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Abstract. We propose an approach to identify anomalies in business
processes by building an anomaly detector using graph encodings of pro-
cess event log data coupled with graph autoencoders. We evaluate the
proposed approach with randomly mutated real event logs as well as
synthetic data. The evaluation shows significant performance improve-
ments (in terms of F1 score) over previous approaches, in particular with
respect to other types of autoencoders that use flat encodings of the same
data. The performance improvements are also stable under training and
evaluation noise. Our approach is generic in that it requires no prior
knowledge of the business process.

1 Introduction

Anomaly detection is an unsupervised machine learning technique that has
become very popular with the recent advances in AI. An anomaly detector auto-
matically learns correlations, i.e., regularities in its structured input data and
flags irregular data as anomalies, where the notion of an anomaly depends on
the dataset and use case.

Business process data have many different aspects, such as the activities, their
ordering, their duration and waiting times, the acting resources and roles, the
business objects and associated values, states, milestones, decisions and process
outcomes. Parts or combinations of these data as well as abstractions, transfor-
mations and aggregations thereof, such as KPIs, sliding windows, rolling averages
etc. can be presented to an anomaly detector which would all result in different
notions of anomaly.

In line with recent studies [24,26,27], in this paper we consider process activ-
ities, their ordering, and their business object attributes in relation to the fol-
lowing anomaly detection use cases:
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– Log errors: When the process event log is distorted because parts of it has
been collected manually, i.e., subject to human error, or it has been recorded
or transmitted by an unreliable mechanism, then an anomaly detector can
be used to detect and correct such perturbations, provided they occur with
limited frequency.

– Exception analysis: Finding and inspecting rare exceptional cases can help
to understand deviations from expected behavior. This is similar to variant
analysis and conformance checking [3,35] in traditional process mining [2].
However, the traditional concept of variant is very fine-grained such that
normal behaviour can distribute over a large number of variants and excep-
tional behavior may not always be easily distinguished from rare but normal
variants. Conformance checking on the other hand requires a carefully hand-
crafted specification of normative (or normal) behavior, either as an impera-
tive (BPMN) model [4,7,8] or, in a more declarative form, as a set of rules.
For more complex processes, creating and maintaining such a specification
over time may require substantial effort, whereas anomaly detection requires
no such specification.

– Process drift: Exceptions can also be detected at run time, and when mul-
tiple anomalies occur in succession, they could indicate changes in external
conditions, process drift, or unwanted behavior.

Anomaly detectors for the above use cases can be partially evaluated with
real event logs that are perturbed with limited random mutations to see how
well the anomaly detector identifies these mutations [23,24,27].

A popular type of anomaly detector is an autoencoder, which is an artificial
neural network that learns an efficient representation of the input data, i.e., an
encoding or embedding, together with a decoding that reproduces the input data
from that internal representation in a way that minimizes the reproduction error.
A threshold on the reproduction error identifies anomalous input data [42]. The
learned encoding can be seen as a form of dimensionality reduction of the input
data.

Earlier work [24,26,28] has applied multilayer perceptron-based autoencoders,
variational autoencoders and LSTM-based autoencoders to business process
anomaly detection and showed that they outperform other methods, such as
t-STIDE [41], OC-SVM [39], HMM [18], and Likelihood [27] in terms of accu-
racy, noise endurance, and generalizability. However, their absolute performance
is still limited leaving substantial room for improvement.

In this paper, we show that the performance indeed can be substantially
improved by enriching the autoencoder input data representation with activity
relationships, i.e., edges between different events of a trace. Thus, the autoen-
coder input becomes a graph, and we then present the graph to a graph autoen-
coder [20] with edge-conditioned convolutions (ECC) [40]. We evaluate the per-
formance of our graph autoencoder on both synthesized and real-life event logs
from the Business Process Intelligence Challenge (BPIC) against several earlier
methods.
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2 Background

To better explain the idea of this paper, we introduce some basic notations and
concepts, partially borrowed from [1].

Definition 1 (Universes). Let UE be the set of all event identifiers, let UC

be the set of all case identifiers, let UA be the set of all activity identi-
fiers, let UT be the totally ordered set of all timestamp identifiers, and let
UF = {Uf1 , ..., Ufk

} be the identifier collections of event associated features with
k categories: {f1, ..., fk}.

We assume that events are characterized by various properties. For example,
an event has a timestamp, corresponds to an activity, is performed by a particular
resource with several attributes, etc. Given the focus of this paper, we assume
that events should at least contain activity and timestamp properties, and there
is a function πA : UE → UA that assigns to each event an activity from the
finite set of process activities, and also a function πT : UE → UT that assigns a
timestamp to each event.

Definition 2 (Sequence, Trace, Event Log). Given a set A, a finite
sequence over A of length n is a function σ ∈ A∗ : {1, ..., n} → A , typically
written as σ = 〈a1, a2, ..., an〉, where σ(i) = ai. For any sequence σ, we define
|σ| = n. A trace is a finite non-empty sequence of events σ ∈ U∗

E such that each
event appears at most once and time is non-decreasing, i.e., for 1 ≤ i ≤ j ≤ |σ|,
σ(i) �= σ(j) and πT (σ(i)) ≤ πT (σ(j)). Let C be the set of all possible traces. An
event log is a set of traces L ⊆ C such that each event appears at most once
in the entire log, and each trace in the log represents the execution of one case
assigned with a case identifier (case ID) by a function πC : UE → UC .

Definition 3 (Directed Graph). A directed graph G = (V,E) consists of a
nonempty set of nodes V and a set of directed edges E ⊆ V × V , and for a
directed edge eu,v = (u, v), eu,v ∈ E, we call u the tail node of e and v the head
node of e. Nd(v) defines neighbor (namely predecessor) nodes of v, which returns
the nodes that directly connect to v with incoming edge towards v. For example,
for a simple graph with three nodes u → v ← w, Nd(v) returns the node set
{u,w}.

2.1 Autoencoders and Anomaly Detection

An autoencoder is a type of artificial neural network for unsupervised learn-
ing, which contains two main components: an encoder and a decoder [6]. The
encoder takes an input vector x ∈ [0, 1]d and maps it to a hidden representation
h ∈ [0, 1]d

′
by a deterministic mapping function fφ : [0, 1]d → [0, 1]d

′
parameter-

ized by φ. Symmetrically, the decoder takes the encoder output h and maps it
to z ∈ [0, 1]d by a mapping function gψ : [0, 1]d

′ → [0, 1]d parameterized by ψ.
fφ and gψ here can be corresponding typical neural networks such as multi-layer
perceptrons, recurrent neural networks, etc. Each input x is thus first encoded
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into h and then decoded into z. During training, the parameters are optimized
to minimize the observed reconstruction loss L(x, z) of input x and its recon-
struction z through backpropagation:

φ�, ψ� = arg min
φ,ψ

L(x, z)

= arg min
φ,ψ

L(x, gψ(fφ(x))
(1)

where the reconstruction loss function is traditionally defined as the mean square
error:

L(x, z) =
1
d

d∑

i=1

(x(i) − z(i))2 (2)

An autoencoder based anomaly detector uses reconstruction loss as the
anomaly score, i.e., a data point with relatively high reconstruction loss is con-
sidered to be an anomaly. During the training phase, the autoencoder learns fφ

and gψ through data training split based on Eq. (1), and then a reconstruction
loss threshold θ is chosen to classify anomalies during the validation phase based
on another independent validation data split. (Our setting details are described
in Sect. 4.2.) Finally, the model inference relies on fφ, gψ and θ obtained from
the training and validation phases described as above.

2.2 Feature Encoding for Business Process Event Logs

Machine learning always requires an adequate feature extraction and engineering
for the target data. In the business process literature, [21] converts the event log
into vectors using a method that is similar to continuous bag of words (CBOW),
which is a natural language processing (NLP) method for document encoding.
These vectors include different encoding levels: activity level, trace level, and
the entire log level. These vectors, or their embeddings, are then fed into dif-
ferent neural networks designed for purposes such as anomaly detection, trace
clustering, and process comparison. As all event logs record the executed pro-
cess activities and their ordering, [17] extracts the event ordering from the log.
However, these methods do not leverage other business process object attributes.

The greater the variety of process data attributes included in the input vector,
the more types of anomalies can be detected by the autoencoder. For example,
besides the activity name, a delayed process activity could result in an unusual
ending timestamp, which is a numerical attribute in the log. Also several business
data attributes are often related to each other, such as the credit score and
loan amount in a loan application. Usually it is quite challenging to extract
only useful attribute features without any prior domain knowledge about the
business process. Some earlier work [24,26] treats the time series event log as flat
structural data, and directly applies one-hot or dummy encoding on categorical
features and re-scales numerical features to generate process encoding vectors.
These encoding vectors are then concatenated in time series order and fed into
the neural network. In the business process anomaly detection literature, the
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primary difference between existing autoencoder approaches and our work is
that we encode both, structural information as well as various kinds of business
process attributes by using a graph encoding on them.

2.3 Graph Neural Networks

Over the past few years, there has been a surge of approaches that seek to learn
the representations of graph nodes, or entire (sub-)graphs based on Graph Neu-
ral Networks (GNN), which extend well-known network architectures, including
recurrent neural networks (RNNs) and convolutional neural networks (CNNs),
to graph data [10,12,13,15,16,22,25,38]. Most of the existing graph neural net-
works are instances of the Message Passing Neural Network (MPNN) framework
[14] for node aggregation. In a directed graph G, the forward pass consists of
two phases, a message passing phase and a readout phase. At the time step t,
the message passing function St and vertex update function Ut describe how the
hidden state ht

v for each node in the graph is updated:

st
v =

∑

u∈Nd(v)

St(ht−1
v , ht−1

u , eu,v) (3)

ht
v = Ut(ht−1

v , st
v) (4)

Then the readout phase computes a feature vector for the whole graph using
a readout function R according to:

ŷ = R({hv|v ∈ G}) (5)

The message functions St, vertex update functions Ut, and readout function R
are all learned differentiable functions, and associated parameters can be learned
by back-propagation based on an error function, such as an error function on a
graph classification prediction score ŷ where y is the classification label.

3 Method

3.1 Graph Construction on the Process Event Log

The Graph-based representation of business process data has been previously
used to improve process discovery [32], build Bayesian networks [33,37], and
generate likelihood graphs of causally dependent event attributes [27]. To repre-
sent the structural process information of an event trace in the log, we build a
directed graph G = (V,E) on it as follows (similar to a Directly-Follows-Graph
in process mining). We treat activity names, which are a required property of
the events in the log, as nodes V in the graph, and edges E correspond to every
pair of adjacent events in the time ordered trace. Thus a trace with n activi-
ties results in n − 1 directed edges. Since the node is identified by its activity
name, an edge that is formed by two adjacent activity names may contain several
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duplicates in a trace. To leverage this situation, we propose a positional embed-
ding method by using the specific location of the adjacent events in a vector p
to represent edge positional information and associated activity attributes, and
the vector p is treated as an edge feature vector. This way, duplicate edges are
represented by digits in different locations within the same positional vector. Fol-
lowing the graph construction steps below, a trace with n activities potentially
results in k ≤ n − 1 positional vectors p corresponding to the unique k edges.
The overall graph construction diagram can be represented by k label vectors
m ∈ {0, 1}tm−1, which record activity occurrence information and are targets of
the autoencoder’s decoding output.

Fig. 1. A graph construction example based on the example event log.

The following are the steps of the graph construction algorithm and the
feature extraction for one trace with n activities:

1. Compute the maximum trace length tm = max{|σ| : σ ∈ UE} over the whole
events UE in the log, and obtain an event attribute feature embedding with
dimension de = dn+dc by concatenating activity numerical features (rescaling
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with dimension dn) and categorical features (one-hot encoding with dimen-
sion dc) of event attributes (excluding the activity name columns). Mean-
while, track all existing activities as nodes and assign them an initial node
embedding h0

v (one-hot encoding).
2. Generate n−1 activity-activity pairs based on occurrence order, and maintain

this order. For example, trace (A, B, C, B, C) ends up in 4 ordered activity-
activity pairs (A, B), (B, C), (C, B), and (B, C), which define edges in the
graph.

3. Within one activity-activity pair at position i ∈ [1, n − 1] based on the sec-
ond step, treat the activity that happened first as u, and the other as v.
Also compute the edge feature vector based on the event attribute feature
embedding distance (subtraction) of u and v, and put this computed vector
in index i of the positional vector p which has dimension dp = (tm − 1) × de

(each computed vector takes de space in p initialized with all 0, and tm − 1
is the number of activity-activity pairs for the longest trace). Finally, build a
corresponding binary edge label vector m ∈ {0, 1}tm−1, setting position i to
1 and all other positions to 0.

4. Loop over the third step until the end of the trace. It will end up with n − 1
positional vectors p and edge label vectors m associated with each edge. As
we mentioned, there could be duplicate edges (as the example in step 2), and
we deal with this by aggregating (sum) p and m with names of u and v as keys
(e.g. ‘AB’, ‘BC’, ‘CB’). Finally we end up with k ≤ n − 1 positional vectors
p as final edge features and edge label vectors m associated with each unique
edge that appeared in the trace. The initial node features h0

v are specified by
one-hot encoding of the activity names.

Figure 1 shows an example of building a graph based on an example event
log with 5 nodes and 6 edges. Each node comes with its initial embedding based
on its name, and each edge is associated with a positional vector pi and a label
vector mi. The first element in each cell of pi stands for the feature computed
from the “Variable 1” column, the second is for the “Variable 2” column. The
blank space in each cell is filled with {0}d where d is the same dimension for all
cells in the vector. In the example, d is 2 (equal to de) for p and 1 for m.

Looking more closely at this example, in the constructed graph view, the
activity E is more closely related to and affected by A (connected through B).
However from the perspective of a flat sequence (such as with LSTM or RNN),
E is the farthest event from A. In a hypothetical process, it is possible that
event A is a starting event, E is the proceeding event, B corresponds to a “check
status” activity, and events C and D happen when B “fails”; otherwise E would
directly follow B if A happened. Intuitively, in such a process E should be closely
related to A, but the flat sequence where B is near the end of the sequence can
not preserve such process logic. Meanwhile in the case where the sequence is
very long, the sequence encoder (such as an LSTM or RNN) could suffer from
the vanishing gradient problem [30]. These are some of the factors we have
considered and lead us to believe that the graph encoding, which takes more
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structural process information into account, is a better choice than sequence
encoding.

3.2 Encoding by the Graph Autoencoder with ECC

To make full use of our graph construction and the converted business process
features, we apply edge-conditioned convolution (ECC) filters to obtain a better
graph encoding. The ECC filters in the graph autoencoder transform each node
representation computed from the previous layer of the neural network and com-
bines them with their transformed neighbor nodes representation conditioning
on edge features. Let l ∈ {1, ..., lm} be the layer index in a feed-forward neural
network, hl

v, hl
eu,v

be the vector representation for the node v and edge eu,v at
layer l (layer 0 is the input layer). The node representation updating through
ECC in the graph can be formulated as:

hl
v = φ

(
F l(hl−1

v ;w) +
∑

u∈Nd(v)

F l
e(heu,v

;we)hl−1
u + bl

)
(6)

where φ is the activation function, F l : Rdl−1 → R
dl , and F l

e : Rdp → R
dl×dl−1

denote a parameterized feature transformation neural network for the node fea-
ture and the edge feature, and their corresponding parameters w, we. The learn-
able random initialized bias term bl ∈ R

dl can be learned through backpropaga-
tion during training.

The graph reconstruction, i.e., readout, can be treated as an edge label pre-
diction or link prediction similar to the approach introduced in [20]. Based on
Eq. (5), the graph reconstruction edge-associated probability of recreating binary
edge labels m is formulated as:

m′ = sigmoid
(
Fr(hlm

u ⊕ hlm
v ;wr)

)
(7)

where u, v ∈ V, eu,v ∈ E, and Fr : R
2dlm → R

tm−1 denotes neural network
processing concatenated vector of hu and hv with trainable parameter wr. ⊕
denotes vector concatenation.

Finally, instead of Eq. (2), in this paper the reconstruction loss (error) of the
target graph is defined by the average of the binary cross entropy loss:

L(m′,m) =
1

k(tm − 1)

(
−

k∑
i=1

tm−1∑
j=1

m
(j)
i log(m′(j)

i ) + (1 −m
(j)
i )(1 − log(m′(j)

i ))

)
(8)

The autoencoder training objective is to minimize the output from (8)
through backpropagation. Furthermore, Eq. (8) is used as the anomaly scoring
function which is consistent with the approaches in the literature on anomaly
detection.



Graph Autoencoders for Business Process Anomaly Detection 425

4 Experiments

4.1 Simulated Anomalous Data Sets

As we are not aware of a standard process mining anomaly detection benchmark,
we rely on fully or partially simulated data used in the literature. Note that we
do not devise our own datasets but borrow the datasets and preprocessing steps
from existing work. We consider three types of simulated datasets containing
labeled anomalous cases. These anomalous cases are introduced in three ways
described below. The dataset details are shown in Table 1. Training, validation,
and testing are randomly sampled based on the provided ratios in the table and
corresponding data set. Note that the sum may not total to 100% since we used
the remainder to create noise cases (mentioned below) based on the original
normal and anomalous data.

Table 1. Statistics of event logs we used in our experiments. The ‘N’ and ‘A’ in the
Test set refer to normal and anomalous cases, respectively. The ratios are counted as a
portion of the number of traces. The number of attributes count does not include the
activity name.

Event log No. traces Max. trace length No. activities No. attributes Training Validation Test

BPIC2012 13,087 95 24 2 50% 20% 15%N, 15%A

BPIC2013 7,554 34 11 2 50% 20% 15%N, 15%A

Loan 10,000 63 19 2 25% 10% 15%N, 15%A

BPIC2017 14,289 100 26 1 32% 12% 6%N, 6%A

Large 5,000 14 43 4 32% 12% 6%N, 6%A

Huge 5,000 13 55 4 32% 12% 6%N, 6%A

4.1.1 Log Attributes Anomalies
To evaluate the detection of anomalies in a distorted or wrongly recorded log, we
follow [24] by using simulated anomalies injected into two public real event logs,
from the BPI challenges of 2012 and 2013 (BPIC2012 and BPIC2013). We use
the same original data with the corresponding process to introduce anomalies1

as described in [24]. Every anomalous trace is simulated by randomly choosing
a proportion of L/2 activity columns and replacing them with random activities
sampled from UA, and choosing a proportion of L/2 activity duration columns
and replacing them with uniformly random sampled values ranging from the
minimum and maximum activity duration values observed in this column. Thus
it will create a proportion of L anomalous values for one anomalous trace. In
our experiments we set L = 0.5 for these two datasets.

1 Available at BPIC2012 and BPIC2013 data sets with injected anomalies.

https://github.com/IELunist/Autoencoders-for-Improving-Quality-of-Process-Event-Logs/tree/master/multivariate-anomaly-detection-for-event-logs-master
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4.1.2 Activity Ordering Anomalies
In this case, an anomaly is caused by a variation of the activity ordering [36] or
concept drift [9]. During process execution, a change in the activity ordering may
happen due to a change in the environment, and it can be seasonal or hourly
but only takes up a small portion of all executed cases. This type of anomaly is
sampled by a certain pattern or distribution instead of random error. We use the
same simulated loan access data set from [23]. The event logs in this work are
simulated by the Apromore [34] platform for a loan access process. Anomalies
here are introduced as changes of the activity ordering in mainly 3 categories:
Insertion (“I”), e.g., add/remove fragment or duplicate fragment in the control
flow; Resequentialization (“R”), e.g., synchronize two fragments or make two
fragments sequential in the control flow; and Optionalization (“O”), e.g., change
the branching frequency or make a fragment skippable in the control flow. The
details of these categories are described in [23]. In our experiment, we use six
composite operations (“IOR”, “IRO”, “OIR”, “ORI”, “RIO”, “ROI”) to form
anomalous traces. For example, the operation “IRO” is obtained by first adding a
new activity (“I”), then making this activity in parallel with an existing activity
(“R”) and finally skipping the latter activity (“O”). Each composite operation
of the six forms have the same amount of anomalous traces.

4.1.3 Composite Anomalies
We also evaluated our anomaly detector against the combination of random
attribute changes and changes in the activity ordering using the existing three
data sets: BPIC2017, ‘Large’, and ‘Huge’2 simulated by [27], where anomalies
are injected by the following 6 types of operations:

1. Skip: A sequence of up to 3 events is skipped.
2. Insert: Up to 3 random activities are inserted in random places in the trace.
3. Rework: A sequence of up to 3 events is repeated.
4. Early: A sequence of up to 2 events is moved backward in the trace.
5. Late: A sequence of up to 2 events is moved forward in the trace.
6. Attribute: An attribute value is mutated in up to 3 events in the trace.

It should be mentioned that in this case the above operations are directly
applied to the event log without considering any underlying process model, thus
they are not simply mixtures of the previous two anomalous types. For example,
the Rework operation applied on a log may not result in an anomalous case if
the control flow permits a loop over these events, such as a process model with
a ‘check’ and ‘resubmit’ control loop until the submission is satisfied.

Meanwhile during training and validation, in order to test the impact of
noise as mentioned in the literature [26], we introduce a noise ratio r ∈ [0, 0.5]
to all data sets mentioned above, where r is the proportion of anomalous cases
manually added into training and validation sets.

2 Available at: BPIC2017, ‘Large’, and ‘Huge’ data sets with injected anomalies.

https://nbviewer.jupyter.org/github/tnolle/binet/blob/master/notebooks/3.2%20Dataset%20Information.ipynb
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4.2 Experiment Settings and Results

We compare our Graph Autoencoder (GAE) with three baseline autoencoders:
the original multilayer perceptron-based autoencoder (AE) [24,26–28], a varia-
tional autoencoder (VAE) [24] and a LSTM-based autoencoder (LSTMAE) [24].
Note that a modified version of the latter was also used in [27] as an encoding
network. We choose the F1 score, where correctly detected anomaly cases are
treated as true positive cases, to measure their detection performance.

For the configurations of the three baseline models, we consider the neural
network layer settings used in [24]. For AE and VAE we use two encoding dense
layers [31] and two decoding dense layers, and for LSTMAE we use one encoding
LSTM layer and one decoding LSTM layer. These layer sizes are adapted to input
dimensions. Regarding the graph neural network configurations, initially we use
one ECC layer (l = 1) for Eq. (6) and 1-layer dense layer for F , Fe and Fr for
Eqs. (6) and (7). The hidden embedding hlm

v is set to be 2× h0
v for each dataset.

For the training of the neural networks, we use the Adam optimizer [19] with
a learning rate of 0.001, the training batch size is 8 and the training epoch is
100 with early stopping [11] to avoid overfitting. During the validation phase,
we choose the anomaly threshold θ based on the reconstruction error as in [26],
but we use the average reconstruction error on the validation data instead of the
training data since the validation data can better represent data which has not
been used to train the model. Meanwhile we tune the model hyper-parameters to
maximize the F1 score on the validation data. To summarize, we use the training
set to train the autoencoder and the validation set to determine an appropriate
θ and tune model hyper-parameters.

Table 2. F1 score for different autoencoders and datasets with training and validation
set noise ratio r = 0.

BPIC2012 BPIC2013 Loan BPIC2017 Large Huge

GAE 0.95 0.67 0.98 0.72 0.93 0.86

LSTMAE 0.64 0.37 0.86 0.63 0.90 0.88

AE 0.52 0.32 0.89 0.56 0.83 0.81

VAE 0.51 0.27 0.83 0.52 0.73 0.69

First we evaluate our proposed method and the other baselines on the six syn-
thesized data sets mentioned above, with noise r = 0. Table 2 shows the results
on the test sets. We observe that our GAE method performs better in 5 out of 6
cases than the other three baseline approaches in the non-noise settings. There
are two main reasons for this improvement. Firstly, the GAE captures extra
structural process information and relations among activity occurrences, which
are key components in process data, in addition to process attribute features, and
treats these activities as nodes (functional central components) within the neu-
ral network. The other three baseline approaches do not exploit that structure
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and treat the data as simple flat event series data. Secondly, for our case-level
anomaly detection task, the objective function for the GAE, which is to recreate
the edge label, becomes easier than for the other three autoencoders, which try
to recreate the data itself with mixed features. Some data sets such as BPIC2012
and BPIC2017 contain long traces that result in large encoding feature vectors
for AE, VAE and LSTMAE to recreate, and this can cause inefficient training
and limiting their performance. The GAE however simplifies the task by recre-
ating abstract structural information (i.e., binary edge labels) instead of data
attributes themselves. Thus it is easier for the GAE training to converge.

In practice training and validation sets will have some degree of noise as
mentioned above, and in order to test the effects of noise on the performance,
assuming that in a normal system anomalous cases are rare [5,29], we set the
noise parameter r to be {0.1, 0.2, 0.3, 0.4, 0.5} for the six data sets. Figure 2 shows
the F1 score under these different noise ratio settings, where we can observe that
due to uncertainty and inconsistency introduced by noise in training and valida-
tion, model performance becomes generally worse. However the GAE approach
still performs better in most situations (23 out of 30 experimental points) than
the other baselines, suggesting that GAE is more robust to noisy data.

Fig. 2. F1 score for the six data sets with varying training/validation noise ratio r.

4.3 Anomaly Example and Diagnostic Information

In addition to identifying an anomaly, sometimes it is useful to explain or give
insights on the nature of the anomaly. To that end, in this section, we provide
an example that illustrates the information that our approach produces.

Figure 3a shows a BPMN model that was used by [23] to create the ‘Loan’
event log mentioned above. This model represents ‘normal’ process behaviour
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Fig. 3. An example of a normal case from the ‘Loan’ data set.

(ignore the blue numerical annotations for now). Figure 3b shows an example
trace that is generated from this BPMN model and is included in one subset of
the ‘Loan’ event log. The corresponding graph that is constructed by our GAE
is shown in Fig. 3c. It is classified as a ‘normal’ trace with low reconstruction
error.



430 S. Huo et al.

Fig. 4. An example of anomalous case.

The reconstruction error has been proposed in earlier work [26] as additional
diagnostic information. However, note that the reconstruction error is unbounded
and hence its interpretation is less intuitive than a probability. Since we use
explicit graph edges in our model, we can obtain, for each edge of the trace,
a prediction probability that can be used as an edge-specific anomaly score,
based on Eqs. (7) and (8). These probabilities are shown in Fig. 3c adjacent to
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the edges. (Here, we use the first 2 letters to represent the activity name, e.g.,
“AE” stands for “Assess eligibility”.) As expected, these probabilities are very
high for a normal trace of our highly regular process. Figure 3b shows, for easier
reference, the same probabilities played back in the original process model based
on a matching of the graph edges.

Figure 4a shows a process model that can be seen as a concept drift with
respect to the model in Fig. 3a: the activity ‘Assess eligibility’ has been removed.
The traces generated from the process model in Fig. 4a can hence be considered
as anomalies with respect to the normal behavior represented by Fig. 3a, Fig. 4b
shows such an anomalous trace generated from the process model in Fig. 4a. The
corresponding GAE graph and its edge anomaly scores are depicted in Fig. 4c. A
drop in the anomaly score, marked in brown, now occurs on various edges, first
between the activities “Access Loan Risk”, “Appraise property” and “Prepare
acceptance pack”. This corresponds to the missing edges from the former two
activities to the latter in the training set, where the flow has to go through the
activity “Assess eligibility”. Again, Fig. 4a shows, for easier reference, the same
probabilities played back in the process model.

It is interesting to observe that some edges after this first anomalous point
in the control flow are also affected with low scores, and the reason is that our
objective function in the GAE is to predict a edge label m, which contains the
absolute activity location information in a trace, based on positional vector p.
Therefore, a case of delayed or early execution would also be punished with a
low score. For example, “Approve application” happens earlier than usual (even
if it correctly directly follows “Verify Repayment”) and hence we observe a lower
score on the edge toward it.

Also it should be mentioned that the GAE computes the embedding of each
event type as a node embedding and makes predictions based on them. Neigh-
boring events should have similar graph embeddings [16] in general since they
are updated and synchronized closely with each other. Meanwhile edge predic-
tions rely on events which are very close to each other, thus missing one event
does not bring those scores sharply down to 0, and we can observe that edge
anomaly scores are around 15% lower than the normal for respective edges.

In summary, our GAE setup detects anomalous process cases by taking into
account both event ordering and the timestamps and activity durations in a
trace. The edge prediction probability scores also reflect detected anomalies.

5 Conclusion

In this paper, we propose a new graph autoencoder approach for anomaly detec-
tion for business process event logs. As opposed to existing methods, we con-
struct a graph for each log trace and apply a graph encoding in order to capture
structural process information. Experimental results on six data sets with three
types of anomaly settings demonstrates the advantages of our approach over
other autoencoder based approaches, which do not use that structural process
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information. Also, experiments show our graph autoencoder is robust to a cer-
tain level of noise during training and validation, which we believe is beneficial
for use in practice.
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ness process anomaly classification. Information Systems, p. 101458, October 2019
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