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Abstract  Plant pathogens represent one of the prime threats to sustainable crop 
production. Till date, synthetic agrochemicals are considered as effective tools for 
the management of various biotic stresses such as pathogenic microorganisms and 
insects in plants. Unfortunately, their injudicious and intensive usages in agriculture 
pose a serious threat to the environment and all living beings dwelling on the earth. 
Under such circumstances, the application of beneficial Bacillus-mediated manage-
ment of plant pathogens has emerged as one of the most benevolent and sustainable 
options. A large number of Bacillus species has been identified as promising candi-
dates for managing a number of plant pathogens through induction of systemic 
resistance in plants. Significant research progress has been attained in the charac-
terisation and understanding of the role of Bacillus-induced systemic resistance 
(ISR) against a wide range of pathogens of crop plants. In this chapter, we aim to 
provide an overview of the mechanisms of Bacillus-induced ISR for instance, elici-
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tors, phytoalexins, lipopeptides, antibiotics, hormones and enzymes to protect 
plants from various pests. Additionally, glimpses of the research progress in the 
identification of different Bacillus strains and their evaluation as a potential biocon-
trol agent have also been presented.

Keywords  Bacillus · Induced resistance · Bio-control · Lipopeptides · Antibiotics

6.1  �Introduction

Steady increase in crop yield to feed the ever-increasing population is the greatest 
challenge faced by the agriculturists worldwide. Apart from factors such as nutrient 
supply, soil conditions, moisture, degrading cultivable land, and cultivar quality, 
biotic stresses pose a huge threat to the food security of the ever-increasing global 
population (Wulff et al. 2011; Islam et al. 2016a, b, 2019a, 2020). Although prac-
tices like crop rotation, use of chemical pesticides, and development of better culti-
var have been utilised for the management of emerging diseases, these approaches 
are no longer ecologically and economically sustainable. Thus, application of ben-
eficial microorganisms have emerged as a suitable alternative to the pre-existing 
traditional approaches (Hardoim et al. 2015). Coordination between microbiota and 
root endodermis supports plant mineral nutrient homeostasis (Salas-González et al. 
2020). Among the beneficial microorganisms studied so far, Bacillus spp. have been 
observed to perform especially well not only in managing diseases but also in 
increasing nutrient availability, enhancing plant growth, improving beneficial 
microbial community in the rhizosphere, and inducing sustained defence reactions 
in the plant (Islam et al. 2016a, b, 2019b).

Bacillus is a genus of Gram-positive and endospore-forming bacteria, which is 
cosmopolitan in nature and widely spread across a diverse range of environments. 
They occur naturally in crop fields and aid in crop productivity both directly and 
indirectly. Inherent traits like durable cell wall, formation of endospores, peptide 
and antibiotic secretion, and production of antimicrobial enzymes play a significant 
role in the survival of these ubiquitous organisms even in a highly adverse situation.

A large body of research on the Bacillus species has attributed its success in the 
production of antibiotics and lipopeptides, quorum quenching, lysis of pathogen 
hyphae, competition for space and nutrients, and induced systemic resistance (Li 
et al. 2013; Islam et al. 2016a, b, 2019a, b; Surovy et al. 2019; Rayanoothala et al. 
2020). Furthermore, Bacillus spp. increase nutrient uptake, siderophore production, 
and promote plant growth. For example, B. subtilis increases N uptake, phosphate 
solubilisation, and siderophore and phytohormone production, and promotes plant 
growth. Bacillus species has also been observed to alter the microbial community in 
the rhizosphere which facilitated disease suppression (You et al. 2016; Mahapatra 
et al. 2020).
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This chapter aims to review the current understanding of the induction of resis-
tance mechanism in host plant by Bacillus species. It deals with the various mecha-
nisms employed by Bacillus species to suppress the phytopathogens in the plant 
rhizosphere and phyllosphere. It also discusses the genomic and molecular bases of 
disease resistance in plants imparted by the Bacillus species. Finally, it summarises 
the field application of Bacillus-based formulation, its prospects and challenges. 
This report also tries to bridge the knowledge gap and help to develop Bacillus spe-
cies as a reliable and effective strategy for the management of emerging pests and 
diseases.

6.2  �Bacillus Diversity and Antagonism

The type of soil plays a crucial role in the management of phytopathogens. 
Suppressive soils contain a large number of beneficial microbes that are able to 
inhibit the growth of bacterial and fungal pathogens. Among the biocontrol agents, 
the Pseudomonas genus has been most extensively studied for its anti-fungal metab-
olites (AFMs) such as pyrrolnitrin, phenazines, pyoluteorin, 2,4-diacetylphloroglucinol 
(DAPG), and viscosinamide (Nielsen et al. 1999; Nielsen et al. 2000). However, 
Bacillus species has gained popularity in the recent years due to its production of a 
wide array of antimicrobial substances and the ability of certain strains to promote 
plant growth (Choudhary and Johri, 2008). A large number of cultivable strains of 
B. cereus and B. subtilis have been identified in different studies (Vargas-Ayala et al. 
2000), while cultivation-independent studies have demonstrated the existence of a 
much more number of uncultivable strains of Bacillus spp. (McSpadden 
Gardener 2004).

Some studies have found B. megatarium to be the most abundantly available spe-
cies, while some researchers observed Paenibacillus, previously known as Bacillus 
polymyxa, to dominate a variety of soils. Paenibacillus has the ability to fix atmo-
spheric nitrogen and thus are helpful in meeting the N requirement of a large num-
ber of crop plants like Canadian wheat (Priest 1993). Brevibacillus, previously 
known as Bacillus brevis, is terrestrial and aquatic in nature (Panda et al. 2014). A 
member of the Bacillus species, B. sphaericus is a notable entomopathogen and 
thus thrives in the habitats of insect larvae like pools, ditches, and lakes 
(El-Bendary 2006).

Spatiotemporal analysis of the microbial communities in soil, rhizoplane, and 
rhizosphere revealed that soil type had greater effect than plant type in determining 
the microbial population diversity (Wieland et al. 2001). Arias et al. (1999) studied 
the distribution and diversity of Bacillus spp. in the soybean phylloplane. Their 
study revealed that B. pumilus is the most widely distributed species in the soybean 
phylloplane. Although other bacterial strains like B. brevis, B. subtilis, B. circulans, 
and B. firmus were also observed in the phylloplane, their population continued to 
decline with the growth of the crop and became completely undetectable at 85 days 
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of the cropping season. As mentioned earlier, Paenibacillus genus contains many 
nitrogen fixing bacterial species, like P. azotofixans, P. polymyxa, and P. macerans 
(Ash et  al. 1993). But amongst all the reported species, P. azotofixans has been 
found to be the most efficient, and hence, is abundant in the rhizosphere of wheat, 
maize, sorghum, banana, sugarcane, and some forage crops (Seldin 1992). P. azoto-
fixans is more abundant in bulk soil than the rhizosphere, while its population varied 
largely with the soil type in the same crop rhizosphere (Rosado et al. 1998, Seldin 
et al. 1998).

The distribution and diversity of the Bacillus species is largely dependent on the 
interaction between the soil and the plant. The exudates from the plant roots, which 
play a significant role in determining the microbial distribution, are specific to the 
plant and are also correlated to a particular soil habitat (Crowley and Rengel 1999; 
Duineveld et al. 2001). The exudates vary with the stage of the crop as well, which 
is reflected in the findings of Jaegar and co-workers. The growth stage of the crop 
could be a crucial factor in determining the rhizobacterial community, as observed 
by Van Overbreek and van Elsas (2008) in potato. It has been observed that plants 
encourage the growth of specific microorganisms, from the indefinite microdiver-
sity based on the chemical influences in the rhizosphere. Thus the manipulation of 
the chemical constituents of the rhizosphere could be done to encourage the growth 
of promising Bacillus strains among the rhizospheric community of 
microorganisms.

6.3  �Mechanism of Induction of Resistance Against Plant 
Disease by Bacillus spp.

When Bacillus is introduced in the host-pathogen-environment system, it interacts 
with all the components in a number of complex mechanisms that affect the growth 
of the phytopathogen directly or indirectly. These interactions may lead to plant 
growth promotion, biofilm formation, induced systemic resistance (ISR), competi-
tion for nutrients, production of antibiotics, and cell lysis (Fig.  6.1). Strains of 
Bacillus spp. have been recorded to exhibit one or more of these traits that work 
synergistically with the plant and the environment in suppressing the phytopatho-
gens. Furthermore, these interactions may lead to increased plant growth, vigour, 
and a shift in the rhizospheric microbial community, which would indirectly reduce 
the impact of the plant pathogens on the host plant.
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6.3.1  �Competition for Nutrients

Nutrients are always limiting factors for the growth and development of microor-
ganisms and plants in the any crop fields. Biological control aims at utilizing this 
competition for nutrient and space to reduce the growth and productiveness of the 
pathogen by the non-pathogenic organisms. Generally, soil-borne pathogens like 
Fusarium and Pythium infect through mycelial contact, which makes them more 
vulnerable to competition from the non-pathogenic organisms. Micronutrients, such 
as iron, are extremely essential but its availability is limited and largely dependent 
on the soil conditions. In such situations, microbes produce siderophores, which are 
capable of attracting iron from the rhizosphere, thus meeting the iron requirement 
of the microorganism (Chakraborty et al. 2020a, b). In many instances, Bacillus has 
been found to compete with pathogenic microbes, such as Erwinia carotovora, by a 
similar mechanism, hence, restricting the growth and the development of the patho-
gen (Kloepper et al. 2004a, b). Studies also revealed that the inoculation of Bacillus 
sp. in the rhizosphere resulted in a shift of the pathogenic microflora from the site 
of infection. Bacillus species was reported to cause rapid colonisation in the tissues 

Fig. 6.1  Interactions between Bacillus spp., the pathogen and the host plant
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of tomato plant, which reduced the disease severity and wilting index of Fusarium 
sp. in the host plant (Jangir et al. 2018). Similar results were obtained by Zhang and 
co-workers (2011) when working with Fusarium wilt of banana. They found that 
Bacillus was a rapid coloniser under hydroponic, sand and soil conditions, which 
inhibited the development of Fusarium sp. in the treated banana plant. Many studies 
have been conducted on the role of competition and colonisation in establishing 
Bacillus species as successful bio-control agents (Table 6.1).

6.3.2  �Synthesis and Excretion of Lytic Enzymes

Aside from the production of lipoproteins and antibiotics, Bacillus has been known 
to produce a number of defense-related oxidative enzymes like peroxidase (PO) and 
polyphenol oxidase (PPO), which bring about structural changes in the host cell 
wall, thus strengthening the defense barriers against the invading pathogen. Several 
studies conducted so far have revealed that Bacillus synthesizes a large number of 
phytosanitary enzymes, which are enlisted in Table 6.2. Phenol oxidase enzymes 
produce quinones and release hydrogen peroxide. These enzymes trigger the release 
of toxic free radicals and polymerise the phenolic compounds into lignin like sub-
stances. The resulted metabolites are then deposited in the host cell wall, which 

Table 6.1  List of important Bacillus strains in respect to their competition, target pathogens, and 
host plants

Bacteria Strain Host Target pathogen References

Bacillus subtilis HU5 Cotton Verticillium dahlia Li et al. (2013)
B. subtilis SQR9 Cucumber Fusarium oxysporum Cao et al. (2011)
B. subtilis E1R-j Wheat Ustilago tritici Baker et al. (1983)
B. subtilis SB24 Tomato Sclerotinia 

sclerotiorum
Clayton and 
Hudelson (1991)

B. Amyloliquefaciens CM-2 and 
T-5

Tomato Ralastonia 
solanacearum

Tong-Jian et al. 
(2013)

B. Amyloliquefaciens 54 Watermelon Acidovorax avenae 
subsp. citrulli

Jiang et al. (2015)

B. Megaterium A6 Oilseed 
rape

Sclerotinia 
sclerotiorum

Hu et al. (2013)

B. Megaterium B153-2-2 Soybean Rhizoctonia solani Zheng and Sinclair 
(2000)

B. pumilus SE34 Pea F. oxysporum f. sp. pisi Benhamou et al. 
(1996)

B. cereus UW 85 Tobacco Phytophthora 
parasitica

Blagoeva-Nikolaeva 
et al. (1995)
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affect the growth of the pathogen. In many instances, Bacillus spp. have been found 
to be highly effective in the production of these oxidative enzymes. According to a 
study by Ramyabharathi et al. (2012), the liquid formulation of B. subtilis EPCO16 
was capable of eliciting defense related enzymes like catalase and phenylalanine 
ammonia lyase (PAL) in tomato plants infected with F. oxysporum f. sp. lycopersici. 
Spectrophotometric analysis of plants revealed the activity of defense enzymes at 
their highest on the seventh day after inoculation by the pathogen.

Chitin is an important polysaccharide, which imparts structural rigidity and 
integrity to the fungal cell wall. But, the presence of hydrolysing enzymes like chi-
tinase and glucanase breaks down the glycosidic bonds holding the constituting 
polysaccharides together, that leads to cell leakage and cell lysis. Many species of 
the Bacillus spp. are known to produce chitinolytic enzymes and suppress the 

Table 6.2  List of enzymes activated by Bacillus species, along with the target pathogen and 
host plant

Bacteria Strain Host plant Enzyme activated Target pathogen References

Bacillus 
subtilis

174 Tomato PO,PPO, PAL Fusarium 
oxysporum

Akram and 
Anjum (2011)

B. subtilis AUBS1 Rice PAL, PO and PR 
proteins

Rhizoctonia 
solani

Jayaraj et al. 
(2004)

B. subtilis PTA-271 Grapevine Lipoxygenase, PAL 
and chitinase

Botrytis cinerea Trotel-Aziz 
et al. (2008)

B. subtilis B4 Cucumber Indole acetic acid Colletotrichum 
orbiculare

Park et al. 
(2013a, b)

B. subtilis SE34 
and 
GBO3

Rice PO and PAL, PPO Xanthomonas 
oryzae pv. oryzae

Udayashankar 
et al. (2011)

B. pumilus SE34 Pea Phenolic compounds F. oxysporum f. 
sp. pisi

Benhamou 
et al. (1996)

B. 
vallismortis

BS07 Chili 
pepper

Salicylic acid (SA) Phytophthora 
capsici and 
Colletotrichum 
acutatum

Park et al. 
(2013a, b)

B. mycoides Bac J Sugar 
beet

Chitinase, b-1,3-
glucanase and 
peroxidase

Cercospora 
beticola

Bargabus et al. 
(2002)

B. cereus AR156 Loquat PAL, PO, chitinase, 
β-1,3-glucanase, 
polyphenoloxidase and 
promoted 
accumulation of H2O2

Colletotrichum 
acutatum

Wang et al. 
(2014)

B. subtilis BBG111 Rice Jasmonic acid (JA) and 
ethylene (ET) as well 
as abscisic acid (ABA) 
and auxin signalling

Rhizoctonia 
solani

Chandler et al. 
(2015)
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phytopathogens (Podile and Prakash 1996). Wang et al. (2004) observed that two 
types of chitinase were produced by B. amyloliquefaciens V656, which were highly 
effective in inhibiting the growth of F. oxysporum growth. B. thuringiensis is known 
to inhibit the growth of Sclerotium rolfsii in soybean plant by a similar mechanism. 
Studies by Liu et al. (2010) revealed the production of chitinase from B. thuringien-
sis sub sp. colmeri, which was instrumental in preventing spore germination of vari-
ous phytopathogenic fungi. Generally, bacteria possess a variety of chitinases for 
breaking down the wide array of chitin molecules that naturally exist in nature. 
Ruiz-Sanchez (2007) observed that five different types of chitinase (with 42, 49, 53, 
62, and 66 kDa) were synthesised by B. licheniformis.

6.3.3  �Production of Lipopeptides and Antibiotics

Bacillus spp. are considered to be the producers of a vast array of antimicrobial 
compounds such as bacillomycin and zwittermycin A (Mondol et  al. 2013). 
According to studies, 4-5% of the Bacillus genome is devoted for the production of 
antimicrobial compounds (Stein 2005). Among these compounds, lipopepetides of 
the surfactins, iturins, and fengycin group are most widely studied. Surfactins are 
antiviral, antibacterial agents, while iturins and fengycins, also known as pli-
pastatins, exhibit highly effective antifungal activities. The lipopeptides (LPs) inter-
act with the each other in a synergistic way, and bring about an alteration of the cell 
membrane permeability of the microorganisms. The LPs produced by Bacillus are 
non-ribosomal in nature and are produced by non-ribosomal peptide synthetases 
(NRPSs) or hybrid polyketide synthases and non-ribosomal peptide synthetases 
(PKSs/NRPSs). The efficacy of biocontrol of plant diseases by lipopeptides pro-
duced by Bacillus spp. is well established (Chakraborty et al. 2020a, b).

The surfactins are excellent biosurfactants, with notable foaming ability. They 
attach themselves to the lipid layers, and thus hamper the integrity of the microbial 
membranes. The surfactins induce pore formation, which is followed by complete 
solubilisation and disruption of the membranes. Studies also reveal that the surfac-
tins are unable to function in the presence of cholesterol in the phospholipid bilayer, 
which explains why they are inactive as antifungal compounds (Meena and 
Kanwar 2015).

Iturins are a group of heptapepetides linked to a β-amino fatty acid chain. They 
are named so after their place of discovery, Ituri, in the Democratic Republic of the 
Congo. The family of iturins mainly include iturins A, C, D, and E; bacillopeptin; 
bacillomycins D, F, L and LC; and mycosubtilin (Mnif and Ghribi 2015). They are 
highly fungitoxic in nature but with limited antiviral and antibacterial activity. The 
iturins are known to form ion-conducting pores, which lead to the permeablilisation 
of the membranes, leading to fungal toxicity.

The fengycins, also known as plipastatins, are a group of lipodecapeptides 
attached to a β hydroxy fatty acid chain (Wang et al. 2015). Fengycins are highly 
fungitoxic in nature, especially against filamentous fungi; however, they are less 
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effective as compared to surfactins and iturins. The mechanism of fungitoxicity of 
the fengycins is elusive so far. However, these natural compounds have been shown 
to induce structural imbalance in the microbial membrane (Ongena and Jacques, 
2008). Other antibiotics produced by Bacillus species include bacteriocins, bacil-
laene, difficidin, oxidifficidin, sporulenes A–C, bacisubin, and bacilysocin. All 
these antibiotics exhibit antifungal and antibacterial activity at varying levels of 
concentrations.

The antibiotics produced by Bacillus have a crucial role in its biocontrol activi-
ties. The LPs are attributed to biofilm formation by the bacteria in the soil and water 
surfaces. They bring about the flagella-driven motility of the bacteria, leading to 
biofilm spread over the plant and soil surfaces. They are also responsible for reduc-
ing the surface tension, which helps in further spread of the bacteria. Bais and col-
laborators (2004) reported that B subtilis strain 6051 produced surfactin molecules 
that resulted in biofilm formation in the roots of Arabidopsis plant.

It has been reported by Asaka and his co-workers (1996) that B subtilis strain 
RB14 produces iturin A, which is instrumental in inhibiting the growth of 
Rhizoctonia solani in tomato. Leclere and co-workers (2005) found that mycosub-
tillin, produced by B. subtilis ATCC, helps in the reduction of Pythium aphanider-
matum infection. The combined role of fengycin and iturin in inhibiting the growth 
of Podosphaera fusca in melon leaves was demonstrated by Romero and co-workers 
(2007). Ongena and Jacques (2008) observed that B. subtilis S499 produces all three 
families of LPs that help in the management of plant diseases by this strain. This 
strain also inhibits the growth of Botrytis cinerea in wounded apple fruits by the 
production of lipopeptide-enriched extracts, which contained high doses of fengy-
cins in it.

The production of antibiotics was also linked to the induction of defense reac-
tions in a number of treated plants. In tomato and bean, fengycins and surfactins 
were directly attributed to induce ISR. B subtilis S499 inhibited the growth of 
Colletotrichum lagenarium in cucumber plants by the stimulation of systemic resis-
tance. Potato tubers exhibited an accumulation of phenolics when being treated with 
purified fengycins, which activate the phenylpropanoid pathway. The activation of 
phenylpropanoid pathway leads to the accumulation of mRNAs, encoding phenyl-
alanine ammonia lyase (PAL).

Although the antibiotics are highly potent in inhibiting the growth of harmful 
microorganisms, they have not been reported to produce any phytotoxicity in the 
host plants. These compounds are able to induce a cascade of biochemical reactions 
that stimulated the defense system of the plant against the pathogen, without caus-
ing any adverse effects on the cellular integrity of the plant. Researchers believed 
that the differing compositions of phytosterol from that of bacterial and fungal com-
positions are mainly responsible for the attenuation of the disruption of plant 
membranes.
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6.4  �Induction of Resistance in Plants

Several lines of evidence suggest that strains of Bacillus spp. elicit systemic resis-
tance in the plants. Induced systemic resistance (ISR) was elicited in plants by 
Bacillus spp. in response to a number of biotic stresses like fungi, bacteria, viruses, 
nematodes, and insects. Bacillus spp. produce LPs which are considered to be the 
key components in ISR elicitation in plants (Rahman et al. 2015). The ISR modu-
lates a number of cytological and biochemical processes in the host plant such as 
lignin deposition in the plant cell wall, production of phytoalexins, and synthesis of 
other antimicrobial substances like peroxidases and β-1, 3-glucanases 
(GarcíaGutiérrez et al. 2013). Among the LPs produced, surfactin is essential for 
ISR elicitation as observed by Chowdhury and his collaborators in 2015. As dis-
cussed earlier, the iturin and surfactin family of lipopepetides are highly effective in 
suppressing phytopathogens. After analysis of gene expression, it was observed that 
surfactin activated salicylic acid (SA) regulated pathway, while mycosubtillin of the 
iturin family, had the ability to activate both jasmonic acid (JA) and salicylic acid 
(SA) pathways in grapevine (Farace et al. 2015). Similar results were observed in 
strawberry, which helped in the successful inhibition of Colletotrichum gleospori-
oides (Yamamoto et  al. 2015). The role of LPs was also demonstrated in maize 
(Gond et al. 2015), rice (Chandler et al. 2015), and tomato (Abdallah et al. 2017). 
The ISR generally leads to plant growth promotion as seen in strain B. subtilis 21-1. 
Lee and his co-workers (2014) observed that B. subtilis 21-1 helps in disease sup-
pression of vegetable crops, by activating the plant defense system, as well as helps 
in plant growth promotion. It can be concluded that B. subtilis elicited plant defense 
system and growth promotion of the host, which collaborates to inhibit the 
phytopathogens.

The phytopathogens differ considerably in their morphology and cellular com-
positions. Hence, Bacillus employs different mechanisms against these phytopatho-
gens (Fig. 6.2). It synthesises lipopeptides against some, while it produces enzymes 
for managing other pathogens. A brief description of the mechanisms used by 
Bacillus against phytopathogens is provided in the following section.

6.4.1  �Bacillus Against Fungi

Extensive research has been conducted on the mechanism of Bacillus for the inhi-
bition of fungal growth. Chitin forms a major constituent of the cell wall of all 
pathogenic fungi; hence, biocontrol agents such as Trichoderma, Alteromonas, 
and Serratia produce different type of chitinases (Elad et al. 1982). Bacillus has 
also been reported to produce chitinolytic enzymes for lysing the fungal cell wall 
(Mitchell and Alexander, 1962). Bacillus species was observed to reduce the 
radial growth of Penicillium sp. (72%), Aspergillus niger (64.58%), Aspergillus 

S. Mahapatra et al.



137

fumigatus (51.61%), Fusarium sp. (39.13%), Curvularia sp. (37.50%), Aspergillus 
flavus (35.43%), and Alternaria sp. (31.82%), after 6  days of incubation. The 
inhibitory action was attributed to chitinolytic activity and hyperparasitism as 
concluded by Basha and Ulaganathan (2002). It was observed by Bargabus et al. 
(2002, 2004) that B. mycoides isolate BacJ and B. pumilus isolate 203–7 were 
highly effective in controlling the Cercospora leaf spot of sugar beet to a consid-
erable extent.

Studies revealed that many Bacillus strains such as B. lentimorbus and B. cereus 
are able to inhibit the development of coffee rust. It has been observed that the bac-
terium prevented the pathogen from developing uredospores, which resulted in sup-
pression of the pathogen up to 50% (Shiomi et al. 2006). The wide array of volatile 
compounds produced by B. velezensis ZSY-1 was studied by Gao et al. in 2017. 
They observed that these compounds possessed significant antifungal activities. 
Bacillus was able to inhibit the growth of B. cinerea, Monilinia fructicola, 
Colletotrichum lindemuthianum, Alternaria solani, and F. oxysporum f. sp. capsi-
cum. It was also observed that benzothiazole, pyrazine, and phenolic compounds 

Fig. 6.2  Mechanisms used by Bacillus sp. as a growth promoter and biocontrol agent
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played a crucial role in inhibiting fungal diseases in tomato such as grey mould and 
early blight.

6.4.2  �Bacillus Against Nematodes

Limited studies have been conducted on the interaction between Bacillus and plant 
pathogenic nematodes. In some instances, the involvement of LPs has been corre-
lated with the reduction in nematode infestation (Hallmann 2001). Hallmann (2001) 
observed that bacterial endophytes successfully inhibit the infestation of 
Meloidogyne incognita through extensive root colonisation and elicitation of ISR in 
the host plant. Reitz et al. (2000) observed that the bacterial endophytes, including 
Bacillus, produced a number of lipopeptides, which successfully controlled potato 
cyst nematode, Globodera pallida. Hallmann and his co-workers (1997) studied the 
role of endophytic bacteria in inhibiting root-knot nematode, Meloidogyne incog-
nita, in cotton roots. They also observed that the nematodes helped the endophytic 
bacteria in entering the host plant which aided in successful colonisation of the plant 
roots. Mendoza and Sikora (2009) observed a significant reduction in Radopholus 
similis infestation in banana plants, when a combined treatment of B. firmus and 
F. oxysporum was applied on the banana plant.

6.4.3  �Bacillus Against Bacterial Pathogens

Phytopathogenic bacteria communicate among each other by the production of 
density-dependent autoinducers (AI), which is known as quorum sensing. Quorum 
sensing plays a crucial role in establishing the virulence factors in bacteria, which 
determines the disease severity. In the case of Gram-negative bacteria, N-acyl 
homoserine lactones (AHL) are mostly used as signalling molecules during quorum 
sensing. Bacillus species, however, have the ability to produce quorum quenching 
molecules that modify the AIs and hinder the bacterial signalling, thus affecting the 
virulence of the pathogen. Bacillus possesses aiiA gene encoding N-acyl homoser-
ine lactonase (AiiA) enzyme, which brings about the hydrolysis of AHLs. Bacillus 
species, such as B. cereus, B. subtilis, B. firmus, and B. toyonensis, have been known 
to suppress a number of plant pathogenic bacteria by inhibiting quorum sensing, 
such as Pseudomonas aeruginosa, Agrobacterium tumefaciens, and Pectobacterium 
carotovorum (Erwinia carotovora). In addition to directly using the AiiA-producing 
Bacillus species to suppress the virulence of phytopathogenic bacteria (Dong et al. 
2004), aiiA can be heterologously expressed in other bacterial strains (Molina et al. 
2003) or in genetically modified plants (Ouyang and Li 2016).
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6.4.4  �Bacillus Against Viral Phytopathogens

Bacillus species has been found to provide resistance in plants against many viruses, 
such as Tomato Mottle Virus (ToMov) and cucumber mosaic virus. The application 
of Bacillus leads to the reduction in visible symptoms as well as reduced viral accu-
mulation as is evident from ELISA analysis (Murphy et al. 2000). Some studies 
indicate that the Bacillus species results in an accumulation of IAA, leading to 
growth enhancement in the plants, that results in systemic protection against the 
virus as observed by Murphy and his co-workers (2000), in tomato against 
CMV.  However, according to some researchers, Bacillus elicits ISR in the virus 
affected plants, that triggers the expression of PR genes, leading to an accumulation 
of PR proteins like chitinase and β 1,3-glucanase, as observed by Wang et al. (2009) 
in tobacco plant against TMV. It is known that NPR1 regulates SAR and ISR resis-
tance pathways while Coi1 regulated ISR pathway. Bacillus species has been 
observed to induce the expression of both NPR1 and Coi1 genes in the TMV-
resistant tobacco plants, indicating a correlation between the gene expression and 
disease resistance.

6.5  �Genomics and Molecular Basis of Induction Resistance 
by Bacillus on Plant

Bacillus has been known to produce a number of antimicrobial compounds that aid 
in plant disease management. B. subtilis has been considered to be a model micro-
organism for the analysis of gene functions, as it encodes for a number of antibiotics 
and lytic enzymes in order to manage phytopathogens. Research on the genomics 
and molecular basis of resistance induction may help in the development of biologi-
cally feasible weapons against plant diseases. Fungal cell walls are made of chitin 
that provides mechanical strength to the fungus. According to a study, B. subtilis 
CHU26, isolated from a potato field in Taiwan, exhibited strong chitinase activity 
in vitro, that was successful in inhibiting the growth of Rhizoctonia solani. Further 
investigations revealed the presence of chitinase encoding gene chi18 that was 
responsible for this antimicrobial activity (Yang et al. 2009).

Hydrogen peroxide is known to exhibit cytotoxic activity in organisms by the 
production of hydroxyl radicals that react to lipids, proteins, and nucleic acids. 
However, B. subtilis has been able to mitigate the H2O2 stress by the production of 
enzymes catalase and an alkyl hydroperoxide reductase, encoded by genes katA and 
ahpC, respectively (Broden et al. 2016).

For evaluating the role of Bacillus in stimulation of ISR, Lee and co-workers 
(2015) studied strain HK34 of B. amyloliquefaciens against Phytophthora cactorum 
by applying Bacillus on the leaves and roots of Panax ginseng. It was observed that 
the bacterium was able to reduce the pathogen growth up to 99.1%. The inhibition 
of the pathogen was found to correlate with the expression of PgCAT, PgPR5, and 
PgPR10 genes. These outcomes showed the ISR-eliciting potential of strain HK34.
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Ryu et al. (2004) worked on the production of volatile compounds, produced by 
Bacillus species. They observed that B. subtilis GB03 synthesised 2,3-butanediol 
and 3-hydroxy-2-butanone (acetoin) in abundance, which helped in the induction of 
ISR. Furthermore, the volatiles produced by the bacteria were controlled by the 
expression of genes CHIB, GST2, and ERF1, which were known for the biosynthe-
sis of ethylene. Recent studies have been able to discover a number of gene clusters 
in Bacillus species, which are shown in Table 6.3.

6.6  �Commercial Applications of Bacillus Species

Bacillus strains have been utilised commercially for the generation of a variety of 
products. It is used not only as a potent host for genetic modifications but also as a 
source of naturally obtained biocontrol compounds (Bunk et al. 2010). Furthermore, 
Bacillus species produces stress-resistant endospores that contribute towards better 
environmental stability and longer shelf-life of the products. Among the wide array 
of Bacillus species discovered so far, B. thuringiensis is the most widely exploited 
with more than 70% of the market share (Ongena and Jacques 2008). Different 
companies utilise different mechanisms of the biocontrol agent in developing its 
products. For example, Bio-Yield, produced by 3Bar Biologics Inc., USA, contains 
a combination of two Bacillus species, B. amyloliquefaciens GB99 which is respon-
sible for the elicitation of ISR. The B. subtilis GB122 inhibits soil-borne pathogens 
by the production of lipopeptide iturin. Also the product contains chitosan, which is 
effective against insects and nematodes (Kloepper et al. 2004a, b). Another product, 

Table 6.3  List of genes of Bacillus species encoded for the production of various antimicrobial 
metabolites that help them in biocontrol of phytopathogens

Strain Gene cluster Products/function Reference

Bacillus sp. srfA Surfactin Hsieh et al. (2004)
Bacillus sp. fenB Fengycin Ramarathnam et al. 

(2007)
Bacillus sp. bacA Bacilysin Mora et al. (2011)
B. subtilis Eps A-O operon Synthesis of biofilm 

matrix
Vlamakis et al. (2013)

B. 
subtilis168

degQ Secretion of degradative 
enzymes

Parashar et al. (2013)

B. subtilis Pks gene cluster Bacillaene Muller et al. (2014)
B. subtilis 
916

locA, locB, locC and locD, 
gene cluster

Locillomycins Luo et al. (2015)

B. subtilis tyrZ Growth and biofilm 
formation

Williams-Wagner et al. 
(2015)

B. subtilis tapA Surfactin synthesis van Gestel et al. (2015)
B. subtilis AprE and NprE Extracellular proteases Barbieri et al. (2016)
B. subtilis ltaS Lipoteichoic acid (LTA) 

synthase
Kasahara et al. (2016)

B. subtilis SWR01 minJ Swarming Gao et al. (2016)
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Yield Shield produced by Bayer CropScience Inc., USA, is composed of B. pumilus 
GB34, which activates the plant defense system and promotes plant growth as well 
(Jeong et al. 2014). Similarly, many other Bacillus-based products have been devel-
oped commercially that can be utilised for the successful management of phyto-
pathogens (Table 6.4).

Table 6.4  Commercial phytosanitary products obtained from Bacillus

Name of 
the 
product Bacillus strains Target pathogen Crop Company

Bio-yield B. subtilis GB122,
B. Amyloliquefaciens 
GB99

Fusarium, 
Rhizoctonia, 
Pythium,

Bedding plants 3Bar 
biologics, 
USA

Nacillus B. subtilis Antumávida,  
B. subtilis Vilcún, B. 
licheniformis Mallerauco 
Brevi, Bacillus brevis 
Maguellines Brevi, Bacillus 
brevis Maguellines I

Clavibacter 
pseudomonas, 
Xanthomonas, 
Acetobacter

Vegetables, 
blueberry
Cherry, 
hazelnut tree, 
tomato, pear, 
kiwi tree,

Bio Insumos 
Nativa, Chile

Yield 
shield

B. pumilus GB34 Fusarium sp., 
Rhizoctonia solani,

Soybean Bayer 
CropScience, 
USA

Votivo B. firmus I-1582 Pratylenchus, 
Meloidogyne

Corn, cotton, 
soybean,

Bayer 
CropScience, 
USA

Dipel B. thuringiensis subsp. 
kurstaki HD-1

Helicoverpa, 
Diatraea saccharalis, 
Grapholita molesta, 
Diaphania nitidalis, 
Plutella xylostella, 
Argyrotaenia 
sphaleropa

Citrus, 
pineapple, 
tomato, cotton, 
apple tree, 
sugarcane, 
melon, 
cabbage,

Valent 
BioSciences, 
USA

AvoGreen B. subtilis Colletotrichum 
gloeosporioides, 
Cercospora sp.

Avocado Ocean 
agriculture, 
South Africa

Ecoshot B. subtilis Botrytis cinerea Citrus, 
legumes, 
vegetables, 
grape

Kumiai 
chemical 
industry, Japan

HiStick 
N/T, 
Subtilex

B. subtilis MB 1600 Fusarium sp., 
aspergillus sp., 
Rhizoctonia sp., 
Pythium sp.

Vegetables, 
ornamentals

Becker 
underwood, 
Ames, IA, 
USA

Kodiak B. subtilis GB03 Fusarium sp., 
aspergillus sp., 
Rhizoctonia sp., 
Alternaria sp.

Legumes Gustafson 
Inc., Dallas, 
Texas, USA

Biosafe B. subtilis Xanthomonas 
axonopodis pv. 
Phaseoli

Bean Laboratorio de 
Biocontrole 
Farroupilha, 
Brazil
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6.7  �Mode of Application of Bacillus Species

The method of application of the biocontrol agent depends on its mode of action. 
Among the different methods of application, seed coating is the most extensively 
used, as it is easy to use and can be applied efficiently with a little quantity of inocu-
lum. When the microbes are introduced as granular applications, the biocontrol 
agent is applied with a mixture of marble, peat, perlite, charcoal, and soil, with an 
aim of enhancing the contact between the plant roots and the biocontrol agent.

In case of Bacillus, both liquid and powdered formulations are available com-
mercially, which are applied in the form of pellets, as well as soil drench, foliar 
spray, or as seed dressing. When Bacillus was applied as liquid formulation on 
tomato plant, it was able to successfully reduce the symptoms of wilt, as well as 
increase the shelf-life of Bacillus (Ramyabharti et al. 2016). Gao and his co-workers 
(2015) researched upon the most successful method of B. subtilis application against 
Blumeria graminis in wheat. They observed that all the preparations, i.e., cell-free 
culture, non-protein fermentation liquid, and crude proteins, were able to reduce the 
infection to some extent. However, fermentation liquid formulation was the most 
effective among all the preparations studied. Hsieh and his collaborators (2009) 
observed that talc-based formulation of B. subtilis and P. fluorescens was able to 
reduce the Banana Bunchy Top Virus incidence up to about 52% and helped in 
growth promotion of the plant under field conditions.

According to the studies conducted by Selim and his co-workers (2017), the 
application of endophytic bacteria as both soil drench and talc-based formulations 
was able to manage Rhizoctonia solani in cotton. But among the two formulations 
studied, soil drench was found to be more effective. However, Yamamoto and co-
workers (2015) found that Bacillus amyloliquefaciens S13–3 was highly efficient in 
managing anthracnose in strawberry when applied as foliar spray. Spraying of fer-
mentation liquid formulation of Bacillus sp. significantly improves growth, yield, 
and content of antioxidants in strawberry fruit (Rahman et al. 2015).

After the analysis of each method, Hallman and his co-workers (1997) observed 
that every method had its pros and cons. However, seed treatment was found to be 
the most efficient when ease of application, economic feasibility, and environmental 
stability was taken into consideration. They further stated that the combined appli-
cation as seed treatment, soil drench, and foliar spray would be able to enhance the 
colonisation of the bacteria and also increase the benefits manifold.

6.8  �Conclusion

Bacillus  sp. is considered as the new tools for the promotion of sustainable agricul-
tural system. A lot of information on biocontrol of plant diseases by Bacillus spp. 
has been generated so far by different researchers throughout the world. In this 
chapter, we summarised the details of the recent advances on mode of action, 
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molecular basis of pathogenic antagonism, application in field level and formula-
tions with their stability potential of Bacillus spp. In these aspects, this chapter is 
unique, informative and a good source of molecular insights for the future research-
ers to deal with the Bacillus biocontrol agent  in the crop  field without harming 
the nature.

In this chapter, we summarised the mode of actions involved in successful antag-
onism and the PGPR activities that include – secretion of lytic enzymes, production 
of lipoproteins, and antibiotics that are explained with examples. The mechanism of 
induced systemic  resistance against plant pathogens depends on  interactions of 
host-pathogen and environment. One or more Bacillus strains can work synergisti-
cally with plant and environment in suppressing the phytopathogens. The mecha-
nism is varied according to the application of Bacillus sp. against fungus, bacteria, 
virus and nematodes. The most important part of this chapter is the genomics and 
molecular basis of induction of systemic resistance by the Bacillus spp. Bacillus is 
known to produce a number of antimicrobial compounds that deal with plant dis-
eases resistance mechanism. In this case, the spore producing ability and genetically 
modified host with Bacillus genes may provide an effective solution in their coloni-
sation simultaneously along with other beneficial microbes. But for successful colo-
nisation, understanding ecological requirements are mandatory. 

Among the wide functional assay of Bacillus sp. so far, B. thuringiensis is the 
most widely exploited even more than 70% of the market shares. But there are lots 
of conflicts on its commercialisation and acceptation country to country. So, suc-
cessful application and commercialisation depends on the practical understanding 
on mode of action, methods of application, ecological distribution and interacting 
environment. But for more popularity among the farmers, a perfect demonstration 
of benefit:cost ratio would be mostly required.
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