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Preface

This volume contains the papers presented at the 19th International Conference on
Business Process Management (BPM 2021), held during September 6–10, 2021, in
Rome, Italy. Like the 2020 edition, BPM 2021 faced the international COVID-19
pandemic, and we had to tackle many uncertainties about how to practically organize
this conference. In addition, the series of lockdown situations forced many of us to
change our way of working and take on additional duties (such as online teaching and
lecture recording) in order to continuously support our students at all levels. Despite
this increasing workload, we could only observe how flexible the BPM community is,
without losing sight of conducting and completing research in this domain. We are
proud to share an excellent conference program, which we put together thanks to such a
resilient BPM community.

While last year’s edition was fully online, BPM 2021 was able to connect its
members in a hybrid setting. Thanks to the latest technological advancements, con-
ference participants could attend talks and discussions in a mixed setting, allowing for
physical and online presence. This hybrid mode also reflects the desire of many
researchers to re-connect after almost one and a half years of mandatory telework. In
this context, the conference received 123 submissions. The committee decided to
accept 23 papers, which reflects an acceptance rate of 18.7%. The program also
included three invited keynote talks.

BPM 2021 was organized with full respect to BPM’s philosophy, containing three
research tracks that correspond to the different communities of the conference series.
First, the “Foundations” track reflects the computer science tradition in BPM. Track II,
“Engineering,” is focused on information systems engineering. Finally, the “Man-
agement” track covers the approach represented by information systems management.
All 123 papers were first screened based on their fit to the conference call (in terms of
topic and template use) as well as the completeness of the manuscript, leading to 92
submissions that reached the single-blind review round (24 in the “Foundations” track,
41 in the “Engineering” track, and 27 in the “Management” track). In the remainder of
this preface, we would like to thank the many people for helping us to realize the BPM
2021 conference.

To account for the different research topics and methods per track, a dedicated track
chair and Program Committee were responsible for coordinating each track. The
respective track chairs of BPM 2021 were: Artem Polyvyanyy (Track I, “Founda-
tions”), Moe Thandar Wynn (Track II, “Engineering”), and Amy Van Looy (Track III,
“Management”). Manfred Reichert acted as the Consolidation Chair. Three to four
Program Committee members reviewed each paper, and a Senior Program Committee
member was responsible for moderating the discussion and summarizing a
meta-review, assuring a thorough quality check. Besides the 23 accepted papers in this
volume (i.e., 5 in Track I, 12 in Track II, and 6 in Track III), our in-depth screening also



resulted in 16 submissions appearing in the BPM Forum, published in a separate
volume of the Springer LNBIP series.

The studies accepted in this volume show the wide variety of topics and research
methods that characterize the BPM community. For instance, we can report on diverse
insights obtained via behavioral-science thinking (e.g., case studies) and design-science
research (e.g., method development). Topics range from process modeling and mining,
over conformance checking, to stakeholder engagement and digital process innovation.
Similar to last year, we highly embraced the principles of “Open Science,” including
reproducibility and replicability. As a result, we asked authors to add a link in their
papers to one or more repositories, where the reviewers could find additional infor-
mation (e.g., prototypes, interview protocols, questionnaires). This volume also reflects
the “Open Science” principle by including a large number of chapters with permanent
links to such artifacts.

Besides the accepted research papers, BPM 2021 was enriched by three renowned
keynote speakers. Firstly, Hajo Reijers, from Utrecht University, provided us with a
historical perspective on BPM by reflecting on how the ancient Romans organized their
work processes and linking modern and past process management practices. Secondly,
Stefanie Rinderle-Ma, from the Technical University of Munich, inspired us to think
about sensor-aware process analysis and interactive process automation. By offering
real-world use cases, she shared her experience with the EU project ADVENTURE for
adopting process technology at a factory site. Thirdly, Giuseppe De Giacomo, from
Sapienza Università di Roma, spoke about artificial intelligence-based process syn-
thesis for BPM, while making a specific link to declarative BPM. In addition, this
volume features four short papers that complement the accepted BPM 2021 tutorials.

This volume and the research behind it would not have been possible without the
exceptional support of different BPM committees. More specifically, besides the main
conference and the BPM Forum, BPM 2021 was also the venue of multiple gatherings
within committees (each with dedicated chairs), responsible for workshops, demon-
strations and resources, tutorials and panels, a doctoral consortium, an industry forum,
a Robotic Process Automation forum, a Blockchain forum, as well as for publicity.

We wish to extend a special thanks to the track’s Program Committees and Senior
Program Committees. We greatly appreciate their assistance in keeping an intensive
review procedure running and guaranteeing that only relevant and rigorous studies be
included in this volume. We also acknowledge our sponsors for their support in making
this conference happen: Signavio, Celonis, DCR Solutions, P4I – Partners4Innovation,
Springer, Sapienza Università di Roma, and the organizing agency Consulta Umbria.
Finally, we also appreciate the use of EasyChair for streamlining an intensive
reviewing period.

To conclude, special acknowledgment goes to Massimo Mecella, the general chair
of BPM 2021. We are especially thankful for his efforts in facilitating the conference,
arranging all practical details, and replying to hundreds of emails. We also wish to
show our appreciation of the Organizing Committee, including Simone Agostinelli,
Dario Benvenuti, Eleonora Bernasconi, Francesca de Luzi, Lauren Stacey Ferro,
Francesco Leotta, Andrea Marrella, Francesco Sapio, and Silvestro Veneruso. We are
grateful for all of their efforts to concretize this conference, dealing with the
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complicated COVID-19 pandemic challenges, and offering a hybrid mode with a
physical and online organization. Their motivation and inspiration have acted as a great
incentive to glue our BPM community, even in challenging times.

Finally, we wish all the readers a nice reading experience.

September 2021 Artem Polyvyanyy
Moe Thandar Wynn

Amy Van Looy
Manfred Reichert
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What Have the Romans Ever Done for Us? The
Ancient Antecedents of Business Process

Management

Hajo A. Reijers1,2

1 Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
h.a.reijers@uu.nl

2 Eindhoven University of Technology, Groene Loper 3, 3508 TC, Eindhoven,
The Netherlands

Abstract. The origins of Business Process Management (BPM) are often traced
back to the Business Process Reengineering wave in the 1990s (e.g. [1, 3]), as
well as to the Total Quality Management movement of the 1980s (e.g. [2, 4]).
However, at the start of the 20th century, Frederick Taylor already concerned
himself with analyzing activities to find the “one best way” to perform work [7].
Still earlier, in the 18th century, Adam Smith and others identified the division of
labor principle [6], which is still important for the design of modern business
processes.

Undoubtedly, it is possible to identify earlier precursors to the concepts that
have to come to underpin BPM. After all, people have been manufacturing
products, as well as administering their activities since the dawn of history.

On the occasion of the 19th edition of the BPM conference series, BPM
2021, I like to focus on a special episode of human history. Sine this edition is
organized in the eternal city of Rome, I find it both appropriate and exciting to
reflect on how the ancient Romans thought about work. I like to to show the
principles they applied in organizing and innovating their work processes. To
demonstrate the links between ancient and modern practices, I will use as as a
backbone for my keynote a set of redesign heuristics, which I compiled more
than 15 years ago [5].

The message of my talk is that there are striking parallels between how the
ancient Romans thought about organizing and improving work processes and
how we do so in our day. At the same time, there are important differences,
notably due to the advent of digital information and communication technolo-
gies in our modern time.

If I manage to let my audience marvel about the accomplishments of the
ancient Romans, then I will be quite pleased. I will try and link the contents of
my presentation with the archaeological and historic evidence still available to
us today. These pointers hopefully inspire people to visit the sites of the ancient
Roman world and learn more about its history.

If my audience also realizes that BPM is an evolving discipline that is tightly
interwoven with the history of humankind, then I will be delighted. I hope that
my keynote stimulates researchers to reflect on the concepts and technologies
that underpin BPM, inspires them to expand to expand its knowledge basis, and
encourages them to present their work at future editions of the BPM conference
series –sss weherever they take place. In the end, all roads lead to Rome.
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Artificial Intelligence-based Declarative
Process Synthesis for BPM

Giuseppe De Giacomo

Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Università
degli Studi di Roma “La Sapienza”, Roma, Italy

degiacomo@diag.uniroma1.it

Abstract. Artificial intelligence is recently studying processes that autono-
mously take decisions and re-program themselves to act strategically in reaction
to unexpected outcomes in a nondeterministic partially controllable environ-
ment. These studies are developing synergies among reactive process synthesis
and verification in Formal Methods, AI planning, MDPs with non-Markovian
rewards and dynamics, model learning, i.e., learning environment dynamics
from trace, and reinforcement learning. The talk will look into these studies and
discuss their special relevance for BPM, building on the already established
connections in declarative process management.

Keywords: Declarative business processes � Artificial intelligence � Formal
methods � Automated process synthesis

Supported by ERC Advanced Grant WhiteMech (No. 834228).
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Abstract. Process automation and process mining are (interconnected)
key technologies with respect to digital transformation. Hence, expecta-
tions are high, in particular, in challenging application domains such
as manufacturing that combine systems, machines, sensors, and users.
Moreover, manufacturing processes operate at a high level of collabo-
ration, e.g. in inter-factory or cross-organizational settings. This paper
investigates the following questions: 1) How to automate manufacturing
processes? 2) What are the specifics with respect to the involvements
of humans? 3) How do the automation strategies impact process mining
options and vice versa? For 1), we discuss two starting positions in prac-
tice, i.e., legacy automation and greenfield automation. For 2), we dis-
cuss the range of automation options with respect to human involvement,
i.e., non-interactive automation, robotic process automation, supportive
process automation, and interactive process automation. For 3), the dif-
ferent automation settings and strategies are examined with respect to
data collection and integration capabilities. Conversely, process mining
is discussed as technology to further process automation in manufactur-
ing. The paper builds on more than a decade of experience with process
automation in manufacturing. We built an orchestration engine based on
which 16 real-world manufacturing processes have been realized so far,
resulting in various benefits for the companies such as traceability, flexi-
bility, and sustainability. The investigation of the manufacturing domain
also sheds light on other challenging scenarios with similar requirements
such as health care and logistics.

Keywords: Process automation · Process mining · Manufacturing ·
Human aspect · Data collection and preparation

1 Introduction

Process automation and process mining are regarded as key technologies for
digital transformation [6]. Process mining provides the required transparency
for digital transformation and can complement process automation [13]. In this
work, we discuss these prospects for a challenging domain, i.e., manufactur-
ing. Manufacturing is challenging–and one of the most interesting domains for
c© Springer Nature Switzerland AG 2021
A. Polyvyanyy et al. (Eds.): BPM 2021, LNCS 12875, pp. 3–14, 2021.
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Business Process Management–as it “combines high demands on process trans-
parency and digital transformation and it combines the physical world (e.g.,
sensors, machines), human work, and manufacturing systems” [17]. As such the
manufacturing domain, poses high demands on integration, i.e., vertical integra-
tion across the automation pyramid [11] and horizontal integration of multiple
entities and partners, e.g., inter-factory or cross-organizational settings [15].

This paper investigates the following questions:

1. How to automate manufacturing processes? We discuss two starting posi-
tions that are prevalent in practice, i.e., legacy automation–starting with
existing hardware and software–and greenfield automation, i.e., at least for
the software part being able to start from scratch. For both starting posi-
tions, guidelines based on experience from different automation projects are
provided.

2. What are the specifics of process automation with respect to the inclusion
of (human) users? This point is crucial as “smart data, insights, and trans-
parency will be useless if the process experts or process owners do not appre-
ciate and support the approach” [13]. A range of automation options exist
that have different impact on the involvement of humans, i.e., non-interactive
automation, robotic process automation [1], supportive process automation,
and interactive process automation [8]. We illustrate the different options
with real-world scenarios.

3. How do process automation strategies impact process mining options and vice
versa? Process automation and process mining are perceived as being inter-
twined. The different automation settings and strategies are examined with
respect to data collection and integration capabilities. Conversely, process
mining is discussed as technology to further process automation in manufac-
turing. We will report on our experiences from process mining projects in
manufacturing where the expectations are high, but especially for small and
medium sized enterprises the infrastructure poses a critical challenge [18].
Manufacturing offers opportunities for process mining as an abundance of
data is available, for example, process event data1 plus sensor data in form
of time series [19] and engineering drawings [14].

The paper builds on more than a decade of experience with process automation
and mining in manufacturing. We built the manufacturing orchestration engine
centurio.work [11]. It is based on open source process execution engine CPEE2

[10] which is employed worldwide and has been downloaded 500.000 times3 by
today plus an additional 23.000 downloads3 for manufacturing specific add-ons,
e.g., for connecting machines using standard format OPC-UA4. 16 process sce-
narios at 7 manufacturing companies run or are currently in various stages of

1 stored in process event logs (logs for short in the following.).
2 https://cpee.org.
3 https://rubygems.org/profiles/eTM, last accessed on 2021-07-02.
4 https://opcfoundation.org/about/opc-technologies/opc-ua/.

https://cpee.org
https://rubygems.org/profiles/eTM
https://opcfoundation.org/about/opc-technologies/opc-ua/
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realization based on centurio.work. This results in various benefits for the com-
panies such as traceability, flexibility, and sustainability. The investigation of
the manufacturing domain also sheds light on other challenging scenarios with
similar requirements such as health care and logistics.

The remainder of the paper is structured as follows: Sect. 2 starts with legacy
process automation and contrasts it with subsequent greenfield process automa-
tion (�→ Question 1). Section 3 picks up the human aspect as key factor in digital
transformation projects and examines different automation settings along their
inclusion of humans (�→ Question 2). Section 4 sheds light on the intertwining
of process mining and automation in manufacturing (�→ Question 3). In Sect. 5,
we discuss the findings and provide an outlook on future topics.

2 Automating Legacy vs. Automating Greenfield
Scenarios in Manufacturing

The automation of legacy and greenfield scenarios constitute two “extremes” on
a range of possible starting points in manufacturing and other domains. Starting
points in between, i.e., with “mixed” circumstances, are common. Hence, often
the techniques and circumstances elaborated below have to be considered.

2.1 Automating Legacy Scenarios

Legacy scenarios suffer from the constraint that pre-existing hardware and soft-
ware has to be reused, and that environmental constraints potentially limit how
the processes are carried out. The proximity of physical machines, for example,
might influence the optimal order of tasks or interactions with humans.

We assume that processes exist, although in a non-formalized choreography
between humans, software, machines and the environment. These processes

– are not fully understood by individual human actors, i.e., process participants.
– are not fully structured. They include a large amount of leeway regarding the

order of steps and exception handling. Common sub-processes shared between
different parts of the processes are often not perceived as such.

What we will not find in the real-world are logs alongside the execution of
these processes. Consequently, at this point, there is no chance that process
mining can be applied to discover the process model for process automation. In
fact, machines log data into individual data tanks without any notion of different
produced parts, or differentiation of when they produce parts or when they are
just idle. Heterogeneous software components of varied age typically also keep
their own logs, with no notion of orders, customers, or parts.

So unless the whole factory floor–order management, production, packing and
delivery including humans, software, machines, and environmental involvement–
has to be mapped into a single big process (which will most probably not yield
any useful results), it is imperative that an initial notion of how things work is
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established. This has to be done by domain experts. Only then can the properties
according to which the logs have to be split, be understood and techniques like
process mining can yield useful results. A remaining question is whether process
elicitation (e.g., by interviewing domain experts) is done beforehand. In any
case, corresponding techniques can be used to check the progress in formalizing
domain knowledge.

Roughly knowing the processes is a first step. The iterative evolution from
passive observation of the scenario to actively controlling the interaction between
humans, software, machines and the environment [11] is a much more complex
endeavour. The following questions can be used to plan for this evolution:

1. Hardware read capabilities: Which event data streams can be read during
operation (reading state/configuration is considered a command)? Do we need
additional sensors (e.g., temperature, vibration) for meaningful data analysis?

2. Hardware command capabilities: What is the granularity of the digital inter-
face, i.e., component level such as individual motor control vs. operation
control? How and when are humans involved?

3. Humans: What are the observable points in time where it is exactly known
that a human starts something, or ends something?

4. Software: How to access static data, observe data changes, track operations?
Is it possible to observe how humans interact with the software?

1. Hardware read capabilities: Machines should be observable during operation.
If a machine cannot provide data about its operational state, and parameter
changes during operation, it has to be replaced or updated with suitable capa-
bilities. All future data analysis to improve the process depends on data. In
addition, supplementary sensors can be added around or inside the machine
with separate interfaces that are not crucial for production, but add context to
it.

2. Hardware command capabilities have to be seen strictly separate from the
read capabilities. While the readable interface yields data streams, and can be
used to passively monitoring the machine, hardware command is about active
automation. Machines often expose fine granular commands such as switch on/off
individual parts, start individual motors or auxiliary systems, or execute NC
(numerical control) programs. Many of these individual steps might be performed
by humans in certain sequence all the time. So it is imperative to identify when a
human is really required/desirable, and what are sequences that can be bundled
together as static sub/processes to be reused over and over again.

3. Humans: Their tasks often represent the digital gap. It is important to split
their work into individually/automatically observable units. This often requires
additional sensors, or additional effort by the humans to tell an information
system what they are actually doing right now. It is imperative for the well-
being of humans, that tracking is as passive as possible. Being required to do
reporting in addition to the actual work can lead to frustration and errors, and
humans have a tendency to minimize such tasks, cmp. (health) care [16].
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4. Software: Finally integrating legacy software systems is often the most chal-
lenging part, because their complexity is often much higher and they are much
more of a black box than any involved hardware or human. The following aspects
should be analysed in roughly this given order:

– Does the software expose a comprehensive network accessible interface? In
this case everything is fine. Even if legacy protocols are used, it is simple
wrap the software into a service to provide for full automation capability.

– Does the software expose a local API? In this case again a network accessible
wrapper service can solve the automation problem.

– Does the software utilize a database? Is it possible to infer operations or
human interactions from data changes? This requires additional analytical
steps, e.g., building differential snapshots [7].

– Does the software expose a UI? If none of the above ways of interact-
ing with the software can be utilized, techniques such as Robot Process
Automation (RPA) can be employed. Few approaches have considered RPA
in manufacturing-related scenarios yet. [20] look at RPA for automotive, but
focus on ordering and reporting processes rather than on lower-level produc-
tion processes. In one of our projects, RPA was used with some hardware,
e.g., a rubber finger pressing a button. RPA for manufacturing processes is
further discussed from the human perspective in Sect. 3.

If the software does expose logs, they can be utilized to create a (run-time)
event stream. Of course it has to be determined what the latency between oper-
ation and logging is to judge the usefulness for automation.

Approaches such as RPA, although not circumventable for some legacy sce-
narios, should be avoid whenever possible as they (1) tend to subtly break with
small changes to UIs, (2) can/should never be reused for inevitable replacements
of legacy software. Modern software typically encompasses the long-taught prin-
ciple of software development to separate UI, business logic, and data. Accessing
data is typically exposed through well-defined, network-accessible APIs (accom-
panying UIs–web, mobile, desktop–and custom extensions typically are separated
from the core and also access data through these interfaces).

2.2 Automating Greenfield Scenarios

Regarding the utilization of machines and humans, greenfield automation
projects are no different from legacy projects.

When selecting or developing software, for integration with process aware
information systems, the following guiding principles have proven useful:

– Always separate the business logic: Process management/orchestration
engines are a means to separate the application/business logic from functions.
Individual software include no hard-coded or configured assumptions about
the environment or how to interact with peers (e.g., protocol or addressing).
Loosely coupled systems are easier to maintain, debug, and evolve for future
yet unknown scenarios.
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– Modularization: Evolving and adapting your system to ever-changing business
conditions works best when you have small self-contained services, that expose
functionality or data. Changes to the functionality itself should be as localized
as possible. It is easier to maintain small and overseeable pieces of software
than bit and complex pieces. Localizing errors is easier when functionalities
are clearly separated as services.

– Avoid central databases: Services should each have their own data storage
when possible. Software often breaks when data structures are changed and
different functionalities sharing these data structures have to be adapted to
realize the change. All data should be passed between services through the
service interfaces if possible. This greatly reduces coupling and allows of local-
ized changes. Compatibility can be ensured and made transparent through
separated transformation (e.g., additional steps in a process models or service
chains).

– Focus on Observability: Process automation is about orchestrating services
and their interaction. Maximizing the information accompanying each inter-
action between services makes it easier to conduct the necessary analysis
steps for process improvement. Observability includes data streams about
system health (e.g., resource utilization), exceptions, metrics (e.g., perfor-
mance or inner state), and auditing (e.g., information focused on checking
sanity/compliance of involvement in business logic).

3 The Human Aspect in Process Automation

Humans have many roles, even in fully automated scenarios. In general, humans
are involved in running processes in the following two capacities: they are either
process observers or process actors.

Process observers are monitoring the execution of processes, but they not
actively participate in them. They typically do passive tasks such as error detec-
tion, compliance checking, quality checking, or safety monitoring. The tasks of
process observers are the same, whether a process is fully automated or fully
manual. Collecting information and enacting the consequences, of course, may
be different in fully automated vs. fully manual scenarios. Process observers
typically enact the following consequence action: “stop the process” based on
observed anomalies or violations. It is then up to process actors to fix things.

Process actors again might exist in fully automated and manual manufactur-
ing scenarios: periodic as well as problem-related maintenance, for example, is
always connected to human interaction. Process actors might exist in two roles:

– Active process actors hold business logic and exert control over the process by
actively directing it, e.g., by selecting the machines that produce something,
or selecting the next steps.

– Passive process actors which only act within well defined constraints. They
are basically not distinguishable from software, as from the point of view
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of a process orchestration engine they behave the same: (1) they get a well-
defined set of instructions/parameters and (2) they return a well-defined data-
structure that represents the computer-readable result of the instructions.
Humans involved in a fully automated scenario through a worklist [12] are
such an example.

Thus a fully automated scenario is not characterized by the non-involvement
of humans, but instead by the formalization and automatic observability of all
interactions between humans, machines, software and the environment.

Figure 1 depicts a range of scenarios with focus on the human involvement
as well as techniques that are typically used to solve the challenges imposed by
the scenario.

Fig. 1. Manufacturing process scenarios and the involvement of humans

The X axis denotes the requirement for the involvement of process actors.
Many scenarios in manufacturing, health care, or any other domain are currently
neither feasible nor efficient to be carried out without humans. The Y axis picks
up the two starting positions discussed in Sect. 2, i.e., to evolve scenarios which
include legacy systems into fully automated scenarios and to design and realize
everything from the ground up (greenfield).

Scenario 1 , further detailed in [11], describes the automation of a mixture
of legacy machines and additional hardware. The purpose of the automation
was, to do away with all human interaction and allow for fully automatic pro-
duction of batches. The following machines are involved: a turning machine,
that produces the part, a bar loader that feeds parts to the turning machine, a
robot that extracts the parts, puts them into a “close-to-production” measuring
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machine and then puts them onto an autonomous guided vehicle (AGV). The
AGV drives a full load (60 pieces) to a tactile coordinate-measuring machine
(CMM), where a robot puts each piece into the CMM, and extracts them again,
after the measurement finishes. When a batch is ready the AGV drives the batch
to packaging, and then goes back to get new parts. This fairly involves humans
purely as process observers, that check quality deviations, and if they are too
big, signal production stop. Then human actors change tools (them being blunt–
depending on temperature and type of part produced–being a main source of
error).

Before the full automation humans were starting the machine manually (a
repetitive task), and also taking manual measurements “close-to-production”.
While starting the machine manually required a skilled worker to be present at
all time, after automation the worker could do more useful things like planning
the production of future parts. The manual measurement was another major
source of errors, mainly because the measurement was documented by hand,
an was handed over the person in charge pf the CMM. Predictably enough the
notes were not always clear, and lots of time was wasted measuring parts with
the CMM which were clearly faulty to start with. After automation no more
humans were involved.

For Scenario 2 , legacy software, which only has a user interface, has to
be brought into a non-interactive process automation. In this particular case,
a partner company wanted to extract information from an order management
system on an IBM iSeries (AS400). Because the whole system had been out-
sourced under a certain contract, it was not possible to access the information
directly in the database. Instead operators were manually using a UI to copy
the information between systems. By using RPA techniques, it was possible to
select the correct order, and extract the order information. The order informa-
tion was differently structured on screen for different products. It also was in a
different and sometimes faulty format compared with the format needed in the
second system: before introducing RPA that format had been graciously trans-
lated by the operators in their head, including assumptions about faulty entries.
So besides extracting the information through RPA, even bigger effort went into
interpreting to data to be valid input for the second system. From the point-
of-view of the process engine utilized in the project, RPA was just one task
(extract information). Additional tasks and decisions dealt with transforming
data to be valid input for the final task (print production label and QR code).
In this scenario, the process actors have been replaced and RPA was a necessity
due a legacy system. The inevitable replacement of the legacy system will lead
to the replacement of the RPA task, with a simple “read order data” task that
gets the information from a database or through a microservice interface.

Scenario 3 is a worker-assistance scenario, which we currently automate
together with a company partner. Worker assistance is typically deployed due
to the following reasons and properties of a scenario:

– The scenario is complex with lots of variants and special cases. The actual
scenario deals with the assembly of highly customizable parts which are a



Process Automation and Process Mining in Manufacturing 11

mix of mechanical and electronic parts with a custom firmware. The number
of mechanical variations exceeds 20000. This number multiplies when custom
firmware flashing and configuration is taken into account.

– Due to the many variants and the tedious assembly process, automation with
robots or machines is not feasible.

– Humans involved in the production process have different skill levels, and
have to be supported with different levels of information.

In this particular scenario, the goal was to introduce a production line with
fine-grained labor division. While before automation, the parts where assembled
by two humans, after automation, eight people are to be involved. The produc-
tion line thus consists of eight working stations. The parts are autonomously
transported between the working stations. The purpose of the worker assistance
system is to identify the part present in a working station, identify the human
present in a working station, and display information tailored for a specific vari-
ant AND the skill level of the worker.

While experienced workers can be slowed down by detailed information (indi-
vidual steps have to be acknowledged to provide insight into assembly timing
thus error sources), less skilled workers greatly benefit from looking up informa-
tion in a multitude of binders, being presented with all relevant information.

Work satisfaction in this scenario greatly increased, as well as overall pro-
ductiveness. At the same time faulty parts due to faulty assembly could be
reduced. Through fine-grained monitoring of human assembly also bottlenecks
could be detected, as well as faulty raw-materials could be identified faster due
to integrated reporting capabilities. All interactions between humans, the pro-
duction line, and additional hardware was realized through micro-services [9],
and orchestrated with a process engine.

Scenario 4 , further detailed in [8], describes how at the beginning or the end
of a non-interactive process automation humans might interact with machines,
here through a loading station. A loading station enacts a pick-and-place sce-
nario, where humans put tools or raw materials on designated area, in no par-
ticular order, position or rotation. A robot then visually detects, selects, orders
and consistently places the provided objects (with high precision, no deviations
from position) for further processing. Humans are exonerated in that the rules
are simplified - they interact just like with fellow humans; they provide parts.
From the point of view of automation this is also a simplification. After the
loading station deterministic behaviour prevails, that can be solved by simple
logic instead of focusing on variations throughout the automation. Loading sta-
tions can hence be a simple solution for interfaces between humans and legacy
production lines.

4 Process Mining and Automation: Are They Twins?

The discussion of automation scenarios in Sects. 2 and 3 indicates that process
automation and mining are intertwined in the following ways:
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1. Process mining can support automation. The precondition is the existence of
suitable data.

2. Process automation can yield integrated and contextualized data collections
[11] and hence lead to increased quality of process mining results and unlock
novel ways of analyzing the data [19].

The collection of process event logs as input for process mining is a criti-
cal and tedious task. One of the conclusions from the focus group interviews
with manufacturing experts presented in [18] is that, particularly for small and
medium sized manufacturing enterprises, “logging is part of the business logic
and data-centric. Selected milestones in the production produce a data dump
with a timestamp, while most process steps in the manufacturing domain just
produce no events at all”. If there is no (process-oriented) integration across
the levels of the automation pyramid already in place, the log data can pos-
sibly accessed “per level”, i.e., from top to bottom, the Enterprise Resource
Planning (ERP) system level, the Plant Management level, the Process Control
level, and the Control (PLC) level [11]. The log data possibly accessible at the
different levels varies in quality with respect to the L∗ quality model proposed
for process mining [2], ranging from *** (events are automatically recorded,
but unsystematically, some correctness guarantees can be assumed) for the ERP
level to ** (events are automatically recorded, but unsystematically, no correct-
ness guarantees exist, leading to e.g., missing events) for the other levels. There
are (commercial) connectors/adaptors for process mining on ERP data, e.g., for
open source platform ProM [4] and Celonis for SAP c©5. However, in addition to
the probably low data quality, there is no interconnection between the systems,
resulting in isolated analysis results.

Hence, process automation with its strong integration aspect can immediately
lift up the quality level to at least a quality of ****, i.e., the data is recorded in an
automatic, systematic, and reliable way, and the contextualization in processes
and process instances is automatically provided [2].

If process event logs of suitable quality are available, especially conformance
checking [3] is perceived as a great instrument to monitor manufacturing pro-
cesses during runtime [18].

On top of integration and data contextualization, process automation in
manufacturing also offers several opportunities with respect to considering data
sources in addition to the process event log data that can be analyzed in dif-
ferent phases of the process life cycle A first example for such additional data
is time series data as emitted by machines and sensors, e.g., temperature [5].
Process mining has been augmented with dynamic time warping on sensor data
for predicting and explaining concept drifts, i.e., upcoming process evolution
due to, for example, chips on the parts causing decreasing quality [19]. Another
example for additional data relevant to manufacturing are engineering drawings
and standards such as ISO norms. Engineering drawings contain the essential
information for setting up the manufacturing process and the subsequent quality

5 https://www.celonis.com/solutions/systems/sap/.

https://www.celonis.com/solutions/systems/sap/
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control, i.e., the dimensions of the produced parts and tolerances, together with
links to the underlying standards [14]. DigiEDraw [14], for example, provides
conceptual and tool support to automatically extract this information from the
drawings such that they can be included in the process models, but also in pro-
cess analysis. Approaches such as [21] provide NLP-based concepts and tools to
check the compliance of (manufacturing) processes with regulatory documents.

5 Discussion and Outlook

We refer back to the questions set out in the introduction: 1) How to automate
manufacturing processes? It depends on the starting point (legacy vs. greenfield,
and in between) and raises many (technical) challenges, e.g., how to connect
machines to the process. 2) What are the specifics with respect to the involve-
ments of humans? Humans are always involved, either active or passive. If active,
the involvement ranges from working on tasks (interface: worklist), over being
supported (interface: UI), to interactively working on and designing the pro-
cess (interface: loading station). As a lesson learned, physical devices can serve
as interfaces between process and human, as well. 3) How do the automation
strategies impact process mining options and vice versa? Process mining quality
heavily depends on data collection and quality which an be provided by process
automation. Process mining can go new ways by integration of process event logs
with additional data such as time series. These findings for manufacturing are
likely to be relevant for other domains with similar requirements such as health
care or logistics, as well.

References

1. van der Aalst, W.M.P., Bichler, M., Heinzl, A.: Robotic process automation. Bus.
Inf. Syst. Eng. 60(4), 269–272 (2018). https://doi.org/10.1007/s12599-018-0542-4

2. van der Aalst, W.M.P., et al.: Process mining manifesto. In: Business Process
Management Workshops, pp. 169–194 (2011). https://doi.org/10.1007/978-3-642-
28108-2 19

3. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-319-99414-7

4. Günther, C.W., van der Aalst, W.M.P.: A generic import framework for process
event logs. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 81–92.
Springer, Heidelberg (2006). https://doi.org/10.1007/11837862 10

5. Kammerer, K., Pryss, R., Hoppenstedt, B., Sommer, K., Reichert, M.: Process-
driven and flow-based processing of industrial sensor data. Sensors 20(18), 5245
(2020). https://doi.org/10.3390/s20185245

6. Kerremans, M., Searle, S., Srivastava, T., Iijima, K.: Market guide for process
mining (2020). www.gartner.com

7. Labio, W., Garcia-Molina, H.: Efficient snapshot differential algorithms for data
warehousing. In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L.
(eds.) Very Large Data Bases, pp. 63–74 (1996)

https://doi.org/10.1007/s12599-018-0542-4
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/11837862_10
https://doi.org/10.3390/s20185245
www.gartner.com


14 S. Rinderle-Ma and J. Mangler

8. Mangat, A.S., Mangler, J., Rinderle-Ma, S.: Interactive process automation based
on lightweight object detection in manufacturing processes. Comput. Ind. 130
(2021). https://doi.org/10.1016/j.compind.2021.103482

9. Mangler, J., Beran, P.P., Schikuta, E.: On the origin of services using RIDDL for
description, evolution and composition of restful services. In: Cluster, Cloud and
Grid Computing, pp. 505–508 (2010). https://doi.org/10.1109/CCGRID.2010.126

10. Mangler, J., Rinderle-Ma, S.: CPEE - cloud process execution engine. In: BPM
Demo Sessions, p. 51 (2014). http://ceur-ws.org/Vol-1295/paper22.pdf

11. Mangler, J., Pauker, F., Rinderle-Ma, S., Ehrendorfer, M.: centurio.work - industry
4.0 integration assessment and evolution. In: BPM Industry Forum, 17th Interna-
tional Conference on Business Process Management, pp. 106–117 (2019). http://
ceur-ws.org/Vol-2428/paper10.pdf

12. Reichert, M., Dadam, P., Rinderle-Ma, S., Jurisch, M., Kreher, U., Goeser, K.:
Architecural principles and components of adaptive process management technol-
ogy. In: Process Innovation for Enterprise Software, pp. 81–97 (2009). No. P-151

13. Reinkemeyer, L.: Process Mining in Action - Principles, Use Cases and Outlook.
Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-40172-6

14. Scheibel, B., Mangler, J., Rinderle-Ma, S.: Extraction of dimension requirements
from engineering drawings for supporting quality control in production processes.
Comput. Ind. 129 (2021). https://doi.org/10.1016/j.compind.2021.103442

15. Schulte, S., Schuller, D., Steinmetz, R., Abels, S.: Plug-and-play virtual factories.
IEEE Internet Comput. 16(5), 78–82 (2012). https://doi.org/10.1109/MIC.2012.
114

16. Stertz, F., Mangler, J., Rinderle-Ma, S.: Balancing patient care and paperwork
automatic task enactment and comprehensive documentation in treatment pro-
cesses. Enterp. Model. Inf. Syst. Archit. Int. J. Concept Model. 15, 11:1–11:28
(2020). https://doi.org/10.18417/emisa.15.11

17. Stertz, F., Mangler, J., Rinderle-Ma, S.: The Role of Time and Data: Online Con-
formance Checking in the Manufacturing Domain (2021). arXiv:2105.01454

18. Stertz, F., Mangler, J., Scheibel, B., Rinderle-Ma, S.: Expectations vs. experiences
- process mining in small and medium sized manufacturing companies. In: Business
Process Management (Forum) (2021). (accepted for publication)

19. Stertz, F., Rinderle-Ma, S., Mangler, J.: Analyzing process concept drifts based
on sensor event streams during runtime. In: Business Process Management, pp.
202–219 (2020). https://doi.org/10.1007/978-3-030-58666-9 12

20. Wewerka, J., Reichert, M.: Robotic process automation in the automotive industry
- lessons learned from an exploratory case study. Presented at the (2021). https://
doi.org/10.1007/978-3-030-75018-3 1

21. Winter, K., van der Aa, H., Rinderle-Ma, S., Weidlich, M.: Assessing the compli-
ance of business process models with regulatory documents. In: Conceptual Mod-
eling, vol. 12400, pp. 189–203 (2020). https://doi.org/10.1007/978-3-030-62522-
1 14

https://doi.org/10.1016/j.compind.2021.103482
https://doi.org/10.1109/CCGRID.2010.126
http://ceur-ws.org/Vol-1295/paper22.pdf
http://ceur-ws.org/Vol-2428/paper10.pdf
http://ceur-ws.org/Vol-2428/paper10.pdf
https://doi.org/10.1007/978-3-030-40172-6
https://doi.org/10.1016/j.compind.2021.103442
https://doi.org/10.1109/MIC.2012.114
https://doi.org/10.1109/MIC.2012.114
https://doi.org/10.18417/emisa.15.11
http://arxiv.org/abs/2105.01454
https://doi.org/10.1007/978-3-030-58666-9_12
https://doi.org/10.1007/978-3-030-75018-3_1
https://doi.org/10.1007/978-3-030-75018-3_1
https://doi.org/10.1007/978-3-030-62522-1_14
https://doi.org/10.1007/978-3-030-62522-1_14


Tutorials



Cognitive Effectiveness of
Representations for Process Mining

Jan Mendling1,2(B) , Djordje Djurica2 , and Monika Malinova2

1 Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
jan.mendling@hu-berlin.de

2 Wirtschaftsuniversität Wien, Welthandelsplatz 1, 1020 Vienna, Austria
{jan.mendling,djordje.djurica,monika.malinova}@wu.ac.at

Abstract. This paper raises the issue that visual representations gen-
erated by process mining techniques have mostly been evaluated from
a precision and recall angle. We observe this to be a problem, because
it hardly takes into account how effective these representations are for
users and for which analysis tasks they are useful. We aim to rectify this
research problem by developing a cognitive perspective for researching
process mining. To this end, we build both on the CogniDia framework
for effective cognitive processing of diagrams and an initial list of process
mining analysis tasks.

Keywords: Process mining · Process diagrams · Visual
representation · Cognitive processing · CogniDia

1 Introduction

Process mining is an area of research that is concerned with the development
of novel techniques that provide fact-based insights into business processes [1].
A process mining technique typically takes as input an event log and applies
an algorithm to produce some visual representation as an output. These visual
representations are often diagrams, such as directly-follows graphs, Petri nets,
BPMN models, and several other modeling languages [5].

So far, research on process mining has been largely concerned with devising
new algorithms for automatic discovery and conformance checking. These algo-
rithms are commonly evaluated for their effectiveness, which is often measured
using precision and recall against a gold standard [5]. What is surprising is the
fact that hardly any user studies have been conducted on using process mining
tools and visual representations generated from event logs. That is a problem,
because precision and recall evaluations ignore the representation format of how
process mining outputs are presented to a user and the relationship to the user’s
tasks at hand. Insights from process modeling research such as [10,13] cannot be
readily applied for two reasons. First, visual representations generated by pro-
cess mining algorithms extend beyond the set of languages studied in modeling
research and enhance existing languages with additional information. Second,
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the tasks considered in modeling research focus on general understanding while
process mining users have more specific analytical tasks with a selective focus
on parts of the process.

In this paper, we address this research problem by developing a cognitive
perspective for researching process mining. To this end, we build on the Cog-
niDia framework for effective cognitive processing of diagrams. This framework
defines criteria for visual, verbal, semantic, and task processing of diagrams [12].
Furthermore, we identify a set of analysis tasks based on classifications in the
literature [3,4,7].

The remainder of the paper is structured as follows. Section 2 describes the
spectrum of visual representations used in process mining. Section 3 discusses the
CogniDia framework and its application to process mining tasks. Section 4 high-
lights two examples of recent papers that evaluate process mining contributions
based on user studies and identifies good practices, before Sect. 5 concludes.

2 Visual Representations for Process Mining

In this section, we describe external representations that are used in process
mining. External representations are texts, images, diagrams and other sorts
of man-made information objects that extend the human cognitive processing
capabilities [19]. A subclass of external representations are visual representations.
Their visual nature has been emphasized to be of advantage to several generic
problem-solving tasks [18].

Fig. 1. External representations used for process mining

Process mining research has focused mostly on visual models that adhere
to the specification of a particular modeling language. More specifically, Fig. 1
shows three classes of such visual models that have been distinguished: declara-
tive, procedural and hybrid models. Studies that compare the mutual benefits of
declarative and procedural models find mutual strengths and weaknesses, with
declarative being strong in clarifying the conditions upon which a case unfolds,
while procedural providing clarity about how a case proceeds [8,14]. Hybrid
(also called mixed-paradigm) models combine these strengths with the ambition
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to represent behaviour in the most compact and understandable manner [6].
Within these three classes of declarative, procedural and hybrid models, there
are several different representations. The review in [5] lists more than a dozen
different types of models for process discovery only.

So far, the discussion for and against specific representations in the context of
process mining is largely driven by arguments on execution semantics of the gen-
erated outputs. For instance, van der Aalst stresses the benefits of process trees
for the fact of their soundness by definition [2]. From the same standpoint, limi-
tations of directly-follows graphs are highlighted [16]. The focus on the potential
to replay event logs by the help of a model with sound behavioural properties
explains the emphasis on evaluation based on precision and recall [15]. This focus
is justified in its own right, but comes without an explicit consideration of the
analysis tasks for which representations generated by process mining are used
by analysts.

3 Cognitive Effectiveness of Process Mining Outputs

Arguably, not much is known about the analyst using process mining techniques
for gaining analytical insights into a business process. So far, there has been
a limited focus on the tasks of analysts and on the question to which extent
representations generated by process mining techniques are cognitively effective.
Here, we refer to the CogniDia framework [12] that discusses criteria for effective
cognitive processing of diagrams and other visual representations.

External
Represen-

ta�on

Visual 
Processing

Verbal
Processing

Seman�c
Processing

Task 
Processing

Analy�cal
Insight

Fig. 2. Effective cognitive processing as described by the CogniDia framework [12]

Figure 2 shows that CogniDia distinguishes four stages of cognitive process-
ing [12]. First, visual processing is concerned with identifying informational enti-
ties in visual inputs. Visual processing is effective when a visual representation is
aesthetic, simple, consistent, with distinguishable and mnemonic elements. Sec-
ond, verbal processing focuses on textual information entities. Verbal processing
is effective when text elements are short and uniform. Third, semantic process-
ing relates the understanding of both representations and associated modeling
languages. Semantic processing is effective when representations are correct and
easy to understand, while languages should facilitate an appropriate and faithful
representation of the domain. Fourth, task processing proceeds by decomposition
along a mentally constructed goal hierarchy. Task processing is effective when
representations satisfy user expectations and information needs.
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Several use cases and analysis types have been identified for process mining.
Notably, these have often been described as technical operations and not from the
goals of the analyst. Consider, for example, the use case “Discover Model from
Event Data” described in [3]. The description refers to the general interest in
extracting knowledge about a process from event logs, but by and large provides
a high-level description of a technical operation. Closer to the goals of an analyst
is the use case description of “Distribution of cases over paths” [4] (also called
variant analysis [7]) that emphasizes the interest to understand this distribution
analysis types. Arguably, these uses cases and analysis types focus on means, but
pay little attention to the ends in view of the analyst. A lens on the decision-
making and problem-solving tasks would foreground the goal to decide what
is the issue of the process that offers the greatest return when being fixed, or
the goal to understand the root causes of an observed issue. Evaluation with
a focus on replay with precision and recall has little to offer for discussing the
effectiveness of supporting these goals.

4 Evaluating Process Mining from a Cognitive Angle

Even though precision and recall evaluations are predominant in process mining
research, there are some notable examples that recognize the need to make tasks
explicit and to conduct empirical user studies. Here, we summarize two examples
by Leotta et al. [11] and by Graafmans et al. [9].

The first example we discuss is a comparative user evaluation by Leotta
et al. [11] on tools that allow to visualize human habits based on sensor event
data. The authors develop a process mining based approach called Visual Pro-
cess Maps (VPM) and compare it with the state-of-the art tool Situvis. VPM
generated representations were a combination of process map and DRGs, while
SITUVIS provides its own visualizations of the process based on graphs with
polylines where every activity is presented as a different color. The evaluation
involved 14 participants and builds on different analysis tasks including search
and understanding. Furthermore, the users were asked to rate their confidence
for different interpretations of output. Users had to work on the same tasks with
both alternative tools. In this way, their assessment offers insights into mutual
strengths and weaknesses of usability and graphical expressiveness of both tools.

The second example we discuss is a user study by Graafmans et al. [9] for a
process mining tool using realistic analyst tasks. The authors develop guidelines
for how six-sigma analysis can be supported by process mining. They involve
users at different stages of the design process. Most notably, they conducted a
usability study with 12 six sigma and process mining experts for tasks associated
with a realistic analysis scenario. For working on the tasks, the participants had
to interact with the tool and make use of several of its visual representations.
After providing answers to the scenario-related tasks, participants had to answer
to standard questionnaire items for technology acceptance [17], including their
perceived usefulness, perceived ease of use, and intention to use the proposed
guideline and its accompanying tool. The authors also conducted interviews with
participants to gain qualitative feedback.
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The two papers help us to identify several good practices for evaluating pro-
cess mining representations based on user studies. First, the paper by Leotta
et al. [11] highlights the benefits of a comparative evaluation. Second, both
papers underline the need to let users work with the tool on realistic tasks.
Graafmans et al. [9] explicitly state that the analyst as a user of a process mining
tool typically has the goal to identify improvement opportunities. Any represen-
tation generated by process mining techniques has to be judged in this light.
Third, the paper by Graafmans et al. [9] exemplifies the reuse of established
evaluation frameworks such as usability analysis and items of the technology
acceptance model. Fourth, both papers highlight that users have specific goals
that are anchored in their work context, such as identifying improvement oppor-
tunities. The representations they use are more complex than a specific type of
model. They include any information that is visually, but also textually repre-
sented as output of a process mining tool. The CogniDia framework allows us
to discuss the mutual benefits of different representations in relation to different
user tasks.

5 Conclusion

In this paper, we have raised the issue of how visual representations generated
by process mining techniques can be evaluated. We emphasize that evaluations
in terms of precision and recall only overlook the connection between visual
representations and tasks of the analyst. We sketched the merits of establishing
a cognitive perspective on the relationship between tasks and representations
based on the CogniDia framework. To this end, we revisited two recent papers
that conducted user studies for evaluating process mining contributions.
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Abstract. Flexibility is a key characteristic of numerous business pro-
cess management domains. In these domains, the paths to fulfil pro-
cess goals may not be fully predetermined, but can strongly depend on
dynamic decisions made based on the current circumstances of a case. A
common example is the adaptation of a standard treatment process to the
needs of a specific patient. However, high flexibility does not mean chaos:
certain key process rules still delimit the execution space, such as rules
that prohibit the joint administration of certain drugs in a treatment,
due to dangerous interactions. A renowned means to handle flexibility
by design is the declarative approach, which aims to define processes
through their core behavioural rules, thus leaving room for dynamic
adaptation. This declarative approach to both process modelling and
mining involves a paradigm shift in process thinking and, therefore, the
support of novel concepts and tools. Complementing our tutorial with
the same title, this paper provides a high-level introduction to declar-
ative process mining, including its operationalisation through the RuM
toolkit, key conceptual considerations, and an outlook for the future.

Keywords: Declare · Declarative process mining · Rule mining ·
Process discovery · Conformance checking · Process monitoring ·
Declarative modelling

1 Introduction

Infusing flexibility in process-aware information systems is widely recognised as
a key challenge in business process management (BPM) and information systems
engineering [17]. Within the flexibility spectrum, flexibility by design advocates
that process modelling languages themselves need to offer modelling primitives
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that provide freedom to process executors when deciding how to execute the pro-
cess. The question then becomes how such languages help in finding a suitable
trade-off between flexibility and control. Declarative approaches tackle this prob-
lem in an extreme way: the model indicates what the relevant temporal/dynamic
constraints that have to be respected during process execution enforce, leaving
the executors free to decide how to unfold the concrete executions.

After seminal papers on the topic were published between 1998 and 2003
within BPM and neighboring fields [5,18,19], the community started investigat-
ing declarative process modelling more systematically starting from 2006, when
Pesic and van der Aalst proposed to apply temporal logic patterns [8] to declar-
atively capture process constraints [20], eventually leading to the Declare lan-
guage and system [16] and to the definition of a variety of reasoning tasks thanks
to different logic-based formalisations [14,15]. This interest was further fueled
by the introduction of other declarative approaches, most prominently Dynamic
Condition-Response Graphs [11].

A well-known issue with declarative approaches is that while they enjoy flex-
ibility, they typically do not explicitly indicate how the execution has to be
controlled. In other words, conforming executions are only implicitly described
as those that satisfy all the given constraints. Constraints, in turn, may be quite
diverse from each other (e.g., indicating what is expected to occur, but also what
should not happen). At the same time, constraints implicitly and mutually affect
each other (a phenomenon referred to as hidden dependencies in the cognitive
dimension framework used to evaluate the characteristics of notations [6,9,15]).
This notoriously challenges understandability and interpretability of declarative
process models [10], and calls for toolkits providing continuous support to the
end users [9]. One such toolkit is RuM [2], which addresses some of the above-
mentioned issues by providing a unified user interface for declarative process
mining algorithms.

2 Declarative Process Mining with RuM

RuM [2] is the first software platform natively designed for declarative process
modelling and process mining. RuM is based on the well-known modelling lan-
guage Declare [16] and its multi-perspective extension MP-Declare [3], that
is, Declare extended with data and time perspectives.

The following sections give a brief overview of RuM. Further information
and the download link can be found in [2] and at https://rulemining.org/. To
illustrate RuM’s functionality, we use the Sepsis treatment process and event log
described in [13].

Automated Process Discovery. RuM includes multiple algorithms for auto-
matically discovering a process model. As usual for Declare, the discovered
models consist of a set of constraints where each constraint describes one spe-
cific aspect of the process (i.e., constrains the behaviour of the process in a
specific way).

https://rulemining.org/
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In general, a constraint describes either the cardinality of an activity (i.e., the
number of occurrence thereof in a trace) or a relation between two activities (i.e.,
how the occurrence of an activity requires or disables the occurrence of another
one). For example, Exactly1(ER Triage) means that activity ER Triage will
occur exactly once in each trace. ChainResponse(ER Registration,ER Triage)
means that when activity ER Registration occurs then ER Triage will occur
immediately after.

The discovered model is by default visualised using the standard Declare
notation (Fig. 1). Alternatively, it is possible to represent the model procedurally
as an equivalent deterministic finite state automaton (Fig. 2). Finally, it is pos-
sible to represent the entire model as a set of natural language sentences, e.g.,
“When ER Registration occurs, then ER Triage occurs immediately afterwards”.

Conformance Checking and Monitoring. RuM provides two conformance
checking approaches. The first one detects constraint fulfilments and viola-
tions (Fig. 3a), which pinpoint both the events that occur as specified in the
model and those events that contradict it. The second approach is based on log

Fig. 1. An example of a Declare model represented as a map.

Leucocytes

ER Sepsis Triage LeucocytesER Registration ER Triage

Leucocytes

Fig. 2. An automaton representation of the Declare model in Fig. 1.

Fig. 3. Conformance checking approaches
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alignments (Fig. 3b), as it identifies the event insertions and/or deletions that
would make the event log conforming with the Declare model.

The conformance checking results are provided at different levels, i.e., per
event log, per trace, and per constraint. The latter is especially useful since it
allows for clear insights and overall explainability of the conformance checking
results with respect to specific process constraints. Additionally, RuM provides a
monitoring functionality, which allows the user to interactively replay the traces
one event at a time. During replay, RuM visualises the state of each constraint in
the model (possibly/permanently satisfied and possibly/permanently violated)
as the events of the trace are occurring.

Model Editing. RuM provides model editing capabilities through a fully MP-
Declare compliant model editor, which supports the different representations
discussed for process discovery above (cf., Figs. 1 and 2). These representations
are updated and the inputs are validated on the fly as the model is being edited.
In addition to editing the constraints directly, it is also possible to specify con-
straints and data conditions by using natural language speech and written text.
This functionality is implemented as a simple chatbot named Declo [1].

Log Generation. Finally, RuM can generate event logs based on a given
Declare model [7]. Although, by default, a generated log satisfies all con-
straints in the model, RuM also allows for the insertion of vacuous traces, i.e.,
traces that do not activate some constraints, and negative ones, i.e., traces that
violate constraints.

3 Considerations About Declarative Process Mining

The constraint-based nature of the declarative approach has various interest-
ing implications and advantages with respect to the traditional, imperative
paradigm. For instance, since declarative constraints establish behavioural rules
that delimit the possible execution space for processes, they act like norms with
which all process runs have to comply with. This characteristic make declara-
tive models open, in that any execution is permitted as long as the expressed
rules are not violated, as opposed to the closed scope of imperative models (e.g.,
Workflow nets, BPMN diagrams, event-process chains), which depict the whole
execution space, from start to end [12].

From a mining perspective, declarative process mining aims to establish,
measure and validate the rules that best define the behaviour emerging from the
traces recorded in event logs – in the closest etymological sense of “defining”, i.e.,
marking out their boundary. Therefore, exceptional, ad-hoc, or optional variants
of process behaviour are fully supported as long as no constraints are expressed
that contradict them. By contrast, an imperative model requires an alteration
of its structure any time its unfolding does not encompass an alternative path
that is evidenced in an event log. Declarative models can be used to represent
the distinguishing core rules of event logs exposing high variability as per their
stored runs, thereby catering for flexibility.
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Fig. 4. A Declare negative constraint.

Declarative process rules are exerted over whole runs. Such a global state
perspective differs from the imperative approach in which, given a current state,
only the next enabled actions are made explicit (local state perspective). This
reflects the difference between functional (declarative) and procedural (impera-
tive) approaches to programming. A declarative rule applies any time a situation
that triggers it is reached, regardless of the history of actions that led there. Also,
the effect can span the whole execution of the process, i.e., at any moment in the
future or the past: for instance, Precedence(ER Sepsis Triage, IV Antibiotics)
requires that ER Sepsis Triage must occur at any point in time before the inoc-
ulation of antibiotics. In contrast, imperative models dictate what the possible
operations are for the next step given a case’s history.

Declarative process models enjoy compositionality based on the conjunction
of their constraints: the intersection of permitted behaviour from each rule deter-
mines the overall specification [4]. Adding rules restricts the range of acceptable
runs. In contrast, the addition of new states and transitions to an imperative
model enlarges the execution space. We remark two consequences of this dif-
ference. Firstly, more flexible processes may create more cluttered imperative
models (the so-called spaghetti models) as declarative specifications would rep-
resent the core behavioural rules they are subject to rather than all the possible
runs that would comply with them [16]. Secondly, declarative models are better
suited for the seamless support of negative rules, i.e., constraints that impose
the disablement of task occurrences given a specified condition. For example,
NotSuccession(Admission IC, IV Antibiotics) imposes that after patients are
admitted in the intensive care unit, they cannot undergo an inoculation of antibi-
otics. Adding this constraint to the model depicted in Fig. 1 is straightforward
as declarative process models consist of lists of statements dictating the process
rules. Graphically, it requires the sole juxtaposition of the constraint illustrated
in Fig. 4 to the existing map. Including this constraint in the automaton repre-
sentation in Fig. 2 requires the addition of numerous states and transitions as
illustrated in Fig. 5 though.

To conclude, we remark that as the declarative process specifications dictate
the rules that process executions are required to abide by, they can act as a
bounding box within which imperative process models need to be defined to
represent specific strategies implemented to achieve the goals of the operating
organisation, depending on the expertise, resources and context of the latter.
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IV Antibiotics

Admission IC
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Admission IC
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ER Registration ER Triage

Fig. 5. The automaton representation of the model in Fig. 1 including the constraint
in Fig. 4.

4 Research Opportunities

Beyond the current state of the art, we foresee several research opportunities
in the context of declarative process modelling and mining. From a modelling
perspective, a clear opportunity relates to the graphical notation. The original
version of the Declare language is known to be difficult to understand [10].
Although some effort has been done in this direction already, an extensive user
evaluation to compare the different ways to represent constraints is still miss-
ing. Also, an interesting challenge is the analysis of declarative process models
mixing crisp and probabilistic constraints, as discovered models often retain
constraints that are violated by a set of traces in an event log. Another aspect
currently under investigation pertains to the so-called hybrid process models,
which consist of both imperative and declarative parts. This is important since
real processes often contain both structured and unstructured parts. Finally, a
highly promising research direction is the development of declarative modelling
and mining instruments to deal with object-centric processes. This problem is
also closely related to the assessment of the relevance of a constraint in a given
process execution, which can depend on the nature of the actions and of the
objects involved in the constraint.
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Abstract. This is a brief summary of the applications of automated
planning in the field of Business Process Management (BPM); and
accompanies a tutorial with the same theme at the 19th International
Conference on Business Process Management (BPM 2021). We hope that
this report is able to quickly onboard newcomers into this field with a
broad overview of the associated challenges and opportunities, as well as
provide established practitioners in the field some new food for thought
in terms of the state-of-the-art and the evolving nature of these problems.

1 Why Automated Planning for Business Processes?

Automated planning deals with sequential decision-making of autonomous or
semi-autonomous systems. Typically, a planning task takes as input a model of
how the world works and a description of the task to be solved in that world;
and produces as output a sequence of steps (plan) or a mapping from a world
state to an action (policy). The representation of the world and task knowledge
determines the flavor of planning. In this paper, we will focus on the subcategory
“classical planning” or planning compilable to its classical form, where a goal
state must be reached from a fully known initial state by applying planning steps
having deterministic effects [9].

The discipline of business process management (BPM) deals with the dis-
covery, modeling, analysis, measurement, improvement, optimization, and
automation of business processes [19].

While each of these problems within the scope of BPM have a wide range
of associated techniques attached to them, the field of automated planning has
interesting touch points with every one of them. In the next section, we will
describe briefly how. But before we get there, we discuss briefly why.

– The key advantage of modeling problems in this form is that it is domain
independent, i.e., we can bring to bear decades of research and tools from
the planning community (such as planners, domain-independent heuristics,
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editors, visualizers, and so on). The key challenge here is then the interfacing
between a BPM practitioner and a representation the planner can understand.
We will explore this in various contexts in the next section.

– The representations are human-interpretable and hence allows for iterative
modeling and refinement with different stakeholders in the process;

– Planning formalisms offer an exponential scale-up from the complexity of
the representation to the complexity of the process. Though this means that
classical planning, i.e., the simplest form of a planning problem, is NP-hard.
This theoretical limit is rarely breached when it comes to applications of
planning to BPM. Instead, an exponential scale-up means that:
1. processes of much more sophistication can be composed the same amount

of work as manual specification;
2. much less work is required to specify processes of the same sophistication

than manual specification; and
3. coverage of a wide space of processes from the same domain-independent

specification, i.e., a possibility of BPM-practitioners to go past hard-coded
solutions to individual problems to domain-independent solutions using
compilations to planning formulations.

– Classical planning models constitute implicit representations of finite
state controllers, and can be thus queried by standard verification tech-
niques, such as Model Checking. In fact, this implicit representation is directly
tied to the exponential scale-up since practitioners do not need to specify the
control explicitly but rather only its declarative components.

Fig. 1. Different touch points of planning along the life-cycle of a business process.

2 Automated Planning for BPM

We will now reflect on how the advantages described above play out in various
applications of planning in world of BPM. Figure 1 conceptualizes the various
touch points of planning technologies along the life-cycle of a business process.
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2.1 Automated Generation of Process Models

Current BPM technology is generally based on rigid process models making
its application difficult in dynamic and possibly evolving domains, where pre-
specifying the entire model is not always possible. In this context, the automated
generation of process models not starting from an event log (that is often not
available) but from the knowledge of the process context and goal is highly desir-
able. This ability to construct process models automatically from its individual
declarative components is the primary application of planning in BPM and is
among the many flavors of declarative modeling used in the field [10].

As an example, in [15], the authors applied planning for automated process
model synthesis. Specifically, the use of planning enabled to build a plan that
led from the world status to the goal status. That plan was the process model.
Notice that, typically, a plan is a sequence of steps. Instead, the technique in [15]
catered for partial orders allowing to encompass parallelism and (some) choice
points. A particularly interesting design of that technique was that a partial
knowledge of the world status was sufficient to synthesize the process model.
For more examples for this type of application, we refer the reader to [14].

Web Service Composition. One important sub-theme in business process
generation is the composition of existing web services to create new ones [20] –
this creates complex semi-automated pathways among existing manual processes
as well as augments manual paths with automation. Composing web services
finds a ready ally in automated planning [2,8]. We refer to [21] for a summary
of work done in this area, and [25,29] for a summary of challenges.

Conversational Agents. An emerging application of chatbots is goal-oriented
conversation, i.e., conversational agents with underlying business processes. End-
to-end learning models cannot specify such bots due to inability to connect the
conversational elements to process constrains and execution. While traditionally
the “dialogue tree” for such agents have been built manually, for example, using
tools such as Watson Assistant or Google Dialogflow, emerging techniques built
on automated planning [18,24] has provided new pathways to domain authors
to generate these structures automatically based off of their declarative compo-
nents. This also has synergies with web service composition as well [5].

2.2 Trace Alignment

Within process mining, trace alignment is the problem of verifying if the observed
behavior stored in an event log is compliant with the process model that encodes
how the process is allowed to be executed to ensure that regulations are not
violated. Trace alignment makes it possible to pinpoint the deviations causing
nonconformity with a high degree of detail [1]. While there exist manifold expla-
nations why a trace is not conforming, one is interested in finding the most prob-
able explanation, i.e., one of the alignments with the least expensive deviations
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(i.e., optimal alignments), according to some function assigning costs to devi-
ations. The state-of-the-art techniques to compute optimal alignments against
procedural [1] and declarative [7] process models provide ad-hoc implementa-
tions of the A* algorithm. The fact is that when process models and event logs
are of considerable size the existing approaches do not scale efficiently due to
their ad-hoc nature and may be unable to accomplish the alignment task.

Among scalable approaches to solve the alignment task, in [11,13] the authors
have reduced trace alignment (let it be declarative or imperative) to a classical
planning problem. This opportunity led to solving a number of additional prob-
lems. For example, it became possible to compute alignments in presence of
coarse-grained timestamps - such that some events are marked as if they were
contemporary, against the typical event log assumption [12].

2.3 Process Adaptation

Process Adaptation is the ability of a process to react to exceptional circum-
stances and to adapt/modify its structure accordingly [22]. While anticipated
exceptions can be foreseen at design-time and incorporated into the process
model as exception handlers, unanticipated exceptions refer to situations that
emerge at run-time, thus requiring that BPM tools provide real-time monitoring
and adaptation features to detect/repair them during process execution.

To overcome the limits of traditional process adaptation, which was based
on an ad-hoc definition of exception handlers to build recovery procedures, in
[16,17] the authors presented a planning-based approach to adapt on-the-fly a
running process instance requiring no predefined exception handler. Specifically,
the SmartPM approach enables to automatically detect unanticipated run-time
exceptions and exogenous events by monitoring the discrepancies between the
expected reality, i.e., the (idealized) model of reality that reflects the intended
outcome of the task execution, and the physical reality, i.e., the real world with
the actual values of conditions and outcomes. If the gap between the expected
and physical realities is such that the process instance cannot progress, the
SmartPM approach resorts to classical planners to build a recovery procedure
as a plan, which can thereby reduce the misalignment between the two realities,
thus resolving exceptions that were not designed into the original process. In
general, this falls under the broader theme of “replanning” in automated plan-
ning, and can be adopted to a wide range of problems including the specific case
of automated web service composition [4] as discussed before.

2.4 Interpretability and Authoring Tools

The interpretability question for automated composition of process elements
using automated planning boils down to understanding the imperative conse-
quences of declarative design. These interpretability issues can occur at multiple
stages:
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Process Definitions. This is meant to reduce the level of expertise required to
specify constructs that can interface easily with a planning representation. For
example, in the context of web service composition, authors in [3,23] tried out a
tag based language that is at once easy to understand from the domain author’s
point of view and at the same time easily compilable to a representation that an
automated planner can consume. Authors in [23,26] also demonstrate how the
domain author can make use of not one but multiple compositions to understand
how a process will evolve and use that knowledge to constrain their authoring
problem. Authors in [18] do the same using a contingent plan instead.

Process Understanding. Once process elements have been defined, it must be
ensured that the process author understands how those individual elements get
composed into process controllers. Interestingly, the process author here can be
the end-user themselves, as well as the usual developer or admin of the process.

In [27], authors introduced a vocabulary for triaging composed processes itera-
tively through a mixture of foils, landmarks (i.e. necessary steps), and abstrac-
tions. In this paradigm, the domain author fixes problems in the most simple
abstraction of a process and then tests them in the fully composed process by
querying it with “foils” or instantiations of the process that they feel should
(or should not) be supported by the automated composition.
In [28], on the other hand, the explanations are for the end-user who wants
to explore the inner workings of an “aggregated assistant” composed on the
fly – by asking how certain things were done and why. Interestingly, such
explanations are sometimes just a feature that is good to have (in terms
of increased transparency and establishment of common grounds with the
user) but they may also be required by law (e.g. GDPR rules may require
establishing provenance and necessity of data flow in certain cases).

3 Conclusions

This concludes a whirlwind overview of the applications of planning for BPM. We
encourage the reader to follow-up for more details with related surveys [6,14,30]
and our tutorial on this topic at BPM 2021: ibm.biz/bpm-2021-tutorial.
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Abstract. Business process monitoring aims at identifying how well
running processes are performing with respect to performance measures
and objectives. By observing the execution of a process, process moni-
toring is also responsible for creating process traces, which can be sub-
sequently used by process mining algorithms to gain further insights on
the process.

Among the various monitoring solutions, artifact-driven monitoring
has been proposed as a viable solution to continuously and autonomously
monitor business processes. By monitoring the changes in the physical
and virtual objects (i.e., artifacts) participating in the process, artifact-
driven monitoring can autonomously generate traces that include events
related to semi-automatic and manual tasks. Also, by relying on a declar-
ative representation of the process to monitor, artifact-driven monitoring
can detecting violations in the execution flow as soon as they occur. In
addition, artifact-driven monitoring can identify the process elements
affected by a violation, and it can continue monitoring the process with-
out human intervention.

This tutorial paper will firstly provide an introduction to process mon-
itoring, and the recent advancements in this field. Then, an overview on
how artifact-driven monitoring works will be provided.

Keywords: Business process monitoring · Artifact-driven ·
Conformance checking

1 Introduction to Process Monitoring

As discussed by Dumas et al. in [2], business process monitoring consists in
methods and techniques aiming at collecting and analyzing information on the
way business processes are executed. Process monitoring plays a key role in the
Business Process Management (BPM) lifecycle, as it allows to verify how well a
business process is executed in reality and if the real behavior differs from the
one being modeled. The outcome of process monitoring can then be used by the
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subsequent phases in the BPM lifecycle to optimize the process or to discover
undocumented behaviors.

According to the classification proposed by [7] and [6], process monitoring
techniques can be classified in the following groups:

– Event data logging. Such techniques identify and record in a so-called exe-
cution log events related to a specific process instance being executed. Such
events can be related to the activities being executed, the artifacts (i.e., the
physical or virtual objects) manipulated by the process, or to the resources
(i.e., the human operators or software components responsible for executing
activities) participating in the process. Since several other monitoring tech-
niques require event data to work, this technique is often seen as a prerequisite
for them.

– Business Activity Monitoring (BAM), also known as “monitoring” [7].
Such techniques analyze real-time information on the activities being executed
(e.g., response time and failure rate) in order to measure Key Performance
Indicators (KPIs) relevant for the process and to determine how well activities
are performed.

– Runtime Performance Analysis. Such techniques analyze performance
information on the processes being executed and identify bottlenecks or
resource allocation problems. Unlike BAM, which focuses on single activi-
ties, Runtime performance analysis focuses on process runs, thus accounting
for dependencies among activities.

– Conformance Checking. Such techniques compare the modeled process
behavior with the one evidenced by execution data, in order to detect incon-
sistencies. To do so, they typically replay events in the execution log and see
if they fit the process model.

– Compliance Checking. Such techniques verify that constraints representing
regulations, guidelines, policies and laws are fulfilled by the process. With
respect to conformance checking, compliance constraints focus on specific
portions of the process, rather than on the entire model. Also, constraints
can predicate both on the structure and on non functional aspects, such as
execution time and resource allocation.

1.1 Challenges in Process Monitoring

To cope with the ever changing needs of the market, more and more organiza-
tions tend to externalize - either partially or completely - their internal business
processes, and to establish short-term collaborations. This causes organizations
to no longer have full control on how the process is being executed. Thus, process
monitoring plays a critical role in this setting. Nevertheless, being able to mon-
itor processes that span among multiple participants is far from trivial. Most
monitoring solutions rely on information coming from Business Process Man-
agement Systems (BPMSs) or other corporate information systems, which are
typically confined within the premises of an organization. Therefore, to monitor
collaborative processes, organizations may have to federate their infrastructure,
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a complex task that may become problematic especially when the organizations
need to collaborate only for a short period of time.

Another relevant challenge in process monitoring consists in ensuring that
events related to process executions are accurate, timely, and reliable. When the
process is fully automated by a single software component, such as a BPMS,
it may be sufficient to collect and analyze the execution logs produced by that
component. However, when the process is composed of manual activities, obtain-
ing reliable monitoring information becomes more difficult. Indeed, the human
operators responsible for such activities have to input information on how the
activity was executed. Thus, the operator may forget to send this information,
may make mistakes, or may deliberately introduce misleading information.

Finally, being able to continuously and autonomously determine if the exe-
cution differs from the model is a challenging task. Most conformance checking
techniques operate off-line with complete event logs, thus can provide monitor-
ing information only after the process ended. Conversely, compliance checking
techniques can operate in real-time with partial event logs. However, most of
them can only indicate if a constraint was satisfied or violated [3]. Therefore,
if the process model is treated as a single constraint, compliance checking tech-
niques can only indicate if the execution adheres to the model or not, but they
cannot point out where it differs (e.g., an activity could be skipped). Breaking
down the model into multiple constraints may address this issue. However, if
constraints modeling all the possible discrepancies that may arise are modeled,
the complexity of the compliance checks grows exponentially.

2 Artifact-Driven Monitoring in a Nutshell

Artifact-driven process monitoring [4] is a novel technique aiming at addressing
the aforementioned challenges. The key idea behind artifact-driven monitoring
is that, by observing the evolution of the artifacts participating in a process, it is
possible to infer how the process is being executed. In particular, the Internet of
Things (IoT) paradigm is exploited to make the physical artifacts in the process
smart. Being equipping with sensors, a computing device (e.g., as a single board
computer) and a communication interface, physical artifacts can autonomously
collect and exchange with each other information on their conditions and on
the environment. In addition, by providing them a representation of the process
they participate in, physical artifacts can autonomously keep track of how the
process is being executed.

The main advantages of artifact-driven monitoring are thus the following:

– Manual Activities can be Automatically Monitored. When executed,
a manual activity changes the conditions of one or more artifacts. For exam-
ple, delivering a package changes the position of that package. Therefore,
if the conditions of the artifacts involved in that activity are automatically
monitored thank to the IoT, the operator responsible for that activity is no
longer required to provide information on when and how that activity was
executed.
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– Collaborative Processes Can be Easily Monitored. Physical artifacts
are in close contact with the process they participate in, even when such pro-
cess spans among multiple organizations. Therefore, they can autonomously
collect all the information relevant for the process, without having to be fed-
erated with the information systems of the external organizations.

– Deviations from the Modeled Process can be Immediately and Con-
tinuously Identified. Artifact-driven monitoring relies on an artifact-centric
representation of the process to monitor, which treats dependencies among
activities as descriptive rather than prescriptive. In this way, it is possible to
immediately detect when the execution deviates from the model and which
portion of the process is affected. When a deviation is detected, monitoring
is not stopped and is capable of detecting subsequent deviations.

2.1 E-GSM Modeling Language

To represent the process to monitor, Artifact-driven Monitoring makes use of
Extended-GSM (E-GSM), an extension of the Guard-Stage-Milestone (GSM)
notation [1]. In particular, activities and process blocks (e.g., exclusive blocks)
are modeled as Stages, which are decorated with Data Flow Guards, Process
Flow Guards, Milestones and Fault Loggers.

A Data Flow Guard contains an expression that, when evaluated to true,
causes the associated stage to become opened, meaning that the process por-
tion represented by that stage was started. Similarly, a Milestone contains an
expression that, when evaluated to true, causes the associated stage to become
closed, meaning that the process portion represented by that stage completed
its execution.

A Process Flow Guard defines a prerequisite dependency among other stages
(e.g., another stage must be closed). It is evaluated when the associated stage
becomes opened and, if the dependency is not satisfied, it means that the process
portion represented by the associated stage is not compliant with the expected
execution flow (e.g. an activity was executed before the previous one was fin-
ished). Therefore, the associated stage is marked as outOfOrder.

A Fault Logger contains an expression that is evaluated as long as the asso-
ciated stage is opened. If that expression evaluates to true, it means that the
process portion represented by the associated stage was incorrectly executed
(e.g., an activity failed). Therefore, the associated stage is marked as faulty.

Expressions contained in Data Flow Guards, Milestones and Fault Loggers
can predicate on the conditions of the artifacts. In this way, when a change in the
conditions of an artifact is detected, the corresponding expression is triggered,
and the execution of the process can be monitored.

2.2 From BPMN to E-GSM

E-GSM is an expressive but complex modeling language. Also, some of the pro-
cesses one would like to monitor may already have been modeled in Business
Process Model and Notation (BPMN), which is a widely adopted standard in
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process modeling. To address those issues, a semi-automatic method to trans-
form BPMN collaboration diagrams in E-GSM has been proposed. In this way,
process designers do not have to learn E-GSM to monitor a process, and can
reuse existing process models and modeling tools.

The first step consists in enriching BPMN collaboration diagrams with infor-
mation on the artifacts participating in the process and their conditions. This
way, it is possible to indicate which artifacts are required for an activity to start,
and how such an activity alters the artifacts. To do so, BPMN data objects
are used to represent the artifacts, data states to represent the conditions of an
artifact, and data associations to represent the artifacts required for activities
to start and the ones being produced when it finishes.

The second step consists in transforming the BPMN collaboration diagrams
into a BPMN process diagram that represents the view artifacts have on the
process. To do so, pools are removed and message flows are transformed in
process flows. Indeed, as artifacts can travel along different organizations and
participate in activities carried out by different organizations, it no longer makes
sense to distinguish activities and dependencies based on the organizations.

The final step consists in transforming the BPMN process diagram in an
EGSM model. To do so, translation rules that map BPMN elements and patterns
into their corresponding BPMN counterparts. As long as the BPMN process
diagram is well-structured, translation rules can be automatically applied with
no user interaction required [5].
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Fig. 1. Reference architecture of our artifact-driven monitoring platform.
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2.3 SMARTifact: An Artifact-Driven Monitoring Platform

To implement an artifact-driven monitoring platform, the reference architecture
shown in Fig. 1 has been proposed. This architecture is organized along four
main modules:

– On-board Sensors Gateway. This module runs on each physical artifact,
and is responsible for periodically collecting the values coming its sensors.

– Events Processor. This module takes as input the data collected by the
On-board Sensors Gateway, analyzes them, and determines the state of the
artifact. Depending on its complexity and on the computing capabilities of
the smart objects, the Events Processor can either run on top of them or
remotely in an on-premise or cloud environment.

– Events Router. This module runs on each physical artifact, and is responsi-
ble for exchanging information with all the physical artifacts, the information
systems and the software components involved in the same process execution.

– E-GSM Engine. This module contains the E-GSM model of the process to
monitor, which is used to determine when activities are executed and if the
process deviates from the expected behavior. Whenever the Events Router
forwards a new event, the E-GSM Engine examines the event and triggers
the expression in the E-GSM model predicating on that event.

This reference architecture was implemented in the SMARTifact platform.
In particular, the Events Processor was implemented with the Node-RED flow
engine, the events router relied on the Message Queue Telemetry Transport
(MQTT) protocol, and the E-GSM engine was implemented in Node.js. The
computing requirements were modest enough for the platform to be deployed in
an Intel Galileo single board computer.
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Abstract. Contemporary process discovery methods take as inputs only
positive examples of process executions, and so they are one-class clas-
sification algorithms. However, we have found negative examples to also
be available in industry, hence we propose to treat process discovery as
a binary classification problem. This approach opens the door to many
well-established methods and metrics from machine learning, in partic-
ular to improve the distinction between what should and should not be
allowed by the output model. Concretely, we (1) present a formalisation
of process discovery as a binary classification problem; (2) provide cases
with negative examples from industry, including real-life logs; (3) pro-
pose the Rejection Miner binary classification procedure, applicable to
any process notation that has a suitable syntactic composition operator;
and (4) apply this miner to the real world logs obtained from our indus-
try partner, showing increased output model quality in terms of accuracy
and model size.

Keywords: Process mining · Binary classification · Negative
examples · Labelled event logs

1 Introduction

From the perspective of machine learning, process discovery [1] sits uneasily in
the gap between unary and binary classification problems [21,31]. Popular con-
temporary miners, e.g. [5,23], approach process discovery as unary classification:
given only positive examples (the input log) they generate a classifier (the output
model) which recognizes traces (adhering to the output model) that resemble the
training data. However, a process model is really a binary classifier: it classifies
traces into those it accepts (desired executions of the process) and those it does
not (undesired executions of the process).

Binary classification in machine learning relies on having access to examples
of both classes. For process discovery, this means having not only positive exam-
ples of desired behaviour to be accepted by the output model, but also negative
examples of undesired behaviour that should be rejected.
c© Springer Nature Switzerland AG 2021
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Negative examples also underpin a substantial part of the mechanics and
theory of machine learning, in particular on model evaluation. Output models are
evaluated on measures comparing ratios of true and false positives and negatives;
however, absent negative examples, it is impossible to apply such measures.
Accordingly, in process discovery, we use measures based only on true positive
answers, such as recall ; we are deprived of more fine-grained measures involving
true negative or false positive answers such as accuracy.

In practical process discovery, negative examples would help distinguish
between incidental correlation and actual rules. For instance, suppose that in
some log, whenever we see an activity B, that B is preceded by an activity
A. Does that mean that we can infer the declarative rule A →• B, that A is
required before B may happen? In general, no: making this distinction requires
domain knowledge. E.g., if A is “call taxi” and B is “file minutes from weekly
status meeting”; by coincidence, we always call a taxi in the morning the day
we file minutes, but clearly there is no rule that we must call a taxi before filing
minutes. Conversely, if A is “approve payment” and B is “execute payment”,
very likely it is a rule that B must be preceded by A.

A mining algorithm does not possess domain knowledge, and so must have
help to make such distinctions, to decide whether to add a rule A →• B to
its output model. Negative examples potentially help here: If BA is in the set
of negative examples, adding the rule A →• B is justified, as it rejects this
trace. Conversely, if a rule rejects no trace from the negative examples, it is not
necessary but discretionary for the miner to leave out or keep in. In the case of
our examples, we would expect to find ample evidence in our negative examples
that executing a payment before approving it is bad, whereas we would expect
to find little to no evidence that filing minutes before calling a taxi is undesired.

As shown by [28] negative examples do exist in practice, some mining algo-
rithms that include negative examples have been proposed, e.g. [22,28], and inter-
estingly recent editions of the process discovery contest1 have moved towards
using labelled test logs (but not training logs) to rank submissions. In this paper
we add to these developments with the following contributions:

1. We formalize process discovery as a binary classification problem, and show
that not all process notations can express complete solutions to this problem
(Sect. 3).

2. We propose the Rejection Miner, a notation-agnostic binary mining proce-
dure applicable to any process notation with a syntactic composition opera-
tor Sect. 4.

3. We describe two cases where negative examples were encountered in industry
and provide data sets [34] (Sect. 5).

4. We implement a concrete Rejection Miner and apply it to these data sets,
comparing exploratively to contemporary unary miners (Sect. 6). The miner
has been integrated in the commercial dcrgraphs.net modelling tool.

1 https://icpmconference.org/2019/process-discovery-contest/
https://icpmconference.org/2020/process-discovery-contest/.

https://www.dcrgraphs.net/
https://icpmconference.org/2019/process-discovery-contest/
https://icpmconference.org/2020/process-discovery-contest/
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For the latter experiments, do note that the contemporary unary miners with
which we compare do not take into account the negative examples. They must
guess from the positive examples which traces to reject, whereas the Rejection
Miner has the negative examples to guide it. We find that the Rejection Miner
achieves noticeably better accuracy, in particular on out-of-sample tests, and
produces models that are orders-of-magnitude smaller than the unary miners.
We also note that we chose not to compare to other binary miners, as we did not
aim to show the merits of the Rejection Miner in particular, but of binary mining
in general. We chose the Rejection Miner as representative for binary mining as
it allows us to build DCR Graphs, which were requested by the industry partner.
The implementation of the Rejection Miner is available on-line [33].

Related Work. There have been several earlier works framing process mining as
a binary classification task. [22] formulates constraints as Horn clauses and uses
the ICL learning algorithm to successively find constraints which remove negative
examples, stopping when there are no negative examples left. They translate these
generated clauses to DECLARE. The Rejection Miner generalises this approach in
that (a) it replaces the horn clauses with a generic notion of “model” for notations
with composition (or synchronous product of models), and thus applies directly
to a plethora of languages such as DECLARE and DCR Graphs, (b) the Rejection
Miner leaves the choice of which clauses to prune until after a set of constraints rul-
ing out all negative constraints is found, opening the door to non-greedy minimisa-
tion, and most importantly (c) we prove correctness for the Rejection Miner. [28]
proposes an approach where traces are represented as points in an n-dimensional
space (n being the number of unique event classes of the log), each point repre-
senting the multiplicity of the event classes in that trace. Finding a model is then
reduced to the problem of finding a convex hull for the points such that positive
points are included and negative points excluded. Whereas the work only con-
siders the multiplicity of event classes in negative traces, the Rejection Miner is
able to also consider the temporal ordering of individual events, while the former
works well for the generation of Petri net models, it is less suitable for declara-
tive notations. In [7,18], the authors artificially generate negative labels, but at
the level of individual events rather than traces. The authors also defined process
mining oriented metrics based on the resulting true positive/negative labels at
the level of events. In [29] the development of binary process discovery algorithms
was identified as a key open challenge for the field of declarative process discov-
ery. Our work is also closely related to the work on vacuity detection in declarative
process mining [15,25] which considers techniques for selecting the most relevant
discovered constraints. However, they only consider logs with positive examples.
The use of labelled input data is also well-accepted in the field of predictive pro-
cess monitoring [16,32]. Finally, our test-driven modelling use case presented in
Sect. 5.1 is similar to the scenario-based modelling approach introduced in [17],
where (potentially negative) scenarios are modelled as small Petri nets which can
then be synthesised into a single larger model. Contrary to this approach we input
positive and negative scenarios as traces and learn a declarative model from these.
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2 Process Notations and Unary Discovery

We recall the traditional definitions of event logs etc. [1].

Definition 1 (Events, traces, logs). Assume a countably infinite universe A
of all possible activities. As usual, an alphabet Σ ⊆ A is a set of activities, and
the Kleene-star Σ� denotes the countably infinite set of finite strings or sequences
over Σ; we call such a string a trace. A log L is a multiset of occurrences of
traces L = {tm1

1 , . . . , tmn
n } where mk > 0 is the multiplicity of the trace tk ∈ Σ.

We write LΣ for the set of all event logs over alphabet Σ.

When convenient, we treat an event log L also as simply a set of traces by
ignoring multiplicities.

When we discuss unary and binary process discovery in the abstract in later
sections, we will be interested in applying discovery to a variety of process nota-
tions; and we shall propose a miner which can be instantiated to any notation
with a suitable composition operator. To make such statements formally, we
need a formal notion of process notation. We use P(S) for the power set of S.

Definition 2 (Process notation). A process notation for an alphabet Σ com-
prises a set of models M and an interpretation function �−� : M → P(Σ�)
assigning to each individual model m the set of traces �m� accepted by that model.
For a set S ⊆ Σ�, we write m |= S iff S ⊆ �m�.

While a process notation comprises the three components Σ, M, and �−�,
when no confusion is possible we shall allow ourselves to say “consider a process
notation M”, understanding the remaining two components to be implicit.

Example 3. Here is a toy declarative formalism which allows exactly the con-
dition constraint of DECLARE [2,27] or DCR [12,19] over a countably infinite
alphabet Σ = {A,B,C, . . .}. A “model” is any finite set of pairs (x, y) ∈ Σ × Σ,
and we interpret each such pair as a condition from x to y. Formally:

Mcond = {C ⊆ Σ × Σ | C finite}
�C� = {t ∈ Σ� | ∀(x, y) ∈ C. each y in t is preceded by x}

For instance, {(A,B)} ∈ Mcond is a model consisting of a single condition from
A to B. In DECLARE or DCR, we would write this model “A →• B”. Just as
in DECLARE or DCR, this model admits all traces in which any occurrence of
B is preceded by an occurrence of A. That is, this model admits the trace AB,
but not B or BABA. Formally, we write

AB ∈ �{(A,B)}� or {(A,B)} |= {AB}
{B,BABA} �⊆ �{(A,B)}� or {(A,B)} �|= {B,BABA}

Any process modelling formalism with trace semantics is a process notation
in the above sense; such formalims include DECLARE, DCR, and Workflow
Nets [3] (see also [1]).
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We conclude this Section by pinning down process discovery: a procedure
which given an event log produces a process model which admits that log.
Assume a fixed alphabet Σ, and write LΣ for the set of all valid event logs
over Σ.

Definition 4 (Unary process discovery). A unary process discovery algo-
rithm γ for a process notation (M, �−�) over Σ is a function γ : LΣ → M. We
say that γ has perfect fitness iff for all L ∈ LΣ we have γ(L) |= L.

Anticipating our binary miners, we shall refer to “perfect fitness” also as positive
soundness of the miner.

3 Process Discovery as Binary Classification

We proceed to consider process discovery a binary classification problem. This
approach presumes that we have not only positive examples (the set L in Defini-
tion 4), which the output model must accept, but also a set of negative examples,
which the output model must reject.

Example 5. Consider again the condition models Mcond of Example 3. Take as
positive set of examples the singleton set {AB}, and take as negative examples
the set {BA,B}. One model which accepts the positive example and rejects the
negative ones is the singleton condition {(A,B)}. This model admits the positive
example AB, because B is preceded by A; and it rejects the negative examples,
because in both of the traces B and BA, the initial B is not preceded by A.

The negative examples here help solve the relevancy problem that plagues
unary miners for declarative formalisms: The positive example AB clearly sup-
ports the constraint “A is a condition for B”, however, as we saw in the intro-
duction, with only positive examples and without domain knowledge, we cannot
know whether this is a coincidence or a hard requirement. In the present exam-
ple, the negative examples tell us that our model must somehow reject the trace
BA, encouraging us to include the condition A →• B.

Unfortunately, a model accepting a given set P of positive examples and
rejecting a given set N of negative ones does not necessarily exists: At the very
least, we must have P and N disjoint. To cater to such ambiguous inputs, we
allow a binary miner to refuse to produce a model.

Definition 6 (Binary process discovery). Let M be a process notation
for an alphabet Σ. A binary-classification process discovery algorithm (“binary
miner”) is a partial function η : LΣ × LΣ ⇀ M, taking sets of positive and
negative examples P,N to a model η(P,N). We require that η(P,N) is defined
whenever P,N are disjoint.

In the rest of this paper, unless otherwise stated, we shall implicitly assume
that examples P,N are disjoint. We proceed to generalise the notion of fitness
from unary mining.
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Definition 7 (Soundness, perfection). Let P,N ⊆ LΣ be positive and neg-
ative examples. We say that a binary miner η is positively sound at P,N
iff η(P,N) |= P . Similarly, we say that η is negatively sound at P,N iff
N ∩ �η(P,N)� = ∅. We say that η is perfect iff for any disjoint P,N it is
defined and both positively and negatively sound.

In other words: A perfect binary miner produces an output whenever its
positive and negative examples are not in direct conflict, and that output admits
all positive examples and none of the negative examples provided as input.

Over-and Underfitting of Out-of-Sample Data. A perfect binary miner has no
choice in how it treats the elements of P and N : it must admit its positive
examples P and reject its negative examples N . It is the remaining undecided
traces where it has a choice. In the limits, we have the overfitting “maximally
rejecting miner”, whose output always accepts exactly P and nothing else; and
the underfitting “maximally accepting miner”, whose output rejects exactly N
and nothing else.

However, unlike the unary case, where perfect fitness miners are generally
quite easy to come by, perfect binary miners do not necessarily exist, and
helpful ones may in practice be quite hard to come by.

First, let us try to use a unary miner as a binary one. We do so by simply
ignoring the negative examples and applying our unary miner to the positive
ones. In this case, it is easy to show that for any unary miner (for any notation)
which never returns exactly its input log, we can construct a negative example
which will be accepted by the output model of that miner for those positive
examples:

Proposition 8. Let γ be a unary miner for a notation M over alphabet Σ, and
assume that for all L we have �γ(L)� �= L. Then for all P ∈ LΣ there exists a
N ∈ LΣ s.t. N and P are disjoint, yet N is accepted by the output model γ(L).

So in this sense, non-trivial unary miners never generalise to binary
ones. This is perhaps not entirely surprising. Much less obvious, and a core
difference between binary and unary mining, we find that some notations can-
not express distinctions fine enough to distinguish between positive and nega-
tive examples. This is in stark contrast to the unary case, where essentially all
notations have a model accepting all traces (the “flower model”); moreover, all
commonly accepted notations are able to express any finite language, and so for
any input log (finite language), a perfectly fitting model must exist.

However, in the binary case, even though our example notation admits the
“flower model”, it is still too coarse to admit a perfect binary miner.

Lemma 9. In Mcond, take positive examples P = {ABC}, and negative exam-
ples N = {AB}. Then no model m ∈ Mcond exists such that m |= P yet m �|= N .

Proof. Suppose m is a model with m �|= {AB}. Then m requires something
preceding either A or B, something which is apparently not there. But then that
something is missing also from ABC.
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In fact, we prove below that no perfect binary miner can exist in any
notation that has only finitely many possible models. To understand
the ramifications of this Theorem, consider again DCR and DECLARE. For
DCR or DECLARE models over a fixed finite alphabet (e.g., the set of tasks
present in a given log), DCR has infinitely many such models (with distinct
semantics), whereas DECLARE has only finitely many. To see this, note that
in DCR, because labels and events are not one-one, we can keep adding events
that do affect behaviour, while remaining within a finite set of observable tasks.
In DECLARE, if there are n activities to choose from, you can populate only
finitely many DECLARE templates with those finitely many tasks. Since the
arity of DECLARE templates is bounded, and current DECLARE miners are
bounded to a finite set of input templates, you are left with only finitely many
models.

Note the following consequence for DECLARE: any binary miner for
DECLARE has inputs P,N for which the output a model has either
false positives or false negatives.

Theorem 10. No perfect binary miner exists for any process notation that has
only finitely many possible models M over any non-empty finite alphabet Σ.

Proof. We construct finite positive and negative examples P and N such that
no model accepts P and rejects N . First, we construct N . Let I+ as the subset
of models that accepts infinitely many traces, i.e., I+ = {m ∈ M | �m� infinite}.
Since there are only finitely many models, I+ is finite, and without loss of gen-
erality write it I+ = {m1, . . . ,mn}. For each mi, choose a ti ∈ �mi�, and define
N = {t1, . . . , tn}. Next, we construct P . Let �(�m�) be the complement of the
traces generated by a model m and I− the subset of models which reject infinitely
many traces, i.e., I− = {m ∈ M | �(�m�) infinite}. Again I− is finite and we
write it without loss of generality I− = {p1, . . . , pk}. For each of pj , pick a trace
sj such that sj /∈ �pj� and sj /∈ N -this is always possible because ��mj� is infi-
nite and N finite. Then define P = {s1, . . . , sk}. Note that by construction P
and N are disjoint. Finally, let m ∈ M be a model. At least one of �m� and ��m�
must be infinite; we show that in neither case can m be the output of a perfect
binary miner applied to P,N . If �m� is infinite, then m ∈ I+, say m = mi, and
it follows that m |= ti ∈ N ; hence m fails to reject all negative examples. If on
the other hand �(�m�) is infinite, then m ∈ I−, say m = pj and it follows that
sj /∈ �pj� = �m�; hence m fails to accept the positive example sj ∈ P .

Alternatively, the above proof can possibly be used to show that there are
infinitely many problems P,N with pairwise distinct solutions; the Theorem then
follows from the Vapnik-Chervonenkis dimension [4] of the set of interpretations
of the finite set of models being necessarily finite, and so unable to shatter this
infinite set of distinct solutions.

In unary mining, we may construct a perfect fitness miner like this: As nota-
tion, pick simply finite sets of traces, and let the semantics of the notation be
that a model (set of traces) T accepts a trace t iff t ∈ T . Then the function
η(P ) = P is a perfect fitness miner. This generalises to any notation strong
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enough to characterise exactly a given set of T of traces. Obviously, this unary
miner has little practical relevance.

It is interesting to note that a similar perfect binary miner exists. Pick as nota-
tion pairs of sets of traces T,U , with semantics that T,U accepts t iff t ∈ T and
t �∈ U . Clearly the function η(P,N) = (P,N) is a perfect binary miner, although
again, not a particularly helpful one. However, the construction shows that a per-
fect binary miner exists for any notation strong enough to exactly characterise
membership resp. non-membership of finite sets of traces. Notable examples here
are Petri-nets and BPMN (through an exclusive choice over the set of positive
traces); so it follows that a (trivial) binary miner exists for these notations.

4 Rejection Miners

We proceed to construct a family of binary miners we call “Rejection miners”,
defined for any process notation which has a behaviour-preserving syntactic
model composition. Rejection miners are parametric in a “pattern oracle” which
selects a set of patterns for consideration; if the patterns selected allow it, the
output of the Rejection Miner is perfect. When they do not, the miner does a
greedy approximation to optimise for accuracy (i.e., maximising the ratio of true
positives and negatives to all inputs).

Definition 11 (Additive process notation). We say that a process formal-
ism M over Σ is additive if it comes equipped with a commutative monoid (⊕,1)
on M such that

�1� = Σ� (1)

�m ⊕ n� = �m� ∩ �n� (2)

We lift the monoid operator to sequences and write
⊕

i<n mi = m1⊕· · ·⊕mn−1,

That is, an additive formalism has a flower model 1 and a model combination
operator ⊕. This operator combines two models into a compound one, such that
this compound model accepts exactly the traces accepted by both of the two
original models. DECLARE is an additive formalism: A DECLARE model is a
finite set of constraints; the empty such set accepts all traces (1), and the union
of two such sets is again such a set, with exactly the desired semantics (⊕). DCR
also has a model composition, where the composite model is the union of events,
markings, and constraints [11,20]. However, this composition does not preserve
semantics in the general case.

In practice, any process notation can be considered additive by forming the
synchronous product of models: To check whether a given trace t conforms to a
composite model m⊕n, we simply check whether m |= t and n |= t. Incidentally,
this is a popular implementation mechanism for DECLARE constraints (see,
e.g., [10,14]).
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The key property of additive process notations used for Rejection Miners is
that in such a notation, we can think about models as being the sum of their
parts, and the problem of mining can then be reduced to finding suitable such
parts. For this approach to be able to generate all models, we would also need to
know a subset S ⊆ M which generates M under the model composition operator
−⊕−. DECLARE and DCR clearly has such subsets. In keeping with declarative
notations and nomenclature, we will refer to such part models as “constraints”
in the sequel, however, we emphasise that there is nothing special about them:
A constraint m is just another model m ∈ M.

A rejection miner is parametric in two sub-components: A pattern oracle,
which given positive and negative examples produces a finite set of (hopefully)
relevant constraints; and a constraint minimiser, which given a sequence of con-
straints known to fully reject a set of negative examples selects a subset still
fully rejecting those examples.

Definition 12 (Rejection miner components). Let M be a process notation
over an alphabet Σ. A pattern oracle is a function patterns : LΣ × LΣ → M�.
A minimiser is a function minimise : M� × LΣ → M� satisfying:

1. if σ ∈ M� fully rejects L, then also minimise(σ,L) fully rejects L; and
2. minimise(σ,L) contains only elements from the input sequence σ.

An example pattern oracle for DECLARE would be the function that pro-
duces all possible instantiations of all templates with activities observed in either
of its input logs. An example minimiser is the greedy minimiser which, starting
from the left of the list of constraints, removes those constraints which reject
only traces in N that are already rejected by preceding constraints.

Algorithm 13 (Rejection miner). Let M be an additive notation over Σ,
let patterns be a pattern oracle and let minimise be a minimiser.

1: procedure RejectionMiner(P,N)
2: [m1, . . . ,mn] ← patterns(P,N)
3: σ ← [mi | mi |= P ] � remove mj where mj �|= P
4: σ ← ⊕

minimise(σ,N)
5: if �

⊕
σ� ∩ N �= ∅ then � are any negative examples not rejected?

6: δ ← 1, σ2 ← []
7: while δ > 0 and |σ2| < |σ| do
8: N ′ ← {n ∈ N | ⊕

σ2 |= n} � negative examples not yet rejected
9: P ′ ← {p ∈ P | ⊕

σ2 |= n} � positive examples currently accepted
10: m, δ ← maxmj∈σ\σ2(|{n ∈ N ′ | mj �|= n}| − |{p ∈ P ′ | mj �|= p}|)
11: if δ > 0 then
12: σ2 ← σ2,m
13: end if
14: end while
15: end if
16: end procedure
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A brief explanation: On line 2, the pattern oracle is invoked to produce a
finite list [m1, . . . ,mn] of relevant constraints. On Line 3, those constraints not
modelling the positive examples P are filtered out; only the constraints mi which
do model P are retained; we assign the resulting list to σ. We then apply the
minimiser in Line 4, which by Definition 12 at most removes constraints. On
Line 5, we check whether all negative examples are rejected; if so, we have found
a perfect model and return it.

Otherwise, we turn to approximation. In the loop in Line 7 to 13, we repeat-
edly compute the set N ′ of negative examples not yet rejected and P ′ of positive
examples currently accepted. In Line 10, we iterate over the constraint mj of the
original pattern oracle and compute for each the difference δj between how many
additional negative examples mj rejects (wins) and how many already accepted
positive examples mj rejects (losses); we then pick the mj with the maximum
δj . If δ > 0, adding the constraint mj will improve accuracy, and we add it to
the set of output constraints. If δ ≤ 0, we cannot improve accuracy by including
any more constraints, and the loop terminates.

Recall from the previous section the notions of maximally accepting or maxi-
mally rejecting perfect binary miners. The minimiser provides a handle for push-
ing the Rejection Miner towards either of these extremes. Using the identity func-
tion as the minimiser will retain all constraints, and so reject the most undecided
traces. Conversely, using a minimiser which finds a least subset of constraints
rejecting N will remove more constraints, accepting more undecided traces.

The Rejection Miner is not in general a perfect binary miner: The patterns
σ provided to it by the patterns might not, even if all of them were retained, be
strong enough to fully reject the set N of negative examples while retaining the
positive ones. Moreover, while the Rejection Miner in practice produces decent
results, its approximation phase does not find a subset of patterns with optimal
accuracy because of its greedy nature.

However, the Rejection Miner will always accept all the positive examples;
and if the selected patterns σ has any subset σ′ which accepts P and rejects N ,
the Rejection Miner will find such a subset.

Proposition 14. Let patterns be a pattern oracle, let minimise be a minimiser,
and let P,N be disjoint sets of positive and negative examples. Then the Rejection
Miner for this oracle and minimiser has positive soundness at P,N . Moreover if
there exists σ ⊆ patterns(P,N) such that σ accepts P and fully rejects N , then
the Rejection Miner also has negative soundness at P,N .

Proof (sketch). The former is immediate from line 4; the latter is immediate by
the requirements 1 and 2 of Definition 12.

That is: On all inputs where the pattern oracle produces patterns strong
enough to make the distinction, the Rejection Miner will exhibit neither false
negatives nor positives. Note that this is not in contradiction to Theorem 10: the
Rejection Miner is not a perfect miner in general, but if a perfect model exists
for a given input and pattern oracle, then it will find such a model.
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5 Cases with Negative Examples

The development of the Rejection Miner was not just motivated by academic,
but also industrial interest. When pursuing process mining activities in practice
we regularly see opportunities to label data and in some cases we have even
been asked directly by commercial partners to include counter examples in the
construction of models. In this section we discuss the two most developed cases
we have encountered, where we both had the opportunity to extract labelled
data and publish it in an anonimyzed format. The negative examples in these
cases arise from test-driven development and as failures in process engineering.

5.1 DCR Solutions: Test-Driven Modelling

A Danish vendor of adaptive case-management systems, DCR Solutions, offers
the on-line process modelling portal dcrgraphs.net. In this tool, modellers define
required (positive) resp. forbidden (negative) test cases (traces), expected to be
accepted resp. rejected by the model under development. The test cases are also
used as input to a process discovery algorithm, which dynamically recommends
new constraints to modellers [6]. However, the algorithm used only the positive
test-cases, ignoring the negative ones. The extension to consider also those neg-
ative ones has been repeatedly requested by the developers of the portal and
was implemented as part of this paper. DCR Solutions has kindly allowed us
to make the entire data set of test-cases produced in the portal available in an
anonymized form [34].

5.2 Dreyer Foundation: Process Engineering

The Danish Dreyer Foundation supports budding lawyers and architects, and
has previously released an anonymised log of casework [13]. This log documents
also testing and early stages of deployment of the system. In a number of cases,
process instances that had gone astray were reset to their starting state and
partially replayed. The log contains reset markers, and so provides clear negative
examples: those prefixes that ended in a reset. We make available here also this
partitioning into positive and negative examples [34].

6 Experimental Results

We report on exploratory experiments applying an instantiation of the Rejection
Miner to the data sets of Sect. 5, comparing results to current major unary
miners.

Data Sets. The DCR Solutions case (Sect. 5.1) comprises 215 logs, each con-
taining at least one negative example, and each produced by users of the portal
to codify what a single model should or should not do. The logs contain 7030
events, 1681 unique activities, 589 negative and 705 positive traces. Logs vary

https://www.dcrgraphs.net/
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enormously in size: the largest log contains 1162 events, 19 activities, 98 nega-
tive and 14 positive traces; the smallest log contain but one negative trace of 3
events. Log size distribution is visualised in Fig. 1. The Dreyer case ((Sect. 5.2))
comprises a single log of 10177 events, 33 unique activities, 492 positive and 208
negative traces. The mean trace length is 15 (1–46), and the mean number of
activities per trace is 12 (1–24). Both data sets are available on-line [34].

Both data sets were pre-processed to remove any conflicting traces (i.e. that
were both marked as positive and negative for the same log). In addition the
DCR Solutions data set had a notion of “optional” traces, but what this meant
was not well-defined, therefore these were also removed.

Fig. 1. DCR Solutions data set log size distribution. The largest log of 98 negative and
14 positive traces has been omitted from the diagram.

Metrics. Binary classification mining allows us to rely on traditional machine
learning metrics [35] of relative misclassification (true and false positives, TP
and FP, and true and false negatives, TN and FN). We use in particular the
true positive rate (TPR), true negative rate (TNR), accuracy (ACC), balanced
accuracy (BAC), positive predictive value (PPV), and F1-score (F1). We recall
their definitions in Table 1. These particular measures demonstrate the difference
between what can be measured in the unary and binary settings. In the setting
of unary-classification miners, where we do not have negative examples, we can
count only TP and FN. In that setting, we can only measure the true positive
rate (TPR)-known as “fitness” in the process mining community-but none of
the other measures2. But in the setting of binary-classification miners, we can
measure also how well the output model recognizes negatives (TNR), how reliable
a positive classification is (PPV), and generally how accurately both positive and
negative traces are classified (ACC, which counts each trace equally and BAC,
which balances between positive and negative traces).

Finally, one goal particular to process discovery is to produce output mod-
els that are understandable by humans: Output models are not mere devices
for classification; they are vehicles for humans to understand the reasons and
structure behind that classification. To this end, smaller models are more help-
ful, so we calculate also the size of the models, dependent on their notation.
2 The name “F1” is used for a metric of unary miners defined like F1 here, except

using the escaping-edges notion of precision [8] en lieu of the PPV.
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For the pattern-based notations such as DECLARE, we use the number of such
patterns; for DCR models the number of relations; and for workflow nets the
number of edges and places. Of course sizes for models in different notations are
not directly comparable, but they give us an insight in the number of elements
that need to be processed by the reader and give a rough indication of relative
complexity.

Table 1. Confusion matrix for binary mining

Log classification

Model class. Pos. Neg. ACC = TP+TN
TP+FP+TN+FN

Pos. TP FP PPV = TP
TP+FP

Neg. FN TN BAC = TPR+TNR
2

TPR = TP
TP+FN

TNR = TN
FP+TN

F1 = 2 · PPV·TPR
PPV+TPR

Rejection Miner. We provide a JavaScript implementation of the Rejection Miner,
available at [33]. We use a pattern oracle which simply instantiates the follow-
ing list of DECLARE-like patterns at all activities seen in the log: Existence(x),
Absence(x), Absence2(x), Absence3(x), Condition(x, y), Response(x, y),
NotSuccession(x, y),AlternatePrecedence(x, y),DisjunctiveResponse(x, (y, z)), and
ConjunctiveResponse((x, y), z). The oracle outputs patterns sorted by how many
negative examples they exclude.Ties are broken by sorting the disjunctive and con-
junctive responses last, to de-emphasise these relatively more complex patterns.

We emphasise the flexibility of the oracle and minimizer selection: if one
wants to include more patterns, one simply extends the oracle; if one wants to
have a more restrictive model, or a different prioritization of constraints, one
simply replaces the minimizer. One can also produce models that sacrifice TPR
for accuracy by creating a minimizer that accepts constraints excluding some
positive examples, but also excluding many negative examples.

Other Miners. We compare the Rejection Miner (RM) to flagship miners for
three major process notations. For DCR graphs [12,19], we use DisCoveR [26].
DisCoveR is used commercially for model recommendation by DCR solutions.
We consider DisCoveR with two settings, the default one (intended to empha-
sise precision, denoted D), and a “light” version intended to emphasise sim-
plicity (DL). For DECLARE [2,27], we use MINERful [9] and consider three
settings, (M1) the most restrictive setting where support= 1.0, confidence = 0.0,
and interest factor = 0.0; (M2) a less restrictive setting (likely outputting smaller
models) with support = 1.0, confidence = 0.5, and interest factor = 0.25; and
(M3) with support= 1.0, confidence = 0.75, and interest factor = 0.5. Finally, for
Workflow Nets [3], we use the Inductive Miner [1,23], with a noise threshold
of 0.0 (IM) and 0.2 (IMf) respectively.
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6.1 Results

We performed both in-sample and out-of-sample testing. For the latter we per-
formed 10-fold validation [30] and calculated our measures as the mean values
across 10 randomized attempts. The results are shown in Table 2. For the DCR
Solutions data set each value is calculated as the mean over all 215 logs. Because
of the limited size of most of the logs, we only tested on in-sample data for this
case, however, since the primary goal for the company is to find models that
accurately fit the training data, in-sample accuracy is highly relevant.

Table 2. Experiment results

Miner TPR TNR ACC BAC PPV F1 Size

DCR Solutions Data set (Sect. 5.1) In-sample

Rejection (RM) 1.000 1.000 1.000 1.000 1.000 1.000 1.5

DisCoveR (D) 1.000 0.927 0.976 0.964 0.971 0.983 24.8

- light (DL) 1.000 0.921 0.974 0.948 0.967 0.981 19.6

MINERful (M1) 1.000 0.881 0.958 0.941 0.949 0.970 120.5

- 0.5/0.25 (M2) 0.997 0.841 0.942 0.919 0.930 0.957 77.6

- 0.75/0.5 (M3) 0.961 0.657 0.848 0.809 0.850 0.877 37.8

Inductive (IM) 1.000 0.860 0.946 0.930 0.932 0.960 22.1

- 0.2 noise (IMf) 1.000 0.860 0.946 0.930 0.932 0.960 22.1

Dreyer Foundation Data set (Sect. 5.2) In-sample

Rejection 1.000 0.928 0.979 0.964 0.970 0.985 6.0

DisCoveR 1.000 0.048 0.717 0.524 0.713 0.832 125.0

- light 1.000 0.048 0.717 0.524 0.713 0.832 71.0

MINERful 1.000 0.067 0.723 0.534 0.717 0.835 1124.0

- 0.5/0.25 1.000 0.0288 0.711 0.514 0.709 0.830 174.0

- 0.75/0.5 1.000 0.005 0.704 0.502 0.704 0.826 102.0

Inductive 1.000 0.019 0.709 0.510 0.707 0.828 160.0

- 0.2 noise 1.000 0.019 0.709 0.510 0.707 0.828 160.0

Dreyer Foundation Data set (Sect. 5.2) Out-of-sample

Rejection 0.985 0.914 0.964 0.950 0.965 0.975 6.2

DisCoveR 0.962 0.362 0.692 0.662 0.706 0.814 127.6

- light 0.968 0.447 0.697 0.707 0.708 0.817 72.9

MINERful 0.906 0.231 0.659 0.569 0.698 0.787 1128.4

- 0.5/0.25 0.962 0.270 0.685 0.616 0.701 0.810 176.4

- 0.75/0.5 0.970 0.081 0.684 0.525 0.698 0.810 104.9

Inductive 0.981 0.339 0.696 0.660 0.703 0.818 158.9

- 0.2 noise 0.983 0.359 0.698 0.671 0.704 0.819 157.8
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DCR Solutions. First, on in-sample test data, the Rejection Miner mines per-
fectly accurate models on every log. This is a small, but meaningful, improvement
over the 0.967 accuracy achieved by DisCoveR light, which is currently used for
this task. In practice this means that, given a mapping from the Declarative pat-
terns to DCR Graphs, the Rejection Miner will allow the portal to recommend
perfectly accurate models for all test cases that have been defined to-date. Sec-
ondly, there is an order-of-magnitude gain in simplicity for the Rejection Miner
compared to all other miners: the Rejection Miner requires only 1.5 constraints
on average per model. We conjecture that this gain is achieved because know-
ing what behaviour should be forbidden allows the miner to find precisely the
constraints we need, instead of having to propose many constraints to forbid
all behaviour that was not explicitly seen in the positive samples. This gain in
simplicity also directly benefits the business case, as the industry partners have
repeatedly voiced a strong preference for fewer, but more relevant, recommended
relations. As a result, the Rejection Miner has already been integrated into the
portal by the company.
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Fig. 2. Boxplots illustrating the distribution of mean performance of various miners
across 10 runs of 10-fold cross validation on the Dreyers log.

Dreyers Foundation. The results show that the Rejection Miner once again
provides high levels of accuracy while requiring only a small model. Of most
interest are the out-of-sample results, shown in more detail in the boxplots of
Fig. 2, which indicate that the models found by the Rejection Miner are not only
accurate for the training data, but also for unseen test data. In other words,
providing the miner with some negative examples allows it to accurately predict
what other negative examples may be seen in the future. In addition there is
very little variance in the results of the Rejection Miner, with model size and
accuracy scores remaining close to the mean for each randomized run of the
10-fold validation. We also included measures of the run-time performance in
Fig. 2, showing that the Rejection Miner is several orders of magnitude slower
than the other miners (requiring on average 39.3 s to mine the Dreyers log).
We stress however that good run-time performance was never a goal for the
current prototype, that there are known methods for improving the run-time
performance through a more intelligent initial selection of relevant patterns by
the oracle [6,24], and that the results do show that the miner is computationally
viable for the experimental data.
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7 Conclusion

We propose approaching process discovery as a binary classification problem.
We provided a formal account of when binary miners exist; proposed the Rejec-
tion Miner; introduced real-world cases of negative examples; and compared
the Rejection Miner to contemporary miners for various notations, finding an
increase in accuracy and, in particular, output model simplicity.

In future work we will optimize the run-time performance, for example
through a more intelligent pattern oracle based on the Declare miner [24]
or DisCoveR [6]. We will also pursue additional experiments through labelled
real-world logs, such as the PDC datasets and novel use cases from industrial
partners.
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flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006). https://doi.org/10.1007/
11841197 1

3. Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.)
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Abstract. Event logs have become a valuable information source for
business process management, e.g., when analysts discover process mod-
els to inspect the process behavior and to infer actionable insights. To
this end, analysts configure discovery pipelines in which logs are filtered,
enriched, abstracted, and process models are derived. While pipeline
operations are necessary to manage log imperfections and complexity,
they might, however, influence the nature of the discovered process model
and its properties. Ultimately, not considering this possibility can neg-
atively affect downstream decision making. We hence propose a frame-
work for assessing the consistency of model properties with respect to
the pipeline operations and their parameters, and, if inconsistencies are
present, for revealing which parameters contribute to them. Following
recent literature on software engineering for machine learning, we refer
to it as debugging. From evaluating our framework in a real-world analysis
scenario based on complex event logs and third-party pipeline configu-
rations, we see strong evidence towards it being a valuable addition to
the process mining toolbox.

Keywords: Process mining · Discovery · Uncertainty & sensitivity
analysis

1 Introduction

Historic process information from event logs enables analysts to derive business
process insights using process mining [1]: process discovery [5,19] infers pro-
cess models from the recorded behavior, conformance checking [12,30] relates
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Fig. 1. An extended perspective for the evaluation of process discovery results

observed behavior to an existing process model, process enhancement [2,6]
repairs models or extends them e.g., with performance and resource informa-
tion, and predictive process monitoring [16,22] forecasts how process instances
may unfold during execution.

The maturity of those techniques has led to an increasing adoption of pro-
cess mining in industry projects, where analysts often find answers to busi-
ness problems through a divide-and-conquer strategy by breaking down those
problems into fine-grain information needs [10]. Here, process discovery plays
a crucial role, as analysts interpret the properties of the discovered models to
derive insights [32] that then serve as a foundation for understanding related
aspects [1,17]. If interpreted carelessly, process discovery insights can hence neg-
atively affect downstream analysis. Thus, evaluating insights from mining, par-
ticularly discovery, should be a key activity in each project [10,25] to confirm
findings and to turn them into reliable and actionable insights [32]. Besides ver-
ifying scripts or tool configurations, consulting domain experts, or investigating
the process environment, analysts can also perform data-driven evaluation [37].

Commonly, discovery results are evaluated by means of model-centric met-
rics like fitness, precision, generalization, and simplicity [9,15], which are e.g.,
computed via conformance checking [12,30] with the log that served as input to
the discovery algorithm. Those metrics are valuable for assessing the reliability
of discovery algorithms, and we want to complement them by expanding the
evaluation perspective, as shown in Fig. 1. Analysts typically set up process dis-
covery pipelines to transform logs before discovering a model. While necessary to
manage log imperfections and complexity, such a pipeline potentially constrains
the validity of the behavior covered by the discovered model. Thus, we propose
to examine how pipeline parameters affect properties of the discovered process
models at different granularity levels, because analysts often focus on specific
execution paths and patterns to break down the model topology [17].

To this end, we propose a method to investigate the consistency of model
properties by means of uncertainty and sensitivity analysis [36]. Our primary
goal is to enable what-if analyses in which the reliability of insights is assessed by
examining relationships between pipeline parameters and model properties. Yet,
the method can also be applied to guide the pipeline definition, or to generate
insights from those relationships. In more detail, we present a configurable frame-
work to evaluate, if user-defined model properties are consistent with results from
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varied configurations of a user-defined pipeline and to quantify the contribution
of individual pipeline parameters towards inconsistencies. In doing so, we follow
recent work in software engineering [3], which defines a notion of debugging for
machine-learning (ML) pipelines. As such, our proposal can be understood as a
method for debugging process discovery pipelines.

Following, we discuss the problem in Sect. 2, relying on observations from a
competitive process analysis challenge and an illustrative analysis of a moder-
ately complex real-world dataset. We then outline the framework and demon-
strate its application using the same dataset in Sect. 3. In a separate experiment,
we investigate our framework in a realistic analysis setting based on another real-
world dataset with high complexity in Sect. 4. Here, we substantiate the utility
of our framework by showing that its output is founded in observations by exter-
nal analysts and theory. The results demonstrate that our debugging framework
is a valuable addition to the process mining toolbox: in addition to existing
guidelines, patterns, and tools which we discuss in Sect. 5, it enables analysts
and their audiences to comprehend the degree to which properties of discovered
models are constrained by analytical decisions in a specific context. Finally, we
conclude the paper and discuss future directions in Sect. 6.

2 Basic Terminology and Problem Illustration

An event log L is a set of traces and each trace is an ordered sequence of events.
Event logs also contain features that describe properties of events and traces,
such as case identifiers, event timestamps, or activity names. A process model P
is a directed graph where typed and labeled nodes represent activities, gateways,
events, etc., whereas edges depict the control flow. Finally, L and P denote
the universes of event logs and process models, respectively. Note that for the
purposes of this paper this basic understanding is sufficient. We hence omit
formal definitions which are e.g., presented in [1, Ch. 3 & 5].

To analyze the process behavior captured in an event log, analysts often
define process discovery pipelines, either implicitly or explicitly. In this paper,
we primarily focus on pipelines that transform a single log into a single model.
In the general case, however, a process discovery pipeline can be viewed as a
function δ : Lnl ×Xnx → Pnp that takes nl event logs and a set of nx parameters
from the universe of parameters X and returns np process models. Pipelines are
assembled by combining transformation and discovery operators. Each operator
can be configured via its own set of parameters, all of which are included in the
set of parameters that serves as input to the discovery pipeline. Pipelines can
be implemented as Python or R-scripts based on packages like dplyr1, bupaR2,
pandas3, and pm4py4, or by incrementally executing tools or components, like
ProM plugins5, but they often involve multiple tools and adhoc scripts [17].
1 https://dplyr.tidyverse.org, accessed 2021-05-12.
2 https://www.bupar.net, accessed 2021-05-12.
3 https://pandas.pydata.org, accessed 2021-05-12.
4 https://pm4py.fit.fraunhofer.de, accessed 2021-05-12.
5 http://www.promtools.org/, accessed 2021-05-12.

https://dplyr.tidyverse.org
https://www.bupar.net
https://pandas.pydata.org
https://pm4py.fit.fraunhofer.de
http://www.promtools.org/
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Table 1. Complexity of event logs and of discovered models in BPIC 2015

The reasons for analysts to apply discovery pipelines are twofold. On the
one hand, logs might contain imperfections, such as missing values or outlier
behavior. To eliminate those imperfections, analysts filter traces or events, and
manipulate features to improve their quality or to enrich logs with data from
other information sources. On the other hand, log complexity typically poses a
challenge in interpreting the data, when logs contain drifts or describe a diverse
range of activities or variants. In addition to filtering cases and events, ana-
lysts commonly lift the level of abstraction by defining higher level activities or
sub-processes and by aggregating the events in the log accordingly. Note that
some operations are directly supported by discovery algorithms, e.g., the induc-
tive miner [19] can filter infrequent behavior, while directly-follows graph mining
techniques often allow analysts to filter paths and activities based on their fre-
quencies.

In this work, we postulate that the analytical decisions behind the pipeline
configuration ultimately constrain the degree to which the behavior depicted
in a discovered process model can be generalized. Consider e.g., the following
observations from the business process intelligence challenge (BPIC), a compe-
tition that invites researchers, students, and experts to submit analysis reports
for real-world event logs. Table 1 contrasts the complexity of the five event logs
from BPIC 20156 with the distribution of complexity of the discovered process
models presented in the nine submissions. While the event logs are highly com-
plex with 350+ activities and 800+ variants, the majority of the models contains
between 6 and 40 activities. We could not reliably quantify the number of model
paths, but observed that the models only allowed for a fraction of the log vari-
ants. Moreover, one report in fact included models discovered from the raw logs,
to demonstrate that it is impossible to interpret these models. While necessary
to manage the cognitive load, the transformations in the underlying pipelines
can affect the nature of the discovered model, even if they are less extensive, as
illustrated below.

We analyzed the Sepsis event log7 which captures treatments of Sepsis
patients in a Dutch hospital [23]. Its complexity is moderate (1,050 cases, 15,214
events, 16 activities), rendering it useful for illustration purposes. We used

6 https://www.win.tue.nl/bpi/doku.php?id=2015:challenge, accessed 2021-05-12.
7 https://data.4tu.nl/articles/dataset/Sepsis Cases - Event Log/12707639, accessed

2021-03-12.

https://www.win.tue.nl/bpi/doku.php?id=2015:challenge
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639


Debugging Process Discovery Pipelines 69

the default configuration of the inductive miner [19] (infrequent variant, noise
threshold = 0.2) to discover a process model. But, we first filtered out short
cases with an execution duration smaller than minDuration based on a common
assumption that short cases represent incomplete or outlier behavior. Next, we
abstracted the log by aggregating activities related to the release of patients.
That is, if consolidate is set to true, all release-related events are re-labeled
and in each trace all but the last release-related events are removed. Note that
these transformations are not presented here as the ideal way to handle the
log, but merely for illustration purposes. We chose the transformations, as we
observed that they were commonly applied in submissions to different editions
of the BPIC.

By varying the two parameters, we yielded the four models shown in Fig. 2.
The differences between the models demonstrate that discovery results can
strongly depend on a specific pipeline configuration and hence might be incon-
sistent with models discovered using varied configurations. For instance, model 1
indicates that the registration activities are executed in arbitrary order before all
other activities; in model 2 and 3 they are optional and parallel to the treatment
activities; and in model 4 the registration activity B requires the completion
of the two remaining registration activities A and C. Differences consequently
also exist at the level of the model topology. Yet, the models achieve similar fit-
ness values. This shows that model-centric quality metrics may not reflect how
pipeline configurations impact properties of the discovered process models.

In summary, we demonstrated that, while configuring a discovery pipeline is
necessary to manage log imperfections and complexity, it might constrain the
discovered model, when varied pipeline configurations yield inconsistent outputs.
This can ultimately affect the certainty with which insights can be inferred
from a discovered model. Following the awareness classification from [31] (see
Table 2), we argue that insight uncertainties can impact the decision making
that is based on the insights. In the presence of uncertainties, the chance of
error due to unjustified trust in the insights is high, when analysts are unaware
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Table 2. Effects of the analyst’s awareness of result uncertainties (adapted from [31])

of or mistakenly assume the absence of uncertainties. But also in the absence of
uncertainties, decision making might be impaired when analysts unnecessarily
question the insight validity due to mistakenly assuming that uncertainties exist.
While in the remaining cases the decision making is usually not affected, analysts
(and their audiences) should ideally always be aware of the level of uncertainty
that is associated with the insights and of its root causes.

3 Debugging of Process Discovery Pipelines

The necessity to address log imperfections and complexity via pipeline operations
can result in uncertain insights and impaired decision making (see Sect. 2). Such
uncertainty can stem from stochastic operators, but most often is introduced by
the pipeline parameters. For example, while there might be a plausible range of
threshold values for a filter that removes outlier traces with short durations, the
precise value can be uncertain. Diagnosing such uncertainty by manually varying
parameters and inspecting the respective outputs is infeasible due to the number
of configurations needed to obtain reliable conclusions, especially when model
and pipeline complexities, or parameter interactions are present. Moreover, it is
not transparent to the model audience. Hence, to assist analysts in debugging
their discovery pipelines, we pursue two objectives:

O1: Assess the consistency of model properties to unveil potential pipeline con-
straints.

O2: Quantify the influence of parameters to provide explanations for inconsis-
tencies.

While our approach could be used to evaluate steps in pipelines generally, we
designed it with the purpose of allowing an analyst to achieve objectives O1
and O2 for a concrete case. As such, the standard situation for applying our
framework is: an analyst has created a concrete pipeline with a concrete param-
eter configuration to generate a baseline model. The analyst then investigates
how the parameters influence the model properties (i) to substantiate insights
inferred from the baseline model, (ii) to iteratively construct a reliable pipeline,
or (iii) to generate insights from parameter/property relationships. In all cases,
the metrics are calculated relative to the properties of the baseline model.
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To this end, one conceivable strategy is to instrument the pipeline and to
track the validity of model properties in all steps [45], i.e., in all intermedi-
ate logs and the discovered process models. Yet, as this analysis only considers
the current configuration, we would not be able to measure the consistency of
model properties with it, or to reason about the general influence of parameters.
Hence, we adopt uncertainty and sensitivity analysis which provides means to
quantify effects of varied pipeline configurations. In this regard, a first option are
one-at-a-time designs [36, pp. 66–69]. In such a design we would examine both
objectives by focusing on each parameter individually. Given a parameter, we
would repeatedly change its value and for each value execute the pipeline without
modifying any of the other parameters. Then, we would use the generated out-
comes to examine how variations in the parameter change the pipeline outcome.
While this is computationally efficient, the analytical results can be skewed in
the presence of parameter interactions [34]. Global sensitivity analysis overcomes
this limitation by studying the effects of simultaneous parameter changes. Here,
variogram analysis of response surfaces (VARS) [29] aims to reveal the spatial
structure and variability of model outputs. Essentially, VARS models the output
space as a variogram function that describes the degree to which model outcomes
for a specific parameter configuration X depend on outcomes produced by con-
figurations in the vicinity of X. This variogram function is then used to examine
properties of input-output relationships. However, VARS does not provide clear
indications for the importance of inputs and thus, they should be used to com-
plement variance-based sensitivity analysis [28]. We follow this argumentation
and build our framework on the scheme for variance-based sensitivity analysis
from [35].

As shown in Fig. 3, we first sample the pipeline (Sect. 3.1). That is, we exe-
cute the user-defined pipeline δ : Lnl × Xnx → Pnp multiple times to generate
process models for different parameter configurations. Here, we consider event
logs to be constants. This effectively turns discovery pipelines into functions
δX : Xnx → Pnp that only take parameters as input. To guide the exploration
and the parameter sampling, analysts must specify the relevant parameters and
their probability measures {(Xi, Pi(Xi))}i≤nx

. Next, we measure the property
consistency for each execution (Sect. 3.2), requiring the analysts to manually
determine the model properties for which they want to measure the consistency,
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i.e., the degree to which a (set of) model(s) produced in a single execution sat-
isfies this property. In particular, the analyst must provide a set of nm property
consistency measurements {μj}j≤nm

where each function μj : Pn′
p,j → [0, 1]

represents a specific property and returns the consistency for this property as
observed in a set of n′

p,j process models: a value of 0 indicates total inconsis-
tency, a value of 1 perfect consistency, and values in between degrees of con-
sistency. Lastly, we analyze the property consistency of the pipeline (Sect. 3.3):
an uncertainty analysis assesses the degree to which a model property changes
when pipeline parameters vary (O1), whereas sensitivity analysis quantifies the
contribution of individual parameters to potential inconsistencies (O2). Below,
we describe each step using the Sepsis experiment from Sect. 2 for illustration
purposes.

3.1 Sampling the Pipeline

To explore the output of different pipeline configurations, we first create a k×nx

configuration matrix A which comprises the configurations for k pipeline exe-
cutions. Each configuration contains nx values, one per relevant parameter Xi.
We use the configurations in A to assess whether the pipeline yields inconsis-
tencies (O1, see Sect. 3.3). If there are inconsistencies and it must be analyzed
how parameters contribute to them (O2, see Sect. 3.3), then for each parameter
Xi we create an additional k × nx configuration matrix ABi by copying A and
varying the values in the ith column which defines the values for parameter Xi.
Comparing the results obtained from the configurations in A and ABi allows
us to quantify the influence of parameter Xi. Thus, when desired, O2 requires
k ×nx additional pipeline executions, yielding a total of k × (nx +1) executions.

For a reliable analysis we need configurations that (i) sufficiently sample the
entire parameter space and (ii) systematically vary the parameter values. We
achieve this based on the procedure that yielded the best results in a compar-
ative evaluation by Saltelli et al. [35]. First, we use a low-discrepancy sequence
to generate two temporary k × nx matrices At and Bt where each row is a
point in the nx-dimensional unit cube. Low-discrepancy sequences ensure that
the parameter space is evenly sampled. We here use the Sobol’ sequence [39]
which, in contrast to sequences like the Latin Hypercube design, has the advan-
tage that we do not necessarily need to fix the sample size, but could in principle
dynamically generate new configurations until the analysis results converge. We
use the Sobol’ sequence to generate a k × 2nx matrix that is split in half to
obtain the temporary matrices At and Bt from the left and right half, respec-
tively. While we derive A directly from At, we use Bt to create the temporary
matrices {ABt

i}i≤nx
using the radial sampling strategy [33]. That is, for each

parameter Xi we construct ABt
i by copying At and replacing the i-th column

with the respective column from Bt. Lastly, we obtain the configuration matri-
ces (A and {ABi}i≤nx

) by interpreting the values in the temporary matrices
as probabilities: for each parameter we convert each value p in the i-th columns
of the temporary matrices to a parameter value x for Xi so that the respective
cumulative probability yields the probability p for value x, i.e., Pi(Xi ≤ x) = p.
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The final step is to execute the discovery pipeline for each configuration in A
to discover the process models. The configurations from {ABi}i≤nx

are only
executed, if inconsistencies exist for which the analyst wishes to inspect the
influence of parameters.

In our running example, the Sepsis experiment, we sample the pipeline for the
parameters minDuration, consolidate, and threshold, in this order of param-
eters. We here also consider the threshold parameter, because in Sect. 2 it was
set to 0.2 by default and might have influenced the results. For consolidate and
threshold we use uniform distributions over their entire domains ({false,true}
and [0, 1]), whereas for minDuration we use the empirical distribution of case
durations in the log for all values ≤ 2 days. Setting minDuration to 2 days
would exclude about 29% of the cases, and hence we chose this value as an upper
bound. Taking a concrete example for a configuration, say the current configu-
ration from At or ABt

i is (0.7, 0.6, 0.3); then our approach derives the following
parameter values as per the above use of the cumulative probabilities. The 70th

percentile of the actual data for minDuration is at 4h 10min, and therefore we
get minDuration = 4h 10min. 0.6 > 0.5, hence we get consolidate=true.
For threshold, the uniform distribution equals the identity function, hence
threshold=0.3. We set the sample size k to 1,000 resulting in 1,000 executions
for O1 and (3 × 1,000) = 3,000 executions for O2.

3.2 Measuring the Property Consistency for a Single Execution

Within our framework, analysts can investigate the consistency of the model
topology and of fine-grained model properties like execution patterns and paths
by defining property consistency measurements μ : Pn′

P → [0, 1]. While analysts
can provide any measurement, we propose two specific measurements for single
models (n′

P = 1). Both functions rely on the causal behavioral profile [42] which
captures behavioral relations between a set of activities T as observed in a set
of executions E. The causal behavioral profile is defined as CT,E = {�,+, ‖,�}
where activity pairs (t1, t2) ∈ T × T are

1. in strict order (t1 � t2), if in all executions with t1 and t2, t1 occurs before
t2;

2. in interleaving order (t1 ‖ t2), if they can be executed in arbitrary order;
3. exclusive (t1 + t2), if they are never part of the same execution; and
4. co-occurring (t1 � t2), if the presence of t1 implies the presence of t2.

We chose behavioral profiles as a foundation for the concrete consistency
measurements, as they have been applied for various tasks including process
monitoring, complex event processing, conformance checking, and most impor-
tantly model consistency assessment [43]. Moreover, they can be computed from
heterogeneous inputs. Considering that each trace represents an execution, they
can straightforwardly be derived from logs. An efficient computation for sound
process models [42] derives the profile from a tree representation of the process
model. This computation can easily be adopted for discovery algorithms that
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output process trees such as the inductive miner [19]. For directly-follows graphs
with a dedicated start and a dedicated end node, every path from start to end is
an execution. Besides these beneficial properties, behavioral profiles might how-
ever inaccurately represent behavioral relationships in some cases [27]. Hence, a
comparative evaluation of consistency measures is required in future work.

The first type of measurement is the profile-based consistency μC : P → [0, 1].
It requires the provision of a base profile CTb,Eb

. Then, it applies the degree of
consistency metric from [41] to compute a consistency score for CTb,Eb

and a
profile CTd,Ed

derived from a discovered process model. This metric relies on
an alignment of the activities from Tb and Td. It hence allows us to compare
profiles at the same and at different levels of granularity. If two profiles are at
the same level of granularity, all activities with equal labels are aligned. Other-
wise, the pipeline includes a log abstraction step in which fine-grained activities
are mapped to higher-level activities e.g., using manually defined hierarchies or
automated label comparison [18]. This mapping defines the alignment. Based on
the alignment, the first step is to determine the sets of aligned activities T a

b and
T a
d which contain all activities from Tb and Td for which the other activity set

contains aligned activities. The metric then determines the count γ of activity
pairs in T a

b ×T a
b and T a

d ×T a
d whose relations defined by CTb,Eb

and CTd,Ed
match

the relations of the aligned activity pairs from the other profile. The relations
of two aligned activity pairs (t′b, t

′′
b ) ∈ T a

b × T a
b and (t′d, t

′′
d) ∈ T a

d × T a
d match,

if both pairs are in strict order, interleaving order or exclusive, and they either
co-occur or not. If an activity pair (t′, t′′) is aligned with multiple pairs, then
the relations of all these pairs must match the relations of (t′, t′′). Finally, γ is
divided by the number of aligned activity pairs |T a

b × T a
b | + |T a

d × T a
d |. In this

work, we primarily use the profile from the baseline model discovered with a
specific pipeline configuration to track the degree to which behavioral relations
change when parameters change. Similar to model-centric quality metrics [9],
it is also conceivable to check, if the discovered model accurately reflects the
relations in a log, potentially produced during pipeline execution.

A break down of the model topology to investigate more fine-grain aspects
can be achieved by removing activities from the base profile to focus on certain
activity sets. Additionally, the rule-based consistency μR : P → {0, 1} enables
analysts to specify arbitrary rules in terms of boolean expressions which define
relations that need to hold between specific activities, e.g., that an activity α
must be in strict order with an activity β. The function then returns a value of 1,
if the profile derived from the discovered model adheres to the rule and a value
of 0 otherwise. Note that this is similar to the use of declarative rules which
are defined at the level of events and traces, whereas the rule-based consistency
relies on the more abstract level of the behavioral profile.

In the Sepsis example, we observed some inconsistencies at the model and at
the activity level. Here, we focus on three properties for which we analyze the
pipeline consistency below in Sect. 3.3. First, we use the profile-based consistency
to evaluate the model that we obtained, when setting minDuration to 2 days,
consolidate to true, and threshold to 0.2 (I1), see lower right corner of Fig. 2.
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Additionally, we use the rule-based consistency to diagnose specific inconsisten-
cies that we observed when varying the parameters in Fig. 2. In particular, we
check if the registration activities A and C occur before all other activities (I2),
and if the release activities generally occur at the end of the process (I3). Note
that we evaluate all three consistencies based on the same set of configurations
and discovered process models, respectively.

3.3 Analyzing the Property Consistency for the Pipeline

The last step conducts the analyses postulated by the two objectives. We first
address O1 and examine the uncertainty associated with model properties based
on the provided consistency measurements {μj}j≤nm

. To this end, we compose
the discovery pipeline δX : Xnx → Pnp and each consistency measurement μj :
Pnp,j → [0, 1] to functions fj = μj ◦ δX that measure the property consistency
for models produced by a given pipeline configuration. This requires that the
consistency functions take as many process models as input as discovered by the
pipeline in a single execution, i.e., np = np,j .

For a measurement μj , we first calculate the mean consistency fj =
1
k

∑k
l=1 fj(A)l over all configurations from the configuration matrix A (see

Sect. 3.1). If the mean consistency is equal or very close to 1 (or 0 respectively),
we know that the respective property is (not) free of constrains and hence gen-
erally (in-)valid. In all other cases, there is uncertainty regarding the condi-
tions that cause inconsistencies and we next estimate the consistency variance
V̂ (fj) = 1

k

∑k
l=1

(
fj(A)2l − μj

2
)
. If the variance is close to 0, we can infer that

all pipeline configurations yield similar consistency values and that there likely
is a systematic difference between the property from the baseline model and the
properties of the pipeline output, generally. Such a difference can be explored
by comparing the originally discovered model to a few models generated with
different configurations. Here, the analyst can also resort to restricting the base
profile or defining rule-based consistencies, in order to investigate differences at
a more fine-grained level.

Larger variance values indicate that varied pipeline configurations yield pro-
cess models with different levels of consistency. To analyze the influence of
parameters as per O2, we compute the total effect index Si,j for each parameter
Xi [13]. It measures the contribution of parameter Xi to the variance in the con-
sistency measurement μj and considers all variance that is directly caused by Xi

and by interactions with other parameters. As suggested in [35], we here use the
estimator from [14]: Ŝi,j = 1

2k·V̂ (fj)

∑k
l=1 (fj(A)l − fj(ABi)l)

2. This estimator
relies on the results of the configuration matrix ABi. The higher the value of the
index for a parameter, the more it contributes to the variance in the consistency
measurement. If the sum of the indexes is larger than 1

(∑nx

i=1(Ŝi,j) > 1
)

the
parameters definitely interact.

We conclude by analyzing the pipeline consistency for the Sepsis experiment
considering the sampling configuration and properties from Sect. 3.1 and 3.2.
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The mean model consistency (I1) is f1 = .57 and for the two rule-based mea-
sures (I2, I3) we yield mean consistencies of f2 = .08 and f3 = .21. These low
values are in line with our observations from Fig. 2, because they indicate that
the behavioral relations in the baseline model are associated with uncertainty,
especially the relations of the registration and release activities. The variances
(V̂ (f1) = .06, V̂ (f2) = .07, V̂ (f3) = .16) point to non-systematic differences
which are attributed to all parameters. That is because all consistency / param-
eter combinations yield high total effect indexes on the interval [.71, .92]. This
implies that the handling of the log is not optimal and should be changed, not
least because the indexes reveal that there is significant parameter interaction.

4 Experiment

The primary objective of our experiment is to study whether the framework
provides a reliable foundation for investigating the effects of discovery pipeline
operations on the discovered model and its properties. In the following, we first
outline and justify our experimental design in Sect. 4.1. After that, we discuss
our results in Sect. 4.2.

4.1 Experimental Design

Uncertainty and sensitivity analysis are mature techniques that have been stud-
ied intensively, e.g., in [13,14,28,29,33,35,36], and hence provide a solid founda-
tion for our work. Software engineering for machine learning [3] is an emerging
topic, and has not yet been adopted for process mining (see Sect. 5). Hence,
we validate our framework using a single-case mechanism experiment, a suit-
able method for investigating the application of existing technology to a new
phenomenon [44, Ch. 18]. To mitigate the effects of a limited external validity
associated with such a design, i.e., the degree to which the findings can be gen-
eralized, we attached great importance to strengthening the ecological validity,
i.e., the realism with which the setup resembles real-world circumstances, and
to minimizing the threat of experimenter bias. Moreover, to ensure transparency
and reproducibility, we followed open science principles by relying on public data
and by publishing our source code8. In more detail, we decided to use the BPIC
2015 dataset from Sect. 2. It is a highly complex (see Table 1), publicly available,
real-world dataset for which nine independent analysis reports were published.
The latter allows us to setup a representative discovery pipeline based on oper-
ations commonly applied by external parties on this dataset. We merely use the
reports to guide the pipeline setup. It is not our intention to judge the analysts’
practices, for which an exact replication of a pipeline would be required (which
is neither desired nor feasible with the level of detail in the reports). The dataset
contains five event logs from applications for building permits in different Dutch
municipalities. Hence, we can reuse the sample pipeline to analyze our framework
in (slightly) varied circumstances.
8 https://bitbucket.csiro.au/users/kli039/repos/bpm-2021-debugging-experiments.

https://bitbucket.csiro.au/users/kli039/repos/bpm-2021-debugging-experiments
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Table 3. Pipeline specification for the experiment including the parameters’ emp-irical
or uni-form distributions; their rel-evance for the variants V1–V5 where a default value
is provided for irrelevant parameters (0, 1, f – false, t – true); and the parameter values
that were used to generate baseline profiles for different consistency measurements.

We first categorized the applied transformation operations from the reports
and assembled the three most common operations into the pipeline from the
last row of Table 3. First, the log preparation loads the log and performs compu-
tations that ease the analysis. That is, the log specifies an activity code which
is the activity identifier, but also contains a sub-process identifier and an order
index. As the sub-process identifier is used for log consolidation, we extract it
into a separate feature. Because events were logged in batch with overlapping
timestamps, we follow advice from the BPIC organizers and establish the exe-
cution order based on the order index. After that, we apply a time window filter
to remove traces that started or completed outside a window defined by pipeline
parameters start and end date. This operation addresses the drifts in the log
which impact the discovery, and we here consider a time window from summer
2013 to spring 2014 in which no drift occurred. If parameter activated is set to
true, we perform a consolidation in which we define the sub-process identifier
as the activity classifier. Further, in each trace we only keep the first and last
sub-process event and set the event lifecycle state to started for the first event,
and retain completed for the last. Next, a frequency filter can reduce the com-
plexity of the discovered process model by selecting events and traces based on
the activity and variant frequency. Lastly, we apply the infrequent lifecycle
variant of the inductive miner [19] where the noise threshold also allows for
filtering behavior.

To systematically study the effects of combining different operations, we vary
the subset of relevant parameters from the above six parameters, and set the
remaining parameters to default values. The relevance of parameters for the
variants and their probability measures are summarized in Table 3. V1 estab-
lishes a baseline in which we only vary the parameters of the time window filter.
Here, we expect that the absence of drifts in the considered period (summer 2013
to spring 2014) guarantees a consistent discovery for slightly varied start and
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end dates. To study the impact of model consolidation, V2 additionally consid-
ers the activated parameters. Here, we expect that the information loss which
is inadvertently linked to abstraction leads to a drop in the consistency, but that
the discovered models are largely consistent, as we rely on a clearly defined pro-
cess hierarchy. In V3 and V4, we add different ways of behavior filtering to V1:
while both variants utilize the activity frequency, V3 additionally combines
it with the variant frequency and V4 with the noise threshold. We hypoth-
esize that these filters interact with the time window filter, which influences the
frequencies in the intermediate log. Finally, in V5 all parameters are relevant.

To investigate the pipeline consistency, we focus on the overall model con-
sistency using the profile-based consistency. In this regard, different baseline
models and thus base profiles emulate different degrees of complexity of discov-
ered models (see Table 3). All profiles are derived from the log for the default
time window. The normative (norm) profile has the highest complexity. It is
discovered directly from the default time window log and used for all variants.
For V2, we also use an abstract (abst) profile obtained by activating the consoli-
dation. Lastly, for V3 and V4 we aimed to replicate different model complexities
in line with the model complexities found in the reports (Table 1). We generate
the simple (simp), moderate (mod), and complex (comp) profiles by varying the
activity frequency to obtain models with ≈10, ≈20 and ≈35 of the most fre-
quent activities. We did not use the variant frequency or noise threshold,
as their effects on the model complexity differed across the five logs. Yet, the
profile-based consistency still allows us to assess their influence on the discovery
results.

4.2 Results

In the analysis, we considered a sample size of k = 1,000 for all combinations
of pipeline variants and consistency measurements. To ensure that this sample
size yields reliable results, we first investigated the convergence of the mean con-
sistencies, variances, and total effect indexes. That is, we computed the values
that we obtain for these measures for sample sizes less than 1,000 and observed
that for sample sizes larger than 500, all measures yield values that are very
close to the respective values obtained for k = 1,000 on all five logs for all vari-
ant/measurement combinations. While this ensures the reliability of our exper-
iment, it also demonstrates that measuring the convergence of the values is a
strategy to control the number of pipeline executions in real-world situations.
We did not investigate the run-time performance explicitly, but observed that
the inductive miner accounted for a large part of the execution time and that its
performance depended (unsurprisingly) on the complexity of the input log. To
compute all metrics per variant and dataset, on a customary laptop (Processor:
i5-8350U 1.70 GHz; RAM: 16 GB) and using parallel execution we yielded execu-
tion times between one and two hours for (V1); but below 5 min for V3–V5, due
to complexity reductions in the intermediary logs. Note that this is only a rough
indication for the run-time performance, for which we leave deeper investigation
and optimization to future work.
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Fig. 4. Mean consistencies (dot) and variances (error bars) for pipeline variants

We first investigate the uncertainty for each variant and consistency combi-
nation, see Fig. 4. A first observation is that the consistency of the normative
model is very high (fj > .9) for V1. This is in line with our expectations, as we
knew from the reports that the considered period does not contain drifts. Slight
variations in the model can be attributed to a few outlier cases that might occur
around the default start and end date. For V2 we also confirm our expectations,
as the model consistency drops (fj > .7) due to some information loss caused by
the consolidation, but is still high. Note that this holds for the abstracted and the
normative model, indicating that log abstraction is a reliable means for complex-
ity management. Lastly, the variants that apply filtering (V3–V5) yield very low
consistency measures (fj < .5). While we expected some interaction with other
parameters, we were surprised by the magnitude of the effect of this interaction.
However, this observation is in line with guidelines from [11] that postulate to
carefully apply random subset selection, as it – in contrast to strategic selec-
tion, like the date window filter – can affect the quality of the discovered model.
We consider the filter parameters from V3–V5 to fall in this category, as it is
hard for analysts to predict the effects of certain value combinations. Moreover,
the negative effects pertain all base profiles which shows that the filters affect a
large range of the relations and that a broad range of possible behavior can be
generated by modifying the respective parameters. Overall, the coherence of our
expectations and existing guidelines with the experiment results substantiates
the reliability of the consistency measurement.
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Fig. 5. Total effect indexes for the normative profile and variants V3–V5
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To study the sensitivity analysis, we focused on the three variants with fil-
tering (V3–V5) and the normative base profile which overall yielded the largest
variance across all logs. The total effect indexes for all parameters per vari-
ant and log are shown in Fig. 5 where higher values for a parameter indicate a
stronger contribution of this parameter to the variance. In line with the uncer-
tainty analysis for the variants, the total effect indexes show the frequency and
threshold parameters to contribute the most to the uncertainty in the model
topology. This provides evidence towards the utility of the sensitivity analy-
sis: an analyst can determine the most influential parameters without manually
inspecting possible parameter or pipeline variations. Another interesting finding
is that the time window filter and consolidation parameters, which without fil-
tering only impacted the consistency a bit, have a stronger influence in variants
V3–V5. This demonstrates that analysts need to carefully assemble discovery
pipelines and cannot assume that a ‘stable’ operation can be straightforwardly
reused in other contexts.

5 Related Work

Research has studied issues related to data quality and quantity, in order to
ensure that high quality process models can be obtained from event logs. Clas-
sifications of data quality issues [8] and data quality patterns for event logs [40]
allow for systematic cleaning of event logs to increase process mining result
quality. Fitness, precision, generalization, and simplicity have been adopted as
metrics to evaluate the quality of a process model based on the event log that
served as the input for a process discovery algorithm [1]. Conformance checking
allows to obtain further details about if and how an event log deviates from a
process model for qualitative evaluation [12,30]. Also, methods have been pro-
posed to balance the behavioral quality of a discovered process model with its
complexity, in order to facilitate human inspection. For example, in [20] event
attributes are used to generate hierarchical process models that better represent
different levels of process granularity. A statistical pre-processing framework for
event logs that reduces the amount of data needed to produce high quality pro-
cess models is presented in [7]. Similarly, the influence of subset selection on
the model quality was examined in [11] where it was shown that, in contrast to
random-based selection, strategic subset selection increases the model quality.
The taxonomy of log and model uncertainty from [26] considers issues like incor-
rectness, coarseness, and ambiguity, and allows for obtaining upper and lower
uncertainty bounds for conformance checking.

Related work also proposed approaches for automatically extracting and eval-
uating process discovery insights. An automatic approach that compares differ-
ent process variants with the goal to obtain valuable insights is introduced in [6].
In more detail, the best and worst-performing variants with respect to a set of
key performance indicators are determined and their differences are presented
to the analyst. ProcessExplorer [38] automatically computes potential subsets of
cases and evaluates the interestingness based on statistical differences between
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insights from the subsets and from the entire event log. Leemans et al. [21]
introduce an automatic extraction approach to obtain cohorts from event logs
via trace attribute analysis. The authors measure the stochastic distance between
trace attribute cohorts to identify their influence to the process model behavior.

Complementary to these techniques, patterns, and guidelines, our consistency
framework enables analysts to, in a concrete context, explicate how their deci-
sions, that underlie the configuration of a discovery pipeline including its log
transformations and discovery algorithms, affect model properties at different
granularity levels.

6 Conclusion

In this work we presented a first framework for debugging of process discov-
ery pipelines. We demonstrated the potential effects of pipeline operations on
the discovered models and discussed the implications for downstream decision
making. Next, we proposed a debugging framework which relies on uncertainty
and sensitivity analysis, in order to assist analysts in assessing the consistency of
their insights and to quantify the contribution of pipeline parameters to potential
inconsistencies. In an experiment on real-world event logs, we assessed the utility
of our framework and found that the uncertainties and explanations delivered
by the framework were well-grounded.

As mentioned in Sect. 3.2, comparative evaluations of consistency measures
are required to improve the framework’s applicability. Beyond that, research
opportunities ensue specifically regarding its usability, computational perfor-
mance, and broader application and evaluation. Usability topics comprise suit-
able user interfaces for tools, but also the generalization towards other process
mining methods including declarative process mining; support for determining
relevant parameters (e.g., via screening [36]) and their probability distributions;
and means to diagnose and break down inconsistencies. Moreover, repeatedly
executing a pipeline for different configurations can be time-consuming. While
screening methods can help to reduce the number of relevant parameters, inte-
grated uncertainty propagation [24] or emulators [36] might speed up the anal-
ysis. Lastly, applying the framework to a larger set of real-world scenarios could
potentially reveal and confirm (anti-)patterns for process mining pipelines [40].

In general, we believe that applying software engineering practices, as pro-
posed in the context of machine learning [3], is relevant for process mining as
well. While traditionally process mining techniques have been made available via
visual idioms which combine visual representations and user interaction tech-
niques, packages like BupaR and pm4py have brought process mining to open
data processing environments like R, Python, Apache Spark, etc. This enables
a paradigm shift towards script-based analysis, where the ability to seamlessly
integrate data processing, data mining, and machine learning techniques and
tools can ease the definition, execution, documentation, and sharing of pro-
cess mining pipelines, and reduce their fragmentation. In this regard, challenges
from machine learning include testing, experiment management, transparency,
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and troubleshooting [4]. Empirical studies into the practices of process analysts,
such as [17], can help to refine those challenges in the context of process mining.
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Abstract. Decision models are strategic for formalizing how data influences the
main decisions in a organization. Due to its importance, standard notations like
DMN have appeared in recent years, to serve as a central resource for synchro-
nizing the people and systems with respect to decisions. However, the modeling
of DMN specifications can be tedious and error-prone, hampering its adoption in
practice. This paper presents a technique to automatically obtain complete DMN
models from textual descriptions. The technique, grounded in natural language
processing combined with tailored syntactic patterns, allows to extract both the
decision requirements and the decision logic described in a text. Our experimental
evaluation shows promising results, even for the quite small pattern set used.

1 Introduction

Decision models complement business process models by formalizing the main deci-
sion logic that is behind any organization [3]. Back in 2015, the Object Management
Group (OMG) proposed the Decision Model and Notation (DMN) language with the aim
to standarize and facilitate the interoperability of decisions that affect the processes in
organizations [13]. Since then, the adoption of DMN has grown considerably.

DMN specifications consists of two main parts: first, the dependencies between deci-
sions are established. Then, for each dependency, the decision logic between the cor-
responding data must be determined. Overall, the creation of DMN specifications is a
cognitive task that requires a deep understanding of the decision logic. This is why
there have been attempts to extract automatically decision models from business pro-
cess models [1], event logs [2,6], or even textual documents [8].

The present paper tries to continue on our previous work on extracting process
information from textual descriptions [15]. Now the focus is on extracting complete
DMN specifications from textual documents, i.e., including the two main aforementioned
parts: dependencies and decision logic. This represents a clear advantage with respect
to the work in [8], where only the dependencies extraction was considered.

We leverage the use of Natural Language Processing (NLP) techniques, combined
with hierarchical patterns on top of the dependencies trees arising from the sentences in
the text, so that the extraction of dependencies and decision logic is facilitated.

Running Example. Figure 1 shows a text (A) extracted from [8]. The text describes the
calculation of a patient’ health risk level. The results of our technique for this text are a
c© Springer Nature Switzerland AG 2021
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complete DMN specification: the Decision Requirement Diagram (B), and the Decision
Table (C). The technique presented in this paper is able to automatically extract from a
text like the one shown different types of semantic information, such as decisions, input
data, requirements, rules, input entries and output entries. Combining this information
leads to a Decision Requirement Diagram and a Decision Table.

Fig. 1. Running Example. A: textual description of process with decisions, B: Decision Require-
ment Diagram (DRD), C: Decision Table

The content of this paper can be summarized as follows: next section describes the
existing work related to the extraction of decision models. Section 3 introduces Deci-
sion Model and Notation (DMN) and overviews the main technical ingredients used in
the techniques of this paper. Section 4 presents the overall framework for automated
decision model extraction. Experiments and tool support are reported in Sect. 5, whilst
Sect. 6 concludes the paper and provides suggestions for future work.

2 Related Work

Nowadays the dichotomy between process and decision logic is widely accepted [3,7,
11,19,20]. This in turn has triggered different proposals for extracting decision mod-
els from structured sources, such as event logs (that record the historical execution of
process information) [1,4,6], or even process model specifications such as BPMN or
similar [2,10,16].

Assuming the existence of structured information like event logs or process models
does not cover all the situations: there are cases where unstructured information is the
only information available. Moreover, such structured information may be outdated or
simply wrong, and hence, the possibility to analyze alternative sources like textual infor-
mation complement the aforementioned approaches. Also, one can use textual descrip-
tions to communicate normative (to be) decision logic; notice that this information may
be hard to find in event logs, that only represent historical executions.



Extracting Decision Models from Textual Descriptions of Processes 87

Recently, one knowledge discovery approach has been proposed for extracting deci-
sion model automatically from textual descriptions [8]. To the best of our knowledge,
this was the first contribution on this direction.

The work on this paper extends the aforementioned publication in the following
perspectives: first, although both techniques are grounded on the NLP analysis initial
step, our technique is based on hierarchical analysis of the dependency trees, represent-
ing a very robust and flexible alternative, that is adaptable by simply decoupling the
extraction logic from the pattern language used for mining the dependencies. Second,
our technique mines full DMN models, and not only the decision dependencies part
(DRD diagram, see next section). Finally, we have shared the code and experiments so
that further extensions can be made.

3 Preliminaries

3.1 Decision Model and Notation (DMN)

DMN is a standard used to represent knowledge regarding decisions made in business
processes [13]. Currently DMN has received quite some attention from both commercial
users and the scientific community [1,5,10]. DMN has two levels: The first level is about
decision requirements, represented by the decision requirement diagram (DRD), which
models the decision requirements and the dependencies between the elements involved
in the decision. The second level is the decision logic, and is used to specify the detailed
logic of each decision. It is generally represented in decision tables. Representing deci-
sion logic in tables has been extensively discussed in previous studies [17,18].

In addition, the DMN standard provides a Friendly Enough Expression Language
(FEEL) for decision logic notation for the purpose of giving standard executable seman-
tics to many types of expressions in the decision model.

The decision requirements level of a decision model in DMN consists of a Decision
Requirements Graph (DRG) depicted in one or more Decision Requirements Diagrams
(DRDs). A DRG models a domain of decision-making, showing the most important
elements involved in it and the dependencies between them.

Decisions are represented by rectangles, ovals represent data entry, requirements are
represented by arrows, and corner-cut rectangles represent business knowledge models.

Decision. A Decision element denotes the act of determining an output from a number
of inputs using decision logic.

Input Data. An Input Data element denotes information used by one or more decisions
as an input in order to determine the output value.

Requirement. An Information Requirement denotes Input Data or Decision output
being used as input to a Decision.

Business Knowledge. A business knowledge model has an abstract part, representing
reusable, invocable decision logic, and a concrete part, which mandates that the
decision logic must be a single FEEL definition. An important format of business
knowledge, specifically supported in DMN, is the Decision Table. Such a business
knowledge model may be notated using a Decision Table as shown in Fig. 1(C).
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Decision Table. Decision Tables is one of the ways to express the decision logic corre-
sponding to the DRD decision artifact and it is a tabular representation of a set of
related input and output expressions, organized into business rules indicating which
output entry applies to a specific set of input entries.

Business Rule. Business rules are combinations of input values that determine the out-
put value. A rule has one or multiple input entries and one output entry.
In the running example, Fig. 1(C) shows the decision table, where “BMI value” and
“sex” are input columns, “Obesity level” is the output column, the values in the
remaining rows, e.g. “[25..29.9]”, “male”, etc., are input entries, and the values in
the last columns, e.g. “normal”, “overweight”, etc. are output entries.

Friendly Enough Expression Language (FEEL). FEEL is the language used by DMN
to formalize decision logic in applicable points of a decision model. The purpose
of FEEL is giving standard executable semantics to many kinds of expressions in
decision model. For instance: the expression “between 19 and 21” is represented as
[19..21].

3.2 Natural Language Processing and Annotation

Linguistic analysis tools can be used as a means to structure information contained in
texts for its later processing in applications less related to language itself. This is our
case: we use NLP analyzers to convert a textual description of a process model into
a structured representation. The NLP processing software used in this work is FreeL-
ing1 [14], an open–source library of language analyzers providing a variety of analysis
modules for a wide range of languages. More specifically, the natural language process-
ing layers used in this work are:

Tokenization & sentence splitting: Given a text, split the basic lexical terms (words,
punctuation signs, numbers, etc.), and group these tokens into sentences.

Morphological analysis: Find out all possible parts-of-speech (PoS) for each token.
PoS-Tagging: Determine the right PoS for each word in a sentence. (e.g. the word dance

is a verb in I dance all Saturdays but a noun in I enjoyed our dance together.)
Named Entity Recognition: Detect named entities in the text, which may be formed

by one or more tokens, and classify them as person, location, organization, time-
expression, numeric-expression, currency-expression, etc.

Word sense disambiguation: Determine the sense of each word in a text (e.g. the word
crane may refer to an animal or to a weight-lifting machine). We use WordNet [9]
as the sense catalogue and synset codes as concept identifiers.

Dependency parsing: Given a sentence, get its syntatic structure as a dependency parse
tree (DT). DT are an important element in our approach. The reader can see an
example of a dependency tree in Fig. 4.

Semantic role labeling: Given a sentence, identify its predicates and the main
actors (agent, patient, recipient, etc.) involved in each predicate, regardless of
the surface structure of the sentence (active/passive, main/subordinate, etc.).
E.g. In the sentence John gave Mary a book written by Peter, SRL would

1 http://nlp.cs.upc.edu/freeling.

http://nlp.cs.upc.edu/freeling
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extract two predicates: give (with semantic roles Agent(John,give),
Patient(book,give), and Recipient(Mary,give)), and write (with
semantic roles: Agent(Peter,write) and Patient(book,write)).

Coreference resolution: Given a document, group mentions referring to the same entity
(e.g. a person can be mentioned as Mr. Peterson, the director, or he)

The three last steps are of special relevance since they allow the top-level predicate
construction, and the identification of actors throughout the whole text: dependency
parsing identifies syntactic subjects and objects (which may vary depending, e.g., on
whether the sentence is active or passive), while semantic role labeling identifies seman-
tic relations (the agent of an action is the same regardless of whether the sentence is
active or passive).

3.3 TRegex

In this paper, we use Tregex2 [12], a query language that allows the definition of
regular-expression-like patterns over tree structures. Tregex is designed to match pat-
terns involving the content of tree nodes and the hierarchical relations among them.
In our case we will be using Tregex to find substructures within syntactic dependency
trees. Applying Tregex patterns on a dependency tree allows us to search for complex
labeled tree dominance relations involving different types of information in the nodes.
The nodes can contain symbols or a string of characters (e.g. lemmas, word forms, PoS
tags) and Tregex patterns may combine those tags with the available dominance opera-
tors to specify conditions on the tree. Additionally, as in any regular expression library,
subpatterns of interest may be specified and the matching subtree can be retrieved for
later use. This is achieved in Tregex using unification variables as shown in pattern
(2) in Fig. 2, which also shows the main Tregex operators used in this work to specify
pattern queries. Figure 2 (bottom right) shows several example Tregex patterns:

(1) A node E with an ancestor A that has a G descendant.
(2) A node E with an ancestor A, and that is the only child of a B. Node A is captured

in variable x and node B in y.
(3) A node K not dominated by any B, but dominated by an ancestor A with a direct

child D
(4) A node F not dominated by any A
(5) A node H that is the only child of a D
(6) A node A with a direct child J

The example tree in Fig. 2 (top right) would be a match for patterns (1), (2), and (3),
and would not be a match for patterns (4), (5), and (6).

2 https://nlp.stanford.edu/software/tregex.html.

https://nlp.stanford.edu/software/tregex.html
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Fig. 2. Some operators provided by Tregex (left). The tree on the right would match patterns (1),
(2), (3), and would not match patterns (4), (5), (6). Note that unless parenthesized, all operators
refer to the first element in the pattern. Pattern (2) captures nodes A and B into variables x and y.

4 Approach

In short, our proposed technique automatically extracts the main DMN elements applying
Tregex patterns on the dependency parse tree arising from a textual description of the
decisions.

Fig. 3. General framework for automatic Decision Model extraction
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The technique follows the steps shown in Fig. 3. As detailed in Sect. 3.1, DMN has
2 levels, therefore we first extract the elements from the decision requirement level and
then from the decision logic level.

In order to extract elements from requirements level, the first step consists of per-
forming a NLP analysis pipeline [14] to extract, among other information, verbal pred-
icates, involved actors and objects, syntactic trees of all sentences. The obtained depen-
dency trees (one for each sentence) are transformed to a format suitable for Tregex
patterns: A node in the transformed dependency tree is a structured string, containing
information about the lemma, PoS tag, and syntactic function of each word. Addition-
ally, nodes marked as predicates by the NLP semantic role labeling step are decorated
with an extra <ACTION> label, that identifies them as potential verb that define a deci-
sion, input data, input entry, or output entry. Further information about extracting ele-
ments based on tree patterns can be found in [15]. Figure 4 shows the transformed tree
for the input sentence “Furthermore, the obesity level should be determined from the
BMI value and sex of the patient.”

Next step consists of extracting decisions, input data and requirements as described
below in Sect. 4.1. Afterwards, with the decisions and input data extracted in the pre-
vious step, we are able to create the decision tables and then relying on an incremen-
tal procedure based on Tregex patterns we extract the business rules. See Sect. 4.2 for
details on each of these pattern sets. Next, other patterns allow us to convert the input
entry and output entry into standard executable semantics (FEEL). Section 4.3 details
on each of these pattern sets. Details of these three phases are described next.

Fig. 4. Dependency tree for the sentence “Furthermore, the obesity level should be determined
from the BMI value and sex of the patient.”
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4.1 Decision Requirement Level

Decision Extraction. To identify the decisions, we leverage the results from the NLP
analysis and focus on the elements with Patient semantic role in some predicate.

To that end, the following Tregex pattern is recursively applied to all dependency
trees to select the action verb that matches a predefined list (i.e. assess, consider,
determine, be) [8] and then, based on the results of the NLP analysis, the Patient
is extracted, which is the one that defines the Decision.

PD1 /<ACTION>.*(determine|assess|consider|be)/=result

This pattern extract nodes with action verbs contained in the predefined list. For
instance: in the sentence “Furthermore, the obesity level should be determined from
the BMI value and sex of the patient.”, the result of the pattern PD1 is locating the
verb determine and then, based on the results of the NLP analysis, the obesity level
is extracted as the Patient of determine, and marked as the <DECISION>. More-
over, the detected verb node is marked as <DECISIONVERB> for later use in further
patterns.

For each of extracted elements, the text is simplified to offer a better final represen-
tation: The syntactic tree structure is used to purge determiners (the, a, some, etc.) and
prepositional phrases (headed by by, of, from, etc.), keeping just the core description
of the object. The technique to strip down these text is detailed in [15]. Thus, in the
previous example sentence the decision finally extracted is obesity level.

Input Data Extraction. To extract the input data, we rely on the result of the pattern
PD1 and we leverage the results from the NLP analysis focusing on the elements with a
semantic role of Patient of <DECISIONVERB> nodes. The captured nodes are then
marked as <INPUTDATA>. This is performed by the following patterns:

PI1 /<DECISIONVERB>/ < (/noun/=result < /of/)
!>> /if/

PI2 /<DECISIONVERB>/ < (/from|by|on/ < /noun/=result)
> /verb/
!>> /if/

PI3 /<DECISIONVERB>/ < (/from|by/ < /<ACTION>/=result)

PI4 /<DECISIONVERB>/ > (/to/ > /<ACTION>/=result)

The first pattern checks for a node with POS tag noun that is immediately domi-
nated by an action verb (i.e. marked as <DECISIONVERB> by pattern PD1), and that
immediately dominates a prepositional phrase headed by of, provided the verb is not
dominated by any if.

For instance, patterns PI1 can be used to determine that physical health score is
the input data in the sentence “Physical health score of a patient determines health
evaluation criteria.”. Similarly, pattern PI2 matches the tree in Fig. 4, and extracts the
input data BMI value.
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Patterns PI3 and PI4 capture <ACTION> nodes (predicates detected by the NLP
pipeline and marked in the pre-process), and extract the corresponding input data, based
on their Patient arguments.

For instance, in the sentence “An IQ of a patient is assessed from testing his verbal
level, math level and abstract level.”, applying pattern PI3 we are able to extract verbal
level as input data. This is because, the Patient of test verb is verbal level.

Patterns PI1-PI4 capture the main input data of the sentence, and apart from extract-
ing it, mark the node as <INPUTDATA> to pass this fact to later patterns. Then, in order
to capture the rest of input data of the sentence, we apply the following patterns:

PI5 /noun|adjective/=result > (/and/ >> /<INPUTDATA>/)

PI6 /noun/=result $, (/,|also/ >> /<INPUTDATA>/)

PI7 /noun/=result $, (/such/ > /as/) >> /<INPUTDATA>/

The strategy to identify the rest of the input data is: if any <INPUTDATA> captured
by the patterns PI1-PI4, is inside a list or coordination, then capture in the variable
result the remaining input data.

For instance, in the sentence “The health risk level of a patient should be assessed
from the obesity level, waist circumference and the sex of the patient.” with patterns PI5
and PI6 we are able to capture sex and waist circumference as input data of the sentence.
Similarly, pattern PI7 extracts strength test as input data from sentence Physical fitness
score is calculated from the sex of a patient and results of various tests such as strength
test, coordination test, agility test, stamina test and speed test.

Requirement Creation. In order to create an information requirement, we start from
the list of defined verbs and the previous results of the extraction of decisions and
input data, and given the right syntactic patterns are matched, a tuple [input, type
→ decision] is extracted. The type of a requirement input may be either input
data or decision.

For instance, in the sentences “Furthermore, the obesity level should be determined
from the BMI value and sex of the patient. Patient’s height and weight are considered
to calculate his BMI value.”, the following tuples are extracted:

[BMI value, input data → obesity level]
[sex, input data → obesity level]
[height, input data → BMI value]
[weight, input data → BMI value]

In the first sentence, the defined verb matches determine (extracted by pattern PD1),
the decision is obesity level , and the input data are BMI value and sex (patterns PI2,
PI5). In the second sentence, the verb is calculate, and the input data detected by pat-
terns PI2, PI5 are height and weight.

After creating all the requirement tuples, a search is carried out to verify whether
the input field of any tuple matches the decision field in another. If a match is
found, the input type is changed to decision. This would be the case of BMI value
in the example sentences, producing the final set of requirements:
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[BMI value,decision→ obesity level]
[sex, input data → obesity level]
[height, input data → BMI value]
[weight, input data → BMI value]

With the requirements obtained a Decision Requirement Diagram (DRD) exactly to
Fig. 1(B) can be created.

4.2 Decision Logic Level

Decision Table Extraction A decision table has three basic elements: input (input col-
umn), output (output column), and business rules (see Fig. 1C). There may be several
input columns and multiple output columns. For our proposal, we assume that the deci-
sion table has exactly one output column. Each row in the table will represent a business
rule (see Sect. 3.1).

To generate a complete decision table, we first create an empty decision table based
on the input data and decision elements extracted from the requirement level.
A new table will be created for each decision, and its input columns will be the
inputs for that decision encoded in the requirement set.

For instance, the requirements extracted above for the example sentences contain
two decisions: BMI value and obesity level, thus, a table for each will be created. The
BMI value table will have two input columns (height and weight) and one output column
(BMI value). Similarly, the obesity level table will have two input columns (sex and
BMI value) and one output column (obesity level), obtaining the table shown in running
example Fig. 1(C).

Business Rule Extraction. As shown in Fig. 1(C), a business rule is a row in the
table, containing one input entry (i.e. a specific value or set of values) for each
input column, and one output entry (i.e. a value for the decision). The former are
extracted based on the input data and the latter based on the decision.

To extract business rules, we use patterns that find sentences containing two nodes
corresponding to a predicate (and thus labeled as <ACTION> by the pattern prepro-
cessing) related via a domination relation involving other nodes containing conditional
words such as “if ”, “in case”, “whenever” or “when”. For those sentences, we detect
the two main <ACTION> nodes. One (captured in variable decAction) defines the
decision and the other (captured in variable inAction) defines the input data.
Then, based on the results of the NLP analysis for each <ACTION>, their Agent and
Patient are extracted.

In the decision <ACTION>, the Agent defines the decision name (i.e. output
column name), and the Patient defines the value of the corresponding output
entry. The name of the decision allows us to know which previously created
table (Sect. 4.2) a business rule corresponds to. Similarly, for the input data
<ACTION>, the Agent defines the input column name, and the Patient defines
the value of the input entry.
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Then, the extracted input and output column names are compared with those pre-
viously created decision table. If a match is found, a business rule is created and
added to the decision table, otherwise the extracted information is discarded.

We currently use 23 different patterns to extract business rules. We present a sample
below. The whole list can be found in our repository3.

PT1 /<ACTION>/=decAction < (/if/ < /<ACTION>/=inAction)

PT2 /<ACTION>/=decAction < (/if/
< (/be|do|have/

< /<ACTION>/=inAction))

PT3 /<ACTION>/=decAction < (/in case/
< /<ACTION>/=inAction)

PT4 /<ACTION>/=decAction < (/in case/
< (/preposition/

< /<ACTION>/=inAction))

PT5 /<ACTION>/=decAction < (/<ACTION>/=inAction < /whenever/)

PT6 /<ACTION>/=decAction < (/<ACTION>/=inAction < /when/)

Patterns PT1 and PT2 extract business rules based on the conditional word if. Patterns
PT3 and PT4 deal with sentences containing in case, while PT5 and PT6 handle con-
structions with whenever and when respectively.

For instance, in the sentence “If the patient’s sex is male and his BMI value is
between 25 and 29.9, then his obesity level is normal.” shown in Fig. 5, with pattern
PT1 we are able to extract: decision = obesity level, input data = sex, input
entry = male and output entry = normal.

To extract the other input entries in the sentence, we use the same technique than
for the rest of input data. Therefore, the complete business rule consists of input
entries male and between 25 and 29.9, and output entry normal.

In process textual descriptions, there can be two business rules with decisions in
just one sentence. The first business rule is extracted based on some conditional word
as explained above and the second is extracted based on words such as “otherwise” and
“else”. The following patterns extract additional business rules from a sentence.

PT7 /<ACTION>/=decAction > (/verb/ < (/if/
< /<ACTION>/=inAction))

< /otherwise|else/

PT8 /<ACTION>/=decAction > (/be|MD/ < (/in case/
< /<ACTION>/=inAction))

< /otherwise/

3 https://github.com/PADS-UPC/DMExtractor.

https://github.com/PADS-UPC/DMExtractor
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PT9 /<ACTION>/=decAction > (/be/
< (/<ACTION>/=inAction < /when/))

< /else/

For instance, applying the PT1 and PT7 patterns in the sentence “If the score is
10, the service request is a product change, otherwise the service request is a bug.”,
We are able to extract two business rules: One extracted by PT1: input entry “10” and
output entry “product change”, and another extracted by PT7: input entry “not (10)”
and output entry “bug”. Note that the second business rule the negation (not) in input
entry is added because of the word otherwise.

Fig. 5. Dependency tree for the sentence “If the patient’s sex is male and his BMI value is between
25 and 29.9, then his obesity level is normal.”

4.3 Simple Expression Language

FEEL is a language focusing on the creation of expressions with just enough data types
expressions and grammar to describe decisions. This can be used to evaluate expres-
sions in a decision table (see Sect. 3.1).

We use 18 patterns to convert the values extracted from text into actionable Simple
Expressions. All patterns can be consulted in our repository. Some example patterns
extracting Simple Expressions are:

PF1 /number/=number1 >> /between/ < (/and/ << /number/=number2)



Extracting Decision Models from Textual Descriptions of Processes 97

PF2 /number/=number1 > (/above/ < (/and/
<< (/less|fewer|</

<< /number/=number2)))

PF3 /number/=number1 << (/or/
<< /great|more|high|

above|exceed|begin|>/)

For instance, from the last three sentences of running example Fig. 1(A) with pat-
terns PF1, PF2 and PF3 we are able to extract: [25..29.9], [25..30], and >30.

4.4 Decision Model Extraction Without Requirement Level

Not all textual process descriptions contain an explicit definition of the requirement
level. However, they may contain the logical level. In these cases, in order to extract the
decision requirements we take advantage of the patterns used for the rules extraction
in Sect. 4.2, where in order to extract the input entry and the output entry,
decision and input data are first extracted.

For instance, in the running example Fig. 1(A), the first three sentences clearly cor-
respond to the requirement level and the last three are logical level. However, the same
decision table can be inferred even without the requirement level definitions, since a
sentence such as “if the patient’s sex is male and his BMI value is between 25 and 29.9,
then his obesity level is normal” is implicitly stating that obesity level is computed using
sex and BMI value.

Thus, if we apply pattern PT1 to the last three sentences in the running example
Fig. 1(A), we are still able to extract that obesity level is a decision dependent on
BMI value and sex input data, and to create the appropriate requirements:

– [BMI value, input data → obesity level]
– [sex, input data → obesity level]

After this process, the elements of the logical level can be extracted as explained
in Sect. 4.2 to create –at least partially– the DRD and decision table. Our approach
automatically recognises the decision requirements before extracting the elements at the
logical level. Currently we assume both elements to be present in the textual description.

4.5 Discussion

The approach presented in this paper to extract DMN models is an extension of the same
idea applied to the extraction of Bussines Process Models presented in [15]. However,
the variability of language patterns expressing decisions is more reduced than the wide
range of possibilities encountered in business process descriptions, which makes this
approach more suitable for this case.
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Our proposal relies on a classical artificial intelligence (AI) rule-based system,
where an expert selects and encodes which are the rules (or patterns in our case) to
be applied by the system. Despite the strong current AI trend to use deep neural sys-
tems for any task, we believe classical AI approaches still have relevant advantages in
applications as ours, where domain is restricted and precision is to be favoured over
recall. These advantages are:

– Deep learning systems require huge amounts of annotated training data, which are
not always available. The cost of producing such data sets may often be higher than
the cost of encoding expert knowledge into rules.

– Deep learning systems operate as black boxes, and it is difficult to tune their
behaviour to improve their output when they produce wrong answers. A rule-based
system is a white box, its output is explainable, and the rules can be fixed or extended
to improve the system behaviour.

From a more specific perspective, our approach differs from previous ones in the
kind of information used in the rules: We leverage the whole power of a NLP pipeline,
and take advantage of the syntactic structure of the sentences. This is a qualitative step
compared to systems based on flat regular expressions, which rely only on word order,
so they may fail to capture relations between distant words in the sentence, or lack
expressive power to represent specific cases. Moreover, the use of advanced Tregex
operators, such as e.g. domination negation, allows the expression of complex syntactic
patterns and thus finer control on which sentences are expected to match each rule.

Although our work is in a research stage, and we do not cover all possible decision
expressions yet (e.g. we don’t handle sentences with multiple outputs), our system is
extensible and establishes a good starting point for a more complete implementation.

5 Tool Support and Experiments

The technique of this paper has been implemented in the tool DMExtractor. We evalu-
ated it on a suite of cases based on text examples given in [8] and we report two differ-
ent results: First, we report extraction performance for requirement level, i.e. input data,
decisions, and requirements (see Table 1). Second, we report extraction performance for
decision logic level, that is, input entries, output entries, and business rules (Table 2).

The test dataset used in our experiments consists of 12 text-model pairs, each includ-
ing a textual decision description paired with the corresponding DMN models created
by a human. The first 11 models stem from material in the appendix of [8], and the
last was created based on a process fragment represented in [1]. The evaluation is per-
formed comparing the elements extracted against gold standard manual annotations.
The dataset can be consulted in our repository4.

4 https://github.com/ProjectTex2Dec/Text2Dec/tree/master/data/collected data.

https://github.com/ProjectTex2Dec/Text2Dec/tree/master/data/collected_data
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Table 1. Results of requirement level. Column #gold contains the number of decision, input data
and requirement created by a human. Columns #pred and #ok show the number of elements
predicted by the tool, and how many of them were in the gold DMN. Columns P, R, and F1 show
precision, recall and F-measure respectively. Left hand side columns show results for individual
elements, right hand side columns show figures for requirements as a whole.

Source Decision and InputData Requirement

#gold #pred #ok P R F1 #gold #pred #ok P R F1

1 prepayment 5 5 5 100 100 100 4 4 4 100 100 100

2 health risk 7 8 7 88 100 93 7 7 7 100 100 100

3 health evaluation 24 25 23 92 96 94 23 24 20 83 87 85

4 Dataset 1 3 3 3 100 100 100 2 2 2 100 100 100

5 Dataset 2 3 3 2 67 67 67 2 2 1 50 50 50

6 Dataset 3 3 3 2 67 67 67 2 2 1 50 50 50

7 Dataset 4 2 2 2 100 100 100 1 1 1 100 100 100

8 Dataset 5 6 6 6 100 100 100 3 3 3 100 100 100

9 Dataset 6 10 12 10 83 100 91 7 8 6 75 86 80

10 Dataset 7 11 13 10 77 91 83 8 10 7 70 88 78

11 Dataset 8 6 6 5 83 83 83 3 3 2 67 67 67

12 Loyalty longevity 4 4 3 75 75 75 3 3 2 67 67 67

Total 84 90 78 87 93 90 65 69 56 81 86 84

Table 1 shows the performance of our tool at the requirement level: The left hand
side columns show precision, recall, and F1 score for the extraction of decisions and
input data elements, without taking into account whether they are properly combined.
The right hand side columns show the performance on requirement extraction, consid-
ering that a requirement is properly extracted when all its elements (input data, decision,
and their dependency relation) are correctly extracted.

Precision is computed as the percentage of right elements among extracted ele-
ments (P = #ok/#pred). Recall is the percentage of expected elements correctly
extracted (R = #ok/#gold). F1. F1 score is the harmonic mean of precision and
recall (F1 = 2PR/(P + R)). We only count extracted elements as right if they match
the gold annotations in words and type (Input data, Decision, Requirement)

Table 2 shows the results obtained by our tool on the decision logic level. Left hand
side columns show the results on individual input or output entries, while right hand
side columns present the performance of the business rule extraction, considering that a
business rule is correct only when all its input and output entries are correctly extracted.
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Table 2. Results of decision logic level. Column #gold contains the number of input and output
entries created by a human. Columns #pred and #ok show the number of elements predicted by
the tool, and how many of them were in the gold DMN. Columns P, R, and F1 show precision,
recall and F-measure respectively. Left hand side columns show results for individual elements,
right hand side columns show figures for business rules as a whole.

Source Input Entry and Output Entry Business Rule

#gold #pred #ok P R F1 #gold #pred #ok P R F1

1 prepayment 6 5 5 100 83 91 2 2 1 50 50 50

2 health risk 8 10 8 80 100 89 3 4 3 75 100 86

3 health evaluation 3 3 3 100 100 100 1 1 1 100 100 100

4 Dataset 1 30 48 30 63 100 77 10 17 8 47 80 59

5 Dataset 2 24 19 17 89 71 79 8 6 5 83 63 71

6 Dataset 3 18 15 15 100 83 91 6 5 4 80 67 73

7 Dataset 4 4 4 3 75 75 75 2 2 1 50 50 50

8 Dataset 5 12 10 10 100 83 91 6 5 5 100 83 91

9 Dataset 6 18 15 15 100 83 91 6 5 5 100 83 91

10 Dataset 7 24 17 17 100 71 83 6 5 4 80 67 73

11 Dataset 8 24 11 11 100 46 63 12 6 4 67 33 44

12 Loyalty longevity 12 9 9 100 75 86 4 3 3 100 75 86

Total 183 166 143 86 78 82 66 61 44 72 67 69

6 Conclusions and Future Work

In this paper, we described a technique to automatically obtain complete DMN mod-
els from textual descriptions. The technique, grounded in natural language processing
combined with tailored syntactic patterns, allows to extract both the decision require-
ments and the decision logic described in a text. The technique is capable of obtaining
DMN models even if the text does not have the explicit requirement level. Furthermore,
the evaluations show that the generated DMNs are quite close to the models developed
by a human.

In the experiments carried out for this paper, we have considered texts containing
only decision descriptions. However, sentences describing decisions are usually embed-
ded in texts describing other process details (activities, work flow, etc.). The combined
extraction of both kinds of information, merging the patterns described in [15] with
those in this paper, is an interesting research line for future work.

Also as future research, we intend to explore the Case Management Model and
Notation (CMMN) and its automatic generation from text, and the use of machine-
learning techniques to infer the patterns, provided training data are available.
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and Technology (SENESCYT).
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Abstract. Machine Learning models, and more recently Deep Learning
models have gained popularity for predictive process monitoring. Predict-
ing the process outcome, remaining time to completion, or the next activ-
ity of a running process can be crucial to provide decision information and
enable timely intervention by case managers. These models fundamen-
tally assume that the process logs used for training and inference follow
the same data distribution and patterns. However, many real-world pro-
cesses can have gradual or sudden changes, and logs themselves may be
associated with different versions of process models modified over time,
or customized by different departments with different policies. These
can introduce spurious biases and correlations in the data, which can
influence predictive models during training and adversely impact their
accuracy. In this work, we present RoGen, an approach to train robust
predictive models that can identify these spurious correlations and gener-
alize to data with differing distributions. We show that our approach can
also be adopted by existing predictive models to improve their robustness
and generalizability. We evaluate our approach using real-world event
logs and show that even in the presence of spurious data correlations,
our models remain robust and outperform existing predictive models.

1 Introduction

There has been an increase in the incorporation of machine learning models in
numerous application domains, including business processes. They can be used
to predict process outcomes, remaining time to completion or even the next
activity of running processes which are important for case managers. The goal
of any machine learning model is to learn complex prediction rules using the
various features or attributes in a given training dataset for future predictions.
This could be either a classification task for discrete predictions, or a regression
task for predicting continuous variables. Predictive models learn from features
or attributes in the training data that have a significant correlation or causal
c© Springer Nature Switzerland AG 2021
A. Polyvyanyy et al. (Eds.): BPM 2021, LNCS 12875, pp. 105–122, 2021.
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relationship with the target variable. Such invariant features are those whose
correlations with the target are strong in any new test data, thus enabling accu-
rate predictions.

However, there are numerous recent examples highlighting the brittleness of
models that are trained using traditional approaches [7,13,20,23,26]. This can
be attributed to the fact that real-world data used for training often have inher-
ent data biases due to information or sampling bias, confounding factors, etc.
These can introduce spurious correlations in features that do not have a causal
relationship with the target to be predicted. Moreover, since model training
involves minimizing the training error, this leads to models absorbing all corre-
lations (both invariant and spurious) found in the training data. This influence
of spurious correlations cause models to perform poorly in test data where these
spurious biases no longer hold. Moreover, when these models are trained on data
with a specific distribution, and have to generalize to data with slightly different
distributions, they can often fail.

A classic example on the need for robust and generalizable ML models was
highlighted by [3] where a model, trained to classify images of cows in pastures
and camels in the desert, failed when the backgrounds were switched because it
was influenced by the spurious correlation of the background (i.e., green pastures
with cows and sandy deserts with camels) rather than relying on the invariant
features (i.e., the cows and camels themselves).

Even in business processes, real-world process models can have gradual or
sudden changes, such as concept drift [5]. In addition, the logs used to train
models could be associated with different versions of process models modified
over time, or even be customized by different departments with differing policies.
These factors, among others, can result in the presence of spurious correlations
while training predictive models for business processes and adversely impact
their robustness and generalizability, resulting in poor performance.

To illustrate this with an example, Table 1 shows the four most common case
variants from sample event logs of the servicing departments of a hypothetical
car dealership with two locations A and B. The dealership provides periodic
servicing reminders to its customers who either purchased the car from the dealer
(in-house), or purchased elsewhere but use the dealer for servicing (external). In
order to retain their in-house customers, the dealership also provides many of
them special offers in the form of discounts, extended warranties, etc. Moreover,
at location A, these offers are also provided to customers who sign up for their
loyalty program.

The dealership wants a predictive model that, given customer information,
can predict whether or not they should be sent special offers. From the table
we can see that the model would require all features, and not just the activity
sequence, in order to generate accurate predictions. However, a model trained
on a consolidated log from both locations composed primarily of these four case-
variants, would erroneously correlate the car brand X with giving special offers,
and brand Y with not providing special offers. This is a spurious correlation, as
opposed to the invariant correlation of determining special offers based on the
customer type and loyalty program information. The influence of this spurious
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correlation might lead the model to incorrectly predict that an in-house customer
with a brand Y car should not be given a special offer. Similarly, it might also
incorrectly predict that an external customer with a brand X car who is not a
loyalty member should be given a special offer.

Table 1. Four most common case variants of the event logs of a car dealership service
system from two locations: A (top) and B (bottom)

Case: id (Loc. A) Timestamp Activity Case: cust. type Case: loyalty

member

Case: car

brand

1 2/1/21 10:05 Obtain car info. External True X

1 2/1/21 10:30 Email reminder External True X

1 2/1/21 10:35 Special offer External True X

2 10/2/21 13:45 Obtain car info. In-house False X

2 10/2/21 14:10 Email reminder In-house False X

2 10/2/21 14:15 Special offer In-house False X

Case: id (Loc. B) Timestamp Activity Case: cust. type Case: loyalty

member

Case: car

brand

3 12/2/21 16:00 Obtain car info. External True Y

3 12/2/21 16:30 Email reminder External True Y

4 15/1/21 10:00 Obtain car info. external False Y

4 15/1/21 10:25 Email reminder External False Y

There have been increasing efforts to develop machine learning models
that are robust to spurious correlations and which can generalize to Out-Of-
Distribution (OOD) datasets [2,4,19]. However, there has not been much existing
work in the context of training robust predictive models for business processes.

In this paper, we present our approach, named RoGen, which uses the concept
of Invariant Risk Minimization (IRM) [2] to train robust predictive models. IRM
has been commonly applied to computer vision tasks, but it has not been used
for sequential data like business process event logs. Furthermore, to the best of
our knowledge, this is the first paper to develop an approach to train robust and
generalizable predictive models for process mining logs that can identify and
handle spurious data correlations.

We also show how our approach can work even for training existing predictive
models, using a model by [6], and demonstrate the improvement in robustness.
We evaluate the performance of the models trained with our approach on real-life
event logs against several baselines.

The following section provides background on predictive monitoring, machine
learning, and IRM. Section 3 discusses related work in predictive monitoring for
business processes. We present our approach in Sect. 4 and evaluate its effec-
tiveness in Sect. 5. Section 6 concludes the paper and discusses opportunities for
future work.
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2 Background

In this section, we define several elements of process mining and different predic-
tive monitoring tasks. We also provide background on the concept of Invariant
Risk Minimization (IRM) that we use to train machine learning models like
RNNs and LSTMs that are suited for sequence predictions.

2.1 Event Logs, Traces, and Sequences

Let A be the set of process activities, C be the set of case identifiers, T be the
set of timestamps, and Dj be the set of attributes or features, 1 ≤ j ≤ m, where
each attribute dj ∈ Dj can be either categorical or numerical. We also define
U = A × C × T × Dj as the event universe.

Definition 1 (Event). An event εi ∈ U is a tuple εi = (ai, ci, ti, di1, ..., dim),
where ai ∈ A is the process activity, ci ∈ C is the case identifier, ti ∈ T is its
timestamp, and dij ∈ Dj, 1 ≤ j ≤ m, are the event attributes. Given an event
εi, we define the projection functions π = {πA, πC , πT , πDj

} where πA : εi →
ai, πC : εi → ci, πT : εi → ti, and πDj

: εi → dij.

Definition 2 (Trace). A trace is a non-empty sequence of events σ =
〈ε1, ..., εn〉, ∀ εi ∈ U and n = |σ|, such that for all pairs of events εi, εj in a
given case, where 1 ≤ i < j ≤ |σ|, πT (εi) ≤ πT (εj) and πC(εi) = πC(εj).

Definition 3 (Trace prefix and suffix). Given a trace σ = 〈ε1, ε2, ..., εn〉,
the prefix of length k is σk

p = 〈ε1, ε2, ..., εk〉, and the suffix of length k is σk
s =

〈εk+1, ..., εn〉, where n = |σ| and 1 ≤ k < n.

Definition 4 (Event log). An event log is a set of traces L = {σ1, ..., σl} such
that each event appears at most once in L.

2.2 Predictive Monitoring Tasks

Predictive models, given a prefix σk
p of a running case, aim to predict a future

event εk+1, or a suffix σk
s of future events. Existing work has looked at four kinds

of predictive monitoring tasks - (1) Next activity prediction, (2) Next timestamp
prediction, (3) Activity suffix prediction, and (4) Remaining time prediction. To
define these, let Ω be a predictive model, σk

p be a trace prefix as defined above,
ε′ be a future predicted event, and ⊕ be the concatenation operator between two
sequences.

Definition 5 (Next activity). Given a trace prefix, the model predicts the next
activity of the trace, defined as ΩA(σk

p) = πA(ε′
k+1).

Definition 6 (Next timestamp). Given a trace prefix, the model determines
the timestamp of the next activity of the trace by predicting its duration as
ΩT (σk

p) = πT (ε′
k+1) − πT (εk).
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Definition 7 (Activity suffix). The model predicts the activity suffix of a run-
ning case by recursively predicting the next activity for multiple future activities.
This can be denoted as ΩAS = 〈ΩA(σ′) = πA(ε′

i)|σ′ = σk
p ⊕ 〈ε′

k+1, ..., ε
′
i−1〉〉.

Definition 8 (Remaining time). The model predicts the remaining time
duration of a running case, by recursively predicting the duration of each future
predicted activity. Let θ be the sequence of predicted future timestamps where
θ = 〈ΩT (σ′) = πT (ε′

i)−πT (ε′
i−1)|σ′ = σk

p ⊕〈ε′
k+1, ..., ε

′
i−1〉〉. Then the remaining

time can be computed as ΩRT (σk
p) =

∑n
i=k θi.

2.3 Neural Networks and Invariant Risk Minimization

A typical neural network model consists of a layer of inputs X, a layer of outputs
Y, and multiple layers in between that are referred to as hidden layers. The
model optimizes the parameters of its hidden layers θ, while learning a mapping
Y = f(X; θ) from the input to output space. In order to train these networks, a
loss or risk function L(θ) : Rn → R is used, which maps the model parameters
θ to the expected loss on X × Y for a given function �:

L(θ) = E(x,y)�(fθ(x), y) (1)

where x ∈ X, y ∈ Y , and � is a function like cross-entropy loss for classification.
The standard Empirical Risk Minimization (ERM) methodology used by exist-
ing predictive monitoring approaches tries to minimize the average loss over all
training examples. ERM fundamentally assumes that the data is independent
and identically distributed (i.i.d) and that the training and test distributions are
similar. However, as described in Sect. 1, this may not hold in real-world datasets
and it has been shown that in these situations, ERM is not robust and does not
achieve good Out-of-Distribution (OOD) generalization. This has motivated the
need for alternative approaches to train predictive models, that can identify and
handle spurious correlations.

In this paper, to create robust and generalizable predictive models for busi-
ness processes, we leverage the concept of Invariant Risk Minimization (IRM) [2].
To use IRM, we consider the event logs to consist of E = {e1, ..., en} environ-
ments, where 1 ≤ |E| < ∞. Each environment refers to a potential source of
spurious correlations, such as logs from multiple departments, different process
model versions, etc. We denote Xe, Y e as the input and output data collected
from each environment e ∈ E . We can then similarly define the loss for each
environment Le(θ) as:

Le(θ) = E(xe∈Xe,ye∈Y e)�(fθ(xe), ye), ∀e ∈ E (2)

Invariant Risk Minimization searches for the invariant set of input attributes
across the different environments. As explained in Sect. 1, invariant features have
a strong causal relationship with the target variable for any given data, while
spurious features may have strong correlations with the target for some data
environments, but not in others. Formally, the set of invariant attributes XI is
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defined as one where the target prediction probability is consistent across all
environments (i.e.) p(Y |Xi ∈ XI , E) is approximately constant. Conversely, the
set of spurious attributes XS consists of features whose prediction probabilities
vary across environments due to the presence of spurious correlations. It follows
that XI ∪ XS = X, and XI ∩ XS = ∅, (i.e.) a feature cannot be both invariant
and spurious.

The IRM principle finds an invariant data representation Φ : X → H such
that the optimal predictive model with parameters θ : H → Y , is the same across
all environments ei ∈ E (i.e.) it is not influenced by variations from spurious
correlations. Hence, to find a model that optimizes the loss in each environment,
while simultaneously identifying invariant feature attributes across environments
requires solving the following bi-level optimization problem:

min
Φ:X→H
θ:H→Y

∑

e∈E
Le(θ�Φ(Xe)) (3)

s.t. θ ∈ argmin
θ̄

Le(θ̄�Φ(Xe)), ∀e ∈ E (4)

However, since this optimization is highly intractable, particularly when Φ is
non-linear, the authors in [2] propose a tractable variant:

min
Φ:X→Y

∑

e∈E
Le(Φ(Xe))
︸ ︷︷ ︸

IRM Loss

+λ‖∇θLe(θ�Φ(Xe)‖2
2︸ ︷︷ ︸

IRM Penalty

(5)

While training a predictive model using Eq. 5, the IRM Loss term minimizes
the training loss in each environment, while the IRM Penalty term balances
between the predictive performance of the model within each environment and
its invariance across environments using a regularizer λ ∈ [0,∞). This ensures
that a model does not get influenced by spurious correlations which may lead to it
performing well for some environments, but not in others. It is trained to balance
its performance across environments by identifying the invariant representation,
thus leading to robust and generalizable predictive models.

2.4 Sequence Prediction Neural Networks

Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) net-
works are popular predictive models for the sequential data in business process
event logs since they persist information across sequences unlike traditional neu-
ral networks. RNNs have a cyclic structure and can be unfolded as shown in
Fig. 1. At each step of the sequence, referred to as timestep t, xt is the input
and the ht is the hidden state which contains information extracted from all the
timesteps up to t. RNNs perform well for sequential data by sharing parameters
across different parts of the model. In an RNN, the hidden state ht is updated
using the previous hidden state and the current input at each timestep:

ht = f(Uxt + Wht−1 + b)
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Then the output ot at time t is computed as:

ot = f(V ht + c)

where f is a non-linear activation function (e.g.) tanh or sigmoid, and U,W, V
are the weight parameters and b, c the biases of the new input and hidden state.
However, RNNs have been shown to perform poorly for long sequences and
retaining long-term dependencies, a phenomenon called catastrophic forgetting.

Fig. 1. Unfolding an RNN Fig. 2. LSTM vs RNN

Long Short-Term Memory (LSTM) architectures are a special kind of RNN
that solve this issue and can learn long-term dependencies. Unlike the single
layer of RNNs, LSTMs have four interacting layers as shown in Fig. 2. The
LSTM model can be described by the following equations where the � operator
denotes the Hadamard element-wise product:

ft = sigmoid(Wfxt + Vfht−1 + bf )
it = sigmoid(Wixt + Viht−1 + bi)
ot = sigmoid(Woxt + Voht−1 + bo)
Ct = ft � Ct−1 + it � tanh(Wcxt + Vcht−1 + bc)
ht = ot � tanh(Ct)

The LSTM first decides the information to remove from the cell state using the
sigmoid layer ft also known as the forget gate. It uses ht−1 and xt to output
a value between 0 and 1, where 0 denotes completely forgetting information,
while 1 denotes completely retaining it. This is followed by the input gate it
which decides which values to update and a tanh layer generates a vector of new
candidate values to be added to the state. The new cell state Ct is obtained
by forgetting some and adding new information. The output gate ot decides the
output of the cell state and also updates the hidden state ht.

3 Related Work

In this section we first discuss existing work on predictive models for business
processes. We then present related work on approaches for generalization of
machine learning models used in other domains.
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3.1 Predictive Models for Business Processes

The work by Evermann et al. [12] looks at next activity prediction using LSTMs
combined with an embedding layer to reduce the dimensionality of the input
data and include attributes like the resource associated with each event. Their
architecture comprises of the embedding layer with an embedding dimension of
125, followed by two LSTM layers.

Tax et al. [24] use an LSTM based architecture consisting of a shared LSTM
layer that feeds two independent LSTM layers, one specialized for predicting the
next activity, and the other for predicting the next event timestamp. Their model
jointly predicts both the activity and timestamp using a multi-task learning
approach, which they show has a better performance than learning each task
individually.

Camargo et al. [6] also use an embedding layer similar to [12] along with
two LSTM layers. They define the number of embedding dimensions as the
fourth root of the number of unique activities. Moreover, like [24] they also
use specialized layers for the activity and resource attributes and propose three
variants of the baseline architecture which concatenate information at different
points in the network and use a similar multi-task learning approach.

Mauro et al. [10] and Pasquadibisceglie et al. [18] use Convolutional Neural
Networks (CNNs) for the next activity prediction task. In CNNs, a convolutional
layer applies a set of filters that are replicated along the whole input to process
small local parts. These filters identify specific patterns or signals and the authors
propose schema to represent the running case as two-dimensional images.

Taymouri et al. [25] use Generative Adversarial Networks (GANs) for the
next activity and next timestamp prediction tasks. GANs are useful when the
amount of available training data is insufficient for effective training of LSTM
networks.

3.2 Generalization Approaches

There are various approaches to improving out-of-distribution generalization of
deep learning models. Data augmentation techniques aim to make the model
more robust by training using instances obtained from neighbouring domains
hallucinated from the training domains, and thus make the network ready for
these neighbouring domains. Shankar et al. [22] augment data using instances
perturbed along directions of domain change and use a second classifier to cap-
ture this. Carlucci et al. [7] apply augmentation to images during training by
simultaneously solving an auxiliary unsupervised jigsaw puzzle alongside.

Decomposition based approaches represent the parameters of the network as
the sum of a common parameter and domain-specific parameters during training.
Khosla et al. [14] applied decomposition to domain generalization by retaining
only the common parameter for inference. Li et al. [16] extended this work to
CNNs where each layer of the network was decomposed into common and specific
low-rank components.
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Another approach is to pose the generalization problem as a meta-learning
task, whereby we update parameters using meta-train loss but simultaneously
minimizing meta-test loss. Santoro et al. [21] trained models that adapt using
small amounts of labeled data from the new domain, while Dou et al. [11] con-
sidered distribution shifts in only test data.

4 Our Approach

4.1 Data Preprocessing

In this section we describe our approach to preprocessing the event log to pre-
pare k-prefixes for the training and test data. For the predictive monitoring
tasks described in Sect. 2.2, the model has to learn a function that, given a k-
prefix σk

p = 〈ε1, ..., εk〉, predicts the next activity ak+1 and the next timestamp
tk+1 in addition to the other attributes djk+1, 1 ≤ j ≤ m. This process is
then performed recursively to obtain the activity suffix as well as to predict the
future timestamps to compute the remaining time of the case. For the times-
tamp attribute, we use the relative time between activities, calculated as the time
elapsed between the timestamps of the current event and its previous event.

The attributes in the prefixes can be categorical or continuous variables.
Continuous attributes are typically normalized between 0 and 1 before they
are passed as input to the neural network. There are several approaches in the
literature to encode a representation of categorical variables e.g. one-hot encod-
ing, label encoding, using embedding dimensions, etc. Authors in [6,12,17] used
label encoding followed by embedding dimensions to reduce the dimensions of the
input data, while authors in [9,24] use one-hot encoding. The choice of embed-
ding dimensions can impact accuracy, where a small number may not capture
feature relations, and a large number may cause model over-fitting. One-hot
encoding for features with many unique values, can result in high dimensional
input matrices, which can adversely impact model performance.

Since our focus in this work is on feature identification and distinguishing
between invariant and spurious features, we represent the categorical features
using label encoding which has been shown to perform well on ordinal data such
as those found in business process logs. This also ensures that we can handle
multiple attributes without a large increase in model complexity or the number
of parameters. We note that our approach can easily integrate other encoding
approaches as well.

In order to generate the k-prefixes, we use the popular prefix padding app-
roach also used by [6,9,10,18,24], where every possible set of prefixes σk

p is
considered, where 1 < k ≤ n. The prefixes are padded with zeroes in case they
are shorter than the specified vector length. Depending on the size of the dataset,
we either set n to be the length of the longest trace or use the n most recent
events. We also maintain a vector of lengths of each case which allows us to stop
predictions when the case is finished. Table 2 shows an example of the prepro-
cessed inputs, target features and timestamps for a given 4-prefix input. The φ
symbol denotes the end of the case.
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Table 2. Preprocessing of input k-prefix

Input 4-prefix Input features Input timestamp Target features Target

timestamp

〈(a1, 13/1/2021 00:15AM, d11, d12, d13), (1, 1, 1, 1) 0 (2, 1, 2, 1) 1500

(a2, 13/1/2021 00:40AM, d11, d22, d13), (2, 1, 2, 1) 1500 (3, 1, 5, 4) 2280

(a3, 13/1/2021 01:18AM, d11, d52, d43), (3, 1, 5, 4) 2280 (4, 2, 3, 1) 2700

(a4, 13/1/2021 02:03AM, d21, d32, d13)〉 (4, 2, 3, 1) 2700 φ φ

Fig. 3. RoGen training workflow

4.2 RoGen Model Architecture and Training Workflow

In this section, we describe RoGen’s model architecture and training workflow.
The model architecture consists of an input layer for the k-prefixes from event
logs. This is followed by two stacked LSTM layers as described in Sect. 2.4 and a
dense output layer. The output layer consists of outputs for predicting both the
next activity as well as the next timestamp. RoGen simultaneously optimizes
both tasks during training, also known as multi-task or multi-output learning,
similar to the approach of [6,24]. This allows RoGen to exploit commonalities
and differences across both tasks, which is often present in process trace logs
(e.g. activities and their time duration are typically correlated). This multi-task
optimization can result in improved training efficiency and prediction accuracy,
when compared to training models separately for each task as shown by [6,24].

Figure 3 shows the training workflow of our approach that uses Invariant Risk
Minimization (IRM) to train robust and generalizable models as described in
Sect. 2.3. The input k-prefixes from the event log are first split into the different
environments, which are further divided into training and test environments.
The input prefixes and target outputs for the different prediction tasks from
each training environment are then passed to the RoGen predictive model. The
training algorithm used by the model is detailed in Algorithm 1, where it uses
Eq. 5 to compute the training loss (IRM Loss) and penalty (IRM Penalty) for
each environment e ∈ E . The average loss and penalty over all environments
are used to optimize the RoGen model using the Adam optimization algorithm.
The trained model can then be used for inference on new k-prefixes for robust
predictions of future activities and their timestamps. Figure 3 also highlights
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that the RoGen model can be easily replaced by any existing predictive model,
showing the extensibility of our approach.

Algorithm 1. RoGen Training Algorithm
Require: Distribution over inputs X and targets Y ;
Require: s: Total learning steps; fθ: function to learn
Require: w: Warm up steps; L: Loss function for the prediction error
Require: γ: Learning rate; r: Regularization weight; p: IRM Penalty weight
Require: θ: Model parameters ; μ: Mean function
1: for i = 1 → s do
2: Sample env e k-prefixes Xe, Y e = 〈xi, ...,xj〉, 〈yi, ...,yj〉 , ∀e ∈ E
3: le = Le(f(Xe), Y e) , ∀e ∈ E � IRM Loss for each environment
4: L2 = ‖θ‖2 � L2 regularization
5: lpen

e = IRMPenalty(Xe, Y e) , ∀e ∈ E � Equation 5
6: if i > w then
7: lfinal = μ(le) + rL2 + p(μ(lpen

e )) , ∀e ∈ E � Total loss
8: else
9: lfinal = μ(le) + rL2 , ∀e ∈ E

10: end if
11: θ = θ − γ∇θlfinal � Optimization
12: end for

5 Evaluation

We implemented RoGen in Python using PyTorch 1.7.0 and evaluated its per-
formance using five real-life event logs. We experiment using two versions of each
event log - first with the original data and attributes, and then augmenting it
with an additional spurious attribute to test the robustness and generalizability
of the approaches. Our code and data are available1.

We compared RoGen’s performance against four baselines [6,10,12,24] based
on their publicly available implementation. Furthermore, to highlight the exten-
sibility of our approach and evaluate its performance when applied to an existing
predictive model, we also incorporated the model by Camargo et al. [6] into our
training workflow in Fig. 3, which we named RoGen-C in the experiments. We
modified the baseline approaches to use the same set of log attributes to perform
a fair evaluation.

5.1 Experimental Setup

Datasets: We used five publicly available real-life event logs. Table 3 highlights
the characteristics of these logs and we describe them below.

1 https://github.com/praveenv/RoGenBPM.

https://github.com/praveenv/RoGenBPM
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Table 3. Event logs description

Event Log Num. traces Num. events Num. activities Avg. activities per trace Max. activities per trace Mean duration Max. duration

Helpdesk 4579 21344 14 4.66 15 40.9 days 59.9 days

BPI 2013 1487 6660 7 4.47 35 178.9 days 2254.8 days

BPI 2015 5647 262628 356 46.50 154 101.4 days 1512.0 days

BPI 2018 43809 2514266 41 57.39 2973 335.3 days 1011.3 days

BPI 2019 251734 1595923 42 6.34 990 71.5 days 25670.5 days

– Helpdesk:2 Contains traces from a ticketing management process of the
helpdesk of an Italian software company.

– BPI 2013:3 Contains traces from an incident and problem management sys-
tem at Volvo IT Belgium.

– BPI 2015:4 Consists of five event-logs containing traces from building permit
applications provided by five Dutch municipalities during a period of four
years.

– BPI 2018:5 Contains traces of payments for German farmers from the Euro-
pean Agricultural Guarantee Fund over a period of three years. Over the
years, there are changes in the process model due to changes in EU regula-
tions. The traces are from four different departments and each of them may
have implemented their processes differently.

– BPI 2019:6 Contains traces from an MNC in The Netherlands depicting
purchase order handling processes for paints and coatings with different flows
in the data. Since the BPI 2018 and BPI 2019 datasets are extremely large,
we use a random 10% sampling of data for our experiments.

Spurious Attribute and IRM Environments: To specifically evaluate the
robustness of all approaches, we augment every event log with an additional
numeric spurious attribute which is a common evaluation methodology [1,8,15].
We also divide the logs into environments for the IRM-based approaches. For
the Helpdesk, BPI 2013, and BPI 2019 event logs, we divide them into three
environments, two for training with 35% of data each, and the third as test with
the remaining 30%. For BPI 2015, we treat logs from each of the five munici-
palities as an environment, and use four for training and one as test. Similarly,
for BPI 2018, logs from the four departments are used as environments, and we
use three for training and one as test. This results in BPI 2015 and BPI 2018
having unequal sizes of each environment unlike the other logs, allowing us to
demonstrate the effectiveness of RoGen even with unbalanced data distributions.

2 https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb.
3 https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11.
4 https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1.
5 https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972.
6 https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1.

https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1


Robust and Generalizable Predictive Models for Business Processes 117

In each of the above logs, we identify three common case variants (denoted
as A, B, C) that have the highest occurrence rates in the event log. For each
environment e ∈ E , we define the spurious correlation between each variant
and a specific value Vi of the spurious feature (i.e.) p(A|V1, e) = p(B|V2, e) =
p(C|V3, e) = αe, where V1, V2, V3 are values of the spurious attribute and αe is
the strength of the spurious correlation in environment e. For every other case
variant, Vi is set to a random number. We set αe = 0.9 as the highest spurious
correlation in one of the training environments, and reduce it by 0.05 for every
subsequent training environment. We then set αe = 0.1 for the test environment.
We note that approaches that do not require explicit environment definitions can
also be used similarly [27].

In the training environments, we set a high value of αe to build a strong spu-
rious correlation between the common case variants and the spurious attribute.
However, in the test environment, for the spurious correlation to no longer hold,
we set a low value of αe to mimic a change in data distribution. As described
in Sect. 2.3, the varying values of αe for the spurious attribute in the training
environments is detected by IRM to identify the spurious correlation, and ensure
that the model does not get influenced by the spurious attribute. Models that
incorrectly get influenced by the strong spurious correlation in the training envi-
ronments, will fail to generalize to the test environment and hence demonstrate
low robustness. For training the baseline approaches, the training environments
are consolidated into a single input log.

Evaluation Metrics: We use the same evaluation metrics adopted in the base-
line comparison approaches [6,10,12,24]. For the next activity prediction task,
we use the percentage of correct predictions over the total number of predictions.
For the next timestamp prediction, we report the Mean Absolute Error (MAE)
which is the average of the absolute value difference between the predicted times-
tamps and the ground truth timestamps. For the activity suffix prediction, the
Damerau-Levenshtein (DL) edit distance metric is commonly used, which mea-
sures the edit distance between two given activity traces without penalizing too
harshly any transpositions of activities. This value is then normalized by the
lengths of the two traces, obtaining a similarity value between 0 and 1. For the
remaining time prediction of a case, we use the average of the MAE obtained
for all the recursive next timestamp predictions.
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5.2 Results

Table 4. Next activity prediction accuracy (%)

Method Helpdesk BPI 2013 BPI 2015 BPI 2018 BPI 2019

Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen.

Tax et al. [24] 78.94 65.07 58.99 46.27 38.66 9.85 68.63 35.04 56.75 35.15

Evermann et al. [12] 78.52 61.48 55.67 44.57 38.18 10.29 62.50 34.89 57.43 38.19

Mauro et al. [10] 79.30 61.70 51.29 41.35 35.02 6.43 64.32 34.33 63.43 39.70

Camargo et al. [6] 80.57 66.14 62.23 51.54 43.90 10.41 73.41 35.65 73.39 41.47

RoGen 80.37 71.06 61.18 56.75 47.48 33.37 74.20 56.25 74.07 66.43

RoGen-C 79.78 72.07 61.75 56.23 52.10 29.84 76.74 57.27 73.94 63.30

Next Activity and Timestamp Prediction: Table 4 shows the accuracy
percentages achieved by all the approaches in predicting the next activity for
both the original event logs (Orig.) as well as the logs with the additional spurious
feature (Gen.). For the original logs, we see that RoGen and RoGen-C achieve
comparable accuracies to [6] and outperform the other baselines across all the
event logs. We also observe that for BPI 2015 and BPI 2018, where the logs were
collected from multiple sources, treating them as separate environments using
IRM results in an increase in accuracy even when the underlying predictive
model is the same (RoGen-C and [6]).

For the logs with the spurious feature, our IRM based approaches outperform
all the baselines. We observe that the models of the baseline approaches are
influenced by the spurious correlations and have a significant drop in accuracy
ranging from an average of 19% for the Helpdesk dataset, to an average of 76%
for the BPI 2015 dataset. On the other hand, RoGen and RoGen-C are more
robust to the spurious correlation and do not have a large drop in accuracy.

Similarly, Table 5 compares the Mean Absolute Error (MAE) values of all
the approaches for the next timestamp prediction task. The MAE values are
reported in days and lower error values signify better performance. We only use
[6,24] as the baselines since [10,12] do not handle this task. We observe that
for a majority of both kinds of event logs – original and with the spurious fea-
ture, our approaches outperform the baselines. In particular, RoGen-C achieved

Table 5. Next timestamp prediction Mean Absolute Error (MAE)

Method Helpdesk BPI 2013 BPI 2015 BPI 2018 BPI 2019

Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen.

Tax et al. [24] 5.18 7.56 14.11 15.13 1.96 1.98 6.12 6.82 6.60 12.01

Camargo et al. [6] 4.99 7.35 16.35 14.50 1.92 2.03 5.31 6.78 6.36 11.20

RoGen 5.06 7.40 14.74 14.11 1.74 1.95 3.38 7.51 6.48 10.09

RoGen-C 4.95 7.19 15.37 11.87 1.92 1.94 4.90 7.48 5.88 9.63
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consistently lower MAE than the other approaches for both kinds of logs. From
Tables 4 and 5, we can see that models using IRM do not degrade in accuracy
even if the logs do not have any spurious data correlations. In addition, when
spurious correlations exist in event logs, the IRM based models significantly
outperform traditional predictive models.

Fig. 4. Comparison of next activ-
ity prediction accuracy for varying
strengths of spurious correlation

Fig. 5. RoGen next activity prediction
accuracy for varying number of envi-
ronments

Impact of Strength of Spurious Correlations: To understand the impact
of the strength of spurious correlations in an event log on model performance,
we evaluate the approaches for varying strengths of spurious correlations αe in
each of the two training environments for the BPI 2019 event log. Figure 4 shows
the next activity prediction accuracy achieved by all the approaches where the
spurious correlation strength refers to the average spurious correlation μ(αe)
across the two training environments. We see that when there is no spurious
correlation (i.e.) μ(αe) = 0.0, all the approaches have accuracies similar to their
performance on the original event log as observed in Table 4. However, when
μ(αe) is increased, the baseline approaches are influenced by the spurious feature
and their test accuracy degrades. We observe for high levels of spurious corre-
lation, the baseline approaches have low accuracy values. On the other hand,
RoGen and RoGen-C show good robustness to the increasing levels of spurious
correlations and continue to perform well.

Impact of Number of Environments: We evaluate the scalability and
robustness of RoGen to multiple sources of spurious correlations, by varying
the number of training environments in Fig. 5. For each event log, we use the
same strengths of spurious correlation, but vary the number of environments
from {2, 4, 6, 8}. We observe that the accuracy achieved by RoGen does not
have much variance even with a larger number of environments. This shows that
our approach can handle large and diverse event logs with multiple sources of
spurious correlations.
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Suffix Prediction: Tables 6 and 7 show the results of the activity suffix pre-
diction and remaining time prediction tasks respectively. RoGen and RoGen-C
continue to outperform the baselines, particularly in logs with the spurious fea-
ture. For some of the logs, all the approaches achieve similar results since we
limited the number of future predictions due to the size of the log.

Table 6. Activity suffix prediction DL similarity

Method Helpdesk BPI 2013 BPI 2015 BPI 2018 BPI 2019

Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen.

Tax et al. [24] 0.75 0.68 0.33 0.19 0.14 0.03 0.15 0.06 0.18 0.07

Camargo et al. [6] 0.76 0.72 0.37 0.27 0.10 0.02 0.17 0.06 0.19 0.09

RoGen 0.76 0.72 0.38 0.32 0.14 0.09 0.17 0.13 0.19 0.16

RoGen-C 0.75 0.72 0.38 0.27 0.15 0.09 0.17 0.13 0.19 0.14

Table 7. Remaining time prediction MAE

Method Helpdesk BPI 2013 BPI 2015 BPI 2018 BPI 2019

Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen. Orig. Gen.

Tax et al. [24] 17.85 8.84 22.32 20.79 61.21 60.97 53.46 53.04 38.82 29.92

Camargo et al. [6] 18.35 9.21 23.92 20.94 60.93 60.97 53.40 52.51 38.53 28.69

RoGen 17.85 8.35 23.44 20.49 60.93 60.97 50.74 52.43 38.55 27.96

RoGen-C 17.40 8.03 23.09 20.05 60.93 60.97 51.29 52.00 38.48 27.76

6 Conclusion and Future Work

In this paper, we present a novel approach to train predictive models for busi-
ness processes that are robust and generalizable in the presence of spurious data
correlations. Existing work on predictive business process monitoring have not
accounted for the presence of spurious correlations in event logs which can arise
due to various factors. Since predictive monitoring tasks are often used by case
managers, deploying robust models is critical for many real-world business pro-
cesses.

Our approach uses the concept of Invariant Risk Minimization and we also
demonstrate how existing predictive models can utilize IRM to improve their
robustness. Our experiments highlight the importance of our approach, where
our robust predictive models outperform several existing baselines on real-life
logs, especially when they also have varying levels of spurious correlations. We
also show that our implementation can easily be used to improve the robustness
of any predictive model and our logs with spurious correlations can be used to
evaluate robustness.
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We intend to extend our work to incorporate and compare other techniques to
achieve robustness like meta-learning, data augmentation, adversarial learning,
etc. We also plan to improve our approach to handle logs where the sources
of spurious correlations may be hard to identify. We also intend to evaluate
different kinds of predictive models in this context and also extend our approach
to handle other prediction tasks.
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Abstract. Next-activity prediction methods for business processes are
always introduced in a static setting, implying a single training phase
followed by the application of the learned model during the test phase.
Real-life processes, however, are often dynamic and prone to changes over
time. Therefore, all state-of-the-art methods need regular retraining on
new data to be kept up to date. It is, however, not straightforward to
determine when to retrain nor what data to use; for instance, should all
historic data be included or only new data? Updating models that still
perform at an acceptable level wastes a potentially large amount of com-
putational resources while postponing an update too much will deterio-
rate model performance. In this paper, we present incremental learning
strategies for updating these existing models that do not require fully
retraining them, hence reducing the number of computational resources
needed while still maintaining a more consistent and correct view of
the process in its current form. We introduce a basic neural network
method consisting of a single dense layer. This architecture makes it eas-
ier to perform fast updates to the model and enables us to perform more
experiments. We investigate the differences between our proposed incre-
mental approaches. Experiments performed with a prototype on real-life
data show that these update strategies are a promising way forward to
further increase the power and usability of state-of-the-art methods.

Keywords: Business process · Event prediction · Incremental
learning · Neural networks · Dynamic Bayesian Network

1 Introduction

Predictive process monitoring uses historical data to predict several aspects of
ongoing business processes, such as remaining time prediction, outcome predic-
tion, and next-activity prediction. Recently proposed next-activity prediction
methods always assume a static setting, where we divide the datasets into fixed
training and test parts. One important aspect of Business Processes, however,
is that they are inherently dynamic and that different time periods in the log
can have different characteristics. Although some authors propose to retrain the
model regularly to incorporate the changes in the data, this might not be the
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most efficient way of updating a model in terms of both runtime and accuracy.
Furthermore, no method describes which events to use to retrain the model. It
can be beneficial not to use all available historical events as they are no longer
relevant for future activities, due to drifts in the processes [4]. No state-of-the-
art method proposes how to perform these updates or has been evaluated under
these dynamic circumstances.

In this paper, we explore different strategies that can be used for incremental
learning of next-activity prediction models. Ranging from completely retraining
the models for every new batch of data to only using the newly arrived data to
update the existing model. These update strategies can shed new light on the
performance of the different methods, as not all methods are equally well suited
to be adapted for a dynamic environment.

It is important to note that the strategies proposed in this paper apply to
a variety of existing methods, especially neural networks. We aim at showing
that the update strategies have significant benefits in a dynamic environment
without specifying which of the described models is better.

To visualize the performance over time (with more or less data used for train-
ing/updating) we propose a graphical representation of the average accuracy on
a given time within a given window. This sliding window technique gives an
accurate view of how the predictive performance of the models changes over
time.

We show that some incremental methods outperform the completely
retrained models despite the catastrophic forgetting [26] property of neural net-
works. Which is the phenomenon when a neural network forgets and ignores the
original input when retraining the model with new data. This phenomenon is
often a potential risk when updating neural networks. However, we can lever-
age catastrophic forgetting to gradually forget older, less relevant, events in the
presence of concept drift.

Because we needed a lightweight neural network for our initial experiments,
we created a basic neural network architecture that consists of a single dense
layer. During the experiments, we show that this new architecture (which
requires only a limited amount of computational resources) performs on par
or outperforms the selected more complex state-of-the-art architectures.

The contributions of our paper are the following:

1. We introduce a simple, but accurate, neural network architecture for next-
activity prediction.

2. We compare different update strategies in terms of accuracy and runtime.

The next section gives an overview of related work on incremental learning,
concept drift and predictive process monitoring and positions our paper within
the field of incremental predictive process monitoring. Section 3 explains the
different strategies that can be used for updating. In Sect. 4 we introduce our
basic neural network architecture. Experiments on all possible update strategies
are performed in Sect. 5.
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2 Related Work

2.1 Predictive Process Monitoring

Predictive Process Monitoring aims at correctly predicting various aspects of
running business processes. Existing methods deal with predicting the remaining
time [1], the outcome [30] or the next activity [27,33] of a running case. In this
paper, we focus on predicting the next activity in a running case.

In recent years different types of models are proposed to predict the next
activity in a business process. With neural networks becoming extremely popu-
lar, lots of new methods are proposed every year.

The first type of network uses a Long-Short-Term-Memory (LSTM) archi-
tecture. This type of model is capable of learning the behavior of a sequence of
events (hence the memory). Recent methods using this technique are proposed
by Evermann et al. [15], Tax et al. [28], Lin et al. [18] and Camargo et al. [7].

The LSTM architecture has also been used in combination with Generative
Adversarial Networks by Taymouri et al. [29]. In this type of model, the network
exists out of two parts: the first part tries to predict the best activity as well
as possible, while the other tries to divide the real activities that happened
from the predicted ones. Both parts of the model are trying to outperform the
other. In this way, the predictive model gets more accurate feedback about its
performance.

LSTM models, however, require significant training time. To address this
performance issue posed by the LSTM models, Convolutional Neural Networks
(CNNs) were proposed. They also can incorporate the sequential nature of a
business process but can train more efficiently. Methods using the CNN archi-
tecture have been proposed by Di Mauro et al. [8] and Pasquadibisceglie et al.
[22,23].

Pauwels et al. [24] propose to build models using Dynamic Bayesian Networks
(DBN). This method is based on techniques in which the data is preprocessed
so that it incorporates the time aspect of an event log. The DBN model learns
different dependencies between attributes (from both the control-flow and data
perspective) that are present in the data and depict the conditional probability
of a certain activity happening, given a certain history of events. The activity in
the current timestep can depend on every attribute in a previous time step in
the k-context log.

2.2 Concept Drift Detection

Concept drift in process mining is well described by Bose
et al. [4]. Bose et al. show that concept drift can occur in all perspectives (control-
flow, data, resource) and that different types of drift exist, each of which may
require a different approach to deal with it. In their paper, Bose et al. focus
on detecting the drift points. A disadvantage of this technique is, however, that
drifts are only detected after they occurred, leading to a delay in the ability to
update existing models.
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To detect drifts, Bose et al. propose a sliding window approach. This win-
dow is divided into two sub-windows which we want to compare to each other
to determine if drift has occurred between the two windows. The characteriza-
tion of changes between windows is done using a statistical test, such as the
Kolmogorov-Smirnov test, the Mann-Whitney U test, or the Hotelling T 2 test.

2.3 Incremental Learning Algorithms

Different applications exist that make use of the dynamic nature of business
processes. Some of these applications which are adapted for use in an online
setting are: business process discovery [6], conformance checking [5] and concept
drift detection [21].

Learning in a setting in which data changes its nature and characteristics over
time is a known and well-studied problem within machine learning [17,25]. A
popular solution is to use a sliding window to move over the data that indicates
which data to use for building a model at a particular moment. One of the
downsides of such a sliding window is that they are often of a fixed size, which is
determined a priori by the user. This can lead to window sizes that are too big,
and thus too insensitive for changes, or too small, in which case too many changes
are detected. The correct window size depends on the data itself, and can also
vary over time. Therefore, Bifet and Gavalda proposed a learning technique that
uses an adaptive window size (ADWIN) [3]. On the one hand, when the data is
stationary the window size grows, and on the other, the window size shrinks when
changes are detected. In contrast to other proposed adaptive methods, Bifet and
Gavalda show that the performance of their adaptive window is guaranteed by
providing bounds on the false positive and false negative rates.

Another application of incremental learning algorithms is when the data
arrives in the form of a data stream in which the compute resources are not
able to keep all the arrived data in memory. Hoeffding trees, as proposed by
Domingos and Hulten [11], are incremental decision trees that are learned from
a massive data stream. This method does, however, assume that the distribution
generating the arriving samples does not change over time. Hoeffding trees can
be learned in a constant time proportional to the number of attributes.

Gama et al. [16] consider concept drift as described by Bose et al. but propose
the use of different incremental algorithms to deal with these changes. This
incremental learning overcomes, by constantly updating the learned models, the
issue of concept drift often being unexpected and unpredictable. Incremental
learning is thus able to update the model in a timely manner, well ahead of
models using a concept drift detection method. We continue some of the ideas
presented in this work and further elevate them for use with neural networks and
next-activity prediction. Gama et al. indicate that besides the types proposed by
Bose et al., also outliers may occur in the data. These outliers do not follow the
general behavior and should be ignored, rather than incorporated in the model.

Also for neural networks, the task of incrementally learning has already been
studied [20,26]. These studies show a typical behavior that occurs when updating
existing neural networks called catastrophic forgetting. Catastrophic forgetting
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occurs when a neural network loses the information it learned in previous itera-
tions after new data was used to update the model. Often this forgetting poses
significant challenges when updating an existing model, as knowledge learned
during the first training phases needs to be remembered. When looking at the
dynamic nature of Business Processes, however, we can employ this catastrophic
forgetting to our benefit as a natural way of updating the model, while gradually
forgetting details of the obsolete distribution.

2.4 Incremental Predictive Process Monitoring

Maisenbacher et al. [19] and Di Francescomarino et al. [9] use the above-
mentioned incremental learning algorithms to create incremental models that
can predict the outcome of a running case. The main focus of their work is using
incremental classifiers that can classify ongoing traces based on their predicted
outcome. Maisenbacher et al. look at different existing approaches, like the ones
described above, and explore the performances of these approaches when applied
to business processes. Di Francescomarino et al. focus on a clustered-based and
index-based technique to predict the outcome for an ongoing trace. One of the
disadvantages of their work is that they do not show if existing methods could be
adapted to incorporate the incremental learning aspect. Their work does indicate
the potential benefit of incremental learning in predictive process monitoring.

Berti et al. [2] propose a method for remaining time prediction that can
deal with concept drift in the data, by only training on the relevant part of
the data that correctly behaves according to the current business process. One
disadvantage of their approach is that they need existing concept drift detection
methods (like the one proposed by Bose et al.). Knowing which intervals behave
in a static way they propose to use distance functions between an ongoing trace
and the traces present in the current static interval. Using this distance function
they calculate the reliability of a trace in the context of predicting the remaining
time for an ongoing trace. In contrast to the approach proposed by Maisenbacher
et al., Berti et al. require some a priori knowledge about the different drifts
present in the data, making it less suitable for online use.

3 Update Strategies

Different strategies exist that deal with the presence of drifts in the data. We
divide them into two main categories; the first category trains a new model
(reset), the second category updates the existing model (update). In the remain-
der of this paper, we use learning to either indicate reset or update. Next, we
take a look at how we can select the data used for learning the model.

3.1 Data Selection

Relearning a model after every event is both infeasible and unnecessary. There-
fore we divide the event log into windows of a certain size. These windows can
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be divided by specifying the number of events per window, or by specifying a
time interval for every window (days, weeks, months, . . . ). A log consists of an
ordered list of windows w0, w1, . . . , wn where wt is the window arrived at time t
and n the latest time present in the log. We have for wi and wj with i < j that
all events in window wi occurred before all event in window wj .

Using these windows we can define three different strategies to determine
which data to use for learning a model. The first strategy uses all historical data
to learn the model (w0, w1, . . ., wt−1). The next strategy only takes a limited,
fixed amount of the immediate history (windows) into account (wt−�, wt−�+1,
. . ., wt−1 with � the number of windows to consider). The last method retrains
its model when a drift occurred and updates the model after every window with
all windows starting from the last drift point up to the current window (wdt

,
wdt+1, . . ., wt−1 with dt the time of the latest detected drift).

We can combine all strategies with both the reset and update methods. This
leads to six different options for incremental predictive models. The options using
the reset strategy can be used straightforwardly with existing methods. When
using the update options, existing approaches possibly need extra adaptation.

In this paper, we consider both neural net methods and Dynamic Bayesian
Networks. Both these types of methods are already learned in an iterative pro-
cess, and can thus easily be extended to our incremental approach. Every iter-
ation during training results in a (slightly) adapted model. When, according to
a selected loss function, this model performs better than the previous one, we
keep this model to start the next iteration with. Updating these models thus only
implies that we have to perform extra iterations on the existing model using our
updated data.

3.2 Update Existing Methods

In this section, we describe in more detail how the incremental aspect can be
added to both neural networks and dynamic bayesian networks based on how
these models are learned from data.

Drift-Based Predictions. We use the method proposed by [4] to detect drifts
present in the data. To update the model, we retrain the model after every batch
using all available data starting from the last seen drift until the most recent
used batch of events.

Incremental Neural Networks. Training a neural network is an iterative
procedure that tries to optimize a certain model score. This score indicates how
accurate the current model is for predicting events (validates the model). Neural
network learners use a subset of events from the training data for this validation
and the remaining events for actually updating the parameters of the model.

Using new data for updating the model causes the model to diverge from
what it originally learned, as it is now validating using new data. Therefore, the
model can potentially be less optimal for the original data that was used for
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the initial training. This is the typical catastrophic forgetting phenomenon that
occurs when updating a neural network. For a dataset that contains drift, this
is, however, a positive feature rather than a weakness.

As all considered neural network methods train their model in the same way,
we can use this incremental method on every proposed neural network model
such as the Single Dense Layer (SDL), LSTM, and CNN based methods.

Incremental Dynamic Bayesian Networks. Dynamic Bayesian Networks
consist of a model structure and model parameters. Both the structure and
parameters are learned from data, and can thus both be updated separately.

The structure of a DBN describes the conditional dependencies between
attributes in the data. We learn the model using a hill-climbing algorithm, where
we perform iterations of adding or removing dependencies as long as these actions
improve the model score. To update the structure we run this algorithm on the
existing model. While improvements can be made to the structure, the algorithm
will continue to perform iterations.

The parameters of the DBN describe the conditional probabilities for all
attributes, and can be calculated as follows:

P (A|Pa(A)) =
P (A ∩ Pa(A))

P (Pa(A))
(1)

Where Pa(A) are the attributes on which A depends.
To easily being able to compute these probabilities, we create an inverted

index for every attribute. Instead of keeping track of the different values that
occur in a single row, we keep track of the rows in which a certain value occurs.
Due to this inverted index, the DBN method is very suitable for an incremental
setting.

Example 1. Consider the event log as shown in Table 1a. We can create an
inverted index for the attributes Activity, Role, and Department by listing for
every value of the attributes in which event they occur using the event ID. The
inverted indexes are shown in Tables 1b, c, and d.

For calculating a conditional probability we can use set operations when
dealing with categorical values only:

P (Act = A|Role = r1,Dept = d0) =
P (Act = A,Role = r1,Dept = d0)

P (Role = r1,Dept = d0)
(2)

=
#({0} ∩ {0, 1} ∩ {0, 1, 3})

#({0, 1} ∩ {0, 1, 3})
=

1
2

(3)

To further improve our implementation we can only keep track of the counts
we need in Eq. 3. To update the model, we increment the values that correspond
with the combinations of the nominator and denominator.
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Table 1. Example log with extra attributes Role and Department (a) and the inverted
indexes for Activity (b), Role (c) and Department (d).

eventID Activity Role Department

0 A r1 d0

1 B r1 d0

2 C r2 d1

3 B r2 d0

(a)

Value IDs

A {0}
B {1,3}
C {2}

(b)

Value IDs

r1 {0,1}
r2 {2,3}

(c)

Value IDs

d0 {0,1,3}
d1 {2}

(d)

4 Reference Model: Single Dense Layer (SDL)

Incrementally updating existing models adds a level of complexity and cost. To
reduce the overall cost of learning and updating the models we propose a neural
network with a single dense layer for predicting the next event. We did not find
any paper exploring the use of simple NNs with only dense layers, without the
need of using Petri Nets as intermediate structure [31]. As we show in Sect. 5,
such a shallow fully-connected network benefits from low runtimes and high
accuracy both in an incremental and non-incremental situation.

We use a prefix-based approach, as this kind of approach captures the sequen-
tial nature of the event logs, while at the same time giving an easy, flattened
data structure. The SDL network consists of a layer of input cells, corresponding
to the number of history steps and the number of attributes used. The selection
of these attributes depends on the data used and can vary significantly between
datasets. We encode the data using an encoding layer, which encodes the data
using one-hot encoding. In the case of numeric attributes, we do not have to
encode the values and can use them as-is. These cells are then concatenated
before they are linked with a dense layer with as many cells as there are activi-
ties and a dropout of 0.2, as proposed by other methods. As the output layer, we
use a softmax layer, ensuring that the network returns a probability distribution
over all possible events. All input cells i0, i1, . . . , in represent the activities and
extra attributes present in the entire prefix. We thus have n = |A| ∗k input cells
in the network, with A the set of all considered attributes (from both activity
and data perspective), and k the size of the history taken into account. The cells
e0, e1, . . . , en create a integer encoding of the attributes.

Example 2. Suppose we have an event log containing both the activity and
resource executing the activity. If we want to create a model with prefix size
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Fig. 1. Example SDL network that takes 3 previous time steps into account from both
the activity and resource attribute.

k = 3, we have the following input cells: i0, i1, i2, i3, i4, i5. Where i0, i2, i4 repre-
sent the activities and i1, i3, i5 the resources for the 3 time steps in the prefix.
A visual overview of the resulting network can be found in Fig. 1.

5 Experiments

To test the different update strategies we selected 4 methods, each using a dif-
ferent type of model. These methods were selected based on their diversity to
cover a wide variety of state-of-the-art methods with shown performance [24].
For this study we use the following methods:

– Dynamic Bayesian Networks (DBN): Pauwels et al. [24]
– Single Dense Layer NN (SDL)
– Long-Short-Term-Memory NN (LSTM): Tax et al. [28]
– Convolutional Neural Network (CNN): Di Mauro et al. [10]

In the first place, we are interested in how the accuracy of the different meth-
ods changes over time. We define accuracy as the portion of correctly predicted
activities. For this purpose, we use a sliding window of fixed size for which we
calculate the accuracy obtained within this window. We then use a graphical
representation with the event index (in chronological order) on the X-axis and
the window accuracy on the Y-axis. This accuracy-plot gives us an easy tool to
compare different methods and see how the accuracy changes over time. We can
use these graphs to see if the tested model does suffer from drifts in the data
and if it can recover from changes.

As described in Sect. 3, first a batch size has to be determined that indicates
the frequency of performing an update to the model. In our study we tested three
different ways of dividing the data into batches; by day, week, or month. Pre-
liminary tests show only minor differences between these batch sizes. Therefore,
we decided to use monthly batches for our experiments.
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Table 2. Overview of the different datasets. Including the number of days, weeks and
month in the train and test parts used.

Dataset Train Test

#cases #events #activities #days #weeks #months #days #weeks #months

Helpdesk 4,580 21,348 14 623 97 23 683 112 27

BPIC11 1,143 150,291 624 622 90 21 550 79 19

BPIC12 13,087 262,200 36 87 14 3 80 12 4

BPIC15 1 1,199 52,217 398 562 112 26 595 122 30

BPIC15 2 832 44,354 410 555 116 28 550 117 28

BPIC15 3 1,409 59,681 383 678 117 29 604 117 28

BPIC15 4 1,053 47,293 356 621 126 30 516 107 26

BPIC15 5 1,156 59,083 389 566 112 27 569 121 29

During our experiments, we are interested in the difference between all update
strategies and how a model that uses updates, performs in contrast to a static
one. We are thus less interested in determining the single best model to use when
incorporating updates in our next-activity predictor.

When evaluating the performance of the update strategies we use an
interleaved-test-then-train approach. Each batch of data is first used to test the
model before we use it for updating the model. All code used for the experiments
can be found in our Github Repository1.

5.1 Dataset Selection

To best test the update capabilities of the models, we need datasets where some
drifts occur in the activity perspective. We start with looking at the following
datasets which are often used in the literature and have different characteristics:

– Helpdesk [32]: a log containing ticket requests of the helpdesk from an Italian
software company

– BPIC11 [14]: a log of a Dutch academic hospital. It shows the different
activities and phases the patients go through.

– BPIC12 [12]: a log containing applications for personal loans. The log con-
tains three intertwined processes.

– BPIC15 [13]: a log containing building permit applications from five differ-
ent Dutch municipalities. The log is splitted into five sublogs, one for every
municipality (BPIC15 1 to BPIC15 5).

The events in the datasets were first sorted according to timestamp and then
split 50/50 in train and test set in chronological order. The details of the different
datasets can be found in Table 2. The train set is used to train the initial model
and the test set is used to test the method and incrementally update the initial
models. To best answer our research questions, we use datasets that do contain
1 https://github.com/StephenPauwels/edbn.

https://github.com/StephenPauwels/edbn
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variation over time in the activity perspective. To look if any drifts occur in the
datasets we train a model on the first half of the data. We then test the remaining
half using this static model. Using our accuracy-plot, which uses a sliding window
to calculate the accuracy, we can then look for changes in accuracy over time.

Figure 2 shows some (small) changes in accuracy over time for the Helpdesk,
BPIC11, and BPIC15 datasets when not using any update strategy. The BPIC15
datasets suffer the highest loss of accuracy. This experiment also shows the
constant performance of the BPIC12 data. This dataset is useful to see the
performance of our incremental learners when no drifts are present. Ideally, the
incremental algorithms should perform similarly to the non-incremental ones.

5.2 Baseline Comparison

Fig. 2. Accuracy-plot for both a static model and an incremental model using a window
size of 1.

A first question that needs to be answered is how much accuracy gain there is
when using an incremental algorithm in contrast to the non-incremental ones.
Figure 2 shows the average accuracies for the four methods on all datasets. This
experiment shows the need for an incremental approach when utilizing prediction
models in a real-life setting. The results from the BPIC15 datasets show a large
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Fig. 3. Accuracy-plot for the different update strategies for the BPIC15 1 dataset.

increase in accuracy. Although the models first seem to suffer from the drift
in the data, they all recuperate fast and can keep fairly high accuracies, much
higher than the ones seen in the literature for this dataset.

This graph also shows another important aspect of the incremental algo-
rithms; as we do not know in advance if and when a drift occurs, the data
may contain no drift at all. Our results on BPIC12 show that the incremental
approaches have the same accuracy as the non-incremental ones. This indicates
that we can use the incremental versions in all situations, without having to
compromise on accuracy.

5.3 Update Strategy

To compare the different incremental approaches we introduced, we selected a
single dataset and ran all options for all methods. Figure 3 shows three different
observations. We can see that there is little difference between the options for
the DBN method. This can be explained by the fact that the DBN model has
no way to forget older events.

The SDL and LSTM (Tax et al.) methods show similar behavior. Using all
data to update the model, consistently shows the worst performance, as using
the full dataset ensures that the model is unable to forget the older events that
became irrelevant. We see that using an update strategy using a window scores
the best for both methods, thus making use of the catastrophic forgetting to
gradually replace the older with newer knowledge. The use of drift detection
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Table 3. Runtime (average (stdev)) for the update iterations for the BPIC15 1 dataset
(in seconds)

Strategy Batch DBN SDL Tax Di Mauro

Initial training 48 78 433 188

Reset Full 106 (25) 73 (18) 985 (394) 450 (132)

Window (size 1) 17 (4) 5 (1) 37 (10) 20 (9)

Window (size 5) 26 (6) 14 (1) 175 (39) 68 (14)

Drift 28 (15) 14 (10) 187 (178) 98 (87)

Update Full 60 (12) 56 (12) 505 (101) 132 (27)

Window (size 1) 1 (0.5) 1 (0.5) 11 (4) 3 (1)

Window (size 5) 7 (0.8) 6 (1) 59 (7) 15 (2)

Drift 3 (5) 2 (1) 13 (6) 6 (7)

also gives good results, but this involves running an extra algorithm for every
batch to decide whether a drift has occurred.

The architecture using convolutional neural networks (Di Mauro et al.) shows
different behavior, in the graph we see that retraining completely achieves the
highest accuracy. This can be due to the difference in nature of the convolution
layers used in this model.

5.4 Runtime Results

Table 3 shows the average time for each update using the different strategies.
Overall we see that SDL is the fastest algorithm to learn, followed by DBN, Di
Mauro, and the LSTM architecture of Tax show to be the slowest.

5.5 Overall Results

Table 4 shows an overview of the accuracy obtained by all methods, using the
different update strategies on all datasets. This table confirms the behavior that
we saw in the previous experiments. We see consistent results for all different
methods.

These results also show the performance of our SDL method in comparison to
existing methods (both with and without the incremental aspect). We see that
our new architecture performs at par with existing methods. On top of that, as
the complexity of our model is fairly low, training this model takes considerably
less time than training the existing methods.
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Table 4. Average accuracy for all methods on all different update settings. Batches
grouped using months.

Dataset Update strategy Batch DBN SDL LSTM CNN

Helpdesk No-update 0.78 0.77 0.77 0.78

Reset Full 0.82 0.80 0.78 0.81

Window (size 1) 0.82 0.83 0.83 0.82

Window (size 5) 0.84 0.84 0.82 0.83

Drift 0.83 0.82 0.81 0.82

Update Full 0.81 0.80 0.77 0.80

Window (size 1) 0.81 0.85 0.84 0.84

Window (size 5) 0.81 0.84 0.83 0.84

Drift 0.83 0.85 0.84 0.84

BPIC11 No-update 0.54 0.56 0.60 0.57

Reset Full 0.58 0.62 0.66 0.63

Window (size 1) 0.51 0.56 0.58 0.55

Window (size 5) 0.58 0.63 0.66 0.62

Drift 0.56 0.60 0.64 0.60

Update Full 0.60 0.62 0.60 0.64

Window (size 1) 0.58 0.62 0.67 0.59

Window (size 5) 0.58 0.63 0.68 0.60

Drift 0.57 0.60 0.62 0.58

BPIC12 No-update 0.80 0.81 0.79 0.83

Reset Full 0.81 0.81 0.79 0.83

Window (size 1) 0.79 0.79 0.80 0.82

Window (size 5) 0.81 0.81 0.80 0.83

Drift 0.81 0.81 0.79 0.83

Update Full 0.81 0.81 0.79 0.83

Window (size 1) 0.81 0.80 0.80 0.83

Window (size 5) 0.81 0.81 0.80 0.83

Drift 0.81 0.80 0.79 0.83

BPIC15 1 No-update 0.20 0.24 0.25 0.21

Reset Full 0.68 0.50 0.52 0.55

Window (size 1) 0.71 0.64 0.68 0.65

Window (size 5) 0.74 0.75 0.75 0.71

Drift 0.73 0.69 0.70 0.71

Update Full 0.61 0.74 0.50 0.32

Window (size 1) 0.62 0.76 0.76 0.56

Window (size 5) 0.61 0.76 0.77 0.50

Drift 0.72 0.73 0.73 0.69

(continued)
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Table 4. (continued)

Dataset Update strategy Batch DBN SDL LSTM CNN

BPIC15 2 No-update 0.27 0.26 0.30 0.34

Reset Full 0.68 0.48 0.51 0.74

Window (size 1) 0.71 0.60 0.66 0.61

Window (size 5) 0.73 0.73 0.74 0.74

Drift 0.73 0.67 0.69 0.71

Update Full 0.67 0.73 0.49 0.42

Window (size 1) 0.67 0.76 0.75 0.65

Window (size 5) 0.66 0.76 0.76 0.65

Drift 0.73 0.72 0.71 0.66

BPIC15 3 No-update 0.30 0.30 0.28 0.28

Reset Full 0.71 0.50 0.53 0.51

Window (size 1) 0.74 0.69 0.71 0.71

Window (size 5) 0.76 0.77 0.78 0.72

Drift 0.76 0.72 0.72 0.74

Update Full 0.70 0.76 0.51 0.40

Window (size 1) 0.70 0.79 0.78 0.63

Window (size 5) 0.70 0.79 0.79 0.58

Drift 0.76 0.77 0.76 0.75

BPIC15 4 No-update 0.25 0.25 0.21 0.21

Reset Full 0.74 0.52 0.54 0.60

Window (size 1) 0.73 0.68 0.71 0.69

Window (size 5) 0.79 0.79 0.79 0.74

Drift 0.75 0.58 0.58 0.61

Update Full 0.74 0.79 0.52 0.40

Window (size 1) 0.74 0.81 0.79 0.60

Window (size 5) 0.73 0.81 0.81 0.54

Drift 0.75 0.79 0.79 0.65

BPIC15 5 No-update 0.27 0.23 0.26 0.24

Reset Full 0.68 0.50 0.52 0.58

Window (size 1) 0.74 0.68 0.71 0.71

Window (size 5) 0.75 0.76 0.77 0.71

Drift 0.76 0.71 0.72 0.74

Update Full 0.67 0.75 0.50 0.37

Window (size 1) 0.69 0.79 0.78 0.55

Window (size 5) 0.68 0.78 0.78 0.50

Drift 0.76 0.77 0.76 0.72
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6 Conclusion

In this paper, we looked at the situation in which we want to predict the next
activity in a business process in a situation where the underlying process can be
subject to change. We changed the standard way of evaluating the performance
of the methods from using a static training and testing part of the data to a way
that we can use all previous events to help predict the next event.

We looked at different options on how to select the data to use for updating
the models. We can use the full data, a sliding window technique, or the data
after the last detected drift. Updating the models with only a limited number
of events reduces the computational resources needed for learning. Furthermore,
we looked at the difference in performance when strictly updating an existing
model, or by completely retraining models.

We showed that neural network methods can take advantage of the catas-
trophic forgetting phenomenon that occurs when updating these networks. As
the event logs can have dynamic underlying processes, it is logical to give more
importance to more recent events. The proposed methods for updating existing
models did improve the overall accuracy greatly, without suffering from perfor-
mance loss when no drift or variation is present in the data.

The DBN method also improved when using an incremental learning app-
roach, but often this improvement was less than the improvement observed for
neural network methods. One reason for this is that the current update method
for DBNs has no mechanism that forgets older events and/or gives more priority
to newer events. In future research, we would like to take a closer look at how
to incorporate this in the DBN method to improve the results and make it more
flexible when used with changing processes.

Our new architecture showed to perform at par or even outperform some
state-of-the-art methods but at a substantially lower computational complexity.
In the light of incremental learners, this lower complexity comes at an extra
advantage, as updating can be done faster or more often. But, as shown in the
experiments, the use of the SDL method should not be limited to incremental
settings.

As we only use four different methods in this paper, we cannot make strong
conclusions about the best way of solving the incremental next-activity predic-
tion problem. This is often highly dependent on the characteristics of the consid-
ered process. We showed that we can leverage existing state-of-the-art methods
to cope with variation and drifts in the data by adding a basic incremental
framework. Some of the datasets used in our experiments often get ignored
in the literature due to their dynamic nature. We showed that, when using a
suitable update strategy, most methods are ready to be used in a more challeng-
ing environment than the test settings and datasets used most of the time in
literature.
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Abstract. Artificial neural networks will always make a prediction, even
when completely uncertain and regardless of the consequences. This
obliviousness of uncertainty is a major obstacle towards their adoption
in practice. Techniques exist, however, to estimate the two major types
of uncertainty: model uncertainty and observation noise in the data.
Bayesian neural networks are theoretically well-founded models that can
learn the model uncertainty of their predictions. Minor modifications to
these models and their loss functions allow learning the observation noise
for individual samples as well. This paper is the first to apply these tech-
niques to predictive process monitoring. We found that they contribute
towards more accurate predictions and work quickly. However, their main
benefit resides with the uncertainty estimates themselves that allow the
separation of higher-quality from lower-quality predictions and the build-
ing of confidence intervals. This leads to many interesting applications,
enables an earlier adoption of prediction systems with smaller datasets
and fosters a better cooperation with humans.

Keywords: Process mining · Remaining time prediction · Bayesian
neural networks · Concrete dropout · Uncertainty · Heteroscedasticity ·
Convolutional neural networks · Long short-term memory models

1 Introduction

Modern information systems and data availability led to the acceleration of pro-
cess mining research and deployment of its algorithms in industry in recent years.
Process mining analyzes event data generated by such information systems with
the goal of process discovery, process conformance checking and process enhance-
ment. Predictive process monitoring is an important sub-field of process mining
and concerns predicting next events, process outcomes and remaining execution
times. Recent advances in machine learning propelled predictive process mon-
itoring to the next level and many researchers intensified the use of artificial
neural networks (NNs) for their predictions.

However, the adoption of these powerful and versatile NNs has not followed
suit in practice. Practitioners are reluctant to use NNs that cannot explain their
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predictions. A related, consequential problem is that NNs are unaware of the
uncertainty of their predictions. They will always make a prediction, even when
confronted with inputs they were never trained on. This can lead to potentially
expensive or even catastrophic mistakes. Uncertainty awareness would therefore
be a tremendous asset.

The uncertainty of predictions is the subject of this paper. Our core contribu-
tion is the introduction of NN-based uncertainty estimation techniques including
heteroscedasticity learning and loss attenuation, concrete dropout and Bayesian
neural networks (BNNs) to predictive process monitoring. We test their impact
on overall prediction quality, uncertainty estimation quality, and computational
time in a carefully designed experimental assessment using three public real-life
datasets. Furthermore, we shed light on the practical applications. We consider
the problem of remaining execution time prediction of ongoing processes which
is highly relevant in practice, as it allows management to stop or alter running
processes or initiate other actions. For example, an organization can inform its
customers about the expected feedback/fulfillment time for their requests/orders
and divert cases with long expected remaining times to a special track to speed
them up.

We define our learning problem and position this paper relative to other
work in Sect. 2. Section 3 explains two types of uncertainty before introduc-
ing techniques adapting plain-vanilla NNs to learn them. We then derive the
precise questions we seek to address with our experiments. Section 4 describes
the setup of these experiments, whose results are presented in Sect. 5. We sub-
sequently present applications enabled by the uncertainty estimates in Sect. 6
before summarizing our findings and formulating paths for future research in
the final Sect. 7.

2 Remaining Time Prediction: Definition and Related
Work

In predictive process monitoring, datasets are event logs describing processes,
often called cases. These cases consist of events. A number of attributes, also
called features or variables, describe these cases and events. In remaining time
prediction problems, every event is associated with a target feature describing the
remaining time until completion of the case. A prefix is an ongoing, incomplete
case, with the prefix length its number of completed events. Our learning problem
is to train a learner using a training dataset containing events, described by their
features and organized in prefixes that are labeled with targets, with the goal of
predicting the targets of unseen prefixes.

In 2008, the first published research on process remaining time prediction
[1] used non-parametric regressions, followed a few years later by [2] propos-
ing to build an annotated transition system. Later, increasingly sophisticated
approaches [3] deployed classic machine learning techniques such as support
vector regression and naive Bayes and included the events’ attributes other than
activity name and time into their calculations. Recently, long short-term memory
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models (LSTMs) entered the scene [4,5]. Such deep learning techniques permit
the substitution of automatic feature engineering for the error-prone, domain-
knowledge-based manual feature engineering of the classic machine learning tech-
niques. The authors of [6] provide an overview of papers until 2017. Our paper
further extends this line of research by complementing the point estimates of
these NN with predictions of the respective uncertainty. As such, we realize
our goal of not only improving the overall quality of these point estimates, but
also of unlocking many applications based on the knowledge of the predictions’
uncertainty.

3 Estimating Uncertainty

In the context of predicting with models, we can distinguish two kinds of uncer-
tainty [7]. The first, the epistemic (a.k.a. reducible) uncertainty expresses the
model’s uncertainty and finds its origin in the paucity of training data. Adding
more samples to the training dataset will reduce the epistemic uncertainty. The
first two graphs in Fig. 1 visualize two examples. The second type of uncertainty,
the aleatoric uncertainty is a measure for the observation noise of the underlying
distribution that generated the samples. It is often expressed as σ and will not
decrease by observing more data. Many models in practice assume the aleatoric
noise to be constant or homoscedastic (as in the third graph in Fig. 1). In reality,
heteroscedasticity (fourth graph in Fig. 1) is probably much more common: the
aleatoric noise varies across the domain.

Fig. 1. Examples of uncertainty types

3.1 Estimating Epistemic Uncertainty with Bayesian Neural
Networks

In regular, deterministic neural networks, the maximum likelihood estimate
(MLE) of a model H’s weights ω maximizes the probability p(Y |X,ω,H) of
the observed outcomes Y given corresponding inputs X. Prediction leads to a
point estimate y∗ = H(x∗,ω). Whilst good function approximators, (unregular-
ized) deterministic NNs are prone to overfitting, especially when dealing with
small training sets, and therefore struggle dealing with points x∗ far away from
the training data X. Deterministic models have no knowledge of their point
predictions’ uncertainty.
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The Bayesian approach is stochastic by nature: we look for the maximum a
posteriori (MAP) distribution of the weights ω given the training set [X, Y ],
that can be expressed using the Bayesian rule:

p(ω|X,Y ,H) =
p(Y |X,w,H).p(ω|H)

p(Y ,X)
or posterior =

likelihood x prior
evidence

Note that the likelihood equals the MLE problem above. To predict the outcome
for a given x∗, we marginalize the likelihood over ω, a process called inference
(H dropped to simplify notation):

p(y∗|x∗,X,Y ) =
∫

p(y∗|x∗,ω).p(ω|X,Y ).dω (1)

This is no longer a point estimate, but rather a distribution from which moments
(mean, variance, etc.) can be derived. These statistics provide both a point esti-
mate (mean) and a measure of the uncertainty of that estimate (variance), open-
ing a range of possibilities that will be the subject of this paper. Under certain
assumptions, there is an analytical solution to compute the posterior p(ω|X,Y )
[8] but it is prohibitively computationally-expensive, as would be Markov Chain
Monte Carlo sampling. Consequently, we resort to seeking a closed, approximate
function qθ(ω) over the same domain ω and parameterized by θ. This can be
achieved by minimizing the Kullback-Leibler (KL) divergence between the two
distributions:

min KL (qθ(ω)||p(ω|X,Y )) =
∫

qθ(ω).log
qθ(ω)

p(ω|X,Y )

After some mathematical manipulations, the minimization problem above is
equivalent to maximizing the evidence lower bound (ELBO):

ELBO = Eqθ(ω)log p(X,Y |ω) − KL (qθ(ω)||p(ω)) = 1 − 2 (2)

Maximizing 1 is the standard MLE approach with 2 acting as a regular-
izer keeping the approximative posterior qθ(ω) as closely as possible to the prior
p(ω). Unlike 2 , the (derivative of) 1 cannot be computed in closed form. Since
the density function qθ(ω) in ∂

∂θ

∫
qθ(ω)log p(X,Y |ω).dω itself depends on θ,

regular Monte Carlo (MC) integration is not feasible either. [9] proposes to use
the so called reparameterization trick [10] to solve ∂

∂θ

∫
qθ(ω)log p(X,Y |ω).dω.

It involves expressing ω as a deterministic function g(ε, θ) in which ε is a uncon-
ditional parameter, allowing to sample ε from N (0, I) rather than sampling
ω from qθ(ω). The above approach is called stochastic variational inference.
Often, a Gaussian distribution is placed over every weight ω in the network with
ω = g(ε, θ) = μ + σ.ε. This method has two serious drawbacks: it doubles the
number of parameters to be estimated (μ and σ instead of a single ω for every
node) and requires relatively complex coding.

Dropout [11] is a popular regularization technique to prevent NNs from over-
fitting. It resembles training a large number of networks in parallel by drop-
ping out, or randomly ignoring the outputs of nodes (including the network’s
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inputs) during training by multiplying each one by a parameter ε sampled from
a Bernoulli distribution with probability p. By simply transforming this stochas-
ticity from the feature space in the NNs’ dropout scenario to the weight space
in BNNs, maximizing ELBO equals minimizing the NNs’ dropout loss function
with an additional L2 regularizer [12]. We are, thus, able to use standard NNs
with easy-to-implement dropout regularization as BNNs, overcoming the draw-
backs aforementioned. Concrete dropout [13] eliminates the need for tuning the
dropout parameters pi (for each layer i) by automatically optimizing pi, replacing
the discrete Bernoulli distribution with a continuous relaxation (concrete distri-
bution relaxation [14]). In the traditional approach, dropout layers are placed
between the convolutional layers in CNNs and only after the inputs and the last
LSTM layer in LSTMs. This traditional approach leads to unsatisfying results.
In our BNNs (we used both LSTMs and CNNs, see Subsect. 3.3), we there-
fore applied dropout to the inner-product layers (kernels) [15] in CNNs and to
all eight weight matrices within the LSTM cells [16] which reduces overfitting
problems more successfully.

After training the model as described above, we proceed to inference or pre-
diction by using MC sampling again, performing T stochastic forward passes of
our trained model. The predictive mean of Eq. 1 is estimated by the predictive
mean of the MC samples:

Ep(y∗|x∗,X ,Y )[y∗] ≈ 1
T

∑
t

H(x∗, ω̂) (3)

with ω̂ indirectly sampled from qθ(ω) by sampling ε from N (0, I). The variance
is given by:

Varp(y∗|x∗,X ,Y )[y∗] ≈ σ2+
1
T

∑
t

H(x∗, ω̂)2−
(

1
T

∑
t

H(x∗, ω̂)

)2

= σ2+ 3 (4)

3 is the sample variance of the T stochastic forward passes and can be inter-
preted as the model’s or epistemic uncertainty. Adding more samples to the
training dataset will reduce it. Hence, BNNs enable the ability to gauge the
model’s uncertainty for every prediction made.

3.2 Estimating Heteroscedastic Aleatoric Uncertainty

The σ in the above Eq. 4 is the aleatoric uncertainty. As most models assume σ
to be constant, or homoscedastic, over the entire domain, they do not include
it in their loss functions (the last term in Eq. 5 is simply dropped). However,
learning an individual σn for each sample n would be valuable to better assess
the variance of our predictions in Eq. 4. This is achieved by doubling the last
dense layer in the model (unsupervised learning) [7]. By re-completing the loss
function (ignoring the regulation term) to include the learned σn:

L = min
1
N

∑ 1
2σ2

n

(yn − H(xn))2 +
1
2
log σ2

n (5)
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it becomes less sensitive to noisy data, as it will predict high uncertainty for poor
predictions and vice versa. This process is called loss attenuation and should lead
to better overall predictions. The second term in Eq. 5 ensures that the model
does not simply predict high uncertainty for every sample.

3.3 LSTM Vs. CNN

The techniques described above all depend on the underlying NNs. LSTMs [17]
have been the intuitive instrument of choice in predictive process monitoring
problems. An LSTM processes every sequence of events it is presented one time
step at a time. At any given time step, it will pass a vector containing information
about the current and previous time steps to the next time step, until reaching
the last one whose output is propagated to the next layer. In contrast, convo-
lutional neural networks (CNN) [18] work with fixed-sized, spatially-organized
data. A series of alternating convolution layers applying weight-sharing filters
and dimension-reducing pooling layers enables the models to automatically rec-
ognize patterns and extract features from the input data. These features are
then passed to a series of dense layers for the final regression. Interpreting time
as a spatial dimension, one-dimensional CNNs can be successfully applied to
sequence processing as well, as a growing body of research (e.g. [19]) points out.
This thesis is supported by [20] for the related case of process outcome predic-
tion. We, therefore, ran our experiments using both CNNs and LSTMs to gain
further insight into the applicability of both models.

3.4 Objectives

Equipped with this understanding, we can now translate our research goal of
investigating uncertainty for remaining time prediction into more detailed objec-
tives. First, we assess the effect on the overall quality of point estimates of the
following techniques (Subsect. 5.1):

1. Heteroscedasticity: Estimating the observation loss for individual samples
(σn) permits loss attenuation. Can it improve point estimates?

2. Dropout: BNNs resemble NNs with dropout regularization. What are the
merits of isolated dropout in a non-Bayesian context?

3. Concrete dropout: allows in-model estimating the dropout parameters pi.
How does it affect results?

4. BNN: Using the heteroscedastic NNs with concrete dropout, we apply MC
sampling (T stochastic forward passes) and average to calculate point esti-
mates (Eq. 3). Do we get better predictions?

5. CNN/LSTM/base case: We compare CNNs to LSTMs, as well as to a
baseline to get an intuition for the absolute performances.

From the theory, we expect each of the first four techniques to contribute to
better point estimates. CNNs should produce results at least at par with LSTMs.

Second, we investigate whether the uncertainty estimates’ succeed in separat-
ing good from bad predictions and in building reliable confidence intervals based
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on these uncertainty estimates (Subsect. 5.2) as is theoretically expected. Third
(Subsect. 5.3), we wish to gain insights in the computation time for training and
inference respectively. Finally, our fourth objective (Sect. 6) is to explore and
assess applications stemming from the knowledge of predictions’ uncertainties.

4 Experimental Setup

4.1 Datasets

We used three publicly available datasets from the BPI Challenges1. BPIC 20172

is a rich and large dataset containing logs of a loan application process at a
Dutch bank. BPIC 20193, while comparable in size, has much shorter cases and
concerns a purchase order handling process. BPIC 20204 is a collection of five
smaller datasets related to travel administration at a university. The five sub-
sets are records of processes covering international declaration documents (Intl.
Declarations), expense claims (Travel Costs), travel permits (Permits), pre-paid
travel costs and requests for payment (Payments) and domestic declaration doc-
uments (Domestic Declarations). Our target for all these datasets was defined
as the fractional number of days until case completion.

4.2 Preprocessing

To maintain a realistic setting, we refrained from filtering. Other than adding
a few synthetic features based on the event time stamps (e.g. event number,
elapsed time since previous event, day of the week, ...), we did not apply any
domain knowledge whatsoever to our approach. The chronologically 15% last
starting cases (10% for BPIC 2020) were withheld as a test dataset. Since the
duration of a case is only known at its end (when the process is finished), we
deleted all cases from the remaining training set that ended after the start of the
first test dataset case5. This left us with approximately two thirds of the original
cases for BPIC 2017 and BPIC 2019. Given the shorter recording time frame for
BPIC 2020, this approach drastically reduced the number of samples for training,
especially where cases take longer (Intl. Declarations is only left with 57 events
from five cases in the training set). With longer cases (with more deviations)
and more levels for the categorical variables, BPIC 2017 differs significantly from
BPIC 2019. To add further variety, we worked with more features in BPIC 2017
(10) than in BPIC 2019 (5). To observe how results depend on the training set
size, we performed our experiments on different shares of the available training

1 https://data.4tu.nl (4TU Centre for Research Data).
2 https://data.4tu.nl/articles/dataset/BPI Challenge 2017/12696884.
3 https://data.4tu.nl/articles/dataset/BPI Challenge 2019/12715853.
4 https://data.4tu.nl/collections/BPI Challenge 2020/5065541.
5 A theoretical possibility of data leakage remains. In reality, some case variables such

as “Amount” are possibly unknown at the beginning of the case, even though every
event log has a value for them.

https://data.4tu.nl
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
https://data.4tu.nl/articles/dataset/BPI_Challenge_2019/12715853
https://data.4tu.nl/collections/BPI_Challenge_2020/5065541
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samples for both large datasets (keeping the same test sets), ranging from 0.1%
to 100%. Table 1 shows the respective datasets’ key statistics and illustrates their
differences.

Table 1. Statistics of the used datasets.

Dataset Avg. case

length

Share of

events used

Training

events

Validation

events

Test

events

Range

features

Categorical

features

Levels

BPIC 2017 38.5 .001 629 220 181, 189 5 5 113

.002 1,286 363

... ... ...

.5 327,959 79,190

1 655,271 159,306

BPIC 2019 5.2 .001 625 192 162, 753 3 2 18

.002 1,263 341

... ... ...

.5 328,994 85,622

1 657,187 171,724

Intl. declarations 29.6 1 57 20 4, 416 3 3 18

Travel costs 7.7 1 1,706 412 1, 652 5 9 74

Permits 10.0 1 8,030 2,132 6, 537 5 9 94

Payments 5.3 1 21,049 5,743 3, 746 4 8 107

Domestic declarations 8.1 1 23,434 6,216 3, 533 4 6 66

Range features were standardized. The number of levels of categorical vari-
ables was not clipped (non-frequent labels may be a reason for uncertain esti-
mates). The labels were mapped to integers that were then passed to an embed-
ding layer in the neural networks. All possible prefixes were derived from the
cases and then standardized to a pre-determined sequence length by padding
the shorter and truncating the longer ones. All experiments were coded in
Python/Pytorch and ran on a desktop with a 3.50 Ghz CPU, 64 Gb of RAM
and GeForce 1080 GPU. Our code is published on GitHub6 for reproducibility.
The metric used was the mean absolute error (MAE).

4.3 Estimating the Epistemic, Aleatoric and Total Uncertainty

In the case of BNNs, we performed T = 50 stochastic forward passes (MC
sampling) for every prefix in the test set, each time with a different mask over
the weights, by sampling a different ε for every ω at every run (as per Eq. 3).
The final predictions are the averages over these 50 samples, discussed in Sect. 5.
Using their variance, we calculated the model’s uncertainty, i.e. the epistemic
uncertainty, for every prediction in the test set using 3 in Eq. 4. Moreover,
we computed the per-point aleatoric uncertainty in an additional final dense
layer in the models and included it in the loss function as in Eq. 5. We added
together both types of uncertainty to calculate the total uncertainties used in
Subsect. 5.2 and Sect. 6. All predictions in the following are averages of 20 runs
of the respective models.

6 https://github.com/hansweytjens/uncertainty-remaining time.

https://github.com/hansweytjens/uncertainty-remaining_time
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4.4 Base Case

Despite the widespread use of public datasets in predictive process monitoring,
assessing the quality of different methods remains hard as the filtering of the
datasets, other preprocessing steps, model architectures, etc. are far from uni-
form across papers. Furthermore, the metrics used allow for comparisons of the
methods within a paper but fail to convey an intuition about their absolute mer-
its. To remedy the latter, we included the transition system-based method [2] as
a baseline in our experiments.

5 Results

5.1 Overall Performance

We investigated whether the techniques in Subsect. 3.4 contribute to achieving
more accurate point estimates. The results are summarized in Fig. 2 in which
every row pertains to a dataset (BPIC 2017, BPIC 2019, BPIC 2020 respec-
tively). Every column compares two or more techniques and will be discussed in
the five following subsections. The horizontal axis in the graphs for BPIC 2017
and BPIC 2019 represents the share of the available training set that was used
for training, ranked from small to large. In the last row, however, it is the five
sub-datasets that are ranked from small to large. The vertical axis represents
the models’ MAE, with the scale being shared throughout the respective rows.
Note that we normalized the MAE in the last row, with the respective base cases
equal to one.

Loss Attenuation Inconclusive (Fig. 2: Column 1). We found no evidence
in our experiments for the theoretically-derived hypothesis that learning the het-
eroscedastic uncertainty and using it by introducing loss attenuation (Eq. 5) in
the loss functions leads to more accurate predictions. The black lines in Fig. 2
represent the plain-vanilla NNs, whereas the cyan lines stand for models includ-
ing the technique. Results on BPIC 2017 and BPIC 2020 significantly worsened.
Only in the case of BPIC 2019 did the technique lower MAE. Two effects could
explain that. First, the added complexity may require larger datasets. Second,
for datasets with rather homoscedastic aleatoric noise, or datasets with a rather
randomly distributed heteroscedastic aleatoric noise, one cannot expect superior
results from introducing loss attenuation. We did not further investigate this
matter. Nevertheless, learning heteroscedastic uncertainty is indispensable for
judging the quality of predictions. We will treat this in Subsect. 5.2.
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Fig. 2. Overall results on complete test sets. no DO: no dropout = plain-vanilla NN,
HS: heteroscedastic, DO 5%: 5% dropout probability, C DO: concrete dropout, Bayes:
BNN. Rows show three datasets, stepwise different techniques in columns. BPIC 2020
results normalized with base case = 1.
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Dropout Effectively Combats Overfitting (Fig. 2: Column 2). The het-
eroscedastic models are again represented by the cyan lines in column 2. They
already included an early-stopping mechanism. But, since the validation sets
were in certain cases very small, and some concept drift may exist in the datasets,
some overfitting still happened. In line with expectations, the dropout mecha-
nism (orange lines) successfully further reduced overfitting on practically all
datasets and training set sizes.

Concrete Dropout Works for Medium to Large Datasets (Fig. 2: Col-
umn 3). When comparing classic dropout with a fixed dropout parameter
(orange lines) to concrete dropout (blue lines), our experiments suggest that,
for some very small to small datasets (BPIC 2019 < 1%, BPIC 2020), con-
crete dropout negatively affects the overall quality of the predictions. For all
other datasets, concrete dropout appeared to work or even improve results as
expected. The use of concrete dropout also eliminates the need for the expensive
optimization of the dropout parameter(s) p(i) that requires part of the training
set to be set aside as a validation set.

Bayesian Learning Improves Results for Very Small Datasets (Fig.
2: Column 4). Until now, we used deterministic NNs to arrive at such mod-
els using concrete dropout (blue lines). In column 4, we introduce stochastic
NNs in the form of BNNs (green lines), that predict distributions of which the
arithmetic averages yield point estimates. BPIC 2017 and especially BPIC 2020
support the claim that BNNs produce superior results for smaller datasets. For
larger datasets, the effect is negligible, possibly slightly negative. As explained
in Sect. 3, the variance of the produced distributions can be interpreted as a
measure for the models’ (epistemic) uncertainty, a property we use below. As
mentioned in Sect. 3, BNNs by default add L2 regularization to the dropout
models. Since the combination of these regularization techniques (in our case
even with early-stopping on top) makes these models so robust to overfitting, it
is recommended to build models with large capacity to avoid underspecification
and train them sufficiently long.

CNNs Outperform LSTMs, BNNs Outperform the Base Cases (Fig.
2: Column 5). The models in columns 1–4 were all CNNs. When comparing the
last one (BNN, full green line) with an otherwise identical LSTM model (dotted
green line), it becomes apparent that the CNNs nearly always outperformed
the LSTMs. Of course, the chosen architectures (number of layers, nodes, etc.)
influenced these outcomes, but the results support similar findings in [19,20].
Unless otherwise mentioned, we will use these heteroscedastic Bayesian CNNs
with concrete dropout in the remainder of this paper and simply refer to them
as BNN. With the exception of shares of less than 2% of the BPIC 2017 dataset
and of the BPIC 2019 Permits dataset, the BNNs outperformed the base cases.
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5.2 Uncertainty Estimates

We analyze the quality of the total uncertainty estimates, focusing on their
correlation with the quality of the predictions and on the reliability of confidence
intervals based on them.

Certainty of Predictions Correlates Strongly with Accuracy. We ranked
the predictions in the test set and then retained different shares of the predictions
while rejecting the others for different uncertainty thresholds (100%, 75%, 50%,
25%, 10%, 5% best). Figure 3 shows how well this worked for all datasets and
dataset sizes: higher uncertainty led to worse predictions, without fail. Unfortu-
nately, the quality of the uncertainty estimates suffered together with the quality
of the predictions when datasets became too small, thus also reducing the possi-
bility to separate good from bad predictions as can be witnessed at the left end
of the graphs in Fig. 3.

Fig. 3. We ranked the samples in the test sets based on the sum of the predicted epis-
temic and aleatoric uncertainties. In all three datasets, we observe lower MAE (better
predictions) for lower levels of uncertainty. We used BNNs with concrete dropout and
heteroscedasticity.
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Predictions with Confidence Intervals. To build a confidence interval
around a point estimate, the product of a so called critical value (z∗ in statis-
tics) and the uncertainty is added/subtracted to/from that point estimate to
determine the upper/lower bound of the confidence interval. For each desired
confidence level (50%, 75%, 90%, 95%, 99%) we computed the required critical
value based on the last 5,000 samples in the training set. Since the BPIC 2017
dataset exhibits drift (changes over time), it did not suffice to determine these
critical values only once: they had to be calculated online, as can be seen in the
left part of Fig. 4. In the right part of Fig. 4, the real shares of true values in
the respective confidence intervals are shown. They oscillate around their ideal
values (horizontal lines), proving their reliability.

Fig. 4. Left: critical values for confidence levels of 50%, 75%, 90%, 95% and 99%
computed on 5,000 preceding samples every 1,000th sample in the test set. Right:
Corresponding share of true values in following 5,000 samples within the confidence
interval. Dataset is BPIC 2017 (complete).

5.3 Computation Time

BNNs Train and Predict Relatively Fast. To gain an insight in the com-
putation time of BNNs, we disabled the early stopping mechanism and trained
the models for 20 epochs on the complete BPIC 2017 training set. Training
the BNNs took around 335 s, approximately 38% more than the corresponding
plain-vanilla deterministic models’ 242 s. As inference requires MC sampling (we
performed 50 MC forward passes), BNN predictions took longer (32 vs 0.65 s
for all 181,189 test set points). Whilst in most settings the inference time is
low enough to ignore, this may not be the case in certain online environments
requiring near-instantaneous decisions.

Compared to plain-vanilla, deterministic models, the BNNs’ hyperparameter
space is definitely of a lower dimensionality. There is no need to determine values
for the dropout parameter(s) pi (assuming concrete dropout), model size (we can
safely use large-capacity BNNs), number of epochs trained, etc. This may turn
their small speed disadvantage into a considerable advantage.
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CNNs Outspeed LSTMs. As already observed in previous work [20],
CNNs train nearly an order of magnitude faster than LSTMs requiring non-
parallelizable sequential calculations. The custom coding to implement dropout
within the LSTM cells prevented us from using the very efficient standard
PyTorch neural network libraries we used for the CNNs. As a result, our LSTM
models slowed down even further and kept us from publishing a fair speed com-
parison in our specific setting.

6 Applications of Uncertainty

The knowledge of a prediction’s quality opens the door to useful practical
applications:

Higher Accuracy and Acceptance of Prediction Systems. The previous
section demonstrated how the techniques we introduced will generally lead to
more accurate overall predictions. However, a yet much higher accuracy can
be reached by concentrating on the most certain predictions. An organization
requiring a given accuracy threshold can now deploy a prediction system that
does not reach that threshold overall but that is aware which of its predictions are
expected to surpass it. Predictions that do not reach the (un)certainty threshold
can be ignored or passed to humans or another system. In summary, not only can
models produce better predictions, but they will also flag potentially incorrect,
absurd or even dangerous predictions.

Improved Human-Machine Symbiosis. The ability to isolate inaccurate
predictions permits two-track systems. Cases with good predictions remain on
the automated track. Cases with predictions below an uncertainty threshold are
passed to the human track. These latter cases will generally be the hardest to
solve, more irregular, more interesting ones which could lead to more satisfying
work for the involved humans and a better leverage of their cognitive faculties.

Working with Smaller Datasets: Earlier Adoption of Prediction Sys-
tems. As Figs. 2 and 3 show, the lack of data often leads to underperforming
predictions systems. Organizations will not deploy them or delay their adoption
until they feel their dataset is large enough. This may lead to a competitive dis-
advantage in this digital era requiring rapid innovations, speedy implementation
and constant learning where waiting for perfection is no longer an option. The
ability to identify predictions that meet a pre-set uncertainty threshold allows for
a much faster adoption of prediction systems. Originally, only a relatively small
share of the best predictions is actually used. But as the dataset grows, that
share continually increases. During this phase-in period, the organization will
gain invaluable information to further improve its systems and data collection
otherwise lost when remaining on the sidelines.
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Uncertainty-Based Analysis. The estimates of the predictions’ uncertainty
enables further analysis. For example, as in Fig. 5, we can plot the test set
uncertainty in function of the prefix length and the real number of remaining
days (unknown to the model). Given their high aleatoric uncertainty, the model
is rightfully very uncertain about the prefixes of length one (first column). The
model clearly gains in confidence when prefixes get longer, at least for the most
common remaining time lengths (lower than 4 days, lowest four rows). When
prefixes start getting longer than six events, the model becomes increasingly
wary of its predictions again. Indeed, parts of the domain with fewer samples
(e.g. prefix length > six events, real remaining time > 50 days) should have
a higher epistemic, and hence total uncertainty. Outliers, such as the confident
predictions of prefixes with length five or those in the second row (10–19 days) of
prefix length one, deserve closer attention and may lead to interesting insights.
Of course, the uncertainty can be plotted against any other feature as well. A
detailed analysis falls outside this paper’s scope.

Fig. 5. BPIC 2019, 20% of training set: Uncertainty (blue = low, red= high) in function
of prefix length and real number of remaining days. Grey bars indicate frequency of
occurence. Prefix length cut of at 10, corresponding to >99% of samples in test set.
(Color figure online)
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7 Conclusion and Future Work

The stochastic Bayesian approach leads neural networks to predict distributions
rather than point estimates. These distributions can be used both to derive more
precise point estimates (mean) and to estimate the model’s epistemic uncertainty
(variance). It can be proven that BNNs are nearly identical to deterministic NNs
with dropout, which makes them easy to implement. Concrete dropout ren-
ders optimizing the dropout parameters pi obsolete. A dataset’s heteroscedastic
aleatoric noise can be learned in-model by means of a simple modification to the
model and its loss function (loss attenuation). Whilst inconclusive on the benefits
of loss attenuation, this paper shows how dropout, concrete dropout and BNNs
generally contribute to more accurate remaining time predictions. CNNs prove
to work better and faster than LSTMs. Not all of these techniques work well on
all datasets: small datasets pose problems for concrete dropout while they bene-
fit from the Bayesian models that themselves add no value with larger datasets.
The presented techniques require little extra coding, learn nearly as fast and
are less data-hungry than corresponding regular neural networks. Rather than
improving overall accuracy, however, the main benefits of learning uncertainty
reside with the new options this knowledge enables. Users can set thresholds
to retain those predictions that meet any required accuracy, build confidence
intervals around predictions, divide cases between computers and humans in a
clever way, adopt prediction models earlier before huge datasets are collected,
gain additional insights e.g. in the search for anomalies, etc. We hope that the
techniques we proposed help remove some of the barriers that slow down or pre-
vent the adoption of neural networks and could help to extract more value from
information systems.

This new field of research can be extended in a variety of ways. First, the
validity of our results should be tested on a diverse range of datasets to reach
more general conclusions. Also other predictive process monitoring regression
and classification problems are logical extensions. Dropout is not the only option
to implement variational inference, other methods could be tested as well and
may have other characteristics. We also believe that the knowledge of uncer-
tainties can lead to more applications than the ones here presented. As we only
concentrated on the total uncertainty, evaluating the respective merits of epis-
temic and aleatoric uncertainty constitutes another path for future research.
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Abstract. This paper addresses the open technical problems of evolving
executable, event-based process models by refinement, that is, by itera-
tively expanding a model until it has the required level of detail. Such
iterative development is helpful because of the expectation that the next-
step model is semantically compatible with the previous one, only with
more detail. We provide in this paper a formal notion of refinement of
single atomic actions (events) into entire subprocesses, and a theoreti-
cal framework for providing guarantees that such a next-step model is
formally a refinement of the previous one. Our work is set within the
declarative, event-based process modelling language of timed Dynamic
Condition Response (DCR) graphs, which can express timed constraints
(conditions with delay and obligations with deadlines) between events,
liveness, safety, and concurrency. Concretely, we extend DCR graph syn-
tax and semantics with a notion of subprocess, provide examples of its
use, and give sound approximations of situations where replacing an
event with a subprocess formally is a refinement of the original process.

Keywords: DCR graphs · Subprocesses · Action refinement ·
Decomposition

1 Introduction

Step-wise refinement [35] is a classical method in software development where
systems and processes are defined in steps by iteratively refining their descrip-
tions. This approach works particularly well when combined with decomposition,
where one is able to maintain different levels of abstractions in a single program
or model of a program. For example, one may start with a high-level view of the
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system, describing only key activities, then refine this by replacing some activi-
ties with more detailed subprocesses, resulting in a hierarchical description.

To facilitate formal reasoning about the behaviour of software systems, a
tight semantic connection between the system before refinement, and the one
after is needed. Some notion of state machine refinement between (models of)
the systems behaviour is a commonly used approach, for which a substantial
literature exists for various modelling notations.

The present paper achieves step-wise refinement in the setting of timed
declarative process models via the mechanism of (iteratively) expanding atomic
events into entire subprocesses. From a modelling perspective, this approach
is very natural: Refining a single event “approve expense reimbursement” is
naturally refined into a subprocess involving a local manager, the accounting
department, and an employee requesting a reimbursement. From a technical per-
spective, we show when such expansions can be formally guaranteed to uphold
previous semantics via the theory of DCR graph refinement introduced in ear-
lier work. This is a key advance of the present work: The majority of work
on subprocesses in the declarative space is on their effect on understandability,
e.g., [30,31,41,42]. Moreover, work on defining subprocesses in this space did
not explain how to refine single actions into subprocesses in a semantics pre-
serving fashion. E.g., [26,42] does discuss decomposition, but does not provide
any formal refinement guarantees; conversely work on step-wise refinement of
declarative models [11,12] did not provide clear tools for decomposition.

It is important to note that despite the similarity in name, the “process
refinement” introduced in [11] and the “action refinement” introduced in the
present paper are not the same concepts. Process refinement adds additional
activities and constraints to a model, whereas action refinement replaces atomic
actions (events) with (single instance) sub processes.

While the new notion of subprocess seemingly does not expand the expres-
siveness of DCR graphs, we show later that it does improve conciseness. Subpro-
cesses as introduced in this paper have been implemented in the commercially
available dcrgraphs.net DCR modelling tool suite used e.g. for case management
systems in the public sector, and is a reasonably popular modelling construct:
since July 2020, it was used in 564 models, representing ca. 9% of newly created
models in that period1.

In summary, we make the following contributions: 1. We define a new notion
of compositional subprocess for DCR models, 2. We define a notion of semantics
preserving refinement allowing the replacement of an atomic activity (event)
with an entire subprocess, 3. We provide an efficiently decidable sufficient con-
dition for such a replacement to be a refinement.

2 Timed DCR Graphs

DCR graphs were originally introduced [18] as a declarative workflow process
model. The work was motivated by providing a formal foundation for case
1 This number should be seen in light of the fact that subprocesses only become

relevant in larger graphs, where compositionality matters.

http://www.dcrgraphs.net
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management systems developed by our industrial partners, and the DCR nota-
tion is now supported by both commercial and academic modelling and simulation
tools [8,22] and DCR variants have been embedded in commercial systems used
by thousands of users in Denmark by both central government institutions such as
universities and local government institutions such as municipalities [9,12].

Since their inception the DCR Graph modelling language has been extended
in several ways, including modelling of time dependencies [19], inferring inde-
pendence between events [10] resulting in a so-called true concurrent semantics,
dynamically spawned multi-instance subprocesses and a theory of process refine-
ment [11]. Presently, we extend timed DCR graphs from [19] with single-instance
subprocesses and prove that it fits well with the theory of refinement [11]. We
begin by recalling timed DCR Graphs:

Definition 1 ([19, Def. 3.2]). A timed DCR Graph G is given by a tuple
(E,M,→•, •→,→�,→+,→%, L, l) where

(i) E is a finite set of events,
(ii) M = (Ex,Re, In) ∈ (

(E ⇁ ω) × (E ⇁ ∞) × E
)

is the timed marking,
(iii) →•⊆ E × ω × E, is the timed condition relation,
(iv) •→⊆ E × ∞ × E, is the timed response relation,
(v) →�,→+,→%⊆ E×E are the milestone, include and exclude relations respec-

tively,
(vi) L is the set of labels,
(vii) l is the labelling function between events and labels.

Technically, this definition slightly generalises the original one in allowing a
pair of events to have multiple responses between them (with different deadlines),
whereas the original definition allowed only one. The difference is immaterial,
since we will later define that the most urgent deadline wins, however, the gen-
eralisation streamlines the presentation significantly.

Fig. 1. Expense report

We explain the definition
by introducing our running
example of a timed DCR
graph in Fig. 1, representing
a simple process for handling
an expense report, from sub-
mission to potential payout.
The nodes of a DCR graph
is a set of labelled events
E and the edges are rela-
tions determining the possi-
ble executions of events. This
graph has four events E =
{e1, e2, e3, e4} labelled respec-
tively Submit expense report, Approve, Payout, and Reject and depicted as boxes
with the label in the middle (the graphical notation does not show the identities
ei of the events). The relations →• and •→ are the timed condition and response

relations. We write e
k→• e′ for (e, k, e′) ∈→•, representing that e is a condition
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for e′ with delay k ∈ ω meaning that the target event e′ can not happen before
k time steps2 after the last execution of the source event e. We write e →• e′

for e
0→• e′, i.e. the delay is zero. Similarly write e

k•→ e′ for (e, k, e′) ∈•→, repre-
senting that e′ is a response to e with deadline k. Deadlines can be in the range
∞ = ω ∪{ω}, i.e. a finite number or infinite ω, the latter meaning that the target
event should happen eventually after the source event happens (or be excluded),
allowing the specification of liveness properties, and write e •→ e′ for e

ω•→ e′. The
relation →% is the exclude relation and the relation →+ is the include relation.
An exclusion (resp. inclusion) relation means that the targeted events is excluded
(resp. included) from the graph when the source event happens. While excluded,
an event cannot be executed, and any deadline on it and conditions from it are
ignored. Finally, →� is the milestone relation. The event pointed to by a milestone
relation can not be executed if the source is included and pending.

We have a condition relation (with no delay) in the example from Submit
expense report to Reject and Approve; these mean that the expense report can
not be approved or rejected before it has been submitted. We have a timed
condition relation from Approve to Payout with delay 7, meaning that Payout
can happen at least 7 time steps after Approve. We have a response relation
from Submit expense report to Reject with a deadline of 7; meaning that (Reject)
must happen or be excluded within at most 7 time steps after the last execution
of Submit expense report. Similarly, we have a response relation from Approve
to Payout with a deadline of 14. Both Approve and Payout have an exclusion to
themselves, so that each event can only happen once. Approve also has exclude
relations to Submit expense report and Reject, which means that after approval
the expense report can not be resubmitted or rejected anymore.

The marking M captures the current state of the DCR graph. A marking
comprises three elements (Ex,Re, In) where Ex : E ⇁ ω is partial function of
which the domain defines the set of executed events and the value of the function,
when defined, provides the time since the last execution of the event, Re : E ⇁ ∞
is partial function of which the domain defines the set of pending response events
and the value of the function, when defined, provides the deadline for when the
event must be executed in the future, and In ⊆ E the set of included events.
Given an event e ∈ E of a DCR graph with marking M = (Ex,Re, In), we let
e ∈ Ex be short for Ex(e) being defined and similarly let e ∈ Re be short for
Re(e) being defined.

The marking of the example graph has no executed events and no pending
events and all events are included. Representing the functions Ex and Re as sets
of pairs we thus have M = (∅, ∅, E).

The dynamic behaviour of a DCR graph is defined by advancing time or exe-
cution of activities. We give in Table 1 below an example of a run of the DCR
Graph in Fig. 1 and define the formal semantics in Definition 5 in the following
section. Each row defines a marking, with the top row being the initial marking

2 A time step is a discrete duration of time orthogonal to the execution of events. A
time step can represent any duration, examples being a computers clock cycle, a day
or a year. For the examples in this paper a time step is a day.
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where all four events are included and no event has been executed or is pending.
The left-most column indicates the steps between markings. Whenever an activity
is executed, the marking is changed according to the include/exclude and pending
relations from that activity (changes are indicated by a dark grey box).

For instance, the first step is the execution of Submit, setting the time since
execution of Submit to 0 and the response deadline for Reject to 7. The next
step advances time by 3, increasing the time since execution for Submit and
decreasing the deadline for Reject correspondingly. Time can not advance past a
deadline of an included event. The time since execution is used together with the
delays on condition relations to determine when events become enabled and only
increased to the maximum possible delay, which in the example is 7. E.g., in the
second last step where the time is advanced by 8, the time since execution of the
previously executed events is set to 7 regardless of when they were executed. An
important consequence is that timed DCR graphs are finite state systems [19].

Table 1. Example evolution of the marking of the process of Fig. 1.

Submit Approve Reject Payout

Ex Re In Ex Re In Ex Re In Ex Re In

(initial marking) ⊥ ⊥ � ⊥ ⊥ � ⊥ ⊥ � ⊥ ⊥ �
Submit 0 ⊥ � ⊥ ⊥ � ⊥ 7 � ⊥ ⊥ �
Advance(3) 3 ⊥ � ⊥ ⊥ � ⊥ 4 � ⊥ ⊥ �
Reject 3 ⊥ � ⊥ ⊥ � 0 ⊥ � ⊥ ⊥ �
Advance(1) 4 ⊥ � ⊥ ⊥ � 1 ⊥ � ⊥ ⊥ �
Submit 0 ⊥ � ⊥ ⊥ � 1 7 � ⊥ ⊥ �
Advance(4) 4 ⊥ � ⊥ ⊥ � 5 3 � ⊥ ⊥ �
Approve 4 ⊥ ⊥ 0 ⊥ ⊥ 5 3 ⊥ ⊥ 14 �
Advance(8) 7 ⊥ ⊥ 7 ⊥ ⊥ 7 0 ⊥ ⊥ 6 �
Payout 7 ⊥ ⊥ 7 ⊥ ⊥ 7 0 ⊥ 0 ⊥ ⊥

3 Timed DCR Graphs with Subprocesses

We now formally extend the syntax and semantics of timed DCR graphs to
encompass also subprocesses. Definitions in this section are all new and generalise
timed DCR graphs without subprocesses [19], except in the few cases where
definitions can be carried over unchanged; these definitions are marked out as
such. Subprocesses are represented by a partial function sp which tells us what
the subprocess parent, if any, of a given activity is.

Definition 2. A timed DCR Graph with subprocesses G is given by a tuple
(E,M,→•, •→,→�,→+,→%, L, l, sp) where

(i) (E,M,→•, •→,→�,→+,→%, L, l) is a timed DCR Graph and
(ii) sp ∈ E ⇁ E is a partial function for which sp+ is irreflexive.
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We define the set of atomic events Ea as those that do not have children, and
dually the set of subprocess events Es as those that do have children, formally
Ea = {e | sp−1(e) = ∅} and Es = {e | sp−1(e) 	= ∅}. Finally, the top-level events
Et are those with no parents, i.e., Et = {e | sp(e) = ⊥}.

Fig. 2. Expense report where Payout has been expanded through refinement

To give an example, we add in Fig. 2 a subprocess to the Fig. 1. Here, we have
expanded the event e3 labelled Payout in the example of Fig. 1 to be a subprocess
containing three events labelled Confirm bank account, Send to accounting system
and Create bank transfer. Technically, the three new events have been added to
the graph and sp(−) is undefined except at those new events, where it is defined
to be e3. In Sect. 4 we will see that this is an example of a refinement: In a
formal sense, the possible behaviours of the refined model correspond exactly to
the possible behaviours of the old.

To get to that point, we must first account for what is the behaviour of a
timed DCR graph with subprocesses. The intuition is that a subprocess adds
detail: it shows the actual (sub-)process necessary to perform to executed what
was previously abstracted into a single step. In that sense, it is natural that
both those steps commencing and completing must obey the constraints on the
subprocess event itself: the internal events of the subprocess can take steps iff
the event the subprocess replaces is allowed to.

We formalize this in the definition of enabledness of an event contained in a
subprocess depends on the enabledness of the subprocess. That is, in Fig. 2, the
Payout subprocess event cannot execute before Approve has, because of the con-
dition between the two. We define that the events inside a subprocess (Payout)
may not execute unless the subprocess itself can. From Fig. 2 we can see that
until a Payout has been approved, it makes no sense to send the expense report
to the accounting system.
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Definition 3 (Ancestors). Let G be a timed DCR graph with subprocesses with
events E. The set of ancestors of an event e ∈ E is defined as ancestors(e) =
{e′ | ∃k ≥ 0.spk(e) = e′}, i.e. the reflexive transitive closure of e under sp.

Moreover, we need to define when a subprocess has completed, e.g., when
do we consider Payout complete. For this, we use acceptance of DCR graphs:
no included event is pending (required). When an activity in a sub process
is executed and the marking of the events in the subprocess is accepting, the
subprocess itself executes. Next we define that an event is effectively included
if it is included and all its ancestors are included, and similarly, it is effectively
pending if it is pending and all its ancestors are pending. In the example graph in
Fig. 2, Create bank transfer is effectively included and pending, but not effectively
pending. This means that the overall graph is accepting. But if an expense report
is submitted and approved, Payout becomes pending (and effectively pending),
and therefore Create bank transfer becomes effectively pending.

Definition 4 (Effectively included and pending events). Let G be a timed
DCR graph with subprocesses and marking (Ex,Re, In). Define the set of effec-
tively included events as In� = {e | ancestors(e) ⊆ In}. Define the set of effec-
tively pending events as Re� = {e | ancestors(e) ⊆ Re}

We can now define when events and time steps in a timed DCR graph with
subprocesses are enabled, i.e. when they can be executed.

Definition 5 (Event and time step enabling). Let G = (E,M,→•, •→,
→�,→+,→%, L, l, sp) be a timed DCR graph with subprocessses. An event e ∈ E
is enabled for the marking M , writing enabled(M, e) if and only if:

1. e ∈ In�

2. ∀e′ ∈ In�. e′ k→• e =⇒ (
e′ ∈ Ex ∧ k ≤ Ex(e′)

)

3. ∀e′ ∈ In�. e′ →� e =⇒ Re(e′) = ⊥
4. sp(e) 	= ⊥ =⇒ enabled(M, sp(e))

For n ∈ ω we say that the time step n is enabled, written enabled(M,n), if
minerG ≥ n, where minerG = min{Re(e) | ∃e ∈ Re� ∩ In�} is the minimal
response deadline on an effectively included and effectively pending event.

The conditions state that for an event e to be enabled, (1) it and all its
ancestors must be included. (2) Whenever e is conditional upon an effectively
included event e′ with delay k, then this e′ was executed at least k time steps ago.
(3) No effectively included milestone e′ for e is pending. (4) If e is contained in
a subprocess then that subprocess must be enabled. A time step n denotes that
time advances n steps and can only happen if there are no effectively included
pending events with deadline less than n.

The definition of enabledness conservatively extends the definition of enabled-
ness in timed DCR graphs without subprocesses. I.e., for DCR graphs that have
no subprocesses, enabledness in the present sense is identical to the one of orig-
inal timed DCR graphs:
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Lemma 6. Given a graph G with no subprocesses (sp(e) = ⊥ for all e), and
event e is enabled according to Definition 5 iff it is enabled under the definition
of enabledness for timed DCR graphs [19, Def. 3.3].

In Fig. 2, only the event Submit expense report is enabled, the other events
are blocked by conditions or are blocked because they are a part of the Payout
subprocess which is not itself enabled. We can take timesteps of any length.
However, if we were to execute Submit expense report, then the maximum allowed
timestep would be 7, as there would be a timed pending response on Reject.

Below we define the immediate effect of executing an event e for a given
marking M . First we introduce some notation for updating markings.

Notation. When f : X → Y is a (possibly partial) function, we write f [x �→ y]
for the function f ′ : X → Y which is identical to f , except f ′(x) = y. We apply
this notation also to sets, taking f [x �→ y | P (x, y)] to be the function f ′ which
is identical to f except that f ′(x) = y for all x, y satisfying the given predicate
P (x, y).

We now define the effect of executing an event. The definition is morally
equivalent to the original [19, Def. 3.3]]; however, since we allow multiple
responses between a single pair events (see comments before Definition 1), we
generalise the original definition to specify that one always chooses the most
urgent deadline if there are more than one.

Definition 7 ([19, Def. 3.3]). For a timed DCR graph G with marking M =
(Ex,Re, In) define the immediate effect of executing an enabled event e to be
the marking effectG(M, e) = (Ex′, Re′, In′) where

Re′ = Re[e �→ ⊥][e′ �→ k | ∃k′. e
k′
•→ e′ ∧ k = min{k′ | e

k′
•→ e′}]

Ex′ = Ex[e �→ 0]
In′ = (In \ (e →%)) ∪ (e →+)

The result is a new marking where the time since the last execution of the event
e is set to 0, the event e is added to the set of executed events, the event e is
first set to be non pending, and afterwards all new responses are added with
their respective deadlines, and the set of included events is updated such that
any excluded events are removed and any newly included events are added.

The immediate effect of executing Submit expense report in Fig. 2 would be
to set Submit expense report as executed with timestamp 0 and Reject as pending
with timestamp 7.

Compared to classical DCR graphs, the execution of an event e in a DCR
graph with subprocesses can give rise to a cascading execution of subprocess
events in the same atomic step. This is because the subprocess sp(e) executes
when e executes, if the graph contained in sp(e) enters an accepting state by the
execution of e.
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We will need a notion of a subprocess being accepting. An accepting subpro-
cess (or DCR graph) is ready to terminate, but can choose to take additional
steps. To generalise the notion of acceptance to both subprocesses and DCR
graphs, we will use the following definitions.

Definition 8 (Accepting graph). A timed DCR graph with subprocesses G
is accepting in marking M = (Ex,Re, In), written accept(M,G), when e ∈
Et ∩ In =⇒ e 	∈ Re, i.e. no included top-level event is pending.

We then define projection of graphs.

Definition 9 (Projection graph). Let G be a DCR graph with events E, and
let X ⊆ E be a set of events. The projection of G to X, written G|X is defined
as G|X = (E ∩ X,R|X , (Ex ∩ X × ω,Re ∩ X × ∞, In ∩ X), sp ∩ X × X) where
a relation r ∈ R is projected pointwise, that is, r|X = r ∩ X × X.

Definition 10 (Acceptance). A subprocess event e is accepting in a marking
M for a graph G written acceptG(e,M) when G|e↓ is accepting, where e↓= {e′ ∈
E | e ∈ ancestors(e′)}.

While, in Fig. 2, the subprocess Payout is not accepting because of the pending
response on Create bank transfer, the whole graph is accepting because Payout
is not itself pending. After executing Submit expense report the graph will no
longer be accepting as Reject will be pending.

We can now define the full effect of executing an event in a DCR graph with
subprocesses, including potential ancestor subprocess executions.

Notation. We let ẽ denote a finite, nonempty sequence ẽ = e1, . . . , en of events,
and write hd(ẽ) for e1, the head of the sequence, and f̃ · ẽ for concatenation.

Definition 11. We define the recursive event application function apply(M, e)
as follows

apply(M, ẽ) =

{
apply(M ′, e′ · ẽ) when sp(e1) = e′ ∧ enabled(e′,M ′) ∧ accept(e′,M ′)
(M ′, ẽ) otherwise

for e1 = hd(ẽ)and M ′ = effectG(M, e1)

The apply(M, ẽ) function executes the head event e1 = hd(ẽ) of the sequence ẽ
in the marking M . If e1 belongs to a parent subprocess event e′ = sp(e1), which
is enabled and accepting after executing the event e1, then e′ is added to the
sequence of executed events ẽ and the apply function is applied recursively.

In our example graph, if we have previously executed Submit expense report
and Approve, then Payout becomes enabled. We can now execute Confirm bank
account and Send to Accounting System, followed by Create bank transfer, after
which Payout will execute automatically as the subprocess enters an accepting
state by satisfying the pending response.
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Finally from parts of Definition 3.3 in [19] we recall the definition of how
time advances.

Definition 12 (Time step, [19, Def. 3.3]). We define the result of advancing
time with n for some marking Mt = (Ex,Re, In) by effectG(Mt, n) = (Ex ⊕
n,Re � n, In) where (Ex ⊕ n)(e) = min{Ex(e) + n,maxcG} and (Re � n)(e) =
max{Re(e) − n, 0}.

Here, for a time step of length n, the time since the last execution of all events
is increased by n up-to the maximum delay on any condition in the graph, the
deadline on responses is decreased by n or set to 0, if the deadline is less than
n. As also explained in Sect. 2, the limits on these operations ensure that there
is a finite number of reachable markings for any graph, meaning that also the
transition system has a finite state space. Also note that time can only advance
if the time step is enabled.

Lemma 13. The LTS for any finite timed DCR Graph G has a finite number
of reachable states.

Proof. Consider the set of possible markings of a finite timed DCR graph. For
each event, the marking records last executed time, current deadline, and inclu-
sion state. The latter is boolean and so obviously finite. The current deadline is
an integer value limited by the largest deadline on any response relation in the
graph, and so bounded by some integer d. (see Definition 12.) The executed time
is bounded by the largest delay found on any condition relation in the graph,
and so bounded by some integer c. (see again Definition 12.) Altogether, all three
components of the marking are finite, hence the set of states of the LTS is finite.

We are now ready to define the transition semantics of DCR Graphs. Transi-
tions are labelled by either a time step n or a lists of events ẽ = e1 . . . en, where
en is an atomic event, potentially preceded by ancestors.

Definition 14 (Transitions). Let G = (E,M,→•, •→,→�,→+,→%, L, l, sp)
and G′ = (E,M ′,→•, •→,→�,→+,→%, L, l, sp) be timed DCR graphs with sub-
processes. For e an atomic event e ∈ Ea there is an event transition G

ẽ−→ G′ iff
enabled(M, e) and apply(M, e) = (M ′, ẽ). There is a time step transition G

n−→ G′

iff enabled(M,n) and effectG(M,n) = M ′. Let α range over E+ ∪ ω, i.e. event
transitions and time steps.

The runs of a timed DCR graph with subprocesses is then defined as follows.

Definition 15 (Runs). A run of a timed DCR graph with subprocesses G is
a finite or infinite sequence of transitions G0

α1−→ G1
α2−→ G2

α3−→ · · · We write
Runs(G) for the set of all possible runs for a graph G.
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An example run of the graph EX of Fig. 2 is:

EX
Submit...−−−−−→ EX1

Approve−−−−→ EX2
Confirm...−−−−−→ EX3

Send...−−−−→ EX4
Payout, Create...−−−−−−−−−→ EX5

We then define the accepting runs of a DCR graph as follows.

Definition 16 (Accepting runs). Let ᾱ be a finite or infinite run G0
α1−→

G1
α2−→ · · · of length k ∈ ∞ with Mi = (Exi, Rei, Ini) the marking of Gi. We

say that ᾱ is accepting and write acceptt(ᾱ) iff

(i) For all i ≤ k and all e ∈ Et, if e ∈ Rei ∩ Ini, then for some j > i we have
αj = e · ẽ or e 	∈ Rej ∩ Inj

(ii) If ᾱ is infinite, it contains infinitely many time steps.

Here (i) captures that if a root element ever is pending and included it will
eventually be executed or no longer pending and included. (ii) captures that an
accepting run is non-zeno, i.e. only finitely many event transitions can happen
between each time step transition. The example run shown above is accepting.

Definition 17 (Trace). A trace t of a graph G is a sequence α1, α2, α3, · · ·
such that there exists an accepting run G

α1−→ G1
α2−→ G2

α3−→ · · · . We write
Traces(G) for the set of all possible traces in the graph G.

Definition 18. We say that a graph G with marking M = (Ex,Re, In) is
insertable if and only if 1) Re(e) = k implies k = ∞, 2) (e, k, e′) ∈→• implies
k = 0, 3) forall markings M ′ reachable from M there exists a marking M ′′

reachable in one or more event steps from M ′ with accept(M ′′, G).

Condition 1) ensures that the insertable graph does not have any deadlines on
pending events that may force the graph to enter an accepting state. Condition
2) on the other hand ensures, that the insertable graph does not force delays
that may hinder the graph to enter an accepting state at the right time. Finally,
condition 3) ensures that the insertable graph can always eventually make a step
and enter an accepting state. In Fig. 2, the graph internal to subprocess Payout
is insertable.

4 Refinement via Subprocess Expansion

In this section we show how we can formally extend a DCR Graph with new
elements and how the expansion of an event into a more complex subprocess is
one particular such extension. We then show how such an expansion is a form
of action refinement and has the desirable property that it does not materially
affect the language of the outer graph.

From the graph in Fig. 1 we obtain the graph in Fig. 2 by inserting the graph
in Fig. 3. We shall see in this section why this is a “safe refinement”.



172 H. Normann et al.

Fig. 3. Process of doing a
bank transfer and ensuring it is
accounted

A safe refinement means that we can take
the set of traces from the new refined graph,
project this trace to only the events in the orig-
inal graph, and recover the set of traces possible
in the original graph.

We immediately identify three preconditions
for a refinement to be safe. First, the graph
inserted by the refinement has to be able to
reach an accepting state at some point in the
future. Otherwise, the parent subprocess will
never be executed, and no trace containing this
event in the original graph can be simulated in
the refined graph. Second, no conditions have
delays. Otherwise, a delay inside the refined
subprocess may make it take longer before the

subprocess is executed than possible in the original graph, making any trace
with the shorter time not possible in the refined graph. Third, there can not be
any initial deadlines in the graph inserted. This is because it would potentially
force the subprocess to execute earlier than it had to in the original graph.

We now generalise the notion of composing two DCR-graphs, orginally intro-
duced in [13], to encompass also the present graphs with subprocesses.

Definition 19. Let G,G′ be DCR graphs with subprocesses and let u be a func-
tion on E ∪E′ → E ∪E′ such that sp∪ sp′ ⊆ u and u is acyclic when considered
as a relation. Then the composition G |u G′ of DCR-graphs G and G′ under u
is defined by pointwise union of all components:

G |u G′ = (E ∪ E′, R ∪ R′, (Ex ∪ Ex′, Re ∪ Re′, In ∪ In′), u)

We use composition to define expansion of an event into a subprocess:

Definition 20 (Insertion). Let G0 and G1 be DCR graphs with subprocesses.
Suppose e ∈ G0 and E0∩E1 = ∅. We define the DCR-graph G = insert(G0, e,G1)
to be the graph G0 |u G1 where u = sp0 ∪ sp1 ∪ {(e′, e) | e′ ∈ Et1}.
Note that when E,E′ are disjoint, sp′′ is clearly a function. In addition to the
standard composition of graphs we set the event e to have all the root events of
G′ as its direct children.

Notation. Given a string x, write x|Y for the string x with all elements y 	∈
Y ∪ ω removed.

We lift the notion of projection to apply to entire traces, by applying it
pointwise on each label; and similarly for languages.

Definition 21 (Projection, language). Let t ∈ Traces(G) be a trace of G;
write t = (ti)i≤n. The projection of t onto X is the sequence t|X = (ti|X)i≤n.
The projection of the language Traces(G) onto X is the set of so projected traces:

Traces(G)|X = {t|X | t ∈ Traces(G)} .
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Lemma 22. Let G1 be a DCR graph, let e ∈ E0 be an atomic event of G0, let
G1 be a DCR graph with E0 ∩ E1 = ∅, and let G = insert(G0, e,G1). Suppose
G1

t−→ G′
1 with G′

1 not accepting. If G
t−→ G′ and t is not a timestep, we have

that G′|E0 = G|E0 = G0.

Proof (sketch). Note that the marking of the events in the parent graph is not
affected by an event execution inside the subprocess that leaves the subprocess
in a not accepting state.

Lemma 23. Let G0 be a DCR graph, let e ∈ E0 be an atomic event of G0,
let G1 be an insertable DCR graph with E0 ∩ E1 = ∅, and finally let G =
insert(G0, e,G1). Then forall traces t0 ∈ Traces(G0) there exists a trace t ∈
Traces(G) such that t|E0 = t0.

Proof (sketch). We can from Lemma 22 ignore all steps s ∈ t where s ∩ E1 = ∅.
Lemma 22 also allows us to insert any steps s′ into t, s′∩E1 = ∅ without affecting
the statement.

Lemma 24. Let G0 be a DCR graph, let e ∈ E0 be an atomic event of G0,
let G1 be an insert able DCR graph with E0 ∩ E1 = ∅, and finally let G =
insert(G0, e,G1). Then for all traces t ∈ Traces(G), we have t|E0 ∈ Traces(G0).

Proof (sketch).This is true for the same reasons that Lemma 23 is, and because
any transition inside G1 is not visible in the projection.

This brings us to the main theorem of the paper: Insertion guaranteees refine-
ment. If we expand an event to be a subprocess that is always finitely accepting,
then we know for certain that the language of the top-level process does not
change: if we project away subprocess events then any run that was previously
allowed is still allowed, and no new runs will be introduced. The proof is imme-
diate from Lemmas 23 and 24.

Theorem 25. Let G0 be a DCR graph, let e ∈ E0 be an atomic event of G0,
let G1 be an insertable DCR graph with E0 ∩ E1 = ∅, and finally let G =
insert(G0, e,G1). Then Traces(G0) = Traces(G)|E0 .

Proof. By Lemma 23 Traces(G0) ⊆ Traces(G0)|E0 ; from Lemma 24 it then
follows that Traces(G)|E0 ⊆ Traces(G0). But then Traces(G0) = Traces(G)|E0

Because of this theorem, DCR graphs with subprocesses realises the modular
design of processes: we can first model the process at a high level of granularity
and then safely refine the model by expanding events into subprocesses, while
being sure that desired properties at the high level will be maintained.

Corollary 26. Let G0 be a DCR graph, let e ∈ E0 be an atomic event of G0, and
let G1 be an insertable DCR graph with E0 ∩E1 = ∅. Then G = insert(G0, e,G1)
is a refinement of G0 in the sense of [11].
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Note that Theorem 25 is stronger than refinement as defined in [11]. To be a
refinement, it is sufficient that all behaviour of the new model as allowed already
in the old (new events not withstanding). However, Theorem 25 guarantees also
that all old behaviour is still admitted by the new model.

In Fig. 1 Payout was a single event, which we expanded to a subprocess in
Fig. 2. Let us examine more closely this expansion. Consider the subprocess of
Fig. 3. This graph is clearly always insertable: we can do the bank transfer once
we have confirmed the bank account and sent the necessary information to the
accounting system. We can after we created a bank transfer the first time, do
any event and the process will end in an accepting state. We also have that it
does not contain any references to time initially so the requirement on delays
and initial pending events holds. It follows that the graph in Fig. 3 satisfies in
Definition 20. The graph in Fig. 2 is the result of this expansion. If we decide
that instead of paying out with a bank transfer, we want to have the payout done
with cash wire transfer, we can just replace the graph inside payout with a graph
who models either of these ways of doing a payment. This kind of modularity
has so far been missing in DCR graphs.

Finally, note that it is possible to introduce subprocesses as a refactoring of
a process which is not a refinement, as exemplified in Fig. 4.

Fig. 4. Expense reimbursement with Decision refactored

5 Conclusions, Related and Future Work

We have in this paper introduced and demonstrated compositional, single
instance subprocesses for timed DCR models that fits with a formal notion of
action refinement. We provided an efficiently decidable sufficient condition for
replacement of an event with a single-instance subprocess to be a refinement.
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Related Work. The notion of hierarchical decomposition has been studied exten-
sively for imperative process models, in particular Petri nets and Workflow
nets [1,5,21,34,37]. Similarly, most work on refinement has focussed on impera-
tive notations such as BPMN [2,14,20,24,36] and Petri nets [15,29,32]. While the
underlying goal of achieving step-wise refinement in imperative and declarative
notations is similar (to replace an high-level abstract activity by a more complex
subprocess in a safe way), the foundational differences between the imperative
and declarative paradigms manifest as different practical challenges to achieving
this goal. In imperative notations one analyses flow to ensure that a subprocess
behaves similarly and/or has similar entry and exit points as the original activ-
ity, but such a notion of flow does not exist for declarative notations. Instead
we need to reason about constraints between activities, which may be internal
and external to the subprocess and want to guarantee that the constraints after
a change are a refinement of the constraints before the change.

Work on subprocesses and step-wise refinement for declarative notations
include test-driven modelling [38,39], the introduction of subprocesses to declar-
ative models [26,42] and empirical investigations into the understandability of
such models [40,42]. However none of these works provide any formal refinement
guarantees. Most closely related is HiDec [7], a hierarchical variant of Declare,
which does support refinement, however, the authors show thatno straightfor-
ward restrictions on HiDec refinements guarantee safety.

Within the study of DCR graphs and processes, a notion of refinement was
formally proposed in [12] and further studied in [11]. This notion has informed
lots of subsequent work, e.g., it formed an important part of the theory of
abstract tests in [27]. The notation of subprocesses here is similar to that of
structured data in Reseda [6], which employs a language- instead of graph-based
syntax and a different transition semantics.

Outside business process management, Glabbeek and Goltz have done sem-
inal work on action refinement of true concurrency models [16,17,33] initiated
the work on providing a semantic foundation for step-wise refinement by decom-
position. We morally appropriate the concepts of action refinement and moves
them from the setting of concurrency theory to declarative process modelling.
Specifically, we extend the previously introduced declarative modelling language
of timed Dynamic Condition Response (DCR) graphs [19] with a notion of sub-
processes, which is shown to allow a formal definition of action refinement.

In this way we also advance upon earlier work on adding time perspectives to
declarative process notations [3,4,19,25] and Petri nets, e.g. [23,28], which has not
yet provided a unified semantics supporting both time constraints and a notion
of sub processes supporting action refinement. Because of their marking-based
semantics, DCR graphs are quite different from more logic-based approaches
such as Declare, which operationalize their semantics through an encoding in
other formalisms such as fLTL and regular expressions [3,4,25], and lack the
dynamic aspect that the inclusion and exclusion relations bring. The notion of
time used in timed DCR graphs, MP-Declare [4] and Time Petri Net [23] is simi-
lar, as both employ a point-based monotonic integer-time semantics. Still there are
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differences, e.g. delays and deadlines are specified on constraints in timed DCR
graphs, while they are specified on transitions and relative to the enabling of the
transition for Time Petri Nets. We conjecture, that while the results in this paper
are not immediately applicable to Time Petri Nets, MP-Declare and other logic-
based notations, they are likely to provide insights into how similar timed refine-
ment results could be achieved.

Future Work. An expansion of the current work will be extend the formalisation
to allow for interface events. This will potentially allow for both action refinement
and fragmentation of more general graphs than what is possible now. More
specifically it may allow for graphs with relations going in and out of a subprocess
while still providing some form of refinement guarantees.
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Abstract. The increasing recognition of the need for integrating data and pro-
cesses, both at conceptual and system levels, raises a new demand in standard-
friendly, verifiable data-aware process modelling languages. So far, a few pro-
posals in the area have been largely focusing on either uncharted approaches or
conceptual proposals that would lack in tool support. In this work, we propose
delta-BPMN – a verifiable operational framework for data-aware processes that
employs (block-structured) BPMN to capture the process backbone, and a SQL-
based language for representing and manipulating volatile and persistent data.
We also propose a proof-of-concept implementation of delta-BPMN by realising
the front-end part in Camunda and the back-end in a framework that translates
language specifications into the executable code of a state-of-the-art SMT-based
model checker.

Keywords: Data-aware processes · BPMN · Model checking

1 Introduction

The integration between data and processes is a long-standing challenge in informa-
tion systems engineering [14,19,21]. This comes with a number of difficulties. On
the one hand, the model should be expressive enough to represent complex processes
where data influence how the process control-flow routes cases, while the process tasks
inspect and manipulate data. On the other hand, such expressiveness has to be suitably
controlled towards enabling verification, execution, monitoring, and mining of such
multi-perspective models. A third, orthogonal dimension concerns the choice of mod-
eling constructs, which often depart from those offered by process and data modeling
standards such as BPMN and SQL, in turn hampering the adoption of the resulting
frameworks.

These three dimensions can be recognized in their full complexity when it comes
to the verification of the resulting integrated models [5,10]. Verification is of particu-
lar importance in this spectrum, as even data and process models that appear correct
when analyzed in isolation may lead to errors once integrated [18]. “Verifiability” of
models is thus typically obtained by using abstract languages that do not adhere to
well-established standards when it comes to the data and/or process component: either
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the control-flow backbone of the process is captured using Petri nets or other mathe-
matical formalisms for dynamic systems that cannot be directly understood using front-
end notations such as BPMN, or the data manipulation part relies on abstract, logical
operations that cannot be straightforwardly represented in concrete data manipulation
languages such as SQL. At the same time, the repertoire of constructs used to model
data-aware processes cannot cover these languages in their full generality, as verifica-
tion becomes immediately undecidable if they are not suitably controlled [5]. A last
crucial issue is that the vast majority of the literature in this spectrum mainly provides
foundational results that do not directly translate into effective verification tools.

In this work, we tackle these limitations and propose delta-BPMN, an operational
framework at once supporting modeling and verification of BPMN enriched with data
management capabilities. delta-BPMN comes with a threefold contribution. First, we
introduce the front-end data modeling and manipulation language PDMML, supported
by delta-BPMN, which instantiates the data-related aspects of the abstract modeling
language studied in [1] by using a SQL-based dialect to represent as well as manip-
ulate volatile and persistent data, and show how it can be embedded into a (block-
structured) fragment of BPMN that captures the process backbone. The features of
PDMML are based on requirements for concrete, verifiable data-aware process mod-
eling languages distilled from the literature. Second, we show how the delta-BPMN
front-end can be realized in actual business process management systems, considering
in particular Camunda1, one of the most popular BPMN environments. Third, we report
on the implementation of a translator that, building on the encoding rules abstractly
defined in [1], takes a delta-BPMN model created in Camunda and transforms it into
the syntax of MCMT2, a state-of-the-art SMT-based model checker for infinite-state
systems that can then be used for verification.

2 Requirement Analysis and Related Work

The integration of data and processes is a long-standing line of research at the intersec-
tion of BPM, data management, process mining, and formal methods. Since our focus
is on verification, we circumscribe the relevant works to those dealing with the formal
analysis of data-aware processes. As pointed out in the introduction, this is also crucial
because the choice of language constructs is affected by the task one needs to solve - in
particular, verifying such sophisticated models requires to suitably control the data and
control-flow components as well as their interaction [5,10].

A second important point is that the vast majority of the contributions in this line
of research provide foundational results, but do not come with corresponding opera-
tional tools for verification. Hence, all in all, we consider in this research only those
approaches for the integration of data and processes that come with verification tool
support: VERIFAS [16], BAUML [11], ISML [18], dapSL [4], and the delta-BPMN
approach considered here, which relies on the DAB formal model [1] as its founda-
tional basis.

1 https://camunda.com.
2 http://users.mat.unimi.it/users/ghilardi/mcmt/.

https://camunda.com
http://users.mat.unimi.it/users/ghilardi/mcmt/
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We use these approaches to distill a series of important requirements on languages
for verifiable data-aware processes, indicating which provide full (+), partial (+/−),
or no support (−) for that requirement. The first two requirements concern verifiability,
respectively capturing foundational and practical aspects.

RQ 1. The language should be operationally verifiable with a tool. �

While the approaches above all come with an operational counterpart for verification,
there are huge differences in how this support is provided. VERIFAS comes with an
embedded, ad-hoc verification tool (+) that supports the model checking of properties
expressed in a fragment of first-order LTL. BAUML encodes verification into a form of
first-order satisfiability checking over the flow of time (+), defining a fixed set of test
cases expressing properties to be checked as derived predicates. ISML relies on state-
space construction techniques for Colored Petri nets, but in doing so it assumes that
the data domains are all bounded (+/−); no specific verification language is defined,
leaving to the user the decision on how to explore the state space. dapSL relies instead
on an ad-hoc state-space construction that, under suitable restrictions, is guaranteed to
faithfully represent in a finite-state way the infinite state space induced by the data-
aware process; however, no additional techniques are defined to explore the state space
or check temporal properties of interest (+/−). Finally, delta-BPMN encodes verifica-
tion of (data-aware) safety properties (expressed in the language defined in [1]) into
the state-of-the-art MCMT model checker (+).

Table 1. Requirements coverage (covered +, partially (+/−), not −)

Framework RQ 1 RQ 2 RQ 3 RQ 4 RQ 5 RQ6 Verification logic

VERIFAS [16] + + − + + y Fragment of LTL-FO

BAUML [11] + +/− + + + n Fixed test cases

ISML [18] +/− − +/− + +/− n State-space exploration

dapSL [4] +/− − +/− + +/− n State-space exploration

delta-BPMN + + +/− + + y Data-aware safety

The second requirement concerns the analysis of key properties (such as soundness,
completeness, and termination) of the algorithmic techniques used for verification. This
is crucial since, in general, verifying data-aware processes is highly undecidable [5,10].

RQ 2. The verification techniques come with an analysis of key properties such as
soundness, completeness, termination. �

Since ISML and dapSL do not come with specific algorithmic techniques for verifi-
cation, no such analysis is provided there (−). BAUML relies on first-order satisfiability
techniques that come with semi-decidability guarantees. In [11], it is claimed that for
a certain class of state-bounded artifact systems, verification terminates; however, this
is not guaranteed, as for that class only decidability of verification is known, not that
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the specifically employed satisfiability algorithm terminates (+/−). VERIFAS comes
with a deep, foundational study on the boundaries of decidability of verification [9];
the study identifies classes of data-aware processes for which finite-state abstractions
can be constructed, guaranteeing termination of the verifier when analyzing such classes
(+). Finally, delta-BPMN relies on the foundational DAB framework [1], where sound-
ness, completeness, termination of the algorithmic technique implemented in MCMT
are extensively studied (+).

The third crucial requirement is about the type of language adopted, and whether it
adheres to accepted standards or is instead rather ad-hoc.

RQ 3. The language relies on well-assessed standards for processes and data. �

Recall that, to carry out verification, the features supported by the language need to be
carefully controlled. So we do not assess approaches based on their coverage of con-
structs, but rather focus on which notations they employ. On the one hand, approaches
like VERIFAS adopt a language inspired by artifact-centric models but defined in an
abstract, mathematical syntax (−). At the other end of the spectrum, BAUML comes
with a combination of UML/OCL-based models to specify the various process compo-
nents (+). In between we find the other proposals (+/−): ISML relies on Petri nets and
employs data definition and manipulation languages defined in an ad-hoc way; dapSL
instead defines the control-flow implicitly via condition-action rules, and uses a lan-
guage grounded in the SQL standard for querying and updating the data. delta-BPMN
relies on a combination of (block-structured) BPMN and SQL for data manipulation;
while standard SQL is employed for data queries and updates, the language has to
be extended with some ad-hoc constructs when it comes to actions and (user) inputs
(+/−).

In data-aware processes, it is essential to capture the fact that while the process is
executed, new data can be acquired.

RQ 4. The language supports the injection of data into the process by the external
environment. �

All of the listed approaches agree on the need of equipping the language with mecha-
nisms to inject data from the external environment. VERIFAS and BAUML allow one
to nondeterministically assign values from value domains to (special) variables, ISML
extends this functionality with an ability to guarantee that assigned values are glob-
ally fresh (but then it works by assuming a fixed finite domain for such fresh input),
whereas dapSL supports all such functionalities using a language of service calls. In
delta-BPMN we adopt a data injection approach similar to the one used in VERIFAS.

When executing process cases, one typically distinguishes at least two types of data:
volatile data attached to the case itself, and persistent data that may be accessed and
updated by different cases at once. This leads to our last requirement.

RQ 5. The language distinguishes volatile and persistent data elements. �

While BAUML, VERIFAS, and DAB natively provide distinct notions for case vari-
ables and underlying persistent data (+), ISML models conceptually account for token
data and separate facts, but such facts are not stored in a persistent storage (+/−), while
dapSL models all data as tuples of a relational database (−).
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At last, a very important aspect that puts the approaches into two distinct groups,
is whether persistent data are managed under a unique access policy, or instead there is
a fine-grained distinction based on how the process can access them. This impacts the
type of verification conducted, as discussed below. Since supporting or not read-only
data simply separates the different approaches, but does not correspond to a qualitative
difference, we simply put ‘yes’ (y) when it is supported and ‘no’ (n) when it is not.

RQ 6. The language separates read-only persistent data from persistent data that are
updated during the execution. �

This is an important distinction because it heavily affects the type of verification that
must be considered [5,10]. On the one hand, approaches like BAUML, dapSL, and
ISML that do not distinguish read-only from updatable persistent data (n) require to
fully fix their initial configuration, and provide verification verdicts by considering all
possible evolutions of the process starting from this initial configuration. Contrariwise,
approaches like VERIFAS and delta-BPMN that do this distinction (y) in turn focus on
forms of parameterized verification where the properties of interest are studied for every
possible configuration of the read-only data, certifying whether the process correctly
works regardless of which specific read-only data are picked.

Table 1 summarizes the different requirements and support provided by the analyzed
literature. We take this as a basis to compare the delta-BPMN language and verification
infrastructure with the other existing approaches. For completeness, we also indicate in
the table which verification properties are considered in each approach.

It is also worth noting that there is a plethora of other approaches falling into
the artifact-/data-/object-centric spectrum. For example, Guard-Stage-Milestone (GSM)
language [8], the object-aware business process management framework of PHILhar-
monic Flows [15], the declarative data-centric process language RESEDA based on
term rewriting systems [20]. In a nutshell, these approaches combine data and processes
dimensions, but largely focus on modeling, with few exceptions offering runtime ver-
ification of specific properties (e.g., RESEDA allows for a specific form of liveness
checking) supported by a tool.

Other relevant works investigate the integration of data and processes with a system
engineering approach [7,12,17] tailored to modeling and enactment. Of particular rel-
evance is ADEPT [7], which is similar in spirit to delta-BPMN, as it allows to combine
a block-structured process modeling language with SQL statements to interact with an
underlying relational storage, with the goal of providing execution and analytic ser-
vices. The main difference with delta-BPMN is that our PDMML language focuses on
conservative extensions of (block-structured) BPMN and SQL to obtain a verifiable,
integrated model.

3 The PDMML Language

To realize the modeling requirements introduced in Sect. 2, we start from the app-
roach in [1]. The main issue there is that while the process backbone relies on (block-
structured) BPMN, the definition and manipulation of data is done with an abstract,
mathematical language that does not come with a concrete, user-oriented syntax.
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To define a delta-BPMN model, we then revisit the data component of the process,
introducing a Process Data Modeling and Manipulation Language (PDMML). We do
so in two steps: first, we start from BPMN and isolate the main data abstractions that
must be represented in our framework, introducing suitable data definition operations
in PDMML; second, we start from the abstract, logical language studied in [1], and
introduce a concrete counterpart for data manipulation statements in PDMML, using
SQL as main inspiration. In this way, we achieve compliance with RQ 3. We then
integrate PDMML language for data inspection and manipulation within BPMN blocks,
so as to comply with RQ 3 for both the data and the control-flow aspects.

Notice that, deliberately, PDMML does not come with explicit mechanisms to refer
to other process instances from a given instance. This is due to technical reasons related
to verification, which will be highlighted in Sect. 4.2.

3.1 Sources of Data and Their Definition

While BPMN does not introduce any specific language to manipulate and query data, it
introduces two main abstractions to account for them: data objects, representing volatile
data manipulated by each case in isolation; and persistent stores, representing persistent
units of information that are accessed and updated possibly by multiple cases.

Persistent Data. To account for RQ 6, PDMML allows to define two types of persistent
storages with different access policies. More specifically, we use a so-called repository
R to store data that can be both queried and updated, and a catalog store C with a
read access only. The declaration of these two stores is done with a set of statements,
each accounting for a relation schema (or table) therein. Each table comes with typed
attributes defining the names of the table columns with the respective (value) types.

An attribute is declared in PDMML as A : T, where A is an attribute name and
T is its type. Each type is of one of the following three different forms: (i) a primitive,
system-reserved type (such as strings and integers); (ii) a dedicated id typeTR account-
ing for the identifiers of table R (like ISBNs for the Book table - if they are used as
primary key to identify books); (iii) a data type accounting for a semantic domain (like
person names or addresses). For every catalog table, say, with name R, PDMML also
requires to define an attribute with name id and a distinguished id type TR, so as to
account for the primary key of that table in an unambiguous way.

Based on these notions, a catalog is a set of catalog tables, each defined with a
statement of the form R(id :TR,A1 :T1, . . . ,An :Tn), where: (i) R is the table name;
(ii) id :TR is the explicit table identifier of R with a dedicated (identifier) type TR; (iii)
n+1 is the table arity; (iv) for every i ∈ {1, . . . , n}, Ti is a primitive type, an identifier
type of some relation in the catalog or a data type. Each catalog table is equipped with
a table id attribute of the form id :TR, always assumed to appear in the first position.
According to the definition, the other attributes may have, as type, the identifier type of
another catalog table. This mechanism is used to define, in a compact way, the presence
of a foreign key dependency relating two catalog tables.

Similarly to the case of a catalog, a repository is a set of repository tables, each
defined with a similar statement to that of catalog tables, with the only difference that
now there is no explicit table identifier. This means that, while repository tables can
reference catalog tables, they cannot reference other repository tables, and thus behave
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like free relations. Conceptually, this is not a limitation, since the idea behind the use
of the repository is not to support a full-fledged database (as it is done for the catalog),
but to provide a working memory where data taken from the catalog, case variables
and external sources are accumulated and manipulated. This approach to model the
repository is in line with foundational frameworks studied before [1,3,16]. In addition,
it enjoys the key properties of the most sophisticated scenarios known in the literature
to guarantee verifiability [1,3,9] – hence we have to stick with it in the light of RQ 1.

As customary, when defining tables, PDMML requires that each table name is used
only once overall (at the catalog and repository level). Hence we can use the table name
to unambiguously refer to the table as a whole. To disambiguate attributes from different
tables, we sometimes use a dot notation, where R.A indicates attribute A within table
R. In addition, table aliases can be used within queries towards expressing self-joins.3

Volatile Data. For modeling volatile, case data in a way that makes them compatible
with persistent data, we use typed variables whose declaration signature is similar to the
one of attributes. Specifically, a case variable with name v and type T is then simply
defined in PDMML as a statement #v : T. The definition of the volatile data of a
process then just consists of a set of case variable statements.

The collective set of declarations for case variables, catalog relations, and repository
relations is called data model.

Example 1. Consider a mortgage approval process followed by the Customer Service
Representatives (CSR) department of a bank.4 To manage information about avail-
able mortgage types, customers’ bank accounts, submitted applications, status of their
records and possible mortgage approval results, the process relies on multiple sources
of data.

Each mortgage application is created by a CSR employee and can be managed
throughout the process execution by using process variables. At the same time, cer-
tain data values have to be moved from volatile case variables to a persistent repository,
and vice-versa. In this process, for example, we use variables #cid : CID, #bid :
BaID,#bankAmount :Num to store information about a customer as well as their
eligible bank account, and variables #tid : MTID, #duration : Num,#amount :
Num to collect data for the mortgage contract.

The information static to the process (i.e., it shall never be updated) is
stored in the CSR’s read-only database. For example, table BankAccount(BAid :
BankAccountID,CBA :CID,Deposit : int,StatusBank : String) contains infor-
mation about possibly multiple bank accounts owned by the customers together with
the account status information retained in StatusBank :String), whereas
MortgageType(Mid : MTID,Name : String,Amount : Num,Duration :
Num, Interest :Num) contains details regarding various mortgage offers, including
information on mortgage duration and the amount of interests to be paid. �

3 This latter feature is currently not supported by the implementation, but it will be supported
soon. The page https://tinyurl.com/y6npo4kz provides a continuously updated list of the most
recent, newly added features.

4 The example builds on a model from Business Process Incubator (see https://tinyurl.com/
8au7xfmw) enriched with data by analogy with a similar model from the benchmark in [16].

https://tinyurl.com/y6npo4kz
https://tinyurl.com/8au7xfmw
https://tinyurl.com/8au7xfmw
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3.2 The Process Component of delta-BPMN

The control-flow backbone of a delta-BPMN process relies on the recursive composi-
tion of block-structured BPMN patterns that adhere to the standard BPMN 2.0 syntax.
We focus on block-structured BPMN since this allows us to define a direct execution
semantics also for advanced constructs like interrupting exceptions and cancelations,
and to exploit this upon verifying the resulting models (see [1] for the technical details).
However, our approach would seamlessly carry over to the case where the control-flow
backbone of the process is captured using a Petri net, as in [13].

Fig. 1. Supported BPMN blocks

Although, conceptually, delta-BPMN supports the same set of blocks as DAB [1],
its current implementation covers the fundamental blocks shown in Figure 1. As usual,
blocks are classified into leaf blocks (in our case, tasks and events) and non-leaf blocks
that combine sub-blocks in a specific control-flow structure.

Implicitly, each block has a lifecycle. Initially, the block is inactive and its state
is idle. When a process instance, throughout its execution, reaches an idle block, it
becomes enabled. This means that the enabled element may be then nondetermin-
istically executed depending on the choice of the process executor(s). When the pro-
cess instance has completed traversing the block, the block lifecycle state changes from
enabled to compl. The compl element then advances the progression of the process
instance following what is dictated by the parent block. In the exact same moment, the
block changes its state back to idle. The execution rules used for regulating the evo-
lution of each block depending on its type faithfully reconstruct what prescribed by the
BPMN standard. Consider, for example, a deferred choice block S with two sub-blocks
B1 and B2. Its lifecycle starts in state enabled, that can be nondeterministically pro-
gressed to state active. This progression simultaneously forces the change of state of
B1 and B2 from idle to enabled. As soon as one of the two sub-blocks, say, B1 is
selected, it moves to active whereas its sibling block B2 goes back to idle. As soon
as B1 finishes by reaching state compl, it switches to idle and triggers a simultaneous
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transition of the parent block S from active to compl. Following this logic, one can
analogously and exhaustively define the lifecycle model for each type of block.

Example 2. Figure 2 shows the control-flow backbone of the mortgage approval pro-
cess (Example 1), represented in delta-BPMN by following the same block decompo-
sition. �

The main, open question is how data enter into the definition of blocks. Follow-
ing the BPMN standard, this is handled in two distinct points: leaf blocks (capturing
tasks and events), and (data-driven) choices. Such blocks are annotated with suitable
PDMML statements to capture data inspection and manipulation. This is handled next.

3.3 Inspecting and Manipulating Data with PDMML

To express how a task/event inspects and manipulates data, we decorate it with three
distinct PDMML expressions, respectively defining: (i) newly declared variables, to
account for external data input; (ii) a precondition, providing possible bindings for
the input variables of the task/event considering the catalog, the repository, as well
as the case and newly defined variables; (iii) an effect that, once a binding for the newly
declared variables and for the input variables is picked, determines how the task/event
manipulates the case variables and the repository.

An obvious choice to inspect relational data as those present in our catalog and
repository is to resort to relational query languages such as SQL. This choice would be
in line with RQ 3. However, our setting requires to consider two crucial aspects. On
the one hand, it is important to coherently employ a single query language to account
for different querying needs, such as expressing the precondition of a task or the condi-
tions determining which route to take in a choice. On the other hand, differently from
pure SQL, our queries have to consider the presence of case variables, addressing the
possibility of simultaneously working over persistent and volatile data, as well as the
possibility of injecting data from the external environment. For example, think of a job
category that has been chosen by an applicant during the application process (and thus
suitably stored in a dedicated case variable) and for which the process should provide all
open positions. In this case one would need to use the job category value in the WHERE
clause of a dedicated SELECT query accessing the catalog that already contains infor-
mation about all the positions for the previously selected category. At the same time,
one might also want to query only the current state of the case variables, or to ask the
user to provide their credit card number when paying a fee.

Newly Declared Variables. The ability of injecting a data object of type T form the
external environment (cf. RQ 4) is handled through a newly declared variable with the
following PDMML statement decl ::= (var v :T)∗, where v is the name of the newly
declared variable. Upon execution, v is bound to any value from T . When attached to a
task, newly declared variables can be seen as an abstract representation of a user form
or a web service result. When attached to an event, they represent the event payload.

Preconditions. Preconditions indicate under which circumstances a task can be exe-
cuted or an event triggered. They also retrieve data from the catalog, repository, case
variables and newly defined variables attached to the same leaf block. To account for



188 S. Ghilardi et al.

these different aspects, PDMML incorporates a hybrid SQL-based query language that
can retrieve volatile and persistent data at once. Consistently with the execution seman-
tics given in [1] that is, in turn, in line with the customary “variable binding” abstraction
employed in formalisms such as Colored Petri nets, the typical usage of queries in our
framework is to return a set of answers from which one is (nondeterministically) picked
to induce a progression step within the process. Notice that this way of managing query
results is customary in the artifact-centric literature [3,5,9,16].

To define preconditions, we first need to introduce PDMML conditions, defined as:

cond ::= x1 � x2 | cond1 AND cond2 | cond1 OR cond2

Essentially, a PDMML condition is a boolean expression (with negation pushed
inwards) over atomic conditions of the form x1 � x2, where x1 and x2 are expres-
sion terms (whose specific shape is determined by the context in which the condition is
used), and � ∈ {=, �=, >,<,≤,≥}) is a comparison operator. In atomic conditions, we
assume component-wise type compatibility of terms (e.g., the two operands in x1 � x2

must have the same type). Notice that, as customary, the atomic condition TRUE (cap-
turing the condition that always succeeds) can be defined as an abbreviation (similarly
for FALSE).

Using conditions as atomic building blocks, a PDMML precondition is defined as:

pre ::= cond | query

query ::= SELECT A1, . . . ,As FROM R1 , . . . ,Rm WHERE filter

filter ::= cond | TUPLE (x) IN R | TUPLE (x) NOT IN R
| filter1 AND filter2 | filter1 OR filter2

Here, each Ri from the SQL-like query can be a repository or a catalog relation,
whereas R from filter can only be a catalog relation. This is in line with theoretical
results reported in [1,3]. Terms in cond of pre can be case variables, constants, or
newly defined variables declared in the same leaf block. Instead, terms used in cond
of filter coincide with those from above, but can also use attributes that appear in the
FROM statement of the contingent query expression (i.e., A1, . . . ,As). When writing
queries, notation R.A can be used to more explicitly refer to attribute A of table R.

Example 3. In the mortgage approval process scenario touched in Examples 1 and 4,
the following query can be used to list bank accounts of the customers who have com-
pleted the mortgage application procedure:

SELECT BAid, CBA, StatusBank FROM BankAccount

WHERE CBA = #cid AND #status = CompletedApplication

Here, #status :String indicates the current status of the process.

Effects. Task/event effects consist of data manipulation PDMML statements operating
over case variables and repository tables. In the following, we use term input variable
to refer to newly defined variables or attributes of the precondition attached to the same
leaf block of the effect under scrutiny.
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Each case variable #v can be updated using a trivial assignment statement #v =
u, where u is either a constant or an input variable. It is assumed that, for each case
variable, at most one case variable assignment statement can be written within one
update.

One can also model insertion and deletion of tuples into the persistent storage. Since
the catalog is read-only, these updates can be performed only on the repository relations.

An insertion (statement) on some repository relation R is defined as INSERT
v1, . . . , vn INTO R, where each vi is either a constant, a case variable or an input
variable. This INSERT statement is similar to the corresponding classical DML (data
manipulation language) statement in SQL. However, we deliberately avoid using the
VALUES clause since we insert one tuple at a time, and so we can rely on the more
compact notation where the elements to be inserted are directly indicated close to R.

A deletion (statement) is defined as DELETE v1, . . . , vn FROM R. Here, similarly
to the insertion, each vi is either a constant, a (case) variable, or an input variable, whose
type coincides with the type of the i-th attribute in R.

We also allow to perform conditional updates. For that, we employ a modified
SQL CASE statement directly embedded into the update logic. This statement logi-
cally resembles an if-then-else expression with multiple else-if branches, and in which
each condition in the if -part is a query. To ensure verifiability [1,3] (cf. RQ 1), it is nec-
essary for the statement to obey to one limitation: it cannot access any other repository
table beyond the one that is being updated. The conditional update statement has the
form:

UPDATE R SET R.a1=@v1,. . .,R.am=@vm WHERE
CASE WHEN F1 THEN @v1=u

1
1,. . .,@vm=u

1
m

. . .

WHEN Fk THEN @v1=u
k
1,. . .,@vm=u

k
m

ELSE @v1=u
e
1,. . .,@vm=u

e
m

This statement is the most sophisticated one in the offered language as it requires the
modeler to take care of the following two aspects. First, similarly to the SQL’s UPDATE
statement, which can modify multiple tuples in a table, ours performs a (conditional)
bulk edit of elements in each tuple of R, and the SET clause specifies (using names of
the attributes of R with the R’s name in the prefix)5 what are exactly those elements.
The SET clause also uses placeholder variables @vj that support the conditional update
logic: whenever a tuple in R satisfies one of the Fi filters, the corresponding THEN
clause will assign concrete values uij to all the placeholder variables mentioned in SET
. Second, the modeler has to carefully control the variables and attributes used both in
the WHEN and THEN clauses. As we have already mentioned above, each Fi cannot
access repository relations but R itself. At the same time, it can reuse elements from
the precondition query such as variables and attributes. This, in turn, allows to use Fi

for filtering results returned by the precondition query, and thus allowing to carefully
select the data that are going to be used in the final update of every single tuple of R.
As for the elements appearing in THEN clauses, their values can be constants as well

5 This disambiguates the situation where the same relation R is used in the update precondition
with some of its attributes both appearing in the SELECT and some of the WHEN clauses.
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as elements taken from results returned by the precondition query. In the following we
provide a few examples demonstrating correct and illegal update statements.

Example 4. Continuing with our running example, we now give the example of a legal
conditional update handling the assessment of the eligibility of a mortgage application.
To manage key information about the applications submitted for the mortgage approval,
the bank employs a repository that consists of one relation schema:

Info(Bank :BaID,StatusB :String,Reliability :String)

�
Here, for each application, CSR performs an assessment procedure, during which all
customer’s bank accounts are checked for reliability. All the accounts with histories
that did not include any fraudulent charges, are then marked accordingly in relation
Info. Technically, we formalize this situation with a conditional update of the form:

UPDATE Info SET Info.Reliability=@v WHERE
CASE WHEN Info.StatusB!=fraud THEN @v=Yes

ELSE @v= No

Note that the when-then-else clause allows us to perform a bulk update over the reposi-
tory relation Info by changing the reliability status of its entries.

Consider the repository relation Rejected(Bank : BaID), storing bank accounts
that have been already rejected before in the process by another department. The
following update statement, that additionally checks if the bank account has already
been rejected, is illegal, since the condition of the first case involves the repo-relation
Rejected :

UPDATE Info SET Info.Reliability=@v WHERE
CASE WHEN Info.StatusB!=fraud AND TUPLE (Info.Bank) NOT IN Rejected

THEN @v=Yes ELSE @v=No

The overall execution semantics of leaf blocks is defined as follows. Once the leaf
block is enabled, a binding for its newly defined attributes can be provided. If, under
this binding, the precondition of the leaf block evaluates to true for at least one binding
of its attributes, then the leaf block may nondeterministically fire, depending on the
choice of the process executors. Upon firing, the binding of precondition attributes and
of newly defined variables provide a grounding the for effect attached to the leaf block.
Once the effect has been performed, the block completes its execution, and the state
of its lifecycle becomes compl, as described above. The only additional requirement is
that, in the case of a task having both a precondition and an effect, we assume that the
task is atomic at the level of data updates. This is not for a technical reason, but for a
conceptual one: it is essential to ensure that insertions/deletions/updates are applied on
the same data snapshot that was used for checking the task precondition, in accordance
with the standard transactional semantics of relational updates. Breaking simultaneity
would lead to race conditions with other update specifications potentially operating
over the same case variables or repository tables. Notice that race conditions can still
occur at the level of the process, when parallel blocks and sequences of tasks/events
are employed. Consequently, requiring atomicity for leaf blocks with preconditions and
effects does not lead to a loss of generality.
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3.4 Guards for Conditional Flows

The last place where PDMML statements are needed is in the context of blocks employ-
ing choice splits as a way to conditionally route process instances. Specifically, each
conditional flow is linked to a PDMML condition whose terms are case variables or
constants. Notice that using only case variables is not a limitation, since, as we have
seen before, case variables can be filled with data extracted from the catalog/repository,
or injected from the external environment.

As shown in Fig. 1, we assume that each choice split foresees two outputs with
complementary guards. This means that the user has to specify only one guard ϕ, while
the other guard (indicated as ¬ϕ in the figure) is automatically constructed via syntactic
manipulation of ϕ as follows: De Morgan laws are applied until negation appears just
in front of atomic conditions, and then the negated atomic conditions are replaced by
their corresponding, complementary conditions (e.g., ≤ is substituted by >).

We have now completed the definition of PDMML. In the next section we show
how PDMML is practically realised in delta-BPMN.

Fig. 2. A delta-BPMN model with a few examples of Camunda-based annotations (taken as
screenshots from the tool)

4 delta-BPMN in Action

We now put delta-BPMN in action, considering both modeling and verification.

4.1 Modeling delta-BPMN Processes with Camunda

We discuss how Camunda, one of the most widely employed (open-source) platforms
for process modeling and automation, can be directly adapted to model delta-BPMN
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processes. We in particular employ the Camunda Modeler environment (camunda.com)
to create the process control-flow, and its extension part to incorporate PDMML state-
ments. At this stage, it is not essential to recognize the process blocks (and check
whether the process control-flow is block-structured): we just annotate the overall pro-
cess model with the data definitions, the tasks/events with the corresponding PDMML
preconditions and effects, and the choice branches with PDMML boolean queries.

An alternative possibility would have been to require the modeler to explicitly insert
data object and data store icons in the process model, and annotate those. However, this
would clutter the visual representation of the process, creating unreadable diagrams.

More specifically, to declare repository (resp., catalog) relations we use a dedi-
cated persistent store symbol called Repository (resp., Catalog). The declara-
tions themselves, separated by the semicolon from one another, are put into the doc-
umentation box of the element’s documentation. For example, Fig. 2 demonstrates a
snapshot of a catalog declaration containing definitions of two relations Customer and
MortgageType from Example 1. We deal similarly with case variables: a single data
object called Process variables is used, whose documentation box contains all
case variable declarations with the semicolon being used as a separator (cf. Fig. 2).

Modelling queries as well as other data manipulation expressions in traditional
BPMN 2.0 could be done using annotations. This could be considered as a more tra-
ditional approach that, however, as we have already discussed above, can lead to diffi-
culties in managing the processes diagram. Instead, we propose to handle such expres-
sions declaratively within the Camunda extension elements. Given that properties in
Camunda are represented as key-value pairs, adding a declaration is rather easy: one
needs to use a special data manipulation expression identifier as the key and the actual
expression as the value. Consistently with Sect. 3, we use the following reserved identi-
fiers: (i) cond – a gateway/flow condition identifier; (ii) pre – a precondition identifier;
(iii) var – a new typed variable declaration identifier; (iv) eff – an update statement
identifier.

Each key is meant to be used only with values of a particular type. Like that, cond
and pre identify queries, whereas var and eff respectively denote new variable dec-
larations and update statements. All the BPMN elements that admit the aforementioned
extensions can have multiple var and eff identifiers. This is useful as there can be
more than one new typed variable declaration as well as multiple case variable assign-
ment statements.

Example 5. Task Process Complete Application in Fig. 2 selects a mortgage type in
case a customer has agreed to apply for it. This is done by adding a pre-identified prop-
erty to extension elements of the task with the following query that nondeterministically
selects one mortgage type from the MortgageType relation:

SELECT Mid FROM MortgageType WHERE #status = FillApp AND e > 0 AND g > 0

As an effect, this task is supposed to move a chosen mortgage type ID to a dedicated
case variable, and decide on the amount of money asked as well as the interest to be
paid in case the mortgage offer gets accepted. The latter is done with two newly declared
variables e and g, and three eff-identified properties with the following case variable
assignments: #tid = Mid, #duration = e and #amount = g. Note that the last two
essentially model a user input and thus realize the data injection mentioned in RQ 4. �

https://camunda.com/
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All the queries identified with cond can be used only in blocks containing choice splits
(i.e., blocks from Fig. 1 with ϕ annotations on the arcs). In Fig. 2, we show a screenshot
of a simple condition assigned to one of the XOR gateways of the loop block.

4.2 Encoding delta-BPMN Camunda Processes in MCMT

To make delta-BPMN processes modeled in Camunda verifiable (cf. RQ 1) we have
implemented a translator that takes as input a .bpmn file produced by Camunda fol-
lowing the modeling guidelines of the previous section, and transforms it into the syntax
of a state-of-the-art model checker that can verify data-aware processes parametrically
to the read-only relations, namely the latest version of MCMT [1–3].

The translation first checks whether the input model is block-structured, isolating
the various blocks. This is done through traversal algorithm that is of independent
interest. Each block is then separately converted into a corresponding set of MCMT
instructions by implementing, rule by rule, the encoding mechanism proposed in [1].
This works since the concrete PDMML syntax introduced here for data definition and
manipulation faithfully mirrors the abstract, logical language employed there.

For verification, we obviously need also to express which properties we want
to check. Every property is defined as a condition that specifies a “bad”, undesired
state of the model. To add a property, we employ the same mechanism as above that
uses Camunda extension elements. More specifically, we add another reserved identi-
fier verify which can be used to add property key-value pairs directly to the pro-
cess. For example, one can write the PDMML condition (#status=Archived AND
lifecycleMortgage=Completed) to verify the safety of the model in Fig. 2, in par-

ticular ascertaining whether the mortgage approval process has been finalized with the
customer not being interested in the related offer (see the related End event Client
not interested in Fig. 2), thus resulting in her application being archived. Notice that
here we use a special variable lifecycleMortgage to access the process lifecycle state.
In general, one may query the process lifecyle by using a special internal variable
lifecycleModelName, where ModelName is the actual process model name. Verifi-
cation of lifecycle properties for single blocks can be tackled by introducing dedicated
case variables, manipulating them in effects according to the lifecycle evolution of the
block.

It is important to mention that, although this feature is not explicitly reflected in
the PDMML language, delta-BPMN provides support for modeling and verification of
multi-instance scenarios in which process instances can access and manipulate the same
catalog and repository. Formal details are given in [1]. In summary, [1] indicates that
unboundedly many simultaneously active process instances can be verified for safety
if they do not explicitly refer to each other (i.e., they do not expose their own case
identifiers to other instances). Explicit mutual references can instead be handled if the
maximum number of simultaneously active process instances is known a-priori.

Figure 3 shows the overall toolchain employed for verification. First, a modeler has
to produce a delta-BPMN process by enriching a regular block-structured BPMN 2.0
process with a PDMML specification via Camunda extensions using the technique from
above. Camunda Modeler then allows to export the delta-BPMN process as an XML-
formatted .bpmn file. This file can be then processed by our Java-based tool, called
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Fig. 3. Conceptual architecture of the delta-BPMN framework

deltaBPMN, that employs the following APIs for generating the process specification
that can be readily verified by MCMT (http://users.mat.unimi.it/users/ghilardi/mcmt/).
In the nutshell, the tool takes two major steps to process the delta-BPMN model. First,
it uses the Camunda’s BPMN model API to access process components from the input
.bpmn file and uses our block traversal API as well as PDMML parser to recognize
blocks as well as PDMML statements/declarations and consecutively generate delta-
BPMN objects. The latter are specified according to the object model that has been
mainly distilled from the formalism studied in [1] and that consists of three major parts:
a data schema storing all case variable and relation declarations (from both R and C), a
process schema storing nested supported process block definitions, and a data logic con-
taining update declarations and conditions assigned to blocks. The block traversal API
uses a newly developed algorithm for detecting nested blocks that comply to the object
model structure. Via the deltaBPMN2SMT translation API that internally follows the
translation in [1], the tool then processes the extracted object model and generates a text
file containing the delta-BPMN process specification rewritten in the MCMT syntax.

Finally, the derived specification can be directly checked in the MCMT tool that,
in turn, will detect whether the specification is safe or unsafe with respect to the
“bad” property specified in the initial model. MCMT can be executed in the command
line using the following command: [time] mcmt <filename>. Here, argument
[time] is not mandatory, but can be used if one wants to display the MCMT execu-
tion time. More information on the model checker installation process, the language for
specifying safety properties of delta-BPMN models, advanced execution options and
additional details, together with the actual delta-BPMN implementation, can be found
on the tool website here: https://tinyurl.com/y6npo4kz.

5 Conclusions

We have introduced a SQL-based language for modeling and manipulating volatile and
persistent data, and demonstrated how it can be incorporated into the existing BPMN

http://users.mat.unimi.it/users/ghilardi/mcmt/
https://tinyurl.com/y6npo4kz
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standard, resulting in a language for modeling data-aware BPMN that we called delta-
BPMN. We showed how this delta-BPMN processes can be modeled with Camunda
using its native extension capabilities. We also reported on an implementation of a pro-
totype that takes delta-BPMN models produced in Camunda and automatically trans-
lates them into the syntax of MCMT that, in turn, allows for their immediate verifica-
tion. Given that Camunda also allows to extend its user interface with additional third-
party functionalities, we intend to develop a fully integrated environment for modelling
and verification of delta-BPMN processes. We also plan to investigate in more detail
usability aspects of our proposal and set up a concrete benchmark that could be then
fully adopted (including process- and data-specific metrics) within the RePRoSitory
platform [6].
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Abstract. During the execution of a business process, organizations or
individual employees may introduce mistakes, as well as temporary or
permanent changes to the process. Such mistakes and changes in the
process can introduce anomalies and deviations in the event logs, which
in turn introduce temporary and periodic process variants. Early iden-
tification of such deviations from the most common types of cases can
help an organization to act on them. Keeping this problem in focus, we
developed a method that can discover temporary and periodic changes
to processes in event log data in real-time. The method classifies cases
into common, periodic, temporary, and anomalous cases. The proposed
method is evaluated using synthetic and real-world data with promising
results.

Keywords: Process discovery · Fuzzy clustering · Process variant

1 Introduction

In flexible business processes, such as in hospitals and administrative offices,
the executions of the activities are not always according to the defined process.
In such processes, it is possible that the workplace employees deviate from the
defined process and follow a different process per case. It is also possible that for
a certain period of time they deviate from the defined process for most cases. For
example, the employees may temporarily skip some process steps when there is a
high workload. When the workload goes back to normal, they follow the normal
process again. This temporary deviation from the defined process may cause
temporal deviations in the event log data. Another example is that the rules
and regulations pertaining to the processes may change with time, which can
lead to a permanent shift in the way in which the process is normally executed.
This permanent shift may induce a persistent deviation in the event log data.
It may be interesting to remark that what is “normal” is usually not exactly
clear, because there may be frequent deviations from the defined process flow as
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well. There may even be deviations from the process flow that are anomalous,
but are not considered deviations because there is no temporal aspect to them.
Identification of temporary and periodic process variants introduced by such
temporal and permanent deviations from the most common type of cases followed
in the process can help a business get better understanding of their actual process
as it changes periodically or over time. It also enables them to take appropriate
actions, if necessary.

While there exist methods for detecting anomalous cases in business pro-
cesses, these methods will not detect different variants of the process, as we will
also show in the evaluation section of the paper. Nonetheless, the detection of
such temporary process variants caused by temporal deviations is important. For
example, because they may point to some problem that must be solved, some
policy that employees use that should be made explicit in the process, or cases
that must be filtered from the log before doing an analysis of the performance
of the business process.

To fill this gap, this paper proposes a method to discover, in real time, tem-
porary and permanent changes to the process from event log data, in addition
to anomalies. The method classifies cases in an event log into four categories:
(i) common cases (type of cases which are most followed in the process), (ii)
temporary cases (type of cases which are followed temporarily in the process),
(iii) periodic cases (type of cases which are followed at certain times in the pro-
cess), and (iv) anomalous cases (type of cases which are anomalous). At the core
of this method lies a clustering approach using Non-Euclidean Relational Fuzzy
c-Means (NERFCM) supported by Correlation Cluster Validity (CCV). CCV is
used to determine possible number of clusters existing in the event log data and
NERFCM is used to form those clusters. In addition, the proposed method also
includes a feature to forget a cluster when no new case falls in it for a defined
period of time.

Against this background, the remainder of the paper is organized as follows:
Sect. 2 presents a review of the literature related to this topic. Section 3 briefly
discusses theoretical concepts involved in working of the proposed method.
Section 4 details the proposed method. The evaluation of the proposed method
is presented in Sect. 5. Section 6 provides conclusions and suggestions for future
work.

2 Related Work

The roots of process mining can be traced back to about half a century ago
[17,28,32] but it emerged only in the last decade [42,43]. Even after this rapid
emergence, in the last decade, the topic of anomaly detection was not frequently
researched [2,3]. In context of event logs, it is interesting to observe that after
years of research, the literature still has not settled on a unified definition of
anomaly. Despite not having a formal definition, the literature has developed
an intuition and suggests on what can be considered anomalous; an anomaly is
“some kind of unlikely or infrequently occurring behaviour” [7]. It is well known
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that the analysis of the event logs is influenced by noise and irregular behaviour
of a process [27], which can also be considered anomalous. The research done on
the topic of anomaly detection in event logs in the last decade proposed using
process discovery algorithms in order to mine a reference process model from
business process event logs, and then use the discovered model for conformance
checking to detect presence of anomalous behaviour.

Compared to the previous decade, there is a noticeable boom in the research
outputs on this topic. The authors of [11] and [5] presented a frequency-based
algorithm which finds less occurring and never occurring process executions and
considers them anomalous. The authors of [12] presented a similar approach
by using integer linear programming for detection and removal of infrequent
behaviour observed in an event log. In [26] another approach is proposed using
frequent pattern outlier factor which intends to use empirical rule of statistics
to differentiate between normal and anomalous instances of a process. Mov-
ing forward from frequency-based algorithms, [6] presented a multi-perspective
anomaly detection method which is based on likelihood of occurrence of execu-
tion events. [22] presented a similar approach of filtering out infrequent events
based on expectation of occurrence of an activity.

Clustering algorithms from the domain of data science have also been applied
and tested in the domain of process mining [19], for example, k-nearest neigh-
bour [21,40], and use of density based clustering [41]. Use of neural networks has
recently caught attention of researchers in process mining which has resulted
in some of the best anomaly detection algorithms [29]). Other approaches for
anomaly detection in event logs are as follows: dynamic threshold algorithm
based on conformance threshold [4], based on Bayesian network [31,34], based
on Markov model [1,18,24], based on association rule mining [8,35], based on
correlation analysis [30], and based on Needleman–Wunsch algorithm [9].

The anomaly detection methods found in the related work can be distin-
guished into two types: (i) online methods (to detect anomaly in a running
case) [29,41], and (ii) offline methods (to detect anomaly in historic event
log) [5,6,31]. Moreover, in both the approaches, anomalies are detected as infre-
quent cases, or some kind of improbable combination of event attributes. We
found that these methods do not give any indication of changes in the process
overtime. In literature we also found research done on real-time detection of con-
cept drift [25], process discovery [44], and conformance checking [45], but these
methods try to discover the process and changes in the process overtime while
not considering anomalous executions of the process. The method we propose
can work both online and offline and is able to categorize the cases as common,
periodic, temporary, and anomalous.

3 Background

The proposed method employs NERFCM clustering algorithm and CCV index,
therefore in the next sub-sections we introduce them briefly.
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3.1 Non-Euclidean Relational Fuzzy C-Means (NERFCM)

NERFCM is a clustering algorithm, an adaptation of k-means algorithm that
generate fuzzy clusters (i.e. a cluster member can belong to more than one
cluster) based on a dissimilarity matrix D between the data points. [20]. The
dissimilarity matrix D expresses the pairwise distinction between two traces. In
context of event logs, a trace is nothing but a concatenated sequence of activities
occurred in a case. For example, in a case if three activities Activity A, Activ-
ity B, and Activity C were performed one after another, then their respective
trace could be ‘abc’. If we consider other traces ‘abcd’ and ‘acde’, then comput-
ing distances among all the three traces we could obtain a dissimilarity matrix
of order 3 × 3.

Typical distance types used to measure non-euclidean distances between two
data points are Jaccard and Levenshtein distances [13]. NERFCM can handle
such distances.

In addition to D, the NERFCM algorithm requires three other parameters as
input: fuzzifier m, convergence criteria epsilon, and number of clusters c. For a
specified number of clusters c and fuzzifier m ∈ (1,∞) the output of NERFCM
is a fuzzy c-partition U which is an approximate local minimizer of a global
squared-error type criterion, similar to k-means method. For more elaborate
description of NERFCM algorithm please refer to [20].

Number of clusters c sets the number of clusters the input set of traces will
be clustered into. This c is computed using a correlation cluster validity index
as discussed in the following sub-section.

3.2 Correlation Cluster Validity (CCV)

NERFCM requires from a user a parameter, that is the number of clusters to be
created, c. In order to determine number of clusters we are using Cluster Cor-
relation Validity (CCV) [33]. CCV is an universal cluster validity measure that
can be applied to partitions obtained by any relational or object data cluster-
ing algorithm (NERFCM in our case). The reason of choosing CCV over other
validity indices such as Davies-Bouldin index, Xi-Beni Index [46] or Relational
Xi-Beni [36] is that CCV is better at finding number of clusters in a dataset
compared to all other validity indices [33].

The CCV index adopted in this method is Spearman CCV Index (vccvs);
based on Spearman’s Correlation Coefficient (CC), which quantifies the linear
relationship between the n(n−1)/2 dissimilarity pairs with i�=j after ordering the
elements of D and D(U) as vectors in �n(n−1)/2. This is accomplished without
actually ordering the elements using Eq. 1 [23,33].

vccvs(D,D(U)) = 1 −

⎛
⎜⎜⎝

6 ·
n∑

i=1

n∑
j=1

(Dij − [D(U)]ij)2

n3 − n

⎞
⎟⎟⎠ (1)
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where D is the input dissimilarity matrix (or reference matrix), and D(U) is the
dissimilarity matrix between the partition matrix rows. CCV index can be used
to evaluate and compare different partitions. A partition with a highest value of
the index represents the best clustering. One can generate partitions for different
number of clusters c = 2, 3, . . . and select one with the highest value of CCV
index.

4 Proposed Method

This section presents our proposed method for finding periodic and temporary
process variants in the event log data while simultaneously detecting anomalies.
First we list the input parameters and then we provide a brief overview of the
proposed method followed by an in depth step-by-step explanation on how the
proposed method works.

4.1 Input Parameters

The proposed method takes the following parameters as inputs: event log - the
event log dataset, distance type - for now Jaccard Distance only, initial cases
- number of cases for initial clustering, merging criteria - if any two clusters
have this much similarity then they will merge (range 100% similarity to 0%
similarity), forgetting type - Yes, if clusters are to be forgotten. No, if clusters
are not to be forgotten, forget after - number of days after which a cluster is
to be forgotten or anomalies are to be saved. Two other input parameters are
for NERFCM, m - fuzzifier (default value 2) and epsilon - convergence criteria
(default value 0.0001) [20].

4.2 Overview of Proposed Method

This subsection provides a brief overview of the steps elicited in Algorithm 1.
First, the user defines the number of initial cases (initial cases) to be used
to form initial clusters. A distance matrix D is computed for the initial cases
using the selected distance type. Then CCV algorithm is applied on the selected
number of cases. The result of CCV algorithm is the probable number of clus-
ters c that exist in initial cases. Next, the NERFCM algorithm is applied
on the selected number of cases, and initial clustering is performed using D
and c as input. The formed clusters are saved in cluster list. At this stage the
cut off size for new cluster is also computed - it tells us how large a new cluster
should be to qualify as a cluster (explained in initialize clusters()). Once the
initial clustering is done, when a new case arrives and it falls under the radius of
any of the existing clusters then is added to that cluster, otherwise it is stored
in anomaly list (explained in update clusters()). Simultaneously, it is checked if
there are new clusters forming inside the anomaly list. If at any point a cluster
in anomaly list becomes larger than the cut off size for new cluster, then it is
removed from the anomaly list and added to the main cluster list (explained in



202 S. Chouhan et al.

form new clusters()). Next, if at any point in time the similarity between any
two or more clusters in the cluster list becomes greater than the merging criteria
then those clusters are merged (explained in merge clusters()). If no new case
is added to a cluster in cluster list for forget after days, then that cluster is
removed from the cluster list and is added to cluster list forgotten (explained in
forget clusters()). At last, if no new case is added to the anomaly list for for-
get after days, then all the cases are removed from the anomaly list and are saved
in anomaly list saved (explained in save anomalies()). Then the algorithm waits
for a new case to arrive and implements all the functions from update clusters()
to save anomalies(). A detailed explanation of each step is provided in
subsection 4.3.

4.3 Steps

The steps detailed inside the While loop in Algorithm 1 produce the following
output: cluster list - a list of all the formed clusters, cluster list forgotten - a list
of all the clusters that were forgotten after forget after days, anomaly list - a
list of all the cases that were detected anomalous, anomaly list saved - a list of
all the cases that were saved as anomalies after forget after days. Cases in these
clusters are then categorized as common, periodic, temporary, and anomalous
in the post analysis step.

Brief overview of the steps of the proposed method is presented in Algo-
rithm 1, followed by detailed textual description of each step.

Algorithm 1: Steps included in the proposed method
initialize clusters()
while True do

update clusters()
if len current anomaly list > len last anomaly list then

form new clusters()
if similarity between any two clusters >= merging criteria then

merge clusters()
if no new case added to an existing cluster in forget after day then

forget clusters()
if no new case added to the anomaly list in forget after day then

save anomalies()

end
post analysis

initialize clusters(): In order to form initial clusters, a number of initial cases
need to be picked, i.e. the parameter initial cases. The value of parameter ini-
tial cases is dependent on the user and the dataset. For example initial cases
can be number of all the cases completed within one week from beginning of
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the process. Then the distance matrix D is computed for the initial cases, and
using CCV initial number of clusters c is determined. After finding c, the value
of parameter cut off size for new cluster is computed as initial cases/c; value is
useful in implementing function form new clusters(). It is to be noted that the
proposed method assumes that all the incoming cases are completed and contain
an end-timestamp. It is important that the cases are complete because unless a
case is completed, it cannot be assigned to any cluster. The end-timestamps are
important to know the order of arrival of the cases.

Next, NERFCM algorithm is implemented using D and c to obtain a partition
matrix U. It is to be noted that initialization of prototypes in NERFCM is not
random which makes this method deterministic. Next, using D and U, c initial
clusters are formed among the initial cases. Since in a partition matrix each data
point belongs to each partition with a certain degree of membership, therefore
each trace is only kept in the cluster with which it has the highest degree of
membership. After the creation of initial clusters, their respective cluster center
and cluster radius are determined. For each cluster, the cluster member with
the highest degree of membership to a cluster is selected as its cluster center.
For each cluster, the weighted average distance between the cluster center and
each cluster member is computed; longest of all these distances is selected as
cluster radius. Finally, all the traces falling outside their respective cluster radius
are added to anomaly list.

update clusters(): When a new completed case arrives, its activities are com-
bined to form a trace (newTrace), and its similarity with all existing clusters is
checked. If newTrace falls in any of the existing clusters then it is added to that
cluster, else it is added to the anomaly list.

form new clusters(): In this step, existing anomaly list is explored to find if
there exist any clusters in the anomaly list. For this purpose, similar process as
initialize clusters() is carried out but on the traces in anomaly list. A distance
matrix Da is computed for all the traces in anomaly list and using CCV ini-
tial number of clusters ca is determined. After finding ca, NERFCM algorithm
is implemented using Da and ca to obtain a partition matrix Ua. Using Da

and Ua, ca clusters are formed and saved in a temporary list of clusters clus-
ter list temp. Similar to initialize clusters(), each trace is only kept in the cluster
with which it has the highest degree of membership. Next, cluster center and
cluster radius are determined, and all the traces falling outside their respective
cluster radius are added to a temporary list of anomaly anomaly list temp. Once
all the temporary clusters are formed then the temporary clusters which are
larger or equal in size to cut off size for new cluster are added to the main clus-
ter list and the contents of these clusters are deleted from the main anomaly list.
The idea behind computation of cut off size for new cluster is that if c clusters
exist in initial cases, then on average each cluster has initial cases/c traces; so,
when a cluster formed in anomaly list has equal or more traces than that average,
then it can be considered as a valid cluster.
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merge clusters(): Any two clusters are merged on satisfaction of either of the
two following conditions: (i) if distance between the two clusters is less than
or equal to the parameter merging criteria, or (ii) if the overall percentage of
number of common elements in the two clusters exceed 1−merging criteria. In
case two clusters are merged, then cluster center and radius is computed for the
merged cluster. Also, the traces which do not fall under the new cluster radius
are added to the anomaly list.

forget clusters(): If value of parameter forgetting type is set to ‘Yes’ and if no
newTrace is added to any existing cluster for forget after days, then that cluster
is removed from the main cluster list and added to the cluster list forgotten.

save anomalies(): If value of parameter forgetting type is set to ‘Yes’ and
if no newTrace is added to anomaly list for forget after days, then the cases
existing in anomaly list are removed from the anomaly list and added to the
anomaly list saved.

Once all the steps are completed, the algorithm wait for arrival of a new case.
As soon as a new case arrives, it calls update clusters() function and continues
the while loop. When all the cases are processed, the user must go through post
analysis of the output.

Post Analysis: Based on the performed clustering, the completed cases of an
event log are categorized into the following four categories:

1. Common Cases: cases in main cluster list are considered common since
they were never forgotten or saved as anomalies.

2. Periodic Cases: cases in cluster list forgotten are considered periodic if they
reappear again in main cluster list or in cluster list forgotten.

3. Temporary Cases: cases in cluster list forgotten are considered temporary
if they do not reappear in the main cluster list or in cluster list forgotten;
they were probably used for some special cases.

4. Anomalous Cases: at any given time, cases in anomaly list saved and
anomaly list are considered anomalous since they never belong to any cluster
(whether forgotten or not forgotten).

5 Method Evaluation

In this section, first we discuss the event logs used to evaluate the method and the
anomalies that are introduced to those event logs. Next we discuss the param-
eters selected to evaluate the method, followed by the results obtained from
applying the proposed method on the selected event logs.
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5.1 Event Logs

To assess the performance of an anomaly detection algorithm, it is necessary to
know which traces in a process are anomalous and which traces are not anoma-
lous. For this purpose we require synthetic event logs where we already know the
process. We used PLG [10] to create six process models and their event logs with
varying complexity of number of activities, breadth, and width. These event logs
are the same as used in [29]. In addition to the synthetic event logs, we also used
9 real-life event logs from the Business Process Intelligence Challenge (BPIC) -
BPIC12 [16], BPIC13 [37–39], and BPIC15 [15]. In the remaining of this paper,
the event logs are referred by their names as defined in Table 1.

Table 1. Overview of event Logs

Name Number of Logs Number of Activities Number of Cases Number of Events

Small 1 41 5k 45.2k

Medium 1 65 5k 29.8k

Large 1 85 5k 55.6k

Huge 1 109 5k 40.6k

Gigantic 1 154–157 5k 31.5k

Wide 1 68–69 5k 30.4k

BPIC12 1 24 13k 262.8k

BPIC13 3 11–27 0.8k–7.5k 4k–81k

BPIC15 5 422–486 0.8k–1.4k 46k–62k

Alpha 1 78 3.5k 32k

To test the effectiveness of the proposed method, we needed to use an event
log in which we know where common, periodic, and temporary cases occur.
For this reason we created another synthetic event log which was created using
combination of three event logs from Table 1, namely Large, Gigantic, and Huge.
We named this synthetic event log ‘Alpha’. The Alpha event log contains total
3500 cases: 2000 cases from Large, 1000 cases from Gigantic, and 500 cases from
Huge. To induce periodicity in the Alpha event log, 500 cases from Gigantic
are added at 14 days from the beginning of the event log, and the remaining
500 cases are added 14 days after that. Whereas, to introduce temporal nature
in the event log, all of the 500 cases from Huge are added at 4 weeks from the
completion of first case in the event log.

Moreover, random anomalies of type Rework, Skip, Early, Late, and Insert
were introduced to the datasets, using the approach proposed by Nolle et al. [29]
to make the event log dataset more realistic. The introduction of anomalies is
done for the purpose of completeness.

5.2 Experiment Setup

To test the working of the proposed method, a set of values for the input parame-
ters (Sect. 4.1) needed to be defined. For the first input parameter, distance type,
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we selected Jaccard Distance because it is computationally more efficient than
Levenshtein Distance (linear versus quadratic time complexity) [14]. For ini-
tial cases, we propose three variants - small, medium, and large. Variant small
selects all the cases ending within one week from the starting date of the first
case; for medium variant this range is till two weeks from the starting date of
the first case; and for large variant it is four weeks. The values of fuzzifier m and
converging criteria epsilon were set to their default values. For merging criteria,
we use three distinct values - 90%, 80% and 70% similarity. Both ‘Yes’ and ‘No’
values are tested for parameter forgetting type. The value of forget after is set
to 7 days.

It is to be noted that the evaluation of the method is done mainly by varying
values of the parameters initial cases, merging criteria, and forget type. Con-
sidering the values of these parameters to be set as mentioned in the previous
paragraph, we obtain 18 distinct combinations. Since it would be impractical to
discuss results from all 18 combinations for each of 16 event logs (18 × 16 = 288
combinations), therefore, for brevity, we only present in-depth results for the
Alpha event log.

5.3 Results

Using the selected parameters, we receive a set of results for Alpha event log as
shown in Fig. 1 and Table 2. Figure 1 shows a visual comparison between results
obtained by setting the parameter forgetting type as ‘No’ and ‘Yes’. In the Fig. 1
each row represents a cluster, where cluster C n represents common cases, cluster
PC n represents periodic cases, cluster TC n represents temporary cases; where
n is the number of cluster. For instance, C 1 shows the first cluster in the main
cluster list. The last row in both Fig. 1a and Fig. 1b shows the anomaly list saved
(ALS). The horizontal axis represents the arrival of cases in the order of their
time of completion. Each vertical bar in a cluster shows the assignment of case
to that cluster. The legend in each cluster shows the number of cases that were
added to that cluster. For instance, Fig. 1a shows that 812 cases were added to
the first cluster, and 583 cases were added to the anomaly list.

In Fig. 1b, PC 1-PC 5 and TC 1 are the clusters which were forgotten from
the main cluster list at some point in time since no new case was added to them.
In the post analysis of the results, it is found that a similar cluster to PC 1
reappeared again in PC 2, PC 3 and part of PC 4. Also, part of PC 4 reappeared
in PC 5. Since, all these reappearing clusters are similar to each other and they
were forgotten after some time, therefore, by definition of Periodic Cases (in
Subsect. 4.3) they are categorized as periodic cases. On the other hand, TC 1
is a cluster of cases which was forgotten after some time but no similar cluster
ever reappeared in main clusters or forgotten clusters. For this reason, the cases
in TC 1 are categorized as temporary cases. Furthermore, in Fig. 1a, all the
periodic and temporary cases are included in the main cluster. Cases falling in
these clusters makes up of periodic and temporary process variants.

In Table 2, the first thing we observe is that when value of parameter ini-
tial cases is kept constant (e.g. small), the number of clusters formed at the



A Real-Time Method for Detecting Temporary Process Variants 207

Fig. 1. Comparison of forgetting type = No versus forgetting type = Yes. Blue bars are
common cases, Green bars are periodic case, Orange bars are temporary cases, and
Red bars are cases marked anomalous. (Color figure online)

start of the run is always the same. For example, in S.No. 1 to S.No. 6, the
number of clusters at start is always 9. This is always true even if other param-
eters are changed. The reason behind this consistency is that the initial clusters
are formed using initial cases (in initialize clusters()); so as long as the value of
initial cases is unchanged, the number of clusters formed at the beginning will
always be same.

Additionally, in comparison to using forgetting type as ‘Yes’, the number of
clusters formed in the end is always more when using forgetting type as ‘No’.
This gives us a hint that in the entire duration of the event log generation, the
process being followed is not always the same. Moreover, it indicates that there
may exist periodic and temporary cases in the event log data. The presence of
periodic and temporary cases is confirmed when exploring the results further. It
can be observed that when the method is not set to forget clusters, it does not
detect any periodic and temporary cases. To be noted that forgetting type ‘Yes’
may not always detect periodic and temporary cases unless the data suggests so.

In Table 2, P, R, and F1 refer to Precision, Recall, and F1-Score calculated for
detection of periodic, temporary and anomalous cases. It can be observed that
precision for detecting periodic and temporary cases is high. Also, compared
to small and medium variant of initial cases, the recall for the large variant is
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Table 2. Evaluation of the proposed method on Alpha event log with varying param-
eters

S. No. init. cases merge crit. forget type c Periodic cases Temporary cases Anomaly cases

Start End P R F1 P R F1 P R F1

1 Small 90% No 9 20 – – – – – – 1.00 0.01 0.02

2 Small 90% Yes 9 4 1.00 0.94 0.97 1.00 0.76 0.86 0.26 0.02 0.04

3 Small 80% No 9 19 – – – – – – 1.00 0.01 0.02

4 Small 80% Yes 9 3 1.00 0.94 0.97 1.00 0.76 0.86 0.55 0.01 0.02

5 Small 70% No 9 18 – – – – – – 1.00 0.01 0.02

6 Small 70% Yes 9 3 1.00 0.94 0.97 1.00 0.76 0.86 1.00 0.01 0.03

7 Med 90% No 9 23 – – – – – – 1.00 0.03 0.06

8 Med 90% Yes 9 9 1.00 0.94 0.97 1.00 0.77 0.87 1.00 0.02 0.04

9 Med 80% No 9 16 – – – – – – 1.00 0.04 0.08

10 Med 80% Yes 9 7 1.00 0.91 0.96 1.00 0.75 0.86 0.47 0.07 0.12

11 Med 70% No 9 16 – – – – – – 1.00 0.04 0.08

12 Med 70% Yes 9 3 1.00 0.93 0.96 1.00 0.77 0.87 0.96 0.04 0.08

13 Large 90% No 5 6 – – – – – – 0.16 0.19 0.18

14 Large 90% Yes 5 3 1.00 0.65 0.79 1.00 0.27 0.42 0.15 0.16 0.15

15 Large 80% No 5 6 – – – – – – 0.16 0.19 0.18

16 Large 80% Yes 5 3 1.00 0.65 0.79 1.00 0.27 0.42 0.15 0.16 0.15

17 Large 70% No 5 6 – – – – – – 0.16 0.19 0.18

18 Large 70% Yes 5 3 1.00 0.65 0.79 1.00 0.27 0.42 0.15 0.16 0.15

significantly small. Moreover, precision for anomalous cases is high for small and
medium variants, and very small for the large variant. The reason for this that
for the large variant the radii are larger since initial clustering was done on a
large number of cases. So, the arriving anomalous cases may be considered not
different enough and hence fall in the cluster.

The results also show that the anomalous cases introduced by us are not well
detected by our method. The reason we found is that since they are too similar
to an existing cluster center, thus they are added to an existing cluster. Please
note that we used Jaccard distance, in which order of activities performed is
ignored. For example, for our method, traces ‘abcde’ and ‘bdcea’ are same since
Jaccard Distance between them is zero.

Similar results can be observed when the method was tested with other event
logs considered in the study (Table 3).

Table 3 shows the results of the clustering performed on other event logs,
including BPIC event logs. Since we do not know if periodic and temporary
cases are present in these event logs, we cannot comment on precision, recall
and F1-scores for these event log. For this reason we present how many cases
were categorized as common, periodic, temporary, and anomalous (also in how
many clusters). We take this opportunity to present the utility of this clustering
method. For instance, considering BPIC12 event log: we form 5 clusters which
consist of 12881 common cases. This tells us that there are 5 types of most
common processes followed during the generation of this event log. These 5 types
of processes are nothing but the cluster centers of those 5 clusters (as shown in
Table 4). Other cases that lie in these 5 clusters have (1 − cluster radius)% of
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Table 3. Evaluation of the proposed method on other event logs with parameters
initial cases = small, merging criteria = 70%, forgetting type = Yes, forget after =
7 days

Name c Common
cases
(clusters)

Periodic
cases
(clusters)

Temporary
cases
(clusters)

Anomalous
cases

Start End

Small 2 2 4832 (2) 0 (0) 0 (0) 49

Medium 3 6 4814 (6) 0 (0) 0 (0) 48

Large 3 5 4946 (5) 0 (0) 0 (0) 36

Huge 3 10 4948 (10) 0 (0) 0 (0) 24

Gigantic 2 7 4867 (7) 83 (1) 0 (0) 51

Wide 4 4 4924 (4) 46 (1) 0 (0) 48

BPIC12 2 5 12869 (1) 0 (0) 0 (0) 217

BPIC13 1 7 1 1394 (1) 0 (0) 0 (0) 27

BPIC13 2 6 1 7373 (1) 0 (0) 0 (0) 175

BPIC13 3 5 1 668 (1) 40 (2) 0 (0) 142

BPIC15 1 4 0 0 (0) 138 (31) 863 (48) 183

BPIC15 2 4 4 77 (4) 105 (21) 589 (124) 63

BPIC15 3 2 3 199 (3) 0 (0) 933 (12) 277

BPIC15 4 4 5 96 (5) 137 (23) 774 (131) 49

BPIC15 5 3 3 202 (3) 197 (9) 588 (27) 172

similarity to their respective cluster centers. For example, trace ‘abuucddddsd’
only lies in the first cluster (with 66.67% similarity), whereas trace ‘abuucuddsd’
lies in both first and third cluster because its distance to both cluster centers is
less than their cluster radius (0.33 and 0.42 respectively). We observed similar
results while testing the method on all the other event logs but for brevity they
are not discussed in this paper.

Table 4. Cluster centers for BPIC12 event log showing the most common type of cases
followed in the process

Cluster Trace Case Cluster radius

1 abuuuusu 173856 0.50

2 abcddddddegfhijdjkljlwlwwwww
wwlwlllomnpl

176596 0.12

3 abcddabtd 178167 0.50

4 addefghijdjqtj 175976 0.50

5 abuucdudddddefghijdjjjkljlwlwwww
wwwwwlwlsvl

174261 0.12
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Overall, the proposed method is able to discover common, periodic, and
temporary process variants in the event log data with a high precision by cat-
egorizing the cases as common, periodic, and temporary, while simultaneously
marking infrequent cases as anomalous.

6 Conclusions

In this paper we presented a real-time method of discovering different process
variants in the event log data which categorizes cases into four categories: com-
mon, periodic, temporary, anomalous. The method is able to produce at run-
time an update on which type of cases are being executed at present by assigning
cases to clusters. After testing on an artificially generated event log, it was found
that the proposed method is able to categorize the event log data into the four
categories with high precision.

Detecting different process variants in an event log data is an easy task if
the entire event log data is known beforehand. It becomes challenging when the
event log data is unknown. This is why we designed this method to work in
real-time as soon as any new case is completed. Another reason to make the
method process cases in real-time is that we wanted to capture the periodic and
temporal nature in the event log data. Also, we wanted to capture the evolution
of the clusters with time. Note that this method can also be used offline. A
possible application of this method could be to use the obtained clusters in real-
time process discovery and solving problem of spaghetti like models. This can be
done by discovering the process model by using only the cluster representatives.
Each cluster representative may also indicate a sub-process. Furthermore, we
have information on periodic cases which can be used to discover periodic (sub-)
process models.

As good as the method is in categorizing cases into the first three cate-
gories, we found out that it is not very efficient at detecting anomalies. Since
many non-anomalous cases are categorized as anomalous, we suggest that the
detected anomalies need to be further analysed by experts. This further analysis
is necessary because the method only categorizes a case as anomalous if it is
significantly different from rest of the cases executed prior to its completion. We
realise that it is difficult to qualitatively assess the amount of the required expert
input, and therefore we have identified a need for explanation of anomalies.

Moreover, all the forgotten clusters also need to be validated with the help
of experts to understand whether that is how those cases were supposed to
processed. This validation by experts is important because it is possible that the
organisation recently made some changes to the process on purpose and they
want to standardize those sub-processes. In this case, the process expert may
mark a forgotten cluster as a main cluster. The same validation is also important
for the detected anomalies.

Since the method proposed in this paper is able to cluster any new kind of
case in real-time, it also provides a basis for providing explanation about when
certain type of cases are used in a process. Our future work will be mainly
focused on the explanation of anomalies.
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One may argue that temporary cases can also be considered anomalous since
they only happens once in a series and never again. We think it is a valid argu-
ment, but we believe the domain expert should have the freedom to make this
decision.

A limitation of the proposed method is that it includes a uni-perspective
anomaly detection method. As discussed earlier, the method discovers the struc-
ture in the event log data and also detects some anomalies as its byproduct.
However, this is not a multi-perspective anomaly detection method since it only
uses activities performed in each case. In future we want to include a multi-
perspective view to the proposed method by providing weights to resources and
other attributes associated with the activities.

Another limitation of this method is that when using Jaccard Distance, the
method is good at finding the structure but detects less anomalies. In future
work we would like to modify the method to work with Levenshtein Distance.
In this work Levenshtein Distance is not used as it introduces two challenges:
(i) It is difficult to decide on merging criteria as, unlike Jaccard Distance, the
Levenshtein Distance does not lie in the range [0, 1], which makes it difficult to
define a global value of merging criteria. (ii) As mentioned earlier in this paper,
for larger data sets, using Levenshtein Distance increases computation time.

To overcome these challenges, we plan to use the study by Dolev et al. [14] to
find a relation between Jaccard and Levenshtein distances and use that relation
instead of computing Levenshtein distance every time a new case arrives.

As part of our future work we identify a need to make the parameter for-
get after adapt to change in the frequency of arrival cases. The reasoning behind
this need is explained in the following example. Let us assume value of the
parameter forget after is set to 7 days, and cut off size for new cluster is 40. If
we assume that generally we have an average of 50 cases arriving per day, but in
summer time, because it is holiday period, we have an average of 5 cases arriving
per day. It may be the situation that the cases completed in the summer time
were added to the anomaly list because they were different from the most com-
mon cases. As a result, all 25 cases execute in the last week were added to the
anomaly list and in the following 7 days they were saved as anomalies. Now even
if the method detected a new cluster of 25 cases in the anomaly list, it would
not have qualified to be added to the main cluster list because 25 is less than
the cut off size for new cluster, i.e. 40. For such situations, in a period of low
frequency of arrival of cases, we think it is important that the method adapts to
the situation and extends the window of forget after days. This extension will
give more chance to formation of a new cluster in such periods of low frequency
of cases.
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Abstract. Conformance checking is a key process mining task for com-
paring the expected behavior captured in a process model and the actual
behavior recorded in a log. While this problem has been extensively stud-
ied for pure control-flow processes, conformance checking with multi-
perspective processes is still at its infancy. In this paper, we attack this
challenging problem by considering processes that combine the data
and control-flow dimensions. In particular, we adopt data Petri nets
(DPNs) as the underlying reference formalism, and show how solid, well-
established automated reasoning techniques can be effectively employed
for computing conformance metrics and data-aware alignments. We do
so by introducing the CoCoMoT (Computing Conformance Modulo The-
ories) framework, with a fourfold contribution. First, we show how SAT-
based encodings studied in the pure control-flow setting can be lifted
to our data-aware case, using SMT as the underlying formal and algo-
rithmic framework. Second, we introduce a novel preprocessing tech-
nique based on a notion of property-preserving clustering, to speed up
the computation of conformance checking outputs. Third, we provide a
proof-of-concept implementation that uses a state-of-the-art SMT solver
and report on preliminary experiments. Finally, we discuss how CoCo-
MoT directly lends itself to a number of further tasks, like multi- and
anti-alignments, log analysis by clustering, and model repair.

1 Introduction

In process mining, the task of conformance checking is crucial to test the expected
behavior described by a process model against the actual action sequences doc-
umented in a log [10]. While the problem has been thoroughly studied for pure
control-flow processes such as classical Petri nets [10,28], the situation changes
for process models equipped with additional perspectives beyond the control-
flow, such as for example the data perspective. Notice that, while there are
various works that primarily focus on the formalization and analysis of data or
object-aware extensions of Petri nets (e.g., [17,20,24,26]), attacking the confor-
mance checking problem in the non-classical setting is a very challenging task.
This problem indeed requires to simultaneously consider, in a combined way,
both the control-flow of the process and the data that the process manipulates.
c© Springer Nature Switzerland AG 2021
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Existing approaches almost exclusively focused on control-flow alignments and
can therefore not be applied off-the-shelf. To the best of our knowledge, there are
in fact very few existing approaches dealing with the aforementioned problem,
and they concentrate on declarative [7] and procedural [21,22] multi-perspective
process models with rather restrictive assumptions on the data dimension.

In this paper, we provide a new stepping stone in the line of research focused
on conformance checking of multi-perspective procedural, Petri net-based pro-
cess models. Specifically, we introduce a novel general framework, called CoCo-
MoT, to tackle conformance checking of data Petri nets (DPNs), an extensively
studied formalism within BPM [13,14,18] and process mining [21–23]. The main
feature of CoCoMoT is that, instead of providing ad-hoc algorithmic techniques
for checking conformance, it provides an overarching approach based on the the-
ory and practice of Satisfiability Modulo Theories (SMT) [2]. By relying on an
SMT backend, we employ well-established automated reasoning techniques that
can support data and operations from a variety of theories, restricting the data
dimension as little as possible.

On top of this basis, we provide a fourfold contribution. First, we show that
conformance checking of DPNs can be reduced to satisfiability of SMT formulas
over the theory of linear integer and rational arithmetic. While our approach
is inspired by the use of SAT solvers for a similar purpose [5,12], the use of
SMT not only allows us to support data, but also capture unbounded nets. Our
CoCoMoT approach results in a conformance checking procedure running in NP,
which is optimal for the problem, in contrast to earlier approaches running in
exponential time [21,22].

Second, we show how to simplify and optimize conformance checking by intro-
ducing a preprocessing, trace clustering technique for DPNs that groups together
traces that have the same minimal alignment cost. Clustering allows one to com-
pute conformance metrics by just computing alignments of one representative per
cluster, and to obtain alignments for other members of the same cluster from
a simple adjustment of the alignment computed for the representative trace.
Besides the general notion of clustering, we then propose a concrete clustering
strategy grounded in data abstraction for variable-to-constant constraints, and
show how this strategy leads to a significant speedup in our experiments.

Third, we report on a proof-of-concept implementation of CoCoMoT, dis-
cussing optimization techniques and showing the feasibility of the approach with
an experimental evaluation on three different benchmark sets.

Finally, we discuss how our approach, due to its modularity, directly lends
itself to a number of further process analysis tasks such as computing multi-
and anti-alignments, using CoCoMoT as a log clustering method in the spirit of
earlier work for Petri nets without data [4,12], doing model repair, and handling
more sophisticated data such as persistent, relational data.

The remainder of the paper is structured as follows. In Sect. 2 we recall the
relevant basics about data Petri nets and alignments. This paves the way to
present our SMT encoding in Sect. 3. Our clustering technique that serves as
a preprocessor for conformance checking is the topic of Sect. 4. In Sect. 5 we
describe our prototype implementation and the conducted experiments. After-
wards, we discuss perspectives and potential of our approach in Sect. 6.
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2 Preliminaries

In this section we provide the required preliminaries. We first recall data Petri
nets (DPNs) and their execution semantics, then delve into event logs and con-
formance checking alignments, and finally discuss the main machinery behind
our approach for satisfiability modulo theories (SMT).

2.1 Data Petri Nets

We use Data Petri nets (DPNs) for modelling multi-perspective processes, adopt-
ing a formalization as in [21,22].

We start by introducing sorts – data types of variables manipulated by a
process. We fix a set of (process variable) sorts Σ = {bool, int, rat, string}
with associated domains of booleans D(bool) = B, integers D(int) = Z, ratio-
nals D(rat) = Q, and strings D(string) = S. A set of process variables V
is sorted if there is a function sort : V → Σ assigning a sort to each vari-
able in V . For a set of variables V , we consider two disjoint sets of anno-
tated variables V r = {vr | v ∈V } and V w = {vw | v ∈V } to be respec-
tively read and written by process activities, as explained below, and we assume
sort(vr) = sort(vw) = sort(v) for every v ∈ V . For a sort σ ∈ Σ, Vσ denotes
the subset of V r ∪ V w of annotated variables of sort σ. To manipulate sorted
variables, we consider expressions c with the following grammar:

c = Vbool | B | n ≥ n | r ≥ r | r > r | s = s | b ∧ b | ¬b s = Vstring | S

n = Vint | Z | n + n | −n r = Vrat | Q | r + r | −r

Standard equivalences apply, hence disjunction (i.e., ∨) and comparisons �=,
<, ≤ can be used as well (bool and string only support (in)equality). These
expressions form the basis for capturing conditions on the values of variables
that are read and written during the execution of activities in the process. For
this reason, we call them constraints. Intuitively, a constraint (vr

1 > vr
2) dictates

that the current value of variable v1 is greater than the current value of v2.
Similarly, (vw

1 > vr
2 +1)∧ (vw

1 < vr
3) requires that the new value given to v1 (i.e.,

assigned to v1 as a result of the execution of the activity to which this constraint
is attached) is greater than the current value of v2 plus 1, and smaller than v3.
More in general, given a constraint c as above, we refer to the annotated variables
in V r and V w that appear in c as the read and written variables, respectively.
The set of read and written variables that appear in a constraint c is denoted by
Var(c), hence Var(c) ⊆ V w ∪ V r. We denote the set of all constraints by C(V ).

Definition 1 (DPN). A Petri net with data (DPN) is given by a tuple N =
(P, T, F, �, A, V, guard), where (1) (P, T, F, �) is a Petri net with two non-empty
disjoint sets of places P and transitions T , a flow relation F : (P ×T )∪(T ×P ) →
N and a labeling function � : T → A ∪ {τ}, where A is a finite set of activity
labels and τ is a special symbol denoting silent transitions; (2) V is a sorted set
of process variables; and (3) guard : T → C(V ) is a guard assignment.
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As customary, given x ∈ P ∪ T , we use •x := {y | F (y, x) > 0} to denote
the preset of x and x• := {y | F (x, y) > 0} to denote the postset of x. In order
to refer to the variables read and written by a transition t, we use the notations
read(t) = {v | vr ∈ Var(guard(t))} and write(t) = {v | vw ∈ Var(guard(t))}.
Finally, GN is the set of all the guards appearing in N .

To assign values to variables, we use variable assignments. A state variable
assignment is a total function α that assigns a value to each variable in V , such
that α(v) ∈ D(sort(v)) for all v ∈ V . These assignments are used to specify
the current value of all variables. Similarly, a transition variable assignment is
a partial function β that assigns a value to annotated variables, namely β(x) ∈
D(sort(x)), with x ∈ V r ∪ V w. These are used to specify how variables change
as the result of activity executions (cf. Definition 2).

A state in a DPN N is a pair (M,α) constituted by a marking M : P →
N for the underlying Petri net (P, T, F, �), plus a state variable assignment α.
Therefore, a state simultaneously accounts for the control flow progress and for
the current values of all variables in V , as specified by α.

We now define when a Petri net transition may fire from a given state.

Definition 2 (Transition firing). A transition t ∈ T is enabled in state
(M,α) if a transition variable assignment β exists such that:

(i) β(vr) = α(v) for every v ∈ read(t), i.e., β is as α for read variables;
(ii) β |= guard(t), i.e., β satisfies the guard; and
(iii) M(p) > F (p, t) for every p ∈ •t;
(iv) dom(β) = Var(guard(t)), where dom denotes the domain of functions: β

is defined for the annotated variables in the guard.

An enabled transition may fire, producing a new state (M ′, α′), s.t. M ′(p) =
M(p) − F (p, t) + F (t, p) for every p ∈ P , and α′(v) = β(vw) for every v ∈
write(t), and α′(v) = α(v) for every v �∈ write(t). A pair (t, β) as above is
called (valid) transition firing, and we denote its firing by (M,α) (t,β)−−−→ (M ′, α′).

Given N , we fix one state (MI , α0) as initial, where MI is the initial marking
of the underlying Petri net (P, T, F, �) and α0 specifies the initial value of all
variables in V . Similarly, we denote the final marking as MF , and call final any
state of N of the form (MF , αF ) for some αF .

We say that (M ′, α′) is reachable in a DPN iff there exists a sequence of tran-
sition firings f = (t1, β1), . . . , (tn, βn), s.t. (MI , α0) (t1,β1)−−−−→ . . . (tn,βn)−−−−−→ (M ′, α′),
denoted as (MI , α0) f−→ (Mn, αn). Moreover, f is called a (valid) process run of
N if (MI , α0) f−→ (MF , αF ) for some αF , that is, if the run leads to a final state
from the initial state (MI , α0). Similar to [22], we restrict to DPNs that are
relaxed data sound, that is, where at least one final state is reachable.

We denote the set of valid transition firings of a DPN N as F(N ), and the
set of process runs as Runs(N ).
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Example 1. Let N be as shown (with initial marking [p0] and final marking [p3]):

p0

a

xw ≥ 0 p1

b

yw > 0 p2

τ

xr ≤ 3 ∧ yr < 4 p3

d

yw = yr + 1

τ

xr ≤ 3

The set Runs(N ) contains, e.g., 〈(a, {xw �→ 2}), (b, {yw �→ 1}), (τ, {xr �→ 2, yr �→
1})〉 and 〈(a, {xw �→ 1}), (τ, {xr �→ 1}), (d, {yw �→ 1})〉, for α0 = {x �→ 0, y �→ 0}.

2.2 Event Logs and Alignments

Given an arbitrary set A of activity labels, an event is a pair (b, α), where b ∈ A
and α is a so-called event variable assignment, that is, a function that associates
values to variables in V . Differently from state variable assignments, an event
variable assignment can be a partial function.

Definition 3 (Log trace, event log). Given a set E of events, a log trace
e ∈ E∗ is a sequence of events in E and an event log L ∈ M(E∗) is a multiset
of log traces from E, where M(E∗) denotes the set of multisets over E∗.

We focus on a conformance checking procedure that aims at constructing an
alignment of a given log trace e w.r.t. the process model (i.e., the DPN N ), by
matching events in the log trace against transitions firings in the process runs of
N . However, when constructing an alignment, not every event can always be put
in correspondence with a transition firing, and vice versa. Therefore, we introduce
a special “skip” symbol � and the extended set of events E� = E ∪ {�} and,
given N , the extended set of transition firings F� = F(N ) ∪ {�}.

Given a DPN N and a set E of events as above, a pair (e, f) ∈ E�×F�\{(�
,�)} is called move.1 A move (e, f) is called: (i) log move if e ∈ E and f =�; (ii)
model move if e =� and f ∈ F(N ); (iii) synchronous move if (e, f) ∈ E ×F(N ).
Let MovesN be the set of all such moves. We now show how moves can be used
to define alignments of log traces.

For a sequence of moves γ = (e1, f1), . . . , (en, fn), the log projection γ|L of
γ is the subsequence e′

1, . . . , e
′
i of e1, . . . , en such that e′

1, . . . , e
′
i ∈ E∗ is obtained

by projecting away from γ all � symbols. Similarly, the model projection γ|M
of γ is the subsequence f ′

1, . . . , f
′
j of f1, . . . , fn such that f ′

1, . . . , f
′
j ∈ F(N )∗.

Definition 4 (Alignment). Given N , a sequence of legal moves γ is an align-
ment of a log trace e if γ|L = e, and it is complete if γ|M ∈ Runs(N ).

Example 2. The sequences γ1, γ2 and γ3 below are possible complete alignments
of the log trace e = 〈(a, {x �→ 2}), (b, {y �→ 1})〉 w.r.t. the DPN from Example 1:

γ1 = a x �→ 2
a xw �→ 2

b y �→ 1
b yw �→ 1

�
τ . . .

γ2 = a x �→ 2
a xw �→ 3

�
τ . . .

b y �→ 1
� γ3 = a x �→ 2

�
b y �→ 1

�
�

a xw �→ 3
�

τ . . .

1 In contrast to [22], we do not distinguish between synchronous moves with correct
and incorrect write operations, and defer this differentiation to the cost function.
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We denote by Align(N , e) the set of complete alignments for a log trace e
w.r.t. N . A cost function is a mapping κ : MovesN → R

+ that assigns a cost to
every move. It is naturally extended to alignments as follows.

Definition 5 (Cost). Given N , e and γ = (e1, f1), . . . , (en, fn) ∈ Align(N , e),
the cost of γ is obtained by summing up the costs of its moves, that is, κ(γ) =∑n

i=1 κ(ei, fi). Moreover, γ is optimal for e if κ(γ) is minimal among all com-
plete alignments for e, namely there is no γ′ ∈ Align(N , e) with κ(γ′) < κ(γ).

We denote the cost of an optimal alignment for e with respect to N by κopt
N (e).

Given N , the set of optimal alignments for e is denoted by Alignopt(N , e).

2.3 Satisfiability Modulo Theories (SMT)

The SAT problem asks, given a propositional formula ϕ, to either find a satis-
fying assignment ν under which ϕ evaluates to true, or detect that ϕ is unsat-
isfiable. For instance, given the formula (p ∨ q) ∧ (¬p ∨ r) ∧ (¬r ∨ ¬q), a sat-
isfying assignment is ν(p) = ν(r) = �, ν(q) = ⊥. The Satisfiability Modulo
Theories (SMT) problem [2] extends SAT by asking to decide satisfiability of
a formula ϕ whose language extends propositional formulas by constants and
operators from one or more theories T (e.g., arithmetics, bit-vectors, arrays,
uninterpreted functions). For this paper, only the theories of linear integer and
rational arithmetic (LIA and LQA) are relevant. For instance, the SMT formula
a > 1 ∧ (a + b = 10 ∨ a − b = 20) ∧ p, where a, b are integer and p is a propo-
sitional variable, is satisfiable by the assignment ν such that ν(a) = ν(b) = 5
and ν(p) = �. Another important problem studied in the area of SMT and
relevant to this paper is the one of Optimization Modulo Theories (OMT) [27].
The OMT problem asks, given a formula ϕ, to find a satisfying assignment of
ϕ that minimizes or maximizes a given objective expression. SMT-LIB [1] is an
international initiative aiming at providing an extensive on-line library of bench-
marks and promoting the adoption of common languages and interfaces for SMT
solvers. In this paper, we make use of the SMT solvers Yices 2 [16] and Z3 [15].

3 Conformance Checking via SMT

In this section we illustrate our approach. We first describe in Sect. 3.1 a generic
distance measure to be used as cost function. Then, in Sect. 3.2 we detail our
encoding of the problem of finding optimal alignments in SMT. Notably, this
technique works also for nets with arc multiplicities and unbounded nets, beyond
the safe case considered in [5]. Finally, in Sect. 3.3 we analyze the computational
complexity. Full proofs and details can be found in [19].

3.1 Distance-Based Cost Function

We present here a function used to measure the distance between a log trace
and a process run. The recursive definition has the same structure as that of
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the standard edit distance, which allows us to adopt a similar encoding as used
in the literature [3]. However, it generalizes both the standard edit distance
and distance functions previously used for multi-perspective conformance check-
ing [21,22], and admits also other measures that are specific to the model and
the SMT theory used. Our measure is parameterized by three functions:

PL : E → N PM : F(N ) → N P= : E × F(N ) → N

respectively called the log move penalty, model move penalty, and synchronous
move penalty functions (cf. Section 2.2). We use these functions to assign penal-
ties to log moves, model moves, or synchronous moves. In what follows, we denote
prefixes of length j of a log trace e ∈ E∗ of length m as e|j , provided 0 ≤ j ≤ m,
and analogously for a process run f ∈ Runs(N ) (recall that these are sequences
of transition firings in F(N )).

Definition 6 (Edit distance). Given a DPN N , let e = e1, . . . , em be a log
trace and f = f1, . . . , fn a process run. For all i and j, 0≤ i≤ m and 0 ≤ j ≤ n,
the edit distance δ(e|i, f |j) is recursively defined as follows:

δ(ε, ε) = 0
δ(e|i+1, ε) = PL(ei+1) + δ(e|i, ε)
δ(ε, f |j+1) = PM (fj+1) + δ(ε, f |j)

δ(e|i+1, f |j+1) = min

⎧
⎨

⎩

δ(e|i, f |j) + P=(ei+1, fj+1)
PL(ei+1) + δ(e|i, f |j+1)
PM (fj+1) + δ(e|i+1, f |j)

Definition 6 can be used to define a cost function by setting κ(γ) = δ(γ|L , γ|M ),
for any alignment γ. In the sequel, we call such a cost function distance-based.
Moreover, it is known that for any trace e and process run f with |e| = m and
|f | = n, given the (n + 1) × (m + 1)-matrix D such that Dij = δ(e|i, f |j), one
can reconstruct an alignment of e and f that is optimal with respect to κ [5,25].

Remark 1. By fixing the parameters P=, PL, and PM of Definition 6, one obtains
concrete, known distance-based cost functions, such as the following:

Standard Cost Function. Definition 6 can be instantiated to the measure
in [22, Ex. 2], [21, Def. 4.5]. To that end, we set PL(b, α) = 1; PM (t, β) =
0 if t is silent (i.e., �(t) = τ) and PM (t, β) = |write(t)| + 1 otherwise;
and P=((b, α), (t, β)) = |{v ∈ dom(α) | α(v) �= β(vw)}| if b = �(t) and
P=((b, α), (t, β)) = ∞ otherwise.

Levenshtein Distance. The standard edit distance is obtained with PL(b, α) =
PM (t, β) = 1, and P=((b, α), (t, β)) = 0 if b = �(t) and P=((b, α), (t, β)) = ∞
otherwise. Note that this measure ignores transition variable assignments β.

For instance, for the alignments γ1, γ2, and γ3 from Example 2, the standard
cost function yields κ(γ1) = 0; κ(γ2) = 2 (because we get penalty 1 for a syn-
chronous move with incorrect write operation, no penalty for the silent model
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move, and penalty 1 for the log move); and κ(γ3) = 4 (because we get penalty 1
for each of the log moves, penalty 2 for a non-silent model move that writes one
variable, and no penalty for the silent model move).

3.2 Encoding

Our approach relies on the fact that the optimal alignment for a given log trace
is upper-bounded in length. To this end, we use the following observation.

Remark 2. Given a DPN N and a log trace e = e1, . . . , em, let f = f1, . . . , fn

be a valid process run such that
∑n

j=1 PM (fj) is minimal. Then an optimal
alignment γ for e and N satisfies κ(γ) ≤ κ(γmax), and hence |γ| ≤ |γmax|,
where γmax is the alignment (e1,�), . . . , (em,�), (�, f1), . . . (�, fn).

Given a log trace e = e1, . . . , em and a DPN N with initial marking MI , initial
state variable assignment α0, final marking MF , we want to construct an optimal
alignment γ ∈ Alignopt(N , e). To that end, we assume throughout this section
that the number of non-empty model steps in γ is bounded by some fixed number
n (cf. Rem. 2). Our approach comprises the following four steps: (1) represent
the alignment symbolically by a set of SMT variables, (2) set up constraints Φ
that symbolically express optimality of this alignment, (3) solve the constraints
Φ to obtain a satisfying assignment ν, and (4) decode an optimal alignment γ
from ν. We next elaborate these steps in detail.

(1) Alignment representation. We use the following SMT variables:
(a) transition step variables Si for 1 ≤ i ≤ n of type integer; if T =

{t1, . . . , t|T |} then it is ensured that 1 ≤ Si ≤ |T |, with the semantics
that Si is assigned j iff the i-th transition in the process run is tj ;

(b) marking variables Mi,p of type integer for all i, p with 0 ≤ i ≤ n and
p ∈ P , where Mi,p is assigned k iff there are k tokens in place p at instant
i;

(c) data variables Xi,v for all v ∈ V and i, 0 ≤ i ≤ n; the type of these
variables depends on v, with the semantics that Xi,v is assigned r iff the
value of v at instant i is r; we also write Xi for (Xi,v1 , . . . , Xi,vk

);
(d) distance variables δi,j of type integer for 0 ≤ i ≤ m and 0 ≤ j ≤ n,

where δi,j = d if d is the cost of the prefix e|i of the log trace e, and the
prefix f |j of the (yet to be determined) process run f , i.e., d = δ(e|i, fj)
by Definition 6.

Note that variables (a)–(c) comprise all information required to capture a
process run with n steps, which will make up the model projection of the
alignment γ, while the distance variables (d) will be used to encode the align-
ment.
(2) Encoding. To ensure that the values of variables correspond to a valid
run, we assert the following constraints:

• The initial marking MI and the initial assignment α0 are respected:
∧

p∈P M0,p = MI(p) ∧
∧

v∈V X0,v = α0(v) (ϕinit)
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• The final marking MF is respected:
∧

p∈P Mn,p = MF (p) (ϕfinal)

• Transitions correspond to transition firings in the DPN:
∧

1≤i≤n 1 ≤ Si ≤ |T | (ϕtrans)

In contrast to [3], no constraints are needed to express that at every
instant exactly one transition occurs, since the value of Si is unique.

• Transitions are enabled when they fire:
∧

1≤i≤n

∧
1≤j≤|T | (Si = j) →

∧
p ∈ •tj

Mi−1,p ≥ |•tj |p (ϕenabled)

where |•tj |p denotes the multiplicity of p in the multiset •tj .
• We encode the token game:

∧

1≤i≤n

∧

1≤j≤|T |
(Si = j) →

∧

p ∈ P

Mi,p − Mi−1,p = |tj•|p − |•tj |p (ϕmark )

where |tj•|p is the multiplicity of p in the multiset tj
•.

• The transitions satisfy the constraints on data:
∧

1≤i<n

∧

1≤j≤|T |
(Si = j) → guard(tj)χ ∧

∧

v �∈write(tj)

Xi−1,v = Xi,v (ϕdata)

where the substitution χ uniformly replaces V r by Xi−1 and V w by Xi.
• The encoding of the data edit distance depends on the penalty functions

P=, PM , and PL. We illustrate here the formulae obtained for the standard
cost function in Remark 1. Given a log trace e = (b1, α1), . . . , (bm, αm),
let the expressions [PL], [PM ]j , and [P=]i,j be defined as follows, for all i
and j:

[PL] = 1
[PM ]j = ite(Sj = 1, cw(t1), . . . ite(Sj = |T | − 1, cw(t|T |−1), cw(t|T |)) . . . )

[P=]i,j = ite(Sj = bi,
∑

v∈write(bi)

ite(αi(v) = Xi,v, 0, 1),∞)

where the write cost cw(t) of transition t ∈ T is 0 if �(t) = τ , or
|write(t)| + 1 otherwise, and ite is the if-then-else operator. It is then
straightforward to encode the data edit distance by combining all equa-
tions in Definition 6:

δ0,0 = 0 δi+1,0 = [PL] + δi,0 δ0,j+1 = [PM ]j+1 + δ0,j (ϕδ)

δi+1,j+1 = min([P=]i+1,j+1 + δi,j , [PL] + δi,j+1, [PM ]j+1 + δi+1,j)

(3) Solving. We use an SMT solver to obtain a satisfying assignment ν for
the following constrained optimization problem:

ϕinit ∧ ϕfinal ∧ ϕtrans ∧ ϕenabled ∧ ϕmark ∧ ϕdata ∧ ϕδ minimizing δm,n

(Φ)
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(4) Decoding. We obtain a valid process run f = f1, . . . , fn by decoding with
respect to ν the variable sets Si (to get the transitions taken), Mi,p (to get the
markings), and Xi,v (to get the state variable assignments) for every instant i,
as described in Step (1). Moreover, we use the known correspondence between
edit distance and alignments [25] to reconstruct an alignment γ = γm,n of e
and f . To that end, consider the (partial) alignments γi,j recursively defined
as follows:

γ0,0 = ε γi+1,0 = γi,0 · (ei+1, �) γ0,j+1 = γ0,j · (�, fj+1)

γi+1,j+1 =

⎧
⎪⎨

⎪⎩

γi,j+1 · (ei+1, �) if ν(δi+1,j+1) = ν([PL] + δi,j+1)

γi+1,j · (�, fj+1) if otherwise ν(δi+1,j+1) = ν([PM ]j+1 + δi+1,j)

γi,j · (ei+1, fj+1) otherwise

To obtain an optimal alignment, we use the following result:

Theorem 1. Let N be a DPN, e a log trace and ν a solution to (Φ). Then γm,n

is an optimal alignment for e, i.e., γm,n ∈ Alignopt(N , e).

3.3 Complexity

In this section we briefly comment on the computational complexity of our app-
roach and the (decision problem version of the) optimal alignment problem. To
that end, let a cost function κ be well-behaved if it is distance-based and its
parameter functions P=, PM , and PL are effectively computable and can be
defined by linear arithmetic expressions and case distinctions. For c ∈ N and a
well-behaved cost function κ, let Alignc be the problem that, given a relaxed
data-sound DPN and a log trace, checks whether an alignment of cost c with
respect to κ exists. For any given DPN N , log trace e and cost c, the encoding
presented in Sec. 3.2 is used to construct an SMT problem over linear inte-
ger/rational arithmetic that is satisfiable if and only if an alignment of cost c
exists. The size of such an encoding is polynomial in the size of the DPN and
the length of the log trace. Thus, since satisfiability of the relevant class of SMT
problems is in NP [6], our approach to decide Alignc is in NP. In contrast,
the approach presented in [21,22] is exponential in the length of the log trace.
Moreover, Alignc is NP-hard since it is easy to reduce satisfiability of a boolean
formula (SAT) to Align0. Hence, all in all Alignc is NP-complete. Given a
boolean formula ϕ with variables V , let Nϕ be the following DPN:

t	 : �

tϕ : ϕw

where ϕw is the formula obtained from ϕ by replacing all variables v ∈ V by vw.
The DPN Nϕ is relaxed data-sound due to the transition t	. Let e be the log
trace consisting of the single event (tϕ, ∅), and κ the standard edit distance (cf.
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Rem. 1). Note that Runs(Nϕ) contains at most two valid process runs: we have
f0 = (t	, ∅) ∈ Runs(Nϕ) and κ(e, f0) = ∞. If ϕ is satisfiable by some transition
variable assignment β, we also have f1 = (tϕ, βw) ∈ Runs(Nϕ), where βw is the
assignment such that α(v) = βw(vw) for all v ∈ V , and κ(e, f1) = 0. Thus, e
admits an alignment of cost 0 if and only if ϕ is satisfiable.

4 Trace Clustering

Clustering techniques are used to group together multiple traces in a process log
so as to simplify and optimize several forms of analysis [29], including confor-
mance checking [4,12]. In this section we introduce a novel form of clustering
that is instrumental to simplify our multi-perspective conformance checking tech-
nique. The idea is to partition the log into clusters, where all traces within the
same cluster share the same optimal alignment cost. We do so in two steps. We
first introduce a general equivalence relation on the log traces, which thus iden-
tifies clusters as equivalence classes. We then provide an instantiation of such a
relation that compares traces in the log by considering the satisfaction of guards
of the DPN, thus providing a sort of data abstraction-based clustering.

Definition 7 (Cost-based clustering). Given a DPN N , a log L, and a
cost function κ, a cost-based clustering is an equivalence relation ≡κopt

N
over

L, where, for all traces e, e′ ∈ L s.t. e ≡κopt
N

e′ we have that κopt
N (e) = κopt

N (e′).

Notice that, according to the definition, different clusters do not necessarily
correspond to different optimal alignment costs. We now introduce one specific
equivalence relation that focuses on DPN guards performing variable-to-constant
comparisons, and then show that this equivalence relation is a cost-based clus-
tering. By focusing on such guards, one can improve performance of alignment-
based analytic tasks. Indeed, variable-to-constant guards, although simple, are
extensively used in practice, and they have been subject to an extensive body
of research [13]. Moreover, this class of guards is common in benchmarks from
the literature, is the one required to model decisions based on the DMN S-FEEL
standard, and is the target of guard discovery techniques based on decision trees
[23]. Note, however, that we do not at all restrict the DPNs we consider to use
only such guards - richer guards are simply not exploited in the clustering.

Recalling that constraints are used in DPNs as guards associated to tran-
sitions, and that a constraint is in general a boolean expression whose atoms
are comparisons (cf. Section 2.1), we use Atoms(c) to define the set of all
atoms in a guard c ∈ GN . Given a DPN N , a variable-to-constant atom is
an expression of the form x � k, where � ∈ {>,≥,=}, x ∈ V r ∪ V w and
k is a constant in Z or Q. We say that a variable v ∈ V is restricted to
constant comparison if all atoms in the guards of N that involve vr or vw

are variable-to-constant atoms. For such variables, we also introduce the set
atsv = {v � k | x � k ∈ Atoms(c), for some c ∈ GN , x ∈ {vr, vw}}, i.e., the set
of comparison atoms v � k as above, this time expressed with non-annotated
variables. The set atsv can be seen as a set of predicates with free variable v.
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Intuitively, given a cost function as in Remark 1, the optimal alignment of a
log trace does not depend on the actual variable values specified in the events in
the log trace, but only on whether the atoms in atsv are satisfied. In this sense,
our approach can be considered as a special form of predicate abstraction. Based
on this idea, trace equivalence is defined as follows.

Definition 8. For a variable v that is restricted to constant comparison and
two values u1, u2, let u1 ∼v

cc u2 if for all v � k ∈ atsv, u1 � k holds iff u2 � k
holds. Two event variable assignments α and α′ are equivalent up to constant
comparison, denoted α ∼cc α′, if dom(α) = dom(α′) and for all variables v ∈
dom(α), either (i) α(v) = α′(v), or (ii) v is restricted to constant comparison
and α(v) ∼v

cc α′(v).

This definition intuitively guarantees that α and α′ “agree on satisfying” the
same atomic constraints in the process. For example, if α(x) = 4 and α′(x) = 5,
then, given two constraints x > 3 and x < 2, we will get that α |= x > 3 and
α′ |= x > 3, whereas α �|= x < 2 as well as α′ �|= x < 2.

Definition 9 (Equivalence up to constant comparison). Two events
e = (b, α) and e′ = (b′, α′) are equivalent up to constant comparison, denoted
e ∼cc e′, if b = b′ and α ∼cc α′. Two log traces e, e′ are equivalent up to con-
stant comparison, denoted e ∼cc e′, iff their events are pairwise equivalent up to
constant comparison. That is, e = e1, . . . , en, e′ = e′

1, . . . , e
′
n, and ei ∼cc e′

i for
all i, 1≤ i≤ n.

Example 3. In Example 1, variable x is restricted to constant comparison, while
y is not. Since atsx = {x ≥ 0, x ≤ 3}, the log traces e1 = 〈(a, {x �→ 2}), (b, {y �→
1})〉 and e2 = 〈(a, {x �→ 3}), (b, {y �→ 1})〉, satisfy e1 ∼cc e2, but for e3 =
〈(a, {x �→ 4}), (b, {y �→ 1})〉 we have e1 �∼cc e3 because 3 �∼x

cc 4, and e4 =
〈(a, {x �→ 3}), (b, {y �→ 2})〉 satisfies e1 �∼cc e4 because the values for y differ.
The equivalent traces e1 and e2 have the same optimal cost with respect to the
standard cost function from Remark 1: for the alignments

γ1 = a x �→ 2
a xw �→ 2

b y �→ 1
b yw �→ 1

�
τ . . .

γ2 = a x �→ 3
a xw �→ 3

b y �→ 1
b yw �→ 1

�
τ . . .

γ3 = a x �→ 4
a xw �→ 3

b y �→ 1
b yw �→ 1

�
τ . . .

we have κopt
N (e1) = κ(γ1) = 0 and κopt

N (e2) = κ(γ2) = 0. Note, however, that
the respective process runs γ1|M and γ2|M differ. On the other hand, γ3 is an
optimal alignment for e3 but κ(γ3) = κopt

N (e3) = 1.
Moreover, e1 and e3 show that for trace equivalence it does not suffice to

consider model transitions with activity labels that occur in the traces: all events
in e1 and e3 correctly correspond to transitions with the same labels in N ,
but for a later transition the value of x makes a difference. This motivates the
requirement that in equivalent traces (Definition 8 and Definition 9) the values
of a variable v that is restricted to constant comparison satisfies the same subset
of atsv.
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We next show that equivalence up to constant comparison is a cost-based
clustering, provided that the cost function is of a certain format. To that
end, we consider a distance-based cost function κ from Definition 6 and call
it comparison-based when the following conditions hold:

1. PL(b, α) does not depend on the values assigned by α, and PM (t, β) does not
depend on the values assigned by β;

2. the value of P=((b, α), (t, β)) depends only on whether conditions b = �(t)
and α(v) = β(vw) are satisfied or not.

Note that this requirement is satisfied by the distance-based cost function in
Remark 1. Indeed, in the standard cost function, PL(b, α) = 1 and thus it
does not depend on α. Moreover, the second condition is clearly satisfied, as
in P=((b, α), (t, β)) = |{v ∈ dom(α) | α(v) �= β(vw)}|, for b = �(t), we only need
to check whether α(v) �= β(vw).

Theorem 2. Equivalence up to constant comparison is a cost-based clustering
with respect to any comparison-based cost function.

Proof (sketch). We prove that if e1 has an alignment γ1 with cost κ(γ1) =
δ(e1, f1), where f1 = γ1|M , then there is a process run f2 such that δ(e2, f2) =
κ(γ1), and hence there is an alignment γ2 with γ2|L = e2, γ2|M = f2 and
κ(γ2) = δ(e2, f2). More precisely, if |e1| = |e2| = m and |f1| = n, we show by
induction on m +n that there is some f2 such that |f2| = n, δ(e1, f1) = δ(e2, f2),
and f1 and f2 result in state variable assignments that are equivalent up to ∼cc .
The inductive step works by a case distinction on the cases in Definition 6,
exploiting the properties of a comparison-based cost function. The full proof is
in [19].

An interesting byproduct of the constructive proof of Theorem 2 (see [19]) is that
given γ ∈ Alignopt(N , e), for every trace e′ in the same cluster (i.e. e ∼cc e′) an
optimal alignment is easily computed from γ, e, and e′ in linear time.

All in all, we thus get that our clustering technique allows us to compute
faithful conformance metrics on logs by calculating alignment costs only on a
single representative trace per cluster.

5 Implementation and Experiments

We now report on the DPN conformance checking tool cocomot, a proof-of-
concept implementation based on the encoding in Sec. 3.2. We focus on imple-
mentation, some optimizations, and experiments on benchmarks from the liter-
ature. The source code together with related datasets are publicly available on
the tool webpage: https://github.com/bytekid/cocomot.

Implementation. Our cocomot prototype is a Python command line script:
it takes as input a DPN (as .pnml file) and a log (as .xes) and computes the
optimal alignment distance, using the standard cost function from Remark 1,

https://github.com/bytekid/cocomot
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for every trace in the log. In verbose mode, it additionally prints an optimal
alignment. To reduce effort, cocomot first preprocesses the log to a sublog of
unique traces, and second applies trace clustering as described in Sec. 4 to further
partition the sublog into equivalent traces. The conformance check is then run
for one representative from every equivalence class.

cocomot uses pm4py (https://pm4py.fit.fraunhofer.de/) to parse traces, and
employs the SMT solver Yices 2 [16] , or alternatively Z3 [15], as backend solver.
Instead of writing the formulas to files, we use the bindings provided by the
respective Python interfaces. Since Yices 2 has no optimization built-in, we
implemented a minimization scheme using multiple satisfiability checks. Every
check is run with a timeout, to avoid divergence on large problems.

Encoding Optimizations. To prune the search space, we modified the encod-
ing presented in Sect. 3.2. We report here on the four most effective changes.
(1) We perform a reachability analysis in a preprocessing step. This allows us
to restrict the range of transition variables Si in (ϕtrans), as well as the cases
Si = j in (ϕenabled ) and (ϕmark ) to those that are actually reachable. More-
over, if a data variable v ∈ V will never be written in some step i, 1 ≤ i ≤ n,
because no respective transition is reachable, we set Xi,v identical to Xi−1,v to
reduce the number of variables. (2) If the net is 1-bounded, the marking vari-
ables Mi,p are typed as boolean rather than integer, similarly to [3]. (3) As δm,n

is minimized, the equation of the form δi+1,j+1 = min(e1, e2, e3) in (ϕδ) can
be replaced by inequalities δi+1,j+1 ≥ min(e1, e2, e3). The latter is equivalent
to δi+1,j+1 ≥ e1 ∨ δi+1,j+1 ≥ e2 ∨ δi+1,j+1 ≥ e3, which is processed by the
solver much more efficiently since it avoids an if-then-else construct. (4) Sev-
eral subexpressions are replaced by fresh variables (in particular when occurring
repeatedly) - this is empirically known to positively affect performance.

Some of the data sets described below contain data variables of non-numeric
types, namely boolean and string variables. The encoding represents the former
by boolean SMT variables; and the latter by integer variables, encoding the
string literals in the model as distinct natural numbers (cf. [21, p. 87]).

Experiments. We tested cocomot on three data sets used in earlier work [21,22],
which have also been made publicly available on the tool’s webpage. All exper-
iments were run single-threaded on a 12-core Intel i7-5930K 3.50GHz machine
with 32GB of main memory.

The first data set contains 150370 traces (35681 unique) of road fines issued
by the Italian police. By trace clustering, the log reduces to 4290 non-equivalent
traces. In 268 s, cocomot computes optimal alignments for all traces in this set,
spending 13% of the computation time on parsing the log, 1.5% on trace cluster-
ing, 13% on the generation of the encoding, and the rest on SMT solving.2 When
omitting the clustering preprocessor, cocomot requires about 30 min to process
all 35681 traces. We note some data about the model and log. The maximal
length of a trace is 20, and its average alignment cost is 1.5. The average time

2 Notice that in this paper we do not fix the exact algorithm for trace clustering, which
in our implementation is achieved by exhaustively comparing log traces.

https://pm4py.fit.fraunhofer.de/
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spent on a trace is 0.1 s. The process model has less than 20 transitions, and at
most one token around at any point in time.

The second data set contains 100000 traces (4047 unique) of a hospital billing
process. Trace clustering slightly reduces the number of non-equivalent traces to
4039. For 3392 traces cocomot finds an optimal alignment, while SMT timeouts
occur for the remaining, very long traces (the maximal trace length is 217).

The third data set is about sepsis, and contains 1050 unique (and non-
equivalent) traces. For 1006 traces cocomot finds an optimal alignment, while it
times out for the remaining, very long traces (the maximal trace length is 185).

For the experiments described above we used Yices (with an SMT timeout of
10 min) as Z3 turned out to be considerably slower: checking conformance of the
road fine log using Z3 (with its built-in minimization routine) takes more than
two hours. On average, only 1% of the time is spent on generating the encoding,
while the vast majority of time is used for SMT solving.

Notice that the trace clustering approach suggested in this paper considerably
improves the performance over the presented data sets, as already pointed out
for the one of road fines.

6 Discussion

In this section we outline how the CoCoMoT approach, due to its modularity,
readily lends itself to further tasks related to the analysis of data-aware processes.

The multi-alignment problem asks, given a DPN N and a set of log traces
{e1, . . . , en}, to find a process run f ∈ PN such that

∑n
i=1 κ(γi) is minimal,

where γi is a minimal-cost alignment of ei and f for all i, 1 ≤ i ≤ n [12].3

Our encoding can solve such problems by combining n copies of the distance
variables and their defining equations (ϕδ) with (ϕinit)–(ϕdata), and minimizing
the above objective. Generalizing alignments, multi-alignments are of interest
for their own sake, but also useful for further tasks, described next.

Anti-alignments were introduced to find model runs that deviate as much
as possible from a log, e.g., for precision checking [11]. For a set of traces
{e1, . . . , en}, the aim is to find f ∈ PN of bounded length such that

∑n
i=1 κ(γi)

is maximal, with γi as before. Using our encoding, this can be done as in the
multi-alignment case, replacing minimization by maximization.

Trace clustering was studied as a method to partition event logs into more
homogeneous sub-logs, with the hope that process discovery techniques will per-
form better on the sub-logs than if applied to the original log [12,28]. Chatain
et al. [3,12] propose trace clustering based on multi-alignments. In the same
fashion, our approach can be used to partition a log of DPN traces.

Our approach can also be used for model repair tasks: given a set of traces,
we can use multi-alignments to minimize the sum of the trace distances, while
replacing a parameter of the DPN by a variable (e.g., the threshold value in a
guard). From the satisfying assignment we obtain the value for this parameter

3 Instead of the sum, also other aggregation functions can be used, e.g., maximum.
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that fits the observed behavior best. As constraints (ϕinit)–(ϕdata) symbolically
describe a process run of bounded length, our encoding supports bounded
model checking. Thus we could also implement scenario-based conformance
checking, to find for a given trace the best-matching process run that satisfies
additional constraints, such as that certain data values are not exceeded.

Finally, but crucially, the main advantage of SMT is that it offers a multi-
tude of background theories to capture the data manipulated by the DPN, and to
express sophisticated cost functions. The approach by Mannhardt et al. [21,22]
needs to restrict guards of DPNs to linear arithmetic expressions in order to
use the MILP backend. In our approach, the language of guards may employ
arbitrary functions and predicates from first-order theories supported by SMT
solvers (e.g., uninterpreted functions, arrays, lists, and sets). For example, the
use of (relational) predicates would allow to model structured background infor-
mation, and possibly even refer to full-fledged relational databases from which
data injected in the net are taken, following the SMT-based approaches as in
[8,9]. Moreover, the background theory allows to express sophisticated cost
functions as in Definition 6 with the following parameters (inspired by [21]):
P=((b, α), (t, β)) = |{v ∈ write(t) | ¬R(α(v)), R(β(vw))}| if b = �(t), for some
relation R from a database DB: in this way, P= counts the number of written
variables whose values in the model run are stored in the relation R from DB
whereas their values in the log trace are not.

7 Conclusions

We have introduced CoCoMoT, a foundational framework equipped with a proof-
of-concept, feasible implementation for alignment-based conformance checking
of multi-perspective processes. Beside the several technical results provided in
the paper, the core contribution provided by CoCoMoT is to connect the area of
(multi-perspective) conformance checking with that of declarative problem solv-
ing via SMT. This comes with a great potential for homogeneously tackling a
plethora of related problems in a single framework with a solid theoretical basis
and several state-of-the-art algorithmic techniques, as shown in Sect. 6. While
in this paper we consider simple linear arithmetics for encoding cost functions
in SMT, more complex theories, as well as their combinations, can be consid-
ered, thanks to the generality offered by SMT techniques. For example, one can
capture more sophisticated cost functions involving background knowledge com-
ing from additional data sources (in line of [8]) or correctly addressing privacy
related aspects (when one typically needs to employ uninterpreted functions).
All this is left for future work, but motivate once again the use of SMT.
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Abstract. Alignments are a conformance checking strategy quantifying
the amount of deviations of a trace with respect to a process model,
as well as providing optimal repairs for making the trace conformant
to the process model. Data-aware alignment strategies are also gaining
momentum, as they provide richer descriptions for deviance detection.
Nonetheless, no technique is currently able to provide trace repair solu-
tions in the context of data-aware declarative process models: current
approaches either focus on procedural models, or numerically quantify
the deviance with no proposed repair strategy. After discussing our work-
ing hypotheses, we demonstrate how such a problem can be reduced to
a data-agnostic trace alignment problem, while ensuring the correctness
of its solution. Finally, we show how to find such a solution leveraging
Automated Planning techniques in Artificial Intelligence. Specifically,
we discuss how to align traces with data-aware declarative models by
adding/deleting events in the trace or by changing the attribute values
attached to them.

Keywords: Conformance checking · Alignments · Data-aware
declarative models · Multi-perspective process mining · Automated
planning

1 Introduction

Conformance checking is a branch of process mining assessing whether a
sequence of distinguishable events (i.e., a trace) conforms to the expected process
behavior represented as a process model [21]. When a trace does not conform to
the model, we say that the trace is deviant. In this case, techniques based on
cost-driven alignments additionally provide minimal repair strategies to make the
trace conformant to the model [2]. Alignments represent a valuable instrument
for business analysts, as the combined provision of alternative repair strategies,
ranked by alignment cost, supports the business analyst in choosing among dif-
ferent process improvement strategies. In conformance checking, models can be
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described by either procedural or declarative languages; while the former fully
enumerate the set of all the possible allowed traces, the latter list the constraints
delimiting the expected behavior. Declarative process models like Declare mod-
els [19], whose semantics can be expressed in Linear Time Logic on finite traces
(LTLf ) [9], can always be transformed into constraint automata. The represen-
tation of Declare models as automata can be adopted for aligning traces with
this type of models [8,13].

Multi-perspective checking for process conformance is gaining momentum, as
conformance checking techniques considering both control flow and data annota-
tions as “first-class citizens” enable to discover more deviations [16]. This reflects
the essence of real-world business processes inherently, described by both pro-
cesses and their different domain objects [20] (e.g., employees, products, etc.),
which can be encoded as traces and event data. While alignment-based data-
aware conformance has been already investigated in the context of procedural
models, most of the conformance checking approaches for data-aware declarative
models [7] focus on a numerical approximation of the degree of conformance of
a trace against the model and do not provide repair strategies.

To tackle this research gap, we propose a novel approach for aligning event logs
and data-aware declarative models based on the reduction of this problem into a
data-agnostic alignment problem. This solution exploits the following considera-
tions: a) to represent the process model, we use a sub-set of the data-aware exten-
sion of Declare presented in [7]. After representing the data-aware Declare model
using a data-agnostic LTLf semantics, b) we exploit the data predicates in the
data-aware Declare clauses to partition the data space. This provides propositions
representing data in addition to event labels. Then, c) we combine each event label
with the propositions generated in b) and transform the model in a) into its data-
aware counterpart. The automata-based representation of such a model is used to
align traces (seen as sequences of events with a payload of data attribute-value
pairs) with the model. In particular, we show that the alignment problem can be
expressed as a planning problem in Artificial Intelligence, which can be efficiently
solved by selected state-of-the-art planners [8,17].

Despite the resulting data-agnostic alignment via planning is semantically
equivalent to customary cost-based aligners [2], our previous work [8] showed
that the former outperforms the latter in terms of computational performance
and scalability in the presence of models of considerable size, which is the case
of this paper. In fact, as a consequence of the reduction of the data-aware align-
ment problem into a data-agnostic one, the automata-based process models used
as input for our approach have several more transitions and states than in tradi-
tional alignment problems. Therefore, as we needed to show the feasibility of our
approach, we decided to resort to planning-based alignments for both present-
ing our framework outline and performing the experiments. Planners generate
repair strategies able to align traces and a data-aware declarative model based
on changes at the level of control flow (such as adding/deleting events) or at the
level of the data flow (such as changing the attribute values attached to them).

The rest of the paper is structured as follows: after providing relevant related
work (Sect. 2), we introduce the notion of event log (Sect. 3.1) and the data-aware
declarative language used to represent the model (Sect. 3.2); we also provide hints
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on Automated Planning, as we will later exploit the SymBA*-2 optimal plan-
ner [24] to compute the alignments (Sect. 3.3). These preliminary notions guide
us into the definition of our working assumptions adhering to the literature
of reference (Sect. 4). After deep-diving into the technical details providing the
solution to the data-aware declarative alignment problem (Sect. 5), we bench-
mark SymBA*-2 over a synthetic dataset and discuss its performance in this
context (Sect. 6). Last, we draw our final conclusions and propose some future
work (Sect. 7).

2 Related Work

Most of the conformance checking techniques reported in the scientific liter-
ature are based on procedural models. In [2], for the first time, the authors
introduce conformance checking augmented with the notion of alignments. A
multi-perspective alignment-based approach has been presented in [16], where
the authors propose techniques for conformance checking with respect to data-
aware procedural models. This work combines the A* algorithm for alignment-
based control-flow conformance checking with Integer Linear Programming for
data conformance checking.1

The work described in [13] presents a (data-agnostic) conformance checking
approach based on the concept of alignment for declarative models. It converts
a Declare model into an automaton and performs conformance checking of a log
with respect to the generated automaton. As a result of the analysis each trace
in the log is converted into the most similar trace that the model accepts. This
approach is similar to the procedural one presented in [16]. Our first attempt
was, therefore, to extend this data-aware procedural approach to the declara-
tive case. However, procedural models allow for a divide-and-conquer approach
where, when searching the alignment space for the optimal alignment compu-
tation, the contribution of the control flow and of the data can be separately
analyzed at first, then combining the obtained results. This is, in general, pos-
sible since removing data conditions from a procedural model leads to a more
relaxed resulting model. The situation is completely different for declarative
models, since removing data conditions from negative constraints could make
them stronger, restricting the number of traces that the model accepts. There-
fore, it is not possible to search in the space of traces that the model accepts
constructed by only considering the control-flow, and then refine the search con-
sidering the contribution of data.

More recently, in [6], the authors have presented an approach where the
data perspective for conformance checking with Declare is expressed in terms
of conditions on global process variables disconnected from the specific Declare
constraints expressing the control flow. In other words, data constraints are not
bound to control flow constraints and thus it is not possible to bind the con-
trol flow behavior to specific data attributes. The only truly multi-perspective
1 Note that, by design, Integer Linear Programming is not suitable to support the

lexicographic order of strings, which is instead supported by our approach.
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approach based on declarative models is the one presented in [7], in which the
authors present an algorithmic framework to efficiently check the conformance
of data-aware Declare constraints with respect to event logs. This approach
numerically characterizes the degree of conformance of a log trace against the
model without, however, providing repair strategies to the user. To go beyond
the numerical evaluation of the conformance and build an alignment of a deviant
trace, a boolean answer to the constraint-satisfaction problem is not sufficient
since we need to solve an optimization problem with respect to a specific cost
function. Therefore, in the current paper, Automated Planning has been chosen
as a technique to formalize this optimization problem and translate it into an
operational framework.

3 Preliminary Definitions

3.1 Event Logs

(Data) payloads are finite functions p ∈ V K , where K is a finite set of keys and
V is a (finite) set of data values. We consider also the case in which the value of
a certain key k is missing in a payload. In particular, we denote as ε an element
ε /∈ V , such that p(k) = ε for k /∈ dom(p). Given a finite set of activity labels
Act, an event σj is a pair 〈A, p〉, where A ∈ Act is an activity label, and p is a
payload; we denote with λ (and ς) the first (and second) projection of such pair,
i.e., λ(σj) = A (and ς(σj) = p). A trace σ is a temporally-ordered and finite
sequence of distinct events σ1 · · · σn, modeling a process run. We distinguish
the trace keys (Kt) from the event keys (Ke), such that K = Kt ∪ Ke with
Kt ∩ Ke = ∅: all events within the same trace associate the same values to the
same trace keys, i.e., ∀ 〈Ai, pi〉 , 〈Aj , pj〉 ∈ σ. ∀k ∈ Kt. pi(k) = pj(k). A log L is
a finite set of traces. This characterization is compliant with the eXtensible
Event Stream (XES) format, which is the de facto standard for representing
event logs within the Business Process Management community [1].

3.2 Data-Aware Declare

Declare is a declarative process modeling language [19]. A Declare model M
is described as a set of constraints { c1, . . . , cm } that must be simultaneously
satisfied throughout a process execution. Such constraints express either positive
(or negative) dependencies between two events having labels in Act, or quantify
the occurrence of an event. In the first case, one of the two clause labels is called
activation, and the other target ; while testing a trace σ for conformance over this
clause, the presence of the activation label in σ triggers the clause verification,
requiring the (non-)execution of an event containing the target label in the same
trace.

Declare has been extended to include conditions over data in the Declare
constraints [7]. In this paper, we will consider two types of data predicates φd

(conditions) decorating activations (i.e., activation conditions) and targets (i.e.,
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Table 1. Semantics for MP-Declare constraints in LTLf .

Template LTLf semantics

Existence � → F(A∧φd) ∨ O(A∧φd))

Responded existence G((A∧φd) → (O(B∧φd) ∨ F(B∧φd)))

Response G((A∧φd) → F(B∧φd))

Alternate response G((A∧φd) → X(¬(A∧φd)U(B∧φd))

Chain response G((A∧φd) → X(B∧φd))

Precedence G((B∧φd) → O(A∧φd))

Alternate precedence G((B∧φd) → Y(¬(B∧φd)S(A∧φd))

Chain precedence G((B∧φd) → Y(A∧φd))

Not responded existence G((A∧φd) → ¬(O(B∧φd) ∨ F(B∧φd)))

Not response G((A∧φd) → ¬F(B∧φd))

Not precedence G((B∧φd) → ¬O(A∧φd))

Not chain response G((A∧φd) → ¬X(B∧φd))

Not chain precedence G((B∧φd) → ¬Y(A∧φd))

target conditions), respectively. While activation conditions must be valid when
an event exhibiting the activation label occurs, target conditions impose value
limitations on the payload of events containing the target label.

We use atom A as a shorthand for λ(σi) = A, for each A ∈ Act, given an event
σi to be assessed, while φd is a propositional formula containing as atoms either
the universal truth (	), or the falsehood (⊥), or a binary relation “A.k � c”,
where c is a constant value representing either a number or a string, � is either an
equality or a precedence/subsequent relation over values in V or their negation,
and k ∈ K acts as a placeholder for ς(σi)(k), where ς(σi) is the payload associ-
ated to event σi and k is associated to a value σ(σi)(k). E.g., “RP.quality ≤ 3”
is formally represented as ς(σi)(k) ≤ 3 for key k = quality and for any event σi

having λ(σi) = RP. This is a widely adopted assumption, that spans from data-
aware procedural models [16] to data-aware declarative models [7]. Furthermore,
this assumption can also be adapted to categorical data, as strings are ordered
via lexicographical orderings over the single characters. We denote the compound
conditions, namely the conjunction of label requirements and data conditions,
as ψ = A ∧ φd.

The semantics of the Declare constraints we consider here is represented
in Table 1. Here, the F, X, G, and U LTLf future operators have the following
meanings: formula Fψ1 means that ψ1 holds sometime in the future, Xψ1 means
that ψ1 holds in the next position, Gψ1 says that ψ1 holds forever in the future,
and, lastly, ψ1Uψ2 means that sometime in the future ψ2 will hold and until that
moment ψ1 holds (with ψ1 and ψ2 LTLf formulas). The O, Y and S LTLf past
operators have the following meaning: Oψ1 means that ψ1 holds sometime in
the past, Yψ1 means that ψ1 holds in the previous position, and ψ1Sψ2 means
that ψ2 has held sometime in the past and since that moment ψ1 holds.
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Fig. 1. Representation of the LTLf formula G(¬C∨(F(p4∨p5∨p6∨p7∨p8∨p9)))∧Fp8

as a constraint automaton [25], where Σ contains all the non-⊥ and non-� atoms.

3.3 Automated Planning

Planning systems are an Artificial Intelligence technology showing how to reach
a prefixed goal configuration given an initial world: the goal is met by exploiting
a set of actions that change the initial world to reach the goal configuration [11].
PDDL is the standard Planning Domain Definition Language [10] that can be
used to formulate such problems as P = (I,G,PD), where I is the description
of the initial world, G is the goal configuration, and PD is the planning domain.
The domain is built upon a set of propositions describing the state of the world
(i.e., the set of valid propositions) and a set of actions Ω that can be performed
to reach the goal configuration. An action schema a ∈ Ω has the form a =
〈Para,Prea,Effa〉, where Para is the list of the input parameters for a, Prea

defines the preconditions under which a can be performed, and Effa specifies the
effects of the action on the current world. Both Prea and Effa are represented
as propositions in PD via boolean predicates and numeric fluents.

Recently, the planning community has developed several planners implement-
ing scalable search heuristics, which enable the solution of challenging prob-
lems in several Computer Science domains [17]. Walking in the footsteps of [8],
we focus on planning techniques characterized by fully observable and static
domains providing a perfect world description. In these scenarios, a sequence
of actions whose execution transforms the initial state into a state satisfying
the goal is the desired solution. In order to represent numeric alignment costs,
we exploit the former formalization enhanced with the numeric features pro-
vided by PDDL 2.1 [10], thus keeping track of the costs of planning actions and
synthesizing plans satisfying pre-specified metrics.

4 Working Assumptions

In this section, we outline some working assumptions that can be inferred from
the literature of reference. First, we assume that a) compliance requirements
of Declare models can be expressed in a formal language such as Linear Time
Logic on Finite Traces (LTLf ) [9], as business process logs contain only traces of
finite length; b) we restrict the possible log trace repairs to the traces generated
by the automaton representation of the Declare model [8]; c) differently from
[15,16], we can avoid to model reading and writing operations, as the entirety of
our analysis will be conducted once traces reach their completion; d) last, each
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event in a trace must be represented by one single proposition: similarly to the
non-data aware scenario [8], each event is associated with just one label.2 As
we will see in the incoming section, the latter consideration will require us to
partition the possible data space into distinct atoms.

Given an appropriately chosen set Σ of atoms, it is always possible to repre-
sent a trace σ = σ1 · · · σn as a finite sequence tσ = t1 · · · tn, where, for 1 ≤ i ≤ n,
ti is a unique atom ti ∈ Σ such that σi � ti [8]. Contextually, any LTLf formula
ϕM representing a Declare model M can be represented as a deterministic finite-
state automaton (DFA) AϕM [12] accepting all the sequences tσ from traces σ
satisfying ϕM (see Fig. 1) [25]. A DFA (Σ,Q, q0, ρ, F ) is defined over a finite set
of states Q reading as input symbols from a finite alphabet Σ that are consumed
by traversing the automaton from a starting state q0 ∈ Q via a transition func-
tion ρ : Q × Σ → Q; the input sequence is accepted once the input sequence is
completely digested and an accepting state in F ⊆ Q is reached through nav-
igation. Since in the non data-aware Declare scenario the atoms within LTLf

could be either 	, or ⊥, or ψ = A, Σ corresponds to the activity set Act, as each
event is associated to one single label. For data-aware Declare we will extend Σ
to take into consideration propositional formulas representing data conditions.

We also want to show that our conceptual framework can be translated into
an operational framework by taking existing solid techniques and extending them
appropriately. Therefore, after reducing the data-aware alignment problem into
a data-agnostic one, we choose to operationalize it using Automated Planning, as
our previous work [8] already showed that such a strategy outperforms customary
cost-based trace aligners in terms of computational performance and scalability.

Last, we freely assume that all the events having the same label will always
contain the same set of keys, with possibly differently associated values. This
is a common assumption in the relational database field, where all the rows
belonging to the same table contain the same number of values.

5 Data-Aware Declarative Conformance Checking
as Planning

In this section, we study the problem of aligning log traces σ ∈ L and a (data-
aware) Declare model M for data-aware declarative conformance checking: to do
so, we firstly reduce such a problem to a mere automaton sequence acceptation
task via a specific set of atoms Σ (Cf. Sect. 4) generated from the compound
atoms in M: the finite sequence tσ generated from the log trace σ is accepted
by the automaton AϕM iff. σ is conformant to the model M (Sect. 5.1). Next,
we code tσ and AϕM as specific automata (Sect. 5.2) that are exploited by a
planner to generate the minimally repaired sequence t̂σ (Sect. 5.3), out of which
we generate the minimally repaired trace σ̂ which is conformant to M (Sect. 5.4).

2 To allow multiple labels as customary of big-data scenarios [5], we could simulate
such a situation by choosing only the most relevant label as the actual label and
using other fields in the payload to hold the remaining ones.
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Table 2. Intermediate steps for generating distinct atoms for B labeled events by
partitioning the data space via intervals in Declare clauses.

µ(B, x) µ(B, y)

B.x > 3 B.x > 3 B.y = 0 0 ≤ B.y ≤ 0
B.x > 0 0 < B.x ≤ 3, B.x > 3 B.y �= 0 B.y < 0 ∨ B.y > 0
B.x ≤ 0 B.x ≤ 0

(a) Interval decomposition in µ(·, ·)

B B.y < 0 B.y = 0 B.y > 0

B.x ≤ 0 p1 p2 p3
0 < B.x ≤ 3 p4 p5 p6
B.x > 3 p7 p8 p9

(b) Atom generation for B by data space partitioning
via ×k∈ µ(B, k)

5.1 Σ-encoding for Conformance Checking

As per the previous considerations, we want to show that, to solve the trace
alignment problem for data-aware declarative conformance checking, it is suffi-
cient to provide a specific characterization of Σ. Σ will be used to generate an
automaton accepting symbols in Σ and the automaton will be used to test log
traces represented as finite sequences in Σ∗. The proposed approach for obtain-
ing Σ from a (data-aware) Declare model M is sketched in Fig. 2, and described
in detail in the following.

Fig. 2. Intermediate steps required for obtaining Σ from M and transforming L into
a set of finite sequences T , as well as replacing atoms in ϕd

M with equivalent atoms in
Σ (ϕ′

M).

In the first Declare2LTLf step, we exploit the usual conversion of each single
Declare clause into an LTLf formula (see Table 1) in the negated normal form
[14], where negations are possibly pushed inside atoms “A.k � c” by replacing �
with its negation.

Example 1. The Declare model M containing clauses Response(C, B, B.x > 0)
and Existence(B, B.x > 3 ∧ B.y = 0) is represented as the intermediate LTLf

formula ϕM = G(¬C ∨ F(B ∧ B.x > 0)) ∧ F(B ∧ B.x > 3 ∧ B.y = 0).
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In the second decomposition step, for each compound condition ψ = A ∧ φd

over labels A ∈ Act, we collect all the atoms in φd in the form “A.k � c” for
each k ∈ K in a map μ(A, k). Contextually, we represent atoms as intervals, and
we decompose them into a disjunction of maximal non-overlapping data-aware
predicates. This task can be efficiently computed via interval trees [4]. Last, we
replace the atoms in each LTLf formula by its decomposed representation.

Example 1 (continued). Table 2a shows the interval decomposition results for
the conditions ψ extracted from M. E.g., predicates B.x > 3 and B.x > 0 are first
represented as intervals (3,+∞) and (0,+∞), and then decomposed into disjoint
sub-intervals (−∞,0], (0,3], and (3, + ∞). As a result, ϕM is decomposed into
ϕd

M = G(¬C ∨ F(B ∧ B.x > 0)) ∧ F(B ∧ (0 < B.x ≤ 3 ∨ B.x > 3) ∧ B.y = 0).
In the third atomization step, we put an atom A ∈ Act in Σ if the map μ(A, k)

is empty for each key k ∈ K; otherwise, given all the keys kA1 , . . . , kAh ∈ K for
which the map μ(A, kAi) is not empty, we partition the data space by combining
the non-overlapping intervals obtained from the previous step as μ(A, kA1)×· · ·×
μ(A, kAh). For each of these interval combinations, we generate a fresh atom and
put it in Σ.

Example 1 (continued). Label C is never associated to a data condition, and
therefore it will be associated to one single atom C. On the other hand, label
B is associated to several atoms obtained by partitioning the data space via
the intervals in Table 2a. Table 2b shows the atom decomposition of B via data
intervals over keys x and y, which induce a space partitioning of 9 intervals,
for which we generate nine distinct atoms p1 . . . p9. As a result, we obtain
Σ = { pi | 1 ≤ i ≤ 9 } ∪ { C } in Fig. 2.

Starting from these atoms, we firstly replace the compound conditions in ϕd
M

with a disjunction of atoms from Σ as described in Table 2b, thus obtaining an
equivalent LTLf formula ϕ′

M. Secondly, we generate a finite sequence tσ ∈ T for
each log trace σ ∈ L by replacing each event σi in σ with the only atom ti ∈ Σ
such that σi � ti.

Example 1 (continued). With reference to our running example, we replace
the compound conditions in ϕd

M with the previously generated atoms; the com-
pound cond ition B ∧ B.x > 0 is replaced by all the possible configurations of y
and data intervals 0 < B.x ≤ 3 and B.x > 3, which are identified by the disjunc-
tion p4 ∨ p5 ∨ p6 ∨ p7 ∨ p8 ∨ p9. On the other hand, B ∧ B.x > 3 ∧ B.y = 0
can be directly replaced by atom p8: this results into an equivalent formula
ϕ′

M = G(¬C ∨ (F(p4 ∨ p5 ∨ p6 ∨ p7 ∨ p8 ∨ p9))) ∧ Fp8. Given a log L =
{B{x = 1,y = 0}C{x = 6}C{x = 4}, C{x = 8}B{x = 10,y = 0}}, all the events labeled
as C are replaced with atom C, as there are no (data) conditions related to C

in M that we can exploit to partition the data space. On the other hand, each
event labeled as B is replaced by an equivalent atom in Σ: event B{x = 1,y = 0} is
uniquely represented by p5, while event B{x = 10,y = 0} is uniquely represented by
p8. This transformation results into a set of string sequences T = {p5CC, Cp8}.

After generating ϕ′
M, we can exploit existing approaches [25] to generate a

DFA that only accepts sequences satisfying ϕ′
M. With reference to the previous

example, the first trace is not conformant to M, since the first sequence is not
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accepted by the associated automaton. Instead, the second trace is conformant
to M, since the second sequence is accepted by the associated DFA. In the
forthcoming subsection, we will discuss how to generate repaired sequences that
are accepted by the reference model.

5.2 Automaton Manipulation for Trace Alignment

Consider a sequence tσ = t1 · · · tn generated from a trace σ, and the constraint
automaton AϕM generated from the Declare model M. If the trace is deviant
with respect to the model, we are interested in generating a repair sequence
� = �1 · · · �m from tσ describing the operations to perform over σ to make
it conformant to M. To realize this transformation, we consider two types of
atomic violations, which can be caused by wrong (deletion) or missing (insertion)
atoms in Σ. Differently from the non-data aware case [8], we also need to model
replacement operations, defined as a data update within one single trace event:
these operations can be mimicked by a delete operation followed by an insertion,
as they substitute an event within a trace with the same event where a data value
has been updated. The above operations, that will be later on encoded as PDDL
actions, can be defined as follows:

– deletion/del [#σk ← φ] :: = σ1 · · · σk−1σk+1 · · · σn, for n = |σ|, 1 ≤ k ≤ n,
and φ = σk

– insertion/ins [@σk ← φ] :: = σ1 · · · σk−1φσk · · · σn, for n = |σ| and 1 ≤ k ≤ n
– replacement/repl [σk[φ �→ φ′]] :: = σ1 · · · σk−1φ

′σk+1 · · · σn, for n = |σ|,
1 ≤ k ≤ n, and φ = σk

Similarly to customary cost-based trace aligners, each of these operations has an
associated cost, either quantifying the severity of the found violation or deter-
mining which operations shall be preferred. E.g., by assigning a higher cost to
insertions and deletions and a lower one to replacements, we will favor replace-
ments when possible. The alignment cost is defined as the number of deletions
multiplied by their cost, plus the number of insertions multiplied by their cost,
plus the number of replacements multiplied by their cost. We can now define the
conformance checking problem as follows:

Definition 1 (Log/Declare Conformance Checking). Given a trace σ and
a Declare model M, checking the conformance of σ against M is the task of
verifying whether σ conforms to M, or σ is deviant and there exists a repair
sequence � making σ non-deviant for M and guaranteeing a minimal transfor-
mation cost.

The process of generating a repair sequence can be addressed by resorting
to DFAs (Sect. 4). Let tσ = t1 · · · tn be a string sequence generated from a log
trace σ via Σ, AϕM = (Σ,Q, q0, ρ, F ) the constraint automaton to check tσ
against. From tσ, we define a further automaton, called the trace automaton
T = (Σt, Qt, q

t
0, ρt, Ft) having a) Σt = { ti | ti ∈ tσ }, b) Qt = { qt

0, · · · , qt
n } as

a set of |tσ| + 1 states, c) ρ(qt
i , ei+1) = qt

i+1 for 0 ≤ i ≤ n − 1, and d) Ft = qt
n.

By definition, such a graph accepts only tσ.
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Fig. 3. Augmented trace automaton T + for tσ = p5CC.

Fig. 4. Augmented constraint automaton A+
ϕM for AϕM .

Next, we augment T and AϕM by adding transitions related to the atomic
operations of insertions and deletions. Thus, from T we generate the automaton
T + = (Σ+

t , Qt, q
t
0, ρ

+
t , Ft) having:

– Σ+
t extending Σt ⊆ Σ by adding an insertion ins φ for each atom φ ∈ Σt ∪Σ

and a deletion del φ for each atom φ ∈ Σt.
– ρ+t extending ρt by adding deletions ρ+t (p, del φ) = q for each transition

ρt(p, φ) = q, and insertions ρ+t (q, ins φ) = q for all atoms φ ∈ Σ ∪ Σt and
states q ∈ Qt.

Figure 3 shows the trace automaton generated from the deviant trace σ =
B{x=1,y=0}C{x=6}C{x=4} from Example 1. Similarly, from AϕM , we obtain
A+

ϕM = (Σ+, Q, q0, ρ
+, F ) having:

– Σ+ extending Σ by adding an insertion ins φ for each atom φ ∈ Σ and a
deletion del φ for each atom φ ∈ Σ ∪ Σt.

– ρ+ extending ρt by adding insertions ρ+(p, ins φ) = q for each transition
ρ(p, φ) = q and deletions ρ+t (q, del φ) = q for all atoms φ ∈ Σ ∪Σt and states
q ∈ Q.

Figure 4 shows the automaton augmented with the repair operations A+
ϕM

obtained for the model M from Example 1. This automaton does not accept
tσ = p5CC. In this case, one alignment strategy adds p8 at the end of the trace;
by explicitly marking such a repair with ins p8, both augmented automata now
accept t̂σ = p5CCins p8.

Next, we show how planners can efficiently identify the repair operations �
needed to repair the trace σ using the augmented automata just defined.
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5.3 Encoding in PDDL

In this section, we show how, given an augmented constraint automaton A+
ϕM

obtained from an LTLf formula ϕM, and an augmented trace automaton T +

obtained from a trace t, we build a cost-optimal planning domain PD and a
problem instance P in PDDL. PD and P can be used to feed any state-of-
the-art planners accepting PDDL 2.1 specifications, as discussed in Sect. 3.3. A
solution plan for P amounts to the set of interventions of minimal cost to repair
the trace with respect to ϕ′

M, and generates a repair sequence � that is going to
be exploited in the forthcoming subsection for finally repairing the trace.

Planning Domain. In PD, we provide two abstract types: activity and state.
The first captures the activities involved in a transition between two different
states of a constraint/trace automaton. The second is used to uniquely identify
the states of the constraint automaton (through the sub-type automaton state)
and of the trace automaton (through the sub-type trace state). To capture the
structure of the automaton and to monitor its evolution, we defined five domain
propositions as boolean predicates in PD:

– (trace ?t1 - trace state ?e - activity ?t2 - trace state) holds if there
exists a transition in the trace automaton between two states t1 and t2,
being e the activity involved in the transition.

– (automaton ?s1 - automaton state ?e - activity ?s2 - automaton state)

holds if there exists a transition between two states s1 to s2 of a constraint
automaton, being e the activity involved in the transition.

– (atoms ?e1 - activity ?e2 - activity) holds if e1 and e2 are two atoms in
Σ associated to a same activity label.

– (cur state ?s - state) holds if s is the current state of a constraint/trace
automaton.

– (final state ?s - state) holds if s is a final state of a constraint/trace
automaton.

It is worth to notice that, if a generic activity A is associated to some data
condition, A will be represented as a set of atoms p1, p2, p3, etc. in PD, see
for example Table 2b. This means that, for any combination of atoms pi - pj

associated to A, there will exist an instance of the predicate (atoms) that will
hold for pi and pj . Furthermore, we define a numeric fluent total-cost to keep
track of the cost of the violations. Notice that: (i) in PDDL, parameters are
written with a question mark character ‘?’ in front, and the dash character ‘-’
is used to assign types to parameters; and (ii) we remain consistent with the
PDDL syntax, which allows the values of both predicates and fluents to change
as a result of the execution of an action.

Planning actions are used to express the repairs on the original trace t. In our
encoding, we have defined four actions to perform synchronous moves both in
the trace/constraint automaton, or to add/remove/replace activities to/from/in
the constraint and trace automata. In the following, we suppose that actions
ins, del and repl have cost equal to 1. However, their cost can be customized
to define the severity of a violation or to force priorities among actions.
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We modeled sync and del in such a way that they can be applied only if there
exists a transition from the current state t1 of the trace automaton to a sub-
sequent state t2, being e the activity involved in the transition. Notice that,
while del [#t1 ← e] yields a single move in the trace automaton, sync yields, in
addition, one move on the constraint automaton, to be performed synchronously.
In particular, a synchronous move is performed in the constraint automaton if
there exists a transition involving activity e connecting s1 – the current state of
the automaton – to a state s2. Then, ins [@t1 ← e] is performed only for tran-
sitions involving activity e connecting two states of the constraint automaton,
with the current state of the trace automaton that remains the same after the
execution of the action. Finally, repl [t1[e1 �→ e2]] can be seen as a synchronous
combination of a del and an ins. It yields one move on the trace automaton and
one on the constraint automaton, involving two atoms e1 and e2 associated to
a same activity label, i.e., such that the predicate (atoms ?e1 ?e2) holds.

Planning Problem. In P, we first define a finite set of constants required to
properly ground all the domain propositions defined in PD. In our case, constants
correspond to the state and activity instances involved in the trace/constraint
automaton. Secondly, we define the initial state of P to capture the exact
structure of the trace/constraint automaton. This includes the specification of
all the existing transitions that connect two states of the automaton, and the
definition of all the pairs of atoms belonging to a same activity label. The cur-
rent state and the final states of the trace/constraint automaton are identified
as well. Thirdly, to encode the goal condition, we first pre-process the constraint
automaton by: (i) adding a new dummy state with no outgoing transitions; (ii)
adding a new special action, executable only in the final states of the original
automaton, which makes the automaton move to the dummy state; and (iii)
including in the set of final states only the dummy state. Then, we define the
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goal condition as the conjunction of the final states of the trace automaton and
of the constraint automaton. In this way, we avoid using disjunctions in goal
formulas, which are not supported by all planners. Finally, as our purpose is
to minimize the total cost of the plan, P contains the following specification:
(:metric minimize (total-cost)). As the goal requires that in both augmented
automata an accepting state is reached, the actions will encode the strategies to
successfully visit both automata via their transition functions, while assigning
different alignment costs to each of the strategies. When the goal is reached,
the resulting action sequence (where syncs are stripped) represent the repair
sequence � that we are going to exploit in the next section.

5.4 Trace Repair

Last, we need to leverage the repair actions generated by the planner to repair
the entire trace so to make it conformant to the model as a whole. In partic-
ular, the generated repair actions are always ordered based on their positions
within the trace. By removing all the sync actions provided by the planner,
we will obtain a sequence of insertions [@t1 ← e], deletions [#t1 ← e], and
replacements [t1[e1 �→ e2]] for a trace σ via its associated tσ. While dele-
tions [#t1 ← e] can be trivially implemented in the data-aware scenario by
simply removing the problematical event, for insertions (or replacements), we
need to add events with their associated payloads (or adapt the contained data
values). Replacements [t1[e1 �→ e2]] can be implemented by replacing the val-
ues in t1 violating the data condition e2 with the nearest values satisfying e2.
On the other hand, insertions require to generate totally new values: the inser-
tion [@t1 ← e] of a new event t1 satisfying e can be modeled by generating
a new event having the label induced by e, which is then instantiated with
the same data values present in the last occurrence of an event equally labeled
if any, and instantiated with default values otherwise; then, such values are
repaired by choosing the nearest values satisfying e. E.g., the alignment result
t̂σ = p5CCins p8 of trace σ = B{x = 1,y = 0}C{x = 6}C{x = 4} generates the repair
� = [@σ4 ← p8] after removing the sync operations. Then, we obtain a new trace
σ′ = B{x = 1,y = 0}C{x = 6}C{x = 4}B{x = 4,y = 0}, where 4 is the nearest integer
to B.x = 1 (taken from the first event) that satisfies p8 ≡ B.x > 3 ∧ B.y = 0.

6 Experiments

We have developed a planning-based alignment tool that implements the app-
roach discussed in Sect. 5. The tool allows us to load logs formatted with the
XES standard and to import data-aware models previously designed using RuM
[3]. To find the minimum cost trace alignment against a pre-specified data-aware
Declare model, our tool makes use of the SymBA*-2 [24] planning system, which
produces optimal alignments performing a bidirectional A* search. We tested our
approach on the grounded version of the problem presented in Sect. 5.3. We per-
formed our experiments with a PC consisting of an Intel Core i7-4770S CPU
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3.10 GHz Quad Core and 4 GB RAM. We used a standard cost function with
unit costs for any alignment step that adds/removes activities in/from the input
trace or changes a data value attached to them, and cost 0 for synchronous
moves.

Table 3. Experimental results. The time (in ms.) is the average per trace.

Trace length Alignment
Time

Alignment
Cost

Alignment
Time

Alignment
Cost

Alignment
Time

Alignment
Cost

Alignment
Time

Alignment
Cost

0 const. modified 3 constraints 5 constraints 7 constraints 10 constraints

10 599.7 0 772.92 0 - - - -
15 767.23 0 978.38 0 1,887.29 0 - -
20 854.12 0 1,127.25 0 2,093.71 0 18,421.26 0
25 950.04 0 1,268.54 0 2,297.12 0 20,525.71 0
30 1,026.91 0 1,392.93 0 2,381.38 0 25,394.29 0

1 const. modified 3 constraints 5 constraints 7 constraints 10 constraints

10 603.84 1 797.16 1 - - - -
15 728.83 1 898.53 1 1,932.31 1 - -
20 851.62 1 1,094.13 1 2,113.08 1 17,770.91 1
25 929.72 1 1,280.61 1 2,296.76 1 24,023.28 1
30 1,114.75 1 1,379.26 1 2,499.32 1 27,232.07 1

2 const. modified 3 constraints 5 constraints 7 constraints 10 constraints

10 601.04 1.06 856.71 1.18 - - - -
15 736.93 1.13 934.45 1.23 1,875.37 1.44 - -
20 864.06 1.06 1,112.61 1.38 2,112.51 1.33 18,370.95 1.55
25 973.28 1.24 1,230.41 1.53 2,299.19 1.38 21,152.86 1.7
30 1,066.69 1.04 1,346.02 1.52 2,453.52 1.58 25,882.66 1.61

3 const. modified 3 constraints 5 constraints 7 constraints 10 constraints

10 623.85 2.14 937.88 2.22 - - - -
15 748.5 2.25 1,012.5 2.56 1,893.64 2.5 - -
20 877.4 2.1 1,026.11 2.44 2,095.72 2.63 18,918.48 2.41
25 1,007 2.55 1,115.53 2.34 2,287.93 2.66 22,010.35 2.5
30 1,114.46 2.06 1,230.54 2.33 2,462.62 2.35 26,178.43 2.75

To have a sense of the scalability with respect to the “size” of the model and
the “noise” in the traces, we have tested the approach on synthetic logs of differ-
ent complexity. Specifically, we generated synthetic logs using the log generator
presented in [23]. We defined four Declare models having the same alphabet
of activities and containing 3, 5, 7 and 10 data-aware constraints respectively.
Then, to create logs containing noise, i.e., behaviors non-compliant with the
original Declare models, we changed some of the constraints in these models
and generated logs from them. In particular, we modified the original Declare
models by replacing 1, 2, and 3 constraints in each model using different strate-
gies. In some cases, we replaced a constraint with its negative counterpart (see
Table 1); in other cases, we replaced a constraint with a weaker constraint; in
other cases, we replaced a data condition with its negation. Each modified model
was used to generate 5 logs of 1000 traces containing traces of different lengths
(i.e., containing 10, 15, 20, 25, and 30 events, respectively).

The results of the experiments can be seen in Table 3. The alignment time (in
ms.) and cost (that corresponds to the amount of ins/del/repl activities in an
alignment) refers to the average per trace. The missing values in the table refer
to experiments that could not be carried out because traces of certain lengths
(e.g., 10) could not be generated by specific models (e.g., including 7 or 10
constraints), i.e., traces of those lengths satisfying those models do not exist. It
is evident from the table that the alignment cost does not affect the performance
of the alignment tool as, when the noise increases, the execution time does not
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change. As expected, however, the execution time is slightly sensible to the trace
length, and grows exponentially with the number of (data-aware) constraints in
the reference model. However, the results suggest that the heuristics adopted
by the planner is able to efficiently cope with the above complexity enabling
to perform off-line analysis with acceptable performance in case of a reasonably
large number of data-aware constraints. The models and the logs used for the
experiments are available for reproducibility at: https://tinyurl.com/ezd788bb.

7 Conclusions

In this paper, we presented an approach tackling conformance checking of log
traces over data-aware Declare models. The proposed approach exploits Auto-
mated Planning for aligning the log traces and the reference model via a prelimi-
nary partitioning of the data space. The experiments show that the performance
of the approach is acceptable even when the reference model contains a reason-
ably large number of data-aware constraints. In addition, since the implemented
tool is independent of the planner used to solve the alignment problem, forth-
coming improvements in the efficiency of the planners will be automatically
transferred to the tool.

Future works will investigate the relationship between planners and approx-
imate path matching techniques [18] in order to use these techniques in the
context of the alignment problem defined in this paper. We will also investigate
the possibility of performing alignments over data-aware knowledge bases [22],
which potentially quicken the time required to test the satisfiability of the data
conditions by conveniently indexing (i.e., pre-ordering) the payload space. The
use of these approaches could allow us to tackle correlation conditions (i.e., data
predicates involving attributes belonging to the payload of the activation and
of the target, simultaneously) [7] that we did not consider in the current contri-
bution. In fact, the presented approach is not able to cope with the state space
explosion, caused by the presence of correlation conditions in the constraints to
be checked, when searching for the optimal alignments.
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Abstract. Alignments are a central notion in conformance checking.
They establish the best possible connection between an observed trace and
a process model, exhibiting the closest model run to the trace. Comput-
ing these alignments for huge amounts of traces, coming from big logs,
is a computational bottleneck. We show that, for a slightly modified ver-
sion of the distance function between traces and model runs, we signifi-
cantly improve the execution time of an A*-based search algorithm. We
show experimentally that the alignments found with our modified distance
approximate very nicely the optimal alignments for the classical distance.

1 Introduction

Conformance checking techniques establish relations between modeled and
observed behavior [6]. The techniques on this field are grounded on solving a
very particular problem, known as alignment [1]: given a process model that
describes a certain process, and a trace which contains a potential observation
of this process, to decide if the trace is in the language of the model, and if
not, to pinpoint where it deviates. Computing alignments is not necessarily the
ultimate goal of an analysis, but instead can be used to further enhance a pro-
cess model with the evidences found in the data, e.g. depicting explicitly in the
model the bottlenecks of the underlying process [23].

The current process mining field is living an interesting paradox: whilst it is
widely accepted that the capabilities of discovering huge process models exist,
when it comes to analysing these discovered models through conformance check-
ing techniques, only approximate techniques for deriving alignments are used in
practice. In the next section we provide a complete overview of current alterna-
tives for alignment computation.

In this paper, however, we somehow go back to the roots, and adopt the sem-
inal work from Arya Adriansyah’s PhD thesis [1] as main alignment algorithm.
It consists of an A∗ graph search algorithm over the state space of a synchronous
product net made out of the initial process model and a trace net corresponding to
the input trace. The cost function that governs the A∗ search is typically a standard
cost function which assigns unitary costs to all the possible types of deviations.
c© Springer Nature Switzerland AG 2021
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We consider a rather simple, yet powerful idea that is motivated from the fol-
lowing use case: for certain processes, the costs associated to deviations at early
stages of the process’ execution are more important than the ones at the end. For
instance, consider a loan application process that has two decisions: one at the
beginning, assessing the type of customer (gold, silver, normal), and one at the end,
determining whereas the loan was received in a labour day or not. It is normal that
the stage in which these decisions are made in any possible execution of the pro-
cess reveal their importance. For instance, if for the company it is very important
to know the type of the customer because further information needs to be gathered
depending on the customer’s type, then it is likely that the corresponding process
has the type of customer decision close to the start of any possible execution. On
the contrary, if the day when the loan was received is not so important, then it is
likely that the corresponding events will be pushed to the end of the traces.

The aforementioned situation holds for knock-out processes [24], represent-
ing processes where two outcomes are possible: OK or NOK. In these processes,
ordered checks are usually observed, because it allows faster process executions.
Indeed, as many tasks of those processes aim at determining the final output, the
knock-out decisions should be taken at the beginning of the process, in growing
order [14].

Having this in mind, one can instantiate the A∗ algorithm to make the cost
function exponentially biased to this use case: giving more importance (higher
cost) to the deviations that occur in early stages of the alignments, and exponen-
tially reducing the cost as the search algorithm progresses. Importantly, this dis-
counted cost function has a huge impact on the size of the search space required for
theA∗ search, since the cost asymmetrymakes the search space rapidly shrink after
the first alignment steps are made. For processes which follow the aforementioned
use case, this cost function puts the search focus in the right place, deriving align-
ments that aim at synchronizing modeled and observed behavior in the important
decisions that are made at the beginning. Interestingly, this idea can also be used
for processes that are not following this trend, since although putting the focus at
the beginning may not be the most likely explanation, the computational allevia-
tion can make the problem tractable, where other techniques fail.

In this paper we formalize this simple idea, and show the great impact in per-
formance with respect to several variations of the A∗ search proposed in the last
years. Interestingly, this improvement causes only a very minor loss in quality: as
we will see in the experiments, for well-known and accepted benchmarks, the pro-
posed techniques are often able to produce alignments very close to the optimal
ones.

This paper is organized as follows: in the next section we provide a detailed
overview of the different techniques to compute alignments. Then in Sect. 3 we pro-
vide the necessary definitions to understand the technique of this paper. In Sects. 4
and 5 we provide the formal definition and corresponding algorithmic adaptations
for the discounted cost function presented in this paper. Then in Sect. 6 an evalu-
ation of the proposed technique is reported, and Sect. 7 concludes the paper.
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2 Related Work

The seminal work in [1] proposed the notion of alignment and developed a tech-
nique based on A∗ to compute optimal alignments for a particular class of process
models. The approach represents the state-of-the-art technique for computing
alignments, and can be adapted (at the expense of increasing significantly the
memory footprint) to provide all optimal alignments. Alternatives to A∗ have
appeared in recent years: in the approach presented in [7], the alignment prob-
lem is mapped as an automated planning instance. Automata-based techniques
have also appeared [10,15]. The techniques in [15] (recently extended in [16])
rely on state-space exploration and determination of the automata correspond-
ing to both the event log and the process model, whilst the technique in [10] is
based on computing several subsets of activities and projecting the alignment
instances accordingly.

The work in [19] presented the notion of approximate alignment to alleviate
the computational demands by proposing a recursive paradigm on the basis of
the structural theory of Petri nets. In spite of resource efficiency, the solution
is not guaranteed to be executable. Alternatively, the technique in [20] presents
a framework to reduce a process model and the event log accordingly, with the
goal of alleviating the computation of alignments. The obtained alignment, called
macro-alignment since some of the positions are high-level elements, is expanded
based on the information gathered during the initial reduction. Techniques using
local search have been also proposed very recently [21].

Decompositional techniques have been presented [12,22,27] that, instead of
computing optimal alignments, focus on the crucial problem of whether a given
trace fits or not a process model. These techniques vertically decompose the pro-
cess model into pieces satisfying certain conditions (so only valid decomposi-
tions [22], which satisfy restrictive conditions on the labels and connections form-
ing a decomposition, guarantee the derivation of a real alignment). Later on, the
notion of recomposition has been proposed on top of decompositional techniques,
in order to obtain optimal alignments whenever possible by iterating the decom-
positional methods when the required conditions do not hold [9]. In contrast to
the aforementioned vertical decomposition techniques, our methodology does not
require this last consolidation step of partial solutions, and therefore can be a fast
alternative to these methods at the expense of loosing the guarantee of optimality.

We believe our work has similarities and synergies with two recent works.
In [5], a symbolic algorithm to maximize the number of synchronous moves in
the alignment is proposed, by changing the cost function to only penalize log
moves, thus allowing an arbitrary number of model moves if this contributes to
maximizing synchronous moves. We believe the discounted cost function of this
paper may be used in the context of [5], to balance better the solutions found.
Recently, in [25], an online alignment technique with a window-based backwards
exploration is proposed. Again, by discounting this window-based exploration,
a speedup of the online technique can be obtained so that it can be applied on
a larger problem instances.
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3 Preliminaries

We represent event data as log traces and process models as labeled Petri nets.

Definition 1 (Log Traces). Let Σ be a set of activities. We define a log L as
a finite multiset of sequences σ ∈ Σ∗, which we refer to as log traces.

Fig. 1. Synchronous product for alignments between N and σ that has the marking
reachability problem.

Definition 2 (Process Model (Labeled Petri Net) [13]). A Process Model
defined by a labeled Petri net system (or simply Petri net) is a tuple N =
〈P, T, F,m0,mf , Σ, λ〉, where P is the set of places, T is the set of transitions
(with P ∩ T = ∅), F ⊆ (P × T ) ∪ (T × P ) is the flow relation, m0 is the initial
marking, mf is the final marking, Σ is an alphabet of actions and λ : T →
Σ ∪ {τ} labels every transition by an activity or as silent.

Semantics. The semantics of Petri nets is given in term of firing sequences.
Given a node x ∈ P ∪ T , we define its pre-set •x def= {y ∈ P ∪ T | (y, x) ∈ F}
and its post-set x• def= {y ∈ P ∪ T | (x, y) ∈ F}. A marking is an assignment of
a non-negative integer to each place. A transition t is enabled in a marking m
when all places in •t are marked. When a transition t is enabled, it can fire by
removing a token from each place in •t and putting a token to each place in t•.
A marking m′ is reachable from m if there is a sequence of firings 〈t1 . . . tn〉 that
transforms m into m′, denoted by m[t1 . . . tn〉m′. The set of reachable markings
from m0 is denoted by [m0〉. A Petri net is k-bounded if no marking in [m0〉
assigns more than k tokens to any place. A Petri net is safe if it is 1-bounded.
A full run of a Petri net N is a firing sequence m0[t1 . . . tn〉mf from the initial
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marking m0 to the final marking mf . A Petri net is easy sound [2] if it has at
least one full run, i.e. mf is reachable from m0.

In this paper we assume safe and easy sound Petri nets.

Definition 3 (Alignments). Given a log trace σ = 〈σ1, . . . , σm〉 ∈ L of alpha-
bet Σ, and a process model N = 〈P, T, F,m0,mf , Σ, λ〉, an alignment of σ with
N is a finite sequence ϕ = 〈(σ′

1, u
′
1), . . . , (σ

′
p, u

′
p)〉 of moves such that:

– each move is either: a synchronous move (a, t) ∈ Σ × T with a = λ(t), a log
move (a,
) (where 
 is a special ‘skip’ symbol), or a model move (
, t),

– dropping the 
 symbols from the left projection 〈σ′
1, . . . , σ

′
p〉 of ϕ, yields σ;

– dropping the 
 symbols from the right projection 〈u′
1, . . . , u

′
p〉 of ϕ, yields a

full run u of N .

Example 1. Figure 1 shows a process model (Fig. 1a) and a log trace (Fig. 1b).
An alignment of N and σ is ϕ = 〈(
, a), (b, b), (c, c)〉.

In order to compare the quality of alignment quality, we define a cost function
which penalizes log moves and model moves.

Definition 4 (Classical Alignment Cost Function, Optimal Align-
ments). For every alignment ϕ between a model N and a log trace σ, the Clas-
sical Alignment Cost Function C assigns a cost 0 to synchronous moves and a
cost 1 to log moves or model moves. The cost of an alignment is the sum of the
costs of its moves. An alignment between a model N and a log trace σ is optimal
if it minimizes the cost.

Example 2. The alignment ϕ = 〈(
, a), (b, b), (c, c)〉 between N of Fig. 1a and σ
of Fig. 1b costs 1 and is optimal. We recognize the Petri net transformation of σ
which are the bottom places and the yellow transitions. The synchronous moves
are drawn in green. From the initial state, possible moves are (
, b), (
, a),
(b, b) or (b,
).

The optimal alignment cost given with the classical alignment cost function
C gives the Levenshtein edit distance between a run of M and the trace σ.

Definition 5 (Levenshtein Edit distance). The Levenshtein Edit Distance
dist(u, v) between two words u and v ∈ Σ∗ is the minimal number of edits needed
to transform u to v. In our case, edits can be deletions or insertions of a letter
in words,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L(〈〉, 〈〉) = 0

L(u, 〈〉) = |u|
L(〈〉, v) = |v|
L(a.u′, b.v′) = L(u′, v′) if (a = b)

L(a.u′, b.v′) = min

{
L(a.u′, v) + 1,

L(u, b.v′) + 1 otherwise.
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The main methods of the literature to compute optimal alignments are
Dijkstra-based algorithms which often implies the construction of the Syn-
chronous Product between the given process model and a sequential Petri net
representing the log trace [1].

Definition 6 (Synchronous Product for Alignments). For a process
model N = 〈P, T, F,m0,mf , Σ, λ〉 and a log trace σ = 〈σ1, . . . , σm〉 ∈ Σ∗,
the Synchronous Product used for computing alignments is the Petri net SN =
〈PSN , TSN , FSN ,mSN0 ,mSNf

, (Σ ∪ {
})2, λSN 〉 defined as:

– Nσ = 〈Pσ, Tσ, Fσ,mσ0,mσf , Σ, λσ〉 is a translation of σ to a sequential Petri
net with: Pσ = {Pσ0 , . . . Pσm

}, Tσ = {tσi
= λσ(σi) | i ∈ {1, . . . ,m}}, Fσ =

{(Pσi−1 , tσi
), (tσi

, Pσi
) | i ∈ {1, . . . , m}}, mσ0 = {Pσ0 : 1}, mσf = {Pσm

: 1},
– PSN = P ∪ Pσ

– TSN = T� ∪ T�
σ ∪ TS, where T� = {(
, t) | t ∈ T} represents the model

moves, T�
σ = {(t,
) | t ∈ Tσ} represents the log moves, TS = {(t1, t2) | t1 ∈

T, t2 ∈ Tσ and λ(t1) = λσ(t2)} represents the synchronous moves,
– FSN = F∪Fσ∪{(Pi, ti) | ti = (t1, t2) ∈ TSN , t1 �= 
, t2 �= 
, Pi ∈ •t1∩•t2}

∪ {(ti, Pi) | ti = (t1, t2) ∈ TSN , t1 �= 
, t2 �= 
, Pi ∈ t1
• ∩ t2

•}
– mSN0 = m0 ∪ mσ0 ,
– mSNf

= mf ∪ mσf
,

– λSN maps every t ∈ TSN to its move.

Example 3. Figure 1 shows the synchronous product for alignments of the pro-
cess model N given in Fig. 1a and the log trace σ of Fig. 1b.

The Dijkstra-based algorithm for finding optimal alignments, explores the
reachability graph of the synchronous product of Definition 6. Weights are given
by the transitions fired to reach the markings, according to the type of move
that they represent. The best firing sequences found for reaching a marking is
the less costly one. The algorithm that we present in Sect. 5 is an adaptation
of this classical Dijkstra-based algorithm for alignments. As we are using easy-
sound Petri nets as process models, the Synchronous Products for Alignments
are easy-sound which implies termination of the Dijkstra algorithm with the
condition to reach the final marking mSNf

[28].

4 Discounted Cost Function and Properties

The classical alignment cost function corresponds to Levenshtein edit distance
between a run of a process model and a log trace, where additions and deletions
represent model and log moves. In this section, we introduce the Discounted Edit
Distance and its impact when using it as alignment cost function.

The idea of this Discounted Edit Distance is to penalize more insertions and
deletions when they occur at the beginning of the strings, and less when they
occur later.
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Definition 7 (Discounted Edit Distance). We define the Discounted Edit
Distance between two strings u and v (of length |u| and |v| respectively) with
discount parameter θ ≥ 1 by Dθ(u, v) def= D0

θ(u, v) where:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Dk
θ (〈〉, 〈〉) = 0

Dk
θ (〈〉, b.v′) = Dk+1

θ (〈〉, v′) + θ−k

Dk
θ (a.u′, 〈〉) = Dk+1

θ (u′, 〈〉) + θ−k

Dk
θ (a.u′, b.v′) = Dk+2

θ (u′, v′) if (a = b)

Dk
θ (a.u′, b.v′) = min

{
Dk+1

θ (u′, v) + θ−k

Dk+1
θ (u, v′) + θ−k otherwise.

thus allowing equation ((ui = vj)) for free and insertions and deletions at cost
θ−k where k refers to the position where the edit occurs.

Lemma 1. For θ = 1, the Discounted Edit Distance corresponds to the Leven-
shtein distance.

Proof. With θ = 1, we have θ−k = 1 for any k and we obtain Definition 5 from
Definition 7. 
�

In practice, relevant values for the discount parameter θ are slightly larger
than 1. For θ ≥ 2, the discount is already very severe since an edit at position k
costs more than the sum of all the following edits.

Lemma 2. With the Discounted Edit Distance, for θ ≥ 2, an edit at position k
costs more than the sum of all the following edits.

Proof. For u and v, two words, let k be the position of a non-free cost in Dθ(u, v).
We note its cost c(k) = θ−k.

The next edits can occur at positions j ∈ {k + 1, . . . , n} where, in the worst
case, n = |u| + |v|. We write S(j, n) the sum of costs. The maximal value of this
sum appears when only non-free edits are used by the discounted edit distance:

S(k, n) =
n∑

j=k+1

c(j) = θ−(k+1) + θ−(k+2) + · · · + θ−n =
θ−k − θ−n

θ − 1

Hence, c(k) = θ−k > S(k, n) for θ ∈ [2,∞[. Otherwise, in the best case, there is
no edit after position k and the cost of the edit at position k is higher than a
null sum. 
�
Example 4. Let u = 〈x, a, b〉 and v = 〈a, y, b〉. The discounted edit distance
between u and v is Dθ(u, v) = θ−1 + θ−3. If θ = 1, the distance equals to 2 and
is the Levenshtein edit distance where deleting x costs 1 and adding y costs 1.

Similarly to the Levenshtein edit distance, the Discounted Edit Distance can
be applied to alignments.
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Definition 8 (Discounted Cost Function for Alignments). For an align-
ment ϕ = 〈(σ′

1, u
′
1), . . . , (σ

′
p, u

′
p)〉 between a process model N and a log trace σ, the

Discounted Cost Function for Alignments assigns a cost 0 to every synchronous
move and θ−k to every pair (σ′

k, u′
k) that is either a log move or a model move,

where k ∈ {1, . . . , p}, p ∈ N is the length of the alignment, and θ ≥ 1 is the
discount parameter.

For θ = 1, the Discounted Cost Function for Alignment is equivalent to the
Classical Alignment Cost Function. However when θ > 1, the costs of moves are
dynamic and depend on the number of previous moves of the alignment.

Example 5. For the alignment ϕ = 〈(
, a), (b, b), (c, c)〉, presented in the first
example, the cost of (
, a) is θ−1 because it is the first move of the alignment. For
ϕ′ = 〈(b, b), (
, d), (
, e), (
, τ)〉 which is certainly not an optimal alignment
but still an alignment of σ = 〈b, c〉 and the Petri net N of Fig. 1a, the cost of
(
, e) is θ−3.

Lemma 3. For θ > 1, a non-free move t of position j, any move of position
k > j costs less than t.

Proof. Any function f : k −→ θ−k where θ > 1 is strictly decreasing. Then for
j < k, we have θ−j > θ−k. 
�

As a consequence, algorithms for computing optimal discounted alignments
will tend to align in priority the prefixes of the log traces. Suffixes are less costly.
From Lemma 2, when the discount parameter is θ = 2, a non-free move of
position j is more costly than the sum of all the next costs.

Example 6. In Example 2, we saw that the optimal alignment by using the clas-
sical alignment cost function between σ = 〈b, c〉 and the model N of Fig. 1a
is ϕ = 〈(
, a), (b, b), (c, c)〉 of cost 1. However, by using the discounted cost
function with θ = 2, optimal alignments are ϕ′ = 〈(b, b), (
, d), (
, e), (
, τ)〉
and ϕ′′ = 〈(b, b), (
, e), (
, d), (
, τ)〉 of cost 2−2 + 2−3, where (
, τ) is a free
model move. This is due to the discounted cost function which penalizes the
model move (
, a) at first position.

5 Using the Discounted Cost Function in an A*-Based
Algorithm for Discounted Alignments

To compute alignments by using the discounted cost function, we present an
A*-based algorithm which assigns weights to the explored states according to
the discounted cost function for alignment. Let θ be the discount parameter.
Then, to a state reached by a move t occurring in position i, will be assigned
the weight of its predecessor, increased by the cost

h(t, i, θ) def= (0 if t is a synchronous move, θ−i otherwise).
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As a result of Lemma 3, this heuristic aims at aligning prefix first more than
suffixes.

The function h, based on the discounted cost function, is easily incorporated
in the state-of-the-art algorithms for computing alignments. We present two ver-
sions of the incorporation, one by using the synchronous product of the process
model and the log trace, and another one that avoids the computation of the
product by exploring the process model along with the trace.

5.1 Algorithm for Computing Optimal Discounted Alignments

Our algorithm Algorithm1, noted A∗SPD=θ, is inspired from [6]. It proceeds by
exploring the state space of the synchronous product of the process model with
a sequential Petri net representing the log trace as defined in Definition 6. An
optimal alignment corresponds to the shortest path between the initial marking
to the final marking of the synchronous product. For this purpose, our A* algo-
rithm maintains a priority queue Q of prefixes of runs, implemented as a heap
of tuples 〈γ,m, d〉, for a prefix γ reaching marking m at cost d, such that the
tuple with minimal cost d pops first. Line 1 initializes the heap with the empty
prefix reaching the initial marking at cost 0, i.e. 〈〈〉,m0, 0〉.

Algorithm 1: Computation of Optimal Alignments by using the Dis-
counted Edit Distance (A∗SPD=θ)

Input : SP = ((P, T, F,m0,mf , (Σ ∪ {
})2, λ)): synchronous product,
θ: discount parameter

1 Q ← {〈〈〉,m0, 0〉} 	 Heap of open states ordered by distance
2 A ← ∅ 	 Initialize closed set
3 while Q �= ∅ 	 While not all reachable states visited
4 do
5 〈γ,m, d〉 ← Q.pop() 	 Get next state minimizing d
6 if m = mf then

Return: 〈d, γ〉
7 A ← A ∪ {〈m, |γ|〉} 	 Add state to closed set
8 for t ∈ T with m[t〉m′ do
9 γ′ ← γ • t 	 Get new prefix

10 if 〈m′, |γ′|〉 �∈ A 	 Reaching a not yet visited state
11 then
12 d′ ← d + h(t, |γ′|, θ) 	 Compute cost of γ′

13 Q ← Q.insert(〈γ′,m′, d′〉) 	 Insert new prefix in heap
Raise : mf is not reachable

Line 3 starts a while loop that ends only when the final marking is reached
(line 6) or when the priority queue is empty (line 3). Line 9 gets the next firing
transitions of the synchronous product. Some transitions correspond to the log
and model moves and are costly. The other transitions are the synchronous moves
and are free, like in the original algorithm.
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Our discounted cost function h appears on line 12 and determines the cost
of the new prefix. Line 13 adds the new discovered state in the priority queue
with its prefix γ′ and it cost d′ for reaching m′.

When the algorithm reaches the final marking, line 6, the while loop is broken
and the algorithm returns the sequence of firing transitions to reach the final
marking. In fact, this sequence of transitions gives the sequence of moves of the
alignment.

Role of Length in States. In the classical version of alignment computa-
tion, the closed set contains the markings only. However, the length of the cur-
rent alignment plays an important role in the discounted cost function (line 8).
Indeed, the first visit of a marking might not be the optimal one, as it is the
case in the classical version of alignments. A same marking m can be reached
with different firing sequences of moves of different lengths. The first path that
gives the first visit of the marking m is the shortest one. Let’s call this short
path γshort, and γlong a longer path from the initial marking to this marking m.
We have |γlong| > |γshort|. However, γshort might contain future costly moves
to reach the final marking. If those moves are of position lower than |γlong|, it
questions the optimality of γshort. We give an example of this situation below.

Example 7. Let’s suppose that silent transition labelled by τ costs for this
example. To reach marking m = {p4 : 1, pα2 : 1}, the algorithm can play
γ = 〈(
, a), (
, b), (
, τ), (b, b)〉 whose cost is θ−1 + θ−2 + θ−3. This firing
sequence costs as much as γ′ = 〈(
, a), (
, b), (b,
)〉 which reaches the same
marking m. However we notice that γ has a synchronisation at position 4 but
we don’t know yet what appears at position 4 for γ′. Then both paths should
be kept.

Note that we tackled the problem of optimality of the alignment with the
discounted cost function. For θ > 1, this optimality does not correspond to the
optimal classical alignment.

Comparison to Classical Alignments. Due to the discount parameter θ
in the discounted cost function, our heuristic prioritizes the alignment of the
beginning of the log trace. In the algorithm, this difference with the classical
alignment algorithm appears in line 11 of Algorithm1, where the markings that
minimize the cost are much more different with the discounted cost function
than by using the classical cost function for alignments. Indeed, when costs are
all equivalent, many paths compete in the search for the optimal alignment.
However, with very different costs, the number of paths with similar costs is
low, thus reducing the search space.

Example 8. For the example of Fig. 1, there is a first choice between a and
b. For large θ, the decision is quickly given thus disabling testing the depth
of the other paths. For instance, with θ = 2, the log sequences of type
〈a, b, c〉, 〈a, b, τ, b, c〉, 〈a, b, τ, b, τ, b, c〉 won’t be explored because they cannot have
a better discounted cost.
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5.2 A Heuristic for Reducing the Search Space of the Algorithm

The search space of A∗SPD=θ is large and even larger than the Dijsktra-based
algorithm for alignments due to the incorporation of the lengths of the runs that
reach the same marking. To reduce it, we come back to the classical closed set
that contain the markings only. Every 〈m, |γ|〉 of the closed set A is reduced to
m (like in [6]).

With this reduction, only the first paths that reaches the marking are used.
When several concurrent firing sequences of equal cost exist, line 5 picks one as
the optimal path and line 8 classifies the marking in A. Then the other firing
sequences of equal cost for this marking are not considered anymore (line 10).

Example 9. For the marking m = {p4 : 1, pα2 : 1} of the synchronous product
given in Fig. 1c, two firing sequences compete for the minimization of the cost (in
case that silent transition costs). Indeed both γ = 〈(
, a), (
, b), (
, τ), (b, b)〉
and γ′ = 〈(
, a), (
, b), (b,
)〉 have a cost of θ−1 + θ−2 + θ−3 and reach the
marking m. Hence, when using markings only in the states, the algorithm picks
one of the sequence as the optimal one and adds m in the closed set. Later, it
does not consider the other firing sequence. However, we saw in Example 7 that
γ′ is better than γ by using the discounted cost function but it can go to the
hatch in the reduced version.

With this reduction of the search space, the modified algorithm is not guar-
anteed any more to return the optimal discounted alignments, but the gain in
runtime is extremely significant. Moreover, in practice, the loss of quality is very
limited: we observed that the alignments found by the modified algorithm have
very similar discounted cost than the optimal discounted alignments.

Process Model Exploration Along with Trace Exploration (Noted
A∗PTD=θ). In order to speed up the exploration, the alignment algorithm can
simulate the synchronous product without explicitly constructing it. The syn-
chronous product allows to easily play the moves of alignment. However, those
moves can be found by exploring the process model and the trace separately.
By comparing the next activity of the process model, given by the semantic of
the net, and the next activity of the trace, we obtain the type of move. For
instance, at the initialization, one possible next activity of N of Fig. 1a is b and
the first activity in σ is also b. Then, we can move forward with a synchronous
move, like in the synchronous product but without constructing the correspond-
ing transition of the move. Then the m in the algorithm (for the marking of the
synchronous product) is replaced by a pair 〈m, p〉 where m is the marking of the
process model and p the position in the trace. Any marking of A∗SPD=θ can be
given into a couple 〈m, p〉 for A∗PTD=θ. For instance, marking {p4 : 1, pα2 : 1}
of the synchronous product given in Fig. 1c corresponds to 〈{p4 : 1}, 1〉 where
{p4 : 1} is the marking in N and 1 the position in σ. The final marking becomes
〈mf , |σ|〉 where the trace has been read and the process model reaches its final
places.
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6 Experiments: Discounted Alignments as a Heuristic for
Approximating Classical Alignments

The algorithms presented in the previous section for computing alignment have
been implemented in a branch of pm4py1. In this section we present general
comparisons of quality and runtimes between them and existing methods, where
the runtime reflects the search space. We also stress the impact of the discounted
parameter by zooming on particular cases.

6.1 Comparison with Respect to Baselines

Inputs. We played the algorithms for both artificial and real-life logs and the
corresponding models. Artificial set is taken from [18] and contains large mod-
els. For real-life logs, we used data given in the Business Process Intelligence
Challenges from 2012 to 2020. We mined the process models of those logs with
methods of the literature2. First, we applied a preprocessing method introduced
by [8] to extract good prototypes of the logs3. This preprossessing step allows us
to obtain not perfectly fitting models when using miners, interesting for align-
ments comparison. In fact, the method aims at finding more precise models.
Then, we launched two different discovery algorithms on the found prototypes:
the inductive miner [11] and the split miner 2.0 [3]. As the latter tool gives
BPMN models, we use ProM plugins to transform them into Petri nets.

We computed the alignments on variants only, i.e., unique sequences of activ-
ities. This choice of using variants only allows to correctly compare the method’s
runtimes and prevents the situation where one method reduces the log to vari-
ants and not another one. Indeed alignment of log sequences of the same variant

Fig. 2. Input Description, where Σ is the alphabet of activities in the log, T the set
of transitions of the model, P the set of places of the model and F the flow relations
between the nodes in the model.

1 Currently available at https://github.com/BoltMaud/pm4py-core.
2 Available at https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-

Alignments-of-Business-Processes-Sources.
3 Prototype Selection plugin of ProM software with default settings.

https://github.com/BoltMaud/pm4py-core
https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-Alignments-of-Business-Processes-Sources
https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-Alignments-of-Business-Processes-Sources
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is equivalent but this optimization can be used for any algorithm. Figure 2 gives
an overview of the inputs.

Comparison. We compare our alignment results to the four current methods
of the state-of-the-art implemented in pm4py which are: – the Dijkstra search
on the Synchronous Product without heuristic (DSP ) [1], – a Disjkstra that
consumes less memory by using a similar idea of our second algorithm (DLM),
– an A*-based algorithm on the state-space of the synchronous product that
incorporates an heuristic on reaching the final marking (A∗SPmf ) [26] and –
its less-memory version (A∗LMmf ). To compare the runtimes, we exclude log-
based implementations and used the trace-based version to avoid the use of
the parallelism between variants that can be added to any version at the case
level. We recall notation of our methods A∗SPD=θ, for the version that uses the
synchronous product, and A∗PTD=θ, for the second one that explores only the
process model and the trace.

Results. The quality of an alignment found by a heuristic method, is defined
as the ratio (in %) between the classical cost (number of model or log moves) of
the optimal alignment (given by the DSP method) and the classical cost of the
alignment found by the method. In Fig. 3a we give the quality of each method.

Similarly, in Fig. 3b, each line shows the sum of the runtimes of alignment
computations by a method, expressed in percentage of the runtime of the DSP
method. The runtime reflects the space of search. The box charts have wide
range because they summarize the results of all the alignments which are very
different (depending on both the model and the log involved).

We see in Fig. 3b that the runtime of the DLM algorithm is 20% of the
runtime of the DSP method. For our heuristic A∗PTD = 2, the average runtime
is around 10% of the reference method DSP (which corresponds to a gain of 90%
of runtime, the result of a large reduction of the search space), for an average
quality between 90 and 85% of the optimal alignments.

We did not represent in the charts the runtimes for methods A∗SPmf and
A∗LMmf (implemented in pm4py) since they are much higher than the others:
A∗SPmf ran up to 30 times longer than the DSP and A∗LMmf up to 7 times
longer. We invite the reader to find the results and scripts on github4.

6.2 Influence of the Discount Parameter θ on the Quality and
Runtime

Figure 3a shows that the quality decreases when the parameter θ of the dis-
counted cost function raises. However the gain in term of search space is high
when θ > 1 (depicted in practice with a gain in runtime). The output of those
experiments is the correlation between the parameter θ and the compromise

4 Available at https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-
Alignments-of-Business-Processes-Sources.

https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-Alignments-of-Business-Processes-Sources
https://github.com/BoltMaud/A-Discounted-Cost-Function-for-Fast-Alignments-of-Business-Processes-Sources
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Fig. 3. Comparison of quality and runtimes of different methods.

between quality and runtime of alignments. For θ = 1, one gets exact align-
ments but runtimes are slow because the search space is large. For higher θ one
can extract very fast alignments but the quality is reduced. In practice, we rec-
ommend to try θ slightly higher than 1 and not larger than 2 (which is already
a very severe discount factor). Values around 1.1–1.5 should give good results.

On another hand, we want to raise awareness on the method A∗PTD = 1
which corresponds to optimal alignment without the construction of the syn-
chronous product. The method gives exact alignments for reduced runtimes
because it disables the construction of the synchronous product. Method DLM
also does not construct the synchronous product but we see in Fig. 3a that there
is a lost of quality.

Additive Comparisons. The omission of ProM and other tool results in the
previous section is due to the differences between the output formats which made
difficult the comparison of quality and runtimes. However, in this section we
zoom in particular cases, i.e., by running a log sequence only, thus making human
interpretation possible. We add PNR the results given by the PNetReplayer
package of [2] in ProM and RECilp the results given by [19].
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Fig. 4. Particular alignments that draws advantages and disadvantages of our methods.

Specific Inputs. We choose 3 models and traces that have particular charac-
teristics. First, we run the alignment between the first trace of BPI2020rp log
and model IM because this couple (BPI2020rp, IM) gives the least differences
between the methods (Fig. 4a). The model has only 2 parallelism patterns and
no loop. Then, we run the alignment of the first trace of L5 and model M5 where
our method specifically works well (Fig. 4b). This model contains a concurrent
pattern including 28 transitions and one loop. Finally we present an alignment
of the fifth trace of L3 which is very long (215 activities) and its model which has
many loops and many parallelism patterns (Fig. 4c). The latter aims at showing
the weakness of our method.

Results. From the three tables of Fig. 4, we observe that the methods usually
find exact alignments. This is not true for the last experiment given in Fig. 4c
which highlights our weakness. This due to the size of the trace (215) that,
for the high base of logarithm θ, the algorithms face a situation where all the
markings have the same cost (θn where n is very large borders zero). At this
point, we already advise the user to check the length of the traces to set the
discounted parameter θ (or to tackle very small differences between costs with
an implementation where more decimal are allowed).

Observe now that for Fig. 4a and b using high value of θ brings very fast
result for nearly optimal alignment in Fig. 4a and optimal alignment in Fig. 4b.
Moreover, this latter result even beats all the other methods including the ProM
implementation (noted PNR). The particularity of model M5 is the large con-
currency pattern that creates many paths of different behaviors. Most methods
have to explore the different combinations created by the concurrency pattern.
Our discounted function favors only the path that align at the beginning of this
pattern and does not consider the other combinations of the activities.
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The versions using less memory seem to be much less efficient sometimes even
for less quality (see DLM for M3). The method RECilp worked only for the
second model. M3 is too large for the Gurobi open source version and format of
model 2020rp is not accepted by the tool.

Comparison with the Token Replay Approach. Last but not least we give
a comparison of runtimes between our algorithms for computing alignment and
the token replay approach given in [4] because it also computes an approximation
of conformance (more precisely fitness) of process models for a given log. For
those experiments, we set our method with θ = 2. We observe in Table 1 that
our second algorithm gives faster results in most times. The token replay is
however much faster for BPI2018pa. We plan to compare fitness approximation
in future works.

Table 1. Runtime Comparison (in seconds) between the Algorithms for computing
Discounted Alignments and the Token Replay Method given in [4] run on a un on a
MacBook air 2017 model with a 1.8 GHz Intel R© CoreTM i5 CPU and 8 GB RAM.

Method BPI2012 BPI2018pa BPI2019 BPI2020dd BPI2020rp

IM SM IM SM IM SM IM SM IM SM

A∗SP 78.18 69.39 493.96 43.92 143.25 103.99 0.43 0.23 1.08 0.24

A∗PT 25.03 19.71 419.37 11.15 42.14 26.61 0.14 0.09 0.70 0.09

Token replay 35.41 36.86 36.11 31.01 45.99 49.40 0.20 0.19 0.22 0.18

7 Conclusion

In this paper, we present a novel cost function for alignments. By using the posi-
tion of the moves, our discounted cost function penalizes deviations of business
processes that appear at early stage of the process execution. While the first
aim is to align prefixes first, we nicely see that the proposed discounted cost
function gives a heuristic for classical alignments. We implemented two versions
of an A*-based algorithm that incorporate this heuristic and we experimented
with artificial and real-life logs. The outputs of the experiments clearly show
that the lost of quality, in term of log and model moves, is correlated to the gain
of runtime, the result of the reduction of the search space. This is due to the
parameter θ of our discounted cost function that forces prefix-first alignments.
The compromise between quality and runtime can easily be set by using this
parameter.

As future work, we suggest to combine the discounted cost function with
other heuristics used for alignments. Also, the idea of using a discounted cost
for alignments may be more or less relevant depending on the application that
one is targeting. Among the multiple applications of alignments in conformance
checking, some may be more or less resilient to the little loss of quality that we
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accept when using heuristics. In some settings, even, the alignments obtained
for our discounted cost function may be more relevant than classical alignments,
typically when the application justifies to penalize early deviations more than
late ones.

Another interesting research line would be to use a machine learning approach
(like it was done in [17] for the case of predicting the best process discovery
technique), for learning the best parameter setting (mainly, the θ value used for
discounting) as a previous step to our alignment technique.
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Abstract. Robotic process automation (RPA) software is a powerful
tool that can automate business operations to reduce manual labor while
improving operational quality by eliminating input errors. In order to
efficiently and effectively improve business operations with RPA, it is
necessary to clarify the types and volumes of actual business operations
being performed by the employees and improve operations that have a
large volume and are performed repeatedly. User interaction (UI) logs
consist of users’ activities performed on the computer and can be col-
lected regardless of the business system or application to understand
how employees work. However, it is difficult to understand the types and
volumes of the executed tasks from such data because the task types
are not recorded explicitly. In this work, we propose a method that clus-
ters UI logs into task types to help analyzers identify high-volume and
repetitive tasks for RPA introduction. As the operation types differ by
task type, we utilize this characteristic to analyze the co-occurrence of
operations and segment UI logs into a sequence of the same task types.
Then, we perform clustering based on the operation types contained in
the segments. We evaluated our approach using UI logs generated from
actual scenarios in a workplace, and report the results and limitations.

Keywords: Business process analysis · User interaction log · Robotic
process automation

1 Introduction

In the rapidly changing business environment of the modern era, companies are
constantly searching for the best way to improve efficiency in business operations
to make the company more productive. Generally, business process improvement
is done by clarifying the existing processes, identifying operational problems,
redesigning the processes, and evaluating the improvement [1]. For a company
to improve efficiency rapidly and maximize the effect of the improvement, it
needs to understand the As-Is processes performed by employees and prioritize
c© Springer Nature Switzerland AG 2021
A. Polyvyanyy et al. (Eds.): BPM 2021, LNCS 12875, pp. 273–288, 2021.
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the ones that need to be improved, rather than just changing the way of working
without thinking of a strategy.

Robotic Process Automation (RPA) software applications such as WinAc-
tor1 and UI Path2 are powerful tools that can automate business operations,
and they have been introduced to many types of work performed on the com-
puter. The automation of business operations using RPA software can improve
the productivity of companies by reducing manual labor while improving the
operational quality by eliminating input errors. However, introducing an RPA
software requires the implementation of RPA robots, and if the robots are not
designed for the appropriate scope of work (e.g., a robot created for low-volume
operations), the cost of the implementation will increase while no clear business
improvement effect will be achieved. Therefore, in order to maximize the effect
of the business operation improvement using RPA software, analyzers need to
understand the actual state of business operations and identify which operations
have a large volume and are performed repeatedly to determine which business
operations to improve [2,3]. Process mining using event logs collected from enter-
prise systems can be one of the options to clarify how employees work and to
determine processes for RPA implementation [4–6]. However, in reality, some
business operations use enterprise systems or other applications that do not out-
put event logs. Thus, using data only available from some systems may not allow
analyzers to understand employees’ work thoroughly. On the other hand, user
interaction (UI) logs can be collected from workers’ computers accurately and
exhaustively regardless of the type of business system or application [7,8]. UI
logs are sequential data of users’ activities performed on the graphical user inter-
face (GUI) (e.g., button click, textbox entry, etc.). As UI logs contain detailed
data on operations but do not explicitly contain task names, it is necessary to
establish a method that can group the UI logs into task types to discover the
workload of each task. A manual method, a supervised method, and an unsu-
pervised method that can segment UI logs into smaller sequences of tasks have
been proposed [9–11]. However, the manual and the supervised methods cannot
be realized unless the analyzer knows the content of tasks existing in the data.
The conventional unsupervised method is also not possible to properly segment
UI logs into smaller sequences of tasks if the task is interrupted or restarted
and another task is executed in between, or if the order of the operations varies
greatly for each task execution, which is common in real-world operations.

In light of the above background, we propose a method that helps analyzers
identify high-volume and repetitive operations from a UI log to determine which
process has the potential to effectively improve business operations by introduc-
ing RPA software. Our method segments the UI log into smaller sequences and
clusters them into groups of tasks. In this way, analyzers can understand the
variety of tasks executed by employees and their overall workload. We presume
that the same task generally consists of the same operations, so our method ana-
lyzes the co-occurrence of operations and segments the UI log into a sequence of

1 WinActor: https://winactor.biz/en/.
2 UI Path: https://www.uipath.com/.

https://winactor.biz/en/
https://www.uipath.com/
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operations under the same task by dividing the non-co-occurring area within the
operations. Then, clustering is performed in accordance with the type of opera-
tions in the segmented sequences. Our method is unsupervised, which means it
does not require the analyzers to have knowledge of the tasks contained in the
UI log or to set up any rules. It is also robust for situations where the order of
operations is varied among each task execution or when tasks are not executed
from start to end due to interruptions.

In Sect. 2 of this paper, we present related research on process selection for
RPA introduction, UI logs, and techniques for classifying/clustering sequential
data. In Sect. 3, we present our proposed method, and in Sect. 4, we report the
details of our evaluation and discuss the results. We conclude in Sect. 5 with a
brief summary and mention of future work.

2 Related Work

Process selection for RPA implementation is crucial when it comes to increas-
ing the effectiveness of business improvement [5]. Wanner et al. [6] proposed
a method to quantitatively measure the number of task executions, execution
time, etc. by using the event logs in Process-Aware Information Systems (PAIS)
accumulated from various enterprise systems. Measuring the number of task exe-
cutions is also emphasized in other research [2,3], as it is clearly linked to cost
reduction through automation. Our study also focuses on measuring the work-
load of the task executions, but we use UI logs rather than event logs because
they can be obtained from a computer regardless of the type of business system
or applications, as mentioned in the previous section.

A UI log is essentially a collection of interactions done on GUI components
[7,12] (see Sect. 3.1 for details). Since RPA robots execute operations on GUI
components, the UI log is very compatible with RPA and is considered very
useful for extracting repetitive operations in the same task [11,13] and under-
standing the flow of operations [8]. When collecting the UI logs from employees’
computers, turning on the logging tool right before a worker executes a single
task and turning it off after finishing the task is inconvenient, so the UI log is
generally obtained continuously while the terminal is running. Unlike event logs,
UI logs do not have any data to identify task types, so it is necessary to classify
the data into groups of tasks to measure task types and their workload.

There are several approaches to classifying/clustering sequential data, which
can be divided into manual approaches, supervised approaches, and unsupervised
approaches. For the manual approach, Urabe et al. [9] proposed a method that
visualizes the UI log with nodes and edges to enable analyzers to visually check
the flow of operations and group various data in accordance with tasks. For
the supervised approach, methods such as trace alignment [10] or dynamic time
warping [14] can detect sequences that are similar to labeled sequences prepared
in advance. However, manual and supervised methods are time-consuming in
terms of manually grouping data and/or preparing labeled sequences for each
task type, and they cannot be implemented correctly unless the analyzers have
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Fig. 1. Overview of our proposed method. “Sequence” comprises of one or more oper-
ations. “o1, o2, o3, and oN” shown in the “Sequence” box represent operations.

knowledge of the data (e.g., knowledge of the operation type for each task). As
for the unsupervised approach, Leno et al. [11]’s method which detects back-edge
operations in tasks in order to segment sequential data into a smaller sequence
of operations, could be an option for segmenting data before clustering data into
groups of tasks. Their method seems to work well if the order of the operations
of a task doesn’t vary in every task execution or if there are no interruptions
during task execution. However, when the order of operations varies greatly or
when an interruption occurs and another task is executed before the current one
is finished, this method fails to identify back-edge operations and cannot perform
segmentation. Frequent sequential pattern mining algorithms (e.g. Prefix-Span,
SPADE) [15] is also insufficient to accomplish our goal because the order of the
operations in the task may vary for every task execution.

3 Proposed Method

In this section, we describe our approach to cluster a UI log into a group of tasks
(Fig. 1). Input data is a UI log collected from workers (“UI logs” in Fig. 1; details
provided in Sect. 3.1). The UI log is segmented into smaller sequences using the
co-occurrence feature of operations (“Segmentation” in Fig. 1: details provided
in Sect. 3.2). Finally, the segmented logs are clustered in accordance with the
type of operations contained in each segment (“Clustering” in Fig. 1; details
provided in Sect. 3.3).

3.1 UI Log

The UI log is composed of operation time, user information, operated area (e.g.,
application name, window title, file name, information of GUI components, etc.),
and input content (see Fig. 2 for an example). These are collected at the timing
of workers’ interactions with GUI components (e.g., button, link, textbox, select
box, checkbox, cell, etc.) that cause changes on the computer screen [7,12].
Information of the GUI components can be, for example, id property, name
property, GUI coordinate, or values shown on the webpage that can be extracted
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Fig. 2. Example of a UI log. Each column represents operation time (time), user infor-
mation (user ID), application name (application), window name (window title), name
property of an interacted GUI component (html name), and input content (content).

from a document object model (DOM) for webpages. This information can also
be an identifier of GUI objects extracted using UI Automation3 or Microsoft
Active Accessibility (MSAA)4 for Windows applications.

3.2 Segmentation

Our approach to UI log segmentation is based on the idea of topic segmenta-
tion in the field of natural language processing [16]. In topic segmentation, the
assumption is that the types of words appearing in a topic change as the topic
in the text changes. In Bessho’s work [16], a co-occurrence vector is created by
counting the co-occurring words in each sentence in a corpus. Then, the words in
the text are processed in each defined window width in the order of appearance,
and the similarity of window widths before and after is calculated. Finally, the
part where the similarity drops is judged to be the part where the topic has
changed, and the text is then split into smaller segments. In the same way that
the types of words change as the topic changes, we hypothesize that the types of
operations change as the task changes in the UI log. Our segmentation method
is described below.

1. Create operation ids from a UI log to identify the same operations.
We combine the name of application (application name), name of window
(window title), and information of GUI components (html name, html id,
html type, coordinate, etc.) to create an id (e.g., “IEXPLORE.EXE Search
theme number ref pro” in row 2 in Fig. 2). We do not include operation time
(time), user information (user id), or input content (content), as they are not
necessary for identifying the location of the operation.

2. Create a co-occurrence matrix with operation ids. Unlike natural lan-
guage texts, which can be segmented by sentences, there is no clue for seg-
menting operations in the UI log at this stage, so we count the co-occurrence
of operations by focusing on the N operations that appear before and after

3 UIAutomation: https://docs.microsoft.com/en-us/windows/win32/winauto/entry-
uiauto-win32.

4 MSAA: https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-
active-accessibility.

https://docs.microsoft.com/en-us/windows/win32/winauto/entry-uiauto-win32
https://docs.microsoft.com/en-us/windows/win32/winauto/entry-uiauto-win32
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
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Fig. 3. Example of a co-occurrence matrix. Each letter in the string (“abcdefg...”)
represents an operation id.

the target operation. N is defined manually (e.g., 10 operations). The target
operation is each operation that appears in chronological order in the UI log.
Figure 3 shows an example of the co-occurrence matrix. For example, if N
is set to 5, five operations existing before and after the target operation are
counted. Therefore, in Fig. 3, when the target operation id is “a”, it means
the operation id “b” has co-occurred four times before and after the operation
id “a”, and once for the operation id “x”.

3. Create a co-occurrence vector for each operation. We apply a dimen-
sionality reduction method, namely, singular value decomposition (SVD) [17],
to reduce the computation time of the vectors when the operation type is
large. SVD is a method for automatically extracting the characteristic dimen-
sions from the co-occurrence matrix. With this method, the vectors of opera-
tions that tend to co-occur will be similar to each other. For example, if there
are 1,000 types of operations, the dimension of the vector for each operation
is 1,000. We reduce the dimensions to 100 using SVD and call it a “concept
vector” for each operation (Fig. 3).

4. Compute similarity between two sequences. In order to find task
boundaries in the UI log, we calculate the similarity of two M -length
sequences that are adjacent to each other. M is set manually (e.g., 10 opera-
tions). For example, Fig. 4 shows how we calculate the similarity between the
M -length sequences which the first sequence ends with operation id “a” and
the second sequence starts with operation id “c”. If we set M to 3, we com-
pute the similarity of two sequences that each contain three operations (i.e.
“[m, n, a]” and “[c, d, b]” in black-bordered boxes in Fig. 4). The similarity
is computed by first creating a centroid vector for each sequence by using the
concept vector of each operation contained in the sequences (Eq. 1). In Eq. 1,
C denotes the centroid vector, M is the length of a sequence, cvj means the
concept vector of the j-th number of the operation id in the sequence, and k
is the size of the dimension of the concept vector. Then, the similarity of two
sequences is calculated by using cosine similarity in Eq. 2, where C1 and C2

denote the first and the second centroid vectors and k means the size of the
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Fig. 4. Example of centroid vector computation.

dimension. We continue this process from the beginning to the end of the UI
log in chronological order by sliding one operation at a time. For example,
after computing the sequences “[m, n, a]” and “[c, d, b]”, it will then slide to
“[n, a, c]” and “[d, b, e]” (black dotted boxes in Fig. 4).

C = [
ΣM

j=1cvj,1

M
,
ΣM

j=1cvj,2

M
, · · · , [

ΣM
j=1cvj,k

M
] (1)

Similarity(C1, C2) =
Σk

i=1C1k × C2k√
Σk

i=1C
2
1k

√
Σk

i=1C
2
2k

(2)

5. Segment the data where the similarity drops. At the task boundary,
the similarity of the adjacent sequences is expected to be at the minimum.
Therefore, we find the minima and the maxima of the similarity in the UI
log and identify d1, a depth from the first maxima to the minima, and d2,
a depth from the minima to the next maxima. The sequence of the data is
segmented when both d1 and d2 are larger than a threshold t (Fig. 5). The
threshold t is set manually between 0 and 1. For example, if the threshold
is set to 0.2, we split the sequence where both d1 and d2 are larger than 0.2
(vertical dotted lines in Fig. 5). The similarity is normalized to remove weak
oscillations by calculating the average value of a certain number of operations
before and after the target operation. For example, if the target operation is
the 20th operation in the UI log and we set five operations for normalization,
we calculate the average similarity from the 15th to 25th operations.

3.3 Clustering

After the data is segmented into sequences of a smaller number of operations,
we cluster these segments into groups based on the type of operations they con-
tain. Generally speaking, there are two types of clustering methods: hierarchical
clustering and partitioning (e.g., k-means [18]). We opted to use a hierarchical
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Fig. 5. Similarity score of the operations in a UI log.

clustering method, namely, agglomerative hierarchical clustering (AHC), because
the partitioning method requires knowledge of the number of clusters in advance,
which we cannot determine in our research setting. The process for clustering is
described below.

1. Create feature vector. We create a feature vector for each segment that
has a dimensionality equal to the type of operation ids contained in the UI
log. Then, when we find an operation id in the segment, we increase the count
of its element. For example, in Fig. 6, the feature vector of the segment “[a,
c, c, d, d, e, f, b, g, f, g]” is “[1, 1, 2, 2, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0]”, counting the operation ids existing in the segment and leaving those
that do not exist as 0.

2. Cluster segments. The segments are clustered into groups using the feature
vectors created in the previous step. With the AHC method, we have to define
a linkage category (e.g., single-linkage, complete-linkage, and group-average-
linkage, etc.) to link the data to create a hierarchy of clusters and implement
a method for calculating the distance between two items of data (e.g., cosine
similarity, Euclidean distance). We tried these methods and chose the group
average linkage method and the cosine similarity method as they worked the
best. The input for clustering is a matrix of feature vectors; the size of the
number of segments × the type of operation ids. An example of the clustering
result is shown as a dendrogram in Fig. 6. The labels shown on the x-axis
correspond to the labels of the segments shown on the left side of the figure.
Finally, we manually set a threshold (e.g., 0.7) to divide the dendrogram into
a group of segments. For example, in Fig. 6, if we set the threshold to 0.7
(horizontal line in the dendrogram), we obtain three groups that contain four
segments each.
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Fig. 6. Example of clustering. The labels shown on the x-axis in the dendrogram figure
correspond to the labels (0 to 11) of the segments.

4 Evaluation

We implemented and evaluated our method to investigate how well it can seg-
ment and cluster a UI log into tasks, how it is influenced by various parameters,
and any limitations it may have. We also visualized the results it provided and
examined whether we can comprehend the number of task types and their work-
load and if they are close to the correct answer. The datasets we used and the
evaluation method are described in Sects. 4.1 and 4.2, respectively. We report
the results in Sect. 4.3 and discuss the limitations in Sect. 4.4.

4.1 Datasets

We collected two datasets for our evaluation. The first dataset (Dataset 1) con-
tains five types of task executions that use web-based enterprise systems running
in our company. We implemented a logger tool that extracts user interactions
on GUI components from Internet Explorer. The second dataset5 (Dataset 2)
was collected from [11]. The details of each dataset are described below.
5 The data was obtained from https://figshare.com/articles/dataset/UI logs/

12543587.

https://figshare.com/articles/dataset/UI_logs/12543587
https://figshare.com/articles/dataset/UI_logs/12543587
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Dataset 1 contains operations of five task types performed by one person
for two days. These tasks are: business travel request (BTR), purchase request
(PR), publication approval request (PubAR), patent approval request (PatAR),
and meeting setting (MT). Each operation in the UI log contains the informa-
tion described in Sect. 3.1. We created operation ids based on the rule given in
Sect. 3.2. Each task is basically completed by entering necessary information on
each business system. However, in the (BTR) log, the user searched for a route
and its transportation fee on an external transportation website to input this
information on the business system, and the timing to search the route varied
each time the task was executed. In the (PR) log, the user searched for the
product name and code on the Internet to find product information to input on
the business system, and the timing to search these information also varied. The
total number of operations was 3,422. The number of task executions, minimum,
maximum, and average number of operations for each task type, are listed in
Table 1. As a UI log file was created for each task execution, we annotated the
task names into the UI log in order to use them to compare the result given by
our proposed system. We shuffled the order of the files and created one long UI
log file for the evaluation.

Dataset 2 contains the execution of three tasks: colored Petri nets (CPN),
reimbursement (RT), and student records (SR). (CPN) is data containing one
task that is repeated 100 times. It was created by Bosco et al. and is equivalent
to “CPN1” in their paper [13]. (RT) and (SR) record simulations of real-life
scenarios, each created 50 times by Leno et al. [11]. The (RT) log simulates the
task of filling in reimbursement requests with data provided by a claimant. The
(SR) log simulates the task of transferring students’ data from a spreadsheet to
a web form. All of these logs contained data equivalent to time, user information,
application name, and information to identify the interacted GUI components,
and we used some of the data to create operation ids. These data contained
a case id to identify task execution, which is not included in Dataset 1. The
total number of operations was 7,180. The number of task executions, along with
the minimum, maximum, and average number of operations for each task type,
are listed in Table 1. As the original data in the file was separated by tasks, we
added the task names into each operation data to use them in the evaluation.
We divided the UI logs by case id and shuffled the data to create one long UI
log file.

4.2 Evaluation Method

We input each dataset into our system and retrieved the outputs provided. As
we wanted to investigate how the parameters influenced the result, we combined
the values within a certain range and evaluated how the result changed. The
range we set for parameter N and M was from 10 to 100 in increments of 10,
and from 0 to 0.5 in increments of 0.1 for t (the details of these parameters are
given in Sect. 3.2). The threshold we set for dividing the dendrogram was 70%
of the maximum linkage, which is the default of the dendrogram function in the
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Table 1. Number of tasks executed and minimum (Min.), maximum (Max.), and
average (Avg.) number of operations for each task type. The tasks include a business
task request (BTR), purchase request (PR), publication approval request (PubAR),
patent approval request (PatAR), meeting setting (MS), colored petri nets (CPN),
reimbursement (RT), and student records (SR).

Dataset 1 Dataset 2

(BTR) (PR) (PubAR) (PatAR) (MS) (CPN) (RT) (SR)

No. of tasks 6 17 9 10 13 100 50 50

Min. 76 19 50 43 8 14 73 37

Max. 127 103 89 105 41 14 81 43

Avg. 96.8 74.8 67.2 68.3 21.6 14.0 74.6 41.0

Scipy library6 (Python). Since the clustering results were not assigned a specific
task name, we examined each cluster in the order of the highest number of oper-
ations contained and gave the name of the task that contained the most types
of operations in the cluster. In cases where the number of clusters was greater
than the number of tasks and a task name was already given to another cluster,
we gave a name such as “other 0” or “other 1”. We utilized precision, recall, and
F-score to quantitatively evaluate whether the clustering was performed accu-
rately and without omissions, as calculated with Eqs. 3, 4, and 5, respectively.
In these equations, “Number of Task A operation that was correctly classified”
was determined by comparing the task names annotated in the data to the task
names given by the aforementioned method in this paragraph. “Number of oper-
ation classified as Task A” was decided by counting the number of task names
given by the system. We also counted the number of each task name annotated
in the data for “Number of Task A operation”.

Precision =
Number of Task A operation that was correctly classified

Number of operation classified as Task A
(3)

Recall =
Number of Task A operation that was correctly classified

Number of Task A operation
(4)

F − score =
2 × Precision × Recall

Precision + Recall
(5)

4.3 Result

Figure 7 shows how the F-score changed when the parameters changed in order
to clarify the influence of the parameters on the clustering results. The best F-
score is shown with a markup balloon in each figure including the precision and
6 scipy.cluster.hierarchy.dendrogram: https://docs.scipy.org/doc/scipy/reference/

generated/scipy.cluster.hierarchy.dendrogram.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.html
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Fig. 7. F-score of Dataset 1 (upper) and Dataset 2 (lower). X-axis is the parameter
for N . Each line represents the parameter for M . t is set to 0.1.

recall results. The best result for Dataset 1 was {Precision,Recall,F-score} =
{0.88, 0.86, 0.84} when the parameters were {N,M, t} = {30, 40, 0.1}. For
Dataset 2, it was {Precision,Recall,F-score} = {0.94, 0.93, 0.93} when the
parameters were {N,M, t} = {30, 10, 0.1}.

As we can see in the figure, the F-score tended to get a higher score when
N was set larger than 30 and get lower scores at 10 and 20 for Dataset 1. For
Dataset 2, the F-score was higher when N was set between 10 and 50 and was
lower as the parameters grew larger. For parameter M , the F-score tended to
be lower when M was large (around 90 and 100) for Dataset 1 (see M lines at
“90” and “100” in Fig. 7) and when M was larger than 60 for Dataset 2 (see M
lines from “60” to “100”). For parameter t, we found that a larger value tended
to result in a failure to segment the UI logs, as the similarity of the UI log did
not create a big drop (this can be clearly seen when parameter M was larger).
However, if parameter t is too small (e.g., less than 0.1), it may segment the UI
log which is not a point of a task change. When comparing the two datasets,
the tendency of the parameters that resulted in higher F-scores was somewhat
different: namely, parameters {N , M} for Dataset 1 were larger than those for
Dataset 2. We conclude that the best parameters to achieve better clustering
results will vary depending on the length of the operations contained in the
tasks. For example, the number of operations in the tasks for Dataset 1 ranged
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from 21.6 to 96.8, which is in contrast to the lower number of operations, 14.0
to 74.6, for Dataset 2.

4.4 Limitations of Our Approach

We further investigated the clustering results and discovered two limitations to
our approach.

– Optimization of parameters {N , M} is necessary to achieve best
clustering result. From Dataset 1, we discovered that the segmentation
of the UI logs tended to fail when the operation order varied largely in
the task when parameters N and M were set smaller to 10—a failure that
was not seen in the best clustering result. For example, in the (BTR) log,
there were cases where the user searched for the business travel route before
any data had been entered on the business system or right before the per-
son entered data about the route. When the parameters were {N , M} =
{10, 10}, our approach segmented the UI log right before the route was entered
on the system for cases where the user searched for the route before using the
system and then input all the required information. As a smaller parameter N
counts the co-occurrence of the smaller range of operations, we assume that if
the order of the operation varies greatly for every task execution, the system
cannot deduce that the operations of the same task co-occur together. On
the other hand, if parameter N is larger, our approach counts a longer range
of operations so it can consider that the operations of the same task co-occur
together. However, we must note that parameter N should not be too big, as
it will count the co-occurrence of other tasks. Parameter M sets the range of
operations to create a centroid vector and we assume that if the parameter
is too large, the centroid vector will become a vector containing operations
of multiple tasks, which may result in making a smaller and vague depth of
drop at the task boundary that will then fail to be segmented. From these
observations, it is important to optimize the parameters, especially {N,M},
to achieve better clustering results for every dataset. However, when using
this system in the real world, we generally would not know the characteris-
tics of the UI logs. Therefore, a method to optimize these parameters needs
to be established. Since operations occur only in a certain task(s), examining
how the operations appear in one or more clusters from the clustering result
may be one of the clues to optimize the parameters {N,M}.

– Segmentation failure occurs when the UI log contains a task where
the number of operations is explicitly smaller than others. To be
more precise, when a task that contains a smaller number of operations (e.g.,
(MS) in Dataset 1 or (CPN) in Dataset 2) exists between the other tasks of
a larger number of operations, our system tends to only segment at the first
task change, and the task of a smaller number of operations tends to be in the
same segment of the second task of longer operations instead of segmenting
the data at the point of every task change (Fig. 8). This is potentially because,
when computing the similarity of two sequences in this situation, our approach
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Fig. 8. Example of segmentation failure (circled area). The X-axis represents the 148
th to 432 th operation in the UI log of Dataset 2. The blue line represents the
similarity of the operations when parameters were {N,M, t} = {30, 10, 0.1}. The black
both-direction arrows represent the range of each task (SR: Student records, RT: Reim-
bursement, CPN: Colored Petri Nets). The red dotted lines represent the segmentation
point given by our approach. (Color figure online)

computes the sequences that contain the operations of two or more tasks (i.e.,
the first sequence containing the operations of the first and second tasks and
the second sequence containing those of the second and third tasks), and as
such, the similarity will not score lower compared with when computing the
similarity of sequences containing operations of different tasks. Our approach
does not also compute the similarity of two sequences where they both belong
to the same task for the task with a smaller number of operations because
the operational length of the task is too small, which results in not scoring
a higher value of similarity. These reasons result in not making a significant
drop at the point of the task change and cannot be segmented.

4.5 Visualization Result

Figure 9 shows the percentage of operations contained in each task type for each
dataset where the left column (“Clustering result”) shows the result given by
our approach and the right column (“Correct”) shows the correct data. Overall,
our approach could accurately show the quantitative result of task types and
their ratio of operations, and the visualization result was quite similar to the
correct data. From this visualization, we can conclude that our method achieves
the goal of helping analyzers understand the number of task types and their
workloads. However, if using our approach in the real world, it would not give the
appropriate names for each task type, so analyzers would have to look through
the operation types in each cluster to determine the task name.



Task Clustering Method Using User Interaction Logs 287

Fig. 9. Percentage of operations contained in each task type for Dataset 1 and
Dataset 2. The left column (“Clustering result”) represents the clustering result given
by our system and the right column (“Correct”) shows the correct visualization.

5 Conclusion

In this work, we introduced a method that clusters a UI log into a group of
tasks to quantitatively discover the type of the tasks and their workload. Our
aim with this method was to help analyzers to clarify high-volume and repetitive
tasks to make decisions for RPA introduction. Our approach consists of two main
processes: segmentation and clustering. We hypothesized that a task comprises
a certain type of operations and therefore segmented the UI log by analyzing
the co-occurrence of the operations in the UI log to determine the point where
the characteristic of the operations changes in the sequence. Then, we clustered
the segments based on the type of operations.

We evaluated our approach with two different datasets and found that it
can provide a high-quality clustering result when the parameters are optimized
appropriately. Moreover, we were able to understand the number of task types
and their workload quantitatively, which demonstrates that our system can
achieve the main goal of this paper. However, at present, there is no method
to optimize the parameters automatically, and when the number of operations
of a certain task type differs greatly from that of the other task types, our app-
roach fails to segment at the time the task changes. We also plan to evaluate
our system in an environment where business operations are being conducted
to investigate whether it helps the analyzers and clarify what else might be
necessary to support them in improving business operations.
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Abstract. Robotic process automation (RPA) is a novel technology that auto-
mates tasks by interacting with other software through their respective user inter-
faces. The technology has received substantial business attention because of its
potential for rapid automation of process-driven tasks that would otherwise require
tedious manual labor. This article explores the dichotomy between the practical
reality of symbolic RPA, which requires handcrafting robots using process mod-
els and rulesets, and the promise of intelligent RPA, which relies on artificial
intelligence technology to implement intelligent robots. Our research is based on
a scholarly literature review as well as an interview study to derive and discuss
challenges for this transition. We found that issues such as the lack of training
data, human bias in data, compliance issues with transfer learning, poor explain-
ability of robot decisions, and job-security-induced fear of AI robots all need to
be addressed to enable the transition from symbolic to intelligent RPA.

Keywords: Robotic process automation · Artificial intelligence · Symbolic
RPA · Intelligent RPA · Challenges

1 Introduction

Due to its heavyweight development load and the lack of application programming
interfaces (APIs) of legacy software, it has become apparent that BPM software does
not provide suitable automation solution for every business process [1, 2]. This has
triggered the emergence of lightweight techniques for automating digital and manual
tasks such as robotic process automation (RPA) [3]. In essence, RPA uses software
robots that are designed to mimic human employee behavior by relying on existing user
interfaces (UI) of legacy software instead of using APIs. In practice, this technology
allows for the rapid automation of simple, repetitive tasks and, consequently, a fast
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return on investment, since employees are no longer required to operate monotonous,
non-value-added processes [1, 2].

The application of RPA, however, faces several challenges. Since not every process
is predestinated for RPA-based automation, identifying suitable processes can be quite
difficult [3]. Likewise, due to the symbolic character of current RPA practices, which
means that it relies on handcrafted flowmodels and rulesets, the process of identification
and development is still time-consuming and limited by the abilities of the involved
designer [4]. There is a cut-off point at which RPA development becomes inefficient due
to the large and complex variants and rulesets [3, 4].

A reflection on these challenges reveals similarities with early artificial intelligence
(AI) research on expert systems. These systems are commonly referred to as symbolic
AI [5]. AI is nowadays a highly successful technology by advances in machine learn-
ing (ML), leading to AI applications that outperform humans [6]. ML encompasses
algorithms to build models for data-driven task solving that do not require explicit pro-
gramming. Instead, data is used for autonomous learning [5]. Considering this successful
transition of AI, it is only logical to explore a similar path for RPA: by infusing AI capa-
bilities into RPA, it seems feasible to overcome the limitations of symbolic RPA and
arrive at what we refer to as intelligent RPA.

There are already various proposals that point to AI as the future of RPA, which may
eventually lead to the approach of hyperautomation [7, 8]. Likewise, comprehensive
surveys, for example Syed et al. [1], identify the need for future research to develop
innovative solutions for AI-assisted RPA. Nevertheless, they also note that it is not
apparent what challenges need to be addressed to enable its productive use. Agostinelli
et al. [9] and Chakraborti et al. [4] have proposed several research challenges and tool-
oriented challenges, but their validity and practical relevance has not been assessed.

In this paper, we derive and investigate the relevance of challenges for the amalgama-
tion of RPA and AI, and consequently for intelligent RPA. This results in the following
research question:

RQ: Which challenges exist for the development and operation of software robots based
on intelligent RPA?

The contribution of our paper is an overview of ten concrete and distinct challenges,
whichwe assessedwith respect to their relevance, severity, and longevity. One significant
improvement over the state-of-the-art is that our work brings a specific focus and deeper
layer to more abstract RPA challenges identified before. Furthermore, the challenges we
describe are not just grounded in theory but firmly rooted in the industrial application
of RPA. This is important since the practice of RPA is at times well ahead of rigorous
theory-grounded research in academia.

This paper is structured as follows: In Sect. 2, we present the theoretical foundation
for RPA and our conceptualization of intelligent RPA. Section 3 presents the research
design, including details on the conducted literature review and expert interviews. In
Sect. 4, we introduce existing RPA and AI challenges as well as intelligent RPA chal-
lenges, which we discuss in Sect. 5 in detail. Section 6 provide a discussion of theoretical
and practical implications. Lastly, in Sect. 7 we conclude with a summary, limitation,
and outlook.
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2 Theoretical Background

2.1 Symbolic Robotic Process Automation

Following the idea of the long tail of processes [10], van der Aalst et al. [3] proposed
a Pareto distribution for the applicability of RPA. Depending on case frequency and
possible types of cases, they motivate the application of traditional backend automation
with BPM, automation with RPA, and the continued manual execution of specialized
manual human processes.

In this respect, RPA is an umbrella term that comprises many different automation
tools, which operate on the UI layer of off-the-shelf, legacy software in an “outside-
in” manner. They have in common that they enable software robots to mimic human
knowledge workers and perform their digital yet manual tasks with no adjustments to
existing software [1–3].

Currently, most state-of-the-art software requires users to implement their software
robots in a symbolic fashion [9]. This means that processes or simple sequences of
tasks need to be explicitly modeled and decisions need to be documented in handcrafted
rulesets [2]. While being simpler and timelier to realize than business processes using
traditional BPM software, these factors still limit the development of RPA. It entails
that implementing a robot must also be carried out by business users with knowledge
about variants and decisions as well as technical users with the ability to codify this
knowledge. In analogy with symbolic AI, which describes the handcrafting of explicit
if-then rules in early AI applications [11], we denominate this type of RPA as symbolic
RPA, since RPA is currently constrained by the inability of humans to manually code
complex and shared tacit experiences in comprehensive explicit rulesets [5].

2.2 Intelligent Robotic Process Automation

Using AI for RPA can help to mitigate the limitations of the rule-based specification of
software robots and leverage the ability to apply flexible AI-based pattern recognition
techniques representing human-like cognitive abilities to solve problems [12]. Hereby,
we use the umbrella term AI, for the application of ML and deep learning (DL). While,
ML relies on statistical algorithms to train analytical models, which can solve problems
without being explicitly programmed to do so [6], DL refers to complex models using
(deep) artificial neural networks whose inner workings are intransparent to human users.
The latter are especially useful for high-dimensional datasets [5]. DL models tend to
outperform shallow ML models and even humans for specific applications [6].

Ultimately, this entails, that robots will not only be able to complete tasks by them-
selves without the necessity of explicit process models or rulesets, but that they will be
able to perform tasks that require cognitive abilities, such as perceiving and reasoning.
Consequently, they will become more convenient to create and more versatile in their
deployment since they can complete tasks so far unsuitable for robots developed through
symbolic RPA. Examples include process identification, image recognition, (process)
prediction, natural language processing (NLP), chatbot functionality, or automated rea-
soning [1, 4]. Currently, RPA vendors have begun to include AI capability into their RPA
software to unearth some of these potentials [12]. Yet in academic literature, there is only
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little information on how to combine RPA and AI successfully and which challenges
need to be addressed in the course [1].

Closely related to intelligent RPA is the term hyperautomation [8]. Gartner defines it
as the joint application of advanced technologies such asMLorDL to automate processes
and augment humans.While our focus is onRPAas an automation technology augmented
by the use of various AI technologies, hyperautomation also refers to the sophistication
of the automation process itself. Hence, we include this concept in our search for relevant
work.

3 Research Design

3.1 Overview

In general, we followed an iterative, design-oriented procedure that uses theory-building
elements for data collection, specifically (1) a structured literature review and (2) expert
interviews [13, 14]. As shown in Fig. 1, our research can be divided into four distinct
phases.

• Problem 
identification and 
abstraction

• Definition of 
research question

Problem definition

• Collection of existing RPA and 
AI challenges

• Structured literature review
• Interview study
• Data coding
• Connecting data

Data collection and analysis

• Consolidation of 
findings from data

• Definition and 
classification of 
intelligent RPA 
challenges

Design

• Demonstration 
of challenges 

• Expert 
interviews

Validation

Fig. 1. Research procedure

Problem Definition. Syed et al. [1] and Gotthardt et al. [7] demonstrate the need for
more clarity in how the combination of AI and RPA can successfully be applied. While
Agostinelli et al. [9] discuss a lack of learning capabilities, they do not explore ML
in detail. Chakraborti et al. [4] discuss only abstract and general AI challenges and
opportunities. In contrast, our aim is to derive theoretical and practical challenges at the
intersection of RPA and AI that must be addressed in concert.

Data Collection and Analysis. First, we aim for saturation in theoretical knowledge.
We connect existing RPA,ML, and DL challenges from seminal review literature as well
as with a structured literature review according to vom Brocke et al. [13], in which we
focus on the combination of RPA and AI towards intelligent RPA. Second, we propose
initial challenges derived from this analysis. Note that Sect. 4.3 contains an overview
that has already been revised based on the feedback from the last phase. Third, since
practice is at least on par if not ahead of academia, we conduct an interview study with
practitioners to investigate and assess these challenges further.

Design. Through the connection of our findings, we can formulate and assess different
challenges for intelligent RPA, which future research and practice must solve. Thereby,
we also include a ranking, severity, and estimation from practitioners, who are facing
these challenges in real life. See Sect. 5 for a detailed presentation.
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Demonstration. Lastly, we demonstrate and discuss our findings. Here, the experts
were able to validate or dispute our findings. Following that, we discuss implications
(see Sect. 6).

3.2 Literature Review

Procedure Literature Review. To investigate the state-of-the-art of applications and
challenges in the field of intelligent RPA, we conducted a structured literature review
according to vom Brocke et al. [13]. In this vein, we examine the state-of-the-art in
challenges associated with it. Consequently, we screened for theoretical and practical
contributions that use RPA and any kind of AI for process automation.

Within our literature search, we focused on the computer science-related databases
IEEE Xplore and ACM Digital Library, information systems-related databases Science
Direct, AIS eLibrary, andWeb of Science, aswell as economics-related databases such as
EBSCOhost and Emerald Insight. Due to the novelty of the topic and its practical nature,
we did not restrict our search by rankings and considered industry reports as relevant.
For our literature review, we used the following search string: “(IPA | intelligent process
automation | cognitive automat* | hyperautomat*) OR ((AI | artificial intelligence |
deep learning | machine learning | (natural language processing) AND (RPA | robotic
process automation | desktopautomation))”.Hereby,we included the topics of intelligent
process automation and related fields such as cognitive automation and hyperautomation.
In addition, we considered contributions relevant that deal with the combination of
RPA and different kinds of AI such as ML or DL, including NLP. We derived these
terms iteratively from literature on intelligent RPA and intelligent automation to ensure
comprehensiveness of our results.

Using the proposed search string resulted in the identification of 642 contributions.
Then, we performed a reduction based on title, keywords, and abstract, followed by a
full-text analysis. Lastly, we applied a forward and backward search on the remaining
contributions. This resulted in 47 contributions classified as relevant for our research. A
summary of the procedure is shown in Fig. 2.

Fig. 2. Results of literature review according to vom Brocke et al. [13]

Meta-synthesis. In the following, we present a meta-synthesis of the 47 contributions.
For this purpose, we grouped them based on their year of publication and their type of
contribution.
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For 2019 (n= 18) and 2020 (n= 19), the number of contributions on intelligent RPA
rose rapidly. Before 2019, we identified only n = 10 contributions dealing with intelli-
gent RPA or related topics. Considering the different types of contributions, it becomes
apparent that since 2019 the number of contributions presenting a proof of concept, or
an implementation project has increased markedly. Nevertheless, many contributions
still provide more theoretical contributions such as design principles, interview stud-
ies, or literature reviews (2019: ≈46%; 2020: ≈65%). Related to this predominance of
theoretical contributions, we identified only a few relevant practical reports (Fig. 3).

Fig. 3. Meta-synthesis of literature review

3.3 Expert Study on Intelligent RPA in Current and Future Business Practice

To gain further insights into intelligent RPA challenges, we conducted four expert inter-
views. These lasted between 60 and 90 min. All interviewees currently work in the
field of RPA and engage with issues of intelligent RPA implementations. We spoke with
experts from Germany, the Netherlands, and Belgium. Therefore, the interviews were
multilingual, and the discussion of the concepts were later translated into English.

Due to the novelty of the topic,we followed a semi-structured interviewguide divided
into four parts. First, we asked for information about their (company) background and
their confidence in the topics of RPA and AI. Second, we openly discussed our challenge
proposals (see Sect. 4). Here, we asked them about their opinion and critical appraisal.
Likewise, we asked them tomodify and rename the challenges where appropriate. Third,
we invited them to rank the challenges in order of importance, to classify the challenges
in terms of severity, timing of occurrence, and implementation, to provide their opinion
on whether the challenges should be solved in the short or long term, and to identify
who should approach solving these challenges. Finally, we asked about any additional
challenges they could think of. Thereby, through a result discussion, the experts validated
or disputed our initial findings.

Following [14], the interviews were recorded and analyzed. This approach allowed
us to overview and compare expert perceptions across all interviews. In total, the audio
recordings of our interviews have a length of 295 min. While the small number of
interviews could be considered a limitation, we noticed a saturation for most topics. See
the Table 1 for an overview of the interviewees.
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Table 1. Overview of interviewees

I# Focus of
company

Role Years of
experience

Confidence in
RPA*

Confidence in
AI*

1 Software
development
and IT
consulting

Head of
department and
product manager
for automation

5–10 Agree Neutral

2 IT consulting Lead developer 2–5 Agree Neutral

3 Intelligent
automation

Founder, director,
and product
manager

2–5 Strongly agree Agree

4 Intelligent
automation

Managing partner >2 Strongly agree Agree

*On a 5-point Likert scale: “I’m confident in the field of […]”, metric: strongly disagree,…,
strongly agree.

4 Proposed Challenges for RPA, AI, and Intelligent RPA

4.1 RPA Challenges Impacting Intelligent RPA

The rapid deployment of robots in practice has left research catching up with practice to
rationalize what is happening. There are several authors that have formulated challenges
or opportunities for RPA development and use. We have consolidated the works of
several authors [1, 7, 15–18] and systematize them along the meta themes introduced
by Syed et al. [1].

RPA1: Realization of Needs and Benefits. Companies must be committed to identify
and justify the need to implement RPA. The development of guidelines and best practices
can ensure the consideration of RPA to realize cooperative strategies [15]. Likewise,
metrics must be defined to measure benefits and ensure long-term support [2].

RPA2: Readiness. Companies must not only identify the need for applying RPA, but
companies must also be prepared for new automation technologies. For example, they
need frameworks for maturity and technology infrastructure assessments [1]. These
frameworks can be used to support implementation projects [2].

RPA3: Capabilities. Similarly, companies need to be aware of what intelligent RPA
can and cannot do [17]. Only by doing so, they can use appropriate technologies for given
projects and organizational contexts. This includes building organizational and analyt-
ical capabilities to gather specialized knowledge to develop innovative and intelligent
solutions [1, 2].

RPA4: Methodologies. Methodological support is necessary for a successful integra-
tion of RPA. Therefore, companies must develop such support for adoption and imple-
mentation to ensure success. This entails the definition of critical success factors [1].
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Lastly, companies have to brief employees, so that they will consider RPA as an assis-
tance rather than as a substitution as using software robots can have socio-technical
implications that need to be approached [15, 17].

RPA5: Technologies. There are several technology issues to consider. First, task selec-
tion for automation is still highly subjective. Also, companies need to develop templates
and guidelines for implementing and reusing technologies as well as maintaining robots
[2]. This includes procedures for exception handling. Likewise, they need to define met-
rics to evaluate their implementations [18]. Lastly, while the initial use of robots works
well on a small scale with limited resources, scaling them is highly dependent on the
elasticity of resources [7].

4.2 AI Challenges Impacting Intelligent RPA

Several socio-technical challenges for ML and DL applications have been formulated
[19–22]. Janiesch et al. [6] condense and highlighted several technology-related meta
themes related to analytical model building and use in intelligent systems. We employ
them to systematize the impact of AI on intelligent RPA engineering and use.

AI1:Model andTrainingData Selection. Comparing or assessingML andDLmodels
for automated decisionmaking is difficult, due to limitless options for algorithms, hyper-
parameter tuning, and the handling of training data [23]. Further, companies must con-
sider economic limitations resulting in a trade-off between a models’ ability to uncover
all patterns within data and compute costs for training and execution [23]. Lastly, results
of test system and live system can differ making it difficult to assess the suitability of
implementation in real-life.

AI2: Bias in Data. ML and DL models learn from data. Biases within this data will be
adopted and reinforced by the model’s decision logic. This means that an AI trained on
human data is not as impartial as an explicit ruleset but will mirror the subjective nature
of cognitive decisions taken in the past. Thus, training data for analytical model building
must be carefully reviewed and preprocessed [24].

AI3: Drift in Data. Similar to bias, drift in data can lead to insufficient or wrong deci-
sions over time. Drift means that the historical data used for training does not correspond
well to current data and trends [25]. Drift in real life is constant may be more subtle than
explicit changes to business rules.

AI4: Transfer Learning. To overcome the “cold start” problem of DL models, com-
panies either need to have gathered large datasets for their initial training or they have
to resort to pre-trained models [19]. For the latter, a pre-trained general model is tuned
for its new task with comparably few specific observations in a process called trans-
fer learning [26]. However, acquiring and using third-party pre-trained models, such as
NLP models for chatbots, often means using a black box, which can exhibit any kind of
prejudicial behavior such as local social or geographical biases or even susceptibility to
adversarial attacks or [27].
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AI5: Model Explainability. The so-called black-box nature of DL models is rooted
in their inherent complexity. As a result, these analytical models are intransparent to
humans. However, in many cases, decision making must be traceable [22]. Thus, com-
panies must either use inherently transparent white-box models or integrate explainable
AI (XAI) augmentations to explain the decision-making process of the models [20, 22].

AI6: Effect on Employees. Fear about job security due to RPA implementations (see
RPA4) goes hand in hand with the effect of AI implementation in workplaces. Arguably,
this extends even further with AI as AI can solve more complex tasks and is often
perceived as anthropomorphic [28].

4.3 Derivation of Challenges at the Intersection of RPA and AI

Using the 11 meta themes (RPA1–5 and AI1–6) as a guideline, we reviewed the 47
articles of our literature search. This led to the formulation of 10 distinct challenges
that need to be addressed for intelligent RPA to materialize successfully. In Sect. 5, we
describe and discuss each challenge in more detail. See Table 2 for an overview of the

Table 2. Proposed challenges for intelligent RPA

C# Proposed challenges Challenge rationale

RPA1 AI2 Intelligent RPA3

1 Transfer learning causes trust and compliance
concerns

– AI4
[26, 27]

[12]

2 Employees with knowledge at the intersection of
RPA and AI are scarce

RPA2–3
[1, 2]

AI6
[29]

[1]

3 Intelligent RPA is not (yet) a commodity RPA4
[2]

– [30, 31]

4 Insufficient training data obstructs intelligent
robot development

– AI1
[19]

[7, 32]

5 Automated learning of task sequences is an
un(der)explored issue

– AI1
[23]

[9, 33]

6 Intelligent robot performance is hard to assess
and compare

RPA5
[34]

AI1
[6]

[35]

7 Intelligent robots reinforce human biases – AI2
[24]

[36]

8 Businesses evolve but robot training is static RPA5
[16, 37]

AI3
[25]

[4, 38]

9 Fear of AI and robots can cause
job-security-induced distrust

RPA1 & 4
[17]

AI6
[28]

[7, 39]

10 Robot decisions need to be interpretable or
explainable

– AI5
[20]

[4, 7, 40]

Legend: 1Based on Sect. 4.1, 2Based on Sect. 4.2, 3Based on literature review (Sect. 3.2).
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challenges and their rationale. In the table, we also provide the meta themes and key
references that we used to derive the various challenges. The ordering of the challenges
only serves the purpose of conveniently referring to each of these.

Using the 11meta themes allowed us to identify and structure if and how pre-existing
RPAandAI challengesmight be relevant for intelligentRPA.Also,we aimed at exploring
yet unknown challenges that may arise from the combined context of intelligent RPA
yet are not apparent from the domains is isolation. While we could not identify further
intelligent RPA challenges that were unrelated to pre-existing RPA and AI challenges,
we found that the priority or emphasis of challenges in their combination as intelligent
RPA differs from their isolated consideration in either domain. Since many challenges
intersected with each other, we merged closely related challenges through a consensus
of experts to obtain a manageable number of distinct challenges.We validated the results
through our literature review (see Sect. 3.2) and performed a subsequent interview study
(see Sect. 3.3) to assess the practical validity.

With this result, it becomes apparent that we have not merely repeated the challenges
of symbolic RPA or AI. While we contextualized some AI challenges specifically for
RPA, in many cases prospective solutions for existing symbolic RPA challenges can be
used as a baseline to solve similar challenges for intelligent RPA. In response, we have
focused only on those pre-existing RPA challenges that we deem to be at the core of
intelligent RPA since they extend beyond the challenges of symbolic RPA.

5 Consolidated Challenges Impacting Intelligent RPA

5.1 Overview of Challenges

In the following, we describe and discuss the findings from our literature review and
expert interviews. In doing so, we go into more detail about the challenges that we
derived and provide further classifications.

To provide a structured overview of our findings, we classify the challenges into one
or more of four lifecycle phases of intelligent RPA in a 2× 2 matrix. These phases based
on extant intelligent RPA literature [4, 7, 32]. The first phase, organizational and socio-
technical challenges during build-time, describes all organizational and socio-technical
challenges that occur when considering intelligent RPA as a potential automation tech-
nique from an organizational perspective. The technical challenges during build-time
phase relates to all technical challenges during the implementation of intelligent robots.
Similarly, all technology-related challenges during the operation of robots are summa-
rized in technical challenges during run-time phase. The last phase, organizational and
socio-technical challenges during run-time, relates to all human-robot-related challenges
during the operation of intelligent RPA.

As challenges may not be attributed to only one of those phases, they can occur in
multiple phases. We asked the experts about the severity of challenges and who should
approach solving them. The results are shown in Fig. 4 using a median calculation. Since
many challenges occur and impact over several phases, we describe them according to
the time of their occurrence, which is not necessarily their root-cause.

Based on these findings, we describe our ten derived challenges in the following
subsections. For each challenge, we describe supporting arguments from literature and
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from the experts. Likewise, we show how these challenges should be solved and whether
they will occur in the short or long term in an intelligent RPA implementation project.

Build-time Run-time

Technical
implementation

Organizational
& socio-technical
implementation

Severity

Based on circle size:
(low, medium, high)

Solving stakeholder

Practitioners

Vendors

Research

C10

C6

C5

C3

C2

C1

C4

C9

C7 C8

Fig. 4. Classification of challenges for intelligent RPA

5.2 Organizational and Socio-Technical Challenges During Build-Time

C1: Transfer Learning Causes Trust and Compliance Concerns. While the use of
AImodels acquired from transfer learning for intelligent RPA reduces development time
and can also overcome a lack of training data (see C4), this process also causes trust and
compliance concerns [26, 27]. In this context, companies need to build trust with vendors
and developers that their AI models are unbiased and robust against adversarial attacks
[12]. In our expert interviews, we found that I1 and I4 are concerned about sending
customer data to AI cloud solutions for analysis mainly due to governance regulations.
As a result, at this point transfer learning is not realistic (I1). As I3 noted, “all of the
time there is something about being compliant and being sure that you know where and
how the model trained.” In contrast, I2 considers this only as an issue for high-stake
use cases. Further, I3 is especially concerned about dealing with personal data. Using
locally trained models for transfer learning would be possible in all cases. Summarizing,
I1–3 all note that this challenge must be solved by practice, may involve contracts or
certifications, and constitutes a long-term challenge.

C2: Employees with Knowledge at the Intersection of RPA and AI Are Scarce.
While Syed et al. [1] and Herm et al. [2] state that finding experts in the field of RPA is
quite difficult, the same is true for the field of AI [29]. Our literature review revealed that
finding experts experienced in both fields exacerbates this issue [1]. As an example, I1
has “exactly one [employee] in my team […] who could do that.” Therefore, I1 sees this
challenge as themost important challenge to be solved by universities through intensified
teaching in the respective areas and by practitioners through training their employees. I4
interjects that specialized knowledge in AI and RPA engineering can reside in different
people and only needs to be bridged by at least one expert when applied. In contrast, I3
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notes that in today’s business practice, deep knowledge in AI implementations may not
be necessary. Instead, a rough understanding of application and evaluation is sufficient.
Consequently, I1–3 expect this challenge to impact intelligent RPA in the long term.

C3: Intelligent RPA Is Not (Yet) a Commodity. Clear cost-benefit metrics are hard to
establish and their amalgamation into intelligent RPA is not available as commercial-
off-the-shelf software [31]. This entails that the use of intelligent RPA, with its enhanced
cognitive abilities, is not as straightforward and rapid as applying symbolic RPA and
therefore may have to be managed similar to other custom development projects. How-
ever, the implications may be far-reaching. Interestingly, practitioners I1 and I4 do not
think that this is an obstacle as own intelligent RPA implementation will still be worth
the early adoption, resulting in a competitive advantage. Both see the use of intelligent
RPA as a strategic asset. Nonetheless, I2 notes that currently the application of AI is
expensive and time-consuming. Thus, he assumes that intelligent RPA will only prolif-
erate when commercial-off-the-shelf software is widely available. Thereby, I3 adds, that
companies should “use a [low-code] platform where you basically have a way to scale
it up, because you need less technical experience” and therewith also alleviate C2. I3
predicts that this will take at least five years.

5.3 Technical Implementation Challenges During Build-Time

C4: Insufficient Training Data Obstructs Intelligent Robot Development. The
development of intelligent robots faces several challenges due to a lack of data avail-
ability. Many highlight customer privacy concerns or data regulation limitations when
sharing their data [7, 18]. However, as AI models are data-driven, they need to learn
from data [5]. This may result in a situation where intelligent RPA is not applicable as
an automation technique as not enough data is available for training robots with suffi-
cient accuracy [7]. This is in line with our interviewees. I1–2, I4 state that generally no
AI implementation is possible without sufficient data (see C1 for a possible remedy).
This is most serious for new processes (I3). To generate enough data for intelligent RPA,
humans must label and validate data manually, by staying in-the-loop (I3), which incurs
cost. Nonetheless, I3 and I4 believe that this challenge will only affect most companies
in the short-term.

C5:AutomatedLearning ofTaskSequences Is anUn(der)Explored Issue. Although
the application of AI models for single tasks within otherwise handcrafted robots is
showcased in many papers [9], automated pattern learning for task sequences within
processes is a difficult and not always feasible problem of cross-modal learning [23].
I1–3 all state that this challenge is far head of current business practice and not yet of
their concern. Instead, the current focus is on enriching individual tasks with AI and
then extending the integration to closely related tasks (I1–2) or using technologies such
as process mining to detect potential processes for automation in the first place (I4).
I1–4 all agree that this challenge will establish as a long-term challenge and currently is
predominantly a research issue.
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C6: Intelligent Robot Performance Is Hard to Assess and Compare. While most
AI and RPA implementations are performed in a test environment, transferring them to
a production environment can cause problems due to differences in data volume and
permission management [34]. This can further lead to inappropriate models being used
and insufficient results in terms of robot accuracy or latency [6]. Further, the suitability
of replacing of legacy robot with new robots can only be assessed in production (I3).
While I1–2 both notice a similar behavior in symbolic RPA projects, they assume that
the issue will aggravate significantly in intelligent RPA projects. They suggest that AI
models should be trained on data from live environments (I3) and different models must
be considered (I4). I1 states that comparability is currently not a challenge at all, since
RPA is not a market characterized by eliminatory competition. He adds that this may
change in the future though. Therefore, we assume to be a mid- to long-term challenge.

5.4 Technical Implementation Challenges During Run-Time

C7: Intelligent Robots ReinforceHumanBiases. AImodels learn patterns from train-
ing data [24], which leads to intelligent robots mimicking human-biased observations
in process execution. This impacts cognitive decision-making but furthermore, this can
lead to non-optimized processes, workarounds, or to activities that are not relevant to the
core of the process, as employees sometimes perform unnecessary tasks [36]. I1 notes
that noise reduction can be achieved by monitoring data collection for ML or doing
post-hoc processing (I4). Nonetheless, this data has to be investigated in detail before
model training and during operation (I3). This results in a long-term challenge.

C8: Businesses Evolve But Robot Training Is Static. Robots have to be adjusted,
when processes and their data are changing [37]. This drift in process execution, when
businesses are evolving, also becomes apparent in intelligent robots, when current data
does not correspond well to the data used for training [25]. In our literature review, we
noticed that this issue is prominent for intelligent RPA [4, 38]. Further, I2 state, that they
“monitor the performance of a bot over the time”, as this is necessary for the continuous
maintenance of intelligent robots in operation for longer-term use (I1–2, 4). As a result,
this challenge must be handled by companies individually on a long-term basis. I2–3
both assume that companies must define an error margin for when robots should be
reevaluated and retrained.

5.5 Organizational and Socio-Technical Challenges During Run-Time

C9: Fear of AI and Robots Can Cause Job-Security-Induced Distrust. The integra-
tion of intelligent robots in companies can be accompanied by many benefits. Yet the
automation of processes can also cause distrust regarding the job security of employees
[17]. Likewise, the use of AI can exacerbate these concerns, due to the seemingly infinite
potential of AI [28]. These findings go hand in hand with the combination of both, with
AI’s anthropomorphic properties enabling it to perform not only monotonous, repeti-
tive tasks, but also complex, cognitive tasks [7, 17, 39]. While this is already a critical
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challenge in practice, I1 notes that a work council’s approval must be obtained for any
current RPA implementation. Nevertheless, if the work council stalls the rollout of intel-
ligent robots, companies may start to consider outsourcing their processes altogether.
Nevertheless, I3 state that “If a work council would block these kinds of implementa-
tions, […] we will see that this kind of work will move to other countries in the long
term.” As a result, balance is crucial (I3). Furthermore, I2 states that this distrust results
from using top-down approaches in integrating intelligent robots, instead of seeing the
need of automation within the departments. In today’s practice AI is not (yet) capable
to automate every task (I3–4) and, thus, this poses a long-term challenge.

C10: Robot Decisions Need to be Interpretable or Explainable. Although the devel-
opment of intelligent robots offers many advantages [12], the use of black-box models
entails drawbacks as their decision logic is not interpretable by users [20]. This results
in a lack of trust and confidence that must be minimized to enable broad adoption [21],
since “trust issues will be one of the biggest challenges of intelligent RPA” (I2). For
example, Lamberton et al. [40] describes an implementation where AI classifications
have to be verified by a human at the end of each day. In our literature review, we noticed
two different approaches to overcome this issue. On the one hand, more interpretable,
white-box ML models such as decision trees can be used (even though a DL model may
perform better) (I4). On the other hand, XAI can be used to explain the decision logic
and prediction to users [4, 7]. Currently, per-se interpretable ML models are common
as practitioners such as I3 “would always start with a white-box model”. However, the
use of DL with XAI is also a highly targetable option. In the end, decisions have to be
explainable at all times (I2–4), due to continuousmodel performance assessment or legal
regulations such as general data protection regulation (GDPR) especially in areas such
as finance (I3–4). However, implementations in practice are hampered by the novelty of
the issue (I1). Lastly, I1 and I3 note that the main goal is to gain the customers’ trust and
provide a well-performing solution.

6 Discussion

Through our interview study, we found that the primary challenges of intelligent RPA
today are the lack of training data, human bias in data, compliance issues with transfer
learning, poor explainability of robot decisions, and job-security-induced fear of AI
robots – all of which stem primarily from the AI domain. They all need to be addressed
to enable the successful transition from symbolic RPA to intelligent RPA.

Theoretical Implications. With our research, we create awareness for the specificities
of RPA aswell as of AI research so that researchers from each domain can better attune to
the issues of the other. Specifically, RPA and BPM researchers must understand that ML
and DL do not provide a silver bullet for cognitive problem-solving and remove the need
for handcrafting models in any context. While the application of AI technology comes
with many benefits to solve issues that seemed unsolvable before, it comes with new
challenges. Particularly, joint efforts are necessary to address the automated learning of
task sequences across applications, as well as making process-based cognitive decisions
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explainable to business users. The latter needs to be supportedwith suitable and, possibly,
novel metrics and visualizations, which are not only relevant for intelligent RPA but also
for predictive process monitoring.

Practical Implications. Our challenges paint a clear picture that process automation
and AI skills are relevant but also scarce. University teaching and professional training
must pick up on these opportunities to equip the (future) workforce with appropriate
abilities to automate tasks using intelligent RPA by introducing novel modules and
degree courses. Furthermore, companies must introduce means to capture manual yet
digital activities in a non-invasive, privacy-preserving manner to generate enough data
for intelligent RPA. While the availability of such data is a practical problem, the means
to collect it may require further research as well. In addition, vendors must approach
the issue of trust and compliance for transfer learning to ensure that intelligent RPA
products will eventually become a useful commodity. Lastly, the socio-technical issue
of employee distrust in intelligent robots must be addressed openly and proactively.

Limitations. Our research is not without limitations. While we consolidated our chal-
lenges through an interview study and thereby assessed the comprehensiveness of our
results, we did not test their usefulness. Implementingmultiple use cases could close this
gap and serve to reassess their completeness. As consequence, for future research, we
plan to evaluate validity and reliability in more detail. Subsequently, we aim to provide
guidelines for the successful implementation of intelligent RPA to create a foundation
for future research on the constituent properties of hyperautomation.

7 Conclusion

While the amalgamation of RPA and AI will enable companies to automate more com-
plex, cognitive tasks overcoming the limited, handcrafted behavior of symbolic RPA,
intelligent RPA faces several challenges. We reviewed related challenges from the fields
of symbolic RPA and AI (represented by ML and DL) and performed a literature review
as well as an expert interview study to devise challenges that have the potential to shape
the future discussion of intelligent RPA. In doing so, we determined the severity and the
longevity of the challenges and pointed to possible solutions.

In total, we compiled ten challenges that illustrate how practice was ahead realizing
symbolic RPA but has so far not completely grasped the implications that intelligent
robots will entail. Currently, this results in applications that do not yet take full advantage
of the affordances of AI technology. However, we observed that practice has already
developed solutions and workarounds for some challenges, for example to deal with
biases and drift in process execution, and mistrust and fear of job security.

Much of our research has been evaluated in the interview study with a focus on con-
temporary challenges of intelligent RPA. Future challenges of any type of RPAwill even-
tually materialize when long-term effects and side-effects of replacing or augmenting
manual processes with software robots become apparent.
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Abstract. Through its smart contract capabilities, blockchain has
become a technology for automating cross-organizational processes on
a neutral platform. Process mining has emerged as a popular toolbox for
understanding processes and how they are executed in practice. While
researchers have recently created techniques for the challenging task of
extracting authoritative data from blockchains to facilitate the analysis
of blockchain applications using process mining, as yet there has been no
clear evaluation of the usefulness of process mining on blockchain data.
With this paper, we close that gap with an in-depth case study of pro-
cess mining on the popular Ethereum application Augur, a prediction
and betting marketplace. We were able to generate value-adding insights
for application-redesign and security analysis, as validated by the appli-
cation’s chief architect and revealed blind spots in Augur’s white paper.

Keywords: Blockchain · Process mining · Case study · Process
discovery · Conformance checking · Ethereum

1 Introduction

A blockchain can be characterized as a distributed, append-only data store for
transactions [31]. Second-generation blockchains have comprehensive smart con-
tract capabilities, i.e., allow for the deployment and execution of user-defined
programs. On this basis, blockchain has emerged as a technology allowing the
automation of cross-organizational processes on a neutral platform [20,29].

Process mining [1] has become popular as a toolbox for understanding pro-
cesses and how they are executed in practice. For example, many case stud-
ies ranging from healthcare [5,19,25,27], finance [8,12], manufacturing [26],
and public services [3,17] to software development [18] applied process min-
ing to analyze processes from different perspectives including aspects, such as
c© Springer Nature Switzerland AG 2021
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Fig. 1. Overview of the approach.

control flow, conformance, drifts, and performance [24]. Nevertheless, process
mining on blockchain data turned out to be a challenging task [10]. Hence,
recently researchers have created techniques to extract authoritative data from
blockchains [13,14]. On that basis, concepts were introduced that can put
extracted blockchain data into use, e.g., for monitoring business processes exe-
cuted on a blockchain [9]; validating smart contracts on Hyperledger Fabric [11];
auditing blockchain applications on Ethereum [7]; analyzing transactions stored
on the Ethereum network without focusing on specific decentralized applications
(DApps) [21]; and using process mining on blockchain-wide data [22] but no
single process in particular. As yet, there has been no clear evaluation of the
usefulness of process mining on blockchain data. All of the above process-specific
approaches have been evaluated with small examples, demonstrating technical
feasibility more than the usefulness and business value.

With this paper, we close that gap and analyze the usefulness of process
mining on blockchain data with an in-depth case study of process mining on
the popular Ethereum application Augur1. Augur is a prediction and betting
marketplace, where users can create bets (e.g., “Will Donald Trump win the 2020
U.S. presidential election?”), and other users can bet on the outcomes. Because
Augur smart contracts run on the public Ethereum blockchain, all data are time-
stamped, transparent, and available. We used our Ethereum Logging Framework
(ELF) [13,14] to extract Augur data. This extraction resulted in nearly 3000
traces and more than 23000 events. As shown in Fig. 1, we then filtered the data
and applied various process mining techniques to analyze Augur from control
flow, conformance, and performance perspectives.

In our study, we were able to generate insights of value to the business. In
more detail, we provide a clear view of how Augur is used, verify its design mech-
anisms, and check for unintended behavior and bugs in the (immutable) code;
immutability poses a challenge from a business process management (BPM)
perspective [20], and software engineering in general [28]. The usefulness of the
insights was confirmed by anecdotal evidence of Augur’s chief architect, partic-
ularly in terms of understanding user behavior and code validation, which is

1 https://augur.net/, accessed 2021-03-05.

https://augur.net/
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especially relevant for security aspects in an open-source application that can be
invoked (and thus potentially attacked) by anyone with Internet access.

The paper is structured as follows. Next, we introduce the object of our case
study, Augur. Then, Sect. 3 outlines the data extraction and pre-processing pro-
cedures. The focal point of the paper is the data analysis in Sect. 4, covering data
exploration, process discovery, conformance checking, and performance analysis.
Finally, we discuss the results in Sect. 5 and conclude in Sect. 6.

2 The Case of Augur

Augur is a betting platform and prediction marketplace that is implemented as
a set of smart contracts on the public Ethereum blockchain. Augur’s white paper
characterizes the mechanics of a prediction and betting market: “individuals can
speculate on the outcomes of future events; those who forecast the outcome cor-
rectly win money, and those who forecast incorrectly lose money.” As a betting
market organized on Ethereum, the developers claim that Augur bypasses dis-
advantages of traditional betting markets, such as trusted market operator and
limited participation [23].

Currently, there are two versions of Augur available in parallel: Augur v1.0
(launched 2018-07-09) and Augur v2.0 (details announced April 20202, launched
2020-07-283). Interestingly, to gain user trust, the Augur developers open-
sourced the smart contracts and deployed both versions without any option to
update or stop them – giving themselves the privilege to do either might result
in the loss of users’ cryptocurrency and omitting such a possibility; therefore,
increases trustworthiness. Hence, the new version is deployed in parallel to the
old one, as such not comprising an update in any traditional sense. However, once
the new version was deployed and users migrated to it, the old version became
“economically insecure” according to the developer team, and therefore should
not be used anymore. Because prediction markets are long-running, and hence
extended observation time frames are crucial for their analysis, we nevertheless
focused on Augur v1.0 and considered the data from its launch until its use was
no longer recommended in July 2020 (see Sect. 3 for details).

Augur was chosen for this case study for several reasons. Data availability.
Augur v1 was among the most popular Ethereum DApps at times, resulting in
the availability of substantial amounts of data to analyze. Application design.
Augur is designed so that events are tracked and stored by a central logging
contract with a high level of detail, which allowed insights in user behavior
and simplified the extraction of data with ELF (in contrast to other DApps, in
which logging is fragmented over multiple contracts). Subsidiary information.
Information on Augur is widely available, such as in the Whitepaper [23], which
served as basis, e.g., for conformance checking. Thus, Augur promised to be an
interesting candidate for deeper analysis.
2 https://twitter.com/AugurProject/status/1245715269042888706, accessed 2021-03-

14.
3 https://www.augur.net/blog/augur-v2-launch/, accessed 2021-03-14.

https://twitter.com/AugurProject/status/1245715269042888706
https://www.augur.net/blog/augur-v2-launch/
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Markets are distinguished based on their outcome: yes/no-markets deal
with binary questions, while categorical and scalar markets expect discrete and
numeric answers, respectively. For each type, the Augur market process follows
a procedure organized in four stages: market creation, trading, reporting, and
settlement. Market creation: a market is set up for a future event, i.e., “market
event.” Trading : traders place bets on the outcome of the market by buying
shares for that outcome. Reporting : a user reports the outcome of the event the
market revolves around. The report can be challenged in disputes that are part
of the reporting. Settlement : traders resolve their positions. Within these four
stages, the Augur smart contracts specify 35 different types of events.

Participants can be active in an Augur market in five roles: market creator,
traders, designated reporter, public reporters, and disputants. A market creator
instantiates markets, including choosing a market question that revolves around
a market event and appointing a designated reporter. Traders place bets by buy-
ing and selling shares of market outcomes. A designated reporter reports on the
market event, thus creating the first tentative outcome of the market. If the des-
ignated reporter fails to submit a report within three days of the market event,
reporting opens to public reporters who can report on the market outcome. Once
an initial report is submitted, disputants can challenge the reported outcome of
an event by crowd-sourcing a dispute bond with Augur’s native token called
“Reputation” (REP). If the dispute bond crosses a threshold, the crowd-funded
outcome becomes the new tentative outcome. If disputes against an outcome
remain unsuccessful, the tentative outcome becomes the final outcome. Depend-
ing on the dispute’s success, disputants are redeemed after the dispute round
(unsuccessful) or after the market is finalized (successful). A market finalizes if a
tentative market outcome has not been successfully disputed within seven days.
After it finalizes, market creators receive the market creation fee, designated
reporters receive a fee if their report represents the final outcome, and traders
settle their positions. As a final resolution mechanism for disputes, Augur also
offers a fork event, which creates parallel instantiations of Augur based on each
possible outcome of the forking market to which users can migrate. Forking is
considered “very disruptive” and has not been triggered yet [23].

The Normative Process Model. Conformance checking requires a normative
process model, which we created from information in the white paper [23]. We
enriched it with information gained from discovery and conformance checking
where the information in the white paper was not detailed or precise enough
for our purposes. The resulting process model is shown in Fig. 2. Additional
information on initial discrepancies is discussed in Sect. 5. We restricted the
model to activities where the corresponding events were triggered.

3 Data Extraction and Pre-processing

On a second-generation blockchain like Ethereum, that allows for deploying and
executing arbitrary smart contracts, log entries are the primary means for pass-
ing information to off-chain components. Commonly, log entries communicate
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Fig. 2. Normative BPMN model.

information related to results of and events occurring during the execution of
smart contract invocations. The developers of Augur v1.0 made extensive use of
this feature and implemented a central logging contract that handles the emis-
sion of log entries. This contract defines a range of log event types intended to
share detailed information about all possible events. Due to the level of detail
provided by these log entries, we decided to solely focus on information from
Augur’s log entries for this case study. Hence, we typically did not consider
additional information from the transactions or the states of Augur’s smart con-
tracts, as the information we could obtain this way is largely included in the log
entries; deviations from this rule are marked.

We extracted the data using the publicly available Ethereum Logging Frame-
work4 [13,14]. ELF enables analysts to extract, transform, and format infor-
mation from blocks, transactions, log entries, and smart contracts stored on
Ethereum-based networks. ELF takes as input a manifest file, which contains
instructions that define which data to extract and how to process it – see also
Fig. 1. We defined such a manifest file for Augur v1.0 based on its source code,

4 https://github.com/ChrisKlinkmueller/Ethereum-Logging-Framework.

https://github.com/ChrisKlinkmueller/Ethereum-Logging-Framework
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Fig. 3. Process mining techniques applied to the Augur v1.0 data extracted with ELF.

which provided us with the definitions for all the log entries. The execution of
the manifest resulted in an event log in the XES format [4], where for each log
entry, there is an XES event containing the information from Augur’s log entry.
We grouped the events into traces based on the notion of a market.

We extracted information related to 2897 markets stemming from the period
of 2018-07-09 to 2020-11-10. The former date marks the date of the first execution
of Augur v1.0. Regarding the latter, we ran the data extraction from 2020-11-
12 to 2020-11-16, and the last event that we extracted was from 2020-11-10.
However, as outlined in Sect. 2, the launch of Augur v2.0 in July 2020 rendered
Augur v1.0 “economically insecure” and unsurprisingly caused a decline in user
interest which already started after the announcement of Augur v2.0 in April
2020. To account for this decrease, we removed 162 cases that were either created
after v2.0 was announced on 2020-04-02 or that were not finalized before its
actual launch, leaving us with a total of 2735 cases and 22772 events.

For purposes of replication, all data and code used in this study are avail-
able publicly, including the source code of ELF (See Footnote 4), the manifest,
the normative process model and the resulting XES log5, the source code of
Augur v1.06, the Augur white paper [23], and the data on the public Ethereum
blockchain.

4 Process Mining Analysis and Results

As discussed in Sect. 3, we used ELF to extract an XES event log [4] for Augur
v1.0. As a result, we can apply a range of process mining techniques, as illus-
trated by Fig. 3. It is possible to discover the actual betting/prediction process,
check conformance of the process with respect to a normative model, analyze
performance, and compare process variants [1]. In the remainder, we will mainly
use the ProM process mining platform. We could apply any other process mining
tool, e.g., open-source tools like PM4Py, Apromore, bupaR, and RapidProM, or
5 https://github.com/ingo-weber/dapp-data.
6 https://github.com/AugurProject/augur-core, accessed 2021-03-19.

https://github.com/ingo-weber/dapp-data
https://github.com/AugurProject/augur-core
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860 traces
31.44% of the log create market submit ini�al report finalize market redeem as ini�al reporter

187 traces
6.84% of the log create market submit ini�al report finalize market

168 traces
6.14% of the log create market submit ini�al report finalize market redeem as ini�al reporter claim trading proceeds

138 traces
5.05% of the log create market submit ini�al report finalize market claim trading proceeds redeem as ini�al reporter

89 traces
3.25% of the log create market submit ini�al report finalize market claim trading proceeds claim trading proceeds redeem as ini�al reporter

76 traces
2.78% of the log create market submit ini�al report finalize market claim trading proceeds

74 traces
2.71% of the log create market submit ini�al report finalize market redeem as ini�al reporter redeem as ini�al reporter

64 traces
2.34% of the log create market purchase complete sets submit ini�al report finalize market redeem as ini�al reporter

60 traces
2.19% of the log create market submit ini�al report finalize market redeem as ini�al reporter claim trading proceeds claim trading proceeds

51 traces
1.86% of the log create market submit ini�al report finalize market claim trading proceeds claim trading proceeds

35 traces
1.28% of the log create market submit ini�al report finalize market redeem as ini�al reporter claim trading proceeds claim trading proceeds claim trading proceeds

Fig. 4. Some of the most frequent variants, e.g., 860 markets follow the most frequent
variant having only four events. The event data have a Pareto distribution with 35
variants (i.e., 8.5% of variants) explaining 80% of all cases.

commercial closed-source tools like Celonis, Disco, ProcessGold (UiPath), Minit,
QPR, myInvenio, PAFnow, Lana, Software AG, Signavio (SAP), ABBYY Time-
line, and Mehrwerk. However, our goal is not to present specific process mining
algorithms or tools. Instead, we demonstrate that event data extracted from
Ethereum using ELF can be used to analyze marketplaces like Augur.

4.1 Exploring the Event Data

All process mining tools start from event data [1]. An event log is a collection of
events stored in a format like XES. An event may have many different attributes,
but at least a case identifier, an activity name, and a timestamp. Additional
attributes may refer to locations, resources, costs, transactional information,
and on Ethereum blockchain, the consumed gas. Events are grouped using the
case identifier and sorted using the timestamps. Hence, each case corresponds to
a trace, i.e., a sequence of events. By focusing only on the activity names, these
traces can be grouped into variants, i.e., sequences of activities. Most event logs
have a Pareto distribution, i.e., a few variants explain a large proportion of the
event log.
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1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute finalize market redeem as ini�al reporter claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds

1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute complete dispute finalize market redeem as ini�al reporter

1 traces
0.04% of the log create market submit ini�al report finalize market claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds

1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute complete dispute finalize market claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds redeem as ini�al reporter

1 traces
0.04% of the log create market purchase complete sets purchase complete sets submit ini�al report create dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute finalize market redeem as ini�al reporter claim trading proceeds

1 traces
0.04% of the log create market submit ini�al report finalize market redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter redeem as ini�al reporter

1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute contribute to dispute contribute to dispute complete dispute finalize market claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds redeem as ini�al reporter

1 traces
0.04% of the log create market purchase complete sets submit ini�al report create dispute contribute to dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute complete dispute finalize market claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds

1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute complete dispute finalize market claim trading proceeds claim trading proceeds claim trading proceeds claim trading proceeds redeem as ini�al reporter

1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute complete dispute finalize market redeem as ini�al reporter

1 traces
0.04% of the log create market submit ini�al report create dispute contribute to dispute complete dispute create dispute contribute to dispute complete dispute create dispute contribute to dispute contribute to dispute contribute to dispute contribute to dispute contribute to dispute contribute to dispute contribute to dispute contribute to dispute finalize market claim trading proceeds

Fig. 5. Some of the unique variants that only have one corresponding market. The
figure is not intended to be readable but gives an idea of the variability. 319 of the 414
variants are unique, covering 11.7% of all markets.

The event log we extracted and filtered as per Sect. 3 has 2735 cases (each
case refers to a market), 22772 events, and 11 unique activities. There are 414
variants where 35 variants have at least ten corresponding cases and describe
2203 cases. This implies that 80% of the cases are described by less than 8.5% of
variants. Some of the most frequent variants are shown in Fig. 4. 319 cases have
a unique sequence of activities. A few of the shorter unique variants are shown
in Fig. 5. The length varies from three to 226 events per case.

The event log contains 11 activities having the following frequencies: claim
trading proceeds (6046), redeem as initial reporter (3259), submit initial report
(2735), create market (2735), finalize market (2735), contribute to dispute (1598),
redeem dispute crowdsourcer (1412), create dispute (901), complete dispute (780),
purchase complete sets (570), and transfer market (1).

Figure 6 shows a so-called dotted chart where each dot refers to an event (i.e.,
22772 dots). In a dotted chart, we can configure the two axes and the coloring
of the dots [1]. In Fig. 6, the x-axis refers to the time of the event, the y-axis
corresponds to the cases (i.e., markets) sorted by the time of the first event, and
the color of the dot refers to the activity name (e.g., blue is the creation of the
market). The dotted chart shows that many markets were created in the first

�me

market
(cases sorted 

by �me of 
first event)

cases start with “create 
market” (blue)

“claim trading proceeds” 
for many cases at the 
same �me

“claim trading proceeds” 
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same �me

“claim trading proceeds” 
immediately followed by 
“redeem as ini�al 
reporter” for many cases 
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cases at approximately the 

same �me
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approximately the same �me
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“redeem as ini�al reporter” 
for many cases at 
approximately the same �me
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shows 6 cases genera�ng more than 500  

“redeem as ini�al reporter” events

Fig. 6. Dotted chart showing all 22772 events. The vertical patterns indicate batching.
(Color figure online)
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month (July/August 2018). After that, there was a steady flow of new cases,
until the arrival rate decreased after May 2019. The vertical patterns indicate
batching, i.e., shorter periods where the same activity occurs for many cases.
Some of these batching patterns are highlighted in Fig. 6. For example, on 2020-
02-11, activity claim trading proceeds is executed 63 times for 53 cases in less
than one hour. Another example of batching is the burst of the activities claim
trading proceeds and redeem as initial reporter at the end of the day on 2019-07-
07. These occur respectively 148 and 98 times in a three hours. There are also
horizontal patterns indicating a sequence of events for the same case in a short
period. For example, for the market “Ethereum Price at end of March 2019” we
witnessed redeem dispute crowdsourcer and claim trading proceeds four and 132
times, respectively, within a period of a few weeks. Although one can already
visually spot exceptional cases, we discuss these further when presenting the
conformance checking results.

4.2 Process Discovery

Figures 7, 8, and 9 are based on the whole event log (i.e., 2735 markets generating
22772 events). Figure 7 shows a so-called Directly-Follows Graph (DFG) without
filtering [1,2]. The nodes are activities and show the frequencies of each activity.
The connections show how often one activity is followed by another. DFGs are
the most-widely used discovery technique in commercial process mining tools due
to their simplicity. However, there are several know problems, as demonstrated in
[2]. These can be witnessed in Fig. 7, where there are many loops in the diagram
because activities are not performed in a fixed order.

Figure 8 shows the Process Tree (PT) obtained by the Inductive Miner in
ProM for the whole event log using the default settings [16]. The model is not
intended to be readable, but one can see that the process model has more struc-
ture. 1771 of all cases (65%) can be explained by this model (the average trace
fitness is 94%). Figure 9 shows the same model but now with timing informa-
tion rather than frequencies. Two activities that have a longer sojourn time are
highlighted.

Figures 10, 11, and 12 are based on the variants with at least ten correspond-
ing cases. This filtered event log contains only 35 of the 414 variants; however, it
represented over 80% of all markets (2203 cases). Due to the configurations used,
all three models are guaranteed to be able to replay all 2203 cases from which
these models were discovered. Actually, the process models in Figs. 11 and 12
can replay 2501 cases in the original event logs. Note that the PT was discovered
using the basic Inductive Mining algorithm without further filtering [1,15]. This
algorithm is also implemented in a few commercial systems (e.g., Celonis). The
Petri net in Fig. 12 is semantically equivalent to the model in Fig. 11.

After focusing on the frequent variants, one can focus on particular parts of
the process model. Such models are simpler and can be used to drill down. Let
us, for example, focus on the dispute phase and consider only the activities create
dispute, contribute to dispute, and complete dispute. Figures 13 and 14 show two
process models explaining the dispute subprocess. This example illustrates that
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Fig. 7. Directly-Follows Graph (DFG) for the whole event log without filtering.

Fig. 8. Process Tree (PT) for the whole event log using default settings.

the average sojourn �me of “submit 
ini�al report” is 63 days (the maximum 
observed sojourn �me is 657 days)

the average sojourn �me of “finalize 
market” is 19 days (the maximum 
observed sojourn �me is 609 days)

Fig. 9. Process Tree (PT) for the whole event log showing sojourn times.

process mining tools like ProM provide various ways to reduce the complexity
and either focus on a particular part of the process or zoom-out (e.g., using
aggregation) to see the overall process.

4.3 Conformance Checking and Unusual Cases

Figure 2 shows a normative process model that can be used for conformance
checking [1,6]. The goal of conformance checking is to identify commonalities and
differences between the modeled process and the actual process. Figures 15 and
16 show the reference model in the form of a process tree and a Petri net to allow
for easy comparison with the discovered process models. A visual comparison
shows that the reference model is close to the discovered models, but there are
some notable differences. Compare, for example, Fig. 16 (Petri-net version of the
reference model) with Fig. 12 (Petri-net able to replay all traces that happened
at least ten times). Some of the striking differences: transfer market is missing
in the discovered model (it was only executed in one trace); in the discovered
process model, the activities contribute to dispute and complete dispute both
occur precisely once after creating the dispute; and redeem dispute crowdsourcer
can occur before claim trading proceed and redeem as initial reporter, but not
after.

The representations shown in Figs. 15 and 16 can be used in ProM to per-
form a range of conformance checking techniques. Here, we limit ourselves to
alignment-based conformance checking [1,6], i.e., for each trace in the event log,
we searched for a path through the model that is closest.
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Fig. 10. Directly-Follows Graph (DFG) for 8.5% of variants covering 91.4% of the
cases.

Fig. 11. Process Tree (PT) discovered for the filtered event log showing all paths.

Fig. 12. The Petri net discovered for the filtered event log.

Fig. 13. Directly-Follows Graph (DFG) discovered for the dispute phase.

Fig. 14. Process Tree (PT) discovered for the dispute phase.
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Fig. 15. Normative Process Tree based on the BPMN reference model.

Fig. 16. Normative Petri net model.

Fig. 17. Replay results after aligning event logs and process model: 2511 of the 2735
cases are perfectly fitting the reference model.

ProM’s diagnostics show that the reference model in Fig. 2 explains 2511 of
the 2735 cases, i.e., 224 cases have at least one deviation. Figure 17 shows the
same diagnostics after aligning event log and process model. There are 21647
synchronous moves (i.e., events in the log that fit the model) and 1125 moves
on the log (i.e., events in the log that do not fit the model). However, there
are no moves on the model (i.e., missing events). 223 of the 224 deviating cases
have multiple redeem as initial reporter events, and 1119 of the 1125 log-only
moves fall into this category. Almost all of these are instantaneous: using Disco’s
performance view, we see a median duration of 0 ms, a total duration over all
1119 moves of 42 days, and a maximum of 35 days – i.e., much of the whole
duration can be accounted for with a single of the 1119 occurrences.

For a random sample of 20 of these 1119 occurrences, we inspected the
underlying blockchain transactions, and observed the following pattern in all
20 instances: the first redeem as initial reporter event resulted in a payout, the
second did not; the first and second transaction came from the same account
in all 20 pairs; and the pairs were close together (between 0 and 47 blocks, the
large majority with less than ten blocks). We also observed two cases with 108
redeem as initial reporter events (“Who will win the second democratic primary
debate?” and “Will Tulsi Gabbard poll higher than Andrew Yang on August
12th?”).

Like in discovery, there is the possibility to focus on selected parts of the
process. Figure 18 shows conformance checking results for the dispute subprocess.
There is only a single deviating case (see the upper part of Fig. 18) where there
are two instances of two subsequent occurrences of create dispute without any
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contributions in between. This is not possible according to the reference model.
We discuss possible reasons for non-conformance in Sect. 5.

Next to the non-conforming cases, we identified the following unusual cases.
In our data, we observed 13 cases with nine or more complete dispute events cre-
ated in 2018. Ten of those were created in July 2018, the month the application
was launched. The market with the highest number of contributions to disputes
(98) was created on 2018-07-13 and posed the question, “Will the weather be
good for the Bastille day military parade in Paris tomorrow?” The high ambi-
guity of the market question led to a debate in the Augur community revolving
around wording of market questions and forking the application shortly after its
launch. After 15 rounds of dispute7, the market resolved as invalid and remained
a familiar quotation. Soon after the debate around the Bastille Day market
gained momentum, a meta-market was created (“Will the weather good when
the “Will the weather be good for the Bastille day military parade in Paris tomor-
row?” market resolve?”), betting on the events based on existing markets. That
phenomenon, however, did not become a trend.

On 2018-07-10, four identical markets were created within 17 s, asking the
question “Will Bitcoin go below $6000”. One of the markets resolved as invalid
after five weeks, while the other three went through dispute rounds until mid-
September 2018, before also resolving invalid, all on the same day. In sum, this
market question went through the highest number of dispute rounds (20).

4.4 Performance Analysis

Events have timestamps; therefore, it is trivial to enrich process models with
timing information (e.g., waiting times and service times). This is a key capability
of process mining and often used to improve operational processes, e.g., to reduce
the time needed to produce a car or process a claim. For marketplaces like
Augur, standard measurements like waiting times are less relevant, because the
duration is related to the nature of the particular bet. For example, users can
create markets for future events, no matter how far into the future the event
is expected to take place. In this regard, we inspected the top 100 completed

Fig. 18. Conformance checking results for the dispute phase including the activities
create dispute, contribute to dispute, and complete dispute. Only one case is non-fitting.

7 https://themajority.report/market/0x67ef420c045f3561d11ef94b24da7e2010650cc3,
accessed 2021-03-05.

https://themajority.report/market/0x67ef420c045f3561d11ef94b24da7e2010650cc3
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traces concerning the waiting time before submitting the initial report. All these
markets were created in 2018 but referred to events that took place in 2019
and 2020. We also noted that there is a market with a prospected market event
in 2070. In addition to these analyses, we zoomed into the dispute phase and
only considered the activities create dispute, contribute to dispute, and complete
dispute shown in Figs. 13 and 14. The mean duration of this phase is 15.4 days,
the median duration is 7.1 days, and the longest duration is 111 days. This
illustrates that time also plays a role in the analysis of markets.

5 Discussion

The Augur logging smart contract specifies 35 activities, of which only 11 activi-
ties could be observed after the data extraction. Partially, this discrepancy can be
explained by events not being triggered throughout the application’s life-cycle,
such as the fork event. The option to fork serves as a final resolution mechanism
in case a dispute could not be resolved over many rounds, and forms the last
resort. Thus, not observing it was expected, and can indeed be seen as a sign
that the incentive mechanism (geared towards avoiding forks) work. However,
other events such as DisputeWindowCreated could be expected to be triggered
frequently but were not part of the logged data, although specified in our ELF
manifest.

Additionally, the white paper did not cover all events included in the smart
contract (e.g., DisputeCrowdsourcerCompleted or TradingProceedsClaimed).
That led to multiple iterations for creating the normative process model, where
we started with the information in the white paper, ran discovery and confor-
mance checking, found discrepancies, and resolved those by reconsidering the
white paper and inspecting the source code. One observation was that the white
paper in part turned out to be too abstract to model the normative process, as
some information on the workings of Augur was not contained in it. For instance,
completeDispute only happens if a sufficient amount of stakes is contributed
to a dispute; this information is not contained in the white paper.

As pointed out in Sect. 4, cases with many dispute events were observed
mainly in 2018, and mainly had creation dates in July 2018, the month of the
Augur v1.0 launch. Disputes delay resolving a market and hint towards disagree-
ment in the community. Their occurrence in the early days of the application
indicates that the user group needed to build up experience in using the appli-
cation. At times, users seemingly tested the resilience of the application (e.g., a
market for “Did this market need a fork to be resolved?”, created 2018-07-27, led
to 12 complete dispute rounds but no fork). Eventually, the users learned to pose
less ambiguous market questions, leaving less wiggle room for interpretation and
reducing the potential for disputes.

Comparing the normative and discovered models in Fig. 16 and Fig. 12, we
observed paths that were executed infrequently. Recall that the model in Fig. 12
was discovered from the 35 most frequent variants, and hence represents typical
(but not all) observed behavior. Some paths, however, occurred very rarely if at
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all: According to the white paper, after unsuccessful disputes crowdsourcers are
redeemed at the end of the dispute round, while for successful disputes redeeming
happens after the market finalized [23]. The sequence for redeeming unsuccessful
disputes occurred only four times, and the log does not show a single case of
contribute to dispute being directly followed by redeem dispute crowdsourcer.
That poses the question why users did not make use of that option.

The most striking result from conformance checking was the frequent occur-
rences of redeem as initial reporter more than once, where we observed for a
sample that the first event resulted in a payout and the second did not, and
both originated from the same account within a short time frame. The logging
on Augur could be made more precise here, and differentiate successful, legiti-
mate transactions from others. Note that transaction inclusion may be subject
to delay [30], and the timestamp for a transaction to be finally included in the
ledger may be significantly after the transaction had been announced to the
network. There are multiple possible explanations for the phenomenon of the
repeated redeem as initial reporter events, including: (i) the reporter was impa-
tient; (ii) the reporter used an automated tool with a time-out before retry, but
the tool did not implement retry correctly (as per [30]); or (iii) the reporter tried
to cheat or hack the system. Given that these attempts were unsuccessful and
the reporter had to pay fees, and the same reporter accounts showed the same
behavior repeatedly, we find (ii) the most plausible of the three scenarios.

The non-conforming repeated create dispute events happened in the same
categorical market “2018 MLB World Series Champion”. All four transactions
(two pairs of two) were sent from the same blockchain account, and each pair was
included in the ledger in direct succession in the same block. The two pairs were
95 blocks apart. The four transactions initialized four different dispute rounds,
although at any time only one of those was active. By initializing future dispute
rounds, the user “pre-staked” tokens for these future rounds. This was a bug in
Augur v1.0, but turned out to be useful and was made a feature in v2.0, as we
established in discussion with Augur’s chief architect (see below).

Note that we did not aim to apply process mining as a design time or pre-
deployment test for software vulnerabilities. However, we were able to show
that process mining can serve as a tool to discover bugs and performance issues
for blockchain applications post-deployment (based on actual user behavior),
which enables developers to patch weaknesses or formalize unexpected behavior
in updates. Methods for design time checks of vulnerabilities are nevertheless
very important, particularly for DApps, but can be complemented with analyses
such as ours.

To validate the veracity and assess the usefulness of the insights generated by
our analyses, we interviewed Paul Gebheim, the chief architect of Augur. Given
that we only interviewed one person, we classify results from this interview as
anecdotal evidence; but given his position, we believe this evidence to be of value.
We asked him to check assumptions we had – all of which he confirmed – and pre-
sented intermediate results from our analyses to him. From his perspective, using
process mining for the analysis of blockchain applications generally, and Augur,
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in particular, provides value in three ways. First, it helps to verify the design
mechanisms and check for unintended behavior and bugs in the (immutable)
code; immutability poses a challenge from a BPM perspective [20] and software
engineering in general [28]. Second, process mining provides a clear view of how
an application is used, which is also helpful for designing updated versions of
an application. Third, it has great potential for technical and economic security
analysis, e.g., in that, an auditor could create a model and conformance-check
it against actual user behavior. Also, even though a smart contract typically
implements a fixed set of rules, analyses of process variability may reveal valu-
able insights that could help evolve future versions of the smart contract, e.g.,
to align them better with changed user expectations.

The validity of this case study faced several threads to validity. As an internal
thread, we might have introduced a bias in our conformance checking approach.
As a basis for conformance checking, we used the entire normative process model
(Fig. 2) and thus the overall control flow without checking the gate conditions for
individual cases. That might have led to overly generalized results, ignoring non-
conforming cases. Additionally, we largely observed the user behavior as a whole
and not over time, which might have compromised awareness of maturation
effects. An external thread to the study may be that the data we performed
our analysis on was incomplete or its quality corrupted. We did, however, take
precautions in reducing these threads by validating intermediate results and
findings with Augur’s user interface and their chief architect, as described above.

6 Conclusion and Future Work

In this paper, we conducted a case study on process mining for data extracted
from the blockchain application Augur. To this end, we used ELF to extract
data over essentially the entire lifecycle of Augur v1.0. We used process mining
methods and tools to explore the data, discover models for a set of variants, and
conducted conformance checking and performance analyses. Finally, we inter-
viewed the chief architect of Augur to validate our insights and understand their
usefulness. As stated in Sect. 3, we followed open science principles and made all
data and code from our study available publicly.

In summary, we conclude that there is clear evidence for the usefulness of pro-
cess mining on blockchain data. Main areas of interest for software developers may
include user behavior analysis and security audits, for which we demonstrated the
applicability of process mining tools. Indeed, we discovered a bug in Augur’s smart
contracts – albeit a non-critical one. Future research can be done evaluating other
applications which might run on other blockchains, such as Hyperledger Fabric.
The analysis method could be extended for blockchain-specific security and user
studies, e.g., through drift detection and cohort analysis.

Acknowledgments. We are very thankful for the input of Paul Gebheim, chief archi-
tect at the Augur Project. We would also like to thank Martin Rebesky for writing the
first version of the ELF manifest to extract an Augur event log.
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Abstract. Learning meaningful representations of data is an important
aspect of machine learning and has recently been successfully applied to
many domains like language understanding or computer vision. Instead
of training a model for one specific task, representation learning is about
training a model to capture all useful information in the underlying data
and make it accessible for a predictor. For predictive process analytics,
it is essential to have all explanatory characteristics of a process instance
available when making predictions about the future, as well as for clus-
tering and anomaly detection. Due to the large variety of perspectives
and types within business process data, generating a good representa-
tion is a challenging task. In this paper, we propose a novel approach
for representation learning of business process instances which can pro-
cess and combine most perspectives in an event log. In conjunction with
a self-supervised pre-training method, we show the capabilities of the
approach through a visualization of the representation space and case
retrieval. Furthermore, the pre-trained model is fine-tuned to multiple
process prediction tasks and demonstrates its effectiveness in compari-
son with existing approaches.

Keywords: Predictive process analytics · Representation learning ·
Multi-view learning

1 Introduction

Current machine-learning-based methods for predictive problems on business
process data, e.g., neural-network-based methods like LSTMs or CNNs, achieve
high accuracies in many tasks such as next activity prediction or remaining
time prediction on many publicly available datasets [15]. In recent time, a large
variety of new architectures for next step and outcome prediction have been
proposed and evaluated [17,19,24]. These machine-learning-based methods are
mostly task-specific and not generic, i.e., they are designed and tested on pre-
dictive process analytics tasks like next step prediction, outcome prediction,
c© Springer Nature Switzerland AG 2021
A. Polyvyanyy et al. (Eds.): BPM 2021, LNCS 12875, pp. 327–344, 2021.
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anomaly detection, or clustering. Moreover, most of the proposed approaches
process only one or a limited set of attributes including activity, resource [6] or
timestamp [23]. On one hand, predicting the next activity in an ongoing case
using the control-flow information is very similar to predicting the next word in a
sentence. On the other hand, data in an event log recorded from business process
executions is very rich in information. Usually, there are various attributes with
different types, scales, and granularity, which makes generating good representa-
tions containing all characteristics a difficult tasks. Characteristics of a process
instance that are embedded in the data attributes, can improve the performance
of predictive models [13]. For example, the next activity in a business process
can depend on multiple attributes in previous events and complex dependencies
between these attributes [2].

Inspired by recent research in the language modeling domain [5], we propose
and evaluate a novel and generic network architecture and training method –
the Multi-Perspective Process Network (MPPN) – which learns a meaningful,
multi-variate representation of a case in a general-purpose feature vector that
can be used for a variety of tasks. The research contributions of this paper is
threefold:

1. We introduce a novel neural-network-based architecture to process a flexible
number of process perspectives of a process instance that examines all of its
characteristics using gramian angular fields.

2. For this architecture, we propose an self-supervised pre-training method to
generate a feature-vector representation of a process instance that can be fine-
tuned to various tasks, thus making a contribution to representation learning
for predictive process analytics.

3. We show the effectiveness of this approach by analyzing the representation
space and performing an unsupervised case-retrieval task. Furthermore, we
fine-tune and compare the model on a variety of predictive process analytic
tasks such as next step and outcome prediction against existing approaches.

The structure of the remaining chapters unfolds as follows: Sect. 2 introduces
the reader to preliminary concepts. Section 3 discusses related work on the use
of machine learning in predictive process analytics and representation learning
for business process data. Section 4 and 5 present the proposed approach and
the evaluation on a variety of predictive process analytic tasks. Section 6 closes
the paper with a summary of the main contributions and findings as well as an
outline of future work.

2 Foundations

2.1 Business Process Event Log and Perspectives

Event logs contain records from process-aware information systems in a struc-
tured format. These recordings contain information about what activities have
been conducted by whom at what time as well as additional contextual data.
The following definitions will be used in later sections of the paper.
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Definition 1. Event Log
An event log is a tupel L = (E,<, V1, . . . , Vn, a1, . . . , an), where

– E is the set of events
– < is a total order on E
– V1, . . . , Vn are the sets of the attribute values
– attributes ai : E → Vi, maps an event to an attribute value.

In the following, we expect an event log to have at least the attributes case-id,
activity, resource, and timestamp.

Definition 2. Case
Let aj be the attribute case-id and v ∈ Vj. C is the set of events of one case, iff

1. C ⊆ E
2. For each e ∈ C : aj(e) = v
3. For each e ∈ E \ C : aj(e) �= v

Let C = {e1, . . . , en} be the events of a case c. These events follow the order <.
We use the notation: c =< e1, . . . , en >, where ei < ej if i < j.

Definition 3. Business Process Perspective
Given L = (E,<, V1, . . . , Vn, a1, . . . , an) and a sequence of events 〈e1, . . . , en〉,
we define a perspective on each attribute ai as Πai

:= 〈ai(e1), . . . , ai(en)〉
In the next sections, we frequently use the control-flow perspective Πcontrol−flow,
the resource perspective Πresource and the temporal perspective Πtime.

Last, we distinguish between event attributes and case attributes. A case
attribute returns the same value for all events in a case, i.e. it fulfils Eq. 2 in
Definition 2. Otherwise, it is an event attribute.

2.2 Business Process Data and Representation Learning

Representation learning is the task of learning “representations of data that
make it easier to extract useful information when building classifiers or other
predictors” [1]. For example, embeddings are utilized in natural language pro-
cessing to learn a vectorized representation of words. In recent times, attention-
based networks [25] have shown superior performance in many language tasks
such as machine translation, mainly due to their ability to generate meaningful
representations. Usually, these types of networks are pre-trained in an unsuper-
vised fashion on extensive datasets. For business process data, embeddings are
commonly used in predictive process analytics to represent the control-flow [3],
or certain perspectives [6] in a vector space. Thus, it should allow the model
to exploit the vector representation more effectively than a one-hot or integer
encoding. When learning good representations of cases, one tries to represent
all relevant characteristics within the representation. For predictive tasks, this
includes the underlying distribution of the exploratory factors, i.e., attributes
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that influence the prediction [2]. Usually, there are several attributes with dif-
ferent types of data – categorical, numerical, and temporal ones. Within each
type, the dimensions, scales, and variabilities can be different. For instance, there
can be a numerical attribute cost ranging from [0, 1.000.000] and another one,
e.g., discount that is in range [0, 30]. Temporal attributes also have different
scales (daily, weekly, monthly, etc.) and high variability. Categorical attributes
often vary in their dimensionality. While the activity has few different values,
the resource, e.g., persons involved in a process, often has much more distinct
values. Some perspectives are very spare while others are rich. Furthermore, dif-
ferent from event-related attributes, there are also case-related attributes. Some
attributes change their values only in certain events of a case, while others have
a different value for each event. This, in turn, means that perspectives have
different levels of granularity. When learning representations of cases, the multi-
variate, multi-scalar, and multi-granular nature of the data must be considered
and depicted.

3 Related Work

In [4], the authors introduced methods to learn representations of activities,
cases, and process models. They trained a model on the next step prediction
task to learn representations similar to obtaining embeddings for words, sen-
tences, and documents. Although they explained that other attributes besides
activity are important, they only consider the control-flow perspective. Further-
more, they did not include an extensive evaluation to elaborate on the effective-
ness of the proposed representations. Apart from that, representation learning is
not explicitly tackled in existing predictive analytic approaches. However, these
approaches learn a representation alongside a specific prediction task. [6] was the
first to introduce neural networks to the field of process prediction. They applied
recurrent neural networks to next activity and remaining time prediction. They
trained separate neural networks considering the control-flow, resource, and time
perspectives. [23] examined the next step and remaining time prediction task.
They used an LSTM-based approach that optimized both tasks simultaneously
and elaborated on the effect of separated or shared LSTM network layers. [3]
elaborated three different LSTM architectures for predicting the next activity,
resource, and timestamp. In their first architecture, they used specialized lay-
ers for each attribute to predict. The second version combines the categorical
attributes in a shares layer, while the third version shares categorical attributes
and the timestamp. In [17], the authors proposed an LSTM-based method that
can combine multiple attributes. In their model, the authors use embeddings for
each categorical attribute while non-categorical attributes are concatenated with
the categorical ones’ embedded representation. Other approaches for next step
prediction used different techniques such as decision trees (DT ) [9], autoencoder
(AE ) with n-grams [10], attention networks [12], CNNs [18] or generative adver-
sarial networks (GAN ) [24]. Similarly, CNNs [19], LSTMs [14] or autoencoder
[11] are used for outcome prediction. In order to detect anomalies in business
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Table 1. Overview of encoding techniques used in literature. duration: timestamps to
duration after a certain timestamp, IMG: one or multiple perspectives Π to a single
or multiple matrices Mh×w×c of size height × width × #channels.

Task Approach ML method Encoding techniques for event attributes

Most common perspectives Other event log attributes

Πcontrol−flow Πresource Πtimestamp Categorical Numerical Temporal

Next step prediction [6] LSTM Embedding – – – –

[23] LSTM One-hot – Custom – – –

[10] AE + FF N-gram One-hot – One-hot As-is –

[9] DT Integer Integer

[18] CNN IMG – – –

[12] Attention One-hot One-hot – One-hot As-is –

[17] LSTM Embedding Embedding Duration Integer As-is Duration

[3] LSTM Embedding Embedding Duration – – –

[24] GAN One-hot – Duration – – –

Outcome prediction [19] CNN IMG – – –

[11] FF Custom Custom Custom Custom Custom Custom

[14] LSTM One-hot One-hot Custom One-hot – –

Anomaly detection [16] LSTM Integer Integer – Integer – –

[20] Bayesian NN Probability Probability Probability Probability Probability Probability

All MPPN CNN IMG IMG IMG IMG IMG IMG

process data, LSTMs [16] or Bayesian neural networks [20] were applied. Table 1
gives an overview of existing predictive approaches and categorizes them by pre-
diction task, examined perspective, encoding technique per perspective, as well
as used machine learning method. Also, it clarifies what information is available
to which model in what form. While all predictive approaches use at least infor-
mation from two perspectives, only a few approaches are able to encode and
process all types of attributes. We differentiated between the most commonly
used perspectives and other attribute types to delimit generic and non-generic
approaches. Only [17] used a generic encoding approach that can process and
represent all types of attributes. However, the approach is tailored towards next
step prediction and does not focus on the learned representation within the
model. Thus, we propose a generic multi-attribute representation learning app-
roach that is not tailored to a specific prediction task.

4 Multi-Perspective Process Network (MPPN)

The MPPN approach for representation learning is mainly built on two con-
cepts – graphical event log encoding and neural-network-based processing.
The first part is to encode the perspectives of interest Π̂ in the event log
L uniformly as 2D images by transforming them to distinct gramian angu-
lar fields (GAF) – no matter if the perspective contains categorical, numer-
ical or temporal information. The second part is a convolutional neural net-
work architecture and training method that learns representations of cases using
the GAF-encoded perspectives. Figure 1 shows the architecture and process-
ing pipeline of the MPPN approach. In this example, the six perspectives of
interest Π̂ = {Πcontrol−flow,Πtimestamp,Πtype,Πresource,Πtravel start, Πcost} of
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Fig. 1. Architecture and processing pipeline of MPPN using a case from the MobIS
event log [7].

the case with case-id 1565 are first encoded as six individual GAFs, which can
then be processed by the MPPN. CNN1 extracts the features of each perspective
Π̂ which are combined in the perspective pooling layer. The combined features
capture all characteristics of interest of a particular case. The forwards pass in
MPPN of a single case c is as follows: For each GAF-encoded perspective, CNN1
extracts a feature vector that is pooled before being passed to NN2. NN2 then
takes the pooled features from all perspectives, processes them, and produces
a single feature vector FV . This two-stage architecture allows CNN1 to focus
on the features within each perspective while NN2 captures and models the
dependencies between perspectives. By transforming all perspectives uniformly
to GAFs, all attributes lie within the same range, no matter what scale or vari-
ability they had before. At the same time, NN2 can learn what features from
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what perspectives are important. Unlike RNN-based models, MPPN consumes
the whole case at once instead of being fed with cases event by event.

Inspired by multi-view learning, e.g., Multi-View Convolutional Neural Net-
works (MVCNN) for 3D object detection using 2D renderings [22], the Multi-
Perspective Process Network creates a feature vector FV for a case using the
GAF-encoded perspectives. Analogous to using multiple renders from different
views to represent 3D structures, we use different perspectives of a process to
represent a case. Another important aspect of MPPN is its ability to be used for
several tasks instead of being task-specific. This is achieved by an self-supervised
pre-training phase, as also done in[10], that learns a representation in the form
of a feature vector FV . Afterwards, a task-specific layer can be added to the pre-
trained model allowing to fine-tune the model on different tasks. The learned
representation FV thus serves as the basis for any downstream task.

4.1 Graphical Representation of Event Log Data

In order to encode all types of attributes into a single representation in a generic
way, we decided to choose a graphical encoding instead of the methods used in
related work shown in Table 1. We see a strong similarity in the characteristics
of time-series and a single perspective of a process case. Furthermore, all types
of attributes in a case can easily be transformed to time-series. For this reason,
we treat the perspectives Π̂ as multivariate time series. A naive way to get
a both machine-readable and visualizable representations of perspectives Π is
to represent and plot them as time series. Thus, each value of a perspective is
encoded as a real number and visualized in a 2D representation. The y-coordinate
corresponds to the value v, and the x-coordinate to t. In Fig. 1, one can see the
6 perspectives Π̂ of case 1565 encoded and plotted as 6 distinct time series.
Although this representation is a nice visualization for humans, presenting the
perspectives Π as a time series plot is a very naive way. Such a plot is very
sparse, i.e., most of the plot is empty with just a fine line drawn, containing only
little information for convolutional neural networks.

Gramian angular fields (GAF), originally proposed for time-series classifica-
tion, transform sequential data to 2D images, which contain more information
for machine learning methods as time-series plots [26]. For a sequence 〈v1, ..., vn〉,
a gramian angular field is a matrix of size n × n where each entry is the cosine
of the sum of two polar coordinates in time – the polar coordinate of vi plus
vj . This projection is bijective and preserves temporal relations. To transform
event log data, i.e., all perspectives Π̂ of categorical, numerical, and temporal
event log attributes and case attributes into gramian angular fields, they must
be treated and transformed to distinct sequences of numerical values. In order
to get numerical sequences from each type, the following transformations and
encodings are performed. Other types of attributes can also be used (e.g., textual
data) if they are encoded as numerical sequences.

1. For categorical attributes ai, we applied an integer encoding integer : Vi →
int where int ∈ [0, 1, 2, .., |Vi| − 1].
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2. Timestamps are transformed into the duration in seconds from the earliest
timestamp.

3. Numerical attributes are used unchanged.

Case attributes are first duplicated to the case length before being encoded in
the same way as event attributes. Once encoded as numerical sequences, each
perspective can easily be encoded as a gramian angular field after scaling them
to a [–1, 1] range. To ensure equal size images where characteristics are equally
represented, the sequences are adjusted to equal length, either by padding or
truncating. This results in distinct GAF-representations for each perspective Π̂
of a case as shown in Fig. 1.

By using graphical encodings we can transform attributes of different types
to images and use state-of-the-art image processing neural networks. This way
we avoid building networks that process cases with customized architectures for
specific attribute types as well as the complexity of training embeddings.

4.2 Architecture

The MPPN architecture consists of three parts as shown in Fig. 1: CNN1 for
feature extraction, NN2 for modeling dependencies and relations between per-
spectives, and one or multiple task-specific layers called HEAD. Between CNN1
and NN2, a pooling layer combines the features produced by CNN1 for each
GAF-encoded perspective to a single vector. The weights in CNN1 are shared
between all perspectives, i.e. the same CNN1 is applied on all perspectives.
For CNN1, we use Alexnet [8]. However, as gramian angular fields are different
from natural images, pre-training CNN1 on GAFs significantly reduces the later
training time. NN2 is a fully-connected neural network. Together, CNN1 and
NN2 form the model used for representation learning that produces FV . FV can
either be used directly or by any other task-specific layer; e.g., a fully-connected
HEAD with softmax for next step prediction or a HEAD for remaining time
prediction.

4.3 Training Method

One integral part of MPPN is its ability to learn representations of all perspec-
tives Π̂ of cases in an event log. In order to obtain good feature vectors FV , one
must ensure that all relevant characteristics are fully captured in the model. We
distinguish three stages of training that should be performed successively.

Pre-Training CNN1 on GAFs. As GAFs are very different from natural
images, pre-trained CNNs like Alexnet need to be fine-tuned. While lower-level
features like edges and corners are present in GAFs too, higher-level features
differ. In order to make the MPPN sensitive to GAF-specific feature, we fine-
tuned the CNN1 once by classifying cases according to their variant. This task
has been chosen as the process variant is always directly derivable from the
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sequence of events and the model can focus on learning features from the single
GAF-encoded perspective. All relevant information for this task is entailed in
the GAF image which is what we want the model to focus on. However, many
other tasks are also possible. In detail, we build a MPPN with a pre-trained
Alexnet consuming only Πcontrol−flow and predicting the variant on the MobIS
dataset. For each case c the whole sequence of activity was used as input and
the variant used as the target. Afterwards, the weights of CNN1 are saved on
disk and can be used on any dataset, any perspective, and any task for MPPN
in the future.

Representation Learning. To obtain meaningful feature vectors FV of busi-
ness process cases, MPPN must be trained to hold all characteristics of a case in
it. One can train MPPN on next step prediction tasks, e.g., to predict the next
activity in an ongoing case given Π̂. This works fine, but the model will learn
the relation in the data, which are important for the next activity. This leads to
a feature vector FV that by design holds features that are important to predict
the next activity. Attributes that do not have relevance for the next activity will
be less present in FV .

To obtain more generic feature vectors of cases, a self-supervised multi-task
next event prediction training method is applied that trains the network to
predict ai(et+1) for each attribute in Π̂. For this task, the MPPN architecture
is extended by small networks HEADai

– one for each attribute ai to predict.
Each HEAD is a task-specific layer that consumes FV and predicts ai(et+1).
During representation learning, the task’s criterion is to minimize the sum of
all losses of all predictions, measured as mean absolute error (for numerical
and temporal attributes) and cross-entropy (for categorical attributes). During
training, all HEADs are trained in parallel and in conjunction with the rest of
MPPN. Thereby, the MPPN and especially NN2 learns to focus on important
features in all perspectives Π̂ and produces a FV that holds information relevant
for the attributes in the next event. Using this method, a representation can be
learned without the need for manual labeled data. However, depending on the
final task to be solved, other training methods are also possible. As long as all
relevant characteristics of the case are enclosed in FV , any training method is
appropriate. We chose the multi-task next event prediction task as it allows the
model to incorporate all attributes for each prediction. While making predictions
for each attribute the model is forced to not drop relevant characteristics of a
case. Afterwards, the weights of MPPN (without the heads) are saved on disk.
The FV produced in this state can directly be used for tasks where additional
labels are hard to obtain or unavailable, such as clustering, retrieval or anomaly
detection using the same dataset.

Fine-Tuning on Specific Tasks. After being trained to learn good repre-
sentations, MPPN can also be fine-tuned on other tasks using the same event
log and given appropriate labels. Therefore, one or multiple HEADs are added
that consume FV . With each HEAD, the model and especially the HEAD can



336 P. Pfeiffer et al.

be trained on a large variety of tasks, e.g., outcome prediction, next step pre-
diction or (supervised) anomaly detection. Thereby, the model makes use of the
representation in FV to solve a certain problem.

4.4 Implementation Details

We implemented MPPN with the following hyperparameter choices: We padded
or truncated all cases c to length 64 which results in GAF images of size 64× 64
pixel. CNN1 consists of four CNN layers with max-pooling and dropout. NN2
is a two-layer fully-connected network with dropout. We pooled the perspectives
behind CNN1 by concatenation. The HEADs consist of shallow fully-connected
networks with a softmax or regression layer. More details can be found in the
implementation.

5 Evaluation

This section elaborates on two experiments. The first experiment visualizes the
learned representations during the self-supervised pre-training phase and demon-
strates a contextual retrieval task. In the second experiment, we compare the
MPPN model to existing approaches on next event and outcome prediction tasks
by fine-tuning the pre-trained model.

5.1 Representation Visualization and Retrieval

In the following, we demonstrate how MPPN’s internal representations FV can
be used for case-based case retrieval. Figure 2 visualizes FV s of each cases after
they were reduced to a two-dimensional representation space using PCA. The
training of the MPPN was performed analog to Sect. 4.3 using the same input
attributes as described in Table 31 but complete cases c instead of prefixes.
Note that the feature vectors hold information of all perspectives. Therefore,
the clusters do not solely depend on the control-flow.

Figure 2 shows that some clusters consist of cases with the same process
variant. Other clusters are formed based on specific attribute combinations. For
example, the biggest bulk shows all finished cases, i.e., complete cases from start
to end containing the most common variant, represented by case 3006. One can
make use of this representation for case-based case retrieval. Given L and a query
case cquery, the task is to generate an ordered set of cases Ĉ such that all cases in
Ĉ have similar characteristics as cquery. Instead of applying different filters on an
event log to retrieve cases with particular characteristics, one can also retrieve
cases starting with a specific case of interest. For this, the same feature vectors
FV s can now be used for retrieving such cases that share similar characteristics
as a query case. First, the feature vector of the query case FVquery is computed
and compared to all other FV of cases in L using the cosine similarity. Next,

1 We added travel start as another attribute.
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Fig. 2. Visualization of the representa-
tion space learned by the MPPN on all
MobIS cases. Different colors indicate dif-
ferent control-flow variants.

Table 2. Similarities in the perspectives of
the retrieved cases

cquery Ĉ ID FV distance DLD MAE
Timestamp Cost Travel start

5523 5511 0.00411 0 101.66 240 0.53
5613 0.00479 0 154.82 154 6.47
5036 0.01665 5 1307.83 244 28.53
5911 0.01755 8 1004.02 203 24.47
6034 0.01937 8 917.40 253 31.93
5980 0.02088 8 933.96 237 28.55
5868 0.02115 8 1045.91 69 21.55

2056 4819 0.01388 0 2066.35 49 174.00
4960 0.02068 5 3587.52 218 181.33
4765 0.02295 5 729.69 253 169.15
4497 0.02340 5 632.51 217 153.00
4715 0.02428 5 717.51 263 167.00
5044 0.02453 5 847.96 375 188.00
4657 0.02465 5 689.45 233 162.39

7222 7109 0.00006 0 14.71 97 7.35
7092 0.00006 0 16.86 94 8.42
7073 0.00012 0 18.01 77 9.00
7090 0.00015 0 17.10 24 8.54
7133 0.00016 0 11.72 32 5.86
7231 0.00017 0 0.54 100 0.27
7052 0.00021 0 18.01 41 9.00

3006 3227 0.00048 0 55.97 392 153.00
2403 0.00105 0 164.74 1123 0.00
2624 0.00118 0 54.72 501 30.00
3748 0.0012 0 206.65 662 153.00
2859 0.00123 0 103.17 629 38.00
2861 0.0014 0 89.77 474 52.00
2116 0.00153 0 287.39 250 40.00

the cases are sorted by their similarity, and those with the highest similarity are
returned. We picked four cases as shown in Table 2 for retrieval and marked the
retrieved cases with bold symbols in Fig. 2. We see that the control-flow still
is the deciding feature for the model as most of the retrieved cases have the
same sequence of activities. Additionally, the retrieved cases have similar other
characteristics as the query case:

– 5523: Different process variants starting and ending with the same activities
performed around the same date with cost below 1000.

– 2056: Cases that looped through the same activities with various number of
this loop.

– 7222: Cases consisting of the first two events in the process performed around
the same date with costs around 200.

– 3006: Complete cases from start to end of the most common variant.

From Table 2 one can see that the retrieved cases Ĉ are similar in all per-
spectives to the query cases. We calculate the cosine distance of the FV , the
Damerau-Levenshtein distance (DLD) and the mean absolute error for the three
perspectives Πcost, Πtravel start and Πtimestamp (the MAE is computed after
transforming the timestamps to durations).
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5.2 Next Step and Outcome Prediction

This experiment evaluates the performance of the fine-tuned MPPN model
in comparison to four baselines on the tasks next activity, last activity, next
resource, last resource, event duration, and remaining time prediction.

Datasets. In this experiment, we consider seven event logs from different appli-
cation domains. The Helpdesk2 event log contains events from a ticketing man-
agement process of the help desk of an Italian software company. Five event logs
from the BPI Challenge 20123. The original event log is taken from a Dutch
Financial Institute and represents the application process for a personal loan
or overdraft within a global financing organization. We included the original
log as well as each sub-process individually. The event log within BPI Chal-
lenge 20134 is an export from Volvo IT Belgium and contains events from an
incident and problem management system called VINST. The event log within
BPI Challenge 20175 is an updated, richer version of BPI Challenge 2012. The
event log from BPI Challenge 20206 was collected data from the reimbursement
process at TU/e. We only included the request-for-payment log. The MobIS
event log7 was elaborated in the MobIS Challenge [7]. It describes the exe-
cution of a business travel management process in a medium-sized consulting
company. We chose Helpdesk, BPIC 2012, and BPIC 2013 to achieve high com-
parability with existing approaches. BPIC 2017 and BPIC 2020 are selected as
significantly more complex event logs that pose new challenges to prediction
approaches while also revealing weaknesses of current approaches. MobIS con-
tains several attributes and relationships, making it well-suited to demonstrate
MPPN’s multi-perspective approach’s benefits. Table 3 lists characteristics of
each log and presents the attributes used as inputs for the process prediction
tasks.

Experimental Setup. We compare MPPN with four different approaches [3,
6,17,23]. For each task, the models receive as input case prefixes of increasing
length, starting with the prefix that contains only the first event of a case up to
the prefix that omits just the last event; i.e., for each case 〈e1, ..., en〉 we create
n prefixes 〈e1, . . . , et〉 with 0 <= t < n. In addition, we front-padded all prefixes
to equal length. To make the results reproducible, we apply a random split
between training, validation, and test cases for each data set, utilizing 20% of
the cases as test and 10% of the cases as validation data. While the test set is
fixed through all experiments and runs, the split between train and validation
is performed randomly from run to run. All models were trained and validated

2 https://doi.org/10.17632/39bp3vv62t.1.
3 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
4 https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07.
5 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.
6 https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51.
7 https://doi.org/10.13140/RG.2.2.11870.28487.

https://doi.org/10.17632/39bp3vv62t.1
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.13140/RG.2.2.11870.28487
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Table 3. Event logs, statistics and attributes used

#Traces #Events Avg. trace
length

Avg. trace
duration

Input attributes

Categorical Numerical Temporal

Helpdesk 4580 21348 4.66 62.9 days activity, resource timestamp

BPIC12 13087 262200 20.04 150.2 days activity, resource AMOUNT REQ timestamp

BPIC12 Wc 9658 72413 7.50 95.6 days activity, resource AMOUNT REQ timestamp

BPIC13 CP 1487 6660 4.48 426.5 days activity, resource,
resource country,
organization
country,
organization
involved, impact,
product, org:role

timestamp

BPIC17 O 42995 193849 4.51 23.9 days activity, Action,
NumberOfTerms,
resource

FirstWithdrawalAmount,
MonthlyCost,
OfferedAmount,
CreditScore

timestamp

BPIC20 RFP 6886 36796 5.34 31.6 days org:role, activity,
resource, Project,
Task, Organiza-
tionalEntity

RequestedAmount timestamp

MobIS 6555 166512 25.40 1194.4 days activity, resource,
type

cost timestamp

with the same sets in each run. Each model was trained in the same fashion with
a batch size of 512 while utilizing cyclical learning rates and early stopping [21].
The learning rate was picked with the learning rate finder algorithm as defined
in [21]. Other than that, we picked the hyper-parameters of the baselines as
mentioned in the corresponding papers. While [3,6,23] only considered control
flow, resource and timestamp perspectives, the MiDA and the MPPN model
is fed with all attributes listed in Table 3. We only removed attributes that
contained duplicated information. Last, we decided to remove all cases that are
longer than 64 events since these are mostly outliers that falsify the prediction
results and significantly increase training time. Each model was trained and
tested ten times on all datasets and tasks.

Prediction Tasks and Evaluation Metrics. For this experiment, we formal-
ize the prediction tasks and evaluation metrics as follows:

Given a prefix pt = 〈e1, ..., et〉 of a case c = 〈e1, ..., en〉 with 0 <= t < n; t, n ∈
N, we define next step prediction of an attribute a as the task NSPa(pt) that pre-
dicts a(et+1) based of the prefix pt. We define outcome prediction analogously
to next step prediction as the task OUTa(pt) that predicts a(en) based on a
prefix pt. We measure the prediction performance of a model through a metric
function, which is pairwise applied to all predictions and ground truth values
for all prefixes over all cases and afterward combined to a final score. Accord-
ing to the type of the predicted attribute, it is necessary, to use different met-
ric functions. In this experiment, we predict activity, resource, and timestamp.
For activity and resource, we select the metric function accuracy. For timestamp,
we convert it in the duration in days and then compute the mean absolute error.
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Baselines. We re-implemented eight models as baselines from [3,6,17,23] based
on the original papers and the corresponding source code. Our main objective is
to reproduce the different network architectures, to be able to compare them in
a fair and unified test setting with our MPPN.

Thus, we deviate from the original work in some aspects regarding train-test
splitting, sequence generation, and pre-processing, which also leads to different
prediction results. Unfortunately, we cannot guarantee that we have correctly
reproduced all the details of the specifications of the models, due to missing
source code, documentation or test data.

Interpretation of Results. For the final comparison, we averaged the predic-
tion scores over ten runs. Table 4 presents the final results. There is no superior
model that performs best in all tasks on all datasets. However, the results sug-
gest the effectiveness of the MPPN. This yields in particular for the NSPactivity

and the NSPresource tasks, where it achieves the highest scores on nearly all
datasets. The MPPN also performs well on the OUTactivity and the OUTresource

tasks. However, there is not such a wide performance variety between the mod-
els. Most of the examined processes only have a few outcome classes. There-
fore, the tasks are supposed to be simpler and lead to similar results. At the
same time, the available information in the prefixes may not always allow for
a adequate prediction. For the two regression tasks, the MPPN achieves solid
but no outstanding results. Overall, the results suggest that the MPPN model
is more robust than the other models and does not require extensive hyper-
parameter tuning. One explanation might be that the MPPN utilizes gramian
angular fields in combination with CNNs instead of embeddings and recurrent
layers. Also, the CNN in MPPN is based on the Alexnet architecture, which has
been carefully optimized for image recognition tasks. [3,17,23] utilize multi-task
learning without fine-tuning, which seem to fail occasionally to optimize one
particular task fully. In contrast, through the fine-tuning step of the MPPN, it
can focus on one task at a time. Additionally, the MPPN performs reasonable
overall tasks and datasets which is a strong indicator that it can learn effective,
general representations of the underlying process. Another interesting aspect is
the influence of the different perspectives on the process predictions. The MPPN
and the MiDA model utilized almost all available perspectives, while the other
models only examined activity, resource, and timestamp. In the datasets con-
taining contextual attributes, the MPPN can often outperform other methods
indicating that the model can make use of the additional information and embed
them into the representation. In the future, we plan to further investigate the
influence of different datasets and subsets of perspectives. For example, in the
case of BPI17, we expect that contextual information such as application type
and event origin can positively affect the prediction quality.
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Table 4. Process prediction results

Dataset Model NSPactivity NSPresource OUTactivity OUTresource NSPtimestamp OUTtimestamp

Helpdesk Evermann [6] 0.651+-0.128 0.222+-0.005 0.994+-0.000 0.811+-0.000 — —

Ca Spez. [3] 0.693+-0.168 0.289+-0.071 0.994+-0.000 0.811+-0.000 7.95+-0.576 6.654+-0.101

Ca concat [3] 0.696+-0.116 0.421+-0.035 0.994+-0.000 0.811+-0.000 7.63+-0.052 6.739+-0.253

Ca full [3] 0.774+-0.077 0.432+-0.000 0.994+-0.000 0.811+-0.000 5.308+-0.288 7.018+-0.225

Tax Spez. [23] 0.763+-0.082 — 0.994+-0.000 — 7.777+-0.526 6.895+-0.253

Tax Mixed [23] 0.3+-0.003 — 0.994+-0.000 — 14.849+-0.034 7.197+-0.101

Tax Shared [23] 0.793+-0.004 — 0.994+-0.000 — 5.088+-0.129 6.67+-0.100

MiDA [17] 0.693+-0.120 0.263+-0.089 0.994+-0.000 0.811+-0.000 4.898+-0.043 6.629+-0.166

MPPN 0.805+-0.003 0.691+-0.006 0.994+-0.000 0.847+-0.008 5.197+-0.126 6.691+-0.089

BPIC12 Evermann [6] 0.595+-0.107 0.149+-0.000 0.417+-0.000 0.172+-0.000 — —

Ca Spez. [3] 0.795+-0.030 0.333+-0.282 0.417+-0.000 0.177+-0.015 0.693+-0.208 7.82+-0.033

Ca concat [3] 0.74+-0.071 0.426+-0.164 0.417+-0.000 0.172+-0.000 0.722+-0.206 7.849+-0.076

Ca full [3] 0.756+-0.064 0.283+-0.197 0.417+-0.000 0.184+-0.025 0.687+-0.226 6.649+-0.084

Tax Spez. [23] 0.585+-0.194 — 0.417+-0.000 — 0.734+-0.155 7.477+-0.127

Tax Mixed [23] 0.615+-0.182 — 0.417+-0.000 — 0.544+-0.205 6.678+-0.101

Tax Shared [23] 0.824+-0.008 — 0.487+-0.019 — 0.542+-0.167 6.693+-0.080

MiDA [17] 0.565+-0.123 0.149+-0.000 0.417+-0.000 0.172+-0.000 0.625+-0.041 6.587+-0.047

MPPN 0.846+-0.006 0.775+-0.002 0.53+-0.005 0.316+-0.004 0.82+-0.079 6.694+-0.066

BPIC12 Wc Evermann [6] 0.774+-0.000 0.104+-0.000 0.435+-0.000 0.11+-0.000 — —

Ca Spez. [3] 0.775+-0.002 0.104+-0.000 0.435+-0.000 0.113+-0.005 1.799+-0.088 8.31+-0.058

Ca concat [3] 0.794+-0.027 0.104+-0.000 0.435+-0.000 0.115+-0.013 1.843+-0.169 8.333+-0.041

Ca full [3] 0.792+-0.026 0.104+-0.000 0.443+-0.026 0.112+-0.005 1.81+-0.125 7.455+-0.063

Tax Spez. [23] 0.713+-0.081 — 0.435+-0.000 — 1.765+-0.098 7.932+-0.086

Tax Mixed [23] 0.774+-0.000 — 0.435+-0.000 — 1.595+-0.064 7.51+-0.106

Tax Shared [23] 0.773+-0.001 — 0.537+-0.057 — 1.645+-0.070 7.409+-0.110

MiDA [17] 0.805+-0.022 0.104+-0.000 0.435+-0.000 0.155+-0.028 1.767+-0.115 7.424+-0.103

MPPN 0.815+-0.006 0.237+-0.011 0.558+-0.01 0.147+-0.009 1.761+-0.061 7.528+-0.072

BPIC13 CP Evermann [6] 0.417+-0.113 0.082+-0.005 1.0+-0.000 0.211+-0.000 — —

Ca Spez. [3] 0.481+-0.090 0.086+-0.000 1.0+-0.000 0.211+-0.000 50.927+-2.339 137.718+-3.125

Ca concat [3] 0.524+-0.004 0.086+-0.000 1.0+-0.000 0.211+-0.000 51.672+-3.62 139.412+-5.032

Ca full [3] 0.493+-0.065 0.106+-0.035 1.0+-0.000 0.211+-0.000 67.168+-7.233 137.193+-6.280

Tax Spez. [23] 0.502+-0.067 — 1.0+-0.000 — 50.785+-4.395 140.481+-4.913

Tax Mixed [23] 0.309+-0.003 — 1.0+-0.000 — 112.867+-0.279 176.167+-0.930

Tax Shared [23] 0.51+-0.011 — 1.0+-0.000 — 47.741+-1.217 144.528+-21.964

MiDA [17] 0.434+-0.110 0.083+-0.005 1.0+-0.000 0.211+-0.000 54.949+-4.044 128.185+-10.555

MPPN 0.562+-0.009 0.178+-0.024 1.0+-0.000 0.216+-0.008 54.922+-3.948 127.824+-3.806

BPIC17 O Evermann [6] 0.818+-0.000 0.067+-0.005 0.509+-0.032 0.186+-0.041 — —

Ca Spez. [3] 0.818+-0.000 0.064+-0.000 0.513+-0.018 0.192+-0.000 3.628+-0.057 9.604+-0.017

Ca concat [3] 0.818+-0.000 0.226+-0.261 0.501+-0.027 0.192+-0.000 3.611+-0.082 9.606+-0.014

Ca full [3] 0.818+-0.000 0.081+-0.048 0.52+-0.001 0.192+-0.000 3.627+-0.105 9.519+-0.025

Tax Spez. [23] 0.67+-0.065 — 0.454+-0.019 — 3.529+-0.019 9.688+-0.145

Tax Mixed [23] 0.726+-0.178 — 0.458+-0.014 — 3.999+-0.503 9.768+-0.184

Tax Shared [23] 0.818+-0.000 — 0.519+-0.000 — 3.531+-0.037 9.47+-0.021

MiDA [17] 0.836+-0.030 0.064+-0.000 0.828+-0.002 0.192+-0.000 3.297+-0.037 8.946+-0.059

MPPN 0.818+-0.000 0.553+-0.061 0.518+-0.001 0.208+-0.001 3.567+-0.068 9.534+-0.016

BPIC20 RFP Evermann [6] 0.699+-0.099 0.817+-0.084 0.957+-0.000 0.958+-0.000 — —

Ca Spez. [3] 0.756+-0.087 0.841+-0.020 0.957+-0.000 0.958+-0.000 2.556+-0.142 6.068+-0.185

Ca concat [3] 0.704+-0.09 0.997+-0.000 0.957+-0.000 0.958+-0.000 2.631+-0.199 6.062+-0.079

Ca full [3] 0.804+-0.025 0.997+-0.001 0.957+-0.000 0.958+-0.000 2.634+-0.252 5.931+-0.117

Tax Spez. [23] 0.791+-0.085 — 0.957+-0.000 — 2.269+-0.085 5.933+-0.087

Tax Mixed [23] 0.431+-0.252 — 0.957+-0.000 — 3.827+-2.194 8.55+-0.058

Tax Shared [23] 0.849+-0.001 — 0.957+-0.000 — 2.12+-0.095 5.468+-0.181

MiDA [17] 0.55+-0.109 0.997+-0.001 0.957+-0.000 0.958+-0.000 2.673+-0.173 5.842+-0.086

MPPN 0.849+-0.001 0.997+-0.000 0.957+-0.000 0.958+-0.000 3.018+-0.849 6.495+-0.909

MobIS Evermann [6] 0.767+-0.140 0.163+-0.000 0.798+-0.000 0.075+-0.000 — —

Ca Spez. [3] 0.87+-0.040 0.163+-0.000 0.798+-0.000 0.075+-0.000 4.648+-0.560 30.106+-0.814

Ca concat [3] 0.836+-0.034 0.163+-0.000 0.798+-0.000 0.075+-0.000 4.801+-0.525 30.133+-0.526

Ca full [3] 0.838+-0.038 0.163+-0.000 0.798+-0.000 0.075+-0.000 3.966+-0.922 24.449+-0.354

Tax Spez. [23] 0.85+-0.079 — 0.798+-0.000 — 3.919+-0.968 28.236+-1.569

Tax Mixed [23] 0.545+-0.188 — 0.798+-0.000 — 2.333+-0.602 21.384+-0.977

Tax Shared [23] 0.926+-0.008 — 0.805+-0.009 — 2.323+-0.638 20.963+-0.420

MiDA [17] 0.7+-0.154 0.163+-0.000 0.798+-0.000 0.075+-0.003 2.992+-0.372 24.498+-0.405

MPPN 0.934+-0.003 0.536+-0.026 0.812+-0.002 0.121+-0.023 4.827+-0.420 22.454+-1.011
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Reproducibility. All code used for this paper, including the implementation
of MPPN as well as the case retrieval and the prediction experiments, can be
found in our git repository8.

6 Conclusion

In this work, we have proposed a novel approach for multivariate business process
representation learning utilizing gramian angular fields and convolutional neural
networks. MPPN is a generic method that generates multi-purpose vector rep-
resentations by exposing important characteristics of process instances without
the need for manually labeled data. We showed how these representations can be
exploited for analytics tasks such as clustering and case retrieval. Furthermore,
our work demonstrated the advantages of meaningful, general representations
for later downstream tasks such as next step and outcome prediction. In the
performed experiments, we were able to outperform existing approaches and
generate robust results over several datasets and tasks. This demonstrates that
representation learning can successfully be applied on business process data.
Furthermore, the self-supervised pre-training makes the model robust and helps
in cases where contextual information is given. Additionally, in spite of recent
advances in NLP, our result indicate that a non-recurrent neural network out-
performs other architectures that use recurrent layers.

One limitation of this paper is a missing systematic hyper-parameter tuning.
In this paper, we investigated the robustness of the models on multiple datasets
and tasks making it a generic approach. In the future, we want to elaborate on
how hyper-parameter tuning can improve the performance of a specific model
on a given dataset. Furthermore, we plan to investigate how the approach can
explain the impact of certain attributes on other events in a process. The “black
box” nature of deep learning models is still a major issue in the context of
predictive process analysis. Last, we want to elaborate more approaches and
ideas from other domains such as natural language processing and computer
vision to learn richer representations capturing more and finer characteristics.
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Abstract. Workforce analytics brings data-driven methods to organi-
zations for deriving insights from employee-related data and supports
decision making. However, it faces an open challenge of lacking the capa-
bility to analyze the behavior of employee groups in order to understand
organizational performance. This paper proposes a novel notion of work
profiles of resource groups, informed by the management literature, for
characterizing resource group behavior from multiple aspects relevant to
workforce performance. This notion is central to the design of a new,
systematic approach that supports resource group analysis by exploiting
business process execution data. The approach also provides managers
and business analysts with an intuitive means of group-oriented resource
analysis by applying visual analytics. We demonstrate the applicability
of the approach and usefulness of the proposed notion of resource group
work profiles using real datasets from five Dutch municipalities.

Keywords: Workforce analytics · Resource groups · Process mining ·
Event logs · Visual analytics

1 Introduction

Achieving excellent business process performance within the management of
operations is a demanding and crucial challenge for any organization to maintain
competitive advantage. The prevalence of information systems has led to many
data science applications supporting analyses of organizational performance to
address this challenge. Business processes are often at the core of such analyses as
they describe how resources of an organization (employees, machines, systems)
are connected with each other [3]. The focus of business process analytics is often
on the control-flow perspective and process design. However, the aspect of how
employees work together in processes to achieve efficiency is also important [21].

Employees are the key resources of an organization. Not only their indi-
vidual but also collective performance as different units or teams has a direct
impact on the outcomes delivered by the organization [33]. Data science appli-
cations in this regard are termed workforce analytics, which aim at extracting
c© Springer Nature Switzerland AG 2021
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insights from analyzing employee-related data and thus support evidence-based
decisions on human resources [23]. The success of Google’s Project Oxygen and
other leading-edge enterprises illustrates the value of workforce analytics as an
important organizational capability to improve resource planning and perfor-
mance evaluation. However, as workforce analytics receives growing attention,
several challenges have been identified regarding its current practice [20]. One of
these challenges concerns the absence of group-level analysis pivotal to strategy
execution and organizational effectiveness. For example, current workforce ana-
lytics has not yet enabled consistent comparisons across internal groups within
organizations [12].

Our research aims to explore a possible solution to improving organiza-
tions’ capability to conduct group-oriented workforce analytics by systematically
exploiting business process execution data. The motivation is two-fold. First,
business processes often cut across functional boundaries in an organization and
collectively involve employees from different functional units to deliver outcomes
to customers [18]. The end-to-end nature of processes makes it viable to analyze
and compare different resource groups by linking their performance with process
outcomes. Second, data recording actual process execution is readily available in
many organizations in the form of event logs. With time-stamped information
on process instances (e.g., an insurance claim), process activities, and relevant
organizational groups (e.g., a group of claim processors), event logs can serve as
a valuable and objective data source complementary to survey data commonly
used by current workforce analytics in practice [23].

Process mining is the field that studies data-driven process analytics using
event logs. With regard to human resources in organizations, the state-of-the-
art literature focuses on analyzing individual resources or discovering the forma-
tion of resource groups. Studying human resources at the group-level to extract
insights on how resources work in groups and how resource groups perform in
business processes is underexplored. This leads to the following research question
for workforce analytics in process-related digitalization: how to utilize process
execution data for analyzing the behavior of resource groups working in business
processes?

In this paper, we propose a novel notion of work profile of resource groups,
drawing on relevant studies in the management literature. It comprises an exten-
sible set of quantitative measures for characterizing resource group behavior from
multiple aspects, including workload, performance, goal achievement, participa-
tion, distribution, and collaboration. Based on this notion, we develop an app-
roach to identify and analyze resource groups’ work profiles using event log data.
The approach provides managers and business analysts with an intuitive means
of group-oriented resource analysis by applying visual analytics. We demonstrate
the applicability of the implemented approach and usefulness of the proposed
notion of resource group work profiles by analyzing real event logs from five
Dutch municipalities.

Our research contributes to addressing the gap of resource-group level anal-
ysis in business process management research on a conceptual and also method-
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ological level. From a practical perspective, our research provides the possibility
of strengthening an organization’s process-oriented capability in terms of coor-
dinating groups to increase efficiency.

The paper is organized as follows. Section 2 reviews existing literature related
to resource group analysis. Section 3 proposes the notion of work profiles of
resource groups. Section 4 presents the design of an approach for identifying and
analyzing work profiles. Section 5 discusses results and findings from evaluating
the approach over real-life datasets. Section 6 concludes the paper and outlines
future work.

2 Resource Group Analysis: Theory and Related Work

The organization of employees in terms of teams or groups and the comparison
of their collective performance constitute important topics in management [16].
A team is formed by engaging individuals in collective work with joint effort,
whereas a group only represents individuals tied together by certain criteria,
not necessarily working jointly [26]. For example, there can be employees from
a function-oriented group who work together with those from other function-
oriented groups in a team performing a particular process, but having limited
interaction with their own group members. In this work, we focus on groups
rather than teams.

Groups of employees can be characterized by the interaction between group
members. This is addressed by the interactionist theory of behavior, which states
that the interaction between individuals in a group determines the performance
of the group [24]. Malinowski et al. [22] provide a comprehensive overview of
the challenges regarding decision support to identify influencing factors and the
related concepts. Next to a person-job fit and a person-vocation fit, individu-
als interact with their group members, and thus a person-group fit has to be
ensured. Whether all group members have an adequate person-group fit can be
determined from their interaction and performance [22]. Hence, there are two
levels of workforce analysis—group performance and interaction within a group,
i.e., the way a group is organized internally.

Within management research, much work has focused on defining general
practices while neglecting individual interactionist fits in a group context [14].
An example of such a general practice would be the grouping of employees around
the processes they are involved in rather than around the types of tasks they per-
form. Other general practices state that high performance groups should have,
e.g., clearly defined goals, aligned values, and adequate collaboration [8]. In par-
ticular, the collaboration aspect remains opaque in such work. The problem with
such practices is that they are based on generic assumptions and may not be
the best for a specific organization or parts of it. Research in the field of psy-
chology includes individual differences, perceived psychological states regarding
various dimensions and aspects, e.g., group cohesion [9]. However, such psycho-
logical aspects are often subjectively measured through questioning, conducted
sporadically. Hence, these aspects are not considered in this article as focus is
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on objective measures using process data. Moreover, organizations nowadays are
required to be flexible as they are faced with dynamic and ongoing changes of
the environment [32]. Organizational structures need to reflect this by being able
to evaluate groups on an ongoing basis—providing data on group comparisons.

Group performance is typically described from a measurement perspective
without specifying how to gather and analyze data. Brignall and Ballantine [5]
review different performance management models and point out that the utiliza-
tion of human resources is an essential aspect. The literature reviews conducted
by Haynes [13] and Bortoluzzi [4] discuss the measurement of productivity in
organizations and identify certain productivity indicators, e.g., working hours,
time to completion, and amount of satisfactory outcomes vs. errors. Gibson
et al. [10] review the existing measures of group effectiveness in the literature
and conduct interviews in several multinational organizations, summarizing five
dimensions for measuring the “outcome effectiveness” of groups. Charlwood [6]
reports the results from a literature review that identifies theory and evidence on
the use of Human-Capital metrics by organizations. The review extracts more
than 600 Human-Capital metrics from the literature describing workforce char-
acteristics and the evaluation of workforce efficiency.

With regard to the internal organization of the group, first there are
approaches which consider the interaction between groups referring to han-
dovers in processes [21], role descriptions and expertise [1], or communication
and control structures [11]. Second, approaches using business process execu-
tion data to study human resource groups can be categorized into two topics.
One concerns using event logs for analyzing the formation of resource groups,
e.g., Schönig et al. [28] propose an approach that uncovers the composition
rules of human resource groups in process executions, and Appice [2] proposes a
method that reveals the construction and destruction of organizational groups
over time using event logs. The other topic concerns the discovery of organi-
zational groups (e.g., [30]), which aims at extracting the grouping structures
around resources. Third, there exists research (e.g., [17,25]) focusing on analysis
of individual resource behavior by building resource “profiles” from event logs,
which represent objective descriptions of how individual resources were involved
in process execution. However, it still remains an open question as to what and
how to characterize the behavior of resource groups working in processes.

3 Work Profile of Resource Groups

Drawing on the theoretical and conceptual background in the prior section, this
section presents the notion of work profile of resource groups. A work profile of
a resource group can be defined as a collection of indicators used to measure
different aspects of that group of resources in terms of their interaction with
relevant work. As with any indicators related to performance, the measurement
of indicators includes a connection to time, i.e. a time interval (between t1 and
t2) in which the respective performance of a group is measured [6]. By specifying
the relevant interval, work profiles can reflect the fact that the performance of
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resource groups is often dynamic due to having shifts and turnover. Hence, the
definition of a work profile is as follows:

Definition 1 (Work Profile of a Resource Group). Let RG be a set of
resource group identifiers, T the universe of timestamps, and [t1, t2) a half-open
time interval with t1, t2 ∈ T and t1 < t2. Let I be a set of names for possible
indicators. Given a resource group rg ∈ RG, WP = (rg, t1, t2, I, σ) is a work
profile for the resource group during time period [t1, t2) where σ : I → R specifies
the quantified measures of the indicators.

The definition provides a general representation of indicators measuring dif-
ferent aspects of a resource group over a specific time-frame. By reviewing the
management literature, we identified a number of relevant studies [4–6,10,13]
which can inform the proposal of a resource group’s work profile useful for work-
force analytics. The indicators refer to the input-throughput-output view on
processes [7]. Performance regarding input-output can be measured with indica-
tors related to productivity and efficiency. Whether a specific output is achieved
is referred to as goal achievement. Finally, the throughput is reflected by the
summation of employee workload in a group. As a result, we present a collection
of three general aspects and associated indicators, focusing on a resource group
in its entirety.

• Workload [5]: What and how much work is a resource group involved in?
– allocation – overall amount of work allocated to the group
– assignment – amount of the group’s workload assigned to specific work
– relative focus – % of the group’s workload assigned to specific work
– relative stake – amount of contribution by the group to specific work

• Performance [4,6,10,13]: How does a group perform?
– amount-related productivity – amount of work completed by the group
– time-related productivity – time needed by the group to complete work
– efficiency – amount of satisfactory work produced by the group

• Goal achievement [4,10]: To what extent does a group adhere to goals?
– effectiveness – % of established goals accomplished by the group

In this research, we also consider how resource groups interact with work
in terms of their involvement in business process execution captured by pro-
cess event logs. This theoretical focus is reflected in the following aspects and
indicators, which measure how group members interact with relevant work in a
process, and with each other.
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• Participation [4,6]: How do group members commit to work?
– attendance – number or % of members in the group committing to work

• Distribution [4]: How is work distributed over group members?
– member load – amount of work allocated to individual group members
– member assignments – amount of members’ workload allocated to specific

work
• Collaboration [6]: How is the collaboration among group members?

– cooperation – extent of collaboration between group members

The above collection of six aspects and associated indicators can be used
to form the structure (or template) of a group’s work profile for group-oriented
analysis. Note that the term “work” here refers to either activities (tasks) or cases
of a business process. Analysts can build their own sets of indicators according
to different problems and contexts. However, to enumerate a comprehensive,
universal set of aspects and indicators would be unrealistic [6] and is beyond
this paper’s scope.

4 Identifying and Analyzing Work Profiles

We introduce the design of an approach for identifying and analyzing work pro-
files of resource groups using process event log data. Figure 1 depicts an overview
of the proposed approach consisting of two main phases.

4.1 Identifying Work Profiles

Identify Resource Groups. The starting point is an event log. As a minimum
requirement, the input event log should provide information on cases (instances
of process execution), activities, resources, and time. These are satisfied by many
event logs as they often record case identifiers, activity labels, resource identifiers,
and timestamps as the basic event attributes. Additionally, the input event log
may also carry an attribute indicating the group identities of resources.

Given such an event log, the first task is to identify different resource groups.
This is straightforward when a group identity attribute is present in the log.
Otherwise, organizational group discovery (e.g., [30]) can be applied to extract
group identities of resources. In either situation, one can determine the number
of resource groups, their members, and thus the associated event data in the log.

event log

resource
groups
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Fig. 1. Overview of the approach to identifying and analyzing work profiles
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Map Events onto Multiple Dimensions. Event logs contain complex and multi-
dimensional data capturing the information on various perspectives of process
execution. Consider an example of an insurance claim process: a manager (orga-
nizational dimension) is in charge of the final review of a claim (activity dimen-
sion), and several groups are formed to work on different weekdays (time dimen-
sion) to serve customers lodging different types of claims (case dimension).
Moreover, from the perspective of resource groups, members in the same group
are likely to share common characteristics, e.g., all managers conduct reviews,
despite that they may be specialized in handling certain types of claims.

To study the work behavior of resource groups in process execution, we orga-
nize events into classes of events based on different dimensions (such as case,
activity, time dimensions). Depending on the purpose of an analysis and avail-
able information in the input log, analysts can specify different case types, activ-
ity types, and time types. For example, to compare the performance of employee
groups on different weekdays, seven time types may be defined (e.g., “Monday”,
“Tuesday”). Consequently, (“car insurance claims”, “contact”, “Friday”) refers
to all events on Fridays concerning the work behavior of employees when they
contacted customers that had lodged car insurance claims.

Based on the classification of events according to various process dimensions,
indicators of work profiles can be calculated respectively. It therefore enables
more targeted analyses on the work behavior of groups. For instance, given
case type “gold customer” and activity type “contact”, (“CityS.”, 2020-09-27,
2020-10-25, attendance, 60%) indicates to HR analysts that 60% of members in
employee group “CityS.” worked on contacting gold customers between Septem-
ber and October 2020.

Extracting Work Profiles. We describe the pre-defined work profile indicators
(Sect. 3) that can be directly extracted given a typical event log with essential
information recorded. Note that all indicators are measured given a resource
group and a time interval (see Definition 1).

Workload: The indicators of group workload capture the amount of different
types of work carried out by a resource group. With respect to an event log, the
amount of work can be quantified by considering either the number of activities
(which can be inferred from the event number) or the number of cases (which
can be inferred from the case identifiers).

– allocation is measured by the total number of activities conducted by a group,
or the total number of cases involving the group;

– assignment is measured by the number of activities conducted by a group that
are specific to some case type, activity type, and time type, or the number of
cases involving a group that are specific to some case type;

– rel focus measures the assignment of specific activities or cases to a group,
compared with the total allocation to the group;

– rel stake measures the assignment of specific activities or cases to a group,
compared with the total number of activities or cases of the specific types.
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Performance: The indicators of group performance can be quantified by con-
sidering activities and cases completed in a given time interval. Note that they
are different from the workload indicators which do not consider completion.

– amount-related productivity is measured by the total number of completed
activities or completed cases by a group;

– time-related productivity is measured by the average time taken by a group to
complete an activity or a case;

– efficiency extends amount-related productivity by including some normative
pre-defined criteria. For example, an analyst can specify that only cases com-
pleted within 10 days are considered “satisfactory”, and therefore efficiency
will be calculated based on the number of satisfactory cases by the group
only.

Goal Achievement: The effectiveness indicator measuring the goal achieve-
ment of a resource group can be quantified based on other aspects and their
indicators. For example, when two goals are established in terms of the max-
imum amount of allocation (measuring workload) and the minimum level of
efficiency (measuring performance), the effectiveness of a group can be measured
by considering whether the group accomplishes these goals, respectively.

Participation: The indicator attendance can be quantified by considering the
occurrences of group members carrying out activities or cases. Note that the
measure may only be a rough estimate since an event log may not accurately
capture the time when employees start working on a process.

– attendance is measured by the number of member resources in a group who
originated at least one event (for a relevant activity or case).

Distribution: The indicators for distribution are defined over group members
by calculating the portion of workload of the group. Thus, the following indica-
tors consider a given resource in a group.

– member load is measured by the number of activities conducted by a resource.
Therefore, the sum of member load across all members of a group should be
equal to the allocation of the group (measured by activities);

– member assignment is measured similarly to member load, but using case
types, activity types, and time types to characterize the work by different
dimensions.

Collaboration: Quantifying the extent of collaboration among employees using
event logs can be challenging since (1) event logs usually do not capture the
communication between employees and (2) the way how collaboration happens
in different processes and organizations may differ. In the following, we discuss a
possible estimate of cooperation based on how frequently group members transfer
work between each other in process execution (known as handovers).

– cooperation within group members can be estimated by the density of han-
dovers of work between group members [31].
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4.2 Analyzing Work Profiles

Building on work profiles extracted from event logs, different data analytics tech-
niques can be applied to discover patterns from the measurement of indicators.
In our approach, we discuss the use of visual analytics as an intuitive and proven
means [15] for analyzing work profiles.

Following the definition of work profiles and the relevant aspects and indica-
tors, we consider the following requirements for visually analyzing work profiles:

– Users should be able to interactively extract work profiles related to differ-
ent time intervals in an event log and at different granularity (e.g., daily,
monthly), thus be able to track changes of work profiles over time;

– Users should be able to have an integrated view of interrelated indicators
(e.g., allocation and assignments) to derive findings on interactions between
different aspects (or dimensions);

– Users should be able to compare indicators measured among different groups
at different times; and

– Users should be able to correlate indicators of group-level analysis with those
of within-group analysis to obtain a holistic view on groups’ work behavior.

Based on these requirements and guided by the general principles in visual
analytics [19], we developed a design composed of several types of charts com-
bined with interactive filters. The design aims at providing an integrated and
purposeful visualization on multiple aspects of a resource group’s work profiles.

The design includes the following. (1) A stacked area chart and a line chart
are chosen for analyzing workload and performance, considering their advantages
in capturing indicator values as time-series and showing the evolution patterns.
For these two charts, interactive filters are embedded to allow users to explore
the workload and performance indicators at different times and at different levels
of granularity. (2) A heatmap is used for supporting the analysis on workload
and distribution with regard to different case, activity, and time types, for its
usefulness in simultaneously presenting values related to two-dimensional data
attributes. (3) A stacked bar chart is used for intuitively presenting the atten-
dance of group members with respect to group size. By connecting different
charts using the same set of interactive filters, users are provided with an overall
picture of work profiles of resource groups in a selected time interval of interest.

The design shows a possible way of applying visual analytics to analyze
work profiles. While the aspects and indicators of a work profile may be fur-
ther extended, other visualization techniques can also be adopted accordingly.

5 Evaluation

The purpose of our evaluation is to demonstrate how the proposed approach
can be used for resource group-oriented analysis. To this end, we have developed
a prototype with interactive visualization, built upon Vega-Lite [27], as a real-
ization of the design of the approach in Sect. 4. The tool is publicly available
(https://royjy.me/to/gwp-demo). Figure 2 and Fig. 3 illustrate the prototype’s
interactive visualization interface.

https://royjy.me/to/gwp-demo
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Fig. 2. Annotated screenshots of the prototype’s interactive interface for analyzing
work profiles regarding workload, participation and distribution. The numbers mark
different views: (1) workload by allocation; (2) workload by assignment measuring either
activities or cases; (3) workload by rel focus measuring either activities or cases; (4)
distribution by member assignment; (5) participation by attendance. The views respond
to user interactions simultaneously: (A) selecting a time interval and zoom-in; (B)
highlighting specific groups; (C) focusing on a specific time period (week); and (D)
showing specific numbers via a tooltip

5.1 Design of Experiments

We conducted an evaluation by experimenting on a real-life dataset1 with five
event logs. The event logs record a process of handling building permit applica-
tions in an approximate four-year period, and contain typical event attributes
satisfying the minimum requirements on an input event log (Sect. 4.1). Note that
the event logs only record the end timestamp for each activity conducted in the
1 BPIC 2015: https://data.4tu.nl/collections/BPI Challenge 2015/5065424/1.

https://data.4tu.nl/collections/BPI_Challenge_2015/5065424/1
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Fig. 3. Annotated screenshots of the prototype’s interface for analyzing work profiles
regarding performance. Views of (6) amount-related productivity and (7) time-related
productivity respond simultaneously to user interactions (A–D)

process. Therefore, only activity occurrences can be considered in the subsequent
analysis, not the activity duration time.

Still, this dataset can serve as a representative example of how our approach
can contribute to workforce analytics centered around resource groups. This is
because the dataset captures how an identical process was performed in five
different municipalities, and thus representing scenarios where different resource
groups participate in executing the same process. Moreover, the process own-
ers raised a few questions originally, with a particular focus on the differences
between the municipalities’ performance and the roles of their employees. Given
this context, we consider each municipality as a separate resource group in our
experiments2, and apply the approach to extract and analyze their work profiles.

5.2 Group-Level Analysis

We first conduct the group-level analysis and focus on the workload and per-
formance aspects, motivated by one of the process owner’s original questions:
Where are differences in throughput times between the municipalities and how
can these be explained? For simplicity, we refer to the five municipalities (i.e., the
resource groups) by short names, e.g., “muni-1” denotes the first municipality.

Workload Analysis. We organize cases and events by three process dimensions
(activity, time, case) to compare the workload of resource groups. Figure 4 shows
the visualization of group workload in regard to different activity, time, and case
types. The five groups exhibit very similar patterns in terms of assigning their
group workload according to different types of activities (Fig. 4a). Slight differ-
ences can be observed as neither of muni-4 nor muni-5 has worked on activities
of type 6. Also, employees from muni-2 and muni-5 seem to have committed to

2 Experiment details: https://git.io/Jq9uC.

https://git.io/Jq9uC
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more workload in executing activities of type 8. These groups also show sim-
ilarities regarding the types of cases they processed (Fig. 4c), as the majority
leaned towards handling the construction-related applications (‘Bouw’), espe-
cially muni-1 and muni-5. An interesting observation can be made regarding the
weekday pattern shown in Fig. 4b. Muni-1 differs from others as it had only 12%
of its total workload assigned on Wednesdays. In the meantime, muni-2, muni-3
and muni-5 seem to form another cohort as Fridays were their least busy day.
This observation may link to different arrangements of office hours in the groups.

Fig. 4. Workload of the groups measured by rel focus in 2011–2014

Performance Analysis. Figure 5 presents an overview of group performance by
calculating indicator amount-related productivity and time-related productivity for
different year-quarters. For analyses in this part, we base our observations on
work profiles starting from 2012 Q1, since we only included cases started after
2010-12-31 in our evaluation, and hence the numbers related to case completion
in 2011 may not reflect the actual performance3.

From Fig. 5a we can see that five groups follow a highly similar pattern in
terms of amount-related productivity (as the number of completed cases)—most
of the cases were completed in Q1, followed by that in Q4 and Q3, while the
least throughput happened in Q2. Compared across years, 2012 saw the most
completed cases. The groups’ performance decreased in 2013 and went slightly
higher in 2014. An observation worth mentioning is that muni-4 had a sudden
increase of performance after 2013 Q1 until 2014 Q2, and later dropped to the
same level as the other groups.

Figure 5b provides another perspective on group performance visualizing
time-related productivity. Note that it is calculated by the average cycle time
of completed cases, hence the performance is high when the value is low, and
vice versa. We can see that muni-3 delivered steadily high performance in terms
of shorter cycle time. Muni-5 also had a relatively consistent level of perfor-
mance, which slightly improved during the year 2013. The performance of muni-
2 changed across the four quarters, while within each year it follows a pattern:
3 The mean case cycle time in the dataset is 91.1 days (std. 105.8 days).
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Fig. 5. Performance of the groups in 2011–2014

starting low in Q1, improving in Q2, and gradually decreasing towards the end
of a year (Q3 and Q4). This highlighted pattern of muni-2 would be interesting
to investigate, as this group is not unique in terms of amount-related productivity.

Meanwhile, the spike of case cycle time in muni-1 and muni-4 in 2013 also
deserves further attention. With our previous observation on the increase of
throughput of muni-4 in the same period, we selected the interval of 2013 and
used the detailed view to drill down the performance values of muni-4.

Figure 6 depicts the visualization. The upper view clearly shows four sharp
increases of amount-related productivity. In each of the four weeks, muni-4 com-
pleted significantly more cases (more than 30) compared to all other groups
(less than 10). This explains the spike in the overview (Fig. 5a) and may link
to the existence of batching behavior of muni-4. Interestingly, the increase of
amount-related productivity seems unrelated to the group’s time-related produc-
tivity as shown in the lower view. Cross-checking the same weeks in the two
charts, we can see that the potential batching completion did not directly link
to a significantly longer case cycle time of muni-4.

Fig. 6. Muni-4’s performance by amount-related and time-related productivity
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5.3 Within-Group Analysis

We proceed to analysis at the group-member level, motivated by another ques-
tion raised by the process owner: What are the roles of the people involved in the
various stages of the process and how do these roles differ across municipalities?
Following the question, we analyze the distribution within each group and focus
on the most active members.

Distribution Analysis. Figure 7 presents how individual resources within each
group handled different types of activities distributed to them, which reflects the
involvement of resources at different phases in the process. Comparing across the
columns in the heatmaps, we noticed two major patterns in all five groups, which
are more significant in muni-4 and muni-5. There exists a cohort of resources
focusing primarily on the executions of activities of type 0, 4, and 5, while they
seldom carry out activities in the middle of the process (type 1, 2, and 3). Also,
there is another cohort of resources that exhibits a different pattern as their
workload was mostly on executing activities from phases in the middle (type
1, 2, 3, and 4) in a balanced manner. This second cohort of resources was less

Fig. 7. Distribution within each of the five groups (2011–2014) measured by mem-
ber assignment in terms of activity types. The values have been normalized by mem-
ber load of each individual for role analysis
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involved in executing activities of type 0 and 5. The two different yet possibly
complementary patterns may relate to two business roles in the process.

The heatmaps also highlight patterns unique to some municipalities. For
example, resource ‘560925’ in muni-1 carried over 89% of its total workload in
executing activities of type 0, and 8% in conducting activities of type 1. The
resource was rarely involved in activities during the later phases in the process.
While such a pattern is not observed in the other groups, it implies that in muni-
1 there was a specific role for dealing with the initial processing of the received
applications. As another example, resource ‘8492512’ in muni-5 only executed
activities of type 0, 4, and 5 in the four-year period, and may have acted as a
specialist supporting the first major role identified before (i.e., focused mainly
on activities of type 0, 4, and 5).

Summary. The above analyses on group work profiles using visual analytics
reveal interesting patterns regarding how five different resource groups worked
on the same process, and identify areas that require further investigation. While
we do not aim at a thorough case study on these municipalities, we demonstrate
how the proposed notion of work profiles and the approach to identifying and
analyzing them can contribute to answering questions related to group-oriented
workforce analytics, through utilizing event logs.

6 Discussion, Implications, and Conclusion

Our study is inspired by research on analyzing resource group characteristics
and on mining individual resource behavior. The results of demonstrating the
proposed approach show that it can be applied successfully and provides inter-
esting insights with regard to workforce analytics. Compared to prior work, we
provide an approach that is based on theory and a subsequent conceptualization
on the group level. It allows the use of a minimum of information from event
logs to enable relevant workforce analysis on the group level and describes how
visual analytics can be used to support the analysis.

Our research has several theoretical implications. First, we contribute to
the discussion of connecting human resource management to the domain of
BPM [29]. We introduce the interactionist theory to the domain of analyzing
groups in a BPM context and demonstrate how it is relevant for workforce ana-
lytics for group performance and organization. We show how performance indi-
cators can be connected with interactionist-related parameters, using process
data to extract knowledge about how interaction leads to performance. Second,
our research provides insights on workforce analytics in the context of business
processes by conceptualizing the notion of work profiles of resource groups. As
such, we provide a better understanding of how such an organizational capabil-
ity can be fostered to enable high performance. The conceptualization of work
profiles allows the characterization and comparison among different groupings
of employees over time. Such information is important to continually evaluate
existing organizational structures which might not reflect optimal interaction
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between employees and have to be adapted. Hence, measuring and managing
resource groups is an important organizational capability as organizations con-
tinuously have to decide how to group employees to adapt to changing require-
ments. Third, we provide an analytical approach using actual process execution
data that can be used to determine the performance of groups over time and
identify possible root causes related to the internal group interaction for the
performance observed. Fourth, we show how the analytical results on the group
level can be visualized.

From a practical perspective, process managers and analysts can benefit from
the research outcomes which enable them to use event log data to objectively
evaluate work behavior of their resource groups. The analysis can pinpoint the
areas of interest across different periods, different levels of resources, and different
process dimensions. The use of visualizations facilitates the interpretation of
analysis results in daily operations.

As with any research, our work is subject to limitations. First, the dataset
used in the evaluation only records end timestamps. Richer insights can be
derived if both start and end timestamps are recorded. Second, the proposed
indicators are based on standard event log information. While this allows for
broad applicability, other attributes, e.g., capturing the collaboration aspect
of human resource groups, can be defined and exploited to derive additional
insights. Third, factors related to other aspects of the interactionist theory, e.g.,
psychological factors, can be taken into consideration. For this, however, data
sources beyond event logs need to be included.
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Abstract. Responding to recent and repeated calls in literature, we sought to
understand the effective use of business intelligence systems, specifically pro-
cess mining. The intersection between effective use and business intelligence is
pertinent to practice, as these systems do not automatically result in improved
organizational outcomes, rather they must first be effectively used. Through a
qualitative case study, we examined the effective use of process mining (analyti-
cal technique underpinning business intelligence), whereby inconsistency-in-use
emerged as salient. We, therefore, shifted our focus to understanding the role of
inconsistency-in-use in the effective use of process mining. We identified incon-
sistencies in: place, meaning, and content (i.e., entanglement of data and infor-
mation). These types of inconsistency were interrelated and influenced informed
action. Inconsistency in content also had implications for representational fidelity.
Given, both informed action and representational fidelity are effective use dimen-
sions, these inconsistencies need to be considered for process mining systems to
be effectively used.

1 Introduction

Organizations continue to make substantial investments in business intelligence systems
and technologies with the objective of improving decision making to yield a competitive
advantage [1]. In line with Trieu [2], we view business intelligence as an umbrella term
(encapsulating, for example, business analytics, big data, data mining, and process min-
ing) that refers to “a set of concepts and methods based on fact-based support systems
for improving decision making”. Process mining is a domain of business intelligence
[3], consisting of techniques, algorithms, visualizations and methodologies for analyz-
ing business process data, such that these processes can be improved using Business
Process Management principles. For instance, process mining enables organizations to
monitor performance indicators, discover process models, identify resource constraints
and bottlenecks, and determine the extent of regulatory performance [4]. Recently, pro-
cess mining is gaining traction with its uptake in multiple fields including: healthcare
[5], financial services [6], and insurance [7]. Despite the increasing uptake of process
mining as a form of business intelligence system, implementations of such systems do
not automatically result in improved decisions or organizational enhancements [8].
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Based on the theory of effective use, to attain the goals of a system,whether a business
intelligence system or otherwise, it must be effectively used [9]. According to this theory,
tomake informed actions, which is the prime goal of business intelligence systems, users
must be able to leverage data that provides an accurate account of the phenomenon of
interest. There are repeated and recent calls in literature [2, 10] to understand the effective
use of business intelligence systems. The importance of the intersection between these
two areas is further compounded with Gartner predicting that self-service analytics (a
capability of process mining) is a key future trend [11], which places more onus on
business users effectively using these systems.

Due to the nascent state of research,we adopted a grounded theory approach [12]with
the broad aim of understanding the effective use of business intelligence systems. We
examined process mining as the analytic technique underpinning business intelligence.
Process mining provides an evidenced-based foundation to improve an organization’s
processes by analyzing historical behavior of processes stored in event logs [4]. We
investigated the effective use of processmining at aDutch pension fund services provider.
Following grounded theory, the salient theme of inconsistency-in-use (i.e., variations in
meaning, content, and place) emerged as critical to the effective use of process mining.
We then narrowed our aim to focus on inconsistency and aimed to provide insights into
the following: What is the role of inconsistency-in-use in the effective use of process
mining?

Although, we follow a grounded theory approach, we present our research sequen-
tially. Next, we present related work followed by the case design. Then, we present our
findings into types of inconsistency. We then integrate our findings with literature to
show the role of inconsistency of use in the effective use of business intelligence.

2 Related Work

As we will unpack in this section, the notion of “use” in process mining literature
is largely absent in the current discourse. Consequently, this section is structured as
follows. First, we refer to seminal work grounded in the Information Systems domain
investigating “use” and “effective use” of systems. We then examine how such terms
have been investigated in conjunction with the umbrella concept of business intelligence
narrowing to the specific domain of process mining.

2.1 Information Systems Use

Formore than three decades, Information Systems literature has largely rebuked technol-
ogy determinist assumptions through recognizing that systems must be used for benefits
to be attained [13]. This has resulted in system use being a cornerstone of the field [14].
System use is defined as “an individual user’s employment of one or more features of a
system to perform a task” [15] and has been conceptualized to consist of three compo-
nents: the technological artifact, the user, and the task. Translating to the process mining
domain, the process mining system is the technology artifact; the user is the individual
who interacts with the process mining system; and the task centers on the informed
decision the user is seeking to attain from their interactions with the process mining
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system. Yet, while use is a precursor to benefits, it is an insufficient condition as not all
use results in benefits [9].

Information Systems literature has started shifting to understanding effective use,
defined as “using a system in such a way that helps attains the goals for using a system”
[9]. The theory of effective use [9], based on representation theory [16], conceptualizes
effective use to consist of three dimensions: 1) Transparent interaction: “The extent
to which a user is accessing the system’s representations unimpeded by its surface and
physical structures”; 2) Representational fidelity: “The extent towhich a user is obtaining
representations from the system that faithfully reflect the domain being represented”;
and 3) Informed action: “The extent to which a user acts upon the faithful representations
he or she obtains from the system to improve his or her state”.

Thus, for users to effectively use the system, they need to transparently interact with
the hardware and software to access representations, determine the faithfulness of the
representations they leverage to make informed actions based on these representations
to attain their goal for using the system. When conceptualizing effective use, Burton-
Jones and Grange [9] provided a generalizable account. As a result, there have been
calls to examine effective use in different contexts [17, 18], where emerging insights
are providing a more nuanced understanding. For instance, according to Burton-Jones
and Volkoff [17] effectively using health information systems requires users using the
system in consistent ways. Similar findings emerged in Eden and Burton-Jones [19] who
highlighted that effective use involves balancing consistency and inconsistency-in -use.
This notion of inconsistency-in-use proved critical to the effective use of the process
mining tool within our case organization. While effective use research has begun to
explore new contexts, revealing new concepts and insights for how organizations can
improve how effectively their systems are used, these studies seldom reflect back on
how their context can shed new light on the theory’s generalizable dimensions.

2.2 Business Intelligence Use

Business intelligence provides a contemporaneous context for studying system use and
in particular, effective use [47]. This is because unlike traditional systems, which were
primarily focused on repetitive data entry tasks, business intelligence system enable
users to make informed decisions based on the outputted data. According to Ain, Vaia,
DeLone and Waheed [20] business intelligence systems “supports decision processes
by i) facilitating: more aggregation, systematic integration and management of unstruc-
tured data and structured data, ii) dealing with a huge amount of data (e.g., big data),
iii) providing end users with increased processing capabilities to discover new knowl-
edge, and iv) offering analysis solutions, ad hoc queries, reporting and forecasting”. In
a systematic literature review, Ain, Vaia, DeLone and Waheed [20] identified studies
have recognized organizational factors, system factors, and user factors influence the
adoption, use, and success of business intelligence systems. However, studies investi-
gating business intelligence use did so from the perspective of extent of use [21, 22]
or beliefs and attitude towards use [23, 24] seldom were rich conceptualizations of use
provided. Notable exceptions include Grublješič and Jaklič [25] who conceptualized
that beliefs and attitudes regarding business intelligence, impact individuals intensity
of use, extent of use, and embeddedness of use; Trieu [2] who proposed effective use
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for business intelligence assets translate into impacts; and Surbakti, Wang, Indulska and
Sadiq [10] who proposed realizing business value from big data is a function of effective
use. However, these studies while highlighting the need for richer conceptualizations
of use, particularly effective use, in the context of business intelligence systems are all
conceptual in nature.

As previously highlighted, inconsistency-in-use plays a pivotal role in how effec-
tively information systems are used, which per Sect. 4 is salient in our case study data.
We therefore, further reflect on how the notion of inconsistency-in-use has been investi-
gated in business intelligence literature. According to [26] “relational database assumes
consistency in the way entities and their properties are defined”. This is further sup-
ported by [27], who highlights the difficulty in creating coherent and consistent data
structures. Inconsistency in data [28] can ultimately hamper users ability to analyze data
and result in erroneous reports. Despite, consensus over the importance of consistency
in the data source, the interrelationships between inconsistent data with other forms of
inconsistency (e.g., presentation format) has yet to be addressed nor has the implications
of inconsistency for effective use been examined.

The lack of robust investigation of how business intelligence systems are used is
compounded in the process mining domain where the behavior and perceptions of indi-
vidual users is often neglected. Processmining aims to gain insights into processes as run
by organizations, by providing analysts with methods and systems to visualize behavior
in these processes. Typically process mining literature has focused on the techniques and
algorithms to perform analyses although some have examined the adoption of process
mining at an organizational level across a variety of settings [5, 29]. Such studies provide
details on the analysis performed [5], extent of process mining implementation [30], or
techniques used across domains [31].While process mining literature references notions
of ‘use’ it generally does so from the perspective of ‘use cases’, which “represent the use
of a concrete process mining functionality with the goal to obtain an independent and
final result” [32]. This is in line with technology deterministic assumptions as use cases
focus on the functionality provided to the user (e.g., discovery, conformance checking,
and enhancement) [32]; rather than the actions of users to extract and interpret informa-
tion tomake informed decisions. It is counter-intuitive that processmining literaturewith
its emphasis on unpacking representations of the behavior of individuals through event
logs, has not yet explored how individuals adopt the process mining systems. Therefore,
in this paper, we extend process mining literature by examining how users adopt these
systems to make informed decisions.

3 Grounded Theory Case Study

To investigate effective use of process mining, we adopt a grounded theory approach
[12] following the guidelines of Fernandez [33]. Grounded theory is recommended to
explore revelatory phenomenon such as process mining and can be used to build novel
theories [34, 35]. Algemene Pensioen Groep N.V. (APG) served as our case organization
and is a large provider of services to pension funds in the Netherlands.
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3.1 Case Organization

APG recognized process mining could provide them with the potential to improve its
processes to benefit efficiency, effectiveness and quality of process outcomes. As such,
APG formulated a strategy to trial, implement and embed process mining as a business
intelligence system.

In 2016, APG commenced adopting Celonis, which is a commercial process mining
system organizations adopt to enable business users to analyze business processes to
identify inefficiencies and bottlenecks. Through performing process mining techniques
on data derived frommultiple sources, Celonis visualizes the output of the analysis to the
users in the form of graphs and models via dashboards. Initially, Celonis was rolled out
using what APG describes as a ‘launch and learn’ approach, with minimum governance.
However, overtime they changed their approach establishing governance frameworks,
providing data extraction expertise, and user guidance.

At APG, dashboard development typically involves several stakeholder groups.
Dashboard development is done by an ‘Actionable Insights’ Data Intelligence (AI-DI)
team of technical specialists, after which a ‘Self Service’ data intelligence team takes
over user training, guidance, and provides assistance. The work of both teams is man-
aged by the product owner of the ‘Actionable Insights’ team in APG. Each dashboard
has an owner who asks for the dashboard in the first place and prioritizes features. The
result is an interactive, custom-built dashboard where data is presented through charts
and process graphs to business users. The users can be categorized as viewers or analysts.
The viewers directly use the output provided by the system. Whereas, the expert analyst
users, can also extend the dashboards to better meet the requirements of all users. Both
types of business users are supportedwhen necessary by the self-service data intelligence
team where they receive additional training and advice.

Currently, several dashboards are used in APG. The following are referred to by our
interview participants:

1. A customer journey analysis dashboard, which is a centralized dashboard that pen-
sion administrative teams use to analyze their administrative processes such as clients
starting retirement, starting a new job, and other life events. The dashboard is also
used to determine the fraction of cases that follow straight-through processing (STP,
i.e., a fully automated process), and determine where STP fails. This dashboard has
been developed by the AI-DI team and is now supported via the self-service team.
This dashboard uses data prepared in a central data warehouse by AI-DI. The central
data warehouses enables cross-process analysis, such as tracking process-chains for
a customer. The dashboard also includes client satisfaction scores and number of
contacts in order to analyze the customer journey in full.

2. A series of dashboards for specific pension-related processes, which were built by
business users before the existence of the self-service team and without the help
of the AI-DI team. The data used is taken directly from the pension administration
system and therefore the dashboards have a process-specific scope.

3. An auditing dashboard to analyze the 4-eyes principle of a specific financial process.
This dashboard was built by the AI-DI team as a one-time analysis on static as-is
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data directly from the source system. Further development of the dashboard by the
business analysts is supported via the self-service team.

In all casesCelonis is used as a self-service process analytics dashboard tool, allowing
almost all employees of APG to make use of the dashboards. Furthermore, in all three
cases, the dashboards are also maintained by a group of users, allowing them to adjust
the dashboards to their changing needs. Therefore, Celonis is available company-wide,
and not just of one department or legal entity. The same holds for the AI-DI availability,
which performs projects for the whole of APG.

3.2 Data Analysis

Our objective was to understand the effective use of Celonis as a process mining system
at APG. To collect data, we conducted semi-structured interviews and analyzed relevant
archival data (e.g., presentations, trainingmaterials, and governance structures).We used
purposeful sampling [36] and selected participants from each role, who had worked with
oneormore of the dashboards (excluding the product teamowner). In total, 15 individuals
participated across 14 interviews (see Table 1), which each lasted between 30 and 45
min on average.

The interviews were conducted in English. However, participants could switch to
Dutch (native language) to explain key concepts. This was possible as two of the inter-
viewers were fluent in Dutch. All interviews were recorded. The recordings were tran-
scribed and uploaded into NVivo (v12), which was used as a data repository system,
with coding and analysis manually performed [37].

Table 1. Overview of interview participants*

Role Participant count Identifier

Actionable Insights Data Intelligence (AI-DI) member 5 P1–P5

Self-service Data Intelligence team member (SS-DI) 3 P6–P8

Dashboard owner 1 P9

Dashboard analyst (expert users) 4 P10–P13

Dashboard viewers (basic users) 2 P14–P15
*The participant count is greater than the interview count as in an interview two individuals
participated.

To analyze our data, we performed open coding [33] to enable key themes to emerge.
As such, we did not have a preconceived framework for analyzing interviews. We used
coder-corroboration to maintain reliability of the coding in which three researchers
independently coded interviews followed by corroboration sessions to identify any dif-
ferences and to attain consensuses [38]. As a result of open coding, rather than effective
use, the most salient themes pertained to ‘inconsistency of use’ emerged centering on the
data within the system and the information extracted from the system.We then on-coded
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the data comparing the quotes related to inconsistency to one another [37]. In doing so,
we identified three types of inconsistency: 1) inconsistency in meaning, 2) inconsistency
in content, and 3) inconsistency in place.

Next, we performed on-codingwith constant comparison to literature.We discovered
inconsistency in content was more complex than considered in past literature. Specifi-
cally, we identified it was important to consider inconsistency at the data layer and at
the output layer (termed inconsistency in data and inconsistency in information respec-
tively). We then progressed to theoretical coding, identifying the relationships between
the types of inconsistency, as well as potential antecedents and consequences. We con-
tinued this process until theoretical saturation was reached [12], which was when no
new themes nor relationships relating to inconsistency emerged.

4 Findings

In our case study, inconsistency related to meaning, content, and place were apparent
in the use of Celonis. We identified that inconsistency in content is comprised of the
entanglement of inconsistency in data and inconsistency in information. The types of
inconsistency observed are defined with examples provided in Table 2.

Table 2. Examples of types of inconsistency

Inconsistency Definition* Example

Data Variations in the completeness and
accuracy of the data that is loaded into
the process mining system

“We find it very difficult to get the data
we want. …There are number of
reasons for that sometimes its hard to
get extractions from the systems,
sometimes data is not available
because it is not logged, sometimes the
application managers dont know how
to generate reports for data we are
looking for. …Another problem is that
we want to have data from different
systems because we want to have a
look at the whole process in which
more than one system is used
…making sure that the definitions from
one application are [the] same in the
other.” (P12)

Information Variations in the completeness and
accuracy of output provided to the
user by the system

“If we know that if we selected one
item or two cases …then you have a
more narrow item in your process flow
and …that gives a more [specific]
overview…it’s not a whole spaghetti of
things it was only one or two items.
Which makes it easier to understand
what we were looking for” (P13)

(continued)
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Table 2. (continued)

Inconsistency Definition* Example

Meaning Variations in how individuals interpret
the content present in either the data
structure or output provided

“The definition of straight-through
processing (STP) only applies to
processes in which no manual
interference comes in. …At assets
management, they use straight
processing for processes with a high
automation degree. That’s already a
difference in definition, because …an
STP process is 100% automatic. If a
process has 10 steps, and 9 are
automatic, that isn’t STP…, it is a
process with a 90% degree of
automation.” (P10)

Place Variations in where individuals
perform their process mining analysis
(i.e., Celonis or other software)

“Celonis can provide a lot, it’s just
due to a lack of understanding of what
Celonis can be and the fact that we
constantly have to ask…can you build
this. …That’s the reason why we chose
to extract to Excel and we can do it
ourselves in the timeframe that is
working for us.” (P13)

Definitions formed through constant comparison with literature. Adapted from [26].

Fig. 1. Conceptual model of the interrelationships between the types of inconsistency-in-use and
influence on actionable insights

These types of inconsistencies had implications for the goal of using the processmin-
ing system, Celonis, which was to form actionable insights. The participants described
actionable insights as “insights actionable for the business…where the business can
translate those insights into actions” (P7). We also identified interrelationships between
the types of inconsistency. Below we describe the relationships between the types of
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inconsistency and actionable insights and the interrelationships between the types of
inconsistency (Fig. 1).

4.1 Interrelationship Between Inconsistency in Data and Inconsistency
in Information (R1)

We define inconsistency in content as variations in the completeness and accuracy of the
data/information in a process mining system. Through constant comparison, we identi-
fied the entanglement between inconsistency in data and inconsistency in information.
Inconsistency in data refers to variation of the completeness and accuracy of the data
that is loaded into a process mining system, whereas inconsistency in information refers
to the variations in the completeness and accuracy of output provided to the user by the
system. As the participants describe:

“The corporate actions audit is [based on] predefined audit criteria …The diffi-
culty for us is …we are telling somebody please build it for us [but] he doesn’t
understand or …know what we would really like to see. So he just builds something
that he thinks is the best of course. Every outcome is also checked by us. …We first
check …is it the right analysis that we intended … or is it something completely
different built that we didn’t really want.” (P13)

“Because we want to make the data as good as possible…we have to change
something so the data becomes better then we have a straight through processing
figure that’s accurate and we can all rely on it.” (P1)

4.2 Relationships Between Inconsistency in Meaning and Actionable Insights
(R2)

Based on our data and constant comparison with literature, we defined inconsistency in
meaning as variations in how individuals interpret the content present in either the data
structure or output provided by process mining system. For instance, there are multiple
ways a process can start, yet all of these starting points were collapsed under the one
field in the data structure. Yet these starting points mean different things to different
users. Therefore, users can ultimately attribute different meanings to the output and
misinterpretations can result. As one participant describes:

“And of course, you can interpret yourself what you think is the real name for a data
element. …I have already seen 4 or 5 process with the same name. …For instance
the first letter people get, startbrief (initial letter), three processes startbrief exactly
the same name, [..] startbrief 1, and there are a lot of other data elements that
sound …like startbrief, so a lot of risk for misinterpretation when people combine
those things. I even don’t think DI [data intelligence] has all the knowledge what
people made in 25 years which startbrief is the real one.” (P9)

Concerns regarding the terminology used to denote the phenomenon being repre-
sented in the dashboard was highlighted as a core impediment to actionable insights.



372 R. Eden et al.

This was evident as different departments had different definitions for the term ‘straight
through processing’ and it was feared users would act on their interpretation of STP
rather than the dashboards fundamental meaning, as a participant highlights:

User’s definitions of straight through processes will differ from AI-DI’s definition
of straight through processes and then we implement AI-DI’s definition of straight
through process and you will look at our dashboards you will think this is straight
through processes but it doesn’t necessary mean its your definition of straight
through processes. More like the definitions and the terminologies and the way we
implement them in the dashboards that could make the users misinterpret. (P8)

4.3 Interrelationships Between Inconsistency in Meaning and Inconsistency
in Content (R3)

Inconsistency in meaning also has important implications on inconsistency in content.
Participants regularly highlighted the difficulties of inconsistent terminology between
stakeholder groups (i.e., inconsistency in meaning). For instance, auditors were initially
challenged in communicating to the data intelligence team. It was difficult for auditors
to communicate what data they required and what analyses needed to be performed.
This resulted in inconsistent data being loaded into the system, which could result in
data inaccuracy in some cases.

Inconsistency in meaning is further compounded when a dashboard is created for a
centralized goal rather than a team-specific goal. For instance, APG developed a dash-
board tomeasure ‘straight throughprocessing’ (STP) to be used acrossmanydepartments
to improve their processes. However, different teams have different perspectives of how
STP should be measured. If a team views the term differently, they could ultimately
reach different, and potentially, inappropriate conclusions. Resolving inconsistent ter-
minology is imperative when you have data coming from multiple systems and multiple
stakeholder groups, as an auditor states:

“…We need data also from an external provider, their definition of its corporate
action …they use as an external provider of data are different from definitions we
use internally. So, if you want to connect data that’s one thing, we have to get rid
of because we have to use same definitions.” (P12).

Recognizing the implications that inconsistency in meaning can have on data, the
data intelligence (AI-DI) teamhave been actively establishing consistent data definitions.
As one participant notes:

“But, in the DI department we are already working since I think two or three years
trying to get the same names for the same data elements.” (P9)

4.4 Relationships Between Inconsistency in Content and Actionable Insights
(R4)

It was often described that it is not possible to have data in the system that is entirely
complete and correct, with challenges associated with extracting data and required data
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not always being logged. Responding to this challenge, the data intelligence team tries to
provide insights in the accuracy and completeness of the data, terming this golden data.
This inconsistency makes it difficult for people to trust the data and the output. This can
make business users reluctant to use the system, potentially impeding decision making.
To resolve the inconsistency in the data, the DI team has been working on establishing
a data core as a single source of truth. As one participant notes:

“But [the AI-DI] team says, “hey its golden data”, but golden data doesn’t nec-
essarily mean its correct. It means, there is data and you know what’s wrong with
the data. Where do you draw the line, when is the data correct enough, who says
it correct enough, who tests the data. That’s why I say the dashboard is great,
but people are still like hmmm can I honestly trust what I am seeing. That’s what
people are still wondering about.” (P8)

Asides from inconsistency in meaning and inconsistency in data, inconsistency in
information can also result from different visualization approaches being adopted.While
these differing visualization approaches may result in interesting actionable insights. If
the users filter down to such a small level, the misinterpretations can result or the insight
may not be feasible to address. As one participant notes,

“It’s one of the most difficult things to compare processes because what I saw
once was people filter so much on that particular group, the group becomes so
small that you can ask if they are still representative enough for the whole group.
…Sometimes you see activities which appear less frequently and are focusing on
exceptions or are you focusing on the major things that go wrong. And if you try
to compare and you can filter everything you want of course you get a difference
is it still making sense to invest in this difference.” (P5).

4.5 Interrelationships Between Inconsistency in Content and Inconsistency
in Place (R5)

When challenges arise with respect to inconsistency in data, workarounds occur, which
ultimately results in people using different systems to perform their analysis (i.e., incon-
sistency in place). These workarounds can result in actionable insights being formulated
but can result in inefficiencies in deriving the insights, as one participant notes:

“We had 46,000 payments and we should change in some cases, …you need to
use the bank account number and in some cases you need to use the bank account
name. And those should be switched. …We thought it was already done in Celonis
but we find out that it wasn’t already done. So we thought ok let’s extract in to
excel and we will do it by ourselves, but filtering in excel with 46000 payments it
just didn’t work out. And in the end we thought we might just check if [AI-DI] can
do this in Celonis. And he could do it in just five minutes. But we just maybe three
days we spent over Excel changing all these things” (P13)
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4.6 Relationship Between Inconsistency in Place and Actionable Insights (R6)

Inconsistency in place does not solely originate from inconsistency in data, but it was
also a direct effect of participants having previous expertise in other systems, in some
cases Excel. In other cases, they have extracted their own data sources to be used in the
analysis and created bespoke analysis for themselves and their teams. This creates the
need for data governance practices to be put into place as it can lead to inappropriate
actionable insights.

“Someone [is] making new stuff on the views …on the base tables. …It is a person
who can do very good SQL. …But then you have two, you have this one, and the
Celonis one. …In this new world, we want to have data governance. …We are eager
to have a metadata agreement.… If someone is going to make his own connections,
joins, calculations, then you don’t know whether it is the same calculation as we
do in Celonis, which represents the definition of how we want to use it in this
company. …We are fading away from the goal.” (P6)

In other cases, they extracted their own data sources to be used in the analysis and
created bespoke analysis for themselves and their teams. This creates the need for data
governance practices as it can lead to inappropriate actionable insights.

The second risk I see is that they are used to their own dashboards, they worked on
it for months to make their own dashboards. …but when they are combining them
in their own dashboards, we are not sure they will get all the data. I’m not sure
that managers’ [personal dashboards] has all the data in it. In this new world, we
want to have data governance about our stuff. (P6)

4.7 Summary of Findings

In summary, inconsistency was present in terms of meaning, data, information, and
place. However, this inconsistency was not always detrimental. For instance, inconsis-
tent presentation of information allowed for more specific conclusions to be drawn,
inconsistency in place allowed for limitations associated with the data structure to be
overcome. Moreover, inconsistency in data is an inevitability. Some actions have been
put into place by the organization to minimize the detrimental effects that result from
inconsistency. Including iterative development of dashboards to optimize data correct-
ness; visualization training to minimize poor data visualization practices; establishment
of a self-service team to quickly respond to issues minimizing the need for workarounds;
and active collaboration to form an agreed upon data dictionary.

5 Discussion

In examining the effective use of process mining, we identified the importance of the
interdependent nature of inconsistency inmeaning, content, and place in attaining action-
able insights. This notion of actionable insights mirrors the definition of informed action
a key dimension of effective use. As such, our findings highlight that inconsistency
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in meaning, content, and place all influence the “extent to which a user acts upon the
faithful representations he or she obtains from the system to improve his or her state”
[9]. However, while our findings largely pointed towards the challenge of inconsistency,
inconsistency was not always detrimental and positive outcomes can still be obtained.
Our findings extend current literature pertaining to inconsistency-in-use and business
intelligence. We discuss these contributions in turn. We then reflect on how our findings
contribute to the theory of effective use.

5.1 Importance of Inconsistency-In-Use for Process Mining

The importance of inconsistency-in-use has been identified in previous literature. For
example, Burton-Jones and Volkoff [17] found to effectively use health systems, users
need to attribute consistent meanings to form fields and input data in a consistent man-
ner. Eden, Akhlaghpour, Spee, Staib, Sullivan and Burton-Jones [26] also identified the
importance of inconsistency of use, however unlike Burton-Jones and Volkoff [17], they
found effective use requires balancing consistency and inconsistency of use, where per-
fect consistency was deemed improbable and undesirable. Specifically, Eden, Akhlagh-
pour, Spee, Staib, Sullivan and Burton-Jones [26] identified five types of inconsistency
(process, form, place, meaning, and content) of which the latter three were identified in
this research. Our research also identified that in the context of process mining a more
nuanced understanding of inconsistency in content is required by decomposing it into
inconsistency of data and inconsistency of information.

Separation of data and information is well recognized in information systems and
business intelligence literature. Data is often considered as the raw, structured collec-
tion of facts, whereas information is the “outcome of extraction and processes activities
carried out on data, and it appears meaningful for those who receive it in a specific
domain” [39]. Information can also be considered data in context [40]. While recog-
nizing the distinction between data and information, the business intelligence domain
does not specifically examine inconsistency in the two, rather it is often implied. For
instance, variation in context can result in meaningless output and result in misinterpre-
tation, even in the presence of highly accurate data [41]. The risk of misinterpretation is
a key barrier to the adoption and continued use of business intelligence systems [42, 43].
Our findings reinforce the notion of inconsistency present in business intelligence liter-
ature, but provides a more nuance view including: 1) defining the specific elements of
inconsistency-in-use: data, information, content, and place; 2) demonstrating the inter-
related nature of these types of inconsistency and 3) identifying relationships between
inconsistency-in-use and effective use.

In the processmining domain,Baier,Mendling andWeske [44] highlight themeaning
of different events in a process may have different interpretations at different points in
time. While the use of process mining has been advocated [45], how users use process
mining systems is seldomexplored,withmost studies performed froma technical process
mining expert’s perspective [46]. Our findings highlight the importance of not taking a
technology deterministic perspective when examining process mining systems. This is
reflected by a participantwho stated: “if you cannot translate what you see into actionable
insights then it became something that is gimmick”. As such, rich and robust theorizing
from the broader information systems literature could shine light on the relationship
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between process mining systems and its resultant impacts. We call for researchers to
further explore the intersection of information systems and process mining.

5.2 Extending the Theory of Effective Use

As previously discussed, we set out with the objective of understanding the effective
use of business intelligence through the examination of process mining. In doing so, the
notion of inconsistency arose. Yet, how does this notion of inconsistency contribute to
the ‘theory of effective use’? In Sect. 2 wementioned effective usewith its foundations in
representation theory consist of three dimensions: 1) transparent interaction, 2) represen-
tational fidelity: and 3) informed action: As described below, we believe inconsistency
in content and meaning has implications for representational fidelity.

Information systems are designed to represent real-world phenomenon. In this case,
the process mining system should provide an accurate reflection of the pension fund
processes. We observed that in some instances data was required to be extracted from
multiple systems and thus each system only provided a partial account of the overarching
phenomenon of interest. Integrating the data sources into a centralized data warehouse
(APG referred to this as the data core) to be analyzed in an analytical process min-
ing system, such as Celonis, provides a more complete representation. However, while
necessary, this can result in inconsistencies in content and meaning. As our interview
participants highlighted, data from different sources can have different underlyingmean-
ings. Moreover, the data used in the analysis is ‘golden data’, which means that the data
is usable, its limitations are known, but it is not a completely accurate representation of
the phenomenon of interest.

Adding complexity to attaining representational fidelity is the data sources used in
the analysis are dependent on what the data intelligence team perceives the dashboard
owner/users require. This influences the extent the representations contained in the anal-
ysis are meaningful. This is due to each team possessing knowledge and skills that are at
opposing ends of a spectrum. In the case of APG, the data intelligence team has technical
expertise, and the dashboard owner/user has requisite domain knowledge. These differ-
ences in knowledge can be expressed as tensions. As Pike, Bateman and Butler [47]
notes “tensions represent poles of perspective that frequently work against one another,
creating oppositional pulls, or tensions, that vary in degree”. Tensions do not have to
result in direct conflicts, rather they can be considered as the “push-pull between differ-
ent poles” [48]. In this case, the data intelligence team and dashboard owners/users need
to collaborate regularly in these pull-push activities to derive a shared understanding
[49].

Overall, our findings demonstrate the implications that inconsistency in content and
meaning have on representational fidelity, in terms of the completeness, accuracy, and
meaningfulness of the representations in the system. Our findings also demonstrated that
inconsistency in content and meaning (i.e., representational fidelity) can result in misin-
terpretations hindering actionable insights (i.e., informed action), and therefore provides
initial support for the relationship between representational fidelity and informed action
proposed by the theory of effective use.
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6 Conclusion

In conclusion, this study sought to investigate the effective use of processmining systems.
Through conducting a qualitative case study, we identified that inconsistency-in-use (i.e.,
inconsistency in content, data, information, meaning, and place) plays an important role
in the effective use of processmining systems. In analyzing these types of inconsistencies
we reveal important implications for the theory of effective use. This research contributes
both to the information systems and process mining domains and is one of the first
attempts to bridge these two areas together.

Our study is limited as we only investigate a single case in the early stages of
process mining adoption. Further, the case design was scoped to the process mining
tool, Celonis. As such, broad canvasing statements related to generalizability cannot
be made. Nevertheless, the case study provides indicators of how organizations may
adopt process mining in effective ways. We encourage others to perform case studies of
the adoption of other process mining tools within different settings. In addition, future
research should also seek to compare how the effective use of process mining differs to
other types of business intelligence systems.We also encourage future research efforts to
employ different methodological approaches, for instance experimental and longitudinal
survey designs could provide insights into causality of the relationships.

With process mining and other business intelligence systems shifting to self-service
modes, the potential for ineffective use and misinterpretations is heightened. Failure to
understand this intersection could therefore have detrimental effects on practice hamper-
ing the proliferation of processmining at the coalface. Future examination of the effective
use of process mining system will, therefore, prove highly desirable to practice.
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Abstract. Business processes are bound to evolve as a form of adaption
to changes, and such changes are referred as process drifts. Current pro-
cess drift detection methods perform well on clean event log data, but the
performance can be tremendously affected by noise. A good process drift
detection method should be accurate, fast, and robust to noise. In this
paper, we propose an offline process drift detection method which identi-
fies each newly observed behaviour as a candidate drift point and checks
if the new behaviour can signify significant changes to the original pro-
cess behaviours. In addition, a bidirectional search method is proposed
to accurately locate both the adding and removing of behaviours. The
proposed method can accurately detect drift points from event logs and
is robust to noise. Both artificial and real-life event logs are used to eval-
uate our method. Results show that our method can consistently report
accurate process drift time while maintaining a reasonably fast detection
speed.

Keywords: Process science · Data science · Process mining · Concept
drift detection

1 Introduction

Business processes are continuously evolving in order to adapt to changes.
Changes are often responses to different factors which can be planned or unex-
pected. For example, a planned change can be caused by the introduction of a
new regulation, and an unexpected change can be caused by an emergency (e.g.
the COVID-19 outbreak). In the field of process science, such changes are called
process drifts.

It has been argued that assuming a process model to be stable is unrealis-
tic [1]. It is important for us to detect process drifts as accurately as possible. On
the one hand, unexpected changes can cause losses to organizations. Detecting
such drifts can help us make appropriate responses to changes. On the other
hand, most current algorithms to discover process models assume the process to
be in a steady-state and ignore process drifts [3]. Detecting and understanding
process drifts can help us to understand the evolving nature of processes.
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Statistically, a process drift point is a time point when there is a sig-
nificant difference among the process behaviours before and after the drift
point [5,11,22]. Various process drift detection methods have been proposed
in the last decade [1,4–14,16–19,22]. However, many of these methods assume
the input event log data to be clean, and their abilities to handle noise can vary.
In [3], noise is defined as “the event log contains rare and infrequent behaviours
not representative the typical behaviour of the process”. Such behaviours are
infrequent and cannot cause a significant change to the process behaviours. For
example, if an activity is skipped only once in one process execution record, it is
more likely to be an infrequent behaviour instead of a process change. However,
noise is known to have big impacts on process drift detection accuracy.

In this paper, we consider a process drift as either the adding or removing
of behaviours which can signify significant changes to the behaviours of the
original process. We focus on offline process drift detection from the control-flow
perspective. We propose an event-stream based process drift detection method
which is accurate, robust to noise and reasonably fast. When a new behaviour
is observed in the event log, we treat it as a candidate drift point and verify if
it can signify significant changes to the current process through statistical tests.
Both artificial and real-life event logs are used to evaluate the method.

The rest of this paper is structured as follows: Sect. 2 is a literature review
of related work. Section 3 introduces formal definitions of some terms. Section 4
introduces the proposed method. The evaluation results are presented in Sect. 5
and Sect. 6. We finally conclude the paper in Sect. 7.

2 Background

2.1 Detecting Process Drifts by Statistical Tests

A general approach to detect process drifts is to use a sliding window to obtain
two consecutive samples in the event log, naming as reference and detection
windows. The two windows are then moving through the event log trace by
trace or event by event. Then samples within each window are transformed
into a set of features, and if statistical hypothesis tests show that there is a
significant difference before/after a certain time point among these features, a
drift is reported.

Early approaches such as [1,19] extract features to represent each sample of
the event log. Then statistical hypothesis tests are applied to detect process drifts
among feature vectors. Based on [1,7] applies adaptive window approaches to
automatically adjust window sizes. Those methods require users to select features
to be used, which require background knowledge about the drifts in input event
logs.

The ProDrift run-based method [5,22] transforms each trace into a partial-
order run which is a graph representation of a trace eliminating the order between
parallel events. Then chi-square tests are applied to detect if there are any signif-
icant changes among the distribution of partial-order runs between two consec-
utive windows. The method is fully automated with the capability to categorize
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certain drift types. In addition, [5,22] also aim at eliminating the impact of noise
by performing a number of consecutive tests. However, since each trace is only
counted once in each window, the samples used for statistical tests are rela-
tively small, returning unreliable results especially when input logs have high
variability (e.g. when the event log contains noise). The ProDrift event-based
method [11] improves [22] by treating event logs as event streams and using the
count of alpha+ relations1 as features for statistical tests. On the one hand, pro-
cess drifts during the execution of traces can be detected. On the other hand,
since the number of alpha+ relations is much larger than traces in each window,
the statistical tests in [11] are more reliable. In addition, the ProDrift event-
based method [11] can also filter out infrequent behaviours and can work both
in online and offline settings. It is also the basis of the new approach to char-
acterize process drifts in [15]. The ProDrift event-based method [11] requires
parameters such as noise filtering thresholds from users.

When using statistical tests to detect process drifts in event logs, the dis-
tances between the actual process drift points and the reported drift points are
relatively longer, resulting in lower detection accuracy.

2.2 Other Process Drift Detection Methods

To improve detection accuracy, the TPCDD method [4] and the LCDD
method [14] are proposed. Both methods can achieve high accuracy. The TPCDD
method [4] firstly transforms the whole event log into a relation matrix, and
whenever a new behaviour is detected or an existing behaviour is removed, if it
lasts for a certain period, a new drift point is reported. The LCDD method [14]
firstly finds a time window where the sub-log within the window is locally com-
plete. Then whenever a new behaviour is observed or an existing behaviour is
removed, a drift point is reported. Although these two methods can return highly
accurate results on artificial logs, they are very sensitive to noise.

Other methods are also proposed to detect process drift points. [18] detects
process drifts based on the change of distances between each pair of activities.
Loops and parallel behaviours are ignored, resulting in possible failures. [17]
abstracts initial traces into a polyhedron and checks if subsequent traces are
within the polyhedron, a drift is detected if a trace is outside the polyhedron. [17]
is the first concept drift detection method which can be used in online settings,
but it suffers from long execution time.

Instead of focusing on detection accuracy, some methods focus more on
understanding how the process model evolved over time. [6] mines process models
for different time periods and compares graph matrices of different models. [8,13]
mine models for the first period of time and perform conformance check on each
new trace. A drift point is reported if there is a significant change on the confor-
mance checking results. [16] applies Declare miners to represent the process, and

1 Alpha+ relations define a set of relations between activities which are conflict, con-
currency, causality, length-one loop and length-two loop. For their formal definitions,
please refer to [20].
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a comprehensive visualisation is provided to understand process drifts. These
methods provide comprehensive analyses of process drifts, but usually suffer
from relatively longer execution time and lower accuracy.

Some methods also focus on process drifts from other perspectives other than
the control-flow perspective. For example, [9] detects process drifts from the data
value perspective (e.g. the change of activity attribute values), [10] applies the
earth mover’s distance to detect time and control-flow drifts together (e.g. the
change of activity execution time).

In summary, existing methods which are highly accurate are sensitive to
noise in event logs. Methods which are capable of handling noise could improve
their accuracy. A new method which requires fewer user-inputs and can produce
highly accurate results while properly handling noise is needed in this field.

3 Preliminaries

Definition 1. (Process drift point [5,11,22]). A process drift point is a time
point when there is a statistically significant difference among the observed pro-
cess behaviours before and after the time point.

Definition 2. (Event log, Trace, Activity, Event). An event log L is a
multiset of traces where each trace ti is a sequence of events in a set E, i.e. E =
{e1, e2, ......, en}, and each event corresponds to a single activity A.

Definition 3. (Directly-follows relation). Let L be an event log of a process
model N, let A, B be two activities in L. Then there is a directly-follows relation
from A to B, denoted as A >L B, if there exists a trace t ∈ L where t =<
......, A,B, ...... >.

4 Concept Drift Detection

Figure 1 shows an overview of our proposed method. Our method firstly converts
the input event log into a stream of events where events are indexed and ordered
by their timestamps. Then a reference window is built and continuously moves
through the event stream. A sub-log is built including all events within the refer-
ence window. Each time the reference window moves, the sub-log is updated and
the event immediately follows the reference window is peeked. If the peeked event
brings a new behaviour which cannot be observed in the sub-log corresponding
to the reference window, we treat it as a candidate drift point and check if the
new behaviour can signify a significant difference to the original behaviours of
the process through statistical tests. If so, a drift point is reported.

4.1 Selection of Features

The first step of designing a process drift detection method is to find a feature
which can represent the behaviours of the process, and changes of such fea-
tures should reflect changes in process control-flow structures. As the proposed



Robust and Accurate Process Drift Detection 387

Stream 
of events New behaviours observed

i i + WindowSize i i + 2* WindowSize - 1

Reference window
New Event

Reference window Detec�on window

Bidirec�onal search

Significant difference found 
caused by the new behaviour

Report dri� point

Consecu�ve sta�s�cal tests

< A, B, C >
< A, C >

D C D

Fig. 1. Overview of the proposed method

method relies on a single event to determine possible process drifts, we decide
to use directly-follows relations as features to represent process behaviours for
two reasons: 1) Most current process discovery algorithms are based on directly-
follows relations [3], changes in process control-flow structures are highly likely
to result in changes of directly-follows relations. 2) By peeking one event after
the reference window, a directly-follows relation could be obtained. It is worth
mentioning that alpha+ relations used by [11] are not suitable for our method
as an alpha+ relation cannot be determined by a single peeked event.

4.2 Validation of Candidate Drift Points

Observing a new directly-follows relation means a possible process drift is
detected. However, it could also be noise inside the event log. Whenever a new
directly-follows relation is observed, we treat it as a candidate drift point. Sta-
tistically, a process drift point should be treated as a time point t, and there is
a significant difference between process behaviours before and after t [5,11,22].
Although noise can bring new observed directly-follows relations in event logs,
significant changes to the process behaviours will not be signified.

To confirm if a candidate drift point is an actual drift point, statistical tests
are applied to check if a significant difference is caused. Firstly, a detection win-
dow is built after the reference window, and a contingency matrix is built to
report the frequencies of each type of directly-follows relations in both the ref-
erence and detection windows. Then the G-test of independence2 [23] is applied
and a P-value is returned. If the P-value is less than a certain threshold, which
is typically 0.05, we conclude there is a significant difference between process
behaviours before and after the candidate drift point.

If the G-test of independence shows there is a significant difference between
process behaviours before and after a candidate drift point, it is likely to be an
actual drift point. However, if the candidate drift point is close to an actual drift
point, the low P-value could be caused by other directly-follows relations instead
of the new observed one.

To check if the new observed directly-follows relation contributes to the low
P-value, the adjusted standardized residual (ASR) of the new directly-follows

2 The G-test of independence is a non-parametric statistical hypothesis test.
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relation in the detection window is calculated. If ASR > 1.96, we conclude the
number of the new observed directly-follows relation is significantly larger and
is an influential point to the test score. For details about this, we refer to [21].

Similar to previous studies such as [5,11,22], a number of consecutive sta-
tistical tests are performed before a conclusion can be made to avoid sporadic
stochastic oscillations. For details, please refer to Algorithm 1, lines 9–20.

4.3 Bidirectional Searches

A change in process models can cause both the adding and removing of directly-
follows relations. Detecting an added directly-follows relation can be simply done
by checking if the newly observed directly-follows relation exists in the reference
window. However, the removing of directly-follows relations cannot be detected
by peeking one event immediately after the reference window. A possible solution
is to build a detection window immediately after the reference window and checks
if any directly-follows relations are removed. Such a method can affect detection
accuracy. Figure 2 shows an example process drift. Suppose model 1 is shifted
into model 2 at time t. E >L F and C >L D will no longer be observed after
t. However, suppose the last appearance of E >L F is at t1 which is earlier
than t, t1 could be treated as the drift point by mistake, reducing the detection
accuracy.

To solve the problem, we perform both forward and backward searches on
the event stream to detect process drifts. When performing backward searches,
the removing of directly-follows relations is shown as the adding of directly-
follows relations. There are two advantages of performing bidirectional searches:
1) When a process drift causes both adding and removing of directly-follows
relations, if the drift is missed by one search, there is one more chance for it to
be detected in another search. 2) the accuracy of detection can be improved.

It is worth mentioning that performing bidirectional searches will not double
the amount of time required to detect process drifts. Each time a G-test is per-
formed, its resulting P-value will be stored and if another G-test is required at
the same position, the P-value can be retrieved within constant time. Further-
more, each time when a G-test is performed, the ASR of each directly-follows
relation can also be computed and stored. As a result, no duplicate statistical
tests will be performed. We show that our algorithm is efficient to detect process
drifts in Sect. 5 and Sect. 6.

Fig. 2. An example process drift from model 1 (left) to model 2 (right)
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4.4 The Framework of the Proposed Method

Finally, we present the forward detection method in Algorithm 1. Since the same
approach applies to the backward detection but in a reverse direction, we do not
present it separately. Lines 1–8 build a reference window, peek the next event
and see if a new directly-follows relation is found (Sect. 4.1). Whenever a new
directly-follows relation is observed, the new event is treated as a candidate
process drift point. Lines 9–25 perform statistical tests to confirm if a candidate
process drift point is an actual drift point (Sect. 4.2).

When a Noise Is Close to the Real Process Drift Point. A challenge to
the proposed method is when a new directly-follows relation is observed which
is noise but is close to the actual process drift point. Although the problem can
be solved by calculating ASRs, it fails to solve the case when the noisy directly-
follows relation is the same as one of the added directly-follows relations after the
actual drift point. For example, suppose directly-follows relations A >L B and
C >L D are added to the process after a process drift at time t, if a noisy directly-
follows relation A >L B is observed at time t0 which is earlier than t, t0 could
be treated as a drift point by mistake. To overcome this issue, two measures are
taken: 1) When performing a number of consecutive tests, we not only move the
windows forward but also move the windows backward (Algorithm1, lines 9–20).
2) By moving the window backward, the noisy A >L B could be differentiated.
However, since it is close to the real process drift point, having A >L B in the
reference window can avoid A >L B from being observed as a new behaviour
when arriving at the real drift point. As a result, if a new observed directly-
follows relation fails statistical tests, we delete it from the reference window
(Algorithm 1, line 28).

5 Evaluation on Synthetic Data

The proposed method is implemented as a stand-alone Java application. All the
code, data and results are publicly-available3.

5.1 Evaluation Design

We firstly collect the 72 artificial event logs from [22] which are generated from
an artificial process model containing 1 start event, 3 end events, 8 gateways
and 15 activities. [22] systemically alters the base model by 12 simple patterns
shown in Table 1. Each simple change pattern can be categorized as Insertion (I),
Resequentialization (R) and Optionalization (O). Then the base model is also
altered according to 6 composite change patterns (RIO, ROI, IOR, IRO, OIR,
ORI). For each change pattern, 4 logs with 2500, 5000, 7500, 10000 traces are

3 https://github.com/bearlu1996/ProcessDrifts.

https://github.com/bearlu1996/ProcessDrifts
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Algorithm 1: Forward Detection
Input: eventStream, windowSize, numOfConsecutiveTests

1 refStartPosition ← 0
// The index of the first event in the reference window

2 refSubLog ← getSubLog(eventStream, windowSize, refStartPosition)
3 refDfRelations ← getDfRelations(refSubLog)

// The directly-follows relations of the sub-log

4 while refStartPosition + 2 · windowSize + numOfConsecutiveTests <
eventStreamSize do

5 e ← getNewEvent()
// Peek the first event immediately after the reference window

6 >e← getNewDfRelation(e, refSubLog)
// Get the new directly-follows relation brought by e

7 numOfSatisfiedTests ← 0
8 if >e �= null AND >e /∈ refDfRelations then

// A candidate drift point is found

9 for i ← 0 to 2 · numOfConsecutiveTests do
10 refTestSubLog ← Sub-log for window starting with event

refStartPosition - numOfConsecutiveTests + i
11 decTestSubLog ← Sub-log for window starting with event

refStartPosition - numOfConsecutiveTests + windowSize + i
12 Compute Contigency matrix based on the frequency of

directly-follows relations in refTestSubLog and decTestSubLog
13 Perform G-test on the matrix and get pValue
14 if pValue is smaller than the threshold then
15 Compute ASR for >e

16 if ASR is significant then
17 numOfSatisfiedTests ++
18 end

19 end

20 end

21 end
22 if numOfSatisfiedTests = 2 · numOfConsecutiveTests then
23 Report drift point e
24 RefStartPosition ← index of e
25 Update refSubLog and refDfRelations

// Move the beginning of the reference window to the new

detected change point

26 else
27 if >e �= null AND >e /∈ refSubLog then
28 Remove >e from refDfRelations
29 end
30 RefStartPosition ++
31 Update refSubLog and refDfRelations

// Move the reference window by one event

32 end

33 end
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generated with a sudden process drift after every 10% of traces4. The synthetic
data set has also been used to evaluate drift detection algorithms in [5,14].

Since branching frequency changes cannot be reflected on changes of directly-
follows relations, it cannot be detected by our proposed method. We exclude its
corresponding four event logs from our evaluation. Then for each event log, we
insert noise by randomly adding and removing 10%, 20% and 30% of events.
To avoid biases caused by randomly generated noise, we generate 10 logs for
each log at each noise level and take the average results in the following parts.
In total, we evaluate our algorithm on 4148 synthetic event logs5 including logs
without noise. It has to be noted that inserting noise will not change the trace
indexes of process drifts6.

In this section, when two drift points are reported by searches from different
directions, and the distance between them is smaller than the window size, we
only take the point with a smaller index.

Finally, since the drifts in the artificial event logs are inter-trace drifts (i.e.
drifts occur between complete trace executions), we stream the events in the
order from the first event in the first trace to the last event in the last trace7 in
both our method and the baseline so that these drifts can also be detected by
event-stream based algorithms. In this section, trace ids are used to represent
the location of all process drifts8.

Table 1. Simple control-flow change patterns.

Evaluation Metrics. Standard f-score metric for evaluating process drifts
detection approaches is used in our evaluation [4,14] where precision =
TP/(TP + FP ), recall = TP/(TP + FN), f − score = 2 ∗ precision ∗

4 9 drift points are included in each log.
5 4148 = 68 × 6 × 10 + 68.
6 We do not add/remove traces into/from the event logs.
7 For example, event 0 refers to the 1st event in the 1st trace, event 1 refers to the

2nd event in the 1st trace ... the last event refers to the last event in the last trace.
8 When an event id is reported, we refer to the id of its corresponding trace.
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recall/(precision + recall). TP refers to true positive, FN refers to false neg-
ative, and FP refers to false positive. To describe the three variables, an error
tolerance (ET) is defined. A TP is detected if a change point t is detected where
the actual drift point is within the integer interval [t - ET, t + ET]. A FP is
detected if a change point t is detected and there is not an actual drift point
within the integer interval [t - ET, t + ET]. A FN is detected if an actual process
drift exists in the integer interval [t - ET, t + ET] where no change points are
detected.

Baseline. Among several existing methods, the ProDrift event-based method
[11] seem to be more capable in handling noise than other popular methods such
as [4,5,14,22]. As suggested by its documentation, we change the noise filtering
threshold to 0 and drift sensitivity to “very high” for noise-free logs, and we use
its default settings for all other logs (adaptive window is enabled for all tests).

5.2 Evaluation on Different Parameter Settings

In the first experiment, we evaluate the impact of window sizes and the number
of consecutive tests on the detection results. We test a total of 6 different window
sizes ranging from 500 to 3000, and we combine them with 4 different number of
consecutive tests, ranging from windowSize/5 to windowSize/2. For each of the
24 settings, we run all the synthetic event logs and calculate the average f-scores.
Figure 3 shows the average f-scores when the error tolerance is set to 10.

Overall, the impacts of the number of consecutive tests to f-scores are small.
When the number of consecutive tests is set to be WindowSize/2, the accuracy
is slightly higher and more consistent in most cases unless a small window size
is set. We decide to set the number of consecutive tests to WindowSize/2 as the
default setting for our method.

With the number of consecutive tests being empirically set, the only user
input required is the windowSize, When logs of size 2.5k are included (Fig. 3 left),
the average f-Scores drops after the window size of 1000 since the window size
becomes larger than the distance between two consecutive process drift points.
We then remove logs of size 2.5k from the calculation (Fig. 3 right), results show
that f-Scores are less sensitive to the choice of window sizes. Although a larger
sample can result in more reliable statistical test results, having a larger window
size could increase the chance of treating a new observed noisy directly-follows
relation as a real drift point when it is close to the actual drift point, and the
noisy directly-follows relation is the same as one of the added directly-follows
relations after the drift point (Sect. 4.4). It is worth mentioning that the average
f-score of the baseline is only 0.03 when ET = 10, which is much lower than our
method. We also calculate average f-scores when ET = 50 and obtain similar
observations.

It is also noticed that the choice of window sizes is related to the distance
between two consecutive process drifts. For most current window-based process
drift detection approaches, the accuracy drops when the window size is larger
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than the minimal distance between two consecutive drifts, or the window size is
too small that event logs within windows are incomplete even if adaptive window
approaches are implemented. In the remaining text, we report the results with
the number of consecutive tests = WindowSize/2. In Sect. 5.3 and 5.4, we set
the window size of our method to 1500.
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Fig. 3. Average f-scores (ET = 10) under different settings including logs of size 2.5k
(left) and excluding logs of size 2.5k (right). Each color represents a setting of number
of consecutive tests. For example, c2 means WindowSize/2 consecutive tests required
in one direction (Sect. 4.4).

5.3 Comparing with the Baseline on Different Change Patterns

In the second experiment, the accuracy of our proposed method and the baseline
is compared for each change pattern and under different noise levels.

We firstly run both methods on the 68 noise-free event logs, and the results
are presented in Fig. 4 where each f-score is averaged over 4 logs with different
sizes. When ET = 50, our method achieves an average f-score of 0.88 while the
baseline achieves 0.58. When ET = 10, our average f-score achieves 0.85, which
is close to the results when ET = 50. However, the baseline drops to 0.21, which
means our method is more accurate.
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Fig. 4. Average f-scores per change pattern for noise-free logs comparing to the baseline
with ET = 50 and 10.

Figure 5 shows the average f-scores for each change pattern under different
noise levels when ET = 50 and ET = 10 where each f-score is averaged over
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Fig. 5. Average f-scores per change pattern comparing to the baseline with ET =
50 and 10. For noise levels, + refers to inserting activities, and − refers to removing
activities.



Robust and Accurate Process Drift Detection 395

40 logs. When ET = 50, our method achieves an average f-score9 of 0.8 and
an average of 0.57 when ET = 10. Comparing to the baseline, our method
wins in almost all cases. When noise is inserted into the log, the baseline can
achieve satisfied f-scores for a few change patterns when ET = 50. However, when
ET = 10, the f-scores of the baseline drops dramatically, of which the f-scores
are 0 in most cases.

It is also interesting to find that our method performs better when removing
events from the event log. The main reason is that when inserting events into
logs, the probability that a noisy directly-follows relation is inserted before a
drift point which is the same as one of the added directly-follows relation after
the drift point is higher (Sect. 4.4). Thus, our method could report process drifts
earlier than the actual drift points, causing lower f-scores when ET is small. We
find that this is the biggest factor affecting the results.

Finally, we also calculate the average precision among both methods when
ET = 50. Our method achieves an average precision of 0.97 among all event logs
while the precision of the baseline is only 0.3. A high precision indicates that our
method will not return too many results which are not actual process drifts or
mistakenly treat infrequent behaviours as process drift points, saving the time
it takes to validate each drift point. In conclusion, our method is more accurate
and reliable than the baseline for both event logs with or without noise.

5.4 Execution Time

In the last experiment, we run both our method and the baseline on all artificial
logs and record their execution time. The platform is equipped with Intel i7-9700
(8 cores, 8 threads) and 32 GB RAM, running Windows 10 (64 bit) with a heap
space of 16 GB. Among the 4148 event logs, our method takes 0.03 ms (min
0.01 ms, max 0.13 ms) for each event on average while the baseline takes 0.1
ms (min 0.05 ms, max 0.26 ms) where average execution time for each event =
total execution time/number of events. The results indicate that our method can
detect process drifts efficiently and can be potentially applied in online settings.

6 Evaluation on Real-Life Data

We evaluate our algorithm on the BPI Challenge 2020 (BPIC2020) data-sets10.
The BPIC 2020 data-sets collect a total of five event logs of travel reimbursement
processes at Eindhoven University of Technology (TU/e) from 2017 to 2018, and
each log corresponds to one type of request types. Depending on the specific
request type, employees can usually submit three types of documents which
are travel declarations, travel permits and payment requests (Some event logs
may not contain all document types). As described in the documentation, all
documents follow a similar workflow, and the processes in 2017 and 2018 are

9 Among all the logs with noise.
10 https://icpmconference.org/2020/bpi-challenge/.

https://icpmconference.org/2020/bpi-challenge/
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different since 2017 is a pilot year. The information suggests that there is a
potential process drift for the five logs sometime between the end of 2017 and
the beginning of 2018.

We run our method on all five event logs without applying any noise filter-
ing approaches. The description of each event log, window size used for drift
detection, total execution time11 and detection results are presented in Table 2.

Table 2. Process drifts detection results on BPIC2020 data-sets.

As shown in Table 2, the time for drift points is similar among the five logs.
For each event log, the forward detection finds a drift point at the beginning of
2018 (new behaviours added), and the backward detection finds a drift at the
end of 2017 (old behaviours removed). Besides, the number of events between
the two drift points for each log is small (Although there is a relatively long time
interval between the two drift points, we believe this is caused by the Christmas
vacation). The results indicate that there is a process drift in each log sometime
between the two detected drift points (at the end of 2017 or beginning of 2018)
which involves both adding and removing of behaviours. The results conform to
the documentation of the data-sets.

To further validate the results, we cut each event log into two sub-logs using
the results of backward defections. We observe similar significant changes to all
the five logs. Before the process drift, when a document is submitted, it can be
sent to “pre-approvers” or supervisors for approval. After the process drift, the
submission will be sent to the administration for approval, and if approved by
the administration, it will be forwarded to the supervisor or budget owner for
further steps. Figure 6 shows the process drift for the Domestic Declarations log.

Finally, it is worth mentioning that our method is efficient to detect process
drifts. The time it takes to detect process drifts among all the five logs is within
10 s while three of the logs are completed within 2 s.

11 The time includes converting the event log into event stream, forward detection and
backward detection. The platform is the same as Sect. 5.4.
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Fig. 6. Simple directly-follows graphs showing the process before (2017) and after
(2018) the drift in the Domestic Declarations log.

7 Conclusion

In this paper, we propose a new process drift detection method which can accu-
rately locate the process drift points. If a valid drift can be identified, subsequent
comparative analysis can be performed for process improvement. In addition,
accurate process drift detection results can also be used as input for process
drift characterization methods such as [2,15] to generate more accurate results.

Different from previous work, our method does not rely on statistical tests to
detect process drifts but applying statistical tests to differentiate between real
process drift points and noise. The advantages of our method are as follows: First,
The detection accuracy is high among event logs with different noise levels, and
the high precision indicates the method returns very few false positives. Second,
There is no need to define a noise filtering threshold, which reduces the need for
background knowledge about the data. Lastly, The detection speed is reasonably
fast.

It has to be noted that like other current window-based process drift detection
algorithms, under different parameter settings, the detection results can still be
different among different logs with different noise levels and with different process
change types. In addition, process drifts which only contain branching frequency
changes cannot be detected by the proposed method.

Future work includes the following aspects: First, we aim to propose a way
to determine the window size automatically for different logs. Second, we plan to
extend the work to characterize different drift types and provide comprehensive
results. Finally, we aim to improve our work to suit online settings.
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Abstract. Rapidly changing business environments expose companies
to high levels of uncertainty. This uncertainty manifests itself in signifi-
cant changes that tend to occur over the lifetime of a process and possibly
affect its performance. It is important to understand the root causes of
such changes since this allows us to react to change or anticipate future
changes. Research in process mining has so far only focused on detect-
ing, locating and characterizing significant changes in aprocess and not
on finding root causes of such changes. In this paper, we aim to close
this gap. We propose a framework that adds an explainability level onto
concept drift detection in process mining and provides insights into the
cause-effect relationships behind significant changes. We define different
perspectives of a process, detect concept drifts in these perspectives and
plug the perspectives into a causality check that determines whether
these concept drifts can be causal to each other. We showcase the effec-
tiveness of our framework by evaluating it on both synthetic and real
event data. Our experiments show that our approach unravels cause-
effect relationships and provides novel insights into executed processes.

Keywords: Process mining · Concept drift · Cause-effect analysis

1 Introduction

Digitization poses great threats but also exceptional opportunities to companies.
On the one hand, new technologies, business models, and legislation expose com-
panies to high levels of uncertainty. On the other hand, the introduction of infor-
mation systems over the last decades enables companies to collect and analyze
data on their business processes. These data can be converted into an event log
and are used to discover, monitor and improve the underlying business processes.
It, thus, helps the companies to deal with the uncertainty they are exposed to.
Process mining [1] is the discipline of computer science that successfully analyzes
and improves business processes by applying concepts of process and data science
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Fig. 1. Our proposed framework transforms event data into two time series repre-
sentations that can describe various different process perspectives, e.g., the weekly
workload. A cause-effect analysis is then conducted using the information of detected
concept drifts in the selected perspectives to unravel root causes for these drifts.

to transform event logs into process models and actionable insight for the process
owner. When looking at business processes uncertainty is often caused by signif-
icant change, called concept drift, in some perspective of a business process. For
example, due to Covid-19 a lot of companies had to redesign or extend processes
by including digital alternatives to previously in-person activities. This resulted
in so-called concept drifts. As the quality and profitability of organizations highly
depend on their business processes concept drift can have a huge impact on either
of these dimensions. The restructuring of a process to meet the health safety regu-
latory standards could, e.g., lead to increased processing time and thus increased
cost. Detecting and handling concept drift has, thus, been named one of the main
challenges in process mining [2]. For the process owner the mere knowledge of past
occurrences of concept drifts is not sufficient. To derive useful insights it is help-
ful to know the underlying cause-effect relationships associated with these concept
drifts, i.e., the user can either anticipate future concept drifts or use the uncovered
relations to further improve the process.

In this paper, we introduce a generic framework that augments concept drift
detection in process mining by adding a cause-effect analysis on top of the
detected concept drifts. This cause-effect analysis extracts possible explanations
for the occurrence of a concept drift. The core idea of the framework is depicted
in Fig. 1. Before starting, we choose a perspective of the process to be analyzed
for concept drift, i.e., the control-flow, data, resource or performance perspec-
tive. This perspective is called the primary perspective. As we are interested
in the root causes for these concept drifts, we choose a secondary perspective
that could contain root causes. This secondary perspective is also analyzed for
concept drifts and these are tested for causality with the concept drifts of the
primary perspective. In the first step, we transform an event log into two time
series for both the chosen primary and secondary perspective. After detecting
concept drifts in both perspectives, we conduct a cause-effect analysis and check
which concept drifts of the secondary perspective could be causal to a concept
drift in the primary perspective. The set of explainable concept drifts forms the
output of our framework.

Our framework touches the areas of concept drift detection and cause-effect
analysis in process mining which have, thus far, primarily been studied sep-
arately. Most of the work on concept drift deals with locating concept drifts
and only considers the control-flow perspective of a process. The control-flow
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perspective describes the structuring and dependencies of activities. Recent
work, e.g., the approach of Brockhoff et al. [11] introduces additional perspec-
tives, i.e., the time perspective to concept drift detection. Ostovar et al. [27]
add an additional characterization of the drift, i.e., providing information about
underlying nature of the drift, on top of the mere detection of the drift. With
our work, we include more perspectives and add an explainability level to con-
cept drift detection. Most work on cause-effect analysis uncovers cause-effect
relationships on a process-instance-level, e.g., giving recommendations for indi-
vidual customers to maximize the outcome, as Bozorgi et al. [10] recently intro-
duced. Pourbafrani et al. [31] focus on finding cause-effect relationships on a
global-process level and use these to simulate what-if scenarios.

The remainder of this paper is structured as follows. We introduce the related
work on concept drift detection and cause-effect analysis in Sect. 2. In Sect. 3,
we provide the definitions and background used in the remainder of this paper.
We illustrate our framework for explainable concept drift detection in Sect. 4.
In Sect. 5, we provide details on our specific implementation and evaluate our
framework with synthetic data and conduct a case study on real-life event data.
Section 6 concludes the paper.

2 Related Work

A general introduction to the field of process mining is given in [1]. In this
section, we introduce related work on concept drift detection and cause-effect
analysis in process mining.

Concept drift detection (also: change point detection), has received much
attention outside of process mining. A general introduction can be found in [5].
As our use case does not provide labeled data sets for supervised algorithms,
we are only interested in unsupervised concept drift detection algorithms as the
training data for supervised algorithms is expensive to obtain and the ground
truth is hard to define in the setting of real-life event logs. Existing work on
concept drift detection in process mining focuses on the detection, localization
and characterization of changes, not the explanation of them. Detection refers
to the presence of a concept drift, localization to the time of occurrence of the
drift and characterization to the nature of the drift, e.g., whether an activity was
removed or a performance indicator significantly increased. Explanation refers
to the root causes of a drift, e.g., why an activity was removed or why a perfor-
mance indicator significantly increased. Most of the work aims to detect drifts
in the control-flow perspective. Bose et al. [8,9] and Martjushev et al. [24] built
representations of the control-flow perspective by using the (directly) follows
relations. They employ hypothesis testing to compare a window of values before
and after a potential change point for significant differences. Maaradji et al. [22]
and Ostovar et al. [27] use the α and α+-relations [25] to model the control-
flow perspective while also using hypothesis testing to determine change points.
One notable recent approach is the one of Yeshchenko et al. [38]. The authors
use DECLARE constraints to model the control-flow of a process. They define
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Table 1. Overview of the related approaches for cause-effect analysis and concept drift
detection in process mining. Cause-effect analysis can be performed either on the case- or
the process level. Approaches for concept drift detection have different scopes, i.e., they
can detect, locate, characterize or explain a concept drift. Our approach detects, locates
and explains concept drift and therefore yields insights into process level cause-effects.

Concept drift Cause-effect analysis

Detect. Locat. Char. Expl. Case level Process level

[4,8,9,11,12,21,22,24,36,39] � �
[17,27,33,38] � � �
[10,16,18,19,28,34] �
[26,29–31] �

Our approach � � � �

a range of time windows and subsequently calculate values for the declarative
constraints for each time window, forming a multivariate time series. This time
series is analyzed for concept drifts by applying the Pruned Exact Linear Time
algorithm. By visualizing the results of this clustering, the user can character-
ize the occurring concept drifts. Other authors also include other perspectives
than control-flow. Leontjeva et al. [20] and Meisenbacher et al. [23] use the
data payload of past events to include the data perspective into their represen-
tation. Analyzing the related work on concept drift in process mining reveals
two shortcomings: The little consideration of additional perspectives other than
control-flow and the absence of root cause analysis for concept drifts. With this
paper we aim to close this gap.

The area of cause-effect analysis in process mining investigates relationships
that are present in a process. One way to define different levels of analysis is
to either consider the local intra-trace, i.e., case level, or the global level of the
process. The case level deals with individual process instantiations, e.g., a cus-
tomer running through the process of applying for a loan. The global level is
the entirety of components and cases that are associated with the process. Many
approaches in cause-effect analysis focus on the case level rather than the global
level, providing recommendations and predictions for handling individual cases.
De Leoni et al. [19] and Hompes et al. [16] provide methods to extract root causes
for performance variations on a case level. In another work, Hompes et al. [18]
group events based on certain process performance characteristics and further
decompose these groups based on different characteristics. They subsequently
test for cause-effects between these characteristics by looking at their develop-
ment over time and testing for Granger-causality [15] to extract the root causes
of performance variations on a case level. This technique works well for identi-
fying causal factors for performance variations, however, other perspectives of
the process such as control-flow or resources are, so far, not considered, poten-
tially missing important cause-effects. Bozorgi et al. [10] use techniques from
causal machine learning to provide recommendations for handling an individ-
ual case that maximize the probability of a certain outcome. These approaches
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Table 2. Exemplary event log with two cases and resources handling the activities

Case-id Activity Timestamp Resource

1 Register 2021-06-15 12:30 Peter

1 Submit 2021-06-15 12:35 Sophia

2 Register 2021-06-15 13:12 Peter

1 Reply 2021-06-15 14:21 Christina

provide useful information for individual cases, however, they are not able to
detect important cause-effect relationships that happen on a global level, e.g.,
an increase in customers that leads to longer waiting times. Other authors inves-
tigate cause-effect relationships on a global level. Pourbafrani et al. [30,31] use
system dynamics as a modeling tool of the process over time and construct a
model that contains cause-effect relationships between different metrics. This
model is subsequently used to simulate the outcomes for different scenarios.
Nakatumba et al. [26] investigate the effect of resource workload on their perfor-
mance using regression analysis.

A selection of papers on concept drift and cause-effect analysis in process
mining is depicted in Table 1. Our framework is the only technique that covers
both spectra.

3 Preliminaries

In this section, we introduce the core definitions of this paper and the main
notations used for improving the readability. P(X)= {X ′|X ′⊆X} denotes the
power set of a set X. A sequence allows enumerating the elements of a set. A
sequence of length n over X is a function σ:{1, . . . , n}→X which we write as
σ = 〈σ(1), σ(2), . . . , σ(n)〉.

An event can be considered the “atomic datum” of process mining. An event
consists of values that are assigned to attributes, e.g., the executed activity, the
timestamp, a case-id and other attributes. Each line in Table 2 corresponds to an
event. Each event needs to be assigned a case-id describing the process instance
which is the case this event belongs to. All lines with the same case-id in Table 2
form a case. The collection of recorded cases forms an event log.

Definition 1 (Events, Cases and Projections). An event describes the
information associated to the execution of an activity. Let E denote the universe
of events. Let D denote the universe of attributes and let V denote the universe
of possible attribute values. Let T denote the universe of possible timestamps.

• For an attribute d ∈ D we assume the existence of a mapping to retrieve the
corresponding attribute value πE

d :E�V.
• The activity projection is a total function retrieving the activity of an event

πE
act : E → A, where A denotes the universe of activities.
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• The time projection is a total function retrieving the timestamp of an event
πE

time:E→T .
• Each event has an identifier πE

id to differentiate between events, that might
have the same values for each attribute. Therefore, e, e′∈E(πE

id(e)= πE
id(e

′) ⇒
e= e′)

Events belong to a case denoting the process instance of this event. Let C be the
universe of all cases.

• For an attribute d∈D we assume the existence of a projection function to
retrieve the corresponding attribute value πC

d : C�V.
• Each event e∈E has a case-id describing the case it belongs to. The projection

function πE
case(e) retrieves the corresponding case-id.

• We furthermore assume the existence of an event projection that maps a
case on the set of its events πC

events:C→P(E). Cases are non-overlapping, i.e.,
∀c1, c2∈C(πC

events(c1)∩πC
events(c2)
=∅ ⇒ c1=c2).

An event log L is a set of cases, thus L∈P(C).

• For an attribute d∈D we assume the existence of the projection functions
πE

d (L)={πE
d (e)|∃c∈Le∈πevents(c)} and πC

d (L)={πC
d (c)|c∈L} to retrieve the set

of values for this attribute.

4 Generic Framework for Explainable Concept Drift

In this section, we introduce the three steps of our framework. The framework is
depicted in Fig. 2. In the first step, we construct time series representations for
both chosen perspectives. In the second step, a change point detection algorithm
is performed on both perspectives. In the third step, we test pairs of change
points for causality by taking the time lag between them and check whether the
two time series can be causal given the lag. If this test is positive the detected
concept drift together with the cause-effect-relationship are as explanation given
to the user. For each of the steps, we provide the input and output specifications.

4.1 Time Series Construction

To express the development of a process perspective over time, we construct
a time series. A time series assigns values to subsequent time intervals. We,
therefore, need to map an event log onto time intervals and then assign values
to these intervals. For assigning values to a set of events that are contained in a
specific time interval we first need a way to look at these events in isolation and
thus define a selection function for events based on a time interval.

Definition 2 (Time Intervals). Based on a reference timestamp tr∈T , e.g.,
describing the beginning of an event log, we can express every timestamp as a
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Fig. 2. Our proposed framework for uncovering cause-effect relationships. In Step 1, the
event log is transformed into two time series representations of different perspectives.
In Step 2, the change points are detected and checked for causality in Step 3.

real number that describes the time, e.g., number of milliseconds or nanosec-
onds, passed since this reference timestamp. The real-valued representation of a
timestamp can be retrieved with the function rtr (t)∈R. Given two timestamps
t1, t2∈T and tR1=rtr (t1), t

R

2=rtr (t2) we define a time interval ti=[tR1 , tR2 ) where
tR1<tR2 . Let T I denote the universe of possible time intervals. |ti| = tR2−tR1 defines
the length of a time interval and start(ti) = tR1 . To extract the events of an event
log L occurring within a time interval ti∈T I we define the selection function
sel(L, ti)={e∈E|∃c∈Le∈πC

events(c) ∧ rtr (π
E
time(e))∈ti}.

This definition is used to map an event log onto time intervals. To finish con-
structing the time series we now calculate a value for each time interval. We
first need to define a function to map a collection of events onto a real-valued
number and can then extend this to multiple functions, mapping a collection of
events onto a real-valued vector and finally a time series, doing this for multiple
subsequent time intervals.

Definition 3 (Event Log to Time Series). Given a time interval ti∈T I
and an event log L, we define the function f(sel(L, ti))∈R that maps an event
log for a specific time interval onto a real-valued number. We use the notation
f(L, ti)=f(sel(L, ti)) for readability. Let f1, f2, . . . , fm be functions of the sig-
nature of f . We define the function g(L, ti) = (f1(L, ti), f2(L, ti), . . . , fm(L, ti))
with g(L, ti)∈R

m to construct a real-valued vector for a specific time inter-
val of an event log. Let TI∈T I∗ define a mutually exclusive sequence of time
intervals of equal lengths, i.e., ∀tii, tij∈TI(|tii|=|tij | ∧ i
=j⇒tii∩tij=∅ ∧ i<j ⇒
start(tii)<start(tij)). With TI=〈ti1, . . . , tin〉 we define the time series construc-
tion function hg,TI,L=(g(L, ti1)ᵀ, . . . , g(L, tin)ᵀ) with hg,TI,L∈R

m×n to retrieve
a real-valued matrix, that represents a multivariate time series of an event log.

For each perspective there are many ways to represent it as a real-valued
number. Take the control-flow as an example. We can count the number of dis-
tinct activities for subsequent time intervals. If the number of activities suddenly



A Framework for Explainable Concept Drift Detection in Process Mining 407

Table 3. Possible mapping functions to construct a real-valued representation of dif-
ferent perspectives of a business process.

Control-flow Performance Data Resources

Directly-follows Service times [26] Aggregation of Workload [26]

frequencies [3] case attributes

α-relations [3] Overtime cases [34] Aggregation of Involved resources

activity attributes

α+-relations [25] Case durations [18] Number of Number of

events or cases active resources

Heuristic Miner’s Activity sojourn Threshold Aggregation of

a ⇒W b score [37] time [18] exceedings attribute values

Number of activities Activity waiting time [18]

DECLARE constraints [38]

. . . . . . . . . . . .

increases we know that there is a concept drift in the control-flow since a new
activity was added. Different measurements can be combined as a single one can
not represent the whole perspective. E.g., if one activity was removed and one
was added taking the number of distinct activities as representation could not
express this. Table 3 depicts a non-exhaustive list of measurements for each of
the introduced perspectives. For a detailed introduction we refer to the corre-
sponding papers.

For the control-flow perspective we can use simple measures as, e.g., the
number of distinct activities or intermediate results of mining algorithms like
the α-relations obtained from the α-Miner [3].

For the performance perspective we can leverage heavily on the recorded times
which can be seen as a proxy for cost or service quality. We can, e.g., calculate the
average service times for each activity, i.e., the time from start to completion of
an activity. Furthermore, we can define a threshold of processing time and count
all the cases that exceed this threshold and are thus classified as overtime.

The measures for the data perspective use the additional attributes associ-
ated to events, e.g., the age or credit score of customers. We can use aggregation
functions such as average or maximum to map all the values of an attribute in
a time interval onto a single number, e.g., the average age of customers for each
time interval. We can, furthermore, count the number of events to describe the
event volume over time.

Representations for the resource perspective rely on information about the
resources, often staff members, handling an activity. We can count the number
of events a resource is involved in to calculate the workload and its development
over time. By simply counting the number of active resources each time frame
we can, furthermore, monitor the number of deployed resources over time.

The question remains which perspectives a user should choose. There is not
a general answer for this, domain knowledge and potential assumptions can be
used. However, the investigation of certain perspectives might be more promis-
ing than others. There are some examples of reoccurring cause-effect themes in
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process mining. Resources often have an impact onto the performance of a pro-
cess, e.g., the workload onto the service times [26], the workload onto overtime
cases [34] or the associated data onto the case duration [28]. Furthermore, e.g.,
control-flow changes such as changing prevalence of a choice might influence the
performance perspective.

4.2 Change Point Detection

After constructing multivariate time series for each the primary and the sec-
ondary perspective, we detect change points in these time series. The change
point detection technique maps a time series onto subsets of the time intervals
in which the distribution of the features significantly changed.

Definition 4 (Change Point Detection in Multivariate Time Series).
Let H∈R

m×n be a multivariate time series and TI=〈ti1, . . . , tin〉 be the previ-
ously introduced sequence of time intervals used to construct this time series.
A change point detection technique CPD maps a time series onto a subset of
time intervals, where a significant change of the underlying time series occurred
CPD(H)⊆TI.

The change point detection method has to be able to process a multivariate
time series as an input. As mentioned in Sect. 2, this method should be unsuper-
vised, i.e., be able to detect change points without seeing similar kinds of time
series with annotated change points before. Examples of change point detection
techniques include cost-based techniques [35], hypothesis testing [9] or clustering
techniques [17].

4.3 Cause-Effect Analysis

In the first step, two time series for the primary and the secondary perspective
are constructed. A set of mp mapping functions for the primary perspective
and ms for the secondary perspective are applied to construct the time series
Hp∈R

mp×n and Hs∈R
ms×n. The change point detection step of the framework

calculates two sets of change points CPD(Hp) and CPD(Hs). In the cause-
effect analysis step, we look at the change points in the primary perspective
and analyse which concept drifts in the secondary perspective potentially have
a cause-effect relationship to a concept drift in the primary perspective. We,
therefore, look at each primary drift and consider all preceding secondary drifts.
We calculate the time lag, i.e., the number of time intervals that lie between the
drifts, and test whether the secondary perspective can potentially be causal to
the primary perspective given this lag. We, therefore, test all pairs of features
between primary and secondary perspective for causality given this lag. A feature
is a row of the time series describing a single measurement over time. If a feature
pair is tested to be causal we add the change point pair and all causal feature
pairs to the output of our framework.



A Framework for Explainable Concept Drift Detection in Process Mining 409

Definition 5 (Cause-Effect Analysis). Let Hp∈R
mp×n and Hs∈R

ms×n be
time series for the primary and secondary perspective. We define the lag func-
tion lTI(ti1, ti2)∈N to retrieve the number of time intervals in TI that lie in
between ti1 and ti2, i.e., the lag. For a change point of the primary perspective
cpp∈CPD(Hp) and a change point in the secondary perspective cps∈CPD(Hs)
we retrieve the lag k using the lag function k = lTI(cpp, cps). Given a row,
i.e., a feature, of the primary and secondary perspective hp∈Hp,i, i∈{1, . . . , mp}
and hs∈Hs,i, i∈{1, . . . ,ms}, where hs, hp∈R

n, a cause-effect analysis technique
CA maps these two features and a time lag k onto a value between 0 and 1
CA(hp, hs, k)∈[0, 1]. This value indicates whether a cause-effect relationship with
lag k is present or not.

The set of all change point pairs with all detected cause-effect relationships
between feature pairs forms the output of the framework.

5 Evaluation

5.1 Implementation

We implemented our framework on the basis of PM4Py [7]. The implemented
version is available at GitHub1. In this section, we introduce the techniques in
change point detection and cause-effect analysis specific to our implementation.

Similar to Yeshchenko et al. [38], we use the Pruned Exact Linear Time
PELT-algorithm [14] as a change point detection technique for multivariate time
series. This technique uncovers change points by minimizing a cost function that
depends on assigning change points. It is able to process a multivariate time series
and computes an optimal solution in linear time and is, therefore, well suited
for our experiments. An exact description can be found in [14]. For applying
the PELT-algorithm a penalty β has to be chosen that prevents overfitting. The
calculated change points are subsequently used to calculate the lags needed for
cause-effect analysis. We use the concept of Granger-causality [15]. Granger-
causality determines with which probability two time series are correlated given
a time lag between them and can, thus, be seen as a type of predictive causality.
The user has to provide a p-value that describes the threshold probability at
which feature pairs should be classified as Granger-causal.

5.2 Experiments

We evaluate our framework using a synthetic event log and a real-life event log.
The synthetic log is used as a means to verify the implementation and a proof
of concept. We, then, expand this to conduct a case study on real-life event data
and discuss our findings. For both experiments we provide the chosen parameters
for the three steps of our framework, i.e., perspectives and measurements in time
series construction, change point detection in multivariate time series and cause-
effect analysis. To verify our results, we compare our findings to state-of-the-art
methods in concept drift detection and cause-effect analysis.
1 https://github.com/niklasadams/explainable concept drift pm.git.

https://github.com/niklasadams/explainable_concept_drift_pm.git
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Fig. 3. Synthetic process for claiming insurance. The availability of different ways of
notification, phone, e-mail and post, depends on the age of the customer [8].

Table 4. Parameter choices for running the framework on the synthetic event log.

Experimental setup

Time series construction Primary perspective Control-flow Directly-follows frequencies

Secondary perspective Data Minimum, maximum, sum,

average, count, set average

Time interval duration 1 day

Change point detection PELT-algorithm βprimary = 3 βsecondary = 1.5

Cause-effect analysis Granger-causality p-value=1 × 10−12

5.3 Synthetic Insurance Event Log

We use CPN Tools [32] to generate an event log based on a simulation model of
claiming insurance shown in Fig. 3. The different ways of notification, i.e., postal,
phone and email, are available for different ages of customers. When simulating
we introduce a drift in the ages of customers that should then cause a succeeding
drift in the prevalence of notification activities, especially an increase in email-
notification. The chosen parameters for the instantiation of our framework are
depicted in Table 4.

For change point detection we retrieve a change point in the primary control-
flow perspective at day 133 and in the secondary data perspective at day 132.
The lag between this drift is k = 1. We, therefore, use a lag of 1 when testing for
a cause-effect relationship between the two perspectives.

With a p-value of 10−12, which is especially low due to the artificial set-
ting, we retrieve 25 feature pairs that are Granger-causal with lag k = 1. All
involved features of the primary control-flow perspective concern the frequency of
directly follows relationships between one of the notification activities and either
a preceding or succeeding activity. The features of the secondary perspective all
describe the distribution of age, i.e., the sum, average, minimum, maximum and
average of the set of values. We, therefore, limit our output to only 5 of the
feature pairs, which are depicted in Fig. 4. The depicted features propose that a
decrease in the age of customers led to an increase in the prevalence of the email
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Fig. 4. 5 Granger-causal feature pairs for the cause-effect relationship between data
and control-flow perspective. A drift in the age of the customers is responsible for an
increase in email notifications and a decrease in other notifications.

notification activity one day later which is exactly the cause-effect relationship
we artificially introduced. Our framework has correctly detected and explained
the concept drift with the underlying cause-effect relationship.

5.4 Case Study

We also evaluated our framework using data from the Business Process Intel-
ligence (BPI) Challenge 2017 [13]. The event log considered belongs to a loan
application process through an online system. A customer can submit loan appli-
cations to the financial institute and may receive an offer from the financial
institute afterwards. The parameters for applying our framework are depicted
in Table 5. We analyze the performance perspective, i.e., the service times, for
concept drifts. We search for root causes in the resource perspective, i.e., the
workload, as it has shown to often have a significant impact on the service times
[26].

For the primary, performance perspective we retrieve a change point in Week
28. For the secondary, workload perspective we retrieve a change point at Week
22. The lag for cause-effect analysis is therefore k = 6. The cause-effect analysis
with a p-value of 0.015 yields 23 Granger-causal feature pairs with a lag of 6
weeks. Four different primary features are contained in these feature pairs. Since
three of them do not exhibit a concept drift around week 28, we drop the corre-
sponding pairs for further analysis. The remaining pairs are depicted in Fig. 5.
The average duration of W Validate application shows a significant decrease for
week 28. We further analyze the resource workloads that are Granger-causal to
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Table 5. Parameter choices for running the framework on the BPI 2017 log.

Experimental setup

Time series construction Primary perspective Performance Service times [26]

Secondary perspective Resource Workload [26]

Time interval duration 1 week

Change point detection PELT-algorithm βprimary = 3 βsecondary = 1.5

Cause-effect analysis Granger-causality p-value = 0.015

Fig. 5. Granger-causal feature pairs of the cause-effect relationship between resource
and performance perspective. The only concept drift for the duration perspective of
these features can be observed in W Validate application. An increase of the workload
is Granger-causal to the reduction of the service times.

this feature. Most of the resources do not work continuously over the span of
the event log. We can see increases and peaks in the workload for some resource.
When looking at the total workload of all resources, which is among the Granger-
causal features, we can see a significant increase. The detected cause-effect rela-
tionship, therefore, states that an increase in the workload of resources
led to a decrease in the service times for W Validate application .

One submission paper for the BPI Challenge [6], amongst other things, inves-
tigates different KPIs of the process over time. This paper also found a significant
decrease in the manual validation time, i.e., the service times for validating an
application, and an increase in case numbers. Due to the absence or the lack of
visibility of other factors such as additional training, change of staff, etc., the
paper suggests that the decrease in service times is a reaction to cope with the
increased workload.
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Table 6. Comparison of results for the concept drift detection

Our approach Visual analytics [38] ProDrift [22]

Synthetic log Control-flow drift, day 133 � �
BPI 2017 Performance drift, week 28 × ×

Table 7. Comparison of results for cause-effect analysis

Our approach PMSD [29]

Synthetic log Data (age) → control-flow ×
BPI 2017 Resource (workload) → performance �

5.5 Comparison

Our proposed framework for explainable concept drift detection touches two areas
of research: Concept drift detection and cause-effect analysis. We, therefore, com-
pare the results for the synthetic event log and the BPI 2017 log with the results
from state-of-the-art methods from both of these areas. For concept drift detec-
tion we compare the results with the visual analytics approach of Yeshchenko et al.
[38] and ProDrift by Maaradji et al. [21] as both approaches have shown outstand-
ing results in concept drift detection. For cause-effect analysis we compare our
results with the findings of Pourbafrani et al. [29] as they are searching for rela-
tions between different process parameters on a system-wide level.

Table 6 depicts the comparison between the detected concept drifts for the
synthetic and the real-life event log. The control-flow drift in the synthetic log is
detected by both approaches. As ProDrift relies on completed traces, the drift is
detected approximately 15 days later compared to our approach. Both approaches
very clearly show the existence of a sudden drift through means of their visual-
ization. As both approaches do only focus on control-flow drifts they can not be
used to compare results on the detected performance drift for the BPI 2017 log.
Table 7 depicts the results retrieved from PMSD compared to our approach. As
PMSD does not model the data perspective, we can not use it to detect the cause-
effect in the synthetic log. For the BPI 2017 log we apply the PMSD framework
and compute a system dynamics log. This log contains, among others, the arrival
rate and the service times of the process. We apply the relation detection of PMSD
with a lag of 6 weeks. The results show a negative correlation between the lagged
arrival rate and the service times. This corresponds to our detected cause-effect
as the higher influx of cases determined a decrease in service times.

We verified our findings by applying state-of-the-art methods from both con-
cept drift detection and cause-effect analysis. If the corresponding perspective
can be modeled, we are able to verify our findings with these approaches. These
are promising results as they show the power of incorporating more perspec-
tives into concept drift detection and using these to find possible cause-effects
of concept drifts.
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6 Conclusion

In this paper, we combine concept drift detection and cause-effect analysis to
create a framework for explainable concept drift detection. We define a primary
perspective where concept drifts should be detected and a secondary perspective
with which these concept drifts are explained. By applying a cause-effect analysis
to the features of both perspectives, we identify feature pairs that can be used
to explain the concept drift. We verified our approach using a synthetically
generated event log. We furthermore analyzed the event log of the BPI Challenge
2017 and were able to explain a concept drift in the performance with an increase
in the resources’ workload. These first experiments have shown a great potential
for explaining concept drifts.

Future Work. To further improve our conceptual framework the following steps
can be taken. First of all, we want to plug different change point detection
algorithms and cause-effect analysis tools to detect other types of drifts and,
e.g., non-linear relationships. Furthermore, spurious elements and rare signals
produce spikes in a signal that can be misleading to cause-effect analysis tech-
niques. We want to investigate whether the general application of noise filtering
on the time series is beneficial. Another interesting point for an extension of the
framework are non pairwise dependencies. A concept drift could, e.g., be caused
by two different concept drift in two other perspective and not by only one of
them.
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Abstract. We propose an approach to identify anomalies in business
processes by building an anomaly detector using graph encodings of pro-
cess event log data coupled with graph autoencoders. We evaluate the
proposed approach with randomly mutated real event logs as well as
synthetic data. The evaluation shows significant performance improve-
ments (in terms of F1 score) over previous approaches, in particular with
respect to other types of autoencoders that use flat encodings of the same
data. The performance improvements are also stable under training and
evaluation noise. Our approach is generic in that it requires no prior
knowledge of the business process.

1 Introduction

Anomaly detection is an unsupervised machine learning technique that has
become very popular with the recent advances in AI. An anomaly detector auto-
matically learns correlations, i.e., regularities in its structured input data and
flags irregular data as anomalies, where the notion of an anomaly depends on
the dataset and use case.

Business process data have many different aspects, such as the activities, their
ordering, their duration and waiting times, the acting resources and roles, the
business objects and associated values, states, milestones, decisions and process
outcomes. Parts or combinations of these data as well as abstractions, transfor-
mations and aggregations thereof, such as KPIs, sliding windows, rolling averages
etc. can be presented to an anomaly detector which would all result in different
notions of anomaly.

In line with recent studies [24,26,27], in this paper we consider process activ-
ities, their ordering, and their business object attributes in relation to the fol-
lowing anomaly detection use cases:
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– Log errors: When the process event log is distorted because parts of it has
been collected manually, i.e., subject to human error, or it has been recorded
or transmitted by an unreliable mechanism, then an anomaly detector can
be used to detect and correct such perturbations, provided they occur with
limited frequency.

– Exception analysis: Finding and inspecting rare exceptional cases can help
to understand deviations from expected behavior. This is similar to variant
analysis and conformance checking [3,35] in traditional process mining [2].
However, the traditional concept of variant is very fine-grained such that
normal behaviour can distribute over a large number of variants and excep-
tional behavior may not always be easily distinguished from rare but normal
variants. Conformance checking on the other hand requires a carefully hand-
crafted specification of normative (or normal) behavior, either as an impera-
tive (BPMN) model [4,7,8] or, in a more declarative form, as a set of rules.
For more complex processes, creating and maintaining such a specification
over time may require substantial effort, whereas anomaly detection requires
no such specification.

– Process drift: Exceptions can also be detected at run time, and when mul-
tiple anomalies occur in succession, they could indicate changes in external
conditions, process drift, or unwanted behavior.

Anomaly detectors for the above use cases can be partially evaluated with
real event logs that are perturbed with limited random mutations to see how
well the anomaly detector identifies these mutations [23,24,27].

A popular type of anomaly detector is an autoencoder, which is an artificial
neural network that learns an efficient representation of the input data, i.e., an
encoding or embedding, together with a decoding that reproduces the input data
from that internal representation in a way that minimizes the reproduction error.
A threshold on the reproduction error identifies anomalous input data [42]. The
learned encoding can be seen as a form of dimensionality reduction of the input
data.

Earlier work [24,26,28] has applied multilayer perceptron-based autoencoders,
variational autoencoders and LSTM-based autoencoders to business process
anomaly detection and showed that they outperform other methods, such as
t-STIDE [41], OC-SVM [39], HMM [18], and Likelihood [27] in terms of accu-
racy, noise endurance, and generalizability. However, their absolute performance
is still limited leaving substantial room for improvement.

In this paper, we show that the performance indeed can be substantially
improved by enriching the autoencoder input data representation with activity
relationships, i.e., edges between different events of a trace. Thus, the autoen-
coder input becomes a graph, and we then present the graph to a graph autoen-
coder [20] with edge-conditioned convolutions (ECC) [40]. We evaluate the per-
formance of our graph autoencoder on both synthesized and real-life event logs
from the Business Process Intelligence Challenge (BPIC) against several earlier
methods.
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2 Background

To better explain the idea of this paper, we introduce some basic notations and
concepts, partially borrowed from [1].

Definition 1 (Universes). Let UE be the set of all event identifiers, let UC

be the set of all case identifiers, let UA be the set of all activity identi-
fiers, let UT be the totally ordered set of all timestamp identifiers, and let
UF = {Uf1 , ..., Ufk

} be the identifier collections of event associated features with
k categories: {f1, ..., fk}.

We assume that events are characterized by various properties. For example,
an event has a timestamp, corresponds to an activity, is performed by a particular
resource with several attributes, etc. Given the focus of this paper, we assume
that events should at least contain activity and timestamp properties, and there
is a function πA : UE → UA that assigns to each event an activity from the
finite set of process activities, and also a function πT : UE → UT that assigns a
timestamp to each event.

Definition 2 (Sequence, Trace, Event Log). Given a set A, a finite
sequence over A of length n is a function σ ∈ A∗ : {1, ..., n} → A , typically
written as σ = 〈a1, a2, ..., an〉, where σ(i) = ai. For any sequence σ, we define
|σ| = n. A trace is a finite non-empty sequence of events σ ∈ U∗

E such that each
event appears at most once and time is non-decreasing, i.e., for 1 ≤ i ≤ j ≤ |σ|,
σ(i) �= σ(j) and πT (σ(i)) ≤ πT (σ(j)). Let C be the set of all possible traces. An
event log is a set of traces L ⊆ C such that each event appears at most once
in the entire log, and each trace in the log represents the execution of one case
assigned with a case identifier (case ID) by a function πC : UE → UC .

Definition 3 (Directed Graph). A directed graph G = (V,E) consists of a
nonempty set of nodes V and a set of directed edges E ⊆ V × V , and for a
directed edge eu,v = (u, v), eu,v ∈ E, we call u the tail node of e and v the head
node of e. Nd(v) defines neighbor (namely predecessor) nodes of v, which returns
the nodes that directly connect to v with incoming edge towards v. For example,
for a simple graph with three nodes u → v ← w, Nd(v) returns the node set
{u,w}.

2.1 Autoencoders and Anomaly Detection

An autoencoder is a type of artificial neural network for unsupervised learn-
ing, which contains two main components: an encoder and a decoder [6]. The
encoder takes an input vector x ∈ [0, 1]d and maps it to a hidden representation
h ∈ [0, 1]d

′
by a deterministic mapping function fφ : [0, 1]d → [0, 1]d

′
parameter-

ized by φ. Symmetrically, the decoder takes the encoder output h and maps it
to z ∈ [0, 1]d by a mapping function gψ : [0, 1]d

′ → [0, 1]d parameterized by ψ.
fφ and gψ here can be corresponding typical neural networks such as multi-layer
perceptrons, recurrent neural networks, etc. Each input x is thus first encoded
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into h and then decoded into z. During training, the parameters are optimized
to minimize the observed reconstruction loss L(x, z) of input x and its recon-
struction z through backpropagation:

φ�, ψ� = arg min
φ,ψ

L(x, z)

= arg min
φ,ψ

L(x, gψ(fφ(x))
(1)

where the reconstruction loss function is traditionally defined as the mean square
error:

L(x, z) =
1
d

d∑

i=1

(x(i) − z(i))2 (2)

An autoencoder based anomaly detector uses reconstruction loss as the
anomaly score, i.e., a data point with relatively high reconstruction loss is con-
sidered to be an anomaly. During the training phase, the autoencoder learns fφ

and gψ through data training split based on Eq. (1), and then a reconstruction
loss threshold θ is chosen to classify anomalies during the validation phase based
on another independent validation data split. (Our setting details are described
in Sect. 4.2.) Finally, the model inference relies on fφ, gψ and θ obtained from
the training and validation phases described as above.

2.2 Feature Encoding for Business Process Event Logs

Machine learning always requires an adequate feature extraction and engineering
for the target data. In the business process literature, [21] converts the event log
into vectors using a method that is similar to continuous bag of words (CBOW),
which is a natural language processing (NLP) method for document encoding.
These vectors include different encoding levels: activity level, trace level, and
the entire log level. These vectors, or their embeddings, are then fed into dif-
ferent neural networks designed for purposes such as anomaly detection, trace
clustering, and process comparison. As all event logs record the executed pro-
cess activities and their ordering, [17] extracts the event ordering from the log.
However, these methods do not leverage other business process object attributes.

The greater the variety of process data attributes included in the input vector,
the more types of anomalies can be detected by the autoencoder. For example,
besides the activity name, a delayed process activity could result in an unusual
ending timestamp, which is a numerical attribute in the log. Also several business
data attributes are often related to each other, such as the credit score and
loan amount in a loan application. Usually it is quite challenging to extract
only useful attribute features without any prior domain knowledge about the
business process. Some earlier work [24,26] treats the time series event log as flat
structural data, and directly applies one-hot or dummy encoding on categorical
features and re-scales numerical features to generate process encoding vectors.
These encoding vectors are then concatenated in time series order and fed into
the neural network. In the business process anomaly detection literature, the
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primary difference between existing autoencoder approaches and our work is
that we encode both, structural information as well as various kinds of business
process attributes by using a graph encoding on them.

2.3 Graph Neural Networks

Over the past few years, there has been a surge of approaches that seek to learn
the representations of graph nodes, or entire (sub-)graphs based on Graph Neu-
ral Networks (GNN), which extend well-known network architectures, including
recurrent neural networks (RNNs) and convolutional neural networks (CNNs),
to graph data [10,12,13,15,16,22,25,38]. Most of the existing graph neural net-
works are instances of the Message Passing Neural Network (MPNN) framework
[14] for node aggregation. In a directed graph G, the forward pass consists of
two phases, a message passing phase and a readout phase. At the time step t,
the message passing function St and vertex update function Ut describe how the
hidden state ht

v for each node in the graph is updated:

st
v =

∑

u∈Nd(v)

St(ht−1
v , ht−1

u , eu,v) (3)

ht
v = Ut(ht−1

v , st
v) (4)

Then the readout phase computes a feature vector for the whole graph using
a readout function R according to:

ŷ = R({hv|v ∈ G}) (5)

The message functions St, vertex update functions Ut, and readout function R
are all learned differentiable functions, and associated parameters can be learned
by back-propagation based on an error function, such as an error function on a
graph classification prediction score ŷ where y is the classification label.

3 Method

3.1 Graph Construction on the Process Event Log

The Graph-based representation of business process data has been previously
used to improve process discovery [32], build Bayesian networks [33,37], and
generate likelihood graphs of causally dependent event attributes [27]. To repre-
sent the structural process information of an event trace in the log, we build a
directed graph G = (V,E) on it as follows (similar to a Directly-Follows-Graph
in process mining). We treat activity names, which are a required property of
the events in the log, as nodes V in the graph, and edges E correspond to every
pair of adjacent events in the time ordered trace. Thus a trace with n activi-
ties results in n − 1 directed edges. Since the node is identified by its activity
name, an edge that is formed by two adjacent activity names may contain several
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duplicates in a trace. To leverage this situation, we propose a positional embed-
ding method by using the specific location of the adjacent events in a vector p
to represent edge positional information and associated activity attributes, and
the vector p is treated as an edge feature vector. This way, duplicate edges are
represented by digits in different locations within the same positional vector. Fol-
lowing the graph construction steps below, a trace with n activities potentially
results in k ≤ n − 1 positional vectors p corresponding to the unique k edges.
The overall graph construction diagram can be represented by k label vectors
m ∈ {0, 1}tm−1, which record activity occurrence information and are targets of
the autoencoder’s decoding output.

Fig. 1. A graph construction example based on the example event log.

The following are the steps of the graph construction algorithm and the
feature extraction for one trace with n activities:

1. Compute the maximum trace length tm = max{|σ| : σ ∈ UE} over the whole
events UE in the log, and obtain an event attribute feature embedding with
dimension de = dn+dc by concatenating activity numerical features (rescaling
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with dimension dn) and categorical features (one-hot encoding with dimen-
sion dc) of event attributes (excluding the activity name columns). Mean-
while, track all existing activities as nodes and assign them an initial node
embedding h0

v (one-hot encoding).
2. Generate n−1 activity-activity pairs based on occurrence order, and maintain

this order. For example, trace (A, B, C, B, C) ends up in 4 ordered activity-
activity pairs (A, B), (B, C), (C, B), and (B, C), which define edges in the
graph.

3. Within one activity-activity pair at position i ∈ [1, n − 1] based on the sec-
ond step, treat the activity that happened first as u, and the other as v.
Also compute the edge feature vector based on the event attribute feature
embedding distance (subtraction) of u and v, and put this computed vector
in index i of the positional vector p which has dimension dp = (tm − 1) × de

(each computed vector takes de space in p initialized with all 0, and tm − 1
is the number of activity-activity pairs for the longest trace). Finally, build a
corresponding binary edge label vector m ∈ {0, 1}tm−1, setting position i to
1 and all other positions to 0.

4. Loop over the third step until the end of the trace. It will end up with n − 1
positional vectors p and edge label vectors m associated with each edge. As
we mentioned, there could be duplicate edges (as the example in step 2), and
we deal with this by aggregating (sum) p and m with names of u and v as keys
(e.g. ‘AB’, ‘BC’, ‘CB’). Finally we end up with k ≤ n − 1 positional vectors
p as final edge features and edge label vectors m associated with each unique
edge that appeared in the trace. The initial node features h0

v are specified by
one-hot encoding of the activity names.

Figure 1 shows an example of building a graph based on an example event
log with 5 nodes and 6 edges. Each node comes with its initial embedding based
on its name, and each edge is associated with a positional vector pi and a label
vector mi. The first element in each cell of pi stands for the feature computed
from the “Variable 1” column, the second is for the “Variable 2” column. The
blank space in each cell is filled with {0}d where d is the same dimension for all
cells in the vector. In the example, d is 2 (equal to de) for p and 1 for m.

Looking more closely at this example, in the constructed graph view, the
activity E is more closely related to and affected by A (connected through B).
However from the perspective of a flat sequence (such as with LSTM or RNN),
E is the farthest event from A. In a hypothetical process, it is possible that
event A is a starting event, E is the proceeding event, B corresponds to a “check
status” activity, and events C and D happen when B “fails”; otherwise E would
directly follow B if A happened. Intuitively, in such a process E should be closely
related to A, but the flat sequence where B is near the end of the sequence can
not preserve such process logic. Meanwhile in the case where the sequence is
very long, the sequence encoder (such as an LSTM or RNN) could suffer from
the vanishing gradient problem [30]. These are some of the factors we have
considered and lead us to believe that the graph encoding, which takes more
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structural process information into account, is a better choice than sequence
encoding.

3.2 Encoding by the Graph Autoencoder with ECC

To make full use of our graph construction and the converted business process
features, we apply edge-conditioned convolution (ECC) filters to obtain a better
graph encoding. The ECC filters in the graph autoencoder transform each node
representation computed from the previous layer of the neural network and com-
bines them with their transformed neighbor nodes representation conditioning
on edge features. Let l ∈ {1, ..., lm} be the layer index in a feed-forward neural
network, hl

v, hl
eu,v

be the vector representation for the node v and edge eu,v at
layer l (layer 0 is the input layer). The node representation updating through
ECC in the graph can be formulated as:

hl
v = φ

(
F l(hl−1

v ;w) +
∑

u∈Nd(v)

F l
e(heu,v

;we)hl−1
u + bl

)
(6)

where φ is the activation function, F l : Rdl−1 → R
dl , and F l

e : Rdp → R
dl×dl−1

denote a parameterized feature transformation neural network for the node fea-
ture and the edge feature, and their corresponding parameters w, we. The learn-
able random initialized bias term bl ∈ R

dl can be learned through backpropaga-
tion during training.

The graph reconstruction, i.e., readout, can be treated as an edge label pre-
diction or link prediction similar to the approach introduced in [20]. Based on
Eq. (5), the graph reconstruction edge-associated probability of recreating binary
edge labels m is formulated as:

m′ = sigmoid
(
Fr(hlm

u ⊕ hlm
v ;wr)

)
(7)

where u, v ∈ V, eu,v ∈ E, and Fr : R
2dlm → R

tm−1 denotes neural network
processing concatenated vector of hu and hv with trainable parameter wr. ⊕
denotes vector concatenation.

Finally, instead of Eq. (2), in this paper the reconstruction loss (error) of the
target graph is defined by the average of the binary cross entropy loss:

L(m′,m) =
1

k(tm − 1)

(
−

k∑
i=1

tm−1∑
j=1

m
(j)
i log(m′(j)

i ) + (1 −m
(j)
i )(1 − log(m′(j)

i ))

)
(8)

The autoencoder training objective is to minimize the output from (8)
through backpropagation. Furthermore, Eq. (8) is used as the anomaly scoring
function which is consistent with the approaches in the literature on anomaly
detection.
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4 Experiments

4.1 Simulated Anomalous Data Sets

As we are not aware of a standard process mining anomaly detection benchmark,
we rely on fully or partially simulated data used in the literature. Note that we
do not devise our own datasets but borrow the datasets and preprocessing steps
from existing work. We consider three types of simulated datasets containing
labeled anomalous cases. These anomalous cases are introduced in three ways
described below. The dataset details are shown in Table 1. Training, validation,
and testing are randomly sampled based on the provided ratios in the table and
corresponding data set. Note that the sum may not total to 100% since we used
the remainder to create noise cases (mentioned below) based on the original
normal and anomalous data.

Table 1. Statistics of event logs we used in our experiments. The ‘N’ and ‘A’ in the
Test set refer to normal and anomalous cases, respectively. The ratios are counted as a
portion of the number of traces. The number of attributes count does not include the
activity name.

Event log No. traces Max. trace length No. activities No. attributes Training Validation Test

BPIC2012 13,087 95 24 2 50% 20% 15%N, 15%A

BPIC2013 7,554 34 11 2 50% 20% 15%N, 15%A

Loan 10,000 63 19 2 25% 10% 15%N, 15%A

BPIC2017 14,289 100 26 1 32% 12% 6%N, 6%A

Large 5,000 14 43 4 32% 12% 6%N, 6%A

Huge 5,000 13 55 4 32% 12% 6%N, 6%A

4.1.1 Log Attributes Anomalies
To evaluate the detection of anomalies in a distorted or wrongly recorded log, we
follow [24] by using simulated anomalies injected into two public real event logs,
from the BPI challenges of 2012 and 2013 (BPIC2012 and BPIC2013). We use
the same original data with the corresponding process to introduce anomalies1

as described in [24]. Every anomalous trace is simulated by randomly choosing
a proportion of L/2 activity columns and replacing them with random activities
sampled from UA, and choosing a proportion of L/2 activity duration columns
and replacing them with uniformly random sampled values ranging from the
minimum and maximum activity duration values observed in this column. Thus
it will create a proportion of L anomalous values for one anomalous trace. In
our experiments we set L = 0.5 for these two datasets.

1 Available at BPIC2012 and BPIC2013 data sets with injected anomalies.

https://github.com/IELunist/Autoencoders-for-Improving-Quality-of-Process-Event-Logs/tree/master/multivariate-anomaly-detection-for-event-logs-master
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4.1.2 Activity Ordering Anomalies
In this case, an anomaly is caused by a variation of the activity ordering [36] or
concept drift [9]. During process execution, a change in the activity ordering may
happen due to a change in the environment, and it can be seasonal or hourly
but only takes up a small portion of all executed cases. This type of anomaly is
sampled by a certain pattern or distribution instead of random error. We use the
same simulated loan access data set from [23]. The event logs in this work are
simulated by the Apromore [34] platform for a loan access process. Anomalies
here are introduced as changes of the activity ordering in mainly 3 categories:
Insertion (“I”), e.g., add/remove fragment or duplicate fragment in the control
flow; Resequentialization (“R”), e.g., synchronize two fragments or make two
fragments sequential in the control flow; and Optionalization (“O”), e.g., change
the branching frequency or make a fragment skippable in the control flow. The
details of these categories are described in [23]. In our experiment, we use six
composite operations (“IOR”, “IRO”, “OIR”, “ORI”, “RIO”, “ROI”) to form
anomalous traces. For example, the operation “IRO” is obtained by first adding a
new activity (“I”), then making this activity in parallel with an existing activity
(“R”) and finally skipping the latter activity (“O”). Each composite operation
of the six forms have the same amount of anomalous traces.

4.1.3 Composite Anomalies
We also evaluated our anomaly detector against the combination of random
attribute changes and changes in the activity ordering using the existing three
data sets: BPIC2017, ‘Large’, and ‘Huge’2 simulated by [27], where anomalies
are injected by the following 6 types of operations:

1. Skip: A sequence of up to 3 events is skipped.
2. Insert: Up to 3 random activities are inserted in random places in the trace.
3. Rework: A sequence of up to 3 events is repeated.
4. Early: A sequence of up to 2 events is moved backward in the trace.
5. Late: A sequence of up to 2 events is moved forward in the trace.
6. Attribute: An attribute value is mutated in up to 3 events in the trace.

It should be mentioned that in this case the above operations are directly
applied to the event log without considering any underlying process model, thus
they are not simply mixtures of the previous two anomalous types. For example,
the Rework operation applied on a log may not result in an anomalous case if
the control flow permits a loop over these events, such as a process model with
a ‘check’ and ‘resubmit’ control loop until the submission is satisfied.

Meanwhile during training and validation, in order to test the impact of
noise as mentioned in the literature [26], we introduce a noise ratio r ∈ [0, 0.5]
to all data sets mentioned above, where r is the proportion of anomalous cases
manually added into training and validation sets.

2 Available at: BPIC2017, ‘Large’, and ‘Huge’ data sets with injected anomalies.

https://nbviewer.jupyter.org/github/tnolle/binet/blob/master/notebooks/3.2%20Dataset%20Information.ipynb
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4.2 Experiment Settings and Results

We compare our Graph Autoencoder (GAE) with three baseline autoencoders:
the original multilayer perceptron-based autoencoder (AE) [24,26–28], a varia-
tional autoencoder (VAE) [24] and a LSTM-based autoencoder (LSTMAE) [24].
Note that a modified version of the latter was also used in [27] as an encoding
network. We choose the F1 score, where correctly detected anomaly cases are
treated as true positive cases, to measure their detection performance.

For the configurations of the three baseline models, we consider the neural
network layer settings used in [24]. For AE and VAE we use two encoding dense
layers [31] and two decoding dense layers, and for LSTMAE we use one encoding
LSTM layer and one decoding LSTM layer. These layer sizes are adapted to input
dimensions. Regarding the graph neural network configurations, initially we use
one ECC layer (l = 1) for Eq. (6) and 1-layer dense layer for F , Fe and Fr for
Eqs. (6) and (7). The hidden embedding hlm

v is set to be 2× h0
v for each dataset.

For the training of the neural networks, we use the Adam optimizer [19] with
a learning rate of 0.001, the training batch size is 8 and the training epoch is
100 with early stopping [11] to avoid overfitting. During the validation phase,
we choose the anomaly threshold θ based on the reconstruction error as in [26],
but we use the average reconstruction error on the validation data instead of the
training data since the validation data can better represent data which has not
been used to train the model. Meanwhile we tune the model hyper-parameters to
maximize the F1 score on the validation data. To summarize, we use the training
set to train the autoencoder and the validation set to determine an appropriate
θ and tune model hyper-parameters.

Table 2. F1 score for different autoencoders and datasets with training and validation
set noise ratio r = 0.

BPIC2012 BPIC2013 Loan BPIC2017 Large Huge

GAE 0.95 0.67 0.98 0.72 0.93 0.86

LSTMAE 0.64 0.37 0.86 0.63 0.90 0.88

AE 0.52 0.32 0.89 0.56 0.83 0.81

VAE 0.51 0.27 0.83 0.52 0.73 0.69

First we evaluate our proposed method and the other baselines on the six syn-
thesized data sets mentioned above, with noise r = 0. Table 2 shows the results
on the test sets. We observe that our GAE method performs better in 5 out of 6
cases than the other three baseline approaches in the non-noise settings. There
are two main reasons for this improvement. Firstly, the GAE captures extra
structural process information and relations among activity occurrences, which
are key components in process data, in addition to process attribute features, and
treats these activities as nodes (functional central components) within the neu-
ral network. The other three baseline approaches do not exploit that structure
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and treat the data as simple flat event series data. Secondly, for our case-level
anomaly detection task, the objective function for the GAE, which is to recreate
the edge label, becomes easier than for the other three autoencoders, which try
to recreate the data itself with mixed features. Some data sets such as BPIC2012
and BPIC2017 contain long traces that result in large encoding feature vectors
for AE, VAE and LSTMAE to recreate, and this can cause inefficient training
and limiting their performance. The GAE however simplifies the task by recre-
ating abstract structural information (i.e., binary edge labels) instead of data
attributes themselves. Thus it is easier for the GAE training to converge.

In practice training and validation sets will have some degree of noise as
mentioned above, and in order to test the effects of noise on the performance,
assuming that in a normal system anomalous cases are rare [5,29], we set the
noise parameter r to be {0.1, 0.2, 0.3, 0.4, 0.5} for the six data sets. Figure 2 shows
the F1 score under these different noise ratio settings, where we can observe that
due to uncertainty and inconsistency introduced by noise in training and valida-
tion, model performance becomes generally worse. However the GAE approach
still performs better in most situations (23 out of 30 experimental points) than
the other baselines, suggesting that GAE is more robust to noisy data.

Fig. 2. F1 score for the six data sets with varying training/validation noise ratio r.

4.3 Anomaly Example and Diagnostic Information

In addition to identifying an anomaly, sometimes it is useful to explain or give
insights on the nature of the anomaly. To that end, in this section, we provide
an example that illustrates the information that our approach produces.

Figure 3a shows a BPMN model that was used by [23] to create the ‘Loan’
event log mentioned above. This model represents ‘normal’ process behaviour
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Fig. 3. An example of a normal case from the ‘Loan’ data set.

(ignore the blue numerical annotations for now). Figure 3b shows an example
trace that is generated from this BPMN model and is included in one subset of
the ‘Loan’ event log. The corresponding graph that is constructed by our GAE
is shown in Fig. 3c. It is classified as a ‘normal’ trace with low reconstruction
error.
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Fig. 4. An example of anomalous case.

The reconstruction error has been proposed in earlier work [26] as additional
diagnostic information. However, note that the reconstruction error is unbounded
and hence its interpretation is less intuitive than a probability. Since we use
explicit graph edges in our model, we can obtain, for each edge of the trace,
a prediction probability that can be used as an edge-specific anomaly score,
based on Eqs. (7) and (8). These probabilities are shown in Fig. 3c adjacent to
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the edges. (Here, we use the first 2 letters to represent the activity name, e.g.,
“AE” stands for “Assess eligibility”.) As expected, these probabilities are very
high for a normal trace of our highly regular process. Figure 3b shows, for easier
reference, the same probabilities played back in the original process model based
on a matching of the graph edges.

Figure 4a shows a process model that can be seen as a concept drift with
respect to the model in Fig. 3a: the activity ‘Assess eligibility’ has been removed.
The traces generated from the process model in Fig. 4a can hence be considered
as anomalies with respect to the normal behavior represented by Fig. 3a, Fig. 4b
shows such an anomalous trace generated from the process model in Fig. 4a. The
corresponding GAE graph and its edge anomaly scores are depicted in Fig. 4c. A
drop in the anomaly score, marked in brown, now occurs on various edges, first
between the activities “Access Loan Risk”, “Appraise property” and “Prepare
acceptance pack”. This corresponds to the missing edges from the former two
activities to the latter in the training set, where the flow has to go through the
activity “Assess eligibility”. Again, Fig. 4a shows, for easier reference, the same
probabilities played back in the process model.

It is interesting to observe that some edges after this first anomalous point
in the control flow are also affected with low scores, and the reason is that our
objective function in the GAE is to predict a edge label m, which contains the
absolute activity location information in a trace, based on positional vector p.
Therefore, a case of delayed or early execution would also be punished with a
low score. For example, “Approve application” happens earlier than usual (even
if it correctly directly follows “Verify Repayment”) and hence we observe a lower
score on the edge toward it.

Also it should be mentioned that the GAE computes the embedding of each
event type as a node embedding and makes predictions based on them. Neigh-
boring events should have similar graph embeddings [16] in general since they
are updated and synchronized closely with each other. Meanwhile edge predic-
tions rely on events which are very close to each other, thus missing one event
does not bring those scores sharply down to 0, and we can observe that edge
anomaly scores are around 15% lower than the normal for respective edges.

In summary, our GAE setup detects anomalous process cases by taking into
account both event ordering and the timestamps and activity durations in a
trace. The edge prediction probability scores also reflect detected anomalies.

5 Conclusion

In this paper, we propose a new graph autoencoder approach for anomaly detec-
tion for business process event logs. As opposed to existing methods, we con-
struct a graph for each log trace and apply a graph encoding in order to capture
structural process information. Experimental results on six data sets with three
types of anomaly settings demonstrates the advantages of our approach over
other autoencoder based approaches, which do not use that structural process
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information. Also, experiments show our graph autoencoder is robust to a cer-
tain level of noise during training and validation, which we believe is beneficial
for use in practice.
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Abstract. Due to growing digital opportunities, persistent legislative pressure,
and recent challenges in the wake of the COVID-19 pandemic, public universities
need to engage in digital innovation (DI). While society expects universities to
lead DI efforts, the successful development and implementation of DIs, particu-
larly in administration andmanagement contexts, remains a challenge. In addition,
research lacks knowledge on the DI process at public universities, while further
understanding and guidance are needed. Against this backdrop, our study aims to
enhance the understanding of the DI process at public universities by providing a
structured overview of corresponding drivers and barriers through an exploratory
single case study. We investigate the case of a German public university and draw
from primary and secondary data of its DI process from the development of three
specific digital process innovations. Building upon Business Process Manage-
ment (BPM) as a theoretical lens to study the DI process, we present 13 drivers
and 17 barriers structured along the DI actions and BPM core elements. We dis-
cuss corresponding findings and provide related practice recommendations for
public universities that aim to engage in DI. In sum, our study contributes to the
explanatory knowledge at the convergent interface between DI and BPM in the
context of public universities.

Keywords: Digital innovation · Digital innovation process · Process
innovation · Public university · Case study

1 Introduction

Public universities are in dire need to change. As a result of society’s ongoing digitaliza-
tion and related digitalization plans of legislators for higher education institutions [1],
universities have been facing pressure to explore digital opportunities for several years
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[2]. Hence, digital transformation is at the top of public universities’ agendas [3]. The
outbreak of the COVID-19 pandemic and related restrictions of physical contacts have
even further accelerated the need to digitalize and innovate the education sector, creating
a necessity for public universities to engage in digital innovation (DI), e.g., in digital
lectures or digital student communication [4].

DI has traditionally been defined as the realization of new combinations of digital
and physical components to produce novel products [5]. More recent research extended
the understanding of DI by defining it as the “use of digital technology during the process
of innovating” [6, p. 223] as a means or an end [7]. As such, DI is not just about digital
technology per se, but also refers to the means to change and enable new paths of inno-
vating [8]. While there is little research explicitly addressing DI at public universities,
there is a mature body of knowledge on DI in the public sector in general, which univer-
sities in many countries belong to, including Germany and Austria [9]. Among the few
studies that specifically address universities, mainly the role of technological change
in innovation in higher education institutions has been studied [10], e.g., the impact
of the technological transformation on university education and science [11]. Besides,
recent research focuses on the switch to digital teaching in the course of the COVID-
19 pandemic [12] and the establishment of hybrid campuses [4]. Despite the growing
need for public universities to complement this digital progress in teaching with DI in
administration and management, research on the process of DI in public universities’
administration and management contexts remains scarce.

In sum, digital technologies and legislative pressure equally enable and require public
universities to engage in DI – a dynamic that has been exacerbated by the COVID-19
pandemic. However, public universities struggle to meet the expectation to be at the
forefront of DI in society and to act as DI pioneers in administration and management
[10, 13]. Thus, it is crucial to understand how the DI process at public universities
unfolds to better recognize and support its initiation, development, implementation, and
exploitation. Against this backdrop, we ask the following research question: How do
public universities enact the DI process and what are related drivers and barriers?

We address this twofold research question by an exploratory single case study [14]
as DI at public universities is an emergent research field that has to be investigated with
regards to its context. Specifically, we investigated the case of a German university (GU)
to derive a structured overview of drivers and barriers from assessing the development
of three digital process innovations in GU’s administration and management. We took
Business ProcessManagement (BPM) as a theoretical lens on the DI process to structure
our interviews and analysis approach. This way, we were able to draw from mature
knowledge from both research fields to gain insights into our collected data. First, we
relied onKohli andMelville’s [15] DI actions as a structuring element for the DI process.
Second, we applied the core elements of BPM in the digital age following Kerpedzhiev
et al. [16] to derive drivers and barriers of the DI process at public universities. Thereby,
we locate our study at the intersection of two convergent research fields, i.e., DI and
BPM, following recommendations from recent literature (e.g., [8, 17]). Our research
contributes to the explanatory knowledge on DI at public universities, the convergent
literature on DI and BPM, and fits into the management-related research avenue in BPM
to study and improve the process of DI [18].



Drivers and Barriers of the Digital Innovation Process 439

The remainder of our work is structured as follows: In the second section, we give
an overview of the theoretical background of DI and BPM and elaborate on their con-
vergence. Next, we describe our research method in section three before we illustrate
the case at hand and units of analysis in section four. In section five, we present the
results in terms of drivers and barriers and corresponding practice recommendations.
We discuss our results in the sixth section and conclude with limitations and avenues for
future research.

2 Background

2.1 Digital Innovation

An increasingly dynamic environment created by digital technologies affects not only
companies but also public institutions [10]. Therefore, DI as a means to sense, seize,
and transform opportunities and mitigate threats is crucial for public and non-public
organizations to sustain future viability [19]. In this regard, digital technologies are used
to extract, create, analyze, communicate, or exploit information in a specific context
and are hence considered to be fundamental to DI [20]. DI can serve as a trigger for
digital transformation as it leads to organizational changes – especially in incumbents-
going beyond purely new organizing logics [21]. Thereby, DI shapes the environmental
conditions that digital transformation, as a process, has to adapt to [21].

DI has been frequently discussed from an outcome-centric perspective related to
novel processes, products, services, or business models [5, 22], but can also be under-
stood as a process enabled or complemented by the use of digital technologies [6]. In
their literature review, Kohli and Melville [15] broadly conceptualized the DI process
along four actions (Fig. 1): Initiate, Develop, Implement and Exploit. Initiate includes
triggers, opportunity identification, and initial decision making. Develop can be defined
by the stages of designing, developing, and adopting new artifacts. Implement includes
installing, maintaining, training, and incentives while Exploit aims to maximize returns
and leverage the existing system and data for new purposes. External and internal factors
influence these actions to ultimately create a DI outcome. Although the four actions are
useful for structuring the DI process, in practice, they are not always fully present or
sequential and can be difficult to disentangle.

Fig. 1. DI process based on Kohli and Melville [15]

As already stated, higher education institutions often fail to fulfill the expectations
by policy makers to serve as pioneers for DI [13]. In this regard, the relevance of digital
technologies for teaching and also for its underlying administration and management
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has been recognized (e.g., [23]). However, although traditional innovation in public
university contexts has received fundamental attention in recent literature (e.g., [13]),
research on opportunities and challenges of DI in this context remains scarce. For our
study, we understand DI at public universities as a process that unfolds along the four
DI actions by Kohli and Melville [15].

2.2 Business Process Management

BPMis the practice and science of overseeing howwork is performed to ensure consistent
outcomes and to take advantage of improvement opportunities [24]. According toDumas
et al. [24], processes are defined as sets of activities in which humans and technology
co-create value. In this regard, BPM strives for the continuous management of business
processes as well as for the development of organizations’ BPM capabilities [25]. BPM
as a discipline provides methods, techniques, and tools to support the improvement, exe-
cution, management, and analysis of processes [24, 26]. It can be broadly conceptualized
along six core elements: Strategic Alignment,Governance,Methods, IT,People, andCul-
ture [26]. These core elements build one of the most frequently adopted frameworks for
managing BPM in academia and practice [16]. Practitioners, for example, can use the
core elements as structuring elements for project, program, and strategy management
[26]. In the scientific BPM community, the core elements are well known, accepted,
and used, e.g., for capability development [16] or as the structure of the well-known
Handbook on BPM [25].

Strategic Alignment can be defined as the alignment of organizational goals and
priorities with business processes. Governance refers to establishing relevant and trans-
parent accountability and decision-making processes to align rewards and guide actions.
Methods is targeted towards approaches and techniques that support and enable con-
sistent process actions and outcomes. The IT-element refers to the software, hardware,
and information management systems that enable and support process activities.Culture
considers the collective values and beliefs that shape process-related attitudes and behav-
iors. Lastly, People includes the individuals and groups who continually enhance and
apply their process-related expertise and knowledge [16, 26]. As digitalization places
new demands on BPM, the core elements have been adjusted following a Delphi Study
by Kerpedzhiev et al. [16] who suggested an integrated perspective on the core elements
Method and IT due to their interrelatedness in the digital age.

BPM is often studied in a business context. In contrast, public sector organizations
tend to have a lower BPM adoption rate compared to market-competitive organizations
[17]. Moreover, research on BPM in the higher education context remains scarce despite
studies indicating that BPM could be meaningful for the complex process structure of a
university [27].

2.3 Convergence of DI and BPM

BPM traditionally focuses on incremental process improvement in terms of efficiency,
effectiveness and customer experience rather than on disruptive process innovation [28].
Accordingly, recent research acknowledges that existing BPM methods are not able to
capitalize on opportunities associated with DI, which is why the two have historically
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even been understood as opposing research streams [29]. However, as noted byMendling
et al. [8], BPM and DI still have a lot in common and could benefit from each other as
they approach similar problems in completely different manners. Both BPM and DI are
about processes, both are driven by emerging digital technologies and have an increasing
importance of context [27, 30]. Recent research hence advocates that the two research
streams could enrich each other with regard to methods, phenomena and assumptions
[8]. While BPM could benefit from DI in terms of more innovative, faster and more
efficient business processes [16, 18], DI could benefit from BPM in terms of a more
systematic management of the inherent process transformation [8].

Accordingly, research just starts to investigate the interface of both disciplines. For
instance, van Looy and Poels [18] call for an investigation of the DI process from a BPM
perspective while formulating seven trends at the interface of DI and BPM, like ever
changing customer experience and increasing need for business-IT alignment. Further-
more, Mendling et al. [8] proposed hypotheses that combine and resolve the apparently
contradictory assumptions of the two disciplines in isolation. These are intended to create
a balance over time between strong structure and complete unboundedness.

In conclusion, an analysis at the interface between DI and BPM in the context
of public universities seems valuable as it poses unique challenges and specifically
addresses the open and practice-relevant questions at the interface of both research
disciplines. As already shown, recent literature establishedBPMas an eminently suitable
theoretical lens for studying theDI process [8, 17], e.g., regarding itsmethods for process
improvement [31]. Accordingly, we adopt the compilation of five BPM core elements
suggested by Kerpedzhiev et al. [16] to analyze the DI process of public universities, as
they were specifically built for the digital age, which fits our case and context.

3 Method

3.1 Research Design and Case Selection

To analyze how public universities enact the DI process and to identify related drivers
and barriers, we conducted an exploratory single case study. A case study is capable of
investigating emergent phenomena where the subject of investigation must be studied
within its natural context [14, 32]. Exploratory case study research is used when the area
is still in a state of understanding and description [14, 33]. As DI at public universities
is an emergent topic that must be studied within its specific context [10], we considered
an exploratory case study appropriate to address our research question.

We decided to conduct a single case study as it is appropriate for a representative or
revelatory case [14], which applies to the special context of German public universities.
As public service providers, they hardly compete with each other according to market
principles [34]. Most German university students are enrolled at a public university [35],
and many high-rated German universities are public ones. This is in contrast to other
countries, e.g., the United States or Australia, where the top-rated universities are mostly
private. Despite higher education legislation in Germany being primarily a matter of the
federal states, there is one nationwide law defining admission requirements and respon-
sibilities that apply to all universities. Hence, German public universities’ organizational
structure follows a similar and representative pattern, including university management
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responsible for strategic decisions and a university administration responsible for pro-
viding services for researchers, lecturers, and students [34, 35]. In addition, after the
legal restrictions imposed due to the COVID-19 pandemic, German universities had to
conduct their first completely digital semester in the summer of 2020, providing a unique
opportunity to analyze the ad-hoc development of DI. Thus, the case of a German public
university is not just representative but also of revelatory nature.

Following a purposive sampling approach, we chose the case of GU as a part of the
previously mentioned representative group of German public universities [36]. A close
link to its CIO provided us with access to a wide range of university management staff,
internal and external (IT) experts, and process stakeholders. Following Benbunan-Fich
et al.’s [37] advice to investigate more than one instance to derive insightful results, we
adopted an embedded case study approach with multiple units of analysis [14], i.e., the
DI process of three digital process innovations. We describe bothGU and the three units
of analysis in more detail in the case description section.

3.2 Data Collection and Analysis

We understand the DI process to unfold along four actions that are carried out to generate
aDI outcome [15]. In the context of our case study, theseDI outcomes refer to three digital
process innovations in GU’s administration and management, i.e., digitally improved
or re-engineered processes [15]. To derive drivers and barriers of GU’s DI process, we
combined data collection methods from different sources of evidence to increase the
internal validity, offset biases, and triangulate our results [32]. Specifically, we drew
from primary and secondary data by combining semi-structured interviews with the
screening of documents (Table 1).

Table 1. Overview of data sources

Primary data: semi-structured interviews Secondary data: documents

1st interview round: 4
interviews

2nd interview round: 8
interviews

8 documents

Sources • DI experts within the
university

• DI experts of the external
service provider

• University
management (UM)

• IT experts (IT)
• Process participants
(PP)

• Other involved
employees (OE)

• Internal meeting protocols
• Internal documents
(process handbook)

• Publicly available reports
(e.g., recruiting guide,
structure and
development plan)

We collected data over a 10-week period between September and December 2020.
Our primary data collectionmethod comprised two rounds of semi-structured interviews
[38]. Most interviews were conducted digitally, attended by at least two authors, and
lasted one to two hours. We selected interviewees based on their role, expertise, and
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expected contribution. To gain a holistic understanding of GU’s DI process, we inter-
viewed staff from different organizational units and ensured that at least one interview
was in the IT department and the university administration for each unit of analysis.

In the first round, we conducted four interviews with DI experts of GU and the
external IT service provider to gain an overview of the process landscape and to choose
suitable units of analysis. In the second round, we aimed to gain a deeper understanding
of the chosen units of analysis to identify drivers and barriers related to the DI process.
Despite the frequent use of the terms drivers and barriers in innovation research (e.g.
[39]), the understanding of these terms varies strongly since only a few studies explicitly
address their meaning (e.g., [40]). To avoid ambiguity, we define drivers as factors that
support (e.g., accelerating or facilitating) and barriers as factors that hinder (e.g., delaying
or preventing) the DI process or individual DI actions.We followed this understanding of
drivers and barriers accordingly when questioning the interviewees in the second round.
Moreover, we defined two dimensions to structure our interviews, data, and findings.
First, we drew from Kohli and Melville’s [15] conceptualization of DI actions, i.e.,
Initiate, Develop, Implement, and Exploit. Second, we took a BPM-perspective on the
DI process drawing from the five core elements of BPM, namely Strategic Alignment,
Governance, Methods/IT, Culture, and People [16].

We analyzed the data iteratively during the process of data collection to reassess and
adjust our approach after each interview, comparing it with previous findings to take
advantage of the opportunity for collecting new or even better data [41]. Our analysis
approach for primary data followed three steps: First, we analyzed the interview notes
and compared them to the interview protocol to make sure all areas were addressed.
Second, in line with [42], two authors independently analyzed the interviews and used
open coding to assign a total of 329 statements related to the DI process. One statement
consisted of at least one sentence addressing one DI action and one or more BPM
core elements and was coded along the same two structuring dimensions. We then
discussed the coded statements in the entire team of authors, compared them again with
the interview notes where necessary and combined those with similar meaning to derive
an initial set of 46 drivers and 34 barriers structured along the analysis dimensions.
Third, by using axial coding techniques following Wolfswinkel et al. [42], the two
authors involved in the open coding process identified interrelationships between the
derived drivers and barriers of the initial set, e.g., by recognizing a mutual cause for
different barriers related to communication that we aggregated into one overarching
barrier. Hence, we were able to consolidate selected drivers and barriers to make them
more meaningful. We thereby discussed interim results iteratively within the full author
team to increase our understanding of the composed drivers and barriers.

In this regard, we observed five pairs of drivers and barriers that address the same
topic but with contrastingmanifestations in the real world. To include only the respective
driver or barrier that had the strongest impact on the overall DI process, we compared
both the number of mentions per manifestation as well as their influence implied by
the interviewee’s statements. After phrasing the resulting drivers and barriers to be as
self-explanatory as possible, our final set comprises 13 drivers and 17 barriers (see
results section). Based on our final set of drivers and barriers, we conducted two further
workshops in the full author team to derive overall findings and corresponding practice
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recommendations. After the first workshop, we shared our findings, especially regarding
the practice recommendations, with the CIO of GU to initially validate their usefulness
and applicability. Accordingly, we discussed and incorporated resulting feedback in the
second workshop.

4 Case Description

GU is a medium-sized German university with more than 2,300 active employees and
more than 13,000 active students, almost half of whom study at the faculty of Law and
Economics. In the early 2010s, GU initially presented an IT strategic plan, which was
updated and partially implemented in the subsequent years pushing digitalization and
DI. Hence, GU was comparably well prepared for the radical change of a COVID-19
driven digital semester in the summer term of 2020. It had multiple digital solutions
in place prior to the pandemic, such as a system that allows lectures to be recorded
and students to access recordings at any given time. Their digital infrastructure but
also the acquired knowledge and experience with digital technologies facilitated the
sudden introduction of new technical solutions like a live streaming software for fully
virtual lectures. Additionally, GU provided remote access software to their students for
accessing the university network and services necessary for digital teaching.

The university’s administration and management also had to adjust to the funda-
mental changes in the teaching environment, e.g., by introducing a new communication
platform to compensate for the lack of in-person communication. In this regard,GU’s DI
activities aimed at digitally improving and adjusting their internal processes, i.e., digital
process innovations. For our case study, we chose the DI process leading to three fully
implemented digital process innovations atGU as units of analysis, i.e.,U1,U2, andU3.
Following our understanding of DI [15], we consider these three to be innovative as they
are subjectively perceived as new by GU, regardless of whether they have been realized
at other universities or private organizations before. Table 2 provides a short description
of the DI outcomes ofU1,U2, andU3 together with an overview of the related DI actions
and relevant actors performing them.

We used the first interview round to derive a consistent interpretation of the BPM
core elements in the light of our study [16]. Thereby, Strategic Alignment particularly
refers to decisions taken by GU’s management that affect all DI actions. The manage-
ment staff also influences the core element Governance as it decides on university-wide
rules and regulations, which makes this core element particularly context-dependent
[43]. Methods/IT includes techniques, the IT infrastructure, and the resources within
the IT department of GU that are available to manage the DI actions. Culture mainly
evolves around the concept of acceptance and describes the attitude and behavior of the
involved individuals towardsGU’s DI process. Last, People focuses on the expertise and
knowledge available to GU and necessary to successfully conduct the DI process.



Drivers and Barriers of the Digital Innovation Process 445

Table 2. Units of analysis

U1: Digital exam view U2: Communication
platform

U3: Application portal

DI outcome • Digital inspection of
graded exams by
students

• Available at any time
via campus
management software

• Communication
platform for university
staff

• New communication
channel to students
integrated into campus
management software

• Standardization of staff
application process

• New application portal
instead of e-mail
correspondence

Initiate Activities targeted towards generating the initial idea, deciding for or against
ideas, and determining basic funding of the DI. The initiation was mainly
performed by…

…the university
management (UM)

…the university
management (UM)

… the department
manager of human
resources (PP)

Develop Activities targeted towards the development of an initial artifact, such as a new
process or digital solution. The development was mainly performed by…

… the IT-department (IT)
supported by the external
service provider (OE)

… the external service
provider (OE) supported
by the IT department (IT)

… the IT department (IT)

Implement Activities targeted towards the go live of the initial artifact and the integration
into the daily business. The implementation was mainly performed by…

… the IT department (IT)
-
step-by-step rollout

… the external service
provider (OE) supported
by the IT department (IT)

… the IT department (IT)

Exploit Activities targeted towards the utilization of the DI outcome as well as leveraging
existing systems with new DI initiatives. Exploitation was mainly conducted in…

… three faculties (PP) … the entire university
via the campus
management system

… the human resource
department (PP)

5 Results

5.1 Drivers and Barriers of the Digital Innovation Process

As the primary result of our study, we present 13 drivers (Table 3) and 17 barriers (Table
4) of the DI process at GU. We structure the drivers and barriers in each table following
the two introduced dimensions for data collection and analysis. Thereby, we assign each
driver and barrier to a DI action [15], titled DIA, and a BPM core element [16], titled
BCE. As we found during the interviews that some drivers and barriers influence all
four DI actions, we assign those to the categoryOverarching inDIA. We further provide
related exemplary quotes, which are taken directly from the interviews, indicating the
interviewee’s role (see Table 1 for abbreviations).
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Table 3. Drivers of the DI process at GU

DIA BCE Driver Exemplary quote ID

Initiate St. University structure and development
plan that triggers initiatives for DI

“[…] the digitalization of the
administration is an important part of the
structure and development plan.” (UM)

D1

M./IT Adoption of good practices from other
universities and public administrations

“[…] the district office presented the
application portal. It could be
implemented with few changes.” (IT)

D2

Develop M./IT Development and evaluation of
minimum viable products

“[…] in the beginning it was about
satisfying the requirements. Now we look
at other features […]” (IT)

D3

Predefined solution space but open
approach during develop phase

“[…] it was clearly specified what should
be achieved […] however we had
freedom on how to implement it” (IT)

D4

Implement M./IT Short feedback cycles with clearly
defined support/service interfaces

“[…] everybody [in this team] knows the
appropriate contact person.” (PP)

D5

Cu. Live demonstration of the need and
benefit of the DI

“[…] it was smart to show the
administration staff the potential of the
technology, so they see what is possible.”
(IT)

D6

Exploit M./IT Consistently defined personal contact
points for the technical support of users

“[…] the IT department was always
available via telephone […] with direct
answer and help.” (PP)

D7

Cu. User manuals and guidelines for
handling the DI outcome

“[…] so she feels safer in its use[…] and
also to increase the acceptance.” (IT)

D8

Pe. Previous experience with IT
applications and basic IT knowledge

“[…] within this [administration] team
there are many people that are technically
affine.” (OE)

D9

Overarching M./IT Standardized and easily expandable IT
infrastructure

“[…] one [campus management] system
and settings for all faculties.” (PP)

D10

Cu. Sufficient opportunities for feedback “[…] call each other regularly to see how
it goes.” (PP)

D11

Pe. In-depth know-how and expert
knowledge in the IT department

“[…] the know-how for such projects was
available in the IT.” (IT)

D12

Motivated individuals in the IT
department

“[…] individuals in the IT department
move things forward […]” (UM)

D13

Below, we provide further insights into our results by presenting overarching obser-
vations. It is worth noting that we derived these observations regarding the drivers and
barriers from a single case which is why we do not claim that they are necessarily
generalizable [14]. First, in the case under consideration, we identified more barriers
than drivers which might indicate that the context of GU is challenging for DI. Further,
we found barriers but no respective drivers related to Governance, which represents a
BPM core element in particular shaped by the specific context due to expectations of
transparency and performance of public institutions [43].

Second, drivers and barriers of the BPM core elements Strategic Alignment andGov-
ernance primarily influence the DI action Initiate. In contrast,People andCulture related
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drivers and barriers mostly influence Implement and Exploit actions. This particularly
reflects the hierarchical structure ofGU and the top-down driven nature of its DI process.
Thereby, the first actions of the DI process mainly take place at the managerial levels
of the university, whereas the latter actions (i.e., Implement and Exploit) involve more
personnel from the operational levels, e.g., administration staff. The predominance of
Strategic Alignment related barriers over corresponding drivers also indicates that the

Table 4. Barriers of the DI process at GU

DIA BCE Barrier Exemplary quote ID

Initiate St. High cost sensitivity of
decision-makers given public
spending restrictions

“[the management] hesitates if
it costs money.” (IT)

B1

Limited triggering options for
the initiation of DI, mainly due
to legislative changes or
organizational pain

“We are [legally] obligated to
keep old files for five years, but
we don’t have any storage left.
We had to do something.” (PP)

B2

Top-down initiation of the DI
process with limited stakeholder
involvement

“we were not involved, just
informed at some point [about
the new feature].” (PP)

B3

Develop

Implement Go. Incomplete stakeholder
participation in DI committees
and teams

“[…] no one at the user level
was involved [in the
committee].” (PP)

B4

Cu. Lack of trust due to negative
experiences with previous DI
initiatives

“[…] it was difficult from the
beginning because
communication was an issue
last time”. (OE)

B5

Exploit MIT Lack of institutionalized
feedback loops

“[…] we have brought the
feedback, but there was no
follow up on it.” (PP)

B6

Lack of structured evaluation of
DI outcomes

“[…] there is hardly any
evaluation [after the successful
implementation of a new DI].”
(UM)

B7

Lack of homogenization of the
DI outcome due to high
individualization

“[…] no exchange of
employees between different
departments is possible due to
differing processes.” (PP)

B8

Pe. Time discrepancy between the
implementation of DI solution
and deployment of service and
support

“[…] we would have needed
the new feature, but no one
knew it existed.” (PP)

B9

(continued)
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Table 4. (continued)

DIA BCE Barrier Exemplary quote ID

Overarching St. Lack of perceived support and
guidance from university
management

“[…] the initial solution could
not be implemented due to a
missing management decision”.
(PP)

B10

Lack of perception and
management of DI as a process

“[…] an evaluation, despite
being a logical last step of it
[the DI], is not done.” (UM)

B11

Go. Lack of documentation of DI
process and actions

“[…] the process
documentation was developed
externally.” (IT)

B12

Lack of predefined collaboration
and cooperation model for DI

“[…] it was easier to contact
them [the IT] although I am not
supposed to.” (PP)

B13

Lack of a central management
instance that aligns all DI phases

“[…] communication after a
successful DI depends on the
person in charge.” (UM)

B14

Cu. Lack of innovation culture in the
university’s administration and
faculties

“There are only a few people
who generate ideas […], and
sometimes DIs are even
hindered.” (IT)

B15

Lack of predefined
communication strategy
regarding internal to internal and
internal to external information
exchange

“[…] useful DIs would be
easier to implement if it would
be clear what to communicate
to whom, how and when.” (OE)

B16

Pe. Lack of IT affinity in university
administration

“[…] not open to new
technologies […] and to protect
non-affine team members [from
IT overload].” (IT)

B17

top-down driven DI approachmay bear downsides for DI process execution, e.g., limited
triggering options for the initiation of DI (B2). Third, the BPM core elementMethod/IT
takes a key role in the overall DI process.

Regarding Table 3, we identified Method/IT-related drivers within every DI action,
which in most cases refer to activities and tasks of the IT department, e.g., by providing
personal contact points for the technical support of users (D7). In addition, we observed
the IT department to be a leading actor in other core elements thanMethod/IT. For exam-
ple, the IT staff at GU is also responsible for handling the user manuals and guidelines
for new technical systems (D8), which increases the acceptance of the users regarding
the DI outcome. Further, the IT department promoted and conducted a live demonstra-
tion of the targeted DI outcome ofU1 forGU’s administration staff by organizing a visit
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to another university where the respective digital solution was already implemented and
operational (D6). Accordingly, our data suggests that the IT departmentmight be amajor
facilitator of the DI process. The university management in turn has a positive impact
primarily during the initiation of the DI process as it anchors DI initiatives at the strategic
level in GU’s structure and development plan (D1).

Regarding Table 4, we did not identify any barriers for the DI action Develop but
manyOverarching (B10-B17) barriers. This illustrates thatDevelop, which is dominated
by the ITdepartment atGU, hardly leads to directly assignable problems.On the contrary,
we identified some Overarching aspects during the interviews to be particularly severe
in hindering the entire DI process, e.g., the lack of perception and management of DI
as a process (B11). Further, it is noteworthy that more than half of all identified barriers
are characterized by the “lack of” activities or structures, e.g., a lack of documentation
of the DI process (B12). There are fewer barriers referring to activities or structures
of GU actively hindering or slowing down the DI process, e.g., the mainly top-down
driven initiation (B3). Rather, the absence of certain activities or structures seem to have
a negative impact on the DI process.

5.2 Overall Findings and Practice Recommendations

To further condense and structure the insights of our case study, we derived five overall
findings drawing from the identified drivers and barriers together with practice recom-
mendations (Table 5). Each finding relates to several drivers and barriers representing an
overarching dynamic or pattern that significantly influences the DI process at GU. These
findings aim at providing a starting point for developing actionable practices for public
universities to overcome barriers and strengthen drivers for the successful development
of DI. In this sense, we present two practice recommendations for each finding that we
have developed in close collaboration with GU’s CIO.

Table 5. Overall findings and practice recommendations

# Overall findings Practice recommendations

1 DI at GU follows the structure of a process
but is neither perceived nor documented as
such nor supported by BPM methods and
practices
See also: B12, B13, B15, […]

• Develop a process understanding of the DI
process across management levels

• Institutionalize the DI process via targeted
management roles and structures (e.g., DI
office

2 The DI process at GU does not fully
leverage the innovation potential of its
stakeholders due to a decentralized but
hierarchical organizational structure that
hinders the DI culture
See also: B3, B5, B11, […]

• Define communication channels and
interfaces to involve and encourage a
broader stakeholder base in DI idea
generation and conceptualization

• Institutionalize feedback with a broad range
of stakeholders to regularly evaluate
whether the DI addresses their requirements

(continued)
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Table 5. (continued)

# Overall findings Practice recommendations

3 The DI process at GU is mainly driven by
pain points and legislative changes. It
therefore focuses on addressing local
problems rather than overarching
opportunities
See also: B2, B9, D1, […]

• Explore opportunities for long-term
value-adding and reusable solutions within
legislative changes

• Foster bottom-up generativity by giving
employees opportunities to develop ideas
besides day-to-day operations

4 The DI process at GU is strongly affected
by culture- and people-related concerns
regarding the use of digital technology
See also: B6, B17, D6, […]

• Reduce resistance and fear of change by
demonstrating the need and benefit of DI
via trainings

• Ensure a consistent level of basic IT
know-how among university administration
staff

5 The DI process at GU benefits from a high
performing IT-department that drives the
DI in the Develop, Implement, and Exploit
phase
See also: D3, D10, D12, […]

• Provide the IT department with the
necessary resources and infrastructure to
handle the increasing demand for DI

• Establish long-term partnerships between
external IT service providers and the IT
department

6 Discussion, Limitations, and Conclusion

Public universities need to engage in Digital Innovation (DI), not only to tackle implica-
tions of COVID-19 related restrictions but also to benefit from novel digital opportuni-
ties and address expectations by society to serve as pioneers for DI. However, meeting
these expectations is still a challenge, particularly in the administration andmanagement
context, where further understanding and guidance are needed. Thus, in this study, we
investigated how public universities enact the DI process and what related drivers and
barriers are. To address this question, we conducted an exploratory single case study
at a German public university (GU) and examined the DI process of three digital pro-
cess innovations. Building upon Business Process Management (BPM) as a theoretical
lens, we presented drivers and barriers of the DI process at GU structured along four
DI actions [15] and five BPM core elements [16] as our main contribution. In a second
step, we enhanced the overview of drivers and barriers by deriving overall findings and
practice recommendations for public universities.

Regarding theoretical implications, our findings contribute to existing research on
innovation andDI (e.g., [10, 13]) in the public university context byproviding a structured
overview of drivers and barriers of the DI process. Thereby, we specifically contribute to
the explanatory knowledge on DI at public universities by increasing our understanding
of how their DI process unfolds in the real world. Further, we place our results at the
converging interface of DI and BPM, which has been highlighted as a beneficial subject
of investigation by recent research (e.g., [8, 18]). With our study, we demonstrate how to
combine the two research streams by studying DI as a process while applying BPM as a
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theoretical lens. We draw from both disciplines and present a two-dimensional analysis
approach based on the DI actions and the BPM core elements. As a result, our study
contributes to the management-related research avenue in BPM, as identified by van
Looy and Poels [18], to study and improve the DI process. Further, Mendling et al. [8]
proposed that methods from DI and BPM could benefit each other. Our study shows that
applying an empirical method (i.e., a case study), which is widely used in DI research
but rarely in the BPM domain [8], facilitates research at the interface of both disciplines.
Accordingly, we believe that the drivers and barriers, in combination with the overall
findings, are a valuable starting point for future research on the DI process providing a
basis for further theorizing and testing.

Regarding managerial implications, our work provides public universities with valu-
able insights into possible drivers and barriers of their DI process. For instance, public
universities’ decision-makers may want to screen the overview of drivers and barriers
to prepare and accordingly refine their own DI process. Thereby, the practice recom-
mendations explicitly offer a basis from which to defer practices for more effectively
managing the DI process at public universities. In future research, one should refine and
evaluate the practice recommendations in terms of their relationship to DI success.

As with every scientific work, our research is beset with limitations that stimulate
future research. First, despite the single case of GU fulfilling the criteria for a represen-
tative and revelatory case that is worth analyzing in-depth, our results provide limited
generalizability to a broader context [14]. Thereby, the identified drivers and barriers,
but also the overall findings and practice recommendations, require further quantitative
and qualitative examinations. For instance, future studies should conduct a multiple case
study and investigate the DI process at other public universities to compare their find-
ings to ours [32]. Further, our results should be evaluated regarding their transferability
to the public sector in general or even the private sector. Second, while we intensively
studied the data collected at GU, our overall period for data collection and the number
of units of analysis were limited. Future research may delve deeper into the case at hand,
include more units of analysis, and integrate other sources of data, for instance, by also
considering the quality of the DI outcome. This way, one could adjust or complement
our list of drivers and barriers and even aim to prioritize them regarding their impact on
the success of the DI outcome. Third, as the convergence of DI and BPM is an emergent
research topic, there were no existing field-tested methods or frameworks to structure
and analyze our data. Although our chosen dimensions, i.e., the DI actions and BPM
core elements, have initially proven their value and applicability, future research should
address the need for tools specifically developed for studies at the intersection of both
research streams, e.g., as proposed by Mendling et al. [8].

Overall, our study addresses the increasing relevance ofDI for public universities.We
derived valuable insights on drivers and barriers of the DI process at public universities
and believe that our findings and practice recommendations are an appropriate starting
point for the development of more generalizable theory andmore fine-grained actionable
practices in the future. In linewith other fellow researchers,we see great value in bringing
DI and BPM together and hope that our study shows the potential of their convergence
in the context of public universities and the public sector in general.
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Abstract. Despite cries from practice and academia, stakeholder engagement in
Business Process Ma(BPM) is an under-explored area of research. Developing a
comprehensive understanding of what factors influence stakeholder engagement
is the first step towards addressing this. While diverse factors are briefly men-
tioned in prior literature, there has not been any holistic synthesis nor empirical
investigation to this. This study presents the first empirically supported frame-
work of stakeholder engagement factors for process improvement projects. The
framework was built with a synthesis of literature applying Kassin’s [1] social
psychology framework as a theoretical lens, and empirical insights from a rich
case study conducted at an Australian Financial service provider. The framework
presents five levels namely; ‘micro’, ‘meso’, ‘exo’, ‘macro’, and ‘chrono’ which
represents different ‘systems’ that host a range of factors that influence stake-
holder engagement in process improvement projects. It provides an invaluable
point of reference for BPM practitioners when designing stakeholder engagement
and intervention programs, especially to develop sustainable strategies for change
that enables successful outcomes. It also is a solid foundation and springboard for
further academic research.

Keywords: Process improvement · Stakeholder engagement · Stakeholder
theory · Case study · Robotic Process Automation · RPA · Organizational change

1 Introduction

Business Process Management (BPM) is rapidly growing, and its impact has exponen-
tially increased in the digital age.AsBPMinitiatives involve rapid organisational changes
[2] it is important that employees and other stakeholders are fully engaged and support-
ive of the proposed process changes, for them to succeed. Involving employees in the
change and doing so early improves long term outcomes in threeways; through a psycho-
logical commitment to the end processes and systems; improved project requirements
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identification; and success of the implementation [3]. Despite this, the factors influenc-
ing stakeholder engagement, even in broader stakeholder literature are under-explored
[4]. Within BPM literature itself, the importance of effective stakeholder engagement
is mentioned by many [e.g. 5, 6], and some directly and/or indirectly mention certain
aspects that may contribute to the engagement of stakeholders [e.g. 7, 8], however,
no research to date identifies a comprehensive set of factors which is vital to design
impactful interventions.

This study aims to address this gap by exploring the question: “What factors influ-
ence the engagement of stakeholders when undertaking BPM projects?” In the context
of this study the definition of the term ‘stakeholder’ is adopted from Freeman [9], and
is defined as ‘any group or individual who can affect or is affected by a business pro-
cess management project’. The definition of ‘engagement’ was adapted fromKahn [10].
Employee engagement is ‘when stakeholders are ‘physically, cognitively and emotion-
ally’ involved in the BPM project’. This view of stakeholder engagement is supported
by literature such as de Waal, Batenburg [3].

The remainder of the paper first presents the theoretical background, followed by
the case study design. The case study findings are then presented, and the paper con-
cludes with a summary discussion. A separate ‘Ancillary Material’ file is made available
which contains information that supplements the main paper (see: https://tinyurl.com/
nbmymjj3).

2 Background

A multi-phased hermeneutic literature review (following [11]) was conducted. The aim
was to produce a Theoretical review Paré et al.’s [12] that would result in an a priori
framework of process improvement engagement factors. This process was iterative. In
the first iteration, literature specifically from the BPM field was reviewed. The study
results of the first phase confirmed that there was limited research which had attempted
to specifically address the issue of stakeholder engagement in a BPM context. While
stakeholder engagement was recognized widely as an important facet for BPM success
with some scholarsmentioning potential contributing engagement factors, no research to
date identified a comprehensive set. The search was next extended to broader domains
recognized as relevant to BPM. Examples included searching within the domains of
change management and employee engagement. Factors identified from the literature
analysis were used to generate an initial set of codes. These codes were then used for a
round of axial coding to identify key themes [30, 31]. Further details on the conduct of
the literature review is presented in Sect. 1.1 of the Ancillary Material.

A series of potential stakeholder engagement factors emerged from this (see Column
2 of Table 1). These were initially grouped into five high level themes (Column 1 of
Table 1), namely; 1) Individual, 2) Environmental, 3) Project-related, 4) Interpersonal,
and 5) BPM lifecycle. Individual factors related specifically to particular stakeholders
(e.g., prior history of change). Environmental factors pertained to factors that influence
the stakeholder group from their surroundings and are outside their own control (e.g.,
location). Project-related factors related to the specific qualities of the Business Process
Management (BPM) project. Interpersonal factors included communication from the

https://tinyurl.com/nbmymjj3
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project to the stakeholder group, and interpersonal relationships between stakeholder
groups. Finally, the ‘BPM lifecycle’ theme captured the continuous cycle for managing
processes across the phases of the project. This was central and cut through the other
four themes. Part 1.2 of the Ancillary Material provides a rich overview of these themes
and factors and they are also revisited below as the case study findings are presented.

Next, we sought for a meta-theoretical lens that could assist to: (i) better structure
the emerging literature results, (ii) provide a theoretical base, and (iii) provide ‘sense-
making’ support. A closer look at the extracted factors pointed to complex relation-
ships between them. For example, the factors were operating at different levels, with
complex interrelationships between different groups of factors, potentially influencing
engagement in different directions (both positively and negatively) thus forming complex
ecosystems.Within stakeholder literature, the complexity of stakeholder ecosystems has
been acknowledgedwidely (e.g. [13, 14];) and is recognized to be underexplored [4]. The
complex ecosystem of BPM engagement factors and layers we saw from the literature
analysis, suggested a theory that captured a ‘systems’ perspective, as a potential meta-
theoretical lens to further systematize and strengthen the conceptualization stemming
from the literature review.

Given that BPM projects are social exercises that occur in the workplace, prior
systemsmodels that related to understanding engagement was looked at.We particularly
tried to see if the literature-based themes and factors ‘made sense’ when applied to
these theoretical views. The systems theory lenses of Bone [15] and Kassin et al. [1]
were seeming fits. Both are based on similar theoretical foundations, provide a holistic
overview of their topics, and are similarly structured. However, the various levels and

Table 1. Summary results: Literature review findings mapped to Kassin et al. [1]’s (2015) model

Literature review Adapted definitions Kassin et al. [1]’s model

Themes Resulting factors# Supporting
literature

Levels Definitions (from p.
xi)

Individuali History of changei [16, 17] Personal factors
affecting engagement
of individuals or
specific stakeholder
groups

Micro “The intra-individual
level that considers
the characteristics of
the individual”

Organisational rolei [18]

Personalityi [19]

Agei [20]

Type of rolei [8]

Genderi [7]

Length of servicei [17]

Interpersonal<> Office politics<> [21] Interpersonal
interactions between
stakeholder (s) or
factors influencing
those relationships, in
which they play a
direct role

Meso “The interpersonal
networks – the people
that they share their
lives with and those
they interact with”

Communication <> [22]

Trust relationship
between
stakeholders<>

[16]

Supportive
leadership<>

[23]

Principle of
involvement <>

[6]

(continued)
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Table 1. (continued)

Literature review Adapted definitions Kassin et al. [1]’s model

Themes Resulting factors# Supporting
literature

Levels Definitions (from p.
xi)

(Organisational level)
Environmentalˆ and
project+

Staff workload ˆ [21] Environmental factors
which influence
stakeholder(s) at a
project or
organisational level

Exo “The environments in
which they live, work
and interact”

Locationˆ [17]

Project type + [24]

Resourcing + [25]

Cultural alignment + [26]

Length of time
project takes +

[23]

Number of projects
in progress +

[21]

Project objectives + [25]

(Macro level)
Environmentalˆ

Culture ˆ [27] Environmental factors
beyond the
organisation

Macro “The institutional
patterns of culture
(such as customary
practices and beliefs)
that help to define
them and their
behaviours”

Economy ˆ [21]

BPM lifecycle Lifecycle stages e.g.,
identification,
discovery, analysis,
redesign,
implementation,
monitoring and
control##

[18] The changing
importance of
different factors over
the lifecycle of the
project

Chrono Kassin et al. [1]
defines this as; “The
socio-historical
context in which they
live”. However, the
original studies that
Kassin adopts from
[i.e. 28] defines this in
terms of events and
transitions over time
which aligns with the
BPM lifecycle
changes

#The mapping of the factors to their themes is denoted by superscripts as follows: Individual= I,
Interpersonal = <>, Environmental = ˆ, Project = +

##These lifecycle stages can change depending on which BPM lifecycle model adopted

their definitions presented by Kassin et al. [1] resonated more closely with our literature-
based results, and was hence selected.

Table 1 presents a multi-level conceptual model of BPM stakeholder engagement
factors, that maps the literature findings with the Kassin et al. [1] model. The original
levels and definitions fromKassin et al. [1] are presented in Column 6 and the definitions
as adapted in this study presented in Column 4. Taking a Systems view necessitated the
original groupings to be reconfigured. Column 2 depicts the related factors (derived from
the literature) pertaining to the revised groupings.
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3 Case Study Design

A single in-depth case study approach was applied. Single case studies are known to
provide rich insights and be well-suited for exploring novel and under-researched topics
[29]. The unit of analyis was a single process improvement project. A suitable case
candidate would; (i) be a clearly identifiable ‘BPM project’ - with clear objectives and
an identifiable start and end; (ii) can be an internal or external process- but where the
end-to-end process has been improved; (iii) multiple teams have been impacted or were
involved with the improvement initiative; and (iv) the full project (or a recognizable
phase) has been completed within the past six months of data collection.

The case study was undertaken in ABC Finance1 an ASX listed, regional Australian
Company. The Finance industry, in which the company operates, is constantly evolving
and is challenged, with pressures from industry and regulatory changes. This drives the
company’s own ambitions to meet stakeholder needs and remain competitive. A Robotic
Process Automation (RPA) optimization project was selected. This project sought to
improve the performance of an RPA process which prepared new finance requests to
be ready for a Credit Manager to assess; a process which involves many administrative
activities and has varying impacts across different teams within the organization.

The predominant source of evidence was interview data. Other evidence from a
demographic questionnaire and project related documentation were used to augment
the interviews. Nine participants were recruited voluntarily across a broad spectrum of
project and organisational2 roles they held (see Table 2).

Table 2. Interviewee overview

Project role Organisational level

1 Project Manager Team Leader

2 Project team member (business representative) Senior Management

3 End user Team Leader

4 Project team member Individual Contributor

5 End user Middle Manager

6 Project team member Individual Contributor

7 End user Individual Contributor

8 End user (external) Individual Contributor

9 Project sponsor Senior Management

1 ABC Finance is a pseudonym to protect the anonymity of the organization and participants.
2 The organisational level represents the reporting hierarchy within the case study. Senior Man-

agement, reports to an executive (a category not included in the sample respondents); a Middle
Manager, has team leaders report to them; a Team Leader has individual contributors report to
them and; an Individual Contributor have no direct reports.
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Stakeholder engagement is a mature topic in many business domains, even though its
investigation within the BPM project context has been limited. Therefore, it is likely that
many factors affecting stakeholder engagement will have been investigated previously.
In this study we used a hybrid approach between confirmatory and exploratory analysis
to coding and theory development. This approach acknowledges that a “fine line exists
between interpreting data and imposing a pre-existing frame on it” [30].

In the first round of coding, open codes were generated without reference to our a
priori codes derived from literature [31]. After this initial round, we integrated our codes
with the pre-existing codes and themes we had previously derived from research liter-
ature. Following this, we considered the remainder of the data that was not adequately
explained by any existing theory. In this round we adopted a more grounded approach
for the remainder of the data. Our emergent and unexplained findings were coded induc-
tively and new codes were generated. Finally, theoretical coding [30, 32] was carried
out on both the existing and emergent codes to identify relationships between cate-
gories and generate a new theoretical framework. The coding approach was governed by
guidelines set by a pre-defined coding rules [38] and supported by the NVivo tool. The
coding-quality was maintained - with a second coder reviewing the coding and regular
corroboration sessions where the coding was discussed, challenged and improved.

4 Findings

The in-depth insights from the single case study were used to further re-specify and
validate the literature-based synthesis (presented in Table 1). This resulted in a total of
36 engagement factors across five levels as visualized and summarized in Fig. 1 and
Table 3. 21 factors identified in the literature were instantiated in the case data, 3 did
not, and 12 new factors emerged from the case data. The bracketed numbers in Table
3 represent the number of interviewees who mentioned the factor and the number of
times the factor was mentioned overall. Engagement factors newly identified from the
case data, are displayed in bold and italics. An asterisk ‘*’ denotes factors influencing a
subset of a stakeholder group (remaining factors were found to influence all stakeholder
groups). The greyed rows with the ‘ˆ’ symbol denotes engagement factors mentioned
in literature but not instantiated in the case study data. Further supporting evidence is
made available in Part 2 of the Ancillary Material.

Fig. 1. Multi-levels of BPM engagement factors
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Table 3. Engagement factors evidenced through the case study

Levels Engagement factor*

Micro Personal factors affecting
engagement of individuals
or specific stakeholder
groups

History of change
(7_28)

The impact of prior
change experience on the
individual

Organisational role*
(4_4)

Role played within the
organisation

Personality (9_41) The character traits of the
individual

Age (3_4) The chronological age of
the individual

Type of Roleˆ (-_-) If the stakeholder role is
for a specialist or
generalist

Genderˆ(-_-) If the stakeholder is male,
female or other

Length of service (3_7) How long the stakeholder
has been in the role

Impact on day-to-day
role*(7_54)

How the project has
changed daily
responsibilities or
impacted their
responsibilities

Impact on role
status*(8_22)

How the project has
impacted how the person
perceives their role’s
security and standing in
the organisation

Prior role experience
(6_15)

Experience from previous
role(s)

Experience with the
domain (8_33)

If stakeholders have
experience with the
domain (RPA)

Interest in the domain
(7_10)

If stakeholders have an
interest in domain (RPA)

Meso Interpersonal interactions
between stakeholder (s) or
factors influencing those
relationships, in which they
play a direct role

Supportive Management
(8_32)

Providing supportive
actions and psychological
support to subordinates

(continued)
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Table 3. (continued)

Levels Engagement factor*

Office politics* (2_3) Actions which promoted a
particular area/person’s
self interest

Relationships between
stakeholders (9_46)

Interpersonal business
relationships between two
or more individuals or
groups

Trust (7_19) To be able to rely on the
information provided or
the behaviour of someone
being correct and honest

Communication
(9_130)

Exchange of information
either face to face or in
writing, delivered to
individuals or groups

Principle of
involvement* (4_4)

Stakeholder being
involved with tasks within
the project

Respect* (3_10) Perception of being treated
with (or affording) people
respect

Sharing success (6_11) Celebrating project
successes

Vested interest/KPI
(7_27)

Motivation to succeed,
driven by personal
performance metrics

Education/training
(9_46)

Knowledge building and
sharing about the project
technology

Exo Environmental factors
which influence
stakeholder(s) at a project or
organisational level

Project type (9_165) The category of project,
including its
characteristics

Resourcing (8_40) How many people are
available to complete
required tasks

Location (3_15) Where the stakeholder/s
are physically located

(continued)
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Table 3. (continued)

Levels Engagement factor*

Cultural alignment
(3_5)

If the project is aligned
with the company’s culture

Length of time project
takes (8_29)

Total time the project takes
from commencement to
completion

Number of projects in
progress (6_16)

How many other projects
are being undertaken at the
same time as the case
study project

Project goal (9_58) Whether the project goal is
incremental or
transformational change

Staff workload (1_1) The amount of work
required to be completed
by stakeholders

Organisational
priorities (7_40)

The perception of what the
organisation is focused
upon

Infrastructure (9_33) The IT infrastructure, or
organisational capability
to deliver the project

Macro Environmental factors
beyond the organisation

Culture (9_46) Team, Organisational or
national culture, including
shared values and
assumptions

Economyˆ (-_-) The country’s production
and consumption of goods
& services

Industry (7_15) A group of companies
with similar purposes

Chrono The changing importance of
different factors over the
lifecycle of the project

BPM/Project lifecycle
(9_84)

Stages of the BPM or
project lifecycle

4.1 Micro Level Findings

There is strong support for the micro level of the engagement model, with five (5) of
the seven (7) a priori factors instantiated (but two (2) did not), and five (5) new factors
identified. Overall, micro level factors appear to be more important to stakeholders at
the individual contributor level than to senior stakeholders (see Sect. 2.1 of Ancillary
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Material). This suggests that the more senior your role, the less you are impacted by, or
aware of, the micro level factors that influence engagement.

Apriori factors supported by the case data:History of changeBordia et al. [16] andChun,
Davies [17] found the history of change to be highly influential on people’s engagement.
Seven (7) of the nine (9) interviewees also mentioned this factor. The investigated case
was an optimisation project for a prior RPA implementation, with the aim of reducing
the RPA exceptions. It is possible that the original project impacts the way people think
about the subsequent one. Past experiences mentioned by interviewees were both posi-
tive and negative and could reasonably be expected to influence engagement similarly.
Organisational Role also had support with four (4) interviewees mentioning this factor.
Roles do play a crucial part in influencing other people’s engagement; “if I don’t have
an optimistic outlook then those people sitting underneath me definitely won’t as well”
(interviewee #5). Herzig, Jimmieson [18] shared similar findings related to the middle
managers’ role. The Personality factor was very strongly supported, with all intervie-
wees referring to some aspect of personality, specifically traits and characteristics. In
particular, seventeen (17) quotes support the personality trait ‘openness to experience’,
and nine (9) to ‘conscientiousness’. This confirms the findings presented byDevaraj et al.
[19]. Both Age and Length of service were supported. As expected, being younger was
associated with greater engagement than being older. Cordery et al. [20], also found
older persons were less open to change: “Perhaps I do just like plodding along” (an over
55 interviewee). ‘Length of service’ was similar, comparable with Chun, Davies [17]
who identified stakeholders with a longer tenure (+10 years) appear less engaged.

Apriori factors not instantiated by the case data: The lack of supporting evidence for ‘type
of role’ and ‘gender’ may be due to the way in which this data was collected. Information
regarding specialist roles and gender were collected in a demographic survey, with the
intent that the analysis of any differences would be drawn out in the analysis, as it was
deemed unlikely that interviewees would recognize the impact of the type of role they
had or how their gender impacted their engagement. In addition, with only three female
interviewees, if and how gender played a role was not mentioned nor probed to avoid
raising potential gender bias.

New Factors: Impact on day-to-day role was well supported with fifty-four (54) refer-
ences. The impacts of this factor are likely to be of particular importance in projectswhere
the outputs are delivered iteratively. Earlier iterations change the impacted stakeholder’s
role and could potentially change their level of engagement. This is demonstrated in
the quote “I’ve lost control over the process” Interviewee 7 Impact on role status was
mentioned by a majority of interviewees, but with significantly different interpretations
of the ‘impact’. Middle and senior managers believed that the team were concerned
about being made redundant as a result of robots being introduced; while the individuals
themselves were not concerned, as they understood the project to be about assisting with
growing the business. Prior role experience is similar to ‘history of change’, but refers
to experience in previous positions, rather than to specific change projects. Experience
gained from working in other roles, either within or externally to the organisation, could
result in changes in engagement, either positively or negatively.
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Two new engagement factors were more specifically related to the technology being
implemented, in this case; RPA. Experience with the domain enabled people to know
whatwas expected from the process improvement initiative, which can influence engage-
ment, as can a lack of experience with RPA, both of which can be included within this
factor. Eight (8) of the nine (9) interviews indicated that experience with RPA tended to
increase engagement, whereas a lack of experience with RPA appeared to lower engage-
ment. For example “we had a lot of knowledge of RPA..so, we had an expectation that
we need to do it [optimize].. and the results showed that it was good that we had done
it.” Interviewee 1. Interest in the domain could have the potential to impact engagement
as shown in the quote “I was very much excited about robotics”. Interviewee 2. Where
a technology influences people to be excited about it, they could be highly engaged
with its deployment. If the technology does not live up to expectations there is also the
possibility of disillusionment, which would have the opposite effect. This factor could
interact with factors at other levels too, for example if there are many competitors with
high profile cases of RPA thismay increase stakeholders’ interest in the technology.Meso
level findings.

All six (6) engagement factors identified in the literature were identified within the
case data, with four (4) additional factors recognized. The data also indicated that the
majority of the meso level factors could impact people at all levels of the organization
(see Sect. 2.2 of Ancillary Material). Exceptions were ‘respect’ and the ‘principle of
involvement’ which appear to be more relevant to stakeholders at lower levels of the
organisation. Also, these factors are tightly linked to each other.

A priori factors supported by the case data: Supportive management is an important
factor in successful change [23] and was confirmed in eight (8) of the nine (9) interviews
including bothmentions of practical and emotional support. Conversely, a lack of support
from a manager also was a factor, negatively impacting engagement. Office Politics
was linked with this factor appearing in two (2) interviews, confirming the findings of
Nicholds, Mo [21]. Relationships between stakeholders was a factor raised by every
interviewee. Stakeholder relationships are important particularly across levels. Jones,
Van de Ven [23] referred specifically to the relationships between employees and their
managers. As expected, trust impacts engagement, with seven (7) interviewees, referring
to trust. Bordia et al. [16] also found ‘trust’ an important factor for BPM success.

Communication, was strongly supported and mentioned on average fourteen (14)
times in every interview. Finney [22], recognised different stakeholders require different
types of ‘communication’ with different levels of detail. Kotter [33] suggests communi-
cation is a critical success factor when implementing any type of change. The principle
of involvement [6] was also supported. Although this factor was only mentioned once
in four (4) separate interviews the impact of the factor appeared to be substantial. For
example, interviewee #7 said “I felt very excluded, and I would be in tears quite a bit
[as…..] nobody came and sat with me to see how the [the process] worked” (Interviewee
7), whereas, interviewee #3 stated “I’m excited by it because I’m involved in it”. Both
of these examples demonstrate the power of this factor.

New Factors: Four (4) additional engagement factors were identified at this level, the
first of which was Respect. The importance of respect was established in one third of
the interviews. Moreover, the impact of this factor appeared high. Engagement was
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reduced where people felt they did not have the ‘respect’ of others, especially if they
believed their voice was not being heard. For example, interviewee #3 said: “I didn’t
quite feel respected for my skill set anyway, and then they wanted me to push changes,
and communicate some of these robot back-end changes”. This factor appears most
relevant to individual contributors and team leaders as they are most likely not to feel
excluded by a change process. Another important new engagement factor found in this
case was Sharing Success, mentioned in two thirds the interviews. The SeniorManagers
instigated the sharing of the successes. These successes were designed to encourage
sharing behaviours within the team, i.e., improved accuracy which assisted in improving
the robot’s completion rates, as demonstrated in this quote; “having small wins and
celebrating those small wins, and then also making sure that they’re aware that we’ve
got those small wins” (Interviewee #2). However, dependent on the individual’s micro
factors the sharing of success may not always positively impact engagement and may
be met with some cynicism.

Another factor with a substantial impact on engagement levels was Vested Inter-
est/key performance indicators (KPIs). This was mentioned in most of the interviews
(7 out of 9). Examples such as: “Well, I am frustrated [….] we are getting pressure from
different areas to achieve different things, but they conflict each other” (Interviewee
#3), demonstrate how stakeholders can face challenges around this, often hidden, aspect
of engagement. The engagement factor ‘vested interest/KPIs’ was mentioned by most
interviewees across all levels of seniority and types of project role, demonstrating its
widespread relevance. However, there is a stronger focus for more senior employees. As
individual KPIs drive behaviour [34], this is something which should always be attended
to as part of a BPM project and may impact stakeholders at any level of the organisation.
The final additional factor was Education/training. This factor was discussed in every
interview. Evidence indicates that not only is it important that stakeholders at all levels
of the organisation be educated about the technology, but also, it is possible to see the
consequences of stakeholders not being educated/trained. This was demonstrated by
Interviewee #9 who said; “I don’t care that people feel aggrieved or whatever, but just
feel aggrieved for the right reason…. It actually made me realise that people really don’t
understand”.

4.2 Exo Level Findings

All eight (8) exo level engagement factorswere identifiedwith two (2) additional engage-
ment factors confirmed. The engagement factors of this level were strongly supported
in equal measure by people across all levels within the organisation with more senior
employees having mentioned the exo engagement factors more often (see Sect. 2.4 of
Ancillary Material).

A priori factors supported by the case data: Project typewas the most strongly supported
engagement factor across all 9 interviews.This is a broad category and includes the reason
for the project. In this case the project was one aimed at growth so the project was viewed
in a very positive way. This supports the findings of Bandara et al. [24]. Resourcing was
also supported across eight (8) of the nine (9) interviews. This supports the finding of
vomBrocke et al. [25], who explain how resources, including personnel, are important in
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BPMpractice as it impacts the ability to collaborate and innovate. Locationwas found to
impact engagement with remote-based people expressing frustration being in a different
location. This confirms the findings of Chun, Davies [17] who found remote employees
had a more negative attitude towards change, in the case of a company merger. Cultural
Alignment, was discussed in three (3) interviews., supporting Latta [26], who found
both content and process need to be culturally aligned. Further, Jones, Van de Ven [23],
found that the longer the change went on the more resistance to change was evident,
confirming the length of time the project took was an important engagement factor.
Number of projects in progress was also supported as an engagement factor in six (6)
interviews. Nicholds, Mo [21] also note there is a limit to the amount of change that
people can cope with.

Project goal was a factor identified in all interviews supporting the findings of
vom Brocke et al. [25] who suggest that exploitation (i.e. incremental improvement)
and exploration (i.e. radical change/innovation) change the context of BPM projects.
Staff workload was found to be an engagement factor, although only supported in one
interview, the impact on engagement noted was substantial. This supports the findings of
Nicholds,Mo [21]who identified that workload, like the ‘number of projects in progress’
impacted people’s capacity for change.

New Factors: Two new factors were found including: Organisational priorities and
Infrastructure. ‘Organisational priorities’ was mentioned in seven (7) of the nine (9)
interviews. This factor, which is related to the perception of organisational focus is linked
to engagement. For example, if stakeholders believe the outcomes are important to the
organisation they may be more engaged, as expectancy theory3 supports. This may be
explicitly communicated or a perception, as was the case in the following quote:

“As an organisation, I don’t know whether we’re really behind RPA… If I didn’t
know any better I’d say we were getting out of robotics as we were trying to get in as a
business” (Interviewee #2).

The second new factor, ‘Infrastructure’, was also well supported across all nine (9)
interviews. This is another engagement factor which may be more relevant in projects
which deliver iteratively. In sequential phase management of projects, where the product
is delivered at the end of the project, infrastructure issues may not be evident throughout
the project and unlikely to substantially influence engagement. This factor may poten-
tially influence engagement for all stakeholders as they are likely to spend more time
dealing with issues which arise from this factor, e.g. managing customer expectations,
productivity impacts and time spent trying to resolve the issues. Within the case study
this was expressed in the following quote: “That’s part of the issue that we’re having
now with network slowness; they [applications] go in [to the robot] and they don’t go
out” (Interviewee #5).

3 Expectancy theory posits that individuals will only make an effort if they believe that the amount
of effort result in a particular performance and they will only exert a particular behaviour
(performance) if they expect to achieve a certain outcome (McShane et al., 2010).
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4.3 Macro Level Findings

The macro level findings supported in the case study appear to operate less explicitly
than factors at other levels. Overall support for the a priori Macro level engagement
factors was mixed, with one, namely culture instantiated with the case data; and the
other, economy not. However, an additional factor was evident, which does have links
to economy (hence are described together below).

A priori factors supported by the case data: Evidence of ‘culture’ impacting engagement
was found throughout the case study, from all interviewees. It was apparent from the
interviews that the introduction of the RPA technology had impacted the team culture,
as stakeholders openly discussed how the project had changed the norms of operation.
This finding supports De Bruin, Rosemann [27] who found ‘culture’ to be a critical
component of BPM success.

A priori factors not instantiated by the case data, and new factors: Although there was
no support in the case study for the factor of economy [21] a new factor - industry - was
evident. We see this being related to the original factor ‘economy’– as a more concen-
trated aspect of it (i.e., Industry being a ‘part of’ economy) with seven (7) interviewees,
recognising the factor. Respondents were not able to explicitly relate to or differentiate
to these. However, it was evident that, whilst the interviewees were not conscious of
the influence on them, that industry developments did impact people at all levels of the
organisation. This is supported with comments such as: “big [companies] are shedding
people. They’re going away from non-core activities, and they’re all trying to automate,
and all our competitors have robotics” (Interviewee # 9).

4.4 Chrono Level Findings

At this level, the BPM lifecycle is not an engagement factor itself, but is important as
to how this interacts with the factors at the other levels. Many of the comments made
by interviewees were generalised but some were more specific: “I think educating and
getting people on board with the ideas of robotics is that it is not a perfect thing was
probably more important to the start” (Interviewee #1), which specifically mentions a
period of time and the impact this had on the stakeholder. In a further example, one of
the interviewees explained how their confidence grew over time, which is likely to have
increased their engagement; “I think I just got more confident with it, and I was like,
’oh yeah, I can do this” (Interviewee #6). This quote demonstrates an interaction with
‘experience of the domain’, because as that grew over time, so did the confidence of the
interviewee.

The importance of managing people’s engagement at different points during the
BPM project was understood by members of the project team and managers, with one
interviewee stating: “the other key is the people because you need their buy-in, but on
top of that is what I include in the people, say it’s taking them through the journey”
(Interviewee #2). This quote indicates the changing needs of stakeholders at different
points in the project and the need to respond to them differently. In a further example the
impact of the iterative nature of the project is revealed: “So, as we’ve gone through that
optimisation, we’ve changed the way things worked, and it makes perfect sense when
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you look at from a process perspective. …… So, to say, ’look, this sounds great, but
it’s not one piece. You’re impacting a lot of people.’ It’s very difficult to communicate”
(Interviewee 5). This quote not only shows how the project changed the process over time
but also the importance of ‘communication’ and the complexity of communicating the
message repeatedly over time. It is critical that the communication strategy is carefully
considered during planning and execution Kotter [33]. The chrono level is important,
irrespective of the lifecyclemodel used (as situations and the engagement of stakeholders
change over time irrespective of which model is used) and is applicable to all levels of
the organisation.

5 Summary Discussions

Overall, we established that important BPM stakeholder engagement factors exist at
many levels. Our model identifies five levels; namely; ‘micro’, ‘meso’, ‘exo’, ‘macro’,
and ‘chrono’ which represents different ‘systems’ that host a range of factors (36 in
total, 33 supported with case data) that influence stakeholder engagement in process
improvement projects. There were a considerable number of individual differences of
the influencing factors across the levels.While this is not surprising in itself, the degree to
which these differences affect engagement was interesting. It seems that BPMprojects of
different typesmight generate different levels of stakeholder engagement, evenwithin the
same group of people. New technologies such as RPA generated interest, although they
also have the potential to be disappointing and to reduce stakeholder engagement if they
do not live up to expectations. Taking a slightly wider perspective, BPM projects do not
occur in isolation, but take place within organizational and technical environments, that
can have either a positive or negative effect on the project and the degree of engagement.
The exo-level factors suggest that the programmanagement approach in the organization,
which encompasses things like number of projects and organizational priorities should
be considered. Stakeholders may “zone out” if they are expected to give their attention
to too many projects simultaneously, or if their workload is too high. Even more broadly,
organizational culture and industry factors can affect the way stakeholders engage with
a specific project.

5.1 Theoretical Implications

From a theoretical perspective, we offer a number of primary contributions. This
includes: (i) confirmation and positioning of literature based and empirically derived
stakeholder engagement factors in the context of business process improvement, (ii)
harmonization and integration of these factors in a multi-layered system model, and (iii)
identification of new factors at multiple levels.

Theoretical contribution to a domain can take a number of forms, including “in-
troducing new constructs” and “better conceptualizing of existing constructs” [35].
Although many of our factors have been individually acknowledged in a range of stud-
ies, this is the first study, to our knowledge, to organize them into a conceptual framework.
Therefore, the study aligns with the theory building concepts of discovery, description,
mapping and relationship building [36]. The multi-level nature of our study is a first in
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BPM stakeholder research. We demonstrate that it is not simply factors in the immediate
environment of the BPM project that influence stakeholder engagement. BPM projects
tend to have broad impacts in an organization, affecting multiple staff members and their
work practices. The projects may be part of organizational programs of work, whichmay
be managed with varying degrees of effectiveness. While our factors have been analyzed
as engagement factors, it is not too much of a stretch to suggest that factors that might
have an adverse impact on the success of the project, such as inadequate infrastructure
or unclear organizational priorities would tend to have a negative impact on engage-
ment. It would not be an exaggeration to say that our study suggests that ambitious
BPM projects require sound management and a supportive organizational environment
at multiple levels in order to sustain stakeholder engagement.

This study offers a number of avenues for further research, including investigating
in more detail the interactions between factors, and developing instruments to evaluate
levels of stakeholder engagement and the factors that contribute to them. Since it is
well recognized that stakeholder involvement is essential to project success, our frame-
work could also be used to develop an “early warning system” for identifying waning
stakeholder engagement in a project and the factors that have contributed to it.

5.2 Practical Implications

Our study also has implications for practice. Better theorizing can help to bridge the
perceived gap between industry and academia [37]. In consideration that project suc-
cess is a desired outcome for any BPM initiative, the conceptual model presented in
this study provides practitioners with a framework to analyze the factors which may
influence stakeholder engagement at various levels. This is important as developing a
better understanding of these factors allows a practitioner to more effectively design and
manage interactions, perspectives and expectations of differing stakeholder groups. This
enhanced process management capability (though not the only influence) should provide
a practitioner with additional insight and ability to engagewith and better meet the differ-
ing needs of stakeholders through the process improvement lifecycle. In the future, our
framework can be deployed to develop a series of tools designed to assist practitioners
in enhanced BPM stakeholder engagement. These could include stakeholder analysis
questionnaires, summaries of the stakeholder groups to be considered during the BPM
project, and practical methods to deal with the most common and impactful factors at
the various stages of the project lifecycle. The model could also be used to provide
analysis of the overall landscape of the organization and be used to aid the prioritization
of BPM projects, targeting the ones which are most likely to succeed (with predicted
higher engagement levels) in that particular organization.

6 Conclusion

Stakeholder engagement is critical to BPM project success, however research into what
influences engagement has been limited. The case study confirmed (21 of 24) known
engagement factors across different domains and discovered 12 additional factors. As
discussed above, two of the factors (‘type of role’ and ‘gender’) seen in literature and not
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instantiated in the case study may be due to study design rather than the non-relevance
of the factor. The third that was not completely instantiated (‘economy’) was linked to
a new factor (‘industry’), which was a more specialist ‘part of’ the original factor.

The holistic model presented in this paper provides a framework for further con-
sideration of factors influencing stakeholder engagement in BPM projects. It provides a
broad ‘landscape’ (i.e., a holistic view showingdifferent layers of systems) of stakeholder
engagement for BPM projects which could be consulted by the practitioner to ensure all
relevant system levels have been considered. The model provides a basis upon which
the important factors can be considered, understood by both academics and practitioners
alike. This understanding of BPM stakeholder engagement will enable BPM projects to
better address the human-centric challenges and progress towards BPM project success.
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