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Abstract. Requirements traceability has been broadly recognized by researchers
as an important quality of any software development process. However, among
stakeholders, requirements traceability is often perceived as an extra task that
disrupts their workflow. This perceived overhead demotivates stakeholders to
participate in the creation, maintenance and use of traceability links. The chal-
lenges of implementing requirements traceability are amplifiedwhen complex and
large-scale software systems are developed by cross-organizational and distributed
teams. Different organizational backgrounds, conflicting objectives, and organiza-
tional boundaries lead to trust issues that complicate the implementation of trace-
ability in such settings. In this paper, the authors propose a blockchain-enabled
framework for requirements traceability. This framework aims to: (i) enable a
holistic and reliable view of artifacts and traceability links, (ii) provide an incen-
tive mechanism for creators of traceability links, (iii) ensure the authenticity and
quality of traceability links by means of voting mechanisms, (iv) facilitate com-
prehension from traceability information through query services, and (v) enable
interactive graphical visualization of traceability links.

Keywords: Requirements traceability · Blockchain technology · Smart
contracts · Distributed software development

1 Introduction

Requirements traceability refers to “the ability to follow the life of a requirement in both
a forward and backward direction” [1]. The need to maintain bidirectional traceability of
requirements for quality purposes has been formulated by software process improvement
models, such as CMMI, ISO/IEC 15504 (SPICE) [2] and more recently ISO/IEC 33000.
Requirements traceability contributes to the development of high-quality software, as it
supports many activities of the software development lifecycle, for instance, software
maintenance [3], project management [4], change management and impact analysis [5].
However, in practice, traceability is perceived as an extra task that practitioners need to
perform or as an activity that disrupts their workflow [6]. This perceived overhead can be
explained by the provider-user gap, meaning that creators of trace links are often not the
ones who use them [6, 7]. For instance, developers create links between implementation

© Springer Nature Switzerland AG 2021
M. Yilmaz et al. (Eds.): EuroSPI 2021, CCIS 1442, pp. 3–13, 2021.
https://doi.org/10.1007/978-3-030-85521-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85521-5_1&domain=pdf
http://orcid.org/0000-0001-5988-4697
http://orcid.org/0000-0002-5102-1122
http://orcid.org/0000-0002-1555-9726
https://doi.org/10.1007/978-3-030-85521-5_1


4 S. Demi et al.

tasks and source code commits which are actually used by project managers to track
project’s progress. Thereby, developers become demotivated and set a low priority to
traceability tasks, which may lead to incorrect or missing links. Maro et al. [6] proposed
the incorporation of gamification elements into traceability tools to increase the moti-
vation and engagement of developers in traceability creation and maintenance tasks.
Moreover, Wohlrab et al. [7] carried out 24 interviews to explore the relation between
traceability management and collaboration. The respondents proposed the inclusion of
voting features into traceability tools to enable stakeholders to jointly indicate incor-
rect links or to agree with the connected artifacts. This collaborative effort improves
the effort/benefit ratio, which in turn motivates developers to contribute to traceability
management.

As the complexity of software increases, the development is carried out by cross-
organizational and distributed teams. This paradigm complicates traceability, particu-
larly when distributed teams need to share artifacts [6]. In such environments, previous
literature proposed the use of a centralized data storage in which all artifacts are stored
and accessed by distributed stakeholders [6]. However, artifacts provided by distributed
teams cannot always be trusted, as they may have malicious intentions [8]. The partic-
ipation of third-party vendors exacerbates trust issues, due to different organizational
background, conflicting objectives, and organizational boundaries [9]. Different orga-
nizations may use different tools, methodologies, and processes that reside within the
organizational boundaries, making it difficult to leverage requirements traceability in
an efficient manner [9]. Additionally, organizational objectives of one organization may
contradict objectives of the other organizations that are involved in the project. For
instance, organizations may create incompatible links in terms of type or granularity,
which leads to unusable trace links [6]. Finally, organizational boundaries can imply
restricted access to some artifacts due to confidentiality constraints [6, 9] which in turn
complicates the creation of complete traceability. To address these challenges, there is
a need for a reliable and shared traceability knowledge base, in order to keep track of
all artifacts and trace links created by distributed stakeholders throughout the software
development lifecycle (SDLC). This can be achieved bymeans of blockchain technology.

Blockchain is a distributed ledger that stores transaction records in blocks. Each
block includes the hash of the preceding block to point to the previously validated block
in the chain [10]. This structure of a cryptographically linked list ensures immutabil-
ity which refers to the inability to tamper with the contents stored on the blockchain.
The main utility of blockchain is that it enables the exchange of data or transactions
among untrusted participants in a distributed network, without relying on a centralized
trusted party. Centralized third parties are prone to failures, malfunctions, and security
compromises which may lead to system unavailability [11]. Blockchain-based systems
overcome these risks, as every participant keeps a copy of the ledger and can verify the
legitimacy of the transactions [10]. Since 2015, the potential of blockchain technology
extended greatly due to the introduction of smart contracts [12]. Smart contracts are
self-executing computer programs that run across the blockchain network and enable
trusted transactions and agreements among different parties [13]. The results of smart
contracts execution are verified by the nodes of the network and stored on the distributed
ledger. Smart contracts were originally conceived to automatically implement the terms
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of the contract that two parties agreed upon in a trustless environment [14]. Nowadays,
the scope of smart contracts has been largely extended to perform any conceivable task,
similarly to general-purpose software programs [14]. Smart contracts are intended for
a variety of application domains, ranging from financial, notary, game, wallet to library
which comprises general-purpose operations that can be used by other smart contracts
[15].

In this paper, we propose a blockchain-enabled framework for requirements trace-
ability. To the best of our knowledge, this is the first study that uses blockchain to keep
track of artifacts and traceability links in distributed settings. This framework aims to:

• enable a holistic and reliable view of artifacts and traceability links
• provide an incentive mechanism for creators of traceability links
• ensure the authenticity and quality of traceability links bymeans of votingmechanisms
• facilitate comprehension from traceability information through query services
• enable interactive graphical visualization of traceability links

The paper is structured as follows: Related work is presented in Sect. 2. Section 3
describes the proposed framework, and Sect. 4 concludes the work and presents future
research directions.

2 Related Work

Mader et al. [16] emphasized the importance of a traceability information model in facil-
itating traceability creation and maintenance. These authors presented the traceability
information model used by their prototype, namely, traceMaintainer. They conducted
experiments with subjects who were provided with the traceability information model
and were required to create trace links between use cases and analysis classes and trace
links between analysis classes and design classes. The subjects reported that they were
satisfied with the guidance provided when creating trace links and that traceMaintainer
prevented them from creating trace links in an inappropriate manner. The authors advo-
cate the use of traceability information models as they enable different analyses, such
as validating traces, impact analysis and change propagation, coverage analysis, and
relation count analysis.

Cleland-Huang et al. [17] proposed a model-based approach that enables stakehold-
ers to plan and execute traceability strategies in a graphical modeling environment. This
approach consists of four layers: strategic layer, document management layer, stored
query layer, and executable layer. The strategic layer represents the traceability graph
structure which consists of artifacts and trace paths, using a standard XML format. The
document management layer documents individual set of artifacts using a standardXML
representation. The stored query layer constructs queries for primitive traces between
adjacent artifacts types, and composite traceability paths between non-adjacent artifacts
in the strategic traceability graph. Finally, the executable layer provides the user interface
to display the pre-defined trace queries and visualize the results. Our study adopts these
conceptual layers, albeit it implements them in a different manner.

Elamin and Osman [5] proposed a user-defined traceability metamodel that uses
XML patterns to define artifacts, trace links, and trace type rules. According to these
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authors, the main limitations of traceability approaches lie in the representation and
storage of traceability information. To address these limitations, the authors implemented
a graph traceability repository to store artifacts and trace links. The benefits of the
graph repository were demonstrated by applying it to three varying datasets. The results
confirmed that the graph repository outperforms traceability matrices, cross-reference
tables and relational databases in terms of visualizing trace links, representing multi-
dimensional relations and performance. We adopt the concept of rules for trace links
semantics, however we encode these rules into smart contracts and store artifacts and
trace links on a distributed ledger.

None of the aforementioned approaches address requirements traceability in dis-
tributed environments. In this regard, Rempel et al. [9] investigated the need for require-
ments traceability in inter-organizational software projects. The authors carried out
semi-structured interviews with 17 organizations. The results indicated that on the
one hand requirements traceability has the potential to address inherent issues of inter-
organizational software projects, such as compliance, operational excellence and com-
munication between parties. On the other hand, the different organizational backgrounds,
conflicting objectives, and organizational boundarieswere found to complicate the appli-
cation of requirements traceability. The authors presented the following guidelines for
distributed requirements traceability: ensure the reliability and availability of traceability
information, mitigate conflicting objectives and bridge the technological gap that exists
between clients and suppliers. Despite the valuable insights, this study does not provide
further information on how these guidelines can be implemented.

Furthermore, recent literature has encouraged the cross-fertilization of software engi-
neering and hyped technologies, such as blockchain technology [18, 19]. In fact, we have
observed an increasing trend of studies that use blockchain to support software engi-
neering activities during the last three years [20]. In what follows, we present a few of
these studies: Yilmaz et al. [21] used blockchain to improve the integrity of the software
development process. The authors proposed an incentive mechanism where develop-
ers compete for developing the best code, instead of being assigned a specific task by
the project manager. This proposal may be valuable to address trust issues, particu-
larly in large-scale agile development. Bose et al. [22] proposed a blockchain-oriented
framework for trustworthy software provenance in global software development. The
framework captures provenance data from the variety of tools used throughout the SDLC
and transforms them according to PROV-specifications. The authenticity of these data is
verified by authorized personnel by means of voting mechanisms. Recently, Singi et al.
[23] proposed an incentive framework enabled by blockchain technology that captures
events throughout the entire software development lifecycle, analyzes these events for
their compliance to incentive policies by means of smart contracts, and automatically
delivers incentives in the form of digitized tokens to software engineers, accordingly.
These studies provide valuable insights into the applications of blockchain in the soft-
ware engineering landscape, however none of the aforementioned studies is devoted to
the use of blockchain for requirements traceability in distributed settings.
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3 Proposed Framework

Figure 1 depicts the blockchain-enabled requirements traceability framework. The
proposed framework consists of the following components:

Fig. 1. Blockchain-enabled requirements traceability framework

Strategic Layer. A feasibility analysis should be carried out in order to investigate
whether the application of blockchain for requirements traceability is required and fea-
sible in the given environment. This analysis should take into consideration the align-
ment between blockchain features and requirements traceability strategies, alternative
tools, and technologies for representing and storing traceability links. The latter has been
achieved in the form of traceabilitymatrices, cross-reference tables, relational databases,
and graph traceability repositories [5]. It is also vital that the analysis explores the bene-
fits of applying blockchain for requirements traceability, along with challenges, such as
implementation costs, technical, regulatory and governance challenges. The next com-
ponent of the strategic layer is the traceability information model (TIM) which provides
guidance on what software artifacts to trace and what relations to establish, and con-
sequently prevents inconsistent results in large projects with many stakeholders [16].
Determining the traceable artifacts and relations in advance has been considered a best
practice for establishing the traceability environment [24]. Figure 2 depicts a simple
traceability information model which consists of three main elements, as follows [5]:

• Artifacts to define what artifacts should be traced and their properties.
• Trace links to define relations between artifacts based on source artifact ID and
destination artifact ID.
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• Trace type rules to define the naming rules for the trace links. For instance, if the
source code is related to the requirement, then the name of the relation is “satisfy”.

These elements can be encoded into smart contracts to enforce the registration of only
those artifacts and trace links that are needed in the project and automatically identify
trace links semantics.

Fig. 2. A simple traceability information model

The last component of the strategic layer is the incentive policy that aims to define
who is eligible to create trace links, how to validate the quality of trace links, e.g.,
can be validated by stakeholders using traceability quality metrics such as correctness,
timeliness, accuracy, completeness, consistency and usefulness [25], and how much
incentive goes for the creation of trace links based on their priority.

Blockchain Proposal. The blockchain proposal forms the core component of the
framework and consists of:

• Data collection. A variety of tools are used throughout the software development
lifecycle, such as Rational DOORS for requirements management, and Git as a ver-
sion control system. These tools generate artifacts that are defined in the traceability
information model. Artifacts generated from these disparate sources can be captured
automatically by means of data ingestion tools/plugins [22] and are parsed prior to
being recorded on the blockchain. Additionally, stakeholders create trace links manu-
ally and invoke the respective smart contract to register these links on the distributed
ledger.

• Storage layer and smart contracts. Smart contracts are created to enable the fol-
lowing functions: register artifacts, e.g., requirements (id, type, name, description,
priority, parent_id), register trace links (source_artifact_id, destination_artifact_id,
trace_type), validate trace links quality and reward trace links creators, accordingly.
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On platforms such as Ethereum, the storage costs gas and can lead to network syn-
chronization issues and the high consumption of disk space on the nodes [26]. To
resolve storage limitations, the framework allows to store artifacts’ contents off-chain
in immutable storage, such as IPFS (InterPlanetary File System). Moreover, the qual-
ity of trace links is validated by approvers or verifiers whose selection depends on
voting policies. The approvers provide their consent or rejection which is logged as
a vote on the distributed ledger. The smart contract calculates cumulative votes and
accepts or rejects trace links based on the vote score. It is noteworthy that the assess-
ment of traceability links quality is challenging because it requires manual checking
[6]. Finally, the incentive policies are encoded in the smart contract that distributes
digitized tokens to stakeholders who create quality trace links.

• Query layer. This layer facilitates comprehension from traceability information stored
on the blockchain. Traceability-related queriesmust be constructed fromprimitive and
composite links [17]. Primitive links are links between adjacent artifacts types defined
in the traceability information model. These queries comprise simple forms of traces,
for instance, return the list of requirements satisfied by source code or using filters
to include only artifacts with a specific attribute value. Composite trace links are
more complicated to implement as they take place between non-adjacent artifacts, for
instance return requirements that trace to source code which failed its test case [17].

• Presentation layer.This layer is responsible for the visualization of traceability-related
information. Traceability visualization enhances stakeholders’ ability to comprehend
relationships between artifacts. Previous literature reports on difficulties in uncovering
insights from traceability information due to the fact that trace links are represented
through lists or mega tables [6, 27]. Other approaches use two-dimensional graphical
formats such as hierarchical leaf node and tree view. These representations fail to
explore relations between different artifacts in an interactive manner which aids in
comprehending the overall system [28]. Our framework suggests hierarchical and
interactive visualization of trace links to enhance traceability comprehension.

Implementation. In this phase, the blockchain proposal is developed and imple-
mented. The development of the blockchain proposal requires close cooperation between
blockchain developers and requirements traceability experts or professionals with skills
in both blockchain and requirements traceability. The need for new professional roles
has been also observed in the broader field of blockchain-oriented software engineer-
ing by Porru et al. [29]. Furthermore, the best fitting blockchain platform should be
selected by mapping the requirements of the desired system and blockchain features. As
the number of blockchain platforms is growing rapidly, the selection of the appropriate
platform becomes challenging. To guide the selection process, we refer to previous lit-
erature that provides a grounded blockchain platform selection process [30]. The main
items to consider comprise network acessibility, smart contract support, and whether
tokens are required or not [30]. For instance, open-source software with diverse con-
tributors might require public accessibility whereas the development of complex and
large-scale software among a set of known distributed teams or organizations might
require restricted accessibility. Finally, disruptive technologies such as blockchain are
adopted once organizational resistance is overcome which in turn can be achieved if
the organization perceives the value of such a system [31]. Therefore, it is important to
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communicate the value of implementing blockchain for requirements traceability in a
transparent and clear manner to all the participants involved in the software development
lifecycle.

Assessment. In this phase, the contributions of the blockchain proposal to the soft-
ware development lifecycle are assessed. The proposed framework provides an incentive
mechanism to create quality trace links, which motivates stakeholders to participate in
traceability creation and maintenance. Furthermore, the framework enables a holistic
and trustworthy view of artifacts and trace links and presents them in a hierarchical
and graphical way which encourages the use of traceability to support SDLC activities.
In turn, the increased use of traceability improves the performance of practitioners in
solving SDLC tasks, for instance maintenance tasks. The performance can be measured
as the combination of the time to solve the task and correctness of the solution [3].
Finally, the increased quality and completeness of traceability has a positive impact on
software quality which can be measured in terms of defect rate [32]. A reduced defect
rate implies less need for software maintenance and consequently cost savings that can
be quantified [32]. It is worthy to note that the components of the proposed framework
are designed to be extensible and should be tailored to organizational requirements. For
instance, organizations developing safety-critical systems may use smart contracts to
automatically validate compliance to regulations or standards that impose traceability
requirements, e.g., ISO 26262 and ASPICE in the automotive domain [6].

4 Conclusion

In this paper, we propose a novel blockchain-enabled framework for requirements trace-
ability. This framework uses blockchain as the backbone of the software development
lifecycle, to enable an auditable trail of artifacts and trace links created by multiple
distributed stakeholders. Due to its inherent properties, blockchain ensures visibility
regarding what/how/when trace links were created and who created them. Additionally,
the framework can be used to query and represent traceability-related information to
enhance the understanding of the overall system.

Blockchain, as any other technology, does not fit all the use cases in requirements
traceability however this ongoing study is exploring a way of investing, using and tak-
ing the best from blockchain. Although there is large setup and storage overhead when
implementing blockchain for software engineering [33], blockchain can ensure visibility,
transparency, traceability and trustworthiness of artifacts and trace links. The framework
comprises customizable incentive and voting policies to ensure the trustworthiness of
trace links and presents them in an interactive manner to enhance comprehension. These
components can potentially encourage the use of traceability to support SDLC activi-
ties, and in turn improve the performance of practitioners in solving SDLC tasks and
enhance software quality. However, it could also be interesting to improve the proposed
framework by incorporating gamification elements in order to enhance the motivation
and engagement of practitioners in traceability tasks.
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Despite the aforementioned potential benefits, the framework also has limitations that
are mainly related to the manual work involved in the creation of smart contracts and in
the validation of quality trace links. Another open issue to be addressed is how to resolve
conflicts that may occur when different participants claim to have created the same trace
links. Furthermore, it is noteworthy that the implementation of blockchain technology
for requirements traceability may be challenging due to the limited research efforts in
this dimension, the nascent stage of blockchain development and open technical chal-
lenges. These limitations have also been identified when implementing blockchain in
conventional domains such as supply chain [34]. Although the proposed framework aims
to be easy to used, it requires software practitioners to have knowledge of both fields:
blockchain technologies and requirements traceability. Further research efforts devoted
to the development of prototypes and proofs-of-concept in this area may encourage soft-
ware development organizations to implement blockchain for requirements traceability.
Therefore, the blockchain-enabled framework proposed in this studywill be validated by
means of blockchain and requirements traceability experts. Then, a blockchain-enabled
requirements traceability prototype will be developed and use cases will be performed
to test the concept. In so doing, some questions arise: What will be the main benefits
of an organization to implement your framework? How easy is the framework for use?
What type of knowledge that engineering needs to be able to use the framework? In a
common project how should use your framework?
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