in E are the links or connections that exist among the nodes.
Hence, a pair of nodes are linked together if there is an observed match between
a given social dimension or attribute.

Let’s recall that the social attributes considered in this application are the
students’ sex, age, city and region from origin, the academic level, and the pre-
vious school. All these attributes are directly measured, composing a set D of
social factors. Therefore, for every pair (u, v), the coincidence in any social aspect
j ∈ D is computed here by a binary similarity bsimj(u, v), taking the value of 1
if there is a coincidence a 0 otherwise.

Aggregating the information that is gathered for all the social aspects in D,
an overall social similarity simsocial(u, v) is obtained for any neighboring pair
(u, v), by

simsocial(u, v) =

∑
j∈D bsimj(u, v)

|D| . (5)

In this way, simsocial captures the proportion of social attributes in which
the users make a social match, taken here as the approximate likelihood that
they share the same preferences due to their social background. Therefore, both
the user-item (simuser, referring to similarities based only on preference over
items) and the user-social similarities (simsocial) can now be combined together
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to potentially enhance the accuracy of KNN-CF recommenders. Here we take a
convex combination between both simuser and simsocial, given by

simglobal(u, v) = αsimuser(u, v) + βsimsocial(u, v) (6)

where α and β represent the strength in which the preference or social based
similarities are taken into account for computing the global similarity simglobal.

Following the Pearson similarity defined in Eq. (4), the social Pearson global
similarity is here defined by

ρglobal(u, v) = αρ(u, v) + βsimsocial(u, v). (7)

After incorporating the social information into the KNN-CF by means of Eq.
(7), it is still required to extend the algorithms to work with implicit preferences,
given their special binary quality and the interpretation of the available rating
(grade) for denoting a degree of confidence on the perceived binary feedback.
For doing so we use soft, fuzzy, functions, as it will be explained next.

3 Fuzzy Confidence Functions

As previously mentioned, user-user CF algorithms are built from the interrela-
tions of the users according to their interactions with the items. In this way,
identifying users with a similar history of interactions or preferences over the
same items, being those preferences explicit, as in a given rating for the items,
or implicit, just by the occurrence of some interaction with the items, the CF
system can estimate unknown relations between users and items.

Despite the explicit information being very useful for CF recommendation,
implicit feedback is also relevant, given the potential unavailability of ratings
or the reluctance of users to rate items. Besides, its recollection is easier than
eliciting explicit ratings. Nonetheless, implicit preferences also have inherent lim-
itations, such as being either positive or not-positive, without possibly expressing
negative judgments (although this is also true for explicit frameworks unless the
valuation structure is specified, as the usual five-star rating system can be inter-
preted according to the Likert scale, but also to a unipolar scale ranging from the
absence of preference of one star, to the full preference of five stars), or the lack
of expressiveness regarding the motives or opinion on the observed interaction
(perhaps a mistake, a random selection, or even a disappointing experience with
the item).

Whereas the explicit feedback offers an estimate for the value of preference,
the implicit feedback offers a binary value that has to be weighted by its associ-
ated confidence [9]. In this sense, the rating variables rui in Eqs. (2)–(3), express
an intensity of confidence when representing implicit feedback that should be
properly modeled.

Firstly, let’s introduce binary preferences pui, such that it takes the value of
1 if rui > 0, and 0 otherwise. In this way, if a user u interacted with an item i,
it holds that rui > 0, and thus, there is evidence that u prefers i, i.e., pui = 1.
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But if user u never interacted with an item i, it holds that there is a missing
value for rui, or that rui = 0, and thus, it is taken as evidence that u does not
prefer i, i.e., pui = 0.

Now, the verification of pui = 1 is subject to different degrees of confidence,
which is here modeled according to the variable rui. In this way, the greater rui,
the greater the confidence on user u preferring item i. Such a confidence cui can
be modeled by the linear function [9],

cui = 1 + λrui (8)

where λ stands as a constant positive rate by which confidence on pui grows
proportionally to rui, and it is here computed by cui ∗ pui.

Therefore, confidence on a binary preference pui is understood according to
the fuzzy set qui, expressing the degree in which preference of u over i can be
affirmed (following fuzzy set theory [15]). Therefore, fuzzy confidence qui can be
in general represented by its co-support and its core. The co-support of qui is
taken as the subset of values for rui = 0, where there is absence of preference.
And the core of qui refers to the subset of values for rui where confidence of
preference is absolute. Then, there is a space in between the borders of the
core and the co-support which can be resolved by a continuous and monotone
transition (linear in the case of a triangular or trapezoidal fuzzy set). This is a
first step towards trying a gradual transition for the model, but it is here noted
that it should be possible to provide an appropriate axiomatic characterization
of the minimal properties that are required for these fuzzy confidence functions.

Following this intuitive proposal, we can model such a transition by a convex
function, following an exponential behavior,

qexp
ui = exp(rui), (9)

or a concave transition, like with the logarithmic function,

qlog
ui = log(rui) + 1, (10)

where log(0) := 0, or a both convex and concave transition, as given by the
logistic function

qS
ui =

L

1 + exp−γ(rui−r̄)
, (11)

where L is the upper bound, γ is the growth rate and r̄ is the function’s middle
value. All of these become hyper-parameters that need to be tuned in order to
learn the users’ confidence over their implicit preferences. The design for the
different fuzzy representations are depicted in Fig. 1.

Following this approach, we implement the KNN-CF for both implicit and
explicit feedback, testing the performance of the algorithms when using the social
information together with the preference behavior of users.
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(a) (b) (c)

Fig. 1. Three plausible designs for fuzzy confidence following an (a) exponential (b)
logarithmic or (c) logistic behavior.

4 Results

For the implementation of the experiments for the KNN-CF algorithms with
implicit and explicit preferences, as well as with and without social information,
we performed a broad search on the optimal number of neighbors. The search
for the k neighbors took values from {2, 5, 7, 9, 15, 21, 51, 101}. Besides, the α
parameter for computing the social Pearson global similarity in Eq. (7) is cali-
brated on the values α = {0, 0.1, 0.2, ..., 0.9, 1}, where the social parameter β is
such that β = 1−α. Hence, when α = 0 the algorithm takes only social informa-
tion into account, while for α = 1 the algorithm is a pure KNN-CF algorithm,
in the sense of Eqs. (2) or (3) together with Eq. (4), without any other social
input.

4.1 Explicit Preferences

After estimating the explicit ratings rui according to Eq. (2) for the basic KNN-
CF, and to Eq. (3) for the baseline KNN-CF, together with the social Pearson
global similarity, we obtain the results presented in Table 1. Each entry for the
respective α-value of the social Pearson similarity corresponds with its best result
for the number of k nearest neighbors. For example, the best basic KNN-CF
RMSE (0.5711) was obtained with α = 0.2 and k = 51, which also obtains the
best performance on the FCP (0.6778). As for the baseline KNN-CF, the best
performance corresponds with α = 0.1 and k = 51, with an RMSE of 0.5132 and
a FCP of 0.6774.

On the other hand, the learning behavior for the KNN-CF algorithms, with
and without social information (using the global social Pearson for the above
mentioned α-values and the Pearson similarities, respectively), can be exam-
ined in Fig. 2. Such a behavior is depicted according to the number of nearest
neighbors used to compute Eqs. (2)–(3).

In general, it can be seen that the best results arise when social data is
taken into account, not only based on the performance metrics, but also on the
sparsity of the estimation, as the use of the social Pearson similarity allows using
a lower number of neighbors than with the Pearson similarity. From the previous
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Table 1. Results for the different α-configurations of the social Pearson global simi-
larity, where the social coefficient is β = 1 − α

Basic Baseline

α RMSE FCP RMSE FCP

0 0.5721 0.6772 0.5136 0.6759

0.1 0.5712 0.6778 0.5132 0.6774

0.2 0.5711 0.6778 0.5134 0.6771

0.3 0.5716 0.6757 0.5139 0.6758

0.4 0.5724 0.6754 0.5146 0.6747

0.5 0.5735 0.674 0.5155 0.6748

0.6 0.5745 0.674 0.5164 0.6747

0.7 0.5757 0.6729 0.5175 0.6741

0.8 0.578 0.6721 0.5196 0.6747

0.9 0.5817 0.671 0.5229 0.6731

1 0.5915 0.6728 0.523 0.6711

Table 1, it is evidenced that these best results are obtained when social data is
incorporated with a high proportion. For the basic KNN-CF, it reaches its best
performance with β = 0.8, if we focus on RMSE, while β = 0.9 accomplishes
maximal performance based on the FCP. These results are confirmed under the
baseline implementation, where the best performance (both on RMSE and FCP)
is achieved with β = 0.9. In consequence, based on the RMSE, the baseline KNN-
CF exhibits the best performance, with a RMSE = 0.5132, while based on the
FCP, the basic KNN-CF achieves the best results, with a FCP = 0.6778. In this
way, the neighborhood overpasses the baseline-aided KNN-CF rating estimation
when we focus on the ranking results according to the FCP. Meanwhile, taking
the course grades as explicit ratings, the RMSE is minimized by correcting the
information given by the neighborhood with the respective baselines.

These are the results for the KNN-CF algorithms with explicit preference rat-
ings, enhancing their performance by incorporating, besides the user preference
behavior, their social background attributes. Now let’s examine the performance
of the algorithms with implicit preferences and their fuzzy confidence represen-
tation.

4.2 Implicit Preferences

Recalling the functions for estimating the confidence on the implicit preferences
pui, given by the linear, exponential, logarithmic and logistic representation of
Eqs. (8)–(11), the KNN-CF algorithms are implemented with the degrees of
confidence that such representations allow taking into account. Hence, Eqs. (2)–
(3) are computed with rui = cui for linear confidence, as in Eq. (8), and with
rui = qui for exponential, logarithmic and logistic confidence, as in Eqs. (9)–(11).
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(a) (b)

(c) (d)

Fig. 2. RMSE and FCP behavior with different k neighbors for the (a,b) basic and (c,d)
baseline KNN-CF recommenders. The Pearson and the social Pearson series correspond
with the implementation of the respective KNN-CF algorithm with the Pearson and
the social Pearson global similarity functions, respectively. The best models for each
implementation are marked in bold.

In this way, for the linear estimation of confidence, the value of λ = 40 is
fixed after an initial search for the optimal performance regarding the FCP,
taking values for λ ∈ {1, 10, 20, 40, 80, 100, 160, 200}. This result agrees with the
original proposal of [9], also suggesting that such a value of λ = 40 achieved
good results.

On the other hand, the exponential and logarithmic estimation of confidence
is rather direct, while for the logistic function there are various parameters to
tune. After a discrete search, the best configuration with respect to the FCP
performance was identified for L = 110, r̄ = 4.4, and γ = 1.2.

After estimating the confidence for implicit preferences, the basic and baseline
KNN-CF algorithms were implemented. The results are presented in Table 2,
showing the FCP performance for the different α-values of the Pearson global
similarity computation. Analogously as the results presented in the previous
Sect. 4.1, the values in Table 2 correspond with the best result for the number of
k nearest neighbors.

Therefore, the best basic KNN-CF FCP was obtained with α = 0.1 and
k = 101, under the exponential fuzzy confidence estimation, achieving a FCP of
0.6792. On the other hand, the best baseline KNN-CF CFP performance also
corresponds with α = 0.1, but with k = 51 and the logistic fuzzy confidence
estimation, with a FCP of 0.6795. Figure 3 presents the learning behavior for
the respective KNN-CF algorithms using the α = 0.1-social Pearson and the
Pearson similarities, according to the number of nearest neighbors.
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Table 2. FCP results for the different confidence estimations and α-configurations of
the Pearson global similarity, where the social coefficient is β = 1 − α

Basic Baseline

α Linear Exp Log Logistic Linear Exp Log Logistic

0 0.6782 0.6791 0.675 0.6791 0.6759 0.6789 0.6738 0.6791

0.1 0.6774 0.6792 0.6747 0.679 0.6777 0.6786 0.6748 0.6795

0.2 0.6777 0.6774 0.6748 0.6783 0.6769 0.6793 0.6738 0.6782

0.3 0.6749 0.6765 0.6738 0.6756 0.6758 0.6771 0.6736 0.6767

0.4 0.6753 0.677 0.673 0.6754 0.6748 0.6771 0.6732 0.6761

0.5 0.6742 0.6769 0.6724 0.6743 0.6751 0.677 0.673 0.6752

0.6 0.6737 0.6757 0.6726 0.673 0.6748 0.676 0.6732 0.675

0.7 0.6729 0.6742 0.6721 0.6725 0.6742 0.6752 0.6724 0.6753

0.8 0.6719 0.6722 0.6703 0.672 0.6746 0.6756 0.6712 0.6751

0.9 0.6704 0.6718 0.6701 0.6708 0.6731 0.6754 0.6705 0.6751

1 0.6724 0.6752 0.6713 0.6734 0.6712 0.6742 0.67 0.6748

(a) (b)

Fig. 3. FCP behavior with different k neighbors for the (a) basic, exponential confi-
dence and (b) baseline, logistic confidence KNN-CF recommenders.

As a result, again as with the explicit feedback scenario, it can be seen that
the best results arise when social data is taken into account with a high pro-
portion. This time, for both basic and baseline KNN-CF algorithms, the best
FCP performance corresponds with β = 0.9. In absolute terms, the overall best
prediction regarding all algorithm configurations, for either explicit or implicit
feedback, corresponds with the KNN-CF baseline system and the fuzzy-logistic
implicit preference procedure.

5 Final Remarks

In this paper we have implemented a study on basic and baseline socially-
enhanced KNN-CF algorithms, examining its performance regarding the inclu-
sion of the social background of users, besides the preferences over common
items. The study has focused on recommending courses for students at the Uni-
versity of the Andes, accomplishing a FCP of 0.6795 for implicit preference
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prediction. This result was achieved by incorporating in a high proportion the
social context, with the social parameter of β = 0.9 for the global social Pearson
similarity function (with respect to the user-preference parameter of α = 0.1),
and by estimating the confidence on the observed implicit preferences by means
of a fuzzy representation based on the logistic function.

For future research, it is projected to propose an axiomatic characterization
for fuzzy confidence functions, and to explore recommendation systems making
use of pairwise preference relations, bridging cognitive models and recommen-
dation algorithms by means of fuzzy preference-aversion relations (as suggested
in [8]).
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Abstract. A programming problem with linear equality constraints can
be generalised to the one with linear inclusions when coefficients are
imprecisely given as possible ranges. In the problem with linear inclu-
sions, the possible ranges of linear function values should always fluctuate
within given ranges. In this paper, we investigate the programming prob-
lem with linear inclusions with coefficients being triangular fuzzy sets.
To treat it, we introduce a new necessity measure, a linear extension
of the one defined by the Dienes implication function, for the degree
of the inclusions, and formulate a necessity measure maximisation prob-
lem. We propose a solution method based on the trade-off ratio and show
that the maximisation problem becomes a regular linear programming
problem in a particular condition. In general conditions, we also propose
an algorithm utilising its properties and give a numerical example to
demonstrate the solution procedure.

Keywords: Fuzzy linear programming · Necessity measure · h-level
set · Trade-off ratio

1 Introduction

In applications, a linear programming problem (LPP) with coefficients impre-
cisely given by possible ranges can be modelled by linear inclusion relationships.
Generally, one can study the set-inclusion constraints by building a maximum
range that contains all possible ranges [9]. By utilising the set-inclusion relation-
ships, Bard [1,2] constructed the LP problems with inexact coefficients described
by crisp sets. Furthermore, in the view of interval linear programming, Hlad́ık [3]
also considered the same question and tried to solve it by shrinking or expanding
the interval space.

However, using set-inclusion constraints is still too rough to describe an
acceptable solution. Instead of giving a degree of trade-off ratio, it can only
identify whether an inclusion relationship is valid or not. Hence, we need a more
comprehensive estimation to assess an acceptable solution.
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Negoita [8] firstly considered such a problem by fuzzy sets called robust pro-
gramming. He introduced fuzzy inclusive constraints expressed by inclusion rela-
tions between possible ranges and allowable ranges. Namely, the left-hand side
fuzzy sets show the possible ranges with various level of estimation (from the
narrowest to the widest) while the right-hand side fuzzy sets shows the allow-
able range for each different level of possible range estimation. However, he only
concentrated on the inclusion relationships of discrete finite h-level sets, mak-
ing the estimation still too rough. To treat the roughness, Inuiguchi and Tanino
[7] applied a necessity measure approach to estimate the degree continuously.
Furthermore, Inuiguchi et al. [5] tried several implication functions and modifier
functions for more accurate estimation. However, the utilisation of modifier func-
tions makes the model hard to calculate. To overcome the difficulty, Inuiguchi [4]
proposed a simplified way to construct a necessity measure representing the deci-
sion maker’s requests on fuzzy set-inclusive constraints in the setting of linear
programming with uncertain coefficients.

Inspired by the tabular [4], we propose a fuzzy LPP to represent the original
problem. Instead of considering the fuzziness representing the ambiguousness,
we denote it as one’s preference on the trade-off. For generality, we divide the
constraints into hard and soft ones, where the hard is the one that should be
fully satisfied, while the soft can be relaxed to a certain extent.

To represent the softness, we utilise symmetric triangular fuzzy numbers,
enabling one to build a maximisation problem by the h-level sets. To treat the
problem, we convert the set-inclusion constraints to a series of inequalities and
form a non-linear model. We show that if only the right-hand-side coefficients
contain softness, one can regard the model as a regular LPP by including the
degree as one of the state variables. We also study the structure of the non-linear
model generally and propose an algorithm linearly.

We organise the paper as follows. In Sect. 2, we give a brief preliminary about
the fuzzy LP and NM. In Sect. 3, we propose the method for conversion and give
the approach to solve it. In Sect. 4, we give a numerical example for illustrations,
and finally, we briefly conclude our research with future work.

2 Preliminaries

2.1 Fuzzy LPP

Since we aim at the solution of an LPP, we regard it as a procedure to solve the
following solution set:

S(A, b) := {0 ≤ x ∈ R
n : Ax = b} (1)

where A ∈ R
m×n and b ∈ R

m are the coefficients in constraints.
Due to an objective function being trivial, we concentrate on the solution set

of the corresponding fuzzy LPP. Since Inuiguchi et al. [6] have illustrated the
fuzzy number in details, we only review the h-level set.
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Definition 1 ( h-level set). An h-level set [A]h and a strong h-level set (A)h
of a fuzzy subset A are crisp sets defined as below, respectively:

[A]h := {r : μA(r) ≥ h}, (A)h := {r : μA(r) > h}, (2)

where μA(r) denotes the membership function of A.

By Definition 1, it can be inferred that for any fuzzy subset A, ∀ 0 ≤ h1 ≤
h2 ≤ 1, [A]h2 ⊆ [A]h1 . In a sense, the higher h is, the more precise the infor-
mation to describe A is. Therefore, one can regard h as the reliability degree to
describe a fuzzy subset, and when treating h, it is preferable to have it as large
as possible.

By converting the LPP (1) into a fuzzy one, we have the solution set as:

S(Ã, b̃) := {0 ≤ x ∈ R
n : Ãx = b̃}, (3)

where Ã ⊆ R
m×n and b̃ ⊆ R

m denote the fuzzy coefficients.
Since S(Ã, b̃) becomes a fuzzy subset, we prefer a non-empty one with the

greatest reliability degree, which is estimated by a necessity measure.

2.2 Necessity Measure

Possibility measure (PM) and necessity measure (NM) are techniques to measure
the relation between two events by logical reasoning. Mathematically, given the
information r ∈ A, a possibility (necessity) measure is to measure how possible
(necessary) it can be for the condition r ∈ B.

Since PM is too weak, we only give a review of NM. Intuitively, an NM should
follow the remark [5] below:

Remark 1. An NM should follow that

(i) NA(B) = 1 iff cl(A)0 ⊆ [B]1,
(ii) NA(B) > 0 iff [A]1 ⊆ cl(B)0,

where cl(·) denotes the closure of a set.

In Remark 1, the first condition means for all x ∈ A in the weakest sense
implies x ∈ B in the strongest sense, and the second condition means for all
x ∈ A in the strongest sense implies x ∈ B in the weakest sense. Since there exist
multiple ways to define an NM, we review the original one by using membership
functions.

Definition 2 (Necessity Measure). An NM of a fuzzy subset B on another
fuzzy subset A, which measures what extent x ∈ B is certain when given x ∈ A
or what extent x ∈ A implies x ∈ B, is defined as

NA(B) = inf
x∈X

I(μA(x), μB(x)), (4)

where I : [0, 1] × [0, 1] → [0, 1] is an implication function (IF) and satisfies
I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.
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The most wide-spread type is the one using Dienes IF as ID(a, b) = max{1−
a, b} such that ND

A (B) = infx∈X max{1 − μA(x), μB(x)}. If one prefers to use
the h-level set to represent the Dienes type, we have the result with its proof
found in [6].

Proposition 1. For the NM using Dienes IF, we have:

ND
A (B) ≥ h ⇐⇒ cl((A)1−h) ⊆ [B]h (5)

Proposition 1 suggests the way to use h-level sets to accomplish an NM,
which is more comprehensive than using membership functions. For example,
the necessity measure using Gödel IF [5] can be expressed more intuitively by
h-level sets as NG

A (B) = h∗ ⇐⇒ ∀h < h∗, (A)h ⊆ (B)h.

3 Model Conversion

3.1 Fuzzy LPP by Inclusion Relation

As Remark 1 shows the methodology of an NM by h-level sets, we notice that
it is possible to have a more general expression. Instead of using a single h in an
NM, we can separate it into two variables at both sides of the equation. Namely,
we construct a fuzzy inclusion relationship of [A]1−v ⊆ [B]w with two h-levels v
and w. Hence, we have the following lemma1.

Lemma 1. An inclusion measure [A]1−v ⊆ [B]w where v, w ∈ [0, 1] implies
[A]1−v′ ⊆ [B]w′ for all v′ ≤ v and w′ ≤ w.

Proof. It is apparent that ∀v′ ≤ v, [A]1−v′ ⊆ [A]1−v and ∀w′ ≤ w, [B]w ⊆ [B]w′ ,
which gives out the final result. �

Unfortunately, such a manipulation constructs a multi-objective problem.
Hence, we use weighted factors to convert it back to a single one, which gives
out the following problem equivalent to Model (3).

max
0≤x∈Rn

{αv + βw : [A]1−vx ⊆ [b]w, v, w ∈ [0, 1]}, (6)

where α and β are non-negative constants and α + β = 1.
Moreover, for the simplification of using h-level sets in a fuzzy LPP, we prefer

the fuzzy coefficients all being symmetric triangular fuzzy numbers, which are
defined as

Definition 3 (Symmetric Triangular Fuzzy Number). In this paper, we
define a symmetric triangular fuzzy number as a fuzzy subset with symmetric and
linear reference functions. Moreover, it could always be re-written by its h-level
sets as

[A]h = [Ac − (1 − h)Ar, Ac + (1 − h)Ar] (7)

1 For the sake of simplicity, we always consider [A]0 = cl(A)0 in this paper.
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where Ac and Ar denote the centre and radius of cl((A)0), respectively. Mathe-
matically, they equal to:

Ac =
1
2
(sup (A)0 + inf (A)0), Ar =

1
2
(sup (A)0 − inf (A)0)

3.2 Conversion Principles

Before continuing the procedure of solving the fuzzy problem, it is essential to
have a discussion on the principle of conversion.

At first, if the original LPP is infeasible, the result of Problem (6) should
always be strictly less than 1. If it equals to 1, then v, w = 1, which indicates
there exists a feasible solution x ≥ 0 such that [A]0x ⊆ [b]1. According to
Remark 1, it implies the necessity measure is 1, which contradicts the premise
that the LP problem is infeasible.

Then, by the inclusion relation of two interval sets as A ⊆ B ⇐⇒ AL ≥
BL & AU ≤ BU , as well as the assumption such that A and B are sym-
metric triangular fuzzy subsets, we have the following conclusion that for all
i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n},

(i) The larger cl((bi)0) is, the easier to have a solution.
(ii) The smaller cl((Aij)0) is, the easier to have a solution.

Due to the complexity, one should not try to enlarge cl((A)0). Alternatively,
keeping A being constant may be a better choice for both model construction
and calculation. Because of this, it is preferred to set β > α, and when A is
constant, we set α = 0.

Hence, to use the fuzziness in representing the preference of a decision-maker,
one should follow the several principles in the conversion.

(i) If a constraint is a hard one, keep the original coefficients constant and do
not apply fuzziness on it.

(ii) If a constraint is a soft one, convert the coefficients into symmetric trian-
gular fuzzy subsets.

(iii) Focus on b preferentially instead of A, and remember that the softer a
constraint is, the larger cl((b)0) should be.

After the conversion to the fuzzy problem in Model (6), we can continue to
the solving approach.

4 Algorithm for the Fuzzy LP

Instead of considering the general condition with both fuzzy A and b, it would
be better to analyse the problem with only either of them at first. As it is
indicated that focusing on b is preferential, we assume that only b contains
fuzzy coefficients, which gives a constant A.
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4.1 Special Case with Constant A

Assume a decision-maker has already set up fuzzy coefficients b with a constant
matrix A, then Problem (6) equals to:

max w

s.t. − Asx ≤ −[bs]Lw
Asx ≤ [bs]Uw
Ahx = bh

(8)

where As and Ah, bs and bh represent the soft and hard constraints, respectively.
Since each fuzzy entry in b is a symmetric triangular fuzzy number, one can

write the h-level set by Definition 3 as ∀h ∈ (0, 1],

[b]h = [bc − (1 − h)br, bc + (1 − h)br] (9)

where bc denote the only entry in [b]1 and br denotes the radius of cl((b)0).
Consequently, we have the following model equivalent to Problem (8):

max w

s.t. Ahx = bh

− Asx ≤ −bcs + (1 − w)brs
Asx ≤ bcs + (1 − w)brs

(10)

By denoting w as a state variable, Problem (10) becomes a regular LPP. If it
is infeasible, the tolerance given to b is still too narrow to make LPP (1) feasible
even in the worst case.

4.2 General Case

After having the result with a constant A, we can proceed to study the situation
with a fuzzy one. Similar to Problem (8), let us assume a decision-maker has set
up α, β and the symmetric triangular fuzzy entries in A and b, then the model
becomes:

max αv + βw

s.t. Ahx = bh

(−Ac
s + vAr

s)x ≤ −bcs + (1 − w)brs
(Ac

s + vAr
s)x ≤ bcs + (1 − w)brs

(11)

Therefore, Problem (11) is equivalent to:

max{αv + βw : (A1 + vA2)x + b2w = b1 + b2} (12)

where A1, A2, b1, b2 are conveniently defined from Problem (11).
Since Problem (12) is non-linear, we may have to apply some non-linear tech-

niques for it. However, if we regard v or x as a constant variable at a specific
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step during the calculation, the system becomes linear. As an linear problem
tends to be simpler than a non-linear one, solving the problem linearly is pref-
erential. Hence, before applying non-linear algorithms directly, we prefer to do
some analysis on Problem (12) at first.

Assume that we already have a pair of v∗ and w∗ at a specific step, and
we want to improve the objective value. However, we cannot increase both v∗

and w∗ simultaneously because they are the intermediate solutions to Problem
(12). Hence, the only way is to increase v∗ with sacrificing w∗ or the opposite
direction. Since the situation with constant A gives the preference to have a
larger w and α < β, we usually have a large w∗ and a small v∗ at startup.
Hence, let us consider the one by improving v∗ and sacrificing w∗.

Let Δv > 0 and Δw > 0 denote the improvement such that α(v∗ + Δv) +
β(w∗ − Δw) > αv∗ + βw∗, which results in Δw < (α/β)Δv. Moreover, to make
the analysis more illustrative, we only consider the soft constraints and remove
the slack variables in Problem (12). Then we have the constraints as:

(A1
s + vA2

s)x + b2sw ≤ b1s + b2s (13)

By adding Δv and Δw, Constraint (13) becomes:

(A1
s + v∗A2

s)x + b2sw
∗ + ΔvA2

sx − b2sΔw ≤ b1s + b2s (14)

To avoid the possibility that x may become infeasible, let Δv,Δw → 0+.
Then inequalities in (14) becomes ΔvA2

sx ≤ b2sΔw. Combined with Δw <
(α/β)Δv, it becomes the one as below:

A2
sx <

α

β
b2s (15)

Condition (15) implies that, if the current solution x does not satisfy it, then
v∗ and w∗ at current step are already optimal to Problem (12) and cannot be
improved. Due to A2

s, x and b2s being all non-negative, Condition (15) is usually
hard to be achieved, especially with a large ratio α/β.

Therefore, we can have the algorithm as below:

Algorithm 1. - Algorithm for Model (11)

v <-- 0

value, x, w <-- Solve LP problem (12) with v

IF Condition (14) with x is not satisfied:

OUTPUT x, v, w, value

TERMINATE

ELSE: #Apply bisection method

v_0 <-- v; w_0 <-- w; x_0 <-- x; value_0 <-- value

v_1 <-- 1

value_1, x_1, w_1 <-- Solve LP problem (12) with v_1

WHILE v_1-v_0 >= delta:

v_c = (v_1+v_0)/2

value_c, x_c, w_c <-- Solve LP problem (12) with v_c
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IF value_c <= value_1 AND value_1 == 1:

OUTPUT x_1, v_1, w_1, value_1

ELSE IF value_c > value_1:

v_0 <-- v_c; w_0 <-- w_c

x_0 <-- x_c; value_0 <-- value_c

ELSE:

v_1 <-- v_c; w_1 <-- w_c

x_1 <-- x_c; value_1 <-- value_c

OUTPUT x_1, v_1, w_1, value_1

TERMINATE

5 Numerical Example

We propose the following example:

Find 0 ≤ x ∈ R
n

s.t. 3x1 + 4x2 = 7
9x1 + 8x2 = 16
x1 − x2 = 1

Since the number of constraints is over the variables, the system is obviously
infeasible. At first, we only consider the right-hand-side vector being fuzzy one.
Assuming Constraint 1 is a hard one, while Constraint 2 has higher priority than
Constraint 3, we give 2 and 3 as (16, 14, 18)LL and (1,−3, 5)LL, respectively.
Hence we have the following system by introducing slack variables:

max w ∈ [0, 1]

s.t.

⎡
⎢⎢⎢⎢⎣

3 4 0
−9 −8 2

9 8 2
−1 1 4

1 −1 4

⎤
⎥⎥⎥⎥⎦

⎡
⎣

x1

x2

w

⎤
⎦ +

⎡
⎢⎢⎢⎢⎣

0
y1
y2
y3
y4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

7
−16 + 2

16 + 2
−1 + 4

1 + 4

⎤
⎥⎥⎥⎥⎦

By the Simplex method, the solution is w = 0.6935 with the solution being
x1 = 0.871, x2 = 1.097.

If one sets α = 0.05 and β = 0.95, and considers fuzziness in A with A21 =
(9, 8.95, 9.05)LL, A22 = (8, 7.98, 9.02)LL and A31 = (1, 0.999, 1.001)LL, then the
Model becomes:

max 0.05v + 0.95w

s.t.

⎡
⎢⎢⎢⎢⎣

3 4 0
−9 −8 2

9 8 2
−1 1 4

1 −1 4

⎤
⎥⎥⎥⎥⎦

⎡
⎣

x1

x2

w

⎤
⎦ + v

⎡
⎢⎢⎢⎢⎣

0 0
0.05 0.02
0.05 0.02
0.001 0
0.001 0

⎤
⎥⎥⎥⎥⎦

[
x1

x2

]
+

⎡
⎢⎢⎢⎢⎣

0
y1
y2
y3
y4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

7
14
18
3
5

⎤
⎥⎥⎥⎥⎦



An NM Using Fuzzy Inclusion Relation for LPPs 139

By Algorithm 1, we first solve v∗ = 0 and w∗ = 0.6935 with the solutions
being x1 = 0.871, x2 = 1.097. Then, we check Condition (15), where in this
example, A2

s = [0.05 0.02; 0.001 0], b2s = [2; 4], and α/β = 0.05/0.95. Hence we
find that A2

sx < (α/β)b2s, which means we can do the improvement.
The following table is the result, which implies v∗ = 1 and w∗ = 0.6861, and

the optimal solution is x1 = 0.854, x2 = 1.109.

v∗ w∗ αv∗ + βw∗ x1 x2

0 0.6935 0.6588 0.871 1.097

1 0.6861 0.7018 0.854 1.109

0.5 0.6898 0.6803 0.863 1.103

6 Conclusion

In this paper, we present a fuzzy model for an LPP with linear equalities. To
get a desired solution, we utilise fuzziness to imply one’s preference and priority,
which results in an NM based on an h-level set. we obtain a non-linear program-
ming problem, which can be linear if we only consider the right-hand-side part
containing fuzziness. To solve the system, we first solve the linear case by stan-
dard LP techniques. Instead of applying non-linear tools directly, we analyse the
structure of the system at first. The analysis suggests that we can still deal with
it linearly, where we find an extra condition to identify whether it is possible to
improve the optimal value. To illustrate our work, we give a numerical example
in both situations.

For future progress, we separate our work into two sections. The first one is
concerned with computational complexity. Since it still needs a bisection method
to get the solution, we wonder if it is possible to have a direct one without
iteration. As the space formed by w and v depends on the solved solution x,
we do not know whether it is always connected and convex. If it is, we can
accomplish our goal with v = 0 and v = 1. However, if it is not, the algorithm
may not give a globally optimised solution.

The second one is concerned with the solution set. Since we consider a fuzzy
LPP to treat an infeasible LPP, we always have a fuzzy solution set. However,
in this paper, we only solve one solution with the most significant reliability
degree. Namely, we only solve one fuzzy solution in a fuzzy solution set, which
is not enough for some situations. Hence, the result of the whole fuzzy solution
set would become our goal of the following research and study.
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Abstract. Conventional distance-based or density-based classifiers like
k-Nearest Neighbor algorithm face difficulty for class imbalance problem
because they treat all neighbors equally though most of these instances
belong to the majority class. Additionally, a varied density of data points
existing in an imbalanced dataset poses another significant challenge for
the distance-based classifiers. These two main challenges motivated us
to investigate further a new mass-based similarity weighted k-neighbor
approach for the imbalanced classification task. In our framework, the
mass-based dissimilarity measurement is normed to obtain the similarity
degree between two instances. Then the confidence of a neighbor instance
is derived as the posterior probability while knowing the prior of the class
label in training space and the likelihood in Bayes’ theorem. We aim to
add more importance to the neighbors, which have higher mass-based
similarity weighted confidence than the others. Then, the weighted sum
operator is used to combine the weighted confidences for predicting the
class label. The experiments conducted on 60 imbalanced datasets show
that the proposed approach outperforms the other 11 existing competi-
tive methods in terms of precision-recall curves. We use the F1 score in
our comparisons where we tested 12 models. We also use the Wilcoxon
signed ranks test as a non-parametric statistical analysis to validate the
experimental results.

Keywords: Imbalanced data · Imbalanced classification · Mass-based
dissimilarity · k-nearest neighbor · Weighted sum · Aggregation
function

1 Introduction

There has been vast literature on classification problems in knowledge discovery,
data mining, and machine learning. Given a set of predefined categorical classes,
classification means determining to which of these classes a specific instance
belongs. A variety of classification approaches have been proposed and success-
fully applied in a wide range of application domains, e.g. C4.5 Decision Tree
(DT) [1,2], Nave Bayes (NB) [3,4], k -Nearest Neighbor (k -NN) [5,6], Logis-
tic Regression (LR) [7,8], Random Forest (RF) [9,10], Linear Support Vector
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Machine (LinearSVM) [11,12], Gaussian RBF kernel SVM [13], Bagging algo-
rithm [14,15], Decision Trees with AdaBoost [16,17], XGBoost [18,19], and
Gaussian mixture model Proximity Weighted Evidential (mPEkNN) method
[20]. However, most of these methods do not directly support imbalanced clas-
sification task. In an imbalanced dataset, the minority class has only a small
portion of all the instances, while the majority class has a large percentage of
all the objects. Besides, a varied density of data points is another significant
challenge that distance-based or density-based classifiers cannot perform well.

To handle these class imbalance challenges, the preceding studies often focus
on four group of methods: algorithmic modifications, resampling data space, cost-
sensitive classification, and ensemble learning. Firstly, the algorithm-oriented
approaches develop new algorithms or adapt existing ones for the class imbal-
ance problem. Secondly, the resampling techniques, which preprocess the data
to decrease the effectiveness of their class imbalance, include the over-sampling
method like the Synthetic Minority Oversampling Technique or SMOTE for
short [21], and under-sampling methods like the Tomek links algorithm [22].
Thirdly, the cost-sensitive learning solutions incorporate both the algorithmic
and data-level methods for misclassification costs in the minority class. Lastly,
the ensemble learning methods are conducted either by modifying the exist-
ing ensemble algorithms at the data level approaches or by embedding a cost-
sensitive framework in the ensemble learning process. The limitation of these
learning methods is that the objects from each class are treated the same, which
means that the algorithms consume more resources to update learnable param-
eters for one class than another for imbalanced datasets.

In this paper, we propose a new mass-based similarity weighted confidence
k-neighbor approach, so-called Sk-LMN, for the class imbalance problem. This
approach can overcome the shortcomings of the distance-based or density-based
classifiers for the imbalanced datasets. The experimental results show that Sk-
LMN outperforms the other 11 competitive models tested on 60 imbalanced
datasets in terms of the precision-recall (PR-AUC) metric. The F1 score is used
for multiple comparisons 12 tested models as well. Besides, the Wilcoxon signed
ranks tests are employed as non-parametric statistical analysis to validate the
experimental results.

The remaining parts of this paper is organized as follows. Section 2 briefly
introduces the mass-based dissimilarity measurement. Section 3 proposes the
mass-based similarity weighted k -neighbor approach. Section 4 describes the
experiments, whose comparison results are discussed. Section 5 draws the
conclusion.

2 Mass-Based Dissimilarity Measurement

Distance metrics such as the Euclidean distance and Manhattan distance have
been widely utilized for knowledge discovery, data mining, and machine learn-
ing. As a result, numerous classifiers based on distance functions have been
introduced. However, these data-independent measures may have weaknesses
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because of the data-dependent properties of the dataset and the assumed dis-
tance axioms.

In this section, we briefly review the mass-based dissimilarity measurement
[23,24] that alternates the algorithms based on distance function or geometric
models. These distance-based measures may be directly replaced by mass-based
measures. The remaining components of the original algorithms are the same. It
should be noticed that the mass-based measures inherit the characteristics from
research in psychology as follows: two points in a dense region of the space are less
similar to each other than two points with the same inter-point distance in a sparse
region, according to Tversky [25] and Krumhansl [26]. Therefore, for the class
imbalance task, the shortcomings of the k-NN models and most of the neighbor-
based classifiers are overcome by fundamentally changing their perspectives.

2.1 Definition

To understand how the mass-based dissimilarity measurement is developed, two
concepts are introduced in each of the following definitions:

Definition 1. S(xt, xi|Hj) is the smallest local space that covers two given
data points xt and xi with respect to the hierarchical partitioning structure Hj

as follows:
S(xt, xi|Hj) := arg max

S∈Hj ,{xt,xi}⊆S

depth(S|Hj) (1)

where depth(S|Hj) is the depth or the path length of node S in Hj . This depth
is equivalent to the number of separations required to isolate node S from the
root node.

Definition 2. mass(xt, xi|Hj) is the mass-based dissimilarity function
between xt and xi, conditional on Hj . This is equivalent to the expectation
of the probability that a random data point z ∈ X belongs to the smallest space
S(xt, xi|Hj). That is found by Eq. (1) over H. Where H is a set of Hj .

mass(xt, xi|Hj) := EH[P (z|z ∈ S(xt, xi|Hj))]

In practice, we have h finite hierarchical partitioning structures Hj for the
dataset X. Thus, the mass(xt, xi|Hj) is estimated as the average of the car-
dinality of S(xt, xi|Hj) over all possible Hj .

masse(xt, xi) =
1
h

h∑

j=1

|S(xt, xi|Hj)|
|X| (2)

where |X| is cardinality of the dataset X.

2.2 k-lowest masse neighbors (k-LMN)

The context set of the query instance xt is equivalently defined to the set of the
k lowest mass-based dissimilarity neighbors around xt, or k-LMN(xt) for short:

k-LMN(xt) = {x1, x2, ..., xk}, k ≤ |X| (3)
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where xi = arg min
x∈X\{x1,x2,...,xi−1}

masse(xt, x), i = 1, ..., k

In the other word, each xi is a member of the k-LMN(xt) that we used to define
the set of neighbors of considering instance xt.

3 Mass-Based Similarity Weighted k-neighbor (Sk-LMN)

In this section, we propose the Sk -LMN approach for the class imbalance prob-
lem. Firstly, this approach is based on mass measurement instead of the distance-
based or density-based functions. Thus, Sk -LMN can overcome the problem of
the varied density of data points in the imbalanced datasets. Secondly, as uncer-
tainty often exists in almost all datasets, the confidence of an instance plays an
important role in the class imbalance problem where little information is avail-
able for the minority class. This confidence represents a conditional probability
(Eq. 5) as the likelihood of a class label to which the instance belongs. There are
several methods which also compute the conditional probability for classifying an
instance, e.g. NB classifier. However, these methods cannot perform well for the
imbalanced classification due to the poor estimation of the conditional density
of the query instance associated with each class. Noticeably, Sk-LMN computes
the conditional probability of neighbor instances belonging to the context set of
the query instance rather than itself. Next, a simple weighted sum is used to
aggregate the weighted confidence values provided by each individual neighbor
of the query instance. The flowchart of the proposed approach is graphically
illustrated in Fig. 1.

Training data (X, y)
Query instance xt

Mass matrix
masse

Mass-based similarity
sim(xi, xt)

Weighting function
W(xi, xt)

Weighted sum
(aggregation)

Probability value
P(yj|xt)

Class label 
yt

Confidence
 conf(xi)

Fig. 1. Flowchart of the Sk -LMN approach.
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For a new instance xt, we find k lowest masse neighbors (k -LMN) around
it using the mass-based dissimilarity measurement as it was introduced in [27].
Let k-LMN(xt) be a context set of the query instance xt. Each member of the
k-LMN(xt), called xi, assigns a weighted confidence value, which is computed
by Eq. (4), supporting the prediction of the class label of xt.

We observed that firstly a neighborhood instance will add more importance
or larger weighted confidence value to class yj(1 ≤ j ≤ M) when this neighbor
has a higher confidence that it belongs to yj . A neighbor with a greater posterior
probability should have a larger confidence than the one which is in the lower
posterior probability area. Secondly, a neighbor will attach more importance or
larger weighted confidence value to a specific class when the neighbor and the
query instance are more similarity. We then formulate the weighting function
that satisfies these two aforementioned observations as in Eq. (4).

W (xi, xt) = sim(xi, xt) × conf(xi) (4)

where conf(xi) is the confidence of xi represented by the posterior probability
of class label yi given xi, and sim(xi, xt) represents the mass-based similarity
between xi and xt.

Algorithm 1. trainModel(X, y)
Input: training data (X, y)
Output: conf,massmax

1: Initialize array conf
2: massmax ← 0
3: for i = 1 to |X| do
4: conf [i] ← calculate confidence, Equation (5)
5: for j = i + 1 to |X| do
6: mass ← masse(x[i], x[j])
7: massmax ← max(mass,massmax)
8: end for
9: end for

10: return conf,massmax

3.1 Confidence Estimation

The confidence (conf(xi)) that an instance xi belonging to class yi can be cal-
culated by the following Eq. (5), regarding the Bayes’ theorem.

conf(xi) = P (yi|xi) =
P (yi) × P (xi|yi)∑M

j=1 P (yj) × P (xi|yj)
(5)

where yi ∈ {y1, y2, ..., yM} that is a finite set of M classes, P (yj) is the prior
probability of yj , and P (xi|yj) is the likelihood probability. To calculate the like-
lihood, we use the Gaussian mixture model for estimating class-wise probability
density function.
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Algorithm 2. Sk -LMN pseudo code
Input: training data (X, y), neighbor size k, query instance xt

Output: class label yt
1: conf(xi),massmax ← trainModel(X, y), from Algorithm (1)
2: s ← indices of k -LMN(xt)
3: Initialize a list of W values
4: for i = 1 to k do
5: index ← s[i]
6: confidence ← conf [index]
7: mass ← masse(xt, x[index])
8: similarity ← using Equation (6)
9: weigh ← using Equation (4)

10: end for
11: Combine weighted confidence values using Equation (7)
12: ŷt ← predict class label, Equation (8)
13: return class label ŷt

3.2 Mass-Based Similarity Measurement

To obtain the similarity between two instances, the mass-based dissimilarity
measurement introduced in [27] can be used. On one side, the similarity between
two instances (xi, xj ∈ X) can be maximum when (xi, xj) are in the same leaf
node of the hierarchical partitioning structure. On the other side, the similarity
will be minimum when the two data points are in the root node. To measure this
similarity, normalization is applied as Eq. (6), so that sim(xi, xj) ∈ [0, 1 − 2

N ],
where N is the number of instances. Here, massmax is the maximum value of
the estimated masse(xi, xj) between two training instances.

sim(xi, xj) = 1 − masse(xi, xj)
massmax

(6)

3.3 Weighted Sum Aggregation

Assume further that, for every neighbor instance xi in the context set
k-LMN(xt), xi assigns a numerical weighted confidence value W (xi, xt) to sup-
port class yj as its relative importance to the query instance xt. We then used
the weighted sum that is probably the best known and widely-used method for
calculating the comprehensive evaluation or the total score of support in xt. That
is, for any query instance xt we can compute the probability of xt is assigned to
class yj(1 ≤ j ≤ M) as,

P (yj |xt) =

∑
xi∈k-LMN(xt),yi=yj

sim(xt, xi) × conf(xi)∑
1≤l≤M

∑
xi∈k-LMN(xt),yi=yl

sim(xt, xi) × conf(xi)
(7)
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3.4 Decision Making

Equation (4) will return a larger weighted confidence value when a neighbor
assigns more confidence and has more similarity to the query instance. To clas-
sify xt, we use the weighted sum aggregation operator as in Eq. (7) to pool
these discounted confidence values for each singleton class. According to this
probability, we make the final decision using Eq. (8).

ŷt = arg max
1≤j≤M

P (yj |xt) (8)

4 Experiential Results

The experimental study was conducted on 60 imbalanced datasets to compare
the performances of the Sk -LMN approach with the other 11 competitive meth-
ods. Then, the Wilcoxon signed ranks test is employed as a non-parametric
statistical analysis to validate the results.

4.1 Dataset Description

The imbalanced datasets were collected from the knowledge extraction based
on the evolutionary learning (KEEL) website [28] to conduct experiments on a
wide range of application domains, numbers of instances, numbers of features,
and imbalance ratios. The imbalance ratio (IR) between the samples of the
majority class and minority class of the datasets used in these experiments are
in a wide range from 1.82 to 100.14. A dataset is highly imbalanced when the
value of IR is higher than 100. We prepared these datasets for class imbalance
tasks. The Table 1 presents the characteristics for 60 imbalanced datasets where
Idx., #Inst., #Ftr., and IR represent index of dataset, number of instances,
features, and imbalance rate respectively.

4.2 Implementation Details and Evaluation Metrics

Sk -LMN is compared with other methods. The competitive models contain the
conventional learning algorithms (C4.5 DT, NB, k -NN), logistic regression (LR),
tree-based recent algorithms for imbalanced classification (RF), linear support
vector machine (LinearSVM), SVM with RBF kernel (RBF SVM), ensemble
learning (Bagging, AdaBoost, and XGBoost), and recent evidential algorithm
(mPEkNN).

There are many aspects and methods to evaluate the performance of a sys-
tem for class imbalance problem. e.g. time, space, accuracy rate, F-series score,
G-mean, Brier score, and the area under the curve (AUC) values. However,
we consider the area under the precision-recall curves (PR-AUC values) as the
most important factors due to its popularity in the literature. Moreover, we also
include the F1 score of all testing models as well. These two metrics are used to
assess the performance of the 12 competitive models.
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Table 1. Descriptions of 60 imbalanced datasets.

Idx. Dataset #Inst. #Ftr. IR Idx. Dataset #Inst. #Ftr. IR

1 Glass1 214 9 1.82 31 Glass-0-1-4-6 vs 2 205 9 11.81

2 Ecoli-0 vs 1 220 7 1.89 32 Glass-0-6 vs 5 108 9 12.50

3 Iris0 150 4 2.06 33 Ecoli-0-1-4-6 vs 5 280 6 13.74

4 Glass0 214 9 2.10 34 Shuttle-c0-vs-c4 1829 9 13.87

5 Haberman 306 3 2.78 35 Glass4 214 9 16.83

6 Vehicle2 846 18 2.88 36 Dermatology-6 358 34 16.90

7 Vehicle1 846 18 2.90 37 Winequality-white-9 vs 4 168 11 17.67

8 Vehicle3 846 18 2.99 38 Ecoli4 336 7 17.68

9 Vehicle0 846 18 3.25 39 Zoo-3 101 16 19.20

10 Ecoli1 336 7 3.36 40 Poker-9 vs 7 244 10 19.50

11 New-thyroid1 215 5 5.14 41 Shuttle-c2-vs-c4 129 9 20.50

12 Newthyroid2 215 5 5.32 42 Glass-0-1-6 vs 5 184 9 22.00

13 Segment0 2308 19 6.02 43 Shuttle-6 vs 2-3 230 9 22.00

14 Glass6 214 9 6.38 44 Glass5 214 9 25.75

15 Yeast3 1484 8 8.10 45 Winequality-red-4 1599 11 29.17

16 Ecoli3 336 7 8.60 46 Kddcup-guess passwd vs satan 1642 38 29.98

17 Page-blocks0 5472 10 8.79 47 Yeast-1-2-8-9 vs 7 947 8 31.66

18 Yeast-0-3-5-9 vs 7-8 506 8 9.12 48 Abalone-3 vs 11 502 7 32.47

19 Yeast-0-2-5-7-9 vs 3-6-8 1004 8 9.14 49 Ecoli-0-1-3-7 vs 2-6 281 7 39.42

20 Ecoli-0-3-4 vs 5 200 7 9.53 50 Abalone-21 vs 8 581 7 40.50

21 Ecoli-0-6-7 vs 3-5 222 7 9.57 51 Yeast6 1484 8 41.40

22 Ecoli-0-1 vs 2-3-5 244 7 9.61 52 Kddcup-land vs portsweep 1061 38 49.52

23 Ecoli-0-2-3-4 vs 5 202 7 9.63 53 Abalone-19 vs 10-11-12-13 1622 7 49.69

24 Ecoli-0-2-6-7 vs 3-5 224 7 9.67 54 Poker-8-9 vs 6 1485 10 58.40

25 Ecoli-0-4-6 vs 5 203 6 9.68 55 Shuttle-2 vs 5 3316 9 66.67

26 Vowel0 988 10 9.98 56 Kddcup-buffer overflow vs back 2233 38 73.43

27 Glass-0-1-6 vs 2 192 9 10.29 57 Kddcup-land vs satan 1610 38 75.67

28 Glass-0-4 vs 5 92 9 10.50 58 Poker-8-9 vs 5 2075 10 82.00

29 Ecoli-0-6-7 vs 5 220 6 10.58 59 Poker-8 vs 6 1477 10 85.88

30 Led7digit-0-2-4-5-6-7-8-9 vs 1 443 7 11.31 60 Kddcup-rootkit-imap vs back 2225 38 100.14

Besides, most of the classifiers have demonstrated beyond the binary classifi-
cation as a multi-class problem that can simplify by the two-class task. Regularly,
the minority class label is positive (or 1), and the majority class label is neg-
ative (or 0). In that case, the outcome of a classifier has been represented by
a confusion matrix. This matrix has been used to calculate the F1 score, and
AUC values. We have conducted the tenfold cross-validation test to evaluate the
performance of 12 tested methods. As a result, these classifiers have ranked on
each dataset in terms of the F1 score, and PR-AUC value, where a lower-ranked
number indicates higher performance.

4.3 Results and Discussions

As illustrated in Fig. 2(a), we compared the 12 tested models in terms of the
PR-AUC results from the tenfold cross-validation test on the 60 imbalanced
datasets. It is worth noticing that the Sk -LMN model outperforms all the other
tested models in both average values (0.845) and average ranks (4.842).

Fig. 2(b) shows the F1 score comparison results of the 12 models on the same
tested datasets. The result shows that the proposed approach achieved the best
average value (0.738) in the F1 score metric. However, the Sk -LMN model have
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(a) PR-AUC results.

(b) F1 results.

Fig. 2. Plots of results comparisons on 60 imbalanced datasets for 12 tested models.
Note that a higher average value or a lower average rank indicates better performance.
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reached the second-best average rank (5.250) while the best one (4.808) is the
XGB method.

4.4 Non-parametric Statistical Analysis

To validate the experimental results, the Wilcoxon signed ranks test [29] was
used as a non-parametric statistical analysis to accomplish multiple pairwise
comparisons among the Sk -LMN proposal and the other methods. The Wilcoxon
signed ranks test reports the sum of the signed-ranks for the results of each
comparing method. R+ is denoted as the sum of the positive ranks and R−

as the sum of the negative ranks. The IBM SPSS statistics software has been
employed in experimental results tested on the 60 imbalanced datasets.

Table 2. Wilcoxon signed ranks test results.

Sk -LMN vs. F1 results ROC-AUC results PR-AUC results

R+ R− p-value R+ R− p-value R+ R− p-value

DT 226.5 676.5 0.005 136.0 725.0 0.001 221.0 682.0 0.004

NB 92.0 898.0 0.001 171.0 732.0 0.001 126.0 820.0 0.001

k -NN 309.0 511.0 0.174 105.0 598.0 0.001 190.0 513.0 0.015

LR 260.5 820.5 0.002 288.0 573.0 0.065 121.0 782.0 0.001

RF 132.5 857.5 0.001 284.0 662.0 0.022 178.5 811.5 0.001

LinearSVM 264.0 771.0 0.004 294.0 447.0 0.267 156.0 705.0 0.001

RBF SVM 115.5 1262.5 0.001 199.0 791.0 0.001 159.0 876.0 0.001

Bagging 357.5 503.5 0.344 357.0 346.0 0.934 292.0 411.0 0.369

AdaBoost 294.0 447.0 0.267 371.0 409.0 0.791 321.5 458.5 0.339

XGB 470.0 476.0 0.971 450.0 370.0 0.591 391.5 496.5 0.613

mPEkNN 230.5 472.5 0.086 90.0 576.0 0.001 149.0 517.0 0.004

Table 2 shows the results of the Wilcoxon signed ranks test for the AUC
values and F1 score to perform multiple pairwise comparisons among the Sk -
LMN and the other methods. Accordingly, RBF SVM achieved the best R− score
compared with the other methods, but the proposed approach outperforms it.
There are significant differences between the two methods with a confidence level
higher than 99.9% (p-value = 0.001).

5 Conclusion

This paper proposes an alternative approach for the imbalanced classification
from perspectives of the mass-based measurement, neighbor-based algorithm, and
information fusion. In Sk-LMN, we consider the confidence of a query instance’s
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neighbor as the posterior probability that measures the uncertainty of its class
label. To compute this confidence, we used the Gaussian mixture model for esti-
mating the likelihood of the class label of the instance. Then, the similarity
between the query instance and the neighbor instance has been used to weigh the
confidence. The experimental study reveals that this weighted confidence method
increases the likelihood of a minority class classification. The experiments con-
ducted on 60 imbalanced datasets demonstrate that the proposed approach out-
performs the other 11 competitive methods in terms of the PR-AUC metric. How-
ever, there is a limitation of this approach. We calculated on numerical feature
values only. In future research, we plan to extend the Sk-LMN method for cate-
gorical features. We will also utilize the Dempster-Shafer theory of evidence by
considering each neighbor as a piece of evidence to support the query instance.
Then, we will use Dempster’s rule of combination or any other combination rule
to pool these pieces of evidence for classifying the query instance. The source code
and datasets of the Sk-LMN project have been organized and available on Github
at the following link: https://github.com/ImbOut/Sk-LMN.
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Abstract. With the explosion of interest in machine learning (ML)-
based classification algorithms applied to streaming data sources, there
is a decided benefit to the rapid decisions that a neural network (NN)
can provide. However, there is also a desire to integrate successive real-
time decisions on streaming data, which likely have temporal correla-
tions, into an overall higher confidence result. This paper offers a predic-
tive approach to aggregating the results of discrete classification outputs
based upon that duration of temporal correlation, with specific examples
for both an image processing (facial mask recognition) application and
two radio frequency (RF) ML applications (specific emitter identifica-
tion and automatic modulation classification). The decision aggregation
technique employs a multinomial distribution representation of condi-
tional decision probabilities, drawn from the confusion matrices of the
classification problems, to show that an ML classifier possessing even
a marginal ability to improve upon random guessing has the potential
to drastically improve overall decision accuracy when operating on large
continuous streams of data, boosting confidence in the resulting decision.

Keywords: Machine learning · Decision synthesis · NN · Classifier

1 Introduction

The use of feed-forward neural net (NN)-based ML classification techniques is
widespread across image processing [1], natural language processing (NLP) [2],
and RF applications [3,4]. Image processing is a dominant use-case for NN-based
classification algorithms, with image recognition [5], full-motion video [6], and
even niche applications like facial mask compliance [7] becoming widespread.
NLP classification techniques vary from separation of speech components [8]
and contextual sentiment analysis [9]. ML techniques applied to time-series RF
signals (RFML) are used to perform automatic modulation classification (AMC)
[10,11], device fingerprinting [12], specific emitter identification (SEI) [13,14],
and for modeling RF interference [15].

In each scenario, an individual evaluation of the ML algorithm against a
candidate input operates upon short captures of the observed signal or environ-
ment, which provides rapid correlation-based decisions [16]. Design of the NN
c© Springer Nature Switzerland AG 2021
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architecture often considers the minimum duration of the observable seeking
classification (i.e. short and fixed signal captures or static images), yet often the
incoming stimuli lasts far longer than a minimum (i.e. longer dynamic length
signal captures or video). For example, an RF AMC algorithm can typically
achieve solid performance using 100–1000 input symbols, yet most commercial
transmissions (i.e. 802.11 g) are orders of magnitude longer in duration. Likewise,
an image classification algorithm designed to detect the presence of a facial mask
[17,18] can operate on virtually any instantaneous image capture of a given face,
while the frame rate of common low-cost cameras enable capturing many tem-
porally coherent images of the same face. When transitioning from laboratory
training environments into real-time deployed environments, these classification
techniques have been shown to degrade sufficiently that a single decision cannot
be trusted [18]. However, subsequent NN-based decisions can be combined to
achieve an operationally relevant high confidence decision, dependent upon how
frequently the time-series data source is sampled (a driver of processing load),
as examined in this work.

Additionally, most NN-based classification techniques employ an a priori
known discrete set of possible outcome states, with the option for anomalous
conditions to be categorized as a “none-of-the-above” or “unknown” category.
For RFML in particular, many classification tools operate on extremely small
amounts of data relative to expert-defined feature detectors/classifiers [19], mak-
ing the direct performance comparison between unsupervised RFML-based sig-
nal classification solutions and traditional expert classification solutions inappro-
priate, due to the widely different observation timescales and amounts of input
data. For example, the SEI work in [20] bases classification decisions on 128–222
symbols of data, while the comparative expert feature techniques used in [21]
bases classification decisions upon 1330 symbols, nearly an order of magnitude
increase in signal observations. As a result, direct comparison of the resulting
accuracies from a single decision fails to fairly represent the differences.

This paper offers a mathematical model based on the multinomial distribu-
tion to normalize evaluations of different CNN classifiers so that performance
can be based on a comparable amount of total input data. Multinomial distribu-
tions are widely used describe probabilities over many random trials drawn from
discrete/disjoint sets. This same multinomial distribution is applied to training
processes of CNN-based classifiers, with incorporation of stochastic pooling [22],
probabilistic variants of dropout called probout [23], and computation of softmax
loss [24]. Our use is independent of training, seeking instead to determine the
most likely (similar to [23]) class of an observable input, based on an unordered
string of classification outputs that are assumed correlated. Most underlying
mathematical models assume independent observations, while temporal corre-
lations of the input (a common object or signal) are likely in real life since we
measure the input quicker than the scene/signal change. A notional example
of this process is depicted in Fig. 1 comparing both image processing examples
(short discrete captures) and short-term captures (frames) of a time-domain
signal as is used in NLP and RF applications.
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Fig. 1. Visualization of classifier decision aggregation across modalities for image pro-
cessing (left) and NLP/RF applications (right).

In effect, our goal is to aggregate classification decisions from the NN into
a higher accuracy overall decision, with predictive performance based upon the
numerical estimation of the confusion matrix. Each possible class for the classifi-
cation decision is treated as a distinct output state with quantifiable conditional
probabilities, equivalent to one row of the confusion matrix, so that assumed
independent classification decisions may be aggregated, taking advantage of the
anticipated temporal correlations. The core framework for the proposed multino-
mial classification decision synthesis process is described in Sect. 2 including sim-
plifying assumptions and expected variations in the model when the assumptions
(statistical independence of successive inputs, distributions of output class deci-
sions) deviate from reality. As concrete examples, the paper applies the multi-
nomial decision framework to both an image processing-oriented binary facial
mask recognition algorithm and two RFML-focused algorithms supporting SEI
[20] and AMC [11] in Sect. 3; predictive performance bounds are provided, with
discussion of limiting probability models. Overall conclusions and anticipated
future use cases for the proposed model are provided in Sect. 4.

2 Multinomial-Based Decision Synthesis for ML
Classification Problems

The framework presented in this section can be used in conjunction with any
time-series classification decision algorithm where the set of possible output
states is known a priori and successive decision outputs are likely to be rea-
sonably coherent. In image processing, these assumptions are satisfied when
multiple image frames capture the same object or individual with multiple suc-
cessive frames. For RFML and NLP applications, these assumptions are satisfied
when the duration of the observable signal exceeds the input frame (i.e. sam-
ple rate times frame size). Additionally, the decision synthesis framework given
is applicable to any feed-forward NN architecture (i.e. MLP, CNN), with the
chosen architecture assumed to be optimized to the desired task.

Consider the NN shown in Fig. 2 which is assumed for simplicity to have
already undergone all chosen training processes, and whose decisions are selected
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Fig. 2. Generalized CNN-based classification algorithm

among one of K possible output classes. The input to the NN is assumed to be
a raw time series snapshot (i.e., a single image, a short RF capture), although
optional data transforms may be incorporated without loss of generality. The
assumed output of the network for each input frame is a classification decision
representing a choice of one possible output state from a discrete selection of
K possible classes. For our purposes, this classification decision is reinterpreted
for a single input frame as a K-tuple of binary outputs {c1, c2, ..., cK}, where
cj ∈ {0, 1} and

∑
cj = 1. When a total of N input frames are processed by

the NN, the stream of N outputs are accumulated over time, such that cj terms
represent a short-term count of classification occurrences.

2.1 Classification Decision Framework

If we consider N accumulated frames of output decisions in order to create an
averaged decision over some chosen duration of N inputs, the order of those
intermediate decisions does not matter, provided the input inputs are statisti-
cally independent. This independence will be assumed initially and subsequently
addressed in the following section. Further, we assume the inputs only contain a
single image/signal of interest, ignoring for the moment the scenarios of multiple
faces or co-channel RF signals. As a result, we may consider the stream of out-
put decisions using the multinomial distribution. The probability of selecting any
specific combination {n1, ..., nK}, without replacement, of N outputs from the
NN is shown in (1), where {pm1, pm2, ...pmK} represents the conditional prob-
abilities of the NN algorithm producing a chosen output classification decision
{1, ...,K}, given knowledge of the actual classification state m. These conditional
probabilities {pm1, pm2, ....pmK} may also be viewed as a row of entries for the
classifier’s confusion matrix. Note that in the case of image processing, this con-
fusion matrix must be pre-conditioned to be representative of image quality, and
for RF/NLP problems, a similar consideration of quality such as a signal-to-noise
ratio (SNR) must also be considered.

P (c1 = n1, ..., cK = nK |m) =
N !

n1! · ... · nk!
pn1m1 · ... · pnkmk (1)
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Consider the case where the actual classification decision is state m; the
conditional probability pmm is the conditional classification accuracy, while

∑

j �=m

pmj = (1 − pmm)

represents the conditional probability of the algorithm making a specific pairwise
error in the classification decision for a single input frame belonging to class m.
Two extreme scenarios that enable simplification of the generalized multinomial
model are (a) an assumption that the error probabilities are equiprobable and
(b) an assumption that all of the error density is concentrated in a single false
classification. In the first case, which is a best case scenario for classification
accuracy, the probabilities for incorrect classification per incorrect state reduce
to (2). In this case, (1) reduces to (3).

pmj =
(1 − pmm)
K − 1

∀j �= m (2)

P (c1 = n1, ..., cK = nK |m) =
N !

n1! · ... · nk!
pnm
mm · (

(1 − pmm)
K − 1

)N−nm (3)

The second case focuses all of the error density into a single false state l,
which is a worst case of a coherent error condition (i.e., errors are aggregated
for a specific output state), collapsing the multinomial distribution of (1) into
the binomial distribution (4).

P (c1 = n1, ..., cK = nK |m) = P (cm = nm, cl = N − nm|m)

=
N !

nm! · (N − nm)!
· pnm

mm · (1 − pmm)N−nm
(4)

In most classifiers, the error densities will lie in between these two extremes
which offer bounding probabilities for estimating classifier performance. Anecdo-
tally, the reasons for deviations between these two extremes have been applica-
tion dependent. However, the error densities (off-diagonal entries of the confusion
matrix) are typically split across a small number of incorrect state classifications,
and tend to occur symmetrically, such that a larger value pmj corresponds to a
larger pjm, suggesting a similarity between output classes.

2.2 Simplifying Assumptions and Operational Dependencies

The key simplifying assumptions made in the proposed framework are on
statistical independence of the input1 and the presence of a single observ-
able. The assumption of statistical independence normalizes for the input sam-
pling/framing processes, as well as any nonlinear variations occurring during
1 We assume that the sampling process, such as capturing an image or measuring a

signal, do not induce a temporal correlation to the decisions that is different from
the actual object/signal of interest, such as might occur with plenoptic cameras or
overlapping time windows as single frames.
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the N input frames used to create an aggregate classification. The assumption
that only one consistent observable (i.e. image or signal) is present for classifi-
cation throughout the duration of the N input frames eliminates the case where
classification decisions overlap in time, and is most accurate for slowly chang-
ing environments and/or signals This also assumes any nonlinear effects that
transform the confusion matrix entries are also slowly changing such that they
occur on a timeline greater than N input frames. Finally, an assumption is made
that the chosen classes of the CNN-based classifier are disjoint (i.e., all prob-
abilities add to 1), eliminating ordinal or hierarchical classification structures.
In the case of image classification algorithms, these assumptions are generally
met in facial identification, mask compliance analysis, and objection recognition
settings. For RFML classification algorithms, these assumptions are reasonably
accurate in the presence of randomly occurring background noise, while less so
in the presence of periodic interferers.

Operational dependencies like image quality (as quantified by methods like
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [25]) or signal
quality (as quantified by SNR) also must be considered in the proposed deci-
sion framework by creating an ensemble of different confusion matrices, each
conditioned upon a small range of the chosen quality metric.

2.3 Aggregating Classification Decisions

The goal of determining an aggregate classification decision on N input frames
then translates to the subset of all possible multinomial selections since the
decision metric applicable for a classification decision scenario is that of the
classification chosen (class j, represented by cj) most often; i.e.,

max
j

{cj} =

{
j = m : Accurate decision
j �= m : Error

Stated differently, an accurate decision occurs when cm > max cj , j �= m.
Additionally, in the scenario where cm = max cj , j �= m, we may make a ran-
dom guess based on the leading states, selecting the correct classification with a
probability of 1

K .
The challenge in most such scenarios is not in calculating the individual state

probabilities, but rather efficiently selecting the proper subset of possible multi-
nomial state combinations c, meaning that the aggregate probability for selecting
the correct overall classification decision from a set of N possible outputs states
is the summation of multinomial state probabilities:

P (cm ≥ max
j �=m

cj) >
∑

nm>nl∀l �=m

(
N

n

) K∏

l=1

pnl

l +
1
K

∑

nm=maxnl
∀l �=m

(
N

n

) K∏

l=1

pnl

l

Performing efficient subset selection is an ongoing area of research [26]; rather
than focus on specific subset selection techniques, we focus on the applications
of this model in the next section.
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3 Decision Aggregation of Feed-Forward CNN Classifiers

To evaluate the efficacy of this multinomial framework against classifier frame-
works in each of the common modalities as was shown in Fig. 1, we first consider
a generic toy example that incorporates an arbitrary confusion matrix, represen-
tative of one environmental operating condition. Next, we apply the framework
to a binary mask recognition task applied to real-time video streams with three
different frame rates. This example illustrates the trade space between time and
processing loads necessary to achieve an aggregate confidence level, and projects
(4) to a binomial framework. Finally, we apply the full multinomial framework
to two RFML tasks, SEI and AMC, across SNR ranges.

3.1 Toy Example

To provide a general example that demonstrates the technique in more detail,
consider a feed-forward NN with 4 possible outputs (K = 4) and a test accu-
racy of 34% (i.e. p11 = 0.34), and the number inputs varying between 0 and
100 (i.e. N ∈ {1, 2, ..., 100}). Normally, a test accuracy of 34% is discounted
as near useless, because, for each individual input frame, the correct classifi-
cation accuracy is only marginally better than blind guessing (25%), so little
confidence can be given to single output decisions. However, if we consider the
following three scenarios such that the three error conditions are equiprobable
(scenario 1), concentrated over two of the remaining three states (scenario 2), or
varied over two of the remaining three states (scenario 3), the application of the
proposed multinomial framework over varying values of N yields the aggregate
classification accuracies shown in Fig. 3(a).

Scenario 1 : {p11, p12, p13, p14} = {34%, 22%, 22%, 22%}
Scenario 2 : {p11, p12, p13, p14} = {34%, 32%, 32%, 2%}
Scenario 3 : {p11, p12, p13, p14} = {34%, 15%, 22%, 29%}

As expected, all three scenarios start with a classification accuracy of exactly
p11 = 0.34. The oscillatory behavior for small numbers of output frames (N <
10) is due to the overall realization that error cases are in fact more likely
than the correct classification, and thus the small population of outputs skewed
probability that includes a higher density of ties (cm = maxj �=m cj) that are
approximated as random guessing (25%). The difference between each of the
three scenarios results from relative magnitudes of the correct classification and
the highest density of error state probability. The extremely slow increase of
Scenario 2 is representative of the near random guessing between three of the four
states, while the quick convergence of Scenario 1 is indicative of the maximum
separation between an assumed equiprobable error condition:

pmm

maxj �=m pmj
=

pmm
1

N−1 (1 − pmm)
=

(N − 1)pmm

(1 − pmm)
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Fig. 3. Comparison of three same-performance confusion scenarios for an arbitrary
classification algorithm (a) and binomial reduction of aggregation method applied to
a binary mask recognition problem (b).

The middle state, Scenario 3, has more evenly balanced error probabilities,
indicative of more general training conditions for most classifiers, and converges
quickly to higher classification accuracies, but not as quickly as the maximum
possible rate based on Scenario 1. The rate of convergence for these three sce-
narios is fundamentally a ratio of large summations without common terms,
making closed form reductions impractical, even when applying assumptions as
described with Scenario 1. It should be noted that a final scenario, not shown in
Fig. 3 occurs when the error density of any other state exceeds that of the correct
classification - in such a scenario, the aggregate classification accuracy actually
decays from p11, making the proposed aggregation process counter-productive.

3.2 Binomial Reduction Applied to Mask Recognition Algorithm

Recent work in the area of binary mask recognition (‘mask’,‘no mask’) has shown
the ability to achieve a test accuracy of 99% accuracy using pristine images that
are pre-processed such that the faces are centered within the each image [27].
Additional work [18] sought to generalize the algorithm to a wider range of
ethnicities, more practical image qualities that may be encountered when using
real-time webcams, facial images steered off camera boresight, and a series of
intentional presentation attacks. While capable of achieving similar 99% accu-
racy on the original dataset, the generalized CNN used in [18] achieves closer
to 72.91% accuracy when applied to still images, and progressively lower when
applied to images derived from compressed video. However, in averaging 10 suc-
cessive images from a compressed video stream with {10, 15, 30} frames per
second (FPS), the resulting accuracy is 75.67% (1 s total capture), 65.22% for 15
FPS (0.67 s), and 59.95% for 30 FPS was (0.33 s). This begs the operational ques-
tion: how long must a person’s face be observed in order to make a sufficiently
accurate (i.e. 95%) decision?
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Using a binary reduction of (4), we find that the compressed video scenarios
fail to meet realistic timelines necessary for real-time decisions, as shown in
Fig. 3(b). Performing a sensitivity analysis on the observed performance accuracy
determines that a 3 s observation window necessitates algorithmic improvements
to achieve an accuracy of 88% at 10 FPS. Likewise, assuming the non-compressed
still image performance extrapolates to higher frame rates, we estimate that an
image capture rate of 4 FPS will also allow achieving the desired aggregate
accuracy within a chosen 3 s window.

3.3 Specific Emitter Identification and Modulation Classification

To further demonstrate the utility of the proposed multinomial model in syn-
thesizing aggregate decisions in the RF domain, we provide exemplary use cases
based on the SEI algorithm given in [20] and the AMC algorithm in [11]. In the
CNN-based SEI algorithm of [20], a much smaller input frame size was consid-
ered than the traditional expert feature-based statistical IQ estimator algorithm
given in [21], thought both contained 5 output classes (K = 5). Comparative
results, normalized for the same amount of observation time, are shown in Fig. 4.
Though the traditional expert feature-based algorithm achieved higher accuracy
than the RFML-based algorithm when using only a single input capture, the
expert feature-based algorithm utilized over an order of magnitude more sym-
bols as input, making direct comparison between the two techniques unfair.
Therefore, in [20], the authors utilized the multinomial approach given herein
to aggregate decisions over 10 input captures, matching the equivalent amount
of input observations. When the amount of data provided to each algorithm
is approximately equivalent, the RFML-based algorithm outperforms the expert
feature-based algorithm, especially at lower SNRs, showing a measurable benefit
of the RFML-based approach.

Fig. 4. Example use of the multinomial decision aggregation framework, comparing
performance of RFML-based and traditional feature-based SEI algorithms.
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Finally, when applying the same multinomial data aggregation models to an
RFML-based AMC algorithm with four output classes (K = 4). The results,
given in Fig. 5, show the proposed aggregation approach clearly improves the
point-wise accuracy of the classifier when more input data is available than a
single frame. At low SNRs, distinguishing between higher order QAM signals (i.e.
16QAM and 64QAM) is especially challenging. However, confusion between these
two classes is notably lessened after the aggregation of just 10 input captures,
and is negligible after the aggregation of 50 input captures.

(a) (b)

Fig. 5. Aggregate decisions for 4-state RFML-based AMC algorithm as functions of
SNR (a) and confusion matrices (b) over N = {1, 10, 50, 100} outputs.

4 Conclusions

This paper has focused on a framework for aggregating the outputs from any
time-series classification decision algorithm using a multinomial distribution,
shown to increase the overall classification accuracy when multiple consecutive
inputs are observed and allow for direct comparison between techniques using
differing input capture sizes. The rate of convergence for this output decision
is primarily driven by the ratio of the classification accuracy of a single output
decision and the most likely error case for that classification decision. While
necessary to condition based upon the quality of the input, the process may be
used to significantly improve classification accuracies of feed-forward NN-based
classifiers that operate on low quality images or relatively short captures of RF
signals, and may be extended across other different operating conditions (image
frame rate, SNR, or other quality metric), if the confusion matrices for each
condition are known. Future work is being pursued to relax the stated assump-
tions associated with temporal coherence, with the objective to better predict
real-time performance in image classifiers and co-channel RF environments.
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Abstract. Regression problems have been widely studied in machine
learning literature resulting in a plethora of regression models and per-
formance measures. However, there are few techniques specially dedi-
cated to solve the problem of how to incorporate categorical features
to regression problems. Usually, categorical feature encoders are general
enough to cover both classification and regression problems. This lack of
specificity results in underperforming regression models. In this paper,
we provide an in-depth analysis of how to tackle high cardinality categor-
ical features with the quantile. Our proposal outperforms state-of-the-art
encoders, including the traditional statistical mean target encoder, when
considering the Mean Absolute Error, especially in the presence of long-
tailed or skewed distributions. Besides, to deal with possible overfitting
when there are categories with small support, our encoder benefits from
additive smoothing. Finally, we describe how to expand the encoded val-
ues by creating a set of features with different quantiles. This expanded
encoder provides a more informative output about the categorical feature
in question, further boosting the performance of the regression model.

Keywords: Statistical learning · Regression problems · Machine
learning · Categorical features

1 Introduction

In the modeling stage of a machine learning (ML) prediction problem, there is the
need of feeding the model with meaningful features that describe the problem in
a relevant way. That is why the steps of data preparation and feature engineering
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are crucial in any ML project [2,10]. With the recent amount of available data,
there is an inevitable increment in the variety of features. For the specific case
of categorical variables this increment has two different effects: (a) the quantity
of features is larger, and (b) the number of distinct values found in each feature
(cardinality) increases [19]. When facing this second scenario, the problem of
representing categorical features effectively and efficiently has a relevant effect
on the performance of machine learning model.

Handling categorical features is a known and very common problem in data
science and machine learning, given that many algorithms need to be fed with
numerical data [23]. There are many well-known methods for approaching this
problem [17]. However, depending on the kind of problem faced, namely classi-
fication or regression problems, some of the techniques for encoding categorical
data are more suitable than others. This is particularly true when dealing with
large-scale data where errors and outliers are more common and may hinder the
computation of reliable statistical measures.

The most well-known encoding for categorical features with low cardinality
is One Hot Encoding [1]. This produces orthogonal and equidistant vectors for
each category. However, when dealing with high cardinality categorical features,
one hot encoding suffers from several shortcomings [20]: (a) the dimension of
the input space increases with the cardinality of the encoded variable, (b) the
created features are sparse - in many cases, most of the encoded vectors hardly
appear in the data -, and (c) One Hot Encoding does not handle new and unseen
categories.

An alternative encoding technique is Label/Ordinal Encoding [3] which uses
a single column of integers to represent the different categorical values. These
are assumed to have no true order and integers are selected at random. This
encoding handles the problem of the high dimensional encoding found in One
Hot Encoding but imposes an artificial order of the categories. This makes it
harder for the model to extract meaningful information. For example, when
using a linear model, this effect prevents the algorithm from assigning a high
coefficient to this feature.

Alternatively, Target Encoding (or mean encoding) [15] works as an effective
solution to overcome the issue of high cardinality. In target encoding, categori-
cal features are replaced with the mean target value of each respective category.
With this technique, the high cardinality problem is handled and categories are
ordered allowing for easy extraction of the information and model simplification.
The main drawback of Target Encoding appears when categories with few (even
only one) samples are replaced by values close to the desired target. This biases
the model to over-trust the target encoded feature and makes it prone to overfit-
ting. To overcome this problem several strategies introduce regularization terms
in the target estimation [15]. A possibility is to use an estimator with additive
smoothing, such as the M-Estimator, to estimate each category mean.

Although the techniques described before work for both regression and clas-
sification techniques, most of the literature focuses on the binary classification
tasks even though the meaningful statistics of a binary classification are not well
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suited for other prediction tasks such as regression or multi-class classification.
For example, when dealing with supervised learning regression tasks, calculat-
ing the target mean can give a misleading representation of the category due to
the statistical properties of the mean if the data shows heavy tails. A reason-
able change in this scenario would be the use of other summary statistics more
suited to the target distribution. However, to the best of our knowledge, there
is no previous research done in using other aggregation statistics other than the
mean. In this paper, we study the use of the quantile as a better and more
flexible summarizing statistic value on the regression tasks when measuring the
Mean Absolute Error in high cardinality datasets. We study its effect in front of
skewed and long-tailed distributions. We additionally introduce a regularization
strategy to avoid over-representation of the encoded feature when the statistic
is computed over a small target subset of data. Moreover, a richer extension of
the studied encoder, namely target summaries, that consists of a discrete set of
the basic quantile encoder with different hyperparameter values is introduced.

The strategy is evaluated in different regression scenarios including the pres-
ence of outliers, long-tailed, and skewed distributions. We summarize the main
contributions of this paper as follows:

(i) We define the quantile encoder. This encoder improves the performance of
a regression model when evaluated using the Mean Absolute Error. It is
also remarkable that the Mean Absolute Error can be improved even when
using a different target loss, such as least squares loss.

(ii) We show that the quantile encoder improves the performance of regression
models when the distribution of the target is long-tailed.

(iii) Finally, we introduce the idea of summary encoder, an encoder designed for
creating richer representations. This is built by leveraging information from
different quantiles.

For the sake of reproducibility and to help with the development, experimen-
tation, and testing of the methods used in this paper, an open-source python
package containing all the implementations used for this paper is released. We
refer to this package as sktools [7].

The rest of this article is organized as follows. Section 2 presents a formal
definition of the proposed encoding. Section 3 shows the benchmarking datasets,
experimental settings, results, and their corresponding discussion. Finally, in
Sect. 4 the main conclusions of the paper are summarized and possible future
work is presented.

2 Quantile Encoder

The problem that we aim to tackle is the improvement of the encoding of cate-
gorical variables in regression models. Target encoding with the mean is a valid
approach, but not necessarily the most suitable. Target encoding can be easily
generalized by replacing the mean with any other summarizing statistic. Thus,
following a similar strategy to mean encoding, here we generalize the definition



Quantile Encoder 171

of Target encoding studying the use of the quantile as a summarizing encoding
metric in the different categories.

Formally, Quantile encoding is defined as follows: Given a dataset D =
{(xi, yi)}, i ∈ 1 . . . N with xi a d-dimensional feature vector, yi its corresponding
label, we identify the j-th feature from sample xi as x

(j)
i . For the following dis-

cussion we consider feature j-th a categorical variable with Kj different values.
The quantile encoder replaces that feature as follows

x̂
(j)
i = qp({yk}), ∀ (xk, yk) ∈ D∣

∣ x
(j)
k = x

(j)
i , (1)

where qp is the quantile at p. Equation 1 assigns the p quantile of all targets
that share the same categorical value for that feature.

A common issue when using target-based encodings such as mean encoding
or the quantile encoding is not having enough statistical mass for some of the
encoded categories. And, therefore, this creates features that are very close to
the target label. Thus, they are prone to over-fitting. A possible solution is to
regularize the target encoding feature using additive smoothing, as in [4,25]. To
do so, we compute the quantile encoding using the following equation:

x̃
(j)
i =

x̂
(j)
i · ni + qp({y}) · m

ni + m
(2)

where,

– x̃
(j)
i is the regularized Quantile Encoder applied to the value corresponding

to element x
(j)
i .

– x̂
(j)
i is the non-regularized Quantile Encoder; the value corresponding to ele-

ment x
(j)
i as defined in Eq. 1.

– ni is the number of samples sharing the same value as x
(j)
i .

– qp({y}) is the global p-quantile of the target.
– m is a regularization parameter, the higher m the more the quantile encoding

feature tends to the global quantile. It can be interpreted as the number of
samples needed to have the local contribution (quantile of the category) equal
to the global contribution (global quantile).

The rationale of Eq. 2 is that, if a class has very few samples, ni � m then
the quantile encoding will basically be the global quantile, x̃

(j)
i ≈ qp({y}). If

a class has a large number of samples, ni � m and x̃
(j)
i ≈ x̂

(j)
i then the class

quantile will have more weight than the global quantile. As a result, the Quantile
Encoder transformation of categorical features has two different hyperparameters
that can be tuned to increase, adjust, and modify the type of encoding. These
are the following:

– m is a regularization hyperparameter. The range of this parameter is m ∈
[0,∞). For the specific case where m = 0, there is no regularization. The
larger the value of m, the most the Quantile Encoder features tends to the
global quantile.
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– p is the value of the quantile of the target probability distribution. The range
of this parameter is p ∈ [0, 1]. When p is 0.5, we obtain the median encoder,
as it applies q0.5, the median of the target in each category.

2.1 Summary Encoder

A generalization of the quantile encoder is to compute several features corre-
sponding to different quantiles per each categorical feature, instead of a single
feature. This allows the model to have broader information about the target
distribution for each value of that feature than just a single value. This richer
representation will be referred to as summary encoder. Formally, it is defined as

x̂
(j)
i = {qpm

({yk})}, ∀ (xk, yk) ∈ D∣
∣ xk = x

(j)
i , m = 1 . . . M (3)

where M is the number of new features, and pm are the values of the quantiles
to use. This representation changes a single feature by a set of M quantiles
according to the values in pm.

3 Experiments

To perform an empirical evaluation of the proposed statistical encoding tech-
niques, we developed a framework to ensure that all experiments described
in this paper are fully reproducible. Original data, data preparation routines,
code repositories, and methods are publicly available at [6]. Experiments have
been organized into three groups: Firstly, we assess the performance of quantile
encoder when compared with the state-of-the-art encodings, namely catboost,
M-estimate, target, James-Steiner encoder, Generalized Linear Mixed Model
Encoder, and ordinal encoder. To do this comparison we used the Mean Absolute
Error. In the second group of experiments, we aim at showing the dependence
of the encoding on the evaluation metric. To that effect, we study the perfor-
mance of the quantile encoder when used with a least-squares loss model in terms
of mean absolute error and mean squared error. Finally, we compare summary
encoder with quantile and target encoders, the goal of these last experiments is
to create more informative encoders to be able to boost regression algorithms
performance.

3.1 Dataset Bench-Marking

The scenario we are addressing is characterized by datasets that display categor-
ical features with high cardinality and skewed/long tail target distribution in a
regression environment. Unfortunately, most of the machine learning benchmark-
ing datasets do not display these common features of many real-life problems.
Thus, following the open data for reproducible research guidelines described in
[14] and for measuring the performance of the proposed methods, we have used
a synthetic dataset for a more theoretical evaluation together with 4 open-source
datasets for an empirical comparison. The selected datasets are:
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– The StackOverflow 2018 Developer survey [21] is a data set with only five
categorical features, namely country, employment status, formal education,
developer type, and languages worked. The target variable is the annual salary
of the user.

– The StackOverflow 2019 Developer survey [22] is a data set with a single
categorical feature (country), few numerical features (working week hours,
years of coding, and age), and a long-tailed target variable (salary).

– Kickstarter Projects [12] is a data set with crowd-funding projects where the
goal is to predict what is the funding goal of each project. The categorical
features are the crowd-funding type, the country, the state, and the currency.

– Medical Payments [13] is a data set with information about the price of a
medical treatment. The dataset consists of 10 categorical features containing
information about the state, city, zip code, country, physician type, physician
country, the payment method, and its nature.

The datasets have undergone a minimal curation process, where miscella-
neous features are removed and only the columns that are considered meaningful
and informative for the modeling of the problem are kept.

For the synthetic dataset, we have used the Cauchy distribution in Eq. 4 to
create a target distribution with long tails. The Cauchy distribution is parame-
terized by t and s, being t the location parameter and s the scale parameter as
follows,

Cauchy(x; t, s) =
1

sπ(1 + ((x − t)/s)2)
. (4)

Next,we have created two features, x1 and x2 accordingly,

ci ∼ U(0, 100), x1 ∼ Cauchy(x; ci, 1), x2 ∼ Cauchy(x; ci, 2),

where ε ∼ N(0, 1) is sampled from a normal distribution and x1 and x2

are generated sampling from the Cauchy density function. Both features even if
numerical are then treated as categorical variables. The corresponding regression
target is generated as

y = x1 + x2 + ε

3.2 Code and Reproducibility

For the sake of reproducibility, the code for the experiments has been encap-
sulated in a library, sktools [7]. It can be found https://sktools.readthedocs.io/.
The library contains the implementations presented in this paper such as Quan-
tile Encoder regularized with an additive smoothing and the Summary Encoder.
Notebook and experiments are hosted on the following Github repository [6].

With respect to quantile encoder the default values for m and p are m = 1
and p = 0.5. Default values for the hyperparameters of the summarizing encoder

https://sktools.readthedocs.io/
https://github.com/david26694/QE_experiments
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are m = 100 and defines three encoding features containing the quantiles at
0.4, 0.5 and 0.6.

As a final estimator we have used a Generalized Linear Model with an
reguralarization hyperparameter (l1 penalty) that we have optimized across the
crossvalidation folds.

3.3 Comparison of all Encoding Methods

This first experiment consists of comparing the performance of the quantile
encoder against state-of-the-art encoding techniques in terms of the Mean Abso-
lute Error (MAE). To do so, we have used the methods implemented in the
Category Encoders library [27] to evaluate them against our proposed encoding
technique. This set of encoding techniques includes ordinal encoding, James-
Stein Encoder [8,16,28], and several state of the art target encodings with dif-
ferent regularization values such as catboost [18], classical target encoder [15,27]
and M-estimate target encoding [4] and generalized linear mixed models encoder
[9,27]. Every experiment has been executed using 3 times repeated 4-fold cross-
validation on the parameters of each method.

Fig. 1. Comparison between Quantile Encoder and several categorical encoding tech-
niques using the cross validated MAE error.

Figure 1 shows the results of the comparison on the cross-validated sets for the
aforementioned datasets. Observe that on average, the quantile encoder achieves
the best scores, followed by catboost. In all datasets, Quantile Encoder performs
in the worst-case scenario similar to other state-of-the-art techniques. However,
in three out of five cases it produces a solid improvement of the Mean Abso-
lute Error. As expected, ordinal encoder yields the worst performance in these
experiments. One of the advantages of using the quantile to encode categorical
features over the mean encoding is that it allows us to have one more tunable
hyperparameter.
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3.4 Encoding Dependence with Respect to the Evaluation Metric

When evaluating machine learning regression models, the following natural ques-
tion arises For which metrics does the encoding technique give an improvement
with respect to the alternatives?

The mean is the estimator that minimizes the Mean Squared Error (MSE),
meanwhile for the Mean Absolute Error is the median [5,11]. This statement
supports the hypothesis that the median encoder may improve the performance
of any regression model when it is measured with the MAE. To provide empiri-
cal evidence we evaluate mean and quantile encoders in front of MAE and MSE
evaluation metrics. It is important to highlight that MAE error has one advan-
tage versus the MSE from an interpretation point of view, in the sense that MAE
maintains the units of the quantities giving a more intuitive representation of
the performance of the model to the user. We evaluate both encodings with both
metrics using an Elastic Net [24,29] with default scikit learn hyperparameters
(alpha = 1.0, l1 ratio = 0.5) as estimator. Hyperparameters are optimized using
a grid search with parameters m ∈ {0, 1, 10, 50} and quantile ∈ {0.25, 0.5, 0.75}.

Table 1. (a) Comparison between Quantile Encoder and Target Encoder for different
evaluation metrics, (b) Wilcoxon’s test p-values.

Dataset p-value PQ

Cauchy 0.0881 0.667
Kickstarter Projects 0.0461 0.667
Medical Payments 0.0002 1.000
StackOverflow 2019 0.3955 0.583
StackOverflow 2018 0.0002 1.000

)b()a(

Figure in Table 3.4(a) shows the percentual difference between each encod-
ing with respect to two metrics. In the upper part of the figure, we can see
that the Quantile Encoder achieves better results than the Target Encoder for
all datasets except for one when measuring the MAE metric. The encoding
yields bigger percentual differences in medical payments and the StackOverflow
datasets. In the lower part of the figure, we have the same plot using the MSE
metric. Observe that mean encoder achieves better results in three out of five
experiments. Observe that in this last case, percentual performance differences
are smaller than in the case of MAE. Additionally, quantile encoder performs
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better than mean encoder in two of them. It is worth noting that the loss func-
tion of elastic net corresponds to a least-squares loss. Thus, this should benefit
mean encoding and harm the performance of quantile encoder. However, results
show the robustness of the quantile encoder even when in this adversarial case.

To verify the generalization of this observation, a quantile encoder is statisti-
cally validated on the selected data sets. The null hypothesis states that quantile
encoder and mean encoder has the same performance when considering MAE.
The p-value in Table 1(b) shows the results of the Wilcoxon test [26]1 on the
MAE on 3 repetitions of 4-fold cross-validation. Observing Table 3.4(b) we see
that the p-values in 3 out of 5 datasets are able to reject the null hypothesis at
a significance level of 0.05. We observe that in the cauchy dataset the rejection
level is found at a significance level of 0.10. Finally, in the 2019 StackOverflow
dataset, we are not able to reject the null hypothesis. Despite this last result,
the quantile encoder is not worse in any of the five datasets. This shows that
the quantile encoder is a useful technique to encode categorical variables when
optimizing the MAE. We additionally compute the probability of the quantile
encoder outperforming the target encoder. This is shown in the column PQ of
Table 3.4. The value is computed by computationally estimating the empiri-
cal distribution of the difference of the performance values using kernel density
estimation and integrating the area of the distribution where quantile encoder
outperforms target encoding. The obtained results are in accordance with the
Wilcoxon test. Note that in all datasets there exists a larger probability that the
quantile encoder outperforms target encoding.

3.5 Summary Encoder Performance

The summary encoder method provides a broader description of a categorical
variable than the quantile encoder. In this experiment, we empirically verify the
performance of both in terms of their MAE when they are applied to different
datasets. For this experiment we have chosen 3 quantiles that split our data in
equal proportions for the summary encoder, i.e., p = 0.25, p = 0.5 and p = 0.75.

Figure 2 depicts the results for this experiment. Notice that the mean perfor-
mance of the summary encoder suggests a better performance when compared
to the target encoder. The same behavior is observed when compared with quan-
tile encoder in some cases. It must be noted that some extra caution needs to
be taken when using the summary encoder as there is more risk of overfitting
the more quantiles are used. This usage of the Quantile Encoding requires more
hyperparameters as each new encoding requires two new hyperparameters, m
and p, making the hyperparameter search computationally more expensive.

1 The Wilcoxon test is a non-parametric statistical hypothesis test used to compare
two repeated measurements on a single sample to assess whether their population
means ranks differ.
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Fig. 2. Comparison between Summary, Quantile and Target encoders using the cross
validated MAE error.

3.6 Discussion

The experiments show that quantile encoder represents better high cardinality
categorical data in several scenarios. The observed improvements are:

– Quantile encoder is robust in front of outliers. On the contrary, target encod-
ing is very sensitive to samples in the training set with extreme values.

– From an optimization point of view, the mean is the estimator that minimizes
the MSE of a sample. On the contrary, and besides optimizing MAE, the use
of quantile encoder is a sensible option for general use as it provides a highly
tunable summary statistic suited to a broader set of metrics. Besides, from
a regression point of view, MAE is a more intuitive metric that helps users
interpreting the results.

– Finally, quantiles can be grouped to provide a much richer description of
a categorical feature. For instance, we can run the percentiles 25, 50, and
75, which give much more information than just computing the mean. More
features provide more information to the model. However, more features also
increase the risk of overfitting and the problem starts gaining dimensionality.
With the use of the Summary Encoder dimensionality does not become a
hazard such as in the case of one-hot encoder. Nonetheless, the regularization
techniques are to be considered to avoid overfitting in this case.
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4 Conclusion

In this article, we have studied the quantile encoder. We make three contributions
related to the encoding of categorical features with high cardinality in regres-
sion models. Our first contribution is the definition of the Quantile Encoder as a
way to encode categorical features in noisy datasets in a more robust way than
mean target encoding. Quantile Encoding maps categories with a more suitable
statistical aggregation than the rest of the compared encodings when categories
display in long-tailed or skewed distributions. To provide empirical evidence we
benchmark the approach in different datasets and provide statistics that support
our claims. The second contribution is the observation that categorical encodings
are sensitive to the model’s loss function and interpretation/evaluation perfor-
mance metric. In this respect, the performance of the model can heavily change
if a general or not correctly selected encoder is chosen. In our case, quantile
encoder is suitable when using mean absolute error as an evaluation metric.
Finally, due to the tunable hyperparameters of the quantile encoder, this shows
a large versatility, being used for different metrics. Additionally, the concate-
nation of different quantiles allows for a wider and richer representation of the
target category that results in a performance boost in regression models. To
aid in the goal of open-source and reproducible research, we have released a
toolkit, namely sktools [7], as an open-source Python package that provides a
flexible implementation of the concepts introduced in this paper. For the sum-
mary encoder, we have used the M-estimate regularization technique, but further
research can be done in the path of avoiding overfitting when creating a set of
features out of a high-cardinality categorical feature. Strategies such as those
found in leave-one-out encoding, or catboost encoder [18] could be considered to
that effect.
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Abstract. The class imbalance issue involves many real-world domains
such as fraud detection, medical diagnosis, intrusion detection, etc.
Most classification algorithms tend to perform poorly when the train-
ing dataset is class-imbalanced. This problem gets more challenging in
the presence of other factors such as class-overlapping and noise. Among
many methods, undersampling is a simple and efficient approach which
re-balances the imbalanced dataset by removing majority samples. In
this paper, we propose a novel method named Evidential Undersampling
(EVUS), which is a re-sampling approach based on the theory of evi-
dence. To avoid removing meaningful samples, each majority object is
assigned a soft evidential label to gain more information about its loca-
tion, then majority samples which are considered ambiguous or noisy
by our framework, are eliminated from the training set. The conducted
results with CART and SVM show that our proposal outperformed other
well-known undersampling methods according to the AUC metric.

Keywords: Undersampling · Imbalanced data · Evidence theory ·
Classification

1 Introduction

In real-world classification tasks, instances are not always evenly distributed
among classes. This form of distributions is typically referred to as imbalanced
or skewed. In a binary class-imbalanced dataset, the class with the higher size is
called the majority class, whereas the rare class is regarded as the minority class.
Imbalanced classification has been reported in many domains such as medical
diagnosis [4], fraudulent credit card detection [25], drug discovery [18], etc. From
an application perspective, misclassifying a minority example is more critical
than misclassifying a majority example [6]. For instance, failing to recognize a
rare disease can be crucial. Class-imbalanced distributions can be due to a lot
c© Springer Nature Switzerland AG 2021
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of factors, including the domain’s background (e.g. rare fraudulent transactions)
or data collection (e.g. storage). This significantly deteriorates the performance
of most classifier algorithms, since most of them assume an even distribution of
the classes [14].

Over the years, many methods have been proposed to deal with imbalanced
classification [12]. Generally, existent solutions can be categorized into two main
groups: data-level [9], algorithm-level [14], as well as combinations of the two
strategies. Algorithm-level methods involve modifying the classifier algorithm
to adapt it for imbalanced datasets. It can also contain cost-sensitive solutions
[1] and ensemble methods [29]. Data-level approaches typically change the class
distribution of the training dataset by adding synthetic samples (oversampling),
removing majority examples (undersampling), or both. One advantage is that
data-level methods are independent of the used classifier. In other words, they
are more flexible and do not require deep understanding of learning algorithms.
Oversampling techniques are becoming more expensive in terms of complexity
and memory as the amount of data is substantially increasing. In many classifi-
cation cases, it is more effective to perform undersampling.

The most naive form of undersampling is random undersampling (RUS) [12],
which randomly eliminates majority class objects to improve the class distri-
bution of the training set. Nonetheless, it is possible that this method may
remove potentially meaningful information from the dataset. To avoid this,
many methods have been proposed to intelligently select unessential majority
points for elimination. Some works used traditional filtering techniques, such
as Edited Nearest Neighbors (ENN) [37], Nearest Neighbor Rule (CNN) [3],
and Tomek Links (TL) [15]. These strategies discard majority points based on
their nearest neighbors. Undersampling based on evolutionary algorithms were
also proposed. In [10], the authors implemented evolutionary prototype selec-
tion to create an improved subset of the majority class. ACOSampling [40] is
another evolutionary-based undersampling technique, which makes use of ant
colony optimization (ACO) [7]. More recently, clustering-based methods were
developed [21,22,27,35]. In [22], the authors used the k-means algorithm [16]
to reduce the majority class size by only selecting the cluster centers for train-
ing. CBIS [35] is another clustering-based undersampling approach which uses
clustering analysis to divide the majority class into sub-classes, and remove the
unessential points in each sub-class.

Although studies have confirmed that a fair distribution of the classes typi-
cally performs better [5,14], it is important to note that class imbalance is usually
not a concern when the classes are easily separable. However, real-world datasets
tend to have class-overlapping regions. This issue can elevate the complexity of
the classification, especially when allied with class imbalance. In addition, noise
can also amplify the class imbalance problem [30], since rare instances and noise
have similar characteristics. Thus, they may be treated as the same pattern.

In this paper, we propose a new undersampling method based on the evidence
theory [31], which was recently used for oversampling [11]. The intuition of our
proposed method is to improve the visibility of the minority class region in binary
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imbalanced datasets. To do that, we assign a soft evidential label to each majority
class sample, in order to acquire information about their locations. Then, we
eliminate the majority objects that are considered ambiguous (in overlapping
regions), label noise (in the minority area), or outliers (far from both classes).
This will not only improve the imbalance ratio, but also reduce the amount of
overlap and noise in the training dataset. The considered evidential structure
based on the theory of evidence is suitable for our objective, since it provides
membership values towards classes, in addition to a belief mass assigned to meta-
classes (both classes). This flexibility helps us develop precise rules to detect the
unwanted samples for undersampling, with the possibility of tuning each rule
individually.

The remainder of this paper will be divided as follows. The theory of evi-
dence will be recalled in Sect. 2. Section 3 presents our idea, detailing each step.
Experimental evaluation and discussion are conducted in Sect. 4. Our paper ends
with a conclusion and an outlook on future work in Sect. 5.

2 Evidence Theory

The theory of evidence [8,31,33], also referred to as belief function theory or
Dempster-Shafer theory (DST), is a flexible and well-founded framework for
representing and combining uncertain information. The frame of discernment
denotes a finite set of M exclusive possible events, e.g., possible class labels for
an object in a classification problem. The frame of discernment is denoted as
follows:

Ω = {w1, w2, ..., wM} (1)

A basic belief assignment (bba) represents the amount of belief given by a
source of evidence, committed to 2Ω , that is, all subsets of the frame including
the whole frame itself. Formally, a bba is represented by a mapping function
m : 2Ω → [0, 1] such that: ∑

A∈2Ω

m(A) = 1 (2)

Each mass m(A) measures the amount of belief allocated to a proposition A
of Ω. A bba is called unnormalized if the sum of its masses is not equal to 1, and
should be normalized under a closed-world assumption [32]. A focal element is
a subset A ⊆ Ω where m(A) �= 0.

The Plausibility function is another representation of knowledge defined by
Shafer [31] as follows:

Pl(A) =
∑

B∩A �=∅
m(B), ∀ A ∈ 2Ω (3)

Pl(A) represents the total possible support for A and its subsets.
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3 Evidential Undersampling Approach (EVUS)

EVUS starts by assigning soft labels to each majority point using the credal
classification rule (CCR) introduced in [23]. Generally, it firstly consists of deter-
mining the centers of each class and meta-class (the overlapping region), then
creating a bba based on the distance between the majority sample and each class
center. The computed bba is later used for undersampling.

The remaining of this section will provide detailed descriptions of each step.

3.1 Determination of Centers

The simple approach to calculating class centers is to compute the mean value of
the training data in the corresponding class. For the overlapping region, which
is represented by a meta-class, the center is defined by the barycenter of the
involved class centers as follows:

CU =
1

|U |
∑

ωi∈U

Ci (4)

where U represents the meta-class, ωi are the classes involved in U , and Ci is
the corresponding center.

3.2 Computing the Soft Labels

The evidential membership of each majority example is represented by a bba
over the frame of discernment Ω = {ω0, ω1, ω2} where ω1 and ω2 represent
respectively the majority and the minority class. The element ω0 is included in
the frame explicitly to represent the outlier, i.e., the unknown class.

Let xs be a sample belonging to the majority class. Each class center rep-
resents a piece of evidence to the evidential membership of the majority sam-
ple. The mass values regarding the class memberships of xs should depend on
d(xs, C), i.e., the distance between xs and the corresponding center of the class.
The greater the distance, the lower the mass value. Hence, if xs is more close
to a specific class center, it means that xs belongs very likely to the respective
class. Thus, the initial (unnormalized) masses should be represented by decreas-
ing distance based functions. To deal with anisotropic datasets, the Mahalanobis
distance [24] is used in this work as recommended by [23].

The unnormalized masses are calculated as follows:

m̂({ωi}) = e−d(xs,Ci), i ∈ [1, 2] (5)

m̂(U) = e−γ λ d(xs,CU ), U = {ω1, ω2} (6)

m̂({ω0}) = et (7)

where λ = β 2α. A recommended value for α = 1 can be used to obtain good
results on average, and β is a parameter such that 0 < β < 1. It is used to
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tune the number of objects committed to the overlapping region (see Sect. 3.3).
The value of γ is equal to the ratio between the maximum distance of xs to
the centers in U and the minimum distance. It is used to measure the degree
of distinguishability among the majority and minority classes. The smaller γ
indicates a poor distinguishability degree between the classes of U for xs. The
outlier class ω0 is taken into account in order to deal with objects far from both
classes, and its mass value is calculated according to an outlier threshold t.

Finally, the previous unnormalized masses are normalized as follows:

m(A) =
m̂(A)∑

B⊆Ω m̂(B)
, ∀A ⊆ Ω (8)

3.3 Selecting Majority Samples for Elimination

Once basic belief assignments are created, the soft memberships are used to
reject samples that are unwanted from the majority class. Rejection strategies
in evidence theory are common in many applications [17,34]. The amount of
information provided by evidential functions helps us determine whether a sam-
ple should be rejected or valid for classification.

As a result of bba creation, each majority object will have masses in 4 focal
elements namely: m({ω1}) for the majority class, m({ω2}) for the minority class,
m(U) for the overlapping region U , and m({ω0}) for the outlier class.

Overlapping Rejection. Ambiguous samples are usually located in regions
where there is strong overlap between classes as seen in Fig. 1a. Consequently,
this type of objects will have a high mass value in m(U) in our framework.
Thus, majority samples whose bba has the maximum mass committed to m(U)
are considered as part of an overlapping region, and are automatically discarded.
Additionally, to avoid excessive elimination and allow tuning, it is possible to

(a) Ambiguous samples in
an overlapping area.

(b) An outlier far from both
classes.

(c) A sample that could be
characterized as label noise.

Fig. 1. Illustrations describing the different data difficulty factors that could worsen
class imbalance. Green and red colors respectively represent the majority class and the
minority one. (Color figure online)
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tune the parameter β. The bigger value of β will result in smaller number of
objects committed to the overlapping region as seen in Fig. 2.

As for majority objects not in overlapping areas (i.e. the highest mass is not
committed to m(U)), the object is necessarily committed to one of the single-
tons in Ω ({ω1}, {ω2}, or {ω0}). To make a decision of acceptance or rejection,
the plausibility function defined in Eq. (3) is used. Each majority object xs is
assigned to the class with the maximum plausibility Plmax = maxω∈ΩPl({ω}).

Label Noise. In EVUS, majority objects should normally have the maxi-
mum plausibility committed towards m({ω1}) which represents the membership
value towards the majority class. Accordingly, objects with Plmax committed to
m({ω2}) signify that they are located in the minority region, as illustrated in
Fig. 1c. In other words, this situation could be characterized by label noise, which
is another data difficulty factor that amplifies the class imbalance issue [19]. In
our undersampling framework, these types of majority objects are eliminated
from the dataset.

(a) Original data (b) β = 0.7

(c) β = 0.5 (d) β = 0.3

Fig. 2. Undersampling made by EVUS on a synthetic imbalanced dataset with over-
lapping. Different tunings of the overlapping parameter β were tested.



Evidential Undersampling for Imbalanced Datasets 187

Outlier Rejection. The final possibility occurs when Plmax is committed to
ω0. This situation describes indecisive samples that are far from both classes and
could be considered outliers as shown in Fig. 1b. In our framework, majority
objects with the maximum plausibility committed towards ω0 are eliminated
from the training dataset. The parameter t in Eq. (7) can be used for tuning the
outlier rejection, although t = 2 is recommended for good results on average.
The bigger t results in smaller number of outliers, and it is recommended to take
t ∈ [2, 5].

4 Experimental Study

In this section, we describe our experimental setup and present the observed
results.

4.1 Setup

Datasets. Binary imbalanced datasets were selected from the KEEL repository
[2] to conduct the experimental study. Specifically, we have chosen a total of 20
datasets which vary in imbalanced ratios (1.87 to 129.44), number of instances
(173 to 4174), number of features (6 to 41). The characteristics are further
detailed in Table 1. The imbalance ratios (IR) are calculated as #majority

#minority . These
variations allowed for comparisons in a range of different scenarios. In the case
of kr-vs-k-zero vs eight and kddcup-rootkit-imap vs back datasets, categorical
features were encoded as integers before applying undersampling. There was no
further preprocessing done.

Baseline Classifiers. CART decision tree and Support Vector Machine (SVM)
were chosen as baseline classifiers to conduct the comparisons. These learning
methods are considered as one of the most used classifiers in class-imbalanced
problems [12]. For all experiments, the implementations provided in the scikit-
learn machine learning python library [28] were used, with the default parameters
unchanged (RBF kernel was used for SVM).

Compared Methods. EVUS was compared against 5 other undersampling
methods, in addition to baseline (BL). The approaches used are: random under-
sampling (RUS), Cluster Centroid undersampling (CC) [39], Condensed Nearest
Neighbour editing (CNN) [13], One- Sided Selection (OSS) [20], and Near Miss
undersampling (NM) [26]. The implementations provided by the python toolbox
imbalanced-learn [21] were used for the compared methods.

Metric and Evaluation Strategy. The Area Under the ROC-Curve (AUC)
was used as an evaluation measure. This metric provides a score to determine
how well a classifier compensates its true positive and false positive rates. It has
been shown to be a reliable assessment criterion for imbalanced classification
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problems [38]. The AUC scores were averaged through a 10-fold stratified cross
validation to eliminate inconsistencies. It is worth mentioning that undersam-
pling was performed only on the training set at each fold. Finally, statistical
comparisons were carried out using the Wilcoxon’s signed rank tests [36] to fur-
ther evaluate the significance of the results.

Parameters. The following parameters were considered for EVUS: α was set to
1 as recommended in [23], the outlier tuning parameter t was fixed to 2 to obtain
averagely good results, and we tested three different values for β in {0.3, 0.5, 0.7}
and selected the most performing value each time, since the amount of overlap-
ping differs in each dataset. For the other reference methods, the recommended
parameter in the respective papers were used.

Table 1. Description of the imbalanced datasets selected from the KEEL repository.

Datasets Imbalance ratios (IR) Features Samples

wisconsin 1.860 9 683

glass0 2.060 9 214

vehicle3 2.990 18 846

ecoli1 3.360 7 336

yeast3 8.100 8 1484

ecoli-0-6-7 vs 3-5 9.090 7 222

yeast-0-3-5-9 vs 7-8 9.120 8 506

ecoli-0-2-6-7 vs 3-5 9.180 7 224

ecoli-0-1-4-7 vs 2-3-5-6 10.590 7 336

glass-0-1-4-6 vs 2 11.060 9 205

glass4 15.460 9 214

yeast-2 vs 8 23.100 8 482

winequality-red-4 29.170 11 1599

winequality-red-8 vs 6 35.440 11 656

kr-vs-k-zero vs eight 53.070 6 1460

winequality-white-3-9 vs 5 58.280 11 1482

poker-8-9 vs 6 58.400 10 1485

poker-8 vs 6 85.880 10 1477

kddcup-rootkit-imap vs back 100.140 41 2225

abalone19 129.440 8 4174

4.2 Results and Discussion

Table 2 presents the AUC scores obtained by CART and SVM on each imbal-
anced dataset after performing undersampling. The best scores are marked in
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bold. We can initially observe that undersampling improved the classification
performance on all cases. Our proposed method achieves the best AUC scores
in 13 out of 20 datasets for CART, and 11 out of 20 in the case of SVM. In 7
out of 20 datasets, EVUS performed better compared to the other methods for
both classifiers. This can imply that the choice of the classifier did not affect
much the end results. Furthermore, EVUS performed relatively better in cases
when there are many borderline points in the dataset, i.e., when the overlapping
between the classes is strong. By contrast, one can say that EVUS is not much
of use in the cases of small number of borderline majority points.

Table 2. AUC results for KEEL datasets using CART and SVM.

CART SVM

Datasets BL RUS CC CNN OSS NM EVUS BL RUS CC CNN OSS NM EVUS

wisconsin 0.935 0.945 0.939 0.910 0.914 0.936 0.964 0.971 0.972 0.971 0.968 0.971 0.967 0.977
glass0 0.753 0.758 0.747 0.762 0.767 0.673 0.770 0.500 0.670 0.656 0.500 0.500 0.485 0.667
vehicle3 0.708 0.720 0.709 0.675 0.672 0.649 0.789 0.500 0.606 0.662 0.648 0.517 0.639 0.619
ecoli1 0.826 0.842 0.848 0.852 0.876 0.804 0.886 0.861 0.902 0.889 0.904 0.875 0.838 0.904
yeast3 0.808 0.897 0.869 0.824 0.811 0.768 0.882 0.841 0.854 0.923 0.890 0.865 0.846 0.891
ecoli-0-6-7 vs 3-5 0.829 0.776 0.821 0.841 0.799 0.758 0.852 0.839 0.804 0.837 0.868 0.845 0.726 0.886
yeast-0-3-5-9 vs 7-8 0.659 0.614 0.544 0.616 0.665 0.546 0.663 0.597 0.728 0.676 0.597 0.607 0.538 0.645
ecoli-0-2-6-7 vs 3-5 0.822 0.790 0.797 0.825 0.809 0.748 0.829 0.839 0.827 0.862 0.896 0.842 0.670 0.867
ecoli-0-1-4-7 vs 2-3-5-6 0.777 0.756 0.814 0.822 0.819 0.735 0.852 0.840 0.869 0.902 0.850 0.815 0.674 0.906
glass-0-1-4-6 vs 2 0.571 0.680 0.685 0.590 0.560 0.601 0.596 0.500 0.630 0.585 0.500 0.500 0.473 0.600
glass4 0.838 0.850 0.716 0.743 0.698 0.875 0.898 0.500 0.788 0.843 0.500 0.500 0.573 0.895
yeast-2 vs 8 0.714 0.678 0.553 0.683 0.762 0.718 0.764 0.774 0.772 0.772 0.774 0.774 0.816 0.782
winequality-red-4 0.540 0.595 0.568 0.593 0.579 0.456 0.588 0.500 0.524 0.546 0.500 0.500 0.421 0.556
winequality-red-8 vs 6 0.612 0.695 0.713 0.759 0.637 0.454 0.784 0.500 0.662 0.546 0.500 0.500 0.356 0.566
kr-vs-k-zero vs eight 0.822 0.962 0.778 1.000 1.000 0.960 1.000 0.791 0.884 0.959 0.807 0.791 0.796 0.931
winequality-white-3-9 vs 5 0.630 0.644 0.558 0.595 0.612 0.542 0.648 0.500 0.636 0.550 0.500 0.500 0.526 0.585
poker-8-9 vs 6 0.527 0.543 0.630 0.563 0.543 0.661 0.573 0.500 0.525 0.497 0.500 0.500 0.531 0.629
poker-8 vs 6 0.549 0.511 0.635 0.496 0.547 0.541 0.548 0.500 0.522 0.515 0.500 0.500 0.536 0.525
kddcup-rootkit-imap vs back 0.992 0.997 0.561 1.000 0.911 0.560 1.000 0.997 1.000 0.998 0.550 0.973 0.999 1.000
abalone19 0.529 0.673 0.690 0.553 0.528 0.522 0.629 0.500 0.623 0.626 0.500 0.500 0.591 0.665

To assess the significance of the comparisons, Table 3 presents the statistical
analysis made by Wilcoxon’s signed ranks test. R+ represents the sum of ranks
in favor of EVUS, R−, the sum of ranks in favor of the other compared methods,
and p-values are calculated for each comparison. As shown in Table 3, all p-values
are lower than 0.10.

Table 3. Wilcoxon’s signed ranks test results comparing the AUC scores for both
CART and SVM.

Comparisons CART SVM

R+ R− p-value R+ R− p-value

EVUS vs RUS 173.5 36.5 0.009436 133.5 76.5 0.063069

EVUS vs CC 164.0 46.0 0.013321 154.0 56.0 0.03479

EVUS vs CNN 169.0 41.0 0.00015 177.0 33.0 0.000518

EVUS vs OSS 187.5 22.5 0.000107 210.0 0.0 <0.000001

EVUS vs NM 200.0 10.0 0.000041 198.0 12.0 0.000067
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Thus, one can say that EVUS outperformed the compared techniques at a
significance level of α = 0.10.

5 Conclusions

Throughout this paper, we have proposed a new method called Evidential Under-
sampling (EVUS), based on the evidence theory. Majority samples are selected
for elimination based on soft evidential labels, which provide us with more infor-
mation about the point’s location. This resulted in AUC improvements over
well-known undersampling methods. The main motivation behind our proposed
algorithm was to improve the visibility of the minority class regions, to avoid
the misclassification of minority objects.

For future work, we intend to explore heuristic methods to further optimize
the parameters β and t. This will provide a more adaptive behavior of the param-
eters based on the amount of overlap and noise present in the majority class.
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Abstract. Interpretable models make it possible to understand individ-
ual predictions, and are in many domains considered mandatory for user
acceptance and trust. If coupled with communicated algorithmic confi-
dence, interpretable models become even more informative, also making
it possible to assess and compare the confidence expressed by the models
in different predictions. To earn a user’s appropriate trust, however, the
communicated algorithmic confidence must also be well-calibrated. In
this paper, we suggest a novel way of extending Venn-Abers predictors
to multi-class problems. The approach is applied to decision trees, pro-
viding well-calibrated probability intervals in the leaves. The result is one
interpretable model with valid and sharp probability intervals, ready for
inspection and analysis. In the experimentation, the proposed method is
verified using 20 publicly available data sets showing that the generated
models are indeed well-calibrated.

1 Introduction

Interpretable predictive models make it possible to explain individual predic-
tions, as well as discover and analyze underlying relationships in the data, with-
out external explanation modules. We have previously argued, see e.g., [2], that
models, and in particular interpretable models, that communicate algorithmic
confidence are very informative. Obviously, for such models to earn a user’s
appropriate trust, rather than being outright misleading, the confidence mea-
sures must be well-calibrated [6].

Venn predictors, introduced in [9] are multi-probabilistic predictors with
unique validity properties. Somewhat simplified, the multi-probabilistic predic-
tions can be interpreted as a set of probability intervals, one for each label. The
Venn predictors normally use an underlying classifier to divide all instances into
a number of categories, based on a so-called Venn taxonomy. The relative fre-
quency of each class label in a category is then used to estimate the probabilities
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for test instances falling into that category. Validity is obtained by including the
test instance to be predicted in the calculation. However, as the true label is not
known for the test instance, each possible label must be considered, resulting in
as many label probability distributions as the number of possible labels.

An inductive Venn predictor [4] divides the training data into a proper train-
ing set, used to train the underlying model, and a calibration set used to calibrate
the probabilities. For an extended introduction to inductive Venn predictors, see
e.g., [3]. The main challenge for Venn predictors is to find a suitable Venn tax-
onomy, where too many categories lead to larger prediction intervals, and too
few to a probabilistic model that is not sharp enough.

A solution to the challenge of finding a Venn taxonomy was introduced
through Venn-Abers predictors [8]. In Venn-Abers, an optimized set of categories
are found using isotonic regression. Venn-Abers is, however, in its basic version
restricted to two-class problems. For multi-class problems, existing techniques
use either one-vs-all or all-vs-all schemes, before applying Venn-Abers to each
class and then aggregating the multi-probabilistic predictions into probability
estimates, see e.g., [5]. Using this approach, there is no longer one predictive
model used for the predictions, but a set of models. So, even if the algorithm is
inherently capable of producing interpretable models, like decision trees or rule
sets, it is no longer feasible to inspect or analyse the predictive models.

With this in mind, the overall purpose of this paper is to suggest a novel
way of producing interpretable and sharp probabilistic decision trees utilizing
Venn-Abers for multi-class. The key idea is that instead of generating full prob-
ability distributions over all labels in each leaf, we only derive prediction intervals
for the labels that are actually predicted. With this strategy, it becomes possi-
ble to generate decision trees containing well-calibrated probability intervals in
each leaf. It should be noted that these intervals convey not only information
about the probability estimates, but also about how certain these estimates are.
More specifically, the size of the intervals is dependent on how many calibration
instances that fell into that leaf, with fewer instances leading to larger, i.e., more
uncertain intervals.

2 Background

2.1 Probabilistic Prediction

Probabilistic predictors output a probability distribution over the possible
classes. Informally, a probabilistic predictor is said to be well-calibrated if its
confidences in the labels predicted correspond to the errors made. More for-
mally, if pcj is the probability estimate for class j we expect:

p(cj | pcj ) = pcj . (1)

2.2 Probability Estimation Trees

When decision trees are used as probabilistic predictions they are referred to as
probabilistic estimation trees (PETs) [7]. While more sophisticated approaches
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are available, the estimates are in the basic setting based on the relative fre-
quencies of the different labels in each leaf. If g(i, j) is the number of instances
belonging to class j that falls in the same leaf as instance i, the probability
estimates are calculated using:

p
cj
i =

g(i, j)
∑C

k=1 g(i, k)
(2)

2.3 Venn-Abers Predictors

Venn-Abers predictors use isotonic regression [10] to automatically optimize the
taxonomy for two-class problems. The optimized taxonomy results in sharp pre-
dictions. As the Venn-Abers predictors are Venn predictors, they still inherit the
validity guarantees.

For the Venn-Abers predictor to work, the underlying model must be a scor-
ing classifier, i.e., the underlying model will output a prediction score s(xi) when
applied to a test object xi. A higher prediction score indicates a larger belief in
the positive class, i.e., label 1. For a two-class scoring classifier, the prediction
score can be used to obtain a prediction by comparing the score to a fixed thresh-
old t, predicting label 1 if s(x) > t, and 0 otherwise. By using isotonic regression
to fit an increasing function g using a number of prediction scores with known
true targets, Venn-Abers predictors can let g(s(x)) be interpreted as the proba-
bility that the label for x is 1. An inductive Venn-Abers predictor producing a
multi-probabilistic prediction is described in Algorithm 1 below.

Algorithm 1: Inductive Venn-Abers prediction
input : A learning algorithm A

A training set {z1, . . . , zl}
Test object xl + 1

output: [low, high]: the probability interval for yl+1 = 1

1 Divide the training set into a proper training set {z1, . . . , zq} and a calibration
set {zq+1, . . . , zl};

2 Apply A to the proper training set to produce the scoring model H;

3 foreach zi = (xi, yi); i ∈ q + 1, . . . , l do
// for each calibration example

4 si ← H(xi);
5 end
6 sl+1 ← H(xl+1);

7 Let g0 be the isotonic calibrator for {(sq+1, yq+1), . . . , (sl, yl), (sl+1, 0)};

8 Let g1 be the isotonic calibrator for {(sq+1, yq+1), . . . , (sl, yl), (sl+1, 1)};

9 Let the probability interval for yl+1 = 1 be [low, high] ← [g0(sl+1), g1(sl+1)];

10 return [low, high]
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3 Method

In order to produce interpretable and sharp Venn predictors, we suggest apply-
ing Venn-Abers once for each test instance and possible label, while utilizing
the same underlying decision tree and calibration set. More specifically, when
considering a certain label, all other labels are regarded as belonging to the
negative class. It must be noted that while this procedure requires 2C isotonic
regressions for each test instance, where C is the number of classes, the standard
approach trains C predictive models, and runs two isotonic regressions for each
test instance. The centers of all intervals are compared and the class with the
highest center is the leaf prediction. With this setting, we obtain well-calibrated
probabilities for the labels predicted in each leaf, but the rest of the probability
mass is not distributed over the other labels. The result is that we, after this cal-
ibration step, obtain one decision tree with well-calibrated prediction intervals
in the leaves, i.e., an interpretable and informative model ready for inspection
and analysis.

While a key property of the Venn-Abers predictor is the ability to output
probability intervals (p0, p1), where the size is an indication of the confidence in
the probability estimate, these intervals need to be aggregated into a single prob-
ability estimate when comparing to other techniques. Here, the recommendation,
which is followed in this study, is to use a regularized value moved towards 0.5 [8].

p =
p1

1− p0 + p1
(3)

In the experimentation, scikit-learn was used and we set the Decision-
TreeClassifier parameter min_weight_fraction_leaf to 0.01, i.e., each leaf
should contain at least 1% of the training instances. This will, of course, result
in fairly small trees, i.e., encouraging comprehensibility. The testing protocol was
10× 10-fold stratified cross-validation. For the VA models, the proper training
set consisted of 2/3 of all the training instances, and the calibration set of 1/3.
For the non-calibrated decision trees used for comparison, all training data was
used for inducing the model.

In all experiments, 20 publicly available multi-class data sets from the UCI [1]
repository are used. The data sets are described in Table 1 below, where #class
is the number of classes, #inst. is the number of instances and #attrib. is the
number of input attributes.

In the analysis, accuracy and area under the ROC curve (AUC) are used to
measure the predictive performance. For the quality of the calibration, we employ
log losses and the expected calibration error (ECE). The log loss is calculated
using

λlog =

{
−log p if correct
−log(1− p) if incorrect

(4)

where log is the binary logarithm and p the estimate for the predicted label. Here,
the log loss function used avoids infinite results by clipping the probabilities
making sure that they never are exactly 0 or 1.
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Table 1. Data sets

Data set #class #inst #attrib Data set #class #inst #attrib

balance 3 625 4 tae 3 151 5

cars 4 1728 6 user 5 403 5

cmc 3 1473 9 wave 3 5000 40

cool 3 768 8 vehicle 4 846 18

ecoli 8 336 7 whole 3 440 7

glass 6 214 9 wine 3 178 13

heat 3 768 8 wineR 6 1599 11

image 7 2310 19 wineW 7 4898 11

iris 3 150 4 vowel 11 990 11

steel 7 1941 27 yeast 10 1484 8

When calculating ECE, the probabilities for the predicted class are divided
into M, in this study ten, equally sized bins, before taking a weighted average
of the absolute differences between the fraction of correct (foc) predictions and
the mean of the prediction probabilities (mop). Here, n is the size of the data
set and Bm represents bin m.

ECE =
M∑

m=1

|Bm|
n

∣
∣
∣foc(Bm)− mop(Bm)

∣
∣
∣ (5)

4 Results

Before presenting the aggregated results over all data sets, we show a couple of
induced VA-trees and a few sample calibration plots.

Figure 1 shows an induced VA-tree for the Image data set. To force
the trees to be small enough for this analysis, the tree parameter
min_weight_fraction_leaf was here set to 0.1, which requires the leaves to
contain at least 10% of all instances. The seven classes are predicted by the seven
leaf nodes with corresponding intervals for the calibrated probabilities. The sizes
of the intervals are dependent on the number of instances falling into the leaves.
Since we force the tree to be small, with a large number of instances in each
leaf, all intervals will be fairly tight. With a fully-grown tree, the interval sizes
could be expected to vary more, as a consequence of the much larger variation
in the number of instances falling into each leaf node. Since these intervals are
well-calibrated, we would expect, in the long run, the true error rate in each leaf
node to be within the interval. So, for this particular tree, we would expect to
be correct 61.1− 62.2% of the time when predicting window, whereas we would
be almost certain when predicting path, sky or grass.

In Fig. 2, a VA-tree for the Iris data set is shown. Even though we have used
the same setting, forcing all leaves to contain at least 10% of all instances, the
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Fig. 1. Venn-Abers calibrated tree for the Image data set

probability intervals are much wider as a consequence of the smaller number
of instances in the data set. In this particular tree, we see that the linearly
separable class Iris Setosa has a high probability with the upper bound reaching
1.0. The two remaining classes have lower probabilities as a consequence of these
leaf nodes making some errors on the calibration set.

Fig. 2. Venn-Abers Iris

While the quality of the calibration varies between the data sets, it more
or less always improves on the probability estimates from the trees. Starting
with one of the most common patterns, Fig. 3 below shows a calibration curve
where the Venn-Abers is able to substantially improve an already fairly good
probabilistic model.

In these graphs, the top part is the actual reliability curve, while the lower
part shows how the probability estimates for the test instances are distributed.
In this example, it is interesting to see how the Venn-Abers lowers the most
confident probability estimates from the overconfident tree.
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Fig. 3. Wave data set

Fig. 4. Whole data set

The second observed pattern is the one where the calibration is the most
successful; in these examples, a very poorly calibrated model is significantly
improved. Figure 4 is one such example where the underlying model is extremely
overconfident for all confidence levels. Interestingly enough, Venn-Abers pro-
duces very few predictions with high confidence. As will be presented later, when
looking at the predictive performance, the calibration performed by Venn-Abers
in this particular case actually also lead to significantly higher accuracy.

Figure 5 below shows another recurring pattern where the calibration
marginally improves an already well-calibrated model. In this rather easy data
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set, where the accuracy is over 0.93, the Venn-Abers is slightly more conservative
in the very high probability estimates and, in particular, for a few predictions
with relatively low confidence.

Fig. 5. Image data set

For completeness, we also show, in Fig. 6 below, the only data set (heat) where
the ECE is increased by the Venn-Abers calibration. On this very easy data set,
with accuracies of approximately 0.97, the overall tendency of Venn-Abers to lower
the confidence turns out to be slightly detrimental. Still it should be noted that
the ECE level of 0.02 of course indicates a rather well-calibrated model.

Fig. 6. Heat data set
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We now look at aggregated results and start with predictive performances in
Table 2 below.

Table 2. Predictive performance

Accuracy AUC Accuracy AUC
NoCal VA NoCal VA NoCal VA NoCal VA

balance .790 .804 .849 .780 user .888 .872 .699 .774
cars .933 .931 .914 .922 vehicle .696 .686 .758 .760
cmc .530 .517 .659 .666 vowel .676 .660 .768 .747
cool .921 .932 .956 .947 wave .765 .761 .740 .728
ecoli .834 .805 .722 .763 whole .564 .716 .633 .499
glass .697 .657 .589 .653 wine .901 .906 .646 .616
heat .970 .969 .939 .937 wineR .592 .574 .622 .615
image .931 .934 .904 .918 wineW .521 .524 .591 .579
iris .940 .941 .595 .650 yeast .559 .552 .685 .655
steel .706 .700 .760 .756 Mean .751 .752 .728 .724
tae .616 .591 .534 .521 Mean rank 1.35 1.65 1.40 1.60

Looking at the mean results, and in particular the mean ranks, we see that
there is only a small loss in accuracy and ranking ability using the calibrated
models. This is despite the fact that the uncalibrated tree models used a larger
training set. Consequently, turning the underlying models into the more informa-
tive probabilistic classifiers by external calibration does not come at the expense
of significantly lower predictive performance.

Turning to the calibration quality, the left part of Table 3 shows the dif-
ferences between the average prediction confidence and the empirical accuracy.
While this is a very crude metric, it clearly shows that the uncalibrated mod-
els are generally very overconfident; the mean difference is over nine percentage
points taken over all data sets. For some data sets, like glass, tae and whole,
the picture is actually significantly worse. The Venn-Abers, on the other hand,
exhibits only small differences on most data sets and shows no systematic bias.
This pattern is reinforced when looking at log losses, in the right part of Table 3,
where the Venn-Abers lowers the log loss (often substantially) on every data set.

The fact that the benefit of calibration is substantial can also be seen when
comparing ECE:s in the left part of Table 4. Actually, using Venn-Abers results
in lower ECE on all data sets but one (Heat). On average, the reduction is
approximately 75%. This should be seen as one of the main results of this study,
showing that the suggested modification of Venn-Abers to multi-class problems
works, even on these rather small data sets.
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Table 3. Difference and log loss

Difference Log loss Difference Log loss
NoCal VA NoCal VA NoCal VA NoCal VA

balance .072 –.009 1.248 .406 user .062 –.019 1.994 .324
cars .000 –.009 .166 .153 vehicle .142 .006 2.139 .523
cmc .100 .021 .858 .636 vowel .124 .003 2.063 .553
cool .034 –.003 .197 .134 wave .044 –.005 .818 .490
ecoli .069 –.023 2.249 .423 whole .275 –.005 6.882 .604
glass .236 –.006 7.724 .610 wine .075 –.041 2.383 .308
heat .006 –.008 .137 .084 wineR .106 .008 1.291 .663
image .017 –.013 .330 .157 wineW .062 .002 .694 .682
iris .051 –.049 1.673 .234 yeast .104 .006 .982 .650
steel .071 –.002 1.218 .516 Mean .093 –.009 2.113 .442
tae .205 –.030 7.214 .693 Mean rank 2.00 1.00

The right part of Table 4 shows the tree sizes. With the parameter settings
used, most trees are so small that they should be considered interpretable, some-
times even comprehensible. At the very least, it should be straightforward to
understand the reasoning behind individual predictions. The fact that the cal-
ibrated trees are slightly smaller of course stems from the fact that they were
induced using fewer training examples.

Table 5, finally, shows the average intervals produced by Venn-Abers, together
with the empirical accuracies. With the exception of one single dataset (CMC)

Table 4. ECE and tree sizes

ECE Tree size ECE Tree size
NoCal VA NoCal VA NoCal VA NoCal VA

balance .075 .020 90.6 81.3 user .069 .019 52.4 40.6
cars .016 .009 45.6 48.5 vehicle .142 .015 100.0 88.3
cmc .111 .021 132.4 139.6 vowel .124 .016 124.8 118.4
cool .034 .024 38.6 34.5 wave .046 .006 126.9 120.9
ecoli .088 .026 53.8 44.4 whole .276 .034 116.3 93.1
glass .236 .039 71.5 49.5 wine .075 .045 19.2 12.6
heat .009 .018 39.2 36.7 wineR .119 .020 145.4 140.8
image .018 .017 50.2 48.8 wineW .065 .012 146.2 149.1
iris .051 .049 12.8 11.5 yeast .105 .008 140.2 146.4
steel .071 .008 125.2 120.1 Mean .100 .025 85.8 80.3
tae .264 .088 84.1 80.3 Mean rank 1.95 1.05 1.80 1.20
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where the empirical accuracy is outside the average interval, the overall picture
is that most intervals are both tight and cover the empirical accuracy. Most
importantly, we again see that Venn-Abers predictors are able to provide (and
communicate) both a confidence measure (given as the probability intervals)
and an assessment of its certainty regarding the confidence; i.e., the width of the
intervals.

Table 5. VA overall intervals

Low High Accuracy Low High Accuracy

balance .781 .821 .804 tae .529 .600 .591
cars .918 .938 .931 user .834 .901 .872
cmc .525 .554 .517 vehicle .677 .719 .686
cool .924 .951 .932 vowel .634 .718 .660
ecoli .751 .844 .805 wave .753 .766 .761
glass .606 .722 .657 whole .705 .723 .716
heat .956 .982 .969 wine .854 .921 .906
image .916 .939 .934 wineR .573 .596 .574
iris .884 .948 .941 wineW .522 .532 .524
steel .686 .722 .700 yeast .541 .584 .552

5 Concluding Remarks

We have in this paper suggested and evaluated a novel way of generating well-
calibrated models for multi-class problems. The proposed approach utilizes Venn-
Abers predictors in a way that only one decision tree is induced, thus the end
result is an interpretable model with sharp and well-calibrated probability inter-
vals in the leaves, ready for inspection and analysis. We argue that this is a
highly informative model, with the extra benefit that the sizes of the probability
intervals communicate a relative belief in the probability estimates.
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Abstract. Cluster analysis plays an important role in exploring the cor-
relations in data by dividing datasets into separate clusters so that similar
objects are located in the same cluster. Moreover, fuzzy cluster analysis
can reveal the mixtures of clusters in datasets containing multiple distri-
butions. Certainly, the outcome of clustering methods is approximately
determined by the similarity definition. Thus, the similarity measurement
is exceedingly important to the formation of fuzzy clusters. In fact, the
similarity between two objects is mostly calculated by the mean of dif-
ferences across multiple dimensions. However, the dissimilarity in some
dimensions has little or no effect on the fuzzy clustering outcome. In this
study, we explore such impacts for fuzzy clustering of data with categorical
attributes. Accordingly, the impact of each attribute on each fuzzy cluster
is calculated using an optimizer, and the overlapping dissimilar values are
then adjusted by the corresponding weights. We propose to apply this app-
roach to the Fk-centers clustering algorithm, and the experimental results
show that our proposed method can achieve higher fuzzy silhouette scores
than other related works. These results demonstrate the applicability of
deploying of the proposed method in real-world application.

Keywords: Fuzzy clustering · Categorical data · k-representatives ·
k-centers

1 Introduction

Cluster analysis is one of the fundamental tasks in data mining, which aims
to discover the natural groups of objects within a given dataset such that the
objects belonging to the same cluster are similar and objects belonging to dif-
ferent clusters are dissimilar [1]. Cluster analysis can be categorized into differ-
ent approaches: Hierarchical clustering techniques seek for a nested structure to
describe the dataset while flat clustering techniques seek for the separated groups
of similar objects [2]. Most flat clustering algorithms use the representations for
reenacting the compactness of the clusters; these representations could be numeric
vectors, frequencies, or both of them. In general, a data object belongs to only a
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single cluster. However, this is an ill-suited assumption for the fuzzy spots on the
boundaries between clusters. This problem can be handled by the assumption that
a data object can simultaneously belong to multiple clusters with different mem-
bership degrees, an approach called fuzzy cluster analysis [3,4].

In addition, the similarity between objects can be differently defined for dif-
ferent types or characteristics of the data. The typical similarity measures such
as Euclidean or Manhattan distances can work well for numeric data; however,
these measures encounter many difficulties in handling categorical data [5,6]. On
the other hand, the cluster representation is also an important aspect that decides
the accuracy of the clustering task. Therefore, in regard to cluster analysis for
special data types such as categorical data, the representations of data clusters
can be accordingly modified. Consequently, k-means-like algorithms are one of
the most widely used flat clustering techniques and have been extensively used
for exploring the coherence of the data [2,7]. Several attempts have been made to
define/redefine the representation of categorical data: Huang et al. use the high-
est categorical values on all attributes as the mode to acquire the representation
[3,5], San et al. and Kim et al. use the representation called representative as the
collection of probabilities of all categorical values on all attributes for each cluster
[6,8], and Chen et al. propose using the weighted kernel-based center to resem-
ble the cluster representation [9]. These flat clustering algorithms can be simply
extended to handle the fuzzy analysis problem by using a parameter as the fuzzy
degree; however, some definitions must be redefined to suit the fuzzy concept.

In previous work, we proposed a kernel-based clustering algorithm for fuzzy
clustering of categorical data called Fk-centers, which is an extension of k-center
algorithm. In this approach, the fuzzy frequency is estimated using the member-
ship matrix. As a result, Fk-centers algorithm has the highest clustering effec-
tiveness scores compared to other state-of-the-art approaches with an acceptable
complexity [10]. However, the influence of categorical attributes on each cluster
is ignored in the Fk-centers algorithm, which results in an algorithm convergence
that is not absolute [11].

This research aims to enhance the previous work by increasing the perfor-
mance for categorical data clustering. Technically, the contributions of categor-
ical attributes are analyzed for each cluster, which can provide a better nor-
malization of the overall objective function. The clustering effectiveness of the
proposed method was verified using the fuzzy silhouette metric on common UCI
categorical datasets.

2 Related Works

To highlight the significance of our proposed method, we selected the state-of-
the-art categorical fuzzy clustering techniques as the competitors of our app-
roach:

– Categorical encoding approaches: Fk-means directly converts unique cate-
gorical values into unique integer numbers [12]. FEk-means decomposes a
categorical attribute into multiple numerical attributes yielding as many as
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the number of unique categorical values of the original attribute [12]. Fuzzy
space-based clustering (FSBC) algorithm computes the similarity matrix for
all objects using an overlap measure and uses this matrix for clustering [13].

– FCentroids: FCentroids, as the first fuzzy clustering algorithm for categorical
data, is an extension of the k-representatives algorithm [6,8].

– Single-objective genetic algorithm approaches: The SGA-Sep approach tries
to maximize the average distances of objects in a cluster to others clusters.
The SGA-Dist algorithm tries to minimize the average within-cluster dis-
tances. SGA-SepDist can express the cluster separation and cluster compact-
ness at the same time by a fraction [14].

– Multi-objective genetic algorithm approaches: The MOGA algorithm defines
cluster separation for all clusters and cluster compactness of each cluster as
the two objectives [15]. In contrast, the NSGA-FMC algorithm defines equiva-
lent objectives, but it uses the membership matrices as the chromosomes [16].
The MaOFCentroids algorithm also use fuzzy membership chromosomes, but
it establishes many objectives at the same time and applies the NSGA-III
selection technique [17].

3 Preliminaries

This research incorporates an attribute weighting technique into an existing
k-means-like algorithm. First, we dicuss the Fk-centers algorithm, which is a
superior algorithm for fuzzy clustering of a dataset with categorical attributes.
Then, we introduce the selected automated method, which is based on the par-
ticle swarm optimizer.

3.1 Fuzzy Clustering for Categorical Data

Assume that the categorical dataset X = {x1, ...,xN} containing N categorical
objects needs to be clustered into k fuzzy clusters. Each categorical object xi(1 ≤
i ≤ N) is a vector of D categorical values xi = [xi1, ..., xiD]; in other words,
dataset X has D attributes. Each attribute has an independent finite set of all
possible categorical values on this attribute, where Ad(1 ≤ d ≤ D) is the domain
of the dth attribute.

There are several techniques that can calculate the dissimilarity of categorical
objects, but in this study, the naive approach of the so-called overlap measure-
ment is adopted to simplify the calculation. Technically, the overlap measure
counts the number of the mismatch values in all attributes and uses it for the
dissimilarity between two objects:

Dis(xi,xj) =
D∑

d=1

δ(xid, xjd), where δ(xid, xjd) =

{
1, if xid �= xjd

0, otherwise
(1)

In terms of formulating the fuzzy clustering problem, each cluster has a
representation denoted as cj(1 ≤ j ≤ k), and these representations are usually
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the centers of the clusters, which minimizes the total distances from the objects
to their nearest representations. The degrees of membership of object xi(1 ≤
i ≤ N) are shared for k clusters, where U is called the membership matrix of all
objects to all clusters:

U = [ui,j | 1 ≤ i ≤ N, 1 ≤ j ≤ k] (2)

All the objects are treated equally and normalized:

0 ≤ ui,j ≤ 1 and
k∑

j=1

ui,j = 1 (3)

Similar to a crisp clustering objective function, the objective function for
fuzzy clustering is also designed to minimize the total distance from objects to
their nearest clusters. However, the importance of proximal clusters is further
strengthened by an exponent factor α:

Minimize: P(U,C) =
k∑

j=1

N∑

i=1

uα
i,jDis(xi, cj) (4)

In other words, α is the parameter defining the fuzzy degree of the cluster-
ing model with respect to 1 ≤ α < ∞. With alpha = 1, the fuzzy clustering
model degenerates to the crisp clustering model [17–19]. There are numerous
techniques that can minimize the objective function in Eq. (4) such as genetic
algorithms, expectation–maximization algorithms, and k-means-like algorithms.
This study targets improving a k-means-like algorithm, which is discussed in the
next section.

3.2 k-means Algorithm for Fuzzy Clustering (Fk-means)

Most k-means-like fuzzy clustering algorithms start the processes with random
representations, after which the algorithms sequential conduct the updating of
the memberships and the centroids until they are converged. The degree of mem-
bership uij is the exponential inverse of the distance from object xi to centroid
cj :

ui,j
∼=

(
k∑

m=1

(
Dis(xi, cj)
Dis(xi, cm)

) 1
α−1

)−1

, 1 ≤ i ≤ N, 1 ≤ j ≤ k (5)

The centroids are then recalculated by the weighted mean of all objects with
their degrees of membership to that clusters:

cj =

∑n
i=1 uα

i,jxi∑n
i=1 uα

i,j

, 1 ≤ j ≤ k (6)

Different k-means-like algorithms may have different ways of formalizing the
centroids and/or defining appropriate dissimilarity measures [18].
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3.3 Previous Work (Fk-centers Algorithm)

Recently, we have proposed to use a kernel representative (fcenter) for categorical
data, which stores the frequencies of all categorical values. The fuzzy exponential
probabilities of categorical values are calculated by their weighted contributions
to different cluster following their membership degrees:

FPrj,d(v) =

∑
xi∈X,xid=v uα

i,j∑N
i=1 uα

i,j

, 1 ≤ d ≤ D, 1 ≤ j ≤ k (7)

The values of fcenter can be formulated as the weighted combination of the
uniform distributions and the observed distributions:

cjd = [{v, λj
1

|Aj | + (1 − λj)FPrj,d(v)}|∀v ∈ Ad], 1 ≤ j ≤ k, 1 ≤ d ≤ D (8)

where λj is the smoothing parameter for the jth cluster. The optimal value for
λj can be learned using least squares cross-validation (LSCV) [20]. After obtain-
ing the value of fcenter, the values must be normalized to become probability
variables:

{
∀p ∈ cjd, 0 ≤ p ≤ 1∑

p∈cjd
p = 1

, 1 ≤ j ≤ k, 1 ≤ d ≤ D (9)

Because a fcenter is a vector of multiple distributions, the distance between
an object to a fcenter can be calculated as follows:

Dis(xi, cj) =
D∑

d=1

∑

v∈Ad
v �=xid

FPrj,d(v) = D −
D∑

d=1

FPrjd(xid) (10)

3.4 Attribute Weighting for Clustering

Lu et al. (2011) claimed that different dimensions can differently determine the
values of cluster centroids, and the particle swarm optimizer can then be applied
for weighting the importance of each dimension to each cluster [21]. In addition,
these weights can also be calculated by investigating the scattering of categorical
values in each cluster. For example, if only one categorical value of the dth
attribute appears in the jth cluster then the contribution of the dth attribute to
the jth cluster is high. In contrast, if all the categorical values of the dth attribute
appear in the jth cluster with the same frequency, then the contribution of the
dth attribute to the jth cluster is low.

Moreover, wjd(1 ≤ j ≤ k, 1 ≤ d ≤ D) is the weighting of the dth attribute
for the jth cluster satisfying:

{
0 ≤ wjd ≤ 1, 1 ≤ j ≤ k, 1 ≤ d ≤ D∑D

d=1 wjd = 1, 1 ≤ j ≤ k
(11)



210 T. N. Mau and V.-N. Huynh

To minimize the objective function, the updated weighting can be recalcu-
lated by:

− β log(w̃jd) = 1 − λ2
j

|Aj | + (λ2
j − 1)

∑

v∈Aj

Prj,d(v)2 (12)

where β(> 0) is the parameter controlling the degree of convexity, and Prj,d(v)
is the probability of value c ∈ Ad appearing in the jth cluster [9]. The weights
are then normalized to satisfy Eq. (11):

wjd =
w̃jd∑D

d′=1 w̃jd′
, 1 ≤ j ≤ k, q ≤ d ≤ D (13)

Overall, the weighting matrix W = [wjd]k×D is a variable that can be learned
during the clustering process. The higher the value of wjd is, the more support
information that the dth attribute has for clustering of the jth cluster.

4 The Proposed Method

This paper proposes the WCFk-centers algorithm that applies attribute weight-
ing to the Fk-centers algorithm. Figure 1 shows the overview of our proposed
approach with the loop of three main processes: updating membership matrix
U , fcenters C, and attribute weights W .

Fig. 1. Overview of the WFk-centers algorithm

According to the fuzzy membership, the fuzzy frequencies of categorical val-
ues can be estimated by Eq. (7). Similar to calculating smoothing parameters,
the weight updating process can also use this fuzzy frequency estimation. The
weight calculation in Eq. (12) can be redefined as follows:

− β log(w̃jd) = 1 − λ2
j

|Aj | + (λ2
j − 1)

∑

v∈Aj

FPrj,d(v)2 (14)
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4.1 Objective Function

Our approach adds the weighting variables into the objective functions as,

Minimize: P(U,C,W ) =
D∑

d=1

k∑

j=1

N∑

i=1

wjdu
α
ijDis(xi, cj) (15)

Similar to other k-means-like algorithms, we also sequentially fix two of the
three variables to find the current optimal values for the remaining variable.
The algorithm stops when it converges or reaches a certain number of iterations
called max iter.

Algorithm 1. WCFk-center pseudocode
Require: Dataset X, N , k , iter max
Ensure: The optimal P (U, C, W )
1: Assign random values for attribute weighting matrix W and a set of fcenters U

such that the constraints on equations (3) and (11) are satisfied.
2: for iter = 0; iter ≤ iter max; iter++ do
3: Compute/recompute the smoothing parameters λj (1 ≤ j ≤ k) for all clusters.
4: Recompute the attribute weights W following equations (13) and (14).
5: Compute/recompute the fcenters C following equation (8).
6: Recompute the membership matrix U by equation (5). The new dissimilarity on

equation (16) is used to update the membership matrix U .
7: if The membership matrix U is unchanged then
8: Break
9: end if

10: end for
11: return U , C, and W

4.2 WCFk-centers Algorithm

Algorithm 1 summarizes our proposed method with the corresponding used
formulations. In contrast to our previous work, this approach added the calcu-
lation of the attribute weights right after the smoothing parameter calculations.
The updated attribute weights then directly affect the process of updating mem-
bership matrix U . Consequently, the distance measure in Eq. (10) is accordingly
modified:

Dis(xi, cj) =
D∑

d=1

wjd(1 − FPrjd(xid)) (16)

With the new dissimilarity measure, the contributions of attributes are allo-
cated differently for each cluster such that some attributes may have higher
priorities than others in the same cluster.

Certainly, WFk-centers is a local optimization approach, which may yield
different outcomes with different initializations. To achieve high accuracy,
several methods can be implemented to predict the potential initialization or
the clustering process can be performed multiple times to select the best out-
come. Indeed, these techniques take more time and resources.
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5 Experiments and Results

The source code of our proposal is available at the Python repository URL:
https://pypi.org/project/wcfkcenters/

5.1 Datasets and Testing Environment

Testing Datasets: We selected 10 common categorical datasets from the UCI
repository [22] for analyzing our method’s performance. These datasets are
widely used by other research studies for clustering and classification problems.
The number of instances, attributes, and classes of these datasets are given in
Table 1. Among these datasets, Zoo and Tae have few numeric attributes and
these are unused in our experiments.

Table 1. Common categorical datasets.

Name #Items #Attributes #Classes

Soybean 47 21 4

Zoo 101 17 7

Tae 151 5 3

Hayes-roth 132 5 3

Connect 10,000 42 3

Chess 3,196 36 2

Mushroom 8,124 22 2

Splice 3,190 60 3

Tictactoe 958 9 2

Vote 435 16 2

Testing Environments: All of the experiments were carried out on a high-
end computer with an Intel Xeon G-6240M 2.6 GHz (16 Cores x 4) CPU, and
all programs were developed using Python programming language.

5.2 Evaluation Metrics

The performance metrics are divided into two categories: effectiveness and com-
plexity.

For the effectiveness metric, we adopt the fuzzy silhouette (FSilhouette) eval-
uation metric. This score is the extension of the silhouette score to evaluate the
accuracy of fuzzy clustering [4]. The FSilhouette evaluation metric takes into
account the pairwise degrees of membership along with their distances:

FSilhouette(U,X) =
∑n

i=1(μp,i − μq,i)αsi∑n
i=1(μp,i − μq,i)α

(17)

https://pypi.org/project/wcfkcenters/
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where μp,i and μq,i are the first and second largest values on the ith column in
the membership matrix U , respectively, and si is the silhouette score of xi [4].

For the complexity metric, the total running time of compared methods and
their preprocessing time is analyzed.

5.3 Attribute Weighting Performance

Figure 2 shows the attribute weighting distributions of the proposed method.
These weights are extracted after the final iteration of WCFk-centers for each
testing dataset. The testing datasets have completely different weight distribu-
tions. On the Zoo and Chess datasets, the attributes seem not to have a large bias
of clustering impacts for different attributes. Besides that, just a few attributes
have an impact on clustering in Mushroom, Splice, and Tictactoe datasets.

Fig. 2. Weighting distributions in UCI datasets; horizontal axis: attribute; vertical axis:
cluster.
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5.4 Fuzzy Clustering Performance Analysis

Table 2 shows the comprehensive comparisons of our method with other
approaches in terms of fuzzy clustering effectiveness on the benchmark datasets.
The encoding methods, such as Fk-means and FEk-means, have ordinary ranks
in comparison to all methods. Fk-means has a massive amount of categorical
information loss because the encoding order affects the similarity between cate-
gorical values. In terms of genetic algorithms, these methods need a significantly
high number of generations to achieve convergence. Moreover, the complexities of
these approaches are also affected by the size of chromosomes determined by the
number of clusters k and the number of objects N . In this experiment, we set the
maximum number of generations to 100, which is equal to the maximum number
of iterations of other k-means-like algorithms. It is clear that with a higher num-
ber of generations, these genetic approaches achieve much better FSilhouette
scores. However, this also means their processing time will significantly increase.

Table 2. Average FSilhouette scores for 128 runs

Method Soybean Zoo Tae Hayes-roth Connect

Fk-means 0.393 ± 0.03 0.574 ± 0.05 0.941 ± 0.00 0.220 ± 0.02 0.159 ± 0.00

FEk-means 0.536 ± 0.00 0.565 ± 0.00 0.946 ± 0.00 0.354 ± 0.00 0.157 ± 0.00

FSBC 0.190 ± 0.01 0.258 ± 0.02 0.813 ± 0.04 0.175 ± 0.00 N/A

Fk-modes 0.456 ± 0.08 0.548 ± 0.13 0.795 ± 0.37 0.315 ± 0.03 0.146± 0.02

FCentroids 0.537 ± 0.00 0.631 ± 0.02 0.946 ± 0.00 0.363 ± 0.00 0.143 ± 0.00

SGA-Dist 0.455± 0.06 0.526 ± 0.11 0.942 ± 0.00 0.253 ± 0.01 –0.125 ± 0.06

SGA-Sep 0.201 ± 0.08 0.195 ± 0.18 0.555 ± 0.58 0.189 ± 0.02 0.046 ± 0.04

SGA-SepDist 0.383 ± 0.10 0.302 ± 0.17 0.942 ± 0.00 0.282 ± 0.01 –0.126 ± 0.05

MOFCentroids 0.378 ± 0.10 0.401 ± 0.09 0.872 ± 0.06 0.250 ± 0.04 0.110 ± 0.02

MOGA 0.288 ± 0.11 0.206 ± 0.24 0.548 ± 0.41 0.262 ± 0.04 –0.041 ± 0.10

NSGA-FMC 0.403 ± 0.09 0.506 ± 0.09 0.859 ± 0.06 0.235 ± 0.04 0.102 ± 0.02

MaOFCentroids 0.452 ± 0.13 0.575 ± 0.22 0.800 ± 0.09 0.269 ± 0.05 0.099 ± 0.02

Fk-centers 0.537 ± 0.00 0.639 ± 0.02 0.946 ± 0.00 0.363 ± 0.00 0.143 ± 0.00

WCFk-centers 0.538 ± 0.00 0.650 ± 0.04 0.946 ± 0.00 0.368 ± 0.00 0.153 ± 0.00

Method Chess Mushroom Splice Tictactoe Vote

Fk-means 0.217 ± 0.01 0.231 ± 0.00 0.014 ± 0.01 0.124 ± 0.00 0.516 ± 0.00

FEk-means 0.218 ± 0.00 0.276 ± 0.00 0.051 ± 0.00 0.149 ± 0.00 0.519 ± 0.00

FSBC 0.038 ± 0.00 N/A 0.009 ± 0.00 0.028 ± 0.00 0.135 ± 0.00

FkModes 0.166 ± 0.04 0.209 ± 0.06 0.025 ± 0.00 0.132 ± 0.01 0.515 ± 0.04

FCentroids 0.246 ± 0.00 0.283 ± 0.00 0.032 ± 0.02 0.164 ± 0.00 0.527 ± 0.00

SGA-Dist 0.178 ± 0.06 0.203 ± 0.05 0.018 ± 0.00 0.105 ± 0.00 0.492 ± 0.00

SGA-Sep 0.094 ± 0.04 0.103 ± 0.04 0.012 ± 0.00 0.080 ± 0.01 0.159 ± 0.10

SGA-SepDist 0.048 ± 0.16 0.126 ± 0.08 0.014 ± 0.00 0.105 ± 0.00 0.478 ± 0.04

MOFCentroids 0.161 ± 0.02 0.220 ± 0.04 0.024 ± 0.01 0.101 ± 0.01 0.501 ± 0.01

MOGA 0.156 ± 0.13 0.123 ± 0.08 0.020 ± 0.00 0.114 ± 0.01 0.407 ± 0.14

NSGA-FMC 0.150 ± 0.03 0.212 ± 0.04 0.019 ± 0.00 0.096 ± 0.01 0.487 ± 0.02

MaOFCentroids 0.149 ± 0.03 0.202 ± 0.04 0.021 ± 0.00 0.095 ± 0.01 0.485 ± 0.05

Fk-centers 0.246 ± 0.00 0.283 ± 0.00 0.017 ± 0.04 0.164 ± 0.00 0.527 ± 0.00

WCFk-centers 0.232 ± 0.00 0.287 ± 0.00 0.035 ± 0.01 0.164 ± 0.00 0.534 ± 0.00
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Markedly, representative-based approaches such as FCentroids and Fk-centers
have a higher performance than other approaches, but our proposed method can
outperform them for the FSilhouette score. In detail, FCentroids, Fk-centers,
and WCFk-centers have average FSilhouette scores of 0.387± 0.00, 0.386 ± 0.01,
and 0.391 ± 0.01, respectively.

5.5 Complexity Analysis
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Fig. 3. Average clustering time for 10 UCI datasets for 128 runs

In Fig. 3, each dataset is clustered 128 times with different random initializations.
The average clustering time and average standard deviations are calculated by
taking the means of clustering time and the standard deviation of every method
for every dataset. WCFk-centers employs a process to find the attribute weights
in each iteration. As a result, WCFk-centers utilizes a compelling amount of
processing time. This is the obvious result of the accuracy-complexity trade-off.
On the other hand, because after each mutation process, the chromosomes need
to be normalized, these genetic algorithms not only obtain worse accuracy but
also take a significant amount of time to perform clustering.
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6 Conclusion and Future Work

In this paper, WCFk-centers is proposed by applying a weighting technique to
categorical attributes for the fuzzy clustering algorithm. The impact of each
attribute on each cluster is clearly analyzed, which helps the fuzzy clustering
algorithm achieve better presentations of clusters and reduces the importance of
attributes that do not carry much clustering information. As a result, WCFk-
centers can increase the degree of convergence compared to the original method.
Therefore, our method needs extra processing time to calculate the attribute
weights and has a higher number of iterations.

In future work, the complexity of the weight computation process needs to be
fully analyzed. Therefore, our priority is to reduce the complexity of the proposed
method. Furthermore, other attribute weighting techniques may provide better
performance than the current approach.
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Abstract. In this paper, the q-divergence-regularized Bezdek-type
fuzzy clustering approach is proposed for categorical multivariate data.
Because the approach proposed here reduces to the conventional methods
via appropriate control of the fuzzification parameters, it is considered
as a generalization. Further, numerical experiments were conducted to
show that the proposed method outperformed the conventional method
in terms of clustering accuracy.

1 Introduction

The hard c-means (HCM) clustering algorithm [1] is generally used to partition
objects into groups. Fuzzy clustering is an extension of this algorithm, where
each object belongs to all or some clusters to varying degrees rather than being
included in exactly one cluster alone. In the earliest fuzzy clustering method,
fuzzy c-means (FCM) clustering, the linear membership weights of the HCM
objective function were replaced with the powers of the memberships [2]. To
discriminate this algorithm from the other alternatives that have since been
proposed, this algorithm is referred to as the Bezdek-type FCM (BFCM) in this
paper. Regularization of the HCM objective function is another fuzzy approach
that is often used for cluster analysis. Miyamoto and Mukaidono incorporated a
regularization term of the negative entropy of the membership [3] in the HCM
objective function, thereby obtaining the entropy-based FCM (EFCM). However,
the abovementioned algorithms tend to produce clusters of equal sizes, which is
one of their disadvantages. Consequently, some objects in large clusters could
possibly be misclassified in other smaller clusters if the cluster sizes are differ-
ent. To solve this issue, some approaches have introduced variables to control the
cluster sizes [4,5]. These methods using variables to control the cluster sizes cor-
responding to BFCM and EFCM are referred to as the revised BFCM (RBFCM)
and revised EFCM (REFCM), respectively, in the present study. Furthermore,
the RBFCM has been previously generalized in [6] and referred to as the GFCM.

Clustering of categorical multivariate data is one of the methods of sum-
marizing the co-occurrence information comprising the mutual affinities among
objects and items. For example, in the case of document-keyword frequency
c© Springer Nature Switzerland AG 2021
V. Torra and Y. Narukawa (Eds.): MDAI 2021, LNAI 12898, pp. 218–230, 2021.
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information, the documents and keywords correspond to the objects and items,
respectively. A multinomial mixture model (MMM) [7] is a probabilistic model
used in clustering tasks for categorical multivariate data, where each component
distribution is defined by a multinomial distribution. Honda et al. [8] proposed
the Kullback–Leibler (KL) divergence-regularized fuzzy clustering model for cat-
egorical multivariate data induced by MMMs, which they referred to as the
KLFCCMM. Furthermore, Kondo et al. extended the KLFCCMM algorithm by
introducing q-divergence instead of KL divergence, resulting in the QFCCMM
algorithm [9], and showed that the QFCCMM outperforms KLFCCMM in terms
of clustering accuracy. The reason for this is because the q-divergence used in
QFCCMM is a generalization of the KL divergence used in KLFCCMM. Thus,
further generalization of the QFCCMM approach has the potential to result in
a method that can produce more accurate clustering results.

In this work, we propose a fuzzy clustering algorithm for categorical mul-
tivariate data. First, we consider the Bezdek-type fuzzy clustering for cate-
gorical multivariate data induced by MMMs, i.e., BFCCMM, by replacing the
object-cluster dissimilarities in the RBFCM objective function with those from
the KLFCCMM objective function. Next, we show that the QFCCMM objec-
tive function can be interpreted as a regularization of the BFCCMM objective
function by the q-divergence, where the fuzzification and q-divergence param-
eters have the same values. Then, we construct a new objective function by
q-divergence regularization of the BFCCMM objective function, where the fuzzi-
fication and q-divergence parameters may have different values. The proposed
method is referred to as the q-divergence-regularized Bezdek-type fuzzy cluster-
ing for categorical multivariate data induced by MMMs (QBFCCMM) because
its objective function is obtained by q-divergence regularization of the BFC-
CMM method, Because the proposed QBFCCMM method can be reduced to
the QFCCMM, KLFCCMM, and BFCCMM methods by controlling the values
of the fuzzification parameters, the QBFCCMM method can be considered as
a generalization of all these methods; therefore, the QBFCCMM method has
the potential to yield more flexible clustering results than these conventional
methods. In this study, we clarify the effects of the fuzzification parameters in
the proposed method through numerical experiments with an artificial dataset.
Furthermore, using a real dataset, we show that the proposed QBFCCMM out-
performs the QFCCMM in terms of clustering accuracy.

The remainder of this paper is organized as follows. Section 2 introduces the
notations used and some conventional algorithms. Section 3 describes the pro-
posed algorithm. Section 4 presents the results of the numerical experiments to
demonstrate the performance of the proposed algorithm. Finally, Sect. 5 presents
the conclusions of this work.
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2 Preliminaries

2.1 Divergence

Given two probability distributions P and Q, the KL-divergence of Q from P ,
DKL(P ||Q), is defined as

DKL(P ||Q) =
∑

k

P (k) ln
(

P (k)
Q(k)

)
. (1)

The KL divergence is often used to derive fuzzy clustering [5,8] for vectorial
and categorical multivariate data. The KL divergence can be extended using the
q-logarithmic function

lnq(x) =
1

1 − q
(x1−q − 1) (for x > 0) (2)

as

Dq(P ||Q) =
1

q − 1

(
∑

k

P (i)qQ(k)1−q − 1

)
, (3)

which is referred to as q-divergence [10]. In the limiting condition, as q → 1, the
KL divergence can be recovered.

2.2 Fuzzy Clustering for Vectorial Data

Let X = {xk ∈ R
p | k ∈ {1, · · · , N}} be a dataset of p-dimensional points.

Then, the membership of xk that belongs to the i-th cluster is denoted by ui,k

(i ∈ {1, · · · , C}, k ∈ {1, · · · , N}), and the set of ui,k is denoted by u. The
membership u has the constraint

C∑

i=1

ui,k = 1, ui,k ∈ [0, 1]. (4)

The cluster center set is denoted by v = {vi | vi ∈ R
p, i ∈ {1, · · · , C}}. Further,

the variable for controlling the cluster sizes is denoted by α = {αi ∈ (0, 1)}C
i=1,

and it has the constraint

C∑

i=1

αi = 1. (5)
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The HCM, BFCM, EFCM, RBFCM, and REFCM are subsequently obtained
by solving the optimization problems

minimize
u,v

C∑

i=1

N∑

k=1

ui,k‖xk − vi‖22, (6)

minimize
u,v

C∑

i=1

N∑

k=1

(ui,k)m‖xk − vi‖22, (7)

minimize
u,v

C∑

i=1

N∑

k=1

ui,k‖xk − vi‖22 + λ−1
C∑

i=1

N∑

k=1

ui,k log(ui,k), (8)

minimize
u,v,α

C∑

i=1

N∑

k=1

(αi)1−m(ui,k)m‖xk − vi‖22, (9)

minimize
u,v,α

C∑

i=1

N∑

k=1

ui,k‖xk − vi‖22 + λ−1
C∑

i=1

N∑

k=1

ui,k log
(

ui,k

αi

)
, (10)

respectively, where m > 1 and λ > 0 are the fuzzification parameters.

2.3 Conventional Fuzzy Clustering Method for Categorical
Multivariate Data

Consider a categorical multivariate dataset composed of N objects described by a
set of quantitative variables x

(�)
k , with M items (k ∈ {1, . . . , N}, � ∈ {1, . . . , M}).

The quantitative variables represent the co-occurrence relations among these
objects and items.

The KLFCCMM and QFCCMM are obtained by solving the optimization
problems

maximize
u,v,α

C∑

i=1

N∑

k=1

M∑

�=1

ui,kx
(�)
k

1
t

((
v
(�)
i

)t

− 1
)

− λ−1
C∑

i=1

N∑

k=1

ui,k ln
(

ui,k

αi

)
,

(11)

and

maximize
u,v,α

C∑

i=1

N∑

k=1

M∑

�=1

(αi)1−m(ui,k)mx
(�)
k

1
t

((
v
(�)
i

)t

− 1
)

− λ−1

m − 1

C∑

i=1

N∑

k=1

(αi)1−m(ui,k)m, (12)

which are based on Eqs. (4), (5), and

M∑

�=1

v
(�)
i = 1, (13)
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where ui,k is the membership of k-th object belonging to the i-th cluster, αi is
the variable controlling the size of the i-th cluster, v

(�)
i is the �-th item typicality

for the i-th cluster, and λ > 0, t are the fuzzification parameters.

3 Proposed Method

3.1 Basic Concepts

Since Eq. (11) can be equivalently written as

minimize
u,v,α

C∑

i=1

N∑

k=1

ui,k

(
−1

t

M∑

�=1

x
(�)
k

((
v
(�)
i

)t

− 1

))
+ λ−1

C∑

i=1

N∑

k=1

ui,k ln

(
ui,k

αi

)
,

(14)

the KLFCCMM objective function is obtained by replacing ‖xk − vi‖22 by
−t−1

∑M
�=1 x

(�)
k ((v(�)

i )t−1). Therefore, we consider a Bezdek-type fuzzy clustering
for categorical multivariate data induced by MMMs (BFCCMM), as

minimize
u,v,α

C∑

i=1

N∑

k=1

M∑

�=1

(αi)1−m(ui,k)m

(
−x

(�)
k

1
t

((
v
(�)
i

)t

− 1
))

. (15)

by replacing ‖xk − vi‖22 in the RBFCM objective function with
−t−1

∑M
�=1 x

(�)
k ((v(�)

i )t − 1). Furthermore, we note that the QFCCMM objective
function is a q-divergence regularization of the BFCCMM objective function only
if both the fuzzification parameter in Eq. (15) and q-divergence parameter in
Eq. (3) have the same values. There is a potential to generalize the QFCCMM if
the BFCCMM objective function is regularized by q-divergence with a different
parameter value than the fuzzification parameter of the BFCCMM objective
function, which may enable higher clustering accuracy.

Thus, we considered the fuzzification parameter m in the first and second
terms in the QFCCMM objective function as being different, namely m1 and
m2, respectively, and proposed a novel optimization problem as follows:

minimize
u,v,α

C∑

i=1

N∑

k=1

M∑

�=1

(αi)1−m1(ui,k)m1

(
−x

(�)
k

1
t

((
v
(�)
i

)t

− 1
))

+
λ−1

m2 − 1

C∑

i=1

N∑

k=1

(αi)1−m2(ui,k)m2 , (16)

subject to Eqs. (4) and (5), where m1 > 1, m2 > 1, and λ > 0 are the fuzzifi-
cation parameters. The clustering method obtained by solving this optimization
problem is referred to as the q-divergence-regularized Bezdek-type fuzzy cluster-
ing for categorical multivariate data induced by MMMs (QBFCCMM) because
its objective function is obtained by q-divergence regularization of the BFCCMM
method, with different values for the q-divergence and fuzzification parameters.
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Thus, the QBFCCMM method reduces to the QFCCMM method with m1 = m2,
to the BFCCMM method with λ → +∞ or m2 ↘ 1, and to the KLFCCMM
method with m1 = m2 ↘ 1. Therefore, the proposed QBFCCMM method is a
generalization of the QFCCMM, KLFCCMM, and BFCCMM methods. Hence,
the proposed approach could potentially yield more flexible clustering results
than other conventional clustering algorithms via control of the three fuzzifica-
tion parameters.

3.2 Algorithm

The QBFCCMM method is obtained by solving the optimization problem given
by Eqs. (16), (4), and (5), where the Lagrangian L(u, v, α) is defined as

L(u, v, α) =
C∑

i=1

N∑

k=1

M∑

�=1

(αi)1−m1(ui,k)m1

(
−x

(�)
k

1
t

((
v
(�)
i

)t

− 1
))

+
λ−1

m − 1

C∑

i=1

N∑

k=1

(αi)1−m2(ui,k)m2 +
N∑

k=1

γk

(
1 −

C∑

i=1

ui,k

)

+ η

(
1 −

C∑

i=1

αi

)
+

C∑

i=1

ζi

(
1 −

M∑

�=1

v
(�)
i

)
(17)

with Lagrangian multipliers (γ1, · · · , γN , η, ζ1, · · · , ζC). The necessary conditions
for optimality are given as follows:

∂L(u, v, α)
∂ui,k

= 0, (18)

∂L(u, v, α)
∂vi

= 0, (19)

∂L(u, v, α)
∂αi

= 0, (20)

∂L(u, v, α)
∂γk

= 0, (21)

∂L(u, v, α)
∂η

= 0, (22)

∂L(u, v, α)
∂ζi

= 0. (23)

The optimal cluster center is obtained from Eq. (19) in a manner similar to
those in the cases of the BFCCMM and QFCCMM methods:

v
(�)
i =

∑N
k=1(ui,k)m1x

(�)
k∑M

r=1

∑N
k=1(ui,k)m1x

(r)
k

. (24)

Based on Eqs. (18) and (21), the optimal membership conditions are

f(ui,k) def= m1(αi)1−m1di,k(ui,k)m1−1 +
λ−1

m2 − 1
m2(αi)1−m2(ui,k)m2−1 = γk,

(25)
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and that given by Eq. (4), where

di,k = −1
t

M∑

�=1

((
v
(�)
i

)t

− 1
)

. (26)

However, as it is difficult to explicitly obtain the optimal membership, we adopt
the bisection method. If the γk value is given, then we obtain the optimal mem-
bership using the following algorithm:

Algorithm 1

Step 1. Let the lower bound of ui,k, ui,k, be 0. Let the upper bound of ui,k,
ui,k, be 1.

Step 2. Set ûi,k = (ui,k + ui,k)/2. If
∣∣∣ui,k − ui,k

∣∣∣ is sufficiently small, then
terminate the algorithm and let the optimal ui,k be ûi,k.

Step 3. If m1(αi)1−m1di,k(ui,k)m1−1 + λ−1

m2−1m2(αi)1−m2(ui,k)m2−1 > γk, let
ui,k = ûi,k; otherwise, let ui,k = ûi,k. Go to Step 2.

Note that there exists the unique solution of Eq. (25) because f is strictly increas-
ing, f(0) = 0, and f(ui,k) → +∞ with ui,k → +∞.

The optimal γk value used in the Step 3 in Algorithm 1 can also be obtained
using the bisection method as follows. From αi > 0, 1−m1 < 0, and 1−m2 < 0,
we have

(
min

1≤j≤C
{αj}

)1−m1

≥ (αi)
1−m1 ≥

(
max

1≤j≤C
{αj}

)1−m1

, (27)

(
min

1≤j≤C
{αj}

)1−m2

≥ (αi)
1−m2 ≥

(
max

1≤j≤C
{αj}

)1−m2

, (28)

from which the value of γk is bounded as

γk = m1(αi)1−m1di,k(ui,k)m1−1 +
λ−1

m2 − 1
m2(αi)1−m2(ui,k)m2−1

≥ m1

(
max

1≤j≤C
{αj}

)1−m1

min
1≤j≤C

{dj,k}(ui,k)m1−1

+
λ−1

m2 − 1
m2

(
max

1≤j≤C
{αj}

)1−m2

(ui,k)m2−1

≥ 0, (29)

γk = m1(αi)1−m1di,k(ui,k)m1−1 +
λ−1

m2 − 1
m2(αi)1−m2(ui,k)m2−1

≤ m1

(
min

1≤j≤C
{αj}

)1−m1

max
1≤j≤C

{dj,k}(ui,k)m1−1

+
λ−1

m2 − 1
m2

(
min

1≤j≤C
{αj}

)1−m2

(ui,k)m2−1
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≤ m1

(
min

1≤j≤C
{αj}

)1−m1

max
1≤j≤C

{dj,k} +
λ−1

m2 − 1
m2

(
min

1≤j≤C
{αj}

)1−m2

(30)

because (αi)1−m1 and (αi)1−m2 decrease with respect to αi, and ui,k ∈ [0, 1],
which implies that there exists the unique gammak satisfying Eqs. (25) and (4).
Thus, the optimal γk value is obtained using the following algorithm.

Algorithm 2

Step 1. Let the lower bound of γk, γk, be 0. Let the upper bound of γk, γk, be
m1 (min1≤j≤C{αj})1−m1 max1≤j≤C{dj,k} + λ−1

m2−1m2 (min1≤j≤C{αj})1−m2 .
Step 2. Set γ̂k = (γk + γk)/2. If

∣∣γk − γk

∣∣ is sufficiently small, then terminate
the algorithm and let the optimal γk be γ̂k.

Step 3. Calculate ui,k using Algorithm 1.
Step 4. If

∑C
i=1 ui,k > 1, let γk = γ̂k; otherwise, let γk = γ̂k. Go to Step 2.

Based on Eqs. (20) and (22), the optimal conditions of the variables control-
ling the cluster sizes are

g(αi)
def= (1 − m1)

N∑

k=1

(αi)−m1(ui,k)m1di,k − λ−1
N∑

k=1

(αi)−m2(ui,k)m2 + β = 0

⇔(m1 − 1)

{
N∑

k=1

(ui,k)m1di,k

}
(αi)−m1 + λ−1

{
N∑

k=1

(ui,k)m2

}
(αi)−m2 = β.

(31)

and that given by Eq. (5). Because it is difficult to explicitly obtain the optimal
variable controlling the cluster size, we adopt the bisection method. If the value
of β is given, then we obtain the optimal variable controlling the cluster size
using the following algorithm:

Algorithm 3

Step 1. Let the lower bound of αi, αi, be 0. Let the upper bound of αi, αi,
be 1.

Step 2. Set α̂i = (αi + αi)/2. If
∣∣αi − αi

∣∣ is sufficiently small, then terminate
the algorithm and let the optimal αi be α̂i.

Step 3. If (m1 − 1)
{∑N

k=1(ui,k)m1di,k

}
(αi)−m1 + λ−1

{∑N
k=1(ui,k)m2

}

(αi)−m2 > β, let αi = α̂i; otherwise, let αi = α̂i. Go to Step 2.

Note that there exists the unique solution of Eq. (31) because g is strictly increas-
ing, g(αi) → 0 with αi → +∞, and g(αi) → +∞ with g(αi) ↘ 0.

The optimal β value used in Step 3 in Algorithm 3 can also be obtained
using the bisection method as follows. From ui,k ≥ 0, m1 > 1, m2 > 10, and
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αi ≤ 1, as well as the decreasing (αi)−m1 and (αi)−m2 , there exists the unique
β satisfying Eqs. (31) and (5), and we have the lower bound of β as

β =(m1 − 1)

{
N∑

k=1

(ui,k)
m1di,k

}
(αi)

−m1 + λ−1

{
N∑

k=1

(ui,k)
m2

}
(αi)

−m2

≥ (m1 − 1) min
1≤j≤C

{
N∑

k=1

(uj,k)
m1dj,k

}
(αi)

−m1 + λ−1 min
1≤j≤C

{
N∑

k=1

(uj,k)
m2

}
(αi)

−m2

≥ (m1 − 1) max
1≤j≤C

{
N∑

k=1

(uj,k)
m1dj,k

}
(αi)

−m1 + λ−1 max
1≤j≤C

{
N∑

k=1

(uj,k)
m2

}
(αi)

−m2

≥ (m1 − 1) max
1≤j≤C

{
N∑

k=1

(uj,k)
m1dj,k

}
+ λ−1 max

1≤j≤C

{
N∑

k=1

(uj,k)
m2

}
, (32)

while the upper bound of β can only be obtained using the following algorithm
instead of analytically.

Algorithm 4

Step 1. Let the lower bound of β, β, be (m1 − 1)max1≤j≤C

{ ∑N
k=1(uj,k)m1

dj,k

}
+λ−1 max1≤j≤C

{∑N
k=1(uj,k)m2

}
. Set the candidate of the upper bound

of β, β > β.
Step 2. Obtain {α̂i}C

i=1 from Algorithm 3 with β = β. If
∑C

i=1 α̂i > 1, set
β ← κβ with κ > 1, and go to Step 2. If

∑C
i=1 α̂i < 1, β is the upper bound

of β. Then, terminate this algorithm.

Using the lower bound of β in Eq. (32) and the upper bound of β obtained from
Algorithm 4, the optimal β value is obtained using the following algorithm.

Algorithm 5

Step 1. Let the lower bound of β, β, be that given in Eq. (32). Let the upper
bound of β, β, be that obtained from Algorithm 4.

Step 2. Set β̂ = (β + β)/2. If
∣∣β − β

∣∣ is sufficiently small, then terminate the
algorithm and let the optimal β be β̂.

Step 3. Calculate {αi}C
i=1 using Algorithm 3.

Step 4. If
∑C

i=1 αi > 1, let β = β̂; otherwise, let β = β̂. Go to Step 2.

Based on the above discussion, we propose the following algorithm for the
QBFCCMM clustering method:

Algorithm 6 (QBFCCMM)

Step 1. Given the number of clusters C and fuzzification parameter
(m1,m2, λ), where m1 > 1, m2 > 1, and λ > 0, let the set of initial member-
ship be u.
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Step 2. Obtain v using Eq. (24).
Step 3. Calculate β using Algorithms 4 and 5, and obtain the variable control-

ling the cluster size using Algorithm 3.
Step 4. Calculate γk using Algorithm 2, and obtain the membership using

Algorithm 1.
Step 5. Check the stopping criterion for (u, v, α). If the criterion is not satisfied,

go to Step 2.

4 Numerical Experiment

In this section, we present some numerical examples to investigate the fuzzifica-
tion property of the proposed method using an artificial dataset as well as its
clustering accuracy using a real dataset.

The first example involves an artificial dataset with three clusters, wherein
each cluster comprises 50 points in a two-dimensional simplex, as shown in Fig. 1.
We observe that for all combinations of the fuzzification parameter values, appro-
priate clustering results are obtained using the proposed method.

Figures 2–5 show the fuzzy classification functions (FCFs) for the first cluster
obtained using the proposed method with (m1,m2, λ, t) = (1.1, 1.1, 10, 10−5),
(m1,m2, λ, t) = (1.05, 1.1, 10, 10−5), (m1,m2, λ, t) = (1.5, 1.001, 10, 10−5), and
(m1,m2, λ, t) = (1.5, 3, 10, 10−5), respectively. Comparing Figs. 2 and 3, we
observe that the larger the fuzzification parameter value m1, the fuzzier is the
FCF. From Figs. 4 and 5, we observe that the larger the fuzzification parame-
ter value m2, the fuzzier is the FCF. Furthermore, we note that the fuzzifica-
tion effect of m1 is stronger than that of m2. Figures 6 and 7 show the FCFs
for the first cluster obtained using the proposed method, with (m1,m2, λ, t) =
(1.2, 1.2, 10, 10−5) and QFCCMM method, with (m,λ, t) = (1.2, 10, 10−5),
respectively, from which we can confirm that the proposed method with m1 = m2

produces the same result as that of the QFCCMM method.
The second example involves a real dataset referred to as “Cora” [11], which is

composed of 2708 scientific publications that are categorized into seven different
classes. Each publication in the dataset is represented by a 0- or 1-valued word vec-
tor indicating the having or not having the matching word from a dictionary con-
taining 1432 unique words. In the experiment, this dataset was clustered using the
proposed algorithm and the QFCCMM method. The cluster number C was corre-
spondingly set as the number of classes for the dataset. The fuzzification param-
eter λ for the two algorithms was set from λ ∈ {100×5+1, 101×5+1, · · · , 103×5+1}.
The fuzzification parameters m1 and m2 for the QBFCCMM and m for QFCCMM
were set from m ∈ {1+10−1, 1+10−2, · · · , 1+10−4}. The fuzzification parameter
t for the QFCCMM and QBFCCMM was fixed at 10−5. The initialization was per-
formed such that the initial object memberships assigned according to the actual
class labels. The clustering results were evaluated using the adjusted Rand index
(ARI) [12], which ARI takes a value in [−1, 1], with higher values being preferred.
The highest ARI value for QFCCMM was 0.7302, whereas that for QBFCCMM
was 0.7431. Thus, the proposed method outperformed the QFCCMM in terms of
clustering accuracy.
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Fig. 1. Artificial dataset used for numerical verification of proposed method.

Fig. 2. FCF of the proposed method with
(m1, m2, λ, t) = (1.05, 1.1, 10, 10−5).

Fig. 3. FCF of the proposed method
with (m1, m2, λ, t) = (1.1, 1.1, 10, 10−5).

Fig. 4. FCF of the proposed method with
(m1, m2, λ, t) = (1.5, 1.001, 10, 10−5).

Fig. 5. FCF of the proposed method
with (m1, m2, λ, t) = (1.5, 3, 10, 10−5).
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Fig. 6. FCF of the proposed method with
(m1, m2, λ, t) = (1.2, 1.2, 10, 10−5).

Fig. 7. FCF of the QFCCMM method
with (m, λ, t) = (1.2, 10, 10−5).

5 Summary

In this paper, we present the QBFCCMM clustering method. Numerical experi-
ments were performed on an artificial dataset and the effects of the fuzzification
parameters were clarified; further, it was confirmed that the proposed method
reduced to the QFCCMM method via appropriate control of the fuzzification
parameters. Numerical experiments were also performed on a real dataset, and
the proposed method was observed to outperform the QFCCMM method in
terms of clustering accuracy.

However, the experiment on real datasets is still insufficient. Then, in our
future research, the proposed method will be applied to several real datasets,
and the results will be compared with those obtained using conventional methods
in terms of the clustering accuracies. Furthermore, the proposed fuzzification
technique will applied to other types of data, such as spherical data [13–15].
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Abstract. Although several vaccination campaigns have been launched
to combat the ongoing COVID-19 pandemic, the primary treatment of
suspected infected people is still symptomatic. In particular, the analysis
of images derived from computed tomography (CT) appears to be useful
for retrospectively analyzing the novel coronavirus and the chest injuries
it causes. The growing body of literature on this topic shows the pre-
dominance of supervised learning methods that are typically adopted to
automatically discriminate pathological patients from normal controls.
However, very little work has been done from an unsupervised perspec-
tive. In this paper, we propose a new pipeline for automatic clustering of
CT scans of COVID-19 patients based on deep learning. A pre-trained
convolutional neural network is used for feature extraction; then, the
extracted features are used as input to a deep embedding clustering
model to perform the final clustering. The method was tested on the
publicly available SARS-CoV-2 CT-Scan dataset that not only provides
scans of COVID patients but also of patients with other lung conditions.
The results obtained indicate that the radiological features of COVID
patients largely overlap with those of other lung diseases. Unsupervised
approaches to COVID analysis are promising, as they reduce the need
for hard-to-collect human annotations and allow for deeper analysis not
tied to a binary or multiclass classification task.

Keywords: Computed tomography · COVID-19 · Coronavirus · Deep
learning · Clustering

1 Introduction

First appearing in Wuhan, China in December 2019, the new coronavirus (SARS-
CoV-2) has spread around the world, leading to an ongoing pandemic known
globally as COVID-19. Symptoms of COVID-19 are variable but often include
fever, cough, fatigue, difficulty breathing, and loss of smell and taste. Symp-
toms begin two to fourteen days after exposure to the virus1. Most people who
1 https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html.
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contract the virus develop mild to moderate symptoms and recover without
needing special treatment. But some other people develop acute respiratory dis-
tress syndrome and other severe and critical symptoms, which can lead to death.
SARS-CoV-2 is mainly transmitted through droplets produced by infected peo-
ple when they cough, sneeze, or exhale. People can become infected by breathing
in the virus if in close proximity to a person with COVID-19, or by touching
a contaminated surface and then touching their eyes, nose, or mouth. For this
reason, preventive measures have been taken, which mainly include physical or
social distancing, quarantine, ventilation of indoor spaces, hand washing, etc.
Additionally, the use of face masks in public settings has been recommended to
minimize the risk of transmission.

Several vaccines have been developed and various countries have launched
mass vaccination campaigns. However, although work is underway to develop
drugs that inhibit the virus, primary treatment is still symptomatic. Along with
laboratory tests, chest computed tomography (CT) scans can be useful in diag-
nosing COVID-19 in individuals with a high clinical suspicion of infection. Recent
findings, in fact, have observed imaging patterns in CT scans of patients with
COVID-19 [23,30]. Typical features seen on CT initially include bilateral mul-
tilobar ground glass opacities with peripheral or posterior distribution [27,44].
These patterns can help physicians not only in the early diagnosis of the disease,
but also in understanding the pathogenesis of SARS-CoV-2.

A growing amount of research is aimed at developing artificial intelligence
methods for identifying whether people are infected with SARS-CoV-2 through
computational analysis of their CT scans. Most of this work is based on super-
vised approaches where the ground truth was provided directly by the doctors,
e.g. [2,29,45]. However, while this approach is really useful for automatically dis-
criminating pathological patients from normal controls, it requires tremendous
effort to annotate lesions, which is not acceptable when COVID-19 is spread-
ing rapidly. Moreover, it does not help in the differential diagnosis of different
lung diseases or in the identification of subgroups within the population, as the
machine has been trained to solve only a binary discrimination task.

There is currently very little work on applying unsupervised techniques to
analyze COVID-19 CT scans [32]. To fill this gap, in this work we propose a
method for clustering CT scans of individuals with or without COVID-19 based
on unsupervised deep learning. The method is based on using a pre-trained deep
convolutional neural network (CNN), i.e. VGG16 [34], as an unsupervised feature
extractor, and then using a deep embedded clustering model [40] to perform the
final clustering. The choice of this deep learning pipeline was motivated by the
difficulty of applying traditional clustering algorithms on the raw pixel space
given by rather complex CT scans. The method has been tested on the SARS-
CoV-2 CT-Scan dataset recently made available by Soares et al. [35].

The rest of this paper is structured as follows. Section 2 deals with related
work. Sections 3 and 4 describe materials and methods. Section 5 presents the
results obtained. Section 6 concludes the paper and outlines some future devel-
opments of this research.
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2 Related Work

Chest computed tomography is an important tool in the diagnosis of lung dis-
eases including pneumonia. The CT scan procedure has faster response time
than a molecular diagnostic test performed in a standard laboratory, can pro-
vide more detailed information about the disease, and is better for quantitative
measurement of lesion size and extent or severity of the pulmonary involvement,
which may have prognostic implications [33]. Radiological imaging is also an
important diagnostic tool for COVID-19. Most COVID-19 cases have similar
features on CT images, including ground-glass opacities in the early stage and
lung consolidation in the late stage. Although typical CT images can help early
screening of suspected cases, the images of various viral pneumonia are similar
and overlap with other infectious and inflammatory lung diseases [37]. Therefore,
it is difficult for radiologists to distinguish COVID-19 from other viral pneumo-
nia. Accurate CT-based artificial intelligence systems may have the potential to
aid in the early detection of COVID-19 for planning, monitoring and treatment,
and to set the benchmark for longitudinal follow-ups [17,41].

Artificial intelligence methods to support the diagnosis of COVID-19 based
on CT scans have proved very promising. Current investigations concern super-
vised learning methods based on deep neural network models. A benchmarking
study for automated classification of COVID-19 has been recently reported in
[46]. Pre-trained convolutional neural networks using CT data have been exten-
sively used for COVID-19 diagnosis [6,14,24,42]. In particular, in [6] ten CNNs
are compared to distinguish COVID-19 infection from non-COVID-19 groups.

However, all of the above deep learning methods for diagnosing COVID-19
rely on supervised learning, so they require annotating lesions, particularly for
disease detection in CT volumes. At the moment, annotating COVID-19 lesions
costs a huge amount of effort for radiologists, which is not acceptable when
COVID-19 is spreading rapidly and there are major shortages for radiologists.
Furthermore, supervised approaches are less suitable for the differential diag-
nosis of different lung diseases or for the identification of subgroups within the
population, as the algorithms learn to minimize a specific previously defined
loss function. Therefore, carrying out COVID-19 detection while avoiding full
supervision is of great importance. Despite this, there are very few works in
the literature that apply unsupervised learning to extract useful knowledge from
COVID-19 CT images [32].

So far, unsupervised learning methods have been applied to COVID-19 CT
images only for efficient image segmentation to find interesting ROIs that can
help improve the diagnostic process. For example, in [1] the density peak cluster-
ing algorithm using generalized extreme value distribution is applied to COVID-
19 CT scans collected from different datasets, while in [43] lesions in lung CT
images are detected through pixel-level anomaly modeling. One of the few works
that uses unsupervised learning on COVID-19 CT scan images to perform clas-
sification is [15]. Here the authors use clustering as a means to identify patterns
of pulmonary tissue sequelae in a dataset consisting of X-ray and CT images
in three classes: COVID-19 cases, viral pneumonia cases, and normal lungs.
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The results show that clustering methods can create clusters in PCA reduced
images that distinguish the three classes, thus revealing that there is latent infor-
mation within COVID-19 images and there is an underlying similarity between
many COVID-19 cases. Self-Organizing Feature Maps are used in [19] to group
COVID chest X-ray images. Moreover, explainable results are obtained by aver-
aging the weights of neurons in a cluster, thus producing an average image,
representative of those in the cluster. Unsupervised rare pattern mining is used
in [26] to discriminate patients affected by COVID-19 from CT scans of their
lungs. A severity score is evaluated from the matrix profile of the image, thus
suggesting the severity of the condition in the images. The results are then used
as input for supervised methods, such as deep neural networks, for classification
and predictive tasks. In [11] unsupervised methods, and in particular the k-means
algorithm, are applied to extract groups of significant patterns in the images.
Two separate groups are obtained, corresponding to healthy and sick patients,
and two sub-groups can be identified based on the severity of the lesions.

Finally, several approaches have also been proposed that use partial super-
vision to address the lack of labels in CT scans. These include weak labeling,
multiple instance learning and self supervised learning [13,16,38].

Enhanced by these results, in this work we propose a novel approach based
on deep clustering to derive meaningful groups of CT scan images useful for
diagnostic purposes. In particular, our work is the first attempt to apply an
unsupervised learning approach to the SARS-CoV-2 CT-Scan dataset. As far as
we know, only supervised approaches have been applied to this dataset, e.g. [4,
5,18,28,39], to name a few.

3 Materials

The SARS-CoV-2 CT-Scan dataset [35] collects CT scan images of 2482 patients,
fairly balanced between 1252 scans of patients with COVID-19 and 1230 scans
of patients without COVID-19, but who had other lung diseases. The data were
collected from real patients in hospitals in Sao Paulo, Brazil, and are publicly
available on Kaggle2. The scans are all gray-scale images with varying sizes
(generally a few hundred pixels per size).

The data come from 60 SARS-CoV-2 infected patients, including 32 males
and 28 females, and 60 non-SARS-CoV-2 infected patients, including 30 males
and 30 females. Since there are many images that come from the same patients, a
random split between training set and validation set would cause data leakage in
a supervised setting. However, we did not incur in this risk, because we clustered
the overall data and we used the ground truth only for evaluation purposes and
not for model building. All data were approved by the Ethical Committee of the
Public Hospital of the Government Employees of Sao Paulo (HSPM), Brazil.

2 https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset.

https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
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Fig. 1. Schema of the proposed deep clustering pipeline.

4 Methods

Clustering is known to be difficult due to a lack of supervision on how to guide
the search for patterns in the data. Several popular algorithms, such as k-means,
are effective and easy to use on structured datasets [3]. However, they usu-
ally prove ineffective when used on complex real-world image domains. On the
other hand, extracting significant hand-designed features from medical images
on which to apply traditional algorithms is a challenge, mainly due to the diffi-
culty of translating domain knowledge into features and highlighting differences
between images which are usually very subtle. To get around these difficulties,
we resorted to a deep learning pipeline. Deep neural networks, in fact, have
seen extreme popularity in recent years thanks to their ability to discover useful
features for themselves directly from data [25,31]. A scheme of the proposed
pipeline is shown in Fig. 1. Details are provided in the following.

4.1 Feature Extraction with VGG16

First, each image is resized to 224×224, which is the input typically expected by
the following deep network, and normalized between 0 and 1. The deep network
is a well-known VGG16 convolutional neural network [34], with weights pre-
trained on ImageNet [20]. VGG16 has a classic scheme where 3 × 3 convolution
and 2 × 2 max pooling are interleaved throughout the network. All hidden
layers are equipped with the ReLU activation function. The network is able to
build a hierarchy of visual features, starting from simple edges and shapes in the
previous layers up to higher level concepts such as complex objects and shapes
in the following layers. This approach is therefore suitable for obtaining high-
level semantic representations from initial medical images without the need for
any supervision. To obtain these features, we use the common practice of deep
transfer learning [36] by considering the 4096 dimension feature vector from the
last fully-connected layer (i.e., FC2) of the network.
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4.2 Deep Embedded Clustering

The features extracted from VGG16 are then provided as input to a deep embed-
ded clustering (DEC) model, such as the one proposed by Xie et al. [40]. This
model is based on an autoencoder and a so-called clustering layer connected to
the embedded layer of the autoencoder. This consists of an encoder part, which
has the purpose of learning a non-linear mapping between the input feature vec-
tor and a smaller latent embedded space, and a decoder part, whose task is to
learn how to reconstruct the original feature vector using the latent represen-
tation. The autoencoder parameters are adjusted by minimizing a classic mean
squared reconstruction loss:

Lr =
1
N

N∑

i=1

(x′
i − xi)2,

where N is the number of scans, and xi and x′
i are the features of the single

scan and their reconstruction provided by the decoder, respectively. In addition
to the input layer, which depends on the specific dataset, and which in our case
is sized 4096, the encoder size have been set as in the original paper to 500–500–
2000-10, with 10 as the size of the latent embedded space. The decoder mirrors
this architecture. We do not directly provide input images to such framework or
other similar ones based on convolutional layers, such as [12], because we want to
exploit the ability of a deep network like VGG to extract useful representations
and we do not have enough data to learn these representations by using only the
autoencoder.

The ending part of the pipeline consists of a clustering layer attached to the
embedded layer of the autoencoder. Given an initial estimate of the nonlinear
mapping from scan images to embedded features and initial cluster centroids,
the goal of the clustering layer is to assign the embedded features of each scan
zi to a cluster centroid μj using Student’s t distribution:

qij =

(
1 + ‖zi − μj‖2

)−1

∑
j

(
1 + ‖zi − μj‖2

)−1 ,

where qij represents the probability of zi of belonging to cluster j. Membership
probabilities are used to calculate an auxiliary target distribution P :

pij =
q2ij/

∑
i qij∑

j

(
q2ij/

∑
i qij

) ,

where
∑

i qij are soft cluster frequencies. Clustering is done by minimizing the
Kullback-Leibler (KL) divergence between P and Q:

Lc = KL(P ‖ Q) =
∑

i

∑

j

pij log
(

pij
qij

)
.
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In practice, the qij ’s provide a measure of the similarity between each data point
and the different k centroids. Higher values for qij indicate more confidence in
assigning a data point to a particular cluster. The auxiliary target distribution
is designed to place greater emphasis on the data points assigned with greater
confidence, while normalizing the loss contribution of each centroid. Then, by
minimizing the divergence between the membership probabilities and the target
distribution, the network improves the initial estimate by learning from previous
high-confidence predictions. Deep clustering is being used with very promising
results in several complex real domains, e.g. [7,8].

The overall training of DEC is divided into two phases. In the first step, the
autoencoder is trained to learn an initial set of embedded features, minimizing
Lr. After this pre-training phase, the learned features are used to initialize the
cluster centroids μj using traditional k-means. Finally, the decoder is abandoned
and embedding feature learning and clustering are jointly optimized using only
Lc. It is worth noting that, to avoid instability, P is updated by using all the data
every t iterations. DEC training stops when the change in clustering assignments
between consecutive updates is below a certain threshold δ.

4.3 Visualization via PCA

After training, we obtain an embedding representation of the initial CT scans
based on a 10-dimensional feature space. It should be noted that this reduced
feature space will differ depending on the number of clusters. In fact, since
DEC simultaneously minimizes image reconstruction and clustering assignment,
varying the number of clusters will lead to different feature embeddings and
consequently to different arrangements of the data in the reduced space.

Starting from the learned 10-dimensional feature space, we apply a classic
Principal Component Analysis (PCA) [22] to reduce dimensionality and project
the feature space onto a 2-dimensional space in which clusters can be better
visualized and analyzed.

5 Experiment

5.1 Setting

The experiments were performed using Google Colaboratory, which provides
a cloud platform to write, execute and share Python code. As deep learning
libraries, we used the well-known TensorFlow and the integrated Keras API.

As for the hyper-parameter setting, the autoencoder was first pre-trained for
50,000 iterations using stochastic gradient descent on mini-batches of size 256
using a learning rate of 0.1 with momentum of 0.9. The encoder was then fine-
tuned for a maximum of 30,000 iterations using a learning rate of 0.01 and a
convergence threshold δ of 0.1. To initialize the cluster centroids, k-means was
run with 20 random restarts and choosing the best solution.
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Fig. 2. PCA visualization of the clusters found with the method, as the value of k
varies. Patients with COVID-19 are shown in orange; in blue those without COVID-
19. The black dots are the centroids returned by the clustering method.

For the clustering evaluation, we used the well-known silhouette score [9].
The silhouette score is between −1 and 1, which represent the worst and best
possible value, respectively.

Finally, to perform a qualitative assessment on the clusters found with the
method we used, as mentioned earlier, PCA to visualize the embedded features
in two dimensions, as well as the already known ground truth to assign labels
to the data points in the visualization.

5.2 Results

Figure 2 simultaneously shows the quantitative results obtained by clustering the
CT scan dataset with the proposed method and the PCA visualization. Since
clustering is an unsupervised learning problem, the number of “optimal” groups
is not know in advance. Moreover, the internal geometric structure of the data
may not coincide with the a-priori known classes. A number of clusters ranging
from 2 to 7 was then considered. As evidenced by the silhouette score, well-
separated clusters are found when the granularity of clustering is coarse, with
performance decreasing as the number of clusters increases.

A more precise assessment can be made integrating these results with the
qualitative visualization of how data points appear separated based on their
ground truth and the clustering results. As suggested by the internal clustering
measures, the best separation and cohesion between clusters is obtained with
k = 2. Indeed, we can clearly observe two geometrically distinct groups, with
the centroids positioned in the middle of the clouds; however, the a-priori known
labels are completely overlapping. As mentioned above, the distribution of data
changes as the number of clusters varies. However, as the number of cluster
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increases, as suggested by the values of the internal measure, cluster separation
and cohesion decrease, and the higher the number of clusters, the lower the
meaningfulness of the clusters. In fact, with k = 6 and k = 7 overlapping clusters
are returned, as suggested by the centroids close to each other. On the contrary,
an interesting result is given by k = 5, where we have a group of COVID patients
clearly separated from the other four clusters, which form a different group at
the bottom of the two-dimensional feature space.

It is worth remembering that non-COVID patients are not healthy people,
but patients hospitalized with other lung diseases. Therefore, the results shown,
which were obtained without using any kind of supervision during the learn-
ing process, indicate that there are several homogeneous characteristics between
chest lesions due to COVID and pre-existing and already known pathologies.
Furthermore, the clusters found may reflect radiological differences between
different pathologies with non-overlapping features. The disease evolves and
changes in imaging characteristics have been revealed from follow-up CT scans
of patients with COVID-19 [10]. In addition, some asymptomatic patients have
shown changes in CT, while, conversely, no changes have been detected in CT
scans of patients with COVID-19 in [21]. Therefore, the correlation between CT
scans and presence/absence of the disease is not yet fully understood.

Comparative studies between the proposed method and traditional clustering
methods, which yielded very poor results in our experiments, are not reported
in this manuscript for space reasons.

6 Conclusion

In this paper, we have preliminary addressed the problem of automatic compu-
tation of CT scans of COVID-19 patients with deep learning methods from an
unsupervised perspective instead of using supervised approaches, which are quite
common in the literature. Decoupling from the need for annotation by domain
experts is useful because, in the first place, annotating lesions is a laborious
and error-prone activity. Moreover, it forces models to focus on specific learning
tasks, which do not help the differential diagnosis of different lung diseases that
share overlapping characteristics and, ultimately, elucidate novel pathogenesis
mechanisms of the novel coronavirus in relation to pre-existing viral pneumonia.
To this end, we proposed a deep learning pipeline for chest CT processing which,
although based on well-known previous methods, integrates them into a novel
flow for better clustering of complex real-world medical images, on which the
application of traditional clustering algorithms would prove ineffective.

The results obtained were rather unexpected as they do not reflect the already
known ground truth aimed at distinguishing between COVID and non-COVID
patients, but suggest that several homogeneous radiological features are shared
between COVID-19 and other lung diseases. The dataset used, in fact, does not
provide normal control images but scans of patients hospitalized with other lung
diseases. Unfortunately, these data do not come with additional information, so
no further explanation of the results obtained without the help of medical experts
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is possible. Hence, the most crucial future work to do is to better interpret these
preliminary results with the help of doctors.

Other future developments of this research appear to be promising. First
of all, we want to collect and visually analyze the cluster medoids, i.e. data
representative of each cluster but limited to being actual data, to be used as
cluster prototypes for a better interpretation and explanation of the proposed
model. This will help medical experts support our work. Second, we would like
to extend the proposed method to other datasets, hopefully equipped with addi-
tional metadata to further investigate cluster characteristics. Finally, we would
like to exploit semi-supervised strategies where knowledge of a small amount of
data can drive towards better clustering or interpretability of clusters.
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Abstract. Community detection is an important problem in network
clustering. This paper proposes a new network clustering method based
on the control of cluster size. The word “cluster size” refers to the number
of objects in a cluster. The optimization problem of the proposed method
considers a constraint on the number of objects classified into a cluster.
The proposed method accurately detects the community structure from
the network data by adjusting the lower and upper limits of the cluster
size as the parameters. Numerical experiments were conducted using two
artificial and six benchmark datasets to verify the effectiveness of the
proposed method. In the numerical experiments, the proposed method
was compared with the k-medoids clustering, the Louvain method, and
spectral clustering. The results show that the proposed method yields
better results in terms of both clustering performance and community
detection than the conventional methods.

Keywords: Network clustering · k-medoids · Size control ·
Modularity · Diffusion kernel

1 Introduction

Owing to the increasing demand for analyzing big data, data mining, which sum-
marizes the data and extracts useful information, has attracted much research
attention [1,2]. Clustering is a data analysis methods that divides a set of objects
into groups called clusters. In k-means clustering, which is the most conventional
clustering method, objects and cluster representatives are assumed to be vectors
in Euclidean space. k-medoids clustering, which is another clustering method
[3], selects cluster representatives from objects in each cluster. Fuzzy c-means
clustering is one of the most active research topics, and the robustness of this
c© Springer Nature Switzerland AG 2021
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method and its theoretical relationship to a Gaussian mixture model have been
discussed [1]. Furthermore, the kernel method is applied to conventional cluster-
ing methods to handle complex datasets and extract important properties [1,4].
Network clustering, which is referred to as community detection, is an important
research topic for many real-world problems in areas such as social networking,
e-commerce, and bioinformatics [5]. A community is a group of nodes that are
strongly connected to each other than to the nodes in other groups. A community
is considered as a cluster in the context of clustering [1].

Community detection is a task of dividing a network into edges that are dense
within a community and edges that are sparse between different communities [5].
Community detection in network analysis is regarded as cluster partition in the
context of clustering. The Louvain method [6] and spectral clustering [7] are typ-
ical methods for community detection from network data. It is often difficult to
obtain the appropriate cluster partition because of some network-structure fea-
tures such as the number and weight of the edges. In addition to these methods,
network data can be divided using k-medoids clustering [8] by weighting using
a Euclidean distance or diffusion kernel [9] based on the adjacency matrix. As
shown in the present paper, many clustering methods for network data achieve
cluster partition based on an algorithm for optimizing the formulation of com-
munity structures.

Size-control clustering is a technique that was introduced into the optimiza-
tion problem as a constraint for the number of objects in a cluster [8,10,11].
The k-means clustering based methods have the advantageous in that it can be
applied to nonlinearization using the kernel method [1]. Additionally, by provid-
ing an upper limit and a lower limit to the constraints on the cluster size, it has
an advantage in that the number of objects included in a cluster is adjustable,
which is difficult to achieve with a purely objective function. Size-control clus-
tering is an important method to obtain an appropriate cluster structure from
large-scale complex data.

The concept of size-control clustering for network data has been proposed
in a previous study [8,10]. The present paper proposes a network clustering
method using size control named controlled-sized clustering based on optimiza-
tion for network data (COCBON). To overcome the limitations of the conven-
tional methods, the proposed method handles weighted and unweighted network
data by using a diffusion kernel to calculate the dissimilarity between nodes
[9]. The proposed method also obtains cluster partitions different from those
obtained using conventional k-medoids clustering by adjusting the parameters
related to the size control. The effectiveness of the proposed method is analyzed
using multidimensional scaling (MDS) [12] through numerical experiments, in
which the clustering performance is evaluated with artificial and benchmark
datasets using the adjusted rand index [13] and modularity. To demonstrate the
advantages of the proposed method, MDS is used to visualize the difference in
cluster partitions between the proposed method and conventional methods.
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2 Preliminaries

A set of objects to be clustered is given, and it is denoted by X = {x1, . . . ,xn} ,
where xk (k = 1, . . . , n) is an object. For an unweighted graph, the elements aij

of the adjacent matrix A are equal to 1 if nodes i and j are connected or equal to
0 if no edges exist between nodes i and j. For a weighted graph, the dissimilarity
between two nodes i and j is denoted by dij ≥ 0, and the dissimilarity matrix
is denoted by D = (dij)i=1,...,n, j=1,...,n. We assume D to be symmetric; thus,
dij = dji, and dii = 0. Network data (X,D) are assumed to be given such that
objects X and the weight dij of edges between nodes i and j are given. A cluster
is denoted by Gi, and a collection of clusters is denoted by G = {G1, . . . ,Gc}.
The membership degree of xk belonging to Gi and the partition matrix are
denoted as uki and U = (uki)1≤k≤n, 1≤i≤c, respectively.

2.1 k-medoids Clustering

k-medoids clustering is a variant of k-means clustering [2,3]. Whereas the cluster
center, which is calculated as the center of gravity of the objects in the cluster, is
used as a cluster representative in k-means clustering [2], an object in each cluster
is chosen as a cluster representative in k-medoids clustering [3]. An objective
function of k-medoids clustering is expressed as follows:

min. JKMdd(U ,W ) =
c∑

i=1

n∑

k=1

n∑

l=1

ukiwlirkl. (1)

where rkl is a measure of the relationship between objects and W =
(wli)1≤l≤n, 1≤i≤c is a variable called the prototype weight. In many cases, rkl is
considered as a dissimilarity between objects. An algorithm of k-medoids clus-
tering is based on the alternating optimization of uki and wli under the following
constraints:

Uh =

{
(uki) : uki ∈ {0, 1} ,

c∑

i=1

uki = 1, ∀k

}
, (2)

Wh =

{
(wli) : wli ∈ {0, 1},

n∑

l=1

wli = 1, ∀i

}
. (3)

The lth object that takes wli = 1 is the representative of a cluster. An impor-
tant feature of k-medoids clustering is that it handles relational data expressed
as a table of distances between objects, such as network data.
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Algorithm 1. KMdd
KMdd1 Set cluster number c and initial medoids wli ∈ W by choosing objects at

random.
KMdd2 Calculate uki ∈ U using (4).
KMdd3 Calculate wli ∈ W using (5).
KMdd4 If the convergence criterion is satisfied, stop. Otherwise, return to KMdd2.

The optimal solutions for uki and wli are as follows:

uki =

⎧
⎪⎨

⎪⎩
1

(
i = arg min

s

n∑

l=1

wlsrkl

)

0 ( otherwise )
, (4)

wli =

⎧
⎪⎨

⎪⎩
1

(
l = arg min

t

n∑

k=1

ukirkt

)

0 ( otherwise )
. (5)

By considering the optimization problem of Jkd, the optimal solution of wli

is expressed in (5). The KMdd algorithm is summarized as follows:
The number of repetitions, convergence of each variable, or convergence of

an objective function is used as the convergence criterion in KMdd4.

2.2 Controlled-Sized Clustering Based on Optimization

Controlled-sized clustering based on optimization (COCBO) optimizes the objec-
tive function of k-means clustering by solving a linear programming (LP) prob-
lem under constraints on the cluster size [10]. COCBO is an extension of the
approach to equalize the cluster size. The parameter K related to the cluster
size satisfies certain conditions for the number of objects and clusters. More
details can be found in the present paper [10].

In COCBO, the parameter K controls the cluster size in the range between
α and β, and it satisfies α ≤ K and K + 1 ≤ β. Here, α and β control the
lower and upper bound of cluster size, respectively. The optimization problem
of COCBO is expressed as follows:

min. J(U ,V ) =
n∑

k=1

c∑

i=1

ukidki (6)

s. t. Uh =

{
(uki) : uki ∈ {0, 1} ,

c∑

i=1

uki = 1, ∀k

}
,

α ≤
n∑

k=1

uki ≤ β, ∀i, (7)

α ≤ K, (8)
β ≥ K + 1. (9)
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Equation (6) is an objective function of k-means clustering, and dki is the
dissimilarity between an object and a cluster representative. In most cases of
k-means clustering, dki is the squared Euclidean distance. Equation (7) is a con-
straint on the cluster size, which is the number of objects in a cluster. Equations
(8) and (9) are constraints on the lower and upper bound of the cluster size,
respectively.

2.3 Kernel Method

The kernel method is an important technique to handle data with a complex
structure. It is applied to both supervised learning and unsupervised learning to
handle complex datasets.

First, we define symbols to introduce kernel functions. φ : �p → �s(p � s)
denotes mapping from an input space �p to a high-dimensional feature space �s.
An object in the feature space is denoted by φ(xk) ∈ �s. The kernel function
K : �p × �p → � satisfies the following relation:

K(x,y) = 〈φ(x), φ(y)〉.

A typical kernel function that handles vectorial data is The Gaussian kernel,
which is expressed as follows:

K(xi,xj) = exp
(−γ‖xi − xj‖2

)
, (10)

where xi and xj are input vectors and γ > 0 is a kernel parameter. The Gaussian
kernel is a function that calculates the similarity between the input vectors.

A diffusion kernel is a typical kernel function that targets network data [9]. It
can be used to calculate the similarity between nodes using an edge connection,
that is, the adjacency matrix A. The diffusion kernel is expressed as follows:

K(t) = exp(tL) (11)

In (11), t > 0 is also a kernel parameter, and L is a reversed-sign graph Laplacian.
The elements of L are expressed as follows:

lij =

⎧
⎨

⎩

1 (i �= j and node i is adjacent to node j)
−degi (i = j)
0 (otherwise)

(12)

Here, degi is a degree of node i and is expressed as degi =
∑n

j=1 lij .

3 Proposed Method

The proposed method, COCBON, is an extension of COCBO that can han-
dle network data [8].Whereas COCBO is based on the k-means algorithm and
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handles vectorial data, COCBON is based on the k-medoids algorithm and han-
dles network data. The optimization problem of COCBON is expressed as fol-
lows:

min. J(U ,W ) =
c∑

i=1

n∑

k=1

n∑

l=1

ukiwlirkl,

s. t. Uh =

{
(uki) : uki ∈ {0, 1} ,

c∑

i=1

uki = 1, ∀k

}
,

Wh =

{
(wli) : wli ∈ {0, 1},

n∑

l=1

wli = 1, ∀i

}
,

α ≤
n∑

k=1

uki ≤ β, ∀i,

α ≤ K,

β ≥ K + 1.

The objective function and the constraints on uki and wli of COCBON are the
same as those of the k-medoids algorithm, which are expressed in (1), (2), and
(3). The constraints on the cluster size and the parameter for the lower and
upper bound are the same as those of COCBO, which are expressed in (7), (8),
and (9).

If α = 1 and β → n, COCBON is equivalent to k-medoids clustering. In many
clustering methods, the cluster partition is obtained by optimizing evaluation
indexes such as the objective function without including a specific number of
objects in the cluster. It may be difficult to obtain a good cluster partition
using conventional methods when the distribution of data is biased. COCBON
is expected to yield a better cluster partition for biased data by introducing the
constraint on the cluster size.

The COCBON algorithm is summarized in Algorithm 2:
The number of repetitions, convergence of each variable, or convergence of

an objective function is used as the convergence criterion in COCBON4 as well
as KMdd. The solver for solve LP problems in COCBON2 is PuLP 1.6.9. The
PuLP is an LP modeler written in Python and is open source (https://pypi.org/
project/PuLP/).

Algorithm 2. COCBON
COCBON1 Set cluster size K, cluster number c, parameters α and β, and initial

medoids wli ∈ W by choosing objects at random.
COCBON2 Calculate uki ∈ U by solving the LP problem.
COCBON3 Calculate wli ∈ W using (5).
COCBON4 If the convergence criterion is satisfied, stop. Otherwise, return to

COCBON2.

https://pypi.org/project/PuLP/
https://pypi.org/project/PuLP/
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4 Numerical Experiments

We conducted numerical experiments with two artificial datasets and six bench-
mark datasets to verify the effectiveness of COCBON. First, we describe the
calculation conditions of the numerical experiments. Second, we compare the
results among COCBON and three conventional methods: k-medoids clustering
[3], the Louvain method [6], and spectral clustering [7]. Third, we summarize the
results and the features of the proposed method.

4.1 Experimental Setup

The above-mentioned methods are compared using two artificial datasets and
six benchmark datasets in terms of the evaluated value of the adjusted rand
index (ARI) [13]. ARI is a measure of similarity between two cluster partitions.
The value of ARI is 1 when the two cluster partitions completely match. Of the
six benchmark datasets, four are network data created from vectorial data. For
k-medoids and COCBON, the maximum number of iterations of the algorithm
was set to 100.

Table 1 lists the numbers of nodes, edges, and clusters of the two artificial
datasets, which are visualized in Figs. 1 and 2. In these figures, each node is
color-coded by the cluster it belongs to. Table 2 lists the numbers of objects,
attributes, and clusters of the four vectorial benchmark datasets, while Table 3
lists the numbers of nodes, edges, and clusters of the two network benchmark
datasets.

For the experiments, the two artificial and two benchmark network datasets
are converted to a weighted graph by using a diffusion kernel [9]. First, a sim-
ilarity K(xi,xj) is obtained between the nodes by using the diffusion kernel
given in (11). Next, the similarities are converted to dissimilarities by using the
following equation:

Kdissim(xi,xj) = 1 − K(xi,xj)
maxi, jK

(13)

Because the dissimilarity is based on the diffusion kernel calculated using (13), it
is possible to obtain the cluster partition from the network data in the k-medoids
framework.

The four vectorial benchmark datasets are also converted to a weighted
graph by using a Gaussian kernel [4]. First, a similarity between objects xi and
xj , denoted as K(xi,xj), is obtained using the Gaussian kernel given in (10).
Because the value of the Gaussian kernel ranges from 0 to 1, the dissimilarity
between all pairs of nodes can be calculated through the following transforma-
tion:

Kdissim(xi,xj) = 1 − K(xi,xj) (14)

The vectorial data are converted into network data by calculating the dissim-
ilarity based on the Gaussian kernel. Through the above procedure (14), as in
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the case of the diffusion kernel, it is possible to obtain the cluster partition from
the network data in the k-medoids framework.

In the proposed method, there are several parameters for adjusting the cluster
size and kernel function. The diffusion kernel is applied to the artificial and
benchmark datasets for weighting, as summarized in Tables 1 and 3, while the
Gaussian kernel is applied to vectorial data, as summarized in Table 2. Because
parameter selection is required for each dataset, numerical experiments were
conducted under the conditions listed in Table 4.

The cluster partitions of all datasets used in the numerical experiments are
known. ARI, as mentioned above, is used as an index to evaluate the accu-
racy of the clustering result [13]. Moreover, the modularity used in the Louvain
method is used as an evaluation index for network partition [6]. The modularity
is expressed as follows:

Q =
1

2M

c∑

i=1

n∑

k=1

n∑

l=1

[
akl − degkdegl

2M

]
ukiuli (15)

where M is the sum of all edges, akl is the weight between nodes k and l, and
degk is the sum of all weights connecting node k. The modularity ranges from
–1 to 1. The closer its value is to 1, the denser are the edges within a cluster
and the sparser are the edges between clusters. In addition to the quantitative
evaluation, MDS [12].

4.2 Experimental Results

Table 5 lists the ARI values for k-medoids clustering [3], the Louvain method
[6], spectral clustering [7], and the proposed method. The ARI values in Table 5
are calculated from the cluster partition obtained using each method and the
cluster labels. The value in bold in each row is the highest ARI value for each
dataset. The results with COCBON are obtained by setting the parameters α
and β according to the conditions listed in Table 4. For example, the ARI with
COCBON for Artificial dataset 1 is 0.856 (5, {6, 20, 35}), which indicates that
ARI is 0.856 when the lower limit of the cluster size α = 5 and the upper limit
of the cluster size β = {6, 20, 35}.

In six out of the eight datasets, the proposed method yields the highest ARI
value. In Digits and email-Eu-core network, for which spectral clustering yields
the highest ARI, there is little difference in the ARI values between the pro-
posed method and spectral clustering. Further, the proposed method yields bet-
ter results than the Louvain method in all cases. For Glass, xAPI-Edu-Data, and
email-Eu-core network, which are cases in which the proposed method behaves
similarly to k-medoids clustering, the proposed method yields better results than
k-medoids clustering.

Table 6 lists the modularity values for the conventional and proposed meth-
ods. The modularity values in Table 6 are calculated from the cluster partition
obtained using each method. The value in bold in each row is the highest mod-
ularity value for each dataset. The COCBON results are obtained in the same
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Table 1. Details of the artificial datasets.

Num. of nodes (n) Num. of edges Num. of clusters (c)

Artificial dataset 1 35 177 7

Artificial dataset 2 120 2200 12

Table 2. Details of the four vectorial benchmark datasets.

Num. of objects (n) Num. of attributes (p) Num. of clusters (c)

Iris [14] 150 4 3

Digits [14] 1797 64 10

Glass [14] 214 9 6

xAPI-Edu-Data [15,16] 480 4 3

manner as in Table 5. Because the Louvain method is based on the local maxi-
mization of modularity, it shows the highest modularity values for all datasets.
The modularity is 0 or less in all of the results for Glass, and better results are
not obtained in terms of modularity evaluation.

Figures 3, 4, 5, 6, 7, 8, 9, and 10 show the results of MDS with respect to
the similarity (ARI) between cluster partitions obtained using each method for
each dataset. These figures illustrate the similarity between cluster partitions
obtained using each method. The symbols displayed on the right in the fig-
ures correspond to each method. The COCBON results were obtained using the
parameters listed in Table 4. For example, in Fig. 3, spectral clustering and the
Louvain method yield different cluster partitions to k-medoids clustering and
COCBON. Furthermore, in Fig. 3, the results of k-medoids, COCBON (1, 20),
and COCBON (1, 35) are below the middle of the graph, while the results of
COCBON (5, 6), COCBON (5,20), and COCBON (5, 35) are towards the left.
In addition, k-medoids and COCBON (1, n) yield the same cluster partition. A
comparison of the COCBON results obtained with different parameters indicates
that the cluster partition changes when changing the lower bound β.

4.3 Discussions

The results of the numerical experiments show that the proposed method yields
better cluster partitions than conventional network clustering methods by adjust-
ing the cluster-size parameters α and β.
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Table 3. Details of the two network benchmark datasets.

Num. of nodes (n) Num. of edges Num. of clusters (c)

American College football [17] 115 613 12

email-Eu-core network [18,19] 986 25552 42

Table 4. Details of the parameters for each dataset.

Data α β t in (11) γ in (10)

Artificial dataset 1 α ∈ {1, 3, 5} β ∈ {6, 20, 35} t = 0.4 –

Artificial dataset 2 α ∈ {1, 6, 10} β ∈ {11, 66, 120} t = 0.1 –

Iris α ∈ {1, 40, 50} β ∈ {51, 60, 150} – γ = 0.1

Digits α ∈ {1, 143, 179} β ∈ {180, 215, 1797} – γ = 0.1 × 10−3

Glass α ∈ {1, 28, 35} β ∈ {36, 42, 214} – γ = 0.1 × 10−4

xAPI-Edu-Data α ∈ {1, 128, 160} β ∈ {161, 192, 480} – γ = 0.1

American College football α ∈ {1, 5, 9} β ∈ {10, 63, 115} t = 0.3 –

email-Eu-core network α ∈ {1, 12, 23} β ∈ {24, 515, 986} t = 0.05 –

The features of the proposed method COCBON are summarized as follows:

– Table 5 shows that the proposed method obtained better classification perfor-
mance than the Louvain method and spectral clustering. Further, as summa-
rized in Table 6, the proposed method showed better performance than the
Louvain method in terms of modularity. These results are considered to be
affected by the cluster-size parameters α and β, in addition to the weighting
by the diffusion kernel and Gaussian kernel.

– The proposed method obtained both k-medoids-like cluster partitions and
different ones by adjusting the parameters α and β. Figures 3, 4, 5, 6, 7,
8, 9, and 10 show the relation between the cluster partition and parameter
selection. In particular, Figs. 3, 4, 6, 8, and 10 show that the cluster partitions
obtained using k-medoids clustering and the proposed method are different
from the ones obtained using the Louvain method and spectral clustering.
Furthermore, Figs. 5, 7, and 9 show that the cluster partition obtained using
the Louvain method is different from those obtained using the other methods.

Table 5. ARI results for the conventional and the proposed methods.

k-medoids Louvain Spectral clustering COCBON(α, β)

Artificial dataset 1 0.854 0.307 0.481 0.856 (5, {6, 20, 35})
Artificial dataset 2 0.679 0.088 0.172 0.716 ({1, 6}, 11)
Iris 0.715 0.528 0.716 0.786 (50, {51, 60, 150})
Digits 0.446 0.337 0.641 0.601 (179, 180)

Glass 0.252 0.018 0.243 0.252 (1, 214)

xAPI-Edu-Data 0.242 0.231 0.185 0.242 ({1, 128}, 161)
American College football 0.012 0.001 0.012 0.012 (1, {63, 115})
email-Eu-core network 0.004 0.003 0.007 0.005 (23, {505, 986})
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Table 6. Modularity results for the conventional and the proposed methods.

k-medoids Louvain Spectral clustering COCBON(α, β)

Artificial dataset 1 0.005 0.011 0.005 0.005 (1, 6)

Artificial dataset 2 0.001 0.006 0.003 0.001 ({1, 6}, 11)

Iris 0.192 0.221 0.191 0.195 (50, {51, 60, 150})
Digits 0.010 0.014 0.011 0.010 (179, {180, 215, 1797})
Glass –0.003 0.000 –0.003 –0.004

xAPI-Edu-Data 0.015 0.016 0.013 0.015 (1, 480)

American College football 0.304 0.308 0.304 0.304 (1, {63, 115})
email-Eu-core network 0.184 0.285 0.188 0,184 (1, {505, 986})

– The proposed method can yield various cluster partitions with the control of
the parameters α and β. Additionally, in the proposed method, all the clusters
have the same cluster-size constraints. It is possible to extend the proposed
method by applying cluster-wise constraints on the cluster size. The proposed
method based on cluster-wise constraints may have the potential to handle
imbalanced data.

The above numerical experiments and discussion suggest that the proposed
method is a useful technique in network clustering. With the control of the
parameters α and β, it can yield flexible cluster partitions. Additionally, the
proposed method can be a useful tool for network data with different types of
communities if cluster-wise constraints on the cluster size are adopted.

Fig. 1. Artificial dataset 1. Fig. 2. Artificial dataset 2.
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Fig. 3. MDS results for
Artificial dataset 1.

Fig. 4. MDS results for
Artificial dataset 2.

Fig. 5. MDS results for
Iris.

Fig. 6. MDS results for
Digits.

Fig. 7. MDS result for
Glass.

Fig. 8. MDS result for
xAPI-Edu-Data.

Fig. 9. MDS result for American Col-
lege football.

Fig. 10. MDS result for email-Eu-core
network.

5 Conclusions

In this paper, a new network clustering method was proposed based on the
concept of cluster-size control. The proposed method is an extension of k-medoids
clustering and can yield flexible cluster partitions by adjusting the cluster-size
parameters α and β. The effectiveness of the proposed method was verified
through numerical experiments using artificial and benchmark datasets. The
experimental results showed that the proposed method has better clustering
performance than the Louvain method and spectral clustering, which is a typical
network clustering method.
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In future work, we will extend the proposed method by adopting cluster-wise
constraints on the cluster size to handle complex network data with different
types of communities. Furthermore, we will investigate a way to adjust suitable
cluster-size parameters by parallelization, which is considered to be a useful app-
roach to fuzzify the proposed method to demonstrate its robustness according to
a previous study [11]. Additional numerical experiments with large-scale data are
necessary to comprehensively establish the effectiveness of the proposed method
for network clustering.
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Abstract. Privacy and Fairness both are very important nowadays. For
most of the cases in the online service providing system, users have
to share their personal information with the organizations. In return,
the clients not only demand a high privacy guarantee to their sensi-
tive data but also expected to be treated fairly irrespective of their age,
gender, religion, race, skin color, or other sensitive protected attributes.
Our work introduces a novel architecture that is balanced among the
privacy-utility-fairness trade-off. The proposed mechanism applies Group
Tagging Method and Fairly Iterative Shuffling (FIS) that amplifies the
privacy through random shuffling and prevents linkage attack. The algo-
rithm introduces a fair classification problem by Relation Impact based
on Equalized Minimal FPR-FNR among the protected tagged group. For
the count report generation, the aggregator uses TF-IDF to add noise for
providing longitudinal Differential Privacy guarantee. Lastly, the mech-
anism boosts the utility through risk minimization function and obtain
the optimal privacy-utility budget of the system. In our work, we have
done a case study on gender equality in the admission system and helps
to obtain a satisfying result which implies that the proposed architecture
achieves the group fairness and optimal privacy-utility trade-off for both
the numerical and decision making Queries.

Keywords: Group tagging · Relation impact · Privacy · Risk
minimizer · Group fairness

1 Introduction

To deal with information leakage [1,2], nowadays the organizations and indus-
tries have all concentration on the “privacy” of the dataset which is the most
important and necessary thing to protect the dataset from some unexpected
attacks by the attackers that causes data breach. The main aim of a statistical
disclosure control is to protect the “privacy” of “individuals” in a database from
the sudden attack. To solve this problem, in 2006, Dwork introduces the notion
of “Differential Privacy” (DP) [3–5]. Some of the important works on DP have
been summarized in Table 1.
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Table 1. Related works on Differential Privacy

Paper Year Brief Summary

Differential Privacy [5] 2006 Initial work on DP

RAPPOR [7] 2014 Fastest implementation of LDP

Deep Learning with Differential
Privacy [8]

2016 Introduces a refined analysis of privacy
costs within DP

Communication-Efficient Learning of
Deep Networks from Decentralized
Data [9]

2016 Introduces practical method for the
federated learning of deep networks
based on iterative model averaging

PROCHLO [10] 2017 Encode Shuffle and Analyse (ESA) for
strong CDP

Adding DP to Iterative Training
Procedures [11]

2018 Introduces an algorithm with the
modular approach to minimize the
changes on training algorithm, provides
a variety of configuration strategies for
the privacy mechanism

Amplification by Shuffling [12] 2018 O(ε
√

log 1
δ
/n, δ) centralized differential

privacy (CDP) guarantee

Controlled Noise [13] 2019 Duel algorithm based on average
consensus (AC)

Capacity Bounded DP [14] 2019 Location Privacy with matrix
factorization

ARA [15] 2020 Aggregation of privacy reports & fastest
CDP

Privacy at Scale [6] 2020 Privatization, ingestion and aggregation

ESA Revisited [34] 2020 Improved [12] with longitudinal privacy

BUDS [16] 2020 Optimize the privacy-utility trade-off by
Iterative Shuffling and Risk Minimizer

Adding to the importance of trade-off between privacy-Utility guarantee to
the sensitive data, the demand for fairness also belongs to the clients’ top priority
list. Nowadays, in most online service systems, users not only ask for high privacy
but also expect to be treated fairly irrespective of religion, skin color, native
language, gender, cast, and other sensitive classes. Table 2 shows some existing
algorithms on fairness mechanism.

In their 2012 work [17] Dwork et al. have explicitly shown that individual
fairness is a generalization of ε−differential privacy. There is a distinction in fair
ML research between ‘group’ & ‘individual’ fairness measures. Much existing
research assumes that both have importance, but conflicting. [33] argues that
this seeming conflict is based on a misconception and shows that individual
and group fairness are not fundamentally in conflict. [27–32] are some state-of-
the-art algorithms on Fairness with Differential Privacy. However, none of them
provide either the tight bounds on privacy & loss function or an optimal trade-off
between privacy-utility-fairness. Our proposed mechanism aims to achieve both.
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Table 2. Related works on Fairness

Paper Year Brief summary

Fairness Beyond Disparate
Treatment Disparate Impact [18]

2017 Introduces Disparate Mistreatment for group
fairness

Algorithmic decision making and
the cost of fairness [19]

2017 Deals with a tension between constraint and
unconstrained algorithms

On Fairness and Calibration [20] 2017 Explore the stress between minimizing error
discrepancy across different population
groups while maintaining calibrated
probability estimates

An Information-Theoretic
Perspective Fairness and
Accuracy [21]

2019 Provide trade-off between fairness and
accuracy

Fairness Through the Lens of
Proportional Equality [22]

2019 Measure the fairness of a classifier and
provide group fairness through proportional
equality

FACT: A Diagnostic for Group
Fairness Trade-offs [23]

2020 Enable systematic characterization of
performance-fairness trade-offs among the
group

Fair Learning with Private
Demographic Data [24]

2020 Allows individuals to release their sensitive
information privately while allowing the
downstream entity to learn predictors which
are non-discriminatory giving theoretical
guarantees on fairness

Fairness, Equality, and Power in
Algorithmic Decision-Making [25]

2021 Focuses on inequality and the causal impact
of algorithms and the distribution of power
between and within groups

In this work, the idea is to introduce a group fairness mechanism along with
a differential privacy mechanism with the help of the Fairly Iterative Shuffling
technique which provides optimal privacy-utility trade-off. The main aim of this
work is to make the balance among privacy-utility-fairness during the process.
The contributions of this work are:

1. Group Tagging method tags every individual by their protected attribute class
so that the FIS can not change their protected data during the shuffling. If
it will change, the classifier’s decision will not be fair as the system wants to
generate group fairness among the protected attribute class in the decision-
making problem.

2. FIS itself posses a strong privacy guarantee to the data that prevents all
types of linkage attack

3. The proposed architecture applies the notion of Relation Impact for main-
taining group fairness to decide the allowance or giving the chance of partici-
pation of the individuals in any particular event without the leakage of their
protective attributes.
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4. Here, every individual is treated according to their due rather than only
“merit”. So, the mechanism not only focuses on the directly related attribute
but also considers the highly related background factor which affects the
results indirectly.

5. Risk Minimzer amplifies the utility by minimizing expected loss of the model
and helps to achieve the optimal privacy-utility trade-off through regulariza-
tion parameter.

2 Methodology

The goal of work is to develop an unbiased secured mechanism bringing fairness
which is also differentially private. To achieve, before fairness is implemented,
the collected data must differentially private without hampering the number of
persons corresponding to the respected protected groups, i.e. the data will be
divided into separate groups according to the variety of protected class.

Let assume we have a data set with the records of n individuals and the
number of dependent attributes is m. Among the n individuals, let there be
ni number of individual having ith; i = 1(1)np protected attribute. The whole
mechanism is divided into seven parts, they are One-hot Encoding of collected
data, Query Function, Group tagging, Correlation Matrix, Fairly Iterative Shuf-
fling (FIS ), 2-Layers Fair Classification through Relation Impact and Boosting
Utility through Risk Minimizer & Count Report Generation.

2.1 One-Hot Encoding

One hot encoding [4,16] is a method of converting categorical variables into a
structured form that could be used in ML algorithms to do better performance
in prediction. Now, the correct choice of encoding has a great impression on the
utility guarantee. In this architecture, the preference is one-hot encoding instead
of any other process of encoding to generate a fair & privatized report with the
least noise insertion and provides maximum utility.

2.2 Query Function

In the first phase of this architecture, a query function [16] is used on the dataset
to get the important attributes related to a particular query as shown in Table
3. Though our proposed DP mechanism works for generalized group fairness
problems, we have taken Example 2 as our case study and analyzed the case
of gender unbiasedness more elaborately in upcoming sections. Also, it is to be
noted, This mechanism performs for both (Example 1 & 2) type of Queries;
related to numerical and decision-making problems and always provide the pri-
vatized DP report against user’s protected attributes.
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Table 3. Query Function: assume the database is structured with records of individuals
where name, age, sex, marks of maths, marks of physics, marks of computer science,
annual family income, living area, religion are ten attributes.

Query Analysis

Example 1: How many
Hindus live in the urban
area with the score in maths
greater than ninety percent?

The attributes ‘Religion’, ‘living area’, and ‘marks in
maths’ will be delivered as answers from the query
function. This implies that only these three attributes
are important for generating the final report to that
particular numerical (count-related) query. This type
of Question does not need any fair decision but should
be privatized against the protected attribute
“Religion”

Example 2: Which
students are eligible the
admission based on the
marks of maths?

Now for this type of question, not only the attribute
‘marks of maths’ is important, but also the gender of
the students matter as we want to develop a fair
mechanism. For this, it is necessary to give special
importance to the attribute ‘sex’ in every case which
is achievable by the attribute tagging method that is
discussed later. For this mechanism, the query
function considers the attribute ‘sex’ as the important
attribute and returns it no matter what the question
is just to maintain a fair balance between male and
female candidates

2.3 Correlation Matrix

After the query function [16], the mechanism calculates a correlation matrix that
measures the relation distance of each attribute with the required events. The
previously given Examples 2 concentrate on the decision that should fair related
to gender in the admission system based on the maths score. But in reality, other
sensitive background factors are indirectly related to the examination results that
are obtained by the students. For example, the economical status, electricity
facility, tuition opportunity, etc. It is obvious that the students came from the
strong economical background or high-class society usually take more than one
tuition or extra classes to improve scores. On the other hand, the poor students
can’t afford such facilities. Not only that, in some cases, they don’t have the
proper environment to study like electricity, proper living area, etc. Now, these
factors have a great effect on their results and should not be avoided. So, here,
the correlation matrix is used to get the highly related background factors that
have a great impact on the required event.

For the general case in, having a dataset with n rows and k attributes, the
applied query function returns c the number of attributes which are required to
generate the answer along with protected attribute (such as skin color, religion,
gender, etc.) and the correlation matrix returns d number of related background
factors that affects the results. If m = c + d (excluding protected attribute)
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number of total attributes are important for generating the final report, then
these m attributes will tie up together to represent a single attribute and the
reduced number of attributes will be g = k−m. Let assume, there are 2S(S > 1)
number of shufflers and if g is divisible by S, these attributes are divided into
S group with g/S attributes in each group. Now, If g is not divisible by S, then
extra elements will choose a group randomly without replacement. After that,
the group tagging method is applied which helps to preserve the individuals’
protected attributes after fairly iterative shuffling [16] method. As the tied-up
attributes include the highly related background attribute to the given event,
the following group tagging method assists the fair classification in the future.

2.4 Group Tagging Method

Group tagging is a method to classify the individuals based on their protected
attribute where each tagged group contains S group of attributes each. This
process can be happened by tagging each row with their corresponding pro-
tected class. If we consider the given Example 2 which concentrates on fairness
between gender groups (we have taken male and female groups for case study)
for admission, the method will work as follow. If the first row contains a record
of a female candidate, then this row is tagged by its gender group ‘female’. For
the male candidates, the rows are tagged by ‘male’. Now rows having the same
tagging element will shuffle among each other i.e. In the case of female candi-
dates, the iterative shuffling will occur only with the rows tagged as ‘female’
and on the other hand, rows tagged with ‘male’ goes for iterative shuffling sep-
arately. In this way, the records of male and female candidates never exchange
with each other and help to maintain their gender in the generated report. This
process never hampers the accuracy of the classifiers for taking a fair decision
based on their gender group in the given problem. Also, the iterative shuffle
technique establishes a strong privacy guarantee which shuffles all the records of
female and male candidates separately among their tagged group. In this way,
the probability of belonging the record of a particular individual to their unique
ID becomes very low, and the unbiased randomization shuffles technique keeps
the data secured. This technique prevents all types of linkage attacks, similarity
attacks, background knowledge attacks and also reduces the exposure of user
data attributes.

2.5 Fairly Iterative Shuffling (FIS)

A randomized mechanism is applied with Fairly Iterative Shuffling which occurs
repeatedly to the given data for producing the randomized unbiased report to
a particular query. Let’s have a dataset with n rows containing the records of
n individuals among which n1 persons are female and n2 = n − n1 persons are
male. That means after the group tagging method, there are exactly n1 rows
tagged as ‘female’ whereas n2 rows are tagged as ‘male’. In this stage of our
proposed architecture, each row of ‘male’ and ‘female’ groups is shuffled itera-
tively by the 2S, (S > 1) number of shufflers. Before shuffling each gender group
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is divided into some batches containing S attribute groups and every attribute
group of each batch chooses a shuffler from the S number of shufflers randomly
without replacement for independent shuffling. Now the female tagged group con-
tain n1 individuals and assume that it is divided into tF batches where 1, 2, ...., tF
batches have n11, n12, ...., n1tF ; (n11 � n12 � .... � n1tF ) number of rows respec-
tively. Similarly, let assume the male tagged group have n2 individuals’ records
and it is divided into 1, 2, ...., tM batches having n21, n22, ...., n2tM ; (n21 � n22 �
.... � n2tM ) rows respectively. Now for one gender tagged group, each attribute
group of every batch chooses a shuffler randomly without replacement from any
S number of shufflers. On the other hand, For another gender-tagged group, each
group of attributes chooses a shuffler similarly from the remaining S number of
shufflers. This shuffling technique occurs repeatedly or iteratively until the last
batches of both the gender tagged group goes for independent shuffling.

This architecture is applicable in the generalized case also and not only lim-
ited to gender unbiasedness problem If there is i number of variety for a protected
attribute (skin color, religion, etc.), the individuals tagged with their consid-
erable protected class and then divided into i number of groups. Each group
divided into batches (ti number of batches for ith group) with approximately
same batch size (ni1 � ni2 � ... � niti) and go for shuffling [16,34].

2.6 2-Layers Fair Classification Through Relation Impact

This mechanism uses 2 layer classifications. After FIS, firstly the classifiers use
the group classifications that classify the individuals into gender groups (male
and female) from the shuffled data sets. After that, the classifiers make the
subgroup-classifications between the groups depends on the Relation Impact
(details in Sect. 3.2).

Group Classification: After FIS the classifiers divided the shuffled data into
the number of classes according to their gender. In our problem setting, the
mechanism focuses on the gender unbiasedness between males and females. This
step is the 1st layer of classification where the classifiers use the tagged gender
label to classify the data. As in the group tagging method each individual is
tagged with his gender category, the classifiers concentrate on this tagged label
for classification. This classification is made based on user-given gender infor-
mation which cannot be affected or changed by the shuffling as it is tied up
before going for IS. So, the chance of miss classification error is very less (in
fact negligible) here.

Subgroup-Classification. This is the second layer of classification where the
classifier classifies the groups into positive and negative subgroups by the notion
of Relation Impact. The classifiers decide the eligibility, i.e. if an individual
should be allowed to be admitted to the course based on their related back-
ground information. For example 2, the classifiers make the decision based on
the student’s math score, their economical background, living area (rural/urban),
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electricity facility, etc. The positive class of each gender group contains the eli-
gible individuals and the negative class contains the rejected individuals for the
admission.

2.7 Risk Minimization and Count Report Generation

This is an important stage of this architecture where the report is generated
from a shuffled and unbiased dataset for a given q query related to sum or
count aggregation i.e. numerical answer (consider the Example 1). The report
is generated by average count calculation by an aggregator function that uses
TF-IDF [15,16] calculation to add minimum noise to the report. But, before the
final report generation, the loss function [16] is calculated, and risk minimizing
assessment [16] is done to obtain the optimal solution. This optimal solution
refers to the situation where the architecture achieves a strong privacy guarantee,
as well as maximum utility [26] measure while providing an unbiased report
against a protected class. The details of risk minimization technique is discussed
in Sect. 3.3.

3 Analysis

Considering a data set containing n rows and g attributes and there exists a iS
number of shufflers. The attributes are divided into S groups as described pre-
viously. Now there is ni number of individuals tagged as iit protected attribute;
i = 1, 2, ..np where each row of the dataset has the records of individuals cor-
responding to their crowd ID. The tagged attributes divide the data sets into
groups, For example, if there is i number of variety in a protected attribute,
tagged individuals will be divided into i groups. Now, Each tagged group are
divided into some batches containing approximately the same rows i.e. 1, 2, ..., ti
number of batches for group tagged with ith; i = 1(1)np attribute. After that,
each group of attribute from every batch chooses a random shuffler and go for
shuffling.

3.1 FIS Randomised Response Ratio and Privacy Budget

To proceed further with the proof, we will consider the following theorem from
BUDS [16]:

Theorem 1 (Iterative Shuffling: IS [16]). A randomisation function R∗
S applied

by S (S > 1) number of shuffler providing iterative shuffling to a data set X
with n rows and g attributes, where the data base is divided into 1, 2, ..., t batches
containing n1, n2, ..., nt number of rows respectively, will provide ε-differential
privacy to the data with privacy budget-

ε = ln (RR∞) = ln
[

t

(n1 − 1)S

]
(1)
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only when, n1 � n2 � ..... � nt.
Here RR∞ = Randomised Response Ratio, and

RR =
P (Response = Y ES | Truth = Y ES)
P (Response = Y ES | Truth = NO)

(2)

Lemma 1 The Randomised Response Ration of Iterative Shuffling (RRIS)
[4,5] = P (Row belongs to its own unique ID)

P (Row does not belongs to its own unique ID) satisfy the condition of Dif-
ferential Privacy.

Now, the proposed architecture provides a fair mechanism along with a strong
privacy budget to secure the sensitive information of individuals. This algorithm
is the non-discriminant of biases regarding different groups based on protected
attributes (for example gender, skin color, etc.). Now the help of Theorem 1, the
privacy budget of FIS is developed next.

Theorem 2 (Fairly Iterative Shuffling- FIS). A randomisation function R∗
iS

applied by iS (S > 1) number of shuffler providing iterative shuffling to a data
set X with n rows and g attributes among which ni number of individuals are
tagged with ith protected class (i = 1, 2, ...np); i.e. there are np number of user
groups according to their protected class where tagged groups are divided into
1, 2, ..., ti batches containing ni1, ni2, ..., niti number of rows for ith group, will
provide ε-differential privacy to the data with privacy budget-

εFair = ln
[

1
np!

Σ
np

i=1

ti
(niti − 1)S

]
(3)

only when, ni1 � ni2 � ..... � niti ; i = 1, 2, ..., np

Proof. The records in the group of attributes for the different tagged groups go
for independent shuffling separately. According to the Theorem 1 [16] we can
say that, For the records tagged with ith group,

RRi =
P (Row belongs to its own unique ID tagged with ith group)

P (Row does not belongs to its own unique ID tagged with ith group)
(4)

=
ti

(niti − 1)S
(5)

as, ni1 � ni2 � ..... � niti ; i = 1, 2, ..., np. So, For the whole architecture the
fair randomized response will be:

RR∞ =
1

np!

[
t1

(n1t1 − 1)S
+

t2
(n2t2 − 1)S

+ ... +
tnp

(nnptnp
− 1)S

]
(6)

Now the privacy budget for this proposed architecture is:

εFair = ln
1

np!

[
t1

(n1t1 − 1)S
+

t2
(n2t2 − 1)S

+ ... +
tnp

(nnptnP
− 1)S

]
(7)
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That means,

εFair = ln
[

1
np!

Σ
np

i=1

ti
(niti − 1)S

]
(8)

In our case study, we focuses on the decision problem of gender unbiasedness
between male and female groups for allowing them to take admission in a par-
ticular course (considering example 2). For this case, the FIS posses a privacy
budget of :

ε = ln
1
2

[
tF

(n1tF − 1)S
+

tM
(n2tM − 1)S

]
(9)

Where, S > 1, n1 is the number of female in database, n2 = (n − n1) is
number of male in database, tF is the number of batches in female group, tM is
the number of batches in male group, n1tF is the average female batch size, n2tM

is average male batch size and εFair is the privacy parameter of this mechanism.
The small value of εFair refers to a better privacy guarantee.

3.2 Fair Classifiers and Relation Impact

After FIS, we introduce the notion of Relation Impact that helps the classifiers
to take a fair decision. This mechanism applies fair classifiers that use the prin-
ciple of Relation Impact to avoid the miss classification error and able to create
unbiased classes or groups to consider for giving chance in an event.

Definition 1. Relation Impact: The aim of a set of classifiers is to study a
classification function ĥc : X −→ Y, defined in a hypothesis space H where ĥc

minimizes some aimed loss function to reduce miss-classification error based on
the related background attribute class A = (a1, a2, ...., am) :

ĥc := argmin
hc∈H

E(X ,Y)∼P L[hc(X|A),Y ] (10)

The Efficiency of the classifier will be estimated using testing dataset Dtst =
(xjt , yjt)

nt

j=1(1)nt
, based on the observation that how accurate the predicted labels

ĥc(xjt |A)’s, are corresponds to the true labels yj’s.

Therefore, it means the decision regarding the relevant persons or groups is
taken according to their due based on all the highly related factors to that par-
ticular event. This implies that distribution will not possess numerical equality
whereas it will be influenced by the relation distance of important background
factors and consider the individuals according to their rightful needs. For exam-
ple, in the classroom, this might mean the teacher spending more time with
male students at night classes rather than female students because most of the
time female students do not choose to take the night classes for safety issues.
Not only that, the students (irrespective of gender) who came from the weaker
economical background cannot always participate in the extra classes or cannot
afford any extra books or study material. So, it is clear that, in the admission
system, if someone wants to choose the students fairly, not only the sex group
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matters, but also the economical background, and other factors like appropriate
subject scores, living locations, electricity facility, etc. also matters. So, these
types of factors which are directly and indirectly highly related to the final
exam score of the students should be taken to account. The notion of Relation
Impact exactly does that, where it trains the model by considering all the highly
related attributes for taking the decision and minimizes the expected error of
the classification by Equalizing Minimal FPR-FNR of different groups.

In our work, the idea is to provide a fair decision with the help of an unbiased
classification based on the correlation of the attributes to the required event. The
mechanism first calculates the correlation matrix and any attributes which have
the higher (usually greater than 0.5 or less than −0.5) positive and negative
correlation to the required events are only taken to be accountable for the final
decision-making procedure. Here the classifiers use the Relation Impact where
the main aim is to build a model that can minimize the expected decision loss
to reach the maximum accuracy. The classifiers attend that minimum loss, i.e.
minimum miss classification error, by achieving the Minimal Equalised FPR-
FNR of the different groups; FPR: False Positive Rate, FNR: False Negative
Rate.

Definition 2. Equalized Minimal FPR-FNR: Let’s have a set of classifiers
ĥc{hc1, hc2, ...hci} : X → Y based on the hypothesis space H where i = 1, 2..np

denotes the number of groups, and A = {A1, A2, ...Am} is the set of related back-
ground attributes, then the classifier is said to satisfy the condition of Equalised
Minimal FPR-FNR ratio if:

argmin
hcεH

FPR1(A) = argmin
hcεH

FPR2(A) = .......... = argmin
hcεH

FPRnp
(A) (11)

and,

argmin
hcεH

FNR1(A) = argmin
hcεH

FNR2(A) = .......... = argmin
hcεH

FNRnp
(A) (12)

Here, ĥc(X ) is the predicted label by the classifier, Y is the true label and both
of them take the label value either y1 or Y0 where y1 denotes the positive label,
y0 denotes the negative label and

FPRi(A) = Pi(ĥc(X ) = y1|Y = y0,A) (13)

and
FNRi(A) = Pi(ĥc(X ) = y0|Y = y1,A) (14)

For our mentioned problem in example 2, the classifier will achieve the higher
accuracy for predicting the positive and negative subgroups for both the gender
groups (Male and Female), by minimizing the target loss when,

argmin
hcεH

FPRF (A) = argmin
hcεH

FPRM (A) (15)
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and
argmin

hcεH
FNRF (A) = argmin

hcεH
FNRM (A) (16)

Remark 1. FIS does not hamper the Equalised Minimal FPR-FNR (Detailed
discussion is in appendix).

3.3 Boosting Utility Through Risk Minimization

The real information which can be gained from the data by a particular query
or set of queries is defined as the utility [26] of the system. The goal of this
section is to discuss the gained utility from the data by applying Fair-BUDS and
provide a tight bound for loss function between input and output average-count.
This bound has a great impact on the utility of the system and this depends
on the previously obtained privacy budget. Before obtaining the final result, an
optimization function with a risk assessment technique [16] is applied to get the
maximum utility from the data. Let’s assume, before FIS shuffling, the true
data set will give a average count report for a time horizon [d] = {1, ..d} which is
denoted as CT =

∑n
i=1

∑
jεQ

∑
Tε[d] xij [T ]; where, xij is the jth record of the ith

individual from the true data set for the time horizon [d] and Q = {a1, a2, ...}
is the set of attributes given by the query function for a particular set query
or set of queries. Now, CFS =

∑n
i=1

∑
jεQ

∑
Tε[d] x

FS
ij [d]; where xFS

ij is the jth
record of the ith individual from the FIS data set for the time horizon [d]. The
calculated loss function [16] regarding the input and output count will be:

L(CT , CFS) ≤ CFS ×
∣∣∣∣e

ln

[
1

np!Σ
np
i=1

ti
(niti

−1)S

]
− 1

∣∣∣∣ (17)

When, eε → 0, the Utility U(CT , CFS |X ,Y) → 1 as L(CT , CFS) → 0. Now the
aim of this architecture is not only to be fair and secured but also it should pose
a high utility guarantee which can be obtained by risk-minimizing assessment
[16]. Proceeding with risk minimization technique, a mechanism R∗(iS) can be
found (when there is i number of tagged groups) which minimizes the risk [16],
where

R∗(iS) = argmin
R∗(iS)εH

Risk(Ep)(R∗(iS)) (18)

4 Conclusion and Future Scope

The Proposed architecture provides group fairness to the user based on their
protected attribute class while giving a strong privacy guarantee to their sensi-
tive attribute. The Risk Minimizer amplifies the utility Guarantee to the system
which makes the algorithm possess an optimal balance between privacy-utility-
fairness. This balanced architecture full-filled user’s top priorities related to fair-
ness and Privacy in the Online Service system. Though the mechanism shows
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good performance in privacy-utility trade-off for all kinds of Queries and gen-
erates unbiased classification for decision-making problems, the use of One-Hot
encoding is one kind of constraint for big data analysis. Trying other encoding
option (which does not depend on data dimension) is our future target. On the
other hand, the work performance and both the privacy-utility upper bounds are
given on theoretical aspects only. So, various experiments with different bench-
mark datasets for both online and offline settings are also in our plan.

References

1. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information
leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
390–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-
2 33

2. Alvim, M.S., et al.: Measuring information leakage using generalized gain functions.
In: 2012 IEEE 25th Computer Security Foundations Symposium. IEEE (2012)

3. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4 1

4. Sengupta, P., Paul, S., Mishra, S.: Learning with differential privacy. In: Handbook
of Research on Cyber Crime and Information Privacy, pp. 372–395. IGI Global
(2021)

5. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theoret. Comput. Sci. 9(3–4), 211–407 (2014)

6. Cormode, G., et al.: Privacy at scale: local differential privacy in practice. In:
Proceedings of the 2018 International Conference on Management of Data (2018)
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Abstract. The motivation of the work in this paper is due to the need in research
and applied fields for synthetic social network data due to (i) difficulties to obtain
real data and (ii) data privacy issues of the real data. The issues to address are first to
obtain a graph with a social network type structure, label it with communities. The
main focus is the generation of realistic data, its assignment to and propagation
within the graph. The main aim in this work is to implement an easy to use
standalone end-user application which addresses the aforementioned issues. The
methods used are the R-MAT and Louvain algorithms, with some modifications,
for graph generation and community labeling respectively, and the development
of a Java based system for the data generation using an original seed assignment
algorithm followed by a second algorithm for weighted and probabilistic data
propagation to neighbors and other nodes. The results show that a close fit can be
achieved between the initial user specification and the generated data, and that the
algorithms have potential for scale up. The system is made publicly available in a
Github Java project.

Keywords: Online social networks · Synthetic data · Graphs

1 Introduction

The use of online social networks has been steadily increasing and evolving over the
last decade, since they first became available to the general public in the 2000s. This
has created a great interest for commercial and academic reasons in studying human
behavior in the online social network environment in particular and Internet in general.
Behavior rules have emerged on how users tend to group by affinities, how are they
interconnected, which are the key demographics, how to capture and evaluate activity,
information propagation, and the general dynamics of social networks, all of which
has made this a popular field of study [1]. On the other hand, privacy issues have raised
concerns that major corporations use our data in amarket where the control is lost to third
parties [2, 3]. However, after the initial mercantilist focus, efforts to redirect research
and applications for social good and taking into account ethical considerations are now
becoming main-stream, especially with think-tank and government backing [4].

As those who are familiar to the field of social network data analysis will know, two
major issues are (i) difficulties to obtain real data and (ii) data privacy issues of the real
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data. Although the focus of the current work is not graph generation or scale-up, it is
useful to mention related work in these fields [5–7]. With respect to the generation of
synthetic knowledge and population of the graph with attributes and attribute-values a
recent work is found in [8]. Other relevant works on populating topologies with realistic
data are [9–12] however many are specific to a given domain/data type, and/or require
complex frameworks in order to work.

The name “Medici” refers to the 15th century family in Florence who developed a
sophisticated social network [1, 13]. Robins [13] cites Medici as a specific analogy of
local behavior and global structure in a real social network. Medici addresses the need
for an applicationwhich is accessible for general users withmedium level skills, whereas
it also can be used as a research support tool for more advanced users. The graphical
user interface is designed to lower the entry barrier for the former type of users, and
whose focus is on the data analysis per se rather than the process to obtain the data.

The Medici application described in this paper responds to some of the aforemen-
tioned issues, by offering a synthetic data generator for online social network graphs,
which mitigates the need for accumulating real personal data of users, and can be useful
for applied research and development in fields such as population studies for public
resource assignment and medical care, pandemic data analysis, among others.

The algorithm for synthetic data generation was first developed by Nettleton in [14,
15], and in [16] Nettleton and Salas applied a preliminary version of the seed assignment
approach to a data privacy application, in which the seeds were assigned to k-anonymous
groups in order to anonymize them.The authors state that the current paper is an extension
of the arXiv pre-print [17].

The paper is organized as follows: in Sect. 2 some theoretical background is given
regarding the algorithms: R-MAT (“recursive matrix”, graph structure generator), Lou-
vain (community labeling). This is described in relation to the functionality of the appli-
cation and the sequenceof steps for data processing.Then, inSect. 3 a detailed description
is given of the Medici algorithm and how it assigns and propagates user data through
the graph structure. This is followed in Sect. 4 with the empirical testing of the sys-
tem, first a description of the experimental setup, then examples of the data generated
and benchmarking of deviations between different executions. Finally, Sect. 5 gives the
conclusions. The full system source code and runtime is available at our public Github
project [18].

2 Background to Third Party Algorithms

The following describes the two “third party” algorithms: R-MAT and Louvain, which
generate the graph and label the communities, respectively. The third (proprietary) algo-
rithm, Medici, which is the key focus of the work, assigns and propagates the data and
is described later in Sect. 3.

With respect to the choice of algorithms, the focus of the paper is not the graph
generation step, it is the data assignment and propagation step. R-MAT and Louvain and
two widely used and reliable methods in the literature, hence these were chosen. And
then focus was made on the data generation per se. However, it is useful to mention
alternatives, such as those presented in [7, 19] which address issues such as scalability
and degree sequence and distance between nodes.
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2.1 R-MAT

Chakrabarti et al. [20] present R-MAT, a recursivemodel for graphmining. The objective
of R-MAT is to model an existing graph of real data, thus deriving its parameterization
in terms of given descriptor variables. A typical adjacency matrix of {0, 1} values is
used to represent the graph (nodes, edges). The authors state that one of the challenges
in modeling real graphs, such as social networks, is replicating the power law distribu-
tions, skew distributions, and other reported structures, such as the “bow-tie” and the
“jellyfish”, while maintaining a small diameter for the graph. In order to represent this,
a recursive partitioning is carried out, which can be considered as a binomial cascade in
two dimensions. The expected number of nodes ck with out-degree k is given by:

Ck =
(
E
k

) n∑
i=0

(
n
i

)[
ρn−i(1 − ρ)i

]k[
1 − ρn−i(1 − ρ)i

]E−k
(1)

where 2n is the number of nodes in the R-MAT graph (typically n = log2N), N is the
number of nodes in the real graph, ρ = probability of an edge falling into partition a +
probability of an edge falling into partition b, and E is the number of edges in the real
graph. The authors tested the method on two real datasets, “epinions” and “clickstream”.
Descriptive parameters are used such as degree distributions, number of reachable pairs,
number of hops, effective diameter and stress distribution.

2.2 Louvain

The ‘Louvain’ method [21] can be considered an optimization of Newman and Girvan’s
method [22], in terms of computational cost. Firstly, it looks for smaller communities
by optimizing modularity locally. As a second step, it aggregates nodes of the same
community and builds a new network whose nodes are the communities. These two
steps are repeated iteratively until themodularity value ismaximized. The optimization is
based on evaluating the modularity gain, which is done by performing a local calculation
of the change in modularity for a given community, caused by moving each node from
it to an adjacent community.

Modularity [22]:Duringprocessing, the graph is successively divided in components,
and the correctness of the community partitions is measured. The quality metric used
for a given community is called the modularity. For a graph divided into k communities,
a symmetrical matrix e is defined of order k2 whose elements eij are the subset of edges
from the total graph which connect the nodes of communities i and j.

The trace of matrix e, denoted as Tre = ∑
i
eii gives the fraction of edges in the graph

which connect nodes of the same community. Hence, a good division in communities
should obtain a high value for the trace of matrix e. As a quality indicator, the sum of
the rows ai = ∑

j
eij is defined to represent the fraction of edges which connect nodes of

community i. Following on from this, the modularity metric was defined as:

Q =
∑
i

(eii − a2i ) = Tre − ||e2|| (2)
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Where ||x|| indicates the sum of the elements of matrix x. This parameter measures
the fraction of edges in the graph which connect vertices in the same community, minus
the expected value of the same number of edges in the graph with the same community
partitions but with random connections between their respective nodes. If the number
of intra-community edges shows no improvement on the expected value, then the mod-
ularity would be Q = 0. On the other hand, Q approaches a maximum value of 1 when
the community structure is strong. According to [22], the usual empirical range for Q is
between 0.3 and 0.7.

For the current release of Medici, we have adapted Louvain to produce exactly 10
communities (0 to 9), using the “resolution” as anoptimization parameter (approximating
to 1). Note that the “resolution” parameter was incorporated in theGephi implementation
of Louvain from the idea of Lambiotte et al. [23]. A resolution closer to 1 implies a
better “quality” of the result, which is related to the “modularity” quality measure and
the optimum partitioning. In our implementation, if the algorithm does not converge to
10 communities in the predefined timeout (30 s), we aggregate communities 9 to N in
one community (labeled as 9). The community size after resolution optimization tends to
fragment quickly for communities 9 to N, and the aggregate community (9) is generally
one of the smallest with respect to communities 0 to 8 (less than 10% of the sum).

3 Medici

In the following, first an overall vision is provided in Sect. 3.1, then details of the data
assignment and propagation algorithm are given in Sect. 3.2.

3.1 Overall Vision

The following describes the functionality of the synthetic data generator for online
social networks. It follows an easy to use “workflow” sequential structure guiding the
user from the initial data entry through the data definition and generation, followed by
analysis of the generated data and export (Fig. 1). Improvements in this version include
the integration of the R-MAT [20] and Louvain [21] algorithms to create the graph and
assign the community labels, respectively. However, the user can provide their own graph
and community assignment files if s/hewishes. Apart from the “static” information about
each user, the system now also allows the assignment of dynamic data, such as simple
“likes”. This can serve as the basis so that the user can customize and develop more
sophisticated simulations. For this, we make available the Java source code [18, 24] in
our Github repository.

Hence, the file inputs to the program are the social network skeleton structure (nodes
and links) where each node has been assigned a “community label”. If the user wants
to do this, it can be done manually or it can be done with an automated algorithm
such as Louvain [21] (also available in Gephi [23] and included in Medici “as is”).
One limitation is that there must be 10 communities and 10 profiles. This limit was
a simplification for implementation purposes, and as a first step a fixed number of
communities/profiles worked and gave reliable results. As future work a general N
communities/profiles version could be developed. Though this limitation seems a bind,
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Fig. 1. Processing sequence

if youwant less communities you can define somewith very fewmembers (by controlling
the profile percentage definitions) so they are residual and have a minimum effect on the
overall network. If you want fewer profiles you can define some which are identical.

For the graph definition, we have included the default R-MAT algorithm. If you want
to supply a graph from outside the program you can do that but then it’s possible that the
Louvain algorithm cannot establish 10 communities (0 to 9), depending on the size and
complexity of the graph. Note the Louvain algorithm has been modified to aggregate
communities 9 to N as community 9, with a timeout of 30 s on the process.

3.2 Data Assignment and Propagation

The following gives a detailed description of the data assignment and propagation
algorithm, the assignment of seeds, neighbors and any other nodes.

The data generator has the following four main steps:

(i) Choose which nodes will be seeds in each community
(ii) Assign prototype profile to seeds in each community (profile x → community y)
(iii) Assign data to neighbors of each seed in function of seed profile (i.e. neighbors

tend to be similar to seeds). This will have a similarity component (to neighbors
with data assigned) and a random component (to promote a degree of diversity).

(iv) Assign data to remaining nodes (those which still have no data assigned from
steps (ii) and (iii). This will have a similarity component (to neighbors with data
assigned) and a random component (to promote a degree of diversity).

Seed Assignment: The seed assignment has to comply with two criteria:

(v) Each seed node must be at least at distance 3 from any other seed node (in a given
community), so that each sub-graph (with the seed as center) can be modified
without perturbing the adjacent sub-graphs. In order to achieve this, seed nodes
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are added one by one, and checked for distance using a proximity routine. This
routine checks if a given node is an immediate neighbor (distance= 1) or neighbor
of a neighbor (distance = 2). If the given node is not a neighbor or a neighbor
of neighbor, then it must be at distance 3 or more. The number of seed nodes
assigned is initially defined as the total number of vertices in the graph divided by
the average degree.

(vi) The distributions of the characteristics of the sub-graphs formed by the seed node
neighborhoods must be within δ of the corresponding distributions in the complete
graph. The characteristics are defined as: degree distribution, clustering coefficient,
distributions of attribute-values.

Fig. 2. Seed assignment.

Figure 2 shows a generic example of the seed assignment process, for which the
seeds are labeled as a, b and c. We note that each seed is at a shortest distance of three
from any other seed, hence the immediate neighborhoods do not overlap.

The assignment of the seed nodes is actually an optimization process. It is possible
that the random assignment of seeds, especially the first seed, can result in a sub-optimal
assignment. For example, if the first seed is assigned to a major hub node, the average
path length to it of many nodes in the graph will be short.

Recall that we denote the number of seeds as σ and we take as an upper-bound for
the number of seeds to be assigned, the number |V|/dAVG.

The seed assignment process has T tries at randomly assigning y see nodes. If,
after I iterations, σ seeds have not been assigned, then σ is reduced by one and another
try is made. σ is progressively reduced by one until σ seeds are assigned. Finally, the
process tries to add more seeds to the current configuration (to avoid the assignment of
a sub-optimal number of seeds).

Coverage: the assignment of the seed nodes in the manner described has a coverage
of between 20% and 50% of the nodes in the graph. This is because isolated nodes
tend to remain between sub-graphs which cannot be assigned due to the minimum
distance requirement between seeds (≥3) in the same community, and because the seed
sub-graphs cannot overlap.
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Fig. 3. Example of data propagation steps (Karate graph dataset): (Communities) four commu-
nities are identified; (Seeds) seeds assigned to each community; (Neighbors) neighbors of seeds
are assigned; (Others) any remaining nodes are assigned.

Figure 3 illustrates the data propagation mechanism. Figure 3 “Communities” shows
four communities identified in the Karate graph which will have been assigned by the
Louvain algorithm, as indicated by the green, red, blue and grey colors. Next, in Fig. 3
“Seeds” the seeds are assigned to each community, as indicated by the circled nodes
33, 28, 1 and 17, respectively. In this example, due to the small size of the graph, only
four seeds are used, one per community. At this point the profiles corresponding to each
community are assigned to the seeds. This is followed by the assignment of the data
to the neighbors of each seed (Fig. 3 “Neighbors”) as indicated by the dashed circles.
The neighbors are assigned values which “similar” to their seed profiles, depending on
the “similarity threshold” defined. Finally, as shown in Fig. 3 “Others”, any remain-
ing nodes are assigned values which are either similar to the neighbors or randomly
assigned, depending on the control parameter values defined. These are indicated as
dashed squares.

The number of seeds assigned guarantees a good “coverage” of the data, and tries
to minimize the number of unassigned nodes (which are neither seeds nor neighbors of
seeds). So the user can see the coverage and try different number of seeds to see which
gives the best. By default, the number of seeds is equal to about 11% of the number
of nodes in the graph. Also, seed nodes are chosen based on the HITS statistic, which
indicates the nodes which are best connected in a community (i.e. those which have the
most neighbors).

Thus, two aspects are optimized during the process: (i) the maximum number of
possible seeds is assigned, resulting in an optimal or close to optimal coverage of the
complete graph, given the restriction that seeds should be at a distance of three or more
from each other; (ii) the distributions of the characteristics of the seed sub-graphs (seeds
and their neighbors) has a given similarity to the corresponding distributions of the
characteristics in the complete graph (all the nodes of the graph).
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4 Empirical Testing

This section first describes the hardware and software used, together with performance
considerations (4.1), followed by examples of the data generated by the system (4.2),
and finally benchmarking of the deviation of the data distributions between successive
executions of the system (4.3). The system can be initially run in default mode with
completely pre-assigned settings and example graph and community files. The user can
go directly to the “generate data” tab and then to the “results” tab to see the statistics of
the output data.

4.1 Setup, Computational Cost and Performance

The hardware used is a Lenovo laptop with Intel Core i7-7500U, 2.9 GHz, 2 processors,
12 GB RAM and Windows 10, 64 bits. The software used is Eclipse Java IDE for Web
Developers Version 4.9.0 and Java Fx. The R-MAT algorithm is highly efficient and
generates the 1k, 10k and 50k graphs almost instantly on the hardware and software
indicated. The Louvain algorithm is less efficient - during N-fold testing all processing
times for community labeling were less than 30 s for the 1k and 10k graphs. For the 50k
graph a 30 s time limit was assigned, which labels 10 communities with a high quality
modularity. The seed assignment is a computationally expensive process - during N-fold
testing all processing times for seed assignment were less than 60 s for the 1k and 10k
graphs (11% seeds) and less than 300 s for the 50k graph (15% seeds). For graphs up
to 1M nodes it would be recommended to run the system on higher range hardware
and for bigger graphs some of the system would need to be reprogrammed for parallel
computation in a cloud environment. The attributes (eachwith their respective categories)
which describe users (nodes) of the graph are: age, gender, residence, religion, marital
status, profession, political orientation, sexuality, likes.

4.2 Example Data Generated

In Tables 1 and 2 are shown the data generated from one of the executions of the data
generation for the 50k by 250k graph. The three rightmost columns give the number of
users (or nodes) assigned to each attribute-value for (i) the whole graph, (ii) community
4 and (iii) community 1.

In order to interpret the results, we refer to the overall percentages assigned for
each attribute value, and the profiles assigned to each community. For example, in the
overall graph the users are weighted towards young people (age 18–25 and 26–35), with
somewhat more females than males, residence is fairly equitative, and so on.

In Community 4, there is a weighting towards older people (age 66–75 and 76–85),
mainly female, who live in San Jose, mainly Jewish, and so on. This is because the seed
Profile 5 assigned to Community 4 has these characteristics. Likewise, in Community
1, there is a weighting towards younger people (as in the whole graph), slightly more
males, who live in Palo Alto, mainly Christian, and so on. This is because the seed Profile
2 assigned to Community 1 has these characteristics.

By comparing the results with the overall attribute-value proportions for the whole
graph and the seed profiles assigned to each community, we have validated that the output
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Table 1. Attribute-value assignments (age to marital) - 50k nodes by 250k edges.

All Community 4 Community 1

Attribute Value Frequency Frequency Frequency

Age 18–25 10065 43 1935

26–35 10247 48 706

36–45 7517 19 173

46–55 2620 17 87

56–65 8726 92 71

66–75 2922 841 60

76–85 1136 107 88

Gender Male 17041 101 1904

Female 26457 1067 1220

Residence Palo Alto 5040 105 1989

Santa Barbara 9541 109 350

Winthrop 8123 50 141

Boston 8371 31 162

Cambridge 8032 41 176

San Jose 4097 831 302

Religion Buddhist 8617 16 115

Christian 9056 280 2242

Hindu 10962 13 137

Jewish 4007 794 222

Muslim 3861 46 266

Sikh 749 0 0

Traditional
Spirituality

0 0 0

Other Religion 0 0 0

No Religious Affiliation 4743 2 32

Marital Single 14720 190 1839

Married 14596 815 742

Divorced 6043 78 285

Widowed 7860 84 255
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Fig. 4. Medici statistics page (all communities)

produced is as expected, taking into account the stochastic factor in the assignmentwhich
will cause some variations. Figure 4 shows part of the statistics page of the Medici
application, showing the distributions for the age and gender attributes for the whole
graph. The target distribution is shown in orange and the real one in yellow, which takes
into account a grade of random variability in data assignment.

4.3 Stability of the Data Generator: Deviation Between Successive Executions

The system has been initially tested by 3 fold runs (for each parameter setting) for
different graph dimensions (nodes, edges): 1k by 10k (Table 2), 10k by 100k and 50k by
250k (Table 3). The deviation for successive executions is detailed for each overall graph
and for two selected community profile assignments. The results show a good stability,
taking into account the stochastic nature of the data generator. In Table 2, for example,
shows the deviations between three successive runs for populating the same graph and
community structure with 1k nodes and 10k edges. It can be seen that for the whole
graph, the average and standard deviation is in general below 4%, with the exception
of gender which is slightly higher. For two example communities, 1 and 4, the average
and standard deviation does not pass 10%, with the exception of Gender (Community 1)
and Like1 (Community 4). It is noted that, due to the stochastic nature of the see profile
assignment and propagation, variations are expected, but the general distributions should
be fairly consistent for the same graph, communities and seed profile assignments.

Table 3 shows similar statistics for scale up to progressively bigger graphs, and it
can be seen that the deviations become progressively smaller for scale-up: the maximum
average deviation for the 50k graph is 1.5%.
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Table 2. 1k nodes by 10k edges.

All - deviation Community 1 – deviation Community 4 – deviation

Avg. Stdev. Avg. Stdev. Avg. Stdev.

Age 1.8 1.2 6.4 4.1 5.3 3.2

Gender 6.7 4.5 18.4 10.2 9.2 7.2

Residence 1.5 0.9 4.4 3.1 5.1 3.7

Religion 1.8 1.1 2.7 2.0 2.3 1.3

Marital 3.9 2.2 5.6 3.1 9.2 7.1

Profession 0.8 0.6 6.7 4.4 2.0 1.7

Political 1.5 0.9 4.9 3.2 3.5 2.0

Sexuality 1.7 0.9 4.6 3.0 6.6 3.6

Like1 2.8 1.6 9.2 6.1 10.2 8.2

Like2 2.1 1.6 9.7 6.1 9.2 5.1

Like3 3.3 1.8 6.6 3.6 7.1 4.1

Table 3. 50k nodes by 250k edges.

All - deviation Community 1 – deviation Community 4 – deviation

Avg. Stdev. Avg. Stdev. Avg. Stdev.

Age 0.3 0.1 0.7 0.4 0.7 0.4

Gender 0.3 0.2 0.9 0.6 0.7 0.5

Residence 0.3 0.2 0.9 0.5 0.7 0.5

Religion 0.2 0.1 0.4 0.2 0.5 0.3

Marital 0.4 0.2 1.1 0.8 0.6 0.4

Profession 0.2 0.1 0.4 0.3 0.6 0.3

Political 0.2 0.1 0.6 0.4 0.9 0.5

Sexuality 0.3 0.1 1.1 0.6 0.7 0.5

Like1 0.5 0.3 1.3 0.6 1.1 0.7

Like2 0.4 0.3 1.5 0.9 0.6 0.4

Like3 0.7 0.4 1.3 0.7 1.1 0.5

5 Conclusions

The Medici application embodies a self-contained tool for generating synthetic data for
small to medium size social network graphs. Using the R-MAT and Louvain algorithms,
the user can create a network from scratch and label the communities. Then, the user
can define the seed profiles based on user demographics and likes, assign the seeds to
the communities, and finally generate the data using the Medici algorithm.

Although the system currently has the stated limitations, the data diversity and vol-
ume offered can serve for many useful studies and applications. It will also serve for
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software developers to scale up the data processing and addmore flexible functionalities,
such as a variable number of communities and adding new attributes and their values. As
part of future work of scale-up, R3Mat [7] can be evaluated. As future work, dynamic
user activity data is planned to be incorporated into the user affinities with time and place
information.
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Abstract. Question Answering (QA) systems play an important role in
decision support systems. Deep neural network-based passage rankers
have recently been developed to more effectively rank likely answer-
containing passages for QA purposes. These rankers utilize distributed
word or sentence embeddings. Such distributed representations mostly
carry semantic relatedness of text units in which explicit linguistic fea-
tures are under-represented. In this paper, we take novel approaches to
combine linguistic features (such as different part-of-speech measures)
with distributed sentence representations of questions and passages. The
QUASAR-T fact-seeking questions and short text passages were used in
our experiments to show that while ensembling of deep relevance mea-
sures based on pure sentence embedding with linguistic features using
several machine learning techniques fails to improve upon the passage
ranking performance of our baseline neural network ranker, the concate-
nation of the same features within the network structure significantly
improves the overall performance of passage ranking for QA.

Keywords: Question answering · Passage ranking · Deep learning ·
Shallow linguistic features

1 Introduction

Natural language Question Answering (QA) systems have recently been utilized
to support decision analysis and modeling (e.g., [7,19]). Previous studies in the
QA domain show that answer extraction is more effective from passage-level
information compared with the analysis of full-text documents [12]. There is
evidence of positive correlation between the effectiveness of QA and answer pas-
sage ranking [9]. For QA, both the general semantic relevance of a passage to the
question and answer recall are of importance. For instance, given the question
“When did Google start?”, the passage “Google was launched by Larry Page and
Sergey Brin, students at Stanford University” will not be counted as an effec-
tive, answer-containing passage since it does not include the actual answer 1998.
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Specificity of passages (i.e., containing answer candidates) in the QA domain
necessitates the utilization of explicit and shallow linguistic features, especially
from within the passages to be considered in the process of passage ranking, those
that are under-represented in the general semantics of sentences (see Fig. 1).

Fig. 1. Example question and passage cases where part-of-speech of tokens in pas-
sages, named entities, and query term coverage are shown. Answer-containing passages
demonstrate specific linguistic characteristics, e.g., more nominal terms, less pronouns,
and sufficient query term coverage. Note: The questions and passages are taken from
the QUASAR-T development set (see Sect. 2.1 for more details).

Recent advances in fact-seeking QA and passage retrieval have been based
on the utilization of distributed word representations as well as deep learning
structures. The works in [9,15] are based on the utilization of distributed word
embeddings learned using word2vec [10] and GloVe [13] to represent the text of
questions and passages with word-level embeddings and to find the most rele-
vant passages. The work in [15] relies mainly on Convolutional Neural Networks
and word embeddings as the discriminant analyzer to score and rank passages.
The several rankers developed in [9] with LSTMs have been reported to out-
perform another deep learning-based passage retrieval system in [18] that devel-
oped a Reinforced Ranker-Reader QA system. The LSTMs were also employed
in [2] in combination with word embeddings and character embeddings, and
resulted in improvements over several baseline traditional and deep learning-
based answer passage retrieval systems. The work in [11] made use of Bidirec-
tional Encoder Representations from Transformers (BERT) [5]. The evaluation
results of this technique on the TREC CAR and MS MARCO data sets show
significant improvements over some of the state-of-the-art passage ranking tech-
niques.
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Beyond the distributed representation of characters and terms, there have
been efforts to capture semantics of the larger portions of text, such as sen-
tences [3,8] . InferSent [3], for instance, developed sentence embeddings to encode
the overall meaning of sentences. The InferSent encodings have been shown to
generalize well to several natural language processing (transfer) tasks, such as
multi-genre natural language inference and semantic textual similarity analysis.
InferSent embeddings were used in [9] with feed-forward neural networks to train
a passage ranking system which performed well on the QUASAR data set [6].

While previous works in the domain of answer passage retrieval and rank-
ing have made significant progress in retrieving and ranking answer candidate
passages at top ranks through the use of deep textual features (e.g., word and
sentence embeddings), the possible contribution of more explicit utilization of
linguistic features has not been studied.

Our approach to fill this gap is based on the utilization of both sentence-
level semantics and explicit representation of several linguistic passage features.
Focusing on passage ranking only and leaving aside answer extraction to further
machine comprehension stages of QA that are not part of this work, we represent
each sentence with its sentence embedding using InferSent [3]. The sentence
embeddings are fed into a deep feed-forward neural network to predict whether
or not a passage is likely to contain a candidate answer to a question. We then
make use of the linguistic features of passages including token count, noun count,
verb count, adverb count, pronoun count, query coverage, and named entity
count to analyze the contribution of these features in passage ranking and to
improve the final passage ranking effectiveness in terms of mean rank (MR) and
answer recall of passages.

2 Methods

2.1 Data Set

The QUASAR-T QA data set [6] was used in our experiments which includes
training, development, and test subsets, each with short and long passages
retrieved per question (100 short and 20 long passages). We focused on the
short passages in the development and test subsets, each of which containing
3,000 questions. While there are other data sets for QA, e.g., SQUAD [14], the
1-to-many question-to-passage requirements are not met by such data sets to
facilitate passage ranking experiments.

2.2 Deep Neural Network Ranker

The baseline ranker in our analyses was a feed-forward deep neural network
model. We constructed the input feature vector Xi to this ranker similar to the
work in [9] and by concatenating question embedding (qei) and passage embed-
ding (pei) that go through the network structure to find the answer-containing
probability for passage i, as shown in the following equations.
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Table 1. MR and recall (r@top) analysis of our baseline model (BL-NN) and relevant
methods on the test set. The results that are not available (not reported in referenced
works) are shown with n/a.

Method mr r@1 r@2 r@3 r@4 r@5

BL-NN 9.58 0.25 0.39 0.47 0.54 0.58

R3 n/a 0.40 n/a 0.51 n/a 0.54

InferSent n/a 0.36 n/a 0.52 n/a 0.56

Xi = [qe ⊕ pei ⊕ (qe − pei) ⊕ (qe � pei)] (1)

Xflat
i = flatten(Xi) (2)

D(1) = ReLU(W (1)Xflat
i ) (3)

Oi = softmax(W (2)D(1)) (4)

The embeddings for both questions and passages were constructed using
InferSent where the output embedding per sentence has 4096 features. The
input vector X, therefore, included 16,384 features. In cases where the text
included more than one sentence, the embeddings of sentences were vector
summed to create the representative sentence embedding of the entire text. To
train this baseline model, the QUASAR-T development set of questions and
short contexts were utilized. For each question, the contexts were first pre-
processed and pseudo-labeled according to whether they contained the actual
answer to the question. Then, a subset of 1 positive context and 5 negative
contexts were extracted per question to train the baseline model in 500 epochs
without any early stopping criteria or any regularization method. The pseudo-
labeling of contexts resulted in a 2-feature output vector per context; hence,
the output layer of the model is a dense layer including two neurons with Soft-
max activation. We modeled the passage ranking task as a classification prob-
lem similar to [11]; thus, the binary cross-entropy loss function was used, i.e.,
L = −∑

i∈Ppos
log(pi)−

∑
j∈Pneg

log(pj = 1 − pi) where the Ppos and Pneg index
sets represent the positive and negative pseudo-labeled contexts, pi is the answer-
containing probability (class = 1), and pj is the probability of class = 0.

The trained model would then generate a probability per class, i.e., answer-
containing versus answer-free. The answer-containing probability of each passage
was used to rank passages. The loss and accuracy of the model in the training
phase is shown in Fig. 2. Table 1 shows the detailed results of this model when
applied on the test set as compared with two existing, relevant (neural network-
based) systems R3 [18] and InferSent ranker [9] without the utilization of other
lexical semantic features.

2.3 Explicit Shallow Linguistic Features

Distributed sentence representations capture several surface, syntactic, and
semantic characteristics of text [4]. However, in the context of QA, there are
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Fig. 2. Loss and accuracy analysis of the baseline neural network ranker on the
QUASAR-T development set. Note: Higher validation accuracy values are due to the
validation accuracy being calculated at the end of each epoch versus training accuracy
being calculated batch-wise.

other explicit linguistic features that can potentially enhance answer passage
retrieval and ranking and yet they are under-represented in distributed embed-
dings. The explicit linguistic characteristics that we focused on included the
following categories.

First, terms of specific part-of-speech can distinguish between an answer-
containing passage and the one that is less likely to include an explicit answer to a
question. These features include the number of nouns, verbs, adverbs, pronouns,
as well as the general count of tokens within the text of a passage. It can be
argued that for fact-seeking questions, it is less likely that the answer will be
in the form of an adverb (or a verb) while it is more likely to be a noun or
a nominal predicate. In addition, the larger number of tokens can be argued
to have a positive impact on the chances of a passage containing the actual or
candidate answer. Pronouns, on the other hand, can mask the actual answer
within a passage and as such, the smaller number of pronouns may result in
higher quality passages. As one example from the QUASAR-T data set, the
question “Which is considered the most powerful piece on the chess board?” has
contexts such as “The queen is the most powerful piece in the board” and “She
is the most powerful piece on the board”. The correct answer is masked by the
pronoun “She” in the second passage, which makes the passage less effective for
QA purposes.

Second, in fact-seeking QA, the answer is most likely a text snippet that refers
to the name of a location, organization, or a person. In some other cases, the
date, time, or a monetary reference is sought. While named entities have been



Linguistic Features for Answer Passage Ranking 291

used as a category of features for matching answer candidates and questions
in [16], they have not been used for featurizing passages for their likelihood of
answer-containing. We will show that a larger number of named entities are
found in answer-containing passages.

Third, query term coverage within a passage was selected as another signal
to correctly identify answer-containing passages. The argument is on the basis
that correct actual answers to a given question may mostly be positioned in
the close proximity of the same query terms that are mentioned in the text of
the question. This is besides the fact that a larger proportion of query term
coverage also contributes to the semantic relatedness of passages and questions.
These two concepts (proximity of answers to query terms and coverage of terms)
can be found in a more traditional passage retrieval and ranking system called
MultiText [1].

We conducted an exploratory analysis of the above features in the QUASAR-
T development set. The contexts were first pseudo-labeled; then, features were
extracted for every context. There were 35,162 positive and 263,804 negative
(answer-free) contexts. Separated by pseudo-labels (class = 1 indicating answer-
containing passages), Table 2 summarizes the descriptive statistics of the two
cohorts of passages. The chart demonstrates that the medians and distributions
of feature counts have meaningful differences between the two classes of passages
in most cases. A two-tailed statistical t-test was then conducted on the distribu-
tion of each feature in the two passage classes and it was found that, except in
the case of verb counts (p = 0.31), the means of all the other linguistic features
were significantly different from each other at the 95% confidence level (with
p = 0.00). The distributions show that answer-containing passages, on average,
have larger token counts, noun counts, named entity counts, and query coverage
while they also include smaller adverb and pronoun counts. These results were
contradictory to one previous work in [17] which found that verbs can substan-
tially contribute to the task of QA passage ranking. Our findings are, however,
in agreement with the same work in terms of noun counts as [17] reported that
nominal predicates can positively impact on answer passage ranking. As a result,
we preserved all the explicit linguistic features in our experiments.

2.4 Fusion of Linguistic Features and Deep Semantics

2.4.1 Traditional Machine Learning Fusion
In the first attempt to enhance our baseline deep neural network ranker using
explicit linguistic features, we used the answer-containing probability generated
by the baseline ranker in combination with the explicit features extracted for
each passage as the predictor set to re-classify the passages into positive versus
negative classes. A number of traditional machine learning algorithms, includ-
ing logistic regression, Gaussian naive Bayes, decision tree, random forest, linear
support vector machines, and Sigmoid support vector machines, were utilized.
To train each classifier, we applied our baseline neural network ranker on the
QUASAR-T development data set to obtain the answer-containing probabili-
ties (1 positive and 5 negative contexts per question), where a Gaussian noise
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Table 2. Descriptive analysis of linguistic features between answer-free (class = 0) and
answer-containing (class = 1) contexts in the development data set.

Feature class = 0 class = 1 p-value

mean stdv mean stdv

noun count 8.44 6.27 10.94 6.36 0.00

verb count 2.33 1.86 2.32 1.77 0.31

token count 21.83 10.72 25.49 9.79 0.00

adverb count 0.55 0.87 0.53 0.84 0.00

named entity count 2.00 2.01 2.94 2.21 0.00

query coverage 1.86 1.18 2.36 1.25 0.00

pronoun count 0.56 0.97 0.42 0.81 0.00

Table 3. The AUC analysis of the second-level classification of passages using answer-
containing probabilities of the BL-NN ranker and the explicit linguistic features.

Measure LR RF-bCV SVM-sigmoid SVM-linear GNB DT-bCV

AUC 0.59 0.81 0.53 0.48 0.56 0.58

(mean = 0.0 and standard deviation = 0.1) was added to the probabilities for the
baseline ranker was first trained using the same data set. Then, the linguistic fea-
tures of the same development passages were extracted. These features and the
answer-containing probabilities were then normalized using the L2 normalization
technique and were fed into the machine learning techniques for training. Table 3
summarizes the AUC results of the different techniques, where the random forest
and decision tree models went through a 5-fold cross-validation process to find
the best maximum depth of the trees.

From the above machine learning techniques, the best random forest model
found using cross validation (RF-bCV) had the best AUC; thus, it was selected
for ranking of passages in the QUASAR-T test set. This model did not perform
well as shown in Table 4.

2.4.2 Deep Learning-Based Score and Linguistic Feature Fusion
A similar procedure to the traditional machine learning fusion approach (detailed
in the previous section) was taken to train a deep feed-forward neural network
model (with the same structure as in the baseline neural network ranker) in
50 epochs this time. The input to the second-level network (2nd-NN) was low-
dimensional and included the same answer-containing probabilities of the first
baseline model (plus the Gaussian noise for training) as well as the linguistic fea-
tures of passages; hence, the number of epochs was set to a much smaller number
in this experiment (50 epochs). This model, when tested on the QUASAR-T
test set, resulted in a better set of performance measures compared with the
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traditional random forest model in the previous experiment; however, the base-
line neural network model was not improved upon as detailed in Table 4.

2.4.3 Deep Learning-Based Augmentation
In another experiment, the baseline deep neural network model was augmented
with the explicit linguistic features extracted for passages. The augmentation of
these features was done in the middle layer of the network by concatenating the
outputs of the first dense layer (including 10 nodes) with the 7 linguistic features.
The overall process, involving the augmented neural network ranker, is shown in
Fig. 3. The linguistic feature augmentation process is especially structured in the
middle layer instead of the input layer with a large number of nodes (16,384)
to more directly and strongly infuse the effect of the linguistic characteristics
of passages into the neural model. The input vectors to this model include the
same Xi in Eq. 1 as well as LFsi for linguistic features of passage i which go
through the network structure to find the answer-containing probability of the
passage as shown in Eqs. 5–7.

Xflat
i = flatten(Xi) (5)

C(1) = ReLU(W (1)Xflat
i ) ⊕ LFsi (6)

Oi = softmax(W (2)C(1)) (7)

Fig. 3. The schematic view of the linguistically augmented passage ranking process for
QA using a feed-forward deep neural network.

The augmented neural model was trained using the QUASAR-T development
set with the same settings as in the baseline deep neural network model; a
cross-entropy loss function, 500 training epochs, 1 positive passage, 5 negative
passages, no early stopping criteria, and without drop-out or any other type of
regularization. The loss and accuracy of the model in the training cycles were
similar to those of the baseline ranker as shown in Fig. 2.
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Table 4. MR and recall analysis of the rankers developed. aug-NN is the neural model
augmented with linguistic features. The †s indicate statistically significant differences
compared with BL-NN at the 95% confidence level.

Method mr r@1 r@2 r@3 r@4 r@5

BL-NN 9.58 0.25 0.39 0.47 0.54 0.58

RF-bCV 21.44 0.07 0.13 0.18 0.22 0.26

2nd-NN 13.61 0.24 0.36 0.45 0.52 0.56

aug-NN 8.79† 0.30† 0.44† 0.52† 0.59† 0.63†

Table 5. Average loss and average accuracy analysis of the neural rankers developed
on the test questions/passages.

Method avg. loss avg. accuracy

BL-NN 0.3624 0.8869

2nd-NN 0.3580 0.8875

aug-NN 0.3610 0.8876

More importantly, this model outperformed the baseline deep neural network
ranker (BL-NN) with respect to all of the QA-based evaluation metrics in our
experiments, i.e., MR and recall at different levels. The detailed results of this
model along with the other experimental models are summarized in Table 4.
Although the improvements may seem marginal on the surface, the statistical
test of significance on the large number of questions and passages in the bench-
mark data set proved otherwise. The statistical test was based on paired t-tests.

Our augmented neural model reached the performance of the best model in
Table 1 (InferSent ranker) at r@3 and outperformed this model with respect to
r@5 by a margin of 7%. It should be noted that the other comparison methods
(R3 and InferSent ranker) have relatively higher (base) performance values at
r@{1, 3} yet our proposed augmentation technique improves upon our weaker
baseline model (BL-NN) to reach the performance of InferSent ranker at r@3
and significantly outperforms the two comparison methods at r@5. Also, while
the proposed augmentation of shallow linguistic features was only applied on our
BL-NN model and resulted in statistically significant improvements, a similar
positive effect can be expected on the other comparison rankers too.

In terms of the classification performance of the several neural network mod-
els developed, the resulted of a detailed analysis of the average cross-entropy loss
and average accuracy of the models are summarized in Table 5. These results are
on the 3,000 QUASAR-T test questions and passages. As shown in Table 5, the
average loss and accuracy of the models do not differ significantly (all within
1% variance); however, the QA-based metrics of final passage ranking have been
shown to significantly improve using the augmented model.
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3 Discussion

Passages that are more likely to contain specific answers to fact-seeking ques-
tions were shown to present with several linguistic features, mostly at the syn-
tactic and lexical levels, that can further separate them from those that are
less likely to recall any candidate answers. Even in presence of deep semantic
relatedness between questions and passages, surface and explicit features can
eventually be assisting in distinguishing between positive answer-containing and
negative passages and thus in better ranking of answer passages with a vision
of improvements in overall QA effectiveness. The explicit lexical and syntactic
characteristics of passages intrinsically increase chances of the text of a passage
to contain a candidate or a correct answer to the question. The descriptive statis-
tical analysis that we conducted on the two cohorts of pseudo-labeled passages
(positive versus negative) along with statistical tests demonstrated significant
differences between the distributions of the textual features in the two passage
classes with the exception on verb counts. The latter finding regarding verbs is
contradictory to the previous studies that showed verbs play a substantial role
in answer passage retrieval [17].

In addition to the exploratory and descriptive statistical analysis of the sur-
face linguistic features within passages, that suggest there are lexical differences
between likely answer-bearing passages and those that are less likely to recall
a candidate answer, the procedure taken to utilize these features was demon-
strated to play an important role. The mere fusion of surface passage character-
istics with answer-containing probability calculated through a more sophisticated
deep semantic-oriented neural model was shown not to reach high levels of even-
tual answer passage ranking effectiveness measures. This failed experiment with
both traditional machine learning and deep neural network models indicates that
using the explicit linguistic features at a late stage of passage (re)classification
and ranking is not effective.

To understand the relationship between the semantic relatedness measure
of question-passage pairs and the explicit linguistic characteristics of passages,
we used the answer-containing probabilities calculated for the contexts in the
development set as a proxy for semantic relatedness and found the correlation
between this measure and each of the linguistic features. We used the same set of
1 positive and 5 negative passages per question, the same data set that was used
to train the second-level classifiers. As shown in Table 6, verb, adverb, and pro-
noun counts have the lowest correlations with the answer-containing probability
of a passage, the latter two are negative. Noun and named entity counts have
the largest (fair) correlations with the probability measure. None of the features
were overly correlated with the probability of answer-containing, which removes
the possibility of multicollinearity on answer-containing probability, and yet the
method fails in better positioning answer passages.

The set of the same surface textual features combined internally within the
structure of the deep neural network model (concatenated with the middle layer)
fulfill the expectation of improvement over the effectiveness of the linguistic-
feature-free baseline neural model. The statistically significant improvements
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Table 6. Correlation analysis between BL-NN answer-containing probabilities and the
linguistic features of development passages. Note: a.pr = answer-containing probability.

Feature #tokens #nouns #verbs #adverbs #pronouns query coverage #named entities

a.pr 0.48 0.57 0.01 −0.05 −0.14 0.22 0.55

over the performances of the baseline neural ranker support our hypothesis that
the combination of the semantic relatedness of question-passage pairs (the output
of the middle dense layer of the neural network model) and the surface passage
features can improve answer passage ranking for fact-seeking QA.

The three neural network rankers we developed have very similar average
cross-entropy loss and average accuracy values over the test questions and pas-
sages; however, in terms of the passage retrieval-based evaluation metrics (i.e.,
MR and recall), the ability of the rankers in positioning answer-containing pas-
sages at better ranks significantly differ from each other when linguistic features
of passages are augmented within the network structure.

4 Conclusions

We analyzed the effect of several explicit, shallow linguistic features of textual
passages that can enhance the overall effectiveness of answer passage ranking
for fact-seeking QA. Several experiments were carried out to improve upon a
baseline neural network ranker that makes use of deep semantics in sentence
embeddings. The fusion of token count, noun count, verb count, adverb count,
pronoun count, query coverage, and named entity count within passages with the
answer-containing probabilities obtained through the application of the baseline
neural model using traditional machine learning as well as a second-level neu-
ral network did not result in improved passage ranking effectiveness. However,
when the same features were internally augmented with the middle layer of the
baseline neural network ranker, the augmented model significantly outperformed
the baseline ranker with respect to MR and recall at different levels. Our next
steps will focus on more complex neural models and the effect of the infusion
of a more comprehensive set of linguistic features, such as scenario-based and
chunk-based textual relations as well as dependency trees/relationships.

References

1. Clarke, C.L.A., Cormack, G., Lynam, T., Li, C., McLearn, G.: Web reinforced
question answering (MultiText experiments for TREC 2001) (2001)

2. Cohen, D., Croft, W.B.: A hybrid embedding approach to noisy answer passage
retrieval. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR
2018. LNCS, vol. 10772, pp. 127–140. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-76941-7 10

https://doi.org/10.1007/978-3-319-76941-7_10
https://doi.org/10.1007/978-3-319-76941-7_10


Linguistic Features for Answer Passage Ranking 297

3. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learn-
ing of universal sentence representations from natural language inference data.
In: Palmer, M., Hwa, R., Riedel, S. (eds.) EMNLP. pp. 670–680. Association for
Computational Linguistics (2017)

4. Conneau, A., Kruszewski, G., Lample, G., Barrault, L., Baroni, M.: What you
can cram into a single $&!#* vector: probing sentence embeddings for linguistic
properties. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 2126–2136. Association
for Computational Linguistics, Melbourne, Australia, July 2018. https://doi.org/
10.18653/v1/P18-1198

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Burstein, J., Doran, C.,
Solorio, T. (eds.) NAACL-HLT (1), pp. 4171–4186. Association for Computational
Linguistics (2019)

6. Dhingra, B., Mazaitis, K., Cohen, W.W.: Quasar: datasets for question answering
by search and reading. CoRR abs/1707.03904 (2017)

7. Goodwin, T.R., Harabagiu, S.M.: Medical question answering for clinical deci-
sion support. In: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, CIKM 2016, pp. 297–306. Association
for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/
2983323.2983819

8. Hill, F., Cho, K., Korhonen, A.: Learning distributed representations of sentences
from unlabelled data. In: Knight, K., Nenkova, A., Rambow, O. (eds.) HLT-
NAACL, pp. 1367–1377. The Association for Computational Linguistics (2016)

9. Htut, P.M., Bowman, S., Cho, K.: Training a ranking function for open-domain
question answering. In: Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Student Research
Workshop, pp. 120–127. Association for Computational Linguistics, New Orleans,
Louisiana, USA, June 2018. https://doi.org/10.18653/v1/N18-4017

10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word rep-
resentations in vector space. In: Bengio, Y., LeCun, Y. (eds.) ICLR (Workshop
Poster) (2013)

11. Nogueira, R., Cho, K.: Passage re-ranking with BERT. CoRR abs/1901.04085
(2019)

12. Oh, H.J., Myaeng, S.H., Jang, M.G.: Semantic passage segmentation based on sen-
tence topics for question answering. Inf. Sci. 177(18), 3696–3717 (2007). https://
doi.org/10.1016/j.ins.2007.02.038

13. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. EMNLP 14, 1532–1543 (2014)

14. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable ques-
tions for squad. CoRR abs/1806.03822 (2018). http://arxiv.org/abs/1806.03822
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Abstract. This paper presents two novel models: the neural Embedded
Dirichlet Process and its hierarchical version, the neural Embedded Hier-
archical Dirichlet Process. Both methods extend the Embedded Topic
Model (ETM) to nonparametric settings, thus simultaneously learning
the number of topics, latent representations of documents, and topic and
word embeddings from data. To achieve this, we replace ETM’s logistic
normal prior over a Gaussian with a Dirichlet Process and a Hierarchi-
cal Dirichlet Process in a variational autoencoding inference setting. We
test our models on the 20 Newsgroups and on the Humanitarian Assis-
tance and Disaster Relief datasets. Our models present the advantage
of maintaining low perplexity while providing analysts with meaningful
document, topic and word representations that outperform other state
of the art methods, while avoiding costly reruns on large datasets, even
in a multilingual context.

Keywords: Topic modeling · Text mining · Natural language
processing · Deep learning

1 Introduction

Widely used in both industry and academia [6], topic models are among the
go-to set of tools when it comes to unsupervised text exploration. Since its
introduction, the Latent Dirichlet Allocation (LDA) [2] has been used as a basic
canvas for a variety of topic models with different hypothesis sets and use-cases
[4,7,30]. LDA is a two-level model that hypothesizes that in a corpus, pairwise-
independent documents are mixtures of topics that themselves are mixtures of
multinomials applied at word-level. The inference processes [5,13] aim at deter-
mining the mixture proportions for each level. These inference processes have
different inspirations that best fit in different settings [5]. In this paper, we focus
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on neural variational inference [18], as it enables benefitting from both neural
networks and LDA-like topic model properties and advances, while maintaining
good interpretability of the results. The Embedded Topic Model (ETM) [11] is
a particularly interesting example, as it extracts document, topic and word rep-
resentations while handling topic and word similarities. Despite these features,
and as most neural-enhanced topic models, the topic number is considered a
hyperparameter. As a consequence, the user is forced to perform multiple runs
for successful model selection, as it is impossible to guess the number of topics
in a massive amount of text whose topics are unknown by definition. Reruns
are relatively easily feasible for small corpora analysis, however, they come with
important cost concerns when the experiments are run at large scale, such as in
Big Data contexts.

To circumvent the issue, we extend the ETM [11] to nonparametric settings
by devising Embedded Dirichlet Processes and Embedded Hierarchical Dirichlet
Processes. These two Variational autoencoder-based (VAE) topic models auto-
matically infer the number of topics from data thanks to Beta and Gamma
distributions and a stick-breaking construction. Our models present the advan-
tage of maintaining low perplexity while providing analysts with meaningful
document, topic and word meaning representations that outperform other state
of the art methods, while avoiding costly reruns on large datasets. Our work
is an additional step towards building extensive text summarization algorithms
that can handle massive streams of text. We primarily focus on maintaining a
trade-off between predictive power and interpretability, as literature shows that
the sole goodness of fit does not correlate with human judgement [8].

The paper is organized as follows: Sect. 2 introduces general background on
neural topic models and their capabilities to scale to massive amounts of data.
Section 3 also provides background on our work, with an emphasis on the ETM
and the Dirichlet Process. We present our models in Sect. 4, along with their opti-
mization objectives. Section 5 is dedicated to empirical studies. Finally, Sect. 6
presents our both our conclusions and future work directions.

2 Related Work

Neural topic models emerged following works on black-box variational inference
[18,24]. These works aim at providing a framework for graphical model infer-
ence without having to entirely devise a new algorithm at each modification.
The framework makes working with processes comparable to G. Box’s loop [3]
easier, as it alleviates the bottleneck of inference by using neural networks to
learn both model and variational parameters from data in directed probabilistic
models. VAEs [18] are the most famous realization of the framework. They con-
sist of two neural networks working together: a neural network called encoder
first learns the parameters for a given family of variational distributions and is
trained to approximate a probabilistic prior. A common probabilistic setting for
VAEs is a Gaussian prior on a Gaussian variational distribution. The second
neural network called decoder uses a sample from the variational distribution
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(the “code”, or latent variable) to reconstruct the data. The latent variable has
inferior dimensionality with respect to the original data, thus making VAEs a
technique for both latent variable extraction and dimensionality reduction. The
way VAEs work reflects on the training objective, where the reconstruction loss, -
the log-likelihood of the reconstructed data with respect to the original data -
is regularized with the Kullback-Leibler divergence between the family of varia-
tional distributions and the prior. The setting applies to topic modeling, where
the latent variables to infer are usually document-topic and word-topic matri-
ces. Last but not least, model optimization is done using stochastic variational
inference, thus enabling the whole setting to scale to massive streams of data,
text included.

One of the earliest neural topic extractors that follow the VAE logic is the
Neural Variational Document Model [19]. The setting, however, suffers from pos-
terior collapse due to its Gaussian prior, which led to the development of the
ProdLDA [25]. The latter model tries to approximate a Dirichlet prior thanks to
its proximity to the logistic normal distribution. ProdLDA makes topic model-
ing with variational autoencoders stabler, and has served as a basis for further
developments. Notable works include TopicRNN [10], Gaussian softmax and
steak-breaking constructions [20], and ETM [11]. Dieng et al.’s work both include
unsupervised word information, under both sequential form [10] and embedding
form [11]. Diverging with ours, these models are fully parametric with respect
to the number of topics. Contrasting with these works, Miao et al. [20] and
Ning et al.[23] propose unsupervised settings, thanks to RNNs and to VAE for
Dirichlet Processes [22], respectively. Still, there is no notion of word linking
within these works. Literature presents an extensive research that aim at includ-
ing word similarity in topic models. Most of these works treat semantic units as
supporting information useful for topic rendering, thus making them auxiliary
additions. Other methods switch priors to include some linking between words,
tweak word assignment to the topics [9,16,29], or use pre-trained embeddings.
The process even works in nonparametric settings, as reported in the spherical
Hierarchical Dirichlet Process (sHDP) [1]; sHDP, though, does not conjointly
learn word embeddings with topics, and needs analysts to provide previously
trained word vectors. Contrasting with these approaches, our models’ learning
mode is fully unsupervised with respect to both the number of topics and latent
representations (word, documents and topics), and do not need pre-training of
any kind.

3 Background

Embedded Topic Model. ETM [11] extends the Latent Dirichlet Alloca-
tion [2] to include CBOW-like embeddings [21] in its generative process. The
algorithm learns word embeddings from data by using entire document con-
texts instead of surrounding words. The contexts themselves are topic embed-
dings that are visualizable in the same space as the word embeddings. It is also
possible - yet optional - to initialize the embedding layers with pre-fitted and
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more complex word representations, including words that do not appear in the
dataset at hand. In this context, the model will still fit representations for the
additional words according to their neighbourhood. ETM shares LDA’s mixture
assumptions, except that in contrast with the latter, words and topics can show
similarities in their embedding space. ETM scaling is achieved by means of a
VAE setting [18], which comes to the cost of a logistic normal prior instead of a
Dirichlet to work with the explicit reparameterization trick.

Dirichlet Process and Stick-Breaking Construction. Stick-breaking con-
struction for mixture model priors is often involved in Dirichlet Process-based
models, topic models included [14,26]. Ishwaran & James [17] define a stick-
breaking prior (SBP) as a random measure of the form G (·) =

∑∞
k=1 πkδζk

,
where δζk

is a discrete measure concentrated at ζk ∼ G0, a draw from a base
distribution G0. The πk terms are random weights that do not depend on G0,
chosen such 0 ≤ πk ≤ 1, and

∑
k πk = 1 almost surely. The following procedure

enable weight sampling:

πk =
{

vk if k = 1
vkΠj<k (1 − vj) for k > 1 (1)

with vk ∼ Beta (α, β). When α = 1, the Beta distribution is the stick-breaking
construction for the Dirichlet Process. This setting is also referred to as Griffiths,
Engen and McCloskey (GEM) distribution. The GEM distribution takes a single
concentration parameter α0 that equals to the β parameter in the Beta distribu-
tion. Nalisnick et al. [22] have successfully adapted stick-breaking for Dirichlet
Processes to VAE settings. They use a GEM prior over a Kumaraswamy dis-
tribution instead of a Beta due to its challenging sampling with the explicit
reparameterization trick.

Implicit Reparameterization Gradients. Explicit reparameterization
[18,24] is key to computing low-variance gradients of continuous random vari-
ables. This technique, however, works better with location-scale distributions,
and exclude a number of continuous ones. The Beta family of distributions is
among them, Dirichlet included. Figurnov et al. [12] proposed implicit reparam-
eterization, that not only permits using Gamma-based distributions1, but also
faster sampling and computing more accurate gradients with unbiased estima-
tors. Comparably to the explicit reparameterization, implicit reparameterization
builds on a standardization function Sφ (z) that removes the dependence on the
parameters of the variational distribution when applied to a sample from the
very same distribution. In explicit reparameterization, this function needs to be
continuously differentiable with respect to its argument and parameters, and
invertible. In implicit reparameterization, however, computing the gradients for
the latent variables with respect to the variational distribution parameter only
requires differentiating the standardization function, thus making the inference
process resource savvy.
1 Beta samples are computable from Gamma samples, see [12] for more details.
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4 Our Models

4.1 The Embedded Dirichlet Process

The Embedded Dirichlet Process (EDP) is a nonparametric, VAE-based [18]
topic model that infers the number of topics from the dataset at hand. Depend-
ing of the reparameterization trick, the model places a GEM prior either on a
Kumaraswamy distribution (explicit) or a Beta distribution (implicit) to achieve
this adjustment. Contrasting with ETM, EDP uses a GEM prior instead of a
logistic normal. GEM not only enables nonparametric topic inference; it is also
more expressive as it is strongly related to the Dirichlet distribution. The Dirich-
let Process itself is indeed considered an extension of the Dirichlet distribution.
Also, there is no need to constrain the prior to the simplex as shown in Dieng et
al. [11]. Similarly to ETM, the EDP decomposes the word-level in a dot product
between the (transposed) context embeddings φ and the word embeddings ρ. As
such, it benefits from the same abilities to find topics and embedding spaces, to
handle unseen words and to regroup stopwords.

Let {w1, . . . ,wD} be a corpus of D documents, where wd is a collection of
Nd words. Each document is represented as a bag of words xd. To complete the
generative process, we need to compute the joint distribution:

Pr
(
w1:N , π, θ̂1:N | α0, Θ, β

)
= Pr (π | α0)ΠN

i=1Pr
(
wi | θ̂i, β

)
Pr

(
θ̂i | π,Θ

)

(2)
where Pr (π | α0) = GEM (α0), Pr (θ | π,Θ) = G (θ;π,Θ), and Pr (w | θ, β) =
σ (θβ). For simplicity, we denote the dot product between embedding matrices
with β = σ

(
ρT φ

)
where σ (·) is the softmax function. We use a family of varia-

tional distributions whose parameters are inferred with multilayer perceptrons to
bound the log-marginal likelihood, as described in [18]. We refer to this bound-
ing as the evidence lower bound (ELBO), which is a function of both the model
parameters and the variational parameters, and that we seek to maximize:

L (w1:N | Θ,ψ, β) = Eqψ(ν|w1:N ) [logPr (w1:N | π,Θ, β)]

−KL (qψ (ν | w1:N ) ‖ Pr (ν | α0))
(3)

where qψ (·) denotes the family of variational distributions, ψ denotes the neural
network parameters, and v denotes the weights for the stick-breaking step. We
denote the neural networks with NN , and feed them bag of words x. We use
the Adam optimizer to fit the model for both the variational parameters and the
distribution parameters.
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Algorithm 1: Inference process for the EDP model
1 Initialize model and variational parameters;
2 for i ← 1 to Nbatches do
3 Compute β = σ

(
ρT φ

)
;

4 Choose a minibatch B of documents;
5 foreach document d in B do
6 Get a bag of words representation xd;
7 Compute a = NN (xd;ψa);
8 Compute b = NN (xd;ψb);
9 Sample v ∼ Beta (a, b) or v ∼ Kumaraswamy (a, b);

10 Compute π = (π1, π2, . . . , πK−1, πK) =
(
v1, v2 (1 − v1) , . . . , vk−1Π

K−2
l=1 (1 − vl),ΠK−1

l=1 (1 − vl)
)
;

11 foreach word w in the document do
12 Compute Pr (wdn | π) = σ (πβ.,wdn

)
13 end
14 end
15 Estimate the ELBO (Eq. 3);
16 Update model and variational parameters through backpropagation;
17 end

4.2 The Embedded Hierarchical Dirichlet Process

In the precedent setting, the concentration parameter α0 is treated as a hyperpa-
rameter. However, this hyperparameter greatly influences the number of breaks
and, consequently, the number of topics. To constrain topic growth and avoid
topic redundancy, we set a corpus-level prior on the base distribution. As the
GEM distribution is equal to a Beta distribution whose first shape parameter
is equal to 1, we can use the Gamma distribution parameterized with δ1 and
δ2 as a conjugate prior for the GEM distribution. The ELBO then becomes the
following:

L (w1:N | Θ,ψ, β) = Eqψ(ν|w1:N ) [logPr (w1:N | π,Θ, β)]

+Eqψ(ν|w1:N )q(α|γ1,γ2) [logPr (ν | α0)]

−Eqψ(ν|w1:N ) [log qψ (ν | w1:N )]

−KL (q (α0 | γ1, γ2) ‖ Pr (α0 | δ1, δ2))

(4)

5 Experiments

5.1 Datasets

The experiments feature the 20 Newsgroups (20NG) and the Humanitarian
Assistance and Disaster Relief articles (HADR) [15] annotated datasets. Note
that HADR comes with a lexicon we’ll use for qualitative estimation of results.
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Both datasets consist of collections of articles about several topics: 20 topics
in the case of 20 Newsgroups, and 25 topics for HADR. The 20 Newsgroups
contain 18846 articles, while HADR contains approx. 504000 ones in different
languages. Due to technical limitation for this work, we retained a random sub-
set of 20000 HADR articles for our experimentations. In each case, we used 85%
of the entire dataset for the training sets, 10% for the validation sets and 5% for
the test sets. We filtered out words that do not appear in at least 4 documents
and removed stopwords to accommodate for our computational capabilities, thus
yielding V -vocabularies of 28307 words from 20 Newsgroups and 32794 words
from HADR.

5.2 Training Settings

We compare our results with Ning and et. al.’s iTM-VAE-Prod, iTM-VAE-G [23]
and ETM [11]. These three models all include black box neural inference with
explicit reparameterization tricks, although with different probabilistic settings.
ETM uses a logistic normal prior on a Gaussian, and is a parametric topic model.
iTM-VAE-Prod, is a nonparametric topic model that also places a GEM prior on
a Kumaraswamy distribution, but the model does not include any kind of word
similarity. For further study, we also adapted iTM-VAE-Prod to include implicit
reparameterization, thus placing a GEM prior on a Beta distribution. To avoid
posterior collapse and stabilize VAE trainings, we used batch normalization with
a batch size of 1000 documents, and chose Adam with a learning rate of 0.002.
For each model, we optimized the ELBOs for both the model and the variational
parameters simultaneously. We performed exponential decay on both first (0.95)
and second moment (0.99) estimates. We also used weight decay (1.2×10−6), but
we did not use KL-annealing. Last but not least, and following [11], we normal-
ized bag of word representations of documents by dividing them by the number of
words for document length accommodation. For each model, we used multilayer
perceptrons with two hidden layers of 100 neurons. As for prior parameters, we
set α = 1 and β = 5 for both iTM-VAE-Prod and EDP, δ1 = 1 and δ2 = 20 for
both iTM-VAE-G and EHDP, and a standard Gaussian for ETM. We kept the
exact same settings for both datasets. We give parametric models capacities for
50 and 200 topics, and nonparametric models capacities for up to 200 topics, with
a truncation level of 50 for hierarchical versions of the Dirichlet Process. All the
aforementioned parameters, including distribution parameters and encoder sizes
were selected with cross-validation using the metrics described below.

5.3 Metrics

In practice, analysts require a topic model to provide both good insights about
the topics and good predictability of unseen documents. Most topic models,
however, are only trained and selected from a statistical point of view, with topic
coherence computed periodically due to its expensiveness. In this configuration,
coherence comes as an additional indicator that is almost set apart from the
training process. As our work focuses on maintaining a fair trade-off between
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goodness of fit and interpretability, we select our models based on a topic quality -
perplexity ratio during the validation step.

Measuring Goodness of Fit. Perplexity is a common metric in both topic
and language modeling. Its formula is the following: exp

(
− 1

D

∑D
d=1

1
|wd|

logPr
(
wd

) )
. D stands for the number of documents, and wd is the number of

words in the d-th document. As the ELBO is an upper bound on perplexity, we
use it to compute the indicator. Perplexity’s main interest is for assessing the
model’s predictive power; the lower its value, the better. We compute perplexity
following Wallach et al. [28], i.e. during a document completion task.

Measuring Topic Quality. Similarly to [11], we consider topic quality to
depend on both redundancy and meaningful contents. As a consequence, we
compute topic quality as the product of topic diversity and topic coherence.
Topic diversity is the ratio between the number of unique tokens among the top
10 words in the topic list and the total number of words in this top 10. The higher,
the better. As for coherence, we use the normalized pointwise mutual information
(NPMI) to measure term co-occurrence in the corpora. Topic coherence (TC) is
computed with the following equations:

TCNPMI =
1
K

K∑

k=1

1
45

10∑

i=1

10∑

j=i+1

f
(
w

(k)
i , w

(k)
j

)
(5)

where f
(
w

(k)
i , w

(k)
j

)
=

log
P r(wi,wj)

P r(wi)P r(wj)
− log Pr(wi,wj)

.

5.4 Results

Nonparametric topic models that use the explicit reparameterization trick all suf-
fered posterior collapse during the experiments. They started producing NaNs
as soon as the second epoch; as a consequence, we exclude them from our analy-
sis. The phenomenon, however, confirms that implicit reparameterization yields
value as it enables building more robust probabilistic settings. As for the other
algorithms, we normalized perplexity following Dieng et al. [11], and found that
they all have similar predictive powers, i.e., normalized perplexities. Thus, and
according to our selection criteria, topic quality is predominant to determine
the best models. Table 1 displays topic quality for every model that did not
experience posterior collapse. Our Embedded Hierarchical Dirichlet Process sig-
nificantly outperforms the other techniques in terms of topic quality, even ETM
and EDP with implicit reparameterization, despite these algorithms sharing the
same decoder as EHDP. In addition, note that the NPMI only takes into account
the co-occurrence of words in a single document, when word embeddings is cross-
corpora. Imagine two documents (1 and 2) and three words A, B, and C. Let A
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and B appear together in the first document, and B and C appear together in
the second document. Similarly to a transitive relation, word embeddings will
find that if A and B are close, and if B and C are close, then A and C also
exhibit some similarity. The NPMI will not take this aspect into account. As
a consequence, and for these very reasons, we believe that the NPMI under-
stimates coherence in document models with word embeddings. Besides, model
optimization is only performed with respect to the goodness of fit. Model coher-
ence is treated as an additional indicator for model selection, i.e. that we use
coherence to choose amongst models with similar goodness of fit. We hypothe-
size that involving model quality in the optimization process may improve the
results. This inclusion could be some form of regularization. As for topic cov-
erage (Table 2), EHDP falls second to iTM-VAE-G, but does not collapse to a
single topic as its nonparametric pairs. These results clearly show that EHDP is
a robust technique with strong ability to adapt to datasets with large vocabular-
ies, even when augmenting the number of words by nearly 16% when switching
from 20 Newsgroups to HADR.

Table 1. Topic quality per dataset and per number of topics. Best results are in bold.

Models Diversity Coherence Quality
20NG HADR 20NG HADR 20NG HADR

# Topics 50 200 50 200 50 200 50 200 50 200 50 200

ETM 0.47 0.32 0.45 0.28 0.15 −0.06 0.15 0.07 0.07 −0.02 0.07 0.02

iTM-VAE-G 0.91 1.0 0.10 0.16 0.09 0.16

EHDP 0.52 1.0 0.38 0.32 0.20 0.32
iTM-VAE-Prod - implicit 1.0 1.0 0.04 0.12 0.04 0.12

EDP - implicit 1.0 1.0 0.04 0.08 0.04 0.08

Table 2. Topic coverage with respect to human judgement.

Datasets 20NG (%) HADR (%)

iTM-VAE-G 10 (50%) 1 (4%)
EHDP 9 (45%) 8 (32%)
iTM-VAE-Prod 1 (5%) 1 (4%)
EDP 1 (5%) 1 (4%)

Table 3 shows the topics extracted from HADR with EHDP2. While our
model did not detect as much topics as human annotation, it fused some of them.
2 In topic 1, rly refers to the railway. In topic 2, gva refers to Geneva, Switzerland,

while dhagva means UN Department of Humanitarian Affairs in Geneva, and Spaak
is a Belgian politician involved with humanitarian relief. In topic 3, tpc refers to the
Tropical Prediction Center, and nwc refers to the National Weather Service. Finally,
in topic 5, drc means Democratic Republic of the Congo.



308 M. Palencia-Olivar et al.

For instance, in HADR, landslides, rains and floods are three distinct topics,
while EHDP’s fourth topic mixes them. While this feature is useful for getting
more summarized results, it can hinder document classification due to inter-
twined variables. The last topic, i.e. the French stopwords, is pure serendipity.
In [11], the authors show that ETM can handle stopwords and separate them in a
distinct topic, but ETM is only tested in monolingual settings. HADR, however,
is a multilingual dataset. As it seems, some documents in French remained after
we filtered the dataset. EDHP still managed to distinguish stopwords among the
vocabulary, while classifying them by language. We explain this result by the
facts that our embeddings work with contexts, and that French words are much
more likely to appear within French documents. Despite its accidental origin, the
result is interesting, as multilingual topic modeling and text mining is still an
open issue [27,31]. To confirm our intuition about multilingual topic modeling,
we take benefit from our model’s ability to generate embeddings. In particular,
we extracted the 50 nearest neighbors of our French stopwords. Table 4 below
shows an example. As expected, most of the neighbors are also French words,
including non-stopwords. However, as we get lower in the ranking, non-French
words start to appear (in bold). We hypothesize that in a multilingual corpus,
some words do appear in several languages, especially event-related nouns, for
instance. We think these words can act as pivots to link words from other lan-
guages, thus potentially enabling both supervised and unsupervised cross-lingual
topic modeling with no extra adaptations.

Table 3. Complete list of topics extracted from HADR by the EHDP.

Topic Word list

India & Bangladesh tongi, manu, gorai, rly, storey, serjganj, kanaighat
United Nations gva, dhagva, metzner, masayo, pbp, spaak, pos
Weather tpc, nws, knhc, outward, forecaster, accumulations, ast
Floods & landslides floods, landslides, padang, flooding, rain, mudslides,

sichuan
Africa drc, lusaka, monuc, burundi, darfur, congolese, amis
Economic development development, financing, macroeconomic, management,

reduction, usaid, sustainable
Politics & diplomacy paragraph, decides, resolution, pursuant, vii, welcomes,

stresses
French stopwords les, qui, de, que, à , une, des
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Table 4. 50 nearest neighbors of the “les” french stopword in decreasing order. Non-
French words appear in bold.

6 Conclusion and Future Work

In this paper, we developed two nonparametric models: the Embedded Dirich-
let Process and its hierarchical version, the Embedded Hierarchical Dirichlet
Process. We found that EHDP outperforms other state of the art algorithms in
most configurations, and also shows signs of increased robustness to adapt to the
dataset at hand. Besides, we found that EHDP can handle stopwords and make
regroupments in a multilingual environment. As for its summarization capabil-
ities, we noticed that the algorithm tend to combine several human-annotated
topics into a single one. Future work will aim at exploring EHDP’s multilingual
capabilities and at including a nested Chinese Restaurant Process (nCRP) in its
design to get more precise topics with a hierarchy. Last but not least, and as
a third research direction, we will investigate alternatives to the NPMI to use
with word embedding-enabled models.
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Abstract. From cybersecurity to life sciences, anomaly detection is con-
sidered crucial as it often enables the identification of relevant seman-
tic information that can help to prevent and detect events such as cyber
attacks or patients heart-attacks. Although anomaly detection is a promi-
nent research area it still encompasses several challenges, namely regard-
ing results evaluation in real-world unlabelled and imbalanced datasets.
This work contributes to understand and compare the behaviour of dif-
ferent evaluation metrics, namely classic metrics based on positive and
negative rates, and density based metrics without classes information.
We experiment five state-of-art anomaly detection approaches over two
datasets with contrasting characteristics regarding dimensionality or con-
tamination. Each metrics’ ability to give trustful results is analysed
regarding different datasets or approaches properties focusing on the pos-
sibility of evaluating real-world unsupervised learning models using den-
sity metrics.

Keywords: Anomaly · Detection and learning · Evaluation · Metric

1 Introduction

Anomalies in data series have been earlier described as occasional observations
that deviate from the most common behaviour in the series [12]. Real world data
series are frequently characterized by being dynamic, noisy and irregular, having
both categorical and real valued dimensions. Seasonality and context are also rel-
evant factors. While anomaly detection approaches strongly depend on dataset
properties [1,5], other complexities sustain challenges in this research area.

Although most real-world datasets are unlabelled, meaning that there is no
information on which observations are regular or abnormal, research works fre-
quently experiment over labelled datasets in order to facilitate the evaluation
process. Multiple authors [7,9,18] underline that there is no correct evaluation
metric for unsupervised anomaly detection.

This work focuses on this evaluation challenge, by comparing the behaviour
of different metrics when applied to the anomaly detection task in very different
datasets and approaches. We compare two types of metrics: (a) based on true
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and false positive and negative rates such as Receiver Operator Characteristics
and Precision-Recall curves, and (b) Excess-Mass and Mass-Volume curves, both
density based metrics that do not use classes information.

Our experiments indicate that the studied density metrics frequently present
high or very high correlation with reference metrics. Because they do not depend
on labelled information, rather they do on class probabilities function, they can
be considered when anomaly detection tasks target unlabelled datasets.

In the following sections of this paper we present the fundamental concepts
and related work in Sect. 2. Section 3 introduces the experimented evaluation
metrics while the experimental process and results analysis is done in Sect. 4.
Finally conclusions, are drawn in Sect. 5.

2 Background Knowledge

The definition of anomaly (also found as outliers, exceptions, faults or discordant
observations) has been revisited since 1969, when Frank Grubbs [12] identified
it as unusual behaviours of isolated samples or groups of samples. Chandola et
al. [5] defined Anomaly as a pattern that do not follows an expected behaviour.
While this generic definition can be intuitively illustrated onto three dimensions,
higher dimensional spaces will escape human visualization capabilities resulting
in human intuition loss. Most anomaly detection approaches deal with non tem-
poral univariate series as recognized in different overviews [1,5,13,15].

Previous research has been published regarding the comparison of anomaly
detection approaches, some focusing neighbourhood based methods [4] by Cam-
pos et al. or time-series focused detection by Lavin and Ahmad [17]. Goldstein
et al. [11] published a broader analysis focusing density and neighbourhood meth-
ods, but included a support vector machine and a dimensionality reduction based
approach.

Although some updated relevant work in anomaly detection has been pub-
lished [2,16,20,21], there is still no coverage regarding the comparison of this
methods or the analysis of their application in unsupervised contexts.

Regarding performance evaluation, the use of simple statistical metrics such
as accuracy are invalidated by imbalanced datasets, where a naive classifier pre-
dicting always the majority class would have an accuracy of 99% if the dataset
contamination was 1%. Research works use Receiver Operator Characteristic
curve as a standard performance measure in supervised or semi-supervised con-
texts, by calculating rates using classes information (i.e. labelled datasets). Com-
ing from statistics research area, Excess-Mass [10] and Mass-Volume [6] are den-
sity based evaluation techniques already experimented in the anomaly detection
task. Both assume the possibility of ranking observations level of abnormality
without any knowledge about classes (i.e. unlabelled datasets).

3 Evaluation Metrics

Most anomaly detection problems are characterized by very imbalanced classes,
invalidating the use of some evaluation methods such as Accuracy. Other
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measures such as Precision and Recall (PR) or Receiver Operator Character-
istic (ROC) have the preference of researchers due to their better behaviour
when dealing with imbalanced classes. The ROC curve is created by calculat-
ing the True Positive Rate (TPR) (see Precision Eq. 2) and False Positive Rate
(FPR) as defined by Eq. 1, in a varying threshold. PR curve, is also calculated
by iteratively calculating Precision and Recall values for different thresholds (see
Eqs. 2 and 3).

FPR =
False Positives

False Positives + True Negatives
(1)

Precision =
True Positives

True Positives + False Positives
(2)

Recall =
True Positives

True Positives + False Negatives
(3)

Clémençon and Jakubowicz [6] proposed to leverage Excess-Mass [18] as an
evaluation method applicable both in supervised or unsupervised approaches.
Nicolas Goix et al. [9,10] further developed this work by testing Excess-Mass
(EM) as an abnormality ranking metric, comparing its results against Mass-
Volume, Receiver Operator Characteristic and Precision-Recall curves. Both
Excess-Mass and Mass-Volume metrics are supported by aligning a probabil-
ity density function and the classifier scoring function assuming data follows a
normal distribution F and anomalies occur in the tail of F . The density function
s is defined w.r.t. the Lebesgue measure of dimensions Rn, which means defined
in terms of the n-dimensional volume sets of the distribution (see the example
in Fig. 1).

Fig. 1. Volume sets of a gaussian mixture distribution in two-dimensional space.

EM and MV have an inverted correlation, where high EM scores will cor-
respond to low MV scores, by varying the threshold t of tα as illustrated by
Fig. 2.
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Fig. 2. Excess-Mass (EM) and Mass-Volume (MV) curves.

Considering s ∈ S as a scoring function, t > 0 and α ∈ (0, 1), both Eqs. 5
and 4 depend on the classifier scoring function f(x). that approximates the
original distribution with t close to 0 (see [7,9,10] for detailed definitions).

MVs(α) = inf
u≥0

Leb(s ≥ u) s.t. P(s(X) ≥ u) ≥ α (4)

EMs(t) = sup
u≥0

P(s(X) ≥ u) − tLeb(s ≥ u) (5)

Since our experimental work focuses on binary classification in imbalanced
datasets we also included Precision (Eq. 2) and Recall (Eq. 3) metrics for results
comparison.

4 Experimental Analysis

Our experimental process is focused on three pillars: the metrics, the selected
datasets, and state-of-art anomaly detection approaches. We choose to include
some of the most prominent approach families widely recognized in different clas-
sification tasks, namely: (1) Local Outlier Factor, (2) Long Short-Term Mem-
ory Neural Network, (3) Support Vector Machine, (4) Isolation Forest and (5)
Gaussian Mixture models. Although this work focuses on unsupervised anomaly
detection, we chose to include supervised ones in order to have a broader problem
analysis.

The (1) Local Outlier Factor (LOF) [3] is an unsupervised density based app-
roach that calculates the degree of an observation being abnormal considering
the k nearest neighbours. The calculated degree is based on the Local Reach-
ability Density (LRD) of each sample and it is calculated based on distance
calculations against n neighbours. The final LOF score for each observation is
obtained by comparing k neighbours LRD. (2) A Long Short-Term Memory
Neural Network [14] is a Recurrent Neural Network type of architecture that
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provides feedback connections between cells, enabling the network to keep mem-
ory over arbitrary time intervals. (3) A Support Vector Machine [8] aims at
finding the decision boundary that best separates the different classes of obser-
vations. The boundary is obtained by defining an hyper-plane. (4) An Isolation
Forest (IF) is an unsupervised approach consisting in several decision trees that
try to isolate abnormal samples. Each tree randomly selects a subset of fea-
tures and data subsets for each calculation in order to avoid over fitting. The
recursive process of splitting observations in a tree structure generates shorter
paths, potentially associated to abnormal observations. Finally, the (5) Gaus-
sian based approach [19], or Elliptic Envelop model, is an unsupervised method
that assumes data is normally distributed. It leverages the Minimum Covariance
Determinant to find the observations having lowest determinant.

4.1 Approaches Hyper-Parameters Values Definition

To train the LSTM Neural Network based approach we tested every combination
of the following hyper-parameters: epochs [10, 50, 100], batch size [10, 50, 100],
dropout rate [0.1, 0.5, 0.75, 0.9], neurons [1, 10, 25, 50, 100], init mode [‘uniform’,
‘normal’, ‘zero’, ‘glorot normal’] and activation [‘softmax’, ‘relu’, ‘sigmoid’, ‘lin-
ear’]. The network is has one LSTM layer with 50 memory units and a Dense
output layer with a single neuron and a sigmoid activation function returning
binary predictions.

The LOF approach was tested by varying the number of k neighbours and
with different distance metrics: Number of Neighbours (k) [5, 20, 50, 100, 200] and
metric [‘cosine’, ‘mahalanobis’]. The metrics were chose regarding the different
datasets dimensionality characteristics.

Isolation Forest trees were fit with random subsets of the training data (using
sample-with-replacement) and tested against all combinations of the following
hyper-parameters: maximum samples [250, 500, ‘auto’], n estimators [50, 100,
250, 500] and max features [0.3, 1, 5].

The Gaussian or Elliptic Envelop approach was tested considering two differ-
ent assumptions, namely, if the gaussian distribution was assumed to be centred
or not, and finally the SVM was instantiated using: kernel [‘rbf’, ‘poly’], gamma
[1e−3, 1e−4] and nu [0.001, 0.01, 0.1, 1].

4.2 Datasets: Harvard Dataverse and Numenta Anomaly
Benchmark

For the experimental phase of this work we used two open access datasets, (1)
the Harvard Dataverse, a multivariate non temporal dataset with different levels
of contamination, and (2) Numenta Anomaly Benchmark dataset, a collection
of highly imbalanced univariate temporal series. These were selected because
they cover a wide range of data series characteristics and are frequently used
by the research community. Dataverse series contamination ranges from 0.149%
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Table 1. Harvard Dataverse multivariate series

Name N. samples N. features Inliers Outliers % contamination

aloi-unsupervised-ad 50000 27 48492 1508 3.016

annthyroid-unsupervised-ad 6916 21 6666 250 3.615

breast-cancer-unsupervised-ad 367 30 357 10 2.725

kdd99-unsupervised-ad 50000 29 50000 0 0.000

letter-unsupervised-ad 1600 32 1500 100 6.250

pen-global-unsupervised-ad 809 16 719 90 11.125

pen-local-unsupervised-ad 6724 16 6714 10 0.149

satellite-unsupervised-ad 5100 36 5025 75 1.471

shuttle-unsupervised-ad 46464 9 45586 878 1.890

speech-unsupervised-ad 3686 400 3625 61 1.655

to 11.125% while NAB univariate temporal series have 0.011% to 0.355% con-
tamination. Tables 1 and 2 describe the Harvard Dataverse and NAB datasets
respectively. Figure 3 illustrates the comparison between both datasets regard-
ing, size, dimensionaly and contamination.

Fig. 3. Numenta Anomaly Benchmark and Harvard Dataverse datasets. Figure shows
the number of inliers and outliers as axis in log scale while the circle radius represent
the number of features.
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Table 2. Numenta Anomaly Benchmark univariate series

Name N. samples N. features Inliers Outliers % contamination

art daily flatmiddle 4032 2 4031 1 0.025

art daily jumpsdown 4032 2 4031 1 0.025

art daily jumpsup 4032 2 4031 1 0.025

art daily nojump 4032 2 4031 1 0.025

art increase spike density 4032 2 4031 1 0.025

art load balancer spikes 4032 2 4031 1 0.025

ec2 cpu utilization 24ae8d 4032 2 4030 2 0.050

ec2 cpu utilization 53ea38 4032 2 4030 2 0.050

ec2 cpu utilization 5f5533 4032 2 4030 2 0.050

ec2 cpu utilization 77c1ca 4032 2 4031 1 0.025

4.3 Experimental Setup

Each approach was tested in grid search parameter evaluation that covered a
wide hyper-parameters configuration range. Our goal was to have a solid setup
for each approach where in every execution the complete dataset was used for
training. Some notes should be underlined to better understand the evaluation
process:

– The goal was not to compare the performance of approaches, rather they were
used as tools to support a wide perspective of metrics behaviour in different
and realistic perspectives: temporal datasets vs non-temporal ones, multiple
anomaly detection approaches, varying data series sizes and a wide range of
contamination and dimensionality.

– Commonly strategies such as k-fold cross-validation require observations from
all classes to be present in training. For supervised approaches such as SVM
and LSTM this can be difficult without artificially introducing anomalies or
removing normal observations (changing the dataset characteristics).

– Regarding series are ordered sequences of observations, all training and test
folds were created for the k-fold process following observations order.

– Each generated k training fold was always superset of the previous k-1 fold,
with the exception of k = 1.

– Some approaches were supervised, receiving the target class information,
other received either the contamination factor or the class weights.

– All models were trained and tested with complete data series.

For both datasets, and for each data series, results were kept from the best
hyper-parameters set for each model. The results were calculated using the Area
Under Curve for curves (1) Receiver Operator Characteristic, (2) Precision-
Recall, (3) Mass Volume and (4) Excess-Mass. Precision and Recall were also
calculated only for the outlier class.
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4.4 Empirical Evaluation

Outlier classification results were got from all the tests: (NAB Dataset Series +
Dataverse Dataset Series) * (Support Vector Machine, Long Short-Term Mem-
ory Neural Network, Elliptic/Gaussian Envelop, Isolation Forest, Local Outlier
Factor). These results - classification predictions and scores - were then used to
get the final metrics results, namely: Area Under Curve for Excess-Mass, Mass-
Volume, Receiver Operator Characteristic and Precision-Recall, and Anomaly
Class Detection metrics, specifically, Precision and Recall.

Figure 4 shows the distribution of values got for each metric in each approach
considering both all series from both datasets. Excess-Mass seems to polarize its
results depending on the dataset. This may be explained by different factors
such as: temporal data series (NAB) or non temporal (Dataverse), and the very
different contamination rate (see datasets description). Precision-Recall Area
Under Curve suggest a more clear look over the methods results although having
an inverse polarization of results when compared with AUC (ROC) at least for
three of the studied approaches.

Fig. 4. Approaches and Metrics. Area Under Curve calculated metrics: Receiver Oper-
ating Characteristics Area Under Curve (AUC), Excess-Mass (EM), Mass-Volume
(MV) and Precision-Recall Area Under Curve (PR AUC). Anomaly class calculated
metrics: Precision and Recall.

Using the result vector of all results - all series from both datasets - of each
metric, we calculated the correlation between pairs of metrics using Pearson’s
coefficient. The correlation was interpreted assuming the following levels: very
high correlation when the coefficient value lies between ±0.90 and ±1, high
correlation when it lies between ±0.70 and ±0.9, moderate correlation when the
coefficient locates between ±0.5 and ±0.7, low correlation between 0.3 and ±0.5
and finally a negligible correlation when the value fall between 0.0 and ±0.3.
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Fig. 5. Heatmap of the pairwise Pearson’s correlation of metrics in each of the studied
approaches.

Figure 5 underline different metrics behaviours depending on approach
results. Most correlations are near negligible, with two exceptions: (1) the
inverted correlation between Excess-Mass (EM) and Mass-Volume (MV), which
confirms the expected behaviour since EM returns lower values for better
anomaly detection results while MV does the opposite, i.e. returns bigger val-
ues for better classification results, and (2) EM shows a very-high correlation
with Precision-Recall curve or with Outlier Precision and Recall rates in most
approaches evaluation. It is hard to take any conclusion on LSTM results since
it was experimented only against the NAB dataset temporal series. MV shows a
moderate inverted correlation with Precision-Recall, and both Outlier Precision
and Recall.

Figure 6 shows high or very high correlation between Excess-Mass and
datasets features in four of five studied approaches. This also happens with
(outlier) Precision-Recall results in three of five approaches.

It is worth to mention the considerable alignment between the behaviour of
EM and PR curve, specially considering PR curve is defined by True and False,
Positive and Negative Rates, while EM is supported by each classifier probability
distribution function.

When analysing the extremely imbalanced NAB dataset (see the bottom row
of plots on Fig. 5), there is clearly less correlations between metrics behaviour.
This is due not to better or worst classification performance but to different
approaches results rankings, which in turn is the result of less clear classes prob-
abilities distributions.
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Fig. 6. Heatmap of the pairwise Pearson’s correlation of metrics in each of the studied
approaches and datasets features.

(a) Fold 1 (b) Fold 2 (c) Fold 3 (d) Fold 4

Fig. 7. Receiver Operator Characteristic curve in 4 folds of K-fold cross validation.
Example got from LSTM Neural Network experiments.

Finally, in multiple folds of k-fold cross-validation process, there was no pos-
sibility of correctly calculating the area under curve for multiple metrics due
to inexistent anomalies, as illustrated in Fig. 7. This fact can severely skew the
results got by Precision (Eq. 2) and Recall (Eq. 3), both depending on the posi-
tive class, which in the presented context is the abnormal class.

5 Conclusions

This study focused on the evaluation process and metrics of anomaly detection
tasks contributing to better understand the challenges associated to unsuper-
vised contexts. Specifically on the evaluation process this work’s experiments
showed how extremely low contaminated datasets can affect not only each met-
ric’s scores but also the evaluation process. We underlined how the most com-
mon training and hyper-parameter definition approach - the k-fold cross valida-
tion - is affected by low contamination contexts and discussed the possibility of
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building folds that respect not only the temporal alignment of series but also
the balance of classes and their dynamics through under or oversampling.

Using all available data for training in each experiment we calculated the
contamination parameter (or class weights) used in unsupervised training, an
advantage not available in real-world problems. This, although, did not solve
the unbalanced distribution of anomalies in low contamination series and the
folds representation of the data. In some of our experiments training results
were improved by incrementing or decrementing fold counts, depending on the
data series and even on the contamination location.

Regarding evaluation metrics Mass-Volume and Excess-Mass density based
metrics showed relevant coherence when compared to the classic Precision-Recall
curve, Outlier Precision and Recall rates, suggesting that these can be taken into
account in unsupervised anomaly detection problems. Moreover, these density
based metrics also seem to present an expressive relation with datasets features,
indicating they are sensible to the dimensionality, size or contamination fac-
tors. Experiments also showed that all metrics present different behaviour in the
experimented datasets, which may be due to the fact that one dataset is an uni-
variate temporal series dataset, with extremely low contamination factor, while
the other is a multivariate non temporal dataset, presenting varied conditions.

This research unveiled the potential of using density based metrics in the eval-
uation of unsupervised anomaly detection approaches. Nonetheless we observed
different correlations with classical reference measures. These differences should
be deeper investigated namely by investigating at what level the input data dis-
tributions - considering the multivariate case - justify the change of behaviour
of Excess-Mass or Mass-Volume.

Our work will continue to focus on the unsupervised anomaly detection eval-
uation task in real-world scenarios where classes are highly imbalanced aiming to
contribute for the development of new measures and evaluation strategies that
finally can help to improve trained models and their performance.
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Abstract. With the increasing use of convolutional neural networks
(CNNs) for computer vision and other artificial intelligence tasks, the
need arises to interpret their predictions. In this work, we tackle the
problem of explaining CNN misclassification of images. We propose to
construct adversarial examples that allow identifying the regions of the
input images that had the largest impact on the CNN wrong predic-
tions. More specifically, for each image that was incorrectly classified by
the CNN, we implemented an inverted adversarial attack consisting on
modifying the input image as little as possible so that it becomes cor-
rectly classified. The changes made to the image to fix classification errors
explain the causes of misclassification and allow adjusting the model and
the data set to obtain more accurate models. We present two methods, of
which the first one employs the gradients from the CNN itself to create
the adversarial examples and is meant for model developers. However,
end users only have access to the CNN model as a black box. Our sec-
ond method is intended for end users and employs a surrogate model to
estimate the gradients of the original CNN model, which are then used
to create the adversarial examples. In our experiments, the first method
achieved 99.67% success rate at finding the misclassification explanations
and needed on average 1.96 queries per misclassified image to build the
corresponding adversarial example. The second method achieved 73.08%
success rate at finding the explanations with 8.73 queries per image on
average.

Keywords: Explainability · Deep learning · Image classification ·
Adversarial examples · Convolutional neural networks

1 Introduction

The use of deep learning, and of convolutional neural networks (CNNs) in partic-
ular, has brought great advances in computer vision [11] and many other artificial
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intelligence (AI) endeavors. Although CNNs can achieve high accuracy in clas-
sification, detection, and segmentation tasks, they are black-box models. This
means that their predictions do not come with explanations or justifications and,
therefore, it is not possible for humans to understand how decisions were made.
To avoid blind algorithm-based decisions, AI models should be explainable [2].
Explainability is not only an ethical principle but also a legal requirement set out
in the European General Data Protection Regulation (GDPR) [6]. The lack of
explanations about the decisions made by CNNs is a problem both for developers
who train such networks and for the citizens affected by their decisions:

– Developers want to know how a decision is made, to ensure that the AI model
takes into account the correct features of the input during the training phase.
In some cases, it may happen that wrong features are used to make decisions,
such as in the well-known example of [14] where a dog-like animal is classified
as a wolf if the image has a snow background and as a husky dog if the image
has a grass background because in the training pictures all the wolves were
displayed in a snowy landscape and the huskies were not.

– Citizens are affected by a growing number of automated decisions: credit
granting, insurance premiums, medical diagnoses, etc. For that reason, legal
regulations [6] and ethics guidelines [4,16] have appeared that assert the citi-
zen’s right to an explanation on every automated decision affecting her. Lack-
ing such explanations, even de iure democracies risk becoming de facto AI-
driven authoritarian societies.

In computer vision, the interpretations of CNN predictions are usually pre-
sented as saliency maps. Those maps suggest specific regions in the images that
are most important in the decision made by the CNN [7].

Contributions and Plan of This Paper

For the generation of explanations to be scalable and efficient, it must be auto-
mated. In this work, we present two methods that explain CNN-based image
classification by identifying the features that were most influential in the CNN
predictions. The first method assumes access to the gradients of the CNN and
is meant for model developers. The second method treats the model as a black
box and, therefore, assumes that the party generating the explanations, such as
a model end user, only has access to the model predictions.

Both methods leverage adversarial examples [13] to generate explanations.
While the first methods computes adversarial examples by directly employing
the CNN gradients, the second approach builds a simpler surrogate model to
estimate the gradients of the original model, and then uses these estimated
gradients to obtain adversarial examples. More specifically, for each image that
was incorrectly classified by the CNN, we implemented an inverted adversarial
attack consisting in modifying the input image as little as possible so that it
becomes correctly classified. The changes made to the image to fix classification
errors highlight the regions that had the highest influence in the decisions and
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thus explain the causes of model misclassification. By identifying the causes of
wrong predictions, one may tailor the model or the training data to improve the
classification accuracy.

The remainder of this paper is organized as follows. Section 2 discusses related
works devoted to explaining CNNs. Section 3 describes our methods for explain-
ing CNN-based image misclassification from adversarial examples. Experimental
results are reported in Sect. 4. Finally, in Sect. 5 we gather conclusions and sketch
future research lines.

2 Related Work

Several methods have been proposed to interpret CNN predictions in image
classification. They attempt to link inputs to outputs to identify the regions in
the image that have the highest impact on the classification decision.

One of the most commonly used approaches to generate explanations is
to calculate the influence of the image features by back-propagating the deci-
sion score across all layers of the network. Works that follow this approach
are XRAI [10], Guided Backprop [20], Gradient Input [17], SmoothGrad [19]
and GradCAM [15]. This approach is fast and the methods following it usually
require a fixed number of queries to the black-box model. However, they need
access to all the internal layers of the model. Also, the computational cost of
those methods is high because a second back-propagation is necessary.

It is also possible to locally train a simpler model, a.k.a. surrogate model,
to approximate the black-box behavior and obtain an explanation of the black-
box model [14]. This approach requires that the surrogate model be simple and
understandable to humans. Unfortunately, the surrogate model is often much
inferior to the black-box model in terms of accuracy, and hence the explanations
provided by the former are not very reliable [8].

Another approach, known as perturbation-based, is to modify the input
images and measure the effect of this change on the black-box prediction [3,5,22].
Perturbation-based methods allow directly detecting the regions of the images
that had the highest impact on the predictions. Typically, these methods require
multiple queries to the black box in order to interpret its predictions, which
makes them slow [23].

The methods we propose in this paper fall in the perturbation-based cate-
gory. By using gradient-based adversarial examples to add the perturbation to
the original image, we are able to minimize the required number of queries to
the model and we keep the computational cost at a minimum. Also, thanks to
a surrogate model with reasonable complexity and accuracy compared to the
black-box model, we can generate explanations just from the black-box predic-
tion, without knowing any details on the black box’s internal layers.

3 Our Proposals

We focus on generating explanations for the wrong predictions made by CNNs
by identifying the regions of the input images that had the highest influence on
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those predictions. To this end, we need a way to modify the input images towards
the correct classification while keeping the number of required queries and the
computational cost at a minimum. Our choice is to use gradient-based adversarial
examples [21]. Specifically, we add minimal perturbations to incorrectly classified
images to create correctly classified adversarial examples. Then, by comparing
the original image with the modified image, we can find the regions that had the
highest impact on the wrong black-box predictions.

3.1 Adversarial Examples

An adversarial example is a sample from the same distribution as the original
data in which small, intentional perturbations of its features cause an AI model
to change its prediction [12]. Adversarial examples can be used to alter predic-
tions of a variety of machine learning models, including state-of-the-art neural
networks [21]. Even though adversarial examples are usually employed to cause
the AI models to produce wrong predictions, in this work we use them the other
way around: to correct wrongly classified samples.

To create adversarial examples we used the gradient-based optimization app-
roach proposed in [21], in which we set the target to be the correct label for the
wrongly predicted samples. The adversarial examples are created by minimizing
the following function with respect to r:

loss(f(x + r), l) + ε · |r|, (1)

where f is the AI classifier, x is the original image, r is the perturbation added
to the pixels of x to create the perturbed image that constitutes the adversarial
example, l is the target class label and ε is used to balance the distance between
images and the distance between predictions. The smaller ε, the more similar is
the created perturbed image to the original image. To minimize the loss function
in Eq. (1), the party that computes it needs access to the model gradients.

3.2 Explaining Model Predictions on the Developer’s Side

To explain the wrong predictions made by the model on the developer’s side, we
consider that the developer has full access to the CNN and, more specifically, to
the gradients of the model.

As shown in Algorithm 1, first the developer splits the input images into
training and testing sets and trains the model with the training images. Then,
in the testing phase the developer keeps track of all the wrongly classified images.
For each of these images, she tries to find the closest adversarial example that
is correctly classified. The developer does this in the following way: i) she calcu-
lates the value of the loss function between the model prediction and the correct
prediction; ii) she calculates the gradients of the model according to the image
and the loss value; iii) she modifies the image according to the gradients and the
perturbation ratio ε. These steps are repeated until the adversarial example is
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obtained or ε exceeds the α value signaling the termination condition (in the lat-
ter case the image misclassification cannot be explained). The final step consists
in comparing each original image with its corresponding adversarial example. To
draw a saliency map that identifies the features that caused wrong predictions,
Algorithm 2 prescribes that pixels in perturbations with values smaller than
q3+ iqr · τ , where q3 is the third quartile of perturbations, iqr is their interquar-
tile range and τ > 0 is relaxation parameter, are neglected because they do not
identify regions of interest, whereas the remaining pixels are multiplied by β > 1
to boost them in the saliency map.

Algorithm 1. Explaining the model predictions on the developer’s side
1: input: Data set X, CNN model model
2: Train X, Test X ← Split Train Test(X)
3: model ← Train Model(Train X)
4: perturbations ← {}
5: for i in Test X do
6: model prediction ← model.predict(Test X[i])
7: ε ← 0.1
8: while model prediction �= correct prediction OR ε < α do
9: loss ← loss function(model prediction, correct prediction)

10: gradients ← get model gradients(Test X[i], loss)
11: perturbed image ← Test X[i] − ε · gradients
12: model prediction ← model.predict(perturbed image)
13: ε ← ε + 0.1
14: end while
15: if model.prediction = correct prediction then
16: perturbations[i] ← perturbed image − Test X[i]
17: else
18: perturbations[i] ← NIL
19: end if
20: end for
21: return perturbations

3.3 Explaining Model Predictions on the User’s Side

End users should have the right to obtain explanations about predictions made
by the AI models that concern them. However, for end users, the model is a
black box and they only have access to the model predictions. Therefore, they
must create their own local explanations. In our work, we considered that the
user who wants to generate explanations of an AI model must have enough data
to train a simpler CNN model, a.k.a. a surrogate model. It is shown in [9] that
knowledge of one or more models can be compressed into another, less complex
model, which allows us to estimate the gradations of the original model using a
surrogate model.
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Algorithm 2. Drawing the saliency maps
1: input: perturbations
2: q1, q3 = get quartiles of non NIL perturbations(perturbations)
3: iqr ← q3 − q1
4: for i such that perturbations[i] �= NIL do
5: for pixel in perturbations[i] do
6: if perturbations[i][pixel] < q3 + iqr · τ then
7: perturbations[i][pixel] ← 0
8: else
9: perturbations[i][pixel] ← perturbations[i][pixel] · β

10: end if
11: end for
12: Draw(perturbations[i])
13: end for

The method we propose is formalized in Algorithm 3. First, the user splits
the data she has into training and testing data sets. Then she builds a surrogate
model by using the local training data set. Afterwards, she uses the test data
set to identify the wrong predictions to be explained. Finally, she generates the
adversarial examples in a similar way as in Algorithm 1. The only difference is
that the gradients from the surrogate model will be used instead of the gradients
from the original model.

4 Experimental Results

We tested the two proposed methods introduced above on the gender classifica-
tion data set1 from the Kaggle website. This data set consists of cropped RGB
images of male and female faces. The training data set contains 23,200 female
images and 23,800 male images. The validation data set contains 5,800 images
in each class. The images are rectangular, but not all of them are of the same
size. Thus, we first resized all the images to 100 × 100 pixels.

4.1 Explanations for the Developer

To test Algorithm 1 we used the CNN shown in Fig. 1 with four Conv blocks
followed by six fully connected layers. Each Conv block contained two convolu-
tional layers and a max-pooling layer. The output depths for Conv blocks were,
respectively, 64, 128, 256 and 512. The numbers of nodes of fully connected lay-
ers were, respectively, 2048, 1024, 512, 128, 32 and 2. We trained the model for
20 epochs, with a batch size 64 and a learning rate 0.001. The test accuracy
was 96.3%.

1 https://www.kaggle.com/cashutosh/gender-classification-dataset.

https://www.kaggle.com/cashutosh/gender-classification-dataset
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Algorithm 3. Explaining the model predictions on the user’s side
1: input: local data X local, black-box model black box, surrogate model

local surrogate
2: Train X local, Test X local ← Split Train Test(X local)
3: local surrogate ← Train Black Box(Train X local)
4: for i in Test X local do
5: black box prediction ← black box.predict(Test X local[i])
6: ε ← 0.1
7: while black box prediction �= correct prediction OR ε < α do
8: local prediction ← local surrogate.predict(Test X local[i])
9: loss ← loss function(local prediction, correct prediction)

10: gradients ← get surrogate gradients(Test X local[i], loss)
11: perturbed image ← Test X local[i] − ε · gradients
12: black box prediction ← black box.predict(perturbed image)
13: ε ← ε + 0.1
14: end while
15: if black box prediction = correct prediction then
16: perturbations[i] ← perturbed image − Test X local[i]
17: else
18: perturbations[i] ← NIL
19: end if
20: end for
21: return perturbations

The number of misclassified images in the test data set was 301, for which our
method created adversarial examples. 300 of the 301 adversarial examples were
classified into the correct labels, which corresponds to a success rate 99.67%, with
an average number 1.96 queries per image. Figure 2 shows four examples of the
explanations created by Algorithm 1, in the form of saliency maps highlighting
the differences between original images and adversarial examples.

In Fig. 2, we can see that perturbations added to the original images to create
the adversarial examples are not noticeable to the naked eye. Nevertheless, the
explanations resulting from Algorithm 1 in the form of saliency maps shed light
on the most important regions that caused the wrong predictions. For example,
in Image 1 the important pixels were those around the eyes and the edge of the
nose. In Image 2 the causes of wrong classification were also found in the eyes and
the nose in addition to the left cheek. In Image 3, the causes of misclassification
were mainly the left eye and the edge of the right eye in addition to parts of the
covered forehead. The most relevant regions for Image 4 were the left eye, the
edge of the nose and the left cheek.

4.2 Explanations for the User

Testing the performance of Algorithm 3 tells whether the user is capable of cre-
ating model explanations locally. We assumed the user’s local data consisted of a
random 10% sample of the training data described in the previous section. With
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Fig. 1. Architecture of the CNN used as original model in the experiments

these local data, the user trained her surrogate model. The black-box model was
the same CNN described in the previous section, whereas the local surrogate
model built by the user consisted of a CNN with three Conv blocks followed by
four fully connected layers. Each Conv block contained two convolutional layers
and a max-pooling layer. The output depths for Conv blocks were, respectively,
64, 256 and 512. The numbers of nodes of fully connected layers were, respec-
tively, 1024, 256, 32 and 2. We trained the model for 50 epochs, with a batch
size 64 and a learning rate 0.001. The test accuracy for the surrogate model was
87.78%.

The complete test data set was used to generate explanations. Therefore,
we got the same 301 misclassified images. Following Algorithm 3, explanations
were obtained as follows: i) obtain the prediction and gradients of the local
surrogate model; ii) create the adversarial example using the gradients of the
surrogate model; iii) test whether the adversarial example was correctly predicted
by using the original black-box model; iv) draw the saliency map. Out of the
301 adversarial examples, the original black-box model correctly classified 220
images, which corresponds to a 73.08% success rate. The average number of
queries to the original CNN model per image required to create the adversarial
example was 8.73.

Figure 3 shows the same four samples of Fig. 2 but with saliency maps that
were locally generated using the gradients of the surrogate model. As in the
previous test, the differences between the adversarial examples and the original
images are not noticeable to the naked eye. However, the most relevant regions of
the images are similar to those obtained with Algorithm 1: in the four images the
same regions highlighted by Algorithm 1 are also highlighted here, even though
in a less focused way due to the less accurate surrogate model.

The number of queries per image needed to create adversarial examples with
Algorithm 1 was lower than with Algorithm 3: 1.96 vs 8.73. The reason is that
the former algorithm uses the gradients from the original model, whereas the
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Fig. 2. Four examples of explanations generated on the developer’s side

latter uses the gradients from the surrogate model. Hence, the generation of
adversarial examples is less accurate with the second algorithm. However, both
algorithms were successful in generating explanations for the wrong predictions
of the original model and both highlighted the same regions as important.

The explanations provided by our methods can help model developers to
identify the weaknesses of the data sets used to train the model. Specifically,
for the gender classification data set, the eye regions are highlighted in most
saliency maps as important regions. This suggests that classification accuracy
may be improved by training on images where the eye region is clear. For model
users, it is important to know which features influenced the predictions since
some of the black boxes may be artificially biased or employ features that may
discriminate some minorities [1]. Beyond face classification, an even more crucial
application could be to help understand medical diagnoses [18].
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Fig. 3. Four examples of explanations generated on the user’s side

5 Conclusions and Future Research

We have presented two methods employing gradient-based adversarial examples
to obtain explanations of the predictions of CNNs in image classification.

We have reduced the number of queries needed to create the adversarial
examples by adding targeted perturbations to change the predictions for each
image. In our experimental work, developer-side Algorithm 1 required only 1.96
queries per image, whereas user-side Algorithm 3 needed 8.73 queries per image.

The two proposed algorithms showed promising results to explain misclas-
sification by CNNs. Both produced similar explanations on the same samples.
Algorithm 1 had a higher success rate (99.67%) thanks to using the gradients of
the original model, whereas Algorithm 3 had a lower success rate (73.08%) due
to using a surrogate.

As future work, we plan to test the performance of our approach on data
that are not identically and independently distributed. We also plan to tailor the
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generation of adversarial examples to highlight regions of interest in correctly
classified images.
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Abstract. There is an increasing demand by researchers to access
the microdata (data on individual persons or enterprises) collected by
national statistical institutes or other data controllers. If microdata
are personally identifiable information, the most usual way for data
controllers to share them in a way compliant with the privacy leg-
islation (notably the EU General Data Protection Regulation) is to
release anonymized microdata. Yet, data analysts often need access to
the original microdata in order to avoid the information loss caused by
anonymization. To answer that need, safe access centers (on physical
premises or on-line) have been set up by several national statistical insti-
tutes. In these centers, users can run their analyses on original data using
the controller’s software, and the controller checks the outputs of the
users’ analyses before returning those outputs to them, in order to make
sure users do not take home any result that might leak the confiden-
tial microdata on which it has been computed. Output checking is cur-
rently implemented with human checkers, which is expensive and slow,
especially because checkers need to have specific statistical expertise. In
this work, we explore the use of machine learning to partially automate
output checking. We follow the rule-based approach and our empirical
results show that our system can generalize the rules it is trained on. In
conclusion, output checking assisted by machine learning seems to work
well and should be trialed in safe access centers and decentralized data
marketplaces.

Keywords: Output checking · Statistical disclosure control · Safe data
access centers · Privacy · Machine learning

1 Introduction

Researchers want data that are as accurate as possible to reach meaningful
and trustworthy conclusions. Microdata, that is, data at the level of individ-
ual persons or enterprises, are in increasing demand. Privacy legislation, epit-
omized by the European Union’s General Data Protection Regulation [3], pre-
vents data controllers from sharing for secondary use microdata that contain
c© Springer Nature Switzerland AG 2021
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personally identifiable information (PII). The most usual solution is for the con-
troller to anonymize microdata before releasing them for secondary use [2,5]. Yet,
anonymization entails information loss and hence the analyses on anonymized
data may not be entirely trustworthy. For this reason, researchers often require
access to the original microdata.

Some data controllers, such as those involved in the nascent decentralized
data markeplaces, such as Ocean [6], intend to sell not only anonymized data
(data-as-a-service) but also the possibility of running computations on the orig-
inal data (compute-to-data). Yet, they offer no solution to avert possible data
leakages associated with the results of computations.

Other data controllers, especially national statistical institutes and data
archives, have set up safe access centers as an alternative for those situations
in which resarchers cannot use anonymized data. A safe access center may be a
physical facility to which the researcher must travel or an on-line service that
the researcher can remotely access. Whatever the case, it is a controlled envi-
ronment in which the researcher runs her analyses using software provided by
the controller and is under monitoring by the controller’s staff during her entire
work session.

A salient feature of safe access centers is that any output of the researcher’s
analysis is checked by the data controller’s staff before returning it to the
researcher [1,4]. The purpose of output checking is to make sure that the
researcher will not take home any result that might leak the confidential micro-
data on which it has been computed.

Highly expert output checkers can follow the so-called principles-based
model [1,4]. In this model, no output is ruled in or out in advance. Rather,
checkers collaborate with researchers and take the entire context of the analy-
sis into account to make a decision on whether an output is safe enough to be
returned or not. Although this model is quite costly, it minimizes the probabil-
ities of false positives (labeling an output as safe when in fact it leaks sensitive
information) and false negatives (labeling as unsafe an output that actually leaks
no confidential information).

An easier alternative that requires less interaction and expertise on the
checker’s side is the rule-based model. In this case, the checker uses simple rules
of thumb to label an output as safe or unsafe. The price paid is a higher proba-
bility of false positives and false negatives.

Contribution and Plan of This Paper

Output checking currently relies on human checkers. Even if they guide them-
selves by rules rather than principles, checking is time-consuming and hence
expensive and slow. Besides, it is not easy for data controllers to appoint ded-
icated output checkers: staff with the required statistical expertise are difficult
to recruit and output checking is often not regarded as a core task.

We propose to relieve some of the burden of output checking by (partially)
automating it via a machine learning approach. This can be useful to all kinds
of controllers, from national statistical institutes to decentralized data market-
places.
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The principles-based model is definitely very difficult to automate, because
it requires contextual input to be obtained from the interaction between check-
ers and researchers. In contrast, the rule-based approach is more amenable to
automation, as rules can easily be learned using machine learning.

Taking as a starting point the rules set forth in [1], we create synthetic output
checking log files based on different subsets of rules. Then we train deep learning
models on each synthetic log file, and we examine how well the rules used to
generate the log file have been learned and, more importantly, how the rules not
used to generate the log file have also been learned. Our results show that our
deep learning approach can generalize the rules embedded in the training data,
and hence captures the general flavor of safe and unsafe outputs. Admittedly,
our system does not completely eliminate the need for human checking, but it
can be used to reduce the human workload to filtering out any false positives,
that is, outputs labeled as safe by our system which turn out to be unsafe under
a more sophisticated checking.

The rest of this paper is organized as follows. Section 2 rewrites the checking
rules proposed in [1] in view of using them to create synthetic output checking
logs. Section 3 describes how to generate synthetic training data and test data
from the rewritten rules. Section 4 reports experimental work and assesses how
the deep learning models learned can generalize the rules embedded in the train-
ing data. Conclusions and future work suggestions are summarized in Sect. 5.

2 Rewriting Checking Rules for Synthetic Log Generation

In [1,4], rules of thumb are proposed to decide whether an output can be safely
returned to the researcher. Both documents propose similar rules based on sim-
ilar rationales.

For the sake of concreteness, we take the rules proposed in [1], because they
are easier to automate than those in [4]. We rewrite the rules in terms of the
following attributes: AnalysisType, Output, Confidential, Context and Decision.
In this way, we get:

RULE 1
AnalysisType: FrequencyTable.
Output: Number of units in each cell.
Confidential: YES/NO (YES means the data on which the frequency table

is computed are confidential).
Decision: YES/NO.

The decision is NO, that is, the output is not returned if data are confidential
AND {some cell contains less than 10 units OR a single cell contains more
than 90% of the total number of units in a row or column}.

RULE 2
AnalysisType: MagnitudeTable.
Output: Magnitudes in each cell (average or total).
Confidential: YES/NO.
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Context: Number of units in each cell, and percentage of cell total represented
by the maximum contribution to the cell.

Decision: YES/NO.
The decision is NO if data are confidential AND {some cell contains less than
10 units OR a single cell contains more than 90% of the units in a row or
column OR in some cell the largest contributor contributes more than 50%
of cell total}.

RULES 3a/3b/3c
AnalysisType: Maximum/Minimum/Percentile.
Output: Value of Maximum/Minimum/Percentile.
Confidential: YES/NO.
Decision: YES/NO.

The decision is NO if data are confidential.
RULE 4

AnalysisType: Mode.
Output: Modal value.
Confidential: YES/NO.
Context: Sample size.
Decision: YES/NO.

The decision is NO if {data are confidential AND the frequency of the modal
value is more than 90% of the sample size}.

RULES 5a/5b/5c/5d
AnalysisType: Mean/Index/Ratio/Indicator.
Output: Value of the statistic.
Confidential: YES/NO.
Context: Sample size, percentage of sample total represented by the largest

value in the sample.
Decision: YES/NO

The decision is NO if {data are confidential AND {sample size < 10 OR a
single contribution accounts for more than 50% of the sample total}}.

RULE 6
AnalysisType: ConcentrationRatio.
Output: Value of the ratio.
Confidential: YES/NO.
Context: Sample size, percentage of sample total represented by the largest

value in the sample.
Decision: YES/NO.

The decision NO if {data are confidential AND {sample size < 10 OR a single
contribution accounts for more than 90% of the sample total}}.

RULES 7a/7b/7c
AnalysisType: Variance/Skewness/Kurtosis.
Output: Value of the statistic.
Confidential: YES/NO.
Context: Sample size.
Decision: YES/NO.

The decision is NO if {data are confidential AND sample size < 10}.
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RULE 8
AnalysisType: Graph.
Output: Graph.
Confidential: YES/NO .
Decision: YES/NO.

The decision is NO if data are confidential.
RULES 9a/9b

AnalysisType: LinearRegressionCoefficients/
NonLinearRegressionCoefficients.

Output: Value of coefficients.
Confidential: YES/NO.
Context: Intercept is to be returned?
Decision: YES/NO.

The decision is NO if {data are confidential AND intercept is one of the
coefficients to be returned}.

RULE 10
AnalysisType: RegressionResiduals/RegressionResidualsPlot.
Output: Values of residuals/Plot of residuals.
Confidential: YES/NO.
Decision: YES/NO.

The decision is NO if data are confidential.
RULES 11a/11b

AnalysisType: TestStatistic t/TestStatistic F.
Output: Value of statistic.
Confidential: YES/NO.
Context: Degrees of freedom.
Decision: YES/NO.

The decision NO if {data are confidential AND degrees of freedom < 10}.
RULE 12

AnalysisType: FactorAnalysis.
Output: Factor scores.
Decision: YES.

RULE 13
AnalysisType: Correlations.
Output: Matrix of correlation coefficients.
Confidential: YES/NO.
Context: Number of units contributing to each correlation coefficient.
Decision: YES/NO.

If data are confidential, then the decision is NO for those coefficients that are
−1, 0, −1 OR that have been computed on less than 10 units.

RULE 14
AnalysisType: CorrespondenceAnalysis.
Output: Loadings of factors.
Confidential: YES/NO.
Context: Number of variables, sample size.
Decision: YES/NO.

The decision is NO if {data are confidential AND {number of variables < 2
OR sample size < 10}}.
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3 Generation of Synthetic Training and Test Data

In this section we discuss how to generate synthetic data from the above rules
that can be used to train and test a deep learning model. On the one side, we
will generate training data from a subset of the rules and, on the other side,
we will generate test data from all the rules. The purpose of the test data is to
enable an assessment of how well the model trained with the training data has
been able to learn not only the rules embedded in the training data but also the
rules that were not embedded (by generalizing the former).

We realize that records in a training data set should be of fixed length, which
allows them to be fed to the inputs of, say, a neural network model. To that end,
we need to derive a record schema of fixed length that can describe the decisions
made by all the above rules.

However, there are some outputs in the above rules that have a variable
number of components: frequency tables (Rule 1), magnitude tables (Rule 2),
linear regression coefficients (Rule 9a), non-linear regression coefficients (Rule
9b), regression residuals (Rule 10), factor scores (Rule 12), correlation coefficients
(Rule 13) and loadings of factors (Rule 14). To deal with that problem, we will
split those rules into rules that separately apply to each single output component,
e.g. to each single table cell, regression coefficient, regression residual, factor
score, correlation coefficient or factor loading. Then we can always create a post-
processing rule whereby the entire output is only returned to the researcher if
all its components are labeled as safe. In what follows we will denote by Rule is,
the split version of Rule i for a single output component.

With the above arrangement, we have a single output component for all
split rules. Yet, the number of context components for split rules increases with
respect to the original rules, because more context on a split output (e.g. a cell)
within the total output (e.g. a table) is required to make a decision on the split
output. Let us assess the number of context attributes required for each rule:

– For Rule 1s, we need a context attribute PercentageRows that contains the
maximum percentage the cell total represents over all the totals of rows and
columns the cell is part of.

– For Rule 2s, we need a context attribute CellUnits that stores the number of
units in the cell, a second context attribute PercentageRows that contains the
maximum percentage the cell total represents over all the totals of rows and
columns the cell is part of, and a third context attribute PercentageCellTotal
that contains the percentage of the cell total represented by the maximum
contribution to the cell.

– For Rules 3a, 3b, 3c and 8, no context attributes are needed.
– For Rule 4, one context attribute SampleSize is needed to store the sample

size.
– For Rules 5a, 5b, 5c, 5d and 6 a context attribute SampleSize is needed to

store the sample size and another context attribute PercentageSampleTotal is
needed to store the percentage of the sample total represented by the largest
value in the sample.
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– For Rules 7a, 7b and 7c, a context attribute SampleSize is needed to store
the sample size.

– For Rules 9as and 9bs, one context attribute Intercept is needed that stores
YES if the corresponding coefficient is the intercept and NO otherwise.

– For Rules 10s (split rule for each residual) and 12s (split rule for each factor
score) no context attributes are needed.

– For Rule 11a, one context attribute DegreesOfFreedom is needed to store the
degrees of freedom for the t test statistic.

– For Rule 11b, two context attributes DegreesOfFreedom and DegreesOfFree-
dom2 are needed to store the degrees of freedom of the F test statistic.

– For Rule 13s (split rule for each correlation coefficient), one context attribute
CellUnits is needed that contains the number of units contributing to the
correlation coefficient.

– For Rule 14s (split rule for each factor loading), a context attribute Num-
berOfVariables is needed for the number of variables and another attribute
SampleSize is needed for the sample size.

Therefore, the schema that can describe the decisions made by all rules is
formed by the following superset of attributes: AnalysisType, Output, Confiden-
tial, CellUnits, PercentageRows, PercentageCellTotal, SampleSize, Percentage-
SampleTotal, Intercept, DegreesOfFreedom, DegreesOfFreedom2, NumberOfVari-
ables and Decision.

Given the above schema, a synthetic record to describe an instance of a
certain Rule i can be generated as follows:

1. Initialize AnalysisType to the analysis corresponding to Rule i.
2. Randomly choose an output that is compatible with the analysis type. E.g.

in Rule 13s the output is a correlation coefficient and hence it must lie in the
interval [−1, 1].

3. Randomly set Confidential to YES or NO.
4. Randomly choose context attributes that fit the expected semantics for the

analysis type. E.g. in Rules 9as and 9bs, Intercept must be YES/NO, whereas
the other context attributes must be blank; in Rules 11a and 11b, the context
attributes must be natural numbers expressing degrees of freedom for the t
and F distributions, respectively.

5. Finally, compute Decision according to the decision algorithm for the rule.

Given any subset of rules, the above procedure can be applied for each rule in
the subset as many times as desired. The result can be used as synthetic training
data for a deep learning model to learn the rules in the set.

To obtain test data, the above procedure should be used for the entire set of
rules. In this way, one can test how well the rules in the training data have been
learnt, and how well the deep learning model can generalize to capture the rules
not present in the training data.
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4 Experimental Work

We took the rules identified in the previous section, and we unified similar rules
having the same decision algorithm. That is, we merged Rules 3a, 3b, 3c into a
Rule 3*, Rules 5a, 5b, 5c, 5d into a Rule 5*, Rules 7a, 7b, 7c into a Rule 7*,
Rules 9as, 9bs into a Rule 9*s, and Rules 11a, 11b into a Rule 11*. This left us
with 14 total rules.

Then, following the procedure in Sect. 3, we generated a synthetic data set
with 200, 000 training samples, with each of the 14 rules contributing approxi-
mately 14, 700 samples, half of which with positive decisions (the analysis results
can be released) and half with negative decisions. As an example, in Table 1 we
list a few generated records.

Table 1. Sample of generated records
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2 0.658 0 0 0 0 508 0 0 0 0 0 True
3 0.613 1 0 0 0 358 0 0 0 0 0 True
11 0.568 1 0 0 0 9 0 0 0 0 0 False
7 0.564 0 0 0 0 955 68.5 0 0 0 0 True
9 0.337 1 0 0 0 763 5.8 0 0 0 0 False

As a machine learning model, we chose a neural network because deep neu-
ral networks have demonstrated the capacity to generalize well, and several
frameworks allow for easy prototyping and deployment of neural models. Other
machine learning models, such as gradient boosting, have also shown good per-
formance on structured data, such as microdata sets. Thus, we trained feed-
forward neural network with 2 hidden layers of 64 units each and obtained a
94.08% accuracy, a 4.2% false positive rate and a 7.4% false negative rate. Note
that false positives indicate outputs that should not be released but whose deci-
sion is YES (release) and false negatives indicate outputs that could be released
without privacy risk but whose decision is NO (do not release). We are mainly
interested in a low false positive rate (FPR), since false positives are those that
are dangerous for the privacy of the respondents on whose data the outputs are
computed.
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Next, we conducted a series of experiments to find out if a neural network can
generalize when exposed to samples generated from rules it has not been exposed
to during training. First, we generated a testing data set that contains samples
generated using the 14 rules. This testing data set was used throughout all
experiments. Then, from a number n of rules ranging from 1 to 14 we generated
100 training data sets using random subsets of n rules. That is, we built 100
data sets with samples generated from random subsets of one rule, 100 data
sets with samples generated from random subsets of 2 rules, and so on, which
yielded 1, 400 data sets with 200, 000 training samples each. We trained a neural
network like the one described above for each of the training data sets and tested
it against the previously described single testing data set whose samples were
generated using all 14 rules. The source code and the results of our experiments
are available in GitHub1.

Figure 1 displays the distributions of obtained accuracies with respect to the
number n of rules used to generate the training data sets. The figure shows how
the accuracy of the trained models increases with the number n of rules. For
a single rule (n = 1), however, the figure indicates that some data sets result
in accuracies over 80%, although the median accuracy sits below 70% and the
mode is below 60%. From n = 6 rules or more, most of the generated training
data sets result in accuracies over 80%.

Fig. 1. Accuracy of the models with respect to the number n of rules used to generate
the training sets

Figure 2 displays the false positive rate (red) and the false negative rate (blue)
for a number of rules used to generate the training data sets ranging from n = 1
to n = 14.

1 https://github.com/ablancoj/output-checking.

https://github.com/ablancoj/output-checking
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Fig. 2. False positive rate (red) and false negative rate (blue) for a number of rules
used to generate the training sets ranging from n = 1 to n = 14 (Color figure online)

As mentioned above we are especially interested in the FPR, since it cor-
responds to released outputs that might reveal private information about the
respondents they were computed on. While the false positive rate measures the
privacy risk, the false negative rate measures the utility loss, because it cor-
responds to outputs that are not released even though they could be usefully
returned to analysts without privacy risk. As expected, both rates decrease as
more rules are considered when generating the training data sets. We also see
that for n = 8 rules or more, the FPR stays below 50% and concentrates around
15–20%.

5 Conclusions and Future Research

We have presented an approach that leverages machine learning to assist human
experts in output checking at safe data access centers. Our system follows the
rule-based model, and we have shown that it can generalize the rules it is trained
on. In our opinion, automating output checking is a pressing need for safe access
centers and decentralized data marketplaces to take off.



Towards Machine Learning-Assisted Output Checking 345

A limitation of the presented research is that it does not use real log files
obtained by the current manual output checking services, because such data are
scarce and not public. Future research will strive to gather such data to further
validate our approach. We also aim at increasing the level of automation of the
entire process. Ideally, given the code of the analysis submitted by the analyst,
it should be possible to automatically derive all the inputs required to make
rule-based decisions. Optimizing the set of rules for maximum coverage and
minimum overlap is another possible direction. Finally, extending automation
to the principles-based model is also an important and daunting challenge.
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