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Abstract. Predictive business process monitoring is concerned with the
prediction how a running process instance will unfold up to its completion
at runtime. Most of the proposed approaches rely on a wide number of
machine learning techniques. In the last years numerous studies revealed
that these methods can be successfully applied for different prediction
targets. However, these techniques require a qualitatively and quantita-
tively sufficient dataset. Unfortunately, there are many situations in busi-
ness process management where only a quantitatively insufficient dataset
is available. The problem of insufficient data in the context of BPM is
still neglected. Hence, none of the comparative studies investigates the
performance of predictive business process monitoring techniques in envi-
ronments with small datasets. In this paper an evaluation framework
for comparing existing approaches with regard to their suitability for
small datasets is developed and exemplarily applied to state-of-the-art
approaches in next activity prediction.

Keywords: Process mining · Predictive business process monitoring ·
Small sample learning · Process prediction

1 Introduction

Predictive business process monitoring aims at predicting how a running pro-
cess instance will unfold up to its completion at runtime based on its current
state of execution. This can help to identify problems before the process instance
runs in and enables to take adequate preventive measures to avoid them. One
can distinguish several prediction targets, e.g., performance predictions such
as the remaining execution time [15], business rule violations [11,12], predic-
tions regarding the outcome of a process instance [3,21], and predictions of the
next event [6] including further information as when it / they will occur and
which resource(s) is/are responsible for it [2,17]. The majority of the proposed
approaches rely on a wide number of different machine learning (ML) techniques
to perform these predictions.
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In the last years numerous comparative studies, reviews, and benchmarks of
predictive business monitoring approaches have been published [4,9,14,21,23].
These studies reveal that ML techniques can be successfully applied for all the
mentioned prediction tasks. However, all ML techniques are faced with the fun-
damental requirement of a qualitatively and quantitatively sufficient dataset.
In business process management (BPM) we can have an insufficient dataset
since a process (i) is executed very seldom or has not been executed often yet,
(ii) its instances are long running, (iii) legal regulations like the General Data
Protection Regulation lead to significantly less data, or (iv) there are funda-
mental changes in the intended process execution so that some historic data are
not usable anymore. Especially small and medium sized companies frequently
cannot fulfill this fundamental requirements of ML since not enough data is
recorded. On the other hand, small data can also be a desired objective because
of limited computational power or real-time feedback. The latter is, for example,
characteristic for Stream Process Mining or Concept Drift.

The problem of insufficient data in the context of BPM is still neglected [8].
Hence, none of the comparative studies or benchmarks investigates the perfor-
mance of predictive business process monitoring techniques on small data, i.e.,
small event logs. Hence, the contribution of the paper is two-fold: (i) we intro-
duce an evaluation framework for comparing existing approaches w.r.t. their
suitability for small event logs, and (ii) analyse the suitability of existing state-
of-the-art approaches in predictive business process monitoring on small event
logs. This analysis is also a step towards answering the question of whether there
is a lower bound for a minimum of required data for predictive business process
monitoring and, if so, in which range this lower bound is located. Our results
show that in many cases the algorithms allow a significant reduction of training
data and, hence, training times and computational effort can be significantly
reduced.

The remainder of the paper is structured as follows: In Sect. 2 we recall basic
terminology and give a short introduction to the area of Small Sample Learning.
Section 3 highlights the difference between this comparative study and other
surveys. In Sect. 4 we describe our evaluation framework and how it can be
tailored to the different areas of BPM. In Sect. 5 we use this framework for
comparing selected state-of-the-art approaches for predicting the next activity
w.r.t. their suitability for small event logs. Finally, Sect. 6 outlines future work.

2 Background

2.1 Process Mining

The input of process mining techniques is a (process) event log, i.e., a set of traces
of a business process (model). A trace (also called case) is a temporaly ordered
sequence of events that are related to the same process instance. An event is
related to an activity (i.e., a step in a business process) and is characterized by
various event attributes with at least a case id (C), the name of the corresponding
activity (A), and the timestamp of occurrence (T ). Optionally, an event contains
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Table 1. Sample process event log

Case ID Event ID Activity Timestamp Resource Amount Key

Case1 e11 A 2020-10-09T14:50:17 MF SD-1

Case1 e12 T 2020-10-09T14:51:01 SL 100 HG-4

Case1 e13 W 2020-11-09T12:54:39 KH HZ-2

Case2 e21 A 2019-04-03T08:55:38 MF SD-2

Case2 e22 T 2019-04-03T08:55:53 SL 340 HK-7

Case2 e23 C 2019-05-19T09:00:28 KH SGH-3

Case3 e31 A 2019-11-06T10:47:35 MK SD-3

Case3 e32 T 2019-11-06T10:48:53 PE 235 UG-2

Case3 e33 C 2019-11-25T08:18:07 SJ KL-6

Case4 e41 A 2019-04-05T08:59:38 MF SD-5

Case4 e42 T 2019-04-05T09:55:52 SL 140 HK-2

further event attributes, such as the resources or systems involved in executing
the activity (L) or further data payload (Di). Often additional event attributes
(e.g., the role of a process participant) are derived by process mining approaches
and added to the events.

Let us consider the sample event log shown in Table 1 that provides the
following event attributes: a case identifier, the name of the executed activity,
the timestamp of execution, the involved resource, and two further information
(amount, key) in form of data payload.

Definition 1. Let E be the universe of events, P the set of event attributes,
and ε the empty element. For each event attribute p ∈ P, we define a function
πp : E → dom (P) ∪ {ε} that assigns a value of the domain of p to an event.
However, ε can only be assigned to optional event attributes.

For example, for event e13, holds πA(e13) = "W", πC(e13) = "Case1", πL(e13) =
"KH", πT (e13) = "2020-11-09T12:54:39", πDAmount(e13) = ε, and πDKey(e13) =
"HZ-2".

Definition 2. Let S be the universe of traces. A trace σ ∈ S is a finite non-
empty sequence of events σ = 〈e1, ..., en〉 such that for 1 ≤ i < j ≤ n : ei, ej ∈
E ∧ πC(ei) = πC(ej) ∧ πT (ei) ≤ πT (ej), where |σ| = n denotes the length of σ
and σ(i) refers to the i-th element in σ.

This definition states that each event is unique, time within a trace is increasing,
and all events with the same case identifier refer to the same process instance.

If a process instance has finished, i.e., no additional events related to this
instance are executed in the future, the trace is completed.

Definition 3. A trace σ ∈ S is called completed if there is no e′ ∈ E such that
πC(e′) = πC(e) with e′ /∈ σ and e ∈ σ. An event log L is a set L = {σ1, ..., σl}
of completed traces.
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As an example, the event log shown in Table 1 consists of four traces, related
to the process instances Case1, Case2, Case3, and Case4. We consider traces
to be equivalent with respect to one or more process perspectives (e.g., control
flow) by introducing the concept of trace variants, which defines an equivalence
relation on an event log:

Definition 4. Let L be an event log, σ1, σ2 ∈ L traces, and P ⊆ P a set of event
attributes. We write σ1 ∼P σ2, if σ1 and σ2 are equivalent with regard to P, i.e.,
for all p ∈ P there is πp(σ1(i)) = πp(σ2(i)) for all 1 ≤ i ≤ max{|σ1|, |σ2|} with
πp(σ(i)) = ε if i > |σ|. The set [σ]∼P

:= {σ′ ∈ L|σ′ ∼P σ} is called a trace
variant.

It is obvious that ∼P is an equivalence relation. Applying this relation to an
event log provides in dependency of P a more abstract or a less fine-grained
view on the event log, since we can disregard one or more process perspectives
(to be exact event attributes). For example applying the relation with P = {A}
on the event log in Table 1 results in three trace variants: the trace with id
Case1 represents the trace variant 〈A, T, W〉; a second trace variant 〈A, T, C〉 is
represented by the two remaining traces, since they are identical with regard to
the controlflow; a third trace variant 〈A, T〉 is represented by trace with id Case4.
If we additionally consider the organizational perspective, i.e., P = {A,L} four
trace variants evolve, since the traces with case id Case2, Case3, and Case4 differ
with respect to the involved resources: 〈(A, MF),(T, SL),(W, KH)〉, 〈(A, MF),
(T, SL), (C, KH)〉, 〈(A, MK),(T, PE),(C, SJ)〉, and 〈(A, MF), (T, SL)〉. On
the other hand, if we only consider the organizational perspective, the traces
with case id Case1 and Case2 represent the same trace variant (〈MF, SL, KH〉).
Usually the more event attributes are considered, the more trace variants occur
since it is highly probable that they differ in one of the perspectives. We can
consider the frequency distribution of the trace variants within the event log.

Definition 5. Let L be an event log, Ω the set of trace variants with regard to
∼P on L, and X : Ω → R a discrete random variable that represents the trace
variants. Then the probability for the occurence of a trace variant is given by:

P (X = [σ]∼P
) =

| [σ]∼P
|

|L| .

We call the frequency distribution of X the distribution of the trace variants.

For the example from Table 1, we obtain the following frequency distribution:
If only the property A is considered, a frequency distribution of 0.33 to 0.67
follows. If additionally property L is regarded, three trace variants with equal
probability of 0.33 result.

2.2 Small Sample Learning

In recent years a new and promising area in artificial intelligence research called
Small Sample Learning (SSL) has emerged [18]. SSL deals with ML on quantita-
tively inadequate datasets. This also encompass partial insufficient datasets like
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imbalanced datasets, where for some classes are significantly more examples than
for other classes. Although, SSL has its origins in the field of computer vision,
meanwhile many SSL techniques are applied in various application areas. The
current SSL research is divided into two main branches: concept learning and
experience learning [18]. Experience learning attempts to solve a SSL problem
by applying conventional ML techniques, by either transforming the problem
into a classical ML problem through increasing the amount of data or reducing
the preliminaries of the required ML algorithms. In contrast, concept learning
aims to detect new concepts from only a small number of examples. Within the
two branches numerous methods can be identified. Although there are numerous
situations with qualitatively insufficient data in the context of BPM, the appli-
cation of SSL methods is still neglected in this area. This might be caused by
the fact that most common SSL techniques are strongly tailored to computer
vision or NLP problems and must be adapted to BPM first in order to become
applicable [8].

3 Related Work

This work relates to the stream of research in predictive business process moni-
toring and touches the area of SSL. Since, SSL methods are barely used in BPM
so far, related work mainly focuses on comparative studies of existing business
process monitoring approaches and the approaches themselves. The problem of
quantitatively insufficient data in BPM was systematically addressed the first
time in [8], where the authors propose the idea of leveraging SSL methods for this
issue. They describe their concept by the example of predictive business process
monitoring, suggests SSL methods that seems promising for BPM, and describe
an idea of how the effectiveness of such methods can be proven. A survey of
existing SSL methods outside of BPM is presented in [18].

The problem of insufficient training data in context of predictive business
process monitoring in case of next event prediction was addressed in [20] where
the authors proposed the use of Generative Adversarial Networks (GANs) for
solving this issue. This network architecture outperforms other existing deep
learning approaches w.r.t. accuracy and earliness of prediction. However, the
authors use conventional, i.e., not small, event logs for training and evaluation.
Hence, it is unclear whether it only improves results on conventional event logs
or if it works for small event logs, too.

The necessity of evaluation frameworks for comparing the performance of
different algorithms in BPM, respectively process mining, is not new, since the
disparity of event logs, experimental setups, and different assumptions makes it
often difficult to make fair comparisons [12,14]. In [16] the authors motivate the
need of an evaluation framework for process mining approaches and propose a
framework for comparing model discovery algorithms. In the subfield of predic-
tive business process monitoring there is a plenty set of different comparative
studies depending on the different prediction tasks [4,9,14,21,23]. However, all
of them depend on large event logs and do not consider environments with a
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Fig. 1. Conception of the evaluation framework

small amount of data. Outcome-oriented techniques are reviewed and compared
in [21], in [9] with special focus on deep learning techniques. In [23] the authors
give a survey and benchmark of remaining time predictions methods. In [14] the
authors focus on deep learning techniques for next activity prediction, activity
suffix prediction, next timestamp prediction, and remaining time prediction by
evaluating approaches with publicly available source code on 12 real-life event
logs from various domains.

The above discussed comparative studies observed that deep learning
approaches for next activity prediction outperform classical predictions tech-
niques, which use an explicit model representation such as Hidden Markov Mod-
els [10], probabilistic finite automata or state-transition [1,22]. These deep learn-
ing approaches are based on different types of neural networks. Most of them use
Long-Short-Term-Memory (LSTM) Neural Networks [2,6,17,19], Gated Recur-
rent Units (GRUs) as a variant of LSTMs [7], or Convolutional Neural Networks
(CNN) [5,13]. The approaches use different encoding techniques for sequences
and events and consider different input data for making predictions. An overview
about existing deep learning approaches including a detailed description of the
underlying architectures is given in [14].

4 Evaluation Framework

In this section we describe the structure of our evaluation framework. We identify
different challenges that must be considered by the evaluation framework.

4.1 The Issue of Small Event Logs

The evaluation framework (cf. Fig. 1) gets two inputs: the approaches to be
compared and small event logs. However, providing small event logs is a cru-
cial challenge. This is due to the missing definition of “small event log”. This
question is strongly related to the question what is “big data”. Also, this is still
an open question in research. Due to inconsistent and sometimes contradicting
definitions, that often include time dependency (i.e., define as big data what
is today the largest available amount of data), domain dependency or circular
reasoning (e.g., big data is the opposite to small data) this question cannot be
conclusively clarified. We bypass this technical and conceptual problem by reduc-
ing event logs with various reduction factors and thereby generate small event
logs of different sizes. The use of different reduction factors enables us to fully
cover the broad range of “smallness”, which ranges from zero or a single case
up to, for example, several 1000 cases. Hence, we are independent of concrete
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definitions. In a strict sense, the generated small event logs are rather “relatively
small” event logs, than “small” event logs. The exact procedure of generating
small event logs is described in detail in Sect. 4.3.

In addition to bypassing this definition problem, generating small event logs
by reducing conventional event logs has another advantage: Since we can fall back
to the non-reduced event log (so called reference log), it is possible to compare
results of an analysis achieved on a small log with the results obtained on the
reference log1. This comparison allows us to make quantitative statements about
the impact of reducing an event log. Such a comparison is necessary to determine
whether any potential loss of quality that goes in hand with the data reduction,
can be better compensated by one method or by another. Hence, we measure
how an approach performs depending on the reduction factor. It is likely that
the achieved results also depend on the domain and structure of the considered
event log (e.g., number of event per case).

4.2 Preserving Comparability

When we talk about comparability in our approach, we mean to compare the
prediction quality of predictive business process monitoring approaches mea-
sured on the reference log and the generated small event logs. For preserving
comparability, it is essential to evaluate all trained models with the same test
data. Hence, we first divide the event log into training and test data and after-
wards we reduce only the training data and not the whole reference log. The
selection of the test data is discussed in Sect. 4.4. However, excluding the test
data from reduction has a far-reaching consequence: Usually ML techniques,
which require a split into training and test data, use training-test ratios like
80:20 or 70:30. Since we keep the test data and only reduce the training data the
ratio between train and test data shifts more and more towards test data with
increasing reduction factor. Hence, the less training data are used, the relatively
more tests the model must pass afterwards. This seems to be unusual, however it
ensures comparability and guarantees that the quality of the trained model and,
as a result, the performance of the method used for training, are not overesti-
mated but rather underestimated. In consequence, also the frequently used cross
validation that enables the use of all available data for training as well as for
testing are not applicable anymore, since through the reduction step reference
log and small event logs differ. It should be noted that dispense on comparability
would avoid this shift problem but would be accompanied with interpretation
problems due to meaningless splits in training and test data. Suppose that a
reduced event log would only contain 10 traces left and we would split this event
log into training and test data using a ratio of 80:20. Then the metrics used for
evaluation would hardly be meaningful. For example the accuracy metric could
only attain three different values: 0%, 50%, or 100%.

1 At this point we implicitly assume that the event logs currently used in research can
be considered as quantitatively sufficient.
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It is obvious that comparability and keeping the ratio between training and
test data are diametrically opposed to each other. Since, the comparability
between the reduced event logs is essential for our aims and cannot be neglected,
we accept the shift of the training-test ratio in our evaluation framework.

4.3 Reducing Event Logs

The amount of training data is reduced by removing as many process instances
from the training data such that a given reduction factor is reached. We select
process instances for removal either randomly or along the time dimension.
Removing instances randomly means selecting process instances randomly. When
reducing along the time dimension, we order the process instances ascending by
its first event timestamp and then remove the first process instances according to
the reduction factor. Note that the way how the process instances to be removed
are selected leads to different interpretations: In case of randomly removing pro-
cess instances, we simulate that a process is executed very seldom or due to legal
regulations there are only a few records available for analysis. Reason for this
interpretation is that the underlying time window of the event log (spanned by
the earliest and latest timestamp of an event) stays nearly unchanged. However,
in case of removing process instances along the time dimension, the time window
is shortened. Hence, this reduction method reflects a scenario where a process
has not been executed often yet or due to fundamental changes in the intended
process execution some historic data (up to a specific time) are not usable any-
more. Hence, these two reduction methods are sufficient to simulate all in the
introduction mentioned reasons for quantitatively insufficient event logs. Nev-
ertheless, we implement some alternative selection methods, like removing the
most recent data or removing only specific trace variants, as defined in Defini-
tion 4.

However, the reduction of the training data bears two further issues: (i) the
possible loss of activities and resources, and (ii) statistical bias.

Loss of Activities and Resources. Since we generate small event logs out of large
event logs, there is a risk that activities or resources get completely lost or
are finally only represented in the test data. In case of getting completely lost,
the trained model would not be able to handle these activities or resources, if
they occur later in productive use, since they are not encoded and therefore are
unknown to the model. Therefore, we extract and buffer all occurring activities
and resources from the reference log before splitting into training and test data
and before generating the small event logs. Hence, these activities and resources
can be considered even if no training sample reflects them. However, this also
implies that process instances in the test data that contain activities or resources
that are not represented in the training data cannot be predicted well.

Statistical Bias. The reduction of the training data may be accompanied by
statistical bias in the probability distribution of the trace variants (cf. Defini-
tion 5). Since most of the ML techniques are statistical methods, it affects the
model quality and must therefore be considered adequately. Suppose that a trace
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variant is represented by exactly one representative in a training dataset, which
consists of 100 traces. Then this trace variant has an empirical probability of 1%.
If we reduce the training data by 50% and the representative of the considered
trace variant is not removed, then the empirical probability of this trace variant
increases to 2%. At the same time other trace variants are either completely
eliminated or their empirical probability decreases. In case of an even stronger
reduction and under the assumption that the considered trace variant is not
removed, the increase of empirical probability could be much stronger. Hence,
the probability distributions of the trace variants in the considered event logs
can differ significantly or reflects no longer their occurrence frequency in reality.

However, the problem becomes less relevant the more process perspectives
are considered, since process perspectives foster the singularity of traces and
the number of trace variants represented in the event log tends to the number
of traces in the event log. In the case that each trace variant occurs only once
in the event log, removing a trace directly leads to a loss of a trace variant.
This observation prohibits to reduce the event log along the distribution of its
trace variants. However, considering this issue only from the perspective of trace
variants is not sufficient. Because from the ML perspective there may be a sig-
nificantly lower statistical bias since this perspective also takes the similarity
between the trace variants into account (for example two trace variants only
differ in a single event). Hence, often removing a trace variant is sufficiently
compensated by another very similar trace variant that is still included in the
event log. However, it is difficult to determine this compensatory effect, because
it strongly depends on the considered ML technique and therefore cannot be
adequately considered in the evaluation framework.

The effects discussed above are affected by the chosen reduction method. In
case of a randomly reduction, the distribution of trace variants can be extremely
distorted. The reduction along the time dimension alleviates this issue, since the
distribution of the trace variants in a sufficiently large time window should be
more similar to the distribution of the entire event log than the distribution in
a randomly selected subset of the event log. This assumption also holds for the
compensatory similarity effect. Hence, it is expected that via reduction along
the time dimension the statistical bias can be reduced. However, it is clear, that
it also depends on the particular event logs and in case of strong reduction the
statistical bias cannot be longer compensated.

4.4 Splitting into Training and Test Data

Still, the question remains how the event log should be split into training and
test data. We use the same procedure for selecting test data as for reducing
the training data, i.e., the test data is either selected randomly or along the
time dimension. In the latter case, the newest process instances are used for
testing and the oldest for training. The chosen split procedure may affect the
achieved results, since training and test data may overlap in time by splitting the
event log randomly. This could be problematic if the underlying process evolves
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during time and, hence, different process variants are mixed up in the event
log. However, splitting along the time dimension does not prevent this issue,
since the splitting can lead to a separation of a specific process variant (i.e., the
test data represents a process variant that does not occur in the training data).
Nevertheless, splitting along the time dimension appears closer to reality, since
knowledge of the past is used to predict the future. Furthermore, the splitting
along the time dimension also provides a better reproducibility.

4.5 Architecture of the Evaluation Framework

In summary, the proposed evaluation framework depicted in Fig. 2 comprises
five successive steps. In a first step, an event log is preprocessed depending on
the selected approaches to be compared and all activities and resources of the
event log are extracted and registered. Further preprocessing encompasses, for
example, the removal of traces with events that have missing values. Afterwards
(cf. Step 2) a preprocessed event log is split into training and test data according
to one or more split ratios. The resulting training data is then reduced in the
third step according to various reduction factors to generate a set of small event
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Table 2. Statistic of the used event logs. Time related measures are shown in days.

Event Log BPIC12 Helpdesk BPIC13 BPIC15 2 BPIC15 5

Number of cases 9559 4580 1487 832 1156

Number of activities 36 14 7 410 389

Number of roles 8 4 4 11 10

Number of events 140863 21348 6660 44354 59083

Maximal case length 163 15 35 132 154

Minimal case length 3 2 1 1 5

Average case length 14.74 4.66 4.49 53.31 51.11

Maximal duration 76.90 59.99 2254.85 1325.96 1343.96

logs. The framework selects the traces to be removed with the same methods as
used for selecting test and training data. The approaches to be compared are
trained with the training data resulting from the splitting step as well as the
reduced training data of the reduction step (cf. Step 4). In order to measure the
performance of the considered approaches, the trained models are evaluated on
the corresponding test data (cf. Step 5). For measuring the performance one or
more suitable metrics are used. The selection of the metrics primarily depends
on the types of approaches. After the completion of the evaluation step, all steps
are repeated with further event logs to get representative results.

In general, the framework is extensible by adding alternative methods for
splitting and reducing the processed data. In Fig. 2, all parts of the framework
that can be adapted and configured are marked with dashed lines. Fields with
a grey background represent input parameters that have to be set to config-
ure the framework. The remaining dashed fields can be extended to add more
functionality to the framework.

We conclude this section by a brief discussion whether the evaluation frame-
work is tailored to specific process mining methods. Since the framework offers
flexible preprocessing and the splitting into test and training data can be skipped
it is also possible to evaluate unsupervised ML techniques. For ML techniques,
which require a split into training, validation, and test data some smaller adap-
tions would be necessary. Since the evaluation framework does not implement any
approach specific particularities, the framework can be considered as approach-
agnostic.

5 Evaluation of Existing Approaches on Small Event Logs

5.1 Dataset Description and Experimental Setup

The first three steps of the framework that are responsible for generating small
event logs are implemented as a Java application. Step 4 is covered by the modi-
fied implementations of the considered approaches. Modification becomes neces-
sary, since approaches must deal with the generated small event logs and the test
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data generated in the previous steps. Hence, parts in the implementations of the
considered approaches that are responsible for splitting into training and test
data or extracting activities and resources must be modified. Also, the approach
specific evaluation components must be replaced by the evaluation component
of the framework (Step 5) to ensure a consistent evaluation procedure.

We evaluate our framework with a small comparative study of selected state-
of-the-art approaches for next activity and role prediction. We select approaches
[2] and [13] since they represent the most frequently used deep learning archi-
tectures (LSTM and CNN respectively) for next activity prediction, provides
publicly available source code, and achieve good results in various comparative
studies. We modified the approaches in the above described way and additional
changed the implementations to run with Python 3.7 and to support training on
GPU. The experiments are run on a system equipped with a Windows 10 oper-
ating system, an Intel Core i9-9900K CPU3.60GHz, 64GB RAM, and a NVIDIA
Quadro RTX 4000 having 6GB of memory.

We perform our experiment using 5 real-life event logs from different domains
with diverse characteristics (cf. Table 2) extracted from the 4TU Center for
Research Data2. For our experiment, we preprocess the event logs in the same
way as it is done in the considered approaches. Due to the missing resource event
attribute in some traces we removed 3528 of the 13087 traces in the BPIC12 log.

5.2 Tailoring the Evaluation Framework to Predictive Monitoring

We tailor the evaluation framework for evaluating predictive business process
monitoring approaches in the following way. We use a training-test ratio of 70:30.
The test data is selected by applying the two methods from Sec. 4.4: (i) splitting
randomly, and (ii) splitting along the time dimension. Training data are reduced
according to the following reduction factors: 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, and 0.99.
Hereby, the traces are either removed randomly or along the time dimension. For
evaluation, we use the following common metrics that can be derived from the
confusion matrix3: (i) Recall (also called sensitivity) defined as R = TP/(TP +
FN), (ii) Precision P = TP/(TP + FP ), (iii) F-Measure defined as harmonic
mean F = 2RP/(R + P ) of precision and recall, and (iv) Accuracy defined as
A = (TP + TN)/(TP + FN + FP + FN). These metrics coincide with those
from other comparative studies.

5.3 Results and Discussion

Due to the large number of trained models and measures and since the achieved
results are comparable for all considered approaches we report in this paper
only an exemplarily excerpt of the detailed measures (cf. Table 3 and 4) and

2 https://data.4tu.nl.
3 i.e., it can be calculated from true positives (TP), true negatives (TN), false positives

(FP), and true positive (TP).

https://data.4tu.nl
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Table 3. Next activity prediction results (accuracy measures in %) for approach [2]
(architecture “shared categorical”)

Reduced along time dimension Reduced randomly

Applied reduction factors Applied reduction factors

Event Log 0.0 0.2 0.4 0.6 0.8 0.9 0.95 0.99 0.0 0.2 0.4 0.6 0.8 0.9 0.95 0.99

BPIC 15 2 0.10 0.09 0.09 0.08 0.11 0.21 0.17 0.07 0.11 0.09 0.09 0.06 0.08 0.05 0.06 0.04

BPIC 15 5 0.16 0.20 0.24 0.28 0.28 0.26 0.22 0.22 0.16 0.14 0.13 0.14 0.09 0.09 0.08 0.03

BPIC 13 0.54 0.64 0.58 0.61 0.60 0.57 0.51 0.39 0.56 0.52 0.53 0.51 0.53 0.49 0.50 0.44

Helpdesk 0.74 0.74 0.79 0.79 0.78 0.79 0.78 0.70 0.74 0.74 0.73 0.74 0.73 0.73 0.72 0.72

BPIC 12 0.85 0.86 0.85 0.84 0.85 0.84 0.84 0.79 0.85 0.85 0.85 0.85 0.84 0.84 0.84 0.74

Table 4. Next role prediction results (accuracy measures in %) for approach [2] (archi-
tecture “shared categorical”)

Reduced along time dimension Reduced randomly

Applied reduction factors Applied reduction factors

Event Log 0.0 0.2 0.4 0.6 0.8 0.9 0.95 0.99 0.0 0.2 0.4 0.6 0.8 0.9 0.95 0.99

BPIC 15 2 0.85 0.87 0.86 0.86 0.86 0.82 0.84 0.55 0.87 0.78 0.75 0.85 0.85 0.82 0.68 0.55

BPIC 15 5 0.90 0.91 0.91 0.92 0.93 0.88 0.91 0.89 0.90 0.91 0.90 0.91 0.87 0.87 0.87 0.52

BPIC 13 0.96 0.96 0.92 0.96 0.95 0.93 0.83 0.63 0.97 0.97 0.97 0.97 0.97 0.93 0.91 0.95

Helpdesk 0.95 0.95 0.94 0.95 0.94 0.95 0.94 0.84 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.93

BPIC 12 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.94 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.93

limit ourselves to the discussion of the overall results. All further measures are
provided in the repository of our implementation4.

The most surprising observation is that only a very strong reduction factor
of 95% or 99% significantly worsens the performance measured by different met-
rics. This applies for event logs where good results are achieved as well as for
event logs that show poor results. A further surprising fact is that in case of
a reduction along the time dimension the best results (highlighted in red) are
not achieved by the reference values (reduction factor 0.0), i.e., often a reduced
amount of training data achieves better results. However, this observation does
not hold for a randomly performed reduction. This reduction method either
achieves similar or slightly worse results. Hence, this observation supports the
hypothesis of Sect. 4.3 that reduction along the time dimension leads to a more
representative dataset. Since, we remove those traces that have the earliest first
timestamp this behaviour might also be an indicator that there is some process
evolution within the logs. We also observe that the most complex event logs
BPIC15 2 and BPIC15 5, which contain a relatively large number of activities
for a comparatively small number of traces shows poor results. The reason for
this behaviour seems to be the high number of activities per number of traces
(cf. Table 2). This interpretation is supported by the fact that the prediction of

4 https://github.com/mkaep/SSL-Evaluation-Framework.

https://github.com/mkaep/SSL-Evaluation-Framework
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the next roles performs significantly better. Hence, for learning such complex
logs we would need significantly more training data.

In a deeper analysis of the results we analysed whether the prediction quality
between the activities differ. This analysis reveals that all trained models (also
the reference models) are good in predicting frequent activities but perform poor
in predicting rare activities. As a result, frequent trace variants (i.e., standard
cases) are predicted very well, while rare trace variants are barely predicted
correct, since the prediction model treat them as standard cases. This is some-
how natural, since ML methods try to generalize the data in a simple way by
neglecting rare activities.

Hence, we can draw the following conclusions: for learning to predict frequent
trace variants of less complex logs even a significantly reduced amount of data
is sufficient. For learning rare trace variants, however, it is necessary to increase
the amount of data, especially by better representing rare trace variants. For
complex logs, like the BPIC15 logs, the currently available amount of data is
not sufficient, to achieve acceptable results. Hence, our results reinforce the need
for SSL methods in the area of predictive business process monitoring.

6 Future Work

In this paper, we propose a customizable evaluation framework for investigat-
ing predictive business process monitoring approaches w.r.t their suitability for
small event logs. Our experiments reveal that training times and computational
effort can be significantly reduced without any loss of quality with regard to the
common metrics. For further improvement, however, it would be necessary to
cope with the problem of rare trace variants. In future work the study should be
extended to further approaches, event logs, and should investigate how different
types of sequence and event encoding affect the performance. Furthermore, other
prediction tasks, like the prediction of suffixes or the remaining time should be
investigated. It is also necessary to adopt the framework for use in other subfields
of process mining, like process model discovery or conformance checking.
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