
Weighing the Pros and Cons: Process
Discovery with Negative Examples

Tijs Slaats1(B), Søren Debois2,3, and Christoffer Olling Back1

1 Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark

{slaats,back}@di.ku.dk
2 IT University of Copenhagen, Copenhagen, Denmark

debois@itu.dk
3 DCR Solutions A/S, Copenhagen, Denmark

Abstract. Contemporary process discovery methods take as inputs only
positive examples of process executions, and so they are one-class clas-
sification algorithms. However, we have found negative examples to also
be available in industry, hence we propose to treat process discovery as
a binary classification problem. This approach opens the door to many
well-established methods and metrics from machine learning, in partic-
ular to improve the distinction between what should and should not be
allowed by the output model. Concretely, we (1) present a formalisation
of process discovery as a binary classification problem; (2) provide cases
with negative examples from industry, including real-life logs; (3) pro-
pose the Rejection Miner binary classification procedure, applicable to
any process notation that has a suitable syntactic composition operator;
and (4) apply this miner to the real world logs obtained from our indus-
try partner, showing increased output model quality in terms of accuracy
and model size.

Keywords: Process mining · Binary classification · Negative
examples · Labelled event logs

1 Introduction

From the perspective of machine learning, process discovery [1] sits uneasily in
the gap between unary and binary classification problems [21,31]. Popular con-
temporary miners, e.g. [5,23], approach process discovery as unary classification:
given only positive examples (the input log) they generate a classifier (the output
model) which recognizes traces (adhering to the output model) that resemble the
training data. However, a process model is really a binary classifier: it classifies
traces into those it accepts (desired executions of the process) and those it does
not (undesired executions of the process).

Binary classification in machine learning relies on having access to examples
of both classes. For process discovery, this means having not only positive exam-
ples of desired behaviour to be accepted by the output model, but also negative
examples of undesired behaviour that should be rejected.
c© Springer Nature Switzerland AG 2021
A. Polyvyanyy et al. (Eds.): BPM 2021, LNCS 12875, pp. 47–64, 2021.
https://doi.org/10.1007/978-3-030-85469-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85469-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-85469-0_6

48 T. Slaats et al.

Negative examples also underpin a substantial part of the mechanics and
theory of machine learning, in particular on model evaluation. Output models are
evaluated on measures comparing ratios of true and false positives and negatives;
however, absent negative examples, it is impossible to apply such measures.
Accordingly, in process discovery, we use measures based only on true positive
answers, such as recall ; we are deprived of more fine-grained measures involving
true negative or false positive answers such as accuracy.

In practical process discovery, negative examples would help distinguish
between incidental correlation and actual rules. For instance, suppose that in
some log, whenever we see an activity B, that B is preceded by an activity
A. Does that mean that we can infer the declarative rule A →• B, that A is
required before B may happen? In general, no: making this distinction requires
domain knowledge. E.g., if A is “call taxi” and B is “file minutes from weekly
status meeting”; by coincidence, we always call a taxi in the morning the day
we file minutes, but clearly there is no rule that we must call a taxi before filing
minutes. Conversely, if A is “approve payment” and B is “execute payment”,
very likely it is a rule that B must be preceded by A.

A mining algorithm does not possess domain knowledge, and so must have
help to make such distinctions, to decide whether to add a rule A →• B to
its output model. Negative examples potentially help here: If BA is in the set
of negative examples, adding the rule A →• B is justified, as it rejects this
trace. Conversely, if a rule rejects no trace from the negative examples, it is not
necessary but discretionary for the miner to leave out or keep in. In the case of
our examples, we would expect to find ample evidence in our negative examples
that executing a payment before approving it is bad, whereas we would expect
to find little to no evidence that filing minutes before calling a taxi is undesired.

As shown by [28] negative examples do exist in practice, some mining algo-
rithms that include negative examples have been proposed, e.g. [22,28], and inter-
estingly recent editions of the process discovery contest1 have moved towards
using labelled test logs (but not training logs) to rank submissions. In this paper
we add to these developments with the following contributions:

1. We formalize process discovery as a binary classification problem, and show
that not all process notations can express complete solutions to this problem
(Sect. 3).

2. We propose the Rejection Miner, a notation-agnostic binary mining proce-
dure applicable to any process notation with a syntactic composition opera-
tor Sect. 4.

3. We describe two cases where negative examples were encountered in industry
and provide data sets [34] (Sect. 5).

4. We implement a concrete Rejection Miner and apply it to these data sets,
comparing exploratively to contemporary unary miners (Sect. 6). The miner
has been integrated in the commercial dcrgraphs.net modelling tool.

1 https://icpmconference.org/2019/process-discovery-contest/
https://icpmconference.org/2020/process-discovery-contest/.

https://www.dcrgraphs.net/
https://icpmconference.org/2019/process-discovery-contest/
https://icpmconference.org/2020/process-discovery-contest/

Weighing the Pros and Cons: Process Discovery with Negative Examples 49

For the latter experiments, do note that the contemporary unary miners with
which we compare do not take into account the negative examples. They must
guess from the positive examples which traces to reject, whereas the Rejection
Miner has the negative examples to guide it. We find that the Rejection Miner
achieves noticeably better accuracy, in particular on out-of-sample tests, and
produces models that are orders-of-magnitude smaller than the unary miners.
We also note that we chose not to compare to other binary miners, as we did not
aim to show the merits of the Rejection Miner in particular, but of binary mining
in general. We chose the Rejection Miner as representative for binary mining as
it allows us to build DCR Graphs, which were requested by the industry partner.
The implementation of the Rejection Miner is available on-line [33].

Related Work. There have been several earlier works framing process mining as
a binary classification task. [22] formulates constraints as Horn clauses and uses
the ICL learning algorithm to successively find constraints which remove negative
examples, stopping when there are no negative examples left. They translate these
generated clauses to DECLARE. The Rejection Miner generalises this approach in
that (a) it replaces the horn clauses with a generic notion of “model” for notations
with composition (or synchronous product of models), and thus applies directly
to a plethora of languages such as DECLARE and DCR Graphs, (b) the Rejection
Miner leaves the choice of which clauses to prune until after a set of constraints rul-
ing out all negative constraints is found, opening the door to non-greedy minimisa-
tion, and most importantly (c) we prove correctness for the Rejection Miner. [28]
proposes an approach where traces are represented as points in an n-dimensional
space (n being the number of unique event classes of the log), each point repre-
senting the multiplicity of the event classes in that trace. Finding a model is then
reduced to the problem of finding a convex hull for the points such that positive
points are included and negative points excluded. Whereas the work only con-
siders the multiplicity of event classes in negative traces, the Rejection Miner is
able to also consider the temporal ordering of individual events, while the former
works well for the generation of Petri net models, it is less suitable for declara-
tive notations. In [7,18], the authors artificially generate negative labels, but at
the level of individual events rather than traces. The authors also defined process
mining oriented metrics based on the resulting true positive/negative labels at
the level of events. In [29] the development of binary process discovery algorithms
was identified as a key open challenge for the field of declarative process discov-
ery. Our work is also closely related to the work on vacuity detection in declarative
process mining [15,25] which considers techniques for selecting the most relevant
discovered constraints. However, they only consider logs with positive examples.
The use of labelled input data is also well-accepted in the field of predictive pro-
cess monitoring [16,32]. Finally, our test-driven modelling use case presented in
Sect. 5.1 is similar to the scenario-based modelling approach introduced in [17],
where (potentially negative) scenarios are modelled as small Petri nets which can
then be synthesised into a single larger model. Contrary to this approach we input
positive and negative scenarios as traces and learn a declarative model from these.

50 T. Slaats et al.

2 Process Notations and Unary Discovery

We recall the traditional definitions of event logs etc. [1].

Definition 1 (Events, traces, logs). Assume a countably infinite universe A
of all possible activities. As usual, an alphabet Σ ⊆ A is a set of activities, and
the Kleene-star Σ� denotes the countably infinite set of finite strings or sequences
over Σ; we call such a string a trace. A log L is a multiset of occurrences of
traces L = {tm1

1 , . . . , tmn
n } where mk > 0 is the multiplicity of the trace tk ∈ Σ.

We write LΣ for the set of all event logs over alphabet Σ.

When convenient, we treat an event log L also as simply a set of traces by
ignoring multiplicities.

When we discuss unary and binary process discovery in the abstract in later
sections, we will be interested in applying discovery to a variety of process nota-
tions; and we shall propose a miner which can be instantiated to any notation
with a suitable composition operator. To make such statements formally, we
need a formal notion of process notation. We use P(S) for the power set of S.

Definition 2 (Process notation). A process notation for an alphabet Σ com-
prises a set of models M and an interpretation function �−� : M → P(Σ�)
assigning to each individual model m the set of traces �m� accepted by that model.
For a set S ⊆ Σ�, we write m |= S iff S ⊆ �m�.

While a process notation comprises the three components Σ, M, and �−�,
when no confusion is possible we shall allow ourselves to say “consider a process
notation M”, understanding the remaining two components to be implicit.

Example 3. Here is a toy declarative formalism which allows exactly the con-
dition constraint of DECLARE [2,27] or DCR [12,19] over a countably infinite
alphabet Σ = {A,B,C, . . .}. A “model” is any finite set of pairs (x, y) ∈ Σ × Σ,
and we interpret each such pair as a condition from x to y. Formally:

Mcond = {C ⊆ Σ × Σ | C finite}
�C� = {t ∈ Σ� | ∀(x, y) ∈ C. each y in t is preceded by x}

For instance, {(A,B)} ∈ Mcond is a model consisting of a single condition from
A to B. In DECLARE or DCR, we would write this model “A →• B”. Just as
in DECLARE or DCR, this model admits all traces in which any occurrence of
B is preceded by an occurrence of A. That is, this model admits the trace AB,
but not B or BABA. Formally, we write

AB ∈ �{(A,B)}� or {(A,B)} |= {AB}
{B,BABA} �⊆ �{(A,B)}� or {(A,B)} �|= {B,BABA}

Any process modelling formalism with trace semantics is a process notation
in the above sense; such formalims include DECLARE, DCR, and Workflow
Nets [3] (see also [1]).

Weighing the Pros and Cons: Process Discovery with Negative Examples 51

We conclude this Section by pinning down process discovery: a procedure
which given an event log produces a process model which admits that log.
Assume a fixed alphabet Σ, and write LΣ for the set of all valid event logs
over Σ.

Definition 4 (Unary process discovery). A unary process discovery algo-
rithm γ for a process notation (M, �−�) over Σ is a function γ : LΣ → M. We
say that γ has perfect fitness iff for all L ∈ LΣ we have γ(L) |= L.

Anticipating our binary miners, we shall refer to “perfect fitness” also as positive
soundness of the miner.

3 Process Discovery as Binary Classification

We proceed to consider process discovery a binary classification problem. This
approach presumes that we have not only positive examples (the set L in Defini-
tion 4), which the output model must accept, but also a set of negative examples,
which the output model must reject.

Example 5. Consider again the condition models Mcond of Example 3. Take as
positive set of examples the singleton set {AB}, and take as negative examples
the set {BA,B}. One model which accepts the positive example and rejects the
negative ones is the singleton condition {(A,B)}. This model admits the positive
example AB, because B is preceded by A; and it rejects the negative examples,
because in both of the traces B and BA, the initial B is not preceded by A.

The negative examples here help solve the relevancy problem that plagues
unary miners for declarative formalisms: The positive example AB clearly sup-
ports the constraint “A is a condition for B”, however, as we saw in the intro-
duction, with only positive examples and without domain knowledge, we cannot
know whether this is a coincidence or a hard requirement. In the present exam-
ple, the negative examples tell us that our model must somehow reject the trace
BA, encouraging us to include the condition A →• B.

Unfortunately, a model accepting a given set P of positive examples and
rejecting a given set N of negative ones does not necessarily exists: At the very
least, we must have P and N disjoint. To cater to such ambiguous inputs, we
allow a binary miner to refuse to produce a model.

Definition 6 (Binary process discovery). Let M be a process notation
for an alphabet Σ. A binary-classification process discovery algorithm (“binary
miner”) is a partial function η : LΣ × LΣ ⇀ M, taking sets of positive and
negative examples P,N to a model η(P,N). We require that η(P,N) is defined
whenever P,N are disjoint.

In the rest of this paper, unless otherwise stated, we shall implicitly assume
that examples P,N are disjoint. We proceed to generalise the notion of fitness
from unary mining.

52 T. Slaats et al.

Definition 7 (Soundness, perfection). Let P,N ⊆ LΣ be positive and neg-
ative examples. We say that a binary miner η is positively sound at P,N
iff η(P,N) |= P . Similarly, we say that η is negatively sound at P,N iff
N ∩ �η(P,N)� = ∅. We say that η is perfect iff for any disjoint P,N it is
defined and both positively and negatively sound.

In other words: A perfect binary miner produces an output whenever its
positive and negative examples are not in direct conflict, and that output admits
all positive examples and none of the negative examples provided as input.

Over-and Underfitting of Out-of-Sample Data. A perfect binary miner has no
choice in how it treats the elements of P and N : it must admit its positive
examples P and reject its negative examples N . It is the remaining undecided
traces where it has a choice. In the limits, we have the overfitting “maximally
rejecting miner”, whose output always accepts exactly P and nothing else; and
the underfitting “maximally accepting miner”, whose output rejects exactly N
and nothing else.

However, unlike the unary case, where perfect fitness miners are generally
quite easy to come by, perfect binary miners do not necessarily exist, and
helpful ones may in practice be quite hard to come by.

First, let us try to use a unary miner as a binary one. We do so by simply
ignoring the negative examples and applying our unary miner to the positive
ones. In this case, it is easy to show that for any unary miner (for any notation)
which never returns exactly its input log, we can construct a negative example
which will be accepted by the output model of that miner for those positive
examples:

Proposition 8. Let γ be a unary miner for a notation M over alphabet Σ, and
assume that for all L we have �γ(L)� �= L. Then for all P ∈ LΣ there exists a
N ∈ LΣ s.t. N and P are disjoint, yet N is accepted by the output model γ(L).

So in this sense, non-trivial unary miners never generalise to binary
ones. This is perhaps not entirely surprising. Much less obvious, and a core
difference between binary and unary mining, we find that some notations can-
not express distinctions fine enough to distinguish between positive and nega-
tive examples. This is in stark contrast to the unary case, where essentially all
notations have a model accepting all traces (the “flower model”); moreover, all
commonly accepted notations are able to express any finite language, and so for
any input log (finite language), a perfectly fitting model must exist.

However, in the binary case, even though our example notation admits the
“flower model”, it is still too coarse to admit a perfect binary miner.

Lemma 9. In Mcond, take positive examples P = {ABC}, and negative exam-
ples N = {AB}. Then no model m ∈ Mcond exists such that m |= P yet m �|= N .

Proof. Suppose m is a model with m �|= {AB}. Then m requires something
preceding either A or B, something which is apparently not there. But then that
something is missing also from ABC.

Weighing the Pros and Cons: Process Discovery with Negative Examples 53

In fact, we prove below that no perfect binary miner can exist in any
notation that has only finitely many possible models. To understand
the ramifications of this Theorem, consider again DCR and DECLARE. For
DCR or DECLARE models over a fixed finite alphabet (e.g., the set of tasks
present in a given log), DCR has infinitely many such models (with distinct
semantics), whereas DECLARE has only finitely many. To see this, note that
in DCR, because labels and events are not one-one, we can keep adding events
that do affect behaviour, while remaining within a finite set of observable tasks.
In DECLARE, if there are n activities to choose from, you can populate only
finitely many DECLARE templates with those finitely many tasks. Since the
arity of DECLARE templates is bounded, and current DECLARE miners are
bounded to a finite set of input templates, you are left with only finitely many
models.

Note the following consequence for DECLARE: any binary miner for
DECLARE has inputs P,N for which the output a model has either
false positives or false negatives.

Theorem 10. No perfect binary miner exists for any process notation that has
only finitely many possible models M over any non-empty finite alphabet Σ.

Proof. We construct finite positive and negative examples P and N such that
no model accepts P and rejects N . First, we construct N . Let I+ as the subset
of models that accepts infinitely many traces, i.e., I+ = {m ∈ M | �m� infinite}.
Since there are only finitely many models, I+ is finite, and without loss of gen-
erality write it I+ = {m1, . . . ,mn}. For each mi, choose a ti ∈ �mi�, and define
N = {t1, . . . , tn}. Next, we construct P . Let �(�m�) be the complement of the
traces generated by a model m and I− the subset of models which reject infinitely
many traces, i.e., I− = {m ∈ M | �(�m�) infinite}. Again I− is finite and we
write it without loss of generality I− = {p1, . . . , pk}. For each of pj , pick a trace
sj such that sj /∈ �pj� and sj /∈ N -this is always possible because ��mj� is infi-
nite and N finite. Then define P = {s1, . . . , sk}. Note that by construction P
and N are disjoint. Finally, let m ∈ M be a model. At least one of �m� and ��m�
must be infinite; we show that in neither case can m be the output of a perfect
binary miner applied to P,N . If �m� is infinite, then m ∈ I+, say m = mi, and
it follows that m |= ti ∈ N ; hence m fails to reject all negative examples. If on
the other hand �(�m�) is infinite, then m ∈ I−, say m = pj and it follows that
sj /∈ �pj� = �m�; hence m fails to accept the positive example sj ∈ P .

Alternatively, the above proof can possibly be used to show that there are
infinitely many problems P,N with pairwise distinct solutions; the Theorem then
follows from the Vapnik-Chervonenkis dimension [4] of the set of interpretations
of the finite set of models being necessarily finite, and so unable to shatter this
infinite set of distinct solutions.

In unary mining, we may construct a perfect fitness miner like this: As nota-
tion, pick simply finite sets of traces, and let the semantics of the notation be
that a model (set of traces) T accepts a trace t iff t ∈ T . Then the function
η(P) = P is a perfect fitness miner. This generalises to any notation strong

54 T. Slaats et al.

enough to characterise exactly a given set of T of traces. Obviously, this unary
miner has little practical relevance.

It is interesting to note that a similar perfect binary miner exists. Pick as nota-
tion pairs of sets of traces T,U , with semantics that T,U accepts t iff t ∈ T and
t �∈ U . Clearly the function η(P,N) = (P,N) is a perfect binary miner, although
again, not a particularly helpful one. However, the construction shows that a per-
fect binary miner exists for any notation strong enough to exactly characterise
membership resp. non-membership of finite sets of traces. Notable examples here
are Petri-nets and BPMN (through an exclusive choice over the set of positive
traces); so it follows that a (trivial) binary miner exists for these notations.

4 Rejection Miners

We proceed to construct a family of binary miners we call “Rejection miners”,
defined for any process notation which has a behaviour-preserving syntactic
model composition. Rejection miners are parametric in a “pattern oracle” which
selects a set of patterns for consideration; if the patterns selected allow it, the
output of the Rejection Miner is perfect. When they do not, the miner does a
greedy approximation to optimise for accuracy (i.e., maximising the ratio of true
positives and negatives to all inputs).

Definition 11 (Additive process notation). We say that a process formal-
ism M over Σ is additive if it comes equipped with a commutative monoid (⊕,1)
on M such that

�1� = Σ� (1)

�m ⊕ n� = �m� ∩ �n� (2)

We lift the monoid operator to sequences and write
⊕

i<n mi = m1⊕· · ·⊕mn−1,

That is, an additive formalism has a flower model 1 and a model combination
operator ⊕. This operator combines two models into a compound one, such that
this compound model accepts exactly the traces accepted by both of the two
original models. DECLARE is an additive formalism: A DECLARE model is a
finite set of constraints; the empty such set accepts all traces (1), and the union
of two such sets is again such a set, with exactly the desired semantics (⊕). DCR
also has a model composition, where the composite model is the union of events,
markings, and constraints [11,20]. However, this composition does not preserve
semantics in the general case.

In practice, any process notation can be considered additive by forming the
synchronous product of models: To check whether a given trace t conforms to a
composite model m⊕n, we simply check whether m |= t and n |= t. Incidentally,
this is a popular implementation mechanism for DECLARE constraints (see,
e.g., [10,14]).

Weighing the Pros and Cons: Process Discovery with Negative Examples 55

The key property of additive process notations used for Rejection Miners is
that in such a notation, we can think about models as being the sum of their
parts, and the problem of mining can then be reduced to finding suitable such
parts. For this approach to be able to generate all models, we would also need to
know a subset S ⊆ M which generates M under the model composition operator
−⊕−. DECLARE and DCR clearly has such subsets. In keeping with declarative
notations and nomenclature, we will refer to such part models as “constraints”
in the sequel, however, we emphasise that there is nothing special about them:
A constraint m is just another model m ∈ M.

A rejection miner is parametric in two sub-components: A pattern oracle,
which given positive and negative examples produces a finite set of (hopefully)
relevant constraints; and a constraint minimiser, which given a sequence of con-
straints known to fully reject a set of negative examples selects a subset still
fully rejecting those examples.

Definition 12 (Rejection miner components). Let M be a process notation
over an alphabet Σ. A pattern oracle is a function patterns : LΣ × LΣ → M�.
A minimiser is a function minimise : M� × LΣ → M� satisfying:

1. if σ ∈ M� fully rejects L, then also minimise(σ,L) fully rejects L; and
2. minimise(σ,L) contains only elements from the input sequence σ.

An example pattern oracle for DECLARE would be the function that pro-
duces all possible instantiations of all templates with activities observed in either
of its input logs. An example minimiser is the greedy minimiser which, starting
from the left of the list of constraints, removes those constraints which reject
only traces in N that are already rejected by preceding constraints.

Algorithm 13 (Rejection miner). Let M be an additive notation over Σ,
let patterns be a pattern oracle and let minimise be a minimiser.

1: procedure RejectionMiner(P,N)
2: [m1, . . . ,mn] ← patterns(P,N)
3: σ ← [mi | mi |= P] � remove mj where mj �|= P
4: σ ← ⊕

minimise(σ,N)
5: if �

⊕
σ� ∩ N �= ∅ then � are any negative examples not rejected?

6: δ ← 1, σ2 ← []
7: while δ > 0 and |σ2| < |σ| do
8: N ′ ← {n ∈ N | ⊕

σ2 |= n} � negative examples not yet rejected
9: P ′ ← {p ∈ P | ⊕

σ2 |= n} � positive examples currently accepted
10: m, δ ← maxmj∈σ\σ2(|{n ∈ N ′ | mj �|= n}| − |{p ∈ P ′ | mj �|= p}|)
11: if δ > 0 then
12: σ2 ← σ2,m
13: end if
14: end while
15: end if
16: end procedure

56 T. Slaats et al.

A brief explanation: On line 2, the pattern oracle is invoked to produce a
finite list [m1, . . . ,mn] of relevant constraints. On Line 3, those constraints not
modelling the positive examples P are filtered out; only the constraints mi which
do model P are retained; we assign the resulting list to σ. We then apply the
minimiser in Line 4, which by Definition 12 at most removes constraints. On
Line 5, we check whether all negative examples are rejected; if so, we have found
a perfect model and return it.

Otherwise, we turn to approximation. In the loop in Line 7 to 13, we repeat-
edly compute the set N ′ of negative examples not yet rejected and P ′ of positive
examples currently accepted. In Line 10, we iterate over the constraint mj of the
original pattern oracle and compute for each the difference δj between how many
additional negative examples mj rejects (wins) and how many already accepted
positive examples mj rejects (losses); we then pick the mj with the maximum
δj . If δ > 0, adding the constraint mj will improve accuracy, and we add it to
the set of output constraints. If δ ≤ 0, we cannot improve accuracy by including
any more constraints, and the loop terminates.

Recall from the previous section the notions of maximally accepting or maxi-
mally rejecting perfect binary miners. The minimiser provides a handle for push-
ing the Rejection Miner towards either of these extremes. Using the identity func-
tion as the minimiser will retain all constraints, and so reject the most undecided
traces. Conversely, using a minimiser which finds a least subset of constraints
rejecting N will remove more constraints, accepting more undecided traces.

The Rejection Miner is not in general a perfect binary miner: The patterns
σ provided to it by the patterns might not, even if all of them were retained, be
strong enough to fully reject the set N of negative examples while retaining the
positive ones. Moreover, while the Rejection Miner in practice produces decent
results, its approximation phase does not find a subset of patterns with optimal
accuracy because of its greedy nature.

However, the Rejection Miner will always accept all the positive examples;
and if the selected patterns σ has any subset σ′ which accepts P and rejects N ,
the Rejection Miner will find such a subset.

Proposition 14. Let patterns be a pattern oracle, let minimise be a minimiser,
and let P,N be disjoint sets of positive and negative examples. Then the Rejection
Miner for this oracle and minimiser has positive soundness at P,N . Moreover if
there exists σ ⊆ patterns(P,N) such that σ accepts P and fully rejects N , then
the Rejection Miner also has negative soundness at P,N .

Proof (sketch). The former is immediate from line 4; the latter is immediate by
the requirements 1 and 2 of Definition 12.

That is: On all inputs where the pattern oracle produces patterns strong
enough to make the distinction, the Rejection Miner will exhibit neither false
negatives nor positives. Note that this is not in contradiction to Theorem 10: the
Rejection Miner is not a perfect miner in general, but if a perfect model exists
for a given input and pattern oracle, then it will find such a model.

Weighing the Pros and Cons: Process Discovery with Negative Examples 57

5 Cases with Negative Examples

The development of the Rejection Miner was not just motivated by academic,
but also industrial interest. When pursuing process mining activities in practice
we regularly see opportunities to label data and in some cases we have even
been asked directly by commercial partners to include counter examples in the
construction of models. In this section we discuss the two most developed cases
we have encountered, where we both had the opportunity to extract labelled
data and publish it in an anonimyzed format. The negative examples in these
cases arise from test-driven development and as failures in process engineering.

5.1 DCR Solutions: Test-Driven Modelling

A Danish vendor of adaptive case-management systems, DCR Solutions, offers
the on-line process modelling portal dcrgraphs.net. In this tool, modellers define
required (positive) resp. forbidden (negative) test cases (traces), expected to be
accepted resp. rejected by the model under development. The test cases are also
used as input to a process discovery algorithm, which dynamically recommends
new constraints to modellers [6]. However, the algorithm used only the positive
test-cases, ignoring the negative ones. The extension to consider also those neg-
ative ones has been repeatedly requested by the developers of the portal and
was implemented as part of this paper. DCR Solutions has kindly allowed us
to make the entire data set of test-cases produced in the portal available in an
anonymized form [34].

5.2 Dreyer Foundation: Process Engineering

The Danish Dreyer Foundation supports budding lawyers and architects, and
has previously released an anonymised log of casework [13]. This log documents
also testing and early stages of deployment of the system. In a number of cases,
process instances that had gone astray were reset to their starting state and
partially replayed. The log contains reset markers, and so provides clear negative
examples: those prefixes that ended in a reset. We make available here also this
partitioning into positive and negative examples [34].

6 Experimental Results

We report on exploratory experiments applying an instantiation of the Rejection
Miner to the data sets of Sect. 5, comparing results to current major unary
miners.

Data Sets. The DCR Solutions case (Sect. 5.1) comprises 215 logs, each con-
taining at least one negative example, and each produced by users of the portal
to codify what a single model should or should not do. The logs contain 7030
events, 1681 unique activities, 589 negative and 705 positive traces. Logs vary

https://www.dcrgraphs.net/

58 T. Slaats et al.

enormously in size: the largest log contains 1162 events, 19 activities, 98 nega-
tive and 14 positive traces; the smallest log contain but one negative trace of 3
events. Log size distribution is visualised in Fig. 1. The Dreyer case ((Sect. 5.2))
comprises a single log of 10177 events, 33 unique activities, 492 positive and 208
negative traces. The mean trace length is 15 (1–46), and the mean number of
activities per trace is 12 (1–24). Both data sets are available on-line [34].

Both data sets were pre-processed to remove any conflicting traces (i.e. that
were both marked as positive and negative for the same log). In addition the
DCR Solutions data set had a notion of “optional” traces, but what this meant
was not well-defined, therefore these were also removed.

Fig. 1. DCR Solutions data set log size distribution. The largest log of 98 negative and
14 positive traces has been omitted from the diagram.

Metrics. Binary classification mining allows us to rely on traditional machine
learning metrics [35] of relative misclassification (true and false positives, TP
and FP, and true and false negatives, TN and FN). We use in particular the
true positive rate (TPR), true negative rate (TNR), accuracy (ACC), balanced
accuracy (BAC), positive predictive value (PPV), and F1-score (F1). We recall
their definitions in Table 1. These particular measures demonstrate the difference
between what can be measured in the unary and binary settings. In the setting
of unary-classification miners, where we do not have negative examples, we can
count only TP and FN. In that setting, we can only measure the true positive
rate (TPR)-known as “fitness” in the process mining community-but none of
the other measures2. But in the setting of binary-classification miners, we can
measure also how well the output model recognizes negatives (TNR), how reliable
a positive classification is (PPV), and generally how accurately both positive and
negative traces are classified (ACC, which counts each trace equally and BAC,
which balances between positive and negative traces).

Finally, one goal particular to process discovery is to produce output mod-
els that are understandable by humans: Output models are not mere devices
for classification; they are vehicles for humans to understand the reasons and
structure behind that classification. To this end, smaller models are more help-
ful, so we calculate also the size of the models, dependent on their notation.
2 The name “F1” is used for a metric of unary miners defined like F1 here, except

using the escaping-edges notion of precision [8] en lieu of the PPV.

Weighing the Pros and Cons: Process Discovery with Negative Examples 59

For the pattern-based notations such as DECLARE, we use the number of such
patterns; for DCR models the number of relations; and for workflow nets the
number of edges and places. Of course sizes for models in different notations are
not directly comparable, but they give us an insight in the number of elements
that need to be processed by the reader and give a rough indication of relative
complexity.

Table 1. Confusion matrix for binary mining

Log classification

Model class. Pos. Neg. ACC = TP+TN
TP+FP+TN+FN

Pos. TP FP PPV = TP
TP+FP

Neg. FN TN BAC = TPR+TNR
2

TPR = TP
TP+FN

TNR = TN
FP+TN

F1 = 2 · PPV·TPR
PPV+TPR

Rejection Miner. We provide a JavaScript implementation of the Rejection Miner,
available at [33]. We use a pattern oracle which simply instantiates the follow-
ing list of DECLARE-like patterns at all activities seen in the log: Existence(x),
Absence(x), Absence2(x), Absence3(x), Condition(x, y), Response(x, y),
NotSuccession(x, y),AlternatePrecedence(x, y),DisjunctiveResponse(x, (y, z)), and
ConjunctiveResponse((x, y), z). The oracle outputs patterns sorted by how many
negative examples they exclude.Ties are broken by sorting the disjunctive and con-
junctive responses last, to de-emphasise these relatively more complex patterns.

We emphasise the flexibility of the oracle and minimizer selection: if one
wants to include more patterns, one simply extends the oracle; if one wants to
have a more restrictive model, or a different prioritization of constraints, one
simply replaces the minimizer. One can also produce models that sacrifice TPR
for accuracy by creating a minimizer that accepts constraints excluding some
positive examples, but also excluding many negative examples.

Other Miners. We compare the Rejection Miner (RM) to flagship miners for
three major process notations. For DCR graphs [12,19], we use DisCoveR [26].
DisCoveR is used commercially for model recommendation by DCR solutions.
We consider DisCoveR with two settings, the default one (intended to empha-
sise precision, denoted D), and a “light” version intended to emphasise sim-
plicity (DL). For DECLARE [2,27], we use MINERful [9] and consider three
settings, (M1) the most restrictive setting where support= 1.0, confidence = 0.0,
and interest factor = 0.0; (M2) a less restrictive setting (likely outputting smaller
models) with support = 1.0, confidence = 0.5, and interest factor = 0.25; and
(M3) with support= 1.0, confidence = 0.75, and interest factor = 0.5. Finally, for
Workflow Nets [3], we use the Inductive Miner [1,23], with a noise threshold
of 0.0 (IM) and 0.2 (IMf) respectively.

60 T. Slaats et al.

6.1 Results

We performed both in-sample and out-of-sample testing. For the latter we per-
formed 10-fold validation [30] and calculated our measures as the mean values
across 10 randomized attempts. The results are shown in Table 2. For the DCR
Solutions data set each value is calculated as the mean over all 215 logs. Because
of the limited size of most of the logs, we only tested on in-sample data for this
case, however, since the primary goal for the company is to find models that
accurately fit the training data, in-sample accuracy is highly relevant.

Table 2. Experiment results

Miner TPR TNR ACC BAC PPV F1 Size

DCR Solutions Data set (Sect. 5.1) In-sample

Rejection (RM) 1.000 1.000 1.000 1.000 1.000 1.000 1.5

DisCoveR (D) 1.000 0.927 0.976 0.964 0.971 0.983 24.8

- light (DL) 1.000 0.921 0.974 0.948 0.967 0.981 19.6

MINERful (M1) 1.000 0.881 0.958 0.941 0.949 0.970 120.5

- 0.5/0.25 (M2) 0.997 0.841 0.942 0.919 0.930 0.957 77.6

- 0.75/0.5 (M3) 0.961 0.657 0.848 0.809 0.850 0.877 37.8

Inductive (IM) 1.000 0.860 0.946 0.930 0.932 0.960 22.1

- 0.2 noise (IMf) 1.000 0.860 0.946 0.930 0.932 0.960 22.1

Dreyer Foundation Data set (Sect. 5.2) In-sample

Rejection 1.000 0.928 0.979 0.964 0.970 0.985 6.0

DisCoveR 1.000 0.048 0.717 0.524 0.713 0.832 125.0

- light 1.000 0.048 0.717 0.524 0.713 0.832 71.0

MINERful 1.000 0.067 0.723 0.534 0.717 0.835 1124.0

- 0.5/0.25 1.000 0.0288 0.711 0.514 0.709 0.830 174.0

- 0.75/0.5 1.000 0.005 0.704 0.502 0.704 0.826 102.0

Inductive 1.000 0.019 0.709 0.510 0.707 0.828 160.0

- 0.2 noise 1.000 0.019 0.709 0.510 0.707 0.828 160.0

Dreyer Foundation Data set (Sect. 5.2) Out-of-sample

Rejection 0.985 0.914 0.964 0.950 0.965 0.975 6.2

DisCoveR 0.962 0.362 0.692 0.662 0.706 0.814 127.6

- light 0.968 0.447 0.697 0.707 0.708 0.817 72.9

MINERful 0.906 0.231 0.659 0.569 0.698 0.787 1128.4

- 0.5/0.25 0.962 0.270 0.685 0.616 0.701 0.810 176.4

- 0.75/0.5 0.970 0.081 0.684 0.525 0.698 0.810 104.9

Inductive 0.981 0.339 0.696 0.660 0.703 0.818 158.9

- 0.2 noise 0.983 0.359 0.698 0.671 0.704 0.819 157.8

Weighing the Pros and Cons: Process Discovery with Negative Examples 61

DCR Solutions. First, on in-sample test data, the Rejection Miner mines per-
fectly accurate models on every log. This is a small, but meaningful, improvement
over the 0.967 accuracy achieved by DisCoveR light, which is currently used for
this task. In practice this means that, given a mapping from the Declarative pat-
terns to DCR Graphs, the Rejection Miner will allow the portal to recommend
perfectly accurate models for all test cases that have been defined to-date. Sec-
ondly, there is an order-of-magnitude gain in simplicity for the Rejection Miner
compared to all other miners: the Rejection Miner requires only 1.5 constraints
on average per model. We conjecture that this gain is achieved because know-
ing what behaviour should be forbidden allows the miner to find precisely the
constraints we need, instead of having to propose many constraints to forbid
all behaviour that was not explicitly seen in the positive samples. This gain in
simplicity also directly benefits the business case, as the industry partners have
repeatedly voiced a strong preference for fewer, but more relevant, recommended
relations. As a result, the Rejection Miner has already been integrated into the
portal by the company.

Recall (TPR)

0.
9

0.
92

0.
94

0.
96

0.
98

1

R
M D D
L

M
1

M
2

M
3 IM IM
f

Specificity (TNR)

0
0.
2

0.
4

0.
6

0.
8

1

R
M D D
L

M
1

M
2

M
3 IM IM
f

Accuracy (ACC)

0.
7

0.
8

0.
9

1

R
M D D
L

M
1

M
2

M
3 IM IM
f

Bal. Acc. (BAC)

0.
5

0.
6

0.
7

0.
8

0.
9

1

R
M D D
L

M
1

M
2

M
3 IM IM
f

Precision (PPV)

0.
7

0.
8

0.
9

1

R
M D D
L

M
1

M
2

M
3 IM IM
f

F1−Score
0.
8

0.
85

0.
9

0.
95

1

R
M D D
L

M
1

M
2

M
3 IM IM
f

Model Size

10
10

0
10

00

R
M D D
L

M
1

M
2

M
3 IM IM
f

Runtime (ms)

10
10

0
10

00
10

00
0

R
M D D
L

M
1

M
2

M
3 IM IM
f

Fig. 2. Boxplots illustrating the distribution of mean performance of various miners
across 10 runs of 10-fold cross validation on the Dreyers log.

Dreyers Foundation. The results show that the Rejection Miner once again
provides high levels of accuracy while requiring only a small model. Of most
interest are the out-of-sample results, shown in more detail in the boxplots of
Fig. 2, which indicate that the models found by the Rejection Miner are not only
accurate for the training data, but also for unseen test data. In other words,
providing the miner with some negative examples allows it to accurately predict
what other negative examples may be seen in the future. In addition there is
very little variance in the results of the Rejection Miner, with model size and
accuracy scores remaining close to the mean for each randomized run of the
10-fold validation. We also included measures of the run-time performance in
Fig. 2, showing that the Rejection Miner is several orders of magnitude slower
than the other miners (requiring on average 39.3 s to mine the Dreyers log).
We stress however that good run-time performance was never a goal for the
current prototype, that there are known methods for improving the run-time
performance through a more intelligent initial selection of relevant patterns by
the oracle [6,24], and that the results do show that the miner is computationally
viable for the experimental data.

62 T. Slaats et al.

7 Conclusion

We propose approaching process discovery as a binary classification problem.
We provided a formal account of when binary miners exist; proposed the Rejec-
tion Miner; introduced real-world cases of negative examples; and compared
the Rejection Miner to contemporary miners for various notations, finding an
increase in accuracy and, in particular, output model simplicity.

In future work we will optimize the run-time performance, for example
through a more intelligent pattern oracle based on the Declare miner [24]
or DisCoveR [6]. We will also pursue additional experiments through labelled
real-world logs, such as the PDC datasets and novel use cases from industrial
partners.

References

1. Aalst, W.: Process Mining. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49851-4 1

2. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006). https://doi.org/10.1007/
11841197 1

3. Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63139-9 48

4. Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.: Learning from Data: A Short
Course. AML (2012)

5. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251–284 (2019)

6. Back, C.O., Slaats, T., Hildebrandt, T.T., Marquard, M.: DisCoveR: accurate &
efficient discovery of declarative process models. Presented at the (2021)

7. Broucke, S.V.: Advances in process mining: artificial negative events and other
techniques (2014)

8. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: Meersman, R.,
et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33606-5 19

9. Ciccio, C.D., Mecella, M.: A two-step fast algorithm for the automated discovery
of declarative workflows. In: CIDM 2013, pp. 135–142, April 2013

10. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: An alignment-based framework
to check the conformance of declarative process models and to preprocess event-log
data. Inf. Sys. 47, 258–277 (2015). https://doi.org/10.1016/j.is.2013.12.005

11. Debois, S., Hildebrandt, T., Slaats, T.: Hierarchical declarative modelling with
refinement and sub-processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014.
LNCS, vol. 8659, pp. 18–33. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-10172-9 2

12. Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement & reachability:
complexity in dynamic condition-response graphs. Acta Informatica 55(6), 489–
520 (2018). https://doi.org/10.1007/s00236-017-0303-8

https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1007/11841197_1
https://doi.org/10.1007/11841197_1
https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/978-3-642-33606-5_19
https://doi.org/10.1016/j.is.2013.12.005
https://doi.org/10.1007/978-3-319-10172-9_2
https://doi.org/10.1007/978-3-319-10172-9_2
https://doi.org/10.1007/s00236-017-0303-8

Weighing the Pros and Cons: Process Discovery with Negative Examples 63

13. Debois, S., Slaats, T.: The analysis of a real life declarative process. In: SSCI/CIDM
2015, pp. 1374–1382. IEEE (2015)

14. Di Ciccio, C., Bernardi, M.L., Cimitile, M., Maggi, F.M.: Generating event logs
through the simulation of declare models. In: Barjis, J., Pergl, R., Babkin, E.
(eds.) EOMAS 2015. LNBIP, vol. 231, pp. 20–36. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24626-0 2

15. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: On the relevance of a
business constraint to an event log. Inf. Syst. 78, 144–161 (2018)

16. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based
predictive process monitoring. IEEE Trans. Serv. Comput. 12(6), 896–909 (2016)

17. Fahland, D.: Oclets – scenario-based modeling with petri nets. In: Franceschinis,
G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 223–242. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02424-5 14

18. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery
with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)

19. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES 2010. EPTCS, vol. 69,
pp. 59–73 (2010). https://doi.org/10.4204/EPTCS.69.5

20. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Safe distribution of declarative pro-
cesses. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol.
7041, pp. 237–252. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24690-6 17

21. Khan, S.S., Madden, M.G.: A survey of recent trends in one class classification.
In: Coyle, L., Freyne, J. (eds.) AICS 2009. LNCS (LNAI), vol. 6206, pp. 188–197.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17080-5 21

22. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative
logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75183-0 25

23. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

24. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9 18

25. Maggi, F.M., Montali, M., Di Ciccio, C., Mendling, J.: Semantical vacuity detection
in declarative process mining. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM
2016. LNCS, vol. 9850, pp. 158–175. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45348-4 10

26. Nekrasaite, V., Parli, A.T., Back, C.O., Slaats, T.: Discovering responsibilities with
dynamic condition response graphs. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019.
LNCS, vol. 11483, pp. 595–610. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21290-2 37

27. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: EDOC 2007, p. 287 (2007)

28. Ponce de León, H., Nardelli, L., Carmona, J., vanden Broucke, S.K. : Incorporating
negative information to process discovery of complex systems. Inf. Sci. 422, 480–
496 (2018)

https://doi.org/10.1007/978-3-319-24626-0_2
https://doi.org/10.1007/978-3-319-24626-0_2
https://doi.org/10.1007/978-3-642-02424-5_14
https://doi.org/10.4204/EPTCS.69.5
https://doi.org/10.1007/978-3-642-24690-6_17
https://doi.org/10.1007/978-3-642-24690-6_17
https://doi.org/10.1007/978-3-642-17080-5_21
https://doi.org/10.1007/978-3-540-75183-0_25
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1007/978-3-319-45348-4_10
https://doi.org/10.1007/978-3-319-45348-4_10
https://doi.org/10.1007/978-3-030-21290-2_37
https://doi.org/10.1007/978-3-030-21290-2_37

64 T. Slaats et al.

29. Slaats, T.: Declarative and hybrid process discovery: recent advances and open
challenges. J. Data Semant. 9(1), 3–20 (2020). https://doi.org/10.1007/s13740-
020-00112-9

30. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R.
Stat. Soc. Ser. B (Methodol.) 36(2), 111–133 (1974)

31. Tax, D.M.J.: One-class classification: Concept learning in the absence of counter-
examples (2002)

32. Tax, N., Teinemaa, I., van Zelst, S.J.: An interdisciplinary comparison of sequence
modeling methods for next-element prediction. Softw. Syst. Model. 19(6), 1345–
1365 (2020)

33. Slaats, T., Debois, S.: The Rejection Miner, July 2020. https://github.com/tslaats/
RejectionMiner

34. Slaats, T., Debois, S., Back, C.O.: Data Sets: DCR Solutions and Dreyers Foun-
dation logs, July 2020. https://github.com/tslaats/EventLogs

35. Witten, I., Frank, E., Hall, M., Pal, C.: Data Mining: Practical Machine Learning
Tools and Techniques, 4th edn. Morgan Kaufmann, Burlington (2016)

https://doi.org/10.1007/s13740-020-00112-9
https://doi.org/10.1007/s13740-020-00112-9
https://github.com/tslaats/RejectionMiner
https://github.com/tslaats/RejectionMiner
https://github.com/tslaats/EventLogs

	Weighing the Pros and Cons: Process Discovery with Negative Examples
	1 Introduction
	2 Process Notations and Unary Discovery
	3 Process Discovery as Binary Classification
	4 Rejection Miners
	5 Cases with Negative Examples
	5.1 DCR Solutions: Test-Driven Modelling
	5.2 Dreyer Foundation: Process Engineering

	6 Experimental Results
	6.1 Results

	7 Conclusion
	References

