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Abstract. Conformance checking is a key process mining task for com-
paring the expected behavior captured in a process model and the actual
behavior recorded in a log. While this problem has been extensively stud-
ied for pure control-flow processes, conformance checking with multi-
perspective processes is still at its infancy. In this paper, we attack this
challenging problem by considering processes that combine the data
and control-flow dimensions. In particular, we adopt data Petri nets
(DPNs) as the underlying reference formalism, and show how solid, well-
established automated reasoning techniques can be effectively employed
for computing conformance metrics and data-aware alignments. We do
so by introducing the CoCoMoT (Computing Conformance Modulo The-
ories) framework, with a fourfold contribution. First, we show how SAT-
based encodings studied in the pure control-flow setting can be lifted
to our data-aware case, using SMT as the underlying formal and algo-
rithmic framework. Second, we introduce a novel preprocessing tech-
nique based on a notion of property-preserving clustering, to speed up
the computation of conformance checking outputs. Third, we provide a
proof-of-concept implementation that uses a state-of-the-art SMT solver
and report on preliminary experiments. Finally, we discuss how CoCo-
MoT directly lends itself to a number of further tasks, like multi- and
anti-alignments, log analysis by clustering, and model repair.

1 Introduction

In process mining, the task of conformance checking is crucial to test the expected
behavior described by a process model against the actual action sequences doc-
umented in a log [10]. While the problem has been thoroughly studied for pure
control-flow processes such as classical Petri nets [10,28], the situation changes
for process models equipped with additional perspectives beyond the control-
flow, such as for example the data perspective. Notice that, while there are
various works that primarily focus on the formalization and analysis of data or
object-aware extensions of Petri nets (e.g., [17,20,24,26]), attacking the confor-
mance checking problem in the non-classical setting is a very challenging task.
This problem indeed requires to simultaneously consider, in a combined way,
both the control-flow of the process and the data that the process manipulates.
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Existing approaches almost exclusively focused on control-flow alignments and
can therefore not be applied off-the-shelf. To the best of our knowledge, there are
in fact very few existing approaches dealing with the aforementioned problem,
and they concentrate on declarative [7] and procedural [21,22] multi-perspective
process models with rather restrictive assumptions on the data dimension.

In this paper, we provide a new stepping stone in the line of research focused
on conformance checking of multi-perspective procedural, Petri net-based pro-
cess models. Specifically, we introduce a novel general framework, called CoCo-
MoT, to tackle conformance checking of data Petri nets (DPNs), an extensively
studied formalism within BPM [13,14,18] and process mining [21–23]. The main
feature of CoCoMoT is that, instead of providing ad-hoc algorithmic techniques
for checking conformance, it provides an overarching approach based on the the-
ory and practice of Satisfiability Modulo Theories (SMT) [2]. By relying on an
SMT backend, we employ well-established automated reasoning techniques that
can support data and operations from a variety of theories, restricting the data
dimension as little as possible.

On top of this basis, we provide a fourfold contribution. First, we show that
conformance checking of DPNs can be reduced to satisfiability of SMT formulas
over the theory of linear integer and rational arithmetic. While our approach
is inspired by the use of SAT solvers for a similar purpose [5,12], the use of
SMT not only allows us to support data, but also capture unbounded nets. Our
CoCoMoT approach results in a conformance checking procedure running in NP,
which is optimal for the problem, in contrast to earlier approaches running in
exponential time [21,22].

Second, we show how to simplify and optimize conformance checking by intro-
ducing a preprocessing, trace clustering technique for DPNs that groups together
traces that have the same minimal alignment cost. Clustering allows one to com-
pute conformance metrics by just computing alignments of one representative per
cluster, and to obtain alignments for other members of the same cluster from
a simple adjustment of the alignment computed for the representative trace.
Besides the general notion of clustering, we then propose a concrete clustering
strategy grounded in data abstraction for variable-to-constant constraints, and
show how this strategy leads to a significant speedup in our experiments.

Third, we report on a proof-of-concept implementation of CoCoMoT, dis-
cussing optimization techniques and showing the feasibility of the approach with
an experimental evaluation on three different benchmark sets.

Finally, we discuss how our approach, due to its modularity, directly lends
itself to a number of further process analysis tasks such as computing multi-
and anti-alignments, using CoCoMoT as a log clustering method in the spirit of
earlier work for Petri nets without data [4,12], doing model repair, and handling
more sophisticated data such as persistent, relational data.

The remainder of the paper is structured as follows. In Sect. 2 we recall the
relevant basics about data Petri nets and alignments. This paves the way to
present our SMT encoding in Sect. 3. Our clustering technique that serves as
a preprocessor for conformance checking is the topic of Sect. 4. In Sect. 5 we
describe our prototype implementation and the conducted experiments. After-
wards, we discuss perspectives and potential of our approach in Sect. 6.
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2 Preliminaries

In this section we provide the required preliminaries. We first recall data Petri
nets (DPNs) and their execution semantics, then delve into event logs and con-
formance checking alignments, and finally discuss the main machinery behind
our approach for satisfiability modulo theories (SMT).

2.1 Data Petri Nets

We use Data Petri nets (DPNs) for modelling multi-perspective processes, adopt-
ing a formalization as in [21,22].

We start by introducing sorts – data types of variables manipulated by a
process. We fix a set of (process variable) sorts Σ = {bool, int, rat, string}
with associated domains of booleans D(bool) = B, integers D(int) = Z, ratio-
nals D(rat) = Q, and strings D(string) = S. A set of process variables V
is sorted if there is a function sort : V → Σ assigning a sort to each vari-
able in V . For a set of variables V , we consider two disjoint sets of anno-
tated variables V r = {vr | v ∈V } and V w = {vw | v ∈V } to be respec-
tively read and written by process activities, as explained below, and we assume
sort(vr) = sort(vw) = sort(v) for every v ∈ V . For a sort σ ∈ Σ, Vσ denotes
the subset of V r ∪ V w of annotated variables of sort σ. To manipulate sorted
variables, we consider expressions c with the following grammar:

c = Vbool | B | n ≥ n | r ≥ r | r > r | s = s | b ∧ b | ¬b s = Vstring | S

n = Vint | Z | n + n | −n r = Vrat | Q | r + r | −r

Standard equivalences apply, hence disjunction (i.e., ∨) and comparisons �=,
<, ≤ can be used as well (bool and string only support (in)equality). These
expressions form the basis for capturing conditions on the values of variables
that are read and written during the execution of activities in the process. For
this reason, we call them constraints. Intuitively, a constraint (vr

1 > vr
2) dictates

that the current value of variable v1 is greater than the current value of v2.
Similarly, (vw

1 > vr
2 +1)∧ (vw

1 < vr
3) requires that the new value given to v1 (i.e.,

assigned to v1 as a result of the execution of the activity to which this constraint
is attached) is greater than the current value of v2 plus 1, and smaller than v3.
More in general, given a constraint c as above, we refer to the annotated variables
in V r and V w that appear in c as the read and written variables, respectively.
The set of read and written variables that appear in a constraint c is denoted by
Var(c), hence Var(c) ⊆ V w ∪ V r. We denote the set of all constraints by C(V ).

Definition 1 (DPN). A Petri net with data (DPN) is given by a tuple N =
(P, T, F, �, A, V, guard), where (1) (P, T, F, �) is a Petri net with two non-empty
disjoint sets of places P and transitions T , a flow relation F : (P ×T )∪(T ×P ) →
N and a labeling function � : T → A ∪ {τ}, where A is a finite set of activity
labels and τ is a special symbol denoting silent transitions; (2) V is a sorted set
of process variables; and (3) guard : T → C(V ) is a guard assignment.
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As customary, given x ∈ P ∪ T , we use •x := {y | F (y, x) > 0} to denote
the preset of x and x• := {y | F (x, y) > 0} to denote the postset of x. In order
to refer to the variables read and written by a transition t, we use the notations
read(t) = {v | vr ∈ Var(guard(t))} and write(t) = {v | vw ∈ Var(guard(t))}.
Finally, GN is the set of all the guards appearing in N .

To assign values to variables, we use variable assignments. A state variable
assignment is a total function α that assigns a value to each variable in V , such
that α(v) ∈ D(sort(v)) for all v ∈ V . These assignments are used to specify
the current value of all variables. Similarly, a transition variable assignment is
a partial function β that assigns a value to annotated variables, namely β(x) ∈
D(sort(x)), with x ∈ V r ∪ V w. These are used to specify how variables change
as the result of activity executions (cf. Definition 2).

A state in a DPN N is a pair (M,α) constituted by a marking M : P →
N for the underlying Petri net (P, T, F, �), plus a state variable assignment α.
Therefore, a state simultaneously accounts for the control flow progress and for
the current values of all variables in V , as specified by α.

We now define when a Petri net transition may fire from a given state.

Definition 2 (Transition firing). A transition t ∈ T is enabled in state
(M,α) if a transition variable assignment β exists such that:

(i) β(vr) = α(v) for every v ∈ read(t), i.e., β is as α for read variables;
(ii) β |= guard(t), i.e., β satisfies the guard; and
(iii) M(p) > F (p, t) for every p ∈ •t;
(iv) dom(β) = Var(guard(t)), where dom denotes the domain of functions: β

is defined for the annotated variables in the guard.

An enabled transition may fire, producing a new state (M ′, α′), s.t. M ′(p) =
M(p) − F (p, t) + F (t, p) for every p ∈ P , and α′(v) = β(vw) for every v ∈
write(t), and α′(v) = α(v) for every v �∈ write(t). A pair (t, β) as above is
called (valid) transition firing, and we denote its firing by (M,α) (t,β)−−−→ (M ′, α′).

Given N , we fix one state (MI , α0) as initial, where MI is the initial marking
of the underlying Petri net (P, T, F, �) and α0 specifies the initial value of all
variables in V . Similarly, we denote the final marking as MF , and call final any
state of N of the form (MF , αF ) for some αF .

We say that (M ′, α′) is reachable in a DPN iff there exists a sequence of tran-
sition firings f = (t1, β1), . . . , (tn, βn), s.t. (MI , α0) (t1,β1)−−−−→ . . . (tn,βn)−−−−−→ (M ′, α′),
denoted as (MI , α0) f−→ (Mn, αn). Moreover, f is called a (valid) process run of
N if (MI , α0) f−→ (MF , αF ) for some αF , that is, if the run leads to a final state
from the initial state (MI , α0). Similar to [22], we restrict to DPNs that are
relaxed data sound, that is, where at least one final state is reachable.

We denote the set of valid transition firings of a DPN N as F(N ), and the
set of process runs as Runs(N ).
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Example 1. Let N be as shown (with initial marking [p0] and final marking [p3]):

p0

a

xw ≥ 0 p1

b

yw > 0 p2

τ

xr ≤ 3 ∧ yr < 4 p3

d

yw = yr + 1

τ

xr ≤ 3

The set Runs(N ) contains, e.g., 〈(a, {xw �→ 2}), (b, {yw �→ 1}), (τ, {xr �→ 2, yr �→
1})〉 and 〈(a, {xw �→ 1}), (τ, {xr �→ 1}), (d, {yw �→ 1})〉, for α0 = {x �→ 0, y �→ 0}.

2.2 Event Logs and Alignments

Given an arbitrary set A of activity labels, an event is a pair (b, α), where b ∈ A
and α is a so-called event variable assignment, that is, a function that associates
values to variables in V . Differently from state variable assignments, an event
variable assignment can be a partial function.

Definition 3 (Log trace, event log). Given a set E of events, a log trace
e ∈ E∗ is a sequence of events in E and an event log L ∈ M(E∗) is a multiset
of log traces from E, where M(E∗) denotes the set of multisets over E∗.

We focus on a conformance checking procedure that aims at constructing an
alignment of a given log trace e w.r.t. the process model (i.e., the DPN N ), by
matching events in the log trace against transitions firings in the process runs of
N . However, when constructing an alignment, not every event can always be put
in correspondence with a transition firing, and vice versa. Therefore, we introduce
a special “skip” symbol � and the extended set of events E� = E ∪ {�} and,
given N , the extended set of transition firings F� = F(N ) ∪ {�}.

Given a DPN N and a set E of events as above, a pair (e, f) ∈ E�×F�\{(�
,�)} is called move.1 A move (e, f) is called: (i) log move if e ∈ E and f =�; (ii)
model move if e =� and f ∈ F(N ); (iii) synchronous move if (e, f) ∈ E ×F(N ).
Let MovesN be the set of all such moves. We now show how moves can be used
to define alignments of log traces.

For a sequence of moves γ = (e1, f1), . . . , (en, fn), the log projection γ|L of
γ is the subsequence e′

1, . . . , e
′
i of e1, . . . , en such that e′

1, . . . , e
′
i ∈ E∗ is obtained

by projecting away from γ all � symbols. Similarly, the model projection γ|M
of γ is the subsequence f ′

1, . . . , f
′
j of f1, . . . , fn such that f ′

1, . . . , f
′
j ∈ F(N )∗.

Definition 4 (Alignment). Given N , a sequence of legal moves γ is an align-
ment of a log trace e if γ|L = e, and it is complete if γ|M ∈ Runs(N ).

Example 2. The sequences γ1, γ2 and γ3 below are possible complete alignments
of the log trace e = 〈(a, {x �→ 2}), (b, {y �→ 1})〉 w.r.t. the DPN from Example 1:

γ1 = a x �→ 2
a xw �→ 2

b y �→ 1
b yw �→ 1

�
τ . . .

γ2 = a x �→ 2
a xw �→ 3

�
τ . . .

b y �→ 1
� γ3 = a x �→ 2

�
b y �→ 1

�
�

a xw �→ 3
�

τ . . .

1 In contrast to [22], we do not distinguish between synchronous moves with correct
and incorrect write operations, and defer this differentiation to the cost function.
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We denote by Align(N , e) the set of complete alignments for a log trace e
w.r.t. N . A cost function is a mapping κ : MovesN → R

+ that assigns a cost to
every move. It is naturally extended to alignments as follows.

Definition 5 (Cost). Given N , e and γ = (e1, f1), . . . , (en, fn) ∈ Align(N , e),
the cost of γ is obtained by summing up the costs of its moves, that is, κ(γ) =∑n

i=1 κ(ei, fi). Moreover, γ is optimal for e if κ(γ) is minimal among all com-
plete alignments for e, namely there is no γ′ ∈ Align(N , e) with κ(γ′) < κ(γ).

We denote the cost of an optimal alignment for e with respect to N by κopt
N (e).

Given N , the set of optimal alignments for e is denoted by Alignopt(N , e).

2.3 Satisfiability Modulo Theories (SMT)

The SAT problem asks, given a propositional formula ϕ, to either find a satis-
fying assignment ν under which ϕ evaluates to true, or detect that ϕ is unsat-
isfiable. For instance, given the formula (p ∨ q) ∧ (¬p ∨ r) ∧ (¬r ∨ ¬q), a sat-
isfying assignment is ν(p) = ν(r) = �, ν(q) = ⊥. The Satisfiability Modulo
Theories (SMT) problem [2] extends SAT by asking to decide satisfiability of
a formula ϕ whose language extends propositional formulas by constants and
operators from one or more theories T (e.g., arithmetics, bit-vectors, arrays,
uninterpreted functions). For this paper, only the theories of linear integer and
rational arithmetic (LIA and LQA) are relevant. For instance, the SMT formula
a > 1 ∧ (a + b = 10 ∨ a − b = 20) ∧ p, where a, b are integer and p is a propo-
sitional variable, is satisfiable by the assignment ν such that ν(a) = ν(b) = 5
and ν(p) = �. Another important problem studied in the area of SMT and
relevant to this paper is the one of Optimization Modulo Theories (OMT) [27].
The OMT problem asks, given a formula ϕ, to find a satisfying assignment of
ϕ that minimizes or maximizes a given objective expression. SMT-LIB [1] is an
international initiative aiming at providing an extensive on-line library of bench-
marks and promoting the adoption of common languages and interfaces for SMT
solvers. In this paper, we make use of the SMT solvers Yices 2 [16] and Z3 [15].

3 Conformance Checking via SMT

In this section we illustrate our approach. We first describe in Sect. 3.1 a generic
distance measure to be used as cost function. Then, in Sect. 3.2 we detail our
encoding of the problem of finding optimal alignments in SMT. Notably, this
technique works also for nets with arc multiplicities and unbounded nets, beyond
the safe case considered in [5]. Finally, in Sect. 3.3 we analyze the computational
complexity. Full proofs and details can be found in [19].

3.1 Distance-Based Cost Function

We present here a function used to measure the distance between a log trace
and a process run. The recursive definition has the same structure as that of
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the standard edit distance, which allows us to adopt a similar encoding as used
in the literature [3]. However, it generalizes both the standard edit distance
and distance functions previously used for multi-perspective conformance check-
ing [21,22], and admits also other measures that are specific to the model and
the SMT theory used. Our measure is parameterized by three functions:

PL : E → N PM : F(N ) → N P= : E × F(N ) → N

respectively called the log move penalty, model move penalty, and synchronous
move penalty functions (cf. Section 2.2). We use these functions to assign penal-
ties to log moves, model moves, or synchronous moves. In what follows, we denote
prefixes of length j of a log trace e ∈ E∗ of length m as e|j , provided 0 ≤ j ≤ m,
and analogously for a process run f ∈ Runs(N ) (recall that these are sequences
of transition firings in F(N )).

Definition 6 (Edit distance). Given a DPN N , let e = e1, . . . , em be a log
trace and f = f1, . . . , fn a process run. For all i and j, 0≤ i≤ m and 0 ≤ j ≤ n,
the edit distance δ(e|i, f |j) is recursively defined as follows:

δ(ε, ε) = 0
δ(e|i+1, ε) = PL(ei+1) + δ(e|i, ε)
δ(ε, f |j+1) = PM (fj+1) + δ(ε, f |j)

δ(e|i+1, f |j+1) = min

⎧
⎨

⎩

δ(e|i, f |j) + P=(ei+1, fj+1)
PL(ei+1) + δ(e|i, f |j+1)
PM (fj+1) + δ(e|i+1, f |j)

Definition 6 can be used to define a cost function by setting κ(γ) = δ(γ|L , γ|M ),
for any alignment γ. In the sequel, we call such a cost function distance-based.
Moreover, it is known that for any trace e and process run f with |e| = m and
|f | = n, given the (n + 1) × (m + 1)-matrix D such that Dij = δ(e|i, f |j), one
can reconstruct an alignment of e and f that is optimal with respect to κ [5,25].

Remark 1. By fixing the parameters P=, PL, and PM of Definition 6, one obtains
concrete, known distance-based cost functions, such as the following:

Standard Cost Function. Definition 6 can be instantiated to the measure
in [22, Ex. 2], [21, Def. 4.5]. To that end, we set PL(b, α) = 1; PM (t, β) =
0 if t is silent (i.e., �(t) = τ) and PM (t, β) = |write(t)| + 1 otherwise;
and P=((b, α), (t, β)) = |{v ∈ dom(α) | α(v) �= β(vw)}| if b = �(t) and
P=((b, α), (t, β)) = ∞ otherwise.

Levenshtein Distance. The standard edit distance is obtained with PL(b, α) =
PM (t, β) = 1, and P=((b, α), (t, β)) = 0 if b = �(t) and P=((b, α), (t, β)) = ∞
otherwise. Note that this measure ignores transition variable assignments β.

For instance, for the alignments γ1, γ2, and γ3 from Example 2, the standard
cost function yields κ(γ1) = 0; κ(γ2) = 2 (because we get penalty 1 for a syn-
chronous move with incorrect write operation, no penalty for the silent model
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move, and penalty 1 for the log move); and κ(γ3) = 4 (because we get penalty 1
for each of the log moves, penalty 2 for a non-silent model move that writes one
variable, and no penalty for the silent model move).

3.2 Encoding

Our approach relies on the fact that the optimal alignment for a given log trace
is upper-bounded in length. To this end, we use the following observation.

Remark 2. Given a DPN N and a log trace e = e1, . . . , em, let f = f1, . . . , fn

be a valid process run such that
∑n

j=1 PM (fj) is minimal. Then an optimal
alignment γ for e and N satisfies κ(γ) ≤ κ(γmax), and hence |γ| ≤ |γmax|,
where γmax is the alignment (e1,�), . . . , (em,�), (�, f1), . . . (�, fn).

Given a log trace e = e1, . . . , em and a DPN N with initial marking MI , initial
state variable assignment α0, final marking MF , we want to construct an optimal
alignment γ ∈ Alignopt(N , e). To that end, we assume throughout this section
that the number of non-empty model steps in γ is bounded by some fixed number
n (cf. Rem. 2). Our approach comprises the following four steps: (1) represent
the alignment symbolically by a set of SMT variables, (2) set up constraints Φ
that symbolically express optimality of this alignment, (3) solve the constraints
Φ to obtain a satisfying assignment ν, and (4) decode an optimal alignment γ
from ν. We next elaborate these steps in detail.

(1) Alignment representation. We use the following SMT variables:
(a) transition step variables Si for 1 ≤ i ≤ n of type integer; if T =

{t1, . . . , t|T |} then it is ensured that 1 ≤ Si ≤ |T |, with the semantics
that Si is assigned j iff the i-th transition in the process run is tj ;

(b) marking variables Mi,p of type integer for all i, p with 0 ≤ i ≤ n and
p ∈ P , where Mi,p is assigned k iff there are k tokens in place p at instant
i;

(c) data variables Xi,v for all v ∈ V and i, 0 ≤ i ≤ n; the type of these
variables depends on v, with the semantics that Xi,v is assigned r iff the
value of v at instant i is r; we also write Xi for (Xi,v1 , . . . , Xi,vk

);
(d) distance variables δi,j of type integer for 0 ≤ i ≤ m and 0 ≤ j ≤ n,

where δi,j = d if d is the cost of the prefix e|i of the log trace e, and the
prefix f |j of the (yet to be determined) process run f , i.e., d = δ(e|i, fj)
by Definition 6.

Note that variables (a)–(c) comprise all information required to capture a
process run with n steps, which will make up the model projection of the
alignment γ, while the distance variables (d) will be used to encode the align-
ment.
(2) Encoding. To ensure that the values of variables correspond to a valid
run, we assert the following constraints:

• The initial marking MI and the initial assignment α0 are respected:
∧

p∈P M0,p = MI(p) ∧
∧

v∈V X0,v = α0(v) (ϕinit)
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• The final marking MF is respected:
∧

p∈P Mn,p = MF (p) (ϕfinal)

• Transitions correspond to transition firings in the DPN:
∧

1≤i≤n 1 ≤ Si ≤ |T | (ϕtrans)

In contrast to [3], no constraints are needed to express that at every
instant exactly one transition occurs, since the value of Si is unique.

• Transitions are enabled when they fire:
∧

1≤i≤n

∧
1≤j≤|T | (Si = j) →

∧
p ∈ •tj

Mi−1,p ≥ |•tj |p (ϕenabled)

where |•tj |p denotes the multiplicity of p in the multiset •tj .
• We encode the token game:

∧

1≤i≤n

∧

1≤j≤|T |
(Si = j) →

∧

p ∈ P

Mi,p − Mi−1,p = |tj•|p − |•tj |p (ϕmark )

where |tj•|p is the multiplicity of p in the multiset tj
•.

• The transitions satisfy the constraints on data:
∧

1≤i<n

∧

1≤j≤|T |
(Si = j) → guard(tj)χ ∧

∧

v �∈write(tj)

Xi−1,v = Xi,v (ϕdata)

where the substitution χ uniformly replaces V r by Xi−1 and V w by Xi.
• The encoding of the data edit distance depends on the penalty functions

P=, PM , and PL. We illustrate here the formulae obtained for the standard
cost function in Remark 1. Given a log trace e = (b1, α1), . . . , (bm, αm),
let the expressions [PL], [PM ]j , and [P=]i,j be defined as follows, for all i
and j:

[PL] = 1
[PM ]j = ite(Sj = 1, cw(t1), . . . ite(Sj = |T | − 1, cw(t|T |−1), cw(t|T |)) . . . )

[P=]i,j = ite(Sj = bi,
∑

v∈write(bi)

ite(αi(v) = Xi,v, 0, 1),∞)

where the write cost cw(t) of transition t ∈ T is 0 if �(t) = τ , or
|write(t)| + 1 otherwise, and ite is the if-then-else operator. It is then
straightforward to encode the data edit distance by combining all equa-
tions in Definition 6:

δ0,0 = 0 δi+1,0 = [PL] + δi,0 δ0,j+1 = [PM ]j+1 + δ0,j (ϕδ)

δi+1,j+1 = min([P=]i+1,j+1 + δi,j , [PL] + δi,j+1, [PM ]j+1 + δi+1,j)

(3) Solving. We use an SMT solver to obtain a satisfying assignment ν for
the following constrained optimization problem:

ϕinit ∧ ϕfinal ∧ ϕtrans ∧ ϕenabled ∧ ϕmark ∧ ϕdata ∧ ϕδ minimizing δm,n

(Φ)
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(4) Decoding. We obtain a valid process run f = f1, . . . , fn by decoding with
respect to ν the variable sets Si (to get the transitions taken), Mi,p (to get the
markings), and Xi,v (to get the state variable assignments) for every instant i,
as described in Step (1). Moreover, we use the known correspondence between
edit distance and alignments [25] to reconstruct an alignment γ = γm,n of e
and f . To that end, consider the (partial) alignments γi,j recursively defined
as follows:

γ0,0 = ε γi+1,0 = γi,0 · (ei+1, �) γ0,j+1 = γ0,j · (�, fj+1)

γi+1,j+1 =

⎧
⎪⎨

⎪⎩

γi,j+1 · (ei+1, �) if ν(δi+1,j+1) = ν([PL] + δi,j+1)

γi+1,j · (�, fj+1) if otherwise ν(δi+1,j+1) = ν([PM ]j+1 + δi+1,j)

γi,j · (ei+1, fj+1) otherwise

To obtain an optimal alignment, we use the following result:

Theorem 1. Let N be a DPN, e a log trace and ν a solution to (Φ). Then γm,n

is an optimal alignment for e, i.e., γm,n ∈ Alignopt(N , e).

3.3 Complexity

In this section we briefly comment on the computational complexity of our app-
roach and the (decision problem version of the) optimal alignment problem. To
that end, let a cost function κ be well-behaved if it is distance-based and its
parameter functions P=, PM , and PL are effectively computable and can be
defined by linear arithmetic expressions and case distinctions. For c ∈ N and a
well-behaved cost function κ, let Alignc be the problem that, given a relaxed
data-sound DPN and a log trace, checks whether an alignment of cost c with
respect to κ exists. For any given DPN N , log trace e and cost c, the encoding
presented in Sec. 3.2 is used to construct an SMT problem over linear inte-
ger/rational arithmetic that is satisfiable if and only if an alignment of cost c
exists. The size of such an encoding is polynomial in the size of the DPN and
the length of the log trace. Thus, since satisfiability of the relevant class of SMT
problems is in NP [6], our approach to decide Alignc is in NP. In contrast,
the approach presented in [21,22] is exponential in the length of the log trace.
Moreover, Alignc is NP-hard since it is easy to reduce satisfiability of a boolean
formula (SAT) to Align0. Hence, all in all Alignc is NP-complete. Given a
boolean formula ϕ with variables V , let Nϕ be the following DPN:

t	 : �

tϕ : ϕw

where ϕw is the formula obtained from ϕ by replacing all variables v ∈ V by vw.
The DPN Nϕ is relaxed data-sound due to the transition t	. Let e be the log
trace consisting of the single event (tϕ, ∅), and κ the standard edit distance (cf.
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Rem. 1). Note that Runs(Nϕ) contains at most two valid process runs: we have
f0 = (t	, ∅) ∈ Runs(Nϕ) and κ(e, f0) = ∞. If ϕ is satisfiable by some transition
variable assignment β, we also have f1 = (tϕ, βw) ∈ Runs(Nϕ), where βw is the
assignment such that α(v) = βw(vw) for all v ∈ V , and κ(e, f1) = 0. Thus, e
admits an alignment of cost 0 if and only if ϕ is satisfiable.

4 Trace Clustering

Clustering techniques are used to group together multiple traces in a process log
so as to simplify and optimize several forms of analysis [29], including confor-
mance checking [4,12]. In this section we introduce a novel form of clustering
that is instrumental to simplify our multi-perspective conformance checking tech-
nique. The idea is to partition the log into clusters, where all traces within the
same cluster share the same optimal alignment cost. We do so in two steps. We
first introduce a general equivalence relation on the log traces, which thus iden-
tifies clusters as equivalence classes. We then provide an instantiation of such a
relation that compares traces in the log by considering the satisfaction of guards
of the DPN, thus providing a sort of data abstraction-based clustering.

Definition 7 (Cost-based clustering). Given a DPN N , a log L, and a
cost function κ, a cost-based clustering is an equivalence relation ≡κopt

N
over

L, where, for all traces e, e′ ∈ L s.t. e ≡κopt
N

e′ we have that κopt
N (e) = κopt

N (e′).

Notice that, according to the definition, different clusters do not necessarily
correspond to different optimal alignment costs. We now introduce one specific
equivalence relation that focuses on DPN guards performing variable-to-constant
comparisons, and then show that this equivalence relation is a cost-based clus-
tering. By focusing on such guards, one can improve performance of alignment-
based analytic tasks. Indeed, variable-to-constant guards, although simple, are
extensively used in practice, and they have been subject to an extensive body
of research [13]. Moreover, this class of guards is common in benchmarks from
the literature, is the one required to model decisions based on the DMN S-FEEL
standard, and is the target of guard discovery techniques based on decision trees
[23]. Note, however, that we do not at all restrict the DPNs we consider to use
only such guards - richer guards are simply not exploited in the clustering.

Recalling that constraints are used in DPNs as guards associated to tran-
sitions, and that a constraint is in general a boolean expression whose atoms
are comparisons (cf. Section 2.1), we use Atoms(c) to define the set of all
atoms in a guard c ∈ GN . Given a DPN N , a variable-to-constant atom is
an expression of the form x � k, where � ∈ {>,≥,=}, x ∈ V r ∪ V w and
k is a constant in Z or Q. We say that a variable v ∈ V is restricted to
constant comparison if all atoms in the guards of N that involve vr or vw

are variable-to-constant atoms. For such variables, we also introduce the set
atsv = {v � k | x � k ∈ Atoms(c), for some c ∈ GN , x ∈ {vr, vw}}, i.e., the set
of comparison atoms v � k as above, this time expressed with non-annotated
variables. The set atsv can be seen as a set of predicates with free variable v.
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Intuitively, given a cost function as in Remark 1, the optimal alignment of a
log trace does not depend on the actual variable values specified in the events in
the log trace, but only on whether the atoms in atsv are satisfied. In this sense,
our approach can be considered as a special form of predicate abstraction. Based
on this idea, trace equivalence is defined as follows.

Definition 8. For a variable v that is restricted to constant comparison and
two values u1, u2, let u1 ∼v

cc u2 if for all v � k ∈ atsv, u1 � k holds iff u2 � k
holds. Two event variable assignments α and α′ are equivalent up to constant
comparison, denoted α ∼cc α′, if dom(α) = dom(α′) and for all variables v ∈
dom(α), either (i) α(v) = α′(v), or (ii) v is restricted to constant comparison
and α(v) ∼v

cc α′(v).

This definition intuitively guarantees that α and α′ “agree on satisfying” the
same atomic constraints in the process. For example, if α(x) = 4 and α′(x) = 5,
then, given two constraints x > 3 and x < 2, we will get that α |= x > 3 and
α′ |= x > 3, whereas α �|= x < 2 as well as α′ �|= x < 2.

Definition 9 (Equivalence up to constant comparison). Two events
e = (b, α) and e′ = (b′, α′) are equivalent up to constant comparison, denoted
e ∼cc e′, if b = b′ and α ∼cc α′. Two log traces e, e′ are equivalent up to con-
stant comparison, denoted e ∼cc e′, iff their events are pairwise equivalent up to
constant comparison. That is, e = e1, . . . , en, e′ = e′

1, . . . , e
′
n, and ei ∼cc e′

i for
all i, 1≤ i≤ n.

Example 3. In Example 1, variable x is restricted to constant comparison, while
y is not. Since atsx = {x ≥ 0, x ≤ 3}, the log traces e1 = 〈(a, {x �→ 2}), (b, {y �→
1})〉 and e2 = 〈(a, {x �→ 3}), (b, {y �→ 1})〉, satisfy e1 ∼cc e2, but for e3 =
〈(a, {x �→ 4}), (b, {y �→ 1})〉 we have e1 �∼cc e3 because 3 �∼x

cc 4, and e4 =
〈(a, {x �→ 3}), (b, {y �→ 2})〉 satisfies e1 �∼cc e4 because the values for y differ.
The equivalent traces e1 and e2 have the same optimal cost with respect to the
standard cost function from Remark 1: for the alignments

γ1 = a x �→ 2
a xw �→ 2

b y �→ 1
b yw �→ 1

�
τ . . .

γ2 = a x �→ 3
a xw �→ 3

b y �→ 1
b yw �→ 1

�
τ . . .

γ3 = a x �→ 4
a xw �→ 3

b y �→ 1
b yw �→ 1

�
τ . . .

we have κopt
N (e1) = κ(γ1) = 0 and κopt

N (e2) = κ(γ2) = 0. Note, however, that
the respective process runs γ1|M and γ2|M differ. On the other hand, γ3 is an
optimal alignment for e3 but κ(γ3) = κopt

N (e3) = 1.
Moreover, e1 and e3 show that for trace equivalence it does not suffice to

consider model transitions with activity labels that occur in the traces: all events
in e1 and e3 correctly correspond to transitions with the same labels in N ,
but for a later transition the value of x makes a difference. This motivates the
requirement that in equivalent traces (Definition 8 and Definition 9) the values
of a variable v that is restricted to constant comparison satisfies the same subset
of atsv.
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We next show that equivalence up to constant comparison is a cost-based
clustering, provided that the cost function is of a certain format. To that
end, we consider a distance-based cost function κ from Definition 6 and call
it comparison-based when the following conditions hold:

1. PL(b, α) does not depend on the values assigned by α, and PM (t, β) does not
depend on the values assigned by β;

2. the value of P=((b, α), (t, β)) depends only on whether conditions b = �(t)
and α(v) = β(vw) are satisfied or not.

Note that this requirement is satisfied by the distance-based cost function in
Remark 1. Indeed, in the standard cost function, PL(b, α) = 1 and thus it
does not depend on α. Moreover, the second condition is clearly satisfied, as
in P=((b, α), (t, β)) = |{v ∈ dom(α) | α(v) �= β(vw)}|, for b = �(t), we only need
to check whether α(v) �= β(vw).

Theorem 2. Equivalence up to constant comparison is a cost-based clustering
with respect to any comparison-based cost function.

Proof (sketch). We prove that if e1 has an alignment γ1 with cost κ(γ1) =
δ(e1, f1), where f1 = γ1|M , then there is a process run f2 such that δ(e2, f2) =
κ(γ1), and hence there is an alignment γ2 with γ2|L = e2, γ2|M = f2 and
κ(γ2) = δ(e2, f2). More precisely, if |e1| = |e2| = m and |f1| = n, we show by
induction on m +n that there is some f2 such that |f2| = n, δ(e1, f1) = δ(e2, f2),
and f1 and f2 result in state variable assignments that are equivalent up to ∼cc .
The inductive step works by a case distinction on the cases in Definition 6,
exploiting the properties of a comparison-based cost function. The full proof is
in [19].

An interesting byproduct of the constructive proof of Theorem 2 (see [19]) is that
given γ ∈ Alignopt(N , e), for every trace e′ in the same cluster (i.e. e ∼cc e′) an
optimal alignment is easily computed from γ, e, and e′ in linear time.

All in all, we thus get that our clustering technique allows us to compute
faithful conformance metrics on logs by calculating alignment costs only on a
single representative trace per cluster.

5 Implementation and Experiments

We now report on the DPN conformance checking tool cocomot, a proof-of-
concept implementation based on the encoding in Sec. 3.2. We focus on imple-
mentation, some optimizations, and experiments on benchmarks from the liter-
ature. The source code together with related datasets are publicly available on
the tool webpage: https://github.com/bytekid/cocomot.

Implementation. Our cocomot prototype is a Python command line script:
it takes as input a DPN (as .pnml file) and a log (as .xes) and computes the
optimal alignment distance, using the standard cost function from Remark 1,

https://github.com/bytekid/cocomot


230 P. Felli et al.

for every trace in the log. In verbose mode, it additionally prints an optimal
alignment. To reduce effort, cocomot first preprocesses the log to a sublog of
unique traces, and second applies trace clustering as described in Sec. 4 to further
partition the sublog into equivalent traces. The conformance check is then run
for one representative from every equivalence class.

cocomot uses pm4py (https://pm4py.fit.fraunhofer.de/) to parse traces, and
employs the SMT solver Yices 2 [16] , or alternatively Z3 [15], as backend solver.
Instead of writing the formulas to files, we use the bindings provided by the
respective Python interfaces. Since Yices 2 has no optimization built-in, we
implemented a minimization scheme using multiple satisfiability checks. Every
check is run with a timeout, to avoid divergence on large problems.

Encoding Optimizations. To prune the search space, we modified the encod-
ing presented in Sect. 3.2. We report here on the four most effective changes.
(1) We perform a reachability analysis in a preprocessing step. This allows us
to restrict the range of transition variables Si in (ϕtrans), as well as the cases
Si = j in (ϕenabled ) and (ϕmark ) to those that are actually reachable. More-
over, if a data variable v ∈ V will never be written in some step i, 1 ≤ i ≤ n,
because no respective transition is reachable, we set Xi,v identical to Xi−1,v to
reduce the number of variables. (2) If the net is 1-bounded, the marking vari-
ables Mi,p are typed as boolean rather than integer, similarly to [3]. (3) As δm,n

is minimized, the equation of the form δi+1,j+1 = min(e1, e2, e3) in (ϕδ) can
be replaced by inequalities δi+1,j+1 ≥ min(e1, e2, e3). The latter is equivalent
to δi+1,j+1 ≥ e1 ∨ δi+1,j+1 ≥ e2 ∨ δi+1,j+1 ≥ e3, which is processed by the
solver much more efficiently since it avoids an if-then-else construct. (4) Sev-
eral subexpressions are replaced by fresh variables (in particular when occurring
repeatedly) - this is empirically known to positively affect performance.

Some of the data sets described below contain data variables of non-numeric
types, namely boolean and string variables. The encoding represents the former
by boolean SMT variables; and the latter by integer variables, encoding the
string literals in the model as distinct natural numbers (cf. [21, p. 87]).

Experiments. We tested cocomot on three data sets used in earlier work [21,22],
which have also been made publicly available on the tool’s webpage. All exper-
iments were run single-threaded on a 12-core Intel i7-5930K 3.50GHz machine
with 32GB of main memory.

The first data set contains 150370 traces (35681 unique) of road fines issued
by the Italian police. By trace clustering, the log reduces to 4290 non-equivalent
traces. In 268 s, cocomot computes optimal alignments for all traces in this set,
spending 13% of the computation time on parsing the log, 1.5% on trace cluster-
ing, 13% on the generation of the encoding, and the rest on SMT solving.2 When
omitting the clustering preprocessor, cocomot requires about 30 min to process
all 35681 traces. We note some data about the model and log. The maximal
length of a trace is 20, and its average alignment cost is 1.5. The average time

2 Notice that in this paper we do not fix the exact algorithm for trace clustering, which
in our implementation is achieved by exhaustively comparing log traces.

https://pm4py.fit.fraunhofer.de/
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spent on a trace is 0.1 s. The process model has less than 20 transitions, and at
most one token around at any point in time.

The second data set contains 100000 traces (4047 unique) of a hospital billing
process. Trace clustering slightly reduces the number of non-equivalent traces to
4039. For 3392 traces cocomot finds an optimal alignment, while SMT timeouts
occur for the remaining, very long traces (the maximal trace length is 217).

The third data set is about sepsis, and contains 1050 unique (and non-
equivalent) traces. For 1006 traces cocomot finds an optimal alignment, while it
times out for the remaining, very long traces (the maximal trace length is 185).

For the experiments described above we used Yices (with an SMT timeout of
10 min) as Z3 turned out to be considerably slower: checking conformance of the
road fine log using Z3 (with its built-in minimization routine) takes more than
two hours. On average, only 1% of the time is spent on generating the encoding,
while the vast majority of time is used for SMT solving.

Notice that the trace clustering approach suggested in this paper considerably
improves the performance over the presented data sets, as already pointed out
for the one of road fines.

6 Discussion

In this section we outline how the CoCoMoT approach, due to its modularity,
readily lends itself to further tasks related to the analysis of data-aware processes.

The multi-alignment problem asks, given a DPN N and a set of log traces
{e1, . . . , en}, to find a process run f ∈ PN such that

∑n
i=1 κ(γi) is minimal,

where γi is a minimal-cost alignment of ei and f for all i, 1 ≤ i ≤ n [12].3

Our encoding can solve such problems by combining n copies of the distance
variables and their defining equations (ϕδ) with (ϕinit)–(ϕdata), and minimizing
the above objective. Generalizing alignments, multi-alignments are of interest
for their own sake, but also useful for further tasks, described next.

Anti-alignments were introduced to find model runs that deviate as much
as possible from a log, e.g., for precision checking [11]. For a set of traces
{e1, . . . , en}, the aim is to find f ∈ PN of bounded length such that

∑n
i=1 κ(γi)

is maximal, with γi as before. Using our encoding, this can be done as in the
multi-alignment case, replacing minimization by maximization.

Trace clustering was studied as a method to partition event logs into more
homogeneous sub-logs, with the hope that process discovery techniques will per-
form better on the sub-logs than if applied to the original log [12,28]. Chatain
et al. [3,12] propose trace clustering based on multi-alignments. In the same
fashion, our approach can be used to partition a log of DPN traces.

Our approach can also be used for model repair tasks: given a set of traces,
we can use multi-alignments to minimize the sum of the trace distances, while
replacing a parameter of the DPN by a variable (e.g., the threshold value in a
guard). From the satisfying assignment we obtain the value for this parameter

3 Instead of the sum, also other aggregation functions can be used, e.g., maximum.
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that fits the observed behavior best. As constraints (ϕinit)–(ϕdata) symbolically
describe a process run of bounded length, our encoding supports bounded
model checking. Thus we could also implement scenario-based conformance
checking, to find for a given trace the best-matching process run that satisfies
additional constraints, such as that certain data values are not exceeded.

Finally, but crucially, the main advantage of SMT is that it offers a multi-
tude of background theories to capture the data manipulated by the DPN, and to
express sophisticated cost functions. The approach by Mannhardt et al. [21,22]
needs to restrict guards of DPNs to linear arithmetic expressions in order to
use the MILP backend. In our approach, the language of guards may employ
arbitrary functions and predicates from first-order theories supported by SMT
solvers (e.g., uninterpreted functions, arrays, lists, and sets). For example, the
use of (relational) predicates would allow to model structured background infor-
mation, and possibly even refer to full-fledged relational databases from which
data injected in the net are taken, following the SMT-based approaches as in
[8,9]. Moreover, the background theory allows to express sophisticated cost
functions as in Definition 6 with the following parameters (inspired by [21]):
P=((b, α), (t, β)) = |{v ∈ write(t) | ¬R(α(v)), R(β(vw))}| if b = �(t), for some
relation R from a database DB: in this way, P= counts the number of written
variables whose values in the model run are stored in the relation R from DB
whereas their values in the log trace are not.

7 Conclusions

We have introduced CoCoMoT, a foundational framework equipped with a proof-
of-concept, feasible implementation for alignment-based conformance checking
of multi-perspective processes. Beside the several technical results provided in
the paper, the core contribution provided by CoCoMoT is to connect the area of
(multi-perspective) conformance checking with that of declarative problem solv-
ing via SMT. This comes with a great potential for homogeneously tackling a
plethora of related problems in a single framework with a solid theoretical basis
and several state-of-the-art algorithmic techniques, as shown in Sect. 6. While
in this paper we consider simple linear arithmetics for encoding cost functions
in SMT, more complex theories, as well as their combinations, can be consid-
ered, thanks to the generality offered by SMT techniques. For example, one can
capture more sophisticated cost functions involving background knowledge com-
ing from additional data sources (in line of [8]) or correctly addressing privacy
related aspects (when one typically needs to employ uninterpreted functions).
All this is left for future work, but motivate once again the use of SMT.
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