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Abstract. Through its smart contract capabilities, blockchain has
become a technology for automating cross-organizational processes on
a neutral platform. Process mining has emerged as a popular toolbox for
understanding processes and how they are executed in practice. While
researchers have recently created techniques for the challenging task of
extracting authoritative data from blockchains to facilitate the analysis
of blockchain applications using process mining, as yet there has been no
clear evaluation of the usefulness of process mining on blockchain data.
With this paper, we close that gap with an in-depth case study of pro-
cess mining on the popular Ethereum application Augur, a prediction
and betting marketplace. We were able to generate value-adding insights
for application-redesign and security analysis, as validated by the appli-
cation’s chief architect and revealed blind spots in Augur’s white paper.

Keywords: Blockchain · Process mining · Case study · Process
discovery · Conformance checking · Ethereum

1 Introduction

A blockchain can be characterized as a distributed, append-only data store for
transactions [31]. Second-generation blockchains have comprehensive smart con-
tract capabilities, i.e., allow for the deployment and execution of user-defined
programs. On this basis, blockchain has emerged as a technology allowing the
automation of cross-organizational processes on a neutral platform [20,29].

Process mining [1] has become popular as a toolbox for understanding pro-
cesses and how they are executed in practice. For example, many case stud-
ies ranging from healthcare [5,19,25,27], finance [8,12], manufacturing [26],
and public services [3,17] to software development [18] applied process min-
ing to analyze processes from different perspectives including aspects, such as
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Fig. 1. Overview of the approach.

control flow, conformance, drifts, and performance [24]. Nevertheless, process
mining on blockchain data turned out to be a challenging task [10]. Hence,
recently researchers have created techniques to extract authoritative data from
blockchains [13,14]. On that basis, concepts were introduced that can put
extracted blockchain data into use, e.g., for monitoring business processes exe-
cuted on a blockchain [9]; validating smart contracts on Hyperledger Fabric [11];
auditing blockchain applications on Ethereum [7]; analyzing transactions stored
on the Ethereum network without focusing on specific decentralized applications
(DApps) [21]; and using process mining on blockchain-wide data [22] but no
single process in particular. As yet, there has been no clear evaluation of the
usefulness of process mining on blockchain data. All of the above process-specific
approaches have been evaluated with small examples, demonstrating technical
feasibility more than the usefulness and business value.

With this paper, we close that gap and analyze the usefulness of process
mining on blockchain data with an in-depth case study of process mining on
the popular Ethereum application Augur1. Augur is a prediction and betting
marketplace, where users can create bets (e.g., “Will Donald Trump win the 2020
U.S. presidential election?”), and other users can bet on the outcomes. Because
Augur smart contracts run on the public Ethereum blockchain, all data are time-
stamped, transparent, and available. We used our Ethereum Logging Framework
(ELF) [13,14] to extract Augur data. This extraction resulted in nearly 3000
traces and more than 23000 events. As shown in Fig. 1, we then filtered the data
and applied various process mining techniques to analyze Augur from control
flow, conformance, and performance perspectives.

In our study, we were able to generate insights of value to the business. In
more detail, we provide a clear view of how Augur is used, verify its design mech-
anisms, and check for unintended behavior and bugs in the (immutable) code;
immutability poses a challenge from a business process management (BPM)
perspective [20], and software engineering in general [28]. The usefulness of the
insights was confirmed by anecdotal evidence of Augur’s chief architect, partic-
ularly in terms of understanding user behavior and code validation, which is

1 https://augur.net/, accessed 2021-03-05.

https://augur.net/
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especially relevant for security aspects in an open-source application that can be
invoked (and thus potentially attacked) by anyone with Internet access.

The paper is structured as follows. Next, we introduce the object of our case
study, Augur. Then, Sect. 3 outlines the data extraction and pre-processing pro-
cedures. The focal point of the paper is the data analysis in Sect. 4, covering data
exploration, process discovery, conformance checking, and performance analysis.
Finally, we discuss the results in Sect. 5 and conclude in Sect. 6.

2 The Case of Augur

Augur is a betting platform and prediction marketplace that is implemented as
a set of smart contracts on the public Ethereum blockchain. Augur’s white paper
characterizes the mechanics of a prediction and betting market: “individuals can
speculate on the outcomes of future events; those who forecast the outcome cor-
rectly win money, and those who forecast incorrectly lose money.” As a betting
market organized on Ethereum, the developers claim that Augur bypasses dis-
advantages of traditional betting markets, such as trusted market operator and
limited participation [23].

Currently, there are two versions of Augur available in parallel: Augur v1.0
(launched 2018-07-09) and Augur v2.0 (details announced April 20202, launched
2020-07-283). Interestingly, to gain user trust, the Augur developers open-
sourced the smart contracts and deployed both versions without any option to
update or stop them – giving themselves the privilege to do either might result
in the loss of users’ cryptocurrency and omitting such a possibility; therefore,
increases trustworthiness. Hence, the new version is deployed in parallel to the
old one, as such not comprising an update in any traditional sense. However, once
the new version was deployed and users migrated to it, the old version became
“economically insecure” according to the developer team, and therefore should
not be used anymore. Because prediction markets are long-running, and hence
extended observation time frames are crucial for their analysis, we nevertheless
focused on Augur v1.0 and considered the data from its launch until its use was
no longer recommended in July 2020 (see Sect. 3 for details).

Augur was chosen for this case study for several reasons. Data availability.
Augur v1 was among the most popular Ethereum DApps at times, resulting in
the availability of substantial amounts of data to analyze. Application design.
Augur is designed so that events are tracked and stored by a central logging
contract with a high level of detail, which allowed insights in user behavior
and simplified the extraction of data with ELF (in contrast to other DApps, in
which logging is fragmented over multiple contracts). Subsidiary information.
Information on Augur is widely available, such as in the Whitepaper [23], which
served as basis, e.g., for conformance checking. Thus, Augur promised to be an
interesting candidate for deeper analysis.
2 https://twitter.com/AugurProject/status/1245715269042888706, accessed 2021-03-

14.
3 https://www.augur.net/blog/augur-v2-launch/, accessed 2021-03-14.

https://twitter.com/AugurProject/status/1245715269042888706
https://www.augur.net/blog/augur-v2-launch/
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Markets are distinguished based on their outcome: yes/no-markets deal
with binary questions, while categorical and scalar markets expect discrete and
numeric answers, respectively. For each type, the Augur market process follows
a procedure organized in four stages: market creation, trading, reporting, and
settlement. Market creation: a market is set up for a future event, i.e., “market
event.” Trading : traders place bets on the outcome of the market by buying
shares for that outcome. Reporting : a user reports the outcome of the event the
market revolves around. The report can be challenged in disputes that are part
of the reporting. Settlement : traders resolve their positions. Within these four
stages, the Augur smart contracts specify 35 different types of events.

Participants can be active in an Augur market in five roles: market creator,
traders, designated reporter, public reporters, and disputants. A market creator
instantiates markets, including choosing a market question that revolves around
a market event and appointing a designated reporter. Traders place bets by buy-
ing and selling shares of market outcomes. A designated reporter reports on the
market event, thus creating the first tentative outcome of the market. If the des-
ignated reporter fails to submit a report within three days of the market event,
reporting opens to public reporters who can report on the market outcome. Once
an initial report is submitted, disputants can challenge the reported outcome of
an event by crowd-sourcing a dispute bond with Augur’s native token called
“Reputation” (REP). If the dispute bond crosses a threshold, the crowd-funded
outcome becomes the new tentative outcome. If disputes against an outcome
remain unsuccessful, the tentative outcome becomes the final outcome. Depend-
ing on the dispute’s success, disputants are redeemed after the dispute round
(unsuccessful) or after the market is finalized (successful). A market finalizes if a
tentative market outcome has not been successfully disputed within seven days.
After it finalizes, market creators receive the market creation fee, designated
reporters receive a fee if their report represents the final outcome, and traders
settle their positions. As a final resolution mechanism for disputes, Augur also
offers a fork event, which creates parallel instantiations of Augur based on each
possible outcome of the forking market to which users can migrate. Forking is
considered “very disruptive” and has not been triggered yet [23].

The Normative Process Model. Conformance checking requires a normative
process model, which we created from information in the white paper [23]. We
enriched it with information gained from discovery and conformance checking
where the information in the white paper was not detailed or precise enough
for our purposes. The resulting process model is shown in Fig. 2. Additional
information on initial discrepancies is discussed in Sect. 5. We restricted the
model to activities where the corresponding events were triggered.

3 Data Extraction and Pre-processing

On a second-generation blockchain like Ethereum, that allows for deploying and
executing arbitrary smart contracts, log entries are the primary means for pass-
ing information to off-chain components. Commonly, log entries communicate
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Fig. 2. Normative BPMN model.

information related to results of and events occurring during the execution of
smart contract invocations. The developers of Augur v1.0 made extensive use of
this feature and implemented a central logging contract that handles the emis-
sion of log entries. This contract defines a range of log event types intended to
share detailed information about all possible events. Due to the level of detail
provided by these log entries, we decided to solely focus on information from
Augur’s log entries for this case study. Hence, we typically did not consider
additional information from the transactions or the states of Augur’s smart con-
tracts, as the information we could obtain this way is largely included in the log
entries; deviations from this rule are marked.

We extracted the data using the publicly available Ethereum Logging Frame-
work4 [13,14]. ELF enables analysts to extract, transform, and format infor-
mation from blocks, transactions, log entries, and smart contracts stored on
Ethereum-based networks. ELF takes as input a manifest file, which contains
instructions that define which data to extract and how to process it – see also
Fig. 1. We defined such a manifest file for Augur v1.0 based on its source code,

4 https://github.com/ChrisKlinkmueller/Ethereum-Logging-Framework.

https://github.com/ChrisKlinkmueller/Ethereum-Logging-Framework
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Fig. 3. Process mining techniques applied to the Augur v1.0 data extracted with ELF.

which provided us with the definitions for all the log entries. The execution of
the manifest resulted in an event log in the XES format [4], where for each log
entry, there is an XES event containing the information from Augur’s log entry.
We grouped the events into traces based on the notion of a market.

We extracted information related to 2897 markets stemming from the period
of 2018-07-09 to 2020-11-10. The former date marks the date of the first execution
of Augur v1.0. Regarding the latter, we ran the data extraction from 2020-11-
12 to 2020-11-16, and the last event that we extracted was from 2020-11-10.
However, as outlined in Sect. 2, the launch of Augur v2.0 in July 2020 rendered
Augur v1.0 “economically insecure” and unsurprisingly caused a decline in user
interest which already started after the announcement of Augur v2.0 in April
2020. To account for this decrease, we removed 162 cases that were either created
after v2.0 was announced on 2020-04-02 or that were not finalized before its
actual launch, leaving us with a total of 2735 cases and 22772 events.

For purposes of replication, all data and code used in this study are avail-
able publicly, including the source code of ELF (See Footnote 4), the manifest,
the normative process model and the resulting XES log5, the source code of
Augur v1.06, the Augur white paper [23], and the data on the public Ethereum
blockchain.

4 Process Mining Analysis and Results

As discussed in Sect. 3, we used ELF to extract an XES event log [4] for Augur
v1.0. As a result, we can apply a range of process mining techniques, as illus-
trated by Fig. 3. It is possible to discover the actual betting/prediction process,
check conformance of the process with respect to a normative model, analyze
performance, and compare process variants [1]. In the remainder, we will mainly
use the ProM process mining platform. We could apply any other process mining
tool, e.g., open-source tools like PM4Py, Apromore, bupaR, and RapidProM, or
5 https://github.com/ingo-weber/dapp-data.
6 https://github.com/AugurProject/augur-core, accessed 2021-03-19.

https://github.com/ingo-weber/dapp-data
https://github.com/AugurProject/augur-core
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860 traces
31.44% of the log create market submit ini�al report finalize market redeem as ini�al reporter

187 traces
6.84% of the log create market submit ini�al report finalize market

168 traces
6.14% of the log create market submit ini�al report finalize market redeem as ini�al reporter claim trading proceeds

138 traces
5.05% of the log create market submit ini�al report finalize market claim trading proceeds redeem as ini�al reporter

89 traces
3.25% of the log create market submit ini�al report finalize market claim trading proceeds claim trading proceeds redeem as ini�al reporter

76 traces
2.78% of the log create market submit ini�al report finalize market claim trading proceeds

74 traces
2.71% of the log create market submit ini�al report finalize market redeem as ini�al reporter redeem as ini�al reporter

64 traces
2.34% of the log create market purchase complete sets submit ini�al report finalize market redeem as ini�al reporter

60 traces
2.19% of the log create market submit ini�al report finalize market redeem as ini�al reporter claim trading proceeds claim trading proceeds

51 traces
1.86% of the log create market submit ini�al report finalize market claim trading proceeds claim trading proceeds

35 traces
1.28% of the log create market submit ini�al report finalize market redeem as ini�al reporter claim trading proceeds claim trading proceeds claim trading proceeds

Fig. 4. Some of the most frequent variants, e.g., 860 markets follow the most frequent
variant having only four events. The event data have a Pareto distribution with 35
variants (i.e., 8.5% of variants) explaining 80% of all cases.

commercial closed-source tools like Celonis, Disco, ProcessGold (UiPath), Minit,
QPR, myInvenio, PAFnow, Lana, Software AG, Signavio (SAP), ABBYY Time-
line, and Mehrwerk. However, our goal is not to present specific process mining
algorithms or tools. Instead, we demonstrate that event data extracted from
Ethereum using ELF can be used to analyze marketplaces like Augur.

4.1 Exploring the Event Data

All process mining tools start from event data [1]. An event log is a collection of
events stored in a format like XES. An event may have many different attributes,
but at least a case identifier, an activity name, and a timestamp. Additional
attributes may refer to locations, resources, costs, transactional information,
and on Ethereum blockchain, the consumed gas. Events are grouped using the
case identifier and sorted using the timestamps. Hence, each case corresponds to
a trace, i.e., a sequence of events. By focusing only on the activity names, these
traces can be grouped into variants, i.e., sequences of activities. Most event logs
have a Pareto distribution, i.e., a few variants explain a large proportion of the
event log.
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1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute finalize market redeem as ini�al reporter claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds

1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute complete dispute finalize market redeem as ini�al reporter

1 traces
0.04% of the log create market submit ini�al report finalize market claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds

1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute complete dispute finalize market claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds redeem as ini�al reporter

1 traces
0.04% of the log create market purchase complete sets purchase complete sets submit ini�al report create dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute finalize market redeem as ini�al reporter claim trading proceeds

1 traces
0.04% of the log create market submit ini�al report finalize market redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter

1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute contribute to dispute contribute to dispute complete dispute finalize market claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds redeem as ini�al reporter

1 traces
0.04% of the log create market purchase complete sets submit ini�al report create dispute contribute to dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute complete dispute finalize market claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds

1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute complete dispute finalize market claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds redeem as ini�al reporter

1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute complete dispute finalize market redeem as ini�al reporter

1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute contribute to dispute contribute to dispute contribute to dispute contribute to dispute contribute to dispute contribute to dispute finalize market claim trading proceeds

Fig. 5. Some of the unique variants that only have one corresponding market. The
figure is not intended to be readable but gives an idea of the variability. 319 of the 414
variants are unique, covering 11.7% of all markets.

The event log we extracted and filtered as per Sect. 3 has 2735 cases (each
case refers to a market), 22772 events, and 11 unique activities. There are 414
variants where 35 variants have at least ten corresponding cases and describe
2203 cases. This implies that 80% of the cases are described by less than 8.5% of
variants. Some of the most frequent variants are shown in Fig. 4. 319 cases have
a unique sequence of activities. A few of the shorter unique variants are shown
in Fig. 5. The length varies from three to 226 events per case.

The event log contains 11 activities having the following frequencies: claim
trading proceeds (6046), redeem as initial reporter (3259), submit initial report
(2735), create market (2735), finalize market (2735), contribute to dispute (1598),
redeem dispute crowdsourcer (1412), create dispute (901), complete dispute (780),
purchase complete sets (570), and transfer market (1).

Figure 6 shows a so-called dotted chart where each dot refers to an event (i.e.,
22772 dots). In a dotted chart, we can configure the two axes and the coloring
of the dots [1]. In Fig. 6, the x-axis refers to the time of the event, the y-axis
corresponds to the cases (i.e., markets) sorted by the time of the first event, and
the color of the dot refers to the activity name (e.g., blue is the creation of the
market). The dotted chart shows that many markets were created in the first

�me

market
(cases sorted 

by �me of 
first event)

cases start with “create 
market” (blue)

“claim trading proceeds” 
for many cases at the 
same �me

“claim trading proceeds” 
for many cases at the 

same �me

“claim trading proceeds” 
immediately followed by 
“redeem as ini�al 
reporter” for many cases 
at the same �me

“submit ini�al report” for many 
cases at approximately the 

same �me
“redeem as ini�al reporter” 
for many cases at 
approximately the same �me

many subsequent “claim 
trading proceeds” for a 
single case

“submit ini�al report” 
for many cases at 

approximately the same 
�me

“redeem as ini�al reporter” 
for many cases at 
approximately the same �me

zooming in on the first two days of Sept. 2019 
shows 6 cases genera�ng more than 500  

“redeem as ini�al reporter” events

Fig. 6. Dotted chart showing all 22772 events. The vertical patterns indicate batching.
(Color figure online)
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month (July/August 2018). After that, there was a steady flow of new cases,
until the arrival rate decreased after May 2019. The vertical patterns indicate
batching, i.e., shorter periods where the same activity occurs for many cases.
Some of these batching patterns are highlighted in Fig. 6. For example, on 2020-
02-11, activity claim trading proceeds is executed 63 times for 53 cases in less
than one hour. Another example of batching is the burst of the activities claim
trading proceeds and redeem as initial reporter at the end of the day on 2019-07-
07. These occur respectively 148 and 98 times in a three hours. There are also
horizontal patterns indicating a sequence of events for the same case in a short
period. For example, for the market “Ethereum Price at end of March 2019” we
witnessed redeem dispute crowdsourcer and claim trading proceeds four and 132
times, respectively, within a period of a few weeks. Although one can already
visually spot exceptional cases, we discuss these further when presenting the
conformance checking results.

4.2 Process Discovery

Figures 7, 8, and 9 are based on the whole event log (i.e., 2735 markets generating
22772 events). Figure 7 shows a so-called Directly-Follows Graph (DFG) without
filtering [1,2]. The nodes are activities and show the frequencies of each activity.
The connections show how often one activity is followed by another. DFGs are
the most-widely used discovery technique in commercial process mining tools due
to their simplicity. However, there are several know problems, as demonstrated in
[2]. These can be witnessed in Fig. 7, where there are many loops in the diagram
because activities are not performed in a fixed order.

Figure 8 shows the Process Tree (PT) obtained by the Inductive Miner in
ProM for the whole event log using the default settings [16]. The model is not
intended to be readable, but one can see that the process model has more struc-
ture. 1771 of all cases (65%) can be explained by this model (the average trace
fitness is 94%). Figure 9 shows the same model but now with timing informa-
tion rather than frequencies. Two activities that have a longer sojourn time are
highlighted.

Figures 10, 11, and 12 are based on the variants with at least ten correspond-
ing cases. This filtered event log contains only 35 of the 414 variants; however, it
represented over 80% of all markets (2203 cases). Due to the configurations used,
all three models are guaranteed to be able to replay all 2203 cases from which
these models were discovered. Actually, the process models in Figs. 11 and 12
can replay 2501 cases in the original event logs. Note that the PT was discovered
using the basic Inductive Mining algorithm without further filtering [1,15]. This
algorithm is also implemented in a few commercial systems (e.g., Celonis). The
Petri net in Fig. 12 is semantically equivalent to the model in Fig. 11.

After focusing on the frequent variants, one can focus on particular parts of
the process model. Such models are simpler and can be used to drill down. Let
us, for example, focus on the dispute phase and consider only the activities create
dispute, contribute to dispute, and complete dispute. Figures 13 and 14 show two
process models explaining the dispute subprocess. This example illustrates that
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Fig. 7. Directly-Follows Graph (DFG) for the whole event log without filtering.

Fig. 8. Process Tree (PT) for the whole event log using default settings.

the average sojourn �me of “submit 
ini�al report” is 63 days (the maximum 
observed sojourn �me is 657 days)

the average sojourn �me of “finalize 
market” is 19 days (the maximum 
observed sojourn �me is 609 days)

Fig. 9. Process Tree (PT) for the whole event log showing sojourn times.

process mining tools like ProM provide various ways to reduce the complexity
and either focus on a particular part of the process or zoom-out (e.g., using
aggregation) to see the overall process.

4.3 Conformance Checking and Unusual Cases

Figure 2 shows a normative process model that can be used for conformance
checking [1,6]. The goal of conformance checking is to identify commonalities and
differences between the modeled process and the actual process. Figures 15 and
16 show the reference model in the form of a process tree and a Petri net to allow
for easy comparison with the discovered process models. A visual comparison
shows that the reference model is close to the discovered models, but there are
some notable differences. Compare, for example, Fig. 16 (Petri-net version of the
reference model) with Fig. 12 (Petri-net able to replay all traces that happened
at least ten times). Some of the striking differences: transfer market is missing
in the discovered model (it was only executed in one trace); in the discovered
process model, the activities contribute to dispute and complete dispute both
occur precisely once after creating the dispute; and redeem dispute crowdsourcer
can occur before claim trading proceed and redeem as initial reporter, but not
after.

The representations shown in Figs. 15 and 16 can be used in ProM to per-
form a range of conformance checking techniques. Here, we limit ourselves to
alignment-based conformance checking [1,6], i.e., for each trace in the event log,
we searched for a path through the model that is closest.
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Fig. 10. Directly-Follows Graph (DFG) for 8.5% of variants covering 91.4% of the
cases.

Fig. 11. Process Tree (PT) discovered for the filtered event log showing all paths.

Fig. 12. The Petri net discovered for the filtered event log.

Fig. 13. Directly-Follows Graph (DFG) discovered for the dispute phase.

Fig. 14. Process Tree (PT) discovered for the dispute phase.
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Fig. 15. Normative Process Tree based on the BPMN reference model.

Fig. 16. Normative Petri net model.

Fig. 17. Replay results after aligning event logs and process model: 2511 of the 2735
cases are perfectly fitting the reference model.

ProM’s diagnostics show that the reference model in Fig. 2 explains 2511 of
the 2735 cases, i.e., 224 cases have at least one deviation. Figure 17 shows the
same diagnostics after aligning event log and process model. There are 21647
synchronous moves (i.e., events in the log that fit the model) and 1125 moves
on the log (i.e., events in the log that do not fit the model). However, there
are no moves on the model (i.e., missing events). 223 of the 224 deviating cases
have multiple redeem as initial reporter events, and 1119 of the 1125 log-only
moves fall into this category. Almost all of these are instantaneous: using Disco’s
performance view, we see a median duration of 0 ms, a total duration over all
1119 moves of 42 days, and a maximum of 35 days – i.e., much of the whole
duration can be accounted for with a single of the 1119 occurrences.

For a random sample of 20 of these 1119 occurrences, we inspected the
underlying blockchain transactions, and observed the following pattern in all
20 instances: the first redeem as initial reporter event resulted in a payout, the
second did not; the first and second transaction came from the same account
in all 20 pairs; and the pairs were close together (between 0 and 47 blocks, the
large majority with less than ten blocks). We also observed two cases with 108
redeem as initial reporter events (“Who will win the second democratic primary
debate?” and “Will Tulsi Gabbard poll higher than Andrew Yang on August
12th?”).

Like in discovery, there is the possibility to focus on selected parts of the
process. Figure 18 shows conformance checking results for the dispute subprocess.
There is only a single deviating case (see the upper part of Fig. 18) where there
are two instances of two subsequent occurrences of create dispute without any
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contributions in between. This is not possible according to the reference model.
We discuss possible reasons for non-conformance in Sect. 5.

Next to the non-conforming cases, we identified the following unusual cases.
In our data, we observed 13 cases with nine or more complete dispute events cre-
ated in 2018. Ten of those were created in July 2018, the month the application
was launched. The market with the highest number of contributions to disputes
(98) was created on 2018-07-13 and posed the question, “Will the weather be
good for the Bastille day military parade in Paris tomorrow?” The high ambi-
guity of the market question led to a debate in the Augur community revolving
around wording of market questions and forking the application shortly after its
launch. After 15 rounds of dispute7, the market resolved as invalid and remained
a familiar quotation. Soon after the debate around the Bastille Day market
gained momentum, a meta-market was created (“Will the weather good when
the “Will the weather be good for the Bastille day military parade in Paris tomor-
row?” market resolve?”), betting on the events based on existing markets. That
phenomenon, however, did not become a trend.

On 2018-07-10, four identical markets were created within 17 s, asking the
question “Will Bitcoin go below $6000”. One of the markets resolved as invalid
after five weeks, while the other three went through dispute rounds until mid-
September 2018, before also resolving invalid, all on the same day. In sum, this
market question went through the highest number of dispute rounds (20).

4.4 Performance Analysis

Events have timestamps; therefore, it is trivial to enrich process models with
timing information (e.g., waiting times and service times). This is a key capability
of process mining and often used to improve operational processes, e.g., to reduce
the time needed to produce a car or process a claim. For marketplaces like
Augur, standard measurements like waiting times are less relevant, because the
duration is related to the nature of the particular bet. For example, users can
create markets for future events, no matter how far into the future the event
is expected to take place. In this regard, we inspected the top 100 completed

Fig. 18. Conformance checking results for the dispute phase including the activities
create dispute, contribute to dispute, and complete dispute. Only one case is non-fitting.

7 https://themajority.report/market/0x67ef420c045f3561d11ef94b24da7e2010650cc3,
accessed 2021-03-05.

https://themajority.report/market/0x67ef420c045f3561d11ef94b24da7e2010650cc3
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traces concerning the waiting time before submitting the initial report. All these
markets were created in 2018 but referred to events that took place in 2019
and 2020. We also noted that there is a market with a prospected market event
in 2070. In addition to these analyses, we zoomed into the dispute phase and
only considered the activities create dispute, contribute to dispute, and complete
dispute shown in Figs. 13 and 14. The mean duration of this phase is 15.4 days,
the median duration is 7.1 days, and the longest duration is 111 days. This
illustrates that time also plays a role in the analysis of markets.

5 Discussion

The Augur logging smart contract specifies 35 activities, of which only 11 activi-
ties could be observed after the data extraction. Partially, this discrepancy can be
explained by events not being triggered throughout the application’s life-cycle,
such as the fork event. The option to fork serves as a final resolution mechanism
in case a dispute could not be resolved over many rounds, and forms the last
resort. Thus, not observing it was expected, and can indeed be seen as a sign
that the incentive mechanism (geared towards avoiding forks) work. However,
other events such as DisputeWindowCreated could be expected to be triggered
frequently but were not part of the logged data, although specified in our ELF
manifest.

Additionally, the white paper did not cover all events included in the smart
contract (e.g., DisputeCrowdsourcerCompleted or TradingProceedsClaimed).
That led to multiple iterations for creating the normative process model, where
we started with the information in the white paper, ran discovery and confor-
mance checking, found discrepancies, and resolved those by reconsidering the
white paper and inspecting the source code. One observation was that the white
paper in part turned out to be too abstract to model the normative process, as
some information on the workings of Augur was not contained in it. For instance,
completeDispute only happens if a sufficient amount of stakes is contributed
to a dispute; this information is not contained in the white paper.

As pointed out in Sect. 4, cases with many dispute events were observed
mainly in 2018, and mainly had creation dates in July 2018, the month of the
Augur v1.0 launch. Disputes delay resolving a market and hint towards disagree-
ment in the community. Their occurrence in the early days of the application
indicates that the user group needed to build up experience in using the appli-
cation. At times, users seemingly tested the resilience of the application (e.g., a
market for “Did this market need a fork to be resolved?”, created 2018-07-27, led
to 12 complete dispute rounds but no fork). Eventually, the users learned to pose
less ambiguous market questions, leaving less wiggle room for interpretation and
reducing the potential for disputes.

Comparing the normative and discovered models in Fig. 16 and Fig. 12, we
observed paths that were executed infrequently. Recall that the model in Fig. 12
was discovered from the 35 most frequent variants, and hence represents typical
(but not all) observed behavior. Some paths, however, occurred very rarely if at
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all: According to the white paper, after unsuccessful disputes crowdsourcers are
redeemed at the end of the dispute round, while for successful disputes redeeming
happens after the market finalized [23]. The sequence for redeeming unsuccessful
disputes occurred only four times, and the log does not show a single case of
contribute to dispute being directly followed by redeem dispute crowdsourcer.
That poses the question why users did not make use of that option.

The most striking result from conformance checking was the frequent occur-
rences of redeem as initial reporter more than once, where we observed for a
sample that the first event resulted in a payout and the second did not, and
both originated from the same account within a short time frame. The logging
on Augur could be made more precise here, and differentiate successful, legiti-
mate transactions from others. Note that transaction inclusion may be subject
to delay [30], and the timestamp for a transaction to be finally included in the
ledger may be significantly after the transaction had been announced to the
network. There are multiple possible explanations for the phenomenon of the
repeated redeem as initial reporter events, including: (i) the reporter was impa-
tient; (ii) the reporter used an automated tool with a time-out before retry, but
the tool did not implement retry correctly (as per [30]); or (iii) the reporter tried
to cheat or hack the system. Given that these attempts were unsuccessful and
the reporter had to pay fees, and the same reporter accounts showed the same
behavior repeatedly, we find (ii) the most plausible of the three scenarios.

The non-conforming repeated create dispute events happened in the same
categorical market “2018 MLB World Series Champion”. All four transactions
(two pairs of two) were sent from the same blockchain account, and each pair was
included in the ledger in direct succession in the same block. The two pairs were
95 blocks apart. The four transactions initialized four different dispute rounds,
although at any time only one of those was active. By initializing future dispute
rounds, the user “pre-staked” tokens for these future rounds. This was a bug in
Augur v1.0, but turned out to be useful and was made a feature in v2.0, as we
established in discussion with Augur’s chief architect (see below).

Note that we did not aim to apply process mining as a design time or pre-
deployment test for software vulnerabilities. However, we were able to show
that process mining can serve as a tool to discover bugs and performance issues
for blockchain applications post-deployment (based on actual user behavior),
which enables developers to patch weaknesses or formalize unexpected behavior
in updates. Methods for design time checks of vulnerabilities are nevertheless
very important, particularly for DApps, but can be complemented with analyses
such as ours.

To validate the veracity and assess the usefulness of the insights generated by
our analyses, we interviewed Paul Gebheim, the chief architect of Augur. Given
that we only interviewed one person, we classify results from this interview as
anecdotal evidence; but given his position, we believe this evidence to be of value.
We asked him to check assumptions we had – all of which he confirmed – and pre-
sented intermediate results from our analyses to him. From his perspective, using
process mining for the analysis of blockchain applications generally, and Augur,
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in particular, provides value in three ways. First, it helps to verify the design
mechanisms and check for unintended behavior and bugs in the (immutable)
code; immutability poses a challenge from a BPM perspective [20] and software
engineering in general [28]. Second, process mining provides a clear view of how
an application is used, which is also helpful for designing updated versions of
an application. Third, it has great potential for technical and economic security
analysis, e.g., in that, an auditor could create a model and conformance-check
it against actual user behavior. Also, even though a smart contract typically
implements a fixed set of rules, analyses of process variability may reveal valu-
able insights that could help evolve future versions of the smart contract, e.g.,
to align them better with changed user expectations.

The validity of this case study faced several threads to validity. As an internal
thread, we might have introduced a bias in our conformance checking approach.
As a basis for conformance checking, we used the entire normative process model
(Fig. 2) and thus the overall control flow without checking the gate conditions for
individual cases. That might have led to overly generalized results, ignoring non-
conforming cases. Additionally, we largely observed the user behavior as a whole
and not over time, which might have compromised awareness of maturation
effects. An external thread to the study may be that the data we performed
our analysis on was incomplete or its quality corrupted. We did, however, take
precautions in reducing these threads by validating intermediate results and
findings with Augur’s user interface and their chief architect, as described above.

6 Conclusion and Future Work

In this paper, we conducted a case study on process mining for data extracted
from the blockchain application Augur. To this end, we used ELF to extract
data over essentially the entire lifecycle of Augur v1.0. We used process mining
methods and tools to explore the data, discover models for a set of variants, and
conducted conformance checking and performance analyses. Finally, we inter-
viewed the chief architect of Augur to validate our insights and understand their
usefulness. As stated in Sect. 3, we followed open science principles and made all
data and code from our study available publicly.

In summary, we conclude that there is clear evidence for the usefulness of pro-
cess mining on blockchain data. Main areas of interest for software developers may
include user behavior analysis and security audits, for which we demonstrated the
applicability of process mining tools. Indeed, we discovered a bug in Augur’s smart
contracts – albeit a non-critical one. Future research can be done evaluating other
applications which might run on other blockchains, such as Hyperledger Fabric.
The analysis method could be extended for blockchain-specific security and user
studies, e.g., through drift detection and cohort analysis.
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