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Abstract. Alignments are a conformance checking strategy quantifying
the amount of deviations of a trace with respect to a process model,
as well as providing optimal repairs for making the trace conformant
to the process model. Data-aware alignment strategies are also gaining
momentum, as they provide richer descriptions for deviance detection.
Nonetheless, no technique is currently able to provide trace repair solu-
tions in the context of data-aware declarative process models: current
approaches either focus on procedural models, or numerically quantify
the deviance with no proposed repair strategy. After discussing our work-
ing hypotheses, we demonstrate how such a problem can be reduced to
a data-agnostic trace alignment problem, while ensuring the correctness
of its solution. Finally, we show how to find such a solution leveraging
Automated Planning techniques in Artificial Intelligence. Specifically,
we discuss how to align traces with data-aware declarative models by
adding/deleting events in the trace or by changing the attribute values
attached to them.

Keywords: Conformance checking · Alignments · Data-aware
declarative models · Multi-perspective process mining · Automated
planning

1 Introduction

Conformance checking is a branch of process mining assessing whether a
sequence of distinguishable events (i.e., a trace) conforms to the expected process
behavior represented as a process model [21]. When a trace does not conform to
the model, we say that the trace is deviant. In this case, techniques based on
cost-driven alignments additionally provide minimal repair strategies to make the
trace conformant to the model [2]. Alignments represent a valuable instrument
for business analysts, as the combined provision of alternative repair strategies,
ranked by alignment cost, supports the business analyst in choosing among dif-
ferent process improvement strategies. In conformance checking, models can be
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described by either procedural or declarative languages; while the former fully
enumerate the set of all the possible allowed traces, the latter list the constraints
delimiting the expected behavior. Declarative process models like Declare mod-
els [19], whose semantics can be expressed in Linear Time Logic on finite traces
(LTLf ) [9], can always be transformed into constraint automata. The represen-
tation of Declare models as automata can be adopted for aligning traces with
this type of models [8,13].

Multi-perspective checking for process conformance is gaining momentum, as
conformance checking techniques considering both control flow and data annota-
tions as “first-class citizens” enable to discover more deviations [16]. This reflects
the essence of real-world business processes inherently, described by both pro-
cesses and their different domain objects [20] (e.g., employees, products, etc.),
which can be encoded as traces and event data. While alignment-based data-
aware conformance has been already investigated in the context of procedural
models, most of the conformance checking approaches for data-aware declarative
models [7] focus on a numerical approximation of the degree of conformance of
a trace against the model and do not provide repair strategies.

To tackle this research gap, we propose a novel approach for aligning event logs
and data-aware declarative models based on the reduction of this problem into a
data-agnostic alignment problem. This solution exploits the following considera-
tions: a) to represent the process model, we use a sub-set of the data-aware exten-
sion of Declare presented in [7]. After representing the data-aware Declare model
using a data-agnostic LTLf semantics, b) we exploit the data predicates in the
data-aware Declare clauses to partition the data space. This provides propositions
representing data in addition to event labels. Then, c) we combine each event label
with the propositions generated in b) and transform the model in a) into its data-
aware counterpart. The automata-based representation of such a model is used to
align traces (seen as sequences of events with a payload of data attribute-value
pairs) with the model. In particular, we show that the alignment problem can be
expressed as a planning problem in Artificial Intelligence, which can be efficiently
solved by selected state-of-the-art planners [8,17].

Despite the resulting data-agnostic alignment via planning is semantically
equivalent to customary cost-based aligners [2], our previous work [8] showed
that the former outperforms the latter in terms of computational performance
and scalability in the presence of models of considerable size, which is the case
of this paper. In fact, as a consequence of the reduction of the data-aware align-
ment problem into a data-agnostic one, the automata-based process models used
as input for our approach have several more transitions and states than in tradi-
tional alignment problems. Therefore, as we needed to show the feasibility of our
approach, we decided to resort to planning-based alignments for both present-
ing our framework outline and performing the experiments. Planners generate
repair strategies able to align traces and a data-aware declarative model based
on changes at the level of control flow (such as adding/deleting events) or at the
level of the data flow (such as changing the attribute values attached to them).

The rest of the paper is structured as follows: after providing relevant related
work (Sect. 2), we introduce the notion of event log (Sect. 3.1) and the data-aware
declarative language used to represent the model (Sect. 3.2); we also provide hints
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on Automated Planning, as we will later exploit the SymBA*-2 optimal plan-
ner [24] to compute the alignments (Sect. 3.3). These preliminary notions guide
us into the definition of our working assumptions adhering to the literature
of reference (Sect. 4). After deep-diving into the technical details providing the
solution to the data-aware declarative alignment problem (Sect. 5), we bench-
mark SymBA*-2 over a synthetic dataset and discuss its performance in this
context (Sect. 6). Last, we draw our final conclusions and propose some future
work (Sect. 7).

2 Related Work

Most of the conformance checking techniques reported in the scientific liter-
ature are based on procedural models. In [2], for the first time, the authors
introduce conformance checking augmented with the notion of alignments. A
multi-perspective alignment-based approach has been presented in [16], where
the authors propose techniques for conformance checking with respect to data-
aware procedural models. This work combines the A* algorithm for alignment-
based control-flow conformance checking with Integer Linear Programming for
data conformance checking.1

The work described in [13] presents a (data-agnostic) conformance checking
approach based on the concept of alignment for declarative models. It converts
a Declare model into an automaton and performs conformance checking of a log
with respect to the generated automaton. As a result of the analysis each trace
in the log is converted into the most similar trace that the model accepts. This
approach is similar to the procedural one presented in [16]. Our first attempt
was, therefore, to extend this data-aware procedural approach to the declara-
tive case. However, procedural models allow for a divide-and-conquer approach
where, when searching the alignment space for the optimal alignment compu-
tation, the contribution of the control flow and of the data can be separately
analyzed at first, then combining the obtained results. This is, in general, pos-
sible since removing data conditions from a procedural model leads to a more
relaxed resulting model. The situation is completely different for declarative
models, since removing data conditions from negative constraints could make
them stronger, restricting the number of traces that the model accepts. There-
fore, it is not possible to search in the space of traces that the model accepts
constructed by only considering the control-flow, and then refine the search con-
sidering the contribution of data.

More recently, in [6], the authors have presented an approach where the
data perspective for conformance checking with Declare is expressed in terms
of conditions on global process variables disconnected from the specific Declare
constraints expressing the control flow. In other words, data constraints are not
bound to control flow constraints and thus it is not possible to bind the con-
trol flow behavior to specific data attributes. The only truly multi-perspective
1 Note that, by design, Integer Linear Programming is not suitable to support the

lexicographic order of strings, which is instead supported by our approach.
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approach based on declarative models is the one presented in [7], in which the
authors present an algorithmic framework to efficiently check the conformance
of data-aware Declare constraints with respect to event logs. This approach
numerically characterizes the degree of conformance of a log trace against the
model without, however, providing repair strategies to the user. To go beyond
the numerical evaluation of the conformance and build an alignment of a deviant
trace, a boolean answer to the constraint-satisfaction problem is not sufficient
since we need to solve an optimization problem with respect to a specific cost
function. Therefore, in the current paper, Automated Planning has been chosen
as a technique to formalize this optimization problem and translate it into an
operational framework.

3 Preliminary Definitions

3.1 Event Logs

(Data) payloads are finite functions p ∈ V K , where K is a finite set of keys and
V is a (finite) set of data values. We consider also the case in which the value of
a certain key k is missing in a payload. In particular, we denote as ε an element
ε /∈ V , such that p(k) = ε for k /∈ dom(p). Given a finite set of activity labels
Act, an event σj is a pair 〈A, p〉, where A ∈ Act is an activity label, and p is a
payload; we denote with λ (and ς) the first (and second) projection of such pair,
i.e., λ(σj) = A (and ς(σj) = p). A trace σ is a temporally-ordered and finite
sequence of distinct events σ1 · · · σn, modeling a process run. We distinguish
the trace keys (Kt) from the event keys (Ke), such that K = Kt ∪ Ke with
Kt ∩ Ke = ∅: all events within the same trace associate the same values to the
same trace keys, i.e., ∀ 〈Ai, pi〉 , 〈Aj , pj〉 ∈ σ. ∀k ∈ Kt. pi(k) = pj(k). A log L is
a finite set of traces. This characterization is compliant with the eXtensible
Event Stream (XES) format, which is the de facto standard for representing
event logs within the Business Process Management community [1].

3.2 Data-Aware Declare

Declare is a declarative process modeling language [19]. A Declare model M
is described as a set of constraints { c1, . . . , cm } that must be simultaneously
satisfied throughout a process execution. Such constraints express either positive
(or negative) dependencies between two events having labels in Act, or quantify
the occurrence of an event. In the first case, one of the two clause labels is called
activation, and the other target ; while testing a trace σ for conformance over this
clause, the presence of the activation label in σ triggers the clause verification,
requiring the (non-)execution of an event containing the target label in the same
trace.

Declare has been extended to include conditions over data in the Declare
constraints [7]. In this paper, we will consider two types of data predicates φd

(conditions) decorating activations (i.e., activation conditions) and targets (i.e.,
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Table 1. Semantics for MP-Declare constraints in LTLf .

Template LTLf semantics

Existence � → F(A∧φd) ∨ O(A∧φd))

Responded existence G((A∧φd) → (O(B∧φd) ∨ F(B∧φd)))

Response G((A∧φd) → F(B∧φd))

Alternate response G((A∧φd) → X(¬(A∧φd)U(B∧φd))

Chain response G((A∧φd) → X(B∧φd))

Precedence G((B∧φd) → O(A∧φd))

Alternate precedence G((B∧φd) → Y(¬(B∧φd)S(A∧φd))

Chain precedence G((B∧φd) → Y(A∧φd))

Not responded existence G((A∧φd) → ¬(O(B∧φd) ∨ F(B∧φd)))

Not response G((A∧φd) → ¬F(B∧φd))

Not precedence G((B∧φd) → ¬O(A∧φd))

Not chain response G((A∧φd) → ¬X(B∧φd))

Not chain precedence G((B∧φd) → ¬Y(A∧φd))

target conditions), respectively. While activation conditions must be valid when
an event exhibiting the activation label occurs, target conditions impose value
limitations on the payload of events containing the target label.

We use atom A as a shorthand for λ(σi) = A, for each A ∈ Act, given an event
σi to be assessed, while φd is a propositional formula containing as atoms either
the universal truth (	), or the falsehood (⊥), or a binary relation “A.k � c”,
where c is a constant value representing either a number or a string, � is either an
equality or a precedence/subsequent relation over values in V or their negation,
and k ∈ K acts as a placeholder for ς(σi)(k), where ς(σi) is the payload associ-
ated to event σi and k is associated to a value σ(σi)(k). E.g., “RP.quality ≤ 3”
is formally represented as ς(σi)(k) ≤ 3 for key k = quality and for any event σi

having λ(σi) = RP. This is a widely adopted assumption, that spans from data-
aware procedural models [16] to data-aware declarative models [7]. Furthermore,
this assumption can also be adapted to categorical data, as strings are ordered
via lexicographical orderings over the single characters. We denote the compound
conditions, namely the conjunction of label requirements and data conditions,
as ψ = A ∧ φd.

The semantics of the Declare constraints we consider here is represented
in Table 1. Here, the F, X, G, and U LTLf future operators have the following
meanings: formula Fψ1 means that ψ1 holds sometime in the future, Xψ1 means
that ψ1 holds in the next position, Gψ1 says that ψ1 holds forever in the future,
and, lastly, ψ1Uψ2 means that sometime in the future ψ2 will hold and until that
moment ψ1 holds (with ψ1 and ψ2 LTLf formulas). The O, Y and S LTLf past
operators have the following meaning: Oψ1 means that ψ1 holds sometime in
the past, Yψ1 means that ψ1 holds in the previous position, and ψ1Sψ2 means
that ψ2 has held sometime in the past and since that moment ψ1 holds.
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Fig. 1. Representation of the LTLf formula G(¬C∨(F(p4∨p5∨p6∨p7∨p8∨p9)))∧Fp8

as a constraint automaton [25], where Σ contains all the non-⊥ and non-� atoms.

3.3 Automated Planning

Planning systems are an Artificial Intelligence technology showing how to reach
a prefixed goal configuration given an initial world: the goal is met by exploiting
a set of actions that change the initial world to reach the goal configuration [11].
PDDL is the standard Planning Domain Definition Language [10] that can be
used to formulate such problems as P = (I,G,PD), where I is the description
of the initial world, G is the goal configuration, and PD is the planning domain.
The domain is built upon a set of propositions describing the state of the world
(i.e., the set of valid propositions) and a set of actions Ω that can be performed
to reach the goal configuration. An action schema a ∈ Ω has the form a =
〈Para,Prea,Effa〉, where Para is the list of the input parameters for a, Prea

defines the preconditions under which a can be performed, and Effa specifies the
effects of the action on the current world. Both Prea and Effa are represented
as propositions in PD via boolean predicates and numeric fluents.

Recently, the planning community has developed several planners implement-
ing scalable search heuristics, which enable the solution of challenging prob-
lems in several Computer Science domains [17]. Walking in the footsteps of [8],
we focus on planning techniques characterized by fully observable and static
domains providing a perfect world description. In these scenarios, a sequence
of actions whose execution transforms the initial state into a state satisfying
the goal is the desired solution. In order to represent numeric alignment costs,
we exploit the former formalization enhanced with the numeric features pro-
vided by PDDL 2.1 [10], thus keeping track of the costs of planning actions and
synthesizing plans satisfying pre-specified metrics.

4 Working Assumptions

In this section, we outline some working assumptions that can be inferred from
the literature of reference. First, we assume that a) compliance requirements
of Declare models can be expressed in a formal language such as Linear Time
Logic on Finite Traces (LTLf ) [9], as business process logs contain only traces of
finite length; b) we restrict the possible log trace repairs to the traces generated
by the automaton representation of the Declare model [8]; c) differently from
[15,16], we can avoid to model reading and writing operations, as the entirety of
our analysis will be conducted once traces reach their completion; d) last, each
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event in a trace must be represented by one single proposition: similarly to the
non-data aware scenario [8], each event is associated with just one label.2 As
we will see in the incoming section, the latter consideration will require us to
partition the possible data space into distinct atoms.

Given an appropriately chosen set Σ of atoms, it is always possible to repre-
sent a trace σ = σ1 · · · σn as a finite sequence tσ = t1 · · · tn, where, for 1 ≤ i ≤ n,
ti is a unique atom ti ∈ Σ such that σi � ti [8]. Contextually, any LTLf formula
ϕM representing a Declare model M can be represented as a deterministic finite-
state automaton (DFA) AϕM [12] accepting all the sequences tσ from traces σ
satisfying ϕM (see Fig. 1) [25]. A DFA (Σ,Q, q0, ρ, F ) is defined over a finite set
of states Q reading as input symbols from a finite alphabet Σ that are consumed
by traversing the automaton from a starting state q0 ∈ Q via a transition func-
tion ρ : Q × Σ → Q; the input sequence is accepted once the input sequence is
completely digested and an accepting state in F ⊆ Q is reached through nav-
igation. Since in the non data-aware Declare scenario the atoms within LTLf

could be either 	, or ⊥, or ψ = A, Σ corresponds to the activity set Act, as each
event is associated to one single label. For data-aware Declare we will extend Σ
to take into consideration propositional formulas representing data conditions.

We also want to show that our conceptual framework can be translated into
an operational framework by taking existing solid techniques and extending them
appropriately. Therefore, after reducing the data-aware alignment problem into
a data-agnostic one, we choose to operationalize it using Automated Planning, as
our previous work [8] already showed that such a strategy outperforms customary
cost-based trace aligners in terms of computational performance and scalability.

Last, we freely assume that all the events having the same label will always
contain the same set of keys, with possibly differently associated values. This
is a common assumption in the relational database field, where all the rows
belonging to the same table contain the same number of values.

5 Data-Aware Declarative Conformance Checking
as Planning

In this section, we study the problem of aligning log traces σ ∈ L and a (data-
aware) Declare model M for data-aware declarative conformance checking: to do
so, we firstly reduce such a problem to a mere automaton sequence acceptation
task via a specific set of atoms Σ (Cf. Sect. 4) generated from the compound
atoms in M: the finite sequence tσ generated from the log trace σ is accepted
by the automaton AϕM iff. σ is conformant to the model M (Sect. 5.1). Next,
we code tσ and AϕM as specific automata (Sect. 5.2) that are exploited by a
planner to generate the minimally repaired sequence t̂σ (Sect. 5.3), out of which
we generate the minimally repaired trace σ̂ which is conformant to M (Sect. 5.4).

2 To allow multiple labels as customary of big-data scenarios [5], we could simulate
such a situation by choosing only the most relevant label as the actual label and
using other fields in the payload to hold the remaining ones.
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Table 2. Intermediate steps for generating distinct atoms for B labeled events by
partitioning the data space via intervals in Declare clauses.

µ(B, x) µ(B, y)

B.x > 3 B.x > 3 B.y = 0 0 ≤ B.y ≤ 0
B.x > 0 0 < B.x ≤ 3, B.x > 3 B.y �= 0 B.y < 0 ∨ B.y > 0
B.x ≤ 0 B.x ≤ 0

(a) Interval decomposition in µ(·, ·)

B B.y < 0 B.y = 0 B.y > 0

B.x ≤ 0 p1 p2 p3
0 < B.x ≤ 3 p4 p5 p6
B.x > 3 p7 p8 p9

(b) Atom generation for B by data space partitioning
via ×k∈ µ(B, k)

5.1 Σ-encoding for Conformance Checking

As per the previous considerations, we want to show that, to solve the trace
alignment problem for data-aware declarative conformance checking, it is suffi-
cient to provide a specific characterization of Σ. Σ will be used to generate an
automaton accepting symbols in Σ and the automaton will be used to test log
traces represented as finite sequences in Σ∗. The proposed approach for obtain-
ing Σ from a (data-aware) Declare model M is sketched in Fig. 2, and described
in detail in the following.

Fig. 2. Intermediate steps required for obtaining Σ from M and transforming L into
a set of finite sequences T , as well as replacing atoms in ϕd

M with equivalent atoms in
Σ (ϕ′

M).

In the first Declare2LTLf step, we exploit the usual conversion of each single
Declare clause into an LTLf formula (see Table 1) in the negated normal form
[14], where negations are possibly pushed inside atoms “A.k � c” by replacing �
with its negation.

Example 1. The Declare model M containing clauses Response(C, B, B.x > 0)
and Existence(B, B.x > 3 ∧ B.y = 0) is represented as the intermediate LTLf

formula ϕM = G(¬C ∨ F(B ∧ B.x > 0)) ∧ F(B ∧ B.x > 3 ∧ B.y = 0).
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In the second decomposition step, for each compound condition ψ = A ∧ φd

over labels A ∈ Act, we collect all the atoms in φd in the form “A.k � c” for
each k ∈ K in a map μ(A, k). Contextually, we represent atoms as intervals, and
we decompose them into a disjunction of maximal non-overlapping data-aware
predicates. This task can be efficiently computed via interval trees [4]. Last, we
replace the atoms in each LTLf formula by its decomposed representation.

Example 1 (continued). Table 2a shows the interval decomposition results for
the conditions ψ extracted from M. E.g., predicates B.x > 3 and B.x > 0 are first
represented as intervals (3,+∞) and (0,+∞), and then decomposed into disjoint
sub-intervals (−∞,0], (0,3], and (3, + ∞). As a result, ϕM is decomposed into
ϕd

M = G(¬C ∨ F(B ∧ B.x > 0)) ∧ F(B ∧ (0 < B.x ≤ 3 ∨ B.x > 3) ∧ B.y = 0).
In the third atomization step, we put an atom A ∈ Act in Σ if the map μ(A, k)

is empty for each key k ∈ K; otherwise, given all the keys kA1 , . . . , kAh ∈ K for
which the map μ(A, kAi) is not empty, we partition the data space by combining
the non-overlapping intervals obtained from the previous step as μ(A, kA1)×· · ·×
μ(A, kAh). For each of these interval combinations, we generate a fresh atom and
put it in Σ.

Example 1 (continued). Label C is never associated to a data condition, and
therefore it will be associated to one single atom C. On the other hand, label
B is associated to several atoms obtained by partitioning the data space via
the intervals in Table 2a. Table 2b shows the atom decomposition of B via data
intervals over keys x and y, which induce a space partitioning of 9 intervals,
for which we generate nine distinct atoms p1 . . . p9. As a result, we obtain
Σ = { pi | 1 ≤ i ≤ 9 } ∪ { C } in Fig. 2.

Starting from these atoms, we firstly replace the compound conditions in ϕd
M

with a disjunction of atoms from Σ as described in Table 2b, thus obtaining an
equivalent LTLf formula ϕ′

M. Secondly, we generate a finite sequence tσ ∈ T for
each log trace σ ∈ L by replacing each event σi in σ with the only atom ti ∈ Σ
such that σi � ti.

Example 1 (continued). With reference to our running example, we replace
the compound conditions in ϕd

M with the previously generated atoms; the com-
pound cond ition B ∧ B.x > 0 is replaced by all the possible configurations of y
and data intervals 0 < B.x ≤ 3 and B.x > 3, which are identified by the disjunc-
tion p4 ∨ p5 ∨ p6 ∨ p7 ∨ p8 ∨ p9. On the other hand, B ∧ B.x > 3 ∧ B.y = 0
can be directly replaced by atom p8: this results into an equivalent formula
ϕ′

M = G(¬C ∨ (F(p4 ∨ p5 ∨ p6 ∨ p7 ∨ p8 ∨ p9))) ∧ Fp8. Given a log L =
{B{x = 1,y = 0}C{x = 6}C{x = 4}, C{x = 8}B{x = 10,y = 0}}, all the events labeled
as C are replaced with atom C, as there are no (data) conditions related to C

in M that we can exploit to partition the data space. On the other hand, each
event labeled as B is replaced by an equivalent atom in Σ: event B{x = 1,y = 0} is
uniquely represented by p5, while event B{x = 10,y = 0} is uniquely represented by
p8. This transformation results into a set of string sequences T = {p5CC, Cp8}.

After generating ϕ′
M, we can exploit existing approaches [25] to generate a

DFA that only accepts sequences satisfying ϕ′
M. With reference to the previous

example, the first trace is not conformant to M, since the first sequence is not
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accepted by the associated automaton. Instead, the second trace is conformant
to M, since the second sequence is accepted by the associated DFA. In the
forthcoming subsection, we will discuss how to generate repaired sequences that
are accepted by the reference model.

5.2 Automaton Manipulation for Trace Alignment

Consider a sequence tσ = t1 · · · tn generated from a trace σ, and the constraint
automaton AϕM generated from the Declare model M. If the trace is deviant
with respect to the model, we are interested in generating a repair sequence
� = �1 · · · �m from tσ describing the operations to perform over σ to make
it conformant to M. To realize this transformation, we consider two types of
atomic violations, which can be caused by wrong (deletion) or missing (insertion)
atoms in Σ. Differently from the non-data aware case [8], we also need to model
replacement operations, defined as a data update within one single trace event:
these operations can be mimicked by a delete operation followed by an insertion,
as they substitute an event within a trace with the same event where a data value
has been updated. The above operations, that will be later on encoded as PDDL
actions, can be defined as follows:

– deletion/del [#σk ← φ] :: = σ1 · · · σk−1σk+1 · · · σn, for n = |σ|, 1 ≤ k ≤ n,
and φ = σk

– insertion/ins [@σk ← φ] :: = σ1 · · · σk−1φσk · · · σn, for n = |σ| and 1 ≤ k ≤ n
– replacement/repl [σk[φ �→ φ′]] :: = σ1 · · · σk−1φ

′σk+1 · · · σn, for n = |σ|,
1 ≤ k ≤ n, and φ = σk

Similarly to customary cost-based trace aligners, each of these operations has an
associated cost, either quantifying the severity of the found violation or deter-
mining which operations shall be preferred. E.g., by assigning a higher cost to
insertions and deletions and a lower one to replacements, we will favor replace-
ments when possible. The alignment cost is defined as the number of deletions
multiplied by their cost, plus the number of insertions multiplied by their cost,
plus the number of replacements multiplied by their cost. We can now define the
conformance checking problem as follows:

Definition 1 (Log/Declare Conformance Checking). Given a trace σ and
a Declare model M, checking the conformance of σ against M is the task of
verifying whether σ conforms to M, or σ is deviant and there exists a repair
sequence � making σ non-deviant for M and guaranteeing a minimal transfor-
mation cost.

The process of generating a repair sequence can be addressed by resorting
to DFAs (Sect. 4). Let tσ = t1 · · · tn be a string sequence generated from a log
trace σ via Σ, AϕM = (Σ,Q, q0, ρ, F ) the constraint automaton to check tσ
against. From tσ, we define a further automaton, called the trace automaton
T = (Σt, Qt, q

t
0, ρt, Ft) having a) Σt = { ti | ti ∈ tσ }, b) Qt = { qt

0, · · · , qt
n } as

a set of |tσ| + 1 states, c) ρ(qt
i , ei+1) = qt

i+1 for 0 ≤ i ≤ n − 1, and d) Ft = qt
n.

By definition, such a graph accepts only tσ.
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Fig. 3. Augmented trace automaton T + for tσ = p5CC.

Fig. 4. Augmented constraint automaton A+
ϕM for AϕM .

Next, we augment T and AϕM by adding transitions related to the atomic
operations of insertions and deletions. Thus, from T we generate the automaton
T + = (Σ+

t , Qt, q
t
0, ρ

+
t , Ft) having:

– Σ+
t extending Σt ⊆ Σ by adding an insertion ins φ for each atom φ ∈ Σt ∪Σ

and a deletion del φ for each atom φ ∈ Σt.
– ρ+t extending ρt by adding deletions ρ+t (p, del φ) = q for each transition

ρt(p, φ) = q, and insertions ρ+t (q, ins φ) = q for all atoms φ ∈ Σ ∪ Σt and
states q ∈ Qt.

Figure 3 shows the trace automaton generated from the deviant trace σ =
B{x=1,y=0}C{x=6}C{x=4} from Example 1. Similarly, from AϕM , we obtain
A+

ϕM = (Σ+, Q, q0, ρ
+, F ) having:

– Σ+ extending Σ by adding an insertion ins φ for each atom φ ∈ Σ and a
deletion del φ for each atom φ ∈ Σ ∪ Σt.

– ρ+ extending ρt by adding insertions ρ+(p, ins φ) = q for each transition
ρ(p, φ) = q and deletions ρ+t (q, del φ) = q for all atoms φ ∈ Σ ∪Σt and states
q ∈ Q.

Figure 4 shows the automaton augmented with the repair operations A+
ϕM

obtained for the model M from Example 1. This automaton does not accept
tσ = p5CC. In this case, one alignment strategy adds p8 at the end of the trace;
by explicitly marking such a repair with ins p8, both augmented automata now
accept t̂σ = p5CCins p8.

Next, we show how planners can efficiently identify the repair operations �
needed to repair the trace σ using the augmented automata just defined.
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5.3 Encoding in PDDL

In this section, we show how, given an augmented constraint automaton A+
ϕM

obtained from an LTLf formula ϕM, and an augmented trace automaton T +

obtained from a trace t, we build a cost-optimal planning domain PD and a
problem instance P in PDDL. PD and P can be used to feed any state-of-
the-art planners accepting PDDL 2.1 specifications, as discussed in Sect. 3.3. A
solution plan for P amounts to the set of interventions of minimal cost to repair
the trace with respect to ϕ′

M, and generates a repair sequence � that is going to
be exploited in the forthcoming subsection for finally repairing the trace.

Planning Domain. In PD, we provide two abstract types: activity and state.
The first captures the activities involved in a transition between two different
states of a constraint/trace automaton. The second is used to uniquely identify
the states of the constraint automaton (through the sub-type automaton state)
and of the trace automaton (through the sub-type trace state). To capture the
structure of the automaton and to monitor its evolution, we defined five domain
propositions as boolean predicates in PD:

– (trace ?t1 - trace state ?e - activity ?t2 - trace state) holds if there
exists a transition in the trace automaton between two states t1 and t2,
being e the activity involved in the transition.

– (automaton ?s1 - automaton state ?e - activity ?s2 - automaton state)

holds if there exists a transition between two states s1 to s2 of a constraint
automaton, being e the activity involved in the transition.

– (atoms ?e1 - activity ?e2 - activity) holds if e1 and e2 are two atoms in
Σ associated to a same activity label.

– (cur state ?s - state) holds if s is the current state of a constraint/trace
automaton.

– (final state ?s - state) holds if s is a final state of a constraint/trace
automaton.

It is worth to notice that, if a generic activity A is associated to some data
condition, A will be represented as a set of atoms p1, p2, p3, etc. in PD, see
for example Table 2b. This means that, for any combination of atoms pi - pj

associated to A, there will exist an instance of the predicate (atoms) that will
hold for pi and pj . Furthermore, we define a numeric fluent total-cost to keep
track of the cost of the violations. Notice that: (i) in PDDL, parameters are
written with a question mark character ‘?’ in front, and the dash character ‘-’
is used to assign types to parameters; and (ii) we remain consistent with the
PDDL syntax, which allows the values of both predicates and fluents to change
as a result of the execution of an action.

Planning actions are used to express the repairs on the original trace t. In our
encoding, we have defined four actions to perform synchronous moves both in
the trace/constraint automaton, or to add/remove/replace activities to/from/in
the constraint and trace automata. In the following, we suppose that actions
ins, del and repl have cost equal to 1. However, their cost can be customized
to define the severity of a violation or to force priorities among actions.
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We modeled sync and del in such a way that they can be applied only if there
exists a transition from the current state t1 of the trace automaton to a sub-
sequent state t2, being e the activity involved in the transition. Notice that,
while del [#t1 ← e] yields a single move in the trace automaton, sync yields, in
addition, one move on the constraint automaton, to be performed synchronously.
In particular, a synchronous move is performed in the constraint automaton if
there exists a transition involving activity e connecting s1 – the current state of
the automaton – to a state s2. Then, ins [@t1 ← e] is performed only for tran-
sitions involving activity e connecting two states of the constraint automaton,
with the current state of the trace automaton that remains the same after the
execution of the action. Finally, repl [t1[e1 �→ e2]] can be seen as a synchronous
combination of a del and an ins. It yields one move on the trace automaton and
one on the constraint automaton, involving two atoms e1 and e2 associated to
a same activity label, i.e., such that the predicate (atoms ?e1 ?e2) holds.

Planning Problem. In P, we first define a finite set of constants required to
properly ground all the domain propositions defined in PD. In our case, constants
correspond to the state and activity instances involved in the trace/constraint
automaton. Secondly, we define the initial state of P to capture the exact
structure of the trace/constraint automaton. This includes the specification of
all the existing transitions that connect two states of the automaton, and the
definition of all the pairs of atoms belonging to a same activity label. The cur-
rent state and the final states of the trace/constraint automaton are identified
as well. Thirdly, to encode the goal condition, we first pre-process the constraint
automaton by: (i) adding a new dummy state with no outgoing transitions; (ii)
adding a new special action, executable only in the final states of the original
automaton, which makes the automaton move to the dummy state; and (iii)
including in the set of final states only the dummy state. Then, we define the
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goal condition as the conjunction of the final states of the trace automaton and
of the constraint automaton. In this way, we avoid using disjunctions in goal
formulas, which are not supported by all planners. Finally, as our purpose is
to minimize the total cost of the plan, P contains the following specification:
(:metric minimize (total-cost)). As the goal requires that in both augmented
automata an accepting state is reached, the actions will encode the strategies to
successfully visit both automata via their transition functions, while assigning
different alignment costs to each of the strategies. When the goal is reached,
the resulting action sequence (where syncs are stripped) represent the repair
sequence � that we are going to exploit in the next section.

5.4 Trace Repair

Last, we need to leverage the repair actions generated by the planner to repair
the entire trace so to make it conformant to the model as a whole. In partic-
ular, the generated repair actions are always ordered based on their positions
within the trace. By removing all the sync actions provided by the planner,
we will obtain a sequence of insertions [@t1 ← e], deletions [#t1 ← e], and
replacements [t1[e1 �→ e2]] for a trace σ via its associated tσ. While dele-
tions [#t1 ← e] can be trivially implemented in the data-aware scenario by
simply removing the problematical event, for insertions (or replacements), we
need to add events with their associated payloads (or adapt the contained data
values). Replacements [t1[e1 �→ e2]] can be implemented by replacing the val-
ues in t1 violating the data condition e2 with the nearest values satisfying e2.
On the other hand, insertions require to generate totally new values: the inser-
tion [@t1 ← e] of a new event t1 satisfying e can be modeled by generating
a new event having the label induced by e, which is then instantiated with
the same data values present in the last occurrence of an event equally labeled
if any, and instantiated with default values otherwise; then, such values are
repaired by choosing the nearest values satisfying e. E.g., the alignment result
t̂σ = p5CCins p8 of trace σ = B{x = 1,y = 0}C{x = 6}C{x = 4} generates the repair
� = [@σ4 ← p8] after removing the sync operations. Then, we obtain a new trace
σ′ = B{x = 1,y = 0}C{x = 6}C{x = 4}B{x = 4,y = 0}, where 4 is the nearest integer
to B.x = 1 (taken from the first event) that satisfies p8 ≡ B.x > 3 ∧ B.y = 0.

6 Experiments

We have developed a planning-based alignment tool that implements the app-
roach discussed in Sect. 5. The tool allows us to load logs formatted with the
XES standard and to import data-aware models previously designed using RuM
[3]. To find the minimum cost trace alignment against a pre-specified data-aware
Declare model, our tool makes use of the SymBA*-2 [24] planning system, which
produces optimal alignments performing a bidirectional A* search. We tested our
approach on the grounded version of the problem presented in Sect. 5.3. We per-
formed our experiments with a PC consisting of an Intel Core i7-4770S CPU
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3.10 GHz Quad Core and 4 GB RAM. We used a standard cost function with
unit costs for any alignment step that adds/removes activities in/from the input
trace or changes a data value attached to them, and cost 0 for synchronous
moves.

Table 3. Experimental results. The time (in ms.) is the average per trace.

Trace length Alignment
Time

Alignment
Cost

Alignment
Time

Alignment
Cost

Alignment
Time

Alignment
Cost

Alignment
Time

Alignment
Cost

0 const. modified 3 constraints 5 constraints 7 constraints 10 constraints

10 599.7 0 772.92 0 - - - -
15 767.23 0 978.38 0 1,887.29 0 - -
20 854.12 0 1,127.25 0 2,093.71 0 18,421.26 0
25 950.04 0 1,268.54 0 2,297.12 0 20,525.71 0
30 1,026.91 0 1,392.93 0 2,381.38 0 25,394.29 0

1 const. modified 3 constraints 5 constraints 7 constraints 10 constraints

10 603.84 1 797.16 1 - - - -
15 728.83 1 898.53 1 1,932.31 1 - -
20 851.62 1 1,094.13 1 2,113.08 1 17,770.91 1
25 929.72 1 1,280.61 1 2,296.76 1 24,023.28 1
30 1,114.75 1 1,379.26 1 2,499.32 1 27,232.07 1

2 const. modified 3 constraints 5 constraints 7 constraints 10 constraints

10 601.04 1.06 856.71 1.18 - - - -
15 736.93 1.13 934.45 1.23 1,875.37 1.44 - -
20 864.06 1.06 1,112.61 1.38 2,112.51 1.33 18,370.95 1.55
25 973.28 1.24 1,230.41 1.53 2,299.19 1.38 21,152.86 1.7
30 1,066.69 1.04 1,346.02 1.52 2,453.52 1.58 25,882.66 1.61

3 const. modified 3 constraints 5 constraints 7 constraints 10 constraints

10 623.85 2.14 937.88 2.22 - - - -
15 748.5 2.25 1,012.5 2.56 1,893.64 2.5 - -
20 877.4 2.1 1,026.11 2.44 2,095.72 2.63 18,918.48 2.41
25 1,007 2.55 1,115.53 2.34 2,287.93 2.66 22,010.35 2.5
30 1,114.46 2.06 1,230.54 2.33 2,462.62 2.35 26,178.43 2.75

To have a sense of the scalability with respect to the “size” of the model and
the “noise” in the traces, we have tested the approach on synthetic logs of differ-
ent complexity. Specifically, we generated synthetic logs using the log generator
presented in [23]. We defined four Declare models having the same alphabet
of activities and containing 3, 5, 7 and 10 data-aware constraints respectively.
Then, to create logs containing noise, i.e., behaviors non-compliant with the
original Declare models, we changed some of the constraints in these models
and generated logs from them. In particular, we modified the original Declare
models by replacing 1, 2, and 3 constraints in each model using different strate-
gies. In some cases, we replaced a constraint with its negative counterpart (see
Table 1); in other cases, we replaced a constraint with a weaker constraint; in
other cases, we replaced a data condition with its negation. Each modified model
was used to generate 5 logs of 1000 traces containing traces of different lengths
(i.e., containing 10, 15, 20, 25, and 30 events, respectively).

The results of the experiments can be seen in Table 3. The alignment time (in
ms.) and cost (that corresponds to the amount of ins/del/repl activities in an
alignment) refers to the average per trace. The missing values in the table refer
to experiments that could not be carried out because traces of certain lengths
(e.g., 10) could not be generated by specific models (e.g., including 7 or 10
constraints), i.e., traces of those lengths satisfying those models do not exist. It
is evident from the table that the alignment cost does not affect the performance
of the alignment tool as, when the noise increases, the execution time does not
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change. As expected, however, the execution time is slightly sensible to the trace
length, and grows exponentially with the number of (data-aware) constraints in
the reference model. However, the results suggest that the heuristics adopted
by the planner is able to efficiently cope with the above complexity enabling
to perform off-line analysis with acceptable performance in case of a reasonably
large number of data-aware constraints. The models and the logs used for the
experiments are available for reproducibility at: https://tinyurl.com/ezd788bb.

7 Conclusions

In this paper, we presented an approach tackling conformance checking of log
traces over data-aware Declare models. The proposed approach exploits Auto-
mated Planning for aligning the log traces and the reference model via a prelimi-
nary partitioning of the data space. The experiments show that the performance
of the approach is acceptable even when the reference model contains a reason-
ably large number of data-aware constraints. In addition, since the implemented
tool is independent of the planner used to solve the alignment problem, forth-
coming improvements in the efficiency of the planners will be automatically
transferred to the tool.

Future works will investigate the relationship between planners and approx-
imate path matching techniques [18] in order to use these techniques in the
context of the alignment problem defined in this paper. We will also investigate
the possibility of performing alignments over data-aware knowledge bases [22],
which potentially quicken the time required to test the satisfiability of the data
conditions by conveniently indexing (i.e., pre-ordering) the payload space. The
use of these approaches could allow us to tackle correlation conditions (i.e., data
predicates involving attributes belonging to the payload of the activation and
of the target, simultaneously) [7] that we did not consider in the current contri-
bution. In fact, the presented approach is not able to cope with the state space
explosion, caused by the presence of correlation conditions in the constraints to
be checked, when searching for the optimal alignments.
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