
A Method for Debugging Process
Discovery Pipelines to Analyze the
Consistency of Model Properties

Christopher Klinkmüller1(B), Alexander Seeliger2, Richard Müller3,
Luise Pufahl4, and Ingo Weber4

1 CSIRO Data61, Sydney, Australia
christopher.klinkmueller@data61.csiro.au

2 TU Darmstadt, Darmstadt, Germany
seeliger@tk.tu-darmstadt.de

3 Leipzig University, Leipzig, Germany
rmueller@wifa.uni-leipzig.de

4 Chair of Software and Business Engineering, Technische Universitaet Berlin,
Berlin, Germany

{luise.pufahl,ingo.weber}@tu-berlin.de

Abstract. Event logs have become a valuable information source for
business process management, e.g., when analysts discover process mod-
els to inspect the process behavior and to infer actionable insights. To
this end, analysts configure discovery pipelines in which logs are filtered,
enriched, abstracted, and process models are derived. While pipeline
operations are necessary to manage log imperfections and complexity,
they might, however, influence the nature of the discovered process model
and its properties. Ultimately, not considering this possibility can neg-
atively affect downstream decision making. We hence propose a frame-
work for assessing the consistency of model properties with respect to
the pipeline operations and their parameters, and, if inconsistencies are
present, for revealing which parameters contribute to them. Following
recent literature on software engineering for machine learning, we refer
to it as debugging. From evaluating our framework in a real-world analysis
scenario based on complex event logs and third-party pipeline configu-
rations, we see strong evidence towards it being a valuable addition to
the process mining toolbox.

Keywords: Process mining · Discovery · Uncertainty & sensitivity
analysis

1 Introduction

Historic process information from event logs enables analysts to derive business
process insights using process mining [1]: process discovery [5,19] infers pro-
cess models from the recorded behavior, conformance checking [12,30] relates
c© Springer Nature Switzerland AG 2021
A. Polyvyanyy et al. (Eds.): BPM 2021, LNCS 12875, pp. 65–84, 2021.
https://doi.org/10.1007/978-3-030-85469-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85469-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-85469-0_7

66 C. Klinkmüller et al.

Conven�onal Model
Quality Assessment Break Down Model Proper�es

Transform

Inves�gate Parameter Effects

Perceive

…

Pa�ern

Topology

Path

Discover

Fig. 1. An extended perspective for the evaluation of process discovery results

observed behavior to an existing process model, process enhancement [2,6]
repairs models or extends them e.g., with performance and resource informa-
tion, and predictive process monitoring [16,22] forecasts how process instances
may unfold during execution.

The maturity of those techniques has led to an increasing adoption of pro-
cess mining in industry projects, where analysts often find answers to busi-
ness problems through a divide-and-conquer strategy by breaking down those
problems into fine-grain information needs [10]. Here, process discovery plays
a crucial role, as analysts interpret the properties of the discovered models to
derive insights [32] that then serve as a foundation for understanding related
aspects [1,17]. If interpreted carelessly, process discovery insights can hence neg-
atively affect downstream analysis. Thus, evaluating insights from mining, par-
ticularly discovery, should be a key activity in each project [10,25] to confirm
findings and to turn them into reliable and actionable insights [32]. Besides ver-
ifying scripts or tool configurations, consulting domain experts, or investigating
the process environment, analysts can also perform data-driven evaluation [37].

Commonly, discovery results are evaluated by means of model-centric met-
rics like fitness, precision, generalization, and simplicity [9,15], which are e.g.,
computed via conformance checking [12,30] with the log that served as input to
the discovery algorithm. Those metrics are valuable for assessing the reliability
of discovery algorithms, and we want to complement them by expanding the
evaluation perspective, as shown in Fig. 1. Analysts typically set up process dis-
covery pipelines to transform logs before discovering a model. While necessary to
manage log imperfections and complexity, such a pipeline potentially constrains
the validity of the behavior covered by the discovered model. Thus, we propose
to examine how pipeline parameters affect properties of the discovered process
models at different granularity levels, because analysts often focus on specific
execution paths and patterns to break down the model topology [17].

To this end, we propose a method to investigate the consistency of model
properties by means of uncertainty and sensitivity analysis [36]. Our primary
goal is to enable what-if analyses in which the reliability of insights is assessed by
examining relationships between pipeline parameters and model properties. Yet,
the method can also be applied to guide the pipeline definition, or to generate
insights from those relationships. In more detail, we present a configurable frame-
work to evaluate, if user-defined model properties are consistent with results from

Debugging Process Discovery Pipelines 67

varied configurations of a user-defined pipeline and to quantify the contribution
of individual pipeline parameters towards inconsistencies. In doing so, we follow
recent work in software engineering [3], which defines a notion of debugging for
machine-learning (ML) pipelines. As such, our proposal can be understood as a
method for debugging process discovery pipelines.

Following, we discuss the problem in Sect. 2, relying on observations from a
competitive process analysis challenge and an illustrative analysis of a moder-
ately complex real-world dataset. We then outline the framework and demon-
strate its application using the same dataset in Sect. 3. In a separate experiment,
we investigate our framework in a realistic analysis setting based on another real-
world dataset with high complexity in Sect. 4. Here, we substantiate the utility
of our framework by showing that its output is founded in observations by exter-
nal analysts and theory. The results demonstrate that our debugging framework
is a valuable addition to the process mining toolbox: in addition to existing
guidelines, patterns, and tools which we discuss in Sect. 5, it enables analysts
and their audiences to comprehend the degree to which properties of discovered
models are constrained by analytical decisions in a specific context. Finally, we
conclude the paper and discuss future directions in Sect. 6.

2 Basic Terminology and Problem Illustration

An event log L is a set of traces and each trace is an ordered sequence of events.
Event logs also contain features that describe properties of events and traces,
such as case identifiers, event timestamps, or activity names. A process model P
is a directed graph where typed and labeled nodes represent activities, gateways,
events, etc., whereas edges depict the control flow. Finally, L and P denote
the universes of event logs and process models, respectively. Note that for the
purposes of this paper this basic understanding is sufficient. We hence omit
formal definitions which are e.g., presented in [1, Ch. 3 & 5].

To analyze the process behavior captured in an event log, analysts often
define process discovery pipelines, either implicitly or explicitly. In this paper,
we primarily focus on pipelines that transform a single log into a single model.
In the general case, however, a process discovery pipeline can be viewed as a
function δ : Lnl ×Xnx → Pnp that takes nl event logs and a set of nx parameters
from the universe of parameters X and returns np process models. Pipelines are
assembled by combining transformation and discovery operators. Each operator
can be configured via its own set of parameters, all of which are included in the
set of parameters that serves as input to the discovery pipeline. Pipelines can
be implemented as Python or R-scripts based on packages like dplyr1, bupaR2,
pandas3, and pm4py4, or by incrementally executing tools or components, like
ProM plugins5, but they often involve multiple tools and adhoc scripts [17].
1 https://dplyr.tidyverse.org, accessed 2021-05-12.
2 https://www.bupar.net, accessed 2021-05-12.
3 https://pandas.pydata.org, accessed 2021-05-12.
4 https://pm4py.fit.fraunhofer.de, accessed 2021-05-12.
5 http://www.promtools.org/, accessed 2021-05-12.

https://dplyr.tidyverse.org
https://www.bupar.net
https://pandas.pydata.org
https://pm4py.fit.fraunhofer.de
http://www.promtools.org/

68 C. Klinkmüller et al.

Table 1. Complexity of event logs and of discovered models in BPIC 2015

The reasons for analysts to apply discovery pipelines are twofold. On the
one hand, logs might contain imperfections, such as missing values or outlier
behavior. To eliminate those imperfections, analysts filter traces or events, and
manipulate features to improve their quality or to enrich logs with data from
other information sources. On the other hand, log complexity typically poses a
challenge in interpreting the data, when logs contain drifts or describe a diverse
range of activities or variants. In addition to filtering cases and events, ana-
lysts commonly lift the level of abstraction by defining higher level activities or
sub-processes and by aggregating the events in the log accordingly. Note that
some operations are directly supported by discovery algorithms, e.g., the induc-
tive miner [19] can filter infrequent behavior, while directly-follows graph mining
techniques often allow analysts to filter paths and activities based on their fre-
quencies.

In this work, we postulate that the analytical decisions behind the pipeline
configuration ultimately constrain the degree to which the behavior depicted
in a discovered process model can be generalized. Consider e.g., the following
observations from the business process intelligence challenge (BPIC), a compe-
tition that invites researchers, students, and experts to submit analysis reports
for real-world event logs. Table 1 contrasts the complexity of the five event logs
from BPIC 20156 with the distribution of complexity of the discovered process
models presented in the nine submissions. While the event logs are highly com-
plex with 350+ activities and 800+ variants, the majority of the models contains
between 6 and 40 activities. We could not reliably quantify the number of model
paths, but observed that the models only allowed for a fraction of the log vari-
ants. Moreover, one report in fact included models discovered from the raw logs,
to demonstrate that it is impossible to interpret these models. While necessary
to manage the cognitive load, the transformations in the underlying pipelines
can affect the nature of the discovered model, even if they are less extensive, as
illustrated below.

We analyzed the Sepsis event log7 which captures treatments of Sepsis
patients in a Dutch hospital [23]. Its complexity is moderate (1,050 cases, 15,214
events, 16 activities), rendering it useful for illustration purposes. We used

6 https://www.win.tue.nl/bpi/doku.php?id=2015:challenge, accessed 2021-05-12.
7 https://data.4tu.nl/articles/dataset/Sepsis Cases - Event Log/12707639, accessed

2021-03-12.

https://www.win.tue.nl/bpi/doku.php?id=2015:challenge
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639

Debugging Process Discovery Pipelines 69

the default configuration of the inductive miner [19] (infrequent variant, noise
threshold = 0.2) to discover a process model. But, we first filtered out short
cases with an execution duration smaller than minDuration based on a common
assumption that short cases represent incomplete or outlier behavior. Next, we
abstracted the log by aggregating activities related to the release of patients.
That is, if consolidate is set to true, all release-related events are re-labeled
and in each trace all but the last release-related events are removed. Note that
these transformations are not presented here as the ideal way to handle the
log, but merely for illustration purposes. We chose the transformations, as we
observed that they were commonly applied in submissions to different editions
of the BPIC.

By varying the two parameters, we yielded the four models shown in Fig. 2.
The differences between the models demonstrate that discovery results can
strongly depend on a specific pipeline configuration and hence might be incon-
sistent with models discovered using varied configurations. For instance, model 1
indicates that the registration activities are executed in arbitrary order before all
other activities; in model 2 and 3 they are optional and parallel to the treatment
activities; and in model 4 the registration activity B requires the completion
of the two remaining registration activities A and C. Differences consequently
also exist at the level of the model topology. Yet, the models achieve similar fit-
ness values. This shows that model-centric quality metrics may not reflect how
pipeline configurations impact properties of the discovered process models.

In summary, we demonstrated that, while configuring a discovery pipeline is
necessary to manage log imperfections and complexity, it might constrain the
discovered model, when varied pipeline configurations yield inconsistent outputs.
This can ultimately affect the certainty with which insights can be inferred
from a discovered model. Following the awareness classification from [31] (see
Table 2), we argue that insight uncertainties can impact the decision making
that is based on the insights. In the presence of uncertainties, the chance of
error due to unjustified trust in the insights is high, when analysts are unaware

minDuration
0 sec 1 day

co
ns

ol
id

at
e
fa

ls
e

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
K-P

ER Registra�on
ER Sepsis Triage
ER Triage
CRP
Leucocytes
Admission NC
IV Liquid
Lac�cAcid
IV An�bio�cs
Admission IC
Release A
Release B
Release C
Release D
Release E
Return ER
Release Pa�ent

tr
ue

B

C

A

E

D

G

H

I O

M

F

K
N

P

B

C

A

G

H

O

M

D

E

F

K

N P

I

L

B

C

A

G

H

D

E

K-P

I

F
B

C

A

G

H

D

E

K-P

I
FJ

model 1
avg. fitness: 90.6%

model 3
avg. fitness: 93.3%

model 2
avg. fitness: 92.9%

model 4
avg. fitness: 82.4%

Fig. 2. Sepsis results for different pipeline configurations (fitness calculated with the
multi-perspective process explorer in ProM with the transformed event logs).

70 C. Klinkmüller et al.

Table 2. Effects of the analyst’s awareness of result uncertainties (adapted from [31])

of or mistakenly assume the absence of uncertainties. But also in the absence of
uncertainties, decision making might be impaired when analysts unnecessarily
question the insight validity due to mistakenly assuming that uncertainties exist.
While in the remaining cases the decision making is usually not affected, analysts
(and their audiences) should ideally always be aware of the level of uncertainty
that is associated with the insights and of its root causes.

3 Debugging of Process Discovery Pipelines

The necessity to address log imperfections and complexity via pipeline operations
can result in uncertain insights and impaired decision making (see Sect. 2). Such
uncertainty can stem from stochastic operators, but most often is introduced by
the pipeline parameters. For example, while there might be a plausible range of
threshold values for a filter that removes outlier traces with short durations, the
precise value can be uncertain. Diagnosing such uncertainty by manually varying
parameters and inspecting the respective outputs is infeasible due to the number
of configurations needed to obtain reliable conclusions, especially when model
and pipeline complexities, or parameter interactions are present. Moreover, it is
not transparent to the model audience. Hence, to assist analysts in debugging
their discovery pipelines, we pursue two objectives:

O1: Assess the consistency of model properties to unveil potential pipeline con-
straints.

O2: Quantify the influence of parameters to provide explanations for inconsis-
tencies.

While our approach could be used to evaluate steps in pipelines generally, we
designed it with the purpose of allowing an analyst to achieve objectives O1
and O2 for a concrete case. As such, the standard situation for applying our
framework is: an analyst has created a concrete pipeline with a concrete param-
eter configuration to generate a baseline model. The analyst then investigates
how the parameters influence the model properties (i) to substantiate insights
inferred from the baseline model, (ii) to iteratively construct a reliable pipeline,
or (iii) to generate insights from parameter/property relationships. In all cases,
the metrics are calculated relative to the properties of the baseline model.

Debugging Process Discovery Pipelines 71

DiscoverTransform

Sample the Pipeline
Measure the Consistency

for each Execu�on
Analyze the
Consistency

of the Pipeline

Parameter
Sensi�vity

Consistency
Uncertainty

Fig. 3. Framework for investigating property consistency in process discovery pipelines

To this end, one conceivable strategy is to instrument the pipeline and to
track the validity of model properties in all steps [45], i.e., in all intermedi-
ate logs and the discovered process models. Yet, as this analysis only considers
the current configuration, we would not be able to measure the consistency of
model properties with it, or to reason about the general influence of parameters.
Hence, we adopt uncertainty and sensitivity analysis which provides means to
quantify effects of varied pipeline configurations. In this regard, a first option are
one-at-a-time designs [36, pp. 66–69]. In such a design we would examine both
objectives by focusing on each parameter individually. Given a parameter, we
would repeatedly change its value and for each value execute the pipeline without
modifying any of the other parameters. Then, we would use the generated out-
comes to examine how variations in the parameter change the pipeline outcome.
While this is computationally efficient, the analytical results can be skewed in
the presence of parameter interactions [34]. Global sensitivity analysis overcomes
this limitation by studying the effects of simultaneous parameter changes. Here,
variogram analysis of response surfaces (VARS) [29] aims to reveal the spatial
structure and variability of model outputs. Essentially, VARS models the output
space as a variogram function that describes the degree to which model outcomes
for a specific parameter configuration X depend on outcomes produced by con-
figurations in the vicinity of X. This variogram function is then used to examine
properties of input-output relationships. However, VARS does not provide clear
indications for the importance of inputs and thus, they should be used to com-
plement variance-based sensitivity analysis [28]. We follow this argumentation
and build our framework on the scheme for variance-based sensitivity analysis
from [35].

As shown in Fig. 3, we first sample the pipeline (Sect. 3.1). That is, we exe-
cute the user-defined pipeline δ : Lnl × Xnx → Pnp multiple times to generate
process models for different parameter configurations. Here, we consider event
logs to be constants. This effectively turns discovery pipelines into functions
δX : Xnx → Pnp that only take parameters as input. To guide the exploration
and the parameter sampling, analysts must specify the relevant parameters and
their probability measures {(Xi, Pi(Xi))}i≤nx

. Next, we measure the property
consistency for each execution (Sect. 3.2), requiring the analysts to manually
determine the model properties for which they want to measure the consistency,

72 C. Klinkmüller et al.

i.e., the degree to which a (set of) model(s) produced in a single execution sat-
isfies this property. In particular, the analyst must provide a set of nm property
consistency measurements {μj}j≤nm

where each function μj : Pn′
p,j → [0, 1]

represents a specific property and returns the consistency for this property as
observed in a set of n′

p,j process models: a value of 0 indicates total inconsis-
tency, a value of 1 perfect consistency, and values in between degrees of con-
sistency. Lastly, we analyze the property consistency of the pipeline (Sect. 3.3):
an uncertainty analysis assesses the degree to which a model property changes
when pipeline parameters vary (O1), whereas sensitivity analysis quantifies the
contribution of individual parameters to potential inconsistencies (O2). Below,
we describe each step using the Sepsis experiment from Sect. 2 for illustration
purposes.

3.1 Sampling the Pipeline

To explore the output of different pipeline configurations, we first create a k×nx

configuration matrix A which comprises the configurations for k pipeline exe-
cutions. Each configuration contains nx values, one per relevant parameter Xi.
We use the configurations in A to assess whether the pipeline yields inconsis-
tencies (O1, see Sect. 3.3). If there are inconsistencies and it must be analyzed
how parameters contribute to them (O2, see Sect. 3.3), then for each parameter
Xi we create an additional k × nx configuration matrix ABi by copying A and
varying the values in the ith column which defines the values for parameter Xi.
Comparing the results obtained from the configurations in A and ABi allows
us to quantify the influence of parameter Xi. Thus, when desired, O2 requires
k ×nx additional pipeline executions, yielding a total of k × (nx +1) executions.

For a reliable analysis we need configurations that (i) sufficiently sample the
entire parameter space and (ii) systematically vary the parameter values. We
achieve this based on the procedure that yielded the best results in a compar-
ative evaluation by Saltelli et al. [35]. First, we use a low-discrepancy sequence
to generate two temporary k × nx matrices At and Bt where each row is a
point in the nx-dimensional unit cube. Low-discrepancy sequences ensure that
the parameter space is evenly sampled. We here use the Sobol’ sequence [39]
which, in contrast to sequences like the Latin Hypercube design, has the advan-
tage that we do not necessarily need to fix the sample size, but could in principle
dynamically generate new configurations until the analysis results converge. We
use the Sobol’ sequence to generate a k × 2nx matrix that is split in half to
obtain the temporary matrices At and Bt from the left and right half, respec-
tively. While we derive A directly from At, we use Bt to create the temporary
matrices {ABt

i}i≤nx
using the radial sampling strategy [33]. That is, for each

parameter Xi we construct ABt
i by copying At and replacing the i-th column

with the respective column from Bt. Lastly, we obtain the configuration matri-
ces (A and {ABi}i≤nx

) by interpreting the values in the temporary matrices
as probabilities: for each parameter we convert each value p in the i-th columns
of the temporary matrices to a parameter value x for Xi so that the respective
cumulative probability yields the probability p for value x, i.e., Pi(Xi ≤ x) = p.

Debugging Process Discovery Pipelines 73

The final step is to execute the discovery pipeline for each configuration in A
to discover the process models. The configurations from {ABi}i≤nx

are only
executed, if inconsistencies exist for which the analyst wishes to inspect the
influence of parameters.

In our running example, the Sepsis experiment, we sample the pipeline for the
parameters minDuration, consolidate, and threshold, in this order of param-
eters. We here also consider the threshold parameter, because in Sect. 2 it was
set to 0.2 by default and might have influenced the results. For consolidate and
threshold we use uniform distributions over their entire domains ({false,true}
and [0, 1]), whereas for minDuration we use the empirical distribution of case
durations in the log for all values ≤ 2 days. Setting minDuration to 2 days
would exclude about 29% of the cases, and hence we chose this value as an upper
bound. Taking a concrete example for a configuration, say the current configu-
ration from At or ABt

i is (0.7, 0.6, 0.3); then our approach derives the following
parameter values as per the above use of the cumulative probabilities. The 70th

percentile of the actual data for minDuration is at 4h 10min, and therefore we
get minDuration = 4h 10min. 0.6 > 0.5, hence we get consolidate=true.
For threshold, the uniform distribution equals the identity function, hence
threshold=0.3. We set the sample size k to 1,000 resulting in 1,000 executions
for O1 and (3 × 1,000) = 3,000 executions for O2.

3.2 Measuring the Property Consistency for a Single Execution

Within our framework, analysts can investigate the consistency of the model
topology and of fine-grained model properties like execution patterns and paths
by defining property consistency measurements μ : Pn′

P → [0, 1]. While analysts
can provide any measurement, we propose two specific measurements for single
models (n′

P = 1). Both functions rely on the causal behavioral profile [42] which
captures behavioral relations between a set of activities T as observed in a set
of executions E. The causal behavioral profile is defined as CT,E = {�,+, ‖,�}
where activity pairs (t1, t2) ∈ T × T are

1. in strict order (t1 � t2), if in all executions with t1 and t2, t1 occurs before
t2;

2. in interleaving order (t1 ‖ t2), if they can be executed in arbitrary order;
3. exclusive (t1 + t2), if they are never part of the same execution; and
4. co-occurring (t1 � t2), if the presence of t1 implies the presence of t2.

We chose behavioral profiles as a foundation for the concrete consistency
measurements, as they have been applied for various tasks including process
monitoring, complex event processing, conformance checking, and most impor-
tantly model consistency assessment [43]. Moreover, they can be computed from
heterogeneous inputs. Considering that each trace represents an execution, they
can straightforwardly be derived from logs. An efficient computation for sound
process models [42] derives the profile from a tree representation of the process
model. This computation can easily be adopted for discovery algorithms that

74 C. Klinkmüller et al.

output process trees such as the inductive miner [19]. For directly-follows graphs
with a dedicated start and a dedicated end node, every path from start to end is
an execution. Besides these beneficial properties, behavioral profiles might how-
ever inaccurately represent behavioral relationships in some cases [27]. Hence, a
comparative evaluation of consistency measures is required in future work.

The first type of measurement is the profile-based consistency μC : P → [0, 1].
It requires the provision of a base profile CTb,Eb

. Then, it applies the degree of
consistency metric from [41] to compute a consistency score for CTb,Eb

and a
profile CTd,Ed

derived from a discovered process model. This metric relies on
an alignment of the activities from Tb and Td. It hence allows us to compare
profiles at the same and at different levels of granularity. If two profiles are at
the same level of granularity, all activities with equal labels are aligned. Other-
wise, the pipeline includes a log abstraction step in which fine-grained activities
are mapped to higher-level activities e.g., using manually defined hierarchies or
automated label comparison [18]. This mapping defines the alignment. Based on
the alignment, the first step is to determine the sets of aligned activities T a

b and
T a
d which contain all activities from Tb and Td for which the other activity set

contains aligned activities. The metric then determines the count γ of activity
pairs in T a

b ×T a
b and T a

d ×T a
d whose relations defined by CTb,Eb

and CTd,Ed
match

the relations of the aligned activity pairs from the other profile. The relations
of two aligned activity pairs (t′b, t

′′
b) ∈ T a

b × T a
b and (t′d, t

′′
d) ∈ T a

d × T a
d match,

if both pairs are in strict order, interleaving order or exclusive, and they either
co-occur or not. If an activity pair (t′, t′′) is aligned with multiple pairs, then
the relations of all these pairs must match the relations of (t′, t′′). Finally, γ is
divided by the number of aligned activity pairs |T a

b × T a
b | + |T a

d × T a
d |. In this

work, we primarily use the profile from the baseline model discovered with a
specific pipeline configuration to track the degree to which behavioral relations
change when parameters change. Similar to model-centric quality metrics [9],
it is also conceivable to check, if the discovered model accurately reflects the
relations in a log, potentially produced during pipeline execution.

A break down of the model topology to investigate more fine-grain aspects
can be achieved by removing activities from the base profile to focus on certain
activity sets. Additionally, the rule-based consistency μR : P → {0, 1} enables
analysts to specify arbitrary rules in terms of boolean expressions which define
relations that need to hold between specific activities, e.g., that an activity α
must be in strict order with an activity β. The function then returns a value of 1,
if the profile derived from the discovered model adheres to the rule and a value
of 0 otherwise. Note that this is similar to the use of declarative rules which
are defined at the level of events and traces, whereas the rule-based consistency
relies on the more abstract level of the behavioral profile.

In the Sepsis example, we observed some inconsistencies at the model and at
the activity level. Here, we focus on three properties for which we analyze the
pipeline consistency below in Sect. 3.3. First, we use the profile-based consistency
to evaluate the model that we obtained, when setting minDuration to 2 days,
consolidate to true, and threshold to 0.2 (I1), see lower right corner of Fig. 2.

Debugging Process Discovery Pipelines 75

Additionally, we use the rule-based consistency to diagnose specific inconsisten-
cies that we observed when varying the parameters in Fig. 2. In particular, we
check if the registration activities A and C occur before all other activities (I2),
and if the release activities generally occur at the end of the process (I3). Note
that we evaluate all three consistencies based on the same set of configurations
and discovered process models, respectively.

3.3 Analyzing the Property Consistency for the Pipeline

The last step conducts the analyses postulated by the two objectives. We first
address O1 and examine the uncertainty associated with model properties based
on the provided consistency measurements {μj}j≤nm

. To this end, we compose
the discovery pipeline δX : Xnx → Pnp and each consistency measurement μj :
Pnp,j → [0, 1] to functions fj = μj ◦ δX that measure the property consistency
for models produced by a given pipeline configuration. This requires that the
consistency functions take as many process models as input as discovered by the
pipeline in a single execution, i.e., np = np,j .

For a measurement μj , we first calculate the mean consistency fj =
1
k

∑k
l=1 fj(A)l over all configurations from the configuration matrix A (see

Sect. 3.1). If the mean consistency is equal or very close to 1 (or 0 respectively),
we know that the respective property is (not) free of constrains and hence gen-
erally (in-)valid. In all other cases, there is uncertainty regarding the condi-
tions that cause inconsistencies and we next estimate the consistency variance
V̂ (fj) = 1

k

∑k
l=1

(
fj(A)2l − μj

2
)
. If the variance is close to 0, we can infer that

all pipeline configurations yield similar consistency values and that there likely
is a systematic difference between the property from the baseline model and the
properties of the pipeline output, generally. Such a difference can be explored
by comparing the originally discovered model to a few models generated with
different configurations. Here, the analyst can also resort to restricting the base
profile or defining rule-based consistencies, in order to investigate differences at
a more fine-grained level.

Larger variance values indicate that varied pipeline configurations yield pro-
cess models with different levels of consistency. To analyze the influence of
parameters as per O2, we compute the total effect index Si,j for each parameter
Xi [13]. It measures the contribution of parameter Xi to the variance in the con-
sistency measurement μj and considers all variance that is directly caused by Xi

and by interactions with other parameters. As suggested in [35], we here use the
estimator from [14]: Ŝi,j = 1

2k·V̂ (fj)

∑k
l=1 (fj(A)l − fj(ABi)l)

2. This estimator
relies on the results of the configuration matrix ABi. The higher the value of the
index for a parameter, the more it contributes to the variance in the consistency
measurement. If the sum of the indexes is larger than 1

(∑nx

i=1(Ŝi,j) > 1
)

the
parameters definitely interact.

We conclude by analyzing the pipeline consistency for the Sepsis experiment
considering the sampling configuration and properties from Sect. 3.1 and 3.2.

76 C. Klinkmüller et al.

The mean model consistency (I1) is f1 = .57 and for the two rule-based mea-
sures (I2, I3) we yield mean consistencies of f2 = .08 and f3 = .21. These low
values are in line with our observations from Fig. 2, because they indicate that
the behavioral relations in the baseline model are associated with uncertainty,
especially the relations of the registration and release activities. The variances
(V̂ (f1) = .06, V̂ (f2) = .07, V̂ (f3) = .16) point to non-systematic differences
which are attributed to all parameters. That is because all consistency / param-
eter combinations yield high total effect indexes on the interval [.71, .92]. This
implies that the handling of the log is not optimal and should be changed, not
least because the indexes reveal that there is significant parameter interaction.

4 Experiment

The primary objective of our experiment is to study whether the framework
provides a reliable foundation for investigating the effects of discovery pipeline
operations on the discovered model and its properties. In the following, we first
outline and justify our experimental design in Sect. 4.1. After that, we discuss
our results in Sect. 4.2.

4.1 Experimental Design

Uncertainty and sensitivity analysis are mature techniques that have been stud-
ied intensively, e.g., in [13,14,28,29,33,35,36], and hence provide a solid founda-
tion for our work. Software engineering for machine learning [3] is an emerging
topic, and has not yet been adopted for process mining (see Sect. 5). Hence,
we validate our framework using a single-case mechanism experiment, a suit-
able method for investigating the application of existing technology to a new
phenomenon [44, Ch. 18]. To mitigate the effects of a limited external validity
associated with such a design, i.e., the degree to which the findings can be gen-
eralized, we attached great importance to strengthening the ecological validity,
i.e., the realism with which the setup resembles real-world circumstances, and
to minimizing the threat of experimenter bias. Moreover, to ensure transparency
and reproducibility, we followed open science principles by relying on public data
and by publishing our source code8. In more detail, we decided to use the BPIC
2015 dataset from Sect. 2. It is a highly complex (see Table 1), publicly available,
real-world dataset for which nine independent analysis reports were published.
The latter allows us to setup a representative discovery pipeline based on oper-
ations commonly applied by external parties on this dataset. We merely use the
reports to guide the pipeline setup. It is not our intention to judge the analysts’
practices, for which an exact replication of a pipeline would be required (which
is neither desired nor feasible with the level of detail in the reports). The dataset
contains five event logs from applications for building permits in different Dutch
municipalities. Hence, we can reuse the sample pipeline to analyze our framework
in (slightly) varied circumstances.
8 https://bitbucket.csiro.au/users/kli039/repos/bpm-2021-debugging-experiments.

https://bitbucket.csiro.au/users/kli039/repos/bpm-2021-debugging-experiments

Debugging Process Discovery Pipelines 77

Table 3. Pipeline specification for the experiment including the parameters’ emp-irical
or uni-form distributions; their rel-evance for the variants V1–V5 where a default value
is provided for irrelevant parameters (0, 1, f – false, t – true); and the parameter values
that were used to generate baseline profiles for different consistency measurements.

We first categorized the applied transformation operations from the reports
and assembled the three most common operations into the pipeline from the
last row of Table 3. First, the log preparation loads the log and performs compu-
tations that ease the analysis. That is, the log specifies an activity code which
is the activity identifier, but also contains a sub-process identifier and an order
index. As the sub-process identifier is used for log consolidation, we extract it
into a separate feature. Because events were logged in batch with overlapping
timestamps, we follow advice from the BPIC organizers and establish the exe-
cution order based on the order index. After that, we apply a time window filter
to remove traces that started or completed outside a window defined by pipeline
parameters start and end date. This operation addresses the drifts in the log
which impact the discovery, and we here consider a time window from summer
2013 to spring 2014 in which no drift occurred. If parameter activated is set to
true, we perform a consolidation in which we define the sub-process identifier
as the activity classifier. Further, in each trace we only keep the first and last
sub-process event and set the event lifecycle state to started for the first event,
and retain completed for the last. Next, a frequency filter can reduce the com-
plexity of the discovered process model by selecting events and traces based on
the activity and variant frequency. Lastly, we apply the infrequent lifecycle
variant of the inductive miner [19] where the noise threshold also allows for
filtering behavior.

To systematically study the effects of combining different operations, we vary
the subset of relevant parameters from the above six parameters, and set the
remaining parameters to default values. The relevance of parameters for the
variants and their probability measures are summarized in Table 3. V1 estab-
lishes a baseline in which we only vary the parameters of the time window filter.
Here, we expect that the absence of drifts in the considered period (summer 2013
to spring 2014) guarantees a consistent discovery for slightly varied start and

78 C. Klinkmüller et al.

end dates. To study the impact of model consolidation, V2 additionally consid-
ers the activated parameters. Here, we expect that the information loss which
is inadvertently linked to abstraction leads to a drop in the consistency, but that
the discovered models are largely consistent, as we rely on a clearly defined pro-
cess hierarchy. In V3 and V4, we add different ways of behavior filtering to V1:
while both variants utilize the activity frequency, V3 additionally combines
it with the variant frequency and V4 with the noise threshold. We hypoth-
esize that these filters interact with the time window filter, which influences the
frequencies in the intermediate log. Finally, in V5 all parameters are relevant.

To investigate the pipeline consistency, we focus on the overall model con-
sistency using the profile-based consistency. In this regard, different baseline
models and thus base profiles emulate different degrees of complexity of discov-
ered models (see Table 3). All profiles are derived from the log for the default
time window. The normative (norm) profile has the highest complexity. It is
discovered directly from the default time window log and used for all variants.
For V2, we also use an abstract (abst) profile obtained by activating the consoli-
dation. Lastly, for V3 and V4 we aimed to replicate different model complexities
in line with the model complexities found in the reports (Table 1). We generate
the simple (simp), moderate (mod), and complex (comp) profiles by varying the
activity frequency to obtain models with ≈10, ≈20 and ≈35 of the most fre-
quent activities. We did not use the variant frequency or noise threshold,
as their effects on the model complexity differed across the five logs. Yet, the
profile-based consistency still allows us to assess their influence on the discovery
results.

4.2 Results

In the analysis, we considered a sample size of k = 1,000 for all combinations
of pipeline variants and consistency measurements. To ensure that this sample
size yields reliable results, we first investigated the convergence of the mean con-
sistencies, variances, and total effect indexes. That is, we computed the values
that we obtain for these measures for sample sizes less than 1,000 and observed
that for sample sizes larger than 500, all measures yield values that are very
close to the respective values obtained for k = 1,000 on all five logs for all vari-
ant/measurement combinations. While this ensures the reliability of our exper-
iment, it also demonstrates that measuring the convergence of the values is a
strategy to control the number of pipeline executions in real-world situations.
We did not investigate the run-time performance explicitly, but observed that
the inductive miner accounted for a large part of the execution time and that its
performance depended (unsurprisingly) on the complexity of the input log. To
compute all metrics per variant and dataset, on a customary laptop (Processor:
i5-8350U 1.70 GHz; RAM: 16 GB) and using parallel execution we yielded execu-
tion times between one and two hours for (V1); but below 5 min for V3–V5, due
to complexity reductions in the intermediary logs. Note that this is only a rough
indication for the run-time performance, for which we leave deeper investigation
and optimization to future work.

Debugging Process Discovery Pipelines 79

Municipality 1 Municipality 2 Municipality 3 Municipality 4 Municipality 5 V
1

V
2

V
3

V
4

V
5

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

normative

abstract
normative

complex
moderate

simple
normative

complex
moderate

simple
normative

normative

Fig. 4. Mean consistencies (dot) and variances (error bars) for pipeline variants

We first investigate the uncertainty for each variant and consistency combi-
nation, see Fig. 4. A first observation is that the consistency of the normative
model is very high (fj > .9) for V1. This is in line with our expectations, as we
knew from the reports that the considered period does not contain drifts. Slight
variations in the model can be attributed to a few outlier cases that might occur
around the default start and end date. For V2 we also confirm our expectations,
as the model consistency drops (fj > .7) due to some information loss caused by
the consolidation, but is still high. Note that this holds for the abstracted and the
normative model, indicating that log abstraction is a reliable means for complex-
ity management. Lastly, the variants that apply filtering (V3–V5) yield very low
consistency measures (fj < .5). While we expected some interaction with other
parameters, we were surprised by the magnitude of the effect of this interaction.
However, this observation is in line with guidelines from [11] that postulate to
carefully apply random subset selection, as it – in contrast to strategic selec-
tion, like the date window filter – can affect the quality of the discovered model.
We consider the filter parameters from V3–V5 to fall in this category, as it is
hard for analysts to predict the effects of certain value combinations. Moreover,
the negative effects pertain all base profiles which shows that the filters affect a
large range of the relations and that a broad range of possible behavior can be
generated by modifying the respective parameters. Overall, the coherence of our
expectations and existing guidelines with the experiment results substantiates
the reliability of the consistency measurement.

Municipality 1 Municipality 2 Municipality 3 Municipality 4 Municipality 5

V3

V4

V5

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

variant frequency
activity frequency

end date
start date

threshold
activity frequency

end date
start date

threshold
variant frequency
activity frequency

consolidate
end date

start date

Fig. 5. Total effect indexes for the normative profile and variants V3–V5

80 C. Klinkmüller et al.

To study the sensitivity analysis, we focused on the three variants with fil-
tering (V3–V5) and the normative base profile which overall yielded the largest
variance across all logs. The total effect indexes for all parameters per vari-
ant and log are shown in Fig. 5 where higher values for a parameter indicate a
stronger contribution of this parameter to the variance. In line with the uncer-
tainty analysis for the variants, the total effect indexes show the frequency and
threshold parameters to contribute the most to the uncertainty in the model
topology. This provides evidence towards the utility of the sensitivity analy-
sis: an analyst can determine the most influential parameters without manually
inspecting possible parameter or pipeline variations. Another interesting finding
is that the time window filter and consolidation parameters, which without fil-
tering only impacted the consistency a bit, have a stronger influence in variants
V3–V5. This demonstrates that analysts need to carefully assemble discovery
pipelines and cannot assume that a ‘stable’ operation can be straightforwardly
reused in other contexts.

5 Related Work

Research has studied issues related to data quality and quantity, in order to
ensure that high quality process models can be obtained from event logs. Clas-
sifications of data quality issues [8] and data quality patterns for event logs [40]
allow for systematic cleaning of event logs to increase process mining result
quality. Fitness, precision, generalization, and simplicity have been adopted as
metrics to evaluate the quality of a process model based on the event log that
served as the input for a process discovery algorithm [1]. Conformance checking
allows to obtain further details about if and how an event log deviates from a
process model for qualitative evaluation [12,30]. Also, methods have been pro-
posed to balance the behavioral quality of a discovered process model with its
complexity, in order to facilitate human inspection. For example, in [20] event
attributes are used to generate hierarchical process models that better represent
different levels of process granularity. A statistical pre-processing framework for
event logs that reduces the amount of data needed to produce high quality pro-
cess models is presented in [7]. Similarly, the influence of subset selection on
the model quality was examined in [11] where it was shown that, in contrast to
random-based selection, strategic subset selection increases the model quality.
The taxonomy of log and model uncertainty from [26] considers issues like incor-
rectness, coarseness, and ambiguity, and allows for obtaining upper and lower
uncertainty bounds for conformance checking.

Related work also proposed approaches for automatically extracting and eval-
uating process discovery insights. An automatic approach that compares differ-
ent process variants with the goal to obtain valuable insights is introduced in [6].
In more detail, the best and worst-performing variants with respect to a set of
key performance indicators are determined and their differences are presented
to the analyst. ProcessExplorer [38] automatically computes potential subsets of
cases and evaluates the interestingness based on statistical differences between

Debugging Process Discovery Pipelines 81

insights from the subsets and from the entire event log. Leemans et al. [21]
introduce an automatic extraction approach to obtain cohorts from event logs
via trace attribute analysis. The authors measure the stochastic distance between
trace attribute cohorts to identify their influence to the process model behavior.

Complementary to these techniques, patterns, and guidelines, our consistency
framework enables analysts to, in a concrete context, explicate how their deci-
sions, that underlie the configuration of a discovery pipeline including its log
transformations and discovery algorithms, affect model properties at different
granularity levels.

6 Conclusion

In this work we presented a first framework for debugging of process discov-
ery pipelines. We demonstrated the potential effects of pipeline operations on
the discovered models and discussed the implications for downstream decision
making. Next, we proposed a debugging framework which relies on uncertainty
and sensitivity analysis, in order to assist analysts in assessing the consistency of
their insights and to quantify the contribution of pipeline parameters to potential
inconsistencies. In an experiment on real-world event logs, we assessed the utility
of our framework and found that the uncertainties and explanations delivered
by the framework were well-grounded.

As mentioned in Sect. 3.2, comparative evaluations of consistency measures
are required to improve the framework’s applicability. Beyond that, research
opportunities ensue specifically regarding its usability, computational perfor-
mance, and broader application and evaluation. Usability topics comprise suit-
able user interfaces for tools, but also the generalization towards other process
mining methods including declarative process mining; support for determining
relevant parameters (e.g., via screening [36]) and their probability distributions;
and means to diagnose and break down inconsistencies. Moreover, repeatedly
executing a pipeline for different configurations can be time-consuming. While
screening methods can help to reduce the number of relevant parameters, inte-
grated uncertainty propagation [24] or emulators [36] might speed up the anal-
ysis. Lastly, applying the framework to a larger set of real-world scenarios could
potentially reveal and confirm (anti-)patterns for process mining pipelines [40].

In general, we believe that applying software engineering practices, as pro-
posed in the context of machine learning [3], is relevant for process mining as
well. While traditionally process mining techniques have been made available via
visual idioms which combine visual representations and user interaction tech-
niques, packages like BupaR and pm4py have brought process mining to open
data processing environments like R, Python, Apache Spark, etc. This enables
a paradigm shift towards script-based analysis, where the ability to seamlessly
integrate data processing, data mining, and machine learning techniques and
tools can ease the definition, execution, documentation, and sharing of pro-
cess mining pipelines, and reduce their fragmentation. In this regard, challenges
from machine learning include testing, experiment management, transparency,

82 C. Klinkmüller et al.

and troubleshooting [4]. Empirical studies into the practices of process analysts,
such as [17], can help to refine those challenges in the context of process mining.

References

1. van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49851-4

2. Adriansyah, A., Buijs, J.C.A.M.: Mining process performance from event logs. In:
BPM Workshops, pp. 217–218 (2013)

3. Amershi, S., et al.: Software engineering for machine learning: a case study. In:
ICSE SEIP, pp. 291–300 (2019)

4. Arpteg, A., Brinne, B., Crnkovic-Friis, L., Bosch, J.: Software engineering chal-
lenges of deep learning. In: SEAA, pp. 50–59 (2018)

5. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59, 251–284 (2019)

6. Ballambettu, N.P., Suresh, M.A., Bose, R.P.J.C.: Analyzing process variants to
understand differences in key performance indices. In: CAISE, pp. 298–313 (2017)

7. Bauer, M., Senderovich, A., Gal, A., Grunske, L., Weidlich, M.: How much event
data is enough? a statistical framework for process discovery. In: CAISE, pp. 239–
256 (2018)

8. Bose, R.P.J.C., Mans, R.S.: Van Der Aalst, W.M.P.: Wanna improve process min-
ing results? In: IEEE SSCI, pp. 127–134 (2013)

9. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in
process discovery: the importance of fitness, precision, generalization and simplic-
ity. Int. J. Coop. Inf. Syst. 23(01), 1440001 (2014)

10. van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM2: a process
mining project methodology. In: CAISE, pp. 297–313 (2015)

11. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: The impact of event log
subset selection on the performance of process discovery algorithms. In: ADBIS,
pp. 391–404 (2019)

12. Garćıa-Bañuelos, L., van Beest, N.R.T.P., Dumas, M., Rosa, M.L., Mertens, W.:
Complete and interpretable conformance checking of business processes. IEEE
Trans. Softw. Eng. 44(3), 262–290 (2018)

13. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of non-
linear models. Reliab. Eng. Syst. Saf. 52(1), 1–17 (1996)

14. Jansen, M.J.W.: Analysis of variance designs for model output. Comput. Phys.
Commun. 117(1), 35–43 (1999)

15. Kalenkova, A., Polyvyanyy, A., La Rosa, M.: A framework for estimating simplicity
of automatically discovered process models based on structural and behavioral
characteristics. In: BPM, pp. 129–146 (2020)

16. Klinkmüller, C., van Beest, N.R.T.P., Weber, I.: Towards reliable predictive process
monitoring. In: CAISE Forum, pp. 163–181 (2018)

17. Klinkmüller, C., Müller, R., Weber, I.: Mining process mining practices: an
exploratory characterization of information needs in process analytics. In: BPM,
pp. 322–337 (2019)

18. Klinkmüller, C., Weber, I.: Every apprentice needs a master: Feedback-based effec-
tiveness improvements for process model matching. Inf. Syst. 95, 101612 (2021)

https://doi.org/10.1007/978-3-662-49851-4

Debugging Process Discovery Pipelines 83

19. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Petri Nets, pp. 311–
329 (2013)

20. Leemans, S.J.J., Goel, K., Van Zelst, S.J.: Using multi-level information in hier-
archical process mining: Balancing behavioural quality and model complexity. In:
ICPM, pp. 137–144 (2020)

21. Leemans, S.J.J., Shabaninejad, S., Goel, K., Khosravi, H., Sadiq, S., Wynn, M.T.:
Identifying cohorts: recommending drill-downs based on differences in behaviour
for process mining. In: ER, pp. 92–102 (2020)

22. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive moni-
toring of business processes. In: CAISE, pp. 457–472 (2014)

23. Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using
process mining. In: BPMDS, pp. 72–80 (2017)

24. Manousakis, I., Goiri, I.N., Bianchini, R., Rigo, S., Nguyen, T.D.: Uncertainty
propagation in data processing systems (2018)

25. Mariscal, G., Marbán, S., Fernández, C.: A survey of data mining and knowledge
discovery process models and methodologies. Knowl. Eng. Rev. 25(2), 137–166
(2010)

26. Pegoraro, M., van der Aalst, W.M.P.: Mining uncertain event data in process
mining. In: ICPM, pp. 89–96 (2019)

27. Polyvyanyy, A., Armas-Cervantes, A., Dumas, M., Garćıa-Bañuelos, L.: On the
expressive power of behavioral profiles. Formal Aspects Comput. 28(4), 597–613
(2016)

28. Puy, A., Lo Piano, S., Saltelli, A.: Is vars more intuitive and efficient than sobol’
indices? Environ. Model Softw. 137, 104960 (2021)

29. Razavi, S., Gupta, H.V.: A new framework for comprehensive, robust, and efficient
global sensitivity analysis: 1. theory. Water Resour. Res. 52(1), 423–439 (2016)

30. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

31. Sacha, D., Senaratne, H., Kwon, B.C., Ellis, G., Keim, D.A.: The role of uncer-
tainty, awareness, and trust in visual analytics. IEEE Trans. Vis. Comput. Graph.
22(1), 240–249 (2016)

32. Sacha, D., Stoffel, A., Stoffel, F., Kwon, B.C., Ellis, G., Keim, D.A.: Knowledge
generation model for visual analytics. IEEE Trans. Vis. Comput. Graph. 20(12),
1604–1613 (2014)

33. Saltelli, A.: Making best use of model evaluations to compute sensitivity indices.
Comput. Phys. Commun. 145(2), 280–297 (2002)

34. Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S.,
Wu, Q.: Why so many published sensitivity analyses are false: a systematic review
of sensitivity analysis practices. Environ. Model Softw. 114, 29–39 (2019)

35. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Vari-
ance based sensitivity analysis of model output design and estimator for the total
sensitivity index. Comput. Phys. Commun. 181(2), 259–270 (2010)

36. Saltelli, A., et al.: Global Sensitivity Analysis. The Primer, Wiley, Hoboken (2008)
37. Sargent, R.G.: Verification and validation of simulation models. J. Simul. 7, 12–24

(2013)
38. Seeliger, A., Sánchez Guinea, A., Nolle, T., Mühlhäuser, M.: Processexplorer: intel-

ligent process mining guidance. In: BPM (2019)
39. Sobol, I.M.: Uniformly distributed sequences with an additional uniform property.

USSR Comput. Math. Math. Phys. 16(5), 236–242 (1976)

84 C. Klinkmüller et al.

40. Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfec-
tion patterns for process mining: Towards a systematic approach to cleaning event
logs. Inf. Syst. 64, 132–150 (2017)

41. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based
on behavioral profiles of process models. IEEE Trans. Softw. Eng. 37(3), 410–429
(2011)

42. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient computation of
causal behavioural profiles using structural decomposition. In: Petri Nets, pp. 63–
83 (2010)

43. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles
- efficient computation, applications, and evaluation. Fundam. Inf. 113(3–4), 399–
435 (2011)

44. Wieringa, R.J.: Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43839-8

45. Yang, K., Huang, B., Stoyanovich, J., Schelter, S.: Fairness-aware instrumentation
of preprocessing pipelines for machine learning. In: HILDA (2020)

https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8

	A Method for Debugging Process Discovery Pipelines to Analyze the Consistency of Model Properties
	1 Introduction
	2 Basic Terminology and Problem Illustration
	3 Debugging of Process Discovery Pipelines
	3.1 Sampling the Pipeline
	3.2 Measuring the Property Consistency for a Single Execution
	3.3 Analyzing the Property Consistency for the Pipeline

	4 Experiment
	4.1 Experimental Design
	4.2 Results

	5 Related Work
	6 Conclusion
	References

