
Empirical Evaluation of Agile Teamwork

Paolo Ciancarini1,2(B) , Marcello Missiroli1 , and Sofia Zani1

1 University of Bologna, Bologna, Italy
paolo.ciancarini@unibo.it

2 Innopolis University, Innopolis, Russia

Abstract. During the fall 2020 we observed and tracked several student
teams working remotely and independently to develop a non-trivial soft-
ware product as the capstone project for a course of Software Engineering
in our university. The teams used an integrated open-source development
environment that we designed to be useful to support and measure Agile
development efforts, storing all artifacts and logging productivity and
interaction data. Moreover, teams were required to use the Essence visual
language during the retrospectives in order to analyze and improve their
Scrum-like process. The tools used by the teams were used to store and
collect several process data, that post-mortem were also integrated by
the answers given by the students to some questionnaires. This paper
proposes an empirical evaluation of the process followed by the teams,
using a teamwork quality model and an Agile maturity model. The two
models highlight different facets of the teamwork. We have studied and
compared the development and interaction activities of the teams, and
found a correlation between the results of the two models.

Keywords: Agile · Essence · Teamwork quality

1 Introduction

Traditionally, undergraduate student projects are either personal or group-based.
It is possible to assign a project to a whole class seen as a unique group, but it
requires a quite complex organization [2,32].

In Software Engineering courses, student projects are usually team-based;
the evaluation of the result is often based on the quality of the process enacted
by the team, including the quality of the teamwork [21].

If there are several teams developing independently and in parallel, the task of
the instructors is complex, because they need to track and compare the progress
of all the teams. This problem is well known, and in literature some tool-based
solutions have been proposed, see for instance TeamScope [10].

During the fall 2020 we observed and tracked 21 student teams working
remotely and independently to develop a non-trivial software product as the
capstone project for our course of Software Engineering at the University of
Bologna. The teams used the Compositional Agile System (CAS for short), an

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 141–155, 2021.
https://doi.org/10.1007/978-3-030-85347-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_11&domain=pdf
http://orcid.org/0000-0002-7958-9924
http://orcid.org/0000-0002-9243-3406
http://orcid.org/0000-0002-7471-5995
https://doi.org/10.1007/978-3-030-85347-1_11


142 P. Ciancarini et al.

integrated open-source development environment we built and useful to support
and measure team-based Agile development efforts [4]. The Agile Manifesto min-
imized the importance of both processes and tools, in fact the first of the four
Agile values says: “(...we have come to value...) Individuals and interactions over
processes and tools”. The issue of effective interactions is especially important
for a successful teamwork [18]. However most Agile developments in COVID-19
pandemic required the usage of tools to organize remote work and to support
interactions of team members, who all worked at home. It was also important
to stress the process rules - we used Scrum - as a way of making the teams more
cohesive and self-organizing.

In order to support the teamwork, the teams practiced some team building
activities before and during the project. In fact, we devoted some care to the topic
of team building, as there was no chance of face-to-face, colocated collaboration
due to the pandemic sanitary rules applied in our country. We have chosen to
train students to the Scrum process model using a serious game called Scrumble1,
that could be played remotely and self-evaluated by the students. Moreover,
teams were required to use the Essence visual language during the retrospectives
in order to analyze and improve their Scrum-like process [9]. We hoped that the
use of Essence cards could support the recording of retrospective analysis. In fact,
each retrospective had to prepare an Essence-based report discussing eventual
problems met during the sprint and which remedies should be introduced in the
next sprint.

This paper proposes an empirical evaluation of the process followed by the
teams, using a teamwork quality model and an Agile maturity model. The two
models highlight different facets of the teamwork. We discuss the development
and interaction activities of the teams and study the correlation between the
results of the two models.

The structure of this paper is the following: in Sect. 2 we summarize some
works related to our approach; in Sect. 3 we present the experiment we set up
with our students, describing the most important activities and tools used; in
Sect. 4 we give an overview of the results we obtained; finally, in Sect. 5 we draw
our conclusions and describe some future plans.

2 Related Works

The problem of evaluation is central in education, and in case of problem-based
learning (PBL) it is particularly challenging, as it requires the integration of
several different dimensions.

Agile teamwork is especially complex to evaluate, as there are several possible
viewpoints and approaches. For example, Poženel [22] and Wedemann evaluated
teamwork interactions [30], whereas Mahnic [16] and Baham [1] evaluated the
students’ perceptions when using Agile practices and tools. Scott [26] and Lang
[13], instead, focused on the evaluation of Scrum learning outcomes related to

1 See http://scrumble.pyxis-tech.com/.

http://scrumble.pyxis-tech.com/


Empirical Evaluation of Agile Teamwork 143

different learning styles of students. Surprisingly, not much research exists on
software process quality education, one of the few exceptions is [14]. Sussy and
others present a study on the Team Software Process enacted by graduate stu-
dents [29]. Instead, here we focus on undergraduates using Agile practices and
Scrum.

In 2008 Dingsøyr et al. [6] wrote that Scrum was not enough studied: it was
already popular in companies, but not used in university course. Since then,
studies have progressed, and some focus on the approach to Agile practices in
an educational context.

Kropp and Meier [12] described a course organization and some tools similar
to our case. There are important differences though, such as the intensive use
of Essence cards [9] and the evaluation of both process and product. Another
recent paper with an approach similar to ours is [23], which exploited a number
of tools for Agile collaboration and surveyed students by questionnaires. Two
important differences are that we insisted that students should use only open
source tools, and use Essence to guide their retrospectives.

Retrospectives are in fact a crucial practice in Agile developments and team
building. Recently, Steghöfer et al. [27] completely re-imagined their course in
order to teach Agile methods - and Scrum in particular - introducing student
reflection in the evaluation process. Their practice has been followed by others,
such as [17] and ourselves.

Traditionally, Agile developers have frowned upon tools usage [11], and
though the tendency has changed through the years [5], the current pandemic
crisis has been the real game-changer. Currently, most development happens
remotely, even at the educational level, and required us to use a tool-intensive
approach. Previous studies pioneered remote development: [25], which describes
and evaluates a virtual Scrum environment, [19], that outlines a distributed
Scrum activity involving students of two different universities located in two
continents, and more.

3 Methods

The Software Engineering course offered at our university is based on about 75 h
of theory lectures and 150 h of project work for third year Computer Science
students. The theory lectures are devoted to presenting the basics of software
process models, especially Agile including some practices like test driven pro-
gramming or pair/mob programming. We devote time to explain and demon-
strate examples of user stories, design patterns, architecture diagrams in UML,
estimation techniques of development efforts, and software quality metrics.

This year we had more than 100 students, who self organized in 21 teams.
They all worked remotely, as the department rooms and laboratories were off
limits for sanitary reasons.



144 P. Ciancarini et al.

3.1 The Project Work

The students’ project work has been organized in phases as shown in Fig. 1.

Fig. 1. Work phases illustration.

1. Students profiled themselves by filling personal cards using Trello, describing
their previous programming experiences and their specific knowledge and
skills in software development. Trello is not open source, and was chosen
because it was quite popular among students, and easy to use online.

2. Using Microsoft Teams students were able to dialog and freely move cards
forming groups of five or six people. This was also the time where Scrum Mas-
ters where chosen. Usually SM where chosen either because they volunteered
declaring to be less able as programmers, or because they declared a strong
interest in leading the team.

3. The first meeting of each group was devoted to a specific team building activ-
ity: playing remotely (mandatory, given the pandemic) a game of Scrumble
to learn with a gamified approach the Scrum process model2. The game was
useful to improve the self confidence of Scrum Masters and clarify roles and
responsibilities; at the end of this activity each team had a retrospective
meeting for self evaluating its own performance using a Goal-Question-Metric
approach suggested by the instructors.
This game and the subsequent Goal-Question-Metric (GQM) self-evaluation
were useful to the teams for familiarizing with Scrum and discuss some critical
issues, like technical debt.

4. The first sprint started when the POs introduced software requirements.
Moreover, in order to inspire the teams POs gave them access to the codebase
of a previous project with similar software requirements. The code base had
been developed by a single student as his graduation project. Teams were
allowed to reuse this code, but only two decided to reuse and extend it. The
initial product backlog was formulated by the teams using a standard user
story template (As a User I need this Goal for this Motivation). Each team
built its own product backlog containing its own user stories.

5. Project work was organized over three week sprints. Three sprint were carried
out by all teams, but they had the chance to add additional sprints. At the
end of the work, the teams released their final software product version and a
document called “Final team report”, which summarized artifacts and process
documentation produced during each sprint.

2 Game manual and materials are freely available at http://scrumble.pyxis-tech.com/.

http://scrumble.pyxis-tech.com/


Empirical Evaluation of Agile Teamwork 145

Each sprint devoted some time to a retrospective, that the team’s Scrum
Master coordinated referring to the Essence cards for Agile3.

The product to develop was a Twitter client, enriched with features for data
analytics: the product should be able to capture large sets of geolocalizable
tweets and: a) put them on a map b) create a word cloud with their contents
c) create a temporal diagram to show the distribution of collected tweets across
time, and so on. The main use cases were: a) using Twitter in an emergency, like
an earthquake, to collect help messages; b) using tweets to track the movements
and collect the picture of a group of travelers in a city or across a region; c)
using tweets for simple diachronic sentiment analysis. The teams were instructed
to create independently their own user stories, so each product backlog was
different. Also, the teams were free to use any technology they prefered. Most
of them used Javascript with some framework, like Vue. The other teams used
Java.

Each team had to develop the software product using the open source ser-
vices included in the development environment hosted by a university server,
and to adopt some Agile best practices and a Scrum-like process. Teams were
encouraged to gather together periodically, in daily Scrum meetings, but most
teams usually performed bi-weekly meetings. Moreover they practiced pair or
mob programming to increase collective code ownership.

In the beginning of the sprint each team gathered together in a sprint plan-
ning meeting using an audio and/or video calling app (either MS Teams or
Discord). Each team planned independently their sprint backlog, namely the
selection of user stories, from their own product backlog. Each user story was
decomposed in tasks and had a story point effort estimate given by the team.
The process of effort estimation was performed by Planning poker.

During the sprint, each member with the assignment to complete an user
story had to update its state in Taiga virtual kanban. When an user story was
put in “done” status Taiga updated the sprint burn down chart.

Each personal IDE had to be instrumented with a plug-in able to log and
track productivity counting keystrokes, modified lines of code, and actions on the
main tools like Taiga, GitLab, and SonarQube. The plug-in was open source but
not available for commercial IDEs, so several teams replaced it with Wakatime,
with the difference that it tracked working hours.

The codebase had to be organized with version control inside a GitLab repos-
itory.

Source code quality had to be checked by SonarQube, which produced a
report with quality ratings for each test.

Team textual communication had to be managed with Mattermost.
In the end of the sprint each team gathered together in sprint review and

sprint retrospective meetings.
They stored in Taiga Wiki the following artifacts: demo video of software

increment with last functionalities implemented, SonarQube report of the final
release, team diary, Essence cards arrangement produced during each sprint
retrospective, UML diagrams.

3 https://www.scruminc.com/better-scrum-with-essence/.

https://www.scruminc.com/better-scrum-with-essence/


146 P. Ciancarini et al.

3.2 The Research Questions

The practices and tools used by the teams recorded a lot of data concerning the
process enacted by the teams. We study how agile processes can be improved,
thus we aimed to compare the teamwork performances, asking the following
research questions:

RQ1: How can we evaluate the teamwork performed during the project?
RQ2: How can we evaluate how Agile was the teamwork?

We used a teamwork quality model in order to answer RQ1 and an Agile
maturity model to answer RQ2. We also compared the two evaluations.

The teamwork quality model is inspired from [8], thus we name it the Hoegl-
Gemuenden model. It is based on the assumption that any human behaviour
in a team can be summarized in two major areas: activities and interactions.
Inspired by the Hackman model [7], which sustained that interactions influence
product, performance, and satisfaction, Hoegl and Gemuenden created a survey
to analyze the aspects which followed the conceptual model shown in Fig. 2.

Fig. 2. Conceptual representation of Hoegl-Gemuenden’s quality model [8].

The paper [15] reformulated the Hoegl-Gemuenden approach to apply it to
Agile teams. Similarly, our analysis is also inspired by the Hoegl-Gemuenden
model, but we applied some changes due to our educational context. Our eval-
uation constructs are the following:

– interaction analysis, with all the six constructs of Hoegl-Gemuenden’s team-
work quality category;

– effectiveness analysis about software quality;
– work efficiency, which only considers schedule efficiency, because there was

no budget;
– satisfaction analysis, which considers team satisfaction about learning, prod-

uct, and process of Hoegl-Gemuenden’s “personal success” category. Since our
study was conducted in a short time period, questions about future personal
success of team members were excluded.

Since the data collection involved different evaluation metrics (1 to 5 Likert
scale for students’ opinions from questionnaire about team interactions, decimal
scale for instructors’ evaluation of process and product, marks of SonarQube for



Empirical Evaluation of Agile Teamwork 147

the product internal quality ratings, and percentages of completing user stories
and tasks), in the data processing they were all converted in percentages.

The Agile maturity model we used is inspired by the Yin model presented
in [31]. It includes five maturity levels and explores seven inner categories of
analyses. The conceptual model is shown in Fig. 3.

Level 1 - Initial. This maturity level represents the lack of achievement of level
2 goals. This level of Agile maturity does not have a clearly defined process
for Agile development, and the possible project success depends solely on the
competence of individuals.

Level 2 - Managed. This maturity level represents fulfillment of the two main
goals: basic Scrum management and software requirements engineering. The
first area of analysis ensures the minimum acceptable usage of the Scrum
methodology and structure: Scrum roles, artifacts, and meetings are used by
the team. The second area of analysis comprises product backlog management
and successful sprint planning meetings.

Level 3 - Defined. This maturity level focuses on the relationship with clients
and on timely delivery of software products (which includes best Agile prac-
tices associated with the technical programming aspects of engineering soft-
ware). The first area of analysis requires the establishment of a Definition of
Done (DoD), frequent meetings with PO, and systematic sprint review meet-
ings. The second area of analysis requires sprint backlog management, con-
tinuous product deliveries, verifying software quality in each delivery, usage
of pair or mob programming sessions.

Level 4 – Quantitatively Managed. This maturity level includes the achieve-
ment of a standardized - repeatable - software development process aided by
the management of the process performance through measurement and anal-
ysis practices.

Level 5 – Optimizing. This level focuses on the achievement of continuous
self-improvement and high levels of satisfaction of both the client and the
development team. The main goal for this level is: performance management
through daily Scrum meetings, successful sprint retrospective meetings, causal
risk analysis and mitigation and resolution.

Fig. 3. Conceptual representation of Yin’s Scrum maturity model.

Yin based his model on Patel’s Agile Maturity Model [20]. The paper [24]
using Yin’s Model proposes a evaluation system based on Patel’s Key Process



148 P. Ciancarini et al.

Area (KPA) formula. Following this approach, we set a GQM evaluation schema
in which answers to questions are: “Yes”, “No”, “Partially”, “Non applicable”.

The Key Process Area (KPA) formula is:
∑

Yn + 1
2

∑
Pm

t− ∑
NAf

× 100

where n is the number of “Yes” (Y) answers, m is the number of “Partially” (P)
answers, t is the total number of questions in the GQM schema, f is the number
of “Non applicable” (NA) answers.

To assess the maturity level in the software development process, all its inter-
nal categories have to be fully achieved so equal or above 86%.

3.3 Collecting the Data

As depicted in Fig. 4 data were collected by surveys and observing team projects
and reports stored inside in two available services: gitlab and SonarQube.

“Survey 1” and “Survey 2” were addressed to Scrum Masters. Both surveys
included questions about team efficiency in each sprint, which was analyzed by
counting completed tasks and user stories done in each sprint backlog. Moreover
“Survey 2” included questions about ratings of maintainability, reliability, and
security as obtained in SonarQube. These ratings were confirmed by a direct
observation of the values reported by each team inside their specific SonarQube
data repository.

The “Final individual report” was a survey addressed to all the members
of each team at the end of the last sprint. It included several questions, which
mostly required an answer from 1 to 5 Likert scale. The questions investigated
about interactions, productivity data (lines of code personally written and work-
ing hours personally spent, either individually or in teamwork) and open-ended
questions about describing the personal IDE and logger tool usage, process and
practices, personal satisfaction, strengths and weaknesses of the team.

Fig. 4. Data collection process.



Empirical Evaluation of Agile Teamwork 149

We performed a systematic analysis of data stored as Taiga artifacts (kanban,
Wiki, tasks recorded by total power points), SonarQube reports (if each team
used it in all sprints), Gitlab artifacts (if each team applied version control,
updating the code throughout all work period observing contributors’ graphs of
commits).

4 Results

The radar graphs in Fig. 5 show the percentages obtained in each category of
quality and maturity model, respectively.

Hackman’s theory [7] about influence of internal interactions on satisfac-
tion, effectiveness and efficiency is confirmed. Indeed teams which, on average,
obtained the best evaluation in the teamwork quality model obtained high evalu-
ations in these three aspects, while teams which, on average, obtained the worst
evaluation resulted highly variable in these aspects.

Fig. 5. Radar graphs of worst teams (G, F, J) and best teams (E, C, I) of areas analysis
in team work quality

The teams which performed worst were characterized by:

– low quality of internal communication,
– low perception of effort spent in the project,
– unbalance of members’ contribution to the project.

Moreover, these teams exposed often a conflict of opinions about team inter-
actions, clearly indicating different perceptions and attitudes about teamwork.

We reported only internal communication because all teams said to not have
consulted with experts or other teams. This is a behavior typical of our Computer
Science students, who rarely ask for help outside their team.

Concerning the maturity model we can make two different observations about
two aspects of the maturity model: one about each category of analysis, the other
about levels reached by the teams.



150 P. Ciancarini et al.

Fig. 6. Radar graphs of worst teams (G, F, J) and best teams (E, C, I) of areas analysis
in Scrum maturity model

Considering the first aspect, let us consider the radar graphs in Fig. 6. Except
for “basic Scrum management” category, the majority of worst teams obtained
low evaluations in all categories. A common aspect of these teams is the absence
of using Gitlab to apply a version control strategy, which corresponds to “Stan-
dardized project management” category.

Furthermore we observed some common difficulties in most teams in the
categories of process performance management and iteration management.

Concerning process performance management, students were not constant in
collecting personal productivity data neither using the logger tool which counted
lines of code nor in updating burn down charts after each sprint.

Concerning iteration management, this included sprint backlog management
in Taiga kanban, continuous delivery, use of SonarQube in each sprint to check
and improve codebase quality, peer and mob programming sessions.

The only problematic aspect is the sprint backlog management in Taiga kan-
ban: several teams forgot updating it most of the time, so many teams were
evaluated with a “Partially” in this evaluation point. However, the majority of
teams applied the other development techniques included in this category, in par-
ticular pair programming. Indeed several open-ended answers from students refer
to pair programming as a valuable and useful technique. The answers underline
it as a technique which encourages mutual improvement of knowledge, fast res-
olution of issues, a way to acquire more self-esteem about own code production,
increased productivity, and creativity and fun.

Considering the second aspect of the maturity model, the majority of teams
reached level two or higher, proving a basic Scrum management and good soft-
ware requirements management.

In the leftmost image of Fig. 7 each point represents a team with its average
KPA value in x-axis and average value of quality model evaluations in y-axis.

Data show a 0.8 Pearson correlation coefficient: this value suggests the possi-
ble presence of not perfect linear relationship among the two evaluations. Indeed
the rightmost image in Fig. 7 shows a regression line not so far from the points.
The average error of point distance from the line is 3.5.

We can assert that when there is a frequent use of Agile practices and con-
trol tools, there are also a good satisfaction, efficiency, product, and team work
quality.



Empirical Evaluation of Agile Teamwork 151

Fig. 7. Scatter graphs with average evaluations of the two models

Indeed in the analysis the worst and best teams were the same for both
models. We remark that he students were not aware of any of the quality models
we have used.

4.1 Students’ Perceptions of Agile Practices

On the basis of students’ answers to the open-ended question “List Agile prac-
tices used”, as shown in Fig. 8 the top three practices used were sprint planning,
pair programming, and daily scrum.

Sprint retrospective and sprint review, code refactoring, Essence and backlog
usage were Agile practices quoted as useful and effective by at least 20% of
students.

It is instead a strange result that kanban, burndown chart, versioning and
continuous delivery were not quoted, because they were actually practices used
by the majority of the teams. Our hypothesis is that since for all students this
was the first experience with Agile and with Scrum, these practices were not
perceived as crucial, but in some sense they were “part of the game” required
by the project rules.

Fig. 8. Histogram of Agile practices



152 P. Ciancarini et al.

The uses of the kanban and versioning repository were actually widespread
and effective. Instead, the idea of tracking the team’s effort using the automatic
burndown diagram capability of Taiga was neglected by some teams.

4.2 Threats to Validity

In this paragraph we discuss some threats to validity concerning this study. We
focus first on issues connected with the pandemic, that impacted strongly the
activities of this project.

First, we have chosen a specific set of open source tools, that not necessarily
are the best ones for Agile developments and record data useful for quality
evaluations. A different set of tools could result in different outcomes: an example
is Jira, that however is not open source. Interestingly, although we insisted that
the teams use the open source tools included in the environment we offered them,
teams additionally used MS Teams and Discord, that are not open source but
used daily for lectures and at no charge for the students. Some tools, e.g. the
productivity logger, were used only partially because had some defects.

Second, the evaluation models we have used are taken and adapted from the
literature of Agile developments in the industry, for teams working face to face.
We found that most constructs and questions in questionnaires make sense in an
academic context working remotely, however we had to delete or adapt a number
of questions. We did not investigate for instance in this case study the impact
of pandemic on non verbal interactions, that in Agile are quite relevant and we
investigated in a recent work [3].

The students received a personal questionnaire and had to answer to ques-
tions concerning their teamwork and companions. We took measures to ensure
the anonymity of the answers.

However, the same questionnaires may contain biased questions. For instance
we avoided all questions connected to gender issues, but other bias could have
remained unnoticed. In order to limit this aspect before sending the questionnaire
to the students, we asked the opinion of two colleagues from another university
expert in Agile development.

Finally, the case study has been applied once. We are replicating it in another
academic context, with the same product but different students, to verify and
possibly confirm or modify our findings.

5 Conclusions and Future Work

This research involved 107 students grouped in 21 teams, who worked for approx-
imately three months at the end of 2020 and in the first weeks of 2021. All teams
passed the final exam at the end of this period, delivering a product that was
more or less usable and complete. In this paper we have discussed the quality of
the teamwork. We remark that the data collected by the tools are available for
further analyses. The experiment itself is also repeatable, as the CAS environ-
ment is all made of open source services and components.



Empirical Evaluation of Agile Teamwork 153

Analyzing the results of the quality and maturity models we observed a linear
relation. This relation is not perfect, indeed it has a medium error of 3.5, but it
shows a possible relationship between teamwork quality and following closely a
work methodology.

We argue that initiating the process with a team building game and exploiting
Essence cards for guiding the teams during the retrospectives were activities very
helpful for improving the quality of the teamwork observed during the project.

The main goal of this experiment was to exploit open source tools working
remotely on a project developed with an Agile method and related practices,
in order to collect data for quality evaluations. The teams were able to use
some tools quite effectively, like Taiga, GitLab and SonarQube. Some teams
decided also spontaneously to add Jenkins for automating their testing. In a
future edition of our course we intend to suggest to use a tool for animating
requirements [28].

Some other tools were less appreciated by our students, like Mattermost and
the productivity logger. Mattermost, like Slack, is apparently superseded by MS
Teams; moreover, teams based their communications on Telegram and Discord.
These however are neither open source services, nor make available their data for
inspections. We decided not to insist too much on using open source, trackable
tools, in order to not increase the burden managed by the teams.

We believe that open source collaboration platforms, like Mattermost, need
specific training when used for software development. We have also found that
educating developers to self-tracking their own developing activity is quite diffi-
cult, and that the data recorded concerning productivity are not very reliable,
as the developers tend to conceal or even to manipulate them. In the future we
plan to improve the dashboard for self-tracking productivity data.

Acknowledgments. We wish to thank the students who participated to the project
as developers.

References

1. Baham, C.: Teaching tip: implementing scrum wholesale in the classroom. J. Inf.
Syst. Educ. (JISE) 30, 141–159 (2019)

2. Blake, M.: Integrating large-scale group projects and software engineering
approaches for early computer science courses. IEEE Trans. Educ. 48(1), 63–72
(2005)

3. Ciancarini, P., Farina, M., Succi, G., Yermolaieva, S., Zagvozkina, N.: Non verbal
communication in software engineering - an empirical study. IEEE Access (2021,
to appear)

4. Ciancarini, P., Missiroli, M., Poggi, F., Russo, D.: An open source environment for
an agile development model. In: Ivanov, V., Kruglov, A., Masyagin, S., Sillitti, A.,
Succi, G. (eds.) OSS 2020. IAICT, vol. 582, pp. 148–162. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-47240-5 15

5. Ciancarini, P., Missiroli, M., Sillitti, A.: Preferred tools for agile development: a
sociocultural perspective. In: Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A.
(eds.) TOOLS 2019. LNCS, vol. 11771, pp. 43–58. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29852-4 3

https://doi.org/10.1007/978-3-030-47240-5_15
https://doi.org/10.1007/978-3-030-29852-4_3
https://doi.org/10.1007/978-3-030-29852-4_3


154 P. Ciancarini et al.

6. Dingsøyr, T., Dyb̊a, T., Abrahamsson, P.: A preliminary roadmap for empirical
research on agile software development. In: Agile Conference, pp. 83–94 (2008)

7. Hackman, J.: The design of work teams. In: Lorsch, W. (ed.) Handbook of Orga-
nizational Behavior, pp. 67–102. Prentice Hall (1987)

8. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innovative
projects: a theoretical concept and empirical evidence. Organ. Sci. 12(4), 435–449
(2001)

9. Jacobson, I., et al.: The Essentials of Modern Software Engineering: Free the Prac-
tices from the Method Prisons! Association for Computing Machinery and Morgan
& Claypool (2019)

10. Ju, A., Fox, A.: TEAMSCOPE: measuring software engineering processes with
teamwork telemetry. In: Proceedings of the 23rd ACM Conference on Innovation
and Technology in Computer Science Education, pp. 123–128 (2018)

11. Kelter, U., Monecke, M., Schild, M.: Do we need ‘Agile’ software development
tools? In: Aksit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591,
pp. 412–430. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36557-
5 29

12. Kropp, M., Meier, A.: Teaching agile software development at university level:
values, management, and craftsmanship. In: Proceedings of the 26th International
Conference on Software Engineering Education and Training (CSEE & T), pp.
179–188 (2013)

13. Lang, G.: Agile learning: sprinting through the semester. Inf. Syst. Educ. J. 15,
14–21 (2017)

14. Lee, M., Barta, B.-Z., Juliff, P.: Software Quality and Productivity: Theory, Prac-
tice, Education and Training. Springer, Heidelberg (2013)

15. Lindsjørn, Y., et al.: Teamwork quality and project success in software develop-
ment: a survey of agile development teams. J. Syst. Softw. 122, 274–286 (2016)

16. Mahnic, V., Rožanc, I.: Students’ perceptions of scrum practices. In: Proceedings
of the 35th International Convention MIPRO, pp. 1178–1183 (2012)

17. Masood, Z., Hoda, R., Blincoe, K.: Adapting agile practices in university contexts.
J. Syst. Softw. 144, 501–510 (2018)

18. McEwan, D., et al.: The effectiveness of teamwork training on teamwork behav-
iors and team performance: a systematic review and meta-analysis of controlled
interventions. PLoS One, 12(1) (2017)

19. Paasivaara, M., et al.: Teaching students global software engineering skills using
distributed Scrum. In: Proceedings of the 35th International Conference on Soft-
ware Engineering (ICSE), pp. 1128–1137 (2013)

20. Patel, C., Ramachandran, M.: Agile maturity model (AMM): a software process
improvement framework for agile software development practices. Int. J. Softw.
Eng. (IJSE) 2(1), 3–28 (2009)

21. Poth, A., Kottke, M., Riel, A.: Evaluation of agile team work quality. In: Paasi-
vaara, M., Kruchten, P. (eds.) XP 2020. LNBIP, vol. 396, pp. 101–110. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58858-8 11

22. Poženel, M.: Assessing teamwork in a software engineering capstone course. World
Trans. Eng. Technol. Educ. 11(1), 6–12 (2013)

23. Raibulet, C., Fontana, F.A.: Collaborative and teamwork software development in
an undergraduate software engineering course. J. Syst. Softw. 144, 409–422 (2018)

24. Ridha, F., Hegarini, E.: Analysis of maturity level project management of software
development in scrum framework: case research on tribe enterprise PT. XYZ. IT
J. Res. Dev. 5, 87–97 (2020)

https://doi.org/10.1007/3-540-36557-5_29
https://doi.org/10.1007/3-540-36557-5_29
https://doi.org/10.1007/978-3-030-58858-8_11


Empirical Evaluation of Agile Teamwork 155

25. Rodŕıguez, G., Soria, A., Campo, M.: Teaching scrum to software engineering stu-
dents with virtual reality support. In: Cipolla-Ficarra, F., Veltman, K., Verber, D.,
Cipolla-Ficarra, M., Kammüller, F. (eds.) ADNTIIC 2011. LNCS, vol. 7547, pp.
140–150. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34010-
9 14

26. Scott, E., et al.: Are learning styles useful indicators to discover how students use
Scrum for the first time? Comput. Hum. Behav. 36, 56–64 (2014)

27. Steghöfer, J., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., Ericsson, M.:
Teaching agile - addressing the conflict between project delivery and application
of agile methods. In: IEEE/ACM 38th International Conference on Software Engi-
neering Companion (ICSE-C), pp. 303–312 (2016)

28. Sterling, L., Ciancarini, P., Turnidge, T.: On the animation of “not executable”
specifications by prolog. Int. J. Softw. Eng. Knowl. Eng. 6(01), 63–87 (1996)

29. Sussy, B.O., Calvo-Manzano, J.A., Gonzalo, C., et al.: Teaching team software
process in graduate courses to increase productivity and improve software quality.
In: Proceedings of the 32nd International Computer Software and Applications
Conference, pp. 440–446. IEEE (2008)

30. Wedemann, G.: Scrum as a method of teaching software architecture. In: Pro-
ceedings of the 3rd European Conference on Software Engineering Education, pp.
108–112. ACM (2018)

31. Yin, A., et al.: Scrum maturity model: validation for IT organizations’ roadmap to
develop software centered on the client role. In: The Sixth International Conference
on Software Engineering Advances, ICSEA 2011 (2011)

32. Young, P.E., Needham, D.M.: Using a class-wide, semester-long project to teach
software engineering principles. GSTF J. Comput. (JoC) 3(3) (2014)

https://doi.org/10.1007/978-3-642-34010-9_14
https://doi.org/10.1007/978-3-642-34010-9_14

	Empirical Evaluation of Agile Teamwork
	1 Introduction
	2 Related Works
	3 Methods
	3.1 The Project Work
	3.2 The Research Questions
	3.3 Collecting the Data

	4 Results
	4.1 Students' Perceptions of Agile Practices
	4.2 Threats to Validity

	5 Conclusions and Future Work
	References




