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Chapter 17
Role of Bacillus Species in Alleviating 
Biotic Stress in Crops

Neha Chausali and Jyoti Saxena

Abstract Feeding the growing world population has become a crucial issue with each 
passing year. At present, the prime focus of farmers and scientists is on maximizing 
yield and minimizing the damages to food crops by diseases and harsh environmental 
conditions. Synthetic pesticides and fertilizers are being used abundantly in agricul-
tural fields to increase productivity but the indiscriminate use of synthetic chemicals 
has resulted in severe pollution of soil and water. Consequently, practices as the use of 
biopesticides and biofertilizers have become an eco-friendly alternative for harmful 
agrochemicals, thus encouraging sustainable agriculture. A group of bacteria charac-
terized as plant growth-promoting rhizobacteria (PGPR) has been known to reinforce 
plant growth and development and also mitigating abiotic and biotic stresses. Many 
weeds and phytopathogens such as bacteria, fungi, viruses, and nematodes may 
induce biotic stress in their plant hosts resulting in reduced biomass, crop quality, 
and yield. Various species of Bacillus are well-known PGPR and are also consid-
ered as potential biocontrol agents for many plant diseases. These are used to com-
bat biotic stresses by inducing physiological changes in plants and secreting several 
metabolites in response. The present chapter focuses on the biotic stress manage-
ment by Bacillus spp. and the various mechanisms involved in it.

Keywords Biopesticides · Biofertilizer · Plant growth-promoting bacteria · 
Phytopathogens · Biocontrol · Biotic stress

17.1  Introduction

Human beings depend on agriculture to a large extent for their food necessities. 
India is an agriculture-based economy with 18% of its GDP contributed by the agri-
culture sector. Also, 70% of its rural households and 58% of the total population 
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depend predominantly on agriculture for their livelihood (FAO 2020; Tripathi et al. 
2020). The world population at present is about 7.7 billion (https://www.worldom-
eters.info/worldpopulation) and is projected to increase by 10 billion in the next 
50 years (Etesami and Maheshwari 2018; Glick 2014), hence, requiring 70% more 
food production (FAO 2009). To achieve this, the expansion of agricultural land and 
a significant increase in production will be the major target. Inadequate food supply 
may create an alarming situation worldwide in the future. So the agriculture sector 
requires much more attention from the research community and the government.

For many years, various synthetic chemicals have been used to enhance food pro-
duction which has caused serious threats to the environment and human health. 
Moreover, the environmental stresses including abiotic and biotic stresses have also 
been a big hurdle and limiting factor for agricultural production (Etesami et al. 2020). 
Therefore, the use of biological environment-friendly alternatives to agrochemicals 
came into a trend to overcome problems associated with chemical-based products. 
Microorganisms play a significant role in enhancing plant growth and mitigating 
biotic and abiotic stresses posed by harsh environmental conditions and phytopatho-
gens. PGPR is a well-known group of bacteria used extensively in plant growth and 
health promotion of various crops. Several microorganisms belonging to genera 
Acetobacter, Azospirillum, Azotobacter, Bacillus, Burkholderia, Klebsiella, 
Pseudomonas, and Serratia are the most studied plant growth promoting bacteria   
and also reported for abiotic and biotic stress mitigation (Jha et al. 2013; Mishra et al. 
2017; Verma et al. 2019). Bacillus and Pseudomonas are dominantly used PGPR for 
agricultural applications due to their beneficial role in plant growth and development, 
however Bacillus based biofertilizers are more effective than Pseudomonas due to 
their spore-forming nature and more efficient metabolite production capability which 
increases their commercial applicability (Haas and Défago 2005; Ongena and 
Jacques 2008). Bacillus species possess some unique characteristics that make it a 
potential candidate for biological control as it replicates rapidly and has large genetic 
biodiversity. Also, due to spore-forming ability, it can survive in extreme environ-
mental conditions like high or low temperatures, unsuitable pH, and insufficiency of 
nutrients or water (Albayrak 2019). Bacillus is a ubiquitously found genera in nature, 
some species are free-living, while others are endophytic and can colonize the rhizo-
spheric zone of plant root and internal tissues. It is a gram-positive spore-forming 
bacterium having immense applications in industry, agriculture, and medicinal fields 
(Lyngwi and Joshi 2014). Further, Bacillus spp. have been identified for their pres-
ence in stressed environments and also reported for alleviating biotic and abiotic 
stress (Yadav et al. 2016; Mishra et al. 2017; Ahmad et al. 2018). It has shown a good 
response in tolerating abiotic stresses like salinity, water deficit, heavy metal toxicity, 
flooding, extreme temperatures, and nutrient deficiency (Etesami et al. 2020). On the 
other hand, biotic stresses like weeds, nematodes, and phytopathogens (bacteria, 
fungi, and viruses) affect crop quality, biomass, and yield negatively and the species 
of Bacillus have been found very effective against them. Therefore, various species 
of Bacillus have been reported to act as a biocontrol agent for various phytopatho-
gens and pests (García-Fraile et al. 2015; Kang et al. 2015). The phytopathogens can 
be controlled by the action of several cell wall degrading enzymes produced by 
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Bacillus such as cellulase, chitosanase, glucanase, protease, and other compounds 
viz. hydrogen cyanide and lipopeptides (Radhakrishnan et al. 2017). Also, a range of 
metabolites produced by Bacillus spp. including antibiotics, lipopolysaccharides 
(LPS), salicylic acid (SA), siderophores, and hydrolytic enzymes (Hassan et al. 2010, 
2015; Qin et al. 2011) were found to be responsible for suppressing the growth of 
pathogens and boosting up the plant defense mechanisms (Rais et al. 2017).

As shown in Fig. 17.1, Bacillus can control plant diseases through various mech-
anisms such as competition for nutrients and ecological niche in the rhizosphere, 
production of inhibitory chemicals and metabolites, and induced systemic resis-
tance (ISR) in plants (Cawoy et al. 2011; Rais et al. 2017). Bacillus spp. are also 
responsible for enhancing plant immunity by altering stress-responsive genes, phy-
tohormones, proteins, and allied metabolites and also induce physiological changes 
including nutrient uptake, regulation of water transport, etc. (Radhakrishnan et al. 
2017). In addition, Bacillus species significantly stimulate the production of anti-
oxidant defense enzymes like superoxide dismutase, peroxidase, and other enzymes, 
which are known to suppress diseases in plants by diminishing the reactive oxygen 
species (ROS) causing oxidative stress (Liu et al. 2011; Shi et al. 2006; Yasmin et al. 
2016). The association of Bacillus spp. with plant roots promoted plant growth by 
the formation of biofilm (Beauregard et al. 2013) and enhanced the availability of 
nutrients such as phosphate (by P solubilization) for plant uptake (Jha et al. 2012; 
Minaxi et  al. 2012). Various species of Bacillus genera can produce an enzyme 
1-aminocyclopropane-1-carboxylate (ACC) deaminase, which in turn can alleviate 
environmental stresses by reducing the ethylene level in the host plant (Minaxi et al. 
2012; Misra and Chauhan 2020). This enzyme cleaves ACC (a precondition of eth-
ylene production) to α-ketobutyrate and ammonia and thus reduces ethylene levels 
in plants (Etesami et al. 2020). In addition to ACC deaminase, the genera also pro-
duced indole-3-acetic acid and gibberellic acid that regulated intracellular 
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Fig. 17.1 Various mechanisms involved in the mitigation of biotic stresses
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phytohormone metabolism, which consequently increased plant stress tolerance 
considerably (Minaxi et al. 2012; Radhakrishnan et al. 2017).

The global biopesticide market was estimated to grow about 3.0 billion USD in 
2018 and is expected to grow about 6.4 billion USD by 2023, at a CAGR of 15.99%. 
Furthermore, the major driving force for the growth of the biopesticide market is the 
rise in the organic industry, increase in the cost of synthetic pesticides, growing 
insect resistance to these chemicals, and awareness towards hazards caused by 
chemical pesticides to the environment (https://www.marketsandmarkets.com). 
Among all bacterial biocontrol agents, approximately 70% of the total sale is con-
tributed by Bacillus thuringiensis (Cawoy et al. 2011). This bacterium is the source 
of the Bt gene used in “Bt GMO crops” and about half of the commercial bacterial 
biocontrol agents belong to this species (Cawoy et al. 2011). There are numerous 
advantages of using biopesticides over chemical products. Microbial pesticides do 
not cause pollution as they decompose quickly and are not toxic for nontarget spe-
cies (Cawoy et al. 2011). Also, they do not have any bad impact on health and the 
environment.

A limited number of studies are available on physiological changes induced by 
Bacillus species that occur in plants in stressed conditions. The present chapter 
deals with different biological stresses in crops and the beneficial effects of Bacillus 
species in alleviating biotic stresses through different mechanisms.

17.2  Alleviation of Biotic Stress in Plants  
by the Bacillus Species

Plants may encounter biotic stress due to the presence of weeds, phytopathogens, 
nematodes, etc. in agricultural fields which affect crop productivity inversely. 
Bacillus species and other PGPR have the capacity to promote the growth of plants 
as well as mitigate biotic and abiotic stresses. The effect of these PGPR on plant 
growth and their role in plant disease control has been well demonstrated (Etesami 
and Maheshwari 2018; Compant et al. 2005).

As illustrated in Fig.  17.2, plants under biotic stress generally employ two 
defense mechanisms. First, constitutive defense includes performed barriers like 
walls, waxy epidermal cuticles, bark, and metabolites, whereas the second is 
inducible defense, that is triggered by signal compounds, invaders, or herbivore 
attack and responds with the production of toxic chemicals, pathogen-degrading 
enzymes, and deliberate cell suicide (Freeman and Beattie 2008). Again, induc-
ible mechanism has two categories, one is systemic acquired resistance (SAR), 
which relies on salicylic acid (SA) pathway, and another is induced systemic 
resistance (ISR), induced by some microorganisms such as mycorrhizal fungi 
and PGPR relying on ethylene (ET) and jasmonic acid (JA) signaling pathway 
(Boubakri 2020).
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Furthermore, Fig. 17.3 describes the direct and indirect mechanisms employed 
by Bacillus species to ameliorate biotic stress or plant diseases. Several PGPR 
including Bacillus species adopts one of these two basic mechanisms to combat 
biotic stress. The compound released in response to stress that stimulated plant 
growth and ameliorates stress comes under a direct mechanism (Goswami et  al. 
2016). This encompassed a number of compounds like secondary metabolites 
including antioxidants (superoxide dismutase and peroxidase) and antibiotics. 
Various hydrolytic enzymes (cellulose, chitosanase, glucanase, hydrogen cyanide, 
lipopeptides, and protease), siderophores, hormones (IAA, gibberellic acid, etc.), 
and other metabolites such as LPS and SA were found to be produced in response 
to biotic stresses directly by species of Bacillus (Hashem et al. 2019). Also, nitrogen 
fixation, mineralization of organic phosphates, and solubilization of insoluble inor-
ganic phosphates are also part of this mechanism, through which plants get nutrition 
for their growth and are able to survive in stressed conditions (Etesami and Beattie 
2017; Etesami and Maheshwari 2018; Glick 2012; Hayat et  al. 2012). Further, 
induction of systemic resistance and competitive omission support plant growth 
through an indirect mechanism in stressed conditions (Tripathi et al. 2012).

17.2.1  Molecular Mechanisms Behind Inducible Resistance 
(SAR and ISR)

The ISR is a systemic resistance developed by some non-pathogenic rhizobacteria 
that are able to suppress disease in plants (Van Loon et al. 1998). In contrast, SAR 
is a type of induced resistance that is developed in plants by prior exposure to a 
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Fig. 17.2 Plant defense mechanism under biotic stress

17 Role of Bacillus Species in Alleviating Biotic Stress in Crops



370

pathogen (Nie et  al. 2017). A redox-sensitive transcription factor NIM1/NPR1 
(nonexpressor of PR1) that regulates the expression of pathogenesis-related (PR) 
genes is a key player in both SAR and ISR mechanisms, as illustrated in Fig. 17.4 
(Pieterse et al. 1998, 2014; Conrath et al. 2015). NPR1 induces the expression of 
pathogenesis-related (PR) genes in response to SAR signal molecule, salicylic acid 
(Hermann et al. 2013). The NPR1 translocates to the nucleus after getting activated 
by SA and functioning as a coactivator of PR genes providing SAR, whereas during 
the development of ISR, NPR1 was found to act in the cytosol, though its exact role 
is unidentified (Asari et al. 2017). Elicitation of ISR by plant-associated bacteria 
was first demonstrated in Pseudomonas spp. and other gram-negative bacteria. 
Besides Pseudomonas, various Bacillus spp. specifically B. amyloliquifaciens, 
B. cereus, B. mycoides, B. pasteurii, B. pumilus, B. sphaericus, and B. subtilis are 
also reported as elicitors of ISR (Kloepper et al. 2004). In most cases, these ISR 
eliciting species of Bacillus genera have also been found to elicit plant growth pro-
motion (Kloepper et al. 2004). Several species of Bacillus were found independent 
of the salicylic acid pathway but dependent on jasmonic acid, ethylene, and the 
regulatory gene NPR1 in elicitation of ISR. However, some ISR eliciting species of 
Bacillus are independent of jasmonic acid and NPR1 and dependent on salicylic 
acid (Choudhary et al. 2007; Kloepper et al. 2004). Moreover, in some cases, ISR 
mediated by the rhizobacterium Bacillus species such as B. cereus strain AR156 
employed both the JA/ET and SA signaling pathways, and NPR1 (Niu et al. 2011). 
Numerous Arabidopsis mutants and reporter lines revealed that the activation of 
JA-dependent genes VSP2 and PDF1.2 signifying the participation of MYC/ABA 
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Fig. 17.3 Biocontrol mechanisms of Bacillus species
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and ERF/ethylene, respectively (Pieterse et  al. 2012). Further, SAR and ISR are 
well-characterized on the basis of key regulators such as NPR3 and NPR4 or COI1 
(SAR) and MYB72 and MYC2 (ISR) with activation of defense genes, such as 
pathogenesis-related (PR) genes (SAR) or gene encoding plant defensin 1.2 
(PDF1.2) and VSP2 (ISR) (Pieterse et al. 2014). However, the molecular mecha-
nism for priming of ISR is not well acknowledged (Asari et al. 2017).

ISR is a sequential process involving three steps: (i) plant cells encounter elici-
tors produced by the inducing agents, (ii) initiation of signal transduction that prop-
agates the induced state, and (iii) expression of defense mechanisms to inhibit the 
entry of the pathogen into the host tissues (Van Loon 2007). Salicylic acid and jas-
monic acid pathways produce characteristic molecules like pathogenesis-related 
(PR) proteins (chitinases, β-1, 3-glucanases, proteinase inhibitors, etc.), phytoalex-
ins (antimicrobial compounds), oxidative enzymes (peroxidases, polyphenol oxi-
dases, and lipoxygenases) to diminish ROS and lignin for reinforcement of cell 
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Fig. 17.4 Molecular mechanism of inducible resistance in plants

17 Role of Bacillus Species in Alleviating Biotic Stress in Crops



372

walls (Boubakri 2018; Van Loon 2007). ISR-based biocontrol strategies have been 
investigated and some trials were successfully performed under field conditions. 
Bacillus spp. have been found to produce volatile compounds (VOCs) such as 2, 
3-butanediol (Ryu et al. 2005), and lipopeptides that were recognized as elicitors of 
ISR (Cawoy et al. 2011).

17.2.2  Crop Protection from Pathogenic Fungi  
by the Application of Bacillus spp.

Crops are susceptible to various fungal diseases. They can adversely affect crop 
productivity and their growth leading to major losses in food production and storage 
worldwide (Savary et al. 2012). Various trends of Bacillus have been reported for 
controlling a wide range of plant diseases. Different Bacillus-based biocontrol 
agents and their target fungal diseases/fungi are listed in Table 17.1.

Members of the Bacillus genus are distinguished as the good source of biologi-
cally active molecules, which have antagonistic activities towards a wide variety of 
phytopathogens (Meena and Kanwar 2015). Direct and indirect mechanisms as dis-
cussed before are used to biologically control the growth of pathogenic fungi in the 
host plant. Under direct mechanism, Bacillus spp. produce a number of metabolites 
and enzymes which directly inhibit the growth of pathogenic microorganisms and 
are effective against a broad spectrum of fungal species (Stein 2005). Lipopeptides 
such as surfactin (bacillomycin D), iturin, fengycin, and kurstakin, which are com-
monly found in Bacillus genera, have been well-known for their antimicrobial prop-
erties. These lipopeptides are composed of a lipophilic fatty acid chain and a 
hydrophilic peptide ring (Toure et al. 2004). Surfactins and iturins are amphiphilic 
cyclic peptides composed of 7 α-amino acids and  fengycins by 10 α-amino 
acids. Moreover, iturins are linked to a single β-amino fatty acid, while surfactins 
and fengycins linked to a β-hydroxy fatty acid (Dimkić et al. 2017).

On the other hand, lytic enzymes like β-1, 3-glucanase, protease, and chitinase 
play a key role in controlling the growth of fungi through their cell wall degrading 
activity. Other than that, the volatile organic compounds (VOC) recognized by their 
antifungal activity are 2, 3-butanediol, benzene acetic acid, benzaldehyde, 1-decene, 
phenylethyl alcohol, and tetradecane and have also been studied for their role in 
biocontrol activity against a variety of fungal pathogens by Ryu et al. (2005) and 
Dhouib et al. (2019). Studies on the indirect mechanism of biocontrol found in sev-
eral Bacilli reveal that it has a significant role in enhancing and boosting up the plant 
defense system through inducible resistance, namely SAR and ISR. Characteristic 
molecules of inducible resistant such as pathogenesis-related (PR) proteins (chitin-
ases, β-1, 3-glucanases, proteinase inhibitors, etc.), phytoalexins (antimicrobial 
compound), oxidative enzymes (peroxidases, polyphenol oxidases, and lipoxygen-
ases), and VOCs have been studied and well-demonstrated in the findings of García- 
Gutiérrez et al. (2013), Jangir et al. (2018), Pingping et al. (2017), Myo et al. (2019), 
Rais et al. (2017), and Waewthongrak et al. (2014).
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Pathogenic fungi cause diseases in plants and some of them also produce myco-
toxins, which contaminate the  food and feed. Mycotoxins are toxic secondary 
metabolites produced by toxigenic fungi (Albayrak 2019). In the literature survey, 
Bacillus spp. were also found active against a number of mycotoxin producing fungi 
and destroyed them by antibiosis. B. subtilis SQR9 synthesized fengycin and bacil-
lomycin antibiotics which inhibit mycelial growth and conidial germination of 
F. oxysporum  f. sp. couperin (Cao et  al. 2012). Also, B. subtilis fmbJ produced 
bacillomycin D which was active against Aspergillus flavus and was liable for injury 
to cell wall and membrane (Gong et al. 2014). Ayed et al. (2014) reported that anti-
biotic fengycin, surfactin, and pumilacidin produced by B. mojavensis acted against 
gram (+ve), gram (−ve), and many fungal pathogens. Further, antibiotic bacillomy-
cin D from B. subtilis fmbJ caused the distortion of mycelia and disruption of 
spores, induction of more ROS, and apoptosis of Aspergillus ochraceus through cell 
and DNA damage (Qian et  al. 2016). Ochratoxin A (OTA), a mycotoxin mainly 
produced by species of Aspergillus and Penicillium was very efficiently removed by 
Bacillus megaterium through adsorption as reported by Shang et al. (2019).

17.2.3  Bacillus spp. in Prevention of Bacterial Diseases

A number of bacterial diseases that are biologically controlled by the various spe-
cies of Bacillus are listed below in Table 17.2.

As it can be clearly seen from Table 17.2, the B. subtilis and B. amyloliquefa-
ciens have emerged as the most potential biocontrol agent for bacterial diseases. 
Different strains of B. subtilis produced a good range of hydrolytic enzymes, includ-
ing i.e., cellulases, beta-glucanases, and proteases. This bacterial species also pro-
duced several metabolites and antibiotics that could limit the growth of invading 
pathogens and microorganisms. It has been reported in the literature that the indirect 
mechanism like ISR played a significant role in suppressing bacterial diseases in 
plants. Remarkably, B. subtilis strains are well-recognized for synthesizing antibi-
otic lipopeptides, including fengycin, surfactin, and iturin (Hashem et  al. 2019). 
Surfactants are antimicrobial compounds and can also have an important role behind 
inhibiting phytopathogens.

17.2.4  Bacillus in Pest/Insect/Nematode Control 
and Bacillus- Based Commercial Products

Some important species of Bacillus efficient in controlling pest/insects and nema-
todes are listed in Table 17.3.

Bacillus thuringiensisis, a well-known species of Bacillus, used as biopesticide 
worldwide since biopesticides came into existence. Approximately 95% of 

17 Role of Bacillus Species in Alleviating Biotic Stress in Crops
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biological control products for agricultural pests belong to this species (Lambert 
et  al. 1992). It produces the toxic proteins Cry, Cyt, and vegetative (secretable) 
insecticidal proteins (Vip) known as Bt toxins, which are highly lethal against a 
wide range of insects but nontoxic for mammals (Schnep et al. 1998). Bt toxins 
present in spore get activated on cleaving with proteases in the alkaline environment 
of the insect gut. That is why they act in a very specific manner and do not have any 
toxic effect on nontarget species (Bravo et al. 2007). Coleoptera, Lepidoptera, and 
Diptera are the major insect families against which Bt toxins (Cry/Cyt) are very 
effective.

Due to the promising results in controlling a range of pathogenic diseases, the 
commercial applicability of Bacillus-based biocontrol agents has increased. Hence, 
a good range of Bacillus-based biocontrol agents is available in the market. Some 
commercial Bacillus-based biocontrol agents are given in Table 17.4.

Table 17.3 Bacillus species in controlling pests/nematodes/insects/weeds

Biocontrol agent Crops Pest Mode of action References

B. subtilis Soybean Heterodera 
glycines

Direct inhibition 
(antibiosis/metabolite 
production)

Araújo et al. 
(2002)

Tomato Meloidogyne 
incognita (root- 
knot nematode)

Direct inhibition 
(inhibitory metabolites)

Araújo and 
Marchesi 
(2009) and 
Siddiqui and 
Futai (2009)

Pulses M. incognita 
(root-krot 
nematode)

Direct inhibition 
(antibiosis) and indirect 
inhibition (ISR)

Khan et al. 
(2011)

Bacillus strains 
(EPCO 102 and 
EPCO 16)

Cotton Cotton bollworm Indirect inhibition (ISR) Rajendran et al. 
(2007)

B. Thuringiensis Potato Coleopteran 
insects, boll 
weevil, Colorado 
potato beetle

Bt toxin Herrnstadt et al. 
(1986)

Soybean Caterpillars, 
stink bugs

Membrane pore 
formation and cell lysis

Schünemann 
et al. (2014)

B. thuringiensis var. 
tenebrionis Xd3 
(Btt-Xd3)

Alder Agelasticaalni 
(Alder leaf 
beetle)

Bt toxin Eski et al. 
(2017)

B. flexus JIM24 – Lathyrus aphaca 
weed

Aminolevulinic acid 
production

Phour and 
Sindhu (2019)
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17.3  A Comparison of Biopesticides and Synthetic Pesticides

There are several advantages of using biopesticides. Bacillus species are recognized 
as safe bacteria that produce substances that are beneficial for crops and the produc-
tion of industrial compounds (Stein 2005). As a biocontrol agent, Bacillus has the 
advantage of long-term storage and reduced complexity of formulation process due 
to its ability to form spores that help it to survive in adverse environmental condi-
tions (Collins and Jacobsen 2003). In addition, biopesticides are nontoxic and easily 
degradable, which makes them more beneficial than any chemical pesticide. 
Although biopesticides offer a lot of advantages but have not replaced conventional 
pesticides completely as they are not so popular and common in use, and have spe-
cific requirements. Since they are highly specific, farmers will need different biopes-
ticides for different pathogens or insects. Furthermore, maintaining the viability of 
these biocontrol agents is extremely important (inside.battelle.org).

17.4  Future Perspective

Developing new biopesticides itself is a very tedious process due to several chal-
lenges like cost, efficacy, and commercialization process. Delay in the authorization 
process is common due to the lack of enough expertise and regulatory model for 
biopesticides in India (Tripathi et al. 2020). Besides the investigation of new bio-
molecules, recombinant DNA technology is also being used for improving the effi-
ciency of biopesticides. Novel fusion proteins, made up of toxins combined with a 
carrier protein, have been developed as next-generation biopesticides, and this tech-
nology makes this fusion protein toxic to target insects or pests after it is consumed 
orally (Fitches et al. 2004). More research is required in order to have an effective 
pest management in production systems. Funding agencies and government policies 
are influencing factors in biopesticide research and promotion. Government can 
control the use of hazardous pesticides by enforcing laws and encouraging the 
biopesticide industry for organic agriculture (Moosavi and Zare 2016).

Also, a strict regulatory mechanism is equally important for the desired quality 
and reasonable cost of biopesticides (Kumar and Singh 2015). Other than that, bio-
logical control agents (BCAs) may behave differently in different environmental 
and climatic conditions, hence, every country needs to develop indigenous BCAs 
(Keswani 2020). Moreover, limitations like slow in killing pests, cost, production, 
and formulation problems are the major drawbacks associated with biological pes-
ticides. Therefore, working on these limitations to improve the performance may 
help in the global acceptance of biopesticides. Nanoformulations may play a signifi-
cant role in improving the residual action and stability of biopesticides (Damalas 
and Koutroubas 2018; Tripathi et al. 2020). Recombinant DNA technology, molec-
ular biology, and biotechnology can help to enhance the performance of biopesti-
cides in their field use.

17 Role of Bacillus Species in Alleviating Biotic Stress in Crops
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17.5  Conclusion

Biological stress is considered as one of the major restrictions to crop production in 
agricultural fields, which also exacerbates with climate change (Etesami et  al. 
2020). The use of biological agents to control plant diseases has become a very 
good alternative to conventional pesticides as they are nonhazardous for living 
beings and the environment. Several species of Bacillus are able to suppress plant 
diseases through various mechanisms, categorized into direct and indirect mecha-
nisms. These mechanisms are responsible for the production of a broad range of 
antibiotic compounds (lipopeptides), lytic enzymes, antioxidants, siderophores, for-
mation of biofilms, and various other metabolites which inhibit the growth of patho-
gens by their action. Moreover, through indirect mechanisms such as ISR, 
Bacillus-based biocontrol agents induce the plant immune/defense system and help 
them to grow in harsh conditions of stress. Also, Bacillus has a prominent role in 
alleviating induced ethylene levels under biological and nonbiological stresses, 
which suppress plant growth. Biopesticides and Bacillus-based products are gaining 
much attention that is why huge numbers of commercial products are available in 
the market belonging to Bacillus species. It has been well demonstrated that Bacillus 
species have immense potential to mitigate biotic stresses and encourage the growth 
and development of plants. However, these agents are not able to provide full pro-
tection against diseases but biopesticides combination with synthetic pesticides, 
fertilizers, and different types of tillage, incorporated into integrated pest manage-
ment systems can fulfill the purpose to some extent. Apart from this, extensive 
research in new active ingredients, biopesticide formulation, and efficacy will give 
a new insight into biopesticide application in agriculture.
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