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Abstract Porous carbonmaterials (PCMs) possess highly developed pore structure,
and their pore size can range from molecular size to nano-size to large pores within
micron size. As versatile materials with excellent physical and chemical properties
such as large specific surface area, lightweight, high chemical stability, and elec-
trical conductivity, PCMs have shown excellent application prospects in the fields of
catalysis, adsorption, hydrogen storage, and energy storage. With the consumption
of fossil energy and the rapid development of science and technology, the demands
for high-performance supercapacitors are increasing day by day. PCMs are excellent
electrode materials for supercapacitors. There are many methods to prepare PCMs,
among which activation is the most widely used method. The activation methods can
be divided into physical activation, chemical activation, and self-activation according
to the activator used. In this chapter, the capacitance performance of PCMs synthe-
sized via the activation process is summarized. The pore structure optimization
process and the influence of pore structure on the capacitance performance of PCMs
are also discussed. It is expected that this chapter could offer some enlightenments
to the researchers’ focus on improving the capacitance performance of PCMs.
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1 Introduction

Porous carbon materials (PCMs) are important members in the big family of porous
materials. PCMs could be prepared from various precursors including synthetic poly-
mers, nature polymers, and carbon-rich small molecules (Borchardt et al. 2017;
Gonzalez-Garcia 2018; Wang et al. 2020b). PCMs are widely applied in energy
storage and conversion devices, electrocatalysis, water purification, electromagnetic
shielding, microwave absorption, and other fields (Zhai et al. 2011; He et al. 2019c;
Tian et al. 2020). PCMs show advantages in high yield, low cost, tunable microstruc-
tures, high specific surface area (SSA), stability, etc. Tons of PCMs are produced
globally every year mainly from low cost biomass. The price of most PCMs could
be below 1 $/g. The pore size of PCMs could be adjusted in the range of millimeter
to micrometer to nanometer, and the corresponding specific surface area could be
varied from a few squaremeters per gram to thousands squaremeters per gram. PCMs
with pore size in the range of millimeter to sub-micrometer could be obtained from
lyophilization/freeze drying, chemical blowing/(gas) foaming, template methods,
etc. Usually, pores with the diameter below 100 nm are named nanopores. According
to the classification of International Union of Pure and Applied Chemistry (IUPAC),
nanopores can be divided into macropores (>50 nm), mesopores (2–50 nm), and
micropores (0.2–2 nm). Micropores can be divided into super-micropores (>0.7 nm)
andultra-micropores (0.2–0.7 nm) (Liu et al. 2017).As toPCMs, ultra-micropores are
always formed from the release of volatile gas and the condensation of carbon frame-
work. The super-micropores of PCMs could be generated by the physical/chemical
activation process (Yin et al. 2020). The formation of mesopores and macropores of
PCMs always requires soft/hard templates within nano-size (Nishihara and Kyotani
2012; Zhu et al. 2019; Yan et al. 2021; He et al. 2019b).

Electrochemical double-layer capacitors (EDLCs) are relatively new energy
storage devices which store the charge at the electrode/electrolyte interface, via
physical ion adsorption/desorption process (He and Chen 2015; Simon et al. 2014).
EDLCs possess the merits of high power density, good stability, easy maintenance,
wide operating temperature, and low cost (Wang et al. 2016). PCMs are preferred
electrode materials for EDLCs attributing to their good conductivity/stability, large
specific surface area, tunable pore structure, and low cost (Merlet et al. 2012). The
gravimetric specific capacitance of PCMs spans from a few Faraday per gram to
hundred Faraday per gram mainly depending on the specific surface area and pore
structure. In this chapter, the capacitance performance of PCMs synthesized via the
physical/chemical activation process is summarized. The pore structure optimization
process and the influence of pore structure on the capacitance performance of PCMs
are also discussed. It is expected that this chapter could offer some enlightenments
to the researchers’ focus on improving the capacitance performance of PCMs.
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2 Capacitance Performance of PCMs Synthesized
with Activation Agents

PCMs are widely used as electrochemical energy storage devices because of their
highSSA,multi-dimensional and tunable pore structure, good electrical conductivity,
and low cost. Pore-size distribution and SSA are the main issues that dominate the
performance of carbon-based supercapacitors. PCMs with large SSA and control-
lable pore size are good electrode materials for EDLCs. It is generally believed that
microspores can enhance the electric double-layer capacitance of materials, meso-
pores provide low resistance channel for electrolyte ion transport, and macropores
can be used as buffer reservoirs to store electrolyte ions (Wang et al. 2019). Activa-
tion is considered as an effective method to increase the SSA of carbon materials and
introduce stratified porosity (Ding et al. 2021; He et al. 2013; Wang et al. 2020a).

Porous activated carbon is generally prepared from carbon precursors by the
carbonization–activation approach. Activated carbon materials used in supercapaci-
tors must meet the following three requirements: (1) a high SSA, (2) a low internal
resistance, and (3) a microstructure conducive to the electrolyte entering the inner
surface. High SSA is conducive to high specific capacitance. Low internal resistance
determines high power density. Special pore structure is conducive to the formation
of electrolyte wetting interface (Li et al. 2020c; Zhu andXu 2020;Wang et al. 2020c).

The activation methods for preparing porous activated carbon can be divided into
three categories: physical activation, chemical activation, and self-activation (Li et al.
2021b; Cao et al. 2021). In addition, it can be subdivided. Usually, the preparation
process of porous activated carbon can be divided into one-step or two-step methods.
One-step method means carbonization–activation occurs simultaneously. For the
two-step method, the first step is carbonization, and the second step is activation that
is using activator to further make pores. The different types of activationmethods and
its mechanisms, and some commonly used activators are described in detail below.

2.1 Physical Activation

Physical activation is usually carried out at high temperature (600–1200 °C) in the
presence of oxidizing gases (Li et al. 2021b; Yin et al. 2020). Usually, air (Cai et al.
2020; Leng et al. 2017), carbon dioxide (Ding et al. 2021; Vinayagam et al. 2020;
Elmouwahidi et al. 2020; Jin et al. 2016), and steam (Gao et al. 2020a; Qin 2019;
Pallarés et al. 2018; Lee et al. 2016) can act as activation agents (Table 1). Most
studies consider that activation temperature and activation time are the main factors
affecting physical activation. Some studies have also investigated the effect of flow
rate on pore structure (Qin 2019). Commonphysical activationmethods are discussed
in detail below.



590 L. Feng et al.

Ta
bl
e
1

Su
m
m
ar
y
of

po
ro
us

ca
rb
on
s
pr
od
uc
ed

by
ph
ys
ic
al
ac
tiv

at
io
n

C
ar
bo
n
so
ur
ce

A
ct
iv
at
in
g

ag
en
t

SS
A
(m

2

g−
1
)

M
ea
n

po
re

si
ze

(n
m
)

Po
re

vo
lu
m
e

(c
m

3
g−

1
)

E
le
ct
ro
ly
te

Sp
ec
ifi
c
ca
pa
ci
ta
nc
e

E
ne
rg
y

de
ns
ity

(W
h
kg

−1
)

Po
w
er

de
ns
ity

(W
kg

−1
)

C
yc
le
lif
e

R
ef
er
en
ce
s

Pa
pe
r
flo

w
er

Z
nC

l 2
,

C
O
2

18
01

3.
28

1.
16

1
M

H
2
SO

4
11
8
F
g−

1
(1

A
g−

1
)

/
/

97
.4
%

(1
0,
00
0,

12
A
g−

1
)

V
ee
ra
ku
m
ar

et
al
.(
20
20
)

B
ea

pu
lp

C
O
2

40
9

2.
68

0.
27

6
M

K
O
H

10
6
F
g−

1
(0
.2
5
A
g−

1
)

1.
7

2.
11

93
%

(2
0,
00
0,

10
A
g−

1
)

D
in
g
et
al
.

(2
02
1)

Sp
or
es

C
O
2

30
35

/
1.
43

1
M

T
E
A
B
F 4
/A
N

30
5
F
g−

1
(1

A
g−

1
)

56
60

93
.8
5%

(1
0,
00
0,

2
A
g−

1
)

Ji
n
et
al
.

(2
01
6)

Fo
rm

al
de
hy
de

an
d
re
so
rc
in
ol

C
O
2

15
20

0.
66

0.
87

1
M

H
2
SO

4
23
5
F
g−

1
(0
.1
25

A
g−

1
)

5.
94

54
10
0%

(1
2,
00
0,

1
A
g−

1
)

E
lm

ou
w
ah
id
i

et
al
.(
20
20
)

Pi
ne

nu
ts
he
ll

St
ea
m

95
6

2.
59

0.
62

6
M

K
O
H

12
8
F
g−

1
(0
.5

A
g−

1
)

/
/

98
%

(1
0,
00
0,

5
A
g−

1
)

Q
in

(2
01
9)

Po
ly
m
er

na
no
tu
be
s

St
ea
m

85
2

3.
10

0.
66

6
M

K
O
H

27
6
F
g−

1
(1

A
g−

1
)

/
/

98
%

(1
0,
00
0,

1
A
g−

1
)

G
ao

et
al
.

(2
02
0a
)

Pi
tc
h-
ba
se
d

C
F

St
ea
m

32
30

/
1.
89

1
M

(C
2
H
5
) 4
N
B
F 4
/p
ro
py
le
ne

ca
rb
on
at
e

22
.5

F
g−

1
/

/
91
.5
%

(2
0)

L
ee

et
al
.

(2
01
6)

(c
on
tin

ue
d)



Preparation of Porous Activated Carbon Materials and Their … 591

Ta
bl
e
1

(c
on
tin

ue
d)

C
ar
bo
n
so
ur
ce

A
ct
iv
at
in
g

ag
en
t

SS
A
(m

2

g−
1
)

M
ea
n

po
re

si
ze

(n
m
)

Po
re

vo
lu
m
e

(c
m

3
g−

1
)

E
le
ct
ro
ly
te

Sp
ec
ifi
c
ca
pa
ci
ta
nc
e

E
ne
rg
y

de
ns
ity

(W
h
kg

−1
)

Po
w
er

de
ns
ity

(W
kg

−1
)

C
yc
le
lif
e

R
ef
er
en
ce
s

A
ct
iv
at
ed

ha
rd

ca
rb
on

St
ea
m

23
51

/
1.
61

0.
5
M

N
a 2
SO

4
71

F
g−

1
(0
.5
A
g−

1
)

/
/

82
.8
%

(5
00
0,

5
A
g−

1
)

So
n
an
d
Pa
rk

(2
02
0)

A
ct
iv
at
ed

ca
rb
on

St
ea
m

21
56

1.
87

1.
01

2
M

T
E
A
B
F 4
/C

8
H
20
B
F 4
N

18
7.
2
F
g−

1
(0
.5
A
g−

1
)

/
/

92
%

(1
00
0,

1
A
g−

1
)

L
ie
ta
l.

(2
01
7)

D
ea
d
pi
ne

ne
ed
le
s

A
ir

78
3

2.
55

0.
49

1
M

H
2
SO

4
22
3
F
g−

1
(0
.5

A
g−

1
)

/
/

98
%

(1
0,
00
0,

10
A
g−

1
)

L
en
g
et
al
.

(2
01
7)



592 L. Feng et al.

2.1.1 Carbon Dioxide Activation

CO2 is widely distributed on the earth and is rich in content. In those oxidizing
gases, CO2 can be used as an environment-friendly activator of materials, which is
not only green but also easy to deal with, and has a good application prospect (Li
et al. 2020c). The activation mechanism of CO2 is shown in Eq. (1) (Navarro et al.
2007). In general, the CO2 activation degree is mainly affected by the activation
temperature, time, and the concentration of CO2 (Zhu and Xu 2020).

C + CO2 → 2CO (1)

Veerakumar et al. studied the capacitance performance of porous carbon
nanosheets prepared by the carbonization of paper flower via chemical and phys-
ical activation (Veerakumar et al. 2020). The effect of CO2 activation temperature
on the SSA and pore-size distribution of the carbon materials was discussed. The
influence on the capacitance performance of paper flower-derived carbon materials
was also analyzed. They first activated the carbon material with ZnCl2, followed by
CO2 activation at 700 °C and 800 °C, respectively (Fig. 1). The results show that
the sample PFC-800 has the maximum SSA and pore volume, which are 1800 m2

g−1 and 1.16 cm3 g−1, respectively. In a three-electrode system, the specific capaci-
tances of PFC-800 are 91.2 F g−1 at 12 A g−1 which is more than twice the value of
PFC-700 (44.9 F g−1). The cycle stability of PFC800 is better than that of the acti-
vated sample at 700 °C, with a loss of only 3% after 10,000 charge–discharge cycles.
They also studied the adsorption capacity of the carbon material to sunset yellow,
as shown in the lower right corner of Fig. 1a, and found that PFC-800 had a good
adsorption capacity to this pigment (273.6 mg g−1). Elmouwahidi et al. prepared a
kind of carbon microsphere and then activated it with CO2 to investigate the effect
of activation time (30, 60, 90, 120 min at 900 °C) on the material’s pore structure
(Elmouwahidi et al. 2020). Their results indicate that in the process of CO2 activa-
tion, micropores are mainly produced, and the increase of micropores is especially
obvious after 30min, but the rise decreaseswhen the time exceeds 60min and reaches
the peak at 90 min. After activation for 30 min, the formation of ultra-micropores is
detected. With the time extension, the pores became wider. When the activation time
increases to 90 min, the SSA (1523 m2 g−1), average pore size (0.95 nm), and pore
volume all reach the maximum. Although CO2 can play an active role in opening
and expanding the pores, different activation conditions can produce different pore
structures and SSA and influence the capacitance performance of porous carbon.

2.1.2 Steam Activation

As one of the commonly used physical activation methods, steam activation is not
only cheap and easy to operate, but also an environmentally friendly activating agent.
Steam activation is beneficial to the expansion of micropores, and thus, the activated
carbon prepared by this activation method has a lower micropore volume (Zhu and
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Fig. 1 a Preparation schematic of PFC, b the pore diameter of PFC samples at different activation
temperatures, c cyclic performance of PFC-800 (Veerakumar et al. 2020)

Xu 2020; Pallarés et al. 2018). The steam activation mechanism is shown in Eq. (2).
First, water vapor is adsorbed on the surface of the carbon, releasing hydrogen and
oxygen (Navarro et al. 2007). Then, the presence of hydrogen prevents the continuous
reaction of the active site, and the released oxygen further reacts with the carbon
monoxide separated from the surface of the carbon to form carbon dioxide and at
the same time produces a large number of micro-/mesopores (Sevilla et al. 2021; Li
et al. 2020c; Yin et al. 2020).

C + H2O → CO + H2 (2)

For the stream activation process, the main factors affecting the pore structure of
ACs are the activation temperature, activation time, and steam flow rate (Qin 2019).
Lee et al. studied the capacitance performance of pitch-based activated carbon fibers
(ACFs) produced by steam activation for different times (Lee et al. 2016). At the fixed
activation temperature of 900 °C, the activation time was varied from 10 to 40 min.
SSA of the as-prepared porous carbon spans from 1520 to 3230 m2 g−1, and the pore
volume increases from 0.61 cm3 g−1 up to 1.87 cm3 g−1. The specific capacitance



594 L. Feng et al.

Fig. 2 a–e Scanning electron microscopy (SEM) images of activated carbon fiber with different
steam activation times: a as-received CF, bACF-10, cACF-20, dACF-30, eACF-40, f the pore-size
distribution curves of different samples (Lee et al. 2016)

increases from 1.1 to 22.5 F g−1. Figure 2 shows that increasing activation time
can produce larger pores, which also indicates that steam activation is conducive to
mesopore development.

2.1.3 Air Activation

Compared with CO2 and steam activation, air activation is less used and the acti-
vation temperature is lower. However, the redox reaction of oxygen and carbon is
a severe exothermic reaction, and the direct use of air to activate carbon may cause
excessive combustion of the raw materials and fail to effectively form pores (Li et al.
2020c). Leng et al. successfully synthesized activated carbon by carbonizing dead
pine needles (PN) in the air at different temperatures (Leng et al. 2017). The products
show pore volume of 0.25–0.49 cm3 g−1 and SSA of 461–783 m2 g−1. In 1MH2SO4

electrolyte, the PN-1000 exhibits a specific capacitance of 223 F g−1 at 0.5 A g−1

and maintains 150 F g−1 even at 100 A g−1.

2.2 Chemical Activation

Chemical activation is one of the most used methods for the preparation of PCM
(Table 2). Unlike physical activation, chemical activation takes place at slightly lower
temperatures (i.e., 400–900 °C) and involves the dehydration by certain agents, such
as phosphoric acid, zinc chloride, and alkaline hydroxide (Li et al. 2021b; Zeng
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et al. 2014). Compared with physical activation, chemically activated porous carbon
shows higher porosity development with porous network combining micropores and
mesopores. Moreover, its selectivity is more extensive. At present, there are many
kinds of chemical activators that have been used to prepare PCMs.Themost used ones
areKOHandZnCl2. Chemical activators can be divided into threemain groups: acids,
alkalis, and salts. The commonly used chemical activation methods are discussed
below.

2.2.1 Acid Activation

Common acid activating agents include H3PO4 (Cheng et al. 2015, 2021; Budinova
et al. 2006), H2SO4 (Kigozi et al. 2020), HNO3 (Li et al. 2016; Pourhosseini et al.
2017; Zhu et al. 2017; Bo et al. 2018), etc. Phosphoric acid is used more often in
those acidic activating agents. H3PO4 activation is related to its ability to promote
bond cleavage and cross-linking formation. It can form phosphate bonds with the
carbon precursors, resulting in a cross-linked structure. The activation process is
roughly divided into six aspects as shown in Eqs. (3)–(8) (Myglovets et al. 2014;
Olivares-Marín et al. 2006; Shi et al. 2019; Zhang et al. 2020):

nH3PO4
100 ◦C∼400 ◦C−→ Hn+2PnO3n+1 + (n − 1)H2O (3)

2H3PO4 → P2O5 + 3H2O (4)

2H3PO4
>500 ◦C−→ H2P2O

2−
7 + H2O + 2H+ (5)

2H2P2O
2−
7 → P4 + 6O2 + 2H2O (6)

2P2O5 + 5C → P4 + 5CO2 (7)

P2O5(liquid) → P2O5(gas) (8)

Cheng et al. first activated shiitake mushrooms with H3PO4 at 500 °C and then
activated them with KOH for a second time (Cheng et al. 2015). The surface area
of the activated sample (PAC-500) in the first step is 1341 m2 g−1, and the pore
volume is 2.02 cm3 g−1. The size of pores formed is mainly between 2 and 5 nm, and
considering that phosphoric acid reacts with carbon above 500 °C to form phosphate
bond (Myglovets et al. 2014), so those nanopores are mainly due to the dehydration
effect. After the activation of H3PO4, the rich channels are more conducive for the
entry of KOH electrolyte into the interior, and the contact surface is larger to achieve
a better effect. Finally, after two steps of activation and carbonization, the shiitake
mushroom-derived carbon showed an interconnected hierarchical porous network.
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The obtained hierarchical pores exhibited a high specific capacitance of 306 F g−1

at 1 A g−1 in KOH electrolyte; even when the current density rises to 30 A g−1, the
capacitance retention is 78.4%.

UnlikeH3PO4,H2SO4 andHNO3 activationsmainly rely on their strong oxidizing
property, not only can react with carbon atoms to produce some gas, which can
achieve pore-forming, but also can enhance the surface wettability of the active
porous carbon (Li et al. 2016; Zhu et al. 2017; Kigozi et al. 2020). Thus, enhance
the capacitance performance of the carbon material.

2.2.2 Alkali Activation

Alkali activation is the most widely used activation method in chemical activation.
The carbonmaterials are often activated byKOH tomake pores to enhance the capac-
itive performance (Wang and Kaskel 2012). It was found that the KOH activation
could inhibit the generation of tar, reduce the activation temperature, and accelerate
the reaction rate. KOH activation also shows the advantages of high yield, low reac-
tion temperature, high SSA, and micropore development (Kumar et al. 2020; Sun
et al. 2020; Li et al. 2020c). Chemical activation mechanism of KOH is suggested as
Eqs. (9)–(13) (Li et al. 2021b; Lozano-Castelló et al. 2007; Yin et al. 2020). KOH
dehydration to form K2O (Eq. 9) and then at about 400 °C is converted into K2CO3

(Eq. 10). At 600 °C, KOH is completely consumed. When the temperature rises to
above 700 °C, K2CO3 and K2O are reduced to metallic potassium (Eqs. 12–13).
In the process of activation, CO2, H2O, CO, H2, and other gaseous substances are
released, which play the role of physical activation (Gao et al. 2020b; Sun et al. 2020;
Wang et al. 2019; Li et al. 2020c; Yin et al. 2020).

2KOH → K2O + H2O (9)

K2O + CO2 → K2CO3 (10)

K2CO3 → K2O + CO2 (11)

K2CO3 + 2C → 2K + 3CO (12)

K2O + C → 2K + CO (13)

The activation temperature (Guo et al. 2016; Kim et al. 2021; Sun et al. 2020; Li
et al. 2020b), immersion time (Yakaboylu et al. 2021), concentration of KOH (Chen
et al. 2016), and themass ratio of carbon precursors toKOH (Guo et al. 2016; Lv et al.
2019; Mo et al. 2020; Yu et al. 2019) will affect the pore-size distribution, porosity,
and SSA of the carbon materials. Guo et al. studied the influence of KOH/carbon
source mass ratio and activation temperature on capacitive performance of soybean
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Fig. 3 a SEM images of SRPC-4K, b N2 physisorption isotherms, c charge/discharge curves at
1 A g−1, d cyclic stability at 5 A g−1 for 10,000 cycles of SRPC-4K (inset: charge/discharge curves
of the 1st and 10,000th cycles) (Guo et al. 2016)

root-derived hierarchical porous carbon (SRPC) (Fig. 3) (Guo et al. 2016). When the
mass ratio of KOH to soybean root is 4:1 and the activation temperature is 800 °C, the
porous carbon obtained has the largest SSA (2143 m2 g−1) and the largest proportion
of micropore SSA (1772 m2 g−1). The mesopore volume of SRPC-4K is 0.13 cm3

g−1, and the micropore volume is 0.81 cm3 g−1. It has the richest hierarchical micro-
/mesoporous structure. The high microporosity is conducive to the accumulation of
charge, and the mesopores can transport abundant electrolyte into the micropores,
thus enhancing the capacitive performance of porous carbon.Whenused as electrodes
of SC, SRPC-4K displays a high specific capacitance of 276 F g−1 at 0.5 A g−1 and
98% capacitance retention after 10,000 cycles at 5 A g−1 (Fig. 3d) in a two-electrode
configuration in 6 M KOH electrolyte. In conclusion, although KOH activation is
used for pore-forming, appropriate activation conditions are needed to achieve the
best capacitance performance for different carbon sources.

2.2.3 Salt Activation

In addition to acid and alkali activation, there is a class of salt-activating agents.
Those reagents include some metal chlorides, decomposable salts, and oxidizing
salts.
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Metal Chlorides

In the preparation of porous carbon, metal chlorides, such as ZnCl2 (Ahmed et al.
2019; Li et al. 2021a; Ma et al. 2015), FeCl3 (Bedia et al. 2018; Hou et al. 2018; Li
et al. 2020a), NaCl (Wang et al. 2018; Zong et al. 2020; Thileep Kumar et al. 2018),
KCl (Wang et al. 2018; Thileep Kumar et al. 2018), and CuCl2 (Liu et al. 2018; Chen
et al. 2019, 2021; Tian et al. 2019), are often used as activators.

ZnCl2 is mainly acted as a dehydrating agent and can be deoxidized in the form
of water (Zhu and Xu 2020). Beyond that, ZnCl2 can also converted to ZnO (Eq. 14),
which further etches carbon and be reduced to Zn (Eq. 15) (Kim et al. 2007; Wang
et al. 2019). Better porous structure and higher carbon yield can be obtained. The
activation temperature of ZnCl2 is usually between 600 and 1000 °C. When the
temperature is above 700 °C, ZnCl2 volatilizes without post-treatment. The factors
affecting the pore formation of ZnCl2 are close to those of KOH, but the activation
temperature and impregnation ratio are more important. Ahmed et al. used pollen
as a carbon source, and they investigated the effect of impregnation ratio with zinc
chloride on the pore structure of porous carbon (Ahmed et al. 2019). The optimum
mesopore ratio can be obtained by the appropriate impregnation ratio. If the impreg-
nation ratio is too large, ZnCl2 will destroy the walls between adjacent micropores.
It is confirmed that when the mass ratio of carbon source ZnCl2 is 1:2, the SSA of
the resulting porous carbon is 1422.66 m2 g−1, the total pore volume is 0.77 cm3

g−1, the micropore volume is 0.33 cm3 g−1, and the mesopore volume is 0.44 cm3

g−1. Using ionic liquid electrolyte, the activated carbons achieved large magnitudes
of energy density (~42 Wh kg−1) and power density (~19 kW kg−1).

ZnCl2 + 1/2O2 → ZnOCl + 1/2Cl2 (14)

2ZnO + C → 2Zn + CO2 (15)

In recent years, some metal chlorides have also acted as molten salts, reacting
with carbon at high temperatures to produce porous structures, which is so-called
molten salt etching method. Wang et al. adopted non-toxic NaCl and KCl mixed salt
as reaction media to regulate the activation process of corn straw (Wang et al. 2018).
Hierarchical porous carbon sheets (HPCSs) with good capacitive properties were
successfully prepared. They found that when the temperature is higher than 800 °C,
Cl− etched the carbon skeleton to form micro- and mesopores. The hierarchical
porous carbon obtained by this strategy has a SSA of 1588 m2 g−1 and a high
specific capacitance of 407 F g−1 at 1 A g−1 in the three-electrode system.

CuCl2 is another molten salt that can be used as an activation agent. The
mechanisms of CuCl2 porogen are described as Eqs. (16–17) (Liu et al. 2018)

3CuCl2 + C + 2H2O → Cu + 2CuCl + CO2 + 4HCl (16)

4CuCl + C + 2H2O → 4Cu + CO2 + 4HCl (17)
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Fig. 4 a Schematic illustration of the preparation of RPC, b pore-size distribution (PSD) curves of
RPC, Z-RPC, and K-RPC, c specific capacitances of RPC, Z-RPC, K-RPC, and the blank sample
at different current densities (Liu et al. 2018)

The porous carbon canmaintain the spherical shape (Fig. 4a) of the original carbon
precursor, with the pores distributed below 2 nm and pore-size distribution centered
at 1.2 nm. As is shown in Fig. 4b, under the same conditions, compared with the
activation of ZnCl2 (Z-RPC) and KOH (K-RPC), the pore-size distribution of the
former is wide (1–60 nm), while that of the latter ismainly below 3 nm.Moreover, the
porous carbon obtained by the activation of CuCl2 shows a high SSA of 2488 m2 g−1

and presents an outstanding gravimetric capacitance of 390 F g−1 at 0.5 A g−1 in 6M
KOH electrolyte (Fig. 4c). There is no doubt that molten salt etching is milder than
acid/base activation, but it is more expensive and unsuitable for practical production.

Decomposable Salts

There are various salts that can be decomposed to produce gases, which can etch
carbon to produce pores, such as carbonates (Mao et al. 2020; Ma et al. 2019; Tang
et al. 2018), acetates (Li et al. 2018b, 2019), bicarbonates (Liang et al. 2021; Sevilla
and Fuertes 2016), nitrates (Li et al. 2018a; Huo et al. 2020; Wang et al. 2017),
and so on. Li et al. produced a macro- and mesoporous carbon material by using
the decomposable and water-removable NaNO3 as the porogen (Li et al. 2018a).
Above 600 °C, NaNO3 begins to decompose, generating N2, O2, and NO, which is
conducive to the formation of mesopores (Eqs. 18 and 19) (Li et al. 2018a). The pore
size of thematerial is affected by the dosage ofNaNO3. Themodified carbonmaterial
showed small mesopores of 2–4 nm and larger mesopores of 5–50 nm, with a SSA
of 2872.2 m2 g−1. Due to the synergistic effect of suitable macro-mesoporous ion-
diffusion channels and continuous conductive network, the porous carbon material
exhibits a high power density. Huo et al. used NaNO3 and KOH to activate soluble
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Fig. 5 a Schematic illustration of the synthesis of HPCNS, bN2-adsorption/desorption isotherms,
c specific capacitance as a function of the current densities (Huo et al. 2020)

starch to produce interconnected layered porous carbon networks (Fig. 5a) (Huo
et al. 2020). As can be seen from Fig. 5b, the PCMs prepared by NaNO3 and KOH
activation (HPCNS) possess micropores, mesopores, and macropores at the same
time. However, the materials prepared only with KOH (MICPCS) have no obvious
mesoporous and macroporous characteristics. The results showed that the HPCN
prepared at 800 °C had a maximum specific surface area of 1864 m2 g−1 and a total
pore volume of 2.22 cm3 g−1. In a three-electrode system with 6MKOH electrolyte,
it shows good capacitance performance. The specific capacitance reaches 385 F g−1

at 1 A g−1. Even when the current density is up to 100 A g−1, HPCNs can achieve a
capacitance retention of 75.6% (Fig. 5c).

12NaNO3 → 6Na2O + N2 + 10O2 + 10NO (18)

2Na2O + C → 4Na + CO2 (19)

Some oxidizing salts are also used in the preparation of porous activated carbon.
For example, KMnO4 gradually decomposes into oxygen, water-soluble potassium
salt, and non-water-soluble manganese salt in the process of continuous pyrolysis,
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which are beneficial to the formation of hierarchical pores (Qiu et al. 2019a, b; Yi
et al. 2020). In addition, KNO3 (Leng et al. 2020; Wang et al. 2017) can also be used
as an oxidizing salt for the activation of porous carbon.

2.3 Self-activation

Although the above-mentioned activation methods and activation reagents have
been widely used in the preparation of PCMs, they inevitably have some disad-
vantages, such as corrosive reagents, complex activation operation, post-treatment,
and secondary pollution. Self-activation can simplify the activating process without
the need for additional activation reagents and reducing the cost. Its pore generation
mechanisms include three aspects: (1) chemical activation (it contains some inorganic
salts, organic salts, and some special components, which can be used for activation),
(2) physical activation (utilization of CO2 and H2O produced by pyrolysis), and (3)
removal of inorganic nanoparticles in carbon source (Sevilla et al. 2021). The main
influencing factors of self-activation are carbonization temperature and time (Wang
et al. 2021; Gao et al. 2021; He et al. 2019a; Bhat et al. 2021). Niu et al. fabricated
mesopore-dominant porous carbon as electrode materials by direct pyrolysis (600,
850, 900, 1000, 1100, 1200 °C) of cattle bones in an Ar atmosphere (Niu et al. 2017).
With the increase of temperature, the surface of carbon changes from nonporous to
porous. The porous carbon obtained at 1100 °C presented a hierarchical porous struc-
ture with a large SSA of 2096 m2 g−1. The mesopore volume is 1.83 cm3 g−1, and
the conductivity reached 5141 Sm−1. PC-1100 displayed a high specific capacitance
of 258 F g−1 at a current density of 5 A g−1 in a symmetrical supercapacitor. Even
at 100 A g−1, a high capacitance of 176 F g−1 was maintained.

3 Summary and Perspectives

PCMs are promising electrode materials for supercapacitors attributing to their rich
precursors, low cost, high specific surface area, tunable pore structure, and good
stability. PCMs could be prepared fromvarious precursors including biomass, natural
polymers, synthetic macromolecules, and carbon-rich small molecules by pyrolysis
at high temperature. However, the carbonaceous products obtained from directly
carbonization of precursors often show porous-less or even nonporous feature with
limitedSSA. It is necessary to improve theSSAand adjust the pore structure of carbon
materials to enhance their capacitance performance. Physical/chemical activation
methods are proved to be effective approaches.

Nowadays, PCMs have produced tons of kilograms annually through carboniza-
tion–activation way. However, there are some issues still unsolved which block the
production and application of PCMs. As to the physical activation, steam and CO2
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are the commonly used activation agents which are low corrosive to the produc-
tion facilities and more favorable for practical application. But physical activa-
tion always results in PCMs with narrowly distributed micropores, and the particle
and microdomain sizes are reduced. Physical activation also shows the shortage in
product yield, tap density, and SSA. As to chemical activation, corrosive reagents
like ZnCl2, KOH, NaOH, H2SO4, HNO3, and K2CO3 are the traditional activation
agents. Compared with physical activation, chemical activation shows advantages
in relatively low activation temperature, high yield, large SSA, and high mesopore
ratios. However, chemical activation often requires high mass ratio of corrosive acti-
vation agents to carbon sources and generates great amounts of contaminants. Hence,
tradition chemical activation method is only limit to laboratory-scale research.

In recently years, great efforts have been investigated on the exploration of
much less corrosive chemical activation agents and molten salts (KCl, NaCl, CuCl2,
FeCl3, NiCl2, etc.), decomposable salts (nitrates, carbonates, bicarbonates, acetates,
oxalates, etc.), and oxidative salts (KMnO4, KClO4, (NH4)2S2O8, H2O2, etc.) are
proved to be better choices. Among these new chemical activation agents, potassium
salts and sodium salts are more preferred owing to their water solvable nature which
are benefit for post-treatment. Moreover, potassium salts and sodium salts could be
served as templates to generate hierarchical pores. Ammonium salts are also good
choices attributing to their fully decomposable nature which could act as chem-
ical blowing/foaming agents generating lots of macropores. Besides, ammonium
salts could be used as nitrogen sources to introduce nitrogen species to contribute
pseudocapacitance and modify the surface feature of carbon materials.

The pore structure optimization process is complicated and sometimes uncon-
trollable. It is very hard to obtain PCMs with idea pore structure from only one
method within one-step experiments. As to application in supercapacitors, the ratio
among macropores, mesopores, and micropores of PCMs should be well adjusted to
keep a balance on specific capacitance, rate performance, stability, and tap density.
From a production point of view, it is more favorable to synthesize PCMs from one-
step carbonization and activation process with multifunctional agents (e.g., KCl,
NaCl, NH4NO3). It is necessary to combine activation with other methods including
template, chemical vapor deposition, electrospinning, hydrothermal/solvothermal
method to design PCMs with finely tuned pore structures, and good capacitive
performance.
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