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Abstract. Artificial neural networks will always make a prediction, even
when completely uncertain and regardless of the consequences. This
obliviousness of uncertainty is a major obstacle towards their adoption
in practice. Techniques exist, however, to estimate the two major types
of uncertainty: model uncertainty and observation noise in the data.
Bayesian neural networks are theoretically well-founded models that can
learn the model uncertainty of their predictions. Minor modifications to
these models and their loss functions allow learning the observation noise
for individual samples as well. This paper is the first to apply these tech-
niques to predictive process monitoring. We found that they contribute
towards more accurate predictions and work quickly. However, their main
benefit resides with the uncertainty estimates themselves that allow the
separation of higher-quality from lower-quality predictions and the build-
ing of confidence intervals. This leads to many interesting applications,
enables an earlier adoption of prediction systems with smaller datasets
and fosters a better cooperation with humans.

Keywords: Process mining · Remaining time prediction · Bayesian
neural networks · Concrete dropout · Uncertainty · Heteroscedasticity ·
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1 Introduction

Modern information systems and data availability led to the acceleration of pro-
cess mining research and deployment of its algorithms in industry in recent years.
Process mining analyzes event data generated by such information systems with
the goal of process discovery, process conformance checking and process enhance-
ment. Predictive process monitoring is an important sub-field of process mining
and concerns predicting next events, process outcomes and remaining execution
times. Recent advances in machine learning propelled predictive process mon-
itoring to the next level and many researchers intensified the use of artificial
neural networks (NNs) for their predictions.

However, the adoption of these powerful and versatile NNs has not followed
suit in practice. Practitioners are reluctant to use NNs that cannot explain their
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predictions. A related, consequential problem is that NNs are unaware of the
uncertainty of their predictions. They will always make a prediction, even when
confronted with inputs they were never trained on. This can lead to potentially
expensive or even catastrophic mistakes. Uncertainty awareness would therefore
be a tremendous asset.

The uncertainty of predictions is the subject of this paper. Our core contribu-
tion is the introduction of NN-based uncertainty estimation techniques including
heteroscedasticity learning and loss attenuation, concrete dropout and Bayesian
neural networks (BNNs) to predictive process monitoring. We test their impact
on overall prediction quality, uncertainty estimation quality, and computational
time in a carefully designed experimental assessment using three public real-life
datasets. Furthermore, we shed light on the practical applications. We consider
the problem of remaining execution time prediction of ongoing processes which
is highly relevant in practice, as it allows management to stop or alter running
processes or initiate other actions. For example, an organization can inform its
customers about the expected feedback/fulfillment time for their requests/orders
and divert cases with long expected remaining times to a special track to speed
them up.

We define our learning problem and position this paper relative to other
work in Sect. 2. Section 3 explains two types of uncertainty before introduc-
ing techniques adapting plain-vanilla NNs to learn them. We then derive the
precise questions we seek to address with our experiments. Section 4 describes
the setup of these experiments, whose results are presented in Sect. 5. We sub-
sequently present applications enabled by the uncertainty estimates in Sect. 6
before summarizing our findings and formulating paths for future research in
the final Sect. 7.

2 Remaining Time Prediction: Definition and Related
Work

In predictive process monitoring, datasets are event logs describing processes,
often called cases. These cases consist of events. A number of attributes, also
called features or variables, describe these cases and events. In remaining time
prediction problems, every event is associated with a target feature describing the
remaining time until completion of the case. A prefix is an ongoing, incomplete
case, with the prefix length its number of completed events. Our learning problem
is to train a learner using a training dataset containing events, described by their
features and organized in prefixes that are labeled with targets, with the goal of
predicting the targets of unseen prefixes.

In 2008, the first published research on process remaining time prediction
[1] used non-parametric regressions, followed a few years later by [2] propos-
ing to build an annotated transition system. Later, increasingly sophisticated
approaches [3] deployed classic machine learning techniques such as support
vector regression and naive Bayes and included the events’ attributes other than
activity name and time into their calculations. Recently, long short-term memory
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models (LSTMs) entered the scene [4,5]. Such deep learning techniques permit
the substitution of automatic feature engineering for the error-prone, domain-
knowledge-based manual feature engineering of the classic machine learning tech-
niques. The authors of [6] provide an overview of papers until 2017. Our paper
further extends this line of research by complementing the point estimates of
these NN with predictions of the respective uncertainty. As such, we realize
our goal of not only improving the overall quality of these point estimates, but
also of unlocking many applications based on the knowledge of the predictions’
uncertainty.

3 Estimating Uncertainty

In the context of predicting with models, we can distinguish two kinds of uncer-
tainty [7]. The first, the epistemic (a.k.a. reducible) uncertainty expresses the
model’s uncertainty and finds its origin in the paucity of training data. Adding
more samples to the training dataset will reduce the epistemic uncertainty. The
first two graphs in Fig. 1 visualize two examples. The second type of uncertainty,
the aleatoric uncertainty is a measure for the observation noise of the underlying
distribution that generated the samples. It is often expressed as σ and will not
decrease by observing more data. Many models in practice assume the aleatoric
noise to be constant or homoscedastic (as in the third graph in Fig. 1). In reality,
heteroscedasticity (fourth graph in Fig. 1) is probably much more common: the
aleatoric noise varies across the domain.

Fig. 1. Examples of uncertainty types

3.1 Estimating Epistemic Uncertainty with Bayesian Neural
Networks

In regular, deterministic neural networks, the maximum likelihood estimate
(MLE) of a model H’s weights ω maximizes the probability p(Y |X,ω,H) of
the observed outcomes Y given corresponding inputs X. Prediction leads to a
point estimate y∗ = H(x∗,ω). Whilst good function approximators, (unregular-
ized) deterministic NNs are prone to overfitting, especially when dealing with
small training sets, and therefore struggle dealing with points x∗ far away from
the training data X. Deterministic models have no knowledge of their point
predictions’ uncertainty.
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The Bayesian approach is stochastic by nature: we look for the maximum a
posteriori (MAP) distribution of the weights ω given the training set [X, Y ],
that can be expressed using the Bayesian rule:

p(ω|X,Y ,H) =
p(Y |X,w,H).p(ω|H)

p(Y ,X)
or posterior =

likelihood x prior
evidence

Note that the likelihood equals the MLE problem above. To predict the outcome
for a given x∗, we marginalize the likelihood over ω, a process called inference
(H dropped to simplify notation):

p(y∗|x∗,X,Y ) =
∫

p(y∗|x∗,ω).p(ω|X,Y ).dω (1)

This is no longer a point estimate, but rather a distribution from which moments
(mean, variance, etc.) can be derived. These statistics provide both a point esti-
mate (mean) and a measure of the uncertainty of that estimate (variance), open-
ing a range of possibilities that will be the subject of this paper. Under certain
assumptions, there is an analytical solution to compute the posterior p(ω|X,Y )
[8] but it is prohibitively computationally-expensive, as would be Markov Chain
Monte Carlo sampling. Consequently, we resort to seeking a closed, approximate
function qθ(ω) over the same domain ω and parameterized by θ. This can be
achieved by minimizing the Kullback-Leibler (KL) divergence between the two
distributions:

min KL (qθ(ω)||p(ω|X,Y )) =
∫

qθ(ω).log
qθ(ω)

p(ω|X,Y )

After some mathematical manipulations, the minimization problem above is
equivalent to maximizing the evidence lower bound (ELBO):

ELBO = Eqθ(ω)log p(X,Y |ω) − KL (qθ(ω)||p(ω)) = 1 − 2 (2)

Maximizing 1 is the standard MLE approach with 2 acting as a regular-
izer keeping the approximative posterior qθ(ω) as closely as possible to the prior
p(ω). Unlike 2 , the (derivative of) 1 cannot be computed in closed form. Since
the density function qθ(ω) in ∂

∂θ

∫
qθ(ω)log p(X,Y |ω).dω itself depends on θ,

regular Monte Carlo (MC) integration is not feasible either. [9] proposes to use
the so called reparameterization trick [10] to solve ∂

∂θ

∫
qθ(ω)log p(X,Y |ω).dω.

It involves expressing ω as a deterministic function g(ε, θ) in which ε is a uncon-
ditional parameter, allowing to sample ε from N (0, I) rather than sampling
ω from qθ(ω). The above approach is called stochastic variational inference.
Often, a Gaussian distribution is placed over every weight ω in the network with
ω = g(ε, θ) = μ + σ.ε. This method has two serious drawbacks: it doubles the
number of parameters to be estimated (μ and σ instead of a single ω for every
node) and requires relatively complex coding.

Dropout [11] is a popular regularization technique to prevent NNs from over-
fitting. It resembles training a large number of networks in parallel by drop-
ping out, or randomly ignoring the outputs of nodes (including the network’s
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inputs) during training by multiplying each one by a parameter ε sampled from
a Bernoulli distribution with probability p. By simply transforming this stochas-
ticity from the feature space in the NNs’ dropout scenario to the weight space
in BNNs, maximizing ELBO equals minimizing the NNs’ dropout loss function
with an additional L2 regularizer [12]. We are, thus, able to use standard NNs
with easy-to-implement dropout regularization as BNNs, overcoming the draw-
backs aforementioned. Concrete dropout [13] eliminates the need for tuning the
dropout parameters pi (for each layer i) by automatically optimizing pi, replacing
the discrete Bernoulli distribution with a continuous relaxation (concrete distri-
bution relaxation [14]). In the traditional approach, dropout layers are placed
between the convolutional layers in CNNs and only after the inputs and the last
LSTM layer in LSTMs. This traditional approach leads to unsatisfying results.
In our BNNs (we used both LSTMs and CNNs, see Subsect. 3.3), we there-
fore applied dropout to the inner-product layers (kernels) [15] in CNNs and to
all eight weight matrices within the LSTM cells [16] which reduces overfitting
problems more successfully.

After training the model as described above, we proceed to inference or pre-
diction by using MC sampling again, performing T stochastic forward passes of
our trained model. The predictive mean of Eq. 1 is estimated by the predictive
mean of the MC samples:

Ep(y∗|x∗,X ,Y )[y∗] ≈ 1
T

∑
t

H(x∗, ω̂) (3)

with ω̂ indirectly sampled from qθ(ω) by sampling ε from N (0, I). The variance
is given by:

Varp(y∗|x∗,X ,Y )[y∗] ≈ σ2+
1
T

∑
t

H(x∗, ω̂)2−
(

1
T

∑
t

H(x∗, ω̂)

)2

= σ2+ 3 (4)

3 is the sample variance of the T stochastic forward passes and can be inter-
preted as the model’s or epistemic uncertainty. Adding more samples to the
training dataset will reduce it. Hence, BNNs enable the ability to gauge the
model’s uncertainty for every prediction made.

3.2 Estimating Heteroscedastic Aleatoric Uncertainty

The σ in the above Eq. 4 is the aleatoric uncertainty. As most models assume σ
to be constant, or homoscedastic, over the entire domain, they do not include
it in their loss functions (the last term in Eq. 5 is simply dropped). However,
learning an individual σn for each sample n would be valuable to better assess
the variance of our predictions in Eq. 4. This is achieved by doubling the last
dense layer in the model (unsupervised learning) [7]. By re-completing the loss
function (ignoring the regulation term) to include the learned σn:

L = min
1
N

∑ 1
2σ2

n

(yn − H(xn))2 +
1
2
log σ2

n (5)
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it becomes less sensitive to noisy data, as it will predict high uncertainty for poor
predictions and vice versa. This process is called loss attenuation and should lead
to better overall predictions. The second term in Eq. 5 ensures that the model
does not simply predict high uncertainty for every sample.

3.3 LSTM Vs. CNN

The techniques described above all depend on the underlying NNs. LSTMs [17]
have been the intuitive instrument of choice in predictive process monitoring
problems. An LSTM processes every sequence of events it is presented one time
step at a time. At any given time step, it will pass a vector containing information
about the current and previous time steps to the next time step, until reaching
the last one whose output is propagated to the next layer. In contrast, convo-
lutional neural networks (CNN) [18] work with fixed-sized, spatially-organized
data. A series of alternating convolution layers applying weight-sharing filters
and dimension-reducing pooling layers enables the models to automatically rec-
ognize patterns and extract features from the input data. These features are
then passed to a series of dense layers for the final regression. Interpreting time
as a spatial dimension, one-dimensional CNNs can be successfully applied to
sequence processing as well, as a growing body of research (e.g. [19]) points out.
This thesis is supported by [20] for the related case of process outcome predic-
tion. We, therefore, ran our experiments using both CNNs and LSTMs to gain
further insight into the applicability of both models.

3.4 Objectives

Equipped with this understanding, we can now translate our research goal of
investigating uncertainty for remaining time prediction into more detailed objec-
tives. First, we assess the effect on the overall quality of point estimates of the
following techniques (Subsect. 5.1):

1. Heteroscedasticity: Estimating the observation loss for individual samples
(σn) permits loss attenuation. Can it improve point estimates?

2. Dropout: BNNs resemble NNs with dropout regularization. What are the
merits of isolated dropout in a non-Bayesian context?

3. Concrete dropout: allows in-model estimating the dropout parameters pi.
How does it affect results?

4. BNN: Using the heteroscedastic NNs with concrete dropout, we apply MC
sampling (T stochastic forward passes) and average to calculate point esti-
mates (Eq. 3). Do we get better predictions?

5. CNN/LSTM/base case: We compare CNNs to LSTMs, as well as to a
baseline to get an intuition for the absolute performances.

From the theory, we expect each of the first four techniques to contribute to
better point estimates. CNNs should produce results at least at par with LSTMs.

Second, we investigate whether the uncertainty estimates’ succeed in separat-
ing good from bad predictions and in building reliable confidence intervals based
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on these uncertainty estimates (Subsect. 5.2) as is theoretically expected. Third
(Subsect. 5.3), we wish to gain insights in the computation time for training and
inference respectively. Finally, our fourth objective (Sect. 6) is to explore and
assess applications stemming from the knowledge of predictions’ uncertainties.

4 Experimental Setup

4.1 Datasets

We used three publicly available datasets from the BPI Challenges1. BPIC 20172

is a rich and large dataset containing logs of a loan application process at a
Dutch bank. BPIC 20193, while comparable in size, has much shorter cases and
concerns a purchase order handling process. BPIC 20204 is a collection of five
smaller datasets related to travel administration at a university. The five sub-
sets are records of processes covering international declaration documents (Intl.
Declarations), expense claims (Travel Costs), travel permits (Permits), pre-paid
travel costs and requests for payment (Payments) and domestic declaration doc-
uments (Domestic Declarations). Our target for all these datasets was defined
as the fractional number of days until case completion.

4.2 Preprocessing

To maintain a realistic setting, we refrained from filtering. Other than adding
a few synthetic features based on the event time stamps (e.g. event number,
elapsed time since previous event, day of the week, ...), we did not apply any
domain knowledge whatsoever to our approach. The chronologically 15% last
starting cases (10% for BPIC 2020) were withheld as a test dataset. Since the
duration of a case is only known at its end (when the process is finished), we
deleted all cases from the remaining training set that ended after the start of the
first test dataset case5. This left us with approximately two thirds of the original
cases for BPIC 2017 and BPIC 2019. Given the shorter recording time frame for
BPIC 2020, this approach drastically reduced the number of samples for training,
especially where cases take longer (Intl. Declarations is only left with 57 events
from five cases in the training set). With longer cases (with more deviations)
and more levels for the categorical variables, BPIC 2017 differs significantly from
BPIC 2019. To add further variety, we worked with more features in BPIC 2017
(10) than in BPIC 2019 (5). To observe how results depend on the training set
size, we performed our experiments on different shares of the available training

1 https://data.4tu.nl (4TU Centre for Research Data).
2 https://data.4tu.nl/articles/dataset/BPI Challenge 2017/12696884.
3 https://data.4tu.nl/articles/dataset/BPI Challenge 2019/12715853.
4 https://data.4tu.nl/collections/BPI Challenge 2020/5065541.
5 A theoretical possibility of data leakage remains. In reality, some case variables such

as “Amount” are possibly unknown at the beginning of the case, even though every
event log has a value for them.

https://data.4tu.nl
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
https://data.4tu.nl/articles/dataset/BPI_Challenge_2019/12715853
https://data.4tu.nl/collections/BPI_Challenge_2020/5065541
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samples for both large datasets (keeping the same test sets), ranging from 0.1%
to 100%. Table 1 shows the respective datasets’ key statistics and illustrates their
differences.

Table 1. Statistics of the used datasets.

Dataset Avg. case

length

Share of

events used

Training

events

Validation

events

Test

events

Range

features

Categorical

features

Levels

BPIC 2017 38.5 .001 629 220 181, 189 5 5 113

.002 1,286 363

... ... ...

.5 327,959 79,190

1 655,271 159,306

BPIC 2019 5.2 .001 625 192 162, 753 3 2 18

.002 1,263 341

... ... ...

.5 328,994 85,622

1 657,187 171,724

Intl. declarations 29.6 1 57 20 4, 416 3 3 18

Travel costs 7.7 1 1,706 412 1, 652 5 9 74

Permits 10.0 1 8,030 2,132 6, 537 5 9 94

Payments 5.3 1 21,049 5,743 3, 746 4 8 107

Domestic declarations 8.1 1 23,434 6,216 3, 533 4 6 66

Range features were standardized. The number of levels of categorical vari-
ables was not clipped (non-frequent labels may be a reason for uncertain esti-
mates). The labels were mapped to integers that were then passed to an embed-
ding layer in the neural networks. All possible prefixes were derived from the
cases and then standardized to a pre-determined sequence length by padding
the shorter and truncating the longer ones. All experiments were coded in
Python/Pytorch and ran on a desktop with a 3.50 Ghz CPU, 64 Gb of RAM
and GeForce 1080 GPU. Our code is published on GitHub6 for reproducibility.
The metric used was the mean absolute error (MAE).

4.3 Estimating the Epistemic, Aleatoric and Total Uncertainty

In the case of BNNs, we performed T = 50 stochastic forward passes (MC
sampling) for every prefix in the test set, each time with a different mask over
the weights, by sampling a different ε for every ω at every run (as per Eq. 3).
The final predictions are the averages over these 50 samples, discussed in Sect. 5.
Using their variance, we calculated the model’s uncertainty, i.e. the epistemic
uncertainty, for every prediction in the test set using 3 in Eq. 4. Moreover,
we computed the per-point aleatoric uncertainty in an additional final dense
layer in the models and included it in the loss function as in Eq. 5. We added
together both types of uncertainty to calculate the total uncertainties used in
Subsect. 5.2 and Sect. 6. All predictions in the following are averages of 20 runs
of the respective models.

6 https://github.com/hansweytjens/uncertainty-remaining time.

https://github.com/hansweytjens/uncertainty-remaining_time
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4.4 Base Case

Despite the widespread use of public datasets in predictive process monitoring,
assessing the quality of different methods remains hard as the filtering of the
datasets, other preprocessing steps, model architectures, etc. are far from uni-
form across papers. Furthermore, the metrics used allow for comparisons of the
methods within a paper but fail to convey an intuition about their absolute mer-
its. To remedy the latter, we included the transition system-based method [2] as
a baseline in our experiments.

5 Results

5.1 Overall Performance

We investigated whether the techniques in Subsect. 3.4 contribute to achieving
more accurate point estimates. The results are summarized in Fig. 2 in which
every row pertains to a dataset (BPIC 2017, BPIC 2019, BPIC 2020 respec-
tively). Every column compares two or more techniques and will be discussed in
the five following subsections. The horizontal axis in the graphs for BPIC 2017
and BPIC 2019 represents the share of the available training set that was used
for training, ranked from small to large. In the last row, however, it is the five
sub-datasets that are ranked from small to large. The vertical axis represents
the models’ MAE, with the scale being shared throughout the respective rows.
Note that we normalized the MAE in the last row, with the respective base cases
equal to one.

Loss Attenuation Inconclusive (Fig. 2: Column 1). We found no evidence
in our experiments for the theoretically-derived hypothesis that learning the het-
eroscedastic uncertainty and using it by introducing loss attenuation (Eq. 5) in
the loss functions leads to more accurate predictions. The black lines in Fig. 2
represent the plain-vanilla NNs, whereas the cyan lines stand for models includ-
ing the technique. Results on BPIC 2017 and BPIC 2020 significantly worsened.
Only in the case of BPIC 2019 did the technique lower MAE. Two effects could
explain that. First, the added complexity may require larger datasets. Second,
for datasets with rather homoscedastic aleatoric noise, or datasets with a rather
randomly distributed heteroscedastic aleatoric noise, one cannot expect superior
results from introducing loss attenuation. We did not further investigate this
matter. Nevertheless, learning heteroscedastic uncertainty is indispensable for
judging the quality of predictions. We will treat this in Subsect. 5.2.
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Fig. 2. Overall results on complete test sets. no DO: no dropout = plain-vanilla NN,
HS: heteroscedastic, DO 5%: 5% dropout probability, C DO: concrete dropout, Bayes:
BNN. Rows show three datasets, stepwise different techniques in columns. BPIC 2020
results normalized with base case = 1.
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Dropout Effectively Combats Overfitting (Fig. 2: Column 2). The het-
eroscedastic models are again represented by the cyan lines in column 2. They
already included an early-stopping mechanism. But, since the validation sets
were in certain cases very small, and some concept drift may exist in the datasets,
some overfitting still happened. In line with expectations, the dropout mecha-
nism (orange lines) successfully further reduced overfitting on practically all
datasets and training set sizes.

Concrete Dropout Works for Medium to Large Datasets (Fig. 2: Col-
umn 3). When comparing classic dropout with a fixed dropout parameter
(orange lines) to concrete dropout (blue lines), our experiments suggest that,
for some very small to small datasets (BPIC 2019 < 1%, BPIC 2020), con-
crete dropout negatively affects the overall quality of the predictions. For all
other datasets, concrete dropout appeared to work or even improve results as
expected. The use of concrete dropout also eliminates the need for the expensive
optimization of the dropout parameter(s) p(i) that requires part of the training
set to be set aside as a validation set.

Bayesian Learning Improves Results for Very Small Datasets (Fig.
2: Column 4). Until now, we used deterministic NNs to arrive at such mod-
els using concrete dropout (blue lines). In column 4, we introduce stochastic
NNs in the form of BNNs (green lines), that predict distributions of which the
arithmetic averages yield point estimates. BPIC 2017 and especially BPIC 2020
support the claim that BNNs produce superior results for smaller datasets. For
larger datasets, the effect is negligible, possibly slightly negative. As explained
in Sect. 3, the variance of the produced distributions can be interpreted as a
measure for the models’ (epistemic) uncertainty, a property we use below. As
mentioned in Sect. 3, BNNs by default add L2 regularization to the dropout
models. Since the combination of these regularization techniques (in our case
even with early-stopping on top) makes these models so robust to overfitting, it
is recommended to build models with large capacity to avoid underspecification
and train them sufficiently long.

CNNs Outperform LSTMs, BNNs Outperform the Base Cases (Fig.
2: Column 5). The models in columns 1–4 were all CNNs. When comparing the
last one (BNN, full green line) with an otherwise identical LSTM model (dotted
green line), it becomes apparent that the CNNs nearly always outperformed
the LSTMs. Of course, the chosen architectures (number of layers, nodes, etc.)
influenced these outcomes, but the results support similar findings in [19,20].
Unless otherwise mentioned, we will use these heteroscedastic Bayesian CNNs
with concrete dropout in the remainder of this paper and simply refer to them
as BNN. With the exception of shares of less than 2% of the BPIC 2017 dataset
and of the BPIC 2019 Permits dataset, the BNNs outperformed the base cases.
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5.2 Uncertainty Estimates

We analyze the quality of the total uncertainty estimates, focusing on their
correlation with the quality of the predictions and on the reliability of confidence
intervals based on them.

Certainty of Predictions Correlates Strongly with Accuracy. We ranked
the predictions in the test set and then retained different shares of the predictions
while rejecting the others for different uncertainty thresholds (100%, 75%, 50%,
25%, 10%, 5% best). Figure 3 shows how well this worked for all datasets and
dataset sizes: higher uncertainty led to worse predictions, without fail. Unfortu-
nately, the quality of the uncertainty estimates suffered together with the quality
of the predictions when datasets became too small, thus also reducing the possi-
bility to separate good from bad predictions as can be witnessed at the left end
of the graphs in Fig. 3.

Fig. 3. We ranked the samples in the test sets based on the sum of the predicted epis-
temic and aleatoric uncertainties. In all three datasets, we observe lower MAE (better
predictions) for lower levels of uncertainty. We used BNNs with concrete dropout and
heteroscedasticity.
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Predictions with Confidence Intervals. To build a confidence interval
around a point estimate, the product of a so called critical value (z∗ in statis-
tics) and the uncertainty is added/subtracted to/from that point estimate to
determine the upper/lower bound of the confidence interval. For each desired
confidence level (50%, 75%, 90%, 95%, 99%) we computed the required critical
value based on the last 5,000 samples in the training set. Since the BPIC 2017
dataset exhibits drift (changes over time), it did not suffice to determine these
critical values only once: they had to be calculated online, as can be seen in the
left part of Fig. 4. In the right part of Fig. 4, the real shares of true values in
the respective confidence intervals are shown. They oscillate around their ideal
values (horizontal lines), proving their reliability.

Fig. 4. Left: critical values for confidence levels of 50%, 75%, 90%, 95% and 99%
computed on 5,000 preceding samples every 1,000th sample in the test set. Right:
Corresponding share of true values in following 5,000 samples within the confidence
interval. Dataset is BPIC 2017 (complete).

5.3 Computation Time

BNNs Train and Predict Relatively Fast. To gain an insight in the com-
putation time of BNNs, we disabled the early stopping mechanism and trained
the models for 20 epochs on the complete BPIC 2017 training set. Training
the BNNs took around 335 s, approximately 38% more than the corresponding
plain-vanilla deterministic models’ 242 s. As inference requires MC sampling (we
performed 50 MC forward passes), BNN predictions took longer (32 vs 0.65 s
for all 181,189 test set points). Whilst in most settings the inference time is
low enough to ignore, this may not be the case in certain online environments
requiring near-instantaneous decisions.

Compared to plain-vanilla, deterministic models, the BNNs’ hyperparameter
space is definitely of a lower dimensionality. There is no need to determine values
for the dropout parameter(s) pi (assuming concrete dropout), model size (we can
safely use large-capacity BNNs), number of epochs trained, etc. This may turn
their small speed disadvantage into a considerable advantage.
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CNNs Outspeed LSTMs. As already observed in previous work [20],
CNNs train nearly an order of magnitude faster than LSTMs requiring non-
parallelizable sequential calculations. The custom coding to implement dropout
within the LSTM cells prevented us from using the very efficient standard
PyTorch neural network libraries we used for the CNNs. As a result, our LSTM
models slowed down even further and kept us from publishing a fair speed com-
parison in our specific setting.

6 Applications of Uncertainty

The knowledge of a prediction’s quality opens the door to useful practical
applications:

Higher Accuracy and Acceptance of Prediction Systems. The previous
section demonstrated how the techniques we introduced will generally lead to
more accurate overall predictions. However, a yet much higher accuracy can
be reached by concentrating on the most certain predictions. An organization
requiring a given accuracy threshold can now deploy a prediction system that
does not reach that threshold overall but that is aware which of its predictions are
expected to surpass it. Predictions that do not reach the (un)certainty threshold
can be ignored or passed to humans or another system. In summary, not only can
models produce better predictions, but they will also flag potentially incorrect,
absurd or even dangerous predictions.

Improved Human-Machine Symbiosis. The ability to isolate inaccurate
predictions permits two-track systems. Cases with good predictions remain on
the automated track. Cases with predictions below an uncertainty threshold are
passed to the human track. These latter cases will generally be the hardest to
solve, more irregular, more interesting ones which could lead to more satisfying
work for the involved humans and a better leverage of their cognitive faculties.

Working with Smaller Datasets: Earlier Adoption of Prediction Sys-
tems. As Figs. 2 and 3 show, the lack of data often leads to underperforming
predictions systems. Organizations will not deploy them or delay their adoption
until they feel their dataset is large enough. This may lead to a competitive dis-
advantage in this digital era requiring rapid innovations, speedy implementation
and constant learning where waiting for perfection is no longer an option. The
ability to identify predictions that meet a pre-set uncertainty threshold allows for
a much faster adoption of prediction systems. Originally, only a relatively small
share of the best predictions is actually used. But as the dataset grows, that
share continually increases. During this phase-in period, the organization will
gain invaluable information to further improve its systems and data collection
otherwise lost when remaining on the sidelines.
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Uncertainty-Based Analysis. The estimates of the predictions’ uncertainty
enables further analysis. For example, as in Fig. 5, we can plot the test set
uncertainty in function of the prefix length and the real number of remaining
days (unknown to the model). Given their high aleatoric uncertainty, the model
is rightfully very uncertain about the prefixes of length one (first column). The
model clearly gains in confidence when prefixes get longer, at least for the most
common remaining time lengths (lower than 4 days, lowest four rows). When
prefixes start getting longer than six events, the model becomes increasingly
wary of its predictions again. Indeed, parts of the domain with fewer samples
(e.g. prefix length > six events, real remaining time > 50 days) should have
a higher epistemic, and hence total uncertainty. Outliers, such as the confident
predictions of prefixes with length five or those in the second row (10–19 days) of
prefix length one, deserve closer attention and may lead to interesting insights.
Of course, the uncertainty can be plotted against any other feature as well. A
detailed analysis falls outside this paper’s scope.

Fig. 5. BPIC 2019, 20% of training set: Uncertainty (blue = low, red = high) in function
of prefix length and real number of remaining days. Grey bars indicate frequency of
occurence. Prefix length cut of at 10, corresponding to >99% of samples in test set.
(Color figure online)
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7 Conclusion and Future Work

The stochastic Bayesian approach leads neural networks to predict distributions
rather than point estimates. These distributions can be used both to derive more
precise point estimates (mean) and to estimate the model’s epistemic uncertainty
(variance). It can be proven that BNNs are nearly identical to deterministic NNs
with dropout, which makes them easy to implement. Concrete dropout ren-
ders optimizing the dropout parameters pi obsolete. A dataset’s heteroscedastic
aleatoric noise can be learned in-model by means of a simple modification to the
model and its loss function (loss attenuation). Whilst inconclusive on the benefits
of loss attenuation, this paper shows how dropout, concrete dropout and BNNs
generally contribute to more accurate remaining time predictions. CNNs prove
to work better and faster than LSTMs. Not all of these techniques work well on
all datasets: small datasets pose problems for concrete dropout while they bene-
fit from the Bayesian models that themselves add no value with larger datasets.
The presented techniques require little extra coding, learn nearly as fast and
are less data-hungry than corresponding regular neural networks. Rather than
improving overall accuracy, however, the main benefits of learning uncertainty
reside with the new options this knowledge enables. Users can set thresholds
to retain those predictions that meet any required accuracy, build confidence
intervals around predictions, divide cases between computers and humans in a
clever way, adopt prediction models earlier before huge datasets are collected,
gain additional insights e.g. in the search for anomalies, etc. We hope that the
techniques we proposed help remove some of the barriers that slow down or pre-
vent the adoption of neural networks and could help to extract more value from
information systems.

This new field of research can be extended in a variety of ways. First, the
validity of our results should be tested on a diverse range of datasets to reach
more general conclusions. Also other predictive process monitoring regression
and classification problems are logical extensions. Dropout is not the only option
to implement variational inference, other methods could be tested as well and
may have other characteristics. We also believe that the knowledge of uncer-
tainties can lead to more applications than the ones here presented. As we only
concentrated on the total uncertainty, evaluating the respective merits of epis-
temic and aleatoric uncertainty constitutes another path for future research.
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