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Abstract  Due to increased demand for food and feed, plants are being grown in 
marginal lands dominated by abiotic stresses. These abiotic stresses predispose 
plants to biotic stresses compromising the yield and quality. Mitigation efforts of 
these stresses with synthetic chemicals further complicated the situation. However, 
use of beneficial microbes opened a new horizon for managing these stresses in the 
agricultural ecosystem. To date, an appreciable amount of research elucidated the 
underlying mechanisms how these microbes, especially numerous species belong-
ing to the genus Bacillus, play a positive role in mitigating these stresses. 
Colonization of plant rhizosphere or phyllosphere by these microbes contributes to 
alleviating these stresses through up- or downregulation of major metabolic path-
ways in plants. Regulation of metabolic pathway helps in reducing/neutralizing the 
level of stressors or inducing plants to overproduce stress-mitigating biochemicals. 
This chapter compiles all the major mechanisms pertaining to biotic and abiotic 
stress alleviation in plants by Bacilli to aid in elucidating more complex mecha-
nisms by future research endeavors.
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8.1  �Introduction

Crop productivity is influenced by a combination of environmental and genetic fac-
tors (Kleinwechter et  al. 2016). Genetic potential of many crop varieties is not 
achieved since crops in most cases are grown in stressful or less-than ideal growing 
conditions, which include unfavorable edaphic and climatic environments. It is uni-
versally proven that various stress factors adversely influence the physiology of a 
plant starting from germination through growth and yield. These stresses are pri-
marily classified into two major groups: abiotic and biotic. Our agro-ecosystem is 
subjected to continuous exposure from a series of ever-changing abiotic and biotic 
factors, many of which eventually create an unfavorable environment for soil health, 
fertility, crop growth, and productivity. It is now well documented that these abiotic 
and biotic stresses can affect all aspects of plant growth including biomass produc-
tion and intended yield (Pandey et al. 2017). While all biotic stresses are of biologi-
cal origin like diseases, insects, and weeds; abiotic stresses are generally physical or 
chemical, and imposed on plants by their environment. Disease-causing organisms 
include fungi, bacteria, viruses, nematodes, and phytoplasmas. Abiotic stresses on 
plants are on the rise due to human activities that drive global warming and climate 
change, releasing toxic effluent to arable land. Despite the consequences, people 
attempt to grow crops in saline or nutrient-deficient, unsuitable land, due to the 
increased demand for food and feed worldwide. Exposure of plants to abiotic 
stresses predispose them to biotic stresses such as pathogens, insects, and may also 
reduce their ability to compete with weeds. Combined abiotic and biotic stresses 
can severely affect crop productivity. Even if these stresses occur separately, 50% 
and 30% of worldwide agricultural productivity could be lost to abiotic and biotic 
stresses, respectively. However, plants have evolved a sophisticated defense net-
work, also called innate immune system, in response to fluctuating environmental 
conditions that provide protection to some extent against these stress factors. There 
are no simple solutions to fully counteract these stresses with modern agricultural 
technologies discovered over the last few centuries. However, many plant-beneficial 
microbes living in the soil and microbes existing on or inside plants as endophytes 
or epiphytes have been found in several studies to trigger a plant’s innate defense 
system, thereby promoting growth and protecting plants from biotic and abiotic 
stress factors (Glick 1995; Radhakrishnan et al. 2014, 2017; Tonelli et al. 2010). 
These beneficial microbes contributed to boosting crop yield by minimizing either 
abiotic or biotic or both types of stresses. Among the microbes, Bacillus and 
Pseudomonas species are the major plant stress mitigators and growth-promoting 
bacteria (Kang et al. 2015a). However, the ability of Bacilli to form spores distin-
guishes them from that of Pseudomonas. The survival capacity of the members of 
this genus for a long time under unfavorable environmental conditions make them 
suitable to be used for prevention of both biotic and abiotic stresses encountered by 
plants. That is why Bacillus spp. is ranked at the top as a microbial agent for mitigat-
ing both abiotic and biotic plant stresses due to their unparalleled genetic fitness. 
Dihazi et  al. (2012) noted that organic and sustainable farming practices prefer 
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application of Bacillus or other bacterial biocontrol agents as an eco-friendly option 
to enhance disease resistance in crops, which is also considered as a safer method of 
increasing crop productivity. Use of synthetic pesticides can be reduced in modern 
agriculture by utilization of Bacillus-derived formulations or products due to their 
proven efficacy (Myresiotis et al. 2015). In addition, an appreciable number of stud-
ies have been directed towards understanding Bacillus-mediated protection of crop 
against adverse biotic and environmental stresses at the physiological, biochemical, 
and molecular levels. Similar advancements through numerous studies have also 
taken place in the area of Bacillus-based remediation or detoxification of metals and 
other pollutants from the edaphic environments. As a result, remarkable develop-
ment has occurred in elucidating the underlying mechanisms pertaining to biotic 
stress tolerance in plants by the use of Bacillus (Choudhary and Johri 2009; Ongena 
and Jacques 2008). However, information on Bacillus-mediated abiotic stress toler-
ance mechanisms are still very inadequate (Arkhipova et  al. 2007; Wolter and 
Schroeder 2012) as most of the studies on Bacillus-based abiotic stress tolerance 
focused on evaluating plant growth promoting effects rather than unraveling spe-
cific mechanisms (Dimkpa et al. 2009). Bacillus-mediated stress mitigation mecha-
nisms have been explored by many researchers to improve efficacy by using a 
consortium of beneficial microbes and combining them for diverse multiple modes 
of action. Many potential stress mitigation mechanisms that have been observed 
indicated that Bacillus spp.-induced actions on the adverse environmental factors 
and host plants are diverse, numerous, and may be indirect or direct (Berg 2009; 
Numan et al. 2018; Perez-Garcia et al. 2011; Turan et al. 2012). It is not uncommon 
for some species of Bacillus to mitigate multiple stresses if present at the right time 
in ample populations. This chapter highlights the major Bacillus-mediated plant 
abiotic and biotic stress tolerance mechanisms by comparing with plants’ innate 
responses to stresses.

8.2  �Major Abiotic Stresses and Their Impacts on Crop 
Growth and Yield

Abiotic stressors are a major cause that puts obstacle against enhancement of world-
wide crop production (Bray et al. 2000; Wang et al. 2003). Crop plants have to cope 
with adverse environmental and edaphic factors with biological mechanisms that 
are intrinsic to them like hormonal signaling (Nguyen et al. 2016) and interaction 
with beneficial microbes (Numan et al. 2018). Plant growth, development, and pro-
ductivity can suffer immensely if they fail to counteract those stresses (Pereira 
2016). As more arable land is lost to urbanization and non-agricultural use, crops 
are being grown in less-suitable areas where abiotic stresses are common. As a 
result, 50–82% of major crops encounter losses that pose a serious threat to agricul-
ture and food security due to adverse environmental conditions like drought, salin-
ity, extreme temperature, UV radiation, heavy metals, or various oxidative stresses 
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(Benedetto et  al. 2017; FAO 2016). By impairing biochemical/physiological and 
molecular processes, these stress factors (individually or combined) may induce 
numerous hostile effects in plants, eventually reducing plant growth, development, 
and productivity. Stresses from abiotic factors are now considered as one of the big-
gest potential threats all over the world to agricultural productivity that may affect 
yields up to 70% for staple food crops as projected by many studies (Kaur et al. 
2008; Mantri et al. 2012). Among many different types of abiotic stresses, accumu-
lation of various heavy metals in agricultural soil has created a major concern to the 
agriculture system and health of many millions of people in countries such as 
Zambia, Ukraine, Russia, Peru, China, and India (ENS 2006). Wang et al. (2003) 
estimated that 30% arable land may be lost by the end of 2028, and at this rate it 
may reach 50% by mid-twenty-first century due to high salinity. Other environmen-
tal factors such as the projected increase of mean temperature by 3 °C due to the rise 
in CO2 concentration by the end of twenty-first century by about 500–1000 ppm, 
which will cause heat stress to crops (Khan et al. 2013). Thus, salinity of arable 
land, nutrient deficiency, drought, metal toxicity, and unforeseen impact of climate 
change are likely to significantly worsen the problem (Anjum et al. 2014). The com-
bined effect of these stresses may result in losses of soil microbial diversity, soil 
fertility, and availability of nutrients (Chodak et al. 2015). Plants require a favorable 
growing site for their physiological and developmental processes. Less than favor-
able growing condition induced abiotic stress factors can also predispose plants to 
biotic stresses that interfere with normal growth and development thereby reducing 
productivity. Plants use their intrinsic recognition mechanism to detect and respond 
to stresses to some extent by activating the defense pathways to support their nour-
ishment (Jiang et al. 2016; Ahmad et al. 2015; Crane et al. 2011). However, this 
response may not be enough to overcome stresses if stress levels exceed a certain 
threshold. When beneficial microbes such as Bacilli are present in or on plants 
within a stressful environment, they modulate the environment and provide enhanced 
stress tolerance capacity to plants through several procedures described below.

8.2.1  �Mechanisms of Abiotic Stress Alleviation

Plants have developed an efficient innate defense network that is turned on by exter-
nal stimuli representing abiotic (environmental) and biotic stresses. Depending on 
the genetic makeup of plants, they can employ various self-defense mechanisms to 
prevent these stresses through up- or downregulation of major metabolic pathways, 
such as TCA cycle, photosynthesis, accumulation of secondary metabolites, and 
specific sugars or amino acids (Lotfi et al. 2010; Rai 2002; Lewis et al. 2001). This 
wide array of different metabolites may play a significant role in plant stress toler-
ance. For example, phytohormones profoundly influence control of specific molec-
ular mechanisms in plants, and thus optimizing plant responses against stresses of 
abiotic nature (Nguyen et al. 2016). However, presence of plant beneficial microbes 
such as Bacillus alleviate these stress factors by either reducing/neutralizing the 
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level of stressors or inducing plants to overproduce stress-mitigating biochemicals. 
During low water availability, salt and heavy metals can accumulate on top soil lay-
ers. Heavy metal accumulation in agricultural soil has also been increasing due to 
the release of industrial effluent and spread with water. Bacillus spp. if present in an 
environment can produce ample amount of exopolysaccharides and siderophores to 
bind Fe, which usually prevent the movement of toxic ions and adjust the ionic bal-
ance and water transport in plant tissues. Plants can also rapidly sense changing 
environmental conditions and defend themselves with their innate defense mecha-
nism. Plant responses to abiotic stress involve an induced metabolic cross talk 
within various biosynthetic pathways. Root system can also sense abiotic stress 
signals and respond accordingly to the stresses originating from soils (khan et al. 
2016). These responses are results of an intricate mechanism that involves changes 
at genetic, cellular, metabolic, and physiological levels (Atkinson and Urwin 2012). 
Major impact of abiotic stress is water-deficient conditions created within cells, 
which is followed by a series of biochemical, molecular, and phenotypic defense 
action (Xu and Zhou 2006; Almoguera et  al. 1995). As the number of stressors 
experienced by a plant increases, so does the complexity of their responses when 
compared to plants with a single stress. The complex nature of such responses is due 
to the activation of a specific gene along with metabolic programming in cells 
against individual stresses in a specific growing condition. Stress tolerance is a vital 
phenomenon that may vary with different stages of plant development. Abiotic 
stress responses may reduce or increase the susceptibility of plants toward biotic 
stress caused by pests or pathogens (Rizhsky et  al. 2004). This becomes more 
important in agricultural crops because, in various agricultural systems, most crops 
grow in unfavorable environmental conditions that restrict genetic growth and 
development potential of plants (Bray et al. 2000). Metabolic regulations including 
wide changes in the composition, concentration, and distribution of secondary and 
primary metabolites are among the common responses of plants to abiotic stresses. 
While secondary metabolites such as alkaloids and flavonoids produced by plants in 
response to stresses are utilized mostly for their defense, primary metabolites such 
as carbohydrates and amino acids play a crucial role in the plant’s growth and devel-
opment. Major Bacillus-mediated abiotic stress mitigation mechanisms are pre-
sented below:

8.2.1.1  �Mechanisms to Mitigate Drought Stress on Plants

Global climate change is arguably one of the most pressing ecological concerns of 
our lifetime. Future changes in water availability and increasing drought stress will 
likely alter the crop production system, ultimately leading to exploring sustainable 
mitigation measures and necessary modifications to the system. Drought was identi-
fied as a key factor that limits crop productivity among various abiotic stresses 
plants encounter in noncontrolled environments or vast crop growing environments 
that lack irrigation facilities. Incidence and effect of drought is predicted to get 
worse in the coming years as a result of global warming and adverse climate change. 
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Crop breeders continue their efforts to overcome drought problems with resistant 
varieties (Araus et al. 2002). However, it is true that many of these varieties can only 
tolerate and survive under drought stress for a short period of time. As such, any 
other natural agent such as Bacillus spp. capable of alleviating drought stress is 
considered one of the significant agricultural inputs as it relates to sustainable agri-
culture. Lack of water availability primarily restricts nutrient uptake and photosyn-
thesis as plants curtail water loss by increased diffusive resistance and make 
morpho-physiological adaptations, such as closing their stomates. As a result, plants 
lose turgidity, and leaf size expansion, stem extension, and root proliferation are 
halted. Overall, innate plant adaptation strategies against drought stress include 
either or all of physiological, biochemical (increased production of multiple phyto-
hormones, accumulation of compatible osmolytes, antioxidant and other secondary 
metabolites or signaling molecules), and molecular (upregulation of multiple 
drought stress related genes) mechanisms (Chaves et al. 2003; Krasensky and Jonak 
2012). These changes help plants maintaining turgor pressure of cells, protect cell 
membranes, macromolecules and enzymes from oxidative injury (Krasensky and 
Jonak 2012; Gill and Tuteja 2010). Unfavorable environmental stimuli such as 
drought can affect normal plant metabolism leading to suppression of crop growth 
and yield. Association of Bacillus with plant rhizosphere or phyllosphere stimulates 
plant immunity against drought stress by altering stress-responsive genes that opti-
mize production of proteins, phytohormones, and other related metabolites.

8.2.1.2  �Bacillus-Mediated Mechanisms of Mitigating Drought Stress

As most of the studies conducted to evaluate efficacy of Bacillus in providing abi-
otic stress tolerance and unraveling the associated mechanisms had to exert drought 
stress on plants, effect of Bacillus could be confounded with innate drought response 
of plants. However, additive effects from Bacillus application and quantitative 
expression of responses were indicative of the role of beneficial microbes. For 
example, exposure of Bacillus inoculated timothy (Phleum pratense L.) plants to 
drought stress for 8 weeks provided enhanced shoot (26.6%) and root (63.8%) bio-
mass, stomatal conductance (214.9%), and photosynthetic activity (55.2%) com-
pared to plants grown under similar drought stress conditions without inoculation 
(Gagne-Bourque et  al. 2016). Underlying mechanisms that supported increased 
stress tolerance in this study by Bacillus included enhanced accumulation of osmo-
lytes, such as many different types of amino acids and sugars in roots and shoots. 
Another documented mechanism of drought stress avoidance in wheat by Bacillus 
is production of growth-promoting phytohormones such as indole-3-acetic acid 
(IAA) and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) to counteract 
the stress-induced increase of abscisic acid (Barnawal et al. 2017). Bacillus spp. 
treatment of plants exposed to drought were found to increase the uptake of water 
and macronutrients like N, P, and K (Barnawal et al. 2013), which is the direct influ-
ence of increased root growth by enhanced IAA production. A higher production of 
scavenging enzymes of reactive oxygen species (ROS) was observed by Saikia et al. 
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(2018) when mung bean was inoculated with a group of plant growth enhancing 
bacteria including Bacillus subtilis RJ46 followed by exposure to drought stress. 
Quantity of ROS scavenging enzymes (ascorbate peroxidase, SOD, PO, CAT, glu-
tathione reductase) and relevant compounds (glutathione, ascorbic acid, and cyste-
ine) that prevent buildup of ROS is usually found to be higher in Bacillus-inoculated 
plants, and they lessen the oxidative damage that occurs at the time of drought stress 
(Kaushal and Wani 2015). Thus, production of antioxidants is the most important 
known mechanism of Bacillus-mediated drought stress management.

8.2.1.3  �Extent and Impact of salinity Stress on Plants

Climate change and global warming has been affecting regular rainfall and distribu-
tion over recent decades. More specifically, productivity of agricultural land has 
been worsening worldwide due to accumulation of salt that resulted from low rain-
fall, improper irrigation practices and high water evaporation rates due to dry 
weather condition (Al-Karaki 2006). The high concentration of salts in saline soils 
cause oxidative, osmotic, ionic, and water stress in plants. Accumulation of salt in 
upper soil layers eventually affects nutrient and water uptake by plant roots due to 
reduced soil water potential (Porcel et al. 2012). This mimics a drought stress situ-
ation that induces plant response to accumulate compounds with osmo-protective 
properties such as special types of sugars, amino acids, and other secondary metab-
olites that were previously absent or present in lower quantity. Under conditions of 
salinity, plants are subjected to nutrient imbalance like K+ deficiency and Na+ toxic-
ity and may also suffer from oxidative stress. Plants may eventually face metabolic 
pathway disorders related to respiration, photosynthesis, homeostasis in redox sys-
tem, and phytohormone regulation. As a result, carbohydrate and amino acid syn-
theses are affected leading to reduced seed germination, plant vigor, growth, and 
yield (Radhakrishnan and Lee 2013, 2014; Rady 2011; Munns and Tester 2008). 
However, induction of osmoregulators may counteract the above disorders as well 
as protect structures of different cellular organelles including membranes (Hare 
et al. 1998). These osmoregulators also work as scavengers of free radicals to pre-
vent their damaging effects to DNA (Ashraf and Foolad 2007).

8.2.1.4  �Bacillus-Based Mechanism of Salinity Stress Tolerance

Inoculation of plants with beneficial microbes including Bacillus spp. enhances 
plant growth and development during salt stress compared with non-inoculated. 
This is considered an eco-friendly approach to counteract abiotic stresses and make 
agriculture more sustainable (Hashem et al. 2015, 2016a, b; Radhakrishnan et al. 
2014). Production of growth hormones such as IAA has been found by Bochow 
et al. (2001) as one of the mechanisms to compensate salt stress-induced growth and 
yield loss. Authors found significant yield increase in pepper and eggplant due to 
inoculation with B. subtilis FZB24 compared to the nontreated, despite irrigating 
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the plots with saline groundwater. For further investigation to unravel the mode of 
action, pepper seedlings were pretreated with millimolar amounts of auxin precur-
sors (indole-3-acetic aldehyde or indole-3-pyruvic acid, tryptophan) followed by 
exposure to saline water. Results revealed that auxin precursors treatment had com-
pensated 75% growth loss of seedlings after 1 week that would occur due to salt 
stress. This finding further supports that one of the Bacillus-based modes of action 
of alleviating salinity-induced stress in plants is production of IAA. However, other 
investigators found that growth hormones like gibberellins were also produced by 
Bacillus and played a role in addition with enhanced uptake of N, P, K+, Mg2+, and 
Ca2+(Mohamed and Gomaa 2012). They also reported decreased abscisic acid and 
Na+ and Cl− content compared to the non-inoculated, which may have occurred due 
to the relatively high uptake of required nutrients as facilitated by Bacillus to allevi-
ate stress induced by salinity. Egamberdieva et al. (2017) also reported improved 
uptake of N, P, K, and Mg by chickpea, grown under saline soil conditions that were 
inoculated with a consortium of B. subtilis and Mesorhizobium ciceri compared 
with non-inoculated plants. Salinity stress significantly increases reactive oxygen 
species level and H2O2 in plants resulting in peroxidation of membrane lipid (Yazici 
et al. 2007; Koca et al. 2007). Thus, reduction of membrane lipid peroxidation or 
oxidation of other cellular organelles due to Bacillus inoculation under salinity is a 
proof of Bacillus-based stress mitigation. Lastochkina et al. (2017) reported reduc-
tion of stress-induced lipid peroxidation (MDA) in wheat due to inoculation of 
plants by B. subtilis 10–4 followed by exposure to water containing 2% NaCl salt 
compared with non-inoculated plants. If Bacilli colonize plants under salt stress, 
they trigger general antioxidant defense process resulting in synthesis of various 
anti-oxidant enzymes namely peroxidase, catalase (CAT), nitrate reductase (NR), 
superoxide dismutase (SOD), polyphenol oxidase (PO), glutathione reductase (GR), 
and guaiacol peroxidase (GP) that may vary with plant species (Chawla et al. 2013). 
However, halotolerant (HT) PGPR Bacillus licheniformis A2 recovered from saline 
soil showed higher growth promoting effect when plants were inoculated with the 
organism and grown in saline soil. Although several plant growth-promoting fea-
tures such as production of IAA, phosphate solubilization, and siderophore produc-
tion were considered as potential Bacillus-based mechanisms in alleviating the salt 
stress-induced detrimental effects and increasing plant growth of stressed peanuts 
(Goswami et al. 2014), study conducted by Zhang et al. (2008) with Arabidopsis in 
salt-affected soil revealed that HT Bacillus subtilis reduced the uptake of Na+ by 
roots that involved downregulation of high-affinity potassium transporter (HKT1). 
However, IAA synthesis being transcriptionally related to ethylene production in 
plants via the expression of ACC synthase gene can halt their growth and develop-
ment despite ethylene’s capacity of providing salt tolerance to plants. Thus, after the 
initial ethylene production step, HT Bacilli start synthesizing ACC deaminase 
(ACCD) enzyme to stop ACC and ethylene production, supporting resumption of 
growth of stressed plants (Nabti et al. 2015). In addition, Bacillus can excrete exo-
polysaccharides (EPS) that facilitate binding of Na+ in root cells thereby preventing 
their translocation to foliage. Similar binding of Na+ by EPS may take place in the 
rhizosphere by Bacillus excreted EPS to prevent its absorption like a physical 
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barrier around the roots (Arora et al. 2020). Thus, association of Bacillus spp. with 
salt-stressed plants has the potential to alter their metabolism to sustain or promote 
plant growth. Halotolerant Bacillus-mediated expression of genes to alleviate salin-
ity stress is presented in Table 8.1.

Table 8.1  Bacillus-mediated gene expression in plants that were identified to be responsible for 
salinity stress amelioration

Plant species
Bacillus species 
included in the study Genes responding to stresses Role/Results

Triticum 
aestivum

Bacillus safensis W10 Upregulation of multiple genes 
including sulfur-rich thionin, S 
adenosylmethionine 
decarboxylase precursor, 
expansins, 
endotransglucosylase/ hydrolase 
and metallothionines
Downregulation of protein 
phosphatases, flavonones 
hydroxylases, oxalates, and 
oxidases

Mitigation of salt 
stress

Solanum 
lycopersicum

Bacillus megaterium Expression of MT2 receptor and 
gamma response (GR1)

Synthesis of 
metallothionin and 
glutathione reductase 
enzyme

Glycine max Bacillus firmus SW5 Upregulation of salt tolerance 
genes GmVSP, CHS, GmPHD2, 
GmbZIP62, GmOLPb, and 
GmWRKY54
Expression of antioxidant 
enzyme-encoding APX, 
Fe-SOD, CAT and POD

Production of 
antioxidant enzyme, 
salinity tolerance, 
flavonoid biosynthesis

Zea mays Bacillus 
amyloliquefaciens 
SQR9

Upregulation of several genes 
including NHX1, NHX2, 
RBCS, RBCL, H + -PPase, and 
NHX3

Enhanced 
photosynthesis, Na+ 
sequestration, and 
export

Puccinellia 
tenuiflora

Bacillus subtilis 
(GB3)

Upregulation of PtSOS1 and 
PtHKT1;5
Downregulation of NCED

Modulation of Na+ 
homeostasis

Oryza sativa B. Amyloliquefaciens
SN13

Upregulation of EREBP, 
NADP-Me2, SOSI, SERK1, and 
BADH
Suppression of GIG and SAPK4

Na+/H+ reverse porter 
system, ion 
homeostasis; abiotic 
stress response and 
oxidative 
decarboxylation of 
L-malate

Arabidopsis 
thaliana

Bacillus subtilis 
(GB03)

Expression of HKT1 Na+ transport in roots

Adapted from Arora et al. (2020)
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8.2.1.5  �Impact of Heavy Metal Stress on Plants

Due to unplanned industrialization all over the world, arable lands are inadvertently 
getting contaminated with metal toxicants that are part of industrial effluents 
released. These contaminants are affecting ecology of food chain by altering micro-
bial communities and crop cultivation (Hu et  al. 2009; Ashraf et  al. 2017). 
Accumulation of Cu, Mn, Zn, Pb, Cr, and other heavy metals are listed as major 
pollutants in soil and water that are not degraded into harmless substances easily 
(Ma et al. 2009; Arthur et al. 2012). These metal-contaminated soil and water are 
not only toxic to the flora and fauna in a certain area but also create a huge risk to 
human health if contaminated soils are used for crop production and metal is taken 
up and transferred into food chain at higher-than-acceptable concentrations (Oves 
et al. 2016). Heavy metal content can affect activities of microorganisms, such as 
respiration and metabolism (metabolic entropy response), thereby affecting soil res-
piration (Blagodatskaya et al. 2006). Thus, microbes such as Bacillus that can sur-
vive these harsh conditions are more suitable for heavy metal remediation. 
Traditionally, chelators have been used to reduce metal toxicity from soil; however, 
chelators can be harmful to organisms in the edaphic environment (Tandy et  al. 
2006). In contrast, beneficial microorganisms like Bacillus spp. solubilize and 
change toxic metals to nontoxic forms. This method can be utilized in management 
of heavy metal phytoremediation when used in the integrated approach with hyper-
accumulator plants (Kang et al. 2015c, Bosecker 1997). However, this remediation 
method of heavy metals is also known as bioremediation when microbes are used 
solely, which is considered the most sustainable, environmentally friendly, and cost-
effective without any adverse effect to any component of the environment (Dixit 
et al. 2015). The release of Bacillus spp. into soil contaminated with heavy metals 
can enhance reduction of toxic effects of these metals on plant growth when com-
bined in a phytoremediation effort. Brunetti et al. (2012) found that B. licheniformis 
enhanced Cu, Zn, Cd, Pb, especially Cr accumulation in Brassica plants that were 
grown to test their capacity as hyperaccumulators of metals for phytoremediation of 
heavy metal-contaminated soil. This eventually led to reduced levels of toxic metals 
in soil compared to nontreated plants. However, due to the low bioconcentration 
factors (>1), investigators could not conclude the suitability of the species for the 
phytoextraction of toxic metals from polluted soils. However, these species can be 
utilized successfully for low metal polluted soil. Besides accumulation and uptake 
of heavy metals or supporting enhanced uptake by plants, Bacillus and similar 
microbes mitigate plant stress from heavy metal through other mechanisms 
described below.

8.2.1.6  �Bacillus-Based Heavy Metal Stress Alleviation in Plants

Rhizospheric and endophytic bacteria including Bacillus enhance growth and devel-
opment of plants in metal polluted soils by two major methods: i) These microbes 
can remove heavy metals from soil or modify capacity of metal accumulation 
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through efflux of ions outside the cells, transformation of metal ions to lower forms 
of toxicity, sequestration of metal ions on the cell surface or in polymers inside 
cells, and biomethylation, precipitation, adsorption or desorption; ii) these microbes 
can also alleviate heavy metal-induced plant stress through production of beneficial 
plant growth enhancing substances that may include solubilization/transformation 
of mineral nutrients, such as phosphate, nitrogen, and potassium, and production of 
plant beneficial enzymes, siderophores, and phytohormones (Ma et al. 2011).

8.2.1.6.1  Adsorption and Absorption of Heavy Metal by Bacillus

Bacillus can remove large amount of soil heavy metals by both adsorption and 
absorption, although Wang et al. (2013, 2001) reported that the principal mecha-
nism of heavy metal ion accumulation is adsorption, which normally is independent 
of energy metabolism. However, absorption, a closely related mechanism depends 
largely on energy metabolism and occurs mostly in living cells. Active export of 
heavy metals via an ATPase efflux P-type pump was found by Shin et al. (2012) in 
an endophytic bacterial strain Bacillus sp. MN3–4. Bacillus has evolved a well-
defined metal-resistance mechanism, which is capable of transporting metal ions 
against the concentration gradient across cell membranes to enhance hyperaccumu-
lator plants’ capacity of removing heavy metals from soil. This process uses ATP 
hydrolysis-released energy. In this regard, Wang et al. (2001) found that Bacillus 
could saturate 60% of its Cu2+ adsorption capacity within the first minute and reach 
an equilibrium as early as within 10 min. However, Wierzba (2015) found that addi-
tion of ethylenediaminetetraacetic acid (EDTA) and lemon oil in the media could 
improve removal rates by 31.5 and 26.3%, respectively.

8.2.1.6.2  Bioleaching

The process of extracting metals from waste or ores by using microorganisms is 
defined as bioleaching as microbes oxidize the metals and produce soluble com-
pounds in the form of organic acids. Thus, production of organic acids and chelating 
or complexing compounds that are excreted into the environment are used for metal 
extraction. Bacteria belonging to the genus Thiobacilli are considered the most 
active group in bioleaching of metal ions; they generally grow under aerobic condi-
tions. It was shown that bacteria leach a higher amount of heavy metals from sludge 
deposited when elementary sulfur was added as a stimulant for the activity of thi-
onic acidophilic Bacilli. It took place by way of bacterial oxidation of elementary 
sulfur releasing sulfuric acid (Marchenko et al. 2015). As a result, the pH of sludge 
deposits goes down, which is an important factor for effective leaching of 
heavy metal.
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8.2.1.6.3  Other Mechanisms of Bacillus-Based Heavy Metal Remediation

Microbial cells are capable of converting metals from one oxidation state to another, 
which can reduce their toxicity. Microbial enzymes and other secretions from their 
metabolic activities can dissolve heavy metals that are stuck in soil particles. Thus, 
precipitation, biosorption, and enzymatic transformation are the processes used by 
Bacillus and similar microbes to degrade, detoxify, or transform heavy metals to 
more stable, less mobile, or inert forms (Kumar and Bharadvaja 2020). B. subtilis 
inoculation of rice under Cd stress showed that roots and shoots at 45 days after 
inoculation (DAI) and grains at 120 DAI had lower Cd accumulation compared with 
non-inoculated (Treesubsuntorn et al. 2017). Authors hypothesized that the mecha-
nism by which B. subtilis reduced Cd accumulation was its capacity to effectively 
absorb Cd from the medium. Their findings also suggested that B. subtilis was more 
effective in absorbing Cd compared to B. cereus. Ahmad et al. (2014) showed that 
Bacillus and a few other bacterial genera such as Klebsiella, Stenotrophomonas, and 
Serratia had supported plant growth under Cd stress by increasing water uptake and 
reducing electrolyte leakage in maize and wheat. As Bacillus increases availability 
and uptake of essential nutrients, heavy metal uptake by plants is reduced due to 
competitive exclusion. For example, Naseem et al. (2016) found that Bacillus sp. 
AMP2-inoculated wheat seedlings took up less Cr of different chromium salts 
(CrCl3, K2CrO4, K2Cr2O7) both at 10 and 20 ppm concentrations than control. 
Similar to other Bacillus-based abiotic stress mitigation mechanisms, when 
Bacillus-inoculated plants were grown in high concentration of heavy metal con-
taining medium, it was found that tissues increased antioxidant enzyme activity 
including CAT, PA, APX, and SOD and concurrent decrease of metal concentration 
in the roots compared to non-inoculated plants (Hao et  al. 2015). Inoculation of 
B. subtilis could also increase dry weight of rice plant as well as protect them from 
Cd stress. Mechanisms included ability of B. subtilis producing IAA, solubilizing 
phosphate, and controlling ethylene levels by the activity of ACC deaminase 
(Treesubsuntorn et al. 2017).

8.2.1.7  �Mechanism of Nutrient Stress Alleviation by Bacillus

Multiple species of Bacillus were found to improve plant uptake of P and K by solu-
bilizing fixed soil nutrients (Chen et  al. 2006). For example, use of insoluble K 
sources together with Bacillus edaphicus NBT strain to treat soil for growing cotton 
and rape could increase K content in plants by 30% and improve growth compared 
with no Bacillus inoculation (Sheng and He 2006). Plant growth promotion in this 
study was attributed to K solubilization by B. edaphicus strain. In a similar study, 
Wu et al. (2005) found improved N, P, and K assimilation in maize due to B. mega-
terium and B. mucilaginous inoculation. Several other investigators also reported 
similar mechanism of nutrient stress alleviation such as solubilization of tricalcium 
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phosphate (Calvo et  al. 2010; Almoneafy et  al. 2012) and zinc (Ajilogba and 
Babalola 2013) by B. amyloliquefaciens isolated from potato. Phosphate solubiliza-
tion abilities of multiple Bacillus species, B. thuringiensis, B. sphaericus, and 
B. megaterium, were found by Akgul and Mirik (2008).

8.3  �Biotic Stress Mitigation in Plants by Bacillus spp.

8.3.1  �Extent and Impact of Biotic Stress on Crop Growth 
and Productivity

Like abiotic stresses, plants encounter many different types of biotic agents such as 
fungi, viruses, bacteria, nematodes, and insects during their life cycle. These entities 
may exert biotic stresses when they invade plants to use them as their host resulting 
in disruption of plant’s normal metabolism. This interrupts plant growth, and in 
some cases, biotic stresses become the cause of plant mortality (Hashem et  al. 
2019). Many of these biotic agents can also cause post-harvest losses of crop yield 
(Singla and Krattinger 2016). However, in most cases plants do well even under 
these stressful situations because some beneficial microbes, if present in the micro-
environment, interact with their host plants symbiotically or synergistically to coun-
teract harmful effects from pathogenic microbes. These beneficial microbes can 
play similar role as synthetic fertilizers or pesticides to minimize adverse effect 
from biotic stresses and promote plant growth. Due to their significant role in plant 
growth enhancement they are often termed as plant growth promoting rhizobacteria 
(PGPR), where Bacillus is considered a prominent member. PGPR, including 
Bacillus, have been used in agricultural, especially crop production, systems to alle-
viate biotic stresses and develop environmentally friendly, sustainable management 
options (Grover et al. 2011, Vejan et al. 2016) for a long time, which is now gaining 
momentum. Application of beneficial microbes to the rhizosphere in an augmenta-
tive approach can be utilized for improving biotic stress tolerance. A few Bacillus 
species including B. megaterium, B. subtilis, and B. cereus were found by 
GroBkinsky et  al. (2016) to produce cytokinins and other growth hormones. 
Synergism is another known mechanism of effect of Bacilli when used with other 
beneficial organisms for plant growth and development. Alam et al. (2011) applied 
B. subtilis together with arbuscular mycorrhizal (AM) fungi to rose-scented gera-
nium. Results indicated a synergistic effect of B. subtilis that increased >10% yield 
(59.5%) compared to AM fungi alone (49.4%). Total oil yield from the harvested 
biomass was increased significantly as biomass production went up, although oil 
content percentage did not increase on a dry weight basis. Underlying mechanisms 
of B. subtilis providing synergistic effect to greater promotion of plant growth 
included increased growth supporting enzyme production, higher antioxidants and 
P solubilization, root nodulation, nitrogen fixation, and biocontrol activity.
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8.3.2  �Mechanism of Biotic stress Mitigation in Plants 
by Bacilli

Members of the genus Bacillus alleviate biotic stress of plants through a variety of 
mechanisms that include depriving biotic agents by outcompeting them for nutri-
ents and space on plant rhizosphere or phyllosphere; inhibition of biotic agents by 
producing a variety of inhibitory biochemicals; induction of plant resistance; and 
facilitating plant growth by producing hormones, so that plant pathogens fail to 
infect plants. These can further be divided into two groups: direct and indirect 
mechanisms. The direct mechanism refers to production of biochemicals by cells of 
Bacillus spp. such as synthesis of several secondary metabolites (antibiotics, cell 
wall-degrading enzymes, hormones, antioxidants) that stimulate plant growth and 
assist plants to defend against pathogenic attack (Goswami et al. 2016). Stimulation 
of plant growth and induction of acquired systemic resistance are among the major 
indirect mechanisms involved with Bacillus-based biotic stress mitigation in plants.

8.3.2.1  �Depriving Biotic Agents by Outcompeting them for Nutrients 
and Space

Early colonization of plant roots by Bacillus can provide a barrier against patho-
genic microorganism invasion (Bais et al. 2004). Root exudates provide required 
nutrients to rhizosphere microbes to thrive. That is why microbial density in prox-
imity of roots is higher compared to areas away from them, and there is always a 
competition for space on the root surface. Due to the competitive advantage of 
Bacilli for nutrients and space in plant rhizosphere, they can suppress pathogen 
proliferation, which is an important feature of the mode of action of Bacillus-based 
biotic stress alleviation in plants (Cawoy et al. 2011). It was found that many mem-
bers of Bacilli can form biofilms, a densely packed surface or multicellular interface 
of associated aggregates under unfavorable environmental factors (Morikawa 2006) 
occupying most of the root surface. Formation of a biofilm by Bacillus on plant root 
can be very quick, requiring only a few hours (Allard-Massicotte et al. 2016), thus 
preventing attachment of pathogenic microbes on roots (Morikawa 2006). In gen-
eral, bacteria utilize chemotaxis for finding root to colonize at early stages of plant 
growth (Allard-Massicotte et al. 2016). Due to the presence of many chemorecep-
tors involved in root colonization, Bacilli can efficiently colonize root system in soil 
(Allard-Massicotte et al. 2016). In the case of lack of availability of nutrients to 
Bacilli, major competition occurs for carbon, and is considered an important factor 
in biological control. Bacillus also competes for several micronutrients with other 
biotic disease-causing biotic agents that include copper, manganese, iron, and zinc. 
Among these elements, iron is highly important because of its limited presence in 
available form in soil (Loper and Henkels 1997). Due to their ability of producing 
siderophores that have a strong affinity for iron, Bacillus can solubilize and acquire 
ferric ions efficiently. Thus, depriving other soil microbes, including pathogens, 
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from acquiring iron (Cawoy et  al. 2011; Haas and Defago 2005; Loper and 
Henkels 1997).

8.3.2.2  �Production of Inhibitory Biochemicals by Bacillus

Production of compounds of low-molecular-weight including antibiotics is com-
mon to many Bacillus species (B. subtilis, B. megaterium, B. amyloliquefaciens, 
B. cereus, B. licheniformis, B. mycoides, and B. pumilus) that directly affect other 
microorganisms through a process known as antibiosis (Weller and Thomashow 
1993; Handelsman and Stabb 1996; Weller 1988). Some of these species can pro-
duce multiple antibiotics. For example, B. subtilis can produce more than two doz-
ens of antimicrobial compounds with diverse structures (Stein 2005). These include 
polymyxin, subtilin, difficidin, and mycobacillin usually possessing broad-spectrum 
antimicrobial activity. Bacilli can produce antibiotic molecules during most of their 
life cycle, but production reaches very high levels during sporulation. Most of these 
compounds belong to the peptide class despite very high diversity in their sizes and 
structures. These antibiotics mostly contain amino acids and, in some cases, other 
residues that help them forming linear, cyclic or basic aminoglycoside type antibiot-
ics (Stein 2005). Almost all the antimicrobial cyclic peptides can directly affect the 
integrity of fungal cell membranes through lysis and change their structure, thereby 
inhibiting their growth and development. Bacillus-produced antimicrobial peptides 
can reliably be used as fungicides due to their direct interaction with fungal cell 
membrane or interference in biosynthesis of chitin, glucan, and sphingolipid that 
are essential components of fungal cell wall and membrane. In this regard, positive 
results have been obtained by investigators from numerous studies. For example, 
two B. brevis- and B. polymyxa-produced peptide antibiotics gramicidin S and poly-
myxin B, respectively, inhibited gray mold-causing fungus Botrytis cinerea both 
in vitro and in vivo (Haggag 2008). The three main Bacillus spp.-produced families 
of cyclic lipopeptides (CLPs) are surfactins, iturins, and fengycins. It was reported 
that all three may although be present in bacterial secretion/culture filtrate but may 
not be needed for antimicrobial activity. In a study by Waewthongrak et al. (2015) 
on the inhibitory effect of all three CLPs, they found that growth of Penicillium digi-
tatum was inhibited by iturin A and fengycin to control green mold on mandarin, but 
surfactins had no direct effect. However, Surfactin likely supports bacterial coloni-
zation of root tissues and establishment in the rhizosphere of plants through biofilm 
layer formation (Mihalache et al. 2017; Cawoy et al. 2014), and is considered essen-
tial component of the mechanisms by which Bacilli become successful in alleviat-
ing biotic stresses in plants. Investigators from different studies with different strains 
of Bacilli found diverse peptide antibiotics such as bacillomycin D, subtilisin, and 
xanthobaccin. However, due to the consistency and frequency of its occurrence, 
bacilysin is regarded taxonomically the most related and significant for the genus 
Bacillus (Loeffler et al. 1990). In addition, chitinase, amylase, protease, cellulase, 
pectinase, glucanase, and similar cell wall-degrading enzymes or substances like 
HCN can damage pathogens and pests to lower their population on plants.
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8.3.2.2.1  Specific Mechanism Associated with Activity of Cyclic Peptides

Some cyclic peptide molecules disrupt membrane structure by binding only to the 
surface without passing through. However, other cyclic peptides can bind with spe-
cific membrane-associated structures such as ion channels, transporters and differ-
ent types of receptors by traversing membranes. After successful binding, cyclic 
peptide molecules aggregate in a specific site on membrane to form variable size 
aqueous pores. Ions and other solutes pass through the channels of these pores in an 
uncontrolled way that ultimately leads to cell death. Debono and Gordee (1994) 
found that impairment of biosynthesis microbial cell wall macromolecular compo-
nents such as glucan, chitin, and mannoproteins was the underlying mechanism of 
antifungal activity of several cyclic peptides. These cyclic peptides have the capac-
ity to form a complex with the precursor molecule of microbial cell wall macromol-
ecules that eventually promote pore formation and cell wall disruption. While pore 
formation on membrane or degradation of cell walls is the major mode of action, 
alternation of ribosome function is also considered a potential mechanism to sup-
press growth of pathogenic microbes. For example, Katz and Demain (1977) found 
that bacitracin A produced by B. licheniformis inhibited cell wall synthesis but the 
butirosin complex belonging to amino glycosides produced by B. circulans altered 
ribosome function of diverse microbial groups (Defuria and Claridge 1976).

8.3.2.3  �Induction of Host Defense against Biotic Stress

In addition, with above-mentioned mechanisms, some strains of Bacilli activate 
defense systems in host plants that results in an enhanced level of resistance against 
pathogen attack (Conrath et al. 2006). This can be explained as supporting plant’s 
immune defense arsenal through sensitization and priming to defeat invading patho-
gens. This process initiated by biotic stimuli helps in scaling up expression of a 
plant’s defense-related genes to accumulate antifungal biochemicals. Strains of 
Bacilli or their metabolites can turn on plant’s defense system when pathogens 
attack host plants or can be triggered by pre-inoculation (Schonbeck et al. 1993) 
that results in an enhanced resistance level (Conrath et al. 2006). Higher level of 
induced resistance in plants is superior over other modes of action of Bacilli such as 
antibiosis or competition, as it provides protection to plants usually for a long period 
of time even when bacterial population subsides. This happens as the response has 
already transduced to the distal organ of the plant from the point of instigation. 
Induction of systemic resistance occurs through a well-orchestrated sequence of 
biological events. Beneficial rhizobacteria such as Bacilli can trigger a defense 
response by stimulating the plant through activation of a variety of cellular defense 
responses in a well-coordinated manner. These responses result in oxidative burst, 
defense-related enzymes buildup (Rahman et  al. 2015), cell-wall strengthening 
(Heil and Bostock 2002), and production of secondary metabolites (Yedidia et al. 
2003). The presence of the microbe is detected by pattern recognition receptors 
(PRRs) of a plant cell membrane through microbe-associated molecular patterns 
(MAMPs), which may include lipopolysaccharides, flagellin, glycoproteins, and 
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chitin (Jones and Dangl 2006). These are also known as elicitors. Bacillus spp. are 
also known to produce lipopeptides and volatile compounds, which can play similar 
role as elicitors for inducing systemic resistance in plants. Surfactin produced by 
B. subtilis strain S499 was found to induce systemic resistance (Ongena et al. 2007). 
Complex interaction between PRRs and MAMPs (elicitors) subsequently results in 
immunity (PTI) through defense-related gene expression, oxidative burst, and cal-
lose deposition (Schwessinger and Ronald 2012; Altenbach and Robatzek 2007) 
from ISR-type defense signaling. Different Bacillus spp. may induce different but 
relevant signaling pathways. For example, ISR mediated by Bacillus cereus AR156 
required both SA and JA/ET signaling pathways together with NPR1 (Niu et al. 
2011). Defense response against pathogens involve several molecules such as phy-
toalexins, pathogenesis-related proteins (proteinase inhibitors, chitinases, β-1,3-
glucanases), and lignin (Van Loon 2007). Fungal hyphal growth during infection 
process is prevented by thickened cell wall in combination with PR proteins 
(Lugtenberg et al. 2001).

8.3.3  �Mechanism of Bacterial Disease Prevention  
by Bacillus Spp.

Together with fungi, viruses, and nematodes, plant disease-causing pathogenic bac-
teria pose major challenges to plant health and yield in agricultural production sys-
tems (Hussey and McGuire 1987; Guo et al. 2013; Narasimhan and Shivakumar 
2015). Major pathogenic bacteria that are known to infect plant with detrimental 
effect on plant growth and development include but not limited to Pseudomonas, 
Xanthomonas, Erwinia, and Ralstonia. Although Bacillus spp. belong to microbial 
group bacteria, upon inoculation of plant or plant growing media they not only 
counteract and suppress pathogen growth but also promote plant growth (Krid et al. 
2012; Yi et al. 2013). Mechanisms of Bacillus-based protection of plant from bacte-
rial infections include biofilm formation around the root surface and their secretion 
of several toxins such as surfactin, iturin, macrolactin, bacillomycin, and fengycin 
that destroy pathogenic populations of bacteria resulting in plant disease control 
(Hinarejos et al. 2016; Chen et al. 2013; Huang et al. 2014; Elshakh et al. 2016). 
Pathogenic bacterial cell walls can be degraded quickly by the secretions of Bacillus 
spp., eventually killing the pathogen (Elshakh et al. 2016).

8.3.4  �Mechanism of Fungal Disease Control

Mycelial growth of many different fungi is inhibited by the antagonistic activity of 
Bacillus spp. to control fungal diseases (Handelsmann and Stabb 1996; Aydi-Ben-
Abdallah et al. 2016; Abdalla 2015; Chowdhury et al. 2015a; Akram et al. 2016;), 
thereby enhancing plant growth and yield (Narasimhan and Shivakumar 2015). 
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Underlying mechanism of Bacillus spp.-mediated fungal disease control include 
either or all of the events and interactions occur when Bacillus come in contact with 
fungal pathogens. Immediately after attachment of Bacillus to the mycelial cell 
walls, production of fungal cell wall-degrading enzymes (chitosanase, protease, 
glucanase, cellulase siderophores) and HCN takes place from the bacteria, which 
crack and deform the hyphae leading to altered cell functions and structures such as 
protoplast leakage and vacuolation (Ben-Khedher et  al. 2015; Han et  al. 2015). 
Mitigation of pathogen-induced biotic stress may also occur via Bacillus spp.-medi-
ated physiological changes in plants. These include alteration of respiratory and 
photosynthetic pathways in diseased plants together with regulation of phenyl-pro-
panoid, carbohydrates, defense-related proteins, and nitrogen metabolism (Jain 
et  al. 2015). Plant beneficial Bacillus spp. increase antioxidant enzymes (APX, 
CAT, GR, GPX, POD, PPO) and reduce lipid peroxidation in plants. They also 
enhance production of other defense enzymes such as PAL, β-1,3-glucanase, chitin-
ase, and phenolic acids that lessen the hostile effects of plant infection by pathogens 
(Chowdappa et al. 2013; Jain et al. 2013; Solanki et al. 2012).

8.3.5  �Mechanism of Nematode and Virus Disease Control 
by Bacillus

Viruses, the second largest group of plant pathogens cause most plant diseases after 
fungi. Many Bacillus spp., produce antiviral compounds that minimize the adverse 
effects of these pathogens on plants (Esawy et al. 2011). Prevention of viral diseases 
by Bacillus spp. has been reported in a few cases. However, in most cases it was due 
to reduction of disease rate as a consequence of Bacillus spp. induced systemic 
resistance (ISR) in plants. Zhang et al. (2004) reported enhanced plant growth of 
cucumber during cucumber mosaic virus infection when plants were inoculated 
with Bacillus compared to non-Bacillus treated. Formation of biofilm and surfactin 
production by B. amyloliquefaciens plantarum was found to subvert the viral dis-
ease in plants by Chowdhury et al. (2015b). Underlying mechanism in this case was 
due to triggering of ISR machinery. Similarly, viral disease caused by tobacco 
mosaic virus was suppressed by Bacillus spp. because of inhibition of viral coat 
protein synthesis from induced systemic resistance. Additional mechanisms 
involved were increased expression of plant defense genes (PR-1a and PR-1b), 
disease-resistant signaling genes (Coil and NPR1), and cell wall expansion (NtEXP2 
and NtEXP6) genes (Wang 2009).

Nematodes, which are known as microscopic worms, can also damage plants by 
being parasitic and feeding on roots. Among many plant parasitic nematodes, root-
knot causing ones are most damaging worldwide. Nearly 5500 plant species are 
within the host range of this nematode (Trudgill and Blok 2001). Prevention of root-
knot nematode infection in crops by Bacillus spp. includes resistance development 
and reduction of gall and egg masses (Adam et al. 2014). Chowdhury et al. (2015b) 
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reported that Bacillus spp. synthesized antimicrobial peptides such as bacteriocins 
that inhibit pathogenic nematode growth. Genes encoding nematicidal activity were 
identified by Liu et al. (2013) as PZN gene cluster in B. amyloliquefaciens. Bacillus 
spp. secreted crystal proteins (Cry5B and Cry6A) were found to control the growth 
of plant-parasitic and free-living nematodes Meloidogyne hapla and Caenorhabditis 
elegans, respectively (Yu et al. 2015).

8.4  �Mechanism of Insect Stress Alleviation in Plants 
by Bacillus

A broad range of insect control in plants is provided by Bacillus thuringiensis (Bt)-
produced Bt toxin (Navon 2000). In addition, Bt was also found to inhibit the growth 
of insect larvae, thereby decreasing plant damage and increasing growth (Boukedi 
et al. 2016; Arrizubieta et al. 2014). Upon sporulation, B. thuringiensis forms crys-
tals of proteinaceous insecticidal δ-endotoxins also known as crystal proteins or Cry 
proteins (Roh et al. 2007). In most strains of Bacillus, genes located on a plasmid 
instead of a chromosome that are known as cry genes encode these toxins. Cry tox-
ins show precise activities against insect species belonging to several orders such as 
Coleoptera (beetles), Diptera (flies and mosquitoes), Lepidoptera (moths and but-
terflies), and Hymenoptera (wasps, bees, ants and sawflies) (Schnepf et al. 1998). 
Upon ingestion of toxin crystals by insects, insoluble crystals get denatured in their 
alkaline digestive tracts. Proteases from the insect gut then cut these soluble crystals 
to liberate the toxin. Inside the insect gut, the Cry toxin at this stage is injected into 
the cell membranes, which paralyzes the digestive tract including formation of 
pores. The insect starves to death as it stops eating. Live Bt bacteria from the envi-
ronment may also colonize the insect causing death. Additional findings on the 
mechanism suggested that bacteria in the midgut of susceptible larvae stimulate 
insecticidal activity of B. thuringiensis (Broderick et al. 2006). Some relevant stud-
ies suggested that due to its insecticidal and plant growth promotion properties, 
B. thuringiensis could be used as a biological control agent (Compant et al. 2005).

8.5  �Conclusion and Future Perspectives

Field grown plants are constantly exposed, either sequentially or simultaneously, to 
many abiotic or biotic stresses. These biotic and abiotic stresses significantly affect 
crop yield, food quality and ultimately global food security. Plants must cope with 
these stressful conditions to thrive and complete their life cycle. Among many ben-
eficial microbes, Bacillus species are exceptional, as members of this group can 
form endospores that are extremely robust under harsh environmental conditions, 
suppress harmful microbes, and can also secrete secondary metabolites that 
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stimulate plant growth. Thus, beneficial microbes such as Bacillus provide a model 
for enhancing stress tolerance upon successful application in plant growing environ-
ment. Bacillus spp. were found in numerous studies to alleviate biotic and abiotic 
stresses and improve plant growth either directly or indirectly. Both biotic and abi-
otic stresses can cause physiological, biochemical, and molecular changes in plants 
affecting normal growth and development. Bacillus spp. either prevent or counteract 
these negative changes through a series of biological and biochemical mechanisms 
that have been interpreted from an appreciable number of studies. Bacilli-mediated 
abiotic and biotic stress tolerance in plants includes biological, physiological, bio-
chemical, metabolic, and molecular mechanisms triggered in response to stresses. 
Promotion of plant growth by these underlying mechanisms usually involve regula-
tion of plant hormones, improved nutrition acquisition, siderophore production, and 
enhanced antioxidant activity. Secretion of exopolysaccharides and siderophores by 
Bacillus spp. inhibit or stop movement of toxic ions and assist in uptaking water by 
roots as well as maintaining ionic balance. These compounds were also found to 
inhibit pathogenic microbial populations through multiple mechanisms that have 
been unraveled by numerous studies. However, many of the possible mechanisms 
either remain unclear or not compiled in a systematic method to make them avail-
able to researchers of Bacillus spp. This review compiled most of the processes 
unraveled by various studies to date and provides a reliable source of information 
for designing relevant research plan to further explore the mechanisms that have not 
been fully elucidated to the molecular level. As new and more effective strains of 
Bacilli to counteract plant abiotic and biotic stresses are discovered on a regular 
basis, future studies should focus on discerning mechanisms associated with 
enhanced efficacy.
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