
Classifying and Detecting Task
Executions and Routines in Processes

Using Event Graphs

Eva L. Klijn(B) , Felix Mannhardt , and Dirk Fahland

Eindhoven University of Technology, Eindhoven, The Netherlands
{e.l.klijn,f.mannhardt,d.fahland}@tue.nl

Abstract. Business process management organizes work into several
interrelated “units of work”, fundamentally conceptualized as a task.
The classical concept of a task as a single step executed by a single
actor in a single case fails to capture more complex aspects of work that
occur in real-life processes. For instance, actors working together or the
processing of work in batches, where multiple actors and/or cases meet
for a number of steps. Established process mining and modeling tech-
niques lack concepts for dealing with these more complex manifestations
of work. We leverage event graphs as a data structure to model behav-
ior along the actor and the case perspective in an integrated model,
revealing a variety of fundamentally different types of task executions.
We contribute a novel taxonomy and interpretation of these task execu-
tion patterns as well as techniques for detecting these in event graphs,
complementing recent research in identifying patterns of work and their
changes in routine dynamics. Our evaluation on two real-life event logs
shows that these non-classical task execution patterns not only exist, but
make up for the larger share of events in a process and reveal changes in
how actors do their work.

Keywords: Task execution patterns · Routines · Event graphs

1 Introduction

A central goal of Business Process Management (BPM) is organizing work into
several interrelated “units of work” to achieve shared goals. The formal foun-
dations of BPM, as used in process modeling and mining, conceptualize such
a unit of work as a task. Tasks are planned, scheduled, distributed to suitable
actors such that the overall work can be performed by a collaborating workforce.
Most Process-aware Information Systems (PAIS) support this goal by assuming
that work is performed in the context of a business process that is executed as
a sequence of task executions called a case. Each task is executed by a specific
actor and the BPM system is responsible that the correct tasks are performed
in the correct order. Thereby the actual work happens outside the PAIS itself
which only schedules tasks and checks completion [9].
c© Springer Nature Switzerland AG 2021
A. Polyvyanyy et al. (Eds.): BPM Forum 2021, LNBIP 427, pp. 212–229, 2021.
https://doi.org/10.1007/978-3-030-85440-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85440-9_13&domain=pdf
http://orcid.org/0000-0001-9270-4774
http://orcid.org/0000-0003-1733-777X
http://orcid.org/0000-0002-1993-9363
https://doi.org/10.1007/978-3-030-85440-9_13


Classifying and Detecting Tasks and Routines Using Event Graphs 213

However, this concept of a task in process modeling and mining in BPM—a
unit of work is a single step executed by a single actor in a single case—fails to
capture many facets of work that occur in practice. In organizations research,
a well-defined (atomic) step in a process is called an activity or action [2,20].
In contrast, a task is considered a slightly larger “unit of work” that has to
be carried out to achieve an objective within the process, e.g., review CVs.
Completing or executing a task often requires to perform multiple actions (e.g.,
download, open, take notes), not necessarily limited to a single case (e.g., all CVs
received); these actions may be grouped differently depending on the actor(s)
the task is assigned to.

This also has been acknowledged in the BPM field from several perspectives.
Robotic Process Automation (RPA) uses task mining to identify how individ-
ual actors perform tasks by recording their desktop interactions revealing tasks
spanning more than a single case, e.g., data entry from a spreadsheet to an
information system [16]. Individual actors may batch actions in multiple cases,
e.g., a manager reviewing and approving requests in different cases, which is still
poorly supported by many PAIS [23]. Finally, actors often do not act indepen-
dently from each other, multiple actors may perform work together even across
multiple cases, e.g., the collaborative grading of student reports, and across mul-
tiple actions, e.g., delivering and installing a new washing machine. Despite this
acknowledgment and many years of BPM research, there is no generally agreed
definition of a task that captures such aspects of work in a process and that is
compatible with the established process modeling and process mining concepts.
In other words, the existing process mining and process modeling concepts are
too simplistic.

In this paper, we investigate how to conceptualize task executions beyond the
basic definition of an action performed by a single actor in isolated cases with
the goal of capturing the various facets of tasks. Our approach combines event
data analysis with conceptually modeling behavior in processes and actors as two
behavioral dimensions simultaneously [10]: (1) the sequence of events recorded
in a process case and (2) the sequence of events, across multiple process cases,
in which an actor is involved. We use event graphs as introduced in [10] as data
structure to model relations between events, cases, and actors as paths along
cases and along actors over the same events; thereby escaping limitations of
classical event logs (Sect. 3). In such a graph, a task execution emerges when a
path along an actor meets a path along a case over one or more events.

We then perform a systematic, theoretical analysis of the types of task exe-
cutions that can be expressed in an event graph depending on (1) how many
paths along cases meet (2) how many paths along actors for (3) how many
events (Sect. 4.1). From this theoretical analysis we derive a taxonomy of task
execution types characterized by 5 different parameters (Sect. 4.2); the taxonomy
describes 23 task execution types, several have not been described in literature
before. We present methods for querying these task execution types in event
graphs (Sect. 5) and evaluate the existence of these task execution types in the
BPIC’17 and BPIC’14 event logs (Sect. 6). We specifically found that non-trivial



214 E. L. Klijn et al.

task execution patterns over multiple steps, multiple cases, and even multiple
actors frequently occur in two real-life event logs, as well as occurrences of sev-
eral previously unknown patterns. We also observe changes in frequency of task
execution patterns over time due to changes in the way actors do their work.

2 Related Work

Related research that also accounts for the more complex aspects of work beyond
isolated cases has been conducted from several perspectives.

Process modeling literature studies actors performing work in terms of
“resources” required for a task. Of the workflow resource patterns [24], only
“Simultaneous Execution” and “Additional Resources” consider joint work by
multiple actors. Only recently, actor behavior across multiple cases came into
focus under batching across individual cases [23] and instance-spanning con-
straints [12]. Current BPM systems poorly support these phenomena and exist-
ing notations (e.g., BPMN) require extensions [13,23] to support them; but actor
behavior is never modeled explicitly. Synchronous proclets [11] allow modeling
individual actor behavior across individual cases in a network of Petri nets, each
describing a process or an actor [6], that dynamically synchronize on single tran-
sition occurrences. The same synchronization principle has also been adopted for
DCR graphs [4]. We contribute to this stream of modeling research by showing
that actor-case interactions themselves form complex task execution patterns
over multiple actions, cases, and actors, that should be supported in modeling.

In process mining, social network mining [27] analyzes actor interactions but
excludes the control-flow perspective. Other approaches are mining of team com-
position and work assignment [25], resource skills, utilization, and productiv-
ity [22] and resource availability [17]; these works assume tasks to be single
actions. Task executions by the same actor over multiple actions can be dis-
covered as local process models [5]. Task mining analyzes behavior that may
transcend multiple cases [16] by tapping into desktop interaction logs of actors.
These works are limited to single actors in isolated cases due to the use of event
logs. For analyzing instance spanning constraints [28], batch activities [18,19]
and scheduled processes [26] process mining methods have been extended to
consider inter-case relations; in these works actor behavior is described/modeled
implicitly, whereas we analyze actor behavior explicitly.

Routines research [14,20,21] studies “work” in terms of a narrative network
of actors interacting to achieve organizational goals. A narrative [20] is a path
in the narrative network, i.e., a “coherent, time-ordered sequence of actions or
interactions [for] accomplishing an organizational task” [14,21]. An action pat-
tern that occurs repeatedly at an individual actor is called a habit ; a recurrent
action pattern involving multiple actors is called a routine [2]. Habits and rou-
tines capture how actors accomplish their tasks. A central question in routine
dynamics research is to identify such patterns in the narrative network and how
they change [14] and is approached through field studies.

We complement prior work by transforming an event log into an event graph
which can be understood as data-based representation of a narrative network.



Classifying and Detecting Tasks and Routines Using Event Graphs 215

We use graph theory to detect patterns of task executions (i.e., habits and rou-
tines) and their changes over time. Our taxonomy of task executions extends
and generalizes existing notions of tasks in BPM and process mining that are
tailored towards either isolate cases, e.g., [5], or towards specific aspects of work
behavior across cases, e.g., [12,13,16,18,19,23,26,28].

3 Preliminaries

We first discuss relevant concepts of the conventional, single-dimensional repre-
sentation of event data. We then show how these concepts can be translated to
a multi-dimensional representation using a general data model based on labeled
property graphs [10], which we use as a foundation for our work.

Single-Dimensional Representation of Event Data. A PAIS can record
an action execution as an event in an event log. Each event records at least the
action that occurred, the time of occurrence, and an entity identifier indicating
on which entity or case the action occurred. Often, the actor executing the action
is recorded as resource. Table 1 shows an example event log containing 10 events
occurring on the same day.

Process mining [1] analyzes event data by grouping events w.r.t. a chosen case
identifier attribute, e.g., a loan application document or a patient in a hospital.
Ordering all events of a case by time yields the trace as a sequence of events.
Grouping the events in Table 1 by Case yields the traces 〈e1, e2, e3, e4, e5〉 and
〈e6, e7, e8, e9, e10〉. A set of such traces is a traditional single-dimensional event
log along the case perspective [10].

Classically the Resource attribute in Table 1 is considered as event attribute
describing the event further. However, the resource (the actor) is an entity in
its own right and we can also study the sequence of events along each resource,
defining a second behavioral dimension in the data. Choosing Resource as case

Table 1. Event table example

Event Action Time Case Resource

e1 A 12:02 3 1

e2 B 12:04 3 1

e3 E 14:38 3 5

e4 F 14:41 3 5

e5 C 16:21 3 29

e6 A 12:08 4 1

e7 B 12:09 4 1

e8 D 12:15 4 1

e9 E 14:54 4 5

e10 F 14:59 4 5

r1

A
e1

12:02
A

e1

12:02
B

e2

12:04
B

e2

12:04
E

e3

14:38
E

e3

14:38
F

e4

14:41
F

e4

14:41
C

e5

16:21
C

e5

16:21

E
e9

14:54
E

e9

14:54
D

e8

13:34
D

e8

13:34
B

e7

12:09
B

e7

12:09
A

e6

12:08
A

e6

12:08

r5 r29

c3

c4

F
e10

14:59
F

e10

14:59

:CORR case:CORR case
:CORR resource:CORR resource
:CORR case
:CORR resource

:DF case:DF case
:DF resource:DF resource
:DF case
:DF resource

Type = Resource

Type = Case

Fig. 1. Event graph containing the
events and entities from Table 1



216 E. L. Klijn et al.

identifier yields a second event log with traces 〈e1, e2, e6, e7, e8〉 (Resource 1),
〈e3, e4, e9, e10〉 (R. 5), and 〈e5〉 (R. 29).

Each event in Table 1 is related to 2 entity identifiers: a case identifier and
resource identifier. Generally, an event can have multiple case identifiers and/or
multiple resource identifiers [10]. The relation of events to multiple entities
results in different behavioral dimensions between events that cannot be ade-
quately represented or analyzed using a single-dimensional event log representa-
tion.

Multi-dimensional Representation of Event Data. We use a labeled prop-
erty graph (LPG) to represent multiple behavioral dimensions together over a
set of events.

Graph databases use LPGs [3, Chapter 2] for modeling various entities (as
nodes) and various relationship (as edges) between them. An event graph [10]
is a specific LPG, which can be obtained from an event table: each event and
each entity (i.e., cases and resources) is represented by a node with label Event
or Entity. Event and entity nodes are connected through directed binary rela-
tionships: a CORR relationship from e to n defines that event e is correlated to
entity n. A DF relationship from e to e′ defines that event e′ directly follows e
from the perspective of a specific entity n to which e and e′ are correlated (i.e.,
e occurs before e′ and there is no other event between them). Each node and
relationship can hold a number of key-value pairs referred to as properties, e.g.,
whether an entity has Type = Case or Type = Resource. As short-hand notation
we write (e, e′)x for a DF -relationship in G from e to e′ of type x ∈ {c, r} (i.e.,
case or resource). See [10,15] for formal details.

The example in Fig. 1 shows the event graph derived from Table 1: each square
(white) node is an event node; each circle is an entity node of the corresponding
type (blue for Case, red for Resource). CORR relationships are shown as dashed
edges, e.g., e1, e2, e3, e4, e5 are correlated to case c3 and e1, e2, e6, e7, e8 are
correlated to resource r1. DF relationships are shown as solid edges. The DF-
relationships between the events correlated to the same entity form a DF-path
for that entity; the graph in Fig. 1 defines 2 DF-paths for case entities, e.g., σc3 =
〈(e1, e2)c, (e2, e3)c, (e3, e4)c, (e4, e5)c〉 and 3 DF-paths for resource entities, e.g.,
σr1 = 〈(e1, e2)r, (e2, e6)r, (e6, e7)r, (e7, e8)r〉.

In the graph in Fig. 1, we observe which resource executed which action in
which case, e.g., r1 performed A in c3 (at event e1). However, we can also see
that DF-paths for case and resource “flow in parallel” over multiple actions, e.g.,
σc3 and σr1 both contain (e1, e2)x meaning r1 performed A and B consecutively
in c3 (events e1 and e2) forming a larger unit of work captured in Fig. 1 as
the connected subgraph of events {e1, e2} and the two DF-relationships between
them. We can observe more such subgraphs of consecutive events along the same
resource and case in Fig. 1, i.e., larger units of work.



Classifying and Detecting Tasks and Routines Using Event Graphs 217

4 Task Execution Patterns

We observed in Sect. 3 that event graphs reveal “units of work” that are not
just individual events but are connected subgraphs where resources and case
meet along several subsequent events. In this section, we conceptualize these
connected subgraphs as task executions and explore in which forms they can
manifest. We explain our approach in Sect. 4.1 and present a novel taxonomy of
task execution patterns and their interpretation in Sect. 4.2. We thereby make
use of standard graph theory concepts; see [15] for formal definitions.

4.1 Exploring Event Graphs for Forms of Task Executions

In the event graph in Fig. 1, we initially observe two ways in which a task execu-
tion manifests. (1) A resource follows a case over multiple events, e.g., e6, e7, e8;
these event nodes form a subgraph induced by one DF-path σc of a case entity
and one DF-path σr of a resource entity as follows: σc and σr enter the subgraph
together (e.g., at e6) and leave the subgraph together (e.g., at e8) and are both
continuous in this subgraph (all events of the DF-path are within the graph).
(2) We also observe an execution of a classical task in the event graph in Fig. 1
consisting of only a single event, e.g., e5; the path of the resource and the path
of the case synchronize for this step only, i.e., the subgraph is a single node.

We explored whether other subgraphs can be characterized by searching for
different configurations of the following concepts in the subgraph: DF-path of a
resource, DF-path of a case and their synchronization. We identified the following
parameters and values:

1. The subgraphs in Fig. 1 contain at most one case DF-path. Are there (mean-
ingful) execution patterns which have multiple case DF-paths?

2. If multiple case DF-paths are in the subgraph: are the case DF-paths disjoint
(i.e., each event belongs to exactly one case) or can case DF-paths synchronize
(i.e., have a shared event)?

3. The subgraphs in Fig. 1 contain at most one resource DF-path. Are there
(meaningful) execution patterns which have multiple resource DF-paths?

4. If multiple resource DF-paths are in the subgraph: are the resource DF-paths
disjoint (i.e., each event belongs to exactly one resource) or can resource
DF-paths synchronize (i.e., have a shared event)?

5. In Fig. 1, all DF-paths are continuously in the subgraph (i.e., they only enter
once and leave once). Are there (meaningful) execution patterns where a DF-
path also temporarily leaves the subgraph and re-enters later?

4.2 Taxonomy of Task Execution Patterns

The above questions define a parameter space that allows for a set of different
subgraph configurations that can be systematically described within the bounds
of this space. We explored this parameter space by modeling abstract task exe-
cution patterns as subgraphs of event nodes of an event graph. We explain the



218 E. L. Klijn et al.

patterns found, introduce a taxonomy to structure them systematically, and
evaluate whether each pattern has real-world interpretation and whether it was
already discussed in literature.

We considered subgraphs that emerge from multiple DF-paths synchronizing
as some “unit of work”. We identified the following necessary conditions for
n ≥ 2 DF-paths Σ = {σ1, . . . , σn} to induce a subgraph G that describes a
task execution: (T1) any two event nodes in G are connected via at least one
DF-path σ ∈ Σ, (T2) for each event node e in G exists a case DF-path σc ∈ Σ
and a resource DF-path σr ∈ Σ that contain e (i.e., G is traversed by at least
one case and one resource DF-path), (T3) there is at least one DF-path σ1 ∈ Σ
that is continuously in G (enters G once and leaves G once). We identified two
stricter necessary conditions of task executions defining a spectrum:

– Graph-structure based task execution: in the strictest form of task executions
the subgraph G is induced by Σ = {σ1, . . . , σn} and satisfies (T1)–(T3) and
additionally (T2’): each event node e ∈ G is in each DF-path σ ∈ Σ (i.e.,
all paths always synchronize in all events in G but some paths may leave
in between). As a consequence, all paths converge at the first event of the
continuous DF-path σ1 in G and diverge at the last event of σ1 in G, see
(T3). All subgraphs in Fig. 2 have this property.

– Domain-knowledge based task execution: the paths in G do not converge and
diverge at the same start and end events of G, yet are coherent. In addition
to (T1)–(T3) the following condition holds: (T3’) all DF-paths are continu-
ously in G. All subgraphs in Fig. 3 have this property. T3’ requires domain-
knowledge to decide whether DF-paths Σ form a valid subgraph G describing
a task execution.

Next, we differentiate different types of subgraphs further by the following 4
parameters over a subgraph G (i) the number of case DF-paths, (ii) the number
of resource DF-paths, and (iii) how often they enter and leave, and (iv) how they
synchronize in G. We start with graph-structure based tasks executions.

Taxonomy of Graph-Structure-Based Task Execution Patterns.
Figure 2 shows the graph-structure-based task execution patterns arranged
according to the parameters identified in Sect. 4.1.

The taxonomy categorizes the patterns on the x-axis based on them contain-
ing a single DF-path from a single case (SC) or multiple DF-paths from multiple
cases (MC). The patterns are categorized along the y-axis based on them con-
taining a single DF-path from a single resource (SR) or multiple DF-paths from
multiple resources (MR). Our taxonomy thus has four major quadrants: (SR,SC),
(SR,MC), (MR,SC), (MR,MC).

Next, subgraphs within each of these quadrants are arranged based on the
configuration of the paths they contain. A path is (1) single step (s) if it only
contains a single event node within the subgraph, (2) continuous (c) if the path
contains > 1 event node and is continuously within the subgraph, i.e., it only
enters and leaves once, and (3) interrupted (i) if it contains > 1 event node and



Classifying and Detecting Tasks and Routines Using Event Graphs 219

con nuoussingle / interruptedcon nuoussingle / interrupted
sin

gl
e 

/i
nt

er
ru

pt
ed 1

43

2

9

5

11

6

10

7

12

8

15

1413

16

co
n

nu
ou

s
sin

gl
e 

/i
nt

er
ru

pt
ed

co
n

nu
ou

s

SINGLE CASE MULTIPLE CASE
SI

N
G

LE
RE

SO
U

RC
E

M
U

LT
IP

LE
RE

SO
U

RC
E

···

···
···

···
···

···

···

···
···

···
···

···

···

···
···

···
···

···

···

···
···

···
···

···

···
···

···
···

···
···

···
···

···

···

···

···

···
···

···
···

···
···

···
···

···

···

···

···

···
···

···

···
···

···

···
···

···

···
···

···

···

···

···

···

···
···

···
···

···
···

···
···

···
···

···
···

···
···

···
···

···

···

···

···

···

···
···

···
···

···

···

···
···

···
···

···

Fig. 2. Taxonomy of graph-structure-based task execution patterns

it leaves and enters the subgraph more than once. A single step path and an
interrupted path are both non-continuous.

The set of resource DF-paths are configured separately from the set of case
DF-paths. For each quadrant the subgraphs are arranged on the x-axis into
columns for continuous and non-continuous case DF-paths and on the y-axis
into rows for continuous and non-continuous resource DF-paths.

The bold letters in Fig. 2 indicate the short-hand notation we use in the fol-
lowing, e.g., MRi,SCc denotes pattern P10: Multiple Resource interrupted, Single
Case continuous.

Structural Properties. A fundamental property of graph-structure-based pat-
terns is that all entities (cases and resources) are involved in each step of the
task execution.

A fundamental property of our taxonomy is that adding/removing resource
or case DF-paths results in a corresponding pattern in another quadrant, e.g.,
adding more resource DF-paths to P3 returns P11 and adding both more resource
and case DF-paths returns P15.

A second fundamental property of the taxonomy is that it distinguishes ele-
mentary task execution patterns that cannot be decomposed further into sub-
graphs fitting the parameter space (1, 4, 5, 8, 9, 12, 13, 16) and non-elementary
task execution patterns that are compositions thereof (2, 3, 6, 7, 10, 11, 14,
15). By combining instances of elementary patterns along either a continu-
ous resource DF-path or a continuous case DF-path, we end up with a non-
elementary instance belonging to the same quadrant. For instance, if we take



220 E. L. Klijn et al.

three instances of P1 for the same case c and resource r and combine them along
the case DF-path, i.e., the case is continuous in the composition (only leaves and
enters once) while the DF-path for r can be arbitrary, we end up with P2.

The subgraphs in Fig. 2 that are not single-step are only one of the many
variations possible within each specific cell. For instance, if we take two instances
of P1 and one instance of P4 and again combine along a continuous case DF-
path, we end up with a variation of P2.

Conceptual Evaluation. Within each quadrant, the top-left cell (1, 5, 9, 13)
describes a single-step task. The bottom-right cell (4, 8, 12, 16) describes a
task continuously involving all cases and resources over multiple steps. The top-
right and bottom-left cell of a quadrant describes tasks interrupted by either
the resource(s) or the case(s), respectively, e.g., a resource attending an urgent
task in another case or a resource requiring input from another resource not
involved in the task. While some single step and continuous patterns have been
observed in other works [5,6,18], at present, no work has systematically studied
interrupted patterns.

SR,SC patterns portray tasks that can only be executed for a single case by
a single resource at a time, e.g., writing out a speeding ticket (single step, i.e.,
P1), or finalizing a loan offer: 〈call client about loan offer, create offer, send
offer〉 (multiple steps, i.e., P4). P2 describes an actor interrupting and returning
to a larger unit of work in a case, e.g., compiling a report that is interrupted
by other duties. P3 describes an actor continuously being concerned with the
same case while other actors have to be involved as well, e.g., due checks based
on a four-eyes principle. P1 has been extensively studied in traditional process
analysis and P4 has been observed in [5].

SR,MC patterns portray tasks where a single resource handles multiple cases
together, such as batch processing, e.g., lecturing a classroom of students (single
step, i.e., P5) or analyzing a batch of blood samples, which involves transporting
them to the lab, scanning them and analyzing them (multiple steps, i.e., P8).
Only single step (P5) and multi-step batching (P8) have both been observed in
[18].

Conversely, MR,SC patterns portray tasks where multiple resources work on a
single case together. For instance in collaborative decision making, e.g., a master’s
defense (single step, i.e., P9), or due to practical or technical requirements,
e.g., delivering, carrying, and installing a washing machine requires two people
(multiple steps, i.e., P12). Only P9 has been observed in [6], where queues and
conveyor belts synchronize as distinct resources for the same (single step) events.

Finally, MR,MC patterns portray tasks executed by multiple resources on
multiple cases together. While theoretically possible, it is very unlikely multi-
ple cases and resources synchronize that strongly in real-life processes especially
over multiple steps. A very relaxed interpretation of such a task would be the
co-chairing of a panel for a conference (single step, i.e., P13). We discuss more
realistic manifestations of MR,MC task configurations when discussing domain-
knowledge based patterns (shown in Fig. 3). At present, no work has systemati-
cally studied patterns involving both multiple cases and multiple resources.



Classifying and Detecting Tasks and Routines Using Event Graphs 221

Taxonomy of Domain-Knowledge-Based Task Execution Patterns. So
far we discussed our taxonomy for the strictly synchronized graph-structure
based patterns shown in Fig. 2. We now discuss our taxonomy for the domain-
knowledge based patterns at the other end of the spectrum shown in Fig. 3.
The domain-knowledge based task execution patterns allow that only some
case/resource paths synchronize per event but require all paths to be uninter-
rupted; this yields “units of work” that are more distributed. While there is
a considerable amount of other subgraphs that fit Fig. 3, we limit ourselves to
discuss those that require only basic domain knowledge.

···
···

···
···

···
···

···
···

···

···

···

···

continuoussinglecontinuous

10'

7'

12'

8'

15'

14'

16'

co
nt
in
uo

us
sin

gl
e

co
nt
in
uo

us

SINGLE CASE MULTIPLE CASE

SI
N
G
LE

RE
SO

U
RC

E
M
U
LT
IP
LE

RE
SO

U
RC

E

Fig. 3. Taxonomy of domain-knowledge-based task execution patterns

Structural Properties. We first observe that we can derive all the configurations
in Fig. 3 by composing multiple of the same elementary pattern from Fig. 2. For
instance, P7’ and P10’ are essentially multiple instances of P1 composed along
the resource and case DF-path, respectively. P8’ and P12’ can be composed
similarly using instances of P4. P14’ can be composed of P5 instances along the
case DF-path and P15’ with P9 instances along the resource DF-path. In Fig. 3,
P16’ is composed of multiple instances of P1, both along the resource and case
dimension. The pattern properties of this particular cell 16’ allow for basically
every combination of elementary patterns composed along both the resource and
case dimension. In contrast to graph-structure-based non-elementary patterns,
the conditions for composing the patterns in Fig. 3 require domain knowledge.

Conceptual evaluation. In Fig. 3, P7’, P8’, P15’ portray different forms of
sequential batching, i.e., the same step is executed for a sequence of cases one
after the other, with a single resource (P7’, SRc,MCs), with multiple resources



222 E. L. Klijn et al.

(P15’, MRc,MCs) and with one resource executing multiple steps per case (P8’,
SRc,MCc). Sequential batching that involves a single resource (P7’ and P8’) has
been observed in [18].

We also identify a subset of patterns in which multiple resources are sepa-
rately involved, each performing a set of steps for a case after which it moves
to the next resource for the next step(s) in a pipe-lined fashion (e.g., P10’ and
P12’, MRs,c,SCc), resembling a factory/production type of setting. Such a setting
could also be realized for (simultaneous) batches of cases (P14’, MRs,MCc). At
present, no work has systematically studied these patterns.

P16’ (MRc,MCc) is a combination of the former two types; it portrays sequen-
tial batching being performed in a pipe-lined fashion. In Sect. 6 we show that we
can identify an instance of P16’ in the BPIC’17 data.

5 Detecting Task Execution Patterns in Event Graphs

In this section, we present a technique for detecting instances of the task
execution patterns of Sect. 4 as subgraphs in an event graph. We query the
graph to retrieve all instances (subgraphs) of elementary task execution pat-
terns (P1, P4), which we then materialize and store as new “task instance”
nodes (Sect. 5.1). Later, we use these task instance nodes for querying elemen-
tary task instances (Sect. 5.2) and for detecting and querying non-elementary
task instances (Sect. 5.3). All conceptual queries presented here are imple-
mented in the graph query language Cypher on the graph database Neo4j; see
Sect. 6 and [15].

5.1 Modeling Elementary Task Instances as High Level Events

We assume the data to be given in an event graph G (see Sect. 3). We describe
how to detect in G subgraphs describing task instances (TIs) of elementary
patterns P1 and P4 and how to materialize these as new nodes with label TI
in the event graph. Finally, we lift the DF -edges from the Event nodes in the
task instance subgraph to the corresponding TI node. Figure 4 shows the result
of constructing the TI nodes and all corresponding relationships for the event
graph from Fig. 1.

We first search the graph for all pairs of events (ei, ei+1) that have both a
case DF-edge (ei, ei+1)c and a resource DF-edge (ei, ei+1)r and create a new
“joint” DF-edge (ei, ei+1)j . We then detect any task instance of elementary P4
as a maximal sequence of events ti = 〈em, ..., en〉 where for each ei, ei+1 ∈ ti
there exists (ei, ei+1)j and there exists no joint DF-edges (e′, em)j or (en, e′)j .
An instance of P1 is ti = e without (e′, e)j , (e, e′)j . We materialize ti as a new
node hti with label TI and a contains relationship from hti to each e ∈ ti. We
treat hti as a “high-level” event and set properties hti.timestart = em.time and
hti.timeend = en.time and correlate hti to each entity n to which em, ..., en
are correlated by adding CORR relationships. Finally, we sort all TI nodes
h1, . . . , hk correlated to the same entity n of type x by timeend and introduce



Classifying and Detecting Tasks and Routines Using Event Graphs 223

r1

A
e1

12:02
A

e1

12:02
C

e5

16:21
C

e5

16:21

D
e8

13:34
D

e8

13:34
B

e7

12:09
B

e7

12:09
A

e6

12:08
A

e6

12:08

r5

r29

c3

c4

F
e10

14:59
F

e10

14:59

F
e4

14:41
F

e4

14:41
E

e3

14:38
E

e3

14:38
B

e2

12:04
B

e2

12:04

E
e9

14:54
E

e9

14:54

A,BA,B
h1

A,B
h1

A,B,DA,B,D
h4
A,B,D

h4

E,FE,F
h2

E,F
h2

CC
h3

C
h3

E,FE,F
h5

E,F
h5

:DF case

:DF resource

:DF case

:DF resource

:CORR case
:CORR resource

:CONTAINS:CONTAINS

Fig. 4. Event graph containing the hti nodes constructed from the events from Fig. 1

corresponding DF -edges (hi, hi+1)x of type x, which lifts DF-paths from events
to task instances. See [15] for the Cypher query. For example, we detect in Fig. 1
ti1 = e1, e2 and ti4 = e6, e7, e8 resulting in nodes h1 and h4 and (h1, h4)r in
Fig. 4. Instances of the other elementary patterns (5, 8, 9, 12, 13, 16) can be
found by checking for multiple (ei, ei+1)c and/or (ei, ei+1)r relationships over all
events in ti.

The elementary task execution T described by an elementary task instance
ti = em, ..., en is its sequence of action names T = em.action, ..., en.action; we
set ti.task = T for easier querying.

5.2 Querying Elementary Task Instances

Having materialized all elementary task instances into TI nodes, we can query
the graph of TI nodes and DF-relationships between them for insights. This
allows for the following kinds of queries: (1a) Retrieve a subset of TIs based on
a specific property, e.g., all TIs correlated to r1 (h1 and h4 in Fig. 4), or (1b)
the subset of TIs of the most frequently executed tasks (h2 and h5 in Fig. 4).
(2) Query for DF-paths between TI nodes, for instance the DF-path of TI nodes
correlated to a specific case (〈h4, h5〉 for c1 in Fig. 4) or to a specific resource
(〈h3〉 for r29 in Fig. 4). (3) Querying the DF-path of TIs of a specific resource on
a specific day could give insight into habits [2] followed by this resource. Next,
we query DF-paths between TI nodes along cases and resources to detect larger,
non-elementary task execution patterns.

5.3 Querying Non-elementary Task Instances

We materialized elementary task instances as TI nodes connected through DF-
edges in Sect. 5.1. We now show how to detect instances of non-elementary task
execution patterns (NTI for short) as shown in Figs. 2 and 3 as compositions of
TIs by querying for paths of TI nodes along DF-edges.

We detect any interrupted NTI (Fig. 2) involving resources r1, ..., rl and
cases c1, ..., cm by querying for a maximal sequence of TI nodes h1, ..., hk with



224 E. L. Klijn et al.

(hi, hi+1)r1 , ..., (hi, hi+1)rl or (hi, hi+1)c1 , ..., (hi, hi+1)cm , 1 ≤ i < k so that all
underlying Event nodes are correlated to the same resource entities nr1 , ..., nrl

and case entities nc1 , ..., ncm . For detecting the domain-knowledge-based NTIs
(Fig. 3), we also query a maximal sequence of TI nodes along either the resource-
path or case-path, but this time require only one of the entity types (cases or
resources) to be correlated to all TI nodes. For the patterns that describe batch-
ing behavior (7’, 8’, 15’, 16’), we additionally require all TI nodes h1, . . . , hk to
describe the same elementary task, i.e. hi.task = hi+1.task, and a maximum time
difference Δtbatch between two subsequent TIs, i.e. hi+1.timestart−hi.timeend <
Δtbatch; see [15] for a Cypher query that detects NTIs of sequential batching P8’.
Using such domain knowledge for a time gap is commonly done in batch iden-
tification [18]. For patterns 10’, 12’, 14’ and 16’ additional domain-knowledge is
required to determine if multiple TIs along the case-path form a task execution.
Examples of NTIs of P2, P3, P7’ and P8’ are shown in Fig. 5.

6 Evaluation

We performed an exploratory analysis to investigate the occurrence of task exe-
cution patterns in two real-life event logs BPIC’14 [7] and BPIC’17 [8]. We
realized the approach of Sect. 5 in Cypher queries invoked via Python scripts
on the Graph DB Neo4j; available at https://github.com/multi-dimensional-
process-mining/event-graph-task-pattern-detection. Creating all TI constructs
(Sect. 5.1) took 44.57s for the BPIC’14 log and 68.81s for the BPIC’17 log on an
Intel i7 CPU @ 2.2 GHz machine with 32 GB RAM.

We applied queries for detecting all patterns that did not require specific
domain knowledge, i.e., all patterns except 10’, 12’, 14’ and 16’, in the event
graphs of the BPIC’14 and BPIC’17 data. We found TIs of patterns 1, 2, 3, 4, 7’
and 8’; TIs involving multiple resources and/or multiple cases per event simply
do not occur in the data.

W2 V5 I1 I2 A6
95

1302698834

I4 V1 V2 A9

I4 V1 V2 A9

I4 V1 V2 A9

I4 V1 V2 A9

I4 V1 V2 A9

1303175719

126
1884121918

1679601906

1788544153

1925308985

W2

W2

W2 W2 O2 O3 O6 W5 C1 C2 A2

3

1302702228

1383850952

V4 I1 I2 A6

I4

V4

V1 V2 A9

I1 I2 A6
1312786789

107

126

Fig. 5. Instances of task execution patterns 1, 2, 3, 4, 7’ and 8’ found in the BPIC’17
data

https://github.com/multi-dimensional-process-mining/event-graph-task-pattern-detection
https://github.com/multi-dimensional-process-mining/event-graph-task-pattern-detection


Classifying and Detecting Tasks and Routines Using Event Graphs 225

Table 2. General task execution pattern measurements for BPIC’17 and BPIC’14 with
<30 m between all TIs in NTI or >30 m between at least one TI in NTI
log pat. # of # of % of length duration # of TIs(1,4)

TIs events events (min) in the NTIs
avg. st.dev avg. st.dev avg. st.dev

BPIC’17 1 11 995 11 995 1.4 1.0 0.0 0.0 0.0
without 4 125 472 703 000 81.8 5.6 2.8 2.9 61.5
User 1 2>30 1 174 10 640 1.2 9.1 3.0 140.0 104.0 2.0 0.1

3>30 45 354 0.0 7.9 2.4 121.6 92.9 2.0 0.0
2<30 431 3 755 0.4 8.7 3.7 19.9 10.5 2.0 0.3
3<30 55 419 0.0 7.6 3.4 11.8 12.8 2.0 0.1
7’<30 269 1 297 0.2 4.8 1.1 23.8 16.1 4.8 1.1
8’<30 2 385 64 974 7.6 27.2 16.4 43.8 38.8 6.2 3.7

BPIC’17 1 27 27 0.0 1.0 0.0 0.0 0.0
only 4 33 706 144 683 16.8 4.3 1.6 0.2 0.4
User 1 2<30 1 788 10 687 1.2 6.0 0.3 0.8 0.8 2.0 0.1

3<30 255 1 530 0.2 6.0 0.0 0.7 0.5 2.0 0.0
8’<30 1 350 43 641 5.1 32.3 29.2 24.2 33.1 9.0 14.3

BPIC’14 1 107 069 107 069 22.9 1.0 0.0 0.0 0.0
4 138 002 359 668 77.1 2.6 0.9 21.6 580.9
2>30 16 489 80 585 17.3 4.9 2.0 116.1 102.5 2.4 0.8
3>30 1 631 7 364 1.6 4.5 2.0 103.3 87.5 2.1 0.3
2<30 16 963 70 965 15.2 4.2 1.5 10.7 14.9 2.2 0.4
3<30 11 085 40 029 8.6 3.6 1.4 6.5 18.0 2.0 0.1
7’<30 3 274 18 320 3.9 5.6 2.6 8.9 12.6 5.6 2.6
8’<30 228 1 988 0.4 8.7 1.5 10.4 12.4 4.3 0.7

Figure 5 shows for the BPIC’17 data for each detected pattern type a task
instance annotated with resource and case identifiers. The P1 instance in Fig. 5
shows actor r14 executing a single step in a case before moving to a different case
and the P4 instance shows r95 executing four actions in a case before moving to
the next. The P2 instance shows r3 executing ten actions in a case with an inter-
ruption after the first step W2, executing the same action W2 also in another case
before completing the task in the former case. The P3 instance shows r107 con-
tinuously working on a case, performing the same task execution (〈V4, I1, I2, A6〉)
twice while r128 performs other actions in between. The P7’ and P8’ instances
show r35 and r126 performing the same actions W2 and 〈I4, V1, V2, A9〉, respec-
tively, for the same five cases in a sequential batch. We observe a min/avg/max
time difference of 0/12/613 min and 0/4.8/512 min between any two subsequent
steps in a batch for BPIC’17 and BPIC’14, respectively.

Table 2 shows the occurrence and other statistics of patterns 1, 2, 3, 4, 7’
and 8’ in the BPIC’14 and BPIC’17 data. We observe that P4 (multiple actions
by same actor) makes up for the largest share of events in both logs (77.1%
and 98.6% for BPIC’14 and BPIC’17, respectively) and has an average duration
of 21.6 and 2.9 min and an average waiting time of 16.5 and 22.6 min between
every pair of successive P4 instances for BPIC’14 and BPIC’17, respectively. It
is therefore likely that these instances are composed of a single task execution
as opposed to multiple tasks executions, rejecting the general assumption that a



226 E. L. Klijn et al.

task execution is a single step executed by a single actor in a single case. We see
P3 (actors interrupt a task execution and switch to another case) more often in
BPIC’14 (1.6% + 8.6%) than in BPIC’17 (0.2%), showing that actors work dif-
ferently in different processes. We observe that almost half of the interruptions
P2 in BPIC’14 last more than 30 min, indicating that actors often switch context
for long periods at a time. Task executions interrupted by waiting for another
actor (P3) make up 10.2% of the BPIC’14 data, with a minor part lasting longer
than 30 min, indicating either very long breaks or tasks in another process con-
text not recorded in the data. Of these P3 interruptions, 60% lasted less than
10 s. TIs of P2 and P3 contain on average 2 other elementary TIs of P1 or P4
(last column). Executions of batch patterns P7’ and P8’ comprise 0.2+7.6% of
the BPIC’17 data; although multi-step batches (P8’) have > 5 times as many
steps as single-step batches (P7’) they only take twice as long in duration; indi-
cating large deviations in executions of batching tasks in the BPIC’17 data. We
observe a mean duration of 21.6 m for analyzing problems in IT components
(BPIC’14) and 2.9 m for handling loan applications (BPIC’17) for elementary
TIs, confirming our intuition that a task execution is short.

A4 A8 H1 H3 W1 A3
W2

A4

A0

W2

O2 O3 O6 W4 C1 C2 A2 O2 O3 O6 C4 V1 V2 A9 O5 O5 A5 O4 O4 V5

A8 H1 H3 W1 A3

A4

A0

W2

O2 O3 O6 W5 C1 C2 A2 A1 O1 C4
A1

A8 H1 H3 W1 A3

A4

A0

W2

O2 O3 O6 W4 C1 C2 A2
A1 O1 C4

A8 H1 H3 W1 A3

A4

A0

W2

O2 O3 O2 O3 O6 O6 W4 C1 C2 A2

A1 O1 O1 C4
A8 H1 H3 W1 A3 A0 O2 O3 O6 W4 C1 C2 A2

O1 C4

1

1111458873
19

10

1372864243

206394826

3

16

113 126 83

1992048266

231877008365

27

Fig. 6. Event graph of loan applications 1111458873, 1372864243, 206394826,
1877008365 and 1992048266 in BPIC’17 revealing five different task execution pat-
terns

c

V4 I1 I2 A6
r

c

V5 I1 I2 A6
r

c

C4 V1 V2 A9 O5 V5 I1 I2 A6
r

c

I4 V1 V2 A9 V5 I1 I2 A6
r

Fig. 7. Trends and subgraphs of four elem. task executions T in BPIC’17 showing
concept drift



Classifying and Detecting Tasks and Routines Using Event Graphs 227

To investigate the manifestation of different task execution patterns on a
case level, we visualized the events of five process executions in Fig. 6, revealing
instances of five different task execution patterns P1, P4, P7’, P8’, and notably
the most complex P16’. In Fig. 6, we observe six instances of P1 (one separately
and five as part of P7’). All other task instances are of type P4, meaning that
most actors perform tasks over multiple steps in the same case before handing
the case over to the next actor. Existing process discovery techniques lack the
resource perspective necessary to actually structure a trace into a sequence of
P4 (and P1) instances, required to reveal these handovers of work. We observe
r1 executing 〈A4, A8,H1,H3,W1, A3〉 in a batch for five cases in row (P8’) and
r19 executes W2 for the same fives cases in a batch (P7’) directly afterwards.
The instances of P8’ and P7’ together form an instance of P16’ along the cases.
While domain knowledge is required to verify whether this instance of P16’ is
intentional, we show that structured task executions involving multiple resources
and cases exist in the data. This particular type of structured collaboration over
multiple steps suggests a routine; confirming this requires further investigation.

We finally explored whether we find evidence for task executions changing
over time, as stipulated in [14]. We queried the frequency of all task executions
in BPIC’17 over time; Fig. 7 shows 4 selected task executions Ta–Td and their
frequency. Ta changes into Tb in July 2016 by changing only the first action from
V5 (lifecycle complete) to V4 (lifecycle abort), suggesting a minor change in direc-
tive but not a change in the way people work. We see similar lifecycle changes in
other task executions of the BPIC’17 data (not shown here). Around the same
time, Tc and Td emerge, which both contain Ta at the end suggesting that also
the way people worked changed. In total we found 6 more task executions with
this characteristic that also show this change.

7 Conclusion

In this paper, we considered event data along both the case and actor dimension.
Doing this in event graphs revealed different ways in which non-trivial tasks
manifest as patterns in the data and uncovered dynamics that have not been
described before in established process mining and modeling; these range from
interruptions and batching to the more complex production-type settings.

This lays the foundation for a fundamentally different way of conceptualiz-
ing processes as the interplay of cases and actors engaging in recurrent patterns
of work, i.e., routines and habits as studied in routines research [2]. We found
evidence in existing real-life event logs that such patterns make up the larger
share of events. We believe the taxonomy of task execution patterns aids in task
mining and many other process analysis problems where actor and case perspec-
tives meet. For example, the relation between certain actor behavior and process
performance or process outcomes, the adherence to queuing policies [26] as well
as questions related to the study of complete systems of processes, resources and
queues together [6].



228 E. L. Klijn et al.

Our approach is limited in that our taxonomy does not cover the entire spec-
trum of possible task patterns; we currently do not account for graph-structure-
based patterns with a less strict synchronization of paths, while real-life mani-
festations thereof do exist. This includes other possible patterns or aspects that
may have been overlooked. Some patterns of the taxonomy involving multiple
actors and cases were not found in the data as such data was not available. How-
ever, such patterns do exist, e.g., delivering and installing a washing machine by
two actors does happen. A next step is finding and exploring other data for the
existence of these patterns. Important to note is that our work does not identify
a task itself but only the patterns of actions used to achieve a task. Finding out
what these patterns mean and what real-life tasks they portray is future work.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49851-4 1

2. Becker, M.C.: Organizational routines: a review of the literature. Ind. Corp. Change
13(4), 643–678 (2004)

3. Bonifati, A., Fletcher, G.H.L., Voigt, H., Yakovets, N.: Querying Graphs, Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2018)

4. Debois, S., López, H.A., Slaats, T., Andaloussi, A.A., Hildebrandt, T.T.: Chain of
events: modular process models for the law. In: Dongol, B., Troubitsyna, E. (eds.)
IFM 2020. LNCS, vol. 12546, pp. 368–386. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-63461-2 20

5. Delcoucq, L., Lecron, F., Fortemps, P., van der Aalst, W.M.P.: Resource-centric
process mining: clustering using local process models. In: SAC, pp. 45–52. ACM
(2020)

6. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Repairing event logs with miss-
ing events to support performance analysis of systems with shared resources. In:
Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152,
pp. 239–259. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51831-
8 12

7. van Dongen, B.F.: BPI Challenge 2014. Dataset (2014). https://doi.org/10.4121/
uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35

8. van Dongen, B.F.: BPI Challenge 2017. Dataset (2017). https://doi.org/10.4121/
12705737.v2

9. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Process monitoring. In:
Fundamentals of Business Process Management, pp. 413–473. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-662-56509-4 11

10. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data
Semant. 10, 109–141 (2021)

11. Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3–24.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 1

12. Fdhila, W., Gall, M., Rinderle-Ma, S., Mangler, J., Indiono, C.: Classification and
formalization of instance-spanning constraints in process-driven applications. In:
La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 348–364.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 20

https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1007/978-3-030-63461-2_20
https://doi.org/10.1007/978-3-030-63461-2_20
https://doi.org/10.1007/978-3-030-51831-8_12
https://doi.org/10.1007/978-3-030-51831-8_12
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/12705737.v2
https://doi.org/10.4121/12705737.v2
https://doi.org/10.1007/978-3-662-56509-4_11
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-319-45348-4_20


Classifying and Detecting Tasks and Routines Using Event Graphs 229

13. Gall, M., Rinderle-Ma, S.: Visual modeling of instance-spanning constraints in
process-aware information systems. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017.
LNCS, vol. 10253, pp. 597–611. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59536-8 37

14. Goh, K., Pentland, B.: From actions to paths to patterning: toward a dynamic
theory of patterning in routines. Acad. Manage. J. 62, 1901–1929 (2019)

15. Klijn, E.L., Mannhardt, F., Fahland, D.: Classifying and detecting task execu-
tions and routines in processes using event graphs. Extended version of conference
article, Zenodo (2021). https://doi.org/10.5281/zenodo.5091611

16. Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic process
mining: vision and challenges. BISE 63(3), 301–314 (2020)

17. Martin, N., Depaire, B., Caris, A., Schepers, D.: Retrieving the resource availability
calendars of a process from an event log. Inf. Syst. 88, 101463 (2020)

18. Martin, N., Pufahl, L., Mannhardt, F.: Detection of batch activities from event
logs. Inf. Syst. 95, 101642 (2021)

19. Martin, N., Swennen, M., Depaire, B., Jans, M., Caris, A., Vanhoof, K.: Retrieving
batch organisation of work insights from event logs. Decis. Support Syst. 100, 119–
128 (2017)

20. Pentland, B., Feldman, M.: Narrative networks: patterns of technology and orga-
nization. Organ. Sci. 18, 781–795 (2007)

21. Pentland, B., Feldman, M., Becker, M., Liu, P.: Dynamics of organizational rou-
tines: a generative model. J. Manage. Stud. 49, 1484–1508 (2012)

22. Pika, A., Leyer, M., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., van der Aalst,
W.M.P.: Mining resource profiles from event logs. ACM Trans. Manag. Inf. Syst.
8(1), 1–30 (2017)

23. Pufahl, L., Weske, M.: Batch activity: enhancing business process modeling and
enactment with batch processing. Computing 101(12), 1909–1933 (2019)

24. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
resource patterns: identification, representation and tool support. In: Pastor, O.,
Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer,
Heidelberg (2005). https://doi.org/10.1007/11431855 16

25. Schönig, S., Cabanillas, C., Ciccio, C.D., Jablonski, S., Mendling, J.: Min-
ing resource assignments and teamwork compositions from process logs.
Softwaretechnik-Trends 36(4), 1–6 (2016)

26. Senderovich, A., et al.: Data-driven performance analysis of scheduled processes.
In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS,
vol. 9253, pp. 35–52. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23063-4 3

27. Song, M., van der Aalst, W.M.P.: Towards comprehensive support for organiza-
tional mining. Decis. Support Syst. 46(1), 300–317 (2008)

28. Winter, K., Stertz, F., Rinderle-Ma, S.: Discovering instance and process spanning
constraints from process execution logs. Inf. Syst. 89, 101484 (2020)

https://doi.org/10.1007/978-3-319-59536-8_37
https://doi.org/10.1007/978-3-319-59536-8_37
https://doi.org/10.5281/zenodo.5091611
https://doi.org/10.1007/11431855_16
https://doi.org/10.1007/978-3-319-23063-4_3
https://doi.org/10.1007/978-3-319-23063-4_3

	Classifying and Detecting Task Executions and Routines in Processes Using Event Graphs
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Task Execution Patterns
	4.1 Exploring Event Graphs for Forms of Task Executions
	4.2 Taxonomy of Task Execution Patterns

	5 Detecting Task Execution Patterns in Event Graphs
	5.1 Modeling Elementary Task Instances as High Level Events
	5.2 Querying Elementary Task Instances
	5.3 Querying Non-elementary Task Instances

	6 Evaluation
	7 Conclusion
	References




