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Preface

This volume covers all papers presented at the BPM Forum of the 19th International
Conference on Business Process Management (BPM 2021) held during September
6–10, 2021, in Rome, Italy. Similar to previous years, the BPM Forum offers inno-
vative research papers characterized by their high potential to stimulate interesting
discussion and scientific debate, although without yet reaching the same rigor as those
papers accepted for the main conference. In this sense, the BPM Forum papers char-
acterize themselves by novel ideas about emergent BPM topics.

While last year’s edition was fully online due to the worldwide COVID-19 pan-
demic, BPM 2021 was organized in a mixed setting, allowing for physical and online
presence. In this pandemic context, the conference received a total of 123 submissions.
All papers were first screened based on their fit to the conference call (in terms of topic
and template use). During the review procedure, three to four Program Committee
members evaluated each paper. One Senior Program Committee member was
responsible for moderating the discussion and summarizing a meta-review, assuring a
thorough quality check. Finally, the Program Committee accepted 23 papers for the
main conference and 16 papers for the BPM Forum (the latter compiled in this
volume).

In the wake of the COVID-19 pandemic, we are grateful for a warm welcome at the
Sapienza Università di Roma, Italy. We thank the members of the Program Committees
and Senior Program Committees of the three conference tracks (Foundations, Engi-
neering, and Management). We also acknowledge our sponsors for their support in
making this conference happen: Signavio, Celonis, DCR Solutions, P4I – Partner-
s4Innovation, Springer, Sapienza Università di Roma, and the organizing agency
Consulta Umbria. Finally, we also appreciate the use of EasyChair for streamlining an
intensive reviewing period.

Finally, special thanks goes to Massimo Mecella (general chair of BPM 2021) and
his Organizing Committee, including Simone Agostinelli, Dario Benvenuti, Eleonora
Bernasconi, Francesca de Luzi, Lauren Stacey Ferro, Francesco Leotta, Andrea
Marrella, Francesco Sapio, and Silvestro Veneruso. We applaud their team efforts for
realizing our gatherings under safe conditions.

September 2021 Artem Polyvyanyy
Moe Thandar Wynn

Amy Van Looy
Manfred Reichert
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Interactive and Minimal Repair
of Declarative Process Models

Carl Corea1(B), Sabine Nagel1, Jan Mendling2, and Patrick Delfmann1

1 University of Koblenz-Landau, Koblenz, Germany
{ccorea,snagel,delfmann}@uni-koblenz.de

2 WU Vienna, Vienna, Austria
jan.mendling@wu.ac.at

Abstract. We present an approach for resolving inconsistencies in
declarative process models while guaranteeing a minimal information
loss (w.r.t. the number of deleted elements). To this aim, we show how
smallest correction sets, i.e., the smallest sets of constraints that need
to be deleted in order to resolve inconsistencies, can be computed via
an application of Reiter’s hitting set theorem. In this context, as delet-
ing certain constraints might be highly sensitive or not plausible in a
real-life sense, we extend our approach with functionalities for enabling
a close human-in-the-loop interaction, such as prioritizing constraints,
as well as metrics that offer modelers insights into the impact of delet-
ing constraints. Furthermore, we implement our approach and show that
our inconsistency resolution approach outperforms existing approaches
in terms of runtime and information loss in experiments with real-life
data sets.

Keywords: Declarative process models · Inconsistency resolution ·
Minimal correction sets · Hitting sets

1 Introduction

While declarative process models allow to specify flexible processes, the logic-
based nature of declarative constraints leaves models prone to logical inconsis-
tencies [3,5,12]. As a simple example, consider the declarative process model D1

(we will formalize syntax and semantics later), defined via

D1 ={Init(a),Response(a, b),Response(b, c),NotResponse(a, c)},

with the intuitive meaning that 1) a process must start with a task a, 2) a task a
must be eventually followed by a task b, which must 3) eventually be followed by
a task c, and 4) a task a must never be followed by a task c. D1 is inconsistent,
as it demands contradictory reactions to the occurrence of task a. Therefore, the

Part of the research project “Handling Inconsistencies in Business Process Modeling”,
funded by the German Research Association (reference number: DE1983/9-1).
c© Springer Nature Switzerland AG 2021
A. Polyvyanyy et al. (Eds.): BPM Forum 2021, LNBIP 427, pp. 3–19, 2021.
https://doi.org/10.1007/978-3-030-85440-9_1
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4 C. Corea et al.

shown model is unsatisfiable and the inconsistency must be resolved in order to
use the model for its intended purpose of governing compliant company behavior.
Mind that contradictions in models of real-life complexity are difficult to spot,
since they often arise from combinations of several constraints. Here, modelers
need to be supported at design-time in order to resolve such inconsistencies.

In response, recent works [3,4] have presented methods for inconsistency
repair. While this is a clear benefit for companies, a current limitation is that
those approaches cannot guarantee a minimal information loss, i.e., that only
the smallest possible set of constraints is actually deleted. For example, as the
approach in [4] is only an approximation algorithm, it can easily occur that twice
as many constraints are deleted compared to the optimum. Here, new methods
are needed to counteract this risk of unnecessary information loss (R1).

Furthermore, existing approaches are geared towards automated resolu-
tion. However, as deleting constraints might be highly sensitive, automated
approaches might yield implausible results. For example, if a system computes
that inconsistency can be resolved by deleting only one constraint, this result
is of no use if that constraint is business-critical and must be retained. This
calls for a close integration of human experts in determining suitable resolution
strategies (R2).

To address the research problems raised above, the contribution of this work
is consequently twofold:

• (R1) Minimal Information Loss. We show how minimal correction sets
(MCS) can be computed via a reduction to a hitting set enumeration prob-
lem, i.e., an application of Reiter’s hitting set theorem [16]. This allows to
compute the cardinality-smallest set(s) of constraints that have to be deleted
to restore consistency, i.e., inconsistency is resolved while guaranteeing the
smallest possible information loss w.r.t. the number of deleted constraints.

• (R2) Human-in-the-loop Integration. We extend our computation app-
roach with a human-in-the-loop perspective, allowing users to impact the com-
putation of minimal correction sets, e.g., by prioritizing certain constraints.
Also, to support modelers in understanding different resolution options, novel
metrics are presented that help modelers understand the impact of their
choices, e.g., the effectiveness of customized resolution strategies.

The remainder of this work is structured as follows. In Sect. 2, we provide pre-
liminaries on declarative process models and discuss limitations of related works
addressed in this paper. Section 3 presents our approach for computing MCS via
hitting sets. Our approach is then implemented and evaluated in experiments
with real-life data sets in Sect. 4. We conclude in Sect. 5.

2 Preliminaries and Related Works

In this section, we discuss preliminaries on declarative process models, the notion
of inconsistency in declarative models, as well as related work.
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2.1 Declarative Process Models

Declarative process models are constituted of a set of constraints, that confine
the allowed behavior of company activities [14]. As opposed to traditional process
models, this allows for a high degree of flexibility within these set bounds.

Definition 1 (Declarative Process Models). A declarative process model is
a tuple M = (A,T,C), where A is a set of activities, T is a set of constraint
templates, and C is the set of actual constraints, which instantiate the template
elements in T with tasks in A.We denote M as the universe of all such models.

In this paper, we consider Declare [14], which is a declarative process mod-
eling language and notation. Declare offers easy-to-use predefined templates,
that can be parametrized with company activities in order to specify declarative
constraints. For example, the Declare constraint Response(a, b) states that
if a task a occurs, it must be eventually followed by a task b. An advantage of
Declare is that the semantics of template types can be defined with temporal
logic, allowing to exploit the amenities of temporal logic checking, while hiding
complexity from the end user. We define the semantics of Declare constraints
with the temporal logic LTLp [13]. An LTLp formula is given by the grammar

ϕ :: = a|(¬ϕ)|(ϕ1 ∧ ϕ2)|(©ϕ)|(ϕ1Uϕ2)|(©− ϕ)|(ϕ1Sϕ2).

Each formula is built from atomic propositions ∈ A (relative to a declarative
process model), and is closed under the boolean connectives, the unary tempo-
ral operators © (next) and ©− (previous), and the binary temporal operators U
(until) and S (since). For any such formula, the semantics is then defined relative
to a trace t. Due to space limitations, we omit a presentation of the concrete
semantics and refer the reader to [5]. Based on such LTLp formulae, the seman-
tics of individual Declare constraints can then be defined. A standard set of
Declare templates and corresponding semantics can be found in [3].

2.2 On the Notion of Inconsistency in Declarative Process Models

Based on the LTLp semantics, it can be verified whether a constraint c is satisfied
by a trace t by checking if c evaluates to true over t [12]. Given a declarative
model M, let TA denote the set of all possible sequences that can be constructed
based on the activities A ∈ M. An evaluation of a declarative model M over a
trace t is thus a function ε : M × TA → {�,⊥}, defined via

ε(M, t) =

{
� if for all c ∈ C : c evaluates to true for t

⊥ otherwise

We define the language L of a model M as all traces that satisfy M, i.e.,

L(M) = {t ∈ TA | ε(M, t) = �}.
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Thus, an inconsistent declarative process model is a model where L = ∅, i.e., it
cannot accept any traces.

Consider the exemplary declarative process models M1,M2, defined via

M1 ={Init(a),Response(a, b),NotResponse(a, b)}
M2 ={Response(a, b),NotResponse(a, b)}

In M1, the constraint Init(a) confines that a trace must start with an event a.
The remaining two constraints Response(a,b) and NotResponse(a,b) would
also have to be satisfied in the same trace. As the latter two constraints are
contradictory, there can exist no trace that satisfies M1, i.e. L(M1) = ∅.

The notion of classical inconsistency was recently extended with the concept
of quasi-inconsistency [5,6]. In the declarative model M2 there exist two “con-
tradictory” constraints, but there is no confinement regarding the occurrence of
an activity a. In result, M2 can accept an arbitrary amount of traces, i.e., any
trace that does not contain the activity a . Thus, as L(M2) 	= ∅, M2 is not classi-
cally inconsistent. Yet, the constraints in M2 are highly problematic, as they will
always be activated together, but yield contradictory conclusions. Following [5],
M2 is, therefore, quasi-inconsistent. For a formal definition, we first need some
notation on reactive constraints and constraint activation.

Considering Declare constraints such as Response(a, b), we see that such
constraints describe a form of cause and reaction relation between the tasks a and
b, i.e., given an activity a, the reaction should be b. Thus, following works such
as [2], declarative constraints can be rewritten as so-called reactive constraints.

Definition 2 (Reactive Constraints [2]). Given a declarative process model
M = (A,T,C), let α ∈ A be an activation and ϕ be an LTLp formula over A.
Then, a reactive constraint (RCon) Ψ is a pair (α,ϕ), denoted as Ψ = α ⇒ ϕ.

As an example, Response(a, b) can be rewritten as a ⇒ ♦b. For a constraint c,
we denote Aa(c) and Ar (c) as the respective activating and reacting activities.
For a declarative process model, if the reaction of a constraint c is an activation
to a constraint c′, we also say that the Aa(c) transitively activates c′ [5].

Consequently, we define quasi-inconsistency and issues as follows.

Definition 3 (Quasi-Inconsistent Subset [5]). For a constraint set C, a
quasi-inconsistent subset is defined as a pair (A,C), s.t. C ⊆ C, A activates C
and A ∪ C |=⊥.

To clarify, we consider constraints that will a) always be activated together,
and b) yield an inconsistency, should they be activated.

Example 1. We recall M2. Then, we have the quasi-inconsistent subset q, with

q = ({a}, {Response(a, b),NotResponse(a, b)})

For a model M , the set MIS(M) is the set of minimal quasi-inconsistent
subsets, i.e., subsets where removing any constraint resolves the issue.



Interactive and Minimal Repair of Declarative Process Models 7

In this section, we have introduced the concepts of inconsistency and quasi-
inconsistency. We acknowledge that [12] also introduce the notion of conflicting
sets, which are conflicting constraints that were activated by a given trace. How-
ever, in this work, we only consider the introduced forms of “inconsistencies”,
i.e., “inconsistencies” that arise independent of specific traces and need to be
resolved at design-time. For the remainder of this paper, we will refer to both
quasi-inconsistencies and “classical” inconsistencies as “issues”, for readability.
We also denote MIS as all minimal quasi-inconsistent subsets and all “classical”
minimal inconsistent subsets1 by a slight misuse of notation. Basically, we are
interested in all (potential) inconsistencies, as these issues need to be resolved.

2.3 Related Works and Contributions

Consider the model M3 in Fig. 1, which has six issues that need to be resolved.
Here, several works have presented means for inconsistency resolution [3,4,12].

Fig. 1. Exemplary model M3, containing six minimal issues (highlighted)

A central approach is to start by deleting constraints that have the high-
est number of overlaps, as this maximizes the number of minimal issues being
resolved by deleting one constraint. Hence, approaches such as [4,12] would
delete the constraint Response(b, c), as it is part of the most overlapping sets
(4). This resolves all issues but MIS1 and MIS6, which means two more con-
straints have to be deleted (i.e., three deletions in total). However, this is not
the optimal solution, as inconsistency could be resolved by deleting only two
constraints (Response(a, b), Response(d, b)) (these two constraints are part of
less overlaps, still, it would be an optimal solution to start with deleting these
constraints). This shows that while the existing solutions produce “minimal”
solutions/repair sets (in terms of set inclusion), they do not always yield the
cardinality-smallest solutions, i.e., they can run into local optima due to the

1 Given a model M and a corresponding constraint set C, a minimal inconsistent
subset is defined as a set m ⊆ C, s.t. L(m) = ∅ and �m′ ⊂ m with L(m′) = ∅.
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approach designs as greedy algorithms. This can result in unnecessary informa-
tion loss2. In this work, we present an approach to compute the cardinality-
smallest set(s) of constraints that have to be deleted to restore consistency, i.e.,
our approach guarantees a minimal information loss w.r.t. the number of deleted
constraints. This is achieved by means of so-called hitting sets. Please note that
the mentioned existing approaches [3,4,12] do not use hitting sets to resolve
inconsistencies (cf. above for the resulting limitations). Furthermore, existing
approaches [3,4] are geared towards automated resolution. However, as delet-
ing certain constraints might be highly sensitive, such automated approaches
might yield implausible results in a real-life sense. Here, new results are needed
that extend inconsistency resolution with a human-in-the-loop perspective. In
this regard, we, therefore, present novel means, that allow the user to impact
the computation of resolution strategies, while being supported with insights to
understand the impact of different resolution options.

In general, our work is also related to to other works that use hitting sets
for the diagnosis and repair of knowledge representation formalisms. This idea
by Reiter [16] has been applied in various other logical formalisms, e.g., first-
order logic [7], propositional logic [10] or non-monotonic logics [1]. Here, this
work is the first to investigate Reiter’s hitting set theorem in the context of
declarative process models. Also, this works introduces novel concepts towards
the “customization” of hitting set computation according to company needs, e.g.,
allowing users to define preference relations of rules as a basis for computation.

We also acknowledge that there are works investigating inconsistency reso-
lution in declarative processes at run-time [11,12], which is beyond the scope of
this report, as we focus on design-time analysis of declarative models.

3 Minimal and Interactive Repair

In this work, we present an approach to resolve inconsistencies (i.e., minimal
issues) in declarative process models by deleting (the smallest possible set of)
constraints. Importantly, as the plausibility of automatedly computed resolution
operations has to be carefully considered, the approach is geared towards a
semi-automated resolution, allowing humans to understand, evaluate and select
suitable resolution strategies. Our approach overview is shown in Fig. 2. At first,
all inconsistent subsets are detected. Then, viable repair operations are computed
based on minimal correction sets, i.e., minimal hitting sets (cf. Sections 3.1, 3.2).
Last, to select suitable repair operations, our approach provides metrics and
further means to support modelers in evaluating possible solutions (cf. Section
3.3).

2 The approach in [3] would behave analogously, except not by deleting constraints
but iteratively building a new, maximally consistent model, which could also “drop”
more constraints than necessary.
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Fig. 2. Approach overview

3.1 Inconsistency Resolution Based on Minimal Correction Sets

For determining resolution strategies, experts need to identify which constraints
should be removed from a model to resolve all minimal issues. To avoid unnec-
essary information loss, it is especially interesting to identify minimal sets of
constraints that can be removed to resolve inconsistency. In the following, we
refer to such sets as minimal correction sets, i.e., a set of constraints that – when
deleted – resolves all minimal issues, and is minimal in terms of set-inclusion.

Definition 4 (Minimal Correction Sets). Given a constraint set C, C ⊆ C
is a minimal correction set of C, if MIS(C\C) = ∅, and ∀C ′ ⊂ C : MIS(C\C ′) 	=
∅. Let X be a constraint set or a declarative process model, we denote MCS(X)
as the set of minimal correction sets for the constraints in X.

Such minimal correction sets can be computed by considering so-called hit-
ting sets, following [16].

In set theory, a set H is called a hitting set of a set of sets S = {S1, ..., Sn}
iff H ∩ Si 	= ∅ for every i = 1, ..., n.

Example 2. Consider the set of sets S′ = {{1, 2, 3}, {1, 3, 5}, {4, 5, 6}}. Further-
more, consider the following exemplary sets H1 − H3, defined via

H1 = {1, 4} H2 = {1, 2, 3, 4, 5, 6} H3 = {1, 2, 3}.

H1 and H2 are hitting sets w.r.t. S′, as H1/2 ∩ Si 	= ∅ for all i = 1..3. However,
we see that H2 is not minimal, as we could remove several elements and H2

would still be a hitting set. Also, we see that H3 is not a hitting set for S′, as it
has no elements in common with the last inner set of S′.

To compute minimal correction sets, we consequently propose to consider
minimal hitting sets, by adapting Reiter’s hitting set theorem as follows:

Theorem 1 (Hitting Set-Based MCS (adapted from [16])). Given a con-
straint set C, C ⊆ C is a minimal correction set of C iff C is a minimal hitting
set w.r.t. MIS(C).

Example 3. Consider the following constraint set M5, defined via

M5 = NotResponse(a, b) ChainResponse(a, b) Response(a, b)

NotResponse(c, d) ChainResponse(c, d) Response(c, d)
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Then we have:

MIS(M5) = {µ1, µ2, µ3, µ4}
µ1 = {NotResponse(a, b),ChainResponse(a, b)}
µ2 = {NotResponse(a, b),Response(a, b)}
µ3 = {NotResponse(c, d),ChainResponse(c, d)}
µ4 = {NotResponse(c, d),Response(c, d)}

Consider the exemplary hitting sets H4 − H6, defined via

H4 = {NotResponse(a, b),NotResponse(c, d)}
H5 = {NotResponse(c, d),ChainResponse(a, b),Response(a, b}
H6 = {NotResponse(a, b),NotResponse(c, d),ChainResponse(a, b)}.

H4 −H6 are hitting sets for MIS(M5). However, H6 is not minimal, as we could remove
ChainResponse(a, b) and H6 would still be a hitting set. Correspondingly, only H4

and H5 are minimal correction sets for M5.

While minimality of hitting sets enforces that the hitting sets are not
reducible, this does not mean “smallest” per se. In the scope of deleting only
the smallest possible amount of constraints, it could, however, be interesting to
consider the cardinality-smallest minimal correction sets.

Definition 5 (Smallest viable repair). Given a declarative process model M
and the set of minimal correction sets MCS(M), the set of smallest minimal cor-
rection sets is defined as MCSMIN (M) = {S ⊆ MCS(M) : |S| = min(MCS(M))}.
Corollary 1. The smallest possible number of constraints that have to be deleted
from a declarative model M to resolve all minimal issues is min(MCS(M)).

In turn, this allows to present users a list of all possible smallest viable repairs.
In this section, we have presented means to compute minimal correction sets

based on hitting set enumeration. While this approach can be used to identify
the cardinality-smallest sets of constraints for inconsistency resolution, there is
still a major conceptual problem, namely that of plausibility: Even if algorithms
can compute a (smallest) set of constraints that could be deleted to resolve the
inconsistency, this does not mean that these solutions are plausible in a real-life
sense. We therefore propose to extend inconsistency resolution with a human-
in-the-loop perspective.

3.2 Human-in-the-Loop Features

To allow for a human-in-the-loop integration, repair operations should not be
automatedly applied, but rather recommended to the user. Also, experts should
be able to influence or constrain the actual computation of viable correction
sets. Therefore, we raise the following two requirements for a human-in-the-loop
integration in inconsistency resolution:
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1. To compute a recommendation of repair operations, it should be possible to
rank minimal corrections, e.g., by an arbitrary quality metric.

2. The computation of which constraints to delete should be relative to a user-
definable configuration, e.g., by allowing to prohibit the deletion of certain
constraints or provide superiority relations.

As motivated in Sect. 2.3, related work on inconsistency resolution in declar-
ative process models cannot satisfy these requirements. We consequently address
these issues in the following.

First, via Definition 5, correction sets can already be ranked by their size.
Next to the correction set size, this can be generalized for arbitrary measures γ
to allow for a general ranking of correction sets.

Definition 6 (γ-Repair Ranking). Let a declarative process model M and
the set of minimal correction sets MCS(M). Then, considering a measure γ :
MCS(M) → R∞

≥0 that assigns to a minimal correction set a non-negative numer-
ical value, a γ-repair ranking over all m ∈ MCS(M) is any ranking 〈m1, ...,mn〉
that satisfies γ(m1) ≤ ... ≤ γ(mn).

Thus, this ranking can sort all MCS relative to a measure γ. Importantly,
the semantics of the ranking are defined such that the ranking sorts all minimal
correction sets from “best” to “worst” option, relative to γ.

Continuing, it should be possible to confine the deletion of certain constraints
in order to leverage the computation of plausible correction sets following require-
ment 2. Here, we consider whitelists, i.e., a whitelist W ⊆ M is a list of con-
straints not to be deleted. Intuitively, a whitelist can “block” certain minimal
correction sets, as these could include whitelisted constraints. Therefore, it is
necessary to provide means to present users with the (next) best viable repair,
while also considering the whitelist. To this aim, we adapt the notion of small-
est viable repairs and extend this for arbitrary quality measures. This allows to
determine the set of best possible γ-repairs relative to a whitelist.

Definition 7 (Best Viable γ-Repair). Given a declarative process model M,
a measure γ : MCS(M) → R∞

≥0 that assigns to a minimal correction set a non-
negative numerical value, and a whitelist W ⊆ M, the best viable γ-repair w.r.t.
W is defined as MCSW

γ (M) = {S ⊆ MCS(M) | ∀s ∈ S : �x 	∈ S s.t. γ(x) <
γ(s), and s 	∈ W}.

The best viable γ-repair thus finds the “best” minimal correction sets w.r.t.
a measure γ, (e.g., the correction set size) while also considering the whitelist.
Given a declarative process model M and a measure γ, we denote the set of best
viable γ-repairs as BCSγ .
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Example 4. Consider the minimal correction sets MCS1 − MCS4:

MCS1 = {NotResponse(a,b),NotResponse(c, d)}
MCS2 = {NotResponse(a,b),ChainResponse(c, d), {Response(c, d)}.

MCS3 = {ChainResponse(a, b),Response(a, b),ChainResponse(c, d),
Response(c, d)}.

MCS4 = {NotResponse(c, d),ChainResponse(a, b),Response(a, b)}
Assume a whitelist W = {NotResponse(a,b)}, i.e., this constraint should

not be deleted. This prohibits to select the correction sets MCS1 and MCS2,
as deleting the corresponding constraints would violate the whitelist constraints.
Considering again the correction set sizes, i.e., γ(M) = |M |, the best viable γ-
repair BCSγ would therefore be BCSγ = {MCS4}. Note that MCS3 is not part
of the best viable repair: While it satisfies the whitelist constraints, it does not
satisfy the first condition that there should be no other remaining correction sets
with lower γ value (here: set size).

Intuitively, a large whitelist might overly restrict the set of viable γ-repairs.
Thus, next to entirely blocking certain constraints in a binary manner, model-
ers should rather also have the possibility of a more fine-grained configuration
that allows for more flexibility. Therefore, we propose to allow users to weight
constraints, and calculate the fitting correction sets accordingly.

Definition 8 (Weighted Declarative Process Model). A weighted declara-
tive process model is a tuple M = (A,T,C, w), where A is a set of activities, T
is a set of constraint templates, C is the set of actual constraints, which instanti-
ate the template elements in T with tasks in A, and w : C → R∞

≥0 is a weighting
function for constraints.

A weighted declarative process model extends declarative models with defin-
able constraint weights. In order to allow modeling superiority relations between
constraints, arbitrary weights can be defined manually or derived automatically.
This allows to compute weighted correction sets.

Definition 9 (Correction Set Weight). Given a weighted declarative process
model M = (A,T,C, w) and the corresponding minimal correction sets MCS(C),
the weight w(M) of any M ∈ MCS(C) is defined as

∑
c∈M w(c).

As the correction set weight can essentially be used as an assessment function
γ for correction sets, it is therefore possible to compute a repair ranking via
Definition 6 using the correction set weights, i.e., a larger correction set weight
indicates a higher “cost” to remove this correction set.

Example 5. We recall the correction sets MCS1 − MCS4 from Example 4. Fur-
thermore, assume the expert has determined the following constraint weights:

NotResponse(a, b) = 3 ChainResponse(a, b) = 1
Response(a, b) = 1 NotResponse(c, d) = 3

ChainResponse(c, d) = 1 Response(c, d) = 1
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In the example, the expert has prioritized two constraints. In turn, we have that

w(MCS1) = 3 + 3 = 6 w(MCS2) = 3 + 1 + 1 = 5
w(MCS3) = 1 + 1 + 1 + 1 = 4 w(MCS4) = 3 + 1 + 1 = 5.

We see that while MCS1 is smaller than MCS2-MCS4 (and in general it would
be favorable to select smaller correction sets), the “costs” of selecting MCS1

are higher as this would mean to delete two highly prioritized constraints. This
information can thus be used for considering the trade-off between selecting
correction sets of smaller size or keeping constraints of higher priority.

3.3 Understanding Support

In the previous section, we introduced means to enable a close human-in-the-
loop integration. While this allows users to provide a fine-grained configuration
for correction set computation, it also places an increased pressure on the human
to ultimately choose which correction sets to select. Given that there can easily
be multiple best viable repairs, users must be supported in understanding the
consequences of choosing between these correction sets, in order to determine
suitable resolution strategies. We, therefore, propose a metric to assess the qual-
ity of a correction set selection, as well as means to understand the behavioral
changes resulting from applying a certain correction set, explained as follows.

Assuming a modeler is comparing the sizes of different correction sets, a
smaller correction set can in general be considered as better than a larger cor-
rection set. However, it might not be plausible to apply the smallest correction
set, as a user might deem that the respective constraints must be kept. Thus,
the user might be forced to select a larger correction set. However, if the next
viable correction set is too large, a user might have to carefully consider whether
keeping certain constraints is “worth” deleting a (much) higher number of other
constraints. Especially when considering correction set measures other than the
size, e.g., complex correction set weights, deciding and balancing such a deci-
sion is a difficult task for experts. Here, we propose to compute distance-based
metrics to support users in understanding the trade-off between different choices.

For a declarative model M, consider any quality measure γ : MCS(M) →
R∞

≥0, where a higher value indicates a higher “cost” of removing the individual
correction set. Then, the smallest possible cost is the minimum over all best
viable γ-repairs BCSγ(M), i.e., the smallest possible cost (w.r.t. γ) MINγ(M)
= minB∈BCSγ(M)γ(B). This allows to compute an absolute distance metric for
assessing arbitrary correction sets.

Definition 10 ((Distance-based) Additional Correction Set Costs from
Baseline). Given a declarative process model M and a correction set measure γ,
the additional cost caddγ

of any correction set M relative to the smallest possible
cost is defined as caddγ

(M,M) = γ(M) − MINγ(M).

This metric provides an assessment of correction sets for determining the addi-
tional costs relative to the smallest possible costs w.r.t. γ .
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Example 6. We recall the correction set MCS1 −MCS4 from Example 4. Judg-
ing from a set size perspective, i.e., γ(M) = |M |, we have that γ(MCS1) = 2,
γ(MCS2) = γ(MCS4) = 3 and γ(MCS3) = 4. Thus, the smallest possible costs
MINγ are 2. Here, the additional costs of selecting MCS2 or MCS4 would be 1,
and 2 for selecting MCS3. If the additional costs from the baseline become too
large, they might outweigh the costs of keeping certain constraints. The proposed
distance-based metric can thus support users in making an informed decision as
to whether the whitelist or rule weights should be altered.

While the distance-based additional cost metric can produce valuable
insights, an ultimate selection of specific correction sets might not only depend
on numeric factors such as the number of deleted constraints, but rather on
the actual behavioral consequences following the deletion of a specific correction
set. Here, experts need to be supported in understanding the behavioral con-
sequences of the different available options. To this aim, we propose so-called
fragment-based language profiles in order to present modelers the exact differ-
ence in behavioral changes for different resolution options.

To understand behavioral changes, given a declarative model M, one could
theoretically compute the language of M and the language of any M’ derived
by deleting a set of constraints from M. Then, one could simply compare the
languages of M and M’ in order to identify all behavioral changes, i.e., differ-
ences in accepted traces. However, this is not feasible, as the languages can be
infinitely large. Instead, we propose to consider only fragments of the possible
languages, explained as follows.

Consider the constraint set M = {Response(a, b),NotResponse(a, b)},
which is quasi-inconsistent. Then, consider a correction set C =
{Response(a, b)}, indicating that this constraint could be deleted to resolve
the issue in M. The question then arises which behavioral changes would follow
deleting this constraint, i.e., given a model M’ = M \C, what would be the dif-
ference L(M ′)− L(M)? Regardless of any actual or possible trace for M, in the
example, any changes in language for M’ only apply for any trace that contains a
or b. For instance, a trace cde would behave identically for M and M’, whereas
the trace a could not satisfy M but possibly satisfy M’. Therefore, only the
permutations of the distinct events within the correction set constraints need to
be considered. For example, for the above correction set C = {Response(a, b)},
the distinct events are a, b, so all possible event combinations, i.e., trace frag-
ments, would be a, b, ab, ba. By evaluating these fragments against the original
model M and a corresponding altered model M’, changes in the different lan-
guage profiles following a deletion of the correction set relative to the original
rule base can be identified, as shown in Fig. 3. By deleting the correction set
C = {Response(a, b)}, the two trace fragments a and ba would become possi-
ble (which were not possible before). The expert can thus inspect whether this
is deemed as appropriate behavior. For example, if the sequence ba should never
occur in the company processes, the expert could see that the current correction
set would result in unwanted behavior, and seek for a different solution.
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Fig. 3. Fragment-based visualization of behavioral changes

To compute the actual behavioral differences between the models, we encode
the satisfiability of the individual trace fragments relative to a model as a so-
called language profile. Let a finite list of trace fragments be t = (t1, ..., tn).
Then, for a model M , a language profile is a 1 × n matrix

λM t =

⎡
⎢⎢⎣

λt1
...

λtn

⎤
⎥⎥⎦ , with every λti =

{
1, if M |= ti

0 otherwise

Definition 11 (Behavioral Change Profile). Given a set of trace fragments
t and two models M,M ′, the behavioral change profile is defined as λM t −λM ′t,
where an index 1 indicates a change in behavior, and an index 0 indicates an
identical behavior of the two models for the corresponding trace fragment.

Example 7. Consider the trace fragments and models M,M ′ shown in Fig. 3.
Then, behavioral change profile b = [1, 0, 0, 1] (transposed), indicating a behavior
change for the trace fragments a and ba.

Considering behavioral change profiles provides important insights to mod-
elers, as it enables experts to understand the changes in behavior between
two models, e.g., to inspect whether deleting certain constraints could lead to
unwanted or non-compliant process behavior.

A possible limitation of applying behavioral change profiles could be the
amount of fragments that need to be considered. For correction sets and the
number of contained events, the number of permutations/fragments that need
to be computed could grow factorial. However, this is only a problem if the cor-
rection sets would contain a very high number of constraints. Based on the overall
goal to mitigate unnecessary deletions of constraints, our approach intuitively
favors smaller correction sets by design. To anticipate our empirical results from
Sect. 4, we also found that correction sets were generally small for real-life data
sets, i.e., 3–5 constraints, of which only the distinct events have to be considered.
Also, only fragments that contain at least one activation over the constraints in
the correction set need to be considered, as traces without an activation will
not be affected by the deletion of the correction set. Therefore, the number of
fragments can be further confined, e.g., in Fig. 3, the trace b would technically
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not need to be considered. Thus, the computation of behavioral change profiles
is feasible for smaller correction sets, e.g., as in the analyzed real-life data sets
(cf. Section 4). For settings with a large number of fragments, efficient algorithms
should be investigated in future work.

4 Tool Support and Evaluation

We implemented our inconsistency repair approach as a proof-of-concept. The
project can be viewed online3. Also, an online-demo is available4. Here, users
can upload their declarative models, view the model as a 3d-graph, scan for any
minimal issues and compute minimal correction sets directly in the browser. The
computation of minimal issues is based on our previous work in [5].

At the core, our approach is strongly dependent on the performance of the
hitting set enumeration. Fortunately, this computation task has gained recent
momentum and powerful enumeration algorithms are available [8,15]. In our
implementation, we integrated the PySat library5 for computing hitting sets,
which has been broadly studied and evaluated. However, these libraries have
been mostly tested in more theoretical contexts, such as SAT solving.

To evaluate the plausibility of applying our proof-of-concept in a BPM set-
ting, we conducted runtime experiments with real-life data-sets from the Busi-
ness Process Intelligence (BPI) Challenge6. Here, we used data sets from the
last four years, i.e., logs of a loan application process (BPI 17, 31.509 cases), a
governmental funding process (BPI 18, 43.809 cases), a purchase order process
(BPI 19, 251.734 cases), and a domestic travel expense refund process (BPI 20,
10.500 cases). From these logs, we mined Declare models using the declarative
process discovery tool Minerful [3]. As mining parameters, we selected a support
factor of 75%, as well as confidence and interest factors of 12.5%, following the
experiment setup in [3]. Note that as shown in [5], these parameters allow for
contradicting constraints to be added to the initial model, which is needed for our
evaluation. In the future, it might be interesting to further examine the effects
of mining parameters on the resulting inconsistencies and repeat the evaluation
with different parameter configurations. We applied our proof-of-concept imple-
mentation to all models to compute the smallest viable repairs. As a baseline, we
compared our approach to the approach in [4] (approximation algorithm) to test
how many unnecessary deletions could be avoided by using an exact approach
as proposed in this work7. The experiments were run on a machine with 3GHz

3 https://bit.ly/38kyxD0.
4 https://bit.ly/38lSU2N.
5 https://pysathq.github.io/docs/html/api/examples/hitman.html.
6 https://icpmconference.org/2020/bpi-challenge/.
7 We acknowledge that the approach in [3] could have also been considered as a base-

line; however, that approach cannot resolve quasi-inconsistencies and is therefore not
fully comparable. Also, as the approach in [3] is also an approximation algorithm, it
can be expected to also not compute the smallest possible number of deletions for
all cases, which is why we consider the selected baseline [4] as representative.

https://bit.ly/38kyxD0
https://bit.ly/38lSU2N
https://pysathq.github.io/docs/html/api/examples/hitman.html
https://icpmconference.org/2020/bpi-challenge/
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Intel Core i7 processor, 16 GB RAM (DDR3) under macOS. Table 1 shows the
experiment results for the analyzed real-life data sets. As the model mined from
the BPI19 log did not yield any minimal issues, it was omitted for readability.

Table 1. Overview of evaluation results for the analyzed real-life data sets

Log Constraints | # of MIS # of Deleted constraints Runtime

Baseline [4] | This work � Baseline [4] | This work �
BPI 17 305 28954 5 3 40% (2) 92243 ms 30782 ms 67%

BPI 18 70 25303 7 4 43% (3) 18093 ms 13733 ms 24%

BPI 20 357 747 7 5 29% (2) 1952 ms 795 ms 59%

For all declarative models, our algorithm was able to resolve all minimal issues
by deleting less constraints compared to the baseline from [4]. More specifically,
the information loss could be lowered by up to 43% (BPI 18). The runtime of
our algorithm was also lower for all cases, with a time reduction of up to 67%
(BPI 17). Thus, for the analyzed real-life data sets, our proposed approach was
noticeably faster, and could reduce the number of deletions, i.e., resolve incon-
sistency with less information loss. Regarding the reduced number of deletions,
this result is generalizable, as existing methods are prone to follow a non-optimal
solution due to running into local optima (cf. Section 2.3). Thus, our approach
guarantees to delete less or equal amounts of constraints for any model com-
pared to [3,4,12]. Regarding runtime, we do not see a conceptual reason for the
faster results, therefore, more experiments are needed in future works. The faster
runtime could be attributed to the use of the PySat library, which might have
faster inconsistent subset computation than [4].

5 Conclusion

In this paper, we have presented an approach for minimal and interactive incon-
sistency repair of declarative process models, where users can customize the
computation of repair solutions and are supported in assessing different viable
options with metrics and behavioral change analysis. Our evaluation indicates
that our proposed approach can outperform existing means w.r.t. runtime and
information loss. In this context, we see the following limitations of our work.

Our work implicitly uses the number of deleted constraints as an information
loss measure. Here, other information loss measures have been investigated [9]
and might be applicable for temporal logics. For example, instead of minimizing
the number of deleted constraints, it could be beneficial to delete those con-
straints that have a low impact on the number of allowed traces. Note, however,
that our approach already supports modelers towards this aim via behavioral
change profile analysis of possible repairs.

Furthermore, our work only considers repair via deletion. While we argue that
this can be plausible in the scope of inconsistency resolution, other change pat-
terns such as weakening have also been proposed [9] and should be investigated
in future work (e.g., relaxing a constraint ChainResponse to Response).
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A central limitation of using the proposed approach based on hitting set
diagnosis is that the constraints are viewed as abstract elements of a set. Here,
it might be necessary to develop further means for distinguishing minimal incon-
sistent subsets in Declare based on the specific temporal constraints. In this
way, it would be possible to further assess the severity of inconsistencies and
to implement a more fine-grained prioritization of detected problems. In this
context, it is also noteworthy that this work is limited to standard Declare
templates with at most two parameters. Thus, it should be investigated how
arbitrary constraints (e.g., using logical operators) must be handled, especially
regarding their effect on behavioral changes.

In this work, the repair was geared towards inconsistencies. For future work,
we aim at extending our approach to also consider other types of problematic
structures in declarative models, such as hidden dependencies [17]. For any type
of minimal structure, it can be expected that computing “minimal repair sets” via
Reiter’s hitting set theorem will be applicable. We aim to evaluate our proposed
approach in experiments with human participants, especially in regard to the
cognitive effects of the proposed metrics and behavioral change analysis. Also,
we aim to implement and evaluate our proposed approach of behavioral change
profile analysis.
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Abstract. Business process modelers need to have expertise and knowl-
edge of the domain that may not always be available to them. There-
fore, they may benefit from tools that mine collections of existing pro-
cesses and recommend element(s) to be added to a new process in design
time. In this paper, we present a method for process autocompletion
at design time, that is based on the semantic similarity of sub-processes.
By converting sub-processes to textual paragraphs and encoding them as
numerical vectors, we can find semantically similar ones, and thereafter
recommend the next element. To achieve this, we leverage a state-of-the-
art technique for encoding natural language as vectors. We evaluate our
approach on open source and proprietary datasets and show that our
technique is accurate for processes in various domains.

Keywords: Process model autocompletion · Semantic similarity ·
Sentence embeddings · Next-element recommendation

1 Introduction

Business processes are used across different domains and organizations. Com-
mercial companies and the public sector alike have adopted process models as a
means for visualizing and executing their business logic. As the volume of existing
process models in an organization increases, it becomes evident that reuse and
automation are paramount to enable faster design of high-quality models [11,12].

One way to enable automation is by suggesting what should come next in a
model that is being constructed, as exemplified in Fig. 1. Using knowledge from
previous experience to recommend the next steps in a process design saves the
modeler much of the guesswork and time-consuming effort of reading documen-
tation trying to determine what options are available.

Autocompletion systems have become popular in recent years as they boost
productivity and improve quality. For instance, modern e-mail applications sug-
gest how to automatically complete sentences for the user, saving time, improv-
ing grammar and style, and avoiding typos [8]. Software developers that are
using tools for automatic completion of their code [31], benefit from richer
c© Springer Nature Switzerland AG 2021
A. Polyvyanyy et al. (Eds.): BPM Forum 2021, LNBIP 427, pp. 20–36, 2021.
https://doi.org/10.1007/978-3-030-85440-9_2
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Fig. 1. Autocompletion problem: the modeler expects recommendations of elements
that follow the task with a bold outline (process excerpt from [1]).

development experience leading to fewer bugs and better code reuse. Our goal
is to provide process modelers with a similar user experience.

There are two main driving forces for the accelerated development of auto-
completion tools in the recent years: first, the growth in the amount of text and
open source code available on the web, and second, recent advances in deep learn-
ing that benefit from large volumes of information. These two factors contribute
to the widespread adoption of deep learning models that are highly accurate and
easily transferable to various domains [13,23].

However, autocompletion of business process models has not experienced a
breakthrough yet, as vast repositories of open-source models do not exist. As
machine learning techniques that train recommendation systems from scratch
require large amounts of data, they are inapplicable for process autocompletion.

Several past attempts to solve the autocompletion problem focused on syn-
tactic information, such as the structure of process model graphs, and did not
take into account the semantic meaning of the processes and their fragments [12,
15,24,39]. Other researchers investigated semantic-based approaches [5,20,21,
34,36,37]. However, semantic similarity between sub-processes determined with
modern deep learning techniques has not been fully explored yet.

Our Contributions. In this paper, we propose to use semantic similarities
among processes to enable the autocompletion of the next element(s) at design
time. Our approach takes into account the limited availability of data in the
field by leveraging pre-trained models for natural language processing (NLP). It
also overcomes the obstacle of handling elements that bear similar meaning, but
somewhat different textual description, by matching tasks with similar labels
rather than exact matches only. Our solution transforms sequences of process
elements into paragraphs of text and represents them as sentence embeddings,
which are learned representations of text that capture semantic information as
vectors of real numbers.

The computed embeddings of element sequences can be compared to each other
via techniques that measure the distance between vectors. Thus, given a partially
completed process, we can find processes in a repository of existing business pro-
cesses that are semantically similar to it. Thereafter, we can recommend the most
likely element to be added to the process, based on these similar processes.

We also present a framework for evaluation of next-element recommendation
systems, filling the gap of previous works on autocompletion. We evaluate the
effectiveness of our approach using metrics widely utilized in NLP and recom-
mendation systems.
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2 Semantic Autocompletion in a Nutshell

Semantic autocompletion aims at recommending process elements based on
semantic similarity of the process being developed to other processes from a
given repository.

Our autocompletion engine works following the procedure illustrated in
Fig. 2. The unfinished process at the top is an excerpt from a process taken from
the university admissions dataset [1] and represents the application procedure
for master students in Frankfurt university.

The autocompletion engine may suggest the modeler that is developing this
process which is the most likely next element to the last one added. In our
example, the last element is the task “Rank students according to GPA and
the test results”, marked with a bold outline. To autocomplete the process, our
algorithm first traverses all the sub-processes of a predefined length leading to
that specific task. In the example, we consider sub-processes of length three,
resulting in the two paths marked with a star and a diamond. Next, we convert
each sub-process into a paragraph of text by concatenating the labels and type
names of the elements in the sub-process.

Third, for each paragraph, we compute its vector embedding, such that an
arbitrary length text is converted to a fixed length numerical vector. Then, each
computed embedding of the target process is compared to the embeddings of
all the sub-processes from an existing dataset of processes (exemplified at the
bottom of the figure), via a similarity metric. Finally, if there are sub-processes in
the input dataset that are semantically similar to the sub-process of interest, the
top matching recommendations are shown to the user. These recommendations
are the elements that appeared in the dataset for other universities right after
the most similar paths (that is, were connected to those paths via a connector).

Fig. 2. Overview of our approach for the autocompletion of a partial process model.
Based on the most semantically similar paths in the input dataset, up to 3 top recom-
mendations are shown to the modeler.
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3 Preliminaries

Finding similarities between processes is key to our autocompletion strategy,
that is fully explained in Sect. 4. This section serves as a background on how
we apply vector representations of text to our problem. We also provide formal
definitions for concepts used throughout the rest of the paper.

3.1 Universal Sentence Encoder, Embeddings and Similarity

The way we convert paragraphs of text into vectors relies on a pre-trained deep
learning model called the Universal Sentence Encoder (USE) [7]. USE encodes
text as high-dimensional numerical vectors that can be used for text classifi-
cation, semantic similarity assessment, clustering, and other tasks that involve
natural language processing (NLP). Intuitively, embeddings are a mathematical
representation of the semantics of the sentences.

The main advantage of embeddings is that sentences of an arbitrary length
are transformed into vectors of real numbers of the same length. This enables
comparison of pairs of sentences by means of computing a similarity score
between vectors representing the sentences.

Let U be the USE model [7]. Given an input sentence p, which is a list of
words in English, we define sentence embedding as follows:

Definition 1 (Sentence and paragraph embedding). For an input sen-
tence (or paragraph) p, the embedding of p is given by p = U(p).

Where U(p) ∈ R
n, and n is the length of the embedding vector. Note that a

paragraph that contains multiple sentences will be also encoded as a vector of
length n.

Once sentences are encoded as vectors, we can calculate how close those vec-
tors are to each other, and use this information as a measure of how semantically
similar the corresponding texts are. Cosine similarity is often used in NLP to
compare embeddings, and is defined as follows:

Definition 2 (Cosine similarity). Given embeddings p and q for two sen-
tences p and q, the cosine similarity is computed as:

cos(p, q) =
p · q

‖p‖‖q‖ =
∑n

i=1 piqi√∑n
i=1 p

2
i

√∑n
i=1 q

2
i

(1)

We now define a similarity matrix between two sets of sentence embeddings
X = (x1, ...,xr) and Y = (y1, ...,ym):

Definition 3 (Similarity matrix). M(X,Y ) = (cos(xi,yj)), i = 1, ..., r; j =
1, ...,m, where x1, ...,xr, y1, ...,ym are embedding vectors.
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3.2 Process Model

A process consists of a set of elements and connections between those elements,
which can be described by a directed graph as follows:

Definition 4 (Process as a directed graph). Let G = {V, E, s, t} where
V is a set of elements, E is the set of flows, s ∈ V is the “start” event at which
the process starts, and t ∈ V is the “end” event at which the process terminates.

Each node v ∈ V can represent an event, a gateway used as a decision point,
or a non-compound, high-level activity. Each node may have a label and always
has a type, that is v = (label, type), whereas, optionally, label = NULL.

While making a recommendation for node v, we first need to extract all
sub-processes of predefined length that end in v. We then compare these sub-
processes to sub-processes extracted from the input dataset to find the most
similar ones. We refer to these sub-processes as “slices”:

Definition 5 (Slice). Given a process G = {V,E, s, t} and a number n ∈ N,
we say that Sn = {Vs, Es} is a slice of G of length n, if Vs ⊆ V , Es ⊆ E,
|Vs| = n, and Sn is a path graph.

Note that since Sn is a path graph [4], its nodes can be topologically ordered
such that we can later process the labels and the types of the nodes as if they
were sentences following one another. We treat each slice as a paragraph of text,
comprised of n sentences.

3.3 Process Matching and Element Autocompletion

Our solution makes its recommendations based on the best matching slice found
in its input dataset. That is, for the last node v in an incomplete process, it
extracts all the slices leading to that node, and for each such slice looks for the
most similar slice in the input dataset. The best match is defined as follows:

Definition 6 (Best match). Given a slice p, the best match to p within the
input dataset I is defined as t = argmaxq∈I(cos(p,q)), where p and q are the
embeddings of slices p and q, respectively.

Practically, an autocompletion tool offers several options for the user to
choose from, therefore we are normally interested to look at the top k matches
rather than at the best match only. In such a scenario we choose k matches with
the highest similarity score to slices ending in v.

Once the top k matches are identified, our solution produces a list of rec-
ommendations for the next element. It does so by looking at the element that
followed each one of the matches in the input dataset. Examples of slices and
next elements extracted from the process in Fig. 2 are shown in Table 1. In some
cases, we may have more than one element following the slice, as we show in the
second row of the table.



Augmenting Modelers with Semantic Autocompletion of Processes 25

Table 1. Sample slices of length n = 3 for the process in Fig. 2.

Slice: Start Event. Task: Check documents. Task: Evaluate.

Next: Exclusive Gateway

Slice: Task: Check documents. Task: Evaluate. Exclusive Gateway.

Next: [Task: Invite to an aptitude test.; Task: Keep in the applicant pool.]

Slice: Task: Evaluate. Exclusive Gateway. Task: Invite to an aptitude test.

Next: Exclusive Gateway

Slice: Exclusive Gateway. Task: Invite to an aptitude test. Exclusive Gateway.

Next: Task: Rank students according to GPA and the test results

Note that the same match t may occur within multiple processes. In such
case, the modeler will receive recommendations based on all of the relevant
processes. As an example, consider the following scenario: processes A and B
in the input dataset contain the slice x → y → z. However, in A, this slice is
connected to node a (that is, x → y → z → a ⊆ A), while in B, it is connected
to b (that is, x → y → z → b ⊆ B). In such a case, if a new process C is being
constructed, with x → y → z ⊆ C, then if the user asks for a recommendation
on what should follow z, both a and b will be recommended. Formally, we define
a recommendation as follows:

Definition 7 (Recommendation). For a match t ∈ I, we say that the ele-
ment r is a recommendation, if there is an edge from the last node of t to r in
the corresponding process.

4 Approach

Our solution recommends which elements should be added to a process model
that is under construction based on an input dataset that is built from a reposi-
tory of processes. This dataset contains the embeddings for all the slices of pre-
defined length n extracted from those processes. The construction of the input
dataset is done as follows: for each process, we traverse the graph representing
the process in a depth-first order, starting from node s, to extract all the slices
of length n (see Definition 5). We then compute the embedding vectors for the
slices (see Definition 1). For each computed embedding we store additional infor-
mation comprised of the slice itself, a reference to the process from which this
slice was extracted, and the elements that followed the slice in the corresponding
process, as in Table 1.

During the autocompletion phase, our solution follows the steps presented in
Algorithm 1. It receives as one of its parameters the node v for which it needs
to recommend the next element(s). It first determines what are the slices that
lead to node v (that is, end in node v). This is done in routine ExtractSlices
(line 2), which traverses the graph starting from node v backwards, based on
the incoming edges. Note that we only attempt to make a recommendation if we
have at least one such slice.
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Next, our recommender computes the embedding for each extracted slice. All
the embeddings are stored in matrix X (line 7). We then compute the similarity
matrix between X and the input set embeddings stored in D (line 9).

Our algorithm proceeds in line 10, where we find the top k matches for
the slices from S with ExtractTopMatches routine. This routine looks for the
best match based on the highest similarity score, records the matching slice and
corresponding next-element recommendations, and repeats until k recommenda-
tions are collected and presented to the end user. In case that we have the same
recommendation for two different matches, we present it only once.

Algorithm 1. Pseudo-code for the autocompletion step. Given process G and
element v, recommend what other element(s) should be added to G after v.
1: function RecommendElement(G, v, n, k, D) � G - process (graph), v - node

in G (element), n ∈ N - length, k - maximum number of top recommendations, D
- input dataset embeddings

2: S ← ExtractSlices(G, v, n)
� Extract slices of length n that terminate in v (Definition 5)

3: X ← ∅ � Embeddings for slices in S
4: R ← ∅ � Recommended elements
5: for p ∈ S do
6: p ← U(p) � Compute embedding (Definition 1)
7: X ← X ∪ p
8: end for
9: M ← M(X, D) � Compute similarity matrix (Definition 3)

10: T ← ExtractTopMatches(M, k) � Extract k most similar entries in D to S
11: for t ∈ T do
12: r ← Get recommendations for t � (Definition 7)
13: R ← R ∪ r
14: end for
15: return R
16: end function

5 Evaluation

5.1 Datasets

We evaluated our approach on four datasets of process models from different
domains. These are summarized in Table 2. The first dataset (labeled Airport)
comprises 24 processes capturing airport procedures [2]. The second dataset
contains 40 processes available from the Integrated Adaptive Cyber Defense
(IACD) initiative [16]. These processes are used for modeling security automation
and orchestration workflows. In IACD, almost 85% of the elements are unique,
that is, they appear only once in the entire dataset. The third dataset (labeled
Proprietary) is a collection of proprietary processes used in a product for secu-
rity orchestration. It resembles the IACD dataset and contains 18 models. Unlike
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IACD, the processes in that dataset reuse almost one third of the elements among
them. The last dataset (Universities) is used to model admission procedures
for master students in German universities [1]. The dataset comprises 9 models,
with 40% of the identically labeled elements occurring in at least two models.

Table 2. Characterization of the datasets used in the experiments. For each dataset,
from left to right, we show its number of processes, the number of elements in each
process, how many of the elements are unique and appear only once in the dataset,
the number of slices extracted for a length of 3, the average number of elements per
process, the percentage of elements that are used in more than one process, and the
average number of slices per element.

Dataset Processes Elements Unique Slices Elements/Process Shared elements Slices/Element

Airport 24 984 655 20241 41 33.5% 20.6

IACD 40 676 571 1191 16.9 15.5% 1.8

Proprietary 18 508 348 1713 28.2 31.5% 3.4

Universities 9 451 272 10759 50.1 40% 23.8

The efficiency of a recommendation system depends heavily on the data
distributions of the input dataset and the process that is being developed. Simply
put, if the processes are completely unrelated to each other, then it is very
difficult to make meaningful suggestions. On the other hand, if the processes
share semantic meaning, then our recommendation engine can leverage that and
provide useful suggestions to the end-user.

The datasets used in the experiment have quite different characteristics.
For example, in IACD only 15.5% of the elements are shared among the pro-
cesses. Also, the processes in IACD are relatively small, as captured by the “Ele-
ments/Process” column, which means that, during the input dataset construc-
tion, we can extract only a small number of slices.

In contrast, all of the processes in the Universities dataset cover similar
procedures, thus we expect a significant amount of reuse. Even elements with
different labels often bear similar meanings, e.g., “Accept” task label is similar to
“Send letter of acceptance”. The processes here and in the Airport dataset are
also larger than in the other two datasets, allowing our autocompletion engine
to mine a more diverse input dataset to be used for its recommendations.

Validation Methodology. We use the leave-one-group-out cross-validation
technique to evaluate the accuracy of our approach. Each process, in turn, is
evaluated against the rest of the processes that serve as the input dataset to mine
recommendations from. This gives us an opportunity to use all available process
models as an input and as a validation dataset. For each cross-validation fold, we
choose a different process model and generate sub-processes with an increasing
number of elements, in order to simulate different stages of the model construc-
tion. For each sub-process, we also record the next element’s type and label that
should be recommended (the ground truth). At each evaluation step, we perform
the autocompletion step of Algorithm 1 for each one of the sub-processes and
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obtain different accuracy metrics comparing the top recommendations against
the ground truth. In Sect. 5.3 we present the averages of the accuracy metrics
that we obtain from the cross-validation folds.

5.2 Metrics

In our evaluation we use two types of metrics; one type focuses on evaluating
the precision and recall of the recommendations, and a second type assesses the
quality of the predictions that are semantically similar to the ground truth.

Table 3. Cosine similarity, BLEU and METEOR values for sample recommendations and
ground truth values from the Universities dataset [1].

Recommendation Ground truth Cosine BLEU METEOR

Send letter of acceptance Send letter of provisional acceptance 0.82 0.80 0.91

Attach additional requirements Collect additional required documents 0.58 0.35 0.60

Send interview invitation Invite for talk 0.60 0 0.17

Check bachelor’s degree Wait for bachelor’s certificate 0.62 0.25 0.16

For the first type, we use precision@k and recall@k [14]. Precision@k is
the fraction of elements in the top k recommendations that match the ground
truth, while recall@k is the coverage of the ground truth in the top k recom-
mendations. Note that this type of metrics only captures cases where the labels
of the elements recommended by our solution match the ground truth precisely.
In our experiments we used k = 3.

For the second type, we focus on the metrics BLEU [27] and METEOR [23], that
are frequently used to evaluate machine translation systems [25]. BLEU is the
precision of n-grams of a machine translation’s output compared to the ground
truth reference. This metric is weighted by a brevity penalty to compensate for
recall in overly short translations. METEOR is similar to BLEU but takes explicit
ordering of words into account. During its matching computation it also considers
translation variability via word inflection variations, synonym and paraphrasing.
Additionally, we report the Cosine similarity of the predictions to the ground
truth, computed based on Definition 2. This type of metrics captures both exact
and similar matches between recommendations and the ground truth.

Table 3 shows values of Cosine similarity, BLEU and METEOR for some sample
recommendations to gain intuition on these metrics. Note that higher scores
of BLEU, METEOR, and Cosine are correlated with higher semantic similarity of
sentences. BLEU and METEOR’s range is [0, 1], while Cosine similarity spans from
−1 to 1. Values over 0.3 represent understandable to good translations [22] for
both BLEU and METEOR; values over 0.4 represent high quality translations, and
they exceed 0.5 for very-high quality translations. Values of 0.2 to 0.3 represent
cases where one could see the gist of the translation, but it is not very clear.
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5.3 Experiments

We first study the effect that the selected slice length has on the quality of
the recommendations made by our autocompletion engine. We then compare
our solution to a random algorithm that makes recommendations based on the
statistical distribution of the elements in the input dataset.

At the beginning, we allowed the algorithms to make predictions based on
all available elements in the processes. We learned quickly that the majority of
the predictions (over 80%) were for ground truth of end events and gateways.
Clearly, one may suggest an autocompletion engine that always suggests to use
these two types of elements and get quite good precision and recall. However,
this is not very useful for the model designer. We therefore also checked the
quality of the suggestions when gateways and end events were excluded from
recommendations and the ground truth (we refer to this case as Filtered).

Slice Length Study. We varied the length of the slice from n = 1 to n = 5
and collected the metrics for each dataset. Figure 3 shows the results of this
experiment for the Filtered case. The graphs in the figure plot the slice lengths
on the x-axis and metric scores on the y-axis for the five metrics discussed in
Sect. 5.2. On average1, the best results are for a slice length of n = 3, although
the effect of the slice length on each dataset varies.

For Airport (Fig. 3a) and Universities (Fig. 3d) datasets, our autocom-
pletion engine’s accuracy increases and then decreases slightly as the slice gets
longer, with the best results observed at n = 3. The IACD dataset (Fig. 3b) is the
most stable of all the four datasets with respect to the effect of the slice length
on the algorithm. For the Proprietary dataset (Fig. 3c) the accuracy improves
until n = 3 and then remains stable.

For the case where all the elements are taken into consideration2, slice length
of n = 2 gives slightly better results than n = 3 for some datasets. We use slice of
length n = 3 throughout the rest of the experiments to enable easy comparison.
However, we observe that one may need to carry out a preliminary slice length
study for each new domain/dataset to get the best recommendations. This can
be done automatically during the input dataset construction process.

Comparison to a Random Algorithm. In this experiment we studied the
efficiency of our solution (labeled Slicing) in comparison to an algorithm that
autocompletes the process at random (labeled Random). We collected the occur-
rences of each element in the dataset, and randomly selected the top recommen-
dations based on the statistical distribution of the elements. Thus, elements that
occurred more frequently had a higher chance of being selected.

We set the slice length for our algorithm to n = 3 based on the previous
experiment. The random algorithm’s performance is agnostic to this choice, as
it takes no slices into account. We executed the experiment with Random 30
times, and computed averages over all runs.

1 Computed as average over all four datasets, but not shown due to space limitation.
2 Not visualized due to space limitation.
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(a) Airport dataset (b) IACD dataset

(c) Proprietary dataset (d) Universities dataset

Fig. 3. Evaluation metrics for slice lengths of 1 to 5, k = 3, for Filtered case.

The results of this experiment are shown in Table 4 and Fig. 4. Table 4 gives
the values of the metrics computed for our algorithm and for the random algo-
rithm, for the two different configurations (including all the nodes, or filtering
out gateways and end events). We use the ± notation to present the average and
the standard deviation for each metric. Figure 4 shows the ratio between the
averages of the metrics computed for the two algorithms for easier comparison.3

When all the elements are taken into account, our algorithm achieves scores
over 0.56 for BLEU and METEOR metrics, which indicates a very good match
between the ground truth and the recommendations [22]. Cosine similarity is
also high, especially for the Universities dataset. Our algorithm performs much
better than the random algorithm with respect to BLEU, METEOR and Cosine
similarity. It also has a much higher precision and recall. Note that since at
every step we recommend the top 3 elements, then a precision of 0.29 (for the
Universities dataset, with all the elements, and for the Proprietary dataset,
in the Filtered case) means that, in average, we suggest one element out of
3 correctly almost always. The random algorithm reaches up to 0.13 precision
when all the elements are taken into account. There are many gateways and end
elements in both the input and the validation datasets, so the random algorithm
suggests them frequently, and, therefore, gets many accurate predictions.

3 Some precision and recall values are rounded to 0 when only two decimal places are
used. For such cases, we use higher precision values to compute the ratio.
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Table 4. Evaluation metrics computed for Slicing and Random, for all the elements
(top half) and for filtered out gateways and end events (bottom half).

All elements

Dataset/ Airport IACD Proprietary Universities

Metric Slicing Random Slicing Random Slicing Random Slicing Random

BLEU 0.56 ± 0.27 0.37 ± 0.29 0.71 ± 0.33 0.29 ± 0.22 0.7 ± 0.29 0.37 ± 0.28 0.64 ± 0.24 0.44 ± 0.28

METEOR 0.63 ± 0.4 0.34 ± 0.38 0.75 ± 0.34 0.26 ± 0.26 0.81 ± 0.33 0.4 ± 0.37 0.77 ± 0.34 0.44 ± 0.39

Cosine 0.8 ± 0.31 0.6 ± 0.34 0.82 ± 0.27 0.43 ± 0.23 0.89 ± 0.24 0.63 ± 0.31 0.87 ± 0.26 0.64 ± 0.32

precision@3 0.21 ± 0.18 0.09 ± 0.15 0.22 ± 0.17 0.02 ± 0.08 0.28 ± 0.14 0.1 ± 0.15 0.29 ± 0.18 0.13 ± 0.16

recall@3 0.61 ± 0.49 0.27 ± 0.44 0.63 ± 0.48 0.06 ± 0.25 0.81 ± 0.33 0.3 ± 0.46 0.78 ± 0.34 0.4 ± 0.49

Filtered

Dataset/ Airport IACD Proprietary Universities

Metric Slicing Random Slicing Random Slicing Random Slicing Random

BLEU 0.68 ± 0.32 0.3 ± 0.13 0.8 ± 0.28 0.32 ± 0.18 0.9 ± 0.24 0.21 ± 0.2 0.74 ± 0.28 0.35 ± 0.21

METEOR 0.69 ± 0.38 0.15 ± 0.14 0.82 ± 0.27 0.29 ± 0.22 0.92 ± 0.21 0.21 ± 0.23 0.78 ± 0.34 0.2 ± 0.21

Cosine 0.78 ± 0.27 0.4 ± 0.14 0.87 ± 0.21 0.44 ± 0.18 0.94 ± 0.16 0.39 ± 0.2 0.88 ± 0.21 0.47 ± 0.18

precision@3 0.27 ± 0.27 0 ± 0.04 0.23 ± 0.17 0.01 ± 0.06 0.29 ± 0.12 0.01 ± 0.06 0.25 ± 0.18 0.01 ± 0.06

recall@3 0.63 ± 0.48 0.01 ± 0.11 0.66 ± 0.47 0.03 ± 0.17 0.87 ± 0.34 0.03 ± 0.17 0.71 ± 0.45 0.03 ± 0.17

When we narrow down the analysis only to activity tasks, we learn that our
algorithm outperforms the random algorithm for all the datasets, as witnessed
by all the metrics. Its precision is up to 64x higher than that of the random
algorithm, with the recall having up to 63x improvement.

5.4 Findings

We can distill the following key findings from our empirical evaluation:

– Our autocompletion engine is applicable to various domains: The recommen-
dations obtained for the presented datasets are quite accurate as all the
metrics attest to. Precision of 0.21 to 0.29 means that in average one out
of three to five suggestions is correct. Since each recommendation contains
three options, it means that most recommendations include one exact match
to the ground truth. A recall of up to 0.87% indicates that we manage to
cover the majority of the expected elements in our recommendations. Even if
a suggestion is not an exact match to the ground truth, the high values of the
BLEU, METEOR, and Cosine metrics indicate a significant similarity between
them.

– Slicing window length has a mild impact on the quality of autocompletion: The
results from our first experiment show that our recommendation engine can
indeed get better predictions for some slice sizes. We therefore recommend
tuning this parameter during the input dataset construction procedure for
each new dataset. However, metrics measurement changes are not drastic
enough to claim that this parameter has a significant impact on our algorithm.

– Semantic similarity based evaluation metrics exhibit mostly high correlation
among them: The results from both the slice length study and the comparison
of Slicing to Random show that the METEOR and BLEU metrics have a Pearson
correlation of over 0.85, except when the Random algorithm is applied in the
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Filtered case. We witnessed similar results for METEOR and Cosine, with a
Pearson correlation of over 0.88. The semantic similarity based metrics had
a low correlation to the metrics used to evaluate exact matches.
The main difficulty in selecting the right metrics is related to the fact that
none of them are tuned specifically to the problem at hand. For example,
measuring precision based on exact matches does not reveal the full potential
of our algorithm, as predictions similar to the ground truth (e.g., “Accept”
versus “Send letter of acceptance”) are not considered as a match. A fruit-
ful area of future research would be to study to what extent these metrics
correlate with the feedback of subject matter experts on the quality of the
recommendations.

(a) Slicing/Random ratio, all elements (b) Slicing/Random ratio, filtered

Fig. 4. Ratio between the values of the metrics measured for the Slicing versus the
Random algorithm. UNIV stands for the Universities dataset.

5.5 Threats to Validity

Several threats to validity may affect this study. Due to lack of evaluation on open
source datasets, we found it difficult to compare our results to those made by
other researchers. We hope our work can serve as a baseline for such comparisons.

During the embeddings computation, we adopted a version of USE that was
only trained on English sentences. This means that we can not apply it for models
in other languages. In the future, we plan to investigate whether multi-language
models or other encoders may improve our autocompletion solution.

Another threat is related to slice extraction, which takes only path graphs
into account. Our approach inherently misses some information hidden in com-
plex graph structures. Therefore, it may fail to detect matches between sub-
processes that represent the same behavior but have a different structure. We
could mitigate this threat with a pre-processing step that normalizes equivalent
model patterns to a predefined standard [18].
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6 Related Work

Similarity between process models has been a subject of interest for a while
now [28,32]. The main goal of this line of research is to determine if two processes
are similar to each other, or implement a query to find a process, rather than
recommending how to autocomplete a process.

One of the first attempts to combine structural and semantical information
while assessing models similarity was accomplished with BPMN-Q [3]. BPMN-Q
allows users to formulate structure-related process model queries and uses Word-
Net [26] knowledge to make the search semantically aware. While some works
also relied on WordNet for word-to-word semantic similarity [29], others [37]
proposed domain-specific ontologies that represent processes to solve that task.

Later, the concept of a causal footprint, which is a collection of behavioral
constraints imposed by a process model, was introduced in [33]. These constraints
are converted into vectors and are compared via a similarity score.

Some researchers focused on detecting similarities between processes based on
graph edit distances between them [10,17], while others [30] combined techniques
related to the structure of graphs with per-element similarity.

Process similarity techniques also enable process autocompletion. One such
example is the tool FlowRecommender [39], that suggests next elements based
on pattern matching for graphs. It was evaluated on a synthetic dataset and only
focused on validating the structural accuracy of the prediction. As an improve-
ment to this technique, the authors proposed to traverse the process graphs,
and compare them via a string edit distance similarity metric [24]. The app-
roach focused on finding isomorphic graphs when labels had to match precisely.

In a more recent work [34], the authors used bag-of-words to predict the top
k most similar models from a repository to a process that is being modeled. They
focused only on structural comparisons to detect differences between models [35].
Unfortunately, the authors did not evaluate their approach on any open dataset,
making it difficult to compare their approach to ours.

Yu et al. used graph embeddings to search processes with a query that
contained arbitrary text [38]. This work focused on a single node matching
against the search query. Earlier, transfer learning enabled search and retrieval
of processes from logs [19], where unique content-bearing workflow motifs were
extracted from the set of processes. These motifs were treated as features and
then each process was represented as a vector in this feature space. Based on
this representation, similarity metrics can be computed between processes, and
used in the future to improve our solution.

In an alternative method for encoding process models as vectors [9], De Kon-
inck et al. developed representation learning architectures for embedding trace
logs and models to enable comparison between them. The learned architecture
focused on the structural properties of processes, rather than their semantics.

Finally, Burgueño et al. [6] proposed to use contextual information taken from
process description to auto-generate the process. Indeed such documentation,
when available, could be used to improve our autocompletion technique.
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7 Conclusions and Future Work

In this paper, we presented a novel technique for design-time next-task recom-
mendation in business process modeling that is based on semantic similarity of
processes. Our solution supports business modelers by autocompleting the next
element(s) during process construction. We used a state-of-the-art NLP tech-
nique that detects similarities between sentences and adopted it to the domain
of business processes models. This allowed us to overcome the challenge of having
little data to train a traditional machine learning recommender model.

Our evaluation shows that the suggestions made by our recommendation
engine are accurate for datasets with different characteristics and from differ-
ent domains. Moreover, our solution is suitable for applications in commercial
products, as the evaluation on a proprietary dataset shows.

In the future, we plan to conduct a user study where process modelers will
rate the predictions made by our tool. This will allow us to better assess the
efficiency of our approach in practical settings and also learn which metrics are
most suitable for the evaluation of other process recommendation systems.

Another interesting direction would be to investigate how the BPMN exe-
cution semantics could be taken into account. For instance, we could analyze
execution traces of processes from the input dataset and encode the traces in
addition to paths.
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Abstract. While the Decision Model and Notation standard (DMN)
is evolving into an increasingly popular standard for modelling decision
logic, a wealth of recent research unfortunately shows that DMN mod-
elling is prone to various types of human modelling errors. As such errors
may lead to incorrect decision-making or even compliance breaches, this
raises a strong need for modelling tools to offer error verification capa-
bilities, that can pin-point potential modelling errors and subsequently
alert the user. Currently, it is however still unclear to which extent the
state-of-the-art modelling tools can detect these errors. Such insights are
however strongly needed to assess the current support for modellers in the
quality assurance of DMN models, and to guide future research. In this
report, we therefore conduct an in-depth DMN tool analysis in regard
to DMN verification capabilities. Our results indicate that the current
coverage of verification capabilities in industrial tools is alarmingly low,
and there needs to be urgent work on extending existing approaches.

Keywords: BPMN tool analysis · Decision Model and Notation
(DMN) · DMN verification · Modeling errors

1 Introduction

As a close counterpart to BPMN, the Decision Model and Notation standard
(DMN)1 is receiving increasing popularity for modelling company decision-logic.
While the modelling of decision-logic can be conducted in an intuitive and graph-
ical manner, a wealth of recent research indicates DMN modelling is prone to
various types of human modelling errors, such as overlapping rules or missing
rules in the decision-tables [1,9,18]. For example, Batoulis and Weske [1]
reported on a case study with a large insurance company, where those authors
found that the analyzed rules contained overlaps. This raises a strong need for
modelling tools to offer verification capabilities that can pin-point such errors
and subsequently alert the user. However, as numerous possible DMN error types

This research is part of the research project “Handling Inconsistencies in Business
Process Modeling”, which is funded by the German Research Association (reference
number: DE1983/9-1).
1 https://www.omg.org/spec/DMN/About-DMN/.
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have been proposed in recent works, it is currently unclear to which extent cur-
rent modelling tools can detect these errors. This information would however be
essential to ensure that current tools are actually capable to sufficiently support
modellers at design-time. In this report, we therefore conduct an in-depth tool
analysis to investigate the current support of DMN error verification capabili-
ties in state-of-the-art modelling tools. To this aim, we conduct a tool search
to identify prominent DMN modelling tools, and subsequently assess these tools
w.r.t. their respective DMN verification capabilities. Based on our tool analysis,
we compare the capabilities of current tools and identify research gaps to guide
the future development of modelling tools.

A further problem in regard to assessing DMN tools is that while various
works have proposed different types of possible modelling errors that can occur
in DMN, there is currently no comprehensive “catalogue” of all possible DMN
error types. Again, such an overview would be needed to assess the capabilities
offered by current tools, e.g. as a basis for a tool analysis. Therefore, we also
propose a novel classification of DMN error types based on a literature synthesis.

The contributions of this work are as follows:

• Classification of DMN error types. We present a novel classification of
DMN error types on the basis of a literature analysis (Sect. 2).

• Tool Support. We then identify state-of-the-art modelling tools and test to
which extent these tools support the verification of the introduced error types
(Sect. 4). Our test approach method is presented in Sect. 3.

• Research Agenda. Based on the tool analysis, we identify current research
gaps and propose a research agenda to guide the future development of DMN/
BPMN modelling tools (Sect. 4.2).

2 Background

In this section, we provide the research background on the DMN standard, as
well as error types that can occur in DMN decision models.

2.1 DMN 1.0 Standard

The Decision Model and Notation (DMN) is an OMG standard for modelling
operational decision-logic. DMN decision models are constituted of two different
levels, namely a decision requirements level (which specifies the general elements
of the decision making and their relations), and a decision logic level (which
specifies the actual decision logic via decision tables).

Figure 1 shows the decision requirements level of an exemplary decision model
to determine the creditworthiness of customers in a loan application process. The
depicted graph structure is also referred to as a decision requirements diagram
(DRD). A central concept in DRDs is a decision. A DRD decision requires a
certain input and yields a corresponding output. The respective inputs can be
either specific values (represented via a data input node), or can be derived
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by antecedent (sub)decisions (that themselves are dependent on their inputs
and pass their output as a “new” input to following decisions). For example,
in Fig. 1, the top-level decision for credithworthyness (1) has two inputs. The
first input is a direct data input node for the customer age (2). The second
input is information on whether the customer id was found on a blacklist, which
is derived from a subdecision (3), the decision of which is then passed to the
top-level decision (4).

Fig. 1. Decision requirements level for an exemplary decision model.

For every (sub)decision, the concrete decision logic can be encoded by means
of decision tables. For example, Fig. 2 shows the decision logic corresponding to
the top-level decision (Creditworthy? ) from Fig. 1. The decision table is subdi-
vided into inputs (1) and outputs (2). Corresponding to the DRD, the decision
table has two inputs, i.e., whether the customer was found in a blacklist and the
customer age. Here, input and output columns have a predefined datatype, e.g.
integer or boolean (3). The two rules in the shown decision table can be under-
stood such that a customer who was not found on a blacklist and is at least
21 years of age is considered as credithworthy, and a customer who was black-
listed is not seen as credithworthy, regardless of age (4). For data types such as
integers or dates, a wide variety of comparison operators such as [<,>,≤,≥] or
ranges can be used to specify the exact premise. On a further note, it is also
possible to define a list of predefined values, i.e., a list of values that can be used
to populate individual cells.

Fig. 2. Exemplary decision table corresponding to the DRD in Fig. 1.
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DMN models can be integrated with BPMN models, with the goal that the
decision logic is abstracted from the process models. To this aim, business rule
tasks can be annotated with an underlying decision model. For example, Fig. 3
shows an exemplary BPMN process model. As can be seen, the task before the
XOR-gateway is a business rule task (1), which in the example is meant to be
annotated with the decision model introduced above. During process execution,
the case-dependent facts (e.g., a customer loan application) are passed to the
decision model at run-time (2). Then, the decision model computes a correspond-
ing output and returns this decision to the process model level. In the example,
the user input can for instance be used to conclude whether the customer is
creditworthy or not, and route the process accordingly after the gateway (3).
Following [11], we denote (BPMN) process models which are linked to decision
models as decision-aware process models.

Fig. 3. Exemplary decision-aware process model.

While DMN provides a rich standard on how to represent decisions, the actual
contents of the decision models are still the responsibility of human modellers.
In this context, human modelling errors are widely acknowledged as a core prob-
lem for organizations [9]. Intuitively, many different forms of errors can occur
on all the introduced levels (DRD-level, decision logic level, decision-aware pro-
cess model level), or even in-between these levels. For example, numerous works
such as [1,5,18] have discussed potential modelling errors in decision tables, e.g.
overlapping rules or missing rules. For instance, in the exemplary decision table
from Fig. 2, a rule is missing for the case that the customer was not blacklisted
but is younger than 21. In such a case, no decision-making would be possible.
Furthermore, changes to any of the introduced artifacts, e.g. DRD or decision
tables, can induce inconsistencies between the different levels of the decision
model. For example, assume a modeller deletes a decision input on the decision
requirements level. This input must also be deleted in the corresponding decision
table, as there is otherwise a mismatch between these two levels. This aspect is
especially relevant for the synchronization of process models and decision mod-
els. For instance, if an input is deleted from the process model (e.g., the loan
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application in the above example), this input must also be deleted from the
decision model, as otherwise the decision might not be executable at run-time.

To conquer the problem of modelling errors in decision models, verifying the
correctness of decision models has been a core focus in practice and academia.
Essentially, this relates to developing means for ensuring error-freeness within
the decision models (resp. the decision-aware process models) [9]. However, as
there can be many different types of errors (cf. the above discussion), this is
far from being an easy task. In the following, we present a discussion of current
DMN verification techniques.

2.2 DMN Verification Capabilities

In the context of verifying the correctness of decision models, various works have
investigated different aspects regarding the verification of certain error types, cf.
e.g. [7,9] for an overview. The ability to verify (the presence of) certain error
types is also referred to as a verification capability. While the existing works
can be seen as beneficial in regard to supporting modellers, a core problem with
research in this regard is the lack of a standardized classification of DMN error
types/verification capabilities. That is, there exists no standard definition or
overview of existing verification capabilities. This is however highly problematic
from both an academic as well as practical standpoint, as it impedes to ensure
that an approach or a tool offers (all) important verification capabilities. In this
work, we will not claim to provide a “gold-standard” classification of DMN ver-
ification capabilities, yet, we present a novel classification which merges existing
classifications, as a basis for our tool analysis. In a previous work[13], we have
identified two classifications of concrete error types, namely [18,20]. Further-
more, in own work by the authors of this paper[13]2, a classification of concrete
error types is presented. In the following, we therefore develop a more compre-
hensive classification by unifying the error types presented in those works. The
resulting classification framework is provided in Fig. 4.

Regarding error types in DMN decision models, we can identify three cate-
gories in which errors can occur:

• Decision logic level errors. Errors on the level of decision tables, e.g.,
overlapping rules.

• Decision requirements level errors. Errors on the level of the decision
requirements diagram, e.g., unwanted circularity of the DRD graph, or mis-
matches between the DRD graph and the underlying decision tables.

• Decision-aware process model level errors. Errors with the integration
between the DMN model and the BPMN model, e.g., mismatches between
specified data inputs.

An early classification of decision table anomalies is proposed by Vanthienen
et al. [20], as shown in Fig. 4. This work distinguishes intra-table anomalies and

2 https://cloud.uni-koblenz-landau.de/s/SYGKdX3fs7CwNH7.

https://cloud.uni-koblenz-landau.de/s/SYGKdX3fs7CwNH7
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Fig. 4. Classification of error types, based on the classifications in [13,18,20].

inter-table anomalies, the former relating to errors within a single table, and the
latter referring to issues arising from the relationship between multiple tables.

In [18], Smit et al. present a classification based on qualitative research with
industrial partners. They conducted expert interviews to derive error types which
were seen as relevant from a practitioner’s viewpoint. The classification by Smit
et al. [18] presents novel error types, such as missing rules. Also, it decomposes
some errors presented by Vanthienen et al. [20] into more fine-grained error types,
as expert opinions deemed it appropriate to view such errors at a different level
of granularity. For instance, where Vanthienen et al. [20] identifies an error type
of redundant rows, Smit et al. [18] distinguishes the concept of redundant rows
into the subconcepts of complete redundancy (identical rules), redundancy due
to subsumption and semantic redundancy.

Finally, in our own previous work [13], we identified further inconsistency
types which can arise in decision models (resp. decision-aware process models)
during the application of changes to the decision model.

Analysing the classifications discovered from literature, it can be seen that
the existing classifications share many commonalities, e.g., identical error types,
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or more fine-grained versions of certain error types from other classifications.
Subsequently, we synthesised a novel classification, merging all error types from
the considered classifications into a unified view, shown in Fig. 4. Our proposed
classification presents a comprehensive overview of 26 DMN error types discussed
in academia, grouped into the three levels of the decision logic level, the decision
requirements level, and the decision-aware process model level. Due to space
limitations, we omit a discussion of the 26 individual verification capabilities
and refer the reader to the supplementary document for detailed information3.

In this section, we have presented a base classification of error types in DMN
models. Regardless of the error type, recent evidence from the field suggests that
DMN modelling is prone to human modelling errors in general [1,18]. Therefore,
current state-of-the-art modelling tools should support the introduced verifica-
tion capabilities in Fig. 4, in order to support modellers by pin-pointing modelers
as a basis for re-modelling and improving decision models. In the following, we
therefore assess the current tool support of DMN verification capabilities.

3 Research Methodology

The research aim of this work is to analyze to which extent current state-of-
the-art modelling tools are capable to detect different DMN error types. Conse-
quently, we performed a tool analysis based on the method of black-box-testing
[16]. In this section, we present our research methodology, including the tool
search, tool selection criteria and the concrete test approach.

3.1 Tool Search

Following the suggestions on tool search in [19], concrete DMN tools were
researched via a keyword-based search online and a search in seminal software
databases for the BPM sector. As suggested in [21], we applied quick-searches
via Google as a starting point for our research. Here, we were able to identify
seven pertinent software databases and catalogues, namely http://openrules.com,
http://dmn-tck.io, https://bpmtips.com/, https://methodandstyle.com, http://
sourceforge.net?q=dmn, https://www.openhub.net/ and https://bpm-confere
nce.org. Using concept-mapping techniques based on the initial quick-searches,
we derived the keywords of “DMN Tool”, “DMN Model(l)er”, “DMN database”,
“DMNTool database”, “BPMNTools DMN support” and “DMNChecker”. These
keywords were thus applied in a free Google search as well as the identified software
databases. For the free google search, the first 15 search pages were considered as
a design-choice. In result, our search returned a total of 33 potential tools. The
full list of all 33 identified tools, including sources, can be found online4.

We then assessed the identified tools for their suitability to be included in this
study. To this aim, we defined the following inclusion criteria for tool selection:

3 https://cloud.uni-koblenz-landau.de/s/yRbQWTiBtE9ZBFq.
4 https://bit.ly/3omxoQB.

http://amazon.openrules.com:8080/DMNtools/
https://dmn-tck.github.io/tck/
https://bpmtips.com/
https://methodandstyle.com/dmn-tools-current-state-market/
https://sourceforge.net/directory/?q=dmn
https://sourceforge.net/directory/?q=dmn
https://www.openhub.net/
https://bpm-conference.org
https://bpm-conference.org
https://cloud.uni-koblenz-landau.de/s/yRbQWTiBtE9ZBFq
https://bit.ly/3omxoQB
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• DMN Support. The application must support the DMN standard as defined
by the OMG specification. This is a relevant criterion to ensure that the
analyzed tools can be used to verify DMN models, as some tools use other
standards (that are however not compatible with DMN models).

• Availability. The application must be open-source or offer a free trial version.
This was a necessary requirement as it was not feasible to attain commercial
licenses due to funding constraints. Also, this requirement ensures that the
analyzed tools can be directly used by practitioners, e.g. especially for small
or medium sized companies, should they fit company needs.

• Graphical Interface. The application must offer a graphical interface for
DMN modelling. This is required as it cannot be assumed that typical mod-
ellers are capable of running complex command line tools.

• Support of DMN semantics. The application must have an underlying
data-model of DMN decision models, i.e., not only have a graphical/image-
based representation of the decision model.

Following our selection criteria, a total of 14 DMN tools were included for
our evaluation, namely BPMN.io, Camunda, Cardanit, DMN Check, Fico, Flow-
able, Kogito, Open Rules, Pega, Red Hat, Signavio, Trisotech, Yaoqiang, MID
Innovator. We refer the reader to the supplementary online document5, were
the sources for the identified tools can be found, and the violation of selection
criteria is specified for the excluded tools. In the following, we present our test
approach for the selected DMN tools.

3.2 Test Approach

To test to which extent the selected tools are able to detect the introduced error
types, we applied a black-box-testing approach, analyzing each tool individually.
For all tools, the same test protocol was applied, which was subdivided into the
phases of preparation, evaluation and documentation, as shown in Fig. 5.

Fig. 5. Applied test approach.

For every tool, the test was started by analyzing the official documentation
of the tools. The main aim of this preparation was to gain an understanding of
how the tools are to be installed and used. Subsequently, all tools were installed.

5 https://bit.ly/3omxoQB.

https://bit.ly/3omxoQB
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Following the preparation phase, the main tool evaluation phase was con-
ducted. Here, for all the 26 error types shown in Fig. 4, we modelled a respec-
tive instance of such error type incrementally. For example, for the verification
capability “identical rules verification (single table)”, we modelled a DMN table
containing two identical rules, cf. e.g. Fig. 6.

Fig. 6. Decision table containing identical rules (highlighted).

While we had originally planned to model one decision model containing
all error types in advance and import this model into every tool, we realized
that many tools did not offer an import functionality, or the import was prone
to errors due to different XML encodings. Therefore, we manually modelled a
new decision model for every tool. The result was then a “large” decision model
containing an example for all 26 considered error type. The “large” decision
model containing all error types can be downloaded online6.

After each individual error type instance was modelled, the decision model
was validated to test whether the tool could detect this error. In this context, the
specific procedure how the validation was invoked depended on the individual
tool. For example, many tools such as Signavio offer a separate button to invoke
a validation of the model, whereas other tools such as Yaoquang BPMN editor
implement a real-time verification that validates the model after every change by
the user automatically. Furthermore, some tools such as Signavio offer the pos-
sibility to execute the decision models, e.g. using simulation-based approaches.
In case such a feature was available, it was also applied in order to ensure that
run-time verification features of the tools were also considered for testing.

Finally, given that a tool was able to identify a specific error type (regardless
of how the validation was invoked), this verification capability was documented.
Also, we documented the specific error message and general form in which the
error was displayed to the user. For example, while some tools offered a simple
error message, other tools offered more sophisticated insights into the errors, e.g.
an assessment of the severity of the respective error.

6 https://cloud.uni-koblenz-landau.de/s/jNGiom73ezKH64X.

https://cloud.uni-koblenz-landau.de/s/jNGiom73ezKH64X
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3.3 Test Example: Signavio

To conclude this section, we illustrate an exemplary test process for Signavio. At
first, the official documentation7 was reviewed in order to gain an understanding
of the Signavio modelling environment. For this tool, installation refers to the
registration of a new account and setting up the browser-based environment. A
test license could be attained for academic purposes.

Then, for the evaluation, all error types as introduced in Sect. 2.2 were incre-
mentally modelled in the Signavio DMN editor. After modelling each individual
error type, validation was invoked to assess tool behavior. As we will also dis-
cuss in Sect. 4.1 (results), it could be observed that Signavio supported some,
but not all of the analyzed verification capabilities. Figure 7 shows two examples
of modelled error type instances and the corresponding behavior of the Signavio
tool. Figure 7(a) shows a modelled decision table containing two identical rules
(i.e., rows). As can be seen, Signavio can detect this error and highlights the two
problematic rules. Also, the user is presented with a description of the occurred
error. Thus, it can be noted that Signavio supports the verification capability
identical rules vericiation. Figure 7(b) depicts a modelled decision table contain-
ing two identical columns. As can be seen in the screenshot, Signavio does not
detect any form of error in this case. Thus, it can be observed that Signavio
does not support modellers in detecting this error type, i.e., Signavio does not
support the verification capability identical column verification.

(a) Supported verification capability
(identical rules)

(b) Unsupported verification capability
(identical columns)

Fig. 7. Examples for supported/unsupported verification capabilities in Signavio.

Following our test approach method, all considered error types were mod-
elled, and the Signavio tool was tested accordingly. The observations whether
Signavio could detect an error, respectively the specific user feedback, were then
documented. As we will show in the following section, our test approach method
therefore allowed us to fully classify tool behavior in regard to the support of
the considered verification capabilities.

7 https://documentation.signavio.com/.

https://documentation.signavio.com/
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4 Tool Behavior Analysis

In this section, we discuss the overall verification capability support in state-
of-the-art approaches based on our conducted test approach and distill a corre-
sponding research agenda based on an identification of research gaps.

4.1 Result Summary

Our experiments assessed to which extent the 14 selected modelling tools allowed
to detect the 26 different DMN error types introduced in Sect. 2.2. Table 1 shows
our overall test results. For every tool, the supported verification capabilities are
denoted with an “x”, respectively “o” in case of partial support. We define a tool
to support a verification capability if it provides means to identify or prevent
the respective error type, i.e., regardless of the procedure of validation. This was
an important design-choice, as the mechanisms how the tools handled modelling
errors differed strongly for some cases. For example, some tools provide real-time
modelling support that prevent users from persisting an erroneous model. While
this is not a form of “on-demand” validation, the tool still supports modellers in
detecting and preventing the specific error, thus, this is denoted as a support of
a verification capability. Partial support can be reached if the tool only detects
a (sub)part of the error as defined in Sect. 2.2. Importantly, none of the tools
supported multi-table decision logic verification capabilities. Therefore, these
capabilities are ommitted in Table 1 for readability.

Table 1. Overview of DMN verification capabilities supported by the analyzed tools.
(x = full support, o = partial support.)
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From all 14 evaluated tools, only 5 support any verification capabilities,
namely DMN-Check, Fico, Flowable, Signavio and Trisotech. This was quite
a surprising result, as it shows that popular tools such as BPMN.io do not
offer any means to support end-users during DMN modelling. The tools with
the best capability support were Signavio, with 15 of 26 supported capabilities
(57.7%), respectively Trisotech, with 11 of 26 supported capabilities (42.3%).
The other three mentioned tools offer a much smaller degree of support - as
mentioned all other tools offer no support at all. Considering only the five tools
that supported at least one verification capability, the average coverage over all
verification capabilities was 30,8% - considering all tools, the average coverage
was only 10.9%.

Even for the tool that offered the highest degree of coverage (Signavio), only
roughly 60% of possible error types could be detected. This strongly suggests
the need for novel verification capabilities in current tools. Importantly, it is
noticeable that there is no support at all for multi-table decision logic verifica-
tion, and no support for DMN vs BPMN verification. This can be seen as highly
problematic, as literature strongly suggests that modellers need to be supported
in handling such issues [2,7]8. Furthermore, there are certain error types on the
decision logic- and decision requirements level that are not supported by any
tool. This means that even if one would combine different tools, it is currently
not possible to detect all error types as introduced in Sect. 2.2 with the analyzed
tools. On a side note, Signavio is the only tool which is strictly better than all
other tools, i.e., there exist no tool T such that T supports a verification capabiliy
c and Signavio does not. This could be used as a metric for determining suitable
tools, however, we acknowledge that tool selection is much more complex and
strongly beyond the scope of this report.

4.2 Discussion of Tool Support and Research Agenda

The current support of verification capabilities in the assessed industrial tools
seems alarmingly low. Many of the analyzed tools do not offer any means to aid
modellers in detecting modelling errors. The lack of verification capabilities in
industrial tools places a heavy burden on the human modellers. Following recent
research [1,18], this burden can be considered as unfeasible in practice. In turn,
in can be expected that the resulting DMN models will contain modelling errors.
This however can have severe consequences for companies. For example, various
works such as [8,9,12] show how a flawed decision logic can lead to inconsistent or
erroneous decision making. This means that compliant process execution cannot
be ensured. In case of compliance breaches due to flawed decision-making, this
may even lead to sensitive financial fines for companies [12]. This emphasizes
the need to extend the support for DMN verification capabilities in the analyzed
industrial tools.

8 Note also that as none of the tools support multi-table decision logic verification
capabilities, this was entirely omitted from the above Table 1, thus, the actual cov-
erage of verification capabilities is arguably lower.
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Fortunately, research on developing specific verification capabilities has
gained momentum in recent years and has brought forward a series of recent
approaches. Such results could be integrated into industrial modelling tools, or
used by companies to additionally validate decision models. However, as there
was/is a lack of a general error classification, it is currently also unclear to which
extent these academic works support DMN verification capabilities. In an own
previous work [7], an initial survey of scientific works on DMN verification was
conducted to identify relevant approaches that have been published in BPM com-
munity. In this report, we extend this survey by analyzing to which extent those
academic works support the proposed verification capabilities. Table 2 shows an
aggregated overview of DMN verification capabilities supported by the analyzed
industrial tools identifed in Sect. 3(top), as well as the scientific approaches
identified in [7]. For readability, the overview of industrial tools was simplified
to only contain those approaches that support at least one capability.

Table 2. Simplified results of the tool analysis from Table 1, extended with an anal-
ysis of DMN verification capabilities supported by existing approaches in literature
(adapated from [7]). (x = Full support, o = partial support. * = Authors of this work.)
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DMN Check X X X X

Fico X X X X o X X X

Flowable X X

Signavio X X X X X X X X o X X o X X X

Trisotech X X X X X X X X X X X

Calvanese et al. (2016) [4] X o X X X X X

Batoulis et al. (2017) [2] X X o X o X X X X X

Calvanese et al. (2017) [6] X o X o X o X X X

Ochoa et al. (2017) [17] X X

Batoulis et al. (2018) [3] X X X o

Calvanese et al. (2018) [6] X o X o X o X X X

Corea et al. (2018)* [8] X X X

de Leoni et al. (2018) [14] X X X X X X X

Corea et al. (2019)* [7] X X X X X X X X X X X X

Felli et al. (2019) [11] X X X X X X X

Hasic et al. (2019)* [13] X X X X X X X X X X X X X X X X X
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As can be seen, there is excellent support of decision logic level verification
capabilities in academia. These results could therefore be integrated into indus-
trial tools. Interestingly, the support for DRD level verification seems to be higher
in industrial tools than in academic approaches. In general, it seems that mod-
elling errors on a DRD level have not been sufficiently addressed in academia,
while the support by industrial tools indicates that tool vendors deem such errors
as important. This is an excellent example of how practice can yield valuable
insights to guide research. It seems plausible that more qualitative research is
necessary to further identify the actual requirements of DMN modelling tools,
cf. e.g. [18] for a recent work in this direction. Finally, the BPMN vs DMN per-
spective is in general still pending further development. There are many error
types in this level that currently cannot be detected by any means.

To summarize, the field of DMN verification seems to have gained positive
momentum, and it seems the further development of verification techniques is
much needed from a practitioners viewpoint. Yet, there is still much research
that needs to be conducted as a basis for allowing for a closer integration of
research and industry. We therefore propose the following research agenda:

• A general classification of DMN error types. A current problem for
research on DMN verification is the lack of a generally accepted classification
of DMN error types. As long as there is no definitive overview of possible
errors in DMN modelling, it will remain impossible to warrant that tools offer
a suitable amount of support in identifying important errors that could occur
during modelling. This factor therefore remains a current threat to compliant
process execution, and should therefore be addressed in future works.

• Semantics of DMN error types. In our analysis, we noticed that many
approaches use completely different terminology for identical error types.
Likewise, many approaches merge various error types of other works into one,
which can be confusing to modelers. For example, the Signavio tool refers to
various error type of our proposed classification (e.g. identical rules, sub-
sumed rules, overlapping conditions,...) simply as “overlapping rules”. Here,
a shared terminological understanding could help to eliminate ambiguities
and offer experts a more fine-grained feedback on modelling errors. As nat-
ural language descriptions of specific error types are also highly ambiguous,
a definition of the semantics of DMN error types is urgently needed. A first
work in this area is e.g. [4], however, there needs to be more work in this
direction.

• Novel means for supporting modellers. At first, the unsupported ver-
ification capabilities should be implemented in industrial tools. Here, there
have been various approaches from academia, which could be used as a basis
for implementation. However, there are some error types which have not been
addressed at all, thus, there is more work needed on concrete means for DMN
verification. In general, it seems there is a sufficient support on the decision
logic level, however, we can observe a lack of research on verification capa-
bilities geared towards the decision requirements level, or the BPMN/DMN
level. Also, next to a “simple” detection of certain errors in the decision mod-



DMN 1.0 Verification Capabilities: An Analysis of Current Tool Support 51

els, we noticed that some tools offered more sophisticated feedback to the
user, e.g. a prioritization of identified problems. Especially in larger settings,
such additional means could provide valuable insights to guide modellers in
error resolution. Future works could therefore focus on novel means for the
prioritization or quantification of occurring errors.

• Research on feedback presentation. In our analysis, we noticed that
many approaches have entirely different strategies on how to display error
messages. In this context, recent works such as [10,15] however indicate that
small tweaks in the visualization of error feedback, e.g., the position on the
screen, can have different cognitive effects on understanding, e.g. understand-
ing accuracy or the mental effort needed to process the information. Here,
future works should investigate the cognitive effects of different visualization
techniques and develop guidelines for displaying user feedback in order to
guide tool development.

5 Conclusion

In this work, we presented an analysis of the current tool support for DMN
verification capabilities. Here, we identified and tested a selection of industrial
tools, and also analyzed the support by recent academic works. Our results
show that the overall support of DMN error verification in industrial tools is
alarmingly low. Here, efforts should urgently be directed towards extending such
tools in order to support modellers, ultimately also counteracting compliance
breaches due to erroneous decision models. Even for the tool with the highest
degree of support (Signavio), only 60% of the introduced error types can be
detected, which emphasizes the need for future research. To this aim, we have
proposed a research agenda, identifying opportunities for future research.

We acknowledge that some tools could not be selected for our experiments
due to funding constraints. Therefore, experiments should be repeated (if pos-
sible) analyzing those tools which require a fee for access. However, due to the
applied tool search method [16,19], we are confident that we have identified
prominent tools, e.g. Signavio, Pega or bpmn.io, and have captured the general
gist of the state-of-the-art in DMN verification.
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Abstract. Case management is an approach for handling business pro-
cesses that are knowledge-intensive. The knowledge work performed on
case management schemas is driven by operational goals. Typically, orga-
nizational goals and their interdependencies are specified in goal models.
A goal model defines how higher-level goals are achieved by lower-level
goals. While goals have been related to classical activity-centric process
models, the relation between declarative data-centric case management
schemas and goal models has not yet been explored. This paper presents
a structural approach to check consistency of a goal model and a declar-
ative case management schema. The approach is supported by a tool and
evaluated in a case study.

1 Introduction

Case management offers a data-centric, goal-oriented approach for managing
business processes [1,29]. The work performed for a case is specified in a case
management schema and focuses on the functional goals to be achieved and
the business steps that need to be taken to acquire information and take deci-
sions to reach the goals. Case management schemas are very suitable to support
knowledge-intensive processes [7,22], since such processes are goal-oriented and
typically are driven by data that knowledge workers need to make decisions on.
Moreover, knowledge-intensive processes require flexibility due to uncertainty
about the case being processed [30]. Case management schemas often use a
declarative rather than a procedural style to provide such flexibility [8].

The declarative nature of case management schemas limits the understanding
of their meaning for stakeholders. Rules attached to case management schemas
constrain the allowed behavior. But rules have complex interdependencies, mak-
ing it difficult to understand the full picture for an end user who has to execute
the process or a process owner who wants to understand the process [12].

Goal models have been proposed in the area of requirements engineering as
a means to understand and structure stakeholder intent [18]. Goal models spec-
ify objectives that a system needs to achieve and hierarchically structure them.
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However, goal models cannot be executed. Instead, goals are—often implicitly—
realized by other models that provide a more fine-grained specification of behav-
ior, such as class diagrams and sequence diagrams for software engineering [18]
or process models for BPM. In the field of BPM, the relation between goal mod-
els and activity-centric process models has been explored [14,17,25] but goal
models and declarative case management schemas have not been similarly ana-
lyzed. However, the goals implicitly specified by a declarative case management
schema may not match the intended goals specified in a goal model.

This paper develops a structural approach to check consistency of a goal
model with a declarative case management schema. The input is a user-defined
correspondence function between a declarative case management schema and a
goal model that maps milestones, i.e., operational objectives in a case manage-
ment schema, to goals. The approach checks whether the goal interdependencies
that are implied by goal-related milestones in a case management schema are
consistent with the goal model. We introduce the notion of consistency degree
to express the extent to which the relevant goal relations in the goal model are
implied by the case management schema. As case management notation we use
a simplified version of the Case Management Model and Notation (CMMN) [3].

The remainder of this paper is organized as follows. Section 2 gives a motivat-
ing example for the approach by presenting a goal model and a related case man-
agement schema. Section 3 defines goal models and case management schema.
Section 4 defines consistency for case management schemas corresponding to goal
models; the definition relies on rules that derive goal interdependencies from a
case management schema. Section 5 introduces a tool implementation and eval-
uates the approach on a case study. We discuss related work in Sect. 6 and end
the paper with conclusions in Sect. 7.

2 Motivating Example

To motivate the approach, we consider a leasing process that is inspired by the
processes from IBM Global Financing (IGF) [4,9]. Figure 1 shows a fragment of
a goal model for IGF. The boxes represent goals. The model uses goal decom-
position to specify how the high-level goal Deal Refined is achieved: a deal is
refined if its terms have been drafted, credit checked, and the price determined.

Fig. 1. Goal model of IGF business process. Arcs denote AND decomposition.
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Fig. 2. Case management schema fragment of IGF business process that corresponds
to the goal model in Fig. 1

Drafting terms can be outsourced [9]. Depending on the credit level, credit is
checked either in the default way or using an expert. Both AND decomposition
(lines connected by arcs) and XOR decomposition are used. XOR decomposi-
tion typically indicates different variants for a system design, i.e., variants of a
process [24].

Table 1. Conditions of sentries in Fig. 2

Stage/milestone Condition

Default check if amount < 50k

Expert check if amount ≥ 50k

Standard terms drafted if contract = “standard′′

Customized terms drafted if contract = “customized′′

Deal refined if accept = true

Deal rejected if accept = false

Figure 2 shows a declarative
case management (CM) schema
in CMMN notation that corre-
sponds to the goal model. The
schema contains stages (rectan-
gles), in which work is performed,
and milestones (ovals), which are
business objectives. Stages and
milestones are governed by busi-
ness rules, called sentries, which
define when stages are opened and milestones are achieved (white diamonds)
and when stages get closed (black diamonds). Different opening sentries for the
same stage indicate that the stage can be opened in different ways. Sentries have
the form on event1, .., eventn if condition. The events in a sentry are visualized
with a labeled line that connects the source of the event, as expressed in the
label, to the sentry. The conditions are shown in Table 1.

Upon inspection, there is a clear relation between the goal model and the CM
schema. Most goals correspond to milestones that have the same name, but there
are other goals and milestones too. Given this correspondence, the question is
whether the goal model and the CM schema are consistent. This paper develops
a structural approach for checking whether a goal model and a CM schema are
consistent, given a correspondence function between goals and milestones.



Consistency Checking of Goal Models and Case Management Schemas 57

3 Preliminaries

3.1 Goal Models

Different goal modeling approaches exist, such as KAOS [18] and i∗[32]. The
goal models we present next use basic concepts that appear in all goal model-
ing languages. In general, there are behavioral goals and soft goals [18,32]. In
this paper, we only focus on behavioral goals. Next, there are different types of
behavioral goals: achieve and cease, maintain and avoid [18]. We focus in
this paper on achieve goals, since these have a natural counterpart in business
processes, which also aim at achieving organizational goals. We will include the
other goal types in our study in future work.

Basics. A goal can be decomposed into subgoals. A decomposed goal is called the
parent of each subgoal. We use both AND and XOR decomposition. An AND
goal is achieved if all its subgoals are achieved while an XOR goal is achieved if
exactly one of its subgoals is achieved. A subgoal can be annotated with a boolean
condition, which expresses the condition under which the subgoal achieves the
parent goal. Given two subgoals of the same parent goal, their two conditions are
conflicting if their conjunction is false, so there is no assignment of values such
that both conditions are satisfied simultaneously. For instance, the conditions of
subgoals Checked Default and Checked Expert in Fig. 1 are conflicting, since no
assignment for amount satisfies both if amount<50k and if amount≥50k.

Goal models that use decomposition arrange goals in a hierarchy, where
lower-level goals contribute to realizing higher-level goals. Leaf goals are realized
by performing tasks. We assume as in KAOS [18] that goal models are structured
in a tree, so there is a unique root node that is an ancestor of all other goals.
For instance, in Fig. 1 the root node is the AND goal Deal Refined.

Relations. We next introduce binary relations on goals in a goal model. These
goal relations will be used in the sequel in defining consistency between goal
models and CM schemas.

– A goal g1 supports another goal g2, written g1 � g2, if achieving g1 contributes
to achieving g2. In that case g2 is a parent or ancestor of g1.

– A goal g1 complements another goal g2, written g1&g2, if they can be achieved
simultaneously and g1 does not support g2 and vice versa. It means that there
is an AND goal g3 such that g1 and g2 support two distinct child goals of g3
that have non-conflicting conditions.

– A goal g1 excludes another goal g2, written g1�g2, if g1 and g2 cannot be
achieved simultaneously. This occurs if there is a goal g3 such that g1 and
g2 are equal to or support two distinct child goals of g3, and either g3 is an
XOR goal or g3 is an AND goal and the two child goals of g3 have conflicting
conditions.

For the goal model in Fig. 1, for instance Credit Checked�DealRefined,
Checked Default�Checked Expert and Credit Checked&Terms Drafted.
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The three goal relations are irreflexive. The supports (�) relation is asym-
metric and transitive, while the complements (&) and excludes (�) relations are
symmetric and intransitive. For instance, the goal model in Fig. 1 has Credit
Checked&Price Determined and Price Determined&Checked Default, but Credit
Checked �& Checked Default. Since the goals are arranged in a tree, each pair of
distinct goals in the tree is related via one of the three relations.

3.2 Case Management Schemas

The definition of case management schemas below follows closely the CMMN
standard [3], with a few exceptions that are discussed afterwards.

Basics. A case management (CM) schema consists of an information and a
behavior model. The information model is expressed by data attributes. The
behavior model consists of several elements. First, milestones, which are busi-
ness objectives achieved while a case is being executed. Second, tasks, which are
atomic activities in which work is performed. Third, stages, which are hierarchi-
cal, non-atomic pieces of work, similar to a subprocess in a imperative process
notation. Fourth, event listeners that wait for external events to arrive from the
environment and that trigger subsequent behavior. A stage may contain other
stages, tasks, milestones or event listeners. In each CM schema, there is a unique
top level stage that contains all other behavior model elements.

Each behavioral element can be active or inactive. CMMN allows more refined
life cycle states for behavioral elements, such as enabled, suspended, etc., but to
simplify the presentation we do not consider these here. Behavioral elements have
rules that govern whether the elements become active (entry rule) or inactive
(exit rule).

A rule is called a sentry in CMMN. A sentry has the form on e1, e2, .., en if c,
where each ei is an event and c a condition, a boolean expression that can
reference data attributes. Allowed events are external events and internal events
such as exiting a stage S (event Sexit), completing a task T (event Tcomplete),
and achieving a milestone m (event machieve).

To simplify the presentation, we have omitted a few CMMN modeling ele-
ments which do not impact the results of this paper. For instance, CMMN
schemas allow discretionary stages and tasks, which are not planned in advance
but whose execution is determined at run time by the user. Next, CMMN allows
repeated behavior and autocompletion of stages. These can be incorporated with-
out any major changes. Finally, CMMN distinguishes between the definition and
the use of elements; for example, a sentry defines a rule while an entry or exit
criterion is a use of a sentry. Here, we do not make this distinction.

Relations. Next we define two relations based on the structure of CM schemas.
The relations are used in Sect. 4 to define consistency constraints. First, an event
e triggers a sentry ϕ if e occurs in the on part of ϕ. For instance, in Fig. 2
event Default checkcomplete triggers the entry sentry of milestone Checked default.
Next, a stage S (a task T ) owns a milestone m, written owns(S,m) (owns(T,m))
if m has an entry sentry whose trigger event is the completion event of S (or T ).
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For GSM schemas [15], which informed the design of CMMN, a semantic
constraint has been defined that also applies to CM schemas:

If a stage or task owns distinct milestones m1 and m2, then at most one of
the two milestones evaluates to true.

The constraint expresses that milestones owned by the same stage are alternative
business objectives. We use the constraint in the next section in defining one of
the consistency relations between goal models and CM schemas.

4 Consistency

We first analyze the relation between goal models and declarative CM schemas.
Next, we define rules that derive goal relation from a declarative CM schema
that corresponds to a goal model. Then we explain how additional goal relations
can be inferred in addition. Next, we define consistency between a declarative
CM schema and a corresponding goal model. Related, we define the notion of
consistency degree, which expresses to which extent the relevant goal relations in
the goal model are derived and inferred. We illustrate the consistency definitions
and the rules on the example introduced in Sect. 2 and end with discussion.

4.1 Relating Goal Models and Declarative Case Management
Schemas

Each milestone represents a business objective that needs to be achieved. It is
therefore natural to relate milestones in declarative CM schemas to achieve
goals in a goal model. For instance, the goals in the goal model in Fig. 1 are
similar to the milestones with the same names in the CM schema in Fig. 2.
Stages have no counterpart in goal models, since they correspond to activities
that are required to achieve milestones.

However, not all milestones are achieve goals. For Fig. 2, milestone Deal
rejected is not a goal that needs to be achieved, but indicates that the process
deviates from the “happy flow”. Conversely, goal models can have other types of
goals besides achieving, such as maintain or avoid goals [18]. However, these
goal types have no counterpart in declarative CM schemas.

In the derivation rules for goal relations, defined below, we assume a cor-
respondence function on goal models and declarative CM schemas that maps
milestones to goals.

Definition 1 (Correspondence function). Let GM be a goal model with a
set G of goals, and C a CM schema with M a set of milestones. A correspondence
function α : M → G is a partial function that maps milestones to goals.

The definition allows that a goal corresponds to multiple milestones. In that
case, the milestones collectively realize the goal. Also, a goal can relate to no
milestone, if the scope of the CM schema covers only part of the goal model. For
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instance, the CM schema in Fig. 2 does not contain a milestone Term Drafted
Externally but is consistent with the goal model, even though it does not realize
the entire goal model.

The definition excludes that a single milestone relates to multiple goals, so
that a milestone realizes multiple goals. We plan as future work to extend the
definition to cover such situations.

4.2 Deriving Goal Relations from Case Management Schemas

We define rules for deriving goal relations from a declarative CM schema that cor-
responds to a goal model. Given an interdependence in the CM schema between
milestones corresponding to goals, each rule derives a relation between the cor-
responding goals that must hold in the goal model. The different rules are based
on the different ways that distinct milestones in declarative CM schemas can be
structurally related.

For the definitions below, let GM be a goal model, C a declarative CM schema
and α a correspondence function relating C and GM . Let m1,m2 be distinct
milestones in C and let g1 = α(m1) and g2 = α(m2) be their corresponding
goals in GM . We require that g1 and g2 are distinct; if g1 equals g2 then no goal
relation is inferred, since all goal relations are irreflexive (cf. Sect. 3.1). Next, we
write milestone m triggers sentry ϕ as a shorthand for machieve triggers ϕ. If
m triggers ϕ, then if ϕ evaluates to true, it implies that m has been achieved.
Consequently, if two milestone m1 and m2 both trigger ϕ, then both must have
been achieved if ϕ evaluates to true.

Milestone Triggering Entry Sentry of Other Milestone. A milestone m1 can trig-
ger an entry sentry of another milestone m2. For example, the milestone Checked
default triggers the entry sentry of milestone Credit checked. In that case, achiev-
ing m1 helps to achieve m2, so goal g1 supports g2.

Definition 2 (Milestone-sentry rule). If there is a sentry ϕ1 such that m1

triggers ϕ and ϕ is an entry sentry of m2, then g1 � g2.

Two Milestones Triggering Same Sentry. Two milestones m1 and m2 can trigger
the same entry sentry of a stage or milestone. For instance, milestones Terms
drafted internally and Credit checked both trigger the entry criterion of stage
Determine price. When evaluating the entry criterion, both milestones must have
been achieved. Therefore, the goals g1 and g2 must complement each other.

Definition 3 (Sentry rule). If there is an entry sentry ϕ1 such that m1 and
m2 both trigger ϕ, then g1&g2.

Milestone Contained in Stage that Owns Other Milestone. A milestone m1 can
be contained in a stage that owns another milestone m2. For instance, milestone
Checked default is contained in stage Check credit that owns milestone Credit
checked. Achieving m1 helps to complete the stage and this way achieve m2.
Therefore g1 supports g2.



Consistency Checking of Goal Models and Case Management Schemas 61

Definition 4 (Hierarchy rule). If there is a stage S such that S contains m1

and S owns m2, then g1 � g2.

Milestone Triggering Entry Sentry of Stage or Task That Owns Another Mile-
stone. Milestone m1 can trigger an opening sentry of a stage or task that owns
another milestone m2. For instance, milestone Terms drafted internally triggers
the entry sentry of task Determine price that owns milestone Price determined. If
m1 triggers the sentry, then when m2 is achieved, m1 is achieved too. Therefore
g1 and g2 complement each other.

Definition 5 (Stage/task-milestone rule). If there is a stage S or task T
that owns m2, and there is a sentry ϕ such that m1 triggers ϕ and ϕ is an entry
sentry of S or T , then g1&g2.

Milestones Owned by the Same Stage. If m1 and m2 are owned by the same stage
or task, then the goals g1 and g2 exclude each other, similar to the constraint
on such milestones imposed by GSM Schemas. For example, milestones Standard
terms drafted and Customized terms drafted are owned by the same task. If they
belong to different goals, then these goals exclude each other.

Definition 6 (Stage/task-output rule). If there is a stage S or task T that
owns both m1 and m2, then g1�g2.

4.3 Inferring Goal Relations

We next explain how to infer additional goal relations from a given set of goal
relations, for instance obtained by applying the goal derivation rules of Sect. 4.2
to a CM schema. Note that for goal models, these inference rules are superfluous,
since each pair of goals is already related via one of the three relations.

As we explained in Sect. 3.1, relation � is transitive and relations & and
� are symmetric. Therefore, if g1&g2, then g2&g1; if g1�g2, then g2�g1; and if
g1 � g2 and g2 � g3, then g1 � g3. We also use two additional inference rules
for goal relations: if g1 � g2 and g2&g3 then g1&g3; and if g1 � g2 and g2�g3
then g1�g3. The correctness of these inference rules follows immediately from
the definition of goal models and the goal relations in Sect. 3.1.

Given a set R of goal relations, we denote by Infer(R) the set of goal relations
that are inferred from R by applying the inference rules.

4.4 Consistency Checking

Based on the previous definitions, we now define a consistency check between a
goal model and a declarative CM schema related by a correspondence function α.
We first define two sets of goal relations. The first set is induced by the goal
model, based on the goal relations defined in Sect. 3.1. The second set is derived
from the CM schema, based on the goal derivation rules in Sect. 4.2.
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Definition 7 (Goal relations). Let GM be a goal model, C a CM schema and
α a correspondence function relating C and GM . Denote by GR(GM)) the goal
relations induced by the goal model GM . Denote by GR(C) the goal relations
computed by applying the goal derivation rules of Sect. 4.2 to C.

We next define consistency between a goal model and a declarative CM
schema that are related by a correspondence function α. We also define the
consistency degree, which expresses to which extent the relevant goal relations
in the goal model are derived and inferred from the CM schema. A goal relation
is relevant if the related goals are in the range of α.

Definition 8 (Consistency, Consistency degree). Let GM be a goal model,
C a CM schema and α a correspondence function. Then GM and C are consis-
tent according to α if GR(C)∪Infer(GR(C)) ⊆ GR(GM) and their consistency
degree is |GR(C)∪Infer(GR(C))|

|GR(GM)∩(range(α)×range(α))| .

We illustrate this definition and the goal derivation rules by applying them to
the goal model and CM schema introduced in Sect. 2. We use a correspondence
function α that maps milestones to goals with the same label. For instance, goal
and milestone Deal refined are related. Also, α maps both the milestone Standard
terms drafted and the milestone Customized terms drafted to goal Terms Drafted
Internally. Thus, the correspondence function α covers 6 goals and 7 milestones.

The goal and the CM schema are consistent according to α. Applying the
consistency constraints to the CM schema in Fig. 2 yields the 9 goal relations in
the lefthand side of Table 2. From these 9 derived goal relations, 12 additional
goal relations are inferred (cf. Sect. 3.1), shown in the righthand side of Table 2.
Note that even though the milestones Standard terms drafted and Customized
terms drafted are owned by the same stage, Definition 6 does not apply since
both milestones link to the same goal Terms Drafted Internally.

The 6 goals covered by the correspondence function α have 23 relations
according to the goal model: 4 leaf goals with distinct 5 goal relations each,
and intermediate goal Credit checked with 3 additional goal relations. 21 of these
goal relations are derived from the CM schema. The two missing goal relations
are the exclusive relations between Checked default and Checked expert. Thus,
the consistency degree is 21/23 = 0.91.

4.5 Discussion

Semantic Consistency. The approach defines consistency using structural rules
in Sect. 4.2. It is logical to also look at semantic consistency, that is, to infer the
consistency of a goal model with the executions of a declarative CM schema,
given a correspondence function. However, the executions of a CM schema do
not have enough information to compute semantic consistency.

For instance, consider the CM schema in Fig. 3 with α = {(m1, g1), (m2, g2),
(m3, g3)}. The sole complete execution trace of C1 is a sequence of states. Only
looking at achieved milestones in each state, in one state of this sequence only
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Table 2. Goal relations for CM schema in Fig. 2

Derived goal relations (Definitions 2–6) Inferred goal relations

Terms drafted internally � Deal refined Terms drafted internally & Checked default

Terms drafted internally & Credit checked Terms drafted internally & Checked expert

Terms drafted internally & Price determined Checked default � Deal refined

Credit checked � Deal refined Checked default & Terms drafted internally

Credit checked & Terms drafted internally Checked default & Price determined

Credit checked & Price determined Checked expert � Deal refined

Checked default � Credit checked Checked expert & Terms drafted internally

Checked expert � Credit checked Checked expert & Price determined

Price determined � Deal refined Price determined & Terms drafted internally

Price determined & Credit checked

Price determined & Checked default

Price determined & Checked expert

Fig. 3. CM schemas to illustrate issues semantic consistency

m1 has been achieved, which is followed eventually by a state in which both
m1 and m2 have been achieved, and in the final state m1, m2 and m3 have
been achieved. Now consider the CM schema C1’ obtained from C1 by removing
compound stage X but keeping B and m2, such that B succeeds m1 and m2
precedes m3. Only looking at achieved milestones, C1’ has the same execution
trace as C1. However, the goal relations implied by the rules in Sect. 4.2 for both
CM schemas are different. The rules result for C1 in a goal relation g2� g3, but
for C1’ in a goal relation g2&g3. The corresponding goal models are different: in
the first one g2 is a subgoal of g3, in the second one g2 and g3 are both subgoals
of an AND goal. In sum, different CM schemas relating to different goal models
can yield the same execution traces. Therefore, execution traces are not rich
enough to check consistency with a goal model.

Completeness. As the example shows, not all goal relations from the goal model
are detected with the approach, so the approach is not complete. We were unable
to define a simple structural constraint that results in milestones Checked default
and Checked expert in Fig. 2 being exclusive. In this case, we could apply seman-
tic reasoning over the execution traces and then derive that milestones Checked
default and Checked expert are never achieved in the same execution trace, there-
fore the goals Checked default and Checked expert are exclusive. However, we
explained above that execution traces in general are not rich enough to infer
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goal relations. Defining a complete approach using only semantic reasoning on
execution traces is therefore not feasible. We believe that defining a complete
approach, so identifying all possible goal relations, requires a combination of
structural and semantic reasoning. We plan to study this in future work.

Deriving Constraints from Goal Models. The consistency between goal models
and declarative CM schemas has been checked by deriving goal relations from
the CM schemas by analyzing possible relations between distinct milestones.
Checking consistency by deriving constraints for milestones from the goal model
is not very useful, since a declarative CM schema can realize the same goal
model in different ways. This is exemplified by different goal derivation rules that
result in the same goal relations: the rules for Milestone-sentry (Definition 2) and
Hierarchy (Definition 4) result in a supports � relation while the rules for Sentry
(Definition 3) and Stage/task-milestone (Definition 5) result in a complements &
relation. Consequently, relations & and � can be realized in different ways in
declarative CM schemas. Checking consistency by deriving from the goal model
constraints on milestones for declarative CM schemas is therefore not practical.

Repairing Inconsistencies. If a goal model and a corresponding declarative CM
schema are found to be inconsistent, they can be repaired by changing one of
them. For instance, if a stage S owns milestones m1 and m2, but the corre-
sponding goals g1 and g2 do not exclude each other in the goal model, i.e.,
g1&g2 or g1 � g2. Repairing the CM schema is a substantive change, since it
would require that m1 or m2 is detached from S. Changing the goal model
by for instance restricting the conditions of g1 and g2 seems more feasible. As
another example, if a milestone-sentry consistency constraint is violated, then
there is a milestone m1 in the entry sentry of milestone m2. If g1�g2, then the
relations in the goal model can be changed to ensure g1 � g2. However, this is a
major change. Changing the CM schema such that both milestones m1 and m2

are owned by the same stage seems more feasible. These two examples suggest
that the consistency constraint that was violated is a major factor in deciding
what model to change when repairing an inconsistency. We plan to study this
in future work.

5 Evaluation

We evaluated feasibility by developing a prototype tool that implements the goal
derivation and inference rules and next applying the approach and the tool to
a real-world example. The prototype tool has been implemented in Java. Input
to the tool are a CMMN model, in XML format, and a text file denoting the
correspondence function, expressed as a list of pairs of goals and milestones. Both
the tool and the used input files described in this section are publicly available.1

The tool first derives relations between the goals according to Definitions 2–6
by analyzing the structure of the CMMN model. Next, the tool infers additional
goal relations from the derived goal relations. It outputs both the derived goal
1 See https://github.com/heshuis/CMMNgoalanalyzer.

https://github.com/heshuis/CMMNgoalanalyzer
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relations and the inferred goal relations. The tool also checks if all the goal
relations are internally consistent, so each ordered pair of goals is related at
most once, for instance if g1 � g2 then neither g1&g2 nor g1g2.

Fig. 4. Goal model of Maintenance Order process. Arcs denote AND decomposition.
Gray shaded goals are in the correspondence function.

We applied the tool on a real-world example: the maintenance logistics pro-
cess at Dutch Railways [27]. The process ensures that train units requiring main-
tenance arrive in time, via what is called a train path, at the maintenance loca-
tion. Disruptions in the train schedule affect this transfer process. The process
has been modeled before using agent-oriented modeling [16] and using Guard-
Stage-Milestone (GSM) schemas [27].

The goal model, shown in Fig. 4, was derived by analysing the textual descrip-
tion of an agent-based perspective on the maintenance process [16]. The goal
model contains 13 goals, of which 5 are hierarchical. Next, a CMMN model was
created for Maintenance Order, the key artifact in the maintenance logistics pro-
cess, based on an earlier developed GSM schema [27]. Since GSM and CMMN
use similar constructs, the translation is straightforward. The CMMN model
contains 20 milestones; due to space limitations it is not shown here.

We checked the consistency of the goal model and the CMMN model in
three steps. First, we established a correspondence function between the goals
and the milestones, based on the comparison between the agent-based model
and the GSM schema [27]. Second, we applied the tool to the CMMN model and
the correspondence function to derive and infer the goal relations. Finally, we
checked for each derived and inferred goal relation whether it is consistent with
the goal model.

This consistency check was performed in two iterations. In the first iteration,
we used a CMMN model and a correspondence function that covered 5 milestones
and 5 goals in a one-to-one mapping (shown in gray in Fig. 4). There was no
milestone counterpart for goal Provide maintenance, even though all its subgoals
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were in the mapping. For the second iteration, we added this counterpart in
the CMMN model by inserting a milestone for goal Provide maintenance and a
stage that owns this milestone; the stage contains the milestones for goals Plan
maintenance job and Perform maintenance job.

Table 3. Goal relations for the maintenance order CM schema

Goal relation Iteration 1 Iteration 2

Derived goal relations (Definitions 2–6)

Signal need for planned maintenance & Plan maintenance x x

Plan maintenance & Provide maintenance x

Plan maintenance & Make routing plan x x

Plan maintenance & Plan maintenance job x (inferred)

Plan maintenance job & Perform maintenance job x x

Plan maintenance job � Provide maintenance x

Perform maintenance job � Provide maintenance x

Inferred goal relations

Plan maintenance & Signal need for planned maintenance x x

Plan maintenance & Perform maintenance job x

Plan maintenance & Plan maintenance job (derived) x

Make routing plan & Plan maintenance x x

Provide maintenance & Plan maintenance x

Plan maintenance job & Plan maintenance x x

Perform maintenance job & Plan maintenance x

Perform maintenance job & Plan maintenance job x x

Table 3 show the goal relations derived and inferred in both iterations. In the
first iteration 8 goal relations were found, in the second iteration the same 8 plus
6 additional goal relations were derived. Goal relation Plan maintenance&Plan
maintenance job was derived in the first iteration and inferred in the second
iteration. Each goal relation that was found is consistent with the goal model
in Fig. 4. Even though the CMMN model has several stages owning multiple
milestones, there is no exclusive relation between goals, since for each such stage
at most one milestone has a corresponding goal.

Not all goal relations from the goal model can be derived and inferred. For
instance, the goal model specifies Signal need for planned maintenance & Provide
maintenance, but this goal relation cannot be derived from the CMMN model
or inferred from the other goal relations (since relation & is not transitive).
The goal model specifies 20 goal relations for the 5 goals covered in iteration 1;
the approach computes 8 relations, so the consistency degree is 8/20 = 40%. For
iteration 2, the goal model specifies 28 goal relations for the 6 covered goals; the
approach computes 14 relations, so the consistency degree is 14/28 = 50%. Thus,
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a small increase in size of the correspondence function can significantly improve
the consistency degree.

The evaluation shows how the approach can help to check the consistency
of a goal model and CM schema. Inferring goal relations is essential to get a
good consistency degree. Still, a lot of goal relations could not be found; we plan
to relax the inference rules to improve this. The evaluation also shows that the
approach can help to further structure a CM schema for improved alignment.

6 Related Work

Several approaches have been defined that link goal modeling and process mod-
eling, for instance to improve business processes [19,23] or to model business
processes in a more flexible way [21,26,28]. We now focus on the three specific
clusters of related work in the area of goal modeling and process modeling. None
of the works discussed next focuses on declarative CM schemas.

First, there are approaches that check consistency of goal models and activity-
centric process models expressed in BPMN [2,10,17,20]. Koliadis et al. [17] define
a methodology that checks satisfaction of a BPMN process model against a
KAOS goal model. Activities in the analyzed process models are extended with
effect annotations. Accumulated effects along an execution path are checked
against the KAOS goals. Gröner et al. [10] define an approach based on descrip-
tion logic for checking the consistency of different goal ordering relations and
the main workflow patterns that can occur in procedural process models. Nagel
et al. [20] translate different goal-ordering constraints into temporal logic formu-
las, which are verified against the behavior of the process models with a model
checker. Akhigbe et al. [2] define OCL constraints that relate goal views to pro-
cess views in User Requirements Notation (URN) models. All these approaches
are heavy weight since they use a separate semantic domain for checking con-
sistency, like description logic or temporal logic, whereas we define a lightweight
approach by structurally relating goal models and CM schemas, without intro-
ducing a separate semantic domain.

Second, several approaches study the alignment of goal models and pro-
cess models. Guizzardi et al. [11] propose a method that aids business analysts
in aligning goal models expressed in Tropos with process models expressed in
BPMN. The method identifies non-aligned goals and activities and supports ana-
lyzing the level of satisfaction of goals. We study declarative CM schemas, which
differ considerably from BPMN. Cortes-Cornax et al. [5] define an approach that
characterizes so-called intentional BPMN process fragments that realize KAOS
goals. This way, goal-based analysis can be used to re-engineer processes. Our
approach relates goals to certain constructs (milestones) in CM schemas, which
are much less structured than BPMN models.

Third, some approaches transform goal models into process models. Horita
et al. [14] define a pattern-based approach that translates KAOS goal models into
BPMN process models. Ponsard and Darimont [25] refine and extend this work
into a goal-oriented approach for analyzing and redesigning BPMN models. The
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reverse direction is analyzed by Vara et al. [31], who define mapping rules from
process models to goal models. These works are based on procedural process
models, which differ a lot from declarative CM schemas.

In the area of case management, there is work that checks structural consis-
tency of CM schemas [6] or that proposes goal-oriented way of modeling proce-
dural CM schemas [13], but no work that checks the consistency of a goal model
and a declarative CM schema.

The main contribution of this paper is a structural approach for checking the
consistency of goal models and CM schemas. The approach relies on a correspon-
dence function that maps milestones to goals and is defined based on structural
relations in the goal models and CM schemas.

7 Conclusion

We have presented a structural approach to check consistency of a goal model
and a declarative case management schema. The approach checks whether the
goal interdependencies implied by the declarative case management schema are
consistent with the goal model. We have implemented the approach in a proto-
type tool and applied it to a real-world example, where the approach helped to
show consistency and to improve the case management schema.

For further work, we plan to improve the inference rules of the approach
and to apply the approach in more case studies. We will also study how to fix
inconsistencies between a goal model and a declarative case management schema.
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Abstract. Services and products are often offered via the execution of
processes that vary according to the context, requirements, or customi-
sation needs. The analysis of such process variants can highlight differ-
ences in the service outcome or quality, leading to process adjustments
and improvement. Research in the area of process mining has provided
several methods for process variants analysis. However, very few of those
account for a statistical significance analysis of their output. Moreover,
those techniques detect differences at the level of process traces, sin-
gle activities, or performance. In this paper, we aim at describing the
distinctive behavioural characteristics between variants expressed in the
form of declarative process rules. The contribution to the research area
is two-pronged: the use of declarative rules for the explanation of the
process variants and the statistical significance analysis of the outcome.
We assess the proposed method by comparing its results to the most
recent process variants analysis methods. Our results demonstrate not
only that declarative rules reveal differences at an unprecedented level
of expressiveness, but also that our method outperforms the state of the
art in terms of execution time.

1 Introduction

The execution of a business process varies according to the context in which it
operates. The exhibited behaviour changes to adapt to diverse requirements, geo-
graphical locations, availability or preferences of the actors involved, and other
environmental factors. The alternative enactments lead to the diversification of
specialised processes that stem from a general model. Considering some real-
world examples, the hospital treatment of sepsis cases follows a different clinical
pathway according to their age; the credit collection of road traffic fines typically
undergoes an additional appeal to the prefecture when the fine is high.

Recent trends in business process management have led to a proliferation
of studies that tackle the automated analysis of process variants [19]. After
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Table 1. Description and notation of considered Declare constraints

Constraint Verbal explanation

Participation(a) a occurs at least once

AtMostOne(a) a occurs at most once

RespondedExistence(a, b) If a occurs, then b occurs as well

Response(a, b) If a occurs, then b occurs after a

AlternateResponse(a, b) Each time a occurs, then b occurs afterwards, and no other a recurs in between

ChainResponse(a, b) Each time a occurs, then b occurs immediately afterwards

Precedence(a, b) b occurs only if preceded by a

AlternatePrecedence(a, b) Each time b occurs, it is preceded by a and no other b recurs in between

ChainPrecedence(a, b) Each time b occurs, then a occurs immediately beforehand

CoExistence(a, b) If b occurs, then a occurs, and vice versa

Succession(a, b) a occurs if and only if it is followed by b

AlternateSuccession(a, b) a and b if and only if the latter follows the former, and they alternate each

other

ChainSuccession(a, b) a and b occur if and only if the latter immediately follows the former

the initial manual, ad-hoc endeavours on single case studies, the focus has
shifted towards the data-driven detection of their behavioural differences from
the respective event logs [3,4,10,18]. To date, however, the explanatory power of
the existing techniques is limited: the results are (i) exposed as whole graphical
models (e.g., directly-follows graphs) leaving the identification of the differences
to the visual inspection of the analyst, or (ii) expressed as variations within the
limited scope of subsequent event pairs (e.g., behavioural profiles).

To overcome this limitation, we propose an approach that infers and describe
the differences between variants in terms of behavioural rules. Our declarative
approach aims to (i) single out the distinct behavioural characteristics leading to
the variations observed in the trace, while (ii) having a global scope as rules are
exerted on the whole process runs. In our pursuit of explainability, we employ
and adapt state-of-the-art techniques to guarantee the statistical significance of
the inferred differentiating rules and expose the top-ranked distinctive charac-
teristics in the form of natural language. We name our approach Declarative
Rules Variant Analysis (DRVA).

In the following, Sect. 2 illustrates existing work in the areas upon which
our approach is based. Section 3 describes in details our technique. Section 4
illustrates the results of our tool running on real-world event logs and compares
them with state-of-the-art techniques. Finally, Sect. 5 concludes this paper and
provides remarks for future research avenues.

2 Background and Related Work

In this section, we provide a brief overview of the use of declarative lan-
guages within the process mining area. We discuss the most recent studies on
process variants analysis, and we introduce the statistical significance test that
we adapted to our context.
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2.1 Declarative Process Specification and Mining

A declarative specification represents the behaviour of a process by means of
reactive constraints [5], i.e., temporal rules that specify the conditions under
which activities can or cannot be executed. For the purposes of this paper,
we focus on Declare, one of the most well-established declarative process
modelling languages to date [12]. Declare provides a standard repertoire of
templates, namely linear temporal-logic rules parameterised over tasks, here
abstracted as symbols of a finite non-empty alphabet Σ. Table 1 illustrates
the templates we use in the context of this paper. Declarative rules are typi-
cally expressed in an if-then fashion, whereby the “if” part is named activator
and the “then” part is the target. For example, Response(a, b) requires that
if a is executed (activator), then b must be eventually carried out (the target).
Precedence(b, a) imposes that a cannot be executed if b has not occurred
earlier in the process instance. RespondedExistence(a, b) relaxes the condi-
tion exerted by Response(a, b) and Precedence(b, a) by requiring that if a
is executed, then b has to occur in the same trace, regardless of whether it
happens before or after a. Response(a, b) and Precedence(b, a) thus entail
RespondedExistence(a, b) and we say that RespondedExistence subsumes
Response and Precedence [7]. Subsumption is a partial order on the tem-
plates of Declare inducing the partial order of entailment on the rules that
instantiate those templates. A declarative specification M � r is a set of rules r
that conjunctively define the behaviour of a process. We shall denote the universe
of declarative rules as R ⊇ M � r.

The formal semantics of Declare rules are rooted in Linear Temporal Logic
on Finite Traces (LTLf ). A trace t ∈ Σ∗ is a finite string of events. An event
log (or log for short) is a multi-set of traces L : Σ∗ → N (in which equivalent
elements can occur multiple times). We indicate the universe of event logs as
L � L. We shall denote as |t| the length of a trace t, as |L| the cardinality of
the event log, and as |t̂| the length of the longest trace in the log. Declarative
process discovery tools can assess to what degree constraints hold true in a given
event log. To that end, diverse measures m : R × L → R have been introduced
to map a rule r ∈ R and an event log L ∈ L to a real number [5]. Among
them, we consider Support and Confidence here. Their values range from 0 to
1. Support is computed as the fraction of events in which both activator (e.g.,
the occurrence of a for Response(a, b)) and target (e.g., the occurrence of b
eventually afterwards in the trace) hold true. Confidence is the fraction of the
events in which the rule holds true over the events in which the activator is
satisfied. With a slight abuse of notation, we shall indicate the measure of r on
a single trace t with m(r, t).

2.2 Process Variants Analysis

The latest literature review on process variants analysis [19] identified more
than thirty studies addressing the research problem, clearly showing a grow-
ing interest in the topic. Much of the early research work was centred on case
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studies, providing examples of variant analysis applications that highlighted its
potential capabilities. Among the earliest studies, Poelmans et al. [14] com-
bined process mining and data mining techniques to differentiate and analyse
the healthcare pathways of patients affected by breast cancer and their response
to therapies. Another of the most impactful studies is the one regarding a large
Australian insurance company [17], in which Suriadi et al. describe a methodol-
ogy to pinpoint the weaknesses in the processing of insurance claims that had
slow turnaround time. Until recently, the vast majority of variant analysis stud-
ies focused on the detection of control flow differences of two or more process
variants, with the frequent underlying goal to relate such differences to the out-
come of the process variant. Also, proposed methods for variant analysis did
not put much attention to the statistical significance of the detected differences,
with the risk to catch random differences. Only recently proposed methods for
variant analysis [4,10,18] account for statistical significance.

Bolt et al. [4] pioneered the introduction of statistical significance in vari-
ant analysis, designing a framework to compare process variants in the form of
annotated transition systems through the application of statistical tests. Also,
the framework allows the analysis of the decision points in different variants and
how the underlying decision-making rules differ. The annotations on the transi-
tion systems can capture frequencies and elapsed time between the transitions,
however, the framework was designed to be extended, with the option to capture
new annotations.

Nguyen et al. [10] propose a variant analysis method based on the statis-
tical comparison of perspective graphs. A perspective graph is an artifact that
captures an attribute of an event log (e.g. activity, resource, etc.), and the rela-
tions between the observed attribute values. The two perspective graphs (one
per process variant) are then statistically compared and a differential perspective
graph is generated. The latter is analysed to determine the differences between
the variants. By varying the attribute to generate the perspective graphs, the
method allows for the analysis of different process perspectives.

Lastly, Taymouri et al. [18] propose a variant analysis method to separate
statistically-significant different traces from common traces between the two
input process variant logs. Each trace is encoded as a vector, then an SVM
is used to classify the traces (assigning them to one of the two logs). A set of
trace features (i.e. directly-follows relations) that can statistically discriminate
the traces between the two logs is identified, and the logs are filtered by retain-
ing only the traces containing those features. Finally, the two filtered logs are
mapped into directly-follows graphs, called mutual-fingerprints, which rely on
color-coding to show differences.

Of all the past studies, none is capable of analysing process variants to detect
differences in the form of declarative rules [19], which is instead the focus of this
paper. However, given that declarative rules can be difficult to interpret, and
that variant analysis is of high interest for the practitioners audience, we follow
the example of van Beest et al. [3] and provide a natural language translation of
the detected differences [1].
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2.3 Statistical Significance

It is likely that the data at hand captures only a portion of the whole data
population, and it can include outliers. Process execution data is no exception.
In fact, an event log usually contains only a part of the allowed process behaviour,
on one hand, and infrequent behaviour, on the other hand [2]. To draw reliable
observations from data samples, statistics provides several methods to assess
the likelihood that an observation holds for the whole data population. These
methods, known as statistical significance tests, estimate the probability that
what is observed happened by chance. Traditionally, if such probability is low
(below 0.05), the observation is assumed to hold for the whole data population.
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Fig. 1. Schema of our variant analysis approach based on declarative rules.

Of the many available methods to assess the statistical significance of the
discovered declarative rules (which are similar to association rules) [9], we deem
the permutation test [13] as the one that best fits for our purpose and context.
The permutation test (also known as randomization test) is a non-parametric
test originally designed to estimate the probability that two numerical series
belong to the same population or not. In other words, it provides an answer to
the question: “Are the two series statistically different?” The permutation test
is carried out as follows. First, the difference of the averages of the two series is
calculated (the delta average). Then, the elements of the two series are pooled
and two new series are drawn at random to compute the delta average again.
This step is repeated for all the possible permutations. The likelihood that the
two original series are statistically different is assessed as one minus the percent-
age of delta average that is greater or equal to the original delta average. The
original permutation test is computationally heavy because it requires a compu-
tation on all the possible permutations of the original series. However, successive
studies have proposed approximated [8] and efficient [21] methods to reduce the
computational effort and construct permutation tests for any settings [20], from
pure maths [13] to medicine [11]. In the following, we show how we adapt the
permutation test to address the problem of variant analysis.

3 Approach

In this section, we present in details our variant analysis technique based on
declarative process specifications: Declarative Rules Variant Analysis (DRVA).
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The core idea is to discover the declarative process specifications describing the
behaviour of the input variants’ event logs and to check, by running a permuta-
tion test, whether the difference between the two specifications are statistically
significant. To assess the significance, intuitively, we verify whether the differ-
ences stemming from the variants’ event logs are not due to rules that occur by
chance.

Figure 1 presents the overview of the approach. Specifically, the variant anal-
ysis is divided into four phases: (1) A discovery phase, to mine the declarative
specifications of the variants’ behaviour; (2) A pre-processing phase, to prune
redundant or irrelevant rules and encode the information for faster computa-
tion; (3) A statistical validation phase, in which the permutations and related
significance test take place; and (4) A final post-processing phase, to sort the
results according to a given relevance criterion and produce a natural language
description of the output. In the remainder of this section, we thoroughly explain
each step of the approach (illustrated as pseudo-code in Algorithm 1) and its
implementation.

Some of the examples in this section refer to the publicly available SEP-
SIS event log (see Table 2), which records the treatment of patients with sepsis
symptoms in a Dutch hospital. The two variants are generated as one containing

Algorithm 1: Computing the set of rules that differ in a statistically
significant way. The computational cost of the steps is specified on the
right-hand side.

Input: Log variants LA and LB , specifications MA and MB , a function m, parameters
mmin, mdiff-min, α, π

Result: R, a set of rules exhibiting a statistically significant difference between the variants.
/* Pre-processing */

1 M∪ ←− MA ∪ MB ; // Cost: O(|MA| + |MB |)
2 Ediff, EA, EB ←− {} ; // Cost: O(1)

3 foreach r ∈ M∪ do // Block cost: O(|M∪| × |t̂| × (|LA| + |LB |))
4 EA ←− EA ∪ {(r, m(r, LA))} ; // Cost: O(|eA| + |LA|)
5 EB ←− EB ∪ {(r, m(r, LB))} ; // Cost: O(|eB | + |LB |)
6 Ediff ←− Ediff ∪ {(r, |m(r, LA) − m(r, LB)|)} ; // Cost: O(1)

7 foreach r ∈ M∪ do // Block cost: O(|M∪|)
8 if (Ediff(r) < mdiff-min) ∨ (EA(r) < mmin) ∨ (EB(r) < mmin) then // Cost: O(1)

9 Remove r from M∪ and its measurements from EA, EB , Ediff ; // Cost: O(1)

10 M∪, EA, EB , Ediff ←− hierarchicalSimplification(M∪,EA,EB) ; // Cost: O(|M∪| × |h|)
11 Lm

A , Lm
B ←− encodeLog(LA,LB ,M∪) ; // Cost: O(|M∪| × (|LA| + |LB |))

/* Permutation Test */
12 C ←− Initialize map such that for all r ∈ M∪ : C(r) = 1 ; // Cost: O(|M∪|)
13 for i ← 1 to π do // Block cost: O(|π| × |M∪| × (|LA| + |LB |))
14 Lm

Ai
, Lm

Bi
←− shuffleLog(Lm

A ,Lm
B) ; // Cost: O(|LA| + |LB |)

15 foreach r ∈ M∪ do // Block cost: O(|M∪| × (|LA| + |LB |)
16 if |m(r, Lm

Ai
) − m(r, Lm

Bi
)| ≥ Ediff(r) then // Cost: O(|LA| + |LB |)

17 C(r) ←− C(r) + 1 // Cost: O(1)

18 R ←− {} ; // Cost: O(1)

19 foreach r ∈ M∪ do // Block cost: O(|M∪|)
20 p-value(r) ←− C(r)

π ; // Cost: O(1)

21 if p-value(r) ≤ α then R ←− R ∪ {r} ; // Cost: O(1)

22 return R
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traces regarding only elderly patients above the age of 70 (LA) and the other
containing young ones below 35 (LB).

3.1 Declarative Specifications Discovery

In order to compare the variants through a declarative lens, it is necessary to
derive the declarative specifications of their behavior. Specifically, given the input
variants event logs LA and LB , we want to retrieve the respective declarative
specifications MA and MB . This can be done by executing existing declarative
process discovery techniques [16].

We remark that the criteria used for the discovery influence the subsequent
steps of the analysis. For example, discovering only specifications that are highly
compliant to the event logs makes the variant analysis consider the most regular
and stable behaviour of the processes. Looser specifications encompass also less
frequent behaviours.

The discovery step is executed when only the event logs are given as input.
Alternatively, our technique can receive as input the declarative specifications
already discovered from the two logs, in such a case, the discovery step is skipped
and our technique performs only the variant analysis with the input specifica-
tions. Hand-crafted or filtered input declarative specifications can be useful when
it is desired to test the statistical significance of the differences between two
variants according to specific rules. For example, if the analyst is interested only
in the behavioural difference involving tasks ER Triage and LacticAcid, she can
provide as input two specifications containing only rules involving these tasks
(e.g., Response(ER Triage, LacticAcid), Precedence(ER Triage, IV Liquid),
Succession(LacticAcid,Admission NC), and so on) together with the variants’
logs.

3.2 Pre-processing

The variants analysis takes the variants’ events logs LA and LB as input, together
with the respective declarative process specifications MA and MB . As the per-
mutation test is a computationally heavy task, it is desirable to keep only the
essential information. Thus, to efficiently perform the statistical test, the data
must be ➀ aggregated, to have a common view between the variants, ➁ cleaned
via pruning, to remove redundant or irrelevant information, and ➂ encoded, to
improve performance.

➀ Aggregation. The declarative specifications MA and MB are merged into a
unique specification M∪ = MA ∪ MB. To check their differences, all the rules in
MA must be checked in LB and vice versa, thus the union of MA and MB allows
us to consider all and only the distinct rules in both the logs.

The interestingness of each rule r ∈ M∪ is measured in each variant log LA and
LB . We resort to the measurement framework for declarative specifications pro-
posed in [5]. Among the various measures available, we consider Confidence as the
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best option because it measures the degree of satisfaction of a rule in a log inde-
pendently from the rule frequency. The comparison of the most suitable measures
(or combinations thereof) goes beyond the scope of the paper and paves the path
for future work. In our example, m(Response(ER Triage, LacticAcid), LA) = 0.83
and m(Response(ER Triage, LacticAcid), LB) = 0.53, which means that 83% of
the occurrences of ER Triage in LA are eventually followed by LacticAcid. In LB ,
the measure drops to 53% for that rule.

Finally, we retain these reference measurements of M∪ in each vari-
ant denoting them as functional relations EA and EB . Formally, we
define EA : M∪ → R as EA = {(r,m(r, LA)) : r ∈ M∪} and EB : M∪ → R

as EB = {(r,m(r, LB)) : r ∈ M∪}. We compute also the reference absolute
difference between the variants’ measurements Ediff. Formally, we define
Ediff : M∪ → R as Ediff = {(r, |m(r, LA) − m(r, LB)|) : r ∈ M∪}, where |x| is the
absolute value of x. For example, EA(Response(ER Triage, LacticAcid)) = 0.83,
EB(Response(ER Triage, LacticAcid)) = 0.53, and their absolute difference is
Ediff(Response(ER Triage, LacticAcid)) = 0.30.

➁ Pruning. Not all the rules contained in M∪ are valuable for the statistical
test. Specifically, we consider as ignorable those rules that do not meet one of
the following criteria.

Minimum Difference: If a rule difference between the variants is considered
too small by an analyst to be of interest, it can be discarded. For example,
rule r = Precedence(ER Registration,CRP) is such that Ediff(r) = 0.01 as
EA(r) = 0.98 and EB(r) = 0.99. The significance of such a difference is debat-
able: the difference appears to be negligible although the consideration is sub-
jective and depending on the context of the analysis. Therefore, we allow the
user to customise a threshold to this end: mdiff-min. According to this criterion,
we remove all the rules r ∈ M∪ such that Ediff(r) < mdiff-min from M∪ and all
their measurements from EA, EB , and Ediff.

Minimum Interestingness: If, according to an analyst, a rule is not inter-
esting enough in either of the variants to be considered, it can be discarded.
For example, rule r = Response(ER Triage,Release A) is such that Ediff(r) =
0.23 yet the rule itself is not frequently satisfied in either of the variants as
EA(r) = 0.41 and EB(r) = 0.64. Whether this is desirable or not depends on
the context of the analysis. Therefore, we define the mmin threshold to let the
user set the desired minimum value that the rule’s measure should be assigned
within the variants’ logs. In this step, we remove all the rules r′ ∈ M∪ such that
m(r′, LA) < mmin and m(r′, LB) < mmin from M∪ and all their measurements
from EA, EB , and Ediff.

No Redundancy: If two rules are such that one is logically implied by the
other, we do not gather additional information by retaining both in the set of
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rules under consideration. Declare patterns are hierarchically interdependent,
as the satisfaction of a rule implies the satisfaction of all the entailed rules. We
can exploit the hierarchical relation of the Declare templates to prune the
redundant rules as in [6]. However, we adapt the original pruning technique by
inverting the preference: We keep the most generic rule rather than the strictest
one if measurements are the same in at least one of the variants’ event logs. We
explain the rationale at the core of our design choice with an example from the
Sepsis event log.

Figure 2 depicts the partial order that stems from the subsumption rela-
tion among Declare templates [6] having AlternateSuccession(ER Sepsis
Triage, IV Antibiotics) as its least element, and RespondedExistence
(ER Sepsis Triage, IV Antibiotics) and RespondedExistence(IV Antibiotics,
ER Sepsis Triage) as its maximal elements. For the sake of space, we shall
indicate ER Sepsis Triage and IV Antibiotics with t and v, respectively.
Alt.Succession(t, v) is the strictest rule in the set, as all the other rules can
be derived from it. As the associated Confidence is higher in LA (0.82) than in
LB (0.49) we can claim the following: “In LA, v follows t and t precedes v with
no other t or v occurring in between, more likely than in LB”. Looking at the
measurements on LA and LB we see that there is no difference between its val-
ues and the ones of Alt.Response(t, v) or Succession(t, v), and it entails both.
Recursively following the subsumption relation, we notice that the same mea-
surements are associated to one of the maximal elements of the induced partial
order: RespondedExistence(t, v). The other maximal element, instead, is such
that the associated Confidence is equal to 1.00 in LA and LB . This characteris-
tic reverberates along the chain of entailment down to Alt.Precedence(t, v).
With this example, we observe that the least restrictive rules point out more pre-
cisely where the cause of the differences between variants lies – in this case, the
occurrence of v required by t is at the core of the distinct behaviours. The co-
occurrence, order of execution, and lack of internal recurrence are characteris-
tics that Alt.Precedence(t, v) exhibits although they are evidenced by both
variants.

According to this criterion, we thus prune redundant rules only if the mea-
surement between entailing and entailed rules are equivalent in at least one vari-
ant. Otherwise, we keep both. Formally, denoting with � the entailment rela-
tion, we remove the following subset of rules from M∪ and all their measurements
from EA, EB , and Ediff: {r ∈ M∪ : r � r′, r′ ∈ M∪ \ {r} and m(r, LA) =
m(r′, LA) or m(r, LB) = m(r′, LB)}.

We remark that the first two criteria (minimum difference and minimum
interestingness) are generically applicable to declarative rules and measures
thereof, whereas the third one (no redundancy) is tailored for templates á-la-
Declare and measures such as Confidence, as it requires a subsumption hierar-
chy of the repertoire of templates and the monotone non-decrease of the measure
within the subsumption hierarchy (i.e., if r � r′, then m(r, L) � m(r′, L)) as
shown in [6].
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Fig. 2. Example of hierarchical simplification where the less restrictive rule is preferred
over the more restrictive one, given equivalent measurements.

➂ Encoding. The measures of a trace in a log are based on the measurements
of the rule in each trace of the log itself [5]. Such trace measurement is inde-
pendent from the log in which the trace resides, thus moving the trace from
one log to another would not change it. We take advantage of this aspect to
save computation steps: for each trace t in LA and LB , we cache the trace
measurement m(r, t) of every rule r ∈ M∪ in multi-sets Lm

A and Lm
B , i.e.,

Lm
A = {m(r, t) : t ∈ LA, r ∈ M∪} and Lm

B = {m(r, t) : t ∈ LB , r ∈ M∪}.
This step allows us to encode the traces into feature vectors that can be used
within the permutation test, as discussed in the next section. For example, given
a trace t and a specification M∪ = {Resp.(a, b),Prec.(c, d)}, the encoded trace
is tm = {(Resp.(a, b),m(Resp.(a, b), t)), (Prec.(c, d),m(Prec.(c, d), t))}. With
a slight abuse of notation, we shall denote with m(r, Lm) the measure of a rule
r on log L after the encoding of all traces t ∈ L in Lm.

To sum up, at the end of the pre-processing phase we have a unique declar-
ative specification (M∪) with the measurements in the variants (EA, EB , and
Ediff), and the evaluation of each rule in every trace cached for later reuse (Lm

A

and Lm
B).

3.3 Permutation Test

In this phase, we check whether the differences between the declarative rule
measurements in the variants are statistically significant. In other words, taken
each r ∈ M∪, we calculate the likelihood that the absolute difference of its
measurements between the variants, Ediff(r), was due to a random factor. If the
null hypothesis “Ediff(r) occurred by chance” can be refuted, then the difference
is significant. To that extent, we employ an adaptation of the permutation test we
introduced in Sect. 2.3. We reshuffle traces between LA and LB and observe if the
difference in the measures holds as in the original variants’ logs. If so, it is likely
that its difference was due to chance (i.e., the null hypothesis is confirmed). The
rationale of this test is the following: if a difference can be detected by randomly
shuffling the variants’ traces, this difference has no real discriminative power
between the variants.

The acceptance or refutation of the null hypothesis is done in the following
two steps (we continue the numbering from the previous section): ➃ The reshuf-
fling, in which the data are rearranged and the measures of the rules under the
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Fig. 3. Visual example of the permutation test. The traces of the original logs LA and
LB are coloured in dark gray and light grey, respectively.

null hypothesis are computed; ➄ The significance test, in which only the rules
that exhibit a statistically significant difference between variants are retained.
Notably, thanks to the encoding of the logs presented in Sect. 3.2, the trace eval-
uations of every rule are readily available to compute the measures across the
new set of traces. Thus, we can shuffle the evaluations on the traces rather than
the traces themselves. Next, we elaborate on these operations.

➃ Reshuffling. Figure 3 presents a graphical example of the reshuffling. At each
iteration, the traces are randomly rearranged between the variants’ logs, thereby
generating altered logs on which the rule is measured. Specifically, at each iter-
ation i: (i) The multi-set of all encoded traces in Lm

A ∪ Lm
B is shuffled into two

new logs Lm
Ai

and Lm
Bi

, such that |Lm
A | = |Lm

Ai
| and |Lm

B | = |Lm
Bi

| (permutation
step);(ii) For each r ∈ M∪ the measures m(r, Lm

Ai
) and m(r, Lm

Bi
) are computed;

(iii) Finally, for each rule r ∈ M∪ the difference of its measurements is compared
to the reference difference of the rule Ediff(r). The number of iterations is set as
a user parameter π: according to [8], a suitable value for π is 1000. We denote
with C : M∪ → N the function mapping a rule r ∈ M∪ to the number of itera-
tions in which its difference is greater than or equal to the reference difference,
i.e., C(r) =

∑π
i=1 �|m(r, Lm

Ai
) − m(r, Lm

Bi
)| ≥ Ediff(r)� where �·� is the indicator

function mapping to 1 or 0 if the argument holds true or false, respectively.

➄ Significance Test. At the end of the permutations step, the counter C(r)
tells us for each rule how frequently a difference greater or equal the reference one
is observed. The likelihood to observe the rules difference under the assumption
of the null hypothesis is the p-value of the test: p-value(r) = C(r)

π . The signifi-
cance level α of the test is the p-value threshold below which the null hypothesis
should be discarded. It is common to set α = 0.01 when the permutation test
consists of 1000 iterations [8]. A rule r ∈ M∪ has a statistically significant dif-
ference between the variants LA and LB if and only if p-value(r) ≤ α. Figure 3
illustrates an example of such a significance test where a difference of at least
Ediff(r) occurred for only 5 permutations out of the 1000 performed, e.g., in per-
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mutation i = 5. Therefore, p-value(r) = 0.005. As it is less than the significance
level of 0.01, it suggest that the difference is statistically significant.

In conclusion, the technique returns the set of rules that determine a statistically
significant difference between the variants.

About the Computational Cost. Algorithm 1 shows the pseudo-code of our app-
roach for the pre-processing and the permutation test phases. The overall com-
putational cost is linear in the input size. Let |MA|, |MB |, and |M∪| be the
number of rules in, respectively, MA, MB , and M∪, |LA| and |LB | the number
of traces in LA and LB , |t̂| the maximum length of a trace in LA ∪ LB , h the
maximum hierarchical level of a rule in M∪, and π the number of iterations
in the permutation test. Summing the costs of each step of Algorithm 1 (on
the right side of every line), the overall computation cost of the approach is:
O(|M∪| × |t̂| × (|LA| + |LB |)) + O(|M∪| × π × (|LA| + |LB |)).

The overall performance is driven by the cost of the evaluation of the rules
on the traces (the encoding phase) and by the permutation tests. We keep the
two addenda separated to highlight their contribution. Depending on whether |t̂|
is greater or less than π, the first or the second addendum prevails. We remark
that the cost of computing the measures in the pre-processing (Lines 4 and 5)
stems from the computational cost of the measurement framework [5], while the
cost of re-computing the measures during the permutations (Lines 16) subtracts
the trace evaluation time to that cost due to the encoding presented in Sect. 3.2.
For as far as the hierarchical simplification (Lines 10), a Declare rule from
the standard templates set may have at most h = 11 (the ChainSuccession
template).

3.4 Post-processing

Once the rules with a statistically significant difference between the variants
have been identified, we show them to the final user. All the relevant details are
reported, namely the rule r, its p-value, its original measurements in the variants
logs m(r, LA) and m(r, LB), and their absolute difference Ediff(r). Furthermore,
in order to enhance the clarity of the outcome, we perform the following addi-
tional steps: (i) providing a natural-language description of the output, and (ii)
sorting the results according to a priority criterion.

➅ Natural Language. We report the rules along with a natural language
description explaining their behaviour in a concise manner. Indeed, the com-
prehension of temporal logic formulae is out of the reach for a general audience,
and even the Declare rules taken by their own are not immediately grasped
by non-knowledgeable users [1]. For example, Response(ER Triage, LacticAcid)
is more readable than its LTLpf formulation, provided that the user has a prior
knowledge of Declare. To explain differences between variants, we thus pro-
vide a description as follows: “In variant A, it is 30% more likely than in variant
B that if ER Triage occurs, LacticAcid will occur afterwards”.
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➆ Sorting. We give higher priority to those rules whose measure differs the most
between variants. To ease the discoverability of prominent results, we sort the
rules in descending order according to their measurement difference between the
variants, Ediff(r), and, in the case of equal difference, the highest measurement
in LA or LB . For the sake of readability, the user can specify how many of the
ranked rules should be initially displayed by means of a dedicated parameter,
N .

3.5 Implementation and Remarks

We have implemented our approach, Declarative Rules Variant Analysis
(DRVA), as a Java command-line tool.1 Our tool returns two files: (i) a textual
file containing the top-N statistically significant differences between the input
logs reported in natural language, and (ii) one tabular file (CSV format) contain-
ing all the statistically-significant differences captured as declarative rules (and
in natural language) with the entire quantitative information from the analysis.
As input, it takes two event logs (LA and LB , in XES, MXML, or CSV formats),
two declarative specifications (MA and MB , in JSON or XML formats) and the
following list of user-defined parameters to tune the algorithm: (i) m, the mea-
sure to use for the comparison of the variants among those that are supported
by the measurement framework described in [5] (the default is Confidence, as
explained in Sect. 3.2); (ii) mmin, the minimum measure threshold that a rule
should exceed in at least one variant (0.00 by default); (iii) mdiff-min, the min-
imum difference threshold that a rule should exceed between the variants (0.01
by default); (iv) π, the number of iterations to perform during the permutation
test, set to 1000 by default as explained in Sect. 3.3; (v) α, the significance level,
namely the maximum p-value to deem a rule as statistically relevant to discrim-
inate the variant (0.01 by default); (vi) N , the number of top rules to display in
the textual output (see Sect. 3.4), set to 10 by default.

Our tool can be put in pipeline to a declarative discovery algorithm which
mines the declarative specifications out of the variants’ logs. In the experiment
presented in following Sect. 4, we pass the output of the MINERful discovery
algorithm [7] to DRVA.

4 Evaluation

Given that no previous work addressed the problem of variant analysis via declar-
ative rules [19], in this section, we provide a qualitative comparison with the
latest process variants analysis approach that discovers statistically-significant
differences [18], which already demonstrated its advantages [18] with respect to
other baselines [4,10]. Henceforth, we will refer to the approach of Taymouri
et al. [18] as MFVA (Mutual Fingerprints Variant Analysis). Furthermore, we
also consider the work of van Beest et al. [3] as a baseline for comparison

1 Available at: https://github.com/Oneiroe/Janus.

https://github.com/Oneiroe/Janus
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given that its output is in natural language statements – henceforth referred
to as PESVA (Prime Event Structure Variant Analysis). However, we note that
PESVA does not take into account the statistical significance of the detected
differences and it is not based on declarative rules either. Instead, PESVA out-
puts two type of statements: (i) frequency-based statements, which highlight
differences in branching probabilities of the process decision points; and (ii)
behaviour-based statements, which highlight differences in directly-follow, and
concurrent relations, as well as optional tasks.

Dataset and Setup. We reproduce the experimental setup proposed in [18].
The evaluation dataset consists of four publicly available event logs. Each of the
logs can be divided into two variants (based on process-instance attribute values).
The descriptive statistics characterizing the four logs are shown in Table 2. The
original logs (not partitioned by the variants) can be downloaded from the 4TU
Research Data Centre.2 The process variant logs can be downloaded from our
online repository together with the full set of results of this evaluation which,
due to space limits, we could not report in this section.3 In the following, we
focus our discussion on the most interesting results.

Table 2. Descriptive statistics of the evaluation dataset [18]

Log Traces Events Trace length

Name and DOI Variant Total Distinct Total Distinct Min Avg Max

BPIC13 Company = A2 553 25.5% 4,221 3 2 8 53

(https://doi.org/10.4121/uuid:

a7ce5c55-03a7-4583-b855-

98b86e1a2b07)

Company = C 4,417 13.8% 29,122 4 1 7 50

BPIC15 Municipality = 1 1,199 97.6% 36,705 146 2 33 62

(https://doi.org/10.4121/uuid:

915d2bfb-7e84-49ad-a286-

dc35f063a460)

Municipality = 2 831 99.6% 32,017 134 1 39 96

RTFMP Fine Amount ≥ 50 21,243 0.7% 91,499 11 2 4 20

(https://doi.org/10.4121/uuid:

270fd440-1057-4fb9-89a9-

b699b47990f5)

Fine Amount < 50 129,127 0.1% 469,971 11 2 4 11

SEPSIS Patient Age ≥ 70 678 85.7% 10,243 16 3 15 185

(https://doi.org/10.4121/uuid:

915d2bfb-7e84-49ad-a286-

dc35f063a460)

Patient Age ≤ 35 76 67.1% 701 12 3 9 52

In our evaluation, we give each pair of log variants as an input to DRVA,
MFVA, and PESVA. While DRVA and PESVA produce natural language state-
ments, MFVA returns graphs named mutual fingerprints.Since the different out-
puts do not allow for a straightforward comparison, we first analyse the results
of DRVA and MFVA with the goal to highlight the commonalities and differ-
ences in their output, then we compare our output with that of PESVA. We
2 https://data.4tu.nl/search?categories=13503.
3 https://github.com/Oneiroe/DeclarativeRulesVariantAnalysis-static.

https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://data.4tu.nl/search?categories=13503
https://github.com/Oneiroe/DeclarativeRulesVariantAnalysis-static
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(a) Age ≥ 70 (b) Age ≤ 35

Fig. 4. SEPSIS logs, MFVA output [18]

(a) BPIC15 (M1)
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Fig. 5. BPIC15 logs, MFVA output [18]

remark that the three tools provide alternative perspectives of the process vari-
ants differences. Therefore, they should not be seen as mutually exclusive tools,
but rather complementary.

After the qualitative comparison, we also conduct a performance comparison
of the three tools, reporting their execution times. All the experiments were run
on an Intel Core i7-8565U@1.80 GHz with 32 GB RAM equipped with Windows
10 Pro (64-bit), with a timeout of 3 h per variant analysis. The input parameters
we used for our DRVA are the default ones explained in Sect. 3.5. The declarative
process models are discovered through MINERful [7] with a Support threshold

Table 3. SEPSIS logs – DRVA output (our approach)

Statistically significant differences (Variant A: Age ≥ 70; Variant B : Age ≤ 35)

1 In Variant A, it is 37.4% more likely than in Variant B that Admission NC occurs in a process instance

2 In Variant A, it is 37.4% more likely than in Variant B that if ER Registration occurs, Admission NC will occur

afterwards without any other occurrence of ER Registration in between

3 In Variant A, it is 37.4% more likely than in Variant B that if ER Sepsis Triage occurs, also Admission NC occurs

4 In Variant A, it is 37.4% more likely than in Variant B that if ER Triage occurs, also Admission NC occurs

5 In Variant A, it is 33.9% more likely than in Variant B that IV Antibiotics occurs in a process instance

6 In Variant A, it is 33.9% more likely than in Variant B that if ER Registration occurs, also IV Antibiotics occurs

7 In Variant A, it is 33.9% more likely than in Variant B that if ER Sepsis Triage occurs, IV Antibiotics will occur

afterwards without any other occurrence of ER Sepsis Triage in between

8 In Variant A, it is 33.9% more likely than in Variant B that if ER Triage occurs, also IV Antibiotics occurs

9 In Variant A, it is 31.2% more likely than in Variant B that IV Liquid occurs in a process instance

10 In Variant A, it is 31.2% more likely than in Variant B that if ER Registration occurs, also IV Liquid occurs

11 In Variant A, it is 31.2% more likely than in Variant B that if ER Sepsis Triage occurs, also IV Liquid occurs

12 In Variant A, it is 31.2% more likely than in Variant B that if ER Triage occurs, also IV Liquid occurs
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Table 4. BPIC15 logs – DRVA output (our approach). The list reports the first 10
top-ranked behavioural differences.

Statistically significant differences (Variant A: Municipality = 1;
Variant B : Municipality = 2)

1 It happens only in Variant A that 01 HOOFD 456 may occur at most
once in a process instance

2 It happens only in Variant A that 01 HOOFD 492 1 may occur at
most once in a process instance

3 It happens only in Variant A that 01 HOOFD 492 2 may occur at
most once in a process instance

4 It happens only in Variant A that if 01 HOOFD 456 occurs, also
01 HOOFD 010 occurs

5 It happens only in Variant A that if 01 HOOFD 456 occurs, also
01 HOOFD 015 occurs

6 It happens only in in Variant B that if 16 LGSD 010 occurs, also
01 HOOFD 490 2 occurs

7 It happens only in Variant B that if 16 LGSD 010 occurs, also
01 HOOFD 495 occurs

8 It happens only in in Variant B that if 16 LGSD 010 occurs, also
02 DRZ 010 occurs

9 It happens only in in Variant B that if 16 LGSD 010 occurs, also
04 BPT 005 occurs

10 It happens only in in Variant B that if 16 LGSD 010 occurs, also
09 AH I 010 occurs

of 0.5 and a Confidence threshold of 0.0, so as to keep the specifications loose
enough to capture rare behaviour too. Markedly, the execution times reported
for DRVA include the discovery times.

Results and Discussion. Figure 4 shows the output of MFVA given the vari-
ants of the SEPSIS log as an input. In the figure, dashed arcs and red arcs
capture a statistically significant difference. The former evidence a change in the
processing-time between the traces of the two variants, while the latter capture
a difference in frequency (annotated on the arcs). Table 3 shows the output of
DRVA given the same logs. We can notice that the difference ranked first in the
table (Participation(Admission NC) is more likely to occur if the age of the
treated patient is over 70) makes explicit a difference that could not be directly
inferred by visually comparing Fig. 4(a) with Fig. 4(b), although the alternative
paths may suggest a behavioural change. The same holds for the fifth and ninth
evidence. We observe that the other statements are related to the three we men-
tioned (also highlighted in Table 3). A further simplification step to enhance the
ranking according to the discriminative power of the statements is an intriguing
problem that paves the path for future endeavours building upon this work.



Process Variants Through Declarative Rules 89

When the behaviour becomes less rigid and more flexible, the variants tend to
have a higher percentage of distinct traces, like in the BPIC15 logs. In such cases,
the output of MFVA becomes too simplistic (see Fig. 5(a)) or so complex to the
extent of being even barely interpretable (see Fig. 5(b)). This result is, in general,
typical of approaches based on graphs depicting processes imperatively [4,10,
18]. In fact, the more flexible the behaviour recorded in the log, the larger the
output graph (unless filtering is applied). On the other hand, our approach shows
the differences as a list of declarative statements, focusing on the differences
rather than on the overall picture (see Table 3 and 4). This is a benefit shared
with PESVA, which also outputs natural language statements. However, PESVA
suffers from scalability issues (PESVA timed out after running for three hours
on BPIC15) and the differences identified by PESVA are limited in scope, which
may hamper explanatory power and understandability. On the SEPSIS variants,
e.g., PESVA indicates that “Task IV Liquid(4) can be skipped in model 2, whereas
in model 1 it is always executed”. Such a natural language formulation may be
difficult to be interpreted, at times, in fact, task IV Liquid(4) does not refer to any
execution of IV Liquid, but to the IV Liquid event that occurs as the fourth one.
Our statements, instead, are broader in scope because they are not extrapolated
by prime event structures but by declarative rules, therefore they refer to rules
exerted on the whole process run rather than on the single occurrence of events.
Also, we remind that the differences captured by PESVA are not guaranteed to
be statistically significant.

In terms of execution time, DRVA outperforms MFVA and PESVA when
analysing the BPIC13, BPIC15, and SEPSIS logs: considering the best exe-
cution times between those of MFVA and PESVA, the runs required 81.8 s,
4901.3 s, and 5.1 s, respectively. DRVA required instead 4.9 s, 326.7 s, and 4.6 s,
respectively. For the analysis of the RTFMP log, instead, our technique required
38.1 s, thus outperforming MFVA (1152.9 s) but not PESVA (21.7 s). Neverthe-
less, we underline that our approach appears to be more scalable than the MFVA
and PESVA: to process the BPIC15 log, indeed, the former took more than an
hour and a half, whereas the latter timed out at three hours.

5 Conclusion

In this paper, we proposed a novel method to perform variant analysis and dis-
cover statistically-significant differences in the form of declarative rules expressed
in natural language. We compared our method with state-of-the-art methods
noticing that DRVA provides a different level of expressiveness, easier output
interpretation, and faster execution time. Future research endeavours include
the extension of our method to encompass the full spectrum of LTLpf for-
mulae [5] and hybrid models [16] as the rule language in place of standard
Declare, as well as multi-perspective specifications beyond the sole control-flow
structure [15]. Also, we aim at further simplifying the output via redundancy-
reduction techniques such as those in [6], to be adapted in order to improve the
distinction of variants rather than reducing the rules of a single specifications.
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Other interesting avenues are the identification of statistically significant perfor-
mance rules as opposed to behavioural rules, and the enhancement of the statis-
tical soundness of the results addressing the multiple testing problem through
p-value correction techniques [9].

Acknowledgments. The work of C. Di Ciccio was partially funded by the Italian
MIUR under grant “Dipartimenti di eccellenza 2018–2022” of the Department of Com-
puter Science at Sapienza and by the Sapienza research project “SPECTRA”.
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3. van Beest, N.R., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M.: Log delta analysis:
interpretable differencing of business process event logs. In: BPM, pp. 386–405
(2016)

4. Bolt, A., de Leoni, M., van der Aalst, W.M.: Process variant comparison: using
event logs to detect differences in behavior and business rules. Inf. Syst. 74, 53–66
(2018)

5. Cecconi, A., De Giacomo, G., Di Ciccio, C., Maggi, F.M., Mendling, J.: A temporal
logic-based measurement framework for process mining. In: ICPM, pp. 113–120
(2020)

6. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies
and redundancies in declarative process models. Inf. Syst. 64, 425–446 (2017)

7. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful
processes. ACM Trans. Manag. Inf. Syst. 5(4), 24:1–24:37 (2015)

8. Edgington, E.S.: Approximate randomization tests. J. Psychol. 72(2), 143–149
(1969)
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Abstract. The allocation of resources in a business process determines
the trade-off between cycle time and resource cost. A higher resource uti-
lization leads to lower cost and higher cycle time, while a lower resource
utilization leads to higher cost and lower waiting time. In this setting, this
paper presents a multi-objective optimization approach to compute a set
of Pareto-optimal resource allocations for a given process concerning cost
and cycle time. The approach heuristically searches through the space of
possible resource allocations using a simulation model to evaluate each
allocation. Given the high number of possible allocations, it is impera-
tive to prune the search space. Accordingly, the approach incorporates
a method that selectively perturbs a resource utilization to derive new
candidates that are likely to Pareto-dominate the already explored ones.
The perturbation method relies on two indicators: resource utilization
and resource impact, the latter being the contribution of a resource to
the cost or cycle time of the process. Additionally, the approach incorpo-
rates a ranking method to accelerate convergence by guiding the search
towards the resource allocations closer to the current Pareto front. The
perturbation and ranking methods are embedded into two search meta-
heuristics, namely hill-climbing and tabu-search. Experiments show that
the proposed approach explores fewer resource allocations to compute
Pareto fronts comparable to those produced by a well-known genetic
algorithm for multi-objective optimization, namely NSGA-II.

Keywords: Business process optimization · Resource allocation ·
Multi-objective optimization · Process simulation

1 Introduction

A business process brings together several activities performed by participants
(a.k.a. resources) that are typically divided into groups (a.k.a. resource pools)
according to their areas of responsibility. Each resource pool has a capacity,

c© The Author(s) 2021
A. Polyvyanyy et al. (Eds.): BPM Forum 2021, LNBIP 427, pp. 92–108, 2021.
https://doi.org/10.1007/978-3-030-85440-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85440-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-85440-9_6


Silhouetting the Cost-Time Front: Multi-objective Resource Optimization 93

determined by the number of resources in the pool. For example, in a loan
application handling process, there may be a resource pool grouping multiple
clerks responsible for all activities related to collecting and validating data, a
Credit Officer pool responsible for preparing initial loan decisions, and a Senior
Credit Officer pool for validating these decisions and handling exceptional cases.

The problem of resource allocation is that of determining how much capacity
(i.e., how many resources) to allocate to each resource pool so as to minimize or
maximize one or more performance measures. In this respect, for a given work-
load, the more there are resources in a pool, the less busy these resources are (low
resource utilization). Conversely, the less there are resources in a pool, the bus-
ier the resources are (high resource utilization). Higher resource utilization leads
to lower cost per instance (as resources are used to their full extent) and high
waiting times (due to resource contention). Conversely, lower resource utiliza-
tion leads to higher cost per instance and to lower waiting times [10]. Managers
need to balance these two ends of the spectrum, aiming for a resource allocation
that minimizes both the costs and the waiting times. Typically, no single solu-
tion exists that minimizes time and cost simultaneously. Instead, there is a set
of (incomparable) optimal solutions (a.k.a. Pareto front) so that no objective,
e.g., time and cost, can be improved without scarifying any other.

This paper presents an approach to compute a set of Pareto-optimal resource
allocations for a business process. The approach iteratively explores the space
of possible resource allocations and uses the simulation model to assess the cost
and cycle time of each explored allocation.1 The search space is traversed using
hill-climbing and tabu-search meta-heuristics. In each iteration, we estimate the
resource utilization and the overall resource performance (i.e., their impact on
the cost-time space), and we use these indicators to guide a perturbation method
that selects a subset of neighbors that are likely to Pareto-dominate solutions
in the current Pareto front, instead of exploring the entire neighborhood of
each allocation. The search strategy employs a ranking method to prioritize
new candidate allocations. Additionally, to cater for the fact that the output
of a simulation model is subject to stochastic variations, we propose a notion
of Pareto-dominance based on the median absolute deviation of the simulation
outputs. These mechanisms lead to two enhanced variants of hill-climbing plus
an enhanced variant of tabu-search. The paper reports an experimental evalua-
tion to assess the convergence, spread, and distribution of the discovered Pareto
fronts and the number of explored resource allocations, relative to a well-known
genetic algorithm for multi-objective optimization (NSGA-II) [8].

The rest of the paper is structured as follows. Section 2 discusses related
works. Section 3 introduces key concepts and meta-heuristics for multi-objective
optimization and concepts related to process simulation. Section 4 describes
the perturbation and ranking methods and the enhanced hill-climbing and

1 In the experiments, we use simulation models discovered from execution data, but the
approach can take as input a manually designed simulation model or any stochastic
model capable of estimating costs and cycle times for different resource allocations.
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tabu-search variants. Then, Sect. 5 discusses the implementation and evaluation,
while Sect. 6 concludes the paper.

2 Related Work

Several previous studies have addressed the problem of resource allocation in
business processes. However, the bulk of these studies addressed resource allo-
cation as a single-objective optimization problem, i.e., either by optimizing one
performance measure or combining several into a linear function [13,16,19,23].

In [19], the authors proposed an evolutionary algorithm for finding the opti-
mal resource allocation of a business process. The framework’s input is a Colored
Petri Net, including all the parameters necessary for simulation, such as arrival
rate, processing times for each task, and branching probabilities for each decision
point. The paper optimizes the resource allocation regarding cycle time and cost,
combined into a single performance measure through a linear function. Similar
approaches using genetic algorithms and simulation models on single objective-
problems were presented in [9,14]. In the present paper, instead of combining
the time and the cost, we compute an entire Pareto front, which allows the user
to explore the available trade-offs between cycle time and resource cost.

The work presented in [16] addresses the optimization problem as an explo-
ration of the space of possible resource allocations. The approach considers the
resource utilization to define three strategies to discover the optimal resource
allocation while performing a reduced search of the solution candidates. The
authors addressed the resource allocation as a single-objective optimization
problem, i.e., minimizing the number of resources constrained by a specified
maximum waiting time. This paper adopts a different approach that considers
resource utilization in a multi-objective optimization setting to discover not a
single optimal but a set of optimal solutions.

In [11], the authors analyze the relationship between resource allocation and
various performance measures, including time. The authors use a grid-search
approach, i.e., an exhaustive exploration of all possible resource allocations given
a minimum and a maximum number of resources per pool. This approach can
be applied to explore the resource allocation space when the number of pools is
small. However, it does not scale up to larger search spaces.

The problem of design-time resource allocation tackled in the present paper is
related to the problem of runtime scheduling and runtime assignment of resources
to work items in a business process. The latter problems have been tackled
in various previous studies. For example, [18] and [22] consider the problem
of deciding how to schedule the work items generated by each execution of a
business process, taking into account that resources have availability constraints
(i.e., they are available at some times but not at others). Meanwhile, [12] tackles
the problem of deciding which specific resource should be assigned to a given
work item, given the characteristics of each resource. The contribution of the
present paper and those of the above papers are complementary. After selecting
a given resource allocation using the techniques proposed in this paper, it is
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perfectly possible to optimize the runtime scheduling and assignment of resources
to work items using the techniques developed in the above papers.

The problem of resource allocation has also been studied outside the field of
business process optimization. For example, in [6], the authors present an algo-
rithm to discover Pareto fronts relying on ant colony optimization, assessing sev-
eral performance measures for a given resource allocation. From this latter study,
we share the idea of formulating the resource allocation as a multi-objective
problem but adapted to the meta-heuristics hill-climbing and tabu-search.

3 Overview of Multi-objective Optimization and Business
Process Simulation

3.1 Pareto Fronts and Meta-heuristic Optimization Algorithms

In an n-dimensional space, a solution B is Pareto dominated by another solution
A, if A is better than B for at least one objective, and A is at least as good as
B for the remaining objectives [2], e.g., B = (2, 5, 10) and C = (3, 8, 12) are
Pareto dominated by A = (1, 5, 10), under minimization constraints. The set
of solutions that are not dominated by any other are called Pareto optimal.
The set of non-dominated points are called the Pareto set, and the evaluation
of the objective functions on those points constitutes the Pareto front [2]. For
example, in the two-dimensional space cost-time associated with the execution of
a business process, the Pareto set contains the resource pools whose respective
cost-space evaluations constitute a Pareto front, i.e., the pairs cost-time are
Pareto-optimal. However, the problem of resource allocation is a well-known
NP-complete problem. Thus, as no efficient solution exists (i.e., exploring the
entire solution space is not possible in practical scenarios), some meta-heuristic
algorithms can be used to approximate the Pareto fronts.

Among many other classifications, existing meta-heuristic optimization algo-
rithms can be broadly classified into single-solution-based and population-based.
Single-solution algorithms keep one solution and search for better solutions at
each step through a perturbation function. Population-based algorithms keep a
population of solutions and build a new population at each step by perturb-
ing and combining solutions in the existing population. Indeed, single-solution
approaches are more efficient (i.e., they explore a lower number of solutions), but
population-based techniques lead to more optimal solutions at the cost of explor-
ing a higher number of solution candidates [4]. This paper focuses on enhancing
two of the most well-known single-solution-based meta-heuristics, named hill-
climbing and tabu-search. Besides, we use one population-based approach, the
genetic algorithm NSGA-II, as a baseline in our experiments.

Hill-climbing is an optimization technique that performs a local search around
a given point. At each iteration, the algorithm selects the best possible point
to move in the current point neighborhood. Therefore, the algorithm improves
the current solution on each iteration unless the entire neighborhood does not
contain better solutions. Classic applications of this algorithm assume a single
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objective [4] (e.g., time, cost, or a linear combination of both). However, in [20],
the authors describe a modification of hill-climbing for multi-objective optimiza-
tion (i.e., to compute a Pareto front). To that end, not a single solution but
a Pareto front is stored. Thus, the new solution candidates are generated by
taking each point in the current front and generating its neighborhood. The
greedy nature of hill-climbing allows it to converge fast, but it may stop at a
local optimum.

The tabu-search algorithm is an extension of hill-climbing that avoids the
limitation of getting stuck in a local optimum. Unlike hill-climbing, tabu-search
stores the current best point, but it also accepts inferior solutions if no improve-
ment is found from the current best solution’s neighborhood. Thus, it accepts
Pareto-dominated solutions temporarily to visit new parts of the search space,
aiming to converge to the global optimum in subsequent iterations. The imple-
mentation includes a so-called tabu list, so solutions already visited or restricted
by any other rules are marked as tabu, thus not revisited (i.e., at least in a short-
term period) [4]. Although classical variants of the tabu-search algorithm assume
a single-objective, like hill-climbing, it can be extended to a multi-objective space
by considering a Pareto front instead of a single solution [20].

NSGA-II, the acronym of Non-dominated Sorting Genetic Algorithm, is a
well-known genetic algorithm designed explicitly for multi-objective optimiza-
tion [8]. The algorithm’s idea is to keep a population of points, some of which
are in the Pareto front, and others are not but well placed along with one of
the dimensions. At each iteration, the algorithm generates off-springs by sam-
pling from the neighborhood of the points in the current population. The best
new solutions are added to the population, and a subset of the existing solu-
tions (which are not Pareto optimal) are removed. To determine which solutions
to add or remove, the algorithm measures how far the solutions in the current
population are separated from each other.

3.2 Resource Pools, Event Logs and Business Process Simulation

A resource allocation is a sequence of resource pools R = {r1, ..., rn}, each
responsible for a subset of activities in a process. The functions rCount : R →
N+ and rCost : R → R+ retrieve, respectively, the number of resources and
cost (per time unit) of using one resource in a pool ri.

An event is a tuple e =< λ, r, γs, γc >, where λ is the label of one activity in
a business process (i.e., e is an instance of the activity λ), r ∈ R is the resource
who performed λ, and γs, γc are, respectively, the time-stamps corresponding to
the beginning and end of the event. A trace (a.k.a. process case) is a non-empty
sequence of events t =< e1, e2, ..., en >, and an event log eLog =< t1, t2, ..., tm >
is a non-empty sequence of traces corresponding to the execution of a process.

A simulation model consists of a process model M , e.g., written in the Busi-
ness Process Model and Notation (BPMN) notation, a set of resource pools R,
and a function activityResource : A → R that maps each activity a ∈ A in the
process model to a resource r ∈ R. Simulation models also include the mean
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inter-arrival time of cases and probability distributions for arrival cases, activ-
ities’ processing times, and gateways’ branching [5]. Simulation models can be
executed using simulation engines like BIMP [1], which produces a set of possi-
ble execution traces used to perform quantitative analysis of business processes.
Henceforth, we will use the notation rpLog referring to event logs obtained from
real executions of business process and the notation smLog to point out simu-
lated event logs. In our approach, we consider the following functions computed
from an event log eLog:

– eventDuration(e =< λ, r, γs, γc >, eLog) represents the time-span, γc − γs,
between the beginning and end of event e, (a.k.a. processing time), plus the
time-span from the moment activity λ is enabled until the starting of the
corresponding event (a.k.a. waiting time),

– traceDuration(t, eLog) and procDuration(eLog) retrieve the time-span
between the beginning and end of trace t and the entire process, respectively,

– cT ime(R, eLog), i.e., cycle time, computes the average traceDuration of all
the traces t ∈ eLog, involving the resource pools in R,

– aCost(R, eLog) = procDuration(eLog) ∗ ∑
r∈R[rCost(r) ∗ rCount(r)] corre-

sponds to the cumulative costs of all the resources during the process execu-
tion. These costs consider not only the resources which performed each event
e ∈ eLog but all the resources allocated to the resource pools, which must be
available at any time of the execution,

– resourceUtilization(r, eLog) divides the time in which resources in pool r
were busy by procDuration(eLog), i.e., the percentage of time in which the
resources are busy.

4 Computing the Pareto-Optimal Resource Allocations

4.1 Initial Resource Allocation and Process Simulation

To discover the simulation model from an event log rpLog provided as input, we
use the tool named Simod [5]. It produces a process model in BPMN extended
with the probability distributions of each element/branch. Besides, it provides
the initial resource allocation R0 and the mapping function activityResource.
The incoming iterations produce only new resource allocations R1, R2, ..., Rn,
i.e., the control-flow of the BPMN model, and the mapping activityResource
remain unaltered. Henceforth, we will describe the steps of our approach based
on the corresponding resource allocation (a.k.a. solution candidate) Ri.

For each resource allocation Ri, the evaluation of the objective functions
cT ime and aCost requires to simulate the process, i.e., to assess the impact of the
current allocation on the execution. Due to the simulations’ stochastic nature,
running a single simulation per allocation may lead to inaccurate evaluations.
Thus, we run a number smCount ≥10 of simulations, keeping the results from
the simulated log smLog with median values of the function cT ime. Also, we
calculate the absolute median deviation (MAD) for both objective functions, i.e.,
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MAD = median({|FM − f1|, ..., |FM − fn|}), where FM = median({f1, ..., fn})
with fi = f(R, smLogi),∀1 ≤ i ≤ n = smCount, and f ∈ {aCost, cT ime}.

The MAD serves to introduce a more strict Pareto dominance relation, con-
sidering the simulation results’ variability. In the classical Pareto dominance
relation, a resource allocation Ri dominates Rj (Ri < Rj) if Ri has a lower cycle
time and cost than Rj , i.e., f(Ri) ≤ f(Rj), f ∈ {cT ime, aCost}. In a more strict
dominance relation, Ri strongly dominates Rj (Ri << Rj) if f(Ri) ≤ f(Rj)
and |f(Ri) − f(Rj)| > min(MAD(f(Ri)),MAD(f(Rj))), f ∈ {aCost, cT ime}.
Thus, the cycle time and cost of Ri should be lower than Rj by a difference of at
least the minimum MAD between the two objective functions. In other words,
although Ri may dominate Rj , they are still close to discard Rj as a Pareto
optimal solution due to the simulations’ variance.

4.2 Perturbation Method: Generating Solution Candidates

Like any hill-climbing and tabu-search approaches, our proposal constructs the
Pareto front incrementally. At each iteration, instead of exploring the entire
neighborhood of the Pareto front like in traditional approaches2, we heuristically
select which resources might have a higher impact on the process execution.
Specifically, we introduce a perturbation that relies on two criteria to decide
which resource pool to improve, i.e., resource utilization and resource impact.

We hypothesize that a high resource utilization may increase the cycle times,
i.e., the resources are too busy, which might harm their overall performance.
Thus, increasing the number of resources might lead to reducing the overall cycle
time. Conversely, low resource utilization may affect the execution costs, i.e.,
there are some lazy resources with low efficiency, which might not be necessary.
Thus, decreasing the number of resources may lead to a decrease in the execution
costs without increasing the cycle times. Therefore, at each iteration, we select
the pools with higher/lower resource utilization and accordingly add, remove or
exchange resources to/from/between them.

Another issue to solve on the perturbation based on the resource utilization
is the number of resources to add or remove. Adding/removing one resource
leads to a shorter evolution step. Thus, it may increase the chances of finding
a new allocation improving the current one, but it may require a high number
of iterations to converge to the optimal. Conversely, adding/removing a higher
number of resources to reach some desire utilization ratio may converge faster
to the optimal allocation. Specifically, we use inverse proportion to estimate the
amount of resources to add or remove by the formula:

amount = (resourceUtilization(r, smLog) ∗ rCount(r)/dRu) − rCount(r) + 1

where dRu is a desired value for the resource utilization. In this paper, the pertur-
bation function adds/removes the corresponding amount to/from the resource
2 The neighborhood of a Pareto front might consist of 2mn solutions (i.e., straightfor-

wardly adding/removing one to/from each pool), where m and n are the size of the
Pareto front and the number of resource pools, respectively. The latest makes the
searching space too wide, especially when the number of resources is high.
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Algorithm 1. Construction of the Pareto front
1: function AproximateParetoFront(rpLog)
2: (SM , R0) ← DiscoverSModel(rpLog)
3: smLog0 ← SimulateProcess(SM , R0)
4: PFront ← {< R0, aCost(R0, smLog0), cT ime(R0, smLog0) >}
5: PriorityQ ← ∅
6: Enqueue(PriorityQ, R0, dist(R0, PFront))
7: while Q not empty do
8: if StoppingCriteriaMet then
9: return PFront

10: SCandidates ← FindCandidates(Pop(PriorityQ))
11: for each Ri ∈ SCandidates do
12: smLogi ← SimulateProcess(SM , Ri)
13: if isNonDominated(Ri, smLogi, PFront) then
14: UpdateParetoFront(PFront, Ri, smLogi)
15: Enqueue(PriorityQ, Ri, dist(Ri, PFront))
16: else if IsTabuSearch then
17: Enqueue(PriorityQ, Ri, dist(Ri, PFront))

18: return PFront

pools with higher/lower utilization to reach an ideal utilization, e.g., between
0.7–0.8 as Gartner analysts suggest, or any values set by the process analysts
goals. The perturbation method also exchanges the minimum amount between
the pools with higher and lower utilization. However, although the calculated
amount introduces a higher step accelerating the convergence, it may also skip
solution paths in the middle. Thus, the perturbation method uses both values
unitary and the calculated amount to generate the next solution candidates.

To tackle other issues, i.e., not related to resource utilization, which may be
harming the process performance, we use a heuristic considering the resources’
impact. To that end, for each resource pool r, we calculate the aggregated costs
and cycle times of the activities assigned to r, i.e., from the mapping function
activityResource. Thus, the perturbation function will update the resource pools
not improved from the previous heuristic regarding utilization, whose aggregated
times and costs are above the average. Specifically, it increases the number of
resources on pools showing higher cycle times since adding more resources may
reduce the workload, thus decreasing the waiting times. Conversely, it reduces the
number of resources on pools with higher costs since fewer resources performing
the same activities more efficiently would reduce costs.

4.3 Ranking Method: Hill-Climbing and Tabu-Search Variants

Algorithm 1 sketches our proposal, which takes an event log as input. The steps
in lines 2–3 discover the simulation model, the initial resource allocation R0,
and runs the first simulation, as described in Sect. 4.1. The initial Pareto front
Front contains the initial resource allocation discovered from the event log and
the values aCost and cT ime retrieved from the initial simulation.

A key difference of our approach with traditional variants of hill-climbing and
tabu-search consists of sorting the solution candidates (i.e., resource allocations)
based on their Euclidean distance to a Pareto front PFront:

dist(Ri, PFront) = min
p∈PFront

‖f(Ri) − f(p)‖2 : f ∈ {aCost, cT ime}.
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Thus, the algorithm stores the solution candidates in a priority queue, which is
initialized in lines 5–6.

At each iteration, the algorithm does not explore the neighborhood of each
allocation in the current Pareto front. Instead, it uses the heuristics described in
Sect. 4.2 to alter the solution candidate with the shortest Euclidean distance from
the Pareto front (line 10). Next, it simulates the process for each allocation Ri ∈
SCandidates retrieved by the perturbation method. Then, lines 11–17 verify,
after evaluating the objective functions aCost and cT ime, if the allocation Ri is
dominated (or not) by any allocation in the current Pareto front. Accordingly, a
solution candidate is added to the Pareto front and the priority queue depending
on the meta-heuristic search strategy as follows:

– HC-STRICT, or hill-climbing strict, considers the classical Pareto domi-
nance relation. The resource allocation Ri is added to the Pareto front if it
is Pareto-optimal, i.e., if the pair cost-time from Ri is not dominated by any
of the pairs cost-time in PFront. Similarly, Ri is only added to the priority
queue if it is Pareto-optimal. Also, each resource allocation dominated by Ri

is discarded. Note that after updating PFront, the distance dist to PFront
must be updated for each element in the priority queue.

– HC-FLEX, or hill-climbing flexible, considers a more strict Pareto domi-
nance relation defined by the MAD, which produces a larger Pareto front.
Thus, we relax the Pareto front definition to include classically dominated
elements, i.e., those separated by at most the median absolute deviation for
both objective functions aCost and cT ime. The steps to update the PFront
and the priority queue are the same as for HC − STRICT , but constructing
a relaxed Pareto front.

– TS-STRICT, or tabu-search strict, uses the classical Pareto dominance rela-
tion. However, unlike hill-climbing, tabu-search also adds to the priority queue
all the discarded, i.e., not Pareto-optimal resource allocations. So, when no
Pareto-optimal allocation exists in the queue, the tabu-search will generate
the subsequent solution candidates from the non-optimal resource allocation
with the shortest distance to the current Pareto front.

The algorithm stops (lines 7–8) if any of the following conditions hold: (1)
the queue is empty, (2) after exploring a specified maximum number of alloca-
tions, i.e., those generated by the perturbation function, (3) after producing a
maximum number of consecutive Pareto non-optimal allocations. Then, PFront
is returned as approximation of the optimal resource allocation.

5 Evaluation

In multi-objective optimization, measuring the quality of a Pareto front approx-
imation retrieved by an algorithm is not trivial. According to [2], a good approx-
imation must minimize the distance to the actual Pareto front (a.k.a. conver-
gence). Besides, a good Pareto front should consist of a highly diversified set
of points, which are also well distributed across the front (a.k.a. spread and
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distribution). Accordingly, we designed an evaluation to answer the following
question: Q1 How good are the Pareto fronts discovered by our proposal with
respect to convergence, spread, and distribution? Secondly, as one of the goals of
this paper is reducing the searching space through heuristics, our evaluation also
answers the question: Q2 How many solutions (objective function evaluations)
do the algorithms need to explore to retrieve the Pareto front?

5.1 Implementation and Experimental Setup

To assess our proposal, we implemented the full approach presented in this paper
in Python 3.8. Also, we adapted the resource allocation problem to the tool
Pymoo [3], which implements the genetic algorithm NSGA-II. The source code
and the instructions to execute the three variants, i.e., HC-STRICT, HC-FLEX,
and TS-STRICT, and the NSGA-II algorithm, can be accessed from https://
github.com/orlenyslp/bpm-r-opt.

In our experiments, we run the four algorithms HC-STRICT, HC-FLEX, TS-
STRICT, and NSGA-II, taking the NSGA-II as a baseline to be compared with
the results obtained by our approach. In the case of our approach, we set the
maximum number of solutions to explore (i.e., function evaluations) to 10 000
and at most 800 (8%) consecutive Pareto non-optimal allocations. As for the
NSGA-II, we configured the input with the default values recommended in [3],
with a population size of 40 and a maximum of 250 generations (i.e., at most
10 000 function evaluations). For all the algorithms, we run 15 simulations per
allocation (using the BIMP engine [1]) to calculate the values of aCost and
cT ime. Also, to avoid giving any unfair advantages to an algorithm due to the
simulations’ stochastic nature, we memorized in files the simulation results. So,
we can assert that if two algorithms explore the same resource allocation, they
will get the same values of aCost and cT ime. Additionally, the memorization
reduces the number of simulations, thus the execution times, when multiple
algorithms explore common areas in the solution space.

As a starting point, we used simulation models derived from event logs
using the Simod simulation discovery tool [5]. We derived simulation models
from one synthetic event log and seven real-life ones. The synthetic log (namely
purchasing-example) is part of the academic material of the Fluxicon Disco tool3.
The first real-life log (production) is a log of a manufacturing process4. The sec-
ond one (consulta-data-mining) is an anonymized log of an academic recognition
process executed at a Colombian University, available in the Simod tool distri-
bution. The third real-life log is a subset of the BPIC2012 log5 – a log of a loan
application process from a Dutch financial institution. We focused on the sub-
set of this log consisting of activities that have both start and end timestamps.
Similarly, we used the equivalent subset of the BPIC20176, which is an updated

3 https://fluxicon.com/academic/material/.
4 https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399.
5 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
6 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.

https://github.com/orlenyslp/bpm-r-opt
https://github.com/orlenyslp/bpm-r-opt
https://fluxicon.com/academic/material/
https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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version of the BPIC2012 log (extracted in 2017 instead of 2012). We extracted
the subsets of the BPIC2012 and BPIC2017 logs by following the recommenda-
tions provided by the winning teams of the BPIC 2017 challenge.7

Table 1. Characteristics of the business processes used in the experimentation.

Purchasing Consulta

Production Example Data-mining Insurance Call-centre bpi-12 bpi-17-filt bpi-17

Real traces 225 608 954 1182 3885 8616 8941 30 276

Simulation traces 550 1500 4000 4000 8000 18 000 18 000 24 000

Activities 23 23 18 11 8 8 9 9

Number of pools 7 6 4 2 3 4 2 3

Total resources 54 47 337 125 66 68 116 141

Simulation time 0.48 0.50 0.49 0.52 0.75 0.67 0.69 0.88

Table 1 gives descriptive statistics of the processes used in the experiments,
such as the number of traces in the event log, the number of activities, resource
pools, and the sum of the resources across the pools discovered by Simod. The
row simulation time shows the average execution times (in seconds) obtained by
running one simulation of the corresponding process using the BIMP engine. The
number of traces produced per simulation (number of simulated traces) was set
to at least two times the number of real traces to minimize stochastic variations.

Since data about salaries/costs of the resources involved in the process exe-
cution is missing in the event logs, we assigned each resource with the unitary
cost for the experiments. Thus, the total resource pool cost is determined by the
number of resources multiplied by the duration of the process execution, i.e.,
from the beginning of the first trace to the end of the last one.

5.2 Metrics and Experimental Results

As the actual Pareto front is unknown, we follow the approach presented in [7]
which creates a reference Pareto front PRef to compare the results retrieved
by many solvers. Specifically, PRef is the set containing the non-dominated
(i.e., Pareto-optimal) solutions from the entire search space explored by all the
runs of the four algorithms discussed in this paper. Henceforth, we will call
PRef the reference Pareto front (joint from many algorithms) and PAprox the
approximated (by one algorithm) Pareto front. Then, to answer the experimental
question Q1, we used four metrics:

– Hyperarea [21] (HA) measures convergence and distribution. So far, it is
considered the most relevant and widely used measure to compare algorithms
in the evolutionary community [2]. Hyperarea is the area in the objective
space dominated by a Pareto front delimited by a point (c, t) ∈ R

2, which we
set as the maximum cost and time among all the solutions explored. If PRef

7 https://www.win.tue.nl/bpi/doku.php?id=2017:challenge.

https://www.win.tue.nl/bpi/doku.php?id=2017:challenge
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Table 2. Results of the performance metrics.

Insurance bpi-17-filt bpi-17 Call-centre bpi-12 Consulta Purchasing Production

H
y
p
e
ra

re
a HC-Strict 0.999715 0.999993 0.999388 0.979741 0.999999 0.939581 0.999966 0.984928

HC-Flex 0.999878 0.999993 0.999702 0.979741 1.0 0.970996 0.999993 0.999878

TS-Strict 0.999997 1.0 0.999989 0.999997 1.0 0.95116 0.999999 0.999878

NSGA-II 1.0 1.0 0.999776 0.975051 1.0 0.999964 0.999995 0.991984

H
a
u
sd

o
rff HC-Strict 792 368.4 21 283.4 767 578.4 333 931.8 67 756.9 114 721.2 12 093.5 60 122.4

HC-Flex 747 515.1 17 290.5 24 078.9 333 931.8 88 807.0 188 411.5 10 503.3 6102.8

TS-Strict 1 307 871.7 0.0 23 275.6 25 645.8 55 421.4 209 925.0 12 411.9 6102.8

NSGA-II 0.0 9033.2 42 653.2 426 892.2 105 021.1 11 404.6 93 709.6 775 721.6

D
e
lt
a
(Δ

) HC-Strict 1.247804 1.311345 1.314798 1.075864 1.128014 1.200819 1.471674 0.918048

HC-Flex 1.119086 1.27965 0.856219 1.075864 1.181983 0.887497 1.454444 0.585820

TS-Strict 1.117958 1.206904 0.876539 1.069856 1.197563 0.905387 1.496234 0.585820

NSGA-II 1.458937 1.244832 0.753908 1.166828 0.995971 1.223205 1.326563 1.102538

P
u
ri
ty

HC-Strict 0.888889 0.90625 0.833333 0.333333 0.692308 0.777778 0.695652 0.466667

HC-Flex 0.615385 0.911765 0.842105 0.333333 0.75 1.0 0.666667 0.923077

TS-Strict 1.0 1.0 1.0 0.973684 0.666667 1.0 0.954545 0.923077

NSGA-II 1.0 1.0 1.0 0.0625 1.0 1.0 0.848485 0.722222

is available, the hyperarea ratio is a real number, between 0 and 1, given by
HA(PAprox)/HA(PRef). A higher hyperarea ratio means a better PAprox,
being 1 the maximum possible ratio indicating that PAprox dominates the
same solution space as PRef .

– Averaged Hausdorff distance [17] measures convergence using the distances
between PAprox and PRef . Specifically, it gets the greatest distance from
each point in one set to the closest point in the other set, i.e., given by
max(min||pi, PRef ||2,min||pj , PAprox||2), ∀pi ∈ PAprox, pj ∈ PRef . A
lower Hausdorff distance means a better PAprox.

– Delta(Δ) [7,8] measures spread and distribution. It is given by the formula:

Δ =
d0 + dn +

∑n−1
i=1 |di − d′|

d0 + dn + (n − 1)d′

where di, 0 ≤ i ≤ n = |PAprox| is the Euclidean distance between consecutive
solutions, with d0 and dn being the Euclidean distances between the extreme
solutions in PRef and the extreme solutions in PAprox. Besides, d′ is the
average of those distances. A lower value of Δ means a better PAprox.

– Purity [7] is a cardinality measure used to compare Pareto fronts constructed
by different algorithms. It is given by |PAprox ∩ PRef |/|PAprox|. Thus, it
measures the ratio of solutions in PAprox included in PRef . A higher purity
means a better PAprox in terms of percentage of non-dominated solutions,
being 1 the maximum value possible.

Table 2 shows the results of the performance metrics achieved by the four algo-
rithms, highlighting the best score for each metric on each of the event logs.

The experiments show that, in most of the logs, the tabu-search TS-STRICT
scored the best results in each of the four metrics assessed, followed by the
genetic algorithmNSGA-II. As expected, the algorithmhill-climbingHC-STRICT
exposes the lowest performance among all the solvers, with its flexible variant HC-
FLEX, i.e., considering the MAD deviation, improving its results. However, both



104 O. López-Pintado et al.

variants of hill-climbing also constitute good initial approximations of the Pareto
front. They exhibit performances that are close in terms of the metric evaluations
to the NSGA-II and TS-STRICT. In all the cases, the algorithms scored hyper-
area ratios superior to 0.93 (being 1.0 the max possible), meaning that they dom-
inate at least 93% of the solution space dominated by the reference Pareto front.
Also, the Hausdorff distances and Δ spread do not evidence a bad performance of
any algorithm compared to the others. For example, although HC-STRICT never
obtains the best measurement, it achieves better scores than the NSGA-II algo-
rithm in 50% of the logs in both metrics. Finally, the purity rates show that both
variants of hill-climbing add fewer points to PRef compared to TS-STRICT and
NSGA-II. These results were expected as hill-climbing uses a more local search-
ing strategy. Thus, it explores a reduced number of allocations but still discovers
Pareto fronts with sound values of convergence, spread, and distribution according
to the Hyperarea, Hausdorff, and Δ metrics.

Fig. 1. Approximated Pareto Fronts from logs bpi-17, call-centre and production. The
times in cT ime (y-axis) and procDuration to compute aCost (x-axis) are in seconds.
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Figure 1 compares the Pareto fronts PAprox discovered by each algorithm
from the event logs bpi-17, call-centre and production with the reference Pareto
front PRef .8 The points (aCost, cT ime) in blue are in PRef but not in PAprox,
the ones in green are in PRef and PAprox, while the ones in red are the points
in PAprox but not in PRef . The figure illustrates how the approximations
obtained by TS-STRICT and NSGA-II share more solutions with PRef , while
the solutions discovered by the hill-climbing variants span local regions of PRef .
Across all the experiments, the event log call-centre (in the middle) led to the
most disperse results. In this case, TS-STRICT found 37 of the 38 non-dominated
points in PRef , while NSGA-II, HC-STRICT, and HC-FLEX found different
sets containing only 2 of the points in PRef . However, those points excluded
from PRef were still close, dominating a high solution space region as the hyper-
area ratio shows.

To answer the research question Q2, we use data profiles [15] to assess how
well each algorithm performed in terms of number of evaluations of the objective
function (that require the calculation of aCost and cT ime). Specifically, we plot
the cumulative percentage of non-dominated solutions added in PAprox after a
given number of function evaluations.

Fig. 2. Pareto front growing ratio (y-axis) in terms of function evaluations (x-axis).

8 The Pareto fronts from the remaining event logs, and the full results obtained in the
experiments, can be accessed from the code repository.
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Figure 2 illustrates the cumulative growing ratio of the Pareto fronts PAprox,
i.e., between 0 (no points) and 1 (all the points in PAprox), progressing with
the number of function evaluations. The figure sketches with the dotted lines
at which function evaluation each algorithm added the last point in PAprox.
As expected, hill-climbing achieves the best performance, carrying out a signif-
icantly lower number of function evaluations than the other solvers. The algo-
rithm NSGA-II shows the worst performance, followed by TS-STRICT. Unlike
the variants proposed in this paper that explore each resource allocation only
once, the NSGA-II algorithm may explore a resource allocation several times,
thus requiring multiple calculations of aCost and cT ime. Regarding the differ-
ent resource allocations explored, on average, the HC-STRICT traversed 361
allocations, HC-FLEX 1468, TS-STRICT 2982, and NSGA-II 4641.

The experimental evaluation evidenced that HC-STRICT, followed by HC-
FLEX, requires fewer function evaluations to construct a Pareto front with
acceptable accuracy. However, they also discover fewer non-dominated solutions
than TS-STRICT, which exhibits Pareto fronts with higher accuracy. Accord-
ingly, we can conclude that the hill-climbing variants provide a proper initial
approximation of the Pareto fronts so that the business analysts obtain a solu-
tion in shorter computational times. In contrast, the TS-STRICT (like NSGA-II)
provides more accurate and varied Pareto optimal allocations so that analysts
have a broader range of choices but at the cost of exploring more solutions.

6 Conclusion

This paper presented an optimization approach to compute a set of Pareto-
optimal resource allocations minimizing the cost and cycle time of a process. The
approach heuristically explores the search space of possible resource allocations
using a simulation model to evaluate each allocation. The approach incorporates
a perturbation method that selects solution candidates that are likely to Pareto-
dominate the already explored allocations based on two indicators: resource uti-
lization and resource impact. The approach also incorporates a ranking method
that sorts the resource allocations, exploring the closest one to the current Pareto
front so as to accelerate the convergence. The perturbation and ranking meth-
ods are embedded into two variants of the hill-climbing meta-heuristic, namely
HC-STRICT and HC-FLEX, and a variant of tabu-search, namely TS-STRICT.
In HC-FLEX, we relax the definition of Pareto-domination so as to prevent that
the algorithm is trapped too quickly into a local optimum due to stochastic
variations in the outputs of the simulation model.

The experimental evaluation shows that our approach requires fewer evalua-
tions of the objective functions to retrieve Pareto fronts of quality comparable to
those discovered by the NSGA-II algorithm. Moreover, with sufficient iterations,
the tabu-search approach leads to higher-quality Pareto fronts than NSGA-II.

A limitation of the current approach is that the exploration of the search
space is done in a sequential manner. An avenue for future work is to speed up
the approach by parallelizing the generation of solution candidates and their eval-
uation via simulation. Secondly, our proposal focuses on optimizing the number
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of resources per pool, assuming that all resources in a pool have identical charac-
teristics. Another future work direction is to extend the approach to models with
differentiated resources (e.g., different resources have different performance) as
well as resources shared across pools or processes.

Acknowledgment. Work funded by European Research Council (PIX project).
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Abstract. A major dimension for assessing organizational performance
is efficiency, i.e., the amount of output obtained from a given input.
Organizational efficiency is closely connected to business process effi-
ciency. Inefficiently executed processes may consume a lot of resources
and still not achieve their internal goals. Because “you cannot improve
what you cannot measure”, process mining tools try to quantify pro-
cess inefficiency with rather basic indicators, which provide only limited
information. This paper introduces an approach that measures process
inefficiencies in the control flow, taking factors like an activity’s intended
position in the trace and the allowed number of repetitions into account.
Our evaluation results show that the process performance indicators that
our approach defines capture aspects of process inefficiency that have not
been taken into account in the baseline indicator that is currently pro-
vided in process mining tools.

Keywords: Process mining · Operational performance · Process
performance · Process performance indicator · Business process
inefficiency

1 Introduction

Operational efficiency, i.e., the amount of output obtained from a given input,
is one of the major dimensions for assessing organizational performance [5]. The
efficiency of an organization is closely connected to the efficiency of its business
processes [18]. Inefficiently executed processes may consume a lot of time, cost,
and personnel resources and still not achieve their internal goals. This is partic-
ularly problematic for support processes, like HR or purchasing, whose goal is
to enable the execution of the organization’s value-creating core processes.

For successful business process management (BPM), measuring process inef-
ficiency is the first step towards improvement [27]. Inefficiencies in process exe-
cution like rework or change activities, loops, or cancellations can be observed
in the event log that captures the execution of the respective process in an IT
system. Companies like Uber [10, p. 60] and Siemens [24, p. 76] have been try-
ing to harmonize their processes and reduce rework and loops to achieve higher
c© Springer Nature Switzerland AG 2021
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efficiency levels. The identification of efficient processes also is a challenge for
robotic process automation (RPA) because automating inefficient processes will
amplify the inefficiency [20, p. 43]. However, there is no explicit indicator for
process inefficiency in the process mining literature [27].

Process mining vendors appear to have recognized an industrial need for
measuring process inefficiencies [1], but the indicators that they provide tend to
be very basic and therefore do not provide a lot of value. For example, in Celonis,
a case is labelled as inefficient if it contains an inefficient activity (e.g., change
price) [2]. Process inefficiency is then defined as the ratio of inefficient cases in
an event log. This indicator misrepresents process inefficiency with regard to the
above understanding of efficiency as a relation of input and output, because it
does not consider cases that include more than one inefficient activity.

In this paper, we present a novel approach for measuring process inefficiencies
(AMPI). It is based on the idea that a process inefficiency is caused by either
the type of activity (e.g., a deletion), its location (the activity is executed at the
wrong position in the trace), or its frequency (the activity is executed more often
than intended). Our approach defines a set of performance indicators, which
measure the inefficiency of individual traces independent from the overall event
log. It is defined on the trace level, hence allowing for a comparison between
cases, and relies only on the control flow, hence requiring only a partial order
within the trace. Therefore, we report on related work in Sect. 2. The process
of developing AMPI is described in Sect. 3 and evaluated in Sect. 4. Section 5
discusses contributions and limitations, before the paper is concluded in Sect. 6.

2 Related Work

Our research takes a process-centric view on organizational performance, an
important construct in strategic management. Researchers have defined count-
less measures for assessing an organization’s performance in so-called perfor-
mance measurement models (PMMs) [27]. Organizational PMMs [4,15] cover all
aspects of the business, whereas business process PMMs [16,19] focus on indi-
vidual business processes, which makes them particularly relevant for BPM [27].

Business processes are accepted as a significant construct in all of the
mentioned PMMs. The Balanced Scorecard offers four main perspectives to
managers (customers, internal processes, innovation, improvement activities).
To define and measure the internal process perspective, companies must con-
sider different variables for their business processes, e.g., project closeout cycle,
project performance effectiveness index, and rework [14]. Similarly, the 4-level
pyramid model by Cross and Lynch [4] contains “the vision” on the top and
“operational measures” (including quality, delivery, process time, and cost) on
the bottom.

Process performance measurement systems (PPMSs) play a major role in
improving business processes for any process-oriented organization [16]. Dumas
et al. describe time, cost, quality, and flexibility as the main dimensions of
a PPMS [9, p. 253]. Because those dimensions are multi-faceted and rather
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abstract, various performance indicators are suggested to quantify the goals asso-
ciated with each dimension. Such indicators for general organizational perfor-
mance are called key performance indicators (KPIs). Process performance indi-
cators (PPIs) are the process-related version of KPIs [23]. They should satisfy
the SMART (specific, measurable, achievable, relevant, time-bounded) criteria
for KPIs [25] and also be expressive, understandable, traceable, and automati-
cally measurable [21]. The PPINOT metamodel allows for an unambiguous and
complete definition and implementation of PPIs [21] and is enhanced by a graph-
ical notation for defining and visualizing PPIs with business process models [22].

Process inefficiency, which is defined as the performance gap in comparison
to a best practice, can either be design-related or intrinsic, i.e., related to pro-
cess execution [3]. Design-related inefficiencies are highly domain-specific and
have to be addressed during the design stage of the business process life cycle
[9, p. 261]. However, even an efficiently designed process needs to account for
the necessary flexibility in execution [13], so the mere conformance of an exe-
cution is not an indicator for its organizational performance [26]. For example,
a process-executing IT system must allow for the termination of an incomplete
process instance (e.g., on cancellation) or give employees the opportunity to cor-
rect or update wrong or outdated data. Nevertheless, those activities should be
avoided to reduce intrinsic inefficiencies and improve the process’s performance.

A recent review on PPIs did not find any explicit indicator for process ineffi-
ciency in the process mining literature [27]. However, there are a few studies that
have dealt with measuring process inefficiencies. Dohmen and Moormann apply
a three-stage approach to discover the association of intrinsic process execution
characteristics and their efficiency score [6]. This case study measures the ineffi-
ciency of banking transactions by comparing them to the best-practice transac-
tions. This means that the measure cannot be assessed for individual cases, but
always depends on the most efficient transaction in the log. Also, the proposed
method is domain-specific and limited to the financial sector. Van Den Ingh et al.
describe an approach to measure process performance based on process mining
[26]. Their approach evaluates variants of a P2P process based on control flow
and context, but control flow inefficiency is assessed with very basic indicators,
e.g., percentage of activities that was executed more than once. Höhenberger
et al. applied automated model query approaches to collect weakness (process
model) patterns [12]. Using their discovered patterns, they were able to find
weaknesses in new process models from different context. This approach empha-
sizes the detection of patterns as the first step to discover and solve underlying
root causes.
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3 AMPI: An Approach for Measuring Process Inefficiency

3.1 Objectives

In the following, we describe AMPI, which, once applied to a specific process in a
concrete context, results in a set of inefficiency PPIs. AMPI targets the following
types of inefficiencies.

Non Value-Adding Activities. Activities can add value to the process by
providing value to the customer (e.g., the receipt of goods in a P2P process) or
to the business (e.g., the approval of a payment) [9, p. 186]. If activities do not
fall within those two categories, they can be seen as inefficient. This includes
activities like hand-offs or cancellations, but also so-called rework activities, like
price changes (e.g., [10, p. 84]), which revoke the outcome of a previously exe-
cuted activity.

Loops. Loops indicate a repetition of activities, which is perceived as inefficient
because the same work has to be done twice. This is not the case for all activities.
In a P2P process, for example, more than one occurrence of “release purchase
requisition item” per case would be inefficient [10, p. 82], but a case can have
multiple goods receipts. For unintended loops, the magnitude of the inefficiency
is determined by number of iterations (the more executions, the more inefficient)
and their length. Research has provided evidence for a “bullwhip effect” at a pro-
cess level, meaning that occurring mistakes or problems should be addressed and
handled as soon as possible, because otherwise, its consequences become more
damaging [17]. If, for example the price of a purchase order item is changed twice
in a row, it is less inefficient than if the second change happens after the invoice
is confirmed.

Wrong Start and End Activities. Start and end activities of a process are
particularly relevant, because they provide the basic information for initiating or
concluding a case. If start activities are wrongly positioned, the other activities
will lack information and therefore be incomplete. If end activities are wrongly
positioned, follow-up activities cannot be executed efficiently. A purchase order
item, for example, should not be created at the end of a P2P process, because
it provides the informational basis for the entire case.

3.2 Outline

These examples show that for an insightful measure of process inefficiency, it is
not sufficient to count the ratio of inefficient activities. Instead, AMPI takes the
following steps to calculate the ratio of inefficient behavior in a trace.
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1. Defining Activity Clusters: The basis of any inefficiency lies in the nature of
the activities. We define a generic framework for classifying activities by their
intended frequency (0, 1, multiple) and location (start, core, end). This results
in nine activity clusters, which form the basis of AMPI.

2. Identifying Drivers of Inefficient Behavior: Some inefficiencies are revealed or
exacerbated by certain conditions in the control flow, like repetitions of the
same activity. We call those conditions “drivers” of inefficient behavior. They
are defined and computed for each occurrence of an activity in a trace.

3. Calculating Cluster-based Inefficiencies: We calculate the (absolute) ineffi-
ciency per cluster by aggregating the relevant drivers of inefficiency for all
activities in the cluster and all occurrences of that activity.

4. Computing the Trace-level Inefficiency: To compute the trace-level ineffi-
ciency, we normalize the cluster-based inefficiencies and then take the average
across all clusters.

In the following, we say that A =
⋃m

j=1 aj is the universe of activities. An
occurrence or event e(a) denotes the execution of an activity a within a process
and can be denoted as a, if the context is clear. A case denotes one execution of a
process, which has at least two attributes (an ID and a trace). A trace t is a finite
sequence of occurrences e1, ..., en, where each t[k] = ek denotes an occurrence of
an activity a ∈ A at the kth position of t, and |t| = n denotes the length of the
trace. At =

⋃
e(a)∈t a is the set of distinct activities for t. The frequency of any

distinct activity at ∈ At is defined as the number of occurrences, written |at|.
Occurrences of a in t are denoted as ati, where at1 indicates the first occurrence
of a in t and atl , 1 ≤ l ≤ |t| indicates the last occurrence of a in t. [ati] denotes
the location of an occurrence in a trace, i.e., the index k, for which ek = ati.

3.3 Assigning Activities to Clusters

The first dimension of process inefficiency is the intended frequency of activities,
which has three categories. The red category contains undesired activities, which
do not add any value and should therefore not occur at all. The green category
contains desired activities, which can be executed multiple times. Activities that
should explicitly occur only once per trace fall into the yellow category.

The second dimension of process inefficiency is an activity’s intended loca-
tion in the trace. Therefore, we partition the trace into three sections. The start
section and the end section contain the first and last activities of a trace, respec-
tively. The core of the trace comprises all remaining activities in between the
start and end. This separation recognizes the crucial role that start and end
activities play in the trace, but leaves enough flexibility for process execution.

Combining the two dimensions with three categories each results in nine dis-
tinct activity clusters, as listed in Table 1. Readers should note that the same
activity will usually be part of multiple clusters. The activity clusters are based
on theoretical considerations and therefore independent from the analyzed pro-
cess itself. To apply it to a concrete process, we need e.g., a process analyst or
a domain expert to assign process activities to clusters.



114 F. Zandkarimi et al.

3.4 Identifying Drivers of Inefficient Behavior

The clusters impose an intended behavior on their activities. Inefficiencies occur
if activities do not adhere to this behavior. To identify these inefficiencies, we
need to inspect the control flow context in which activities occur. This context
reveals some inefficiencies, e.g., repetitions of yellow activities, and exacerbates
others, e.g., loops. Below, we discuss four drivers of inefficient behavior in the
control flow. Each driver is defined for an activity or an occurrence of an activ-
ity. Because AMPI should allow for the comparison of individual traces, the
drivers are normalized to the trace length. When computing the overall trace
inefficiency, we can then sum up the normalized drivers and obtain a normal-
ized inefficiency value. This normalization at driver level is necessary, because
the normalization basis depends on the nature of the cluster. Therefore, the fol-
lowing equations are only valid for their respective cluster and its assigned activ-
ities.

Table 1. Activity clusters defined by intended activity frequency and location

Location

Start Core End

0 Cluster S0 Cluster C0 Cluster E0

1 Cluster S1 Cluster C1 Cluster E1Frequency

Multiple Cluster S2 Cluster C2 Cluster E2

Repetition. The intended activity frequency determines whether the repeti-
tion of an activity adds additional value to the process. Any additional occur-
rence above what is intended by the respective cluster is regarded as inefficient.
For most clusters, those occurrences can just be counted when computing the
overall trace inefficiency, but for clusters S1 or E1, which cover singular start or
end activities, exceeding the intended frequency is particularly damaging. We
account for such violations by individually factoring in their repetitions. More-
over, we also count for the variation of inefficient activities within one case, i.e.,
“multiple occurrences of one inefficient activity” is better (less inefficient) than
“multiple occurrence of multiple inefficient activities”. The rationale behind this
decision lays in the nature of organizations where involving different actions usu-
ally requires extra communication and handover costs. However, performing the
same action in the same company most likely costs relatively less overhead.

rS1(ati) = rE1(ati) =
i − 1

max(1, |t| − 1)
(1)

Location. The location of an activity is defined as its index in the trace. For
each activity, the intended location can either be 0 (start activity), |t| − 1 (end
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activity), or any number in between (core activity). We assume inefficient behav-
ior to be less severe early in the trace, so we differentiate between the first and all
other occurrences. For C0 activities, an inefficiency of zero cannot be achieved if
any C0 activity occurs at the core of the trace. For C1 activities, we assess their
locations with help of two measures, lC1 and bC1, to avoid twofold evaluation
of activities where lC1 = lS1. Whereas lC1 evaluates the location of C1 activi-
ties at the core, bC1 only assesses the start and end of the trace in terms of C1
activities. Location measures for clusters S0, E0, and C2 are not specified here,
because the (absolute) location is the only relevant driver for these clusters.

lC0(ati) =

{
[at

i]
max(1,|t|−2) , for i = 1

[at
i]−1

max(1,|t|−3) , otherwise
(2)

bC1(at) =

⎧
⎪⎨

⎪⎩

1, if t[0] and t[|t| − 1] ∈ C1
0.5, if t[0] or t[|t| − 1] ∈ C1
0, otherwise

(3)

lS1(ati) =
[ati]

max(1, |t| − 1)
(4) lS2(ati) =

1 − i + [ati]
max(1, |t| − i)

(5)

lE1(ati) = 1 − [ati]
max(1, |t| − 1)

(6) lE2(ati) = 1 − 1 − i + [ati]
max(1, |t| − i)

(7)

Distance. Not all repetitions of red or yellow activities are equally inefficient.
To assess the impact of a repeated activity on the trace, we measure the dis-
tance between activities, defined as the absolute difference between their loca-
tions. We recall our assumption that repetitions are less inefficient if they are
close together and ensure that we always compute the distance of a repetition
to the first occurrence of the activity. As yellow activities should only occur once
at most, any distance of a repeated activity is treated inefficient. In contrast, the
optimal distance for green activities highly depends on the number of repeated
activities. Note that dC1 = dE1 = dS1, and dE2 = dS2.

dC0(ati) =
[ati] − [at1] − 1
max(1, |t| − 3)

(8) dS1(ati) =
[ati] − [at1]

max(1, |t| − 1)
(9)

dS2(ati) =
1 − i + [ati] − [at1]

max(1, |t| − i)
(10)
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Distinct Activities. In some situations, the previous measures are not suffi-
cient to accurately assess process inefficiency. Consider a trace with a C0 activity
at the core. The existence of a second distinct C0 activity at the core impacts
the level of inefficiency to another degree than an additional C0-activity of the
same type. This must be considered by an additional driver. For this purpose,
we define the distinct activities per cluster as the number of distinct activities
in a trace that are assigned to the same cluster.

daC0(at) =
|At| − 1

max(1, |t| − 3)
(11)

daS2(at) = daE2(at) =
|At| − 1

max(1, |t| − 1)
(12)

3.5 Calculating Cluster-Based Inefficiencies

The drivers of inefficiency are defined on activities or occurrences and can be
used to compute the (absolute) inefficiency level of the individual clusters (with
regard to one trace). Because the idea behind the start and end dimensions are
very similar, the computation and the formulas of the inefficiency levels of clus-
ters S2, S1, and S0 are in line with those of E2, E1, and E0. For this purpose, we
analyze the clusters with the same intended frequency together. Related activi-
ties then only differ in their intended location.

Activities from S2 may occur multiple times at the start of a trace, so their
occurrences do not represent inefficient behavior if they directly follow each
other. Hence, repetitions do not impact the inefficiency, but location, distance,
and distinct activities must be considered. The optimal location and distance of
these activities depend on their number of occurrences. The second occurrence
should, e.g., occur at location 1 with a distance of 1 to the first occurrence. The
reverse holds true for activities assigned to cluster E2. In contrast, activities from
S1 or E1 may occur only once in a trace, so repetitions play a crucial role. Their
optimal location is at the start or end of the trace, so it is independent from
other activities. The distance between the occurrences is considered, too.

absolute inefficiencyS2(t) =
∑

at∈At

|at|∑

i=1

lS2(ati) × (1 + dS2(ati) + daS2(at)) (13)

absolute inefficiencyE2(t) =
∑

at∈At

|at|∑

i=1

lE2(ati) × (1 + dE2(ati) + daE2(at)) (14)

absolute inefficiencyS1(t) =
∑

at∈At

|at|∑

i=1

lS1(ati) × (1 + dS1(ati) + rS1(ati)) (15)

absolute inefficiencyE1(t) =
∑

at∈At

|at|∑

i=1

lE1(ati) × (1 + dE1(ati) + rE1(ati)) (16)



An Approach to Measure Process Inefficiencies in the Control Flow 117

The absolute inefficiency of S0 and E0 is determined in a different way. Here,
most drivers do not have to be assessed because assigned activities should simply
never occur. This behavior can be depicted by a binary location variable. In case
of cluster S0, this variable is equal to one if the start of a trace is occupied by
an assigned activity. The same applies to cluster E0 for the end of a trace.

absolute inefficiencyS0(t) =

{
1, if t[0] ∈ S0
0, otherwise

(17)

absolute inefficiencyE0(t) =

{
1, if t[|t| − 1] ∈ E0
0, otherwise

(18)

The core of a trace contains all activities that occur between the start and
end. The activities assigned to clusters C2, C1, and C0 differ in their intended
frequency. For the activities in C2, no restrictions are imposed, given that they
occur in the core. So, the inefficiency level of cluster C2 is only determined by
the location. If those activities are located at the start and end of the trace, the
inefficiency level is equal to one. If either the start or the end is occupied by a
C2 activity, the level is equal to 0.5 and only if both locations are free of C2
activities, no inefficiency in terms of cluster C2 is present.

The start and end of a trace must also be analyzed for cluster C1. Here, this
is done by the bounds measure bC1. In contrast to C2, additional drivers must be
considered if a specific C1 activity occurs more than once. In case of repetitions,
we assume the level of inefficiency to be moderate if the activities follow each
other early in the trace. Based on this assumption, location and distance are
relevant for the computation of the inefficiency of cluster C1.

For the analysis of cluster C0, we limit our view on the core of the trace. As
those activities should not be executed, any occurrence increases the inefficiency.
If a C0 activity occurs nevertheless, it should happen early in the trace, such
that it has less impact on the trace overall. This is reflected by the location and
distance measures. It follows that in case of repetitions, the optimal distance
should be minimized. The more distinct C0 activities there are at the core of
the trace, the more activities violate their intended behavior. Consequently, the
number of distinct C0 activities increases the inefficiency level of cluster C0.

absolute inefficiencyC2(t) =

⎧
⎪⎨

⎪⎩

1, if t[0] and t[|t| − 1] ∈ C2
0.5, if t[0] or t[|t| − 1] ∈ C2
0, otherwise

(19)

absolute inefficiencyC1(t) =
∑

at∈At

(bC1(at) +
|at|∑

i=2

(dC1(ati) + lC1(ati))) (20)

absolute inefficiencyC0(t) =
∑

at∈At

|at|∑

i=1

(1 + daC0(at)) × (dC0(ati) + lC0(ati)) (21)
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3.6 Computing the Trace-Level Inefficiency

Once we have the (absolute) inefficiency values for the clusters, we compute the
trace-level inefficiency as follows:

1. Per trace and cluster, we create an artificial worst trace of same length, which
contains as much inefficient behavior (in terms of this cluster) as possible.
This trace is an auxiliary construct and may not necessarily appear in the
event log. It serves as a boundary for 100% inefficiency, such that we can
express trace-level inefficiency as a normalized value between 0 and 1.

2. To compute the normalized inefficiency level of a cluster, we compute the
absolute inefficiency value of the artificial worst trace (with regard to the
respective cluster) according to our definitions above. We obtain the ineffi-
ciency level of our trace in question by dividing its absolute inefficiency values
by those of the artificial worst trace.

3. The inefficiency of the trace is computed as the average inefficiency level of
all clusters. If one cluster is not assigned any activities, this cluster is not con-
sidered in the calculation. Partial PPIs (e.g., for only one activity category)
are computed as the average between the respective clusters.

4 Evaluation

4.1 Outline and Reproducibility

AMPI is evaluated in an experimental analysis by applying it in two different
domains and implementing the resulting PPIs.1 This demonstrates its applica-
bility and generalization in two different contexts. To avoid representational bias,
we did not apply any filter (e.g., for unfinished cases) to the logs.

Purchasing Process (BPI 2019). This event log describes a P2P process
with 1.5 million events in 251,734 purchase order items (cases) [7]. Depending on
the purchased item, those cases follow four separate flows of activities, which we
call item categories 1 to 4. As the optimal control flow and therefore the cluster
assignments differ among these categories, we partition the log into four sublogs
and assess the inefficiency of each sublog individually.

Administrative Process (BPI 2020). The second log describes a travel
reimbursement process, which distinguishes between domestic and international
trips [8]. To account for the different process variants, the data is split into five
sublogs: requests for payment (6,886 cases), domestic declarations (10,500 cases),
prepaid travel cost (2,099 cases), international declarations (6,449 cases), and
travel permits (7,065 cases). Again, we assess each sub log individually.

1 The implementation and the full lists of activity assignments can be found at
https://github.com/JonasRennemeier/Inefficiency Index 2021.

https://github.com/JonasRennemeier/Inefficiency_Index_2021
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Table 2. Inefficiency levels computed by AMPI for BPI 2019

Item category Inefficient cases PPI: start PPI: core PPI: end PPI: all

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

1 0.66 0.0 0.17 0.0 0.0 0.50 0.09 0.0 0.60 0.05 0.0 0.28 0.05

2 0.39 0.0 0.56 0.01 0.0 0.50 0.02 0.0 0.59 0.03 0.0 0.43 0.02

3 1.00 0.0 0.60 0.17 0.0 0.33 0.09 0.0 0.59 0.28 0.1 0.43 0.18

4 0.31 0.0 0.17 0.01 0.0 0.50 0.03 0.0 0.83 0.06 0.0 0.38 0.03

Total 0.41 0.0 0.60 0.01 0.0 0.50 0.02 0.0 0.83 0.04 0.0 0.43 0.03

In the following, we show the separate inefficiency indicators for the start,
core, and end categories of each log, defined as the arithmetic mean between
the respective clusters. We also show the overall log inefficiency, defined as the
arithmetic mean of the three. This separation should provide a more detailed
insights into the sensitivity of AMPI.

4.2 Inefficiencies in a P2P Process: BPI 2019

Activity Assignment. Because this process contains four different variants,
we need four different assignments of activities to clusters. Based on the process
description, we assume that Record goods receipt and Record subsequent invoice
may occur multiple times for item category 1 (C2). Record goods receipt is also
assigned to S0 to account for maverick buying. Create purchase requisition item
is a start activity that may not occur anywhere else in the trace (S1, C0, E0).
Clear invoice is the intended end activity (E2). These assignments are applied
to all other item categories, but have to be adapted to account for the intended
process flow. For example, for item category 2, invoices have to be blocked until
goods receipt, so Remove payment block is assigned to C1.

Inefficiency Assessment. Table 2 shows the results of computing the ineffi-
ciency of the BPI 2019 log. In total, 41% of cases contain some inefficient behav-
ior. Item category 4 contains the least inefficient behavior and item category 2
also contains only 39% inefficient cases. In contrast, all cases from item cate-
gory 3 are to some degree inefficient. Cases with the highest level of inefficiency
often include an unusually high number of change activities, given their trace
lengths. For example, the worst cases in terms of the inefficiency at the start
begin with changing the approval three times before creating the PO item. The
overall worst cases with an inefficiency of 0.83 at the end of the trace belong to
item category 4. Such cases should end with the activity Record goods receipt,
but often continue with change and deletion activities.

4.3 Inefficiencies in an Administrative Process: BPI 2020

Activity Assignment. This process also contains different flows of activities
across the five separate logs. For example, employees require a permission to go
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Table 3. Inefficiency levels computed by AMPI for BPI 2020

Log Inefficient cases PPI: start PPI: core PPI: end PPI: all

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

Dom. 0.10 0.0 0.15 0.00 0.0 0.17 0.00 0.0 0.10 0.00 0.0 0.09 0.00

Int. 0.40 0.0 0.53 0.08 0.0 0.17 0.01 0.0 0.07 0.01 0.0 0.25 0.03

Perm. 0.60 0.0 0.54 0.05 0.0 0.22 0.03 0.0 0.50 0.00 0.0 0.24 0.03

Prep. 0.24 0.0 0.50 0.06 0.0 0.33 0.02 0.0 0.07 0.00 0.0 0.28 0.03

Req. 0.09 0.0 0.14 0.00 0.0 0.17 0.00 0.0 0.54 0.00 0.0 0.20 0.00

on an international trip, so Permit submitted by employee is assigned to cluster
S1. For a domestic trip, employees can start the process by submitting a decla-
ration instead. Any filing of a document (a permission, a declaration, etc.) can
have a positive or negative outcome. For positive outcomes, the end activity is
Payment Handled is assigned to cluster E1 for all logs. For negative outcomes,
the university rejects the corresponding document and the employee needs to
accept the rejection, so activities like Declaration rejected by employee or Per-
mit rejected by employee are assigned to cluster E1.

Inefficiency Assessment. Table 3 reveals a substantial difference among the
two types of trips. Whereas only 10% of domestic trips contain some inefficient
behavior, we find 40% inefficient cases for international trips. On average, the
inefficiency level is higher for international trips across all sections of a trace.
Employees require a permission for those trips, but they often start the process
without permission or by filing a declaration instead, which causes the high inef-
ficiency level for the process start. On average, the end section of a trace exhibits
a rather small level of inefficiency, because most cases have a positive outcome
(employees get their costs reimbursed in 90.08% of cases). The trace core does
not contain a high level of inefficiency either. This is due to the assignment of
activities. Here, we allowed for repetitions of many activities, such that rejections
are not necessarily considered inefficient.

4.4 Comparative Evaluation

In addition, we compare the results of AMPI to those of a baseline indicator
(BI) that is currently used in a few process mining tools (e.g., Celonis, minit,
disco, myInvenio). Like AMPI, BI evaluates only the control flow of a process.
It is defined as a binary measure on case or activity level. A case is labeled as
inefficient if it contains at least one inefficient activity (e.g., [10, p. 84]). Which
activities are considered inefficient depends on the context of the process.

To compare the results of AMPI and BI for BPI 2019, we differentiate
between the four item categories and plot the monthly start, core, end, and aver-
age inefficiencies, shown in Fig. 1. We see that BI most often calculates a higher
inefficiency value than AMPI. BI also tends to decrease towards the end of the
year, whereas AMPI indicates an increase across most sections. This increase



An Approach to Measure Process Inefficiencies in the Control Flow 121

Fig. 1. Comparing AMPI and BI for BPI 2019

is particularly strong for the end category and can be explained by unfinished
cases, which we did not filter out, to avoid representational bias towards AMPI.
For a practical application of AMPI, we suggest using a sliding window approach
to avoid a sharp cutoff of unfinished cases.

Because BI is a binary measure, whereas AMPI computes a value between
0 and 1, it is more reasonable to evaluate the differences over time instead of
the differences between the values. For example, the inefficiency values for item
categories 2 and 4 are rather stable according to AMPI, but varies significantly
throughout the year according to BI. The differences between the two approaches
also become apparent when analyzing cases of item category 3. Here, BI labels all
cases as inefficient. We recall that AMPI also considers all cases of item category
3 to be inefficient, but the degree of inefficiency varies considerably.

5 Discussion

The comparisons between the inefficiency measures by AMPI and by BI illus-
trate the contributions of our approach. BI only considers the presence of (pre-
sumably) inefficient activities, instead of their order or frequency. Because AMPI
considers more drivers of inefficient behavior, such as activity locations, it is able
to find more inefficient cases than BI. Those advantages become more apparent,
when comparing the different values over time. One commonality between AMPI
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and BI is that both rely on domain or process expertise to identify the activities
that contribute to inefficient behavior. Whereas BI only categorizes activities as
either efficient or inefficient, AMPI also takes their frequency and location into
account to provide a more elaborated view on control-flow inefficiencies. All in
all, the differences between the two approaches are caused by their respective
nature. BI is a binary measure and evaluates the inefficiency in terms of the pres-
ence of inefficient activities. In contrast, AMPI takes a more sensitive approach
and evaluates the level of inefficiency across various dimensions.

AMPI still has a number of limitations, both in design and computation.
First, it only accounts for inefficiencies that appear in the control flow perspec-
tive, although other perspectives (such as time or resource) might have a larger
impact on process inefficiency. Second, it recognizes non-value-adding activities,
loops, and wrong activity positions, but not other types of inefficiencies such
as interdependencies between activities. Third, one could argue that our sep-
aration of traces in start, core, and end can overestimate the influence of the
start and the end activity and neglects other (core) activities with a potentially
higher influence on the overall inefficiency. However, we made this design choice
on purpose based on our experiences with real-world data. In defining the clus-
ters, we do not impose a specific location on the core activities, because we have
found that this limits the flexibility of the process and that core activities con-
tribute much less to the overall inefficiency. This assessment might change when
we apply AMPI to other domains.

The choice of clusters is another important limitation of AMPI. We assume
that frequency and location are the two most relevant factors for inefficiency,
but there might be others. Our selected categories are also chosen to cover non-
value-adding activities, loops, and wrong activity positions, but could be further
generalized to define, e.g., a specific intended frequency to each activity. Also, we
weigh all activities within one cluster equally, although their actual impact may
differ considerably. This could be addressed by defining an individual activity
weight, which could be determined by experts or derived from the log itself.

AMPI cannot be calculated for traces with a length smaller than three,
because the core of a trace cannot be empty. Also, AMPI only yields meaning-
ful results for finished cases, because unfinished cases are always punished for
a wrong end activity. For the overall inefficiency measure (the arithmetic mean
between the start, core, and end inefficiency), one could argue that by weighing
them all equally, we further increase the overemphasis on start and end activi-
ties.

Another limitation concerns our design choice to make AMPI independent
of the other traces in the log. This allows us to compute inefficiency levels per
trace and compare them across different lengths. However, it also requires the
creation of an artificial worst trace as an auxiliary construct to define the “lim-
its” of inefficiency that can hypothetically be achieved. It would be more realistic
to use a real-life worst trace as comparison, but this would make the inefficiency
of a single trace dependent on the other traces in the log.
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The PPIs that follow from applying AMPI fulfill the KPI criteria of being
specific (targeted towards process inefficiencies), measurable (shown in the eval-
uation), achievable (0% inefficiency is possible, although difficult), relevant
(shown by the industrial need to measure inefficiency), and time-bounded (inef-
ficiency is only measured for the time span of the event log). They also com-
ply with the PPI requirements [21] in terms of traceability and automatic mea-
surement. Their expressiveness and understandability depend on the application
context and remain to be evaluated in more practical settings. Yet, these indices
are significantly more complex (in terms of calculations, not structure) than
common exemplary PPIs [21,22] and cannot be linked to a few specific concepts
(e.g., responsible, informed, scope) due to their context-independent design.
Still, the resulting PPIs can be defined and utilized according to organization-
specific policies and goals. So, despite this misalignment, AMPI can be framed
under the PPINOT metamodel [21]. Below, we show a partial calculation of the
inefficiency PPI for S2. PPINOT is designed as a generic tool to increase clarity
of PPI definitions, so complex measures should be explained in natural language.

PPI{
identifier: PPI_S2
name: control-flow inefficiency cluster S2
relatedTo: #process name
goals: reduce the level of control-flow inefficiency in the

process with regards to cluster S2
#sum over all distinct activities i of type S2
target: simpleTarget.upperBound: 0.00 #desired value of 0.00
scope: ProcessStateFilter.processState: finished

}

6 Conclusion

In this paper, we present our novel approach for measuring process inefficiency
(AMPI). When applied to a specific process in a concrete context, AMPI yields
a set of process performance indicators (PPIs) for measuring process inefficiency.
AMPI accounts for several types of inefficient behavior (non-value-adding activi-
ties, loops, wrong activity positions) and allows for a comparison between cases.
Compared to the baseline indicator for process inefficiency, which is currently
used by a major process mining tool, AMPI provides a more sensitive and real-
istic way of quantifying inefficiencies in the control-flow of a process, which gives
process analysts a better chance of finding improvement potentials.

Although AMPI is a significant improvement over the state of the art in
measuring process inefficiencies, this problem is far from being solved. In future
work, we want to address some of the limitations listed above and extend AMPI
to go beyond control flow and include other factors like execution time. This
might entail taking an even more domain-specific perspective to be able to iden-
tify different types of inefficiencies in processes. Our definition of inefficiency in
this study does not reflect the absence or the disarrangement of desired activi-
ties. The required input for this study, assigning the clusters, is expected to be
done manually, thus leaving space for human errors. This step can be automated
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in supplementary studies by means of more advanced techniques, e.g., semantic
analysis, and deep learning techniques. Also, we want to follow up on a theoret-
ical observation that we made during the evaluation. Our results suggest that
the process inefficiency changes rather smoothly over time and does not show
dramatic fluctuations. It appears to behave (or change) as an institutionalized
habit. Hence, we could use AMPI as a basis to theorize about organizational
routines and their reactions to endogenous and exogenous changes [11].
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Abstract. Business process compliance refers to the formalization,
enactment, verification, and monitoring of constraints for one or multiple
process models and one or multiple process instances. Such complex com-
pliance scenarios crave for visualization support that fosters traceability
and understandability during design and runtime. It must be clear, for
example, which processes and process instances are subject to which com-
pliance constraint and, especially during runtime, which compliance state
(e.g., satisfied or violated) is active. This paper analyzes existing visual-
ization approaches for compliance-related information and demonstrates
their usability and feasibility through a prototypical implementation and
the application to a logistics scenario. The focus is on constraints that
span across multiple processes and process instances. The preferred visu-
alizations are then implemented in a real-world process scenario from the
manufacturing domain and evaluated through in-depth interviews with
three stakeholders. The interviews narrow down the results of the techni-
cal evaluation, indicating that Color is best suited for obtaining a quick
overview and Text for in-detail analysis of compliance states.

Keywords: Business process compliance · Compliance visualization ·
Compliance traceability · In-depth interviews

1 Introduction

Business process compliance is expensive for companies, but the costs for non-
compliance can be far higher [2]. Due to the COVID pandemic and digitalization
needs companies gear up on compliance spendings, i.e., “legal technology bud-
gets will increase threefold by 2025” [24]. Business process compliance means to
formalize, enact, verify, and monitor compliance constraints stemming from, e.g.,
regulatory documents, in connection with process models and process instances
[15]. Compliance scenarios can become complex due to the following reasons:
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1. Compliance scenarios may comprise a multitude of process models, process
instances, and diverse constraints. [22], for example, describes a scenario for
one organization in the higher education domain with 108 process models,
5831 activities, and 375 constraints. Compliance constraints can refer to none,
a subset, or all process models and instances (we call a constraint active on
a model or instance if it refers to it). Therefore compliance traceability is a
desired goal, i.e., it has to be clear what belongs together.

2. Constraints may span multiple process models and instances, so called
instance-spanning constraints (ISC), e.g., for bundling/unbundling of cargo
[7]. Multiple ISC can be active on the same process instance. This might
result in conflicting visualizations on a single activity.

3. Compliance states may have to be checked during design time and runtime
[15]. Runtime checks include the distinction of life cycle states for process
activities such as active or complete [18] and compliance constraints, i.e.,
pending, satisfied, and violated [18]. These states have to be visualized in a
way that the states can be distinguished and thus support the understand-
ability of the whole visualization.

Motivation (i)–(iii) shows overseeing and assessing the compliance states of
all process models and instances for all constraints can become a cumbersome
and arduous task for process analysts and compliance officers. Hence, with a
focus on ISC (ii), this work tackles the following research questions:

RQ1 Which requirements need to be satisfied by an ISC visualization?
RQ2 How can ISC be visualized on running process instances?
RQ3 Which ISC visualization is best suited for assessing compliance states?

We will follow the design science research methodology [26] as follows:
Requirements to be met by an ISC visualization are harvested from constraint
management literature (cf. Sect. 2). Artifacts for ISC visualization are created
based on literature from constraint visualization, information visualization, and
graph visualization (cf. Sect. 3). Feasibility and coverage of all ISC visualizations
are evaluated against the requirements based on a prototypical implementation
(cf. Sect. 4). The findings are then further evaluated based on in-depth interviews
with stakeholders in the context of a real-world scenario from manufacturing (cf.
Sect. 5). Section 6 provides a conclusion.

2 Visualization Requirements

This section collects and groups visualization requirements for business process
compliance. Grouping the requirements facilitates the comparison of existing
approaches in this area. The grouping strategy is developed based on literature
[8,9,20] and consists of the following four perspectives: process models, process
instances, ISC, and ISC instances. The visualization requirements are collected
from a selection of constraint management literature [12,13,16,18] and consider
the constraint lifecycle states pending, satisfied, and violated [18]. The goal of
collecting and grouping the visualization requirements is to identify how many
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of these requirements are satisfied by an existing visualization approach. Based
on this assessment, recommendations for visualizing business process compliance
scenarios can be derived. Visualization requirements are (�→ RQ1):

– Process Perspective
1. It should be possible to identify multiple active ISC in any state on one

or multiple process models. [16,18]
– Process Instance Perspective

2. For each activity it should be possible to identify the currently active
constraint states. [13,16]

3. For each activity it should be possible to identify the currently active ISC.
[13,16]

4. For each activity it should be possible to identify the active ISC and their
constraint states. [13,16]

– ISC Perspective
5. It should be possible to identify all ISC instance states based on the ISC

visualization. [16]
6. For each ISC instance it should be possible to identify on which activity

they are currently active.[16]
– ISC Instance Perspective

7. It should be possible to identify the process on which an ISC instance is
active on. [16]

8. It should be possible to identify the process instances on which an ISC
instance is active on. [16]

9. It should be possible to identify the activities on which an ISC instance
is active on. [12,16]

Figure 1 (top) depicts a real-world manufacturing process model from EVVA
Sicherheitstechnologie GmbH1. A pallet transports parts to the station, where
an employee scans the product code. If the scan is successful, the product data
is loaded. After loading, the employee is shown a step-by-step instruction on
how to assemble the product. At the bottom, left of Fig. 1 two assembly lines
are depicted with associated process instances. Assume an ISC requires that
currently more than 2 instances are waiting for a pallet (depicted as ISC at
bottom, middle). One ISC instance is created and active per assembly line (bot-
tom, right). The colors of the ISC instances, i.e., yellow and red, reflect their
compliance states, i.e., pending and violated. The corresponding ISC state is
consequently visualized using both colors. For this example, we can say that
visualization requirement 5 is fulfilled.

3 Visualization Approaches

The goal for compliance visualization is to inform the user about the current
state of each ISC on the process model and process instances of interest [18].
We define ISC traceability as the user’s ability to identify an ISC in a specific

1 www.evva.com.

www.evva.com
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Fig. 1. Real-world manufacturing process: using color for ISC visualization.

state on multiple instances from multiple processes, i.e., the visualization can
cover states of a single and multiple ISC at a time.

In order to answer RQ2, we collected approaches from constraint visual-
ization [1,4,16–18,25], information visualization [3,19], and graph visualization
[23]. The collected approaches focus on intra-instance constraint visualization
and will be transferred to an ISC context for this work. Hence, we are confident
that the eventually selected approach will be suitable for visualizing ISC as well
as intra-instance constraints.

Figure 2 depicts the considered visualization approaches along three visual-
ization tasks, i.e., visualizing one constraint state, three constraint states, and
three constraint states multiple ISC. In detail, the first column shows one active
constraint state, the second one –from left to right– constraint states satisfied,
pending, and violated, and the third column multiple active ISC in all three
constraint states.

In order to visualize multiple instances from multiple processes we use the
3D framework presented in [10]. Using a 3D setup allows us to use augmented
reality (AR) and virtual reality (VR) capabilities in future development. Most of
the approaches could be used in the same way in a 2D scenario. An exception are
visualizations utilizing the additional axis, e.g., the orientation approach covers
all three constraint states as rotating along the X, Y, and Z axis is possible.
Using a 2D setting would not allow for three states to be covered by orientation.
Assuming a 3D visualization, each of the cubes in the cells of Fig. 3 represents
a process activity.

Some of the visualization approaches such as size do not allow to depict three
constraint states on a single activity. Others such as orientation do not allow to
depict multiple states of the same type. In such cases the associated cell is left
empty. In the following, we discuss the different visualization approaches.

Symbols are represented near activities and ISC. By using the same symbol
multiple times connections between perspectives, e.g., process instance and ISC
instance can be drawn [16]. By utilizing a symbol’s visual attributes, i.e., shape
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Fig. 2. Visualization approaches for constraint states on process activities.

and color additional information such as the constraint state can be encoded
[25]. Multiple symbols close to an activity represent different ISC.

Color enables a range of applications. [1,4,16] use colors to express one of
the constraint states for an activity. Colors can be used to further specify which
ISC is currently active on a certain activity by using the same color [6,17]. To
visualize multiple active ISC for a single activity color ranges [23] can be used.
Using color ranges from, e.g., light green to dark green, allows to differentiate
between multiple states.

Brightness [3] can be used in a similar way as Color. Multiple constraint
states can be expressed by different brightness ranges.
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Texture [3] represents the perceived surface of an object. Textures range
from line drawings to colored images. To represent constraint states of an activity
different textures can be used. Texture can encode information [11] by using color
channel, tilling, smoothness, and many other attributes. Due to these different
encodings a texture is suitable to represent different constraint states with ease.

Size: An activity and its associated ISC can be displayed using the same size.
For discrimination to other activities, the size can be varied [19]. Specifically for
visualizing constraint states, three groups can be defined, i.e., small for pending,
medium for verified, and large for violated. Similar to the Color Range, each
group can use a range for scaling, e.g., small uses a scaling of 30%–70%, medium
80%–120%, and large 130%–170%.

Text is mostly used to complement other visual styles such as Colors [18].
Text can be used without other visualizations [12,19] for constraint state rep-
resentation. Text can be used to indicate if an ISC is currently active on an
activity by writing the constraint state close to the activity or writing the name
of the active ISC near the activity.

Shape: Activities [3] and the associated ISC can be set to the same unique
shape to represent their association. Specific shapes such as triangular for state
pending, can be used to express constraint states.

Orientation: By setting the same orientation [3] of activities and ISC, their
association can be displayed. Different axis can be used to depict certain con-
straint states. For example, rotations on the X-Axis might equal to constraint
state satisfied.

Edge: For each ISC, a directed edge [19] is created towards the activity. By
placing the edge on fixed positions different constraint states can be encoded,
e.g., front means satisfied, middle means pending, and back means violated.

Edge Pattern: For each edge it is possible to change the pattern [19] and to
integrate information into the pattern. These patterns can be used for constraint
state representation.

Arrow Head: For each edge it is possible to change the arrow head [19] and to
integrate information into it. This works basically the same way as Edge Pattern.

Position [3] can be applied in two ways, i.e., Position the Activities or Posi-
tion the Constraint [4,12,25]. Positioning the Activities moves the activity and
ISC on the same axis position, for example, the same unique Y-Axis position.
Positioning the Constraint positions the ISC instance near the activity bound
by the ISC instance.

4 Implementation and Feasibility

The goal of the technical evaluation is to assess which visualization requirements
from Sect. 2 are met by which visualization approaches (RQ3). For this, the
visualization approaches –covered by a prototypical implementation– are applied
to a set of four real-world ISC [21] in five logistics scenarios.
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4.1 Evaluation Setup

According to [7], ISC can be classified along two properties, i.e., context and
modeling. Context signifies if an ISC spans multiple processes or instances. Mod-
eling refers to which process attributes such as time, data, and resource an ISC
refers to. The possible combinations of context and modeling are reflected by
the following four real-world ISC1 – ISC4 from the logistics domain (from [21]):

• Single context (one process, multiple instances), single modeling requirement
(destination): “For cargo distributed over several trucks, all cargo must arrive
in the same destination.” (�→ ISC1)
• Single context (one process, multiple instances), multiple modeling require-
ments (date, customer): “There should not exist more than 3 instances of post
office delivery such that a specific input parameter (say date) is the same and
the post office is also the same.” (�→ ISC2)
• Multiple context (multiple processes, multiple instances), single modeling
requirement (time): “The optimal case is all deliveries are on-time or 100% of
on-time delivery. If the percentage of on-time delivery drops to 80%, it is con-
sidered as critical.” (�→ ISC3)
• Multiple context (multiple processes, multiple instances), multiple modeling
requirements (priority, time): “Prioritization and dynamic handling of cargo by
cargo-vehicle interaction to ensure high priority cargo item precedence over low
priority items.” (�→ ISC4)

Fig. 3. Logistics process models: partner ordering and post office delivery.

Figure 3 depicts two artificial logistics process models partner ordering and
post office delivery. Assume that the ISC1 – ISC4 are imposed on them and/or
the process instances created based on the models.

Figure 4 gives an overview of the process models and instances (cf. Fig. 3)
after completing the following scenarios. For constraint syntax we refer to [9].

• Scenario1: Partner(A) ships goods requiring two trucks (2 instances), both
arriving at the same destination.

• Scenario2: Partner(B) ships goods requiring three trucks (3 instances). One
of the trucks does not arrive at the desired location.

• Scenario3: A post office requires four deliveries (4 instances) within one day.
• Scenario4: Due to a massive traffic jam some deliveries (partner(A) instances

1 and 2, post office instances 2 and 3) are not on time.
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Fig. 4. Implementation overview from left to right: process models, process instances,
ISC models, ISC instances

• Scenario5: Partner A and Post Office delivery share the same destination.
Partner A’s delivery has higher priority and therefore should arrive first.

ISC1 – ISC4 and Scenario1 – Scenario5 are evaluated with the following
constraint states. ISC1 is executed two times, at first, for Scenario 1 where the
ISC state evaluates to satisfied. Secondly, for Scenario2 where the ISC state
evaluates to violated. ISC2 is executed once and violated by Scenario3. ISC3
is executed once and violated due to Scenario4. ISC4 is executed once and
violated by Scenario5.

4.2 Implementation

The visualization approaches collected in Sect. 3 are implemented in a proto-
type2. All scenarios are evaluated with all ISC active at the same time for two
reasons. (a) In a real-world setting typically multiple processes and ISC are
active. (b) We aim at a better understanding on how the visualization approaches
handle multiple active ISC visually interfering with each other. We used the 3D
process model visualization approach [10] created in Unity3D as foundation. For
using the prototype, a tutorial was created. In this tutorial, one scenario (Part-
ner(B) ships goods) is executed and an ISC is highlighted to gain insight on how
the process execution is done. The tutorial allows to understand an ISC visu-
alization approach based on a simple example corresponding to the previously
introduced scenarios and ISC.

For a better comparison of the visualization approaches we chose to visualize
them after all scenarios are completed. By using the next button it is possible
to change between the visualization approaches.

Figure 5 depicts the Color visualization for Scenario2 and ISC1. It illus-
trates an observation made during prototype development. All steps except for
the first one depict two different approaches for process instance visualization.
On the upper half of each step the process instances depict all process activities.
On the bottom half of the steps the process instances only depict complete and
running activities. For the sake of an easier understanding and to show that even
such little visual decision can have a big impact on the understanding of an ISC
visualization approach we opted to present both process instance visualizations.
2 https://cviz.crowndefense.at/.

https://cviz.crowndefense.at/


134 M. Gall and S. Rinderle-Ma

As the activity labels are barely readable, the focus is put on the visual
representation of the Color approach and how the colors are represented in all
four perspectives. Figure 5 shows the following steps.

• Design phase: Visualization of process model and ISC.
• Runtime process instance creation: 3 instances spawned next to the process.
• Runtime constraint instance creation: When the first process instance arrives

at activity Deliver, a new ISC instance with state pending (yellow) is spawned.
• Runtime constraint instance evaluation: Little dots above the process instance

visualization depict that two instances moved to the next activity. The state
still remains in status pending as these instances arrived at the same desti-
nation.

• Runtime constraint instance evaluation: The goods for the remaining instance
were delivered. These goods were delivered to a different destination and
therefore violating the ISC and resulting in a change of color to red.

This example depicts a single scenario with one ISC. The prototype features
multiple scenarios with multiple ISC.

Fig. 5. Step by step example for ISC visualization with colors. Process instance activ-
ities are created during runtime. For labels see Fig. 3. (Color figure online)
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4.3 Preselection

Table 1 gives an overview on the support for visualization requirements (columns
1–9) (cf. Sect. 2) per visualization approach (rows) (cf. Sect. 3). Position visu-
alization approach yields the most surprising result for both, Position Activity
and Position Constraint. Before the evaluation, we thought Position will be
one of the top choices as it is used for intra-instance constraint visualization
[12,25]. However, the biggest downside of Position Constraint is that it cannot
reflect that ISC span multiple process instances without any modifications such
as duplicating the ISC. The Position Activity approach yields better results com-
pared to Position Constraint. The approach supports up to three ISC, if the ISC
inherit different constraint states. We can position activities on the X,Y, and
Z-Axis and use the same axis for the constraint states, e.g., the Y-Axis depicts
a violated ISC. We would like to state that we are limited to 3 axes. Thus, if
the constraint lifecycle would be extended, this approach cannot cope with the
extensions. This limitation is the same for the Orientation approach. Currently,
the Orientation approach rotates around all three axes. In case of a constraint
lifecycle extension, some states could not be supported.

Table 1. � full support, � support for 3 different constraint states, � support for 1
constraint state, - not supported.

Visualization 1 2 3 4 5 6 7 8 9

Symbol � � � � � � � � �
Color � � � � � � � � �
Brightness � � � � � � � � �
Texture � � � � � � � � �
Size � � � � � � � � �
Text � � � � � � � � �
Shape � � � � � � � � �
Orientation � � � � � � � � �
Edge � � � � � � � � �
Edge Pattern � � � � � � � � �
Edge Head � � � � � � � � �
Position Activity � � � � � � � � �
Position Constraint - - � - - - - � -

Size and Shape only support one constraint state as using multiple sizes and
shapes at the same time would change the semantics. For example, an activity is
violated and satisfied at the same time. Then one state is represented by a large
cube and the other by a small cube. If the mean is used the activity could be
displayed with a medium sized cube. However, a medium sized cube could have
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different semantics. The same problem occurs for Shape. Different shapes could
be merged, but the merging blurs the semantics.

4.4 Discussion of Selected Approaches

The evaluation has focused on a technical and quantitative point of view, so far,
and has been used to narrow down the amount of visualization approaches for
constraint visualization and ISC traceability.

Based on the results from Table 1, we keep the following approaches for dis-
cussion: Symbol, Color, Brightness, Texture, Text, Edge, Edge Pattern, and Edge
Head. We narrow down this list by removing Brightness as Brightness can be
expressed 1:1 by Color. From the three different edge approaches, we will keep
the Edge Pattern approach as it subsumes Edge. We will also remove Edge Head
as the visualization only shows the constraint state near the activity. Edge Pat-
tern by contrast gives a more general overview while still being able to show the
states near the activity. The remaining visualizations are Symbol, Color, Texture,
Text, and Edge Pattern. Color and Texture are fairly similar. However, we will
keep both for the discussion as one does not subsume the other.

We identified two usage scenarios: (i) getting a quick overview of all ISC
(Requirements 5–9); (ii) looking into specific activities (Requirements 1–4).
Based on our prototype we will give recommendations which approach to use
for which scenario in the sequel.

Fig. 6. Screenshot of prototype depicting all scenarios and ISC using Color on top and
Edge Pattern on bottom.

Quick Overview: Our prototype shows for getting a quick overview Symbol and
Text are not useful as they become too tiny to be identified on larger zoomed out
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graphs. Edge Pattern could provide potential insight into large graphs. However,
ISC traceability is no longer supported as the visualization becomes cluttered
with edges. Therefore, for getting a quick overview, we recommend Color and
Texture. Figure 6 depicts the Color approach from the prototype. Even when
zoomed out it is clear where the violations are located. ISC tracability is given
as it is possible to see which ISC instance is connected to which activity. Figure 6
depicts the Edge Pattern approach on the bottom where an overview can be
gained, e.g., how many activities are violated, but ISC traceability is nearly
impossible.

In-Detail Analysis: Edge Pattern cannot be recommended for in-detail anal-
ysis as ISC traceability is not given. With a desktop environment it seems hard
to follow a specific edge, especially when there are many edges on the screen.
This could be different in AR/VR environments as the movement is more nat-
ural with head mounted displays. Color and Texture are well suited for getting
an overview. However, for an in-detail analysis they perform in a mediocre way.
For both approaches it is hard for the user to mentally align an ISC instance to
a specific color or texture. On the left side of Fig. 7, for example, activities are
shown, on the right side, all ISC instances.

Fig. 7. Screenshot of prototype demonstrating in-detail analysis by depicting activities
and ISC using Symbol and Color visualizations.
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Based on the implementation, we can recommend Text and Symbol as both
allow easier mental association of ISC and activity. We want to extend a bit
more on these two visualization approaches as they have one critical advantage
for in-detail analysis compared to the other approaches. The user can change the
Symbol or Text for a more fitting representation utilizing better understanding
and recognition of the ISC. All other approaches such as Color or Edge Pattern
allow for similar changes, but their recognition would not be as good as Symbol
or Text. For example a timed ISC (i.e., a ISC that refers to some temporal infor-
mation of the process models and/or process instances) could use an hourglass
symbol or be labeled with the text “timed”. But what color or edge pattern
could be chosen to represent a timed ISC?

As final recommendation we suggest the use of Color and Texture for getting
an overview of constraint states and Text and Symbol for in-detail analysis of
ISC.

5 In-Depth Interviews

The goal of the in-depth interviews is to identify new insights on ISC visualiza-
tion and to compare the results with the technical evaluation provided in Sect. 4.
For conducting the semi-structured, open-ended, in-depth interviews we followed
the guidelines of Boyce and Neale [5].

Design and Methodology: The interviews were conducted with three stake-
holders from the electronic montage unit at EVVA and CDP3. They shared the
manufacturing process currently running in their production facility (cf. Fig. 1).
During visits to their production facility and online meetings the process and
potential risks were discussed. This helped to reduce language barriers and get
to know each other such that both parties feel comfortable during the interviews
[14]. We agreed to not visualize the actually running processes as they could take
different paths every time and the interviews could be biased in a certain way.
Instead based on the process model and annotated data process instances were
simulated using CPEE (https://cpee.org/) such that the process always uses the
same path. We used ISC that have already occurred during process execution
before such as failure of software affecting all processes and instances, failure of
hardware affecting a specific station, and possible detection of hardware failure
due to instance spanning data. So far these ISC have been detected by employees
during production phase or testing phase.

Interviews were held online from 02.03.2021 to 04.03.2021. Besides recording
the interviews, notes were taken during the interviews to allow for summarization
and probing. For each interview we instantiated four instances representing four
stations within the production facility. After instantiation the used engine trans-
mits the instance information live to our visualization approach. We visualized
the process, instances, ISC, and ISC instances in the same way as shown in Fig. 4.
Before the interviews started an overview of all representations was provided to

3 https://acdp.at/.

https://cpee.org/
https://acdp.at/
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the stakeholders. During the interviews, we followed the prepared questions out-
lined at https://bit.ly/3t7qxgE. However, questions could be shifted or omitted
depending on the respondent’s answer to previous questions in order to, e.g.,
gain more details.

The recordings were transcribed and irrelevant phrases eliminated. The inter-
views were translated from German to English. Afterwards the transcripts were
sent to each of the stakeholders for confirmation. They all replied that the tran-
script is valid and represents the interview. In preparation for the discussion we
identified key topics, e.g., Overall Best, Combination, Constraint States, Critical,
Worst Approach, Overview, In-Detail Analysis, Presentation, and AR/VR and
applied color coding to verify that all information was captured4.

Results and Discussion: Color is regarded as the Overall Best approach for
ISC visualization. Color by itself is suitable for visualizing Constraint States and
for visualizing traceability between processes/instances and ISC/ISC instances.
For all stakeholders it is important to find violated ISC rather quickly. They
suggest to use a Combination of different visualizations to allow for quick vio-
lation finding and traceability. The stakeholders were divided between different
approaches, e.g., Shape, Rotation, and Scale for visualizing that a violation hap-
pened. To add traceability they suggest the usage of either Color or Symbol.
This result is especially interesting as it differs from our technical evaluation.
Due to their limited expression we did not consider Shape, Rotation, and Scale
any further. To use those visualization approaches as indicator that something
happened is an interesting observation.

Textures are viewed Critically by the stakeholders. On the one side they
emphasize that Textures could convey more information compared to color. On
the other side they see problems with readability of text, the need for a legend
and a longer training period. The stakeholders rarely mentioned the approaches
Position Activities, Position Constraint, and Brightness.

Every stakeholder mentioned Edge as the Worst Approach as it clutters the
visualization, particularly for complex processes and instances. Traceability is
not given as in the following response: “I went with the finger over the screen
and got nowhere.” This result is inline with the technical evaluation and we will
not consider edges for ISC representation.

For getting an Overview the stakeholders favor Color. For conducting an In-
Detail Analysis they are divided between Symbols and Text. Text was favored
because of the ability to express complicated information in a compact form:
“You can think up any text you want and display it without circumstances.”
For In-Detail Analysis, Text is suitable to express information at different lev-
els of granularity adapted to the user. These answers reflect the insight in the
technical evaluation that Text enables the representation of ISC and additional
information in a compact way.

The interview prototype presents processes, instances, ISC, and ISC instances
side by side. We asked the stakeholders if this Presentation meets their expecta-
tions. One stakeholder opted for separation of concerns, i.e., process/ISC on one
4 Color coding available here https://bit.ly/3etUPX2.

https://bit.ly/3t7qxgE
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side and instances on the other. Another stakeholder prefers the ISC instances
as optional information. The third stakeholder stated that for some use cases a
pure process and ISC visualization is sufficient, for other use cases all instances
are necessary. Overall the stakeholders mentioned that the type of presentation
depends on the role and use case. Based on these answers a flexible system that
allows to hide and rearrange parts of the visualization is a good choice.

Stakeholders were divided on whether desktop, AR, or VR is preferred. One
stakeholder was more skeptical in terms of AR/VR and is personally comfort-
able with desktop. However, the stakeholder can imagine that AR/VR brings
advantages when visualizing process models and their ISC. The others prefer
AR/VR over desktop and can imagine various applications, e.g., AR could be
used on the shopfloor to display the process instances directly on the machines.

Limitations and Threats to Validity: We counter threats to validity with
several measures. Firstly, the visualizations are based on various works from
literature. Secondly, research bias is addressed as questions asked during the
interview were defined in advance. Lastly, the stakeholders were not involved
in the development/research in any kind. For the evaluation, we used process
models from two domains, i.e., logistics and manufacturing. Since we have used
ISC from each category of the ISC classification for the the logistics domain, we
think that the presented results are transferable to other domains.

6 Conclusion and Outlook

This work evaluates compliance visualization approaches from literature with
respect to complex process scenarios with instance-spanning constraints (ISC).
The evaluation is based on literature, a technical evaluation, and in-depth inter-
views with stakeholders. In summary, for assessing compliance states, we rec-
ommend Color for gaining a quick overview and Text for in-detail analysis.
Stakeholders favor a visual indicator showing that a rule is violated, i.e., Size,
Rotation, and Shape. In future work we want to investigate the combination
of multiple visualization approaches as suggested by the stakeholders. Further
directions include the investigation of quantitative and qualitative requirements
such as contradictions, subsumption, and root-cause.
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Abstract. Process mining enables organizations to streamline and auto-
mate their business processes. The initial phases of process mining
projects often include exploration activities aimed to familiarize with the
data and understand the process. Despite being a crucial step of many
analyses, exploration can be challenging and may demand targeted guid-
ance and support. Still, little attention has been paid to understanding
how process analysts approach this exploratory phase. With this goal in
mind, in this paper, we report the results of an empirical study inves-
tigating exploration practices in process mining. Our study reveals that
analysts follow different behavior patterns when exploring event logs and
enact various strategies to understand the data and gain new insights.
The results remark the need for a deeper understanding of process mining
practices and inform future research directions to better support process
analysts and explain the cognitive processes underlying the analysis.

Keywords: Process mining · Empirical study · Data exploration

1 Introduction

Process mining enables the discovery, conformance checking, and enhancement
of business processes through the analysis of event logs recorded by information
systems supporting process execution [1]. Over the last decade, process mining
has gained remarkable momentum in academia and the industry, leading to a
wealth of techniques that empower organizations to streamline and automate
their business processes. However, so far, process mining research has privileged
the development of algorithms, approaches, and tools from a technical viewpoint,
paying less attention to learning how process analysts work in practice [13].

The work of analysts is often characterized by manual and knowledge-
intensive tasks [6,22]. In particular, in the initial phases of process mining
projects, analysts engage in different exploration activities [27], i.e., they dedi-
cate time to familiarize themselves with the data to develop an understanding
of the process [13], generate or refine questions, and discover new insights [7].

c© Springer Nature Switzerland AG 2021
A. Polyvyanyy et al. (Eds.): BPM Forum 2021, LNBIP 427, pp. 145–161, 2021.
https://doi.org/10.1007/978-3-030-85440-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85440-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-85440-9_9


146 F. Zerbato et al.

Exploration is a crucial step of discovery-oriented applications across many
data-science-related disciplines [11], including data analysis [2,10,14] and min-
ing [16], and process mining [13,20,22]. For example, in data mining, the CRISP-
DM methodology includes an “explore data” task within the “data understand-
ing” phase, while the SEMMA and Two Crows models comprise an explicit
“explore” step [16]. In process mining, exploration occurs mainly during event
log inspection [22], in combination with process discovery [1,13], or whenever
research questions lead to unexpected findings that need to be explained [7].

Recent interviews with data analysts [2,28] have shed light on exploration
activities and related challenges that may benefit from guidance and tool sup-
port, such as choosing what to analyze or finding new insights. Given the affinity
between data science and process mining, some of these findings may well apply
to the latter area, raising the question of whether process analysts conduct sim-
ilar activities or face similar challenges when exploring event logs and, if so,
how they could be supported. However, so far, little attention has been paid to
understanding how process analysts approach exploration in practice.

In this paper, we take a step in this direction and report the results of an
empirical study designed to observe analysts as they engage in an exploratory
process mining task. In this work, we specifically focus on “initial exploration”,
i.e., the phase in which analysts familiarize themselves with an event log before
addressing specific analysis questions [28]. Mainly, we aim to understand (i) what
activities analysts perform, (ii) what target artifacts they focus on, i.e., what are
the objects of their analysis, and (iii) what are exploration goals and strategies.
Accordingly, we formulate the following research questions.

(RQ1)What are the patterns of behavior of the initial exploration? With RQ1,
we aim to discover patterns of behavior focusing on sequences of exploration
activities performed on different target artifacts.

(RQ2)What are the goals and strategies of the initial exploration? How do they
relate to different patterns of behavior? With RQ2, we aim to understand
what exploration goals are and what strategies analysts implement to achieve
them. Also, we look at the relationship between goals and patterns of behavior
to investigate if different goals lead to different patterns of behavior.

To address RQ1 and RQ2, we analyze different kinds of behavioral data,
namely the interactions with process mining software and target artifacts and
subjective insights about exploration goals and strategies in the form of verbal
data. Our study reveals that analysts follow different behavior patterns when
exploring event logs and work with various goals in mind, enacting different
strategies to familiarize themselves with the data and understand the process.
Our findings contribute to an initial understanding of exploration in process
mining and highlight activities that could benefit from practical guidance, e.g.,
choosing suitable analysis techniques based on event log characteristics. Starting
from these preliminary results, we suggest avenues for future research investi-
gating (exploratory) process mining practices to better meet the practical needs
of process analysts through guidance and support and enhance our ability to
explain empirical findings with the development of respective theories.
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Our paper unfolds as follows. Section 2 reviews related work. Section 3
presents the method followed to design and conduct the empirical study.
Section 4 reports the results of our analysis. Section 5 discusses the lessons
learned and limitations of this study. Section 6 closes the paper and presents
an agenda for future research.

2 Related Work

With this paper, we aim to advance the understanding of exploratory process
mining practices by analyzing process analysts’ behavior in the form of inter-
action and verbal data. Thus, our work is related to research on understanding
exploration activities and goals in data science and, in particular, process mining.

Exploration has its roots in Exploratory Data Analysis (EDA), introduced
by Tukey in the 1970s as the “foundation stone” of any analysis [27].

Nowadays, exploration is an essential step of many data-science-related
endeavors [11], including data [16] and process mining methodologies [1,7]. For
example, the L* lifecycle model [1] includes an activity “explore” in “Stage 2”,
the step aimed to create a control-flow model of the process under analysis.
The PM2 methodology [7] mentions “data-driven exploration” as a way to refine
abstract questions since coming up with good questions at the start of a project is
not easy. The authors also emphasize that exploration can generate unexpected
findings and lead to concrete questions to investigate these findings further.

Related to our work are approaches investigating exploration activities in
process mining. A few studies focused on supporting the exploration of process
data, e.g., by easing the mapping of information among event data sources [26]
or recommending interesting sets of process instances in event logs [22]. However,
these approaches did not investigate how analysts approach exploration in prac-
tice. Klinkmüller et al. [13] examined process mining reports to understand the
information needs of process analysts. The paper shed light on process mining
practices in general, uncovering, for example, that analysts often combine famil-
iarization with process discovery. Still, the study did not tap into the potential
of user behavior analysis to unravel the dynamics of exploration processes.

So far, process mining research has paid little attention to understanding
the behavior of analysts as they engage in process mining and, in particular, in
exploration activities. Still, the analysis of interaction and verbal data has con-
tributed to advancing user behavior understanding in neighboring areas, e.g.,
data science [2,10,14,28]. A growing body of literature has recently focused on
understanding data exploration practices from different angles, uncovering typ-
ical analysis activities, goals, and related challenges. For example, the interview
studies by Alspaugh et al. [2] and Wongsuphasawat et al. [28] revealed that
analysts explore data for profiling and discovery goals but have to deal with
fragmented tool spaces, repetitive tasks, and limited access to stakeholders. Liu
et al. [14] interviewed data workers to understand cognitive, artifact, and execu-
tion alternatives of data sense-making processes, emphasizing the need to sup-
port the navigation and linking of alternatives across abstraction levels and tools.
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Han et al. [10] used interaction and eye-tracking data to understand the behavior
of data workers as they discover data quality issues, uncovering patterns of infor-
mation usage and search strategies that can inform the design of data curation
platforms. Besides providing insightful results, these studies uncover many new
questions, remarking the need for more research to reveal the actual underlying
practices of analysts [14] and enhance tool support [2,10,28].

To our knowledge, this is the first paper looking into the behavior of process
analysts. Indeed, although some of the findings in [2,28] may apply to process
mining, we advocate that it is not unlikely that the complex dynamics hidden
in event logs would lead to unique exploration patterns, goals, and challenges.

3 Research Methodology

This section describes the planning and execution of our study and outlines the
key aspects of the analysis conducted to address RQ1 and RQ2 (cf. Sect. 1).

Participants. For our study, we target academics and practitioners with varying
levels of process mining experience and expertise. We recruited participants by
reaching out to people in our professional networks. Participation was voluntary
and based on the following requirements: (i) having analyzed at least one real-
life event log over the past three years and (ii) having sufficient knowledge of
Disco1, the process mining tool chosen for our study.

Materials. The task was designed to observe participants as they use Disco to
analyze the road traffic fine management event log [5], a real-life event log rep-
resenting the process of managing fines by the Italian police. We chose Disco as
it is a commercial, easy-to-use tool, often used for initial analyses [1]. Based on
the details in [15], we prepared a document (referred to as “artifacts”) with a
description of the temporal constraints that need to be respected by the nor-
mative process, the activities and the attributes recorded in the event log, and
a conceptual data model. The artifacts were intended as a source of domain
knowledge and were at the participants’ disposal for the whole session2.

Procedure. We organized the task into an initial exploration, a guided explo-
ration, and a semi-structured interview. We instructed participants to verbalize
their thoughts in a think-aloud manner [8] as they performed the analysis. For
the initial exploration, we gave participants up to 10 min to familiarize them-
selves with the event log. For the guided exploration, we provided participants
with a guiding question aimed to replicate a high-level business goal and asked
them to explore the event log at their own pace with this question in mind.
Afterward, we assessed their understanding of the circumstances related to the
guiding question with a comprehension test. Then, we repeated the procedure for
a second guiding question. Finally, we interviewed participants to gain subjective
insights into analysis strategies, goals, and challenges.

1 Fluxicon Disco: https://fluxicon.com/disco/.
2 Link to the material: https://drive.switch.ch/index.php/s/wevV2gXmoLBXrSY.

https://fluxicon.com/disco/
https://drive.switch.ch/index.php/s/wevV2gXmoLBXrSY
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Table 1. Information about participants. I/A is a position in industry resp. academia, ∗
marks experience in process mining projects with customers for academics; PM Exper-
tise is a Likert scale with values “novice”, “basic” “average”, “good”, “advanced”;
Process Analysis refers to the past 3 years; #logs is the number logs analyzed in
the past 3 years; #tools is the number of known process mining tools.

ID Gender A/I Position
PM Expertise Process Analysis

#Tools
overall analysis frequency #logs

P1 M A PhD student Good Good Twice a year >5 2

P2 M A∗ PhD student Good Good Monthly >5 5

P3 F A PhD student Good Good Daily >5 4

P4 M I Analyst Advanced Good Twice a year 2–5 7

P5 M A∗ Post-doc Average Average Monthly 2–5 2

P6 M A∗ Professor Advanced Good Weekly >5 3

P7 F A∗ Post-doc Good Good Twice a year 2–5 5

P8 M I Programmer Good Average Twice a year 2–5 5

P9 M A PhD student Good Good Monthly 1 1

P10 F A∗ Professor Good Good Twice a year 2–5 3

P11 F A∗ PhD student Good Good Weekly 2–5 6

P12 F A PhD student Average Average Monthly >5 2

Execution. The data collection took place between July and September 2020 via
Zoom3 meetings during which we recorded the participants’ think-aloud audio
and their interaction with Disco and the artifacts, captured through screen shar-
ing. Overall, 14 people participated in our study. Before the meetings, we pro-
vided instructions and administered a background questionnaire. During the
meetings, we ensured that Disco and the artifacts were visible on the shared
screen and reminded participants to speak.

Data Validation and Analysis. For each participant, we recorded around 2 h
of audios and videos. Two participants had difficulties using Disco, and thus,
we excluded them from the study. Table 1 lists some information about the 12
selected participants, who are employed by ten different academic institutions
or companies located in 5 different countries in Europe, Israel and Chile.

For the analysis, we followed a qualitative approach, focusing on the videos,
the think-aloud, and the interview parts referring to the initial exploration. Ini-
tially, we transcribed all the audio recordings. Then, building upon the principles
of grounded theory [4], we coded both the videos and transcripts iteratively, with
the support of the MAXQDA software4. First, one author coded all the data.
The other authors then checked the coded data independently, discussing dis-
agreements and iteratively revising the codes to ensure consistency.

To investigate behavior patterns (cf. RQ1), we analyzed the interaction traces
derived from the videos, i.e., the sequences of activities performed in Disco on
certain target artifacts. We defined a coding scheme by combining the function-

3 Zoom: https://zoom.us.
4 MAXQDA https://www.maxqda.com.

https://zoom.us
https://www.maxqda.com
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alities available in Disco, e.g., inspect map, typical data processing and analysis
activities of the PM2 methodology [7], e.g., filtering, activities happening outside
Disco, e.g., consult artifacts, and the different aspects of the event log that can
be analyzed, e.g., paths. Later, we augmented interaction traces with concur-
rent think-aloud and interviews to achieve triangulation and refine the coding.
After several coding iterations, we obtained a hierarchy of 23 distinct codes for
activities and 22 codes for target artifacts5. Then, we focused on identifying
behavior patterns from the coded interaction traces. We started by selecting six
high-level activities from the highest levels of our code hierarchy and exploiting
different visualizations in MAXQDA to inspect and cluster similar sequences of
coded segments qualitatively. After identifying potential candidate patterns, we
backed up our qualitative insights with sequence alignments [12]. To this end,
we sampled each participant’s interaction trace into segments of 10-s length to
keep track of the unfolding of activities over time. Then, for each segment, we
took the code corresponding to the high-level activity performed for the largest
amount of time in that segment and extended shorter sequences with segments
of no interaction. As a result, we obtained twelve activity sequences of equal
length on which we computed global pairwise trace alignments and used the
obtained scores as a backup for our qualitative analysis.

To investigate exploration goals and strategies (cf. RQ2), we examined think-
aloud and interview data. Initially, we fragmented the text using open and in-
vivo coding [21]. Then, we refined and aggregated codes into categories using
axial coding [4], obtaining a hierarchy of 21 codes related to goals and strate-
gies. During axial coding, we relied on the videos to understand the participants’
statements in the context of exploration activities. Indeed, since some partici-
pants were not always describing what activities they were doing while speaking
about goals, strategies were not emerging clearly from the isolated analysis of
verbal data. Finally, we used selective coding to find relationships among the
inferred categories [21], ending up with three main categories.

4 Findings

In this section, we present the results of our analysis for RQ1 and RQ2.

4.1 Patterns of Behavior of the Initial Exploration (RQ1)

With RQ1, we focus on understanding what high-level activities analysts perform
during the initial exploration, in which order, for how long, and on which target
artifacts. The analysis of interaction traces and verbal utterances allowed us to
identify three main patterns of behavior, henceforth BP1–BP3. In the following,
we describe the main features of each behavior pattern, focusing on the two
most representative participants, i.e., those showing the best pairwise alignment
score (cf. Sect. 3). In parentheses, we show the number of participants for which
a particular observation holds when not clear from the text. Also, we use (t) to
label statements taken from the think-aloud transcripts and (i) for interviews.
5 Link to coding scheme: https://drive.switch.ch/index.php/s/m6wud73z4ztL0ym.

https://drive.switch.ch/index.php/s/m6wud73z4ztL0ym
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BP1: Artifacts as an initial focus, followed by attention to mainstream behavior
and variants. This behavior pattern was observed in five participants, namely
P3, P4, P7, P9, and P11. Figure 1(a) shows the sequences of codes (not nor-
malized) derived from the interaction traces of P7 and P9 and the average time
spent on specific high-level activities by all the participants in BP1. All partici-
pants started by reading the artifacts containing information about the event log
thoroughly. P7 claimed that the artifacts were useful to “better understand what
was happening in the process”(i), while P9 said that “it felt more important to
understand this PDF file [the artifacts] than just to play around with the event
log”(i). Then, everyone inspected the process map in frequency view, i.e., the
default view showing the control-flow model generated by Disco after loading the
event log. All participants looked at the control-flow and the frequency of events,
focusing on the most frequent paths. P7 used a variation filter to isolate the most
frequent variants before inspecting the map. She then repeated the filtering and
map inspection focusing on the least common ones. Performance metrics were
used limitedly (2/5). Most participants (4/5) inspected the statistics after having
explored the map, sometimes (3/5) going through the data attributes to know

Fig. 1. Summary of behavior patterns (a) BP1, (b) BP2, and (c) BP3. For each pattern:
(Left) Rendering of coded interaction traces for representative participants (in bold);
(Right) Average time spent on high-level activities by all participants.
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“what data we have there”–P7 (t) and learn typical values. Finally, most par-
ticipants (4/5) inspected the variants, focusing on the control-flow of the most
frequent ones. P7 and P3 also inspected specific cases to find examples of parallel
and repeated tasks and look for attribute correlation. Towards the end, P9 used
variation and attribute filters to isolate “the happy cases for the police”(t).

BP2: Attention to the shape of the data, performance metrics, and bottlenecks.
This pattern was observed in P1, P2, and P5, with P1 and P5 being the most
representative participants, as shown in Fig. 1(b). All participants started by
focusing on the process map in frequency view, assuming activity labels to be
self-explanatory. Indeed, artifacts were read at a later stage. All participants
inspected the map at different levels of detail to check the structuredness or
“spaghetti-ness” of the process, and two of them (2/3) focused on the most fre-
quent paths. Participants focused on the shape of the data, as narrated by P2
“The overall goal, I would say, is to get a feeling for the data [...] of how com-
plex the data is”(i) or P5 “I was mostly driven by... by the dataset itself. I did
some preliminary analysis from the structure, the time and the... attributes”(i).
Participants inspected the map in performance view at different stages of the
exploration, focusing on paths exhibiting long duration. P1 examined the mean
duration, alternating between the map and the temporal constraints provided in
the artifacts to visually “check” them: “I used them [the temporal constraints] at
the beginning to see whether the process complies with these constraints”–P1 (i).
Instead, P5 used the performance metrics before reading the artifacts, searching
for potential anomalies: “I mostly focused on some anomalies and yeah, again,
issues that could be present in the log”–P5 (i). P2 and P5 also inspected the
statistics after the map, focusing on the frequency of activities, variants’ distri-
bution, and case duration. Then, they read the artifacts thoroughly, sometimes
trying to explain the detected anomalies: “If the constraint is not observed, the
offender is not obliged to pay the fine. Ok, so in this case, the anomaly could be
that we take too much to send it, and he doesn’t have to pay any longer”–P5 (t).

BP3: Attention to attribute distributions and patterns. This pattern was observed
in P6 and P12, whose code sequences and average time spent on high-level
activities are shown in Fig. 1(c). The common thread to the exploration of P6
and P12 was the tendency to observe distributions of cases and data attributes
to spot patterns, mostly by using statistics and filters to create and compare
different “scenarios”. Both participants inspected the statistics starting from
the distribution of events over time and looking for patterns, e.g., “I am now
checking if there is any evident pattern. Like this is the 6th of April, this is the
6th of January...”–P6 (t) and “it looks like that in the middle of the month there
are plenty of fines”–P12 (t). When looking at attribute distributions, P6 decided
“to filter all the events without an article and check if... how is the distribution
of those with respect to the other attributes”(t). Similarly, P12 compared data
attribute distributions in different scenarios that she created by filtering the
log based on the temporal constraints described in the artifacts. P6 said that
attributes could help identify the causes underlying certain phenomena “I would
expect that if I can elicit the causes, I can do that from the attributes”(i).
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Comparing behavior patterns of the initial exploration. Fig. 2 sketches the behav-
ior patterns that emerged from our analysis. While BP1 and BP2 capture oppo-
site exploration approaches, BP3 combines features of both of them.

Participants in BP1 anchored their exploration to the domain knowledge
embedded in the artifacts and explored the data in a top-down fashion through
the lens of this knowledge, which helped them to guide their analysis, generate
questions, and, sometimes, filter the data. P9 said “I think most of my, um,
knowledge came from just reading the artifacts [...] And I was thinking – Ok,
why wouldn’t you pay a fine? Ok, maybe I don’t receive it by post or maybe
I choose to ignore it...” (i). They also spent a significant amount of time on
process variants, looking into single cases better to understand the process and
typical values of data attributes and their semantics.

In contrast, participants in BP2 followed a bottom-up approach starting from
the data. They focused on exploring the “problem space”, looking at the shape
of the log, observing the frequency of activities and variants, and collecting the
“hard numbers”–P2 (t). They identified the most frequent path of the process
as the “happy path” and read the artifacts towards the end of the exploration
as a way to check their understanding of the process from the data. They also
examined performance metrics to spot bottlenecks or outliers, e.g., “Once I found
something that could be interesting, for instance, one activity lasting a huge
amount of time, then I dug deeper [...] to understand why this occurred”–P5 (i).

Despite spending comparable amounts of time on the map in frequency view,
participants in BP1 and BP2 used it at different levels of detail. Those in BP1

used it mainly at the default level of abstraction to visualize the activities that
they had read in the artifacts. Two of them changed the detail level to assess
the structuredness of the process, but the majority preferred to do so by looking
at the variants. Instead, those in BP2 worked at a lower level of abstraction,
increasing the number of displayed paths to focus on repetitions and deviations.

Participants in BP3 distinguished themselves for finding patterns in event
and attribute distributions using statistics and filters to create and compare
scenarios. They used the artifacts to derive the domain knowledge needed for
filtering and understanding data attribute semantics, similar to BP1, but, espe-

Fig. 2. Comparing the representative participants of BP1, BP2 and BP3. Spider charts
are obtained by sampling activity sequences in segments of 30-sec length and selecting
the activity performed for the largest amount of time in that segment.
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cially at the beginning, they focused on the shape of the data, similar to BP2.
e.g., “it was more about understanding the structure of data, the shape of the
log, rather than the meaning of it”–P6 (i). Also, they looked at data attributes
focusing on aggregated data rather than on specific values within cases (cf. BP1).

When examining target artifacts, some commonalities among behavior pat-
terns emerged. Indeed, all participants focused on the control-flow, particu-
larly on the structuredness of the process (9/12) and the mainstream behavior
(11/12). The interest for such process characteristics across behavior patterns
can be explained by looking into exploration goals and strategies (cf. Sect. 4.2).

4.2 Goals and Strategies of the Initial Exploration (RQ2)

With RQ2, we aim to understand the goals of the initial exploration and what
strategies analysts follow to achieve them. Also, we look at the relationships
between goals and the behavior patterns introduced in Sect. 4.1. Thus, here we
refer to the ten participants whose behavior is captured by BP1–BP3.

Goals emerged from the analysis of the think-aloud and interview data. Sim-
ilar to [2,28], participants remarked their intention to “become familiar with the
data and the process before determining any direction”–P3 (i). Indeed, their main
goals were to (i) learn the main log characteristics, (ii) conceptualize the process,
and (iii) identify interesting things to explore in further analyses (cf. Table 2).
However, participants enacted different strategies to pursue these goals.

Learn the main log characteristics. All participants aimed to collect basic infor-
mation about the log, e.g., general statistics such as log size and time covered,
activity frequency and naming, number and kind of available attributes, and pro-
cess structuredness. Learning about the event log was helpful to “get familiar
with the process”–P4 (i) or “know what information is essentially available”–
P6 (i). Despite having the same goal in mind, participants pursued enacted
different strategies to achieve it. Some participants focused on “understanding
the log”–P7 (i) and “getting the background”–P7 (i) from the artifacts. Instead,
others concentrated on data shape and complexity, focusing mainly on quan-
titative information about the log. Participants also emphasized checking how
structured the process was to choose what kind of analysis to apply and estimate
the effort required. A few participants mentioned the further goal of splitting the
log to reduce its complexity, e.g., “Why is it so complex? I would have looked into

Table 2. Main goals of the initial exploration emerged from our analysis.

Exploration goal Description

Learn main log characteristics Learn what the log contains and gather descriptive
statistics about the log and the process

Conceptualize the process Form an idea of the process and its context

Identify interesting things Identify aspects that are deemed interesting and
worth more in-depth analyses
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Table 3. Strategies followed to learn the main event log characteristics.

Goal: learn main log characteristics

Strategy Quote BP #

Understand available
information from the
artifacts

“So like a little bit getting the
background, so like, what are the tasks
for what? And then also what are the
attributes’ meanings for all the things
you provided and the artifacts were really
helpful.”–P7 (i)

BP1 BP3 6

Assess data shape and
complexity

“I think this is part of any data science
project, not especially for process mining,
but to get a feeling of how complex the
data is and I think the first start it to. . .
to look at the process map and see how
spaghetti-like the model is and, um ...
then, also to get the hard numbers
[...]”–P2 (i)

BP2 BP3 4

Assess process
structuredness

“If the process would be extremely
structured, I’d start guessing, for
example, this is a xor-split [...] If it was
extremely spaghetti, I would probably skip
this inspection”–P6 (i)

All 8

this and... potentially divided the log into sublogs”–P2 (i). Table 3 reports the
described strategies, together with sample quotes, the behavior patterns (BP),
and the number of participants (#) for which it was observed. Participants in
BP1 and one in BP3 preferred to familiarize themselves with the semantics of
activities and attributes over collecting quantitative data. Instead, most partic-
ipants in BP2 and one in BP3 focused on the shape and complexity of the data.
Most participants (8/10) across all behavior patterns assessed the structuredness
of the process, looking at the map or the distribution of variants.

Conceptualize the Process. Conceptualizing the process entails going beyond
direct observation, bringing together domain knowledge, prior experience, and
common sense to form an idea of how the process looks. Table 4 lists the strate-
gies aimed to pursue this goal, which was deemed important by all participants.
Unsurprisingly, all participants used common sense to conceptualize the pro-
cess. However, those in BP2 relied on common sense to also interpret activity
and attribute names. Some participants (6/10) combined common sense with
domain knowledge derived from the artifacts and prior experience. For example,
P7 relied on her previous experience in using temporal constraints to “understand
the payment culture”. All participants in BP1 and one in BP3 used the domain
knowledge in the artifacts to learn about the context of the process and identify,
for example, the “legal behavior”–P9 (t). Participants in BP3 conceptualized the
process also by establishing connections among different observations, e.g., sce-
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narios created with the help of filters. All participants identified the mainstream
behavior of the process based on event frequency. Besides being “the easiest
thing to start with when you’re exploring a log that you don’t know”–P11 (t),
the mainstream behavior helped participants to discern exceptional behavior,
which, in turn, was one of the most interesting aspects to explore.

Table 4. Strategies followed to conceptualize the process.

Goal: conceptualize the process

Strategy Quote BP #

Use common sense “I used common sense quite a lot [...] I
had a vision of how the perfect process
should look like”–P2 (i)

All 10

Use domain knowledge
and prior experience

“These temporal constraints I know them
from the medical field, it’s always
interesting to look at whether people
follow this rule or don’t follow this
rule.”–P7 (i)

BP1 BP3 6

Compare and combine
observations

“I inspected how those [frequent variants]
look from a control-flow point of view.
So, in this way, I constructed a bit of a
mental model of the process. And once I
got this mental model of which are
actually the most frequent paths, I went
back to the map and looked at these
pairwise relationships with this knowledge
of how to put the local relationships [...]
in the larger spectrum of... a complete
trace”–P6 (i)

BP3 2

Identify mainstream
behavior

“We actually don’t know what is
exceptional [...] And that’s why you focus
on mainstream behavior first”–P11 (i)

All 10

Identify Interesting Things. A common exploration goal was to identify interest-
ing aspects worth being further analyzed. All participants identified as interest-
ing “unexpected things that do not meet their assumptions” or “cases showing
infrequent behavior”, such as bottlenecks. To discover unexpected or exceptional
and, thus, interesting things, participants followed the strategies described in
Table 5. Some participants (6/10) relied on their knowledge of the mainstream
behavior to build some “ground truth” and establish what was exceptional. Oth-
ers (3/10) used the temporal constraints to anchor to the normative process and
checked them “visually” from the process map or with filters. Two participants
(2/10) focused explicitly on detecting anomalies by looking for outliers in the
data and bottlenecks in the process. All participants in BP1 and one in BP3
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Table 5. Strategies followed to identify interesting things.

Goal: identify interesting things

Strategy Quote BP #

Use mainstream behavior
as ground truth

“I think that path [the most frequent] is
the more interesting one because it would
tell me that this is the most likely correct
path and that the others would be
outliers”–P9 (i)

BP1 BP3 6

Check temporal
constraints

“The constraints helped me to, uh, try to
retrieve the cases that are not in line
with the constraints. [...] Because when
you look at the process, you want to see
unusual stuff. So, it’s easy to go to the
temporal constraints”–P12 (i)

All 3

Detect bottlenecks
or anomalies

“I mostly focused on some anomalies and
yeah, again, issues that could be present
in the log; that could indicate that the
process could be improved”–P5 (i).

BP2 2

followed the first strategy. Three participants across all behavior patterns used
the temporal constraints. Instead, anomaly detection was the main driver for
those in BP2.

5 Discussion and Limitations

The objective of this paper was to investigate exploration practices in process
mining, with a focus on patterns of behavior (cf. RQ1) and goals and strategies
(cf. RQ2) of the initial exploration. We discovered that process analysts approach
exploration in different ways, e.g., working top-down after gathering knowledge
from the artifacts, or bottom-up, starting from the data and using the artifacts
to check their understanding of the log, similar to open-ended analyses [2].

Analysts examined data attributes from different angles, either focusing on
distributions or looking into single cases to explain how the process evolves. We
also learned that the initial exploration has the main goals to (i) learn the main
log characteristics, which resembles what is called profiling in the data science
literature [28], (ii) conceptualize the process, and (iii) find interesting things
that are relevant to analyze deeper (e.g., as part of concrete research questions),
which is similar to discovery, i.e., gaining new insights or making hypotheses [28].

While (i) is a goal of “any data science project, not especially for process
mining”–P2 (i) and the same holds for (iii), the structure and behavior of the
underlying process require analysts to engage in specific exploration strategies.

For example, many participants assessed the structuredness of the process
to decide which kind of analysis to conduct. To this end, they relied on the
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visual inspection of the process map and the variants and prior experience, hav-
ing different perceptions of whether the process was “lasagna” or “spaghetti”.
Although assessing process structuredness and, more in general, the structure
and complexity of the data under investigation is typical of exploratory analy-
ses [2,28], it is a nontrivial task that could tip the balance towards choosing an
analysis technique over another. For example, two participants said they would
split a spaghetti log into sub-logs before starting the analysis. Still, selecting the
“right” pre-processing or analysis technique based on event log characteristics
can be challenging [24], and we hypothesize that, especially for novices, it may
be difficult to choose among analysis approaches and tools. This is particularly
so when dealing with alternatives [14] or combining artifacts and techniques not
specific to process mining [13]. Recent reviews of process discovery [3] and vari-
ants analysis [25] methods could help to compare different approaches, as well
as the metrics in [24] could help to gain control-flow insights. However, practical
guidance to support analysts in assessing event log characteristics (e.g., struc-
turedness, presence, and quality of resource data) and, based on them, evaluating
the applicability of pre-processing and analysis techniques is still missing.

Another insight emerging from our analysis is the attention paid to excep-
tional behavior and, particularly, negative deviations [18]. All participants identi-
fied exceptional behavior as the most valuable aspect to analyze, especially when
seeking improvement opportunities. Improvement was perceived differently: par-
ticipants working top-down emphasized improvement opportunities for end-users
(cf. BP1), while those working bottom-up focused mainly on performance (cf.
BP2). Still, almost everyone tended to look for negative deviations, and only P9
focused on the “positive cases for the police” (t). The focus on negative devia-
tions is in line with the observation that inductive BPM approaches, including
process mining, often put a strong focus on “responding to pain points” [20],
while the exploration of opportunities is less emphasized. However, research has
shown that processes can be improved by learning from positive deviations [23]
or experience gained through past executions [9]. We find the tendency to look
at negative deviations at the start of the analysis somewhat surprising. Indeed,
the interviews in [2,28] did not mention interest for “negative” patterns, and the
focus on deviations in the broader area of data science seems to be limited to spot
outliers or data quality issues during profiling [28] or data curation tasks [10].

Overall, although some exploration goals overlap between data science and
process mining, our analysis uncovered strategies that are not described in the
data science literature, remarking the need for improving our understanding of
process mining practices and develop targeted support for process analysts.

Limitations. Our study comes with some limitations. First, since we invited par-
ticipants in our professional network, our sample was not drawn randomly from
the overall process analysts population and is biased towards academics. Still, six
academic participants were involved in process mining projects where the main
goal was to analyze data for a customer (cf. Table 1) and, when interviewed, they
provided insights into these experiences. Second, our study is subject to a limited
number of participants. Still, twelve is considered an appropriate sample size for
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think-aloud studies [19], given the richness of the verbal data that we also aug-
mented with interaction traces. Third, in this paper, we focused on exploratory
process mining, i.e., the analysis phase aimed to familiarize with the data and
refine abstract research questions. Thus, our findings cannot be generalized to
other analysis phases, e.g., answering concrete questions. Finally, since all our
subjects used Disco, we cannot claim that our findings can be generalized across
tools. Indeed, Disco presents the map view after loading the event log and, thus,
it would not be surprising if participants used the map at the beginning. Also,
the functionality provided by the tool limits the analysis that our participants
could perform and, as a consequence, the behavior we could observe in our data.

6 Conclusion and Outlook

In this paper, we have presented the findings of an empirical study investigating
how process analysts approach exploration in practice, focusing on understand-
ing common patterns of behavior, goals, and strategies of the initial exploration
phase. Our findings revealed that analysts exhibit different behavior patterns
when exploring an event log and work with different goals in mind, enacting var-
ious strategies to familiarize themselves with the data and the process. Besides
providing novel insights into exploratory process mining practices, our findings
can inform different directions for future research.

An obvious direction for future work is to improve the generalizability of
our findings by conducting additional empirical studies to gain a comprehensive
understanding of process mining across different analysis phases and tools. To
this end, we will conduct quantitative and focused studies involving more prac-
titioners and observing how analysts approach different analysis phases (e.g.,
familiarization, question answering) with one or more process mining tools.
This will allow us to look into typical behavior patterns, goals, strategies, and
challenges of process mining and, potentially, discern effective and non-effective
behavior.

Gaining an in-depth understanding of (exploratory) process mining practices
will provide empirical evidence for developing guidance and support for process
analysts, for example, by enabling knowledge transfer from experienced analysts
to novices. For instance, existing process mining methodologies could be com-
plemented with practical recommendations, e.g., to choose analysis techniques
based on event log characteristics or to foster the exploration of opportunity
points [20], and tool support, e.g., to ease the comparison of “scenarios” (cf.
BP3) or process variants [25] along multiple process perspectives.

Another possible avenue for future research is the development of theories.
In neighboring areas such as process modeling, cognitive theories have been
used to explain empirical observations (e.g., [29]) and inform advancements, for
example, to reduce the cognitive load when performing relevant tasks [17]. We
suggest that the development of similarly relevant theories for explaining the
cognitive processes involved in process mining, in general, and the exploratory
phase, in particular, will contribute to advancement in this area.
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Abstract. Business process architectures are an important vehicle to
organize business process models of an organization, since they provide
a holistic view on the interrelationships between business process mod-
els. Current techniques to design business process architectures derive
them directly from a repository of process models, neglecting processes
execution information like event logs. In this paper, we propose an app-
roach for automatically discovering a business process architecture from
a set of event logs. The resulting architecture captures behavioral depen-
dencies between two or more business process models, using information
stored in event logs. We extended an existing business process architec-
ture representation to accommodate such behavior. The application of
the approach on two real-life event logs shows its effectiveness in discov-
ering the intricate dependencies between business processes, based on
data.

Keywords: Business process architecture · Process mining · Event log

1 Introduction

The business process management [1] lifecycle deals with the discovery, modeling,
executing and analysis of business processes in a perpetual repetition in order to
accommodate the ever-changing business requirements. An important artifact
in this context is a process model repository, which often captures hundreds of
models. With the increase in size and complexity of process model repositories
it gets harder to manage them. The area of BPM addressing such a challenge is
called Business Process Architecture (BPA) [2].

Typically, BPAs are designed using the relationships between process models
in a given repository, i.e., BPA design is purely based on process models. In
this paper we argue that these relationships might not be the ones that actually
occur during business process executions and, hence, do not reflect their real-
world relationships properly.

The approach presented in this paper is based on two types of process rela-
tions, trigger flow and information flow. Trigger flow represents situations when a
process triggers the instantiation of another process. Information flow captures
data exchange between processes. The resulting approach is able to discover
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complex process interdependencies that have occurred in process executions; we
extend an existing BPA graphical representation to accommodate these rela-
tionships properly. The approach is applied on two real-life sets of event logs to
prove its feasibility and effectiveness.

The remainder of this paper is organized as follows. Section 2 briefly discusses
the basic notions needed to understand the rest of the paper. The main defini-
tions relevant for the proposed approach are presented in Sect. 3, while Sect. 4
describes and illustrates our approach for discovering the BPA from a set of event
logs. The extended graphical representation of the trigger and information flow
behavior is presented in Sect. 5. Section 6 brief discusses the related work. Con-
secutively, Sect. 7 provides an evaluation of the approach before Sect. 8 concludes
the paper.

2 Preliminaries

Each organization executes a set of business processes to deliver value to its
customers. In process mining these processes can be discovered from so-called
event logs, which represent traces of process execution in the form of ordered
events. While the discovery of processes models from event logs is a thoroughly
researched topic, the discovery of the relation between the event logs is over-
looked. From a model perspective, the relationship between several business
process models is studied in the area of Business Process Architectures (BPA).
BPAs provide an abstract view of all business process models happening in one
organization. Authors in [2] emphasize that different types of patterns are iden-
tified to express the relation between two different business processes. However,
the following patterns are widely used throughout the literature:

– decomposition - a business process model is decomposed into other business
process models each representing a sub process

– specialization - a business process model is a specialized version of another
business process model

– trigger flow - an event of a business process models triggers the instantiation
of another business process model

– information flow - an event of a processes model passes information to another
event of a different process model.

In this paper we focus on discovering the trigger and information flow between
two or more event logs/process models. To this end, Fig. 1 provides a simplified
metamodel of BPA and event log repository to describe their relation at a con-
ceptual level and to identify the addressed research gap. On the left-hand side,
BPA is defined as a composition of Process Models and Information or Trigger
Flow Models between them. The Process Model, in its simplest form, is a com-
position of the Flow Node Models and Sequence Flow Models. The Flow Node
Model, which can be an Activity or Event Model, corresponds to some Events
of an Event Log, on the right-hand side. An Event Log, one of the many in a
company’s Event Log Repository, is a collection of events that are grouped in
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Fig. 1. The meta-model for describing the relation between the business process archi-
tecture and the event log

traces or cases. One Event log corresponds to exactly one Process Model. The
aim of this paper is to discover the relationship between a set of event logs at a
BPA level of abstraction.

To discover the trigger and information flow between at least two business
process models it is necessary to identify respectively the throwing and catching
event models. The throwing event model is considered as active because it sends
a signal. It can be an intermediate or end event model. In contrast, the catching
event model is considered as passive because it waits for the signal to arrive. It
can be a start or intermediate event model.

Fig. 2. Trigger and information flow patterns from [3]

To illustrate the BPA we use the graphical representation presented in [3]
and depicted in Fig. 2. On the left-hand side of the figure, the throwing end event
e1 of process p1 instantiates the process p2 through the catching start event
s2. The process can also be instantiated from an intermediate event t1. On the
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right-hand side, the information flow patterns represent the case where process
p2 receives information from an intermediate or end event of process p1.

3 Event Log Awareness

Given a set of event logs derived from a single organization, we show how to
discover a business process architecture of that organization. The focus here is
on the discovery of the trigger and information flow between processes. To realize
that, we exhaustively investigate all unique pairs of event logs in the repository
and draw the final BPA. Below we show how to analyze a pair of event logs in
order to discover the trigger and information flow between them.

As a prerequisite, for a trigger or information flow to exist between two event
logs, at least one event log has to be aware of the other. With awareness we mean
here that a significant number (decided by the process mining expert) of cases
of a given event log contain explicit information about the existence of cases
pertaining to the other event log. In short, an event log is aware of another
if a significant number of its cases are aware of the other. A case is aware of
another case from a different event log if it contains specific information about
it. Figure 3 depicts an example of case awareness. Formally we have:

Definition 1. A cases Ci is aware of a case Cj, where Ci and Cj pertain to
two different event logs Ei and Ej, if at least one event in case Ci contains
information that refers to the case id of case Cj. Let’s denote CawEi,Ej

⊆ Ei×Ej

the set of all ordered pairs of cases (Ci, Cj) where Ci ∈ Ei is aware of Cj ∈ Ej.

Fig. 3. Example of a case from event log Ei being aware of another case from event
log Ej

Subsequently, we define the event log awareness:

Definition 2. An event log Ei is aware of another event log Ej if its awareness
is not less than a threshold τ , where 0% ≤ τ ≤ 100% is specified by the process
mining expert. The awareness of event log Ei for the event log Ej is defined as

AwEi,Ej
=

|CawEi,Ej
|

|Ei| .
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As one may notice, the awareness is not symmetric, in that CawEi,Ej
may be

different from CawEj ,Ei
. Moreover, a case Ci from Ei can be aware of more than

a single case from event log Ej as shown later in Sect. 7, where a case triggers
two cases of the opposite log.

Given two event logs, we have to first check whether one of the event logs
is aware of the other. If none of the event logs are aware then there cannot be
a trigger or information flow to speak of. Otherwise, we have to analyze all the
aware cases of the respective event logs. Specifically, we need to decide on a case
basis whether there is a trigger or information flow. Only then we can discover
the generalized trigger or information flow at the BPA model abstraction level.
The discovery part is very crucial because the trigger or information flow might
depend on a case to case basis. For example, in half of the cases the trigger
or information flow source is a throwing activity A and in the other half is
a throwing activity B. To capture this kind of behavior, we extend the BPA
modeling language in Sect. 5.

Event logs usually do not contain explicit information whether certain events
in them are catching or throwing. Therefore, we have to deduce this information
via other means. Specifically, in order to detect whether there is an information
or trigger flow between two events where at least one case is aware of the other
(see Definition 1) we have to analyze:

1. the causality relationships between these events
2. and, in case of information flow, the information contained in these events,

i.e., the event attributes.

4 Discovering the BPA

In this section, we provide the detailed methods of deriving the trigger flow and
information flow from a pair of event logs.

4.1 Trigger Flow

As mentioned above, to discover the trigger flow behavior between two event
logs we have to detect the trigger flow instance for each case, then use process
discovery techniques to arrive at a general representation at the BPA level. The
overall approach to discover the trigger flow between two event logs is described
in Fig. 4.

For simplicity purposes, every pair of aware cases from the opposite event logs
(from hereon referring to cases belonging to two different event logs respectively)
are merged into one joined case where the new case id is the cross product of the
original case ids. Each event is annotated accordingly in order to specify which
event log it originates from. All the merged cases are put together in a joined
event log Eij .

For each pair of opposite cases, where one is aware of the other, we have to
detect the source and the target of the trigger flow instance. The target of a
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Fig. 4. The overall method for discovering the trigger flow patterns between two event
logs

trigger flow is always a start event. On a case level, the target of the trigger flow
instance must always be the first event of the case. Therefore, the only candidate
for the target of the trigger flow instance between the two start events is the one
that occurs second.

1 input: merged event log Eij

2 output: auxiliary event log (Eaux)

3 #i_event and j_event refer to events that originate

respectively from Ei and Ej

4 for case in Eij{

5 start_event_i = first_i_event (case)

6 start_event_j = first_j_event (case)

7 if start_event_i .index < start_event_j .index{

8 target_event = start_event_j

9 }

10 else{

11 continue #jump to the next case

12 }

13 for event_index = target_event.index -1 to 0 step -1{

14 candidate_event = case.get_event_with_index(event_index)

15 if candidate_event is i_event{

16 source_event = candidate_event

17 add source_event to Eaux

18 add target_event to Eaux

19 break }}}

Listing 1.1. The algorithm for detecting the trigger flow instances between two event
logs

Once the candidate target of the trigger flow instance is fixed, we have to
detect its source, which is a throwing event from the opposite event log that
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happens before the target event. From all the possible events we choose as the
source of the trigger flow instance the latest event among those that refer to the
id of the target case. We argue that this is very important because the trigger
flow source event is responsible for passing all the important information (at
least the case id) required to start a new instance on the target process model.
The exact algorithm for detecting the trigger flow instances for each pair of
aware cases is provided in Listing 1.1.

If a trigger flow is detected between two cases, then its source and target
events are added to an auxiliary event log. This event log has as a case id the
combination of the source and target case id (the same as in event log Eij).
Once it is completed with all possible source and target events, it is mined to
discover the final behavior of the trigger flow. This is important as the trigger
flow between two business process models in a BPA might not always be static,
in that the trigger flow might have more than one source and as well more than
one target. We show in Sect. 7 that it is very important to capture this behavior
on the BPA level to enable comprehensive analyses.

4.2 Information Flow

Similarly to the way we discover trigger flows between two event logs, we have
to consider on a case basis about the existence of data flowing between events of
opposite event logs. The method overview is presented in Fig. 5. An information
flow instance between two aware cases assumes the existence of a throwing and
a catching event from opposite cases that manifests a data flow, i.e., the infor-
mation contained in the throwing event is passed to the catching event. In other
words, we look for new information appearing in one event that stems from an
event of the opposite event log.

Fig. 5. The overall method for discovering the trigger flow patterns between two event
logs
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Differently from trigger flows where we consider only the start events of the
processes, here we have to consider all the possible events with few exceptions,
e.g., start events cannot be throwing and end events cannot be catching.

A joint event log Eij is created in the same manner as described above for
discovering the trigger flows. What is slightly different is that all the common
attributes between two event logs have to be identified first. If two event logs
share no common attributes other than the case id (which is a given since at
least one event log is aware of the other), then there is no information flow to
consider. It is worth pointing out that the attribute name may not be sufficient to
check whether two attributes from different logs have the same domain and value
ranges or, in short, refer to a common thing. That is why this step might require
a process mining expert to create a mapping of attributes that are believed to
represent the same thing.

Once the common attributes are identified, the search space for the data
flowing from one event log to another is reduced just to these attributes. From
this point on, we consider one attribute at a time for determining whether there
is an information flow that concerns the attribute at hand.

1 input: merged event log Eij

2 output: auxiliary event log (Eaux)

3 #i_event and j_event refer to events that originate respectively from

Ei and Ej

4 for case in Eij{

5 checked_event = first_i_event(case)

6 if checked_event == Null{

7 continue}#jump to the next case

8 last_found_index = -1

9 for event in case{

10 if event is i_event{

11 if event.attribute.value <> checked_event.attribute.value{

12 target_index = event.index

13 source_found = False

14 for s=last_found_index to target_index -1{

15 if event_with_index(s) is j_event and event_with_index (s).

attribute.value == event.attribute.value{

16 source_event = event_with_index(s)

17 target_event = event

18 source_found = True

19 last_found_index = s

20 break

21 }

22 }

23 if source_found{

24 intermediate_event = new event

25 intermediate_event.case = source_event.case

26 intermediate_event.name = source_event_name+target_event_name

+attribute.name intermediate_event.timestamp = mean_value

(source.event.timestamp , target.event.timestamp)

27 add source_event to Eaux

28 add intermediate_event to Eaux

29 add target_event to Eaux

30 }

31 }

32 checked_event=event }}}

Listing 1.2. Information flow algorithm
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Considering a single common attribute between two event logs, we cycle
through all the pairs of cases where one is aware of the other. For each pair
of cases we consider only the events that access the attribute. Anytime a new
attribute value appears in an event, i.e., the attribute value is not present in all
preceding events from the same case, we look at the opposing case to determine
whether this value appears in any of the events that happened prior to the
original one. If yes, we take the latest event where that occurs as the source of
the information flow instance and the event with the new value as its target.

The source and the target event of the information instance is added to an
auxiliary event log similar to the one used for the trigger flow. However, here we
add one more event (between source and target) that is labeled as the composi-
tion of the source and target label plus the attribute at hand. As a timestamp,
it takes the median time of the original events. This step is added because a)
there might exist more than one information flow between two cases related to
the same attribute and b) information flows for different attributes need to be
distinguishable from each other. This algorithm is described in Listing 1.2.

Once the auxiliary event log is completed we apply a process discovery tech-
nique to discover the behavior of the information flow. The output is a behavioral
model, usually represented as Petri net, that captures the behavior of the infor-
mation flow for one common attribute. This model is then translated into a
BPA. If two or more information flows overlap, i.e., they have the same source
and target, they can be represented as one information flow that represents the
passing of composed information.

Since the behavior of the trigger and information flow is a new concept we
extend the BPA representation from [3] with some new lightweight notions to
capture exclusive or parallel patterns between trigger and information flows in
the section below.

5 The Extension of the BPA’s Graphical Representation

The state-of-the-art research on BPA does not suffice in capturing behavior of
the trigger and information flow that we observed by analyzing a set of real-life
event logs (see Sect. 7). In this section we address this gap by introducing an
extension of the graphical representation of BPA (presented in Fig. 2).

For representing the complex behavior of the trigger and information flow
we borrow the concept of gateways from BPMN 2.0 [4], specifically the XOR
and AND gateway. Figure 6 shows how these gateways are used given a set of
specific scenarios.

Figure 6a) represents the case when there exists more than one start event
in an event log, i.e., traces do not always start with the same event instance.
In contrast, Fig. 6b) represents the case where there is more than one event in
the first event log that triggers the process instantiation of the second event log.
The same can be observed for the information flow in Fig. 6c) and d).

Despite the gateways being represented in the space between the processes,
they represent the behavior of either the source events (for join gateways) or
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Fig. 6. Complex behaviour of trigger and information flow

target events (for split gateways) of the respective trigger/information flow.
For example, the difference between the trigger flow’s XOR and AND splits in
Fig. 6a) consists in that, in the former, s2 and s2′ start events are in a exclusive
relation between each other, while in the latter, they are in a parallel relation.
Obviously, this information is found in the event log of process p2. This infor-
mation is required in addition to the auxiliary logs to determine whether we use
an XOR or AND gateway.

In Fig. 6 the orchestration of these gateways happens inside the processes.
However there might be more complex cases where, for example, a process is
triggered only after two or more processes have been executed or, after a pro-
cess is executed, there is a decision on which following process to trigger. Such
cases are not covered in this paper and require the analyzing of more than two
processes at once across the process repository. The gateways in those cases
would lay outside the processes similar to a process choreography setting where
enforcing gateways becomes much more complicated [5].

Depending on the process discovery approach applied to the auxiliary event
log a behavior model is obtained. The majority of algorithms output a Petri Net
model. Known techniques, like in [6], can be used to derive the process gateways
from a Petri Net model.

6 Related Work

Business process architecture is subject to extensive research work. One of the
earliest publications from Dijkman et al. [2] gives an overview and classification
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of the main approaches for designing a BPA: goal-based, action-based, object-
based, reference model based, function-based. Each design approach was evalu-
ated in terms of ease of use and usefulness by asking 39 practitioners active in
the area of BPM.

In [3], the authors take an action-based approach and focus on the formal con-
ceptualization of the BPA. They introduce a set of patterns to analyze the inter-
actions among several business processes in an organization. Our work extends
on their work for discovering the trigger and information flow patterns not by
analyzing the process models but rather discovering them directly from the event
logs.

Conforti et al. in [7] and [8] address the composition relation between pro-
cesses by providing an approach that discover BPMN models which contains
sub-processes and their interrupting or non-interrupting boundary events from
an event log. Similar to our approach, authors consider event log attributes to
identify the events that are more likely to be part of a sub-process. Afterwards,
traditional process mining techniques are applied to the event data belonging to
both the sub-process and the original process. Differently from their solution, we
consider a set of event logs to determine their trigger/information flow relations
and represent them on a higher abstraction level like BPA.

In [9] Menijvar et al. propose an approach to support fast detection of clones
in big business process repositories. Each process model within one repository
is indexed in order to identify duplicate fragments and later can be refactored
into shared sub-processes. Differently from our approach, the refactoring is made
based only on the activity labels since the business process model is the only
source of information.

Lu et al. [10] propose an approach to detect hierarchical process models from
event logs. The discovered processes are represented as multi-level interleaved
sub-processes. The authors consider activity trees, which are defined as the hier-
archical relation between the process activities. The proposed approach can be
fully automated or fully supervised by a process expert. Our approach can be
fully automated given that the attributes labels are consistent across the event
log repository.

In [11] Enegle et al. present the EDImine Framework, which is used for gain-
ing business/economic insights from Electronic Data Interchange (EDI) messages
happening between inter-organizational business processes. To use the EDI mes-
sages for inter-organizational process mining the authors explain how the EDI
messages are correlated into the event log cases. The resulting event log is than
made available to business process mining experts. Different from our work,
the authors start from the electronic data exchanged between organizations to
extract an event log.

7 Evaluation

To evaluate the effectiveness of our approach, we are using the real-life event logs
provided in the scope of the BPI Challenge 2017 [12] and BPI Challenge 2020
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[13]. To evaluate the feasibility of our algorithms (presented in Sect. 4) we imple-
mented them in Python through the PM4PY framework [14]. The implemented
algorithms are available on the GitHub repository1.

Fig. 7. The discovered trigger flows (simple and detailed representation) of the BPI
Challenge 2017

The 2017 BPI challenge deals with loan applications. There are two event
logs: 1) the Application event log is about customers’ application for obtaining a
bank credit; 2) the Offer event log is about credit offers proposed by the financial
institute as a response to the customer’s application. The Application event log
contains 1.160.405 events and 31.509 cases, while the Offer event log contains
93.846 events and 42.995 cases. Both event logs contain events from January
2016 till February 2017. Before applying the BPA discovery approach, we first
clean the Application log of any event that is also found in the Offer log. This is
performed because we are only interested in discovering the BPA’s trigger and
information flow patterns instead of the composition or specialization patterns
where common events are of the most importance.

Following our approach, we first check whether these event logs are aware of
each other according to Definition 1. Indeed that is the case: The ApplicationID
attribute of the Offer event log refers to the CaseID attribute of the Application
event log in all cases, hence AwOffer,Application = 1.

After determining the awareness the event logs are joined into one event log,
which is subject to the two algorithms presented in Sect. 4. The output auxiliary
event log is mined based on the Inductive Visual Miner algorithm [15]. The
resulting process architecture model is obtained and illustrated in Figs. 7 and 8.
1 GitHub: https://github.com/DorinaBano/BPA from event log.git.

https://github.com/DorinaBano/BPA_from_event_log.git
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We discovered that the application process has a 1-to-n trigger relation with
the offer process in that each application process instance can trigger more than
one offer process instance. Specifically, there are three intermediate events in
the application process as sources of the trigger flow: A Accepted, A Complete
and A Incomplete. Looking at the internal behavior of the application process
(see Fig. 7), we can observe that the offer process is always instantiated by the
A Accepted event. In addition, within the same application process instance, the
offer process can be instantiated again by either A Complete or A Incomplete
events.

With respect to information flow, the only common attribute that is shared
between the event logs and is not static is the user associated with the activity
being performed. In this sense, Fig. 8 depicts the implicit information carried by
particular employees when they switch to performing different tasks between the
two event logs. From the detailed representation of the information flow, we can
understand that in the positive case of the application getting accepted: 1) the
user who returns the offer was also involved in validating the application; and 2)
the user who successfully ends the application processes (A Pending is always at
the end of a positive application process) is the same one who accepted the offer.
Likewise, the person who cancels the offer is previously involved with canceling
the application.

Fig. 8. The discovered information flows (simple and detailed representation) of the
BPI Challenge 2017

BPI Challenge 2020 is concerned with five event logs and it contains informa-
tion about travel expense claims from the Eindhoven University of Technology
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(TU/e) located in the Netherlands. Two types of trips are distinguished in the
provided event logs: 1) domestic trips - the employee applies for reimbursement
after the trip has taken place and 2) international declaration trips - the per-
mission has to be approved by the supervisor before the trip starts.

Three out of five provided event logs are aware of each other (based on
Definition 2): 1) PrePaidTravelCost which contains 2,099 cases and 18,246
events; 2) InternationalDeclaration with 6,449 cases, 72151 events; 3) Permit
which holds 7,065 cases, 86,581 events. The Permit id attribute of the PrePaid-
TravelCost event log refers to the CaseID attribute of the Permit event log.
In addition, the Permit id2 attribute of the InternationalDeclaration event log
refers to the CaseID attribute of the Permit event log. This implies that Pre-
PaidTravelCost and InternationalDeclaration are both aware of Permit event
log. Again, we cleaned the duplicate events for each pair of event logs under
consideration.

Fig. 9. The discovered trigger flows of the BPI Challenge 2020

The BPI Challenge 2020 does not contain an explicit information flow pattern
as most of the attributes in the event logs are static, in that they do not change
inside a case.

The resulting BPA with respect to the trigger flow for the aware event logs is
illustrated in the Fig. 9. The start event Start Trip of the Permit log is triggered
either by the Payment Handled event of the PrePaidTravelCost event log or
by the same event of the InternationalDeclaration event log. This means that
whenever the last event Payment Handled occurs in both event logs, the start
event Start Trip of the Permit log is triggered. This can be explained by the fact
that there are cases in the Permit event log where there are no payments being
handled. For those cases, the payment is handled in the previous processes. After
the payment is handled the trip can start.

Looking at the discovered BPAs from these real-life event logs, we can con-
clude that the new insights, coming from the BPA’s trigger and information flow,
cannot be obtained by individually analyzing the event logs or, even better, just
analyzing the process models.
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8 Conclusion

This paper provides an approach for discovering a business process architecture
from a set of event logs that are extracted from the execution of processes within
the same organization. The business process architecture provides a high level
perspective on an enterprise’s running processes and the relation between these
processes. It aids in identifying and understanding the complex interdependen-
cies and relationships between the processes.

Our approach focuses on two such interdependencies: the trigger flow and
the information flow between two or more given processes. Together they pro-
vide useful insights on how the information is shared between processes and
how the instantiation of a process depends on the execution of another process.
The approach is not only able to identify such relations but also their complex
behavior, for example, a single process that spawns multiple instances of another
process. The feasibility and effectiveness of the approach are evaluated by being
applied on two real-life event logs.

Future work includes the investigation of other types of relations between
processes in a BPA, namely, the specialization and composition relations. These
would require the investigation of exact same events that appear across multiple
event logs to determine whether a process is a composition of another one or a
detailed process of a more general one.
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Abstract. Process mining enables organizations to discover and ana-
lyze their actual processes using event data. Event data can be extracted
from any information system supporting operational processes, e.g., SAP.
Whereas the data inside such systems is protected using access control
mechanisms, the extracted event data contain sensitive information that
needs to be protected. This creates a new risk and a possible inhibitor
for applying process mining. Therefore, privacy issues in process mining
become increasingly important. Several privacy preservation techniques
have been introduced to mitigate possible attacks against static event
data published only once. However, to keep the process mining results
up-to-date, event data need to be published continuously. For example,
a new log is created at the end of each week. In this paper, we elaborate
on the attacks which can be launched against continuously publishing
anonymized event data by comparing different releases, so-called corre-
spondence attacks. Particularly, we focus on group-based privacy preser-
vation techniques and show that provided privacy requirements can be
degraded exploiting correspondence attacks. We apply the continuous
event data publishing scenario to existing real-life event logs and report
the anonymity indicators before and after launching the attacks.

Keywords: Process mining · Privacy preservation · Correspondence
attacks · Event data

1 Introduction

Process mining bridges the gap between data science and process science using
event logs. Event logs are widely available in different types of information sys-
tems [1]. Events are the smallest units of process execution which are character-
ized by their attributes. Process mining requires that each event contains at least
the following main attributes to enable the application of analysis techniques:
case id, activity, and timestamp. The case id refers to the entity that the event(s)
belongs to, and it is considered as a process instance. The activity refers to the
activity associated with the event, and the timestamp is the exact time when
the activity was executed for the case. Moreover, depending on the context of a
process, the corresponding events may contain more attributes. Table 1 shows a
part of an event log recorded by an information system in a hospital.
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Table 1. Sample event log (each row represents an
event).

Case Id Activity Timestamp Resource Disease

1 Registration

(RE)

01.01.2019-08:30:00 Employee1 Flu

1 Visit (VI) 01.01.2019-08:45:00 Doctor1 Flu

2 Registration

(RE)

01.01.2019-08:46:00 Employee1 Corona

3 Registration

(RE)

01.01.2019-08:50:00 Employee1 Cancer

· · · · · · · · · · · · · · ·
1 Release

(RL)

01.01.2019-08:58:00 Employee2 Flu

3 Visit (VI) 01.02.2019-10:15:00 Doctor3 Cancer

2 Release

(RL)

01.02.2019-14:00:00 Employee2 Corona

3 Blood Test

(BT)

01.02.2019-14:15:00 Employee5 Cancer

· · · · · · · · · · · · · · ·

Table 2. A simple event log
derived from Table 1 (each row
represents a simple process
instance).

Case Id Trace Disease

1 〈RE, V I, ..., RL〉 Flu

2 〈RE, ..., RL〉 Corona

3 〈RE, ..., V I, BT, ...〉 Cancer

· · · · · · · · ·

In Table 1, each row represents an event. A sequence of events, associated
with a case id and ordered using the timestamps, is called a trace. Table 2 shows
a simple trace representation of Table 1 where the trace attribute is a sequence
of activities. Some of the event attributes may refer to individuals, e.g., the
case id refers to the patient whose data is recorded, and the resource refers to
the employees performing activities for the patients, e.g., surgeons. Also, some
sensitive information may be included, e.g., the disease attribute in Table 1.
When individuals’ data are included in an event log, privacy issues emerge, and
organizations are obliged to consider such issues according to regulations, e.g.,
the European General Data Protection Regulation (GDPR)1.

The privacy/confidentiality issues in process mining are recently receiv-
ing more attention. Various techniques have been proposed covering different
aspects, e.g., confidentiality frameworks [19], privacy guarantees [5,11,18], inter-
organizational privacy issues [3], privacy quantification [16,20], etc. Each of these
approaches considers a single event log shared at some point in time. This even
log is published considering the privacy/confidentiality issues of a single log in
isolation. However, event logs are recorded continuously and need to be published
continuously to keep the results of process mining techniques updated.

Continuous event data publishing lets an adversary launch new types of
attacks that are impossible when event data are published only once. In this
paper, we analyze the so-called correspondence attacks [7] that an adversary can
launch by comparing different releases of anonymized event logs when they are
continuously published. Particularly, we focus on group-based Privacy Preserva-
tion Techniques (PPTs) and describe three main types of correspondence attacks
including forward attack, cross attack, and backward attack. We analyze the

1 http://data.europa.eu/eli/reg/2016/679/oj.

http://data.europa.eu/eli/reg/2016/679/oj
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Fig. 1. The general data collection and publishing scenario.

privacy/anonymity losses imposed by these attacks and show how to detect such
privacy losses efficiently. The explained anonymity analyses could be attached to
different PPTs to empower them against the attacks or to change the data pub-
lishing approaches to bound such attacks. We applied different continuous event
data publishing scenarios to several real-life event logs and report the anonymity
indicators before and after launching the attacks for an example event log.

The remainder of the paper is organized as follows. In Sect. 2, we present the
problem statement. In Sect. 3, the preliminaries are explained. Different types
of correspondence attacks are analyzed in Sect. 4. In Sect. 5, we explain the
attack detection techniques and privacy loss quantification. Section 6 presents
the experiments. Section 7 discusses different aspects to extend the approach.
Section 8 discusses related work, and Sect. 9 concludes the paper.

2 Problem Statement

Figure 1 shows our general data collection and publishing scenario. Information
systems, e.g., SAP, provide operational support for organizations and continu-
ously generate a lot of valuable event data. Such data are continuously collected
and published, e.g., weekly, to be used by process mining tools, e.g., ProM,
Disco, etc. On the analysis side, process mining techniques are applied to event
logs to discover and analyze real processes supported by operational informa-
tion systems. With respect to the types of data holder’s models, introduced in
[9], we consider a trusted model where the data holder, i.e., the business owner,
is trustworthy, but the data recipient, i.e., a process miner, is not trustworthy.
Therefore, PPTs are applied to event logs when they are published.

Continuous data publishing is generally classified into three main categories:
incremental, decremental, and dynamic [8]. Continuous event data publishing is
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Table 3. An anonymized event log
published at timestamp t1 (e.g.,
week 1), meeting 2-anonymity and
2-diversity when the assumed BK
is a sequence of activities with the
maximum length 3.

Case Id Trace Disease

1 〈a, b, c, d〉 Corona

2 〈a, b, c, d〉 Flu

3 〈a, e, d〉 Fever

4 〈a, e, d〉 Corona

Table 4. An anonymized event log
published at timestamp t2 (e.g.,
week 2), meeting 2-anonymity and
2-diversity when the assumed BK
is a sequence of activities with the
maximum length 3.

Case Id Trace Disease

10 〈a, b, c, d〉 Corona

20 〈a, b, c, d〉 Flu

30 〈a, b, c, d〉 HIV

40 〈a, e, d〉 Fever

50 〈a, e, d〉 Corona

considered as incremental, i.e., the events generated by an information system are
cumulatively collected, and they are not updated or deleted after the collection.
Thus, the so-called correspondence knowledge is gained. If we assume that in
a continuous event data publishing scenario, the event logs are collected and
published weekly, the correspondence knowledge is as follows: (1) Every case
started in the i-th week is in the i-th event log Li, and must be in Lj , i < j, and
(2) Every case started in the j-th week is in the j-th event log Lj , and cannot
be in Li, i < j. Although each single anonymized event log L′ meets the privacy
guarantees specified in the corresponding PPT, the adversary, who has access to
the different releases of anonymized event logs, can exploit the correspondence
knowledge to degrade the provided privacy guarantees.

Consider Table 3 and Table 4 as two anonymized event logs, L′
1 and L′

2, pub-
lished at timestamps t1 (week 1) and t2 (week 2), respectively. Note that the
case identifiers are dummy identifiers independently assigned to the cases of
each release. If we assume that an adversary’s Background Knowledge (BK) is
a sequence of activities with maximum length 3, both published event logs have
2-anonymity and 2-diversity. Assume the situation where the adversary knows
that 〈a, b, c〉 is a subsequence of activities performed for a victim case, and that
the process of the case has been started in the second week, i.e., it should be
included in Table 4. Based on the correspondence knowledge, the only matching
case is 30. Note that by a simple comparison of L′

1 and L′
2 based on the disease

attribute, it is obvious that cases 10 and 20 have to be started in the first week
and cannot match the adversary’s BK. This is called backward attack (B-attack)
which is a specific type of the correspondence attacks.

The provided attack scenario shows that when event logs are collected
and published continuously, the corresponding PPDP approaches need to be
equipped with some techniques to detect the potential attacks that can be
launched by an adversary who receives various anonymized event logs. In this
paper, we focus on simple event logs and group-based PPTs, i.e., k-anonymity,
l-diversity, t-closeness, etc. We first describe the approach based on two releases
of event logs, then we explain the possible extensions for any number of releases.



182 M. Rafiei and W. M. P. van der Aalst

3 Preliminaries

We first introduce some basic notations. For a given set A, A∗ is the set of
all finite sequences over A. A finite sequence over A of length n is a mapping
σ ∈ {1, ..., n} → A, represented as σ = 〈a1, a2, ..., an〉 where ai = σ(i) for
any 1 ≤ i ≤ n. |σ| denotes the length of the sequence. For σ1, σ2 ∈ A∗, σ1 �
σ2 if σ1 is a subsequence of σ2, e.g., 〈z, b, c, x〉 � 〈z, x, a, b, b, c, a, b, c, x〉.0 For
σ = 〈a1, a2, ..., an〉, pref(σ) = {〈a1, ..., ak〉 | 1 ≤ k ≤ n}, e.g., 〈a, b, c, d〉 ∈
pref(〈a, b, c, d, e, f〉).

Definition 1 (LCS and SCS). Let σ1 ∈ A∗ and σ2 ∈ A∗ be two sequences.
CSB(σ1, σ2) = {σ ∈ A∗ | σ � σ1 ∧ σ � σ2} is the set of common subsequences,
and LCS(σ1, σ2) = {σ ∈ CSB | ∀σ′∈CSB(σ1,σ2)|σ′| ≤ |σ|} is the set of longest
common subsequences. LCSσ1

σ2
denotes the length of a longest common subse-

quence for σ1 and σ2. Also, CSP (σ1, σ2) = {σ ∈ A∗ | σ1 � σ ∧ σ2 � σ}
is the set of common super-sequences, and SCS(σ1, σ2) = {σ ∈ CSB |
∀σ′∈CSP (σ1,σ2)|σ′| ≥ |σ|} is the set of shortest common super-sequences. SCSσ1

σ2

denotes the length of a shortest common super-sequence for σ1 and σ2.

Definition 2 (Event, Event Log). An event is a tuple e = (c, a, t, r, d1, ...,
dm), where c ∈ C is the case id, a ∈ A is the activity associated with the event,
t ∈ T is the event timestamp, r ∈ R is the resource, who is performing the
activity, and d1,...,dm is a list of additional attributes values, where for any
1 ≤ i ≤ m, di ∈ Di. We call ξ = C×A×T ×R×D1× ...×Dm the event universe.
For e = (c, a, t, r, d1, ..., dm), πc(e) = c, πa(e) = a, πt(e) = t, πr(e) = r, and
πdi

(e) = di, 1 ≤ i ≤ m, are its projections. An event log is L ⊆ ξ where events
are unique.

In continuous event data publishing, event logs are collected and published
continuously at each timestamp ti, i ∈ N≥1. Li is the event log collected at the
timestamp ti, i.e., Li = {e ∈ ξ | πt(e) ≤ ti}. For Li and Lj , s.t., i < j, Lj

could contain new events for the cases already observed in Li and new cases not
observed in Li. In the following, we define a simple version of event logs which
will later be used for demonstrating the attacks and corresponding anonymity
measures.

Definition 3 (Trace, Simple Trace). A trace σ = 〈e1, e2, ..., en〉 ∈ ξ∗ is a
sequence of events, s.t., for each ei, ej ∈ σ: πc(ei) = πc(ej), and πt(ei) ≤ πt(ej)
if i < j. A simple trace is a trace where all the events are projected on the activity
attribute, i.e., σ ∈ A∗.

Definition 4 (Simple Process Instance). We define P = C×A∗×S as the
universe of simple process instances, where S ⊆ D1∪...∪Dm is the domain of
the sensitive attribute. Each simple process instance (c, σ, s) ∈ P represents a
simple trace σ = 〈a1, a2, ..., an〉, belonging to the case c with s as the sensitive
attribute value. For p = (c, σ, s) ∈ P, πc(p) = c, πσ(p) = σ, and πs(p) = s are
its projections.
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Definition 5 (Simple Event Log). Let P = C×A∗×S be the universe of
simple process instances. A simple event log is L ⊆ P, s.t., if (c1, σ1, s1) ∈ L,
(c2, σ2, s2) ∈ L, and c1 = c2, then σ1 = σ2 and s1 = s2.

4 Attack Analysis

We analyze the correspondence attacks by focusing on two anonymized releases
obtained by applying group-based PPTs to simple event logs. In general, group-
based PPTs provide desired privacy requirements utilizing suppression and/or
generalization operations. Particularly, the group-based PPTs introduced for
the event data protection are mainly based on the suppression operation [5,18],
where some events are removed to provide the desired privacy requirements.
Hence, apart from any specific privacy preservation algorithm, we define a gen-
eral anonymization function that converts an event log to another one meeting
desired privacy requirements assuming a bound for the maximum number of
events that can be removed from each trace, so-called the anonymization param-
eter. Note that this assumption is based on the minimality principle in PPDP
[21]. Similar attack analysis can be done for the generalization operation as well.

Definition 6 (Anonymization). Let P be the universe of simple process
instances and n ∈ N≥1 be the anonymization parameter. We define anonn ∈
2P → 2P as a function for anonymizing event logs. For all L,L′ ⊆ P,
anonn(L) = L′ if there exists a bijective function f ∈ L → L′, s.t., for any
p = (c, σ, s) ∈ L and p′ = (c′, σ′, s′) ∈ L′ with f(p) = p′: σ′ � σ, |σ| − n ≤ |σ′|,
and s′ = s.

Fig. 2. L1 and L2 are two simple event logs collected at timestamps t1 and t2. L′
1

and L′
2 are the corresponding anonymized releases of event logs given n = 1 as the

anonymization parameter. Both L′
1 and L′

2 have 5-anonymity and 2-diversity assuming
a sequence of activities as the BK.

Note that we assume the anonymization function promises to preserve all the
cases and not to produce new (fake) cases. Figure 2 shows two simple event logs
that were published using the anonymization function given n = 1. Specialization
is the reverse operation of the anonymization defined as follows.
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Definition 7 (Specialization). Let P be the universe of simple process
instances and n ∈ N≥1 be the anonymization parameter. For p = (c, σ, s) ∈ P
and p′ = (c′, σ′, s′) ∈ P, we say p is a specialization for p′ w.r.t. n, denoted by
p′np iff σ′ � σ, |σ| ≤ |σ′| + n, and s = s′.

Consider p′ = (81, 〈a, b, c〉, Corona) as a process instance from the
anonymized event log L′

2 in Fig. 2. Given n = 1, the cases 1, 2, and 3 from
L2 could be a specialization for p′ which are possible original process instances.
We assume that the adversary’s BK is a subsequence of activities performed for
a victim case which can be considered as the strongest assumable knowledge
w.r.t. the available information in simple event logs. Given an anonymized event
log and the anonymization parameter, the adversary can distinguish a match-
ing set in the anonymized release containing all the process instances having at
least one specialization matching the adversary’s knowledge. One of the process
instances included in such a matching set belongs to the victim case.

Definition 8 (Matching Set, Group). Let n ∈ N≥1 be the anonymization
parameter and L′ be an anonymized event log. msL′,n ∈ A∗ → 2L′

retrieves a
set of matching process instances from L′. For bk ∈ A∗, msL′,n(bk) = {p′ ∈
L′ | ∃p∈Pp′np ∧ bk � πσ(p)}. A group g in a matching set is a set of process
instances having the same value on the sensitive attribute.

Consider bk = 〈d, e〉 as the adversary’s knowledge and n = 1. For
the anonymized event logs in Fig. 2, msL′

1,n(bk) = L′
1, and msL′

2,n(bk) =
{(c′, σ′, s′) ∈ L′

2 | c′ ∈ {11, 21, 31, 41, 51}}. The elements of matching sets can be
identified using the following theorem without searching the space of specializa-
tions.

Theorem 1 (Elements of matching sets). Let n ∈ N≥1 be the anonymiza-
tion parameter and L′ be an anonymized event log. For bk ∈ A∗ and p′ =
(c′, σ′, s′) ∈ L′, p′ ∈ msL′,n(bk) iff n ≥ |bk| − LCSbk

σ′ .

Proof. Theorem 1 follows because one needs to add at least |bk| − LCSbk
σ′ activ-

ities to generate a super-sequence σ of σ′, s.t., bk � σ. σ can be considered as
the trace of a process instance p which is a specialization for p′. Note that one
can always assign a value for the sensitive attribute of p′, s.t., πs(p) = πs(p′).

Consider a scenario where the data holder publishes L′
1 and L′

2 as two
anonymized event logs at timestamps t1 and t2, respectively. An adversary, who
is one of the data recipients, attempts to identify a victim case vc from L′

1 or
L′
2. We assume that the adversary’s knowledge is a subsequence of activities

performed for the vc, i.e., bk ∈ A∗, and the approximate time at which the pro-
cess of the vc has been started, which is enough to know the release(s) where
the vc should appear. For example, if event logs are published weekly, then the
adversary knows that the process of the vc has been started in the second week.
Thus, its data should appear in all the event logs published after the first week.
The adversary has also the correspondence knowledge derived from the concept
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of continuous event data publishing, as described in Sect. 2. The following cor-
respondence attacks can be launched by the adversary.

Forward Attack (F -Attack). The adversary knows that the process of the
vc has been started at the approximate time t, s.t., t ≤ t1, and tries to identify
the vc in L′

1 exploiting L′
2 and bk ∈ A∗ as the BK. The vc due to its timestamp

must have a process instance in L′
1 and L′

2. If there exists a p′
1 ∈ L′

1, s.t.,
p′
1 ∈ msL′

1,n(bk) for an anonymization parameter n, there must be a p′
2 ∈ L′

2

corresponding to p′
1. Otherwise, p′

1 does not match the BK and can be excluded
from msL′

1,n(bk).

Example 1. Consider L′
1 and L′

2 in Fig. 2. Assume that the adversary’s knowl-
edge is bk = 〈d, e〉, and the anonymization parameter is n = 1. msL′

1,n(bk) = L′
1

and msL′
2,n(bk) = {(c′, σ′, s′) ∈ L′

2 | c′ ∈ {11, 21, 31, 41, 51}}. Both matching sets
meet 5-anonymity. However, by comparing L′

1 and L′
2, the adversary learns that

one of the cases 10, 20, 30 cannot have e after d. Otherwise, there must have been
three cases with Corona in msL′

2,n(bk). Therefore, the adversary can exclude one
of 10, 20, 30. Note that the choice among 10, 20, 30 does not matter as they are
equal. Consequently, k is degraded from 5 to 4.

Cross Attack (C-Attack). The adversary knows that the process of the vc has
been started at the approximate time t, s.t., t ≤ t1, and attempts to identify the
vc in L′

2 exploiting L′
1 and bk ∈ A∗ as the BK. The vc because of its timestamp

must have a process instance in L′
1 and L′

2. If there exists a p′
2 ∈ L′

2, s.t.,
p′
2 ∈ msL′

2,n(bk) for an anonymization parameter n, there must be a p′
1 ∈ L′

1

corresponding to p′
2. Otherwise, p′

2 either is started at timestamp t, t1<t ≤ t2,
or it does not match the BK and can be excluded from msL′

2,n(bk).

Example 2. Consider L′
1 and L′

2 in Fig. 2. Assume that the adversary’s knowl-
edge is bk = 〈d, e〉, and the anonymization parameter is n = 1. msL′

1,n(bk) = L′
1

and msL′
2,n(bk) = {(c′, σ′, s′) ∈ L′

2 | c′ ∈ {11, 21, 31, 41, 51}}. Both matching
sets meet 5-anonymity. However, by comparing L′

1 and L′
2, the adversary learns

that one of the cases 11, 21, 31 must be started at timestamp t, s.t., t1<t ≤ t2.
Otherwise, there must have been three cases with HIV in msL′

1,n(bk). Therefore,
the adversary can exclude one of 11, 21, 31. Again, the choice among 11, 21, 31
does not matter as they are equal. Consequently, k is degraded from 5 to 4.

Backward Attack (B-Attack). The adversary knows that the process of the
vc has been started at the approximate time t, s.t., t1 < t ≤ t2, and tries to
identify the vc in L′

2 exploiting L′
1 and bk ∈ A∗ as the BK. The vc has a process

instance in L′
2, but not in L′

1. Hence, if there exists p′
2 ∈ L′

2, s.t., p′
2 ∈ msL′

2,n(bk)
for an anonymization parameter n, and p′

2 has to be a corresponding process
instance for some process instances in L′

1, then p′
2 must be started at timestamp

t, s.t., t ≤ t1 and can be excluded from the matching set msL′
2,n(bk).

Example 3. Consider L′
1 and L′

2 in Fig. 2. Assume that the adversary’s knowl-
edge is bk = 〈d, c〉, and the anonymization parameter is n = 1. msL′

1,n(bk) = L′
1
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and msL′
2,n(bk) = {(c′, σ′, s′) ∈ L′

2 | c′ ∈ {61, 71, 81, 91, 95}}. Both matching sets
meet 5-anonymity. However, by comparing L′

1 and L′
2, the adversary learns that

at least one of the cases 81, 91, 95 must be started at timestamp t, t ≤ t1. Oth-
erwise, one of the cases 10, 20, 30 cannot have a corresponding process instance
in L′

2. Thus, k is degraded from 5 to 4. Note that there are only two cases
with Corona which are not in msL′

2,n(bk) and could be corresponding for cases
10, 20, 30. Hence, at least one of 81, 91, 95 must be started at timestamp t, t ≤ t1.

5 Attack Detection

The correspondence attacks mentioned in Sect. 4 are based on making some
inferences about corresponding cases (process instances). However, there are
many possible assignments of corresponding cases and each of those implies
possibly different event logs, which are not necessarily the actual event logs
collected by the data holder. In this section, we demonstrate the attack detection
regardless of any particular choices. To this end, we first need to define a linker to
specify all the valid assignments. Then, we provide formal definitions for different
types of correspondence attacks and corresponding anonymity indicators.

Definition 9 (Linker, Buddy). Let L′
1 and L′

2 be the anonymized event logs
at timestamps t1 and t2, respectively, and n ∈ N≥1 be the anonymization param-
eter. linkern ∈ L′

1→L′
2 is a total injective function that retrieves the correspond-

ing process instances. For p′
1 ∈ L′

1 and p′
2 ∈ L′

2, linkern(p′
1) = p′

2 iff there exist
p1, p2 ∈ P, s.t., p′

1np1 ∧ p′
2np2 ∧ πs(p1) = πs(p2) ∧ πσ(p1) ∈ pref(πσ(p2)).

(p′
1, p

′
2) is called a pair of buddies if there exists a linker, s.t., linkern(p′

1) = p′
2.

Definition 10 (F -attack). Let L′
1 and L′

2 be two anonymized event logs
released at timestamps t1 and t2, n ∈ N≥1 be the anonymization parameter,
t ≤ t1 be the approximate time at which the process of the victim case has been
started, and bk ∈ A∗ be the BK. The F -attack attempts to identify x as the
maximal excludable cases from msL′

1,n(bk), s.t., for any linker, at least x cases
from the matching set cannot match the BK. x is considered as crack size based
on F -attack.

Definition 11 (C-attack). Let L′
1 and L′

2 be two anonymized event logs
released at timestamps t1 and t2, n ∈ N≥1 be the anonymization parameter,
t ≤ t1 be the approximate time at which the process of the victim case has been
started, and bk ∈ A∗ be the BK. The C-attack tries to identify x (crack size)
as the maximal excludable cases from msL′

2,n(bk), s.t., for any linker, at least x
cases from the matching set cannot match the BK or the timestamp of the victim
case.

Definition 12 (B-attack). Let L′
1 and L′

2 be two anonymized event logs
released at timestamps t1 and t2, n ∈ N≥1 be the anonymization parameter,
t1 < t ≤ t2 be the approximate time at which the process of the victim case has
been started, and bk ∈ A∗ be the BK. The B-attack tries to identify x (crack



Privacy-Preserving Continuous Event Data Publishing 187

size) as the maximal excludable cases from msL′
2,n(bk), s.t., for any linker, at

least x cases from the matching set cannot match the timestamp of the victim
case.

Based on the definitions for the correspondence attacks, the key for attack
detection is the crack size. For calculating the crack sizes, we follow the similar
approach introduced in [7] which is based on the concept of comparability. We
define the comparability at the level of sequences, process instances, and groups.
These definitions are later used to compute the crack sizes of attacks.

Definition 13 (Comparable Sequences). Let σ1, σ2 ∈ A∗ be two sequences
of activities. We say σ1 and σ2 are comparable w.r.t. n ∈ N≥1, denoted by σ1

n∼σ2,
if n is the minimum number of activities that needs to be added to σ1 and/or σ2

to generate a joint super-sequence, or if σ1 can be a prefix of σ2 by adding at
least n activities to σ2.

Theorem 2 (Detecting comparable sequence). Given σ1, σ2 ∈ A∗ and

n ∈ N≥1: σ1
n∼σ2 ⇐⇒

{
n ≥ |σ1| − LCSσ1

σ2 if ∃σ∈LCS(σ1,σ2)σ ∈ pref(σ2)

n ≥ SCSσ1
σ2 − min(|σ1|, |σ2|) otherwise

Proof. If there exists a σ ∈ LCS(σ1, σ2), s.t., σ ∈ pref(σ2), then |σ1| − LCSσ1
σ2

is the minimum number of activities that needs to be added to σ2, s.t., σ1 ∈
pref(σ2). Otherwise, since SCSσ1

σ2
is the length of a shortest common super-

sequence, one needs to add at least SCSσ1
σ2

− min(|σ1|, |σ2|) activities to the
shorter sequence to generate a joint super-sequence.

Definition 14 (Comparable Process Instances). Let p1, p2 ∈ P be two
process instances. We say p1 and p2 are comparable w.r.t. n, denoted by p1

n∼p2,
iff πs(p1) = πs(p2) ∧ πσ(p1)

n∼πσ(p2).

Definition 15 (Comparable Groups). Let L′
1 and L′

2 be two anonymized
event logs released at timestamps t1 and t2, bk ∈ A∗ be the BK, and n ∈ N≥1

be the anonymization parameter. We say two groups g′
1 ⊆ msL′

1,n(bk) and g′
2 ⊆

msL′
2,n(bk) are comparable w.r.t. n, denoted by g′

1
n∼g′

2, iff ∀p′
1∈g′

1
∀p′

2∈g′
2
p′
1

n∼p′
2.

Lemma 1. Let L′
1 and L′

2 be two anonymized event logs at timestamps t1 and t2,
bk ∈ A∗ be the BK, and n ∈ N≥1 be the anonymization parameter. Consider g′

1 ⊆
msL′

1,n(bk) and g′
2 ⊆ msL′

2,n(bk) as two groups, s.t., g′
1

n∼g′
2. If p′

1 ∈ msL′
1,n(bk)

and p′
2 ∈ msL′

2,n(bk) are buddies for a linker, then p′
1 ∈ g′

1 iff p′
2 ∈ g′

2.

Lemma 2. Let L′
1 and L′

2 be two anonymized event logs released at timestamps
t1 and t2, bk ∈ A∗ be the BK, and n ∈ N≥1 be the anonymization parameter.
Consider g′

1 ⊆ msL′
1,n(bk) and g′

2 ⊆ msL′
2,n(bk) as two groups, s.t., g′

1
n∼g′

2. Since
the buddy relationship is injective, at most min(|g′

1|, |g′
2|) process instances in g′

1

have a buddy in g′
2, and there are some linkers where exactly min(|g′

1|, |g′
2|)

process instances in g′
1 have a buddy in g′

2.
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Theorem 3 (Crack size based on F -attack). Let bk ∈ A∗ be the BK,
n ∈ N≥1 be the anonymization parameter, and L′

1 and L′
2 be two anonymized

event logs released at timestamps t1 and t2. Let CG(msL′
1,n(bk),msL′

2,n(bk)) =
{(g′

1, g
′
2) | g′

1 ⊆ msL′
1,n(bk)∧ g′

2 ⊆ msL′
2,n(bk)∧ g′

1
n∼g′

2} be the set of pair of com-
parable groups in the matching sets. For (g′

1, g
′
2) ∈ CG(msL′

1,n(bk),msL′
2,n(bk)),

g′
1 has crack size cs = |g′

1| − min(|g′
1|, |g′

2|). F (msL′
1,n(bk),msL′

2,n(bk)) =
∑

cs
is the number of excludable cases from msL′

1,n(bk) exploiting the F -attack, where∑
is over (g′

1, g
′
2) ∈ CG(msL′

1,n(bk),msL′
2,n(bk)).

Proof. Consider (g′
1, g

′
2) ∈ CG(msL′

1,n(bk),msL′
2,n(bk)). Based on Lemma 2, if

|g′
1| > |g′

2|, at least |g′
1| − min(|g′

1|, |g′
2|) process instances in g′

1 do not have a
buddy in g′

2 for any linker. Also, according to Lemma 1, these process instances
cannot match the given BK. Otherwise, they must have had buddies in g′

2.

Example 4. Consider L′
1 and L′

2 in Fig. 2, n = 1, and bk = 〈d, e〉. |g′
1| = 3

and |g′
2| = 2 for the Corona groups in msL′

1,n(bk) and msL′
2,n(bk), respectively.

cs = 3 − min(3, 2) is the crack size of msL′
1,n(bk) based on F -attack.

Definition 16. (F -Anonymity). Let L′
1 and L′

2 be two anonymized event logs
at t1 and t2, and n ∈ N≥1 be the anonymization parameter. The F -anonymity
of L′

1 and L′
2 is FAn(L′

1,L
′
2) = min

bk∈A∗
|msL′

1,n(bk)|−F (msL′
1,n(bk),msL′

2,n(bk)).

Theorem 4. (Crack size based on C-attack). Let bk ∈ A∗ be the BK,
n ∈ N≥1 be the anonymization parameter, and L′

1 and L′
2 be two anonymized

event logs released at timestamps t1 and t2. Let CG(msL′
1,n(bk),msL′

2,n(bk)) =
{(g′

1, g
′
2) | g′

1 ⊆ msL′
1,n(bk)∧ g′

2 ⊆ msL′
2,n(bk)∧ g′

1
n∼g′

2} be the set of pair of com-
parable groups in the matching sets. For (g′

1, g
′
2) ∈ CG(msL′

1,n(bk),msL′
2,n(bk)),

g′
2 has crack size cs = |g′

2| − min(|g′
1|, |g′

2|). C(msL′
1,n(bk),msL′

2,n(bk)) =
∑

cs
is the number of excludable cases from msL′

1,n(bk) exploiting the C-attack, where∑
is over (g′

1, g
′
2) ∈ CG(msL′

1,n(bk),msL′
2,n(bk)).

Proof. Consider (g′
1, g

′
2) ∈ CG(msL′

1,n(bk),msL′
2,n(bk)). Based on Lemma 2, if

|g′
2| > |g′

1|, at least |g′
2| − min(|g′

1|, |g′
2|) process instances in g′

2 do not have a
buddy in g′

1 for any linker. Such process instances either cannot match the given
BK, according to Lemma 1, or they have been started at timestamp t, t1 < t ≤ t2.

Example 5. Consider L′
1 and L′

2 in Fig. 2, n = 1, and bk = 〈d, e〉. |g′
1| = 2

and |g′
2| = 3 for the HIV groups in msL′

1,n(bk) and msL′
2,n(bk), respectively.

cs = 3 − min(2, 3) is the crack size of msL′
2,n(bk) based on C-attack.

Definition 17 (C-Anonymity). Let L′
1 and L′

2 be two anonymized event logs
at t1 and t2, and n ∈ N≥1 be the anonymization parameter. The C-anonymity
of L′

1 and L′
2 is CAn(L′

1,L
′
2) = min

bk∈A∗
|msL′

2,n(bk)|−C(msL′
1,n(bk),msL′

2,n(bk)).

Lemma 3. Let L′
1 and L′

2 be two anonymized event logs released at timestamps
t1 and t2, bk ∈ A∗ be the BK, and n ∈ N≥1 be the anonymization parameter.
Consider g′

2 ⊆ msL′
2,n(bk), G′

1 = {p′
1 ∈ L′

1 | ∃p′
2∈g′

2
p′
1

n∼p′
2}, and G′

2 = {p′
2 ∈ L′

2 |
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∃p′
1∈G′

1
p′
1

n∼p′
2}. Every process instance in G′

2 is comparable to all records in G′
1

and only those records in G′
1.

Theorem 5 (Crack size based on B-attack). Let bk ∈ A∗ be the BK,
n ∈ N≥1 be the anonymization parameter, and L′

1 and L′
2 be two anonymized

event logs released at timestamps t1 and t2. Let g′
2 ⊆ msL′

2,n(bk), G′
1 = {p′

1 ∈
L′
1 | ∃p′

2∈g′
2
p′
1

n∼p′
2}, and G′

2 = {p′
2 ∈ L′

2 | ∃p′
1∈G′

1
p′
1

n∼p′
2}. g′

2 has crack size
cs = max(0, |G′

1| − (|G′
2| − |g′

2|)). B(msL′
2,n(bk), L′

1, L
′
2) =

∑
g′
2∈msL′

2,n(bk)
cs is

the number of excludable cases from msL′
2,n(bk) exploiting B-attack.

Proof. According to Lemma 3, all process instances in G′
1 and only those process

instances can have a buddy in G′
2. Therefore, each process instance in G′

1 has
a buddy either in g′

2 or G′
2 − g′

2. If |G′
1| > |G′

2| − |g′
2|, then |G′

1| − (|G′
2| − |g′

2|)
process instances in g′

2 must be started at timestamp t, t ≤ t1.

Example 6. Consider L′
1 and L′

2 in Fig. 2, n = 1, and bk = 〈d, c〉. |g′
2| = 3 for

the Corona group in msL′
2,n(bk), G′

1 = {p′
1 ∈ L′

1 | πc(p′
1) ∈ {10, 20, 30}}, and

G′
2 = {p′

2 ∈ L′
2 | πc(p′

2) ∈ {41, 51, 81, 91, 95}}. cs = max(0, 3 − (5 − 3)) is the
crack size of msL′

2,n(bk) based on B-attack.

Definition 18 (B-Anonymity). Let L′
1 and L′

2 be two anonymized event logs
at t1 and t2, and n ∈ N≥1 be the anonymization parameter. BAn(L′

1, L
′
2) =

min
bk∈A∗

|msL′
2,n(bk)| − B(msL′

2,n(bk), L′
1, L

′
2) is the B-anonymity of L′

1 and L′
2.

Given n ∈ N≥1 as the anonymization parameter, KAn(L′) = min
bk∈A∗ |msL′,n(bk)|

is the k-anonymity of an anonymized event log L′ w.r.t. n. Assuming L′
1 and L′

2
as two anonymized event logs at timestamps t1 and t2, we calculate the propor-
tion of the cracked cases (PoCs) after launching the correspondence attacks as
follows: FCn(L′

1, L
′
2) =

(KAn(L′
1)−FAn(L′

1,L′
2))

KAn(L′
1)

, CCn(L′
1, L

′
2) =

(KAn(L′
2)−CAn(L′

1,L′
2))

KAn(L′
2)

,

and BCn(L′
1, L

′
2) =

(KAn(L′
2)−BAn(L′

1,L′
2))

KAn(L′
2)

.

6 Experiments

In this section, we employ Sepsis [10] as a real-life event log and simulate different con-
tinuous event data publishing scenarios. We report privacy losses and anonymity values
based on the correspondence attacks. Note that Sepsis is one of the most challenging
event logs for PPTs [5,11,18]. We consider two main scenarios to cover various situa-
tions w.r.t. event data volume and velocity of event data publishing. In both scenarios,
we consider two releases to be published.

In Scenario I, we consider the entire event log as the second collection of events
L2(100). Keeping the second collection of events as L2(100), we generate four different
variants for the first collection of events named L1(99), L1(95), L1(90), and L1(75), s.t.,
L1(x) contains x% of cases. Note that we ignore the decimal points for percentages,
e.g., 90% could be 90.01% or 90.95%. In Scenario II, we filter 50% of cases as the first
collection of events L1(50). Keeping the first collection of events as L1(50), we generate
four different variants for the second collection of events named L2(51), L2(55), L2(60),
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and L2(75), s.t., L2(x) contains x% of cases. To filter the event logs, we use time-frame
filtering where the start time is always the start time of the event log and the end time
is changed to pick the desired percentage of cases.

In both scenarios, the gap between two collections varies, s.t., it contains at most
1%, 5%, 10%, or 25% new cases. We focus on the percentage of cases rather than a
fixed time window, e.g., daily, weekly, etc., because a fixed time window could contain
different amount of data in different slots. We employ the extended version of TLKC-
privacy model [17] as the group-based PPT where one can adjust power and type of
BK.2 The model removes events from traces w.r.t. utility loss and privacy gain to
provide the desired privacy requirements. We consider all the possible sequences of
activities in the event log with the maximal length 5 as the candidates of BK, and
k = 20 as the lower bound for k-anonymity, i.e., the privacy model guarantees that
a single release of the event log meets at least 20-anonymity for all the candidates of
BK. On the data recipient’s side, in each scenario, four different pairs of anonymized
releases are received. We developed a Python program to detect the attacks and report
the anonymity values. The source code and other resources are available on GitHub.3

Figure 3 shows the anonymity values before and after launching the attacks in
Scenario I. Note that when n is equal to the length of the BK, all cases already fall
into the matching sets. Therefore, the maximal value for the anonymization parameter
is 5 which is the maximal length assumed for the BK. Figure 3a shows that when the

(a) The anonymity values when the gap between

two releases is ≤1%, i.e., L′
1 and L′

2 were obtained
from L1(99) and L2(100), respectively.

(b) The anonymity values when the gap between

two releases is ≤5%, i.e., L′
1 and L′

2 were obtained
from L1(95) and L2(100), respectively.

(c) The anonymity values when the gap between

two releases is ≤10%, i.e., L′
1 and L′

2 were ob-
tained from L1(90) and L2(100), respectively.

(d) The anonymity values when the gap between

two releases is ≤25%, i.e., L′
1 and L′

2 were ob-
tained from L1(75) and L2(100), respectively.

Fig. 3. The anonymity values for different variants of pairs of anonymized releases in
Scenario I. KA(L′

1) is k-anonymity of L′
1, KA(L′

2) is k-anonymity of L′
2, FA is k-

anonymity of L′
1 after launching F -attack, CA is k-anonymity of L′

2 after launching
C-attack, and BA is k-anonymity of L′

2 after launching B-attack.

2 https://github.com/m4jidRafiei/TLKC-Privacy-Ext.
3 https://github.com/m4jidRafiei/PP CEDP.

https://github.com/m4jidRafiei/TLKC-Privacy-Ext
https://github.com/m4jidRafiei/PP_CEDP
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Fig. 4. Let x be the maximal gap between two anonymized releases. FC x%, CC x%,
and BC x% show the PoCs exploiting F -attack, C-attack, and B-attack, respectively.
For each anonymization parameter, the first, the second, and the third 4 bars show the
results for F -attack, C-attack, and B-attack, respectively.

gap is at most 1% and n = 1, the anonymized release L′
2 has 90-anonymity. However,

after launching the B-attack, 81 cases are cracked, i.e., 90% of cases, and k-anonymity
is degraded to 9, i.e., BA1(L′

1, L
′
2) = 9. For n > 1, the B-anonymity is 1, i.e., there

exists a sequence of activities of the maximal length 5 that can be used to uniquely
identify a case assuming that at most n > 1 activities have been removed by the PPT.
Note that the second release includes only 1 new case when the gap is at most 1%.

Figure 4 shows how the PoCs are changed when we vary the anonymization param-
eter n in Scenario I. Each pair of the anonymized releases is indicated with the per-
centage of the gap, e.g., 1% in Scenario I indicates two releases obtained from L1(99)
and L2(100). When the gap between two releases is small, the B-attack results in
much higher values for the PoCs compared to the other attacks. However, when the
gap becomes larger, the PoCs of the B-attack decreases. This happens because for the
smaller L′

1s, there exist fewer cases that can be excluded from the matching sets in
L′

2 because of their timestamps. The C-attack shows different behavior that is due to
the assumed timestamp for the victim case, i.e., for the larger gaps, there exist more
cases that their timestamps comply with the second release L′

2 and cannot have a cor-
responding case in L′

1. The F -attack cracks fewer cases, which is expected because its
target release is L′

1, and it only exploits the BK mismatching. Note that greater values
for the anonymization parameter mean that the adversary assumes higher data distor-
tion which results in greater values for the anonymity. We had similar observations for
Scenario II, and the results are available in our GitHub repository.

7 Extensions

The two releases scenario can be extended to the general scenario where more releases
are involved. In the general scenario, we consider m ∈ N>2 collections of events
L1, L2, . . . , Lm collected at timestamps t1, t2, . . . , tm and published as L′

1, L
′
2, . . . , L

′
m.

The correspondence knowledge is also extended, s.t., every case in L′
i has a correspond-

ing case in L′
j , i < j ≤ m. Consider the introduced attacks based on two releases as

micro attacks. Given more than two releases, the adversary can launch two other types
of attacks, so-called optimal micro attacks and composition of micro attacks [7].
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Optimal Micro Attacks: The idea is to find the best background release which
results in the largest possible crack size. For instance, consider the F -attack on L′

i.
The adversary can choose any L′

j , i < j ≤ m, as the background release. Let bk ∈ A∗

be the background knowledge, n ∈ N≥1 be the anonymization parameter, and csij be

the crack size of a pair of comparable groups (g′
i, g

′
j) ∈ CG(msL′

i,n(bk), msL′
j ,n(bk)).

The optimal crack size of g′
i is max

i<j≤m
csij .

Composition of Micro Attacks: The idea is to compose multiple micro attacks to
increase the crack size of a group. The micro attacks are launched one after the other.
Note that the composition is not possible for any arbitrary choice of micro attacks. It is
possible only if all the micro attacks in the composition assume the same timestamp for
the victim case, and the required correspondence knowledge holds for the next attack
after the previous attack [7]. Hence, considering L′

i, L′
j , and L′

l, as the anonymized
releases, s.t., i < j < l ≤ m, only two compositions are possible: (1) B-attack on L′

i

and L′
j followed by F -attack on L′

j and L′
l, and (2) B-attack on L′

i and L′
j followed by

C-attack on L′
j and L′

l.
Here, we focused on k-anonymity which is the foundation for the group-based PPTs.

The proposed approach can be extended to cover all the extensions of k-anonymity
introduced to deal with attribute linkage attacks, e.g., l-diversity, (α, k)-anonymity,
confidence bounding, etc. The measures of such PPTs can be modified to consider the
cracked cases. Moreover, new group-based PPTs for process mining can be designed to
consider F/C/B-anonymity. For example, a naive algorithm is to start with the max-
imal possible anonymity, i.e., having only one trace variant, e.g., the longest common
subsequence, and then adding events w.r.t. their effect on data utility and privacy loss.

8 Related Work

Privacy/confidentiality in process mining is growing in importance. The work having
been done covers different aspects of the topic including the challenges [2,4,13], confi-
dentiality frameworks [19], privacy by design [12], privacy guarantees [5,6,11,18], inter-
organizational privacy issues [3], and privacy quantification [16,20]. Confidentiality is
one of the important challenges of the bigger sub-discipline of process mining called
Responsible Process Mining (RPM) [2]. In [13], the authors focus on data privacy and
utility requirements for healthcare event data. A general framework for confidentiality
in process mining is proposed in [19]. In [12], the goal is to propose a privacy-preserving
system design for process mining. In [14], the authors introduce a privacy-preserving
method for discovering roles from event logs. In [5], k-anonymity and t-closeness are
adopted to preserve the privacy of resources in event logs. In [6,11], the notion of dif-
ferential privacy is utilized to provide privacy guarantees. In [18], the TLKC-privacy is
introduced to deal with high variability issues in event logs for applying group-based
anonymization techniques. A secure multi-party computation solution is proposed in
[3] for preserving privacy in an inter-organizational setting. In [20], the authors propose
a measure to evaluate the re-identification risk of event logs. Also, in [16], a general
privacy quantification framework, and some measures are introduced to evaluate the
effectiveness of PPTs. In [15], the authors propose a privacy extension for the XES
standard to manage privacy metadata.
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9 Conclusion

In practice, event data need to be published continuously to keep the process mining
results up-to-date. In this paper, for the first time, we focused on the attacks appearing
when anonymized event data are published continuously. We formalized three different
types of the so-called correspondence attacks in the context of process mining: F -attack,
C-attack, and B-attack. We demonstrated the attack detection techniques to quantify
the anonymity of event logs published continuously. We simulated the continuous event
data publishing for real-life event logs using various scenarios. For an example event
log, we showed that the provided privacy guarantees can be degraded exploiting the
attacks. The attack analysis and detection techniques can be adjusted and attached
to different group-based PPTs to enhance the privacy guarantees when event data
are published continuously. In this paper, we mainly focused on suppression as the
anonymization operation. In future, other anonymization operations such as addition
or swapping could be analyzed. Similar attack analysis can be done for other types of
PPTs, e.g., differential privacy, in the context of process mining to protect provided
privacy guarantees. Moreover, one could evaluate the effect of continuous publishing
scenarios on privatized process mining results.
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Abstract. While literature emphasizes the importance of process min-
ing for pushing digital transformation in manufacturing, it remains
unclear how process mining can be actually implemented and used by
domain experts, especially in small and medium sized manufacturing
companies (SMMC). This paper provides the findings of a focus group
study, i.e., expectations on and experiences with the introduction of pro-
cess mining in SMMC, including employees in different positions, e.g.,
process supervisors and shopfloor workers, and exposure to process min-
ing. Transparency, for example, is an expected benefit for managers,
facilitating the collaboration with business partners, error prevention,
and legal protection. Shopfloor workers, in turn, perceive transparency
as possible threat. The implementation of two process mining scenarios
at one of the SMMC led to reduced documentation effort which helped
to win over shopfloor workers. Altogether, the findings of this study can
help to address concerns and challenges (e.g., with the infrastructure and
data collection) early when introducing process mining at SMMC.
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companies · Focus group research

1 Introduction

Gartner reports a steep increase in process mining use cases for digital trans-
formation and process automation [8]. A domain that poses particularly high
demands on process transparency and digital transformation is manufacturing:
it combines the physical world (e.g., sensors, machines), human work, and man-
ufacturing systems. [16] presents best practice use cases and [5] emphasizes the
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importance of process mining due to the data that is available in a manufactur-
ing company. However, studies on process mining expectations and experiences
in Small and Medium Sized Manufacturing Companies (SMMC), are missing
although SMMC account for 55.4% of manufacturing companies in the EU1 and
for 44.4% of the employees in manufacturing in the US2. Moreover, these expec-
tations and experiences have not been analyzed from the viewpoint of different
organizational positions so far. It can be expected that due to the differences
in daily work life as described below, expectations might vary which should be
considered for a smooth introduction of process mining:

1 Shopfloor workers tend to perform their work in a process-oriented way
due to the structure of manufacturing processes, since a certain set of tasks
has to be applied in a logical order. Even though most machines nowadays
have their own logging mechanism, there is often no software orchestrating
resources as well as coordinating the cooperation with other departments.

2 Supervising operatives usually can observe specific steps in a process
instance. If a workpiece or process subject is faulty due to an error, it is
often unclear how and where in a process an error started occurring. Pro-
cess mining can be vital for optimizing processes and detecting erroneous
behavior.

3 For employees in managing positions, transparency is especially relevant.
Transparency is a crucial aspect for companies nowadays, for legal protection
as well as for cooperation with other companies. Process mining can increase
the transparency by providing knowledge about business processes and their
execution.

The following research questions aim at analyzing expectations on and expe-
riences with process mining in SMMC from different viewpoints and with differ-
ent exposure to process mining (before/after the introduction and application of
process mining):

RQ1. What benefits and drawbacks are expected by SMMC when introducing
process mining?

RQ2. What benefits and drawbacks are perceived by SMMC after the introduc-
tion of process mining?

RQ3. How can the implementation of process mining at SMMC be designed?

This work tackles RQ1–RQ3 based on a focus group study following the
guidelines stated in [10]. Focus groups have proven themselves as adequate means
to assess the impact of process mining in practice [7]. The specific study design
for addressing RQ1–RQ3 is developed along a double layer approach enabling
the distinction of the organizational position of participants and their exposure
to process mining. The double layer approach is realized by two rounds of inter-
views with employees of two manufacturing companies covering organizational
1 https://ec.europa.eu/eurostat/statistics-explained/pdfscache/10086.pdf.
2 https://www.sba.gov/sites/default/files/advocacy/2018-Small-Business-Profiles-

US.pdf.
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positions 1 , 2 , and 3 . Moreover, in one company, process mining has already
been introduced and the other is planning the introduction of process mining in
the near future. Two real-world cases for process mining in manufacturing, i.e.,
electroplating and electronics assembly, are described in detail.

The findings of this study show that the expectations involve increased trans-
parency which is crucial for collaborations with business partners. In addition,
it is expected that process mining can help to detect deviations in process exe-
cutions at runtime. Main concerns regard employees feeling observed by the
increased transparency and reluctance of them to share tacit knowledge. The
introduction of process mining confirms that the expected benefits indeed occur.
Moreover, the decreased documentation effort for employees, due to process min-
ing, outweighs the fear of surveillance of employees.

The paper is structured as follows. Section 2 introduces fundamental termi-
nology and discusses related work. Section 3 explains the detailed structure of
the focus group study and the participants. Section 4 introduces the real-world
scenarios for process mining application in manufacturing. Section 5 contains
a summarized overview of the results of the focus group interviews. The find-
ings that can be deducted from the interviews are discussed in Sect. 6 where
also future implications based on these findings are discussed and the research
question answered. The paper is concluded in Sect. 7.

2 Background and Related Work

Process mining aims at three analysis tasks: (i) process discovery detects a pro-
cess model from a process execution log [2,3]. Several discovery algorithm exist,
e.g., [11,21]. (ii) conformance checking compares a process execution log to a
process model resulting in a fitness value [1]. (iii) process enhancement uses
a process model and a process execution log to detect bottlenecks and helps
improving the efficiency of a process.

Tasks (i)–(iii) use process execution logs (see e.g., [2,3]) as input. A pro-
cess execution log consists of a set of traces where each trace stores the events
that occurred when executing a process instance. Process execution logs reflect
already finished process instances. If process mining techniques are applied on
process execution logs, they are applied in an offline manner, i.e., ex post. If pro-
cess mining is applied during runtime, process event streams are used instead of
process execution logs [4,14,19,22]. An event stream consists of events of multi-
ple process instances and is created and processed at the point in time an event
is executed, with the typical stream features, i.e., it can only be processed once
and in theory there might be an unlimited amount of events in a stream.

The advantage of online process mining is that domain experts can observe
the results, as the process instances are being executed. This enables them to
counteract undesired behaviour that could lead to errors, i.e., stopping a process
instance that is not matching the behavior of the process model or discovering
that the mined process model is not reflecting the planned logic at all. Plenty
of tools and libraries are available to perform online and offline process mining
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on suitable data, i.e., the open source framework ProM [20] and PM4Py [3].
[13] provides an overview of process mining techniques, open source tools, and
commercial tools in the context of the Business Process Intelligence Challenge.

But how are process mining techniques actually applied in practice? One
aspect is the application of tools and systems. Here, [12] argues that commercial
tools are often not user-friendly. Another aspect refers to challenges and solu-
tions when introducing process mining independently of the tool. [7] conducted
a focus group study looking at the challenges of introducing process mining from
a managerial perspective. The usage of process mining in organizations and how
to start an enterprise with process mining in mind, is explained in [16]. Here,
several best practices are presented from projects in different organizations, like
Siemens, BMW and Uber. A case study of how process mining can be used in the
manufacturing domain is also represented in [9], where the usage of process min-
ing is discussed for every category related to the Six Sigma quality management
philosophy.

The study at hand aims at digging deeper into expectations and experiences
with process mining in the manufacturing domain, especially for SMMC, con-
sidering different viewpoints and actual results of process mining projects.

3 Overview on Methodology and Study Design

This study employs focus groups [10] to assess the expectations on and experi-
ences with process mining in SMMC.

The focus groups are organized according to the double-layer design depicted
in Fig. 1. The first layer distinguishes the focus group participants by their orga-
nizational positions, i.e., shopfloor worker, supervising operative, and manager.
This distinction aims to identify the impact of process mining from different
work perspectives. The second layer distinguishes the participants by exposure
to process mining in their current company, i.e., if process mining has already
been used in the company or not. Doing so aims at comparing the general expec-
tations on process mining to its actual results.

Fig. 1. Double layer focus group study. All participants are grouped along both layers.

Two rounds of focus group interviews were conducted. The first one consisted
of three people who have not been using process mining in their work at the
moment, but are planning to implement it in the near future. The second group
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consisted of four people, who are already using process mining, and plan to
increase the usage of process mining.

As depicted in Fig. 1, participants of the focus group interviews can be dis-
tinguished along two layers.

The first layer focuses on the organizational position of a participant. In order
to identify a set of participants for the focus group, we identified a representative
set of roles and their responsibilities based on [6]. As both companies operate in
a lean teamworking environment but are SMEs and thus not necessarily differ-
entiate roles as much as big companies, we coordinated with them to narrow the
set of roles down to a feasible number, that was then basis for organizing the
actual focus group. 1 reflects shopfloor workers who execute the tasks on the
shopfloor. This task execution is then logged for applying process mining. Hence,
the shopfloor workers can be seen as directly confronted with process mining and
its results in their work life. 2 reflects the supervising operatives of a company
who are monitoring the shopfloor. Supervising operatives are interested in using
process mining to discover rarely executed paths in a business process, use con-
formance checking to detect faulty process instances and tasks that caused a
failure. 3 reflects the manager of a department or company. Process mining
can be used to evaluate the general performance.

The second layer of this focus group study emphasizes the exposure of process
mining in the company. The participants are therefore split into two groups. 1
of the second layer, reflects employees in a company which has not used process
mining yet. The second group, 2 consists of employees who are using process
mining already. The associated process scenarios are introduced in Sect. 4.

4 Applied Process Mining Scenario

The study design outlined in Sect. 3 demands that selected participants of the
focus group have already been exposed to process mining which is an important
part of the interviews and the findings. This section will thus introduce the sce-
narios in which participants of the focus group (Shopfloor Workers & Supervising
Operatives) experienced the application of process mining.

4.1 Electroplating

Company E produces parts which have to be surface-treated. This is done by
submerging these parts in a chemical bath, giving them certain desired proper-
ties. After the bath is used for a certain amount of parts, or if the bath has been
inactive for a certain time, it has to be refilled. For refilling, certain (danger-
ous) chemicals have to be combined. Before introducing a BPMN process-based
orchestration solution to support the process, workers were following guidelines,
taking notes, and manually filling out reports. In cases where these guidelines
were not followed, accidents have occurred. Avoiding these kinds of accidents
was one of the main reasons to introduce an orchestration solution.
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Fig. 2. Electroplating – a bath for surface treatment of parts has to be refilled after
use or time

After introducing a process-based solution, the process was formalized as
depicted in Fig. 2. The solution consists of two parts (CPEE [15] BPMN nota-
tion): Fig. 2 a depicts a control process that determines based on sensors and

human input, when to start a refilling cycle. Figure 2 b depicts the actual refill
process, as carried out by two human workers. Figure 2 b starts with selecting
a refill recipe. This can be either based on input from sensors in the bath or
through human intervention from a supervising operative.

The recipe consists of a list of chemicals, and the required amount. After-
wards, the system waits for two workers to identify themselves through their
NFC badges at the entrance of the chemicals storage locker. Only after their
identity and role is established (one worker and one supervising operative are
required), the locker can be opened. A screen shows which amount of which
chemical has to be taken and added to the bath (in no particular order). Each
chemical is in a container that is mounted on a digital weighting scale. Thus
when the wrong amount of the chemical is taken, an emergency stop can be trig-
gered. It is also possible to automatically track which chemicals have been used,
as well as their exact amount. The workers are encouraged to write down their
observations at a computer terminal after they are done (and the protective gear
is removed).



Expectations vs. Experiences – Process Mining 201

Online process mining techniques, including mining for data elements, sen-
sor data and time deviations, have been utilized to generate detailed reports
about each instantiation of Fig. 2 b . These reports are sent to all supervising
operatives at the end of each cycle depicted in Fig. 2 a .

4.2 Electronics Assembly

Company E manually assembles products which consist of different parts (> 100,
including slight part variations). This leads to over 64, 000 possible variations
that can be ordered by customers. Typical order sizes range from 2 to 500.
The assembly involves soldering as well as intricate mechanical manipulation of
parts that are less than 2 millimeters in size. This high variance, paired with
the required intricate mechanical manipulation is a major hurdle for automatic
assembly, thus the assembly is carried out by humans. The human workers have
different skill levels. While some have the knowledge to assemble all variants
from the back of their head, others need guidance which is provided by the
experienced workers as well as through extensive technical documentation.

The problem is that many details involve tacit knowledge, i.e., knowledge
that just exists in the minds of the workers. For quality assurance and prod-
uct improvement it is not easy to determine which particular step during the
assembly took how long, and which steps were most error prone.

In order to solve this problem, the assembly has been split into a num-
ber of sequential work packages, and for each work package a graphical worker
assistance system has been designed. All logic for selecting individual steps and
showing them on screen is implemented as a BPMN process-based solution. The
worker assistance system automatically shows the correct set of steps for the
work-piece in front of the worker (no variants have to be remembered), and also
assumes a standard order of putting work-pieces together. Each step has to be
acknowledged with a foot pedal. When a problem occurs, a worker can leave a
(spoken, speech-to-text) note, and dismiss the work-piece for later fixing.

This setup forms a good basis for (online) process mining. It is possible to
extract detailed information about durations and error rates, paired with infor-
mation about the particular work-piece variation, used parts, and steps. Online
process mining techniques are used to generate early warnings for supervising
operators. Ex-post process mining is utilized for continuous process improve-
ment. Though company E just started utilizing the system, early results have
been deemed promising by workers, supervising operators, and management.

5 Results of Focus Group Interviews

The double layer design of the focus group study is depicted in Fig. 1 and
explained in Sect. 3. The focus group features two interviews with employees
from manufacturing companies CDP and E.

Manufacturing company CDP: The first focus group contained participants of
two management levels. Three participants were interviewed, i.e., one supervising
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operative, and two general managers/CEOs. None of them was using process
mining in their department at the time of the interview.

Manufacturing company E: The second focus group contained participants
of three management levels. Company E is in the metal-processing domain and
employs around 750 people. Four participants have been interviewed, i.e., two
supervising operatives, a general manager and one shopfloor worker.

After an introduction into process mining, all participants revealed a good
understanding of the basic principles of process mining and could identify sce-
narios in their company, where process models are already in place, i.e., in the
electroplating department (cf. Sect. 4.1).

Table 1 provides a summary of the profile of the participants to identify theirs
answers. In the following, the interview results are presented for each question.

Table 1. Focus group participants profile

Coding participants Company Position Experience in company Working with

process

mining

EA E Supervising operative >10 years Yes

EB E Supervising operative 2–4 years Yes

EC E General manager >10 years Yes

ED E Shopfloor worker >10 years Yes

CA CDP Supervising operative >3 years No

CB CDP General manager >2 years No

CC CDP General manager >4 years No

What benefits do you see in a process-oriented view of your field?

ED thinks that one’s workload is better structured using a process-oriented
view, which increases the cooperation quality with other departments. The oper-
ative CA, sees benefits of process mining with respect to the transparency of their
department and their company. Knowledge, in particular, domain specific knowl-
edge is lost if an employee leaves, is a concern mentioned by CA. Workflows here
are not explicitly available as formal models, but workers loosely follow learned
rules/guidelines, hence it is difficult to detect the source of an error. Confor-
mance checking and process model discovery are regarded as useful techniques
to ease these problems. These benefits are confirmed by the operatives EA and
EB. The correct execution of a process instance, supervised by process mining,
allows them to detect and react to errors as soon as they happen. Moreover, the
process models enable a good visual representation of the currently active tasks.
EB mentions that, “A huge advantage of a process-oriented view is the improved
communication between employees from all levels”.

The managers, CB and CC, share concerns regarding the usability of process
mining in the daily routine of employees. The discovery of process models is seen
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as an important feature of process mining as it increases transparency, which is
often required for cooperations with other companies. The correct process exe-
cution is crucial as well, to discover and fix problems. EC confirms the previously
outlined benefits. In addition, the application of process enhancement is envi-
sioned in the near future, through implementing lean management techniques
and optimizing resource sharing between multiple departments.

How are processes and tasks executed and logged at the moment?

ED states, that their department uses work instructions as a basis for pro-
cesses, obtained by interviewing workers. It was mentioned that this is useful for
new employees, but yields some uncertainties (e.g., for rarely produced parts).
CA explains that most of the activities are still logged manually in a rudimentary
way without much information on the input/output of each task. The detection
of faulty behavior in the process execution is crucial, but hard to track without a
rich documentation. EA mentions, that unlike the electroplating unit, in his unit
everything is currently only logged in an ERP-system. However, these event are
only available at a high level and only for certain tasks, e.g., only measurements
are logged, but not the production itself. These logs are used for making oper-
ational decisions, such as determining the delivery date. EA is aware that this
leads to resource waste, as parallel processes are not properly synchronized, and
departments sometimes have to wait on other departments, because they decided
on a sub-optimal production order. EA also claims, that the work instructions
mentioned by shopfloor workers, are often not followed, but instead slight vari-
ations learned from colleagues are used. CB emphasizes again, that identifying
errors and increasing the efficiency is very important. Therefore, processes have
been modeled showing the interaction between humans. These interactions are
currently logged in an ERP system. Process mining techniques such as confor-
mance checking or using a system to enact the correct tasks at the right time have
not been used. EC is aware of the benefits of process mining in the implemented
scenarios. Additionally EC mentioned the wish to implement process mining at
the managerial level, i.e., mine and analyze management processes.

How is the correct execution of a process model currently ensured?

Process models are used and tasks are logged with a process execution engine
in the application scenario of the electroplating unit as mentioned by ED. Cur-
rently active tasks are shown on a screen and are executed by interacting with
the screen. CA, CB, and CC state that, as no process models are used, their cor-
rect execution is not ensured. EA explains that, correctness for the scenarios
is enforced by a process engine, but for many other scenarios, the status quo
has not changed. EB says, that additional process mining techniques to auto-
matically notice errors is desirable, as currently root-cause analysis for errors
is mostly done manually. EC is aware of the benefits of process mining in the
implemented scenarios as decisions regarding high-level process changes become
easier, and controlling is improved. EC again states that processes at managerial
level should be formalized as well.



204 F. Stertz et al.

Which advantages do you see for your company with the support
of process mining?

ED sees a reduced documentation effort due to automatic documentation.
The instructions are well presented and help following the process model. CA
emphasizes the importance of process enhancement as an important factor in
the company, but is also keen on improving the efficiency using process mining
techniques in general. EA sees a lot of potential, especially for protection against
insurance claims if accidents happen or if products do not adhere to the quality
standards. EB mentions that with increased process standardization they would
be able to take on more risky projects. EA mentions an accident that happened
in a sub-department where the cause could not be determined. To avoid such
accidents in the future, it is essential to better structure the workflow, making
it more transparent, provide support for the employees taking part in critical
processes and log interactions with dangerous chemicals. CC sees advantages in
understanding of processes for different positions in the organizational hierarchy.
CB also thinks that processes can be communicated better between companies
from different domains for a more efficient cooperation. With the help of process
mining, especially process discovery and conformance checking, the perspectives
of the shopfloor level and the management level should be more aligned. In
the company, workflows rarely show deviations and more often follow a com-
mon path, which should allow for understandable process models. CC mentions
explicitly that “While a performance evaluation of a process can be done every
three months and does not have to be online, a deviation of a process instances
should be reported immediately”. EC added, that there are additional benefits
for planning and analysis that could be obtained by introducing process mining.

Which advantages do you see for your specific department with the
support of process mining?

ED sees a big advantage, in the training of new employees with the use of
process models and process mining. Process models provide a good visual repre-
sentation of the workflow and allow for a better communication between depart-
ments. Online process mining can give immediate feedback about the current
state of produced parts. CA points out the importance of identifying errors and
the increased efficiency when communicating with other departments based on
data produced by process mining. Both operatives, EA and EB, think that pro-
cess transparency is increased due to the use of process models and a process
execution engine. They mention automatic reports after each crucial step exe-
cuted by shopfloor workers, which help to ensure the conformance of a process
instance (regarding many aspects: process structure, timing, resource deviations,
data deviations). CA emphasizes that not only the production should benefit
from process mining techniques, but tasks involving only humans as well, such as
creating reports, delivering a product, and communication between departments.
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EC again emphasize that data obtained through process mining (e.g., duration
& resource utilization for a multitude of product variations) are a huge benefit
for planning and process optimization.

What problems do you anticipate for the introduction of process
mining in your department?

ED sees the benefits of process mining in one’s department, but fears that
long-term employees still might not see the purpose of process mining in other
departments, because they are often not interested in changing their daily rou-
tine. However, ED states that if the benefits, i.e., less documentation effort, are
clear to the employees, they can be convinced. CA voices concerns about the
acceptance by the workers, since they tend to use their acquired knowledge to
secure their position in the company. CA also fears high costs for heterogeneous
workflows, since the discovery of the process model and its variants could imply
a huge effort. The advantages of process mining are clear in CA’s opinion. EA
fears that the employees could feel observed. Hence, EA thinks it is important
to encourage strong involvement of employees when implementing future scenar-
ios. CC echos the concerns about employee acceptance. The increased process
transparency is viewed as critical, as it paves the road towards cooperations with
future customers and partners. CB voiced concerns, that the increased logging
and data availability makes data leaks possible, which would harm the company.
EC thinks that employee acceptance is a challenge, but in hindsight was easier
to achieve than expected. EC thinks that the introduction for the whole com-
pany is too complex and that they will aim for implementing process mining in
many small projects (as they want to focus on techniques that require heavy use
of domain knowledge –analysis of process data, durations and resource usage).
Lastly, EC raises the concern that the current IT infrastructure (networking and
computational power– more sensors produce more data requires more analysis
capabilities) and human resources are not sufficient. Currently, process mining
has been successfully introduced in one department.

6 Discussion and Implications for Research and Practice

Based on the results of the focus group interviews as summarized in Sect. 5, we
deduce the following findings. The findings can be categorized as follows:

– Requirements before process mining can be introduced.
– Expected results when introducing process mining.
– Actual improvements after process mining has been introduced.

The remainder of this section discusses these three categories in detail and
answers the research questions set out in Sect. 1.
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6.1 Requirements

The settings in both companies CDP and E distinguish themselves by the granu-
larity of the logged tasks. The first focus group from CDP does not use any of the
three fields of process mining at the moment, but is already working with the
support of a process execution engine, which enables the creation of an event
stream and the automatic documentation of each task in a process. In company
E, by contrast, not every task is logged, but only certain checkpoints, i.e., a
finished piece. This leads to inaccurate process execution logs, since it is not
clear, how and when the different tasks have been executed. Company E is using
a process execution engine only in a sub-department. In other departments of
company E different approaches have been tried, i.e., a manually created hand-
book of business processes for new employees. Unfortunately, this handbook is
rarely used and instead knowledge is transferred from senior employees to newer
ones. This leads to undocumented steps, which renders retrieving fine granular
results and therefore process mining on a more granular basis impossible.

The focus group interviews showed, that even though companies are putting
effort in creating process models through intensive interviews with employees and
are making these process models available, the documentation of tasks is often
too time consuming. However, the introduction of process mining supported by
a process execution engine showed, that employees are willing to log their tasks
if enough support is available, like a monitor showing the current active task
and an automated documentation. The supervising operatives and managers are
benefiting from the generated reports about conformance of a process instance
and general behavior through process mining.

6.2 Expected Results

Most of the participants share similar experiences concerning the process of cre-
ating process models i.e., through interviews, since employees often follow a pro-
cess from tacit knowledge. Since it is important to be as transparent as possible
for potential business partners as per the statements of the focus group partici-
pants, a better representation of the actual processes is desired. Another impor-
tant factor concerns correct process execution as this increases transparency.
The participants also emphasize the moment of time when a deviating process
instance is detected. While the evaluation of a whole department can be calcu-
lated every few months, a process instance with a deviating conformance should
be detected as early as possible. To check the conformance during execution, an
event stream is required to apply process mining.

For the implementation, the participants raised concerns about the introduc-
tion of process mining in their departments. Employees could feel observed, since
their daily routine could be analyzed from the process execution logs. Another
problem is, that employees sometimes tend to gather knowledge and not share
it, making themselves harder to be replaced. The participants agreed, that the
employees should be involved in the process of introducing process mining. It



Expectations vs. Experiences – Process Mining 207

was also mentioned that as soon as the benefits of the approach became very
clear, acceptance was very high.

In addition, it was mentioned, that the IT infrastructure could be an issue
for implementing process mining.

The findings discussed above summarize the expected benefits and drawbacks
of process mining in companies and hence contribute to answer RQ1.

6.3 Improvements

The introduction of process mining in a department of company E results in
the following improvements. The process of obliging two employees to perform
several tasks, where one of them has to have a specific role, can be accurately
logged with the support of a process execution engine. Conformance checking,
taking the data perspective into account, can reveal deviations, if the criteria
of the correct amount or the correct roles is not fulfilled. Another important
aspect is the temporal perspective. Conformance checking allows to detect tem-
poral deviations in the process, e.g., an extremely short duration for putting the
protective gear on, leading to the assumption that the gear is not worn correctly.

When a deviation is detected at runtime, it is possible to provide the company
with the information for which process instance the deviation occurred. With
this information, it can be tried to explain the reason for this deviation through
the information stored for a process instance by the process mining framework.

Based on the findings, RQ2 concerning the actual benefits and drawbacks
of process mining in SMMC can be answered. Creating automatic reports to
detect undesired behavior in process instances and help to ensure the correct
order of events is beneficial. Drawbacks such as the fear of surveillance can be
avoided through outlining major benefits of process mining to shopfloor workers,
including the automatic documentation of tasks.

RQ3 refers to how the implementation of process mining in SMMC can be
designed. As pointed out in Sect. 5, a process model is often already available
in the production, generated from the knowledge of the shopfloor workers and
process supervisors. Based on the interviews, we conclude that correct process
execution and its documentation are of utmost importance. This can be achieved
by implementing and executing the existing process model through a process
execution engine. The engine is used to orchestrate active process instances of
process models and manages the documentation of tasks, i.e., timestamps of
start and end events. To give shopfloor workers a better visualization of the
process and the currently active task in a process instance, a screen can be
used to provide additional information. Utilities, such as a hand scanner or a
foot pedal, can be used to automatically complete the current task in a process
instance which leads to the next task shown to the worker. A possible setup is
the Electroplating process (cf. Sect. 4.1). To increase the knowledge of currently
active process instances, wearable information systems can be connected to the
process mining framework as well and display process instances not matching
the expected behavior [18].
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6.4 Discussion

When looking at the significance of the results, three groups can be established.
Not Surprising: Digitalization gaps exist and SMMC struggle to close them.

All participants agree that explicit process orchestration from the business level
to the shop-floor level will improve the quality of available event logs, and is
a first step towards online process mining and process enhancement. It became
clear that SMMC suffer from a lack of IT resources. However, they are aware that
process mining and data analysis in general will help them with digitalization
(i.e., new ways of interacting with their customers).

Expected, But Disappointing: Process discovery is not considered impor-
tant. All participants agreed that process elicitation through explicit modeling
leads to better results and understandability. This was not unexpected as SMMC
often have flat hierarchies, hence involvement and knowledge of the processes is
high. The participating companies (some of the participants also talked about
previous employments) often utilize flexible manufacturing islands with unstruc-
tured manual labor instead of production lines. The effort for data collection
there could very well be so high that focus group participants might be right.

Surprising: Shop-floor workers were expected to be critical of process min-
ing supervising operatives and management alike. However, they were very easily
convinced when demonstrating process mining results. Supervising operatives
and management wish for the application of process mining on high-level pro-
cesses, but can neither clearly express the expected results nor have a clear vision
how to digitalize these processes. Conformance checking is well understood by
the focus group participants. Mining of temporal deviations and performance
indicators based on fine-grained sensor data are seen as an important short-
term goal. Surprisingly, online process mining, i.e., making deviations visible
and explainable at runtime, is considered more important than ex-post analysis.

6.5 Limitations and Threats to Validity

Focus group interviews bear certain threats to validity [10]. In particular, inves-
tigating expectations and experiences of process mining in SMMC is relatively
complex. Hence, there is a threat of either made up answers, i.e., caused by
insufficient experience of a participant or trying to avoid negative feedback by
colleagues afterwards, or just trivial answers caused by too many participants.
To minimize these threats, we opted for small focus groups, ensured a certain
level of knowledge of processes in general, and developed the questioning route
following the guidelines in [10]. Further limitations involve:

• Transferability to Other Domains: Manufacturing can be seen as “killer appli-
cation”. Hence it is promising to look at other domains such as medicine that
also combine processes, physical world, and human work.

• Generalizability: SMMC struggle with specific problems, hence the general-
izablity to bigger companies is questionable. Moreover, while a small focus
group helps in getting meaningful results for complicated subjects, it can still
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be argued that similar SMMC are not sharing the same experiences. More
interviews with different SMMC could overcome this limitations.

Finally, the companies and participants of the focus group were all volunteers,
that answered to an email to a list of companies that regularly participate in
research projects. It is possible that (a) the results are not representative of
SMMC, or (b) a John Henry effect (over-performance) [17] regarding process
mining was observed.

7 Conclusion

This focus group study collected expectations on and experiences with process
mining in SMMC, including two real-world process mining scenarios at one com-
pany’s side. The main findings are:

Suitable Data Set Generation is a Main Challenge. The status quo in
SMMC is that logging is part of the business logic and data-centric. Selected
milestones in the production produce a data dump with a timestamp, while
most process steps in the manufacturing domain just produce no events at all.

Transparency of Business Process Becomes Increasingly Important.
Transparency is considered important for four key aspects: (a) legal protection
against insurance claims, (b) protection against liability claims when dealing
with bad parts, (c) reduction of erroneous parts before quality control, and (d)
streamlining of processes when dealing with a huge number of product variants
in combination with human resources.

Human Resources Should be Included into the Process. There is a
high level of concern regarding transparency and human resources. Workers may
feel observed and become reluctant to share their tacit knowledge. Successful
communication and demonstration of the benefits of process mining, on the
other hand led to high acceptance among workers.

Infrastructure Plays an Important Role for SMMC. The local IT infras-
tructure is a perceived bottleneck for the increasing data volume and velocity
that comes with fine-grained logging of all steps involved manufacturing and
production of goods.

Company E successfully introduced process mining in selected scenarios and
regards the ability to detect deviations from the process structure, as well as
temporal deviations at runtime as a major benefit. This actively helps to min-
imize the impact of errors, and allows for continuous process improvement to
alleviate errors. The increase in transparency was expected and embraced by
workers, as well as supervising operatives and management. Demonstrating the
reduced documentation effort was the key to winning over workers.
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For future work, process mining is to be introduced in company CDP. The
solution will be implemented based on the findings of this study to meet the
expectations of the company and avoid anticipated drawbacks.
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Abstract. Business process management organizes work into several
interrelated “units of work”, fundamentally conceptualized as a task.
The classical concept of a task as a single step executed by a single
actor in a single case fails to capture more complex aspects of work that
occur in real-life processes. For instance, actors working together or the
processing of work in batches, where multiple actors and/or cases meet
for a number of steps. Established process mining and modeling tech-
niques lack concepts for dealing with these more complex manifestations
of work. We leverage event graphs as a data structure to model behav-
ior along the actor and the case perspective in an integrated model,
revealing a variety of fundamentally different types of task executions.
We contribute a novel taxonomy and interpretation of these task execu-
tion patterns as well as techniques for detecting these in event graphs,
complementing recent research in identifying patterns of work and their
changes in routine dynamics. Our evaluation on two real-life event logs
shows that these non-classical task execution patterns not only exist, but
make up for the larger share of events in a process and reveal changes in
how actors do their work.

Keywords: Task execution patterns · Routines · Event graphs

1 Introduction

A central goal of Business Process Management (BPM) is organizing work into
several interrelated “units of work” to achieve shared goals. The formal foun-
dations of BPM, as used in process modeling and mining, conceptualize such
a unit of work as a task. Tasks are planned, scheduled, distributed to suitable
actors such that the overall work can be performed by a collaborating workforce.
Most Process-aware Information Systems (PAIS) support this goal by assuming
that work is performed in the context of a business process that is executed as
a sequence of task executions called a case. Each task is executed by a specific
actor and the BPM system is responsible that the correct tasks are performed
in the correct order. Thereby the actual work happens outside the PAIS itself
which only schedules tasks and checks completion [9].
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However, this concept of a task in process modeling and mining in BPM—a
unit of work is a single step executed by a single actor in a single case—fails to
capture many facets of work that occur in practice. In organizations research,
a well-defined (atomic) step in a process is called an activity or action [2,20].
In contrast, a task is considered a slightly larger “unit of work” that has to
be carried out to achieve an objective within the process, e.g., review CVs.
Completing or executing a task often requires to perform multiple actions (e.g.,
download, open, take notes), not necessarily limited to a single case (e.g., all CVs
received); these actions may be grouped differently depending on the actor(s)
the task is assigned to.

This also has been acknowledged in the BPM field from several perspectives.
Robotic Process Automation (RPA) uses task mining to identify how individ-
ual actors perform tasks by recording their desktop interactions revealing tasks
spanning more than a single case, e.g., data entry from a spreadsheet to an
information system [16]. Individual actors may batch actions in multiple cases,
e.g., a manager reviewing and approving requests in different cases, which is still
poorly supported by many PAIS [23]. Finally, actors often do not act indepen-
dently from each other, multiple actors may perform work together even across
multiple cases, e.g., the collaborative grading of student reports, and across mul-
tiple actions, e.g., delivering and installing a new washing machine. Despite this
acknowledgment and many years of BPM research, there is no generally agreed
definition of a task that captures such aspects of work in a process and that is
compatible with the established process modeling and process mining concepts.
In other words, the existing process mining and process modeling concepts are
too simplistic.

In this paper, we investigate how to conceptualize task executions beyond the
basic definition of an action performed by a single actor in isolated cases with
the goal of capturing the various facets of tasks. Our approach combines event
data analysis with conceptually modeling behavior in processes and actors as two
behavioral dimensions simultaneously [10]: (1) the sequence of events recorded
in a process case and (2) the sequence of events, across multiple process cases,
in which an actor is involved. We use event graphs as introduced in [10] as data
structure to model relations between events, cases, and actors as paths along
cases and along actors over the same events; thereby escaping limitations of
classical event logs (Sect. 3). In such a graph, a task execution emerges when a
path along an actor meets a path along a case over one or more events.

We then perform a systematic, theoretical analysis of the types of task exe-
cutions that can be expressed in an event graph depending on (1) how many
paths along cases meet (2) how many paths along actors for (3) how many
events (Sect. 4.1). From this theoretical analysis we derive a taxonomy of task
execution types characterized by 5 different parameters (Sect. 4.2); the taxonomy
describes 23 task execution types, several have not been described in literature
before. We present methods for querying these task execution types in event
graphs (Sect. 5) and evaluate the existence of these task execution types in the
BPIC’17 and BPIC’14 event logs (Sect. 6). We specifically found that non-trivial
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task execution patterns over multiple steps, multiple cases, and even multiple
actors frequently occur in two real-life event logs, as well as occurrences of sev-
eral previously unknown patterns. We also observe changes in frequency of task
execution patterns over time due to changes in the way actors do their work.

2 Related Work

Related research that also accounts for the more complex aspects of work beyond
isolated cases has been conducted from several perspectives.

Process modeling literature studies actors performing work in terms of
“resources” required for a task. Of the workflow resource patterns [24], only
“Simultaneous Execution” and “Additional Resources” consider joint work by
multiple actors. Only recently, actor behavior across multiple cases came into
focus under batching across individual cases [23] and instance-spanning con-
straints [12]. Current BPM systems poorly support these phenomena and exist-
ing notations (e.g., BPMN) require extensions [13,23] to support them; but actor
behavior is never modeled explicitly. Synchronous proclets [11] allow modeling
individual actor behavior across individual cases in a network of Petri nets, each
describing a process or an actor [6], that dynamically synchronize on single tran-
sition occurrences. The same synchronization principle has also been adopted for
DCR graphs [4]. We contribute to this stream of modeling research by showing
that actor-case interactions themselves form complex task execution patterns
over multiple actions, cases, and actors, that should be supported in modeling.

In process mining, social network mining [27] analyzes actor interactions but
excludes the control-flow perspective. Other approaches are mining of team com-
position and work assignment [25], resource skills, utilization, and productiv-
ity [22] and resource availability [17]; these works assume tasks to be single
actions. Task executions by the same actor over multiple actions can be dis-
covered as local process models [5]. Task mining analyzes behavior that may
transcend multiple cases [16] by tapping into desktop interaction logs of actors.
These works are limited to single actors in isolated cases due to the use of event
logs. For analyzing instance spanning constraints [28], batch activities [18,19]
and scheduled processes [26] process mining methods have been extended to
consider inter-case relations; in these works actor behavior is described/modeled
implicitly, whereas we analyze actor behavior explicitly.

Routines research [14,20,21] studies “work” in terms of a narrative network
of actors interacting to achieve organizational goals. A narrative [20] is a path
in the narrative network, i.e., a “coherent, time-ordered sequence of actions or
interactions [for] accomplishing an organizational task” [14,21]. An action pat-
tern that occurs repeatedly at an individual actor is called a habit ; a recurrent
action pattern involving multiple actors is called a routine [2]. Habits and rou-
tines capture how actors accomplish their tasks. A central question in routine
dynamics research is to identify such patterns in the narrative network and how
they change [14] and is approached through field studies.

We complement prior work by transforming an event log into an event graph
which can be understood as data-based representation of a narrative network.
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We use graph theory to detect patterns of task executions (i.e., habits and rou-
tines) and their changes over time. Our taxonomy of task executions extends
and generalizes existing notions of tasks in BPM and process mining that are
tailored towards either isolate cases, e.g., [5], or towards specific aspects of work
behavior across cases, e.g., [12,13,16,18,19,23,26,28].

3 Preliminaries

We first discuss relevant concepts of the conventional, single-dimensional repre-
sentation of event data. We then show how these concepts can be translated to
a multi-dimensional representation using a general data model based on labeled
property graphs [10], which we use as a foundation for our work.

Single-Dimensional Representation of Event Data. A PAIS can record
an action execution as an event in an event log. Each event records at least the
action that occurred, the time of occurrence, and an entity identifier indicating
on which entity or case the action occurred. Often, the actor executing the action
is recorded as resource. Table 1 shows an example event log containing 10 events
occurring on the same day.

Process mining [1] analyzes event data by grouping events w.r.t. a chosen case
identifier attribute, e.g., a loan application document or a patient in a hospital.
Ordering all events of a case by time yields the trace as a sequence of events.
Grouping the events in Table 1 by Case yields the traces 〈e1, e2, e3, e4, e5〉 and
〈e6, e7, e8, e9, e10〉. A set of such traces is a traditional single-dimensional event
log along the case perspective [10].

Classically the Resource attribute in Table 1 is considered as event attribute
describing the event further. However, the resource (the actor) is an entity in
its own right and we can also study the sequence of events along each resource,
defining a second behavioral dimension in the data. Choosing Resource as case

Table 1. Event table example

Event Action Time Case Resource

e1 A 12:02 3 1

e2 B 12:04 3 1

e3 E 14:38 3 5

e4 F 14:41 3 5

e5 C 16:21 3 29

e6 A 12:08 4 1

e7 B 12:09 4 1

e8 D 12:15 4 1

e9 E 14:54 4 5

e10 F 14:59 4 5
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identifier yields a second event log with traces 〈e1, e2, e6, e7, e8〉 (Resource 1),
〈e3, e4, e9, e10〉 (R. 5), and 〈e5〉 (R. 29).

Each event in Table 1 is related to 2 entity identifiers: a case identifier and
resource identifier. Generally, an event can have multiple case identifiers and/or
multiple resource identifiers [10]. The relation of events to multiple entities
results in different behavioral dimensions between events that cannot be ade-
quately represented or analyzed using a single-dimensional event log representa-
tion.

Multi-dimensional Representation of Event Data. We use a labeled prop-
erty graph (LPG) to represent multiple behavioral dimensions together over a
set of events.

Graph databases use LPGs [3, Chapter 2] for modeling various entities (as
nodes) and various relationship (as edges) between them. An event graph [10]
is a specific LPG, which can be obtained from an event table: each event and
each entity (i.e., cases and resources) is represented by a node with label Event
or Entity. Event and entity nodes are connected through directed binary rela-
tionships: a CORR relationship from e to n defines that event e is correlated to
entity n. A DF relationship from e to e′ defines that event e′ directly follows e
from the perspective of a specific entity n to which e and e′ are correlated (i.e.,
e occurs before e′ and there is no other event between them). Each node and
relationship can hold a number of key-value pairs referred to as properties, e.g.,
whether an entity has Type = Case or Type = Resource. As short-hand notation
we write (e, e′)x for a DF -relationship in G from e to e′ of type x ∈ {c, r} (i.e.,
case or resource). See [10,15] for formal details.

The example in Fig. 1 shows the event graph derived from Table 1: each square
(white) node is an event node; each circle is an entity node of the corresponding
type (blue for Case, red for Resource). CORR relationships are shown as dashed
edges, e.g., e1, e2, e3, e4, e5 are correlated to case c3 and e1, e2, e6, e7, e8 are
correlated to resource r1. DF relationships are shown as solid edges. The DF-
relationships between the events correlated to the same entity form a DF-path
for that entity; the graph in Fig. 1 defines 2 DF-paths for case entities, e.g., σc3 =
〈(e1, e2)c, (e2, e3)c, (e3, e4)c, (e4, e5)c〉 and 3 DF-paths for resource entities, e.g.,
σr1 = 〈(e1, e2)r, (e2, e6)r, (e6, e7)r, (e7, e8)r〉.

In the graph in Fig. 1, we observe which resource executed which action in
which case, e.g., r1 performed A in c3 (at event e1). However, we can also see
that DF-paths for case and resource “flow in parallel” over multiple actions, e.g.,
σc3 and σr1 both contain (e1, e2)x meaning r1 performed A and B consecutively
in c3 (events e1 and e2) forming a larger unit of work captured in Fig. 1 as
the connected subgraph of events {e1, e2} and the two DF-relationships between
them. We can observe more such subgraphs of consecutive events along the same
resource and case in Fig. 1, i.e., larger units of work.
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4 Task Execution Patterns

We observed in Sect. 3 that event graphs reveal “units of work” that are not
just individual events but are connected subgraphs where resources and case
meet along several subsequent events. In this section, we conceptualize these
connected subgraphs as task executions and explore in which forms they can
manifest. We explain our approach in Sect. 4.1 and present a novel taxonomy of
task execution patterns and their interpretation in Sect. 4.2. We thereby make
use of standard graph theory concepts; see [15] for formal definitions.

4.1 Exploring Event Graphs for Forms of Task Executions

In the event graph in Fig. 1, we initially observe two ways in which a task execu-
tion manifests. (1) A resource follows a case over multiple events, e.g., e6, e7, e8;
these event nodes form a subgraph induced by one DF-path σc of a case entity
and one DF-path σr of a resource entity as follows: σc and σr enter the subgraph
together (e.g., at e6) and leave the subgraph together (e.g., at e8) and are both
continuous in this subgraph (all events of the DF-path are within the graph).
(2) We also observe an execution of a classical task in the event graph in Fig. 1
consisting of only a single event, e.g., e5; the path of the resource and the path
of the case synchronize for this step only, i.e., the subgraph is a single node.

We explored whether other subgraphs can be characterized by searching for
different configurations of the following concepts in the subgraph: DF-path of a
resource, DF-path of a case and their synchronization. We identified the following
parameters and values:

1. The subgraphs in Fig. 1 contain at most one case DF-path. Are there (mean-
ingful) execution patterns which have multiple case DF-paths?

2. If multiple case DF-paths are in the subgraph: are the case DF-paths disjoint
(i.e., each event belongs to exactly one case) or can case DF-paths synchronize
(i.e., have a shared event)?

3. The subgraphs in Fig. 1 contain at most one resource DF-path. Are there
(meaningful) execution patterns which have multiple resource DF-paths?

4. If multiple resource DF-paths are in the subgraph: are the resource DF-paths
disjoint (i.e., each event belongs to exactly one resource) or can resource
DF-paths synchronize (i.e., have a shared event)?

5. In Fig. 1, all DF-paths are continuously in the subgraph (i.e., they only enter
once and leave once). Are there (meaningful) execution patterns where a DF-
path also temporarily leaves the subgraph and re-enters later?

4.2 Taxonomy of Task Execution Patterns

The above questions define a parameter space that allows for a set of different
subgraph configurations that can be systematically described within the bounds
of this space. We explored this parameter space by modeling abstract task exe-
cution patterns as subgraphs of event nodes of an event graph. We explain the
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patterns found, introduce a taxonomy to structure them systematically, and
evaluate whether each pattern has real-world interpretation and whether it was
already discussed in literature.

We considered subgraphs that emerge from multiple DF-paths synchronizing
as some “unit of work”. We identified the following necessary conditions for
n ≥ 2 DF-paths Σ = {σ1, . . . , σn} to induce a subgraph G that describes a
task execution: (T1) any two event nodes in G are connected via at least one
DF-path σ ∈ Σ, (T2) for each event node e in G exists a case DF-path σc ∈ Σ
and a resource DF-path σr ∈ Σ that contain e (i.e., G is traversed by at least
one case and one resource DF-path), (T3) there is at least one DF-path σ1 ∈ Σ
that is continuously in G (enters G once and leaves G once). We identified two
stricter necessary conditions of task executions defining a spectrum:

– Graph-structure based task execution: in the strictest form of task executions
the subgraph G is induced by Σ = {σ1, . . . , σn} and satisfies (T1)–(T3) and
additionally (T2’): each event node e ∈ G is in each DF-path σ ∈ Σ (i.e.,
all paths always synchronize in all events in G but some paths may leave
in between). As a consequence, all paths converge at the first event of the
continuous DF-path σ1 in G and diverge at the last event of σ1 in G, see
(T3). All subgraphs in Fig. 2 have this property.

– Domain-knowledge based task execution: the paths in G do not converge and
diverge at the same start and end events of G, yet are coherent. In addition
to (T1)–(T3) the following condition holds: (T3’) all DF-paths are continu-
ously in G. All subgraphs in Fig. 3 have this property. T3’ requires domain-
knowledge to decide whether DF-paths Σ form a valid subgraph G describing
a task execution.

Next, we differentiate different types of subgraphs further by the following 4
parameters over a subgraph G (i) the number of case DF-paths, (ii) the number
of resource DF-paths, and (iii) how often they enter and leave, and (iv) how they
synchronize in G. We start with graph-structure based tasks executions.

Taxonomy of Graph-Structure-Based Task Execution Patterns.
Figure 2 shows the graph-structure-based task execution patterns arranged
according to the parameters identified in Sect. 4.1.

The taxonomy categorizes the patterns on the x-axis based on them contain-
ing a single DF-path from a single case (SC) or multiple DF-paths from multiple
cases (MC). The patterns are categorized along the y-axis based on them con-
taining a single DF-path from a single resource (SR) or multiple DF-paths from
multiple resources (MR). Our taxonomy thus has four major quadrants: (SR,SC),
(SR,MC), (MR,SC), (MR,MC).

Next, subgraphs within each of these quadrants are arranged based on the
configuration of the paths they contain. A path is (1) single step (s) if it only
contains a single event node within the subgraph, (2) continuous (c) if the path
contains > 1 event node and is continuously within the subgraph, i.e., it only
enters and leaves once, and (3) interrupted (i) if it contains > 1 event node and
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Fig. 2. Taxonomy of graph-structure-based task execution patterns

it leaves and enters the subgraph more than once. A single step path and an
interrupted path are both non-continuous.

The set of resource DF-paths are configured separately from the set of case
DF-paths. For each quadrant the subgraphs are arranged on the x-axis into
columns for continuous and non-continuous case DF-paths and on the y-axis
into rows for continuous and non-continuous resource DF-paths.

The bold letters in Fig. 2 indicate the short-hand notation we use in the fol-
lowing, e.g., MRi,SCc denotes pattern P10: Multiple Resource interrupted, Single
Case continuous.

Structural Properties. A fundamental property of graph-structure-based pat-
terns is that all entities (cases and resources) are involved in each step of the
task execution.

A fundamental property of our taxonomy is that adding/removing resource
or case DF-paths results in a corresponding pattern in another quadrant, e.g.,
adding more resource DF-paths to P3 returns P11 and adding both more resource
and case DF-paths returns P15.

A second fundamental property of the taxonomy is that it distinguishes ele-
mentary task execution patterns that cannot be decomposed further into sub-
graphs fitting the parameter space (1, 4, 5, 8, 9, 12, 13, 16) and non-elementary
task execution patterns that are compositions thereof (2, 3, 6, 7, 10, 11, 14,
15). By combining instances of elementary patterns along either a continu-
ous resource DF-path or a continuous case DF-path, we end up with a non-
elementary instance belonging to the same quadrant. For instance, if we take



220 E. L. Klijn et al.

three instances of P1 for the same case c and resource r and combine them along
the case DF-path, i.e., the case is continuous in the composition (only leaves and
enters once) while the DF-path for r can be arbitrary, we end up with P2.

The subgraphs in Fig. 2 that are not single-step are only one of the many
variations possible within each specific cell. For instance, if we take two instances
of P1 and one instance of P4 and again combine along a continuous case DF-
path, we end up with a variation of P2.

Conceptual Evaluation. Within each quadrant, the top-left cell (1, 5, 9, 13)
describes a single-step task. The bottom-right cell (4, 8, 12, 16) describes a
task continuously involving all cases and resources over multiple steps. The top-
right and bottom-left cell of a quadrant describes tasks interrupted by either
the resource(s) or the case(s), respectively, e.g., a resource attending an urgent
task in another case or a resource requiring input from another resource not
involved in the task. While some single step and continuous patterns have been
observed in other works [5,6,18], at present, no work has systematically studied
interrupted patterns.

SR,SC patterns portray tasks that can only be executed for a single case by
a single resource at a time, e.g., writing out a speeding ticket (single step, i.e.,
P1), or finalizing a loan offer: 〈call client about loan offer, create offer, send
offer〉 (multiple steps, i.e., P4). P2 describes an actor interrupting and returning
to a larger unit of work in a case, e.g., compiling a report that is interrupted
by other duties. P3 describes an actor continuously being concerned with the
same case while other actors have to be involved as well, e.g., due checks based
on a four-eyes principle. P1 has been extensively studied in traditional process
analysis and P4 has been observed in [5].

SR,MC patterns portray tasks where a single resource handles multiple cases
together, such as batch processing, e.g., lecturing a classroom of students (single
step, i.e., P5) or analyzing a batch of blood samples, which involves transporting
them to the lab, scanning them and analyzing them (multiple steps, i.e., P8).
Only single step (P5) and multi-step batching (P8) have both been observed in
[18].

Conversely, MR,SC patterns portray tasks where multiple resources work on a
single case together. For instance in collaborative decision making, e.g., a master’s
defense (single step, i.e., P9), or due to practical or technical requirements,
e.g., delivering, carrying, and installing a washing machine requires two people
(multiple steps, i.e., P12). Only P9 has been observed in [6], where queues and
conveyor belts synchronize as distinct resources for the same (single step) events.

Finally, MR,MC patterns portray tasks executed by multiple resources on
multiple cases together. While theoretically possible, it is very unlikely multi-
ple cases and resources synchronize that strongly in real-life processes especially
over multiple steps. A very relaxed interpretation of such a task would be the
co-chairing of a panel for a conference (single step, i.e., P13). We discuss more
realistic manifestations of MR,MC task configurations when discussing domain-
knowledge based patterns (shown in Fig. 3). At present, no work has systemati-
cally studied patterns involving both multiple cases and multiple resources.
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Taxonomy of Domain-Knowledge-Based Task Execution Patterns. So
far we discussed our taxonomy for the strictly synchronized graph-structure
based patterns shown in Fig. 2. We now discuss our taxonomy for the domain-
knowledge based patterns at the other end of the spectrum shown in Fig. 3.
The domain-knowledge based task execution patterns allow that only some
case/resource paths synchronize per event but require all paths to be uninter-
rupted; this yields “units of work” that are more distributed. While there is
a considerable amount of other subgraphs that fit Fig. 3, we limit ourselves to
discuss those that require only basic domain knowledge.
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Fig. 3. Taxonomy of domain-knowledge-based task execution patterns

Structural Properties. We first observe that we can derive all the configurations
in Fig. 3 by composing multiple of the same elementary pattern from Fig. 2. For
instance, P7’ and P10’ are essentially multiple instances of P1 composed along
the resource and case DF-path, respectively. P8’ and P12’ can be composed
similarly using instances of P4. P14’ can be composed of P5 instances along the
case DF-path and P15’ with P9 instances along the resource DF-path. In Fig. 3,
P16’ is composed of multiple instances of P1, both along the resource and case
dimension. The pattern properties of this particular cell 16’ allow for basically
every combination of elementary patterns composed along both the resource and
case dimension. In contrast to graph-structure-based non-elementary patterns,
the conditions for composing the patterns in Fig. 3 require domain knowledge.

Conceptual evaluation. In Fig. 3, P7’, P8’, P15’ portray different forms of
sequential batching, i.e., the same step is executed for a sequence of cases one
after the other, with a single resource (P7’, SRc,MCs), with multiple resources
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(P15’, MRc,MCs) and with one resource executing multiple steps per case (P8’,
SRc,MCc). Sequential batching that involves a single resource (P7’ and P8’) has
been observed in [18].

We also identify a subset of patterns in which multiple resources are sepa-
rately involved, each performing a set of steps for a case after which it moves
to the next resource for the next step(s) in a pipe-lined fashion (e.g., P10’ and
P12’, MRs,c,SCc), resembling a factory/production type of setting. Such a setting
could also be realized for (simultaneous) batches of cases (P14’, MRs,MCc). At
present, no work has systematically studied these patterns.

P16’ (MRc,MCc) is a combination of the former two types; it portrays sequen-
tial batching being performed in a pipe-lined fashion. In Sect. 6 we show that we
can identify an instance of P16’ in the BPIC’17 data.

5 Detecting Task Execution Patterns in Event Graphs

In this section, we present a technique for detecting instances of the task
execution patterns of Sect. 4 as subgraphs in an event graph. We query the
graph to retrieve all instances (subgraphs) of elementary task execution pat-
terns (P1, P4), which we then materialize and store as new “task instance”
nodes (Sect. 5.1). Later, we use these task instance nodes for querying elemen-
tary task instances (Sect. 5.2) and for detecting and querying non-elementary
task instances (Sect. 5.3). All conceptual queries presented here are imple-
mented in the graph query language Cypher on the graph database Neo4j; see
Sect. 6 and [15].

5.1 Modeling Elementary Task Instances as High Level Events

We assume the data to be given in an event graph G (see Sect. 3). We describe
how to detect in G subgraphs describing task instances (TIs) of elementary
patterns P1 and P4 and how to materialize these as new nodes with label TI
in the event graph. Finally, we lift the DF -edges from the Event nodes in the
task instance subgraph to the corresponding TI node. Figure 4 shows the result
of constructing the TI nodes and all corresponding relationships for the event
graph from Fig. 1.

We first search the graph for all pairs of events (ei, ei+1) that have both a
case DF-edge (ei, ei+1)c and a resource DF-edge (ei, ei+1)r and create a new
“joint” DF-edge (ei, ei+1)j . We then detect any task instance of elementary P4
as a maximal sequence of events ti = 〈em, ..., en〉 where for each ei, ei+1 ∈ ti
there exists (ei, ei+1)j and there exists no joint DF-edges (e′, em)j or (en, e′)j .
An instance of P1 is ti = e without (e′, e)j , (e, e′)j . We materialize ti as a new
node hti with label TI and a contains relationship from hti to each e ∈ ti. We
treat hti as a “high-level” event and set properties hti.timestart = em.time and
hti.timeend = en.time and correlate hti to each entity n to which em, ..., en
are correlated by adding CORR relationships. Finally, we sort all TI nodes
h1, . . . , hk correlated to the same entity n of type x by timeend and introduce
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Fig. 4. Event graph containing the hti nodes constructed from the events from Fig. 1

corresponding DF -edges (hi, hi+1)x of type x, which lifts DF-paths from events
to task instances. See [15] for the Cypher query. For example, we detect in Fig. 1
ti1 = e1, e2 and ti4 = e6, e7, e8 resulting in nodes h1 and h4 and (h1, h4)r in
Fig. 4. Instances of the other elementary patterns (5, 8, 9, 12, 13, 16) can be
found by checking for multiple (ei, ei+1)c and/or (ei, ei+1)r relationships over all
events in ti.

The elementary task execution T described by an elementary task instance
ti = em, ..., en is its sequence of action names T = em.action, ..., en.action; we
set ti.task = T for easier querying.

5.2 Querying Elementary Task Instances

Having materialized all elementary task instances into TI nodes, we can query
the graph of TI nodes and DF-relationships between them for insights. This
allows for the following kinds of queries: (1a) Retrieve a subset of TIs based on
a specific property, e.g., all TIs correlated to r1 (h1 and h4 in Fig. 4), or (1b)
the subset of TIs of the most frequently executed tasks (h2 and h5 in Fig. 4).
(2) Query for DF-paths between TI nodes, for instance the DF-path of TI nodes
correlated to a specific case (〈h4, h5〉 for c1 in Fig. 4) or to a specific resource
(〈h3〉 for r29 in Fig. 4). (3) Querying the DF-path of TIs of a specific resource on
a specific day could give insight into habits [2] followed by this resource. Next,
we query DF-paths between TI nodes along cases and resources to detect larger,
non-elementary task execution patterns.

5.3 Querying Non-elementary Task Instances

We materialized elementary task instances as TI nodes connected through DF-
edges in Sect. 5.1. We now show how to detect instances of non-elementary task
execution patterns (NTI for short) as shown in Figs. 2 and 3 as compositions of
TIs by querying for paths of TI nodes along DF-edges.

We detect any interrupted NTI (Fig. 2) involving resources r1, ..., rl and
cases c1, ..., cm by querying for a maximal sequence of TI nodes h1, ..., hk with
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(hi, hi+1)r1 , ..., (hi, hi+1)rl or (hi, hi+1)c1 , ..., (hi, hi+1)cm , 1 ≤ i < k so that all
underlying Event nodes are correlated to the same resource entities nr1 , ..., nrl

and case entities nc1 , ..., ncm . For detecting the domain-knowledge-based NTIs
(Fig. 3), we also query a maximal sequence of TI nodes along either the resource-
path or case-path, but this time require only one of the entity types (cases or
resources) to be correlated to all TI nodes. For the patterns that describe batch-
ing behavior (7’, 8’, 15’, 16’), we additionally require all TI nodes h1, . . . , hk to
describe the same elementary task, i.e. hi.task = hi+1.task, and a maximum time
difference Δtbatch between two subsequent TIs, i.e. hi+1.timestart−hi.timeend <
Δtbatch; see [15] for a Cypher query that detects NTIs of sequential batching P8’.
Using such domain knowledge for a time gap is commonly done in batch iden-
tification [18]. For patterns 10’, 12’, 14’ and 16’ additional domain-knowledge is
required to determine if multiple TIs along the case-path form a task execution.
Examples of NTIs of P2, P3, P7’ and P8’ are shown in Fig. 5.

6 Evaluation

We performed an exploratory analysis to investigate the occurrence of task exe-
cution patterns in two real-life event logs BPIC’14 [7] and BPIC’17 [8]. We
realized the approach of Sect. 5 in Cypher queries invoked via Python scripts
on the Graph DB Neo4j; available at https://github.com/multi-dimensional-
process-mining/event-graph-task-pattern-detection. Creating all TI constructs
(Sect. 5.1) took 44.57s for the BPIC’14 log and 68.81s for the BPIC’17 log on an
Intel i7 CPU @ 2.2 GHz machine with 32 GB RAM.

We applied queries for detecting all patterns that did not require specific
domain knowledge, i.e., all patterns except 10’, 12’, 14’ and 16’, in the event
graphs of the BPIC’14 and BPIC’17 data. We found TIs of patterns 1, 2, 3, 4, 7’
and 8’; TIs involving multiple resources and/or multiple cases per event simply
do not occur in the data.
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Table 2. General task execution pattern measurements for BPIC’17 and BPIC’14 with
<30 m between all TIs in NTI or >30 m between at least one TI in NTI
log pat. # of # of % of length duration # of TIs(1,4)

TIs events events (min) in the NTIs
avg. st.dev avg. st.dev avg. st.dev

BPIC’17 1 11 995 11 995 1.4 1.0 0.0 0.0 0.0
without 4 125 472 703 000 81.8 5.6 2.8 2.9 61.5
User 1 2>30 1 174 10 640 1.2 9.1 3.0 140.0 104.0 2.0 0.1

3>30 45 354 0.0 7.9 2.4 121.6 92.9 2.0 0.0
2<30 431 3 755 0.4 8.7 3.7 19.9 10.5 2.0 0.3
3<30 55 419 0.0 7.6 3.4 11.8 12.8 2.0 0.1
7’<30 269 1 297 0.2 4.8 1.1 23.8 16.1 4.8 1.1
8’<30 2 385 64 974 7.6 27.2 16.4 43.8 38.8 6.2 3.7

BPIC’17 1 27 27 0.0 1.0 0.0 0.0 0.0
only 4 33 706 144 683 16.8 4.3 1.6 0.2 0.4
User 1 2<30 1 788 10 687 1.2 6.0 0.3 0.8 0.8 2.0 0.1

3<30 255 1 530 0.2 6.0 0.0 0.7 0.5 2.0 0.0
8’<30 1 350 43 641 5.1 32.3 29.2 24.2 33.1 9.0 14.3

BPIC’14 1 107 069 107 069 22.9 1.0 0.0 0.0 0.0
4 138 002 359 668 77.1 2.6 0.9 21.6 580.9
2>30 16 489 80 585 17.3 4.9 2.0 116.1 102.5 2.4 0.8
3>30 1 631 7 364 1.6 4.5 2.0 103.3 87.5 2.1 0.3
2<30 16 963 70 965 15.2 4.2 1.5 10.7 14.9 2.2 0.4
3<30 11 085 40 029 8.6 3.6 1.4 6.5 18.0 2.0 0.1
7’<30 3 274 18 320 3.9 5.6 2.6 8.9 12.6 5.6 2.6
8’<30 228 1 988 0.4 8.7 1.5 10.4 12.4 4.3 0.7

Figure 5 shows for the BPIC’17 data for each detected pattern type a task
instance annotated with resource and case identifiers. The P1 instance in Fig. 5
shows actor r14 executing a single step in a case before moving to a different case
and the P4 instance shows r95 executing four actions in a case before moving to
the next. The P2 instance shows r3 executing ten actions in a case with an inter-
ruption after the first step W2, executing the same action W2 also in another case
before completing the task in the former case. The P3 instance shows r107 con-
tinuously working on a case, performing the same task execution (〈V4, I1, I2, A6〉)
twice while r128 performs other actions in between. The P7’ and P8’ instances
show r35 and r126 performing the same actions W2 and 〈I4, V1, V2, A9〉, respec-
tively, for the same five cases in a sequential batch. We observe a min/avg/max
time difference of 0/12/613 min and 0/4.8/512 min between any two subsequent
steps in a batch for BPIC’17 and BPIC’14, respectively.

Table 2 shows the occurrence and other statistics of patterns 1, 2, 3, 4, 7’
and 8’ in the BPIC’14 and BPIC’17 data. We observe that P4 (multiple actions
by same actor) makes up for the largest share of events in both logs (77.1%
and 98.6% for BPIC’14 and BPIC’17, respectively) and has an average duration
of 21.6 and 2.9 min and an average waiting time of 16.5 and 22.6 min between
every pair of successive P4 instances for BPIC’14 and BPIC’17, respectively. It
is therefore likely that these instances are composed of a single task execution
as opposed to multiple tasks executions, rejecting the general assumption that a
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task execution is a single step executed by a single actor in a single case. We see
P3 (actors interrupt a task execution and switch to another case) more often in
BPIC’14 (1.6% + 8.6%) than in BPIC’17 (0.2%), showing that actors work dif-
ferently in different processes. We observe that almost half of the interruptions
P2 in BPIC’14 last more than 30 min, indicating that actors often switch context
for long periods at a time. Task executions interrupted by waiting for another
actor (P3) make up 10.2% of the BPIC’14 data, with a minor part lasting longer
than 30 min, indicating either very long breaks or tasks in another process con-
text not recorded in the data. Of these P3 interruptions, 60% lasted less than
10 s. TIs of P2 and P3 contain on average 2 other elementary TIs of P1 or P4
(last column). Executions of batch patterns P7’ and P8’ comprise 0.2+7.6% of
the BPIC’17 data; although multi-step batches (P8’) have > 5 times as many
steps as single-step batches (P7’) they only take twice as long in duration; indi-
cating large deviations in executions of batching tasks in the BPIC’17 data. We
observe a mean duration of 21.6 m for analyzing problems in IT components
(BPIC’14) and 2.9 m for handling loan applications (BPIC’17) for elementary
TIs, confirming our intuition that a task execution is short.
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O2 O3 O6 W4 C1 C2 A2 O2 O3 O6 C4 V1 V2 A9 O5 O5 A5 O4 O4 V5

A8 H1 H3 W1 A3

A4

A0

W2

O2 O3 O6 W5 C1 C2 A2 A1 O1 C4
A1

A8 H1 H3 W1 A3

A4

A0

W2

O2 O3 O6 W4 C1 C2 A2
A1 O1 C4

A8 H1 H3 W1 A3

A4

A0

W2

O2 O3 O2 O3 O6 O6 W4 C1 C2 A2

A1 O1 O1 C4
A8 H1 H3 W1 A3 A0 O2 O3 O6 W4 C1 C2 A2

O1 C4

1

1111458873
19

10

1372864243

206394826

3

16

113 126 83

1992048266

231877008365

27

Fig. 6. Event graph of loan applications 1111458873, 1372864243, 206394826,
1877008365 and 1992048266 in BPIC’17 revealing five different task execution pat-
terns
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To investigate the manifestation of different task execution patterns on a
case level, we visualized the events of five process executions in Fig. 6, revealing
instances of five different task execution patterns P1, P4, P7’, P8’, and notably
the most complex P16’. In Fig. 6, we observe six instances of P1 (one separately
and five as part of P7’). All other task instances are of type P4, meaning that
most actors perform tasks over multiple steps in the same case before handing
the case over to the next actor. Existing process discovery techniques lack the
resource perspective necessary to actually structure a trace into a sequence of
P4 (and P1) instances, required to reveal these handovers of work. We observe
r1 executing 〈A4, A8,H1,H3,W1, A3〉 in a batch for five cases in row (P8’) and
r19 executes W2 for the same fives cases in a batch (P7’) directly afterwards.
The instances of P8’ and P7’ together form an instance of P16’ along the cases.
While domain knowledge is required to verify whether this instance of P16’ is
intentional, we show that structured task executions involving multiple resources
and cases exist in the data. This particular type of structured collaboration over
multiple steps suggests a routine; confirming this requires further investigation.

We finally explored whether we find evidence for task executions changing
over time, as stipulated in [14]. We queried the frequency of all task executions
in BPIC’17 over time; Fig. 7 shows 4 selected task executions Ta–Td and their
frequency. Ta changes into Tb in July 2016 by changing only the first action from
V5 (lifecycle complete) to V4 (lifecycle abort), suggesting a minor change in direc-
tive but not a change in the way people work. We see similar lifecycle changes in
other task executions of the BPIC’17 data (not shown here). Around the same
time, Tc and Td emerge, which both contain Ta at the end suggesting that also
the way people worked changed. In total we found 6 more task executions with
this characteristic that also show this change.

7 Conclusion

In this paper, we considered event data along both the case and actor dimension.
Doing this in event graphs revealed different ways in which non-trivial tasks
manifest as patterns in the data and uncovered dynamics that have not been
described before in established process mining and modeling; these range from
interruptions and batching to the more complex production-type settings.

This lays the foundation for a fundamentally different way of conceptualiz-
ing processes as the interplay of cases and actors engaging in recurrent patterns
of work, i.e., routines and habits as studied in routines research [2]. We found
evidence in existing real-life event logs that such patterns make up the larger
share of events. We believe the taxonomy of task execution patterns aids in task
mining and many other process analysis problems where actor and case perspec-
tives meet. For example, the relation between certain actor behavior and process
performance or process outcomes, the adherence to queuing policies [26] as well
as questions related to the study of complete systems of processes, resources and
queues together [6].
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Our approach is limited in that our taxonomy does not cover the entire spec-
trum of possible task patterns; we currently do not account for graph-structure-
based patterns with a less strict synchronization of paths, while real-life mani-
festations thereof do exist. This includes other possible patterns or aspects that
may have been overlooked. Some patterns of the taxonomy involving multiple
actors and cases were not found in the data as such data was not available. How-
ever, such patterns do exist, e.g., delivering and installing a washing machine by
two actors does happen. A next step is finding and exploring other data for the
existence of these patterns. Important to note is that our work does not identify
a task itself but only the patterns of actions used to achieve a task. Finding out
what these patterns mean and what real-life tasks they portray is future work.
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Abstract. Efficient resource management is a critical success factor for
all businesses. Correct insights into actual resource profiles, i.e. groups of
resources performing similar activity instances, is important for success-
ful knowledge and (human) resource management. To this end, organi-
sational mining, a subfield of Process Mining, focuses on techniques to
extract such resource profiles from event logs. However, existing tech-
niques ignore contextual factors that impact how and by whom an activ-
ity is performed. This paper introduces the novel method ResProMin
to discover context-aware resource profiles from event logs. In contrast
to the state-of-the-art, this method builds upon the notion of activity
instance archetypes, which incorporates the activity instance’s context.
An evaluation of the method on real-life event logs demonstrates its fea-
sibility and potential to uncover valuable business insights.

Keywords: Process mining · Organisational mining · Resource
profiles · Context-aware process mining

1 Introduction

Efficient resource management is a key success factors for all businesses. A com-
prehensive understanding of the complex relation between resources and activi-
ties enables efficient resource allocation and potential cost reductions [5,15]. To
this end, process owners first need an objective insight into the context-aware
resource profiles, i.e. who does what in which context?

Organisational mining – a subfield of Process Mining – focuses on discover-
ing organisational structures and social networks within organisations from event
logs [17] and addresses this need. Several research efforts focused on discover-
ing resource profiles from event logs [1,2,9,17,20]. However, existing algorithms
ignore context, i.e. the circumstances in which the activity was executed, and
rely solely on activity labels to mine resource profiles. In real-life settings, this
limiting assumption can hide important nuances. For instance, two nurses can
perform the same set of activities, but the patient’s health condition might dic-
tate the preference of one nurse over the other. While both nurses are equal
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A. Polyvyanyy et al. (Eds.): BPM Forum 2021, LNBIP 427, pp. 230–245, 2021.
https://doi.org/10.1007/978-3-030-85440-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85440-9_14&domain=pdf
http://orcid.org/0000-0001-8962-9515
http://orcid.org/0000-0003-3279-3853
http://orcid.org/0000-0003-4735-0609
https://doi.org/10.1007/978-3-030-85440-9_14


Looking Beyond Activity Labels 231

based on activity labels, the context reveals that both nurses have a different
profile. Consequently, there is a need for mining context-aware resource profiles
from an event log.

This paper introduces the method ResProMin to generate context-aware
resource profiles from event logs. Firstly, the method discovers activity instance
archetypes reflecting the activity instance’s context, i.e. the circumstances under
which the activity instance was executed, such as case attributes and vari-
ables capturing the system state. Secondly, it assigns resources to these activity
instance archetypes in a probabilistic manner, from which it discovers context-
aware resource profiles. Not only do these profiles reveal who does what in which
context, but it also allows the distinction between specialists and generalists.

The contribution of this work is twofold:

• The design of a novel method for discovering context-aware resource profiles
is presented and discussed.

• A demonstration of the method on real-life datasets is presented to evaluate
the method’s feasibility and the ability to uncover valuable business insights.

An overview of the related work on this topic is provided in Sect. 2. Section 3
introduces the design of the ResProMin method. Next, the feasibility and value
of ResProMin are evaluated in Sect. 4. Finally, the conclusion and opportunities
for future research are discussed in Sect. 5.

2 Related Work

While the field of Process Mining traditionally focused on discovering the control-
flow of processes from event logs, the sub-field organisational mining is receiving
more and more attention [20]. Song and van der Aalst [17] were among the first to
explore resource-related topics within a Process Mining context. They focused
on discovering organisational structures and social networks from event logs
leveraging task-based metrics based on joint activities [17]. These ideas are still
used today, for instance, by Camargo et al. [4] to discover resource groups that
perform similar tasks in their tool Simod.

Various resource-related topics have been investigated in Process Mining lit-
erature. To describe resource behaviour, Pika et al. [14] provide a framework
to extract metrics on skills, productivity, utilisation, and collaboration patterns
from event logs. Similarly, Nakatumba and van der Aalst [13] describe resource
behaviour but specifically focus on the effect of workload on resource perfor-
mance. Other researchers focused on rule mining to assign resources to tasks.
Cabanillas et al. [3] developed RALph Miner, which is a tool to discover graph-
ical resource-aware process models in which various task assignment rules are
incorporated. Schönig et al. [16] also focused on finding assignment rules, but
from a team perspective.

The most closely related research stream focuses on the discovery of groups
of similar resources. In this respect, Jin et al. [9] propose an approach to mine
resource roles, which are groups of resources that have performed the same tasks
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in similar volumes. This creates an abstraction layer between the individual
resources and activities. A similar approach is proposed by Burattin et al. [2],
who look at roles from the perspective of the handover of activities. However,
they assume that a specific activity cannot belong to multiple groups at the
same time. This assumption does often not hold in reality, where employees who
possess several skills are not necessarily bound to one group [20].

To the best of our knowledge, there have been only two research efforts on
detecting groups of resources that allow such overlapping group membership.
Firstly, Appice [1] analysed the progress of communities over time in dynamic
social networks while allowing communities to overlap. These communities repre-
sent a company’s organisational units, and each resource has a certain degree to
which it belongs to a particular unit. The second related research effort was con-
ducted by Yang et al. [20]. They propose a Model-based Overlapping Clustering
(MOC) model. The output of the MOC model is a boolean-valued membership
vector, which indicates whether a particular resource belongs to a group or not.

All of the aforementioned papers which discover groups of similar resources
rely on the performer-by-activity matrix as an input, except for Appice [1], who
used a modified Louvain algorithm, and Burattin et al. [2], who relied on the
notion of the handover of roles. The performer-by-activity matrix counts for
each resource – i.e. the “performer” – how often (s)he executed each activity
[17]. Although this is an effective and easy way to derive resource profiles, it is
limited to only two dimensions: who did what. Therefore, information such as
when or under which circumstances gets lost. Our paper anticipates upon this
limitation by proposing a method to mine context-aware resource profiles.

3 Method

This paper introduces the novel method ResProMin to discover context-aware
resource profiles from event logs, which consists of three steps (cfr. Fig. 1).
Firstly, we enrich the event log by adding relevant contextual variables. Sec-
ondly, we cluster the enriched event log from the first step to find activity instance
archetypes using probabilistic model-based clustering and profile these clusters to
get an overview of the different archetypes. Finally, we discover resource profiles
by calculating, for each resource, the conditional probability that (s)he performs
each activity instance archetype. Moreover, we determine whether a resource
specialises in his/her work.

Step 1: Context Enrichment. ResProMin assumes the presence of an event
log that minimally describes each event by a case identifier, a timestamp or
other attribute that allows temporal ordering of events, an activity label, and
a resource identifier. Additionally, it also assumes that each activity instance
corresponds to a single event in the event log, which is common for most real-life
event logs.

The first step adds computed and derived attributes to obtain an enriched
event log. This allows us to describe when and under which circumstances an
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Fig. 1. The three steps of ResProMin: (1) context enrichment, (2) activity instance
archetype identification, and (3) resource profile identification.

activity was executed: e.g., weekday, morning or evening shift, case type, activity
duration, workload within parts of the process, and many more. The richer the
event log, the more interesting patterns can be uncovered. An example of such
an enriched event log is shown in Table 1, where each row represents an activity
instance with various contextual attributes.

The number and which attributes can be added is different for each event
log and mainly depends on the availability of information. However, it is impor-
tant to consider that Step 2 will apply clustering directly to the enriched event
log. Therefore, it is essential to include only attributes which are meaningful
in a cluster analysis, e.g. it is best to omit the raw timestamp and use a more
aggregated attribute, such as weekday, instead.

Table 1. Example of an enriched event log.

Activity Resource Case Procedure Weekday Active cases . . .

Create purchase requisition Anna Comprehensive Wednesday 15 . . .
Amend request for quotation Mike Regular Monday 22 . . .
Send invoice Jane Regular Thursday 12 . . .
Confirm purchase order Anna Comprehensive Friday 6 . . .
Create purchase requisition John Regular Friday 14 . . .
Pay invoice Jane Regular Tuesday 18 . . .
. . . . . . . . . . . . . . . . . .

Step 2: Activity Instance Archetype Identification. Next, we cluster the
enriched event log to find activity instance archetypes. Each activity instance
archetype comprises a set of activity instances that exhibit a high homogeneity
with instances of the same archetype and high heterogeneity with instances in
other archetypes. To identify activity instance archetypes, we propose to use
Finite Mixture Models, which has the inherent advantage of using probabilities,
providing statistical criteria to choose the number of clusters, and allowing the
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use of variables of different types, such as nominal, discrete, and continuous [19].
A Finite Mixture Model (FMM) is a probabilistic model-based clustering

technique that allows overlapping clusters [11]. Suppose we have a set of N data
observations Y = (y1, . . . ,yN ) and assume that the random variable yn is dis-
tributed according to a mixture of K components. Each component – or cluster
– represents an activity instance archetype, is assumed to follow a parametric
distribution, and has an assigned weight, i.e. the prior probability of observing
cluster k, with k = 1, . . . , K. The mixture density function h is given by Eq. 1.

h(yn | ϑ) =
K∑

k=1

πkfk(yn | θk), (1)

where fk(yn | θk) is the kth component density function with parameter vector
θk, ϑ = (π1, . . . , πK , θ1, . . . , θK) is the vector of all model parameters, and πk

is the prior probability, or mixture proportion, which must satisfy
∑K

k=1 πk =

1, where ∀k : πk > 0. The parameters of this model (ϑ) can be fitted using
the Expectation-Maximisation (EM) algorithm, which tries to maximise the log-
likelihood [11].

Gaussian distributions are often used in FMMs, which is then called a Gaus-
sian Mixture Model (GMM). GMMs are used in many applications, including
biology, physics, medicine, marketing, and economics [6]. However, because vari-
ables such as the activity label and resource identifier are nominal, we cannot
use Gaussian distributions. Instead, we use multinomial distributions for these
variables.

To determine the number of components – i.e. K – we use the Bayesian
Information Criterion (BIC), which tries to balance the goodness-of-fit with the
model complexity, i.e. it penalises more components harder. One should choose
the number of components resulting in the lowest BIC [6], or the point where
adding additional components barely improves the BIC [10].

Once the appropriate number of clusters (K) is determined, the intra-cluster
distributions are used to profile each activity instance archetype using a label
and a brief description. This makes it easier to refer to a particular archetype
and enhances its recognisability by domain experts.

Step 3: Resource Profile Identification. Context-aware resource profiles
are groups of resources that perform similar activity instances, taking into
account contextual information, and, hence, move beyond hierarchical functions
or resource groups solely defined using activity label information. To identify
these profiles, we first need to calculate the probability that a resource belongs
to a particular activity instance archetype based on the intra-cluster resource
distribution fitted by the FMM. To this end, we apply Bayes’ Theorem:

P (Cluster = c | Resource = r) ∝
P (Resource = r | Cluster = c)P (Cluster = c), (2)



Looking Beyond Activity Labels 235

where P (Resource = r | Cluster = c) is the probability of observing resource r
in cluster c, and P (Cluster = c) is the mixture proportion (also denoted by πc).

After calculating these probabilities, we discover the resource profiles and
determine whether a resource specialises in his/her work. We do this by first
constructing a distance matrix using the Euclidean distance between the proba-
bilities derived from Eq. 2. Resources with a smaller “distance” are more closely
related than resources with a larger “distance”. Next, we cluster this matrix
using Agglomerative Hierarchical Clustering (AHC) and choose the number of
clusters where the Total Within Sum of Square (WSS) plot shows an “elbow”
pattern [8]. These clusters form our final resource profiles.

Additionally, we can also find groups of resources with a similar degree of
specialism. First, we transform the table derived using Eq. 2, so that the prob-
abilities of belonging to a particular cluster are ordered from left to right, i.e.
the first column contains the cluster with the highest probability for a particular
resource and the last column the cluster with the lowest probability. Next, we
use the same clustering technique used to find the resource profiles. In this way,
we can discern “specialists” – i.e. resources which mainly focus on a selective set
of activity instance archetypes – from “generalists” – i.e. resources who divide
their time over more archetypes [5].

4 Demonstration

In this demonstration, we will validate whether the application of ResProMin is
feasible on real-life data and capable of finding valuable business insights. To this
end, we used the publicly available event logs of the 2015 BPI Challenge, which
describe the process of building permit applications of five Dutch municipalities
[18]. These five logs contain information about the performed activities with the
associated resource, as well as other case-related attributes.

Section 4.1 highlights how the three steps in our method are applied.
Section 4.2 will discuss the results for municipality 1. Due to space restrictions,
the other municipalities’ results, along with the code used to fit the FMMs, can
be consulted in an online appendix1. Section 4.3 will discuss the findings across
municipalities and compare whether the same process is organised differently.

4.1 Setup

Step 1: Context Enrichment. In Step 1, the event log is enriched with con-
textual factors. Table 2 shows an overview of the attributes used in the cluster
model. Some attributes were already present in the event log; others have been
derived from existing attributes. For instance, the weekday is derived from the
event’s timestamp.

The activity attribute contains many distinct activity labels (on average, each
log contains over 280 different labels). To obtain interpretable results, and in the

1 https://doi.org/10.5281/zenodo.4606757.

https://doi.org/10.5281/zenodo.4606757
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absence of domain knowledge to compose meaningful groups of activity labels,
we opted to use the “phase” as the activity label. To determine the phase, the
code of an activity instance is used, e.g. “01 HOOFD xxx” refers to an activity
in the first phase [18]. It should be stressed that we did not remove any events
while abstracting the activity label, e.g. when five different activities of phase 0
were executed, we referred to each of these activities as “phase 0”.

Table 2. BPIC’15 attributes with description. Attributes with an asterisk (*) have
been derived from existing attributes.

Attribute Description

Phase* The phase within the process. Derived from the
“concept.name” attribute, where the first digit of the last
part expresses a phase within the process. A total of nine
phases are present: Phase 0–8

Resource The unique identifier of the resource who executed this
activity instance, e.g. “560462”

Case procedure Either blank (no value), “Regulier” (regular), or “Uitgebreid”
(comprehensive)

Case status Either “G” or “O”. We filtered out “T”, because this only
applied to two cases across all logs

Weekday* Number indicating the day of the week, starting with “1” for
Monday. Derived from the timestamp indicating when the
activity was completed

Case parts* The category/ies the application relates to. Derived from the
“(case) parts” attribute and transformed into dummy
variables. An activity instance applies to at least one
category, but multiple categories could be applicable. Some
categories were aggregated to limit the number of variables,
e.g. everything related to environment was bundled into one
dummy “Environment”

Step 2: Activity Instance Archetype Identification. To determine the
appropriate number of clusters of the FMM, we decided to fit two to ten com-
ponents on each log as considering even more components would hamper the
interpretability. Each model was repeated five times to limit the risk of finding
a local optimum. The stability of the results across repetitions confirmed that
five runs per component were sufficient. This resulted in a total of 45 models per
municipality: nine potential numbers of clusters, each with five repetitions. We
fitted the mixture models using the R-package flexmix (version 2.3-17) [7] (R
version 3.6.1). It took, on average, 3.7 min for a model to converge to a solution.

To decide for each municipality which of the 45 models to select, we applied
three rules: (1) per number of components, we selected the repetition with the
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highest log-likelihood, (2) we looked where the BIC-curve showed an “elbow”
pattern: adding more clusters would make the model more complex, harder to
interpret, and barely improves the model, and (3) no cluster should become
smaller than 5% of all observations. This resulted in 7, 8, 7, 6, and 9 clusters
for municipality 1–5, respectively. For example, Fig. 2 shows the evolution of
the BIC when adding more clusters to the model of municipality 1. An “elbow”
pattern can be spotted at seven clusters. The BIC could be slightly improved
by adding one additional cluster. However, this would make the second cluster
smaller than 5%, violating our third rule.

820000

840000

860000

880000

2 3 4 5 6 7 8 9 10
Number of fitted clusters (k)

B
IC

Fig. 2. BIC evolution when adding more clusters to the model of municipality 1.

Step 3: Resource Profile Identification. In the final step, we apply Agglom-
erative Hierarchical Clustering to discover the context-aware resource profiles
and find groups of resources with similar degrees of specialism.

4.2 Intra-municipality Results for Municipality 1

The results of the fitted parameters of the FMM (Step 2) for municipality 1
are shown in Table 3. In Table 3a we see the intra-cluster phase distribution.
For instance, cluster 3 mainly (88.27%) contains activities from phase 0, while
cluster 4 mainly focuses on phase 4 and 5. If we add up each probability from
largest to smallest until we reach a threshold of 70% for each cluster, we could
identify the most dominant phases for each activity instance archetype, e.g. in
cluster 4 this would be phase 4 and 5.

If we look at the case procedures in Table 3b, we notice that all clusters
describe activity instance groups with a “blank” case procedure, except for the
first cluster, which is more likely to contain activity instances that required a
comprehensive procedure.
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Regarding case status in Table 3c, clusters 1, 2, and 7 mainly contain activi-
ties with case status “G”, whereas cluster 6 is more likely to have an “O” status.
The case status in clusters 3, 4, and 5 is evenly spread among “G” and “O”.

The probabilities of observing an event on a particular part of the week for
each cluster is given in Table 3d. We aggregated the probabilities of Monday,
Thursday, and Friday to “Beginning/end of week”; Tuesday and Wednesday to
“Midweek”; and Saturday and Sunday to “Weekend”. This makes the relation
between the cluster and weekday more distinct. We notice that clusters 1, 2,
and 3 are mainly performed during the beginning/end of the week, whereas the
others are more spread out over the working week. In addition, it is improbable
to observe an event during weekends, which is not surprising within the context
of a permit application process.

Table 4 shows the probability of observing a particular case part (or cate-
gory). As multiple labels might apply to an activity instance, the sum of all
labels does not equal 100%, in contrast to the previous attributes. We notice
that clusters 3, 4, and 5 predominantly concerns an application related to con-
struction. Cluster 2 is always related to tree felling, 1 always to environment,
and 7 predominantly to demolition. In cluster 6, there is not really one category
that is mainly related to all activity instances of this archetype. Therefore, we
refer to this archetype as a residual archetype.

Table 5 describes the six identified activity instance archetypes based on the
insights from Table 3 and Table 4, together with the relative size of the cluster to
the entire log. For instance, activity instance archetype 5 (“Other construction
cases”) is the largest cluster which applies to around a third (34.19%) of all
events recorded for municipality 1.

The input columns of Table 6 show the result of applying Bayes’ Theorem in
the third step, i.e. the conditional probability of executing an activity instance
from a particular activity instance archetype, given a specific resource. We can
look at these probabilities from two different angles. Firstly, we could look for
resources that work on the same activity instance archetypes, i.e. resource pro-
files. We cluster the input columns of Table 6 using AHC into seven clusters as
the Total Within Sum of Square plot in Fig. 3a shows the typical “elbow” pattern
there. Figure 3b shows the resulting resource profiles, which are also labelled in
the output column in Table 6. For instance, resources “4936828”, “560462”, and
“560950” mainly perform activity instances from activity instance archetype 1.
Therefore, we refer to this profile as resources that work on “environmental
cases”. “Tree felling” (cluster 2) is mainly executed by “560872” and “5726485”.
However, as tree felling is a relatively small archetype (only 7.83% of the com-
plete event log), these resources likely have to fill their remaining time with other
work, such as construction-related activity instances.
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Table 3. Intra-cluster distributions for phase, case procedure and status, and weekday
variables for municipality 1 (in %).

(a) Intra-cluster phase distribution for municipality 1.

Phase Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7

Phase 0 50.89 31.43 88.27 18.89 35.47 28.19 35.56

Phase 1 12.64 11.87 11.35 2.95 19.50 11.62 18.91

Phase 2 4.23 6.03 <0.01 1.62 11.61 7.65 10.66

Phase 3 4.12 7.00 <0.01 1.44 13.04 8.86 9.20

Phase 4 13.83 17.22 <0.01 25.73 18.97 25.59 14.83

Phase 5 7.72 15.19 0.02 46.04 1.19 16.28 10.23

Phase 6 0.79 <0.01 <0.01 0.05 0.05 0.08 <0.01

Phase 7 1.82 3.45 0.11 0.93 0.08 0.40 0.52

Phase 8 3.95 7.81 0.25 2.34 0.09 1.33 0.09

(b) Intra-cluster case procedure distribution for municipality 1.

Procedure Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7

blank 35.98 100.00 93.62 89.41 96.65 91.85 94.32

Regular <0.01 <0.01 1.55 3.44 1.50 0.88 2.26

Comprehensive 64.02 <0.01 4.84 7.15 1.85 7.27 3.42

(c) Intra-cluster case status distribution for municipality 1.

Status Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7

G 81.21 89.13 47.62 48.29 50.68 26.86 85.43

O 18.79 10.87 52.38 51.71 49.32 73.14 14.57

(d) Intra-cluster part of week distribution for municipality 1. The individual

probabilities for each weekday can be consulted in the online appendix.

Part of week Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7

Beginning/end of week 79.79 89.76 86.34 43.30 59.13 51.58 48.45

Midweek 20.13 10.21 13.20 56.67 40.83 48.42 51.54

Weekend 0.08 0.02 0.46 0.03 0.04 <0.01 0.02

Secondly, we could focus on whether a resource is a “specialist” or “gener-
alist”. We transformed the input columns of Table 6 so that the probabilities
of belonging to a particular cluster are ordered from left to right, i.e. the first
column contains the cluster with the highest probability and the last column the
cluster with the lowest probability. We use the same clustering technique used for
discovering the resource profiles to find six degrees of specialism. For instance,
resource “4936828” always works on activity instances from archetype 1, whereas
“560999” always works on archetype 6. We could say that they are both spe-
cialised in their work, but they do not do the same things. In contrast, resource
“560464” more evenly spreads his/her time among clusters 3, 4, 5, and 7. This
resource clearly does not specialise in a particular activity instance archetype.
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Table 4. Intra-cluster case part distribution for municipality 1 (in %). Note that unlike
the variables in the Table 3, we assume that the values of case part are independent,
i.e. an observation may have multiple case parts. Therefore, the summation over case
parts does not add up to 100%.

Case part Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7

Installation <0.01 1.65 5.60 0.39 0.50 28.96 <0.01

Construction 21.24 <0.01 83.70 100.00 100.00 17.49 16.38

Fireproof 0.74 <0.01 2.96 2.12 0.40 13.12 <0.01

Flora & Fauna <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Area protection 4.81 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Acting in
violation of SPR

5.40 <0.01 15.43 8.43 7.81 45.98 0.49

Tree felling 0.24 100.00 1.17 1.24 0.47 3.72 3.18

Entrance/exit <0.01 <0.01 1.54 0.77 0.76 4.95 <0.01

Environment 100.00 <0.01 6.04 5.76 6.38 0.84 <0.01

Monument <0.01 <0.01 4.41 9.17 3.91 3.97 6.99

Advertisement <0.01 <0.01 1.77 1.10 0.85 6.57 <0.01

Demolition 0.30 <0.01 4.16 4.39 3.04 0.01 98.42
SPR = Spatial Planning Rules

Table 5. Activity instance archetypes with descriptions for municipality 1.

Cluster Label Description Size (%)

1 Environmental cases Mainly occur at the beginning/end of the

week, more likely require a comprehensive

procedure, with typically a “G” case status

8.97

2 Tree felling cases Mainly occur at the beginning/end of the

week, always have a “blank” procedure,

with typically status “G”

7.83

7 Demolition cases Occur evenly across the week, typically have

a “blank” procedure with status “G”

5.20

3 Construction cases in

phase 0

Mainly occur at the beginning/end of the

week, typically have a “blank” procedure,

and are evenly split between status “G” and

“O”

17.95

4 Construction cases in

phase 4 and 5

Occur evenly across the week, typically have

a “blank” procedure, and are evenly split

between status “G” and “O”

17.77

5 Other construction cases Occur evenly across the week, typically have

a “blank” procedure, and are evenly split

between status “G” and “O”

34.19

6 Other cases Occur evenly across the week, typically have

a “blank” procedure with status “O”

8.09
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Fig. 3. Resources working on the same activity instance archetypes in municipality 1.

Table 7 tabulates the number of resources for each profile-specialism combi-
nation. The degree of specialism is ordered from left – “pure specialist” – to
right – “pure generalist”. For instance, we notice that environmental cases are
only performed by resources with the highest specialisation degree.
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Table 6. Probabilities for each resource to belong to a particular cluster in municipal-
ity 1 (in %). The profiles are the results of clustering the table using AHC.

Resource
Input Output

Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7 Profile

10716070 <0.01 <0.01 63.72 35.85 0.42 <0.01 <0.01
Construction cases in
phase 0

12941730 <0.01 <0.01 100.00 <0.01 <0.01 <0.01 <0.01
560925 3.93 6.26 81.64 0.05 0.12 <0.01 8.00
9264148 2.22 16.91 80.87 <0.01 <0.01 <0.01 <0.01

11345232 <0.01 <0.01 20.00 <0.01 <0.01 80.00 <0.01
Other cases3175153 <0.01 <0.01 0.03 <0.01 <0.01 99.97 <0.01

560999 <0.01 <0.01 <0.01 <0.01 <0.01 99.99 <0.01

11744364 <0.01 <0.01 <0.01 <0.01 59.59 40.41 <0.01

Other construction
cases

1898401 <0.01 <0.01 0.03 <0.01 99.97 <0.01 <0.01
2670601 0.10 0.33 0.09 0.03 85.21 13.02 1.22
3273854 <0.01 <0.01 2.08 0.01 80.24 5.43 12.25
560589 <0.01 <0.01 <0.01 2.59 97.40 <0.01 <0.01
6 <0.01 <0.01 0.01 <0.01 99.99 <0.01 <0.01

4936828 99.99 <0.01 0.01 <0.01 <0.01 <0.01 <0.01
Environmental cases560462 94.98 2.72 2.30 <0.01 <0.01 <0.01 <0.01

560950 98.53 <0.01 <0.01 1.47 <0.01 <0.01 <0.01

560464 <0.01 <0.01 20.20 22.57 22.68 <0.01 34.56 Demolition and other
construction cases560881 0.29 0.54 0.37 <0.01 53.19 2.29 43.31

560872 18.03 29.06 50.86 <0.01 <0.01 <0.01 2.05 Tree felling and
construction cases5726485 <0.01 34.17 <0.01 12.54 53.29 <0.01 <0.01

560890 0.17 <0.01 <0.01 75.95 <0.01 17.83 6.06 Construction cases in
phase 4 and 5, and
other cases

560894 <0.01 <0.01 4.77 44.31 <0.01 42.38 8.54
560912 5.16 2.94 18.62 54.00 4.71 12.50 2.08

4.3 Inter-municipality Results

In the previous subsection, we discussed the finding of applying ResProMin
in municipality 1. We found similar patterns in the other municipalities, e.g.
all municipalities have an archetype for environmental cases. The construction

Table 7. Number of resources per profile-specialism combination in municipality 1.

Profile Specialism group

1 2 3 4 5 6

Construction cases in phase 0 3 1 0 0 0 0

Other cases 3 0 0 0 0 0

Other construction cases 5 1 0 0 0 0

Environmental cases 3 0 0 0 0 0

Demolition and other construction cases 0 1 0 0 0 1

Tree felling and construction cases 0 0 2 0 0 0

Construction cases in phase 4 and 5, and other cases 1 0 0 1 1 0
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Table 8. Number and proportion of specialists in each municipality.

Municipality 1 2 3 4 5

Specialised resources 18 5 8 7 12

Total resources 23 11 14 10 21

Proportion specialised 78% 45% 57% 70% 57%

cases were present as well, but not always with a focus on the same phases. In
addition, each municipality has several specialists and generalists.

However, we also found some differences between the municipalities. Firstly,
only municipality 1 exhibited the pattern where some activity instance
archetypes were mainly performed during either the end or the beginning of
the week. Instead, a frequently observed pattern in the other municipalities was
a much lower conditional probability to observe a particular activity instance
archetype on Friday. In other words, Fridays seemed to be quieter than other
weekdays. In municipality 1, Wednesday was often the quieter day. Secondly,
the more resources a municipality has – most likely bigger municipalities – the
larger the proportion of resources seems to specialise in particular archetypes,
as shown in Table 8. This offers face validity to our method as it seems rea-
sonable that when there are more resources to divide the work among, there is
more room to specialise. However, an interesting exception is that the small-
est municipality (i.e. 4) has the second-highest specialist rate of all municipal-
ities. This might indicate that municipality 4 uses a different way of handling
the permit application process. Thirdly, activity instance archetypes requiring
a comprehensive procedure, typically related to environment (such as cluster 1
in municipality 1, as described in Table 5) are more likely to have specialised
resources involved. Finally, activity instance archetypes that involve predomi-
nantly construction-related activity instances are also more likely to have spe-
cialised resources involved, albeit less clearly than the comprehensive environ-
ment archetype.

5 Conclusion

In this paper, we extend the existing work on organisational mining by intro-
ducing our method, ResProMin. In contrast to the state-of-the-art, ResProMin
is capable of finding context-aware resource profiles based on the notion of
activity instance archetypes. Instead of solely considering activity labels to
group resources, ResProMin accommodates contextual information such as case
attributes and variables capturing the system state. In addition, our method
allows activities to belong to multiple profiles simultaneously and is capable of
discerning specialists from generalists. Our demonstration confirms the feasibil-
ity of our method to discover context-aware resource profiles from real-life event
logs. This provides rich insights to process owners, which can help them man-
age their resources better by uncovering, e.g. (potentially implicit) task division
patterns.
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Besides these contributions, we also acknowledge some limitations of our
method. Firstly, estimating a Finite Mixture Model’s parameters is a computa-
tionally demanding process and suffers from the curse of dimensionality. How-
ever, this study’s focus was on demonstrating whether our method is capable of
uncovering meaningful resource-related insights that are valuable in a business
context and not on optimising its execution. Moreover, this kind of analysis is
typically not performed in real-time, supporting that runtime optimisation will
not be the primary goal as long as execution times remain practically feasible.
Secondly, we had no access to domain experts in the municipalities to validate
and elaborate more on our findings. Nevertheless, our demonstration shows that
ResProMin is capable of finding interesting and valuable insights into the pre-
vailing resource profiles.

We identify several directions for future work. Firstly, heuristics could be
developed to improve our method’s computational efficiency while still obtaining
near-optimal solutions. For instance, a quasi-Newton approach could be adopted
to accelerate the convergence of the EM algorithm [12]. Secondly, instruments to
facilitate the enrichment of an event log with context-related information can be
developed. Thirdly, it could be investigated whether different resource-related
organisations between municipalities are associated with process performance
differences. Finally, we could determine how the insights of ResProMin can be
leveraged by models which require fine-grained resource allocation information,
such as Business Process Simulation models.
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Abstract. Supporting knowledge workers involved in the execution
of unstructured Knowledge-Intensive Processes by providing context-
specific recommendations remains an interesting challenge. Case data
that represents expert decisions recorded in the past can be exploited
for building a decision support tool for knowledge workers that can rec-
ommend which tasks to execute next. Reinforcement learning (RL) pro-
vides a framework for learning from interaction with the environment
in order to achieve a certain process goal. RL has widely been used
to model sequential decision problems and has shown great promise in
solving large scale complex problems with long time horizons, partial
observability, and high dimensionality of observation and action spaces
[5]. In this paper, we propose a novel framework based on RL aimed at
supporting knowledge workers by recommending the optimal course of
action to the knowledge worker.

Keywords: Knowledge intensive processes · Prescriptive analytics ·
Decision support

1 Introduction

There has been a growing emphasis within the BPM research community in
recent years on supporting decision making in Knowledge-Intensive Processes
(KIPs) [7], in part as a consequence of knowledge workers being regarded as
the most valuable organizational assets [9]. Knowledge work is characterised by
unstructured processes which can be hard to specify at design-time but which
must be customized to the current context and optimized to meet desired KPIs.
Supporting knowledge workers with appropriate recommendations in such set-
tings remains a largely open problem [6,15,20].

Data-centric AI approaches hold the promise of providing a solution [7]. Rein-
forcement Learning (RL) [31] provides a framework for learning from interaction
with the environment to achieve a certain goal (implicitly defined by the reward
function). RL has widely been used to model sequential decision problems and
has shown great promise in solving large scale complex problems with long time
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horizons, partial observability, and high dimensionality of observation and action
spaces [5]. In our work, we explore the application of RL in the settings discussed
above. We present a novel framework for recommending the next best action (or
sequence of actions) taking into account asset characteristics and process con-
text. For example, our approach can recommend clinical interventions at the
right time, based on similar past cases which had a good outcome.

In KIPs, case progression is dependent on a combination of decision mak-
ing, operational context and availability of the right information. The specific
research question we address is: For a given case state in a KIP, can we lever-
age past case data to recommend the next best steps to execute?. Our specific
contributions are as follows:

1. We propose a framework based on RL that recommends the best sequence
of next steps given a partially completed case. In particular, our framework
supports: (1) Flexible process execution; (2) Maintaining and improving pro-
cess performance by learning optimal policies from past case execution data
in addition to leveraging contextual data from various heterogeneous data
sources; (3) Deep reinforcement learning along with off-policy evaluation
methods to tackle large scale case modeling problems involving high dimen-
sionality in both action and observation space, making it highly applicable in
real-world settings.

2. We demonstrate the effectiveness of our proposed framework by conducting
a large scale experiment on a real-world sepsis critical-care dataset. We show
that our proposed framework is capable of learning best practices and giving
recommendations to clinicians, that are individualised based on the dynamic
condition of the patient at a particular time.

2 Background and Related Work

Knowledge Intensive Processes: KIPs are processes that require very spe-
cific expert tacit knowledge, involvement of knowledge workers, and consist of
activities that do not have the same level of repeatability as the traditional
structured processes [7]. Instead of assuming a rigid process structure, KIPs
are goal-oriented, characterised by activities that are complex, unstructured and
hard to anticipate or model in advance. It is hard to predict the event flow of
KIPs in advance and there is significant variation in every instance of the process,
making activities hard to plan apriori [6]. KIPs represent a shift from the tradi-
tional process management view (where processes are characterized by repeated
tasks captured in a process model), to a model where task execution depends
on decisions made by knowledge workers and requires flexibility at design and
run-time [7].

Adaptive Case Management: Adaptive Case Management (ACM) is aimed
at supporting knowledge workers involved in the execution of dynamic, unstruc-
tured knowledge-intensive processes(KIPs) where the course of action for the
fulfilment of process goals is highly uncertain [15,20]. ACM offers a way to man-
age the entire life-cycle of a “case” by following the ‘planning-by-doing’ principle,
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where work is done by considering the context and is continually adapted based
on the changing characteristics of the environment [20]. In the case management
paradigm, the focus is on the case and it is hard to pre-define the sequence of
process activities. For example, Case is the ‘Product’ being manufactured or
a ‘patient’ being treated and the primary driver of case progress is the case
data and information that emerges as the case evolves. There however can exist
template or patterns that represent the structured aspects of the process. Here
process could be seen as a recipe for handling cases of specific type [2]. A Case
template is created by the knowledge worker, allowing a high degree of flexibility
on how to go about executing a particular case. It can be used to instantiate
case instances and represents the middle ground between a completely speci-
fied structured process and an unstructured process. Case templates incorporate
knowledge from experts and try to capture the best practices of knowledge work
that has happened in the past. Case execution allows us to gather feedback and
adapt the templates to be reused in a particular context [19].

Even though ACM has been gaining significant interest for handling unpre-
dictable situations in processes, Hauder et al. [15] point out that ACM still
lacks a proper theory and model. Furthermore, in [20] the authors reviewed
the research challenges associated with ACM and have highlighted the need for
flexible solutions that support knowledge workers in a ‘worker-driven holistic
manner’. Similarly, in [7] the authors highlighted the lack of a holistic system for
supporting process adaptation and inadequate support for knowledge workers
involved in modeling and runtime planning.

Prescriptive Analytics for Unstructured Processes: Prescriptive Analyt-
ics aims at providing intelligent assistance to process users by offering concrete
recommendations in various process-related decisions like resource allocation
decisions or action recommendations. Such type of assistance can improve the
process performance for running process instances and help avoid the risk of fail-
ure [13,28]. Process-aware Recommender Systems have been proposed to assist
knowledge workers, in context-aware adaptable fashion by recommending best
practices for executing a particular process/task, enhance resource allocation
policies and so on [28]. Such systems leverage technologies like machine learning
to build recommender systems that monitor process instances, predict future
states and recommend appropriate actions. Groger et al. [13] introduce the con-
cept of recommendation-based business process optimization for data-driven pro-
cess optimization. Their data-mining driven solution supports adaptive processes
and recommends next action steps to take for a given process instance.

The specific problem of recommending next steps in a case management sys-
tem based on the knowledge of past similar cases(which is the focus of this work)
has been addressed by Schonenberg et al. [28] and Motahari-Nezhad et al. [21].
Schonenberg et al. attempt it by first finding similar cases based on abstraction,
then using support and Trace Weights to consider the relative importance of
a log trace. Similarly, Motahari-Nezhad et al. [21] have looked at the problem
of decision support for guiding case resolution based on how similar cases were
resolved in the past.
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Decision Modeling with Offline Reinforcement Learning: Reinforcement
Learning (RL) assumes that there is an agent operating in the real world. At each
step t the agent, Executes action At, Receives an observation Ot and Receives
scalar reward Rt. The Problem can be formulated as a Markov Decision Process
[31] defined by (S,A, T,R) tuples where S and A refer to the state and action
spaces; T : S× A → S, is the state transition function and R : S ×A → R repre-
sents the reward function. The goal of the agent is to estimate an optimal policy
π : S → A or an optimal action value function qπ(s, a) = Eπ [Gt | St = s,At = a]
which maximizes the expected return E

[∑L
t=1 γtRt | π

]
over a given MDP [31].

A lot of RL success so far has been in academic environments where access
to a simulator is assumed and experiments are performed on simulated bench-
mark environments [8]. Offline Reinforcement learning (also referred to as safe
or batch reinforcement learning) is a promising sub-field of RL which provides
us with a mechanism for solving real-world sequential decision making prob-
lems where access to a simulator is not available. Offline Reinforcement learning
allows us to learn a policy that optimizes for long-term reward in a sequen-
tial setting, from fixed dataset of trajectories, where further interaction with the
environment is infeasible [18]. Agarwal et al. have [3] shown that offline RL algo-
rithms when trained on sufficiently large and diverse offline datasets can produce
close to optimal policies and have the ability to generalize beyond training data.
Moreover, offline reinforcement learning has been applied successfully for solving
real-world large scale problems and it has been shown that it can outperform
supervised learning approaches or heuristic-based policies for solving real-world
decision-making problems [10].

3 Approach

Knowledge workers are highly trained individuals with specialized expertise in
performing complex tasks autonomously. They typically rely on their experience
and domain expertise to accomplish business goals. Their work is less charac-
terised by explicit procedures and more by creative thinking which usually can-
not be planned apriori. Therefore, in knowledge-intensive scenarios, decisions are
made based on the expertise of knowledge workers along with the availability
of contextual information as the specific case scenario unfolds. The problem of
generating recommendations for knowledge workers is challenging due to sev-
eral reasons: a) first we must identify similar cases in logged data, that have
been resolved in the past and can form the basis for the current recommenda-
tion b) secondly, we must consider the contextual information available from
various heterogeneous data sources c) Lastly, we have to rank the proposed rec-
ommendations based on the current context (from the universe of possible valid
recommendations). In addition to these challenges, Ciccio et al. [7] have pro-
vided a set of requirements for processes oriented systems aimed at supporting
Knowledge-Intensive Processes. Keeping these requirements and challenges in
mind we propose a data-driven reinforcement learning based recommender sys-
tem for supporting knowledge workers that considers the past execution data in
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addition to characteristics of the objects involved (e.g. product or user). In this
section, we show how Markov Decision Processes can be used to model decision-
driven process structure, where data inputs are contextual and dynamic, respon-
sible for driving decision making and process flow. Here for each process instance,
we consider the sequence of interactions (actions taken along with state changes)
with the environment, as observed in the case logs along with performance out-
comes. A decision process specifies how states St, actions At, and rewards Rt

are distributed: p (S0, . . . , ST , A0, . . . , AT , R0, . . . , RT ). Using case logs, we are
interested in modeling the effects of actions At on future rewards. We do so by
training Deep Reinforcement learning models, which take historic data in order
to learn the optimal policy, which gives us next step recommendations that can
lead to desired outcomes [18]. We cast the sequential decision problem of step
recommendations as a Markov Decision Process [31].

Definition 1 (Markov Decision Process). Markov Decision Process are
defined as:

(S,A, P,R, ρ0, ) where
S : state space describing the possible case states;
- A : a discrete action space, consisting of step available for
recommendation;
- P : S × A × S → R is the state transition probability;
- R : S × A → R is the reward function, where r(s, a) is the
immediate reward obtained by performing action a at given
state s ;
- ρ0 is the initial state distribution;

Training Data: Case handling systems can generate huge amounts of data rep-
resenting knowledge objects, case patterns and events recorded in case histories
[7]. Case handling system logs typically records events like execution of tasks.
e.g. 〈τ1, τ2, . . . , τi, . . . , τn〉 along with every state change in the case life-cycle
[14]. We assume the availability of the effect log which records observed changes
in the states of objects impacted by a process. Our framework exploits such
data sources, in particular the good performing instances, for learning optimal
behaviour. This dataset however is rarely directly generated in this format and
needs to be extracted from a Case Handling System log. A behaviour policy is
a policy enacted by the knowledge worker (or the decision maker) in the past
and is represented by this historical data and forms the input for our proposed
machinery.

Definition 2 (Case Event Log). A case log is generated by behaviour policy
πb where each case instance is a tuple defined as ϕ := {cid, ca, ctime, ccxt, ceff}
where, cid is the case identifier, ca, (ai | ai ∈ A ∧ fexecuted (ai) = true ), set of
activities that were executed, ccxt,is a set of attribute-value pairs of the process
context, ctime is the timestamp, ceff is the effect assertion in the underlying state
description language.
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Action Space: Cases are handled by execution of activities which are logical
units of work (with ACID properties) [1]. Less formally, we can view them as
steps in a process that must be performed by a knowledge worker in order to
complete a task. During process design-time phase, business analysts specify the
rules and tasks as part of the case model. We describe knowledge actions as
context-dependent activities represented by their post-conditions.

Definition 3 (Knowledge Actions). Let A be a set of finite activities
where each a ∈ A is a set triple of form a := 〈ID, pre condition(a),
post condition(a)〉 action ID along with set of associated pre-conditions con-
tained in knowledgebase (KB) and set of context-independent post condition
E = {e1, . . . en}.

This set is typically constrained by feasible capabilities (i.e., the set of con-
ditions that a knowledge worker is capable of bringing about), business rules
and constraints on how to operate in a given business environment. Addi-
tionally, in high-risk environments (where executing a bad policy could cause
harm) limiting the action space to known options is a sensible choice to increase
the safety of the policy. Therefore, each action a ∈ A applicable in state is
s ∈ S dependent on precondition function S × A → {true}. This means that
only if a condition (or pre-condition) holds in a given state, then the corre-
sponding action can be executed in that state [27].

State Representation: We represent case history in a compact way, such that
it retains sufficient information for estimation of the expected value of an optimal
policy. This helps effectively predict the course of the process and recommend
next steps to take. Here we must take into account features or factors that might
causally affect both process decisions and the process outcome. We divide the
information obtained from observations into two types, namely, exogenous infor-
mation and endogenous information. Endogenous is information describing the
structured characteristics of the process (which can be pre-defined) and Exoge-
nous is information that can provide useful context for decision making based
on the current state of the environment. We can construct an aggregated feature
set by combining temporal features (if applicable) representing exogenous infor-
mation along with static features(representing endogenous information) most
relevant to the decisions. For example, in case of patient treatment, our feature
set would consist of the concatenation of patient’s static information with the
raw physiological data over several timesteps (so that it incorporates all available
temporal information).

To obtain a sequence of states (or partial states) from an event log, we accu-
mulate effects using a state update operator in a manner similar to the app-
roach adopted in [35]. Note that there exists a predecessor-successor relationship
between temporally adjacent sets of states. i.e. a state in the posterior set can be
arrived at only from some (but possibly not all) of the states in the prior set. We
will therefore first extract from an event log a state set sequence consisting of
pairs of states, where the first element is the predecessor and the second element
is the successor as follows [27]. Given an event log 〈e1, e2 . . . , en〉 , we compute a
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state set sequence 〈 StateSet1, StateSet2, . . . , StateSetn〉 , where each StateSeti
is of the form { StatePair1, StatePair2, . . . , StatePairk} and each StatePairi

is of the form 〈 statepred, state succ〉 (i.e., these are predecessor-successor pairs)
as follows:

– StateSet1 = {〈∅, ε1〉} (where 〈ε1, τ1〉 is the first entry in the temporally
ordered event log ).

– StateSet2 = {〈ε1, s〉 | s ∈ ε1 ⊕ e2}
– For i = 3 . . . n, StateSeti = {〈si−1, si〉 | si−1 ∈ StateSet i−1 and

si ∈ si−1 ⊕ ei}

Contextual-Information: Context is defined as body of exogenous knowledge
potentially relevant to the execution of the task that is available at the start of
the execution of the task, and that is not impacted/modified via the execution
of the task [29]. Context-Aware processes will perform better than their counter-
parts because they offer flexibility and consider environmental influences. in addi-
tion to traditional data sources (like case log) our framework leverages Process
execution data can come from all available data sources like case logs, event logs,
provisioning logs, decision logs. Such sources contains rich information about the
current task and can potentially provide useful contextual information for effec-
tive decision making [15].

Definition 4 (Case Context). Given a state description S, and a context C
of a case s′ = S 	 C = s ∪ c and s′ describes the same state of the system with
S. each contextual dimension c, can be defined by a set of q attribute-value pairs
{c1, . . . cq} .

Here 	 operator enriches S with the information in context C, which
consists of a set of assertions. Our state represents the compact history
retained function of history having markov property: St = f (Ht) where Ht =
〈τ1, o1, τ2, o2, . . . , τm, om〉 representing semantic execution trace of case.

Our input is formed by historical log D representing the behaviour policy πb

is defined as a bag of trajectories D = {τ1, . . . , τN}, where trajectory τi is the
tuple τ = ((s1, a1) , . . . , (sT , End) . where state s is constructed from definition
4, using a temporally ordered event log.

State Transitions. State transition are caused by external event (environ-
mental triggers) that cause changes to the state of the running process.
They are sometimes recorded as by altering of data values in the informa-
tion model. Alternatively can estimate the transition matrix T(s’,s,a) from an
event log by counting the number of times each transition is observed (e.g.
〈τ1, o1, τ2, o2, . . . , τm, om〉) and converting the transition counts to a stochastic
matrix. Note that this is an approximatation of ‘true’ transition probabilities.

Reward Function: In reinforcement learning, the reward function provides us
with mechanism for representing one or more process goals. Here we take the
goal orchestration view of process modeling [27]. We assume the process goals
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are known apriori and predefined. We can define our reward function based on
metrics that we care about maximizing or minimizing (e.g. time required to
complete a case). This approach fits well with the Adaptive Case Management
view, which encourages management by objective where we optimise for specific
results. We construct the reward function from the set of case outcomes Ro =(
r1o, . . . rj

o

)
observed at the last time step of each case instance Here reward in a

state is described as Rs = E [Rt+1 | St = s,At = a] [31].
It is often challenging to capture the process goals in one global reward

function. We can easily misspecify the reward function which can lead to unde-
sired behaviour. Therefore, in such scenarios where reward function is complex,
instead of specifying a reward directly, we can extract the underlying reward
function directly from the observational data using inverse reinforcement learn-
ing (IRL) [22]. IRL allows us to infer the objective by observing the expert
human behaviour which can later be used for training an RL agent. Several IRL
Methods have been proposed including Maximum Entropy IRL, Apprenticeship
Learning and Bayesian IRL [4].

Another challenge that arises when defining a global reward function is the
balance of multiple sub-goals where multi-dimensional costs need be minimized
simultaneously. e.g. we want to minimizing the execution cost and flow time of
a process case at the same time. To solve this we utilize the Hybrid Reward
Architecture proposed by Seijen et al. [33] where we compute a value function
by first decomposing the reward function into n sub-functions Renv (s, a, s′) =∑n

k=1 Rk (s, a, s′) , for alls, a, s′ and then aggregate the individual values to get
an estimate of action-values of the current state.

Decision Model for Generating Recommendations: An RL policy defines
the behaviour of an agent in a given environment. Formally it is defined as
the distribution over actions given states [31]. π(a | s) = P [At = a | St = s]
where S is the observed state, represented by a feature vector; A is the set
of action recommended during the execution of a partially completed process
case (within an enabled work item). The associated value function is given by
vπ(s) := E

[∑∞
t=1 γt−1Rt | π, S1 = s

]
[31].

We argue that an RL policy is an effective proxy for capturing the behaviour
model of a case and can facilitate decision making by generating individualized
action recommendations that help meet desired process goals. An RL Policy gives
us the flexibility to start from any particular state and guides us on how to act
optimally from that state onwards, making it naturally a good fit for sequential
decision making in case management [31]. Similar to case templates, Policies in
essence capture the best practices of knowledge work that can be reused in a
particular context, giving knowledge workers effective recommendations on how
to tackle similar problems from their best performing colleagues. Compared to
the rigid process structures, modeling behaviour with policies provides several
benefits. e.g. Policies can capture the uncertainty of the environment and provide
mechanisms for recovery. Furthermore, Policies allow us the flexibility to go back
and forth (revisiting old states) providing an excellent support for following
the case management philosophy and addressing its shortcomings. Similar to
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planning in traditional AI, RL policy allows us to recommend appropriate actions
(interventions) for each given input state such that, if executed will lead to high
value states (as defined by the reward function) in the near future and the desired
goal state eventually. The difference here is that the requirements for executing
the activities are less rigid. i.e. knowledge workers are not being forced to execute
activities in a pre-defined manner rather the optimal learned policy guides the
action based on the current process state.

Definition 5 (Case Decision Model). A Case decision model learned using
historical D is represented by the value function vπ(s) and associated policy
π : S → A that computes the optimal step recommendation, given the current
case state represented as sa = (ai | ai ∈ A ∧ fexecuted (ai) = true ), and set of
tasks 〈τ1, τ2, . . . , τi〉 that have been executed thus far.

Learned value functions (and policies) are functions of the environment state.
Here we rely on deep learning for learning the right representations (that char-
acterizes how the features will be treated into higher levels of abstraction), thus
allowing us to effectively approximate the value function. High-capacity function
approximators like Deep Neural Networks allow us to model large state spaces
(common in real world settings) and find a compact representation that gener-
alizes across state. Additionally, it allows us to abstract and extract high-level
features directly from input data. In our work we consider a number of Deep
Learning based methods that takes as input the state feature vector and learn
the approximate value function for each of the actions q̂ (s, a1,w) · · · q̂ (s, am,w)
that can be taken in that particular state.

4 Dynamic Treatment Regime for Managing Sepsis
in ICU

A good example of knowledge work is patient case management which is highly
case specific and requires a knowledge-driven approach. Clinical decision making
in patient case management, depends on highly specific medical domain knowl-
edge and evidence that emerges from patient’s test results and real-time sen-
sors. Clinicians face complicated decision problems during the patient treatment
process. On a high level medical diagnosis process consists of gathering data,
classifying and diagnosing a specific problem and suggesting specific course of
treatment. When we dig into the details of such medical processes it becomes
complex really quickly. i.e. requiring 10s of 1000s of rules which don’t form a neat
decision tree. It is partly because new knowledge is being discovered constantly,
diagnostic heuristics are changing and new treatment strategies are being sug-
gested constantly, making it hard to maintain an up-to-date knowledge bases of
rules [20].

We pick the example of sepsis treatment to showcase the entire spectrum of
process management (which ranges from fully structured to fully un-structured
activities). Sepsis is a dangerous condition and costs the healthcare system,
billions of dollars in treatment costs each year. Management of this disease is
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quite challenging for the clinicians and consists of giving patients intravenous
fluids and vasopressors which can greatly influence the outcome.

In healthcare, Clinical pathways are care plans that attempt to standard-
ise clinical or medical treatment processes. Such processes are highly knowledge
driven and consist of predictable and unpredictable elements. As the Process
evolves the knowledge workers (team of doctors) makes decisions based on the
clinical observations and patient data that is being constantly updated. Deci-
sion making in this context requires a team of experts to come up with goals
and plans of action that drives the progress of process (as opposed to control-
flow where progress is dependent on completion of activities). Coming up with
decision-making strategies that improve treatment policies and dynamically sug-
gest optimal treatment for patients remains a key challenge for building next
generation of data driven clinical decision support systems [11].

Fig. 1. Protocol for early goal directed therapy- figure adapted from [26]

Here instead of standardisation we customise the process to individual needs
and consider the history of patient when making treatment decisions. Complete
process of managing the disease and associated decision making policy is fairly
complicated where treatment can include administration of antibiotics, source-
control, intravenous fluid therapy and organ system support with vasopressor
drugs, mechanical ventilation, and renal replacement therapy as required [18,19].
The overall treatment and can be broken down into detailed sub-processes (e.g.
see Fig. 1 for handling patients in the state of septic shock). To simplify We
consider decisions in a restricted sepsis management setting, where we focus on
a subset of five interventions including mechanical ventilation administration,
vasopressor administration, adenosine administration, dobutamine administra-
tion and dopamine administration.

5 Evaluation

We show that our proposed framework is useful for modeling sequential decisions
problems involving decision support in the complicated setting of clinical care.
Specifically, our evaluation seeks to answer the following question:
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Given a particular patient’s characteristics and physiological information at
each time step as input, can our proposed framework learn an optimal treatment
policy that can prescribe the right intervention (e.g. use of ventilator) to the
patient at each stage of the treatment process, in order to improve the final
outcome (e.g. patient mortality)?

We argue that a data-driven approach for discovering an effective sepsis treat-
ment strategy is a good representative for evaluating our proposed RL based
decision-making framework.

Markov Decision Process (MDP) Formulation: We will now formalize the
sepsis management problem into our proposed Deep Reinforcement Learning
framework. We start by explaining the details of the dataset and pre-processing
and move on to define three key components of the Markov decision Process: a
state space, an action space, and a reward function.

Patient Cohort: MIMIC-III (‘Medical Information Mart for Intensive Care’)
[17] is a large open-access anonymized single-center database which consists of
comprehensive clinical data of 61,532 critical care admissions from 2001–2012 col-
lected at a Boston teaching hospital. The Dataset consists of 47 features (includ-
ing demographics, vitals,administration of fluids,lab test result and patient out-
come) on a cohort of sepsis patients who meet the sepsis-3 definition criteria
[30].

Pre-processing: In our implementation, we rely on MIMIC-Extract [34] which
offers guidelines and establishes a community standard for pre-preprocessing the
MIMIC dataset for various machine learning tasks. We have included patients
with age >15, whose ICU stay is between 12 h and 10 d resulting in 34,472
patients representing a diverse cohort. Further we excluded entries containing
outliers and missing values. Lastly for every patient time-stamped physiological
measurements are aggregated (e.g. hourly heart rate, arterial blood pressure, or
respiratory rate) into one hour windows, with the mean or sum being recorded
when several data points were present in one window.

State Representation: Our feature set consists of relevant covariates repre-
senting a patient’s physiological state at a given point in time. Specifically, it
consists of four static features (like gender, ethnicity, age etc.) concatenated with
six time varying patient vitals (e.g., heart rate, blood pressure, respiratory rate,
oxygen saturation level) representing information most relevant to the decisions.
After feature encoding, our final MDP state is the relevant patient covariates
represented by a feature vector of size 21 × 1 updated at each time step.

Actions Space: The pre-processed dataset includes hourly indicators of various
device and drug treatments provided to the patient overtime. These treatments
are available to the clinician in ICU and impact patient mortality. To manage
the complexity we make some simplifying assumptions. i.e. we don’t consider
the exact dosage of each intervention and only focus on selected interventions
like: mechanical ventilation administration, vasopressor administration, adeno-
sine administration, dobutamine administration and dopamine administration.
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Our action (or treatment) space consists of five discrete actions, combination of
them represents various interventions when patient has been admitted in ICU.

Reward Function: In Reinforcement learning, the decision-making agent’s goal
is to learn a policy which maximizes the total reward collected over time. We
define our reward function by ‘in-hospital mortality’ indicator (which is the final
outcome of interest) as our reward function. The RL agent optimizes for longer-
term outcomes as it receives no immediate rewards but only receives a final
positive reward at the end if the patient survives and a negative reward if the
patient dies.

Model Implementation: We define an optimal policy as a mapping from the
patient’s history H (History of their measurements and treatments to date) to
the next treatment decision in a way that it leads to optimal outcomes in the
long run. We consider the data-driven formulation of RL where RL agent doesn’t
have access to the environment for additional data collection, rather relies on
already collected static dataset. Several Offline (or Batch RL) algorithms have
been proposed in the literature. In our experiments we focus on popular state-
of-the-art algorithms such as Deep Q Learning(DQN), Double Deep Q Learning
(DDQN), Mixed Monte Carlo(MMC) and Persistent Advantage Learning (PAL)
[18]. Using these methods we train an RL agent to find the optimal policy that
corresponds to optimum treatment path for a given patient state. In our exper-
iments, we divide the data with a 70%–30% ratio for train and evaluate set
respectively. We our DeepRL models learn a treatment policy and we use Off-
Policy Evaluation methods on testset to estimate the value of this learned policy.

Off-Policy Evaluation: In real world settings we rarely have to access to a
simulator to safely test our models, and direct deployment of our learned policy
could be risky and dangerous. Therefore, in our implementation, we rely on
various well known off-policy and counterfactual policy evaluation (CPE/OPE)
metrics that leverage historical data, to give us an expected performance of
the newly trained RL model without having to deploy it [24]. Historical data
represents Behaviour policy, and is the probability of a clinician deciding on the
chosen medical intervention, given the patient’s physiological state.

The OPE problem as is defined as follows [32]: Given an evaluation policy, πe,
historical logged data, D, and an approximate model (determined by deep RL),
the goal is to produce an estimator, v̂(D), of v (πe) that has low mean squared
error (MSE): MSE (v̂(D), v (πe)) := E

[
(v̂(D) − v (πe))

2
]

[25]. The OPE problem
is challenging because of the distribution mismatch between current policy and
the behaviour policy (used to collect the data). i.e. we don’t know the actual
reward of a new action (learned by the model policy) that wasn’t taken by
the logged policy. Several OPE methods have been developed over the years
and in our experiments we rely on Weighted Importance Sampling and Inverse
Propensity Score estimator [16,32]. Weighted importance sampling (WIS) is a
modern estimator method and is trusted to represent realistic estimates of the
policies values in full RL settings [12]. It can however sometimes provides biased
estimates as it aims to trade increased bias for reduced variance. We aim to
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get a more balanced realistic value estimate by considering both weighted and
unweighted estimators [12].

Fig. 2. Comparison of policy value estimates using IPS and WIS estimators to evaluate
treatment policies learned by the Deep Reinforcement Learning models.

Results: In our experimental evaluation, we are interested in evaluating the
potential improvement a new policy can bring in terms of reduction in patient
mortality. We profile various deep RL methods (such as DQN, DDQN, Monte-
Carlo etc.) and compare the policy value estimates for the values of three differ-
ent policies: RL policy, clinician policy and random intervention policy (which
takes actions uniformly at random). In real world settings like healthcare the
true value of behaviour policy is unknown and is often estimated from the his-
torical data [12]. Therefore we estimate the clinician policy (also known as the
behaviour policy) from the patient trajectories in our dataset using monte-carlo
returns to get an on-policy estimate.

Figure 2 shows a Box Plot comparison of estimates for the values of five differ-
ent policies, with each sub-figure representing the performance measured by one
of the modern off-policy evaluation (OPE) methods. Both Estimators (Inverse
Propensity Score) and Weighted Importance Sampling) show that DDQN, MMC
models yield a much higher expected value than the clinician policy outper-
forming both baselines. Further we observe that except for Mixed Monte Carlo
(MMC), all methods have quite significant variance. While variance of DDQN
and MMC is small compared to DQN and PAL, it might be optimistically biased.

MMC has also shown good performance on various RL bechmarks in liter-
ature as it learns action values not only by bootstrapping the current action
value prediction, it mixes in the total discounted return as well [23]. Therefore
we conclude that we can put more confidence in the Mixed Monte Carlo method
when picking a final model.
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Discussion: In real world settings accurate OPE estimation is challenging due
to several reasons. Firstly, in healthcare settings we have problem of observing
sparse rewards. i.e. decisions made now have an impact several time steps later
measured by the impact on outcome. Having sparse outcomes makes it challeng-
ing to asses newly learned policies and the effect an individual decision by a
physician can have on the patient. Secondly, the statistical tools for evaluation
like Importance Sampling estimators have limitations and can be unreliable in
scenarios where data is limited. We should note that to learn an optimal policy,
even if we have large amounts of data available, we require it to be sufficiently
diverse as the number of sequences that match the evaluation policy decays
exponentially leaving only a tiny fraction of trajectories (after being assigned
non-zero weight) that match the treatments that our policy recommends [3,11].
This results in high-variance estimates of evaluation policy. Lastly, behaviour
policies are not known and model terms are hard to estimate [25]. We should
also note that each of the estimator comes with a tradeoffs between bias and
variance in off-policy evaluation, so we can’t rely on a single estimator for evalua-
tion in the sepsis management problem [12]. Due to all these challenging aspects,
we have to take special care in evaluating the newly proposed policies.

Even though here has been a lot of excitement around using RL for adaptive
decision making, we remain cautious in being overly optimistic and making the
claim that our proposed RL system can fundamentally discover new treatments.
We should rather stick to picking policies that don’t significantly differ from
those present in the given historical dataset [12]. Our treatment recommender
system can suggest small changes to refine existing clinician policies. Fundamen-
tally, we see our framework playing the role of providing decision support and
recommending actions leading to good outcomes (as measured by patient mor-
tality). We recommend consulting the domain expert at each stage, for setting
up the RL problem in the right way, picking the right the reward scheme and
expert evaluation of the final learned policy.

Having said all of that, RL still remains a powerful tool for optimizing sequen-
tial decisions which can provide us with mechanism to improve upon and refine
existing expert policies. Overall, in our experiment we show that given a suf-
ficiently rich dataset generated by a behaviour policy, Offline Reinforcement
learning can learn optimal policies that can recommend sensible actions to the
knowledge worker involved in the clinical car process.

6 Conclusion

Supporting knowledge work when rigid definitions of process models are not
available or cannot be designed apriori (with structured or unstructured data)
remains an interesting challenge for the BPM community to tackle. Retrospective
data that represents expert decisions in the past offers an opportunity that can be
exploited for building a decision support solution for knowledge workers. In this
work, based on recent advances in deep reinforcement learning we proposed an
RL based decision framework, that can provide recommendations to knowledge
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workers given a case state. We demonstrated the efficacy of our approach by
conducting an experiment on a real world sepsis treatment ICU dataset. We
show our proposed framework is useful in coming up with policies that can
offer treatment recommendations and suggest small improvements over existing
expert policies, leading to good outcomes(as measured by patient mortality).
We further show that our proposed framework is adaptable enough to balance
between the structured and unstructured aspects of the knowledge Intensive
Processes by providing support for repetitive tasks yet be flexible enough to
facilitate creative aspects of problem solving during execution at run-time.
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Abstract. Business Process Mining (BPM) has become an essential tool
in internal audit (IA), which helps auditors analyze potential risks in
clients’ core business processes. After finishing the risk analysis task for
the target business process with BPM, auditors need to sample a small
set of representative process cases from event log, based on which clients
will verify the analysis results and analyze the triggers for the risks in the
target business process. This process case sampling (PCS) step is impor-
tant because it is difficult to check each single case from a large event
log. Therefore, the quality of the set of case samples (SCS) from PCS is
regarded as one of the success factors in IA project. Manual PCS and
simple random PCS are two basic methods for executing PCS. However,
both methods cannot assure the quality of the generated SCS. In this
paper, we propose an advanced PCS method. It first defines the risk of
process cases as well as the factors that affect the quality of SCS, before
dynamically optimizing the quality of SCS during PCS. Our experimen-
tal evaluation highlights that our approach yields higher quality SCS
than manual PCS and simple random PCS.

Keywords: Business process mining · Business process management ·
Process case sampling · Process risk management · Internal auditing

1 Introduction

In IA project, one of the main tasks for an internal auditor is to discover and
analyze the potential risks that appear in company’s major business processes
such as purchase to pay (P2P) and order to cash (O2C) process. These underlying
risks might give rise to violations of laws and company regulations, as well as
loss of profitability and efficiency [1]. For instance, maverick-buying (purchase
without involving procurement department) is regarded as a potential risk in
P2P process which can result in the purchase of goods with higher price [2].

Figure 1 illustrates the basic steps for implementing BPM in IA. In the step
of preparation (step 1), auditors select the target business process in clients’
c© Springer Nature Switzerland AG 2021
A. Polyvyanyy et al. (Eds.): BPM Forum 2021, LNBIP 427, pp. 263–279, 2021.
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Target Process Selection
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Results Verifica on
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4
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Action

5
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Further Analysis

Fig. 1. Illustration of basic procedures for executing process mining in internal audit.

company and extract the event log from the corresponding information systems.
Afterwards, risk analysis (step 2) on the event log is carried out with BPM
techniques of which the analysis results are then presented to and discussed
with clients (step 3). Moreover, the auditors sample a small set of representative
process cases of high risk (step 4). By referencing the selected case samples, the
clients together with auditors will verify the analysis results, analyze the root
causes which trigger the risks in the target process (step 5) and improve the
process by tackling the discovered root causes in the step of action (step 6).

The step of process case sampling (PCS) is regarded as one of the success
factors for an IA project as clients take actions (improve process) by referencing
the case samples from PCS, considering that there are usually a large number
of cases in real-life event logs and it is hard for clients to check each single case.
Hence, the quality of case samples from PCS is of great importance. According
to our experiences gathered from a number of IA projects, a high quality set of
case samples (SCS) should:

– consist of high-risk cases (risk-level).
– cover as multiple process risks as possible (risk-diversity).
– contain cases with dissimilar combinations of risk types (risk-dissimilarity).
– include cases pertaining to the most common process variants (universality).

Manual PCS (M-PCS) and simple random PCS (S-PCS) are two basic meth-
ods to implement PCS. M-PCS inherits the idea of judgment sampling (non-
probability sampling approach) [3], in which auditors manually select cases
according to their judgment on the goodness of the candidates. S-PCS pertains
to probability sampling approach which assumes that each case from the event
log has the same possibility of being selected [3]. M-PCS is very time consum-
ing and only applicable for sampling a small number (less than 50) of cases.
Moreover, both M-PCS and S-PCS cannot assure the quality of the potential
SCS.

Against this background, we therefore put forward an advanced PCS app-
roach named A-PCS in this paper. It considers the four quality factors (i.e. risk-
level, risk-diversity, risk-dissimilarity and universality) of the resulting set of case
samples from PCS. More specifically, it first defines risk-level, risk-diversity, risk-
dissimilarity and universality in a formal way, before dynamically optimizing the
four factors for the underlying SCS during PCS.
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Case IDCase Attr. Trace Event Attr.
001

003

004

005
006

002
Price: 5000

Currency: EUR

ZTerm: E108

Vendor: 00012

e1
Vendor builds invoice

e3
Reach discount deadline

e4
Pay for the invoice

Event ID: 2

e2
Receive invoice

Timestamp: 
2021/02/06

User: Thomas

Activity name: 
Receive invoice

Fig. 2. An example event log of P2P process

In the remainder of this paper, we first recall the concepts and exemplify
the issues of applying M-PCS and S-PCS (Sect. 2). We then elaborate on the
details of the proposed A-PCS technique (Sect. 3). To test the efficiency of our
method, we implement a comprehensive evaluation with two real-world event
logs (Sect. 4). As part of that, we also compared A-PCS with M-PCS and S-
PCS. Finally, we review related work (Sect. 5) and conclude (Sect. 6).

2 Issues of M-PCS and S-PCS

In this section, we first introduce the preliminary concepts such as event log,
case and trace. Afterwards, the four concepts: risk-level, risk-diversity, risk-
dissimilarity and universality which determine the quality of a SCS are defined.
Using these concepts, we exemplify the issues of M-PCS and S-PCS.

2.1 Preliminaries

Event Log. A business process depicts a set of activities executed in a certain
order. During the execution of the business process in information systems, his-
torical data is recorded in event log. Figure 2 shows an example event log of P2P
process that consists of activities such as “Receive invoice” and “Pay for the
invoice”. Each event log is a set of cases, each standing for a process instance
and uniquely identified by case ID. We define an event log as follows [4,5]:

Definition 1. (Universes) Let A denote the universe of unique activities of a
business process. E denotes the event universe, i.e. the set of all possible event
identifiers. C denotes the universe of cases, i.e. the set of all possible case iden-
tifiers. Ne and Nc denote the set of all possible attribute names for event and
case respectively. Ve and Vc denote the universes of attribute values for event
and case respectively.

Definition 2. (Event, Attribute) Each event e ∈ E denotes the execution of an
instance of a particular activity a ∈ A. For each attribute name n ∈ Ne, the
function Γn(e) returns the value of attribute n of event e, i.e. Γn(e) ∈ Ve
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As shown in Fig. 2, event e2 has four attributes which are Event ID (id),
Timestamp (time), User (user) and Activity Name (name). According to Defi-
nition 2, Γid(e2) = “2”, Γtime(e2) = “2021/02/06”, Γuser(e2) = “Thomas” and
Γname(e2) = “Receive invoice”.

Definition 3. (Trace) A trace σ = 〈e1, e2, · · · , ek〉 ∈ E∗ is a sequence of events,
where E∗ denotes the universe of all finite sequences over E. In addition, for
1 ≤ i < k, Γtime(ei) ≤ Γtime(ei+1).

Definition 4. (Case, Attribute) Each case c ∈ C denotes the execution of an
instance of a particular process. For each attribute name n ∈ Nc, the function
Λn(c) returns the value of attribute n of case c, i.e. Λn(c) ∈ Vc.

Definition 5. (Event Log) An event log L = {c1, · · · , c|L|} is a set of cases, i.e.
L ⊆ C.

The example P2P event log (Fig. 2) contains six cases. The case with ID 002
(c002) has four attributes: Price, Currency, ZTerm and Vendor. According to
Definition 4, ΛPrice(c002) = 5000, ΛCurrency(c002) = “EUR”, ΛZTerm(c002) =
“E108” and ΛVendor(c002) = “00012”. Furthermore, case c002 has a special
attribute trace, i.e. Λtrace(c002) = 〈e1, e2, e3, e4〉.

Jaccard Similarity. Let I be a set of items (we will later consider names of case
attributes as items), S(I) be the universe of all finite set of unique items over I.
A set sI ∈ S(I) of length m is denoted {it1, it2, · · · , itm}, where each element itk
is an item from I. For two sets X = {x1, x2, · · · , xj} and Y = {y1, y2, · · · , yq}
from S(I), the Jaccard Similarity [6] between X and Y is defined as:

J(X,Y ) =
|X ∩ Y |
|X ∪ Y | (1)

2.2 Risk-Level, Risk-Diversity, Risk-Dissimilarity and Universality

Risk-level, risk-diversity, risk-dissimilarity and universality are four major fac-
tors that determine the quality of a SCS from PCS. Here, we give the formal
definitions of the four notions.

Risk of Case. With R as set of all possible risks for the target business process,
we define a risk for a particular case as follows:

Definition 6. (Risk of Case) A risk r ∈ R for a case c ∈ C is an attribute of c,
where R ⊂ Nc. Function Π : C, R → {0, 1} assigns a risk with a certain value
to case c, where {0, 1} ⊂ Vc. Λr(c) = 1 indicates presence of r in case c while
Λr(c) = 0 indicates absence of r in case c.
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Due to lack of event of activity “Build purchase order” in the trace, case c002
from the example P2P event log (Fig. 2) is judged as a maverick-buying case. As
introduced, maverick-buying is an underlying risk for P2P process which might
lead to the purchase with higher cost. Thence, auditor can assign value of 1 to
risk maverick-buying for c002, i.e. Π(c002, “maverick − buying”): = 1. Another
risk (loose-discount) can be discovered from the trace of c002, where the event of
activity “Reach discount deadline” happens before the event of activity “Pay for
the invoice”. This means that the invoice is payed too late to get a discount from
vendor, which increases the purchase cost. Similarly, auditor can assign value of
1 to risk loose-discount for c002, i.e. Π(c002, “loose − discount”): = 1.

Risk-Level. Risk-level is employed to estimate the risk degree of one case or
a SCS. Let L denote an event log, RL ⊆ R denote the set of risks for L, c ∈ L
denote a case. We define risk-level of case RLC(c) as a measure to quantify the
risk degree of case c:

RLC(c, L) =
ARLC(c)

Ψ(L)
(2)

ARLC(c) =
∑

r∈RL

Λr(c) (3)

where ARLC(c) represents the absolute risk-level of c, which is in the range of
[0, |RL|]. For the example P2P event log (Fig. 2), presume that case c002 has two
risks with value 1, i.e. Λmaverick−buying(c002) = 1 and Λloose−discount(c002) = 1,
all the other risks have value 0. The absolute risk-level of c002 is ARLC(c002) =
2. Ψ(L) = max(ARLC(c1), ARLC(c2), · · · , ARLC(c|L|)) is a function with an
input of event log and an output of maximal ARLC value that can be found
by considering all the cases in L. The RLC of a case c equals the quotient of
ARLC(c) and Ψ(L) which is in the range of [0, 1].

Let l ⊆ L denote a non-empty SCS generated by PCS over log L. The risk-
level of SCS RL is defined as a measure to quantify the risk degree of l:

RL(l, L) =
∑

c∈l RLC(c, L)
|l| (4)

where 0 ≤ RL(l, L) ≤ 1. Let Le1 denote the example P2P event log as shown
in Fig. 2. Assume that le1 = {c002, c004, c006} is a SCS generated by PCS over
Le1, ARLC(c002) = 2, ARLC(c004) = 3, ARLC(c006) = 1 and Ψ(Le1) = 10.
According to Eq. 4, the risk-level of le1 is RL(le1, Le1) = 0.2.

Risk-Dissimilarity. A high quality SCS should cover cases that contain dissim-
ilar combination of risks, so that the mechanism for the co-appearance of different
kinds of risks can be analyzed. Let Δ : C, R → R be a function which extracts
the set of all risks with value 1 for a certain case. For log Le1, let RLe1 denote
the set of risks for Le1, “maverick−buying” and “loose−discount” are two risks
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from RLe1 , presume that case c002 from Le1 only has risks “maverick−buying”
and “loose−discount” with value 1. Then we have Δ(c002, RLe1) = {“maverick-
buying”, “loose-discount”}.

Given a SCS l for log L, CP = {(c1, c2) | c1 ∈ l ∧ c2 ∈ l ∧ ΛID(c1) < ΛID(c2)}
denotes the set of all possible pairs of cases from l, where ΛID(ck) stands for the
value of case ID for case ck ∈ L, we define the risk-dissimilarity of SCS RD as
a measure which quantifies the average dissimilarity of risk types of all possible
pairs of cases from l:

RD(l, L) =

∑
(c1,c2)∈CP RDP (c1, c2, L)

|CP | (5)

RDP (c1, c2, L) = 1 − J(Δ(c1, RL),Δ(c2, RL)) (6)

where RDP (c1, c2, L) stands for the risk-dissimilarity of a particular pair of
cases, which is expressed by the difference between 1 and the Jaccard Similarity
of the risk types of the two cases and in the range of [0, 1]. As shown in Eq. 5,
the risk-dissimilarity of a SCS is expressed by the mean of dissimilarity of risk
types of all possible pairs of cases from the SCS.

Risk-Diversity. Risk-diversity, which reflects the richness of risk types in a
SCS, is determined by both RL and RD of the SCS. A SCS tends to contain
higher number of different types of risk if the values of both RL and RD are
higher. For instance, for a SCS l, if RD(l, L) has a very high value and RL(l, L)
has a very low value, the risk-diversity of l can still be very low because the
cardinal number of risks for l is too low.

Universality. In IA, the event logs in hand usually stem from business processes
implemented in highly flexible systems such as SAP and often contain a large
number of process variants [4]. The risks of cases that belong to the process
variants with higher frequency of occurrence are more interesting because these
variants usually have greater business impact.

Let T denote the universe of process variants, function Υ : T , C → Z
+

calculates the frequency of occurrence for an input process variant in a certain
log. For instance, let TL ⊂ T be the set of all process variants from log L, vt ∈ TL

be a process variant, Υ (vt, L) = 100 implies that there are totally 100 cases that
adhere to vt in L. Ω : C → T denotes a function which outputs the corresponding
variant for a give case. Let l be a SCS for log L, we define the universality of
SCS UNI as follows:

UNI(l, L) =
∑

c∈l UNIC(c, L)
|l| (7)

UNIC(c, L) =
Υ (Ω(c), L)

Θ(TL)
(8)
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Table 1. Evaluation results on M-PCS and S-PCS by using event log LO2C.

PCS method Risk-level Risk-dissimilarity Risk-diversity Universality

M-PCS 0.53 0.72 56 0.02

S-PCS 0.49 0.63 36 0.11

where Θ(TL) = max(Υ (vt1, L), · · · , Υ (vt|TL|, L)) is a function that returns
the maximal frequency of occurrence that can be found by considering all process
variants in TL. As shown in Eq. 8, the universality of a case (UNIC) equals the
quotient of the frequency of occurrence of the variant for this case and the
maximal variant occurrence frequency, which is therefore in the range of (0, 1].
The universality of a SCS is measured through the average occurrence frequency
of the variants for the cases in the SCS (Eq. 7).

2.3 Research Issues

In M-PCS, auditors intuitively judge whether a candidate case from event log
can benefit the quality of the underlying SCS. As real-life event log often contains
a large number of cases, auditors are not capable of checking every case. As a
result, M-PCS usually generates a local optimal SCS with low quality. S-PCS
presumes that every case from the event log has equal chance to be selected.
However, in the scenario of PCS, the cases which tend to improve the quality
of the potential SCS should be assigned a higher possibility of selection. Thus,
S-PCS can also generate low quality SCS.

We illustrate the issue with experimental insights obtained for a real-life
O2C event log (LO2C) extracted from SAP. By analyzing LO2C with BPM
techniques, 69 types of process risk are discovered and assigned as case attributes
to the cases from LO2C. Using M-PCS (by our auditor) and S-PCS, setting the
sampling size to 50, yields the evaluation results shown in Table 1.

The results illustrate that both PCS methods perform poorly on one or more
quality factors. For instance, the SCS generated by M-PCS has relatively high
risk-level, risk-dissimilarity and covers 56 types of risk which accounts for 81%
(56/69) of the entire risk types. However, this SCS has very low universality
of which the value is only 0.02. The SCS generated by S-PCS has relatively
low risk-level and risk-dissimilarity. Particularly, it has a very low risk-diversity
which only covers 36 types of risk.

The above results exemplify that both M-PCS and S-PCS cannot assure
the quality of the output SCS. In the remainder, we will therefore present an
advanced PCS technique (A-PCS) that helps generate high quality SCS.

3 Approach Design

This section presents a novel PCS technique named A-PCS. An overview of our
approach is given in Fig. 3. In essence, we proceed in three stages. In the first



270 Y. Sun et al.
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Fig. 3. Outline of the basic idea for the proposed PCS technique A-PCS

stage, the input event log with risk information is clustered into sub-logs. The
cases with similar risk types are put in the same sub-log. In the second stage,
a sampling size is assigned to each sub-log according to its quality reflected
by risk-level, risk-diversity, risk-dissimilarity and universality. The sub-log with
higher quality will be assigned a higher sampling size. In Fig. 3, the sampling
sizes for sub-log 1, sub-log 2 and sub-log z are set to i, j and k respectively.
The sum of sampling sizes for all sub-logs equals the entire sampling size p, i.e.
i + j + · · · + k = p. In stage 3, our novel case sampling method is executed on
each sub-log, which then outputs a SCS with optimal quality.

3.1 Stage 1: Case Clustering

From the perspective of distribution of risk types, the original event log is usually
comprised of several homogeneous groups of cases. Stratified random sampling
that adheres to probability sampling approach is designed to deal with such a
situation [3]. It first divides the members of the population into homogeneous
subgroups. Then, for each subgroup, it samples a certain number of members. For
the first stage of our approach, we inherit the idea of stratified random sampling
through clustering the cases with similar risk types into the same sub-log. In this
way, the case samples selected from different sub-logs tend to have dissimilar risk
types. Thus, the risk-diversity and risk-dissimilarity of the generated SCS can be
improved to a certain extent. A number of clustering algorithms from academia,
e.g. K-Means and K-Modes [7], can be employed to implement the case clustering
task.

3.2 Stage 2: Sampling Size Assignment

In the second stage, each sub-log generated in stage 1 will be assigned a sampling
size based on the assessment of its quality. A sub-log with higher quality will
receive a larger sampling size. Let L denote an event log with risk information,
SL denote the set of sub-logs from the first stage, sli ∈ SL denote a sub-log of
L, the quality of a sub-log QS is defined as:
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QS(sli, L, wl, wd, wu) =
3 × RL(sli, L)wl × RD(sli, L)wd × UNI(sli, L)wu

RL(sli, L)wl + RD(sli, L)wd + UNI(sli, L)wu
(9)

where the value of QS is in the range of [0, 1]. According to Eq. 9, the quality
of a sub-log considers risk-level, risk-dissimilarity and universality at the same
time1. QS reaches the maximum value of 1 as RL, RD and UNI all achieve the
maximum value of 1. The three exponents wl ∈ Z

+
0 , wd ∈ Z

+
0 and wu ∈ Z

+
0 can

be deemed as weights that are used to compensate for the scale gap between RL,
RD and UNI. For instance, the QS will be sensitive to RL if the value of RL is
often much smaller than the value of RD and UNI. To deal with this issue, we
need to increase the weights of RD and UNI.

Let p denote the entire case sampling size for L, the sampling size of a sub-log
SSL, which is proportional to the quality of the sub-log, is defined as:

SSL(sli, SL, L,wl, wd, wu, p) =
QS(sli, L, wl, wd, wu)∑

sl∈SL QS(sl, L,wl, wd, wu)
× p (10)

Let SLe2 = {sl1, sl2, sl3} be a set of sub-logs generated in the first stage for
an example log Le2, where |sl1| = 4, |sl2| = 15 and |sl3| = 20. Let pe2 = 20
denote the entire sampling size for Le2. Presume that sl1, sl2 and sl3 have QS
values of 0.8, 0.5 and 0.7 respectively. Based on Eq. 10, the sampling size for sl1
equals (0.8/(0.8 + 0.5 + 0.7)) × 20 = 8. Similarly, the sampling size for sl2 is 5
and 7 for sl3.

Sub-log Sampling Size Assignment (SSA). Using the above notions, Algo-
rithm 1 describes our sub-log sampling size assignment method. The example log
Le2, set of sub-logs SLe2 and entire sampling size pe2 are employed for interpret-
ing each step of Algorithm 1. The SSL of sl1 (SSLsl1) is first calculated based
on Eq. 10 which gets a value of 8 (step 3). Due to the size of sl1 (|sl1| = 4)
is smaller than SSLsl1 (step 6), the value of SSLsl1 is then replaced by |sl1|
and appended in set So (i.e. So = {4}), meanwhile, the value of pe2 is updated
by subtracting the value of SSLsl1 (i.e. pe2 = 16) in step 7. The same pro-
cess iterates over sub-log sl2 and sl3 in which set SLt and St are updated (i.e.
SLt = {sl2, sl3} and St = {5, 7}). Afterwards, it is checked if there exists any
sub-log which gets a SSL that is larger than its size (i.e. |So| > 0) in step 10. In
our example, sl1 meets this condition which then triggers a second-level execu-
tion of SSA with SLt and pe2 as inputs (step 11). In the second-level execution,
the SSLs for both sl2 and sl3 are calculated again (steps 2–3). This time sl2
gets a SSL with value of (0.5/(0.5 + 0.7)) × 16 ≈ 7 and the SSL of sl3 acquires
a vale of (0.7/(0.5 + 0.7)) × 16 ≈ 9. Both SSL values are smaller than the sizes
of the corresponding sub-logs and therefore appended in set St (steps 4–5). As
no sub-log gets a SSL that is lager than its size (step 12), set So is updated by

1 As introduced in Sect. 2, risk-diversity is affected by both risk-level and risk-
dissimilarity. Therefore, QS indirectly takes risk-diversity into account.
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Algorithm 1. Sub-log sampling size assignment: SSA
Input: log L with risk information, set of sub-logs SL for L, the entire sampling size

p, weights wl for RL, wd for RD and wu for UNI.
Let St and So be two sets of sampling sizes, SLt be a set of sub-logs.

1: St ← ∅, So ← ∅, SLt ← ∅
2: for each sub-log sl ∈ SL do
3: ssl ← SSL(sl, SL, L, wl, wd, wu, p) # calculate sampling size for sl
4: if ssl ≤ |sl| then
5: SLt ← SLt ∪ {sl}, St ← St ∪ {ssl}
6: else
7: ssl ← |sl|, So ← So ∪ {ssl}, p ← p − ssl
8: end if
9: end for

10: if |So| > 0 then
11: So ← So ∪ SSA(L, SLt, p, wl, wd, wu)
12: else
13: So ← So ∪ St

14: end if
Output: a set of sampling size for the input sub-logs So.

combining the elements from St (i.e. So = {7, 9}) in step 13 and returned to
the first-level execution of SSA. Afterwards, set So in the first-level execution is
updated by combining the elements from the returned set (step 11). Finally, set
So = {4, 7, 9} is output by SSA, where 4, 7 and 9 stand for the sampling sizes
assigned to sl1, sl2 and sl3 respectively.

3.3 Stage 3: Case Sampling

In the third stage, case sampling is carried out on each sub-log. As introduced
in Sect. 2.3, a case that can help improve the quality of the underlying SCS
ought to obtain a higher sampling possibility. In the remainder, we first define
the sampling possibility of a case, before elaborating on a novel possibility-based
case sampling method designed for A-PCS.

Let L denote an event log, RL be the set of risks for L, SL = {sl1, sl2, · · · , slk}
denote the set of sub-logs generated for L in stage 1, So = {ssl1, ssl2, · · · , sslk}
denote the set of sampling sizes generated for the sub-logs in SL in the second
stage. Presume that sli (1 ≤ i ≤ k) denotes a sub-log on which the PCS is being
executed, SLs = {sl1, · · · , sli−1} denotes a set that contains the sub-logs from
SL on which the PCS has been finished, l = ls ∪ li denotes a SCS, where ls
contains the cases sampled from the sub-logs in SLs and li (|li| < ssli) contains
the cases sampled from sli. Let cu /∈ li be a case from sli, we first define the
average dissimilarity (AD) of cu to all the cases from l:

AD(cu, l) =

{∑
c∈l 1−J(Δ(cu,RL),Δ(c,RL))

|l| , |l| > 0

1, |l| = 0
(11)
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Algorithm 2. Possibility-based case sampling: PBCS
Input: log L, set of sub-logs SL for L, set of sampling sizes So for the sub-logs in SL,

weights w′
l for RL, w′

d for AD and w′
u for UNI, sampling frequency f.

Let l be a SCS, Sc be a set of cases, Ssp be a set of sampling possibilities.
1: l ← ∅, Sc ← ∅, Ssp ← ∅
2: for sli ∈ SL, ssli ∈ So do
3: for m ← 1 to ssli do
4: for each case cj ∈ sli do
5: Ssp ← Ssp ∪ {SP (cj , l, L, w′

l, w
′
d, w

′
u)}

6: end for
7: for v ← 1 to f do
8: Sc ← Sc ∪ {Ξ(sli, Ssp)}
9: end for

10: l ← l ∪ {Σ(Sc)}, sli ← sli\{Σ(Sc)}, Ssp ← ∅, Sc ← ∅
11: end for
12: end for
Output: a SCS l.

The sampling possibility (SP) for case cu is defined as:

SP (cu, l, L, w′
l, w

′
d, w

′
u) =

3 × RL(cu, L)w′
l × AD(cu, l)w′

d × UNI(cu, L)w′
u

RL(cu, L)w′
l + AD(cu, l)w′

d + UNI(cu, L)w′
u

(12)

where the value of SP is in the range of [0, 1]. As shown in Eq. 12, the calcula-
tion of SP for case cu considers both the risk-level and universality of cu. Besides,
the average dissimilarity of cu to the already sampled cases in l is also taken into
account. A case with higher risk-level, universality and AD to the cases that
have been selected will acquire a higher SP. Similarly to Eq. 9, weights w′

l ∈ Z
+
0 ,

w′
d ∈ Z

+
0 and w′

u ∈ Z
+
0 are employed to compensate for the scale gap between

RL, AD and UNI.

Possibility-Based Case Sampling (PBCS). With the notions defined above,
Algorithm 2 describes the case sampling approach designed for the third stage
of A-PCS. Before diving into Algorithm 2, we first introduce two instru-
mental functions. For an input sub-log sl = {c1, · · · , ck} and the set of SP
Ssp = {sp1, · · · , spk} for the cases in sl, function Ξ(sl, Ssp) returns a randomly
sampled case cq ∈ sl by considering the SP of each case in sl. A case with higher
possibility will get a higher chance to be selected by Ξ. Let Sc denote a set
of cases, function Σ(Sc) = cg can be used to find one case (cg) from Sc which
has the highest frequency of occurrence. For instance, Σ({c′

1, c
′
2, c

′
1, c

′
3}) = c′

1

because the occurrence frequency of case c′
1 is 2 which is larger than the occur-

rence frequency of both c′
2 and c′

3.
In Algorithm 2, for each sub-log sli (with sampling size ssli) from the input

set of sub-logs SL (steps 2–12), ssli cases will be sampled (steps 3–11). The SP
of each case cj from sli will first be calculated based on Eq. 12 and appended
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Algorithm 3. Advanced process case sampling: A-PCS
Input: log L, number of sub-logs z, entire sampling size p, weights wl, wd, wu, w′

l, w′
d

and w′
u, sampling frequency f.

Let SL be a set of sub-logs, So be a set of sampling sizes, l be a SCS.
1: SL ← ∅, So ← ∅, l ← ∅

Stage 1: case clustering
2: SL ← K−Modes(L, z)

Stage 2: sub-log sampling size assignment
3: So ← SSA(L, SL, p, wl, wd, wu)

Stage 3: case sampling
4: l ← PBCS(L, SL, So, w′

l, w
′
d, w

′
u, f)

Output: a SCS l.

to the set of sampling possibilities Ssp (steps 4–6). Afterwards, function Ξ will
be executed f times on sli and the generated f cases will be appended in set
Sc (steps 7–9). Finally, function Σ is employed to find the case with highest
occurrence frequency from Sc which is then appended in SCS l and removed from
sub-log sli (step 10). The same procedure iterates until ssli cases are sampled
from sli. The approach PBCS is characterized by two advantages. On the one
hand, it repeatedly updates the SP of the remaining cases in the sub-log sli
based on the already sampled cases in SCS l (steps 4–6) so that the quality of
l can be continuously optimized. On the other hand, PBCS can be applied to
both possibility and non-possibility case sampling tasks. If the input sampling
frequency f is set to 1, PBCS serves as a possibility sampling approach which
can be used for the task for generating a SCS that reflects the entire quality of
log L. If a larger value is assigned to f, PBCS then mimics M-PCS.

3.4 The Advanced Process Case Sampling (A-PCS) Algorithm

Putting the above techniques together, the complete approach of advanced pro-
cess case sampling is formalized in Algorithm 3. In stage 1, the cases from input
log are clustered into z sub-logs (step 2). In our approach, the K-Modes algo-
rithm [7] is used for case clustering. In stage 2, the sampling size for each sub-log
generated in stage 1 is calculated by algorithm SSA (step 3). In stage 3, case
sampling is executed on each sub-log by using PBCS which then outputs the
SCS for the input log.

4 Evaluation

This section presents an experimental evaluation of the proposed method A-PCS.
We first introduce the used event logs and experimental setup, before turning to
a discussion of the obtained results.
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Table 2. Basic Information of the evaluated event logs.

Event log # Cases # Risk types # Variants

LP2P 82245 43 1325

LO2C 138665 69 1907

Datasets. We tested the effectiveness of A-PCS on two real-life event logs: an
event log of a P2P process (LP2P) and a log of an O2C process (LO2C), which
are extracted from the SAP system of a manufacturing enterprise for a case
study in the data science lecture in Karlsruhe University of Applied Sciences.
Descriptive statistics of these event logs are given in Table 2.

Experimental Setup. In our experiments, we further use the MinHash LSH [8]
for approximately calculating the Jaccard Similarity between any two cases in
A-PCS because MinHash LSH can achieve a sublinear cost of calculation which
greatly speeds up the execution of A-PCS.

When executing A-PCS, the number of clusters z for K-Modes is set to 10
for both LP2P and LO2C. For log LP2P, the sampling size p is set to 38 which
is consistent with the number of cases sampled by our auditor for LP2P, the
weights wl, wd, wu, w′

l, w′
d and w′

u are set to 5, 2, 1, 8, 10 and 1 respectively. For
log LO2C, the sampling size p is set to 50 (i.e. 50 cases are manually sampled
from LO2C by auditor), the weights wl, wd, wu, w′

l, w′
d and w′

u are set to 8,
2, 1, 10, 20 and 1 respectively. When the sampling frequency f is set to 1 for
A-PCS, we rename A-PCS to A-PCS-R which can be used to generate a SCS
that reflects the quality of the original event log. A-PCS is renamed to A-PCS-M
when f is set to 400, which mimics M-PCS.

Results. A first overview of the evaluation results is shown in Table 3. For each
measure and log, Table 3 gives the obtained value for the SCS generated by A-
PCS-M and A-PCS-R. For instance, the risk-level of the SCS (RL) generated
by A-PCS-M for log LP2P is 0.56, the risk-dissimilarity of the SCS (RD) is 0.72
and the universality of the SCS (UNI) is 0.18. Furthermore, this SCS contains
35 risk types which accounts for 81% of the entire risks in LP2P. The entire
running time (T-ALL) of A-PCS-M on LP2P is 9.7 min, where the execution
time of K-Modes in the first stage (T-Stage 1) is 6.1 min which accounts for
63% of the total execution time of A-PCS-M. According to Table 3, for both
logs, A-PCS-M is able to generate relatively high quality SCS. For log LO2C,
A-PCS-R doesn’t perform well because the SCS generated only covers 45 risk
types which only accounts for 65% of the total types of risk. The main reason is
that A-PCS-R is designed to tackle the task for generating a SCS that is capable
of reflecting the actual quality of the original log, which doesn’t pursue a SCS
with 100% optimized quality.

We also made a comparison between A-PCS-M, A-PCS-R, M-PCS and S-
PCS based on LP2P and LO2C. Table 4 shows the comparison results. For each
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Table 3. Evaluation results for the SCS generated by A-PCS.

Event log Method RL RD UNI # Risk type T-Stage 1 T-All

LP2P A-PCS-M 0.56 0.72 0.18 35 6.1 min 9.7 min

A-PCS-R 0.54 0.71 0.16 36 6.1 min 9.6 min

LO2C A-PCS-M 0.55 0.68 0.31 52 21 min 28 min

A-PCS-R 0.55 0.67 0.24 45 21 min 28 min

log, A-PCS-M and A-PCS-R share the same stage 1 (case clustering) and stage
2 (sampling size assignment). Moreover, the stage 3 (case sampling) of each of
A-PCS-M and A-PCS-R is executed five times on each log. In this way, both
A-PCS-M and A-PCS-R generate five SCSs for LP2P and five SCSs for LO2C
respectively. Afterwards, for each method, the mean of the quality factors of
the five SCSs for each log is calculated. For instance, for log LP2P, the average
risk-level of the five SCSs (AVG. RL) output by A-PCS-M is 0.56, the average
risk-dissimilarity (AVG. RD) is 0.72, the average universality (AVG. UNI) is 0.18
and the average number of risk types (AVG. #Risk Type) is 35.2. Similarly, S-
PCS is also executed five times on each log and the mean of the quality factors
is calculated.

For log LP2P, as shown in Table 4, A-PCS-M and A-PCS-R have the best
performance. The risk-level of the SCSs generated by M-PCS and S-PCS are
much lower than the risk-level of the SCSs from A-PCS-M and A-PCS-R. In
addition, the universality of the SCSs from M-PCS has a very low value which
is only 0.09 while the SCSs from S-PCS only cover 65% of the entire risk types
on average.

For log LO2C, A-PCS-M has the best average performance. Considering risk-
level, risk-dissimilarity and number of risk types covered, M-PCS performs best.
Nevertheless, the universality of the SCS from M-PCS is too low which only has
a value of 0.02. This implies that the cases selected by M-PCS have very low
business impact.

The experimental results are also examined by our auditor who confirms that
the SCSs generated by A-PCS have much better quality. Hence, we conclude that
under a comprehensive assessment, our PCS method A-PCS improves beyond
the fundamental PCS methods (i.e. M-PCS and S-PCS) in the context of IA.

5 Related Work

In the literature, sampling techniques have been widely used for improving the
performance of process model discovery and conformance checking techniques.
In [9], the authors put forward an algorithm for mining Petri-net from an event
log. It first searches for all the Parikh vectors in the traces of the log. After-
wards, the obtained Parikh vectors are converted to polyhedra by joining which
a polyhedron is constructed. Finally, invariants are extracted from the poly-
hedron based on which a Petri-net can be formed. To speed up the joining
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Table 4. Comparison of the quality of the sets of case samples output by A-PCS-M,
A-PCS-R, M-PCS and S-PCS.

Event log Method Avg. RL Avg. RD Avg. UNI Avg. # Risk type

LP2P A-PCS-M 0.56 0.72 0.18 35.2

A-PCS-R 0.55 0.71 0.17 35.2

M-PCS 0.44 0.7 0.09 31

S-PCS 0.43 0.69 0.15 28.6

LO2C A-PCS-M 0.56 0.68 0.29 52

A-PCS-R 0.56 0.67 0.27 49.2

M-PCS 0.53 0.72 0.02 56

S-PCS 0.45 0.66 0.14 35.8

operation on polyhedra, a sampling algorithm for Parikh vector is then devel-
oped which reduces the number of polyhedra. In [10], the authors proposed a
trace sampling algorithm based on statistical sampling so that the performance
of Heuristics Miner can be improved for dealing with big event logs. In [11], for
helping process model discovery algorithms to reduce the run time and memory
footprint, the authors developed a method which is able to sample a suitable
number of traces from an input log by predicting whether the remaining traces
in the log can bring new workflow information. In [12,13], the authors proposed
four biased trace sampling strategies to help existing process model discovery
techniques to handle large event logs: frequency-based sampling, length-based
sampling, similarity-based sampling and structure-based sampling. In addition,
based on these strategies, the authors presented the hybrid sampling approach
which is capable of combining two or more sampling strategies. The authors
in [14] pointed out that the state-of-the-art conformance checking techniques
scale exponentially in the size of the input event log. To reduce the size of the
event log and speed up the conformance checking procedure, the authors utilized
the similar trace sampling algorithm as in [11] which randomly selects traces from
event log until no further workflow information can be offered by the remaining
traces.

However, most of the sampling methods proposed in the area of BPM are
based on traces which cannot be employed to solve the case-level sampling task
in IA. Therefore, we proposed the case sampling technique A-PCS for generating
high quality SCS for the later root cause analysis.

6 Conclusions

In this paper, we proposed a new process case sampling technique named A-PCS
to generate SCS with high quality that is reflected by risk-level, risk-dissimilarity,
risk-diversity and universality. In a first stage, it clusters the cases with similar
risk types into the same sub-log. In a second stage, for each sub-log, the sampling



278 Y. Sun et al.

size is calculated. In a third stage, a possibility-based case sampling algorithm is
executed on each sub-log. Our experimental results demonstrated the effective-
ness of our technique, also in comparison to two fundamental sampling methods
M-PCS and S-PCS in IA.

In future work, we will focus on combining other type of case attributes
(except for risk) into our case sampling framework, as it is an interesting topic
to understand different triggers for the same process risk in IA. Also, techniques
that help to explore the parameter spaces in the configuration of our technique
(such as the number of sub-logs for case clustering or the weights for RL, RD and
UNI) will be explored. Moreover, we plan to conduct further evaluation studies,
validating our methods in additional IA projects.
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