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Abstract. Next-activity prediction methods for business processes are
always introduced in a static setting, implying a single training phase
followed by the application of the learned model during the test phase.
Real-life processes, however, are often dynamic and prone to changes over
time. Therefore, all state-of-the-art methods need regular retraining on
new data to be kept up to date. It is, however, not straightforward to
determine when to retrain nor what data to use; for instance, should all
historic data be included or only new data? Updating models that still
perform at an acceptable level wastes a potentially large amount of com-
putational resources while postponing an update too much will deterio-
rate model performance. In this paper, we present incremental learning
strategies for updating these existing models that do not require fully
retraining them, hence reducing the number of computational resources
needed while still maintaining a more consistent and correct view of
the process in its current form. We introduce a basic neural network
method consisting of a single dense layer. This architecture makes it eas-
ier to perform fast updates to the model and enables us to perform more
experiments. We investigate the differences between our proposed incre-
mental approaches. Experiments performed with a prototype on real-life
data show that these update strategies are a promising way forward to
further increase the power and usability of state-of-the-art methods.

Keywords: Business process · Event prediction · Incremental
learning · Neural networks · Dynamic Bayesian Network

1 Introduction

Predictive process monitoring uses historical data to predict several aspects of
ongoing business processes, such as remaining time prediction, outcome predic-
tion, and next-activity prediction. Recently proposed next-activity prediction
methods always assume a static setting, where we divide the datasets into fixed
training and test parts. One important aspect of Business Processes, however,
is that they are inherently dynamic and that different time periods in the log
can have different characteristics. Although some authors propose to retrain the
model regularly to incorporate the changes in the data, this might not be the
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most efficient way of updating a model in terms of both runtime and accuracy.
Furthermore, no method describes which events to use to retrain the model. It
can be beneficial not to use all available historical events as they are no longer
relevant for future activities, due to drifts in the processes [4]. No state-of-the-
art method proposes how to perform these updates or has been evaluated under
these dynamic circumstances.

In this paper, we explore different strategies that can be used for incremental
learning of next-activity prediction models. Ranging from completely retraining
the models for every new batch of data to only using the newly arrived data to
update the existing model. These update strategies can shed new light on the
performance of the different methods, as not all methods are equally well suited
to be adapted for a dynamic environment.

It is important to note that the strategies proposed in this paper apply to
a variety of existing methods, especially neural networks. We aim at showing
that the update strategies have significant benefits in a dynamic environment
without specifying which of the described models is better.

To visualize the performance over time (with more or less data used for train-
ing/updating) we propose a graphical representation of the average accuracy on
a given time within a given window. This sliding window technique gives an
accurate view of how the predictive performance of the models changes over
time.

We show that some incremental methods outperform the completely
retrained models despite the catastrophic forgetting [26] property of neural net-
works. Which is the phenomenon when a neural network forgets and ignores the
original input when retraining the model with new data. This phenomenon is
often a potential risk when updating neural networks. However, we can lever-
age catastrophic forgetting to gradually forget older, less relevant, events in the
presence of concept drift.

Because we needed a lightweight neural network for our initial experiments,
we created a basic neural network architecture that consists of a single dense
layer. During the experiments, we show that this new architecture (which
requires only a limited amount of computational resources) performs on par
or outperforms the selected more complex state-of-the-art architectures.

The contributions of our paper are the following:

1. We introduce a simple, but accurate, neural network architecture for next-
activity prediction.

2. We compare different update strategies in terms of accuracy and runtime.

The next section gives an overview of related work on incremental learning,
concept drift and predictive process monitoring and positions our paper within
the field of incremental predictive process monitoring. Section 3 explains the
different strategies that can be used for updating. In Sect. 4 we introduce our
basic neural network architecture. Experiments on all possible update strategies
are performed in Sect. 5.
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2 Related Work

2.1 Predictive Process Monitoring

Predictive Process Monitoring aims at correctly predicting various aspects of
running business processes. Existing methods deal with predicting the remaining
time [1], the outcome [30] or the next activity [27,33] of a running case. In this
paper, we focus on predicting the next activity in a running case.

In recent years different types of models are proposed to predict the next
activity in a business process. With neural networks becoming extremely popu-
lar, lots of new methods are proposed every year.

The first type of network uses a Long-Short-Term-Memory (LSTM) archi-
tecture. This type of model is capable of learning the behavior of a sequence of
events (hence the memory). Recent methods using this technique are proposed
by Evermann et al. [15], Tax et al. [28], Lin et al. [18] and Camargo et al. [7].

The LSTM architecture has also been used in combination with Generative
Adversarial Networks by Taymouri et al. [29]. In this type of model, the network
exists out of two parts: the first part tries to predict the best activity as well
as possible, while the other tries to divide the real activities that happened
from the predicted ones. Both parts of the model are trying to outperform the
other. In this way, the predictive model gets more accurate feedback about its
performance.

LSTM models, however, require significant training time. To address this
performance issue posed by the LSTM models, Convolutional Neural Networks
(CNNs) were proposed. They also can incorporate the sequential nature of a
business process but can train more efficiently. Methods using the CNN archi-
tecture have been proposed by Di Mauro et al. [8] and Pasquadibisceglie et al.
[22,23].

Pauwels et al. [24] propose to build models using Dynamic Bayesian Networks
(DBN). This method is based on techniques in which the data is preprocessed
so that it incorporates the time aspect of an event log. The DBN model learns
different dependencies between attributes (from both the control-flow and data
perspective) that are present in the data and depict the conditional probability
of a certain activity happening, given a certain history of events. The activity in
the current timestep can depend on every attribute in a previous time step in
the k-context log.

2.2 Concept Drift Detection

Concept drift in process mining is well described by Bose
et al. [4]. Bose et al. show that concept drift can occur in all perspectives (control-
flow, data, resource) and that different types of drift exist, each of which may
require a different approach to deal with it. In their paper, Bose et al. focus
on detecting the drift points. A disadvantage of this technique is, however, that
drifts are only detected after they occurred, leading to a delay in the ability to
update existing models.
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To detect drifts, Bose et al. propose a sliding window approach. This win-
dow is divided into two sub-windows which we want to compare to each other
to determine if drift has occurred between the two windows. The characteriza-
tion of changes between windows is done using a statistical test, such as the
Kolmogorov-Smirnov test, the Mann-Whitney U test, or the Hotelling T 2 test.

2.3 Incremental Learning Algorithms

Different applications exist that make use of the dynamic nature of business
processes. Some of these applications which are adapted for use in an online
setting are: business process discovery [6], conformance checking [5] and concept
drift detection [21].

Learning in a setting in which data changes its nature and characteristics over
time is a known and well-studied problem within machine learning [17,25]. A
popular solution is to use a sliding window to move over the data that indicates
which data to use for building a model at a particular moment. One of the
downsides of such a sliding window is that they are often of a fixed size, which is
determined a priori by the user. This can lead to window sizes that are too big,
and thus too insensitive for changes, or too small, in which case too many changes
are detected. The correct window size depends on the data itself, and can also
vary over time. Therefore, Bifet and Gavalda proposed a learning technique that
uses an adaptive window size (ADWIN) [3]. On the one hand, when the data is
stationary the window size grows, and on the other, the window size shrinks when
changes are detected. In contrast to other proposed adaptive methods, Bifet and
Gavalda show that the performance of their adaptive window is guaranteed by
providing bounds on the false positive and false negative rates.

Another application of incremental learning algorithms is when the data
arrives in the form of a data stream in which the compute resources are not
able to keep all the arrived data in memory. Hoeffding trees, as proposed by
Domingos and Hulten [11], are incremental decision trees that are learned from
a massive data stream. This method does, however, assume that the distribution
generating the arriving samples does not change over time. Hoeffding trees can
be learned in a constant time proportional to the number of attributes.

Gama et al. [16] consider concept drift as described by Bose et al. but propose
the use of different incremental algorithms to deal with these changes. This
incremental learning overcomes, by constantly updating the learned models, the
issue of concept drift often being unexpected and unpredictable. Incremental
learning is thus able to update the model in a timely manner, well ahead of
models using a concept drift detection method. We continue some of the ideas
presented in this work and further elevate them for use with neural networks and
next-activity prediction. Gama et al. indicate that besides the types proposed by
Bose et al., also outliers may occur in the data. These outliers do not follow the
general behavior and should be ignored, rather than incorporated in the model.

Also for neural networks, the task of incrementally learning has already been
studied [20,26]. These studies show a typical behavior that occurs when updating
existing neural networks called catastrophic forgetting. Catastrophic forgetting
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occurs when a neural network loses the information it learned in previous itera-
tions after new data was used to update the model. Often this forgetting poses
significant challenges when updating an existing model, as knowledge learned
during the first training phases needs to be remembered. When looking at the
dynamic nature of Business Processes, however, we can employ this catastrophic
forgetting to our benefit as a natural way of updating the model, while gradually
forgetting details of the obsolete distribution.

2.4 Incremental Predictive Process Monitoring

Maisenbacher et al. [19] and Di Francescomarino et al. [9] use the above-
mentioned incremental learning algorithms to create incremental models that
can predict the outcome of a running case. The main focus of their work is using
incremental classifiers that can classify ongoing traces based on their predicted
outcome. Maisenbacher et al. look at different existing approaches, like the ones
described above, and explore the performances of these approaches when applied
to business processes. Di Francescomarino et al. focus on a clustered-based and
index-based technique to predict the outcome for an ongoing trace. One of the
disadvantages of their work is that they do not show if existing methods could be
adapted to incorporate the incremental learning aspect. Their work does indicate
the potential benefit of incremental learning in predictive process monitoring.

Berti et al. [2] propose a method for remaining time prediction that can
deal with concept drift in the data, by only training on the relevant part of
the data that correctly behaves according to the current business process. One
disadvantage of their approach is that they need existing concept drift detection
methods (like the one proposed by Bose et al.). Knowing which intervals behave
in a static way they propose to use distance functions between an ongoing trace
and the traces present in the current static interval. Using this distance function
they calculate the reliability of a trace in the context of predicting the remaining
time for an ongoing trace. In contrast to the approach proposed by Maisenbacher
et al., Berti et al. require some a priori knowledge about the different drifts
present in the data, making it less suitable for online use.

3 Update Strategies

Different strategies exist that deal with the presence of drifts in the data. We
divide them into two main categories; the first category trains a new model
(reset), the second category updates the existing model (update). In the remain-
der of this paper, we use learning to either indicate reset or update. Next, we
take a look at how we can select the data used for learning the model.

3.1 Data Selection

Relearning a model after every event is both infeasible and unnecessary. There-
fore we divide the event log into windows of a certain size. These windows can
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be divided by specifying the number of events per window, or by specifying a
time interval for every window (days, weeks, months, . . . ). A log consists of an
ordered list of windows w0, w1, . . . , wn where wt is the window arrived at time t
and n the latest time present in the log. We have for wi and wj with i < j that
all events in window wi occurred before all event in window wj .

Using these windows we can define three different strategies to determine
which data to use for learning a model. The first strategy uses all historical data
to learn the model (w0, w1, . . ., wt−1). The next strategy only takes a limited,
fixed amount of the immediate history (windows) into account (wt−�, wt−�+1,
. . ., wt−1 with � the number of windows to consider). The last method retrains
its model when a drift occurred and updates the model after every window with
all windows starting from the last drift point up to the current window (wdt

,
wdt+1, . . ., wt−1 with dt the time of the latest detected drift).

We can combine all strategies with both the reset and update methods. This
leads to six different options for incremental predictive models. The options using
the reset strategy can be used straightforwardly with existing methods. When
using the update options, existing approaches possibly need extra adaptation.

In this paper, we consider both neural net methods and Dynamic Bayesian
Networks. Both these types of methods are already learned in an iterative pro-
cess, and can thus easily be extended to our incremental approach. Every iter-
ation during training results in a (slightly) adapted model. When, according to
a selected loss function, this model performs better than the previous one, we
keep this model to start the next iteration with. Updating these models thus only
implies that we have to perform extra iterations on the existing model using our
updated data.

3.2 Update Existing Methods

In this section, we describe in more detail how the incremental aspect can be
added to both neural networks and dynamic bayesian networks based on how
these models are learned from data.

Drift-Based Predictions. We use the method proposed by [4] to detect drifts
present in the data. To update the model, we retrain the model after every batch
using all available data starting from the last seen drift until the most recent
used batch of events.

Incremental Neural Networks. Training a neural network is an iterative
procedure that tries to optimize a certain model score. This score indicates how
accurate the current model is for predicting events (validates the model). Neural
network learners use a subset of events from the training data for this validation
and the remaining events for actually updating the parameters of the model.

Using new data for updating the model causes the model to diverge from
what it originally learned, as it is now validating using new data. Therefore, the
model can potentially be less optimal for the original data that was used for
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the initial training. This is the typical catastrophic forgetting phenomenon that
occurs when updating a neural network. For a dataset that contains drift, this
is, however, a positive feature rather than a weakness.

As all considered neural network methods train their model in the same way,
we can use this incremental method on every proposed neural network model
such as the Single Dense Layer (SDL), LSTM, and CNN based methods.

Incremental Dynamic Bayesian Networks. Dynamic Bayesian Networks
consist of a model structure and model parameters. Both the structure and
parameters are learned from data, and can thus both be updated separately.

The structure of a DBN describes the conditional dependencies between
attributes in the data. We learn the model using a hill-climbing algorithm, where
we perform iterations of adding or removing dependencies as long as these actions
improve the model score. To update the structure we run this algorithm on the
existing model. While improvements can be made to the structure, the algorithm
will continue to perform iterations.

The parameters of the DBN describe the conditional probabilities for all
attributes, and can be calculated as follows:

P (A|Pa(A)) =
P (A ∩ Pa(A))

P (Pa(A))
(1)

Where Pa(A) are the attributes on which A depends.
To easily being able to compute these probabilities, we create an inverted

index for every attribute. Instead of keeping track of the different values that
occur in a single row, we keep track of the rows in which a certain value occurs.
Due to this inverted index, the DBN method is very suitable for an incremental
setting.

Example 1. Consider the event log as shown in Table 1a. We can create an
inverted index for the attributes Activity, Role, and Department by listing for
every value of the attributes in which event they occur using the event ID. The
inverted indexes are shown in Tables 1b, c, and d.

For calculating a conditional probability we can use set operations when
dealing with categorical values only:

P (Act = A|Role = r1,Dept = d0) =
P (Act = A,Role = r1,Dept = d0)

P (Role = r1,Dept = d0)
(2)

=
#({0} ∩ {0, 1} ∩ {0, 1, 3})

#({0, 1} ∩ {0, 1, 3})
=

1
2

(3)

To further improve our implementation we can only keep track of the counts
we need in Eq. 3. To update the model, we increment the values that correspond
with the combinations of the nominator and denominator.



130 S. Pauwels and T. Calders

Table 1. Example log with extra attributes Role and Department (a) and the inverted
indexes for Activity (b), Role (c) and Department (d).

eventID Activity Role Department

0 A r1 d0

1 B r1 d0

2 C r2 d1

3 B r2 d0

(a)

Value IDs

A {0}
B {1,3}
C {2}

(b)

Value IDs

r1 {0,1}
r2 {2,3}

(c)

Value IDs

d0 {0,1,3}
d1 {2}

(d)

4 Reference Model: Single Dense Layer (SDL)

Incrementally updating existing models adds a level of complexity and cost. To
reduce the overall cost of learning and updating the models we propose a neural
network with a single dense layer for predicting the next event. We did not find
any paper exploring the use of simple NNs with only dense layers, without the
need of using Petri Nets as intermediate structure [31]. As we show in Sect. 5,
such a shallow fully-connected network benefits from low runtimes and high
accuracy both in an incremental and non-incremental situation.

We use a prefix-based approach, as this kind of approach captures the sequen-
tial nature of the event logs, while at the same time giving an easy, flattened
data structure. The SDL network consists of a layer of input cells, corresponding
to the number of history steps and the number of attributes used. The selection
of these attributes depends on the data used and can vary significantly between
datasets. We encode the data using an encoding layer, which encodes the data
using one-hot encoding. In the case of numeric attributes, we do not have to
encode the values and can use them as-is. These cells are then concatenated
before they are linked with a dense layer with as many cells as there are activi-
ties and a dropout of 0.2, as proposed by other methods. As the output layer, we
use a softmax layer, ensuring that the network returns a probability distribution
over all possible events. All input cells i0, i1, . . . , in represent the activities and
extra attributes present in the entire prefix. We thus have n = |A| ∗k input cells
in the network, with A the set of all considered attributes (from both activity
and data perspective), and k the size of the history taken into account. The cells
e0, e1, . . . , en create a integer encoding of the attributes.

Example 2. Suppose we have an event log containing both the activity and
resource executing the activity. If we want to create a model with prefix size
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Fig. 1. Example SDL network that takes 3 previous time steps into account from both
the activity and resource attribute.

k = 3, we have the following input cells: i0, i1, i2, i3, i4, i5. Where i0, i2, i4 repre-
sent the activities and i1, i3, i5 the resources for the 3 time steps in the prefix.
A visual overview of the resulting network can be found in Fig. 1.

5 Experiments

To test the different update strategies we selected 4 methods, each using a dif-
ferent type of model. These methods were selected based on their diversity to
cover a wide variety of state-of-the-art methods with shown performance [24].
For this study we use the following methods:

– Dynamic Bayesian Networks (DBN): Pauwels et al. [24]
– Single Dense Layer NN (SDL)
– Long-Short-Term-Memory NN (LSTM): Tax et al. [28]
– Convolutional Neural Network (CNN): Di Mauro et al. [10]

In the first place, we are interested in how the accuracy of the different meth-
ods changes over time. We define accuracy as the portion of correctly predicted
activities. For this purpose, we use a sliding window of fixed size for which we
calculate the accuracy obtained within this window. We then use a graphical
representation with the event index (in chronological order) on the X-axis and
the window accuracy on the Y-axis. This accuracy-plot gives us an easy tool to
compare different methods and see how the accuracy changes over time. We can
use these graphs to see if the tested model does suffer from drifts in the data
and if it can recover from changes.

As described in Sect. 3, first a batch size has to be determined that indicates
the frequency of performing an update to the model. In our study we tested three
different ways of dividing the data into batches; by day, week, or month. Pre-
liminary tests show only minor differences between these batch sizes. Therefore,
we decided to use monthly batches for our experiments.
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Table 2. Overview of the different datasets. Including the number of days, weeks and
month in the train and test parts used.

Dataset Train Test

#cases #events #activities #days #weeks #months #days #weeks #months

Helpdesk 4,580 21,348 14 623 97 23 683 112 27

BPIC11 1,143 150,291 624 622 90 21 550 79 19

BPIC12 13,087 262,200 36 87 14 3 80 12 4

BPIC15 1 1,199 52,217 398 562 112 26 595 122 30

BPIC15 2 832 44,354 410 555 116 28 550 117 28

BPIC15 3 1,409 59,681 383 678 117 29 604 117 28

BPIC15 4 1,053 47,293 356 621 126 30 516 107 26

BPIC15 5 1,156 59,083 389 566 112 27 569 121 29

During our experiments, we are interested in the difference between all update
strategies and how a model that uses updates, performs in contrast to a static
one. We are thus less interested in determining the single best model to use when
incorporating updates in our next-activity predictor.

When evaluating the performance of the update strategies we use an
interleaved-test-then-train approach. Each batch of data is first used to test the
model before we use it for updating the model. All code used for the experiments
can be found in our Github Repository1.

5.1 Dataset Selection

To best test the update capabilities of the models, we need datasets where some
drifts occur in the activity perspective. We start with looking at the following
datasets which are often used in the literature and have different characteristics:

– Helpdesk [32]: a log containing ticket requests of the helpdesk from an Italian
software company

– BPIC11 [14]: a log of a Dutch academic hospital. It shows the different
activities and phases the patients go through.

– BPIC12 [12]: a log containing applications for personal loans. The log con-
tains three intertwined processes.

– BPIC15 [13]: a log containing building permit applications from five differ-
ent Dutch municipalities. The log is splitted into five sublogs, one for every
municipality (BPIC15 1 to BPIC15 5).

The events in the datasets were first sorted according to timestamp and then
split 50/50 in train and test set in chronological order. The details of the different
datasets can be found in Table 2. The train set is used to train the initial model
and the test set is used to test the method and incrementally update the initial
models. To best answer our research questions, we use datasets that do contain
1 https://github.com/StephenPauwels/edbn.

https://github.com/StephenPauwels/edbn
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variation over time in the activity perspective. To look if any drifts occur in the
datasets we train a model on the first half of the data. We then test the remaining
half using this static model. Using our accuracy-plot, which uses a sliding window
to calculate the accuracy, we can then look for changes in accuracy over time.

Figure 2 shows some (small) changes in accuracy over time for the Helpdesk,
BPIC11, and BPIC15 datasets when not using any update strategy. The BPIC15
datasets suffer the highest loss of accuracy. This experiment also shows the
constant performance of the BPIC12 data. This dataset is useful to see the
performance of our incremental learners when no drifts are present. Ideally, the
incremental algorithms should perform similarly to the non-incremental ones.

5.2 Baseline Comparison

Fig. 2. Accuracy-plot for both a static model and an incremental model using a window
size of 1.

A first question that needs to be answered is how much accuracy gain there is
when using an incremental algorithm in contrast to the non-incremental ones.
Figure 2 shows the average accuracies for the four methods on all datasets. This
experiment shows the need for an incremental approach when utilizing prediction
models in a real-life setting. The results from the BPIC15 datasets show a large
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Fig. 3. Accuracy-plot for the different update strategies for the BPIC15 1 dataset.

increase in accuracy. Although the models first seem to suffer from the drift
in the data, they all recuperate fast and can keep fairly high accuracies, much
higher than the ones seen in the literature for this dataset.

This graph also shows another important aspect of the incremental algo-
rithms; as we do not know in advance if and when a drift occurs, the data
may contain no drift at all. Our results on BPIC12 show that the incremental
approaches have the same accuracy as the non-incremental ones. This indicates
that we can use the incremental versions in all situations, without having to
compromise on accuracy.

5.3 Update Strategy

To compare the different incremental approaches we introduced, we selected a
single dataset and ran all options for all methods. Figure 3 shows three different
observations. We can see that there is little difference between the options for
the DBN method. This can be explained by the fact that the DBN model has
no way to forget older events.

The SDL and LSTM (Tax et al.) methods show similar behavior. Using all
data to update the model, consistently shows the worst performance, as using
the full dataset ensures that the model is unable to forget the older events that
became irrelevant. We see that using an update strategy using a window scores
the best for both methods, thus making use of the catastrophic forgetting to
gradually replace the older with newer knowledge. The use of drift detection
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Table 3. Runtime (average (stdev)) for the update iterations for the BPIC15 1 dataset
(in seconds)

Strategy Batch DBN SDL Tax Di Mauro

Initial training 48 78 433 188

Reset Full 106 (25) 73 (18) 985 (394) 450 (132)

Window (size 1) 17 (4) 5 (1) 37 (10) 20 (9)

Window (size 5) 26 (6) 14 (1) 175 (39) 68 (14)

Drift 28 (15) 14 (10) 187 (178) 98 (87)

Update Full 60 (12) 56 (12) 505 (101) 132 (27)

Window (size 1) 1 (0.5) 1 (0.5) 11 (4) 3 (1)

Window (size 5) 7 (0.8) 6 (1) 59 (7) 15 (2)

Drift 3 (5) 2 (1) 13 (6) 6 (7)

also gives good results, but this involves running an extra algorithm for every
batch to decide whether a drift has occurred.

The architecture using convolutional neural networks (Di Mauro et al.) shows
different behavior, in the graph we see that retraining completely achieves the
highest accuracy. This can be due to the difference in nature of the convolution
layers used in this model.

5.4 Runtime Results

Table 3 shows the average time for each update using the different strategies.
Overall we see that SDL is the fastest algorithm to learn, followed by DBN, Di
Mauro, and the LSTM architecture of Tax show to be the slowest.

5.5 Overall Results

Table 4 shows an overview of the accuracy obtained by all methods, using the
different update strategies on all datasets. This table confirms the behavior that
we saw in the previous experiments. We see consistent results for all different
methods.

These results also show the performance of our SDL method in comparison to
existing methods (both with and without the incremental aspect). We see that
our new architecture performs at par with existing methods. On top of that, as
the complexity of our model is fairly low, training this model takes considerably
less time than training the existing methods.
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Table 4. Average accuracy for all methods on all different update settings. Batches
grouped using months.

Dataset Update strategy Batch DBN SDL LSTM CNN

Helpdesk No-update 0.78 0.77 0.77 0.78

Reset Full 0.82 0.80 0.78 0.81

Window (size 1) 0.82 0.83 0.83 0.82

Window (size 5) 0.84 0.84 0.82 0.83

Drift 0.83 0.82 0.81 0.82

Update Full 0.81 0.80 0.77 0.80

Window (size 1) 0.81 0.85 0.84 0.84

Window (size 5) 0.81 0.84 0.83 0.84

Drift 0.83 0.85 0.84 0.84

BPIC11 No-update 0.54 0.56 0.60 0.57

Reset Full 0.58 0.62 0.66 0.63

Window (size 1) 0.51 0.56 0.58 0.55

Window (size 5) 0.58 0.63 0.66 0.62

Drift 0.56 0.60 0.64 0.60

Update Full 0.60 0.62 0.60 0.64

Window (size 1) 0.58 0.62 0.67 0.59

Window (size 5) 0.58 0.63 0.68 0.60

Drift 0.57 0.60 0.62 0.58

BPIC12 No-update 0.80 0.81 0.79 0.83

Reset Full 0.81 0.81 0.79 0.83

Window (size 1) 0.79 0.79 0.80 0.82

Window (size 5) 0.81 0.81 0.80 0.83

Drift 0.81 0.81 0.79 0.83

Update Full 0.81 0.81 0.79 0.83

Window (size 1) 0.81 0.80 0.80 0.83

Window (size 5) 0.81 0.81 0.80 0.83

Drift 0.81 0.80 0.79 0.83

BPIC15 1 No-update 0.20 0.24 0.25 0.21

Reset Full 0.68 0.50 0.52 0.55

Window (size 1) 0.71 0.64 0.68 0.65

Window (size 5) 0.74 0.75 0.75 0.71

Drift 0.73 0.69 0.70 0.71

Update Full 0.61 0.74 0.50 0.32

Window (size 1) 0.62 0.76 0.76 0.56

Window (size 5) 0.61 0.76 0.77 0.50

Drift 0.72 0.73 0.73 0.69

(continued)
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Table 4. (continued)

Dataset Update strategy Batch DBN SDL LSTM CNN

BPIC15 2 No-update 0.27 0.26 0.30 0.34

Reset Full 0.68 0.48 0.51 0.74

Window (size 1) 0.71 0.60 0.66 0.61

Window (size 5) 0.73 0.73 0.74 0.74

Drift 0.73 0.67 0.69 0.71

Update Full 0.67 0.73 0.49 0.42

Window (size 1) 0.67 0.76 0.75 0.65

Window (size 5) 0.66 0.76 0.76 0.65

Drift 0.73 0.72 0.71 0.66

BPIC15 3 No-update 0.30 0.30 0.28 0.28

Reset Full 0.71 0.50 0.53 0.51

Window (size 1) 0.74 0.69 0.71 0.71

Window (size 5) 0.76 0.77 0.78 0.72

Drift 0.76 0.72 0.72 0.74

Update Full 0.70 0.76 0.51 0.40

Window (size 1) 0.70 0.79 0.78 0.63

Window (size 5) 0.70 0.79 0.79 0.58

Drift 0.76 0.77 0.76 0.75

BPIC15 4 No-update 0.25 0.25 0.21 0.21

Reset Full 0.74 0.52 0.54 0.60

Window (size 1) 0.73 0.68 0.71 0.69

Window (size 5) 0.79 0.79 0.79 0.74

Drift 0.75 0.58 0.58 0.61

Update Full 0.74 0.79 0.52 0.40

Window (size 1) 0.74 0.81 0.79 0.60

Window (size 5) 0.73 0.81 0.81 0.54

Drift 0.75 0.79 0.79 0.65

BPIC15 5 No-update 0.27 0.23 0.26 0.24

Reset Full 0.68 0.50 0.52 0.58

Window (size 1) 0.74 0.68 0.71 0.71

Window (size 5) 0.75 0.76 0.77 0.71

Drift 0.76 0.71 0.72 0.74

Update Full 0.67 0.75 0.50 0.37

Window (size 1) 0.69 0.79 0.78 0.55

Window (size 5) 0.68 0.78 0.78 0.50

Drift 0.76 0.77 0.76 0.72
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6 Conclusion

In this paper, we looked at the situation in which we want to predict the next
activity in a business process in a situation where the underlying process can be
subject to change. We changed the standard way of evaluating the performance
of the methods from using a static training and testing part of the data to a way
that we can use all previous events to help predict the next event.

We looked at different options on how to select the data to use for updating
the models. We can use the full data, a sliding window technique, or the data
after the last detected drift. Updating the models with only a limited number
of events reduces the computational resources needed for learning. Furthermore,
we looked at the difference in performance when strictly updating an existing
model, or by completely retraining models.

We showed that neural network methods can take advantage of the catas-
trophic forgetting phenomenon that occurs when updating these networks. As
the event logs can have dynamic underlying processes, it is logical to give more
importance to more recent events. The proposed methods for updating existing
models did improve the overall accuracy greatly, without suffering from perfor-
mance loss when no drift or variation is present in the data.

The DBN method also improved when using an incremental learning app-
roach, but often this improvement was less than the improvement observed for
neural network methods. One reason for this is that the current update method
for DBNs has no mechanism that forgets older events and/or gives more priority
to newer events. In future research, we would like to take a closer look at how
to incorporate this in the DBN method to improve the results and make it more
flexible when used with changing processes.

Our new architecture showed to perform at par or even outperform some
state-of-the-art methods but at a substantially lower computational complexity.
In the light of incremental learners, this lower complexity comes at an extra
advantage, as updating can be done faster or more often. But, as shown in the
experiments, the use of the SDL method should not be limited to incremental
settings.

As we only use four different methods in this paper, we cannot make strong
conclusions about the best way of solving the incremental next-activity predic-
tion problem. This is often highly dependent on the characteristics of the consid-
ered process. We showed that we can leverage existing state-of-the-art methods
to cope with variation and drifts in the data by adding a basic incremental
framework. Some of the datasets used in our experiments often get ignored
in the literature due to their dynamic nature. We showed that, when using a
suitable update strategy, most methods are ready to be used in a more challeng-
ing environment than the test settings and datasets used most of the time in
literature.
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