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Abstract. Alignments are a central notion in conformance checking.
They establish the best possible connection between an observed trace and
a process model, exhibiting the closest model run to the trace. Comput-
ing these alignments for huge amounts of traces, coming from big logs,
is a computational bottleneck. We show that, for a slightly modified ver-
sion of the distance function between traces and model runs, we signifi-
cantly improve the execution time of an A*-based search algorithm. We
show experimentally that the alignments found with our modified distance
approximate very nicely the optimal alignments for the classical distance.

1 Introduction

Conformance checking techniques establish relations between modeled and
observed behavior [6]. The techniques on this field are grounded on solving a
very particular problem, known as alignment [1]: given a process model that
describes a certain process, and a trace which contains a potential observation
of this process, to decide if the trace is in the language of the model, and if
not, to pinpoint where it deviates. Computing alignments is not necessarily the
ultimate goal of an analysis, but instead can be used to further enhance a pro-
cess model with the evidences found in the data, e.g. depicting explicitly in the
model the bottlenecks of the underlying process [23].

The current process mining field is living an interesting paradox: whilst it is
widely accepted that the capabilities of discovering huge process models exist,
when it comes to analysing these discovered models through conformance check-
ing techniques, only approximate techniques for deriving alignments are used in
practice. In the next section we provide a complete overview of current alterna-
tives for alignment computation.

In this paper, however, we somehow go back to the roots, and adopt the sem-
inal work from Arya Adriansyah’s PhD thesis [1] as main alignment algorithm.
It consists of an A∗ graph search algorithm over the state space of a synchronous
product net made out of the initial process model and a trace net corresponding to
the input trace. The cost function that governs the A∗ search is typically a standard
cost function which assigns unitary costs to all the possible types of deviations.
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We consider a rather simple, yet powerful idea that is motivated from the fol-
lowing use case: for certain processes, the costs associated to deviations at early
stages of the process’ execution are more important than the ones at the end. For
instance, consider a loan application process that has two decisions: one at the
beginning, assessing the type of customer (gold, silver, normal), and one at the end,
determining whereas the loan was received in a labour day or not. It is normal that
the stage in which these decisions are made in any possible execution of the pro-
cess reveal their importance. For instance, if for the company it is very important
to know the type of the customer because further information needs to be gathered
depending on the customer’s type, then it is likely that the corresponding process
has the type of customer decision close to the start of any possible execution. On
the contrary, if the day when the loan was received is not so important, then it is
likely that the corresponding events will be pushed to the end of the traces.

The aforementioned situation holds for knock-out processes [24], represent-
ing processes where two outcomes are possible: OK or NOK. In these processes,
ordered checks are usually observed, because it allows faster process executions.
Indeed, as many tasks of those processes aim at determining the final output, the
knock-out decisions should be taken at the beginning of the process, in growing
order [14].

Having this in mind, one can instantiate the A∗ algorithm to make the cost
function exponentially biased to this use case: giving more importance (higher
cost) to the deviations that occur in early stages of the alignments, and exponen-
tially reducing the cost as the search algorithm progresses. Importantly, this dis-
counted cost function has a huge impact on the size of the search space required for
theA∗ search, since the cost asymmetrymakes the search space rapidly shrink after
the first alignment steps are made. For processes which follow the aforementioned
use case, this cost function puts the search focus in the right place, deriving align-
ments that aim at synchronizing modeled and observed behavior in the important
decisions that are made at the beginning. Interestingly, this idea can also be used
for processes that are not following this trend, since although putting the focus at
the beginning may not be the most likely explanation, the computational allevia-
tion can make the problem tractable, where other techniques fail.

In this paper we formalize this simple idea, and show the great impact in per-
formance with respect to several variations of the A∗ search proposed in the last
years. Interestingly, this improvement causes only a very minor loss in quality: as
we will see in the experiments, for well-known and accepted benchmarks, the pro-
posed techniques are often able to produce alignments very close to the optimal
ones.

This paper is organized as follows: in the next section we provide a detailed
overview of the different techniques to compute alignments. Then in Sect. 3 we pro-
vide the necessary definitions to understand the technique of this paper. In Sects. 4
and 5 we provide the formal definition and corresponding algorithmic adaptations
for the discounted cost function presented in this paper. Then in Sect. 6 an evalu-
ation of the proposed technique is reported, and Sect. 7 concludes the paper.
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2 Related Work

The seminal work in [1] proposed the notion of alignment and developed a tech-
nique based on A∗ to compute optimal alignments for a particular class of process
models. The approach represents the state-of-the-art technique for computing
alignments, and can be adapted (at the expense of increasing significantly the
memory footprint) to provide all optimal alignments. Alternatives to A∗ have
appeared in recent years: in the approach presented in [7], the alignment prob-
lem is mapped as an automated planning instance. Automata-based techniques
have also appeared [10,15]. The techniques in [15] (recently extended in [16])
rely on state-space exploration and determination of the automata correspond-
ing to both the event log and the process model, whilst the technique in [10] is
based on computing several subsets of activities and projecting the alignment
instances accordingly.

The work in [19] presented the notion of approximate alignment to alleviate
the computational demands by proposing a recursive paradigm on the basis of
the structural theory of Petri nets. In spite of resource efficiency, the solution
is not guaranteed to be executable. Alternatively, the technique in [20] presents
a framework to reduce a process model and the event log accordingly, with the
goal of alleviating the computation of alignments. The obtained alignment, called
macro-alignment since some of the positions are high-level elements, is expanded
based on the information gathered during the initial reduction. Techniques using
local search have been also proposed very recently [21].

Decompositional techniques have been presented [12,22,27] that, instead of
computing optimal alignments, focus on the crucial problem of whether a given
trace fits or not a process model. These techniques vertically decompose the pro-
cess model into pieces satisfying certain conditions (so only valid decomposi-
tions [22], which satisfy restrictive conditions on the labels and connections form-
ing a decomposition, guarantee the derivation of a real alignment). Later on, the
notion of recomposition has been proposed on top of decompositional techniques,
in order to obtain optimal alignments whenever possible by iterating the decom-
positional methods when the required conditions do not hold [9]. In contrast to
the aforementioned vertical decomposition techniques, our methodology does not
require this last consolidation step of partial solutions, and therefore can be a fast
alternative to these methods at the expense of loosing the guarantee of optimality.

We believe our work has similarities and synergies with two recent works.
In [5], a symbolic algorithm to maximize the number of synchronous moves in
the alignment is proposed, by changing the cost function to only penalize log
moves, thus allowing an arbitrary number of model moves if this contributes to
maximizing synchronous moves. We believe the discounted cost function of this
paper may be used in the context of [5], to balance better the solutions found.
Recently, in [25], an online alignment technique with a window-based backwards
exploration is proposed. Again, by discounting this window-based exploration,
a speedup of the online technique can be obtained so that it can be applied on
a larger problem instances.
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3 Preliminaries

We represent event data as log traces and process models as labeled Petri nets.

Definition 1 (Log Traces). Let Σ be a set of activities. We define a log L as
a finite multiset of sequences σ ∈ Σ∗, which we refer to as log traces.

Fig. 1. Synchronous product for alignments between N and σ that has the marking
reachability problem.

Definition 2 (Process Model (Labeled Petri Net) [13]). A Process Model
defined by a labeled Petri net system (or simply Petri net) is a tuple N =
〈P, T, F,m0,mf , Σ, λ〉, where P is the set of places, T is the set of transitions
(with P ∩ T = ∅), F ⊆ (P × T ) ∪ (T × P ) is the flow relation, m0 is the initial
marking, mf is the final marking, Σ is an alphabet of actions and λ : T →
Σ ∪ {τ} labels every transition by an activity or as silent.

Semantics. The semantics of Petri nets is given in term of firing sequences.
Given a node x ∈ P ∪ T , we define its pre-set •x def= {y ∈ P ∪ T | (y, x) ∈ F}
and its post-set x• def= {y ∈ P ∪ T | (x, y) ∈ F}. A marking is an assignment of
a non-negative integer to each place. A transition t is enabled in a marking m
when all places in •t are marked. When a transition t is enabled, it can fire by
removing a token from each place in •t and putting a token to each place in t•.
A marking m′ is reachable from m if there is a sequence of firings 〈t1 . . . tn〉 that
transforms m into m′, denoted by m[t1 . . . tn〉m′. The set of reachable markings
from m0 is denoted by [m0〉. A Petri net is k-bounded if no marking in [m0〉
assigns more than k tokens to any place. A Petri net is safe if it is 1-bounded.
A full run of a Petri net N is a firing sequence m0[t1 . . . tn〉mf from the initial
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marking m0 to the final marking mf . A Petri net is easy sound [2] if it has at
least one full run, i.e. mf is reachable from m0.

In this paper we assume safe and easy sound Petri nets.

Definition 3 (Alignments). Given a log trace σ = 〈σ1, . . . , σm〉 ∈ L of alpha-
bet Σ, and a process model N = 〈P, T, F,m0,mf , Σ, λ〉, an alignment of σ with
N is a finite sequence ϕ = 〈(σ′

1, u
′
1), . . . , (σ

′
p, u

′
p)〉 of moves such that:

– each move is either: a synchronous move (a, t) ∈ Σ × T with a = λ(t), a log
move (a,
) (where 
 is a special ‘skip’ symbol), or a model move (
, t),

– dropping the 
 symbols from the left projection 〈σ′
1, . . . , σ

′
p〉 of ϕ, yields σ;

– dropping the 
 symbols from the right projection 〈u′
1, . . . , u

′
p〉 of ϕ, yields a

full run u of N .

Example 1. Figure 1 shows a process model (Fig. 1a) and a log trace (Fig. 1b).
An alignment of N and σ is ϕ = 〈(
, a), (b, b), (c, c)〉.

In order to compare the quality of alignment quality, we define a cost function
which penalizes log moves and model moves.

Definition 4 (Classical Alignment Cost Function, Optimal Align-
ments). For every alignment ϕ between a model N and a log trace σ, the Clas-
sical Alignment Cost Function C assigns a cost 0 to synchronous moves and a
cost 1 to log moves or model moves. The cost of an alignment is the sum of the
costs of its moves. An alignment between a model N and a log trace σ is optimal
if it minimizes the cost.

Example 2. The alignment ϕ = 〈(
, a), (b, b), (c, c)〉 between N of Fig. 1a and σ
of Fig. 1b costs 1 and is optimal. We recognize the Petri net transformation of σ
which are the bottom places and the yellow transitions. The synchronous moves
are drawn in green. From the initial state, possible moves are (
, b), (
, a),
(b, b) or (b,
).

The optimal alignment cost given with the classical alignment cost function
C gives the Levenshtein edit distance between a run of M and the trace σ.

Definition 5 (Levenshtein Edit distance). The Levenshtein Edit Distance
dist(u, v) between two words u and v ∈ Σ∗ is the minimal number of edits needed
to transform u to v. In our case, edits can be deletions or insertions of a letter
in words,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L(〈〉, 〈〉) = 0

L(u, 〈〉) = |u|
L(〈〉, v) = |v|
L(a.u′, b.v′) = L(u′, v′) if (a = b)

L(a.u′, b.v′) = min

{
L(a.u′, v) + 1,

L(u, b.v′) + 1 otherwise.
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The main methods of the literature to compute optimal alignments are
Dijkstra-based algorithms which often implies the construction of the Syn-
chronous Product between the given process model and a sequential Petri net
representing the log trace [1].

Definition 6 (Synchronous Product for Alignments). For a process
model N = 〈P, T, F,m0,mf , Σ, λ〉 and a log trace σ = 〈σ1, . . . , σm〉 ∈ Σ∗,
the Synchronous Product used for computing alignments is the Petri net SN =
〈PSN , TSN , FSN ,mSN0 ,mSNf

, (Σ ∪ {
})2, λSN 〉 defined as:

– Nσ = 〈Pσ, Tσ, Fσ,mσ0,mσf , Σ, λσ〉 is a translation of σ to a sequential Petri
net with: Pσ = {Pσ0 , . . . Pσm

}, Tσ = {tσi
= λσ(σi) | i ∈ {1, . . . ,m}}, Fσ =

{(Pσi−1 , tσi
), (tσi

, Pσi
) | i ∈ {1, . . . , m}}, mσ0 = {Pσ0 : 1}, mσf = {Pσm

: 1},
– PSN = P ∪ Pσ

– TSN = T� ∪ T�
σ ∪ TS, where T� = {(
, t) | t ∈ T} represents the model

moves, T�
σ = {(t,
) | t ∈ Tσ} represents the log moves, TS = {(t1, t2) | t1 ∈

T, t2 ∈ Tσ and λ(t1) = λσ(t2)} represents the synchronous moves,
– FSN = F∪Fσ∪{(Pi, ti) | ti = (t1, t2) ∈ TSN , t1 �= 
, t2 �= 
, Pi ∈ •t1∩•t2}

∪ {(ti, Pi) | ti = (t1, t2) ∈ TSN , t1 �= 
, t2 �= 
, Pi ∈ t1
• ∩ t2

•}
– mSN0 = m0 ∪ mσ0 ,
– mSNf

= mf ∪ mσf
,

– λSN maps every t ∈ TSN to its move.

Example 3. Figure 1 shows the synchronous product for alignments of the pro-
cess model N given in Fig. 1a and the log trace σ of Fig. 1b.

The Dijkstra-based algorithm for finding optimal alignments, explores the
reachability graph of the synchronous product of Definition 6. Weights are given
by the transitions fired to reach the markings, according to the type of move
that they represent. The best firing sequences found for reaching a marking is
the less costly one. The algorithm that we present in Sect. 5 is an adaptation
of this classical Dijkstra-based algorithm for alignments. As we are using easy-
sound Petri nets as process models, the Synchronous Products for Alignments
are easy-sound which implies termination of the Dijkstra algorithm with the
condition to reach the final marking mSNf

[28].

4 Discounted Cost Function and Properties

The classical alignment cost function corresponds to Levenshtein edit distance
between a run of a process model and a log trace, where additions and deletions
represent model and log moves. In this section, we introduce the Discounted Edit
Distance and its impact when using it as alignment cost function.

The idea of this Discounted Edit Distance is to penalize more insertions and
deletions when they occur at the beginning of the strings, and less when they
occur later.
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Definition 7 (Discounted Edit Distance). We define the Discounted Edit
Distance between two strings u and v (of length |u| and |v| respectively) with
discount parameter θ ≥ 1 by Dθ(u, v) def= D0

θ(u, v) where:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Dk
θ (〈〉, 〈〉) = 0

Dk
θ (〈〉, b.v′) = Dk+1

θ (〈〉, v′) + θ−k

Dk
θ (a.u′, 〈〉) = Dk+1

θ (u′, 〈〉) + θ−k

Dk
θ (a.u′, b.v′) = Dk+2

θ (u′, v′) if (a = b)

Dk
θ (a.u′, b.v′) = min

{
Dk+1

θ (u′, v) + θ−k

Dk+1
θ (u, v′) + θ−k otherwise.

thus allowing equation ((ui = vj)) for free and insertions and deletions at cost
θ−k where k refers to the position where the edit occurs.

Lemma 1. For θ = 1, the Discounted Edit Distance corresponds to the Leven-
shtein distance.

Proof. With θ = 1, we have θ−k = 1 for any k and we obtain Definition 5 from
Definition 7. 
�

In practice, relevant values for the discount parameter θ are slightly larger
than 1. For θ ≥ 2, the discount is already very severe since an edit at position k
costs more than the sum of all the following edits.

Lemma 2. With the Discounted Edit Distance, for θ ≥ 2, an edit at position k
costs more than the sum of all the following edits.

Proof. For u and v, two words, let k be the position of a non-free cost in Dθ(u, v).
We note its cost c(k) = θ−k.

The next edits can occur at positions j ∈ {k + 1, . . . , n} where, in the worst
case, n = |u| + |v|. We write S(j, n) the sum of costs. The maximal value of this
sum appears when only non-free edits are used by the discounted edit distance:

S(k, n) =
n∑

j=k+1

c(j) = θ−(k+1) + θ−(k+2) + · · · + θ−n =
θ−k − θ−n

θ − 1

Hence, c(k) = θ−k > S(k, n) for θ ∈ [2,∞[. Otherwise, in the best case, there is
no edit after position k and the cost of the edit at position k is higher than a
null sum. 
�
Example 4. Let u = 〈x, a, b〉 and v = 〈a, y, b〉. The discounted edit distance
between u and v is Dθ(u, v) = θ−1 + θ−3. If θ = 1, the distance equals to 2 and
is the Levenshtein edit distance where deleting x costs 1 and adding y costs 1.

Similarly to the Levenshtein edit distance, the Discounted Edit Distance can
be applied to alignments.
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Definition 8 (Discounted Cost Function for Alignments). For an align-
ment ϕ = 〈(σ′

1, u
′
1), . . . , (σ

′
p, u

′
p)〉 between a process model N and a log trace σ, the

Discounted Cost Function for Alignments assigns a cost 0 to every synchronous
move and θ−k to every pair (σ′

k, u′
k) that is either a log move or a model move,

where k ∈ {1, . . . , p}, p ∈ N is the length of the alignment, and θ ≥ 1 is the
discount parameter.

For θ = 1, the Discounted Cost Function for Alignment is equivalent to the
Classical Alignment Cost Function. However when θ > 1, the costs of moves are
dynamic and depend on the number of previous moves of the alignment.

Example 5. For the alignment ϕ = 〈(
, a), (b, b), (c, c)〉, presented in the first
example, the cost of (
, a) is θ−1 because it is the first move of the alignment. For
ϕ′ = 〈(b, b), (
, d), (
, e), (
, τ)〉 which is certainly not an optimal alignment
but still an alignment of σ = 〈b, c〉 and the Petri net N of Fig. 1a, the cost of
(
, e) is θ−3.

Lemma 3. For θ > 1, a non-free move t of position j, any move of position
k > j costs less than t.

Proof. Any function f : k −→ θ−k where θ > 1 is strictly decreasing. Then for
j < k, we have θ−j > θ−k. 
�

As a consequence, algorithms for computing optimal discounted alignments
will tend to align in priority the prefixes of the log traces. Suffixes are less costly.
From Lemma 2, when the discount parameter is θ = 2, a non-free move of
position j is more costly than the sum of all the next costs.

Example 6. In Example 2, we saw that the optimal alignment by using the clas-
sical alignment cost function between σ = 〈b, c〉 and the model N of Fig. 1a
is ϕ = 〈(
, a), (b, b), (c, c)〉 of cost 1. However, by using the discounted cost
function with θ = 2, optimal alignments are ϕ′ = 〈(b, b), (
, d), (
, e), (
, τ)〉
and ϕ′′ = 〈(b, b), (
, e), (
, d), (
, τ)〉 of cost 2−2 + 2−3, where (
, τ) is a free
model move. This is due to the discounted cost function which penalizes the
model move (
, a) at first position.

5 Using the Discounted Cost Function in an A*-Based
Algorithm for Discounted Alignments

To compute alignments by using the discounted cost function, we present an
A*-based algorithm which assigns weights to the explored states according to
the discounted cost function for alignment. Let θ be the discount parameter.
Then, to a state reached by a move t occurring in position i, will be assigned
the weight of its predecessor, increased by the cost

h(t, i, θ) def= (0 if t is a synchronous move, θ−i otherwise).
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As a result of Lemma 3, this heuristic aims at aligning prefix first more than
suffixes.

The function h, based on the discounted cost function, is easily incorporated
in the state-of-the-art algorithms for computing alignments. We present two ver-
sions of the incorporation, one by using the synchronous product of the process
model and the log trace, and another one that avoids the computation of the
product by exploring the process model along with the trace.

5.1 Algorithm for Computing Optimal Discounted Alignments

Our algorithm Algorithm1, noted A∗SPD=θ, is inspired from [6]. It proceeds by
exploring the state space of the synchronous product of the process model with
a sequential Petri net representing the log trace as defined in Definition 6. An
optimal alignment corresponds to the shortest path between the initial marking
to the final marking of the synchronous product. For this purpose, our A* algo-
rithm maintains a priority queue Q of prefixes of runs, implemented as a heap
of tuples 〈γ,m, d〉, for a prefix γ reaching marking m at cost d, such that the
tuple with minimal cost d pops first. Line 1 initializes the heap with the empty
prefix reaching the initial marking at cost 0, i.e. 〈〈〉,m0, 0〉.

Algorithm 1: Computation of Optimal Alignments by using the Dis-
counted Edit Distance (A∗SPD=θ)

Input : SP = ((P, T, F,m0,mf , (Σ ∪ {
})2, λ)): synchronous product,
θ: discount parameter

1 Q ← {〈〈〉,m0, 0〉} 	 Heap of open states ordered by distance
2 A ← ∅ 	 Initialize closed set
3 while Q �= ∅ 	 While not all reachable states visited
4 do
5 〈γ,m, d〉 ← Q.pop() 	 Get next state minimizing d
6 if m = mf then

Return: 〈d, γ〉
7 A ← A ∪ {〈m, |γ|〉} 	 Add state to closed set
8 for t ∈ T with m[t〉m′ do
9 γ′ ← γ • t 	 Get new prefix

10 if 〈m′, |γ′|〉 �∈ A 	 Reaching a not yet visited state
11 then
12 d′ ← d + h(t, |γ′|, θ) 	 Compute cost of γ′

13 Q ← Q.insert(〈γ′,m′, d′〉) 	 Insert new prefix in heap
Raise : mf is not reachable

Line 3 starts a while loop that ends only when the final marking is reached
(line 6) or when the priority queue is empty (line 3). Line 9 gets the next firing
transitions of the synchronous product. Some transitions correspond to the log
and model moves and are costly. The other transitions are the synchronous moves
and are free, like in the original algorithm.
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Our discounted cost function h appears on line 12 and determines the cost
of the new prefix. Line 13 adds the new discovered state in the priority queue
with its prefix γ′ and it cost d′ for reaching m′.

When the algorithm reaches the final marking, line 6, the while loop is broken
and the algorithm returns the sequence of firing transitions to reach the final
marking. In fact, this sequence of transitions gives the sequence of moves of the
alignment.

Role of Length in States. In the classical version of alignment computa-
tion, the closed set contains the markings only. However, the length of the cur-
rent alignment plays an important role in the discounted cost function (line 8).
Indeed, the first visit of a marking might not be the optimal one, as it is the
case in the classical version of alignments. A same marking m can be reached
with different firing sequences of moves of different lengths. The first path that
gives the first visit of the marking m is the shortest one. Let’s call this short
path γshort, and γlong a longer path from the initial marking to this marking m.
We have |γlong| > |γshort|. However, γshort might contain future costly moves
to reach the final marking. If those moves are of position lower than |γlong|, it
questions the optimality of γshort. We give an example of this situation below.

Example 7. Let’s suppose that silent transition labelled by τ costs for this
example. To reach marking m = {p4 : 1, pα2 : 1}, the algorithm can play
γ = 〈(
, a), (
, b), (
, τ), (b, b)〉 whose cost is θ−1 + θ−2 + θ−3. This firing
sequence costs as much as γ′ = 〈(
, a), (
, b), (b,
)〉 which reaches the same
marking m. However we notice that γ has a synchronisation at position 4 but
we don’t know yet what appears at position 4 for γ′. Then both paths should
be kept.

Note that we tackled the problem of optimality of the alignment with the
discounted cost function. For θ > 1, this optimality does not correspond to the
optimal classical alignment.

Comparison to Classical Alignments. Due to the discount parameter θ
in the discounted cost function, our heuristic prioritizes the alignment of the
beginning of the log trace. In the algorithm, this difference with the classical
alignment algorithm appears in line 11 of Algorithm1, where the markings that
minimize the cost are much more different with the discounted cost function
than by using the classical cost function for alignments. Indeed, when costs are
all equivalent, many paths compete in the search for the optimal alignment.
However, with very different costs, the number of paths with similar costs is
low, thus reducing the search space.

Example 8. For the example of Fig. 1, there is a first choice between a and
b. For large θ, the decision is quickly given thus disabling testing the depth
of the other paths. For instance, with θ = 2, the log sequences of type
〈a, b, c〉, 〈a, b, τ, b, c〉, 〈a, b, τ, b, τ, b, c〉 won’t be explored because they cannot have
a better discounted cost.
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5.2 A Heuristic for Reducing the Search Space of the Algorithm

The search space of A∗SPD=θ is large and even larger than the Dijsktra-based
algorithm for alignments due to the incorporation of the lengths of the runs that
reach the same marking. To reduce it, we come back to the classical closed set
that contain the markings only. Every 〈m, |γ|〉 of the closed set A is reduced to
m (like in [6]).

With this reduction, only the first paths that reaches the marking are used.
When several concurrent firing sequences of equal cost exist, line 5 picks one as
the optimal path and line 8 classifies the marking in A. Then the other firing
sequences of equal cost for this marking are not considered anymore (line 10).

Example 9. For the marking m = {p4 : 1, pα2 : 1} of the synchronous product
given in Fig. 1c, two firing sequences compete for the minimization of the cost (in
case that silent transition costs). Indeed both γ = 〈(
, a), (
, b), (
, τ), (b, b)〉
and γ′ = 〈(
, a), (
, b), (b,
)〉 have a cost of θ−1 + θ−2 + θ−3 and reach the
marking m. Hence, when using markings only in the states, the algorithm picks
one of the sequence as the optimal one and adds m in the closed set. Later, it
does not consider the other firing sequence. However, we saw in Example 7 that
γ′ is better than γ by using the discounted cost function but it can go to the
hatch in the reduced version.

With this reduction of the search space, the modified algorithm is not guar-
anteed any more to return the optimal discounted alignments, but the gain in
runtime is extremely significant. Moreover, in practice, the loss of quality is very
limited: we observed that the alignments found by the modified algorithm have
very similar discounted cost than the optimal discounted alignments.

Process Model Exploration Along with Trace Exploration (Noted
A∗PTD=θ). In order to speed up the exploration, the alignment algorithm can
simulate the synchronous product without explicitly constructing it. The syn-
chronous product allows to easily play the moves of alignment. However, those
moves can be found by exploring the process model and the trace separately.
By comparing the next activity of the process model, given by the semantic of
the net, and the next activity of the trace, we obtain the type of move. For
instance, at the initialization, one possible next activity of N of Fig. 1a is b and
the first activity in σ is also b. Then, we can move forward with a synchronous
move, like in the synchronous product but without constructing the correspond-
ing transition of the move. Then the m in the algorithm (for the marking of the
synchronous product) is replaced by a pair 〈m, p〉 where m is the marking of the
process model and p the position in the trace. Any marking of A∗SPD=θ can be
given into a couple 〈m, p〉 for A∗PTD=θ. For instance, marking {p4 : 1, pα2 : 1}
of the synchronous product given in Fig. 1c corresponds to 〈{p4 : 1}, 1〉 where
{p4 : 1} is the marking in N and 1 the position in σ. The final marking becomes
〈mf , |σ|〉 where the trace has been read and the process model reaches its final
places.
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6 Experiments: Discounted Alignments as a Heuristic for
Approximating Classical Alignments

The algorithms presented in the previous section for computing alignment have
been implemented in a branch of pm4py1. In this section we present general
comparisons of quality and runtimes between them and existing methods, where
the runtime reflects the search space. We also stress the impact of the discounted
parameter by zooming on particular cases.

6.1 Comparison with Respect to Baselines

Inputs. We played the algorithms for both artificial and real-life logs and the
corresponding models. Artificial set is taken from [18] and contains large mod-
els. For real-life logs, we used data given in the Business Process Intelligence
Challenges from 2012 to 2020. We mined the process models of those logs with
methods of the literature2. First, we applied a preprocessing method introduced
by [8] to extract good prototypes of the logs3. This preprossessing step allows us
to obtain not perfectly fitting models when using miners, interesting for align-
ments comparison. In fact, the method aims at finding more precise models.
Then, we launched two different discovery algorithms on the found prototypes:
the inductive miner [11] and the split miner 2.0 [3]. As the latter tool gives
BPMN models, we use ProM plugins to transform them into Petri nets.

We computed the alignments on variants only, i.e., unique sequences of activ-
ities. This choice of using variants only allows to correctly compare the method’s
runtimes and prevents the situation where one method reduces the log to vari-
ants and not another one. Indeed alignment of log sequences of the same variant

Fig. 2. Input Description, where Σ is the alphabet of activities in the log, T the set
of transitions of the model, P the set of places of the model and F the flow relations
between the nodes in the model.

1 Currently available at https://github.com/BoltMaud/pm4py-core.
2 Available at https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-

Alignments-of-Business-Processes-Sources.
3 Prototype Selection plugin of ProM software with default settings.

https://github.com/BoltMaud/pm4py-core
https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-Alignments-of-Business-Processes-Sources
https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-Alignments-of-Business-Processes-Sources
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is equivalent but this optimization can be used for any algorithm. Figure 2 gives
an overview of the inputs.

Comparison. We compare our alignment results to the four current methods
of the state-of-the-art implemented in pm4py which are: – the Dijkstra search
on the Synchronous Product without heuristic (DSP ) [1], – a Disjkstra that
consumes less memory by using a similar idea of our second algorithm (DLM),
– an A*-based algorithm on the state-space of the synchronous product that
incorporates an heuristic on reaching the final marking (A∗SPmf ) [26] and –
its less-memory version (A∗LMmf ). To compare the runtimes, we exclude log-
based implementations and used the trace-based version to avoid the use of
the parallelism between variants that can be added to any version at the case
level. We recall notation of our methods A∗SPD=θ, for the version that uses the
synchronous product, and A∗PTD=θ, for the second one that explores only the
process model and the trace.

Results. The quality of an alignment found by a heuristic method, is defined
as the ratio (in %) between the classical cost (number of model or log moves) of
the optimal alignment (given by the DSP method) and the classical cost of the
alignment found by the method. In Fig. 3a we give the quality of each method.

Similarly, in Fig. 3b, each line shows the sum of the runtimes of alignment
computations by a method, expressed in percentage of the runtime of the DSP
method. The runtime reflects the space of search. The box charts have wide
range because they summarize the results of all the alignments which are very
different (depending on both the model and the log involved).

We see in Fig. 3b that the runtime of the DLM algorithm is 20% of the
runtime of the DSP method. For our heuristic A∗PTD = 2, the average runtime
is around 10% of the reference method DSP (which corresponds to a gain of 90%
of runtime, the result of a large reduction of the search space), for an average
quality between 90 and 85% of the optimal alignments.

We did not represent in the charts the runtimes for methods A∗SPmf and
A∗LMmf (implemented in pm4py) since they are much higher than the others:
A∗SPmf ran up to 30 times longer than the DSP and A∗LMmf up to 7 times
longer. We invite the reader to find the results and scripts on github4.

6.2 Influence of the Discount Parameter θ on the Quality and
Runtime

Figure 3a shows that the quality decreases when the parameter θ of the dis-
counted cost function raises. However the gain in term of search space is high
when θ > 1 (depicted in practice with a gain in runtime). The output of those
experiments is the correlation between the parameter θ and the compromise

4 Available at https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-
Alignments-of-Business-Processes-Sources.

https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-Alignments-of-Business-Processes-Sources
https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-Alignments-of-Business-Processes-Sources
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Fig. 3. Comparison of quality and runtimes of different methods.

between quality and runtime of alignments. For θ = 1, one gets exact align-
ments but runtimes are slow because the search space is large. For higher θ one
can extract very fast alignments but the quality is reduced. In practice, we rec-
ommend to try θ slightly higher than 1 and not larger than 2 (which is already
a very severe discount factor). Values around 1.1–1.5 should give good results.

On another hand, we want to raise awareness on the method A∗PTD = 1
which corresponds to optimal alignment without the construction of the syn-
chronous product. The method gives exact alignments for reduced runtimes
because it disables the construction of the synchronous product. Method DLM
also does not construct the synchronous product but we see in Fig. 3a that there
is a lost of quality.

Additive Comparisons. The omission of ProM and other tool results in the
previous section is due to the differences between the output formats which made
difficult the comparison of quality and runtimes. However, in this section we
zoom in particular cases, i.e., by running a log sequence only, thus making human
interpretation possible. We add PNR the results given by the PNetReplayer
package of [2] in ProM and RECilp the results given by [19].
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Fig. 4. Particular alignments that draws advantages and disadvantages of our methods.

Specific Inputs. We choose 3 models and traces that have particular charac-
teristics. First, we run the alignment between the first trace of BPI2020rp log
and model IM because this couple (BPI2020rp, IM) gives the least differences
between the methods (Fig. 4a). The model has only 2 parallelism patterns and
no loop. Then, we run the alignment of the first trace of L5 and model M5 where
our method specifically works well (Fig. 4b). This model contains a concurrent
pattern including 28 transitions and one loop. Finally we present an alignment
of the fifth trace of L3 which is very long (215 activities) and its model which has
many loops and many parallelism patterns (Fig. 4c). The latter aims at showing
the weakness of our method.

Results. From the three tables of Fig. 4, we observe that the methods usually
find exact alignments. This is not true for the last experiment given in Fig. 4c
which highlights our weakness. This due to the size of the trace (215) that,
for the high base of logarithm θ, the algorithms face a situation where all the
markings have the same cost (θn where n is very large borders zero). At this
point, we already advise the user to check the length of the traces to set the
discounted parameter θ (or to tackle very small differences between costs with
an implementation where more decimal are allowed).

Observe now that for Fig. 4a and b using high value of θ brings very fast
result for nearly optimal alignment in Fig. 4a and optimal alignment in Fig. 4b.
Moreover, this latter result even beats all the other methods including the ProM
implementation (noted PNR). The particularity of model M5 is the large con-
currency pattern that creates many paths of different behaviors. Most methods
have to explore the different combinations created by the concurrency pattern.
Our discounted function favors only the path that align at the beginning of this
pattern and does not consider the other combinations of the activities.
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The versions using less memory seem to be much less efficient sometimes even
for less quality (see DLM for M3). The method RECilp worked only for the
second model. M3 is too large for the Gurobi open source version and format of
model 2020rp is not accepted by the tool.

Comparison with the Token Replay Approach. Last but not least we give
a comparison of runtimes between our algorithms for computing alignment and
the token replay approach given in [4] because it also computes an approximation
of conformance (more precisely fitness) of process models for a given log. For
those experiments, we set our method with θ = 2. We observe in Table 1 that
our second algorithm gives faster results in most times. The token replay is
however much faster for BPI2018pa. We plan to compare fitness approximation
in future works.

Table 1. Runtime Comparison (in seconds) between the Algorithms for computing
Discounted Alignments and the Token Replay Method given in [4] run on a un on a
MacBook air 2017 model with a 1.8 GHz Intel R© CoreTM i5 CPU and 8 GB RAM.

Method BPI2012 BPI2018pa BPI2019 BPI2020dd BPI2020rp

IM SM IM SM IM SM IM SM IM SM

A∗SP 78.18 69.39 493.96 43.92 143.25 103.99 0.43 0.23 1.08 0.24

A∗PT 25.03 19.71 419.37 11.15 42.14 26.61 0.14 0.09 0.70 0.09

Token replay 35.41 36.86 36.11 31.01 45.99 49.40 0.20 0.19 0.22 0.18

7 Conclusion

In this paper, we present a novel cost function for alignments. By using the posi-
tion of the moves, our discounted cost function penalizes deviations of business
processes that appear at early stage of the process execution. While the first
aim is to align prefixes first, we nicely see that the proposed discounted cost
function gives a heuristic for classical alignments. We implemented two versions
of an A*-based algorithm that incorporate this heuristic and we experimented
with artificial and real-life logs. The outputs of the experiments clearly show
that the lost of quality, in term of log and model moves, is correlated to the gain
of runtime, the result of the reduction of the search space. This is due to the
parameter θ of our discounted cost function that forces prefix-first alignments.
The compromise between quality and runtime can easily be set by using this
parameter.

As future work, we suggest to combine the discounted cost function with
other heuristics used for alignments. Also, the idea of using a discounted cost
for alignments may be more or less relevant depending on the application that
one is targeting. Among the multiple applications of alignments in conformance
checking, some may be more or less resilient to the little loss of quality that we
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accept when using heuristics. In some settings, even, the alignments obtained
for our discounted cost function may be more relevant than classical alignments,
typically when the application justifies to penalize early deviations more than
late ones.

Another interesting research line would be to use a machine learning approach
(like it was done in [17] for the case of predicting the best process discovery
technique), for learning the best parameter setting (mainly, the θ value used for
discounting) as a previous step to our alignment technique.
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