
Ana C. R. Paiva
Ana Rosa Cavalli
Paula Ventura Martins
Ricardo Perez-Castillo (Eds.)

14th International Conference, QUATIC 2021
Algarve, Portugal, September 8–11, 2021
Proceedings

Quality of Information
and Communications
Technology

Communications in Computer and Information Science 1439

Communications
in Computer and Information Science 1439

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Ana C. R. Paiva • Ana Rosa Cavalli •

Paula Ventura Martins •

Ricardo Perez-Castillo (Eds.)

Quality of Information
and Communications
Technology
14th International Conference, QUATIC 2021
Algarve, Portugal, September 8–11, 2021
Proceedings

123

Editors
Ana C. R. Paiva
Faculty of Engineering of the University
of Porto
Porto, Portugal

Ana Rosa Cavalli
Institut Polytechnique de Paris
Paris, France

Paula Ventura Martins
University of Algarve
Faro, Portugal

Ricardo Perez-Castillo
University of Castila-La Mancha
Ciudad Real, Ciudad Real, Spain

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-85346-4 ISBN 978-3-030-85347-1 (eBook)
https://doi.org/10.1007/978-3-030-85347-1

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3431-8060
https://orcid.org/0000-0003-4480-5030
https://orcid.org/0000-0002-3199-4517
https://orcid.org/0000-0002-9271-3184
https://doi.org/10.1007/978-3-030-85347-1

Preface

The International Conference on the Quality of Information and Communications
Technology (QUATIC) serves as a forum for disseminating advanced methods, tech-
niques, and tools for supporting quality approaches to ICT engineering and manage-
ment. Practitioners and researchers are encouraged to exchange ideas and approaches
on how to adopt a quality culture in ICT process and product improvement and to
provide practical studies in varying contexts.

QUATIC 2021 was led by Ana C. R. Paiva (Faculty of Engineering of the
University of Porto) and Ana R. Cavalli (Institut Polytechnique Paris/Telecom Sud-
Paris) as program chairs. The organizing chair of this 14th edition of QUATIC was
Paula Ventura Martins (University of Algarve) and the event was locally organized
along with Marielba Zacarias and João Dias at the University of Algarve. QUATIC
2021 was planned to be held during September 8–11, 2021 in Faro, Algarve, Portugal.
Unfortunately, due to the effects of the COVID-19 pandemic, QUATIC 2021 was
conducted as a fully online conference.

This volume is a collection of high-quality peer-reviewed research papers from all
over the world. QUATIC 2021 attracted a good number of submissions from different
areas spanning several thematic tracks, proposed in the call for papers, in various
cutting-edge technologies of specialized focus, organized and chaired by eminent
experts of each field. The following nine thematic tracks correspond to QUATIC 2021
sessions:

• ICT Verification and Validation (Francesca Lonetti, ISTI-CNR, Italy)
• Software Evolution (Nicolas Anquetil, Inria and ULille-1, France)
• Process Modeling, Improvement, and Assessment (Karol Frühauf, Infogem AG,

Switzerland)
• Quality Aspects in Quantum Computing (Manuel Serrano, UCLM, Spain)
• Safety, Security, and Privacy (Valentina Casola, University of Napoli Federico II,

Italy)
• Quality Aspects in Machine Learning, AI, and Data Analytics (Shuo Wang,

University of Birmingham, UK)
• Evidence-Based Software Quality Engineering (Fernando Brito e Abreu, ISCTE,

Portugal)
• Quality in Cyber-physical Systems (Shaukat Ali, Simula Research Laboratory,

Norway)
• Software Quality Education and Training (Claudia Werner, UFRJ, Brazil, and

Káthia Marçal de Oliveira, Polytechnic University of Hauts-de-France, France)

Due to the exigent review process, no papers were accepted for the following three
tracks:

• ICT Requirements Engineering (Luiz Marcio Cysneiros, York University, Canada
and Vera Werneck, State University of Rio de Janeiro, Brazil)

• Model-driven Engineering (Antonio Cicchetti, Mälardalen University, Sweden)
• SEDES - Doctoral Symposium (Miguel Goulão, NOVA School of Science and

Technology, Portugal)

Technical Review Summary

The Technical Program Committee of QUATIC 2021 was made up of 171 international
academic and industrial domain experts, from organizations in 29 different countries on
5 continents. Based on a rigorous peer-review process by the Technical Program
Committee members along with external experts as reviewers, the best quality papers
were identified for presentation and publication.

The review was carried out in a double-blind process, with a minimum of three
reviews per submission. Submitted papers came from more than 45 countries and
accepted papers originated from 26 countries. Out of the submission pool of 98 papers,
30 (30.6%) were accepted as full papers for inclusion in the proceedings and 9 (9.2%)
as short papers.

Invited Talk

QUATIC 2021 was fortunate to have three invited talks presented by outstanding
keynote speakers.

The first keynote was by Martin Shepperd. Martin Shepperd received a PhD in
computer science from the Open University in 1991 for his work in measurement
theory and its application to empirical software engineering. He is professor of Soft-
ware Technology and Modelling at Brunel University London, UK. Previously he has
worked as a software developer for HSBC and also as COPUS Fellow in the Parlia-
mentary Office of Science and Technology. He has published more than 180 refereed
papers and three books in the areas of software engineering and machine learning. He is
a fellow of the British Computer Society.

The second keynote speaker was Manuel Wimmer. Manuel Wimmer is a full pro-
fessor and head of the Institute for Business Informatics – Software Engineering at the
Johannes Kepler University, Linz, Austria. He received his Ph.D. and Habilitation from
TU Wien, Austria. He has been a research associate at the University of Malaga, Spain,
a visiting professor at the University of Marburg, Germany, as well as at TU Munich,
Germany, and an assistant professor at the Business Informatics Group (BIG), TU
Wien, Austria. Currently, he is also leading the Christian Doppler Laboratory on
Model-Integrated Smart Production (CDL-MINT). He is co-author of the book
Model-driven Software Engineering in Practice (Morgan & Claypool, second edition,
2017).

vi Preface

The third talk was given by Jaime Jorge. Jaime Jorge (industry keynote) is the CEO
and co-founder of Codacy, one of the best-known platforms for software quality
standardization around the world. Jaime has an MSc in Software Engineering from IST
and was previously an associate researcher in L2F/INESC-ID in Lisbon, Portugal.

September 2021 Ana C. R. Paiva
Ana Rosa Cavalli

Paula Ventura Martins
Ricardo Pérez-Castillo

Preface vii

Acknowledgments

As proceedings editors, we wish to thank all the people and organizations that directly
or indirectly supported this event. Thanks to the thematic track and PhD symposium
chairs and all other members of the Technical Program Committee for their many
contributions and reviews that guaranteed the overall quality of the QUATIC 2021
conference.

Thanks to our colleagues from the University of Algarve for all the organizational
details required for hosting the conference, despite the fact that the constraints and
difficulties associated with the COVID-19 pandemic obliged us to do it fully online.
Thanks to our colleagues that participated at different levels in the organization of the
conference. Thanks to the QUATIC’s Steering Committee members for their guidance
and support throughout all this process.

Also, a special thanks to all the organizations involved in this conference, including
our promoters (IPQ and CS03), supporters (UAlgarve, Brunel University, ISCTE-IUL,
IST-UL, UCLM, FCT-UNL, FE-UP, UMinho, CNR, and UCoimbra), sponsor (ACM),
and partners (NEEI/UALG and APQ).

Last but not least, special thanks to all the authors and participants at the conference.
Without their efforts, there would be no conference or proceedings. Thank you for
contributing to the critical mass of researchers that keep this conference alive for what
we expect to be many years to come.

Organization

Program Committee Chairs

Ana C. R. Paiva Universidade do Porto, Portugal
Ana Rosa Cavalli Institut Polytechnique Paris/Telecom SudParis, France

Thematic Track Chairs

ICT Verification and Validation

Francesca Lonetti National Research Council (CNR), Italy

Process Modeling, Improvement, and Assessment

Karol Frühauf INFOGEM AG, Switzerland

Software Evolution

Nicolas Anquetil Inria and University of Lille 1, France

Evidence-based Software Quality Engineering

Fernando Brito e Abreu Instituto Universitário de Lisboa, Portugal

Safety, Security, and Privacy

Valentina Casola University of Napoli Federico II, Italy

Quality Aspects in Quantum Computing

Manuel Serrano University of Castilla-La Mancha, Spain

Quality Aspects in Machine Learning, AI, and Data Analytics

Shuo Wang University of Birmingham, UK

Model-driven Engineering

Antonio Cicchetti Mälardalen University, Sweden

Software Quality Education and Training

Claudia Werner Universidade Federal do Rio de Janeiro, Brazil
Káthia Marçal de Oliveira Polytechnic University of Hauts-de-France, France

ICT Requirements Engineering

Luiz Marcio Cysneiros York University, Canada
Vera Werneck State University of Rio de Janeiro, Brazil

PhD Symposium (SEDES)

Miguel Goulão Universidade Nova de Lisboa, Portugal

Program Committee

Abdelhak-Djamel Seriai LIRMM/University of Montpellier, France
Aitor Arrieta Mondragon Goi Eskola Politeknikoa, Spain
Alessandra Bagnato Softeam, France
Alessandra De Benedictis University of Naples Federico II, Italy
Alessio Gambi Passau University, Germany
Alessio Merlo University of Genoa, Italy
Alexandros Chatzigeorgiou University of Macedonia, Macedonia
Alin Stefanescu University of Bucharest, Romania
Ambrosio Toval University of Murcia, Spain
Andrea Janes Free University of Bolzano, Italy
Andreas Nehfort Nehfort IT-Consulting KG, Austria
Andreas Ulrich Siemens AG, Germany
Andreas Wortmann University of Stuttgart, Germany
Antonia Bertolino ISTI-CNR, Italy
Antonino Sabetta SAP Labs, Germany
Antonio Vallecillo Universidad de Málaga, Spain
Antonio Cicchetti Mälardalen University, Sweden
Apostolos Ampatzoglou University of Macedonia, Greece
Barbara Gallina Mälardalen University, Sweden
Bartosz Walter PCSS/PPoz, Poland
Beatriz Marín Universidad Diego Portales, Chile
Benoit Combemale University of Rennes 1 and Inria, France
Breno Miranda Universidade Federal de Pernambuco, Brazil
Christelle Urtado LGI2P - IMT Mines Ales, France
Christian Esposito University of Naples Federico II, Italy
Christopher Fuhrman École de technologie supérieure, Canada
Chun Wai Chiu University of Birmingham, UK
Claudia Raibulet University of Milano-Bicocca, Italy
Dan Berry University of Waterloo, Canada
Edgardo Montes de Oca Montimage, France
Eduardo Spinosa Federal University of Paraná, Brazil
Elena Navarro University of Castilla-La Mancha, Spain
Emilio Insfran Universitat Politècnica de València, Spain
Eric Yu University of Toronto, Canada
Erkuden Rios Tecnalia, Spain
Eugene Syriani University of Montreal, Canada

xii Organization

Eva Navarro-Lopez University of Wolverhampton, UK
Fabio Palomba University of Salerno, Italy
Ferdinand Gramsamer Infogem AG, Switzerland
Fernando Brito e Abreu Instituto Universitário de Lisboa, Portugal
Francesca Lonetti CNR-ISTI, Italy
Francisco Gortázar University Rey Juan Carlos, Spain
Frank Phillipson TNO, The Netherlands
Gabriel Alberto

García-Mireles
Universidad de Sonora, Mexico

Gerhard Fessler Steinbeis-Beratungszentrum Prozesse, Exzellenz und
CMMI (PEC), Germany

Geylani Kardas Ege University, Turkey
Gordana Rakic University of Novi Sad, Serbia
Grischa Liebel Reykjavik University, Iceland
Guido Peterssen Alhambra IT, Spain
Guilherme Travassos COPPE/UFRJ, Brazil
Gustavo Rossi Universidad Nacional de La Plata, Argentina
Hakan Erdogmus CMU, USA
Helge Pfeiffer IT University of Copenhagen, Denmark
Hong Zhu Oxford Brookes University, UK
Honghui Du University of Leicester, UK
Hyunsook Do University of North Texas, USA
Ignacio García University of Castilla-La Mancha, Spain
Isabel Sofia Sousa Brito Instituto Politécnico de Beja, Portugal
J. Andres Diaz-Pace UNICEN University, Argentina
Jaelson Castro Universidade Federal de Pernambuco, Brazil
Javier Troya University of Malaga, Spain
Jeffrey Carver University of Alabama, USA
Jennifer Pérez Universidad Politécnica de Madrid, Spain
Jesús Morán University of Oviedo, Spain
Jingyue Li Norwegian University of Science and Technology,

Norway
Joachim Denil University of Antwerp, Belgium
Joao Fernandes University of Porto, Portugal
Joao Gama University of Porto, Portugal
João Faria FEUP/INESC TEC, Portugal
Johnny Marques Instituto Tecnológico de Aeronáutica, Brazil
Jordi Tura Brugués Leiden University, The Netherlands
Jorge Casillas University of Granada, Spain
Jose Hevia Alhambra IT, Spain
Jose Antonio Cruz-Lemus University of Castilla-La Mancha, Spain
Jose Luis de la Vara University of Castilla-La Mancha, Spain
Juan Manuel Vara University Rey Juan Carlos, Spain
Juan Manuel Murillo

Rodríguez
University of Extremadura, Spain

Juan Pablo Carvallo Universidad del Azuay, Equador

Organization xiii

Julio Cesar Leite PUC-Rio, Brazil
Juncal Alonso Tecnalia, Spain
Karol Fruehauf INFOGEM AG, Switzerland
Krzysztof Wnuk BTH, Sweden
Leandro Minku University of Birmingham, UK
Leire Orue-Echevarria Tecnalia, Spain
Lidia Lopez Universitat Politècnica de Catalunya, Spain
Liyan Song Southern University of Science and Technology, China
Loli Burgueño Open University of Catalonia, Spain
Ludovico Iovino Gran Sasso Science Institute, Italy
Luigi Lavazza Università degli Studi dell’Insubria, Italy
Luis Olsina National University of La Pampa, Argentina
Luiz Marcio Cysneiros York University, Canada
M.J. Escalona University of Seville, Spain
Macario Polo University of Castilla-La Mancha, Spain
Magne Jorgensen Simula Metropolitan Center for Digital Engineering,

Norway
Man Zhang Kristiania University College, Norway
Manuel Wimmer Johannes Kepler University Linz, Austria
Manuel Serrano University of Castilla-La Mancha, Spain
Marcela Ruiz Zurich University of Applied Sciences, Switzerland
Marcos Didonet Del Fabro Universidade Federal do Paraná, Brazil
Maria Lencastre Universidade de Pernambuco, Brazil
Maria Teresa Baldassarre University of Bari, Italy
Mario Piattini University of Castilla-La Mancha, Spain
Martin Höst Lund University, Sweden
Massimiliano Rak University of Campania, Italy
Maurizio Leotta Università di Genova, Italy
Michael Felderer University of Innsbruck, Austria
Miguel Goulão Universidade Nova de Lisboa, Portugal
Miguel Ehécatl Morales

Trujillo
University of Canterbury, New Zealand

Moharram Challenger University of Antwerp, Belgium
Moises Rodríguez AQCLab, Spain
Nelly Condori-Fernández Universidade da Coruña, Spain
Nicolas Anquetil University of Lille, France
Oscar Pastor Lopez Universitat Politècnica de València, Spain
Oum-El-Kheir Aktouf LCIS Grenoble INP, France
Paolo Arcaini National Institute of Informatics, Japan
Patrizio Pelliccione Gran Sasso Science Institute, Italy, and Chalmers

University of Technology and University
of Gothenburg, Sweden

Rafael Capilla Universidad Rey Juan Carlos, Spain
Ralf Kneuper IU Internationale Hochschule, Germany
Ricardo Pérez-Castillo University of Castilla-La Mancha, Spain
Robert Clarisó Universitat Oberta de Catalunya, Spain

xiv Organization

Roberto Pietrantuono University of Naples Federico II, Italy
Roberto Nardone Mediterranean University of Reggio Calabria, Italy
Rui Abreu INESC-ID/University of Porto, Portugal
Sandro Morasca Università degli Studi dell’Insubria, Italy
Shaukat Ali Simula Research Laboratory, Norway
Sigrid Eldh Ericsson AB, Sweden
Sotirios Liaskos University of York, UK
Stefan Wagner University of Stuttgart, Germany
Steve Counsell Brunel University, UK
Tao Yue Nanjing University of Aeronautics and Astronautics,

China
Tao Chen Loughborough University, UK
Timo Kehrer Humboldt-Universität zu Berlin, Germany
Torsten Bandyszak The Ruhr Institute for Software Technology, Germany
Tracy Hall Lancaster University, UK
Tullio Vardanega University of Padua, Italy
Umberto Villano University of Sannio, Italy
Valentina Casola University of Naples Federico II, Italy
Vânia Neves UFF, Brazil
Vasco Amaral Universidade NOVA de Lisboa, Portugal
Vera Werneck Rio de Janeiro State University, Brazil
Wasif Afzal Mälardalen University, Sweden
Wissam Mallouli Montimage, France
Xiaofen Lu Southern University of Science and Technology, China
Xiaofeng Wang Free University of Bozen-Bolzano, Italy
Yania Crespo University of Valladolid, Spain
Yun Yang Yunnan University, China
Yunwen Lei University of Birmingham, UK
Yuwei Guo China

Additional Reviewers

Changwu Huang Rui He
Denis Pinheiro Salvatore Barone
Guoming Long Shulei Liu
Heleno Campos Yu Zhang
Liu Zhening Yunce Zhao
Qing Bao

Organizing Chair

Paula Ventura Martins Universidade do Algarve, Portugal

Local Co-chairs

Marielba Zacarias Universidade do Algarve, Portugal
João Dias Universidade do Algarve, Portugal

Organization xv

Proceedings Chair

Ricardo Perez del Castillo Universidad de Castilla-La-Mancha, Spain

Publicity Chair

Américo Rio ISCTE-IUL/UNL, Portugal

Web Chair

José Pereira dos Reis ISCTE-IUL, Portugal

Sponsors Chair

Margarida Madeira Universidade do Algarve, Portugal

Industrial Day Co-chairs

Vanessa Nascimento Algarve Tech Hub, Portugal
Hugo Barros CRIA/Universidade do Algarve, Portugal

Contributing Organizations

Promoters

xvi Organization

Supporters

Partners

Organization xvii

Contents

ICT Verification and Validation

Reducing Flakiness in End-to-End Test Suites: An Experience Report 3
Dario Olianas, Maurizio Leotta, Filippo Ricca, and Luca Villa

Mutation Subsumption as Relative Incorrectness . 18
Besma Khaireddine, Amani Ayad, Imen Marsit, and Ali Mili

What We Talk About When We Talk About Software Test Flakiness 29
Morena Barboni, Antonia Bertolino, and Guglielmo De Angelis

Looking for the Needle in the Haystack: End-to-end Tests in Open
Source Projects . 40

Francisco Gortázar, Michel Maes-Bermejo, Micael Gallego,
and Jorge Contreras Padilla

Evaluating Sensor Interaction Failures in Mobile Applications 49
Euler Horta Marinho, João P. Diniz, Fischer Ferreira,
and Eduardo Figueiredo

Software Evolution

Feature-Oriented Clone and Pull for Distributed Development
and Evolution . 67

Daniel Hinterreiter, Lukas Linsbauer, Herbert Prähofer,
and Paul Grünbacher

Detecting Sudden Variations in Web Apps Code Smells’ Density:
A Longitudinal Study . 82

Américo Rio and Fernando Brito e Abreu

Risk and Complexity Assessment on the Context of Language Migration. . . . 97
Santiago Bragagnolo, Abderrahmane Seriai, Stéphane Ducasse,
and Mustapha Derras

Automatically Assessing Complexity of Contributions to Git Repositories . . . 111
Rolf-Helge Pfeiffer

Process Modeling, Improvement and Assessment

Scrum for Safety: Agile Development in Safety-Critical Software Systems . . . 127
Riccardo Carbone, Salvatore Barone, Mario Barbareschi,
and Valentina Casola

Empirical Evaluation of Agile Teamwork. 141
Paolo Ciancarini, Marcello Missiroli, and Sofia Zani

STAMP 4 NLP – An Agile Framework for Rapid Quality-Driven NLP
Applications Development . 156

Philipp Kohl, Oliver Schmidts, Lars Klöser, Henri Werth, Bodo Kraft,
and Albert Zündorf

Evaluating Predictive Business Process Monitoring Approaches on Small
Event Logs. 167

Martin Käppel, Stefan Jablonski, and Stefan Schönig

Analyzing a Process Core Ontology and Its Usefulness
for Different Domains . 183

Pablo Becker, Fernanda Papa, Guido Tebes, and Luis Olsina

Towards Understanding Quality-Related Characteristics in Knowledge-
Intensive Processes - A Systematic Literature Review 197

Rachel Vital Simões, Glaucia Melo, Fernando Brito e Abreu,
and Toacy Oliveira

Quality Aspects in Quantum Computing

KDM to UML Model Transformation for Quantum Software
Modernization . 211

Luis Jiménez-Navajas, Ricardo Pérez-Castillo, and Mario Piattini

Hybrid Classical-Quantum Software Services Systems:
Exploration of the Rough Edges . 225

David Valencia, Jose Garcia-Alonso, Javier Rojo, Enrique Moguel,
Javier Berrocal, and Juan Manuel Murillo

Towards a Set of Metrics for Quantum Circuits Understandability. 239
José A. Cruz-Lemus, Luis A. Marcelo, and Mario Piattini

Safety, Security and Privacy

A Critique on the Use of Machine Learning on Public Datasets
for Intrusion Detection. 253

Marta Catillo, Andrea Del Vecchio, Antonio Pecchia,
and Umberto Villano

xx Contents

A Comparison of Different Source Code Representation Methods
for Vulnerability Prediction in Python . 267

Amirreza Bagheri and Péter Hegedűs

Threat Modeling of Edge-Based IoT Applications . 282
Massimo Ficco, Daniele Granata, Massimiliano Rak,
and Giovanni Salzillo

Enforcing Mutual Authentication and Confidentiality in Wireless Sensor
Networks Using Physically Unclonable Functions: A Case Study 297

Mario Barbareschi, Salvatore Barone, Alfonso Fezza,
and Erasmo La Montagna

GRADUATION: A GDPR-Based Mutation Methodology 311
Said Daoudagh and Eda Marchetti

A Proposal for the Classification of Methods for Verification and
Validation of Safety, Cybersecurity, and Privacy of Automated Systems 325

Jose Luis de la Vara, Thomas Bauer, Bernhard Fischer,
Mustafa Karaca, Henrique Madeira, Martin Matschnig, Silvia Mazzini,
Giann Spilere Nandi, Fabio Patrone, David Pereira, José Proença,
Rupert Schlick, Stefano Tonetta, Ugur Yayan, and Behrooz Sangchoolie

Risk Identification Based on Architectural Patterns 341
Maritta Heisel and Aida Omerovic

Expressing Structural Temporal Properties of Safety Critical
Hierarchical Systems . 356

Massimo Benerecetti, Fabio Mogavero, Adriano Peron,
and Luigi Libero Lucio Starace

Quality Aspects in Machine Learning, AI and Data Analytics

Facing Many Objectives for Fairness in Machine Learning. 373
David Villar and Jorge Casillas

A Streaming Approach for Association Rule Analysis of Spanish Politics
on Twitter . 387

Pedro J. López, Elena Ruiz, and Jorge Casillas

On the Trade-off Between Robustness and Complexity in Data Pipelines 401
Aiswarya Raj Munappy, Jan Bosch, and Helena Homström Olsson

Big Data Quality Models: A Systematic Mapping Study 416
Osbel Montero, Yania Crespo, and Mario Piatini

Contents xxi

Business Process and Organizational Data Quality Model (BPODQM)
for Integrated Process and Data Mining . 431

Francisco Betancor, Federico Pérez, Adriana Marotta,
and Andrea Delgado

A Checklist for Explainable AI in the Insurance Domain 446
Olivier Koster, Ruud Kosman, and Joost Visser

Evidence-Based Software Quality Engineering

Where the Bugs are: A Quasi-replication Study of the Effect of Inheritance
Depth and Width in Java Systems . 459

Steve Counsell, Stephen Swift, and Amjed Tahir

30 Years of Automated GUI Testing: A Bibliometric Analysis 473
Olivia Rodríguez-Valdés, Tanja E. J. Vos, Pekka Aho, and Beatriz Marín

A Large-Scale Investigation of Local Variable Names in Java Programs:
Is Longer Name Better for Broader Scope Variable? 489

Hirohisa Aman, Sousuke Amasaki, Tomoyuki Yokogawa,
and Minoru Kawahara

Quality in Cyber-physical Systems

KNN-Averaging for Noisy Multi-objective Optimisation 503
Stefan Klikovits and Paolo Arcaini

Software Quality Education and Training

Exercise Perceptions: Experience Report from a Secure Software
Development Course . 521

Akond Rahman, Shahriar Hossain, and Dibyendu Brinto Bose

A Software Quality Course: The Breadth Approach. 536
Luigia Petre

Students Projects’ Source Code Changes Impact on Software Quality
Through Static Analysis . 553

Sivana Hamer, Christian Quesada-López, and Marcelo Jenkins

Author Index . 565

xxii Contents

ICT Verification and Validation

Reducing Flakiness in End-to-End Test
Suites: An Experience Report

Dario Olianas1(B) , Maurizio Leotta1 , Filippo Ricca1 , and Luca Villa2

1 Dipartimento di Informatica, Bioingegneria,
Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Genoa, Italy

dario.olianas@dibris.unige.it,
{maurizio.leotta,filippo.ricca}@unige.it

2 IRCCS Istituto Giannina Gaslini, Clinica Pediatrica e Reumatologia,
PRINTO, Genoa, Italy

lucavilla@gaslini.org

Abstract. End-to-end (E2E) testing, a technique employed to assure
quality of web applications, is cost-effective only if the test suite is not
flaky. Flaky test scripts produce non-deterministic results that under-
mine testers’ trust and thus the usefulness of the entire test suite.

Recently, we were involved in the refactoring of an existing automated
flaky E2E test suite for a large Web application. In this paper, we report
on our experience. During the refactoring, we have computed the effort
made and formalized the procedure we followed in algorithmic way so
that our experience can also be of help to other developers/testers. Our
procedure allowed to reduce the flakiness to virtually zero w.r.t. the orig-
inal flaky test suite. Moreover, as a positive side effect, the execution
time of the test suite has been reduced by of the 57%.

Keywords: E2E testing · Flakiness · Empirical study

1 Introduction

Recently, many companies are gearing up to have automated test suites capable of
quickly detecting bugs during software evolution. In fact, if implemented correctly,
the automated test suites are able to bring many benefits to companies, such as
better quality software and cost reduction [6,16]. However, these benefits can only
be achieved if the automated test suite is reliable and has no flakiness problems.

A test script is flaky when may non-deterministically pass or fail on the same
version of the Application Under Test (AUT), i.e. leading to different results in
different runs on the same AUT without any change in both the app and test
code [5,22]. The flakiness problem is very insidious for companies because: (1) it
makes lose confidence in the results of the execution of the test suites with false
alarms, (2) it increases deployment/release times, and generally, (3) it increases
development costs [22]. Many big companies, such as Google, Facebook and
Microsoft are facing this problem [22] and unfortunately effective solutions that
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-85347-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_1&domain=pdf
http://orcid.org/0000-0002-6618-4186
http://orcid.org/0000-0001-5267-0602
http://orcid.org/0000-0002-3928-5408
https://doi.org/10.1007/978-3-030-85347-1_1

4 D. Olianas et al.

allow to reveal and resolve the flakiness do not exist yet. Most of the proposed
methods depend on test repetition, i.e. a test script is applied to the same AUT
for a given number of times, if the results are different, then the test is marked
as flaky [13].

Recently the authors were involved in the refactoring of an existing auto-
mated End-to-End (E2E) test suite concerning a large multi-page Web applica-
tion for paediatric rheumatology patients management. The partner organization
is Printo, a not for profit, non governmental, international research medical net-
work with the goal to foster, facilitate and coordinate the development of clinical
studies in children with paediatric rheumatic diseases. The testsuite was devel-
oped in Java language using the Selenium WebDriver [19] and TestNG [2] frame-
works and had relevant flakiness problems that created continuous false alarms.

To face and limit the flakiness problem, we considered tools and best practices
available in the state-of-the-art literature, utilizing also the experience gained
from our past scientific [7,10,12,21] and industrial [8,9] collaborations in devel-
oping E2E test suites for web applications. After a thorough analysis of the
problem, we used a well-defined manual procedure based mainly on substitution
rules of thread-sleep commands located in test scripts with a better alternative,
WebDriverWait commands, based on a polling mechanism built into Selenium
able to wait for an element to appear or exist, and to wait for some sort of
change in a web page. We have quantified the effort made and formalized the
procedure in algorithmic way so that our experience can also be of help to other
developers/testers.

This paper is organized as follows: Sect. 2 describes the Printo web app and
the test suite we refactored. Section 3 sketches the approach we used to limit the
flakiness problem present in the original test suite. Section 4 reports the data on
the reduction of flakiness compared to the original test suite. Section 5 presents
lessons learnt and gives future extensions. Finally, Sect. 6 summarizes related
works and Sect. 7 concludes the paper.

2 The Printo Web App and the Associated E2E Test
Suite

2.1 The Printo Web Application

The Paediatric Rheumatology INternational Trials Organisation (Printo) is
an academic international research network with the goal to facilitate and co-
ordinate multi-centre international clinical trials and registries in children with
paediatric rheumatic diseases and autoinflammatory diseases. Having the need
to collect clinical information worldwide, Printo has developed and maintained
during the years a large multi-page web application (www.printo.it) to achieve
its goal. The Printo web application is used by more than 500 centers world-
wide with about 1500 members today and it provides several functionalities to
collect information for clinical trials, disease registries, safety registries and clin-
ical consensus processes. It was developed on the server side in PHP language
(approximately 100k LOCs1) and on the client side in HTML and JavaScript
(for the latter, approximately 2k LOCs).
1 Computed using Locmetrics (https://www.cheonghyun.com/blog/120).

http://www.printo.it/
https://www.cheonghyun.com/blog/120

Reducing Flakiness in End-to-End Test Suites: An Experience Report 5

2.2 Original Printo’s E2E Test Suite

The original E2E test suite we refactored is a Java test suite that relies on
Selenium WebDriver [19] to interact with the application’s pages. The test suite
has been built with Maven, and it uses the testing framework TestNG [2]. It uses
the GeckoDriver implementation for the browser Mozilla Firefox and is designed
following the Page Object model [1], i.e., a model where Object Oriented classes
serves as interfaces to Web pages. It contains 11707 LOCs, namely 5523 in the
page objects and 6184 in the test scripts. It is composed by 169 independent test
scripts that can be executed in any order. The independence of test scripts has
been obtained by the accurate use of Setup and Teardown TestNG methods,
respectively, methods that are executed before a test script (or a test class) to
set up the initial state, and after a test script (or test class) to undo the test
script actions with the goal of resetting the initial state of the application. The
original test suite contains 82 of such methods, also known as test fixtures, for a
total of 251 methods (test scripts plus test fixtures). Both test scripts and test
fixtures can be executed multiple times in a single run of the test suite. The test
fixtures are executed several times according to the specific TestNG method (for
example, a BeforeMethod method is executed for each test script it belongs
to its test class) while test scripts, that are in several cases parameterized, are
executed multiple times, depending on the number of different values passed to
them. In total, 551 methods are executed for each execution of the testuite (of
which 334 test fixtures).

Statistics on the Test Suite Execution. The original test suite was heavily
affected by the flakiness problem. To quantify the problem, we executed the orig-
inal test suite in a controlled environment (i.e., without modifying the test suite
and system under test during runs) for 100 times and obtained that, on 55100
total method executions (counting both test fixtures and test scripts), 54699
(99.27%) passed, 44 (0.08% failed) and 357 (0.65%) were skipped. In TestNG,
a test script is skipped when its corresponding Before method fails: because of
that, flakiness is still more problematic when it happens in a Before method,
since it will prevent other test scripts to be executed. The above reported num-
ber of false alarms may seem negligible with respect to the total number of test
methods executions, but if we count every execution of the test suite in which
at least one method failed, we have 18 failures out of 100 executions, giving a
flakiness score for the test suite of 18%. Since the original test suite runs every
night, approximately means a false failure report every 5 days. Looking at the
finer grained results, we realized that flakiness is quite localized: out of 251 test
methods, only 26 failed at least one time during the 100 executions. For these
methods, we have computed the flakiness scores as: number of times the method
failed divided by number of times the method passed. The maximum flakiness
score was 3.09% for two methods (i.e., the most flaky). Finally, concerning exe-
cution times, the original test suite required on average 81min to run (value
calculated by averaging the 82 runs that were not affected by flakiness over a
total of 100).

6 D. Olianas et al.

3 Overview of the Approach for Reducing Flakiness

As a first step to discover the reasons for the flakiness of the test suite, we have
analyzed in detail the code of the test scripts and the page objects that compose
it. The first thing we noticed was the presence of thread sleeps positioned
both in the code of the page objects and in that of the test scripts. Thread
sleeps, i.e., function calls that pause the execution of a test script for a given
time, are usually employed by developers for managing asynchronous calls. In
the context of web applications, asynchronous calls happen whenever there is
an interaction with a page that requires some data to be retrieved from the
web server. However, this solution has two disadvantages, indeed thread sleeps:
a) are inefficient, especially in large test suites, because they always wait the
same amount of time, defined a priori by the developer, even when the page
finishes to load more quickly and, b) are often one of the reasons of flakiness, as
testified for example in Luo et al. [13] and Ricca and Stocco papers [17]. The
problem is that thread sleeps often handle asynchronous calls ‘badly’, without
properly waiting for the web server response, thus leading to flakiness. From
several years now the Selenium testing framework has provided a smarter mech-
anism for managing asynchronous calls, called explicit wait. Technically
speaking, an explicit wait is a Java object of class WebDriverWait, that
can be used in combination with an ExpectedCondition, that is a function
that informs the explicit wait about which condition must be verified to stop
waiting. From the Selenium documentation2 we can identify six main categories
of expected conditions:

– expected conditions checking the visibility of an element
– expected conditions checking the clickability of an element
– expected conditions checking the presence of an element
– expected conditions checking the number of elements
– expected conditions checking the page’s URL
– expected conditions for text comparison
– expected conditions checking DOM attributes

Explicit waits are more efficient w.r.t. thread sleeps because they stop waiting
when the element in question is ready for the specific interaction, and if we
consider all the test scripts in a large test suite the usage of explicit waits can
lead to great time savings. Moreover, explicit waits are more flexible and more
reliable, because they allow to check for complex conditions to be verified: for
example, if we have a text in a page that can be dynamically updated via AJAX,
it would be difficult to check it using thread sleeps, but with the textToBe
expected condition offered by explicit waits this control becomes feasible.

As already mentioned, the original test suite was implemented using thread
sleeps. After a first analysis, we realized that they were set incorrectly: some

2 Documentation for the ExpectedConditions class
https://www.selenium.dev/selenium/docs/api/java/org/openqa/selenium/support/
ui/ExpectedConditions.html.

https://www.selenium.dev/selenium/docs/api/java/org/openqa/selenium/support/ui/ ExpectedConditions.html
https://www.selenium.dev/selenium/docs/api/java/org/openqa/selenium/support/ui/ ExpectedConditions.html

Reducing Flakiness in End-to-End Test Suites: An Experience Report 7

were missing in some points and some had too short or too long waiting times.
The presence of these thread sleeps could be one of the reasons for the flakiness
and also could explain the very long execution times with respect to the number
and length of executed test scripts. So, we decided to modify the existing test
suite with a two-steps approach. First, by adding or modifying the thread sleeps
in all the points where failures occurred. As a result, we were able to reduce
flakiness, but at a cost of an increased total execution time: from 81min to
128min. Second, we decided to refactor this time-consuming version of the test
suite by changing every thread sleep (both those already present in the original
test suite and those introduced by us to limit flakiness) with explicit wait, relying
on a phased approach to make sure we do not introduce novel regressions (i.e.
some tests that previously worked fine start to fail or to be flaky) during the
refactoring.

3.1 Test Suite Refactoring

In this subsection, we will describe the refactoring procedure we used for Printo
test suite. Since the flakiness problem is, by definition, non-deterministic, the
procedure is based on heuristics and follows a step-by-step approach to detect
possible regressions as soon as possible (i.e., immediately after their introduc-
tion). In our case, we have a regression when a refactored test script that pre-
viously passed starts to fail, also in non-deterministic way; in this last case, it
means that our refactoring worsened flakiness rather than improving it. The pro-
cedure RemoveSleep is described in Algorithm 1, and it can be summarized as
follows: for each thread sleep in the test suite, we replace it with the appropri-
ate explicit wait (NewExplicitWait), then, we select a test script that calls
the method containing the introduced explicit wait (most likely a page object
method, since thread sleeps have been mainly inserted in page object methods)
and execute it K = 3 times (Validate). If it passes K times, we consider the
next thread sleep, otherwise we try to fix the test script using different strategies
(FixExplicitWait). In the worst case, i.e., if all fixing attempts fail, we give
up and restore the original thread sleep: in our case, this happened only four
times on 196 thread sleeps. The choice of using a single test script to validate
an explicit wait is mainly motivated by time-saving requirements. A completely
safe solution would be to run every test script calling the PO method where the
introduced explicit wait is used, but this would enormously increase the required
time. So, to compensate for the adopted simplification, every W = 15 thread
sleeps replaced, we execute the whole test suite H = 3 times to check that the
inserted explicit waits do not introduce novel regressions: this check can help us
to find previously undetected regressions. When this happen, we troubleshoot
the regression by applying FixExplicitWait to the points of failure. The
selection of 15 (W) as the number of changes before re-executing the entire test
suite for three times (H) is part of our heuristics. We selected that number since
it appears to be a reasonable trade off between (a) the number of modifications:
increasing this number can make difficult to understand the cause of a possible
regression and (b) the time required to execute the test suite: executing it too
often could slow down too much the refactoring process.

8 D. Olianas et al.

Algorithm 1: replacing all thread sleeps in a test suite with explicit waits
// RemoveSleep procedure for replacing all thread sleeps in a test suite with

explicit waits
Input : T – a test suite with thread sleeps
Output : TE – the same test suite but with explicit waits instead of thread sleeps

1 RemoveSleep(T):
2 foreach thread sleep TS in T do
3 WPI ← web page interaction after TS
4 EW ← NewExplicitWait(WPI)
5 if not Validate(EW) then
6 POF ← point of failure (failed WebDriver interaction of the test case t

executed in Validate)
7 if POF == WPI then
8 fixed ← FixExplicitWait(EW)
9 if not fixed then remove explicit wait EW and restore thread sleep TS

10

11 else
12 newEW ← NewExplicitWait(POF)
13 if not Validate(newEW) then
14 fixed ← FixExplicitWait(newEW)
15 if not fixed then
16 remove explicit wait newEW
17 fixed ← FixExplicitWait(EW)
18 if not fixed then remove explicit wait EW and restore thread

sleep TS

// NewExplicitWait subprocedure for inserting new explicit wait
Input : WPI – a WebDriver interaction with the web page, e.g. click, sendKeys or getText
Output : EW – the newly inserted explicit wait

19 NewExplicitWait(WPI):
20 if a thread sleep is present before WPI then remove thread sleep from the test suite
21 if WPI is a read access then insert EW with expected condition that checks if the

element is visible
22 else if WPI is a write access then insert EW with expected condition that checks if

the element is clickable
23 return EW

// Validate subprocedure for validation of a newly inserted explicit wait
Input : EW – an explicit wait
Output : res – result of validation

24 Validate(EW):
25 t ← a test script that calls, directly or indirectly, the method where EW is
26 run t K times
27 if all executions of t passed then return true
28 else return false

// FixExplicitWait subprocedure for fixing a failing explicit wait
Input : EW – an explicit wait
Output : res – result of fix procedure

29 FixExplicitWait(EW):
30 ECs ← list of N expected conditions most suitable for the type of access after EW
31 foreach EC in ECs do
32 replace the expected condition used in EW with EC
33 if Validate(EW) then return true
34 restore original EW
35 WPIs ← web page interactions after EW in the execution flow of the test script
36 foreach WPI in WPIs do
37 currentEW ← NewExplicitWait(WPI)
38 if validate(currentEW) then return true
39 else remove currentEW
40 return false

Reducing Flakiness in End-to-End Test Suites: An Experience Report 9

Table 1. Statistics for single thread sleep replacement and for whole page object refac-
toring

Max
(minutes)

Min
(minutes)

Average
(minutes)

Std dev
(minutes)

Single thread sleep replacement 8 2 9.52 4.47
Whole page object refactoring 330 5 40.54 53.11

3.2 Statistics on the Test Suite Refactoring Costs

One of the authors manually applied the procedure shown in Algorithm 1 and
annotated the times needed to substitute the thread sleeps and troubleshoot
regressions (if any). The total time required to replace all thread sleeps with
explicit waits plus test scripts re-executions (i.e., executing K = 3 times the
impacted test scripts) was 31 h. The time for executing the whole test suite
(three times every 15 modifications), to check for any final regression, was 36.2 h,
and the time required to troubleshoot regressions in total was 5.7 h, for a total
time of the entire refactoring of 73 h. We applied the procedure on 196 thread
sleeps: 187 were located in page objects and 9 directly in test scripts. We replaced
192 thread sleeps out of 196: in only 4 cases the application of the procedure
did not allow us to eliminate them. Table 1, reports minimum, maximum and
average time for replacing a single thread sleep and for replacing all thread sleeps
in a page object, along with their standard deviation.

The time for replacing and validating each thread sleep is on average 9.5min,
with a standard deviation of 4.47min. Obviously, more ‘problematic’ thread
sleeps required more time: as an example, the maximum time employed to replace
a single thread sleep was 28min. For what concerns page objects, the average
refactoring time is 40min, with a standard deviation of 53min. The high stan-
dard deviation is due to the fact that page objects in the Printo test suite have
a great variability in size: some of them expose only a couple of methods, while
some others are pretty large. Moreover, some page object methods contain only
a few thread sleeps while other many.

3.3 Details on the Kind of Explicit Waits Inserted and
Corresponding Costs

By applying the procedure, we were able to remove 192 thread sleeps out of 196.
Of the 192 replaced thread sleeps, 177 have been replaced with an explicit wait
that uses the expected condition elementToBeClickable, 11 with the expected
condition visibilityOf and four with the expected condition presenceOfElement-
Located.

When applying the sub-procedure NewExplicitWait in Algorithm 1, we
employed the expected conditions visibilityOf and elementToBeClickable as
default choices respectively for read accesses and write accesses. This means
that only in four cases those expected conditions were not sufficient, and we

10 D. Olianas et al.

needed to employ a different one, i.e., presenceOfElementLocated. In total, we
had to apply the FixExplicitWait sub-procedure 10 times: we changed the
expected condition with presenceOfElementLocated four times; we added another
explicit wait in a different point of the page objects’ code two times; we removed
the explicit wait and restored the thread sleep four times. The average time it
took to replace these thread sleeps was much longer than the others (20.3min
vs. 8.9min).

4 Quantifying the Obtained Improvements

In this section, we describe the improvements of the refactored test suite with
respect to the previous versions. Before applying the procedure to replace thread
sleeps with explicit waits, we tried to reduce flakiness by adding thread sleeps
in points where failures were more frequent. After applying the procedure to
replace thread sleeps with explicit waits, we ran the test suites 100 times to
quantify the obtained improvements, both on flakiness reduction and on execu-
tion time reduction. We executed the test suites on a Debian GNU/Linux 10
virtual machine with 6 GB of RAM assigned, hosted on a Windows 10 Pro lap-
top with 16 GB of RAM and Intel Core i3 10110U CPU with four logical cores
(two physical). To avoid interferences, no other applications were running on
the host system and on the virtual machine. The test suite has been executed
using Jenkins3, a popular continuous integration tool used by Printo to run
the test suite. The system under test, instead, is deployed on a cloud solution.
We decided to provide results on flakiness reduction at two levels of granularity,
respectively at test method granularity and at test suite execution granularity.

4.1 Test Method Granularity Analysis

In Table 2, the column Total test methods executions reports the total number of
executed test methods obtained running the three test suites 100 times, includ-
ing test fixtures and multiple executions of the same test script with different

Table 2. Validation results at test method granularity

Test methods
executions

Passed Failed Skipped

Original test suite 55100 54699 44 357
(99.270%) (0.080%) (0.650%)

Refactored test suite with thread sleep 55100 55099 1 0
(99.998%) (0.002%) (0.000%)

Refactored test suite with explicit waits 55100 55092 8 0
(99.990%) (0.010%) (0.000%)

3 Jenkins website https://www.jenkins.io/.

https://www.jenkins.io/

Reducing Flakiness in End-to-End Test Suites: An Experience Report 11

parameters. The other columns report respectively: number and percentage of
methods passed, failed and skipped.

For the original version of the test suite, on 55100 total method executions
44 failed and 357 were skipped. The high number of skipped test is due to the
fact that some of the flaky test methods were setup methods, executed before
other test methods of their classes: as a consequence, when a setup method fails,
the whole test class is skipped.

In the thread sleep-based refactored version of the test suite, we can see that
only one test script failed on 100 executions. This is the best result we obtained
from a flakiness-reduction point of view, but on the other hand the execution
time increased from an average of 81min to an average of 128min.

In the final version of the test suite (the one with explicit waits), we can
see that, on 55100 test methods executions, eight failed against only one for
the refactored version with thread sleeps (in both cases we have no test scripts
skipped). This would seem to suggest that the version with all the thread sleeps is
more reliable, but, however, it is important to note that the eight test scripts that
failed in the last version of the test suite happened during the same execution
(the ninth execution in time order). Since these failures never happened again in
the subsequent 91 executions, we assume that they were not caused by defects of
the test suite, but probably by network problems (or other server-side problems).

4.2 Test Suite Granularity Analysis

Table 3 reports the flakiness results at test suite execution granularity. The col-
umn Total test suite executions reports the number of times each test suite
was executed, the column Flaky executions reports the number of executions in
which at least one test method failed and the column Flakiness score reports the
percentage of flaky executions.

Table 3. Validation results at whole test suite execution granularity

Total test suite
execution

Flaky test suite
execution

Flakiness
score

Original test suite 100 18 18%
Refactored test suite
with thread sleep

100 1 1%

Refactored test suite
with explicit waits

100 1 1%

This table shows results more interesting from a tester’s perspective since
reports the probability of having a false alarm after executing the test suite. We
can note that the scores of the full thread sleep version and of the explicit wait
version are comparable.

12 D. Olianas et al.

4.3 Execution Time

Considering the execution time of the three test suites, we can note that the
explicit wait based test suite is much faster. In fact, for the explicit wait version
we obtained an average execution time of the whole test suite of 35min, reducing
the execution time of 57% with respect to the original, flaky test suite (that
required 81min) and of 72% with respect to the second version of the test suite,
with all the required thread sleeps, that required 128min.

5 Discussions, Lessons Learnt, and Future Extensions

In this section, we discuss the obtained results, lessons learnt and possible future
extensions of this work.

5.1 Following a Precise Procedure Is Extremely Important

We learnt that removing flakiness in a E2E test suite is a hard task. Indeed,
the non-deterministic behavior of test scripts makes difficult to understand if
a change in the code has positive effects or if, on the contrary, the flakiness is
getting worse. During this experience we understood that it is not possible to
deal with the flakiness problem without following a precise procedure. For this
reason, we defined the procedure described in Algorithm 1. We believe that a
well defined procedure helps to minimize subjectivity during refactoring in order
to guide programmers with little experience of Selenium WebDriver. Moreover,
we learnt that it is fundamental make few changes at a time and rerun the test
suite very often. This is because if flakiness occurs after a long series of changes,
finding the cause is extremely difficult.

5.2 Conservative Solutions Are Too Time-Consuming

A specificity of our procedure is that we use a single test script to validate
newly inserted explicit waits. Usually, if the test suite is designed following the
page object pattern, a page object method will be used by more than one test
script, and so will be any explicit wait inside the method. To be completely
sure to not introduce regressions at each insertion of an explicit wait, we should
execute multiple times every test script who uses it. However, we learnt that
this is prohibitive from the point of view of execution time, so we opted for a
time-saving heuristics: running a single test script at each change and then,
to find possible undetected regressions, running the whole test suite after a
predetermined number of changes.

5.3 It Is Hard to Be Too Prescriptive

We learnt that a procedure is useful but it has to be flexible. Indeed, our
procedure leaves some degrees of freedom to the developer when it comes to

Reducing Flakiness in End-to-End Test Suites: An Experience Report 13

select expected conditions. In sub-procedure NewExplicitWait, the devel-
oper is asked to choose “an expected condition that checks if the element is
visible” or “an expected condition that checks if the element is clickable”, but
the precise choice of the expected condition is left to the developer. Also in sub-
procedure FixExplicitWait the developer is just asked to list the k most
suitable expected conditions for the WebDriver interaction under analysis. This
is due to the fact that the precise expected condition to use strictly depends
on the characteristics of both the test suite and the application under test. For
example, if the test suite adopts the Page Factory pattern [11], the category of
expected conditions that take a WebElement as argument, instead of a locator,
should be used.

5.4 Thread Sleeps Substitution Can be Automated

This work was very important for understanding that thread sleeps replace-
ment (Algorithm 1) can be automated, at least partially. Perhaps this is the
most important lesson we learnt. This insight is supported by the data shown
in Sect. 3.3, where it is clear that in many cases the thread sleeps have been
replaced using the simpler heuristics and the re-execution of the test suite was
not always necessary. It is clear that, sub-procedure NewExplicitWait (inser-
tion of a new explicit wait) and sub-procedure Validate (validation of a newly
inserted explicit wait) are the easiest procedures to automate. For sub-procedure
NewExplicitWait, we just need to specify an expected condition to be used
for the two type of considered web page interactions (i.e., read and write). Sub-
procedure Validate is pretty straightforward too, since the list of tests that
use the explicit wait under validation can be easily extracted from the test suite’s
code by means of static analysis techniques. Eventually, the implemented tool
should be able to: refactoring the test scripts (i.e., substituting thread sleeps
with explicit waits), execute the modified test scripts and collect the results
showing statistics about flakiness. Clearly automating the procedure completely
is much more challenging, in particular it is difficult to mechanize sub-procedure
FixExplicitWait which is the part where human intervention is most needed.
However, it is important to highlight that even the basic implementation of this
tool should be able to automate a relevant portion of the refactorings (i.e., 182
out of 196 thread sleep replacements), significantly reducing the time and cost
of the entire work.

5.5 Manual Intervention Is Needed

As we have already said, the application of the procedure did not allow us to
replace all the thread sleeps. In four cases the procedure left the thread sleeps.
This is a consequence of our heuristic which does not require the developer
executing the refactoring to inspect the DOM of the web pages but relies mainly
on the access done by the test scripts to the web pages. We are aware that
this choice can be limiting in certain specific cases, however it works very often
because web page inspection, we learnt, is rarely necessary. In retrospect, we

14 D. Olianas et al.

investigated why the procedure didn’t work in these four cases. In all cases, the
problem was due to page elements dynamically loaded via JavaScript: the thread
sleep originally inserted allows to complete the loading of the required content,
while the explicit waits did not. In one case, we have that a test script compiles
a form and sends it to the server. It inserts in the form wrong values, and checks
if the web application detects the problem and replies with an error message.
The form includes a field with auto-completion and a client-side script is in
charge of checking the correctness of the inserted value. With the original thread
sleep (inserted just before interacting with the submission button), the client-side
check has enough time to complete its execution and shows the expected error.
When we applied the procedure, we replaced the thread sleep with an explicit
wait that waits for the submission button to be clickable. In this way the sequence
of actions is performed correctly, but the client-side validation is skipped because
does not have enough time to check the correctness of the inserted value. Thus,
the web application responds with a different error from server side and this
makes the test script fail. We manually fixed this explicit wait by changing the
waited object to the first element that pops up in the auto-completing field:
this gives the client-side check enough time to complete its execution and show
the client side error. In cases like these it is very difficult (if not impossible) to
automate the refactoring and therefore the manual intervention is necessary.

6 Related Work

Since the problem of flakiness is often faced in practice by practitioners, there
are many works in the scientific literature that consider it.

Among these works we find some that try to understand the reasons of the
flakiness and characterize the main causes by means of surveys with professional
developers (e.g., [5,13]) or analyzing open source code (e.g., [13,18]). Our experi-
ence confirm the results by Eck et al. [5] and Luo et al. [13] on the high diffusion
of the Async category as main reason of flakiness problems, that happens when
a test script performs asynchronous calls without waiting properly the result.
Indeed, in our test suite almost all flakiness problems fell into this category.
Other works, on the other hand, confirm our choice to replace thread sleeps
with explicit waits to alleviate the problem of flakiness as well as reduce exe-
cution times. Among these, we find for example the paper by Ahmad et al. [3]
where they came to the conclusion that some test smells (e.g., inserting thread
sleeps and having dependent test scripts) are the main reasons for test scripts
flakiness. This choice of substituting thread sleeps with explicit waits is instead
contradicted by Presler-Marshall et al. [15]. In a work similar to ours, carried
out by students on a large electronic health record system, the authors came to
the conclusion that thread waits give the lowest flakiness, while explicit waits
giving the highest.

Finally, there are also many works with a different goal from ours that propose
techniques and tools to detect the root cause of a specific case of flaky test script
[14] or others that detect flaky test scripts in a test suite [4] or others that deal

Reducing Flakiness in End-to-End Test Suites: An Experience Report 15

with fixing them [20]. The latter paper presents iFixFlakies, a framework for
automatically fixing order-dependent test scripts. The framework is based on
the idea that test suites already have helper tests whose code can help fix this
particular category of flakiness-prone test suites. Compared to iFixFlakies, our
strategy is simpler but in some ways more general as it applies to different types
of flakiness and not to only order-dependent test scripts.

Before embarking on our refactoring work we considered the existing litera-
ture. Unfortunately, it is not always easy to use the proposed techniques due to
unsatisfied requirements and constraints. For example, we considered DeFlaker
[4] but it relies heavily on Java AST analysis, which makes it inapplicable to
web applications written in PHP, such as Printo application.

7 Conclusions and Future Work

In this paper, we have described our refactoring experience of an existing auto-
mated E2E Selenium WebDriver test suite concerning a large multi-page Web
application for paediatric rheumatology patients management. The main goal of
refactoring was to limit flakiness as much as possible.

As a result, we devised and formalized a repeatable procedure which does
not require the analysis of the DOM to be used in cases of flaky test suites.
Furthermore, we have quantified the effort it takes to replace thread sleeps—often
a cause of flakiness—with more performing WebDriverWaits. The adoption of
WebDriverWaits also allowed to reduce the execution time of the test suite, 57%
w.r.t. the original flaky test suite and of the 72% w.r.t. the flakiness-equivalent
version based on the usage of thread sleeps (this version was created during the
refactoring process).

As a future work, in addition to proving the generalizability and effectiveness
of the proposed procedure using other test suites, we also intend to investigate
the feasibility of developing an automatic tool capable of automating much of
the work of replacing thread sleeps.

Acknowledgement. This work was carried out in the context of a collaboration
between DIBRIS (University of Genova) and Printo (Gaslini Hospital). We want to
show our gratitude to Dr. Nicolino Ruperto, Senior scientist of Printo for the support
provided.

References

1. Page Object Model. https://www.selenium.dev/documentation/en/guidelines_
and_recommendations/page_object_models/

2. Testng testing framework (2021). https://testng.org/doc/. Accessed 08 Apr 2021
3. Ahmad, A., Leifler, O., Sandahl, K.: Empirical analysis of factors and their effect

on test flakiness - practitioners’ perceptions. arXiv:1906.00673 (2019)
4. Bell, J., Legunsen, O., Hilton, M., Eloussi, L., Yung, T., Marinov, D.: DeFlaker:

automatically detecting flaky tests. In: 2018 IEEE/ACM 40th International Con-
ference on Software Engineering (ICSE), pp. 433–444 (2018). https://doi.org/10.
1145/3180155.3180164

https://www.selenium.dev/documentation/en/guidelines_and_ recommendations/page_object_models/
https://www.selenium.dev/documentation/en/guidelines_and_ recommendations/page_object_models/
https://testng.org/doc/
http://arxiv.org/abs/1906.00673
https://doi.org/10.1145/3180155.3180164
https://doi.org/10.1145/3180155.3180164

16 D. Olianas et al.

5. Eck, M., Palomba, F., Castelluccio, M., Bacchelli, A.: Understanding flaky tests:
the developer’s perspective. In: Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2019, pp. 830–840. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3338906.3338945

6. Garousi, V., Felderer, M.: Developing, verifying, and maintaining high-quality auto-
mated test scripts. IEEE Softw. 33, 68–75 (2016)

7. Leotta, M., Biagiola, M., Ricca, F., Ceccato, M., Tonella, P.: A family of experi-
ments to assess the impact of page object pattern in web test suite development.
In: Proceedings of 13th IEEE International Conference on Software Testing, Ver-
ification and Validation (ICST 2020), pp. 263–273. IEEE (2020). https://doi.org/
10.1109/ICST46399.2020.00035

8. Leotta, M., Clerissi, D., Ricca, F., Spadaro, C.: Comparing the maintainability
of selenium webdriver test suites employing different locators: a case study. In:
Proceedings of 1st International Workshop on Joining AcadeMiA and Industry
Contributions to testing Automation (ISSTA 2013 Workshops), pp. 53–58. ACM
(2013). https://doi.org/10.1145/2489280.2489284

9. Leotta, M., Clerissi, D., Ricca, F., Spadaro, C.: Improving test suites maintain-
ability with the page object pattern: an industrial case study. In: Proceedings
of 6th International Conference on Software Testing, Verification and Validation
Workshops (ICST 2013 Workshops), pp. 108–113. IEEE (2013). https://doi.org/
10.1109/ICSTW.2013.19

10. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Capture-replay vs. programmable
web testing: an empirical assessment during test case evolution. In: Proceedings
of 20th Working Conference on Reverse Engineering (WCRE 2013), pp. 272–281.
IEEE (2013). https://doi.org/10.1109/WCRE.2013.6671302

11. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Approaches and tools for automated
end-to-end web testing. Adv. Comput. 101, 193–237 (2016). https://doi.org/10.
1016/bs.adcom.2015.11.007

12. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: PESTO: automated migration of
DOM-based web tests towards the visual approach. J. Softw. Test. Verif. Reliabil.
(STVR) 28(4), e1665 (2018). https://doi.org/10.1002/stvr.1665

13. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests. In:
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pp. 643–653. ACM (2014). https://doi.org/10.
1145/2635868.2635920

14. Moran, J., Augusto Alonso, C., Bertolino, A., de la Riva, C., Tuya, J.: FlakyLoc:
flakiness localization for reliable test suites in web applications. J. Web Eng. (2020).
https://doi.org/10.13052/jwe1540-9589.1927

15. Presler-Marshall, K., Horton, E., Heckman, S., Stolee, K.T.: Wait wait. No, tell
me: analyzing selenium configuration effects on test flakiness. In: Proceedings of
the 14th International Workshop on Automation of Software Test, AST 2019, pp.
7–13. IEEE Press (2019). https://doi.org/10.1109/AST.2019.000-1

16. Rafi, D., Moses, K., Petersen, K., Mäntylä, M.: Benefits and limitations of auto-
mated software testing: systematic literature review and practitioner survey, pp.
36–42 (2012). https://doi.org/10.1109/IWAST.2012.6228988

17. Ricca, F., Stocco, A.: Web test automation: insights from the grey literature. In:
Bureš, T., et al. (eds.) SOFSEM 2021. LNCS, vol. 12607, pp. 472–485. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-67731-2_35

18. Romano, A., Song, Z., Grandhi, S., Yang, W., Wang, W.: An empirical analysis of
UI-based flaky tests. arXiv:2103.02669 (2021)

https://doi.org/10.1145/3338906.3338945
https://doi.org/10.1109/ICST46399.2020.00035
https://doi.org/10.1109/ICST46399.2020.00035
https://doi.org/10.1145/2489280.2489284
https://doi.org/10.1109/ICSTW.2013.19
https://doi.org/10.1109/ICSTW.2013.19
https://doi.org/10.1109/WCRE.2013.6671302
https://doi.org/10.1016/bs.adcom.2015.11.007
https://doi.org/10.1016/bs.adcom.2015.11.007
https://doi.org/10.1002/stvr.1665
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.13052/jwe1540-9589.1927
https://doi.org/10.1109/AST.2019.000-1
https://doi.org/10.1109/IWAST.2012.6228988
https://doi.org/10.1007/978-3-030-67731-2_35
http://arxiv.org/abs/2103.02669

Reducing Flakiness in End-to-End Test Suites: An Experience Report 17

19. SeleniumHQ web browser automation (2021). https://www.selenium.dev/.
Accessed 08 Apr 2021

20. Shi, A., Lam, W., Oei, R., Xie, T., Marinov, D.: iFixFlakies: a framework for
automatically fixing order-dependent flaky tests. In: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE 2019, pp. 545–555.
Association for Computing Machinery, New York (2019). https://doi.org/10.1145/
3338906.3338925

21. Stocco, A., Leotta, M., Ricca, F., Tonella, P.: APOGEN: automatic page object
generator for web testing. Softw. Qual. J. (SQJ) 25(3), 1007–1039 (2017). https://
doi.org/10.1007/s11219-016-9331-9

22. Zolfaghari, B., Parizi, R.M., Srivastava, G., Hailemariam, Y.: Root causing, detect-
ing, and fixing flaky tests: state of the art and future roadmap. Softw.: Pract. Exp.
51, 851–867 (2020)

https://www.selenium.dev/
https://doi.org/10.1145/3338906.3338925
https://doi.org/10.1145/3338906.3338925
https://doi.org/10.1007/s11219-016-9331-9
https://doi.org/10.1007/s11219-016-9331-9

Mutation Subsumption as Relative
Incorrectness

Besma Khaireddine1, Amani Ayad2, Imen Marsit3, and Ali Mili4(B)

1 University of Tunis El Manar, Tunis, Tunisia
2 SUNY Farmingdale, Farmingdale, NY, USA

ayada@farmingdale.edu
3 University of Sousse, Sousse, Tunisia

4 New Jersey Institute of Technology, Newark, NJ, USA
mili@njit.edu

Abstract. This paper attempts to link two lines of research that have
proceeded independently so far: Mutant subsumption, which is used to
identify redundant mutants; and Relative correctness, which is used to
define and analyze software faults. We say that a mutant M ′ of a program
P subsumes a mutant M of P if and only if any test datum that kills
M kills M ′. On the other hand, we say that a program P ′ is more-
correct than a program P with respect to a specification R if and only if
whenever program P behaves correctly with respect to R on some input
datum, so does program P ′. We highlight the relationships between these
two concepts and consider some potential synergies between these two
research directions.

Keywords: Mutant equivalence · Mutant subsumption · Relative
correctness · Differentiator sets · Competence domains

1 Subsumption and Relative Correctness

Mutation testing is the art of generating versions of a base program using syn-
tactic change operators, and analyzing the semantic impacts of these changes
[3,4]; mutation testing can be used in the analysis and design of test suites.

Mutants are useful in testing only to the extent that syntactic differences
between the base program and mutants (or among mutants) yield semantically
different behaviors; better mutants are mutants that exhibit a different behav-
ior from the base program for a larger set of input data. As a consequence,
researchers have been interested in the concept of mutant subsumption, which
provides that a mutant M ′ subsumes a mutant M if and only if any input datum
for which M yields a different outcome from the base program (say P), M ′ will
necessarily yield a different outcome from P as well [9,12,13]; it is possible to
define a strict version of this ordering when there is at least one input datum
for which M ′ exhibits a different behavior from P but M does not. A set of
mutants can be used to evaluate a test suite or to design a test suite: a test suite
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 18–28, 2021.
https://doi.org/10.1007/978-3-030-85347-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_2

Mutation Subsumption as Relative Incorrectness 19

is adequate if it can detect all the non-equivalent mutants of a program P . For
the sake of efficiency, we are interested in minimal mutant sets, i.e. mutant sets
such that any proper subset is less effective at evaluating test suites than the
original set. Mutant subsumption is useful in the derivation of minimal mutant
sets because whenever a mutant M ′ subsumes a mutant M then the singleton
{M ′} is as effective as the set {M,M ′} since any test suite that detects M
detects M ′.

Independently of this line of research, a study of relative correctness in [5,6]
introduces an ordering between programs which characterize the property of a
program P ′ to be more-correct than a program P with respect to a specification
R; this concept was introduced as a basis for defining faults in programs, and
was later used to model various software engineering processes.

In this paper we argue that there are significant similarities between the
concept of subsumption between two mutants with respect to a base program
and the concept of relative correctness between two programs with respect to
a specification. In particular, we find that relative correctness can be deter-
mined by comparing competence domains of programs with respect to a specifi-
cation; whereas subsumption can be determined by comparing differentiator sets
of mutants with respect to a base program [16,19,20]. Interestingly, competence
domains and differentiator sets tend to be complementary. The main motivation
of this paper is to highlight relationships between these two concepts, and to
explore whether, how and to what extent the highlighted relationships between
these two concepts can be used synergetically to share insights and possibly
advance the state of the art in both research directions.

In Sect. 2 we review the main definitions pertaining to mutant subsumption,
due to [9,12,13] and in Sect. 3 we introduce the mathematics of relative correct-
ness, due to [5,6,15]. In Sect. 4 we revisit the definitions of mutant subsumption
using the mathematics of relative correctness, and in Sect. 5 we explore potential
applications of the new model to mutation testing. We conclude in Sect. 6 with
a summary, assessment, and future prospects.

2 Mutant Subsumption

In this section, we adhere closely to the definitions of [9,12,13], though we for-
mulate them in our own notations. We consider a state space S defined by C-like
variable declarations and we let P be a program on space S; the function of pro-
gram P , which (by abuse of notation) we also denote by P , is the set of pairs
(s, s′) such that if execution of P starts in state s then it terminatres normally
in state s′.

Definition 2.1. True Subsumption. Let M and M ′ be two mutants of a pro-
gram P on space S. We say that M ′ subsumes M with respect to P if and only
if the following conditions are satisfied:

∀s ∈ S : M(s) �= P (s) ⇒ M ′(s) �= P (s)
∃s ∈ S : M(s) = P (s) ∧ M ′(s) �= P (s).

20 B. Khaireddine et al.

This relation is abbreviated as: M ′ >P M . Because it is impossible in practice to
verify the subsumption relation between two mutants, Kurtz et al. [12] introduce
the property of dynamic subsumption.

Definition 2.2. Dynamic Subsumption. Let M and M ′ be two mutants of
a program P on space S. We say that M ′ dynamically subsumes M with respect
to P for test suite T ⊆ S if and only if the following conditions are satisfied:

∀s ∈ T : M(s) �= P (s) ⇒ M ′(s) �= P (s)
∃s ∈ T : M(s) = P (s) ∧ M ′(s) �= P (s).

This relation is abbreviated as: M ′ >T
P M . True subsumption is just a special

case of dynamic subsumption for the case when T = S. Kurtz et al. [12] also
introduce the concept of static subsumption, but this concept does not represent
a different relation between P , M and M ′; rather, it represents a different way
to check subsumption properties (through static analysis of P , M and M ′ rather
than through testing).

3 Absolute Correctness and Relative Correctness

3.1 Absolute and Relative Correctness

We consider a program P on space S and a relation R on S; the following
definition, due to Mills et al. [17] gives a set theoretic formula for the correctness
of program P with respect to specification R.

Definition 3.1. A program P on space S is said to be correct with respect to
specification R if and only if dom(R ∩ P) = dom(R).

This definition is equivalent, modulo differences of notation, to the traditional
definitions of (total) correctness [7,8,10,14]. The domain of (R ∩ P) is referred
to as the competence domain of P with respect to R. This definition is illustrated
in Fig. 1: Program P is correct with respect to R because for all the elements in
the domain of R ({1, 2}), P is is defined (terminates normally) and returns an
output (2 for input 1, 3 for input 2) among those ({0, 1, 2} for input 1, {1, 2, 3}
for input 2) that R mandates.

Fig. 1. Program P is correct with respect to R

Mutation Subsumption as Relative Incorrectness 21

Fig. 2. Preserving correctness (dom(R ∩ P) ⊆ dom(R ∩ P ′)) vs. preserving correct
behavior ((R ∩ Q) ⊆ (R ∩ Q′))

3.2 Relative Correctness

Definition 3.2. A program P ′ is said to be more-correct (respectively, strictly
more-correct) than P with respect to R if and only if dom(R ∩ P ′) ⊇ dom(R ∩
P), denoted by P ′ �R P (respectively dom(R ∩ P ′) ⊃ dom(R ∩ P), denoted by
P ′ �R P).

To contrast correctness with relative correctness, we may refer to the former as
absolute correctness. As defined, relative correctness has the following properties:

– It is reflexive and transitive; but it is not antisymmetric, since two programs
may be mutually more-correct yet still distinct.

– It culminates in absolute correctness, in the sense that an absolutely correct
program is more-correct than (or as correct as) any candidate program.

– It logically implies (but is not equivalent to) higher reliability.

Figure 2 shows two examples of relative correctness relationships: specification
R is in the middle; to the right, Q′ is more-correct than Q with respect to R by
virtue of duplicating the correct behavior of Q; on the right, P ′ is more-correct
than P with respect to R by virtue of a different correct behavior; this is possible
because R is non-deterministic, hence correct behavior is not unique.

3.3 A Relative Correctness Graph

As an illustrative example, we consider the following specification on space S of
natural numbers:

R = {(s, s′)| − 1 ≤ s ≤ 1 ∧ s′ = s3 − s}.

We consider the following candidate programs; alongside each program, we
show its competence domain (obtained by computing the term R ∩ P then its
domain). Figure 3 shows the relative correctness relations between these pro-
grams, which are a mere reflection of the inclusion relations between their com-
petence domains.

p0: {s = s*s*s-s+1;}.
Its competence domain is: CD0 = {}.

22 B. Khaireddine et al.

p1: {s = s*s*s;}.
Its competence domain is: CD1 = {0}.

p2: {s = s*s*s+1;}.
Its competence domain is: CD2 = {−1}.

p3: {s = s*s*s-1;}.
Its competence domain is: CD3 = {1}.

p4: {s = s*s*s+s*s;}.
Its competence domain is: CD4 = {0,−1}.

p5: {s = s*s*s+s*s-2*s;}.
Its competence domain is: CD5 = {0, 1}.

p6: {s = s*s*s+s*s-s-1;}.
Its competence domain is: CD6 = {−1, 1}.

p7: {s = 4*s*s*s-4*s;}.
Its competence domain is: CD7 = {−1, 0, 1}.

p8: {s = 3*s*s*s-3*s;}.
Its competence domain is: CD8 = {−1, 0, 1}.

p9: {s = 2*s*s*s-2*s;}.
Its competence domain is: CD9 = {−1, 0, 1}.

Whereas absolute correctness divides candidate programs into two classes (cor-
rect vs. incorrect), relative correctness ranks candidate programs on a partial
ordering, whose maximal elements are absolutely correct.

Fig. 3. Relative correctness ordering (in black) vs. absolute correctness partitioning
(green vs. red) (Color figure online)

Mutation Subsumption as Relative Incorrectness 23

4 Subsumption as Relative Incorrectness

The relationship between relative correctness and mutant subsumption is cap-
tured in the following Propositions.

Proposition 4.1. We consider a program P on space S and two mutants M
and M ′ of P . M ′ subsumes (in the sense of true subsumption) M with respect to
P if and only if M is strictly more-correct than M ′ with respect to specification
P . This is written as:

(M ′ >P M) ⇔ (M �P M ′).

Proof: We proceed by equivalence:

M ′ >P M
⇔ {Definition 2.1}

∀s ∈ S : M(s) �= P (s) ⇒ M ′(s) �= P (s)
∧∃s ∈ S : M(s) = P (s) ∧ M ′(s) �= P (s).

⇔ {Reformulating the first clause}
∀s ∈ S : M ′(s) = P (s) ⇒ M(s) = P (s)
∧∃s ∈ S : M(s) = P (s) ∧ M ′(s) �= P (s).

⇔ {Interpreting the first clause}
dom(M ′ ∩ P) ⊆ dom(M ∩ P) ∧ ∃s ∈ S : M(s) = P (s) ∧ M ′(s) �= P (s).

⇔ {Interpreting the second clause}
dom(M ′ ∩ P) ⊆ dom(M ∩ P) ∧ ∃s ∈ S : s ∈ dom(M ∩ P) ∧ s �∈ dom(M ′ ∩ P).

⇔ {Interpreting the conjunction}
dom(M ′ ∩ P) ⊂ dom(M ∩ P)

⇔ {Definition 3.2}
M �P M ′.

qed

Intuitively, this Proposition makes perfect sense: since mutants are supposed
to be distinct from the base program, the less correct they are the better they
are. The relative correctness graph given in Sect. 3.3 can be seen as the inverse
of mutant subsumption graphs discussed in [9,12,13].

Proposition 4.2. We consider a program P on space S, a subset T of S, and
two mutants M and M ′ of P . M ′ subsumes (in the sense of dynamic subsump-
tion) M with respect to P for set T if and only if M is strictly more-correct
than M ′ with respect to specification T\P , the pre-restriction of P to T . This is
written as:

(M ′ >T
P M) ⇔ (M �

T\P M ′).

Proof: The proof of this proposition is the same as that of Proposition 4.1, and
relies on the simple identity that (s ∈ T ∧ s ∈ dom(M ∩ P)) is equivalent to
(s ∈ dom(M ∩T\ P)). qed

24 B. Khaireddine et al.

For the remainder of this paper we only talk about true subsumption;
dynamic subsumption is the same as true subsumption, but for a different pro-
gram P ′ whose function is the pre-restriction of P to test suite T .

The best case scenario from the standpoint of correctness with respect to
some specification is absolute correctness; not surprisingly, it is the worst case
scenario from the standpoint of mutation, as confirmed by the following simple
Proposition.

Proposition 4.3. Let P be a program on space S and let M be a mutant of P .
M is absolutely correct with respect to P if and only if P ⊆ M .

Proof: Proof of Necessity: By Definition 3.1, dom(M ∩ P) = dom(P); this in
conjunction with the set theoretic identity (M ∩P) ⊆ P , and the fact that both
(M ∩ P) and P are functions yields (per [2]) (M ∩ P) = P ; this yields, by set
theory, P ⊆ M .

Proof of Sufficiency. From P ⊆ M we infer (M ∩ P) = P , whence dom(M ∩
P) = dom(P). qed

The least useful mutants are equivalent mutants, i.e. mutants that satisfy the
equation M = P . This proposition provides the condition P ⊆ M , which means
that M behaves the same way as P on the domain of P , but may have behavior
outside the domain of P ; hence while the condition P ⊆ M is weaker than the
condition P = M , it does mean that M is equivalent to P for the inputs that
matter, namely inputs in dom(P).

5 Implications

Whereas relative correctness between two programs is determined by comparing
their competence domains, we argue that true subsumption between two mutants
is determined by comparing their differentiator sets [16,19,20], which we define
below.

Definition 5.1. Given a program P on space S and a mutant M of P , the
differentiator set of M with respect to P is the set denoted by δP (M) and defined
by:

δP (M) = dom(M ∩ P).

The interest of this definition stems readily from the following Proposition.

Proposition 5.2. Given a program P on space S and two mutants M and M ′

of P , M ′ subsumes M (in the sense of true subsumption) if and only if:

δP (M) ⊂ δP (M ′).

Proof: The first clause of Definition 2.1 can be interpreted as: δP (M) ⊆ δP (M ′),
and the second clause as: ∃s : s �∈ δP (M) ∧ s ∈ δP (M ′). qed

Mutation Subsumption as Relative Incorrectness 25

Whereas subsumption is defined between individual mutants, we can gener-
alize it as a property between two sets of mutants, by generalizing the concept
of differentiator set.

Definition 5.3. Given a program P on space S and a set of mutants of P ,
m = {M1,M2, ..Mk}, the differentiator set of m is the union of the differentiator
sets of all the elements of m:

δP (m) =
⋃

Mi∈m

δP (Mi).

Using differentiator sets of mutant sets enables us to identify redundancies
(and opportunities to get rid of redundant mutants, and minimize mutant sets)
between sets of mutants even when there are no subsumption relations between
individual mutants; this is illustrated in the example below. But first, we define
subsumption between sets of mutants.

Definition 5.4. Given a program P on space S and two sets of mutants m and
m′, we say that m′ subsumes m if and only if: δP (m) ⊆ δP (m′).

Note that we use reflexive inclusion ⊆ rather than strict inclusion (⊂) as it
is simpler (weaker condition) and better (if two sets of mutants have the same
differentiator set, we can eliminate one set and keep the other). For illustration,
we consider the following program P on space S defined by a single variable s
of type integer:

P : {s = pow(s, 4) + 2 ∗ pow(s, 2); }
the following test suite T = {−3,−2,−1, 1, 2, 3}, and we consider the following
mutants:

– M1: {s=2*pow(s,4)-11*pow(s,2)+36}.
– M2: {s=2*pow(s,4)-8*pow(s,2)+9}.
– M3: {s=2*pow(s,4)-3*pow(s,2)+4}.
– M4: {s=pow(s,4)+pow(s,3)-4*pow(s,2)+11*s-6}.
– M5: {s=pow(s,4)+pow(s,3)+8*pow(s,2)-11*s+6}.

Note that our focus in this study is purely semantic, i.e. we are interested to
analyze the semantic relationships between programs and mutants; hence we are
not concerned about what mutation operators generate Mi’s from P ; we are only
interested in the semantic relations between them. Table 1 shows the competence
domains and the differentiator sets of mutants M1 .. M5 with respect to T\P ;
the competence domain of each mutant Mi with respect to P is obtained by
computing the intersection (Mi ∩ P) then taking its domain; the differentiator set
is the complement of the competence domain. Figure 4 shows the differentiator
sets of mutants M1 .. M5 with respect to T\P . Using the terminology of [12],
we find that all mutants M1 through M5 are killable by test suite T , since their
differentiator sets are non-empty.

According to this table, there are no subsumption relations between mutants
M1, M2, M3, M4, and M5 since there are no inclusion relations between the

26 B. Khaireddine et al.

Table 1. Competence domains and differentiator sets

Mutant Competence domain
with respect to T\P

Differentiator set with
respect to T\P

M1 {−2,−3, 2, 3} {−1, 1}
M2 {−1,−3, 1, 3} {−2, 2}
M3 {−1,−2, 1, 2} {−3, 3}
M4 {1, 2, 3} {−1,−2,−3}
M5 {−1,−2,−3} {1, 2, 3}

differentiator sets of the mutants; hence if we limit ourselves to individual sub-
sumption relations, we see no opportunity to reduce the set of mutants

m = {M1,M2,M3,M4,M5}.

But if we consider sets of mutants rather than individual mutants, we may be able
to reduce the set of mutants without loss; the concept of minimal set of mutants,
due to [12], is supposed to achieve this goal. Given a set m of non-equivalent
mutants of a base program P , a subset m′ of m is said to be a minimal set of
mutants if and only if:

– The differentiator set of m′ is the same as that of m.
– No proper subset of m′ has the same differentiator set as m.

On the basis of this definition, we find that both:

m′
1 = {M1,M2,M3},

m′
2 = {M4,M5},

are minimals set of mutants.

Fig. 4. Mutants and differentiator sets

Mutation Subsumption as Relative Incorrectness 27

6 Conclusion

6.1 Summary and Assessment

In this paper we highlight a duality between the concept of mutant subsumption
introduced in mutation testing [9,12,13] and the concept of relative correctness
introduced in the study of faults [5,6]. Given that mutations are representa-
tions of (artificial simulations of) faults [1,11,18], it is hardly surprising that
similar concepts are used to model them. Still it is instructive to see that rela-
tive correctness can be determined by comparing competence domains whereas
mutant subsumption can be determined by comparing differentiator sets; these
two sets are complements of each other, which makes sense since subsumption
and relative correctness aim to represent opposite properties: semantic difference
vs. correctness (semantic compliance). Highlighting the analogy between these
two concepts and the related research efforts enables us to exchange results and
insights between these two research directions which have so far proceeded inde-
pendently; in this paper we have barely started to explore potential synergies,
but we anticipate that much remains to be investigated.

Even though the property of subsumption is originally applied to individual
mutants, we find that when we apply it to sets of mutants we find greater
opportunities for minimizing mutant sets.

6.2 Prospects

We envision several possible venues for exploring the impact of this duality
between mutant subsumption and relative correctness of candidate programs;
these are considered for future investigation.

Beyond the mechanics of analyzing and exploiting subsumption relationships
between mutants or sets of mutants, we raise the problem of cost-effectiveness:
If we are interested to minimize the number of mutants, an intuitive approach
would be to highlight equivalence relations between mutants, and select one
mutant from each equivalence class. On the other hand, it is clear that sub-
sumption relations hold between equivalence classes, in the sense that if M ′

subsumes M then any member of the equivalence class of M ′ subsumes any
member of the equivalence class of M . Hence the difference between minimiz-
ing the number of mutants by the criterion of equivalence and minimizing the
number of mutants by the criterion of subsumption amounts to the difference
between the number of equivalence classes and the number of maximal nodes
in the subsumption graphs. Whether this difference justifies the extra complex-
ity and uncertainty involved in using subsumption remains an open problem.
Also, it may be useful to apply the criterion of equivalence first, then apply the
criterion of subsumption between provably non-equivalent mutants.

Acknowledgement. This work is partially supported by NSF under grant number
DGE1565478.

28 B. Khaireddine et al.

References

1. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for
testing experiments? In: Proceedings of ICSE (2005)

2. Brink, C., Kahl, W., Schmidt, G.: Relational Methods in Computer Science.
Advances in Computer Science, Springer Verlag, Berlin (1997). https://doi.org/
10.1007/978-3-7091-6510-2

3. Budd, T.A., DeMillo, R.A., Lipton, R.J., Sayward, F.: Theoretical and empirical
studies on using program mutation to test the functional correctness of programs.
In: Proceedings of 7th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 1980, pp. 220–233, January 1980

4. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. IEEE Comput. 11(4), 34–41 (1978)

5. Desharnais, J., Diallo, N., Ghardallou, W., Frias, M.F., Jaoua, A., Mili, A.: Rela-
tional mathematics for relative correctness. In: Kahl, W., Winter, M., Oliveira,
J.N. (eds.) RAMICS 2015. LNCS, vol. 9348, pp. 191–208. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24704-5 12

6. Desharnais, J., Diallo, N., Ghardallou, W., Mili, A.: Projecting programs on spec-
ifications: definitions and implications. Sci. Comput. Program. 138, 26–48 (2017)

7. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Hoboken (1976)
8. Gries, D.: The Science of Programming. Springer, Heidelberg (1981). https://doi.

org/10.1007/978-1-4612-5983-1
9. Guimaraes, M.A., Fernandes, L., Riberio, M., d’Amorim, M., Gheyi, R.: Optimiz-

ing mutation testing by discovering dynamic mutant subsumption relations. In:
Proceedings of 13th International Conference on Software Testing, Validation and
Verification (2020)

10. Hehner, E.C.R.: A Practical Theory of Programming. Prentice Hall, Hoboken
(1992)

11. Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are
mutants a valid substitute for real faults in software testing? In: Proceedings of
FSE (2014)

12. Kurtz, B., Amman, P., Delamaro, M.E., Offutt, J., Deng, L.: Mutant subsump-
tion graphs. In: Proceedings of 7th International Conference on Software Testing,
Validation and Verification Workshops (2014)

13. Kurtz, B., Ammann, P., Offutt, J.: Static analysis of mutant subsumption. In:
Proceedings of IEEE 8th International Conference on Software Testing, Verification
and Validation Workshops (2015)

14. Manna, Z.: A Mathematical Theory of Computation. McGraw-Hill, New York
(1974)

15. Mili, A., Frias, M.F., Jaoua, A.: On faults and faulty programs. In: Höfner, P.,
Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMICS 2014. LNCS, vol. 8428, pp.
191–207. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06251-8 12

16. Mili, A.: Differentiators and detectors. Inf. Process. Lett. 169, 106111 (2021)
17. Mills, H.D., Basili, V.R., Gannon, J.D., Hamlet, D.R.: Structured Programming:

A Mathematical Approach. Allyn and Bacon, Boston (1986)
18. Namin, A.S., Kakarla, S.: The use of mutation in testing experiments and its

sensitivity to external threats. In: Proceedings of ISSTA (2011)
19. Shin, D., Bae, D.H.: A theoretical framework for understanding mutation-based

testing methods. In: Proceedings of ICST 2016, Chicago, IL, April 2016
20. Shin, D., Yoo, S., Bae, D.-H.: A theoretical and empirical study of diversity-aware

mutation adequancy criterion. IEEE TSE 44(10), 914–931 (2018)

https://doi.org/10.1007/978-3-7091-6510-2
https://doi.org/10.1007/978-3-7091-6510-2
https://doi.org/10.1007/978-3-319-24704-5_12
https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/978-3-319-06251-8_12

What We Talk About When We Talk
About Software Test Flakiness

Morena Barboni1(B) , Antonia Bertolino2 , and Guglielmo De Angelis1

1 IASI-CNR, Rome, Italy
{morena.barboni,guglielmo.deangelis}@iasi.cnr.it

2 ISTI-CNR, Pisa, Italy
antonia.bertolino@isti.cnr.it

Abstract. Software test flakiness is drawing increasing interest among
both academic researchers and practitioners. In this work we report our
findings from a scoping review of white and grey literature, highlighting
variations across flaky tests key concepts. Our study clearly indicates the
need of a unifying definition as well as of a more comprehensive analysis
for establishing a conceptual map that can better guide future research.

Keywords: Flaky tests · Flakiness · Software testing · Scoping review

1 Introduction

In recent years research aiming at understanding and mitigating the problem
of test flakiness has boomed, also pushed by alarms raised by big companies as
Google [29], Facebook [27] or Apple [17], among others, on the extent and cost
of this phenomenon.

However, in the fast rising of articles addressing the theme, researchers pro-
vide different characterizations and modelings of the involved aspects and con-
nected techniques. Terms such as flaky or intermittent or non-deterministic are
used by some as synonyms, by others to identify differing test behaviors. Some
works study in depth the causes of flakiness and introduce more specific test
characterizations. However, as it is inevitable when many authors work in con-
currence, a same concept is introduced in more articles using differing terms.

Lack of a shared terminology and of an agreed conceptual scheme may be
confounding and may also waste effort in re-inventing existing knowledge. For
instance, already in the 90’s Carver and Tai [6] warned that multiple executions
of a concurrent program under a same test input might produce different results,
if the underlying sequence of synchronization events is not specified. This sounds
to us closely related with those flaky test categories commonly classified as due
to concurrency or asynchronous wait [26], but to the best of our knowledge no
recent article has ever acknowledged the evident connection. On the other hand,

Work supported by the Italian MIUR PRIN 2017 Project: SISMA (Contract
201752ENYB), and partially by the Italian Research Group: INdAM-GNCS.

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 29–39, 2021.
https://doi.org/10.1007/978-3-030-85347-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_3&domain=pdf
http://orcid.org/0000-0002-1281-4058
http://orcid.org/0000-0001-8749-1356
http://orcid.org/0000-0002-1076-0076
https://doi.org/10.1007/978-3-030-85347-1_3

30 M. Barboni et al.

our analysis of the literature also emphasizes how the same term of a “flaky test”
can refer to situations that require different treatments, e.g., in some cases fixing
the test code, in other ones refining the test environment configuration. For all
such reasons, we think that putting order in the fuzz around test flakiness can
be helpful to better guide future research efforts.

In this short paper we highlight the problem of inconsistent terminology
based on a scoping review of literature [3,30] (Sect. 2), and move some first
steps towards proposing a unifying definition and vocabulary for test flakiness
(Sect. 3), which will be the aim of our future work (Sect. 4).

2 Scoping Review of White and Grey Literature

This study aims to examine definitions and key concepts related to software
testing flakiness. For this purpose we borrow from medical research the recently
introduced approach of a scoping review [3,30]. Similarly to systematic review,
which is a better known methodology in software engineering [16], a scoping
review must apply a defined and repeatable search protocol. However, scop-
ing studies1 do not address the lengthy synthesis stage, aiming rather at a fast
descriptive appraisal of broad questions, often as a precursor to deeper system-
atic reviews. As our goal was to highlight variations behind definitions of flaky
tests, our search methodology relied on two pragmatic criteria: i) it should cover
both white and grey literature, as the phenomenon of flakiness has raised great
interest from both academic researchers and practitioners; and ii) for the sake
of timeliness, we established well-delimited boundaries to our search (explained
below). While these limitations may hinder comprehensiveness, nevertheless our
results were already sufficient to find inconsistencies, as we discuss later in this
section.

Search Methodology: The entries from the white literature have been
retrieved by consulting three among the most relevant Academic Digital
Libraries in Software Engineering, namely: Scopus, ACM Digital Library, IEEE
eXplore. For the analysis of the grey literature, we rely on articles posted on
Medium.com, a well-known online publishing platform hosting many informal
technology blogs that are frequently written/followed by Software companies
and practitioners.

We launched an automated search on the white literature sources by
querying: title, abstract and keywords; matching with: ‘‘Flaky test’’ OR
‘‘Flakiness’’, and selecting those English papers published until Feb. 2021 (date
of the query). From the collected entries, it appears evident that before Luo et
al.’s paper [26], there were only few works explicitly referring to software testing
“flakiness”.

Then, the same query string has been run on Google Search but limiting the
search space to Medium.com and by considering the top-ten returned English
articles written until Apr. 2021 (date of the query).
1 A useful comparison between systematic reviews, scoping reviews and other review

types is available from https://guides.temple.edu/systematicreviews.

http://medium.com/
http://medium.com/
https://guides.temple.edu/systematicreviews

What We Talk About When We Talk About Software Test Flakiness 31

Even though we did not include a formal snowballing process, during the
analysis of the collected entries, two blog posts, namely [12] and [29], stood out
as playing a seminal role, and therefore we decided to also include them among
the grey literature entries.

Overview of Findings: Interestingly, our preliminary analysis of the collected
entries revealed quite different implications and perspective on how literature
conceives flaky tests. Indeed there are works that explicitly refer to their ran-
domised nature: “Flaky tests are software tests that exhibit a seemingly random
outcome (pass or fail) despite exercising unchanged code” [10], but also others
that definitively reject such vision: “They are sometimes referred to as random
failures, but in reality, it’s often less about actual randomness than very repro-
ducible edge cases that happen in a seemingly random fashion” [41].

In addition, along with definitions that exclude any evolution exclusively
referring to the software under test (SUT) as in [10] above, others also cover test-
ing configurations or the execution environment: “A flaky test is a test that can
be failing or passing with no changes in the application or infrastructure” [40].

Finally, most works depict flakiness as an undesired behavior of test pro-
grams, but few others highlight how it may lead developers to disclose potential
bugs not revealed otherwise: “Part of the test or production code has a non-
deterministic outcome” [31].

For lack of space, the complete list of the collected definitions is made avail-
able online [4].

3 Commonalities in Test Flakiness Concepts

Based on the outcome of our scoping review, in the following subsections we aim
to bring some order to flaky test-related concepts (Sect. 3.1) and classifications
(Sect. 3.2), taking a first step towards the identification of a more consistent
vocabulary.

3.1 Definitions of Flaky Test Concepts

Table 1 shows a synthesis of the terminology actively used by both academics and
practitioners. This summary was derived after a careful sampling and analysis of
concepts related to the behavior of test outcomes. The most recurring definition
of Flaky Test from the literature is (1) “a test that exhibits a non-deterministic
behavior”. This suggests that any test showing both pass and failure outcomes
upon multiple repeated executions is usually marked as flaky. Conversely, Not
Flaky tests are defined by Lam et al. [22] as tests that either always pass or
always fail in a deterministic manner, whereby tests that always exhibit a failure
outcome can be further classified as Consistently Failing Tests [42]. The most
common synonym for flaky test is Non-Deterministic Test [12]. However, we
observed that considering “flaky” and “non-deterministic” as interchangeable
terms can be a source of confusion. In fact, as we discuss in Sect. 3.2, the term
Non-Deterministic is also used for designating a very specific subclass of flaky

32 M. Barboni et al.

Table 1. Definitions of flaky test concepts

Term Definition Source(s)

Non-flaky A test that either always passes or always fails [22]

Flaky (1) A test that exhibits a non-deterministic behavior [17,25,27,31,34,37,39,
45]

(2) A test that provides different results inconsistently [41]

(3) A test that fails intermittently [10,26,46]

(4) A test that fails randomly [7]

(5) A test that exhibits pass and failure outcomes

despite exercising unchanged code

[2,5,9,10,19,24,26,29,

32,33,35,36,44]

(6) A test that exhibits pass and failure outcomes

although neither the code nor the test has changed

[11,15,21,49]

(7) A regression test that exhibits pass and failure

outcomes although neither the code nor the test has

changed

[13]

(8) A test that exhibits pass and failure outcomes

although neither the code nor the test infrastructure has

changed

[40]

(9) A test that exhibits pass and failure outcomes

although neither the code nor the configuration has

changed

[18]

(10) A test that exhibits pass and failure outcomes

although the code, the inputs and the configuration have

not changed

[43]

(11) A test that exhibits pass and failure outcomes

although the SW, the HW and the TW have not changed

[42]

(12) A test that exhibits pass and failure outcomes

while exercising a potentially changed version of the code

[20,23,26,38]

(13) A test that exhibits pass and failure outcomes in

apparently identical test scenarios

[28]

(14) A test that exhibits pass and failure outcomes

although neither the test code nor the configuration

parameters has changed

[48]

(15) A test that exhibits pass and failure outcomes

while exercising a potentially changed version of the code

and a potentially evolved test environment

[22]

Non-deterministic A test exhibits both pass and failure outcomes without

any noticeable change in the code, tests, or environment

[12]

Latent flaky A test that is not currently flaky, but that could

become so due to a latent source(s) of flakiness

[33]

Intermittently failing A test that exhibits pass and failure outcomes while

there has been a potential evolution in the SW, the

HW or the TW

[42]

Consistently failing A test that exhibits a consistent failure outcome [42]

tests. On several occasions, flaky tests are also referred to as (3) “tests that
fail intermittently”. Although the manifestation of intermittent outcomes can
accurately depict the behavior of flaky tests, Strandberg et al. [42] explicitly
differentiate Intermittently Failing Tests from the former. We also observed
flaky tests being described as (4) “tests that fail randomly”. However, as specified
by Stosik [41], this definition is imprecise because the randomness of flaky tests
is only apparent. Indeed, the (2) “inconsistent behavior” of a flaky test is often
caused by a well-defined, reproducible set of conditions. Even though commonly
accepted, definitions (1–3) do not provide any insight relative to the context
in which the test exhibits an inconsistent behavior. In particular, it is unclear

What We Talk About When We Talk About Software Test Flakiness 33

whether the flakiness is associated to problems in the test code, in the SUT,
or to any other environmental factor. Moreover, they do not specify explicitly
whether any element, such as the SUT or the test code, underwent any type of
modification across different test re-runs.

Several works extend these generic definitions with additional details. In par-
ticular, definitions (5–11) agree upon the fact that flaky tests “exhibit both pass
and failure outcomes despite exercising unchanged code”. The fact that a given
test can return non-deterministic outcomes for the same code version was iden-
tified as one of the main obstacles for regression testing activities. Whenever a
developer updates the code, the tests are re-run to ensure that said changes do
not break existing functionalities. A regression test failure normally indicates
the (re)introduction of a bug that impacts previously working software. How-
ever, a test that non-deterministically passes and fails for the same code version
provides misleading signals to the developer, who might waste considerable time
and effort in debugging the code under test. While definition (5) only makes
assumptions related to the SUT, definitions (6–11) provide further constraints
as to what constitutes a flaky test. In particular, definitions (6) and (7) require
both the SUT and the test code to be unchanged, although the latter explic-
itly identifies a flaky test as a type of regression test. Other authors require the
test environment (8), the configuration (9, 10) and the inputs (10) to stay the
same upon multiple test executions. The definition (11) proposed by Strandberg
et al. [42] specifies that a flaky test yields differing verdicts when “nothing in
the SW, HW or TW has been changed.”. This vision of flakiness stems from
the analysis of test intermittence in industrial Embedded Systems (ES), which
comprise hardware (HW), software (SW), and testware (TW). The TW includes
both software and hardware components, such as test libraries and the physical
environment on which the tests are executed. This definition implies that flaky
test verdicts are not caused by modifications to the aforementioned Embedded
System components. Instead, flakiness can be due to “hidden” state or environ-
ment changes that might have occurred since the previous test run.

The vision of test flakiness described in definitions (12–15) is quite different,
in that they do not require the immutability of the code under test. In par-
ticular, definition (12) explicitly admits changes to the code under test among
multiple test re-runs. Definitions (13, 14) require the same test scenarios, and
the same test and configuration respectively, but they do not explicitly ask for
unchanged software. Lastly, definition (15) admits “a potentially changed ver-
sion of the code and a potentially evolved test environment”. We observed that
the idea of test flakiness emerging from definitions (12–15) is partly reflected by
Strandberg et al.’s [42] definition of Intermittently Failing Test for the Embedded
Systems domain. As introduced earlier, the authors provide a separate defini-
tion for Intermittently Failing Tests, in that Flaky Tests as defined in (11) can
be rarely observed in practice. Indeed, industrial ES undergo rapid and frequent
changes during their development process. Conversely, an Intermittently Fail-
ing Test provides different verdicts over time, but it “allows changes in the SW
or HW of the ES under test, as well as in the TW used for testing”. Definition

34 M. Barboni et al.

(15) used in more traditional software systems is particularly in line with this
vision of test intermittence, as it also admits changes in the code and test envi-
ronment. To complete this preliminary categorization, we also report the concept
of Latent Flaky Test proposed by Parry et al. [33]. A Flaky Test is said to
be latent if it contains a source of flakiness that has not yet manifested. The
concept of latent flakiness brings further attention to the problem of exposing
test flakiness as soon as possible, so as to improve the reliability of the test suite.

3.2 Classification of Flaky Tests

As for different types of flakiness, many works broadly split flaky tests into two
groups based on the underlying source of flakiness (Table 2). The dashed line
denotes the separation of different classifications of flaky tests that we encoun-
tered during our research. Order-Dependent (OD) tests are usually described
as tests that “can pass or fail based on the order in which they are run”. The
unreliability of OD test verdicts is generally caused by their reliance on some
environment state that has been improperly (re)set by another test execution.
Although the research community seems to agree on the concept of OD test,
a minority of works [20,22] further extend definition (1), specifying that OD
tests actually exhibit deterministic behavior. In other words, an OD test either
always passes or always fails for each order of tests, and there exist at least
two orders for which it provides different verdicts. The flaky tests that do not
match this requirement are commonly identified as Non Order-Dependent
(NOD). A typical example would be a test that uses the result of an asyn-
chronous call without waiting for it to be ready. Based on the availability of the
requested resource, the test can non-deterministically pass (or fail) regardless
of its execution order. The possible root causes of flakiness for a NOD test are
plentiful, but discussing them is out of scope for this work, as they have already
been broadly investigated and analyzed in the literature [1,10,18,26,42,44,49].
During our research, we also encountered the term Non-Deterministic (ND)
being used for identifying a test that “passes or fails with no changes to test exe-
cution order”. Therefore, using “flaky” and “non-deterministic” interchangeably
might be confusing in certain contexts, as OD tests can be flaky whilst providing
a deterministic outcome for a specific order. Conversely, NOD tests always show
a non-deterministic outcome regardless of the order in which they are run(1).
Lam et al. [22] provide a more specific definition of NOD tests (2), hinting at an
underlying order-dependency. Depending on the failure rate associated to each
order, they classify a NOD test as either a NDOI or a NDOD, which we discuss
later.

Classification of OD Tests. According to several works [23,38], there exist
two different types (see Table 2) of OD flaky tests: Victim (OD-Vic) and Brittle
(OD-Brit). The difference between the two lies in the behavior of the OD test
when run in isolation from the test suite. If an OD test “consistently passes when
run by itself, but fails when run in combination with some other test(s)”, then
it is marked as a Victim. Indeed, it suffers the consequences of executing other

What We Talk About When We Talk About Software Test Flakiness 35

Table 2. Classification of flaky tests

Order-dependent tests

Term Definition Source(s)

OD (1) A test that can pass or fail based on
the order in which it is run

[2,10,14,21,23,26,36,38,47]

(2) A test that can deterministically
pass or fail based on the order in which
it is run

[20,22]

Victim OD test that always passes when run in
isolation from other tests

[23,38]

Brittle OD test that consistently fails when run
in isolation from other tests

[23,38]

Non order-dependent tests

Term Definition Source(s)

NOD (1) A test that non-deterministically
passes and fails regardless of its
execution order

[2,20]

(2) A test that non-deterministically
passes and fails for at least one
execution order

[22]

ND A test that non-deterministically passes
or fails with no changes to test
execution order or implementation of
test dependencies

[23]

NDOD NOD test where at least one order’s
failure rate significantly differs from
other orders’ failure rates

[22]

NDOI NOD tests where all failure rates do not
significantly differ

[22]

ID A test whose outcome depends on the
implementation of a non-deterministic
specification

[23]

Smelly A test that might be flaky due to the
presence of a test smell (i.e. a bad
testing practice)

[1,2,42]

tests (i.e., polluters) that modify the test environment state without cleaning it
up. On the other hand, a Brittle “fails when run in isolation but passes when
run with some other test(s)”. The flakiness of a Brittle comes from its reliance
on some state that should be set up by other tests. When this precondition is
missing, the Brittle exhibits a failing behavior. Table 3 illustrates additional def-
initions for tests that, although not flaky, play an important role in the behavior
of OD tests. As introduced earlier, a Polluter (or State-Polluting test) is (1) “a
test that pollutes (i.e. modifies) the state shared across tests”. Gyori et al. [14]
specify that if a test makes assumptions about the shared location, the result-
ing dependency can affect the reliability of its outcome. Shi et al. [38] provide

36 M. Barboni et al.

Table 3. Classification of order-dependent related tests

Term Definition Source(s)

Polluter (1) A test that pollutes (i.e. modifies) the shared
state

[14]

(2) A test that pollutes the state on which a
Victim depends

[38]

Helper A test whose logic (re)sets the state required for
an Order-Dependent test to pass

[38]

Cleaner A test order that resets the state polluted by a
polluter

[38]

State-Setter A test order that sets up the state for a brittle [38]

a consistent definition (2), although they clarify that a Polluter can comprise
multiple tests, as long as their combination causes a Victim to fail consistently.
It is worth noting that both definitions suggest that a Polluter always causes
its Victim to fail, raising a “false alarm”. While this is the most common sce-
nario [47], a polluter might also generate a state in which an OD test accidentally
passes, masking a real fault in the code under test. Such failures are sometimes
referred to as missed alarms [47] or silent horrors [45]. Shi et al. [38] also pro-
vide a definition for Helpers. These are commonly run in between OD tests to
ensure that the state is properly cleaned or set up before their execution. In par-
ticular, the Cleaners reset the state previously modified by a Polluter, so that
subsequent OD tests are not negatively affected by the dependency. Conversely,
State-Setters implement logic that purposefully sets up the state required for
a Brittle to pass.

Classification of NOD Tests. As introduced earlier, a NOD test inconsis-
tently passes and fails even for the same execution order. Given the erratic
and usually infrequent manifestation of NOD flakiness, these tests are generally
harder to identify and debug. Indeed, the inconsistency of the test outcomes is
not simply attributable to the presence of a test order dependence. However, a
recent work of Lam et al. [22] questions the adequacy of this definition, speci-
fying that NOD flakiness can sometimes be affected by the execution order. As
a result of this observation, the authors further refine the definition of a NOD
tests, specifying that it (2) “fails non-deterministically for at least one order
(failure rate is neither 0% nor 100%)”. Depending on the failure rate associated
to each execution order, a NOD test can be further classified into two groups.
Non-Deterministic Order-Dependent (NDOD) show a significantly higher
failure rate for at least one execution order. Since there exists an order for which
the flakiness is much more likely to manifest, NDOD tests are characterized by
an underlying order dependence. NDOD tests should not be confused with OD
tests, because the latter always behave in a deterministic manner. On the other
hand, Non-Deterministic Order-Independent (NDOI) tests are character-
ized by a similar failure rate for each possible execution order, thus they are more

What We Talk About When We Talk About Software Test Flakiness 37

in line with the general idea of non order-dependent test. Again, this underlines
the fact that Non-Deterministic tests and Flaky Tests should not be used as
synonyms. Although NOD tests can be further classified according to the root
causes of their flakiness, here we just focus on two further definitions that might
generate confusion among researchers and practitioners. An Implementation
Dependent (ID) test is defined by Lam et al. [23] as “a test whose outcome
depends on the implementation of a non-deterministic specification”. Therefore
it can be identified as a NOD test whose flakiness is caused by wrong assumptions
about the SUT, which unexpectedly behaves in inconsistent manners. Lastly, a
Smelly Test is not necessarily flaky. The term “smelly” is commonly used for
identifying any kind of a poorly designed test. We can depict a test smell as an
anti-pattern that decreases the quality of the test suite and/or the code under
test. The effects of a test smell can range from poor test code understandabil-
ity up to pontentially missing severe bugs into the SUT. Several works [1,2,42]
identify the presence of a test smell as a potential cause for test flakiness as well.
In particular, Alshammari et al. [2] report specific classes of smells that can be
commonly found in flaky tests. For instance, the Mistery Guest smell can be
found in a test whose execution relies on some external resources. The under-
lying dependency can cause the test to exhibit a non-deterministic behavior, in
that the availability of such resources can change over time.

4 Conclusions and Future Work

Motivated by the lack of a consistent vocabulary, we undertook a pragmatic
scoping review of white and grey literature, based on which we reported a first
analysis of definitions relative to flakiness concepts, as well as a first classification
of flaky test types. This study provides a preliminary assessment of key concepts
and evidences the need of establishing an agreed terminology, perhaps after
having conducted a more extensive synthesis of current knowledge. We think that
the study of causes and remedies to test flakiness must also link to other related
research topics, such as the already mentioned early literature on replaying of
concurrent tests [6] or even the several studies about the nature of bugs [8].

References

1. Ahmad, A., Leifler, O., Sandahl, K.: Empirical analysis of factors and their effect
on test flakiness-practitioners’ perceptions. arXiv preprint arXiv:1906.00673 (2019)

2. Alshammari, A., Morris, C., Hilton, M., Bell, J.: FlakeFlagger: predicting flakiness
without rerunning tests. In: Proceedings of ICSE Art. Ev. Track. IEEE (2021)

3. Arksey, H., O’Malley, L.: Scoping studies: towards a methodological framework.
Int. J. Soc. Res. Methodol. 8(1), 19–32 (2005)

4. Barboni, M., Bertolino, A., De Angelis, G.: Supplemental material: what we talk
about when we talk about software test flakiness (2021)

5. Bell, J., Legunsen, O., Hilton, M., Eloussi, L., Yung, T., Marinov, D.: DeFlaker:
automatically detecting flaky tests. In: Proceedings of ICSE, pp. 433–444. ACM
(2018)

http://arxiv.org/abs/1906.00673

38 M. Barboni et al.

6. Carver, R.H., Tai, K.C.: Replay and testing for concurrent programs. IEEE Softw.
8(2), 66–74 (1991)

7. Champier, C.: Flaky tests caused by a production bug: fix the flakiness, not the
bug, February 2019. medium.com

8. Cotroneo, D., Grottke, M., Natella, R., Pietrantuono, R., Trivedi, K.S.: Fault trig-
gers in open-source software: an experience report. In: Proceedings of ISSRE, pp.
178–187. IEEE (2013)

9. Dutta, S., Shi, A., Choudhary, R., Zhang, Z., Jain, A., Misailovic, S.: Detecting
flaky tests in probabilistic and machine learning applications. In: Proceedings of
ISSTA, pp. 211–224. ACM (2020)

10. Eck, M., Palomba, F., Castelluccio, M., Bacchelli, A.: Understanding flaky tests:
the developer’s perspective. In: Proceedings of ESEC/FSE, pp. 830–840. ACM
(2019)

11. Eloussi, L.: Flaky tests (and how to avoid them), September 2016. medium.com
12. Fowler, M.: Eradicating non-determinism in tests, April 2011
13. Groce, A., Holmes, J.: Practical automatic lightweight nondeterminism and flaky

test detection and debugging for Python. In: Proceedings of QRS, pp. 188–195.
IEEE (2020)

14. Gyori, A., Shi, A., Hariri, F., Marinov, D.: Reliable testing: detecting state-
polluting tests to prevent test dependency. In: Proceedings of ISSTA, pp. 223–233.
ACM (2015)

15. King, T.M., Santiago, D., Phillips, J., Clarke, P.J.: Towards a Bayesian network
model for predicting flaky automated tests. In: Proceedings of QRS-C, pp. 100–107.
IEEE (2018)

16. Kitchenham, B.: Procedures for performing systematic reviews. Keele UK Keele
Univ. 33(2004), 1–26 (2004)

17. Kowalczyk, E., Nair, K., Gao, Z., Silberstein, L., Long, T., Memon, A.: Modeling
and ranking flaky tests at Apple. In: Proceedings of ICSE-SEIP, pp. 110–119. ACM
(2020)

18. Lam, W., Godefroid, P., Nath, S., Santhiar, A., Thummalapenta, S.: Root causing
flaky tests in a large-scale industrial setting. In: Proceedings of ISSTA, pp. 101–111.
ACM (2019)

19. Lam, W., Muşlu, K., Sajnani, H., Thummalapenta, S.: A study on the lifecycle of
flaky tests. In: Proceedings of ICSE, pp. 1471–1482. ACM (2020)

20. Lam, W., Oei, R., Shi, A., Marinov, D., Xie, T.: iDFlakies: a framework for detect-
ing and partially classifying flaky tests. In: Proceedings of ICST, pp. 312–322.
IEEE (2019)

21. Lam, W., Shi, A., Oei, R., Zhang, S., Ernst, M.D., Xie, T.: Dependent-test-aware
regression testing techniques. In: Proceedings of ISSTA, pp. 298–311. ACM (2020)

22. Lam, W., Winter, S., Astorga, A., Stodden, V., Marinov, D.: Understanding repro-
ducibility and characteristics of flaky tests through test reruns in Java projects.
In: Proceedings of ISSRE, pp. 403–413. IEEE (2020)

23. Lam, W., Winter, S., Wei, A., Xie, T., Marinov, D., Bell, J.: A large-scale longitu-
dinal study of flaky tests. Proc. ACM Program. Lang. 4(OOPSLA), 1–29 (2020)

24. Lee, B.: We have a flaky test problem, November 2019. medium.com
25. Liviu, S.: A machine learning solution for detecting and mitigating flaky tests,

October 2019. medium.com
26. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests.

In: Proceedings of FSE, pp. 643–653. ACM (2014)
27. Machalica, M., Samylkin, A., Porth, M., Chandra, S.: Predictive test selection. In:

Proceedings of ICSE-SEIP, pp. 91–100. IEEE (2019)

http://medium.com/
http://medium.com/
http://medium.com/
http://medium.com/

What We Talk About When We Talk About Software Test Flakiness 39

28. Malm, J., Causevic, A., Lisper, B., Eldh, S.: Automated analysis of flakiness-
mitigating delays. In: Proceedings of AST, pp. 81–84. IEEE (2020)

29. Micco, J.: Flaky tests at Google and how we mitigate them, May 2016D
30. Munn, Z., Peters, M.D., Stern, C., Tufanaru, C., McArthur, A., Aromataris, E.:

Systematic review or scoping review? Guidance for authors when choosing between
a systematic or scoping review approach. BMC Med. Res. Methodol. 18(1), 1–7
(2018)

31. Otrebski, K.: Flaky tests, April 2018. medium.com
32. Palmer, J.: Test flakiness - methods for identifying and dealing with flaky tests,

November 2019. medium.com
33. Parry, O., Kapfhammer, G.M., Hilton, M., McMinn, P.: Flake it’till you make it:

using automated repair to induce and fix latent test flakiness. In: Proceedings of
ICSE Workshops, pp. 11–12. ACM (2020)

34. Presler-Marshall, K., Horton, E., Heckman, S., Stolee, K.: Wait, wait. No, tell me.
Analyzing selenium configuration effects on test flakiness. In: Proceedings of Wksp
AST, pp. 7–13. IEEE (2019)

35. Rahman, M.T., Rigby, P.C.: The impact of failing, flaky, and high failure tests
on the number of crash reports associated with Firefox builds. In: Proceedings of
ESEC/FSE, pp. 857–862. ACM (2018)

36. Shi, A., Bell, J., Marinov, D.: Mitigating the effects of flaky tests on mutation
testing. In: Proceedings of ISSTA, pp. 112–122. ACM (2019)

37. Shi, A., Gyori, A., Legunsen, O., Marinov, D.: Detecting assumptions on determin-
istic implementations of non-deterministic specifications. In: Proceedings of ICST,
pp. 80–90. IEEE (2016)

38. Shi, A., Lam, W., Oei, R., Xie, T., Marinov, D.: iFixFlakies: a framework for
automatically fixing order-dependent flaky tests. In: Proceedings of ESEC/FSE,
pp. 545–555. ACM (2019)

39. Silva, D., Teixeira, L., d’Amorim, M.: Shake it! Detecting flaky tests caused by
concurrency with Shaker. In: Proceedings of ICSME, pp. 301–311. IEEE (2020)

40. S�lapiński, M.: What is flakiness and how we deal with it, February 2020.
medium.com

41. Stosik, D.: Dealing with flaky tests, November 2019. medium.com
42. Strandberg, P.E., Ostrand, T.J., Weyuker, E.J., Afzal, W., Sundmark, D.: Inter-

mittently failing tests in the embedded systems domain. In: Proceedings of ISSTA,
pp. 337–348. ACM (2020)

43. Terragni, V., Salza, P., Ferrucci, F.: A container-based infrastructure for fuzzy-
driven root causing of flaky tests. In: Proceedings of ICSE-NIER, pp. 69–72. IEEE
(2020)

44. Thorve, S., Sreshtha, C., Meng, N.: An empirical study of flaky tests in android
apps. In: Proceedings of ICSME, pp. 534–538. IEEE (2018)

45. Vahabzadeh, A., Fard, A.M., Mesbah, A.: An empirical study of bugs in test code.
In: Proceedings of ICSME, pp. 101–110. IEEE (2015)

46. Waterloo, M., Person, S., Elbaum, S.: Test analysis: searching for faults in tests
(N). In: Proceedings of ASE. IEEE, November 2015

47. Zhang, S., et al.: Empirically revisiting the test independence assumption. In: Pro-
ceedings of ISSTA, pp. 385–396. ACM (2014)

48. Ziftci, C., Cavalcanti, D.: De-Flake your tests: automatically locating root causes
of flaky tests in code at Google. In: Proceedings of ICSME, pp. 736–745. IEEE
(2020)

49. Zolfaghari, B., Parizi, R.M., Srivastava, G., Hailemariam, Y.: Root causing, detect-
ing, and fixing flaky tests: state of the art and future roadmap. Softw.: Pract. Exp.
51, 851–867 (2020)

http://medium.com/
http://medium.com/
http://medium.com/
http://medium.com/

Looking for the Needle in the Haystack:
End-to-end Tests in Open Source Projects

Francisco Gortázar(B) , Michel Maes-Bermejo , Micael Gallego ,
and Jorge Contreras Padilla

Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
{francisco.gortazar,michel.maes,micael.gallego}@urjc.es,

j.contrerasp@alumnos.urjc.es

https://www.urjc.es/

Abstract. There’s a common agreement in the industry that integra-
tion and end-to-end (e2e) tests are a challenge for many teams wanting
to enable frequent deployments while at the same time guaranteeing
quality. What this means for the research community is that there are
open research problems that might be interesting to solve. However, lit-
tle effort is put by academia on these integration and e2e tests. Truth is
that all datasets available for research in software testing are focused on
unit tests.

In this paper we propose an approach to build datasets of e2e tests
from active open source projects. The approach is based on mining open
source repositories from GitHub, in order to find those projects contain-
ing e2e tests. We defined 12 different criteria to find those tests. We
investigate which of the 12 criteria are more reliable for detecting this
kind of tests by manually analyzing the results of these criteria on 100
projects from GitHub. Then we performed a search on 1,800 projects
(900 Java-specific, and 900 not constrained to Java), and used the three
most promising criteria to detect e2e tests within all of them. Our results
show that it is easier to detect this kind of tests in Java projects than
on projects using other programming languages. Also, more than 500
projects were reported as having e2e tests. We hypothesize that good
e2e test datasets could be built out of these results.

Keywords: Testing · End-to-end tests · Integration tests

1 Introduction

There’s a common agreement in the industry [6] that integration and end-to-
end tests (e2e tests for short in the rest of the paper) are a challenge for many

This work has been supported by the Government of Spain through project “BugBirth”
(RTI2018-101963-B-100), the Regional Government of Madrid (CM) through project
Cloud4BigData (S2013/ICE-2894) cofunded by FSE & FEDER and the European
Commission through European Project H2020 822717: MICADO.

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 40–48, 2021.
https://doi.org/10.1007/978-3-030-85347-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_4&domain=pdf
http://orcid.org/0000-0002-2183-0869
http://orcid.org/0000-0002-8138-9702
http://orcid.org/0000-0002-2875-7342
https://doi.org/10.1007/978-3-030-85347-1_4

Looking for the Needle in the Haystack 41

teams wanting to enable frequent deployments while at the same time guaran-
teeing quality. What this means for the research community is that there are
open research problems that might be interesting to solve. However, little effort
is put on these integration and e2e tests. Truth is that all datasets available for
research in software testing, are focused on unit tests. Therefore, all the solu-
tions published for the different problems in software testing research (Test Case
Prioritization, Test Case Minimization, Test Case Selection, Bug localization, to
name a few) might be fundamentally biased. How do we know that solutions for
unit tests will work successfully for e2e tests? It could be the case that solutions
that consider, for instance, test case running times, provide better results.

Research datasets for software testing research, consider usually open source
projects, which are more easily available. However, tests in those datasets are
mostly unit tests, for several reasons. First, most open source projects considered
do not contain integration or end-to-end (e2e) tests, as they are programming
libraries that do not expose an API over the network. Second, e2e tests are
difficult to run, as they usually require to start the whole project and its depen-
dencies before e2e tests can be actually run. Finally, e2e tests are in many cases
difficult to detect. How to pick up projects that really contain e2e tests? This
work proposes an approach to detect, by inspecting projects from GitHub, which
of those projects are promising candidates that might contain e2e tests.

Building a dataset of e2e tests is a huge task that requires fulfilling several
steps, one at a time:

– Mining project repositories for e2e tests. This task is the purpose of this paper,
and its objective is to find open source projects that contain e2e test cases
by means of using heuristics based on e2e test best practices and common
approaches in the industry. At the end of this step, a list E of open source
projects with e2e tests is identified.

– Collecting e2e test runs. The purpose of this task is to find regressions from
actual runs of the e2e tests of the project. Either the project’s continuous
integration information, if publicly available, is used, or researchers will have
to run the e2e tests by themselves on each commit. At the end of this step, a
list of runs of the e2e tests R at different commits with their associated data
(logs, test results, etc.) are available.

– Mining runs of e2e tests mapping failures to fixes. The purpose of this step
is to detect e2e test case failures, determining if those are regressions, and
mapping the failure with the fixing commit. At the end of this step, a list
of regressions R is available, with its associated data (commit on which the
regression was detected by an e2e test case, fixing commit, etc.)

Any of those steps require a considerable effort. This paper focuses on detect-
ing open source projects in GitHub which contain integration or e2e tests. This
is a mandatory first step in order to be able to build dataset of e2e tests that
can be used by the research community.

The rest of the paper is structured as follows: Sect. 2 discusses existing
datasets of tests. Section 3 introduces the methodology followed in our study.

42 F. Gortázar et al.

Results are discussed in Sect. 4. Finally, Sect. 5 concludes the paper and pro-
vides future research directions.

2 Related Work

In a previous work [8], authors used three applications from the students of the
subject Development of Web Applications from the Software Engineering degree
at Rey Juan Carlos University to build a dataset of e2e tests. These projects have
been built as complete and functional applications, getting as close as possible
to how an application would be developed in the industry. All the applications
consist on a backend written in Java using the Spring framework, and a frontend,
and the three of them require a MySQL database to store contents. Authors
then injected regression bugs into the three applications in a controlled way,
imitating the way developers work in many cases on a project: each bug was
introduced during the development of a feature in a separate branch of the
project. Therefore, all the bugs are properly identified, and thus making possible
to use it in many research works. However, the dataset was quite limited, as it
provided only 6 bugs.

Other datasets all consider exclusively unit tests. Bugs.jar [7] is a large-
scale dataset for research in automated debugging, patching, and testing of Java
programs. It contains a total of 1,158 bugs and patches from 8 large open source
Java projects.

The iBugs [2] project provides a repository of real bugs in Java projects.
It contains 364 bugs, of which there is only one test that reveals the bug, and
it includes mechanisms to get the corrected version of the bug, as well as its
previous version for comparison. The dataset tools also allows the execution of
the tests in both versions.

Defects4J [4] is an extensible framework which provides real bugs to enable
reproducible studies. This framework contains 835 real bugs from 17 real-world
open source projects written in Java. Each bug included in their dataset contains
information about the commit where the bug is fixed (which includes at least
one test that reveals the bug), plus a failed commit to compare them. All bugs
have their origin in the source code, are reproducible (both their failed and fixed
versions) and the fix-commit does not include changes unrelated to the fix. The
most recent version of the dataset includes a docker image to ease working with
it.

BugsJS [3] is the first large benchmark of 453 real manually selected and
validated JavaScript bugs from 10 popular server-side programs. Like Defects4J,
it facilitates the reproducibility of the execution of the tests, specifically repro-
ducing the environment from a Docker image.

Due to the increasing use of Python, datasets of this language have emerged
for research. One of the most recent and relevant is BugsInPy [9]. This dataset
is inspired by Defects4J and according to the authors follows a similar structure,
including 493 bugs in 17 Python projects.

Looking for the Needle in the Haystack 43

Another Python dataset, specifically oriented to research in Data Science is
Boa Meets Python [1], which gathers 1,558 Python projects available in GitHub,
all of them focused on solving Data Science tasks like machine learning.

A more recent dataset is ManySStuBs4J [5], in which the authors provide
153,652 single statement bug-fix changes mined from 1,000 popular open-source
Java projects. Although oriented to research on program repair, many studies
use it to train bug detection models, research about the authorship of commits
or the time it takes for a bug to be fixed.

3 Methodology

For our aim of being able to detect promising project candidates that might
contain e2e test, we first deeply investigated some projects containing e2e tests,
in order to come up with some criteria that might work in detecting them (i.e.,
criteria that, when applied to this list of projects would detect at least one of the
projects in the list). Then, we validated the criteria in a set of 100 projects from
GitHub. We applied each criterion to the 100 projects. The criterion can provide
a positive (the project satisfies the criterion, and might contain e2e tests under
such criterion) or a negative (that specific criterion is not satisfied). Then we
inspected each of the 100 projects, and confronted our findings with those of the
proposed criteria, by marking the result provided by each criterion for a specific
project as true positive (the criterion was positive, and there were tests), true
negative (the criterion was negative and there weren’t tests), false positive (the
criterion was positive, and there weren’t tests), and false negative (the criterion
was negative and there were tests). With this information, we pruned the original
criteria and chose the four criteria that were the most promising on the set of
100 projects (i.e., those that provided more true positives, as we are interested
in finding e2e tests).

The specific steps of our methodology are as follows:

– Selecting some open source projects with e2e tests.
– Studying the selected projects in order to: a) check whether they actually

included e2e tests; b) write down any relevant information about the tests
(location and test case names.)

– Based on information about the test collected in the previous step, preparing
a set of criteria that can identify at least one of the selected projects.

– Select 100 popular GitHub projects
– Check every criterion on each of the projects, recording whether the criterion

was positive or negative.
– Manually check every positive (i.e., a criterion that was successful) to discard

false positives.
– Pruning the set of criteria, selecting only those that are actually effective.
– Running the selected criteria over two different queries: 900 popular java

projects, and 900 popular projects on any language.

44 F. Gortázar et al.

For the first step, one of the authors, with more experience in developing,
maintaining and running e2e tests and their infrastructure (including continu-
ous integration systems), selected some open source projects, programmed in
different programming languages, that according to their nature might have e2e
tests. These projects were further analyzed by the rest of the authors. For each
project, authors reported if there were e2e tests, and their location (folder and
test case names). This labeling is shown in Table 1.

Table 1. Projects analyzed in step 1.

Project Language Findings

Redis C Integration folder

RabbitMQ Erlang Not found

Envoy C++ Integration folder, Azure pipeline (CI)

Traefik Go Integration folder

Redmine Ruby Integration and system folders, Jenkinsfile (CI)

Ingress-nginx Go E2e folder, github actions

Vuejs Javascript E2e, circle-ci

Angular Javascript Integration and e2e folders

Kafka Java Docker and endtoend folders

Camel Java itest folder

Cassandra Java Distributed folder, Jenkinsfile

Consul Go Integration folder

Flink Java End-to-end folder

Vscode Javascript Integration folder

Grafana Javascript e2e folder

Express Javascript Acceptance folder

It is common practice that e2e tests are kept separated from unit tests, and
run at different moments during the software development lifecycle. For instance,
unit tests are usually run on each build in a continuous integration (CI) system,
whereas e2e tests might only be run on specific events, like a merge into the
main branch, or a pull request, as they usually require deploying the application
before actually running the tests. We planned to use this common practice of
keeping unit and e2e tests separated to figure out ways in which e2e tests could be
identified. After a detailed inspection of the selected projects, a set of 12 criteria
for detecting e2e tests was agreed by the authors. This agreement took place as
follows: the three authors proposed one or more criteria for each of the projects
that might work well in identifying the e2e tests for the given project. Then, two
of the authors with more experience, decided which of those criteria made sense.
Reasons for excluding a criteria included specificity (a criterion too specific to
work as a general rule), and difficulty in assessing if the criteria is satisfied. Both

Looking for the Needle in the Haystack 45

authors reviewing the criteria voted to include or exclude a criterion. When
there was agreement, the criterion was kept or removed, when there wasn’t, the
senior researcher decided whether to keep or remove the criterion. The final list
of criteria is as follows:

– Integration: An integration folder into a test folder. Precisely, we search for
a folder named integration within a folder named test.

– System: A system folder into a test folder. Precisely, we search for a folder
named system within a folder named test.

– E2e: An e2e folder.
– Itest: An itest folder
– Acceptance: An acceptance folder
– Distributed: A distributed folder
– End-to-end: An end-to-end folder
– Docker: A docker folder
– Swagger: Presence of Swagger files
– Test name: Test case file names starting or ending in IT, or test case file

names containing e2e, system or rest-assured
– Dependencies: The following dependencies on pom.xml/build.xml files:

selenium-java, rest-assured
– CI: Presence of the following files denoting configuration of CI systems:

Jenkinsfile, .travis-ci.yml, .circle-ci, .github/workflows/pipeline.yml, .azure-
pipelines/pipelines.yml, .gitlab-ci.yml

On our second stage, we selected 100 projects from GitHub. The projects
were selected according to the following criteria: any language and at least 500
stars in GitHub and at least 300 forks and created before 2015 and active with
pushes after January 2020 and not archived and public. From the returned list we
selected the first 100. After collecting the projects, the 12 criteria were applied
to each project, noting which of them were bringing a positive (the criteria is
satisfied, thus possible presence of e2e tests). Then we did a manual check of
each of the projects bringing at least a positive in one of the criteria to discard
false positives. Based on our findings, we then selected the three most effective
criteria: those providing more true positives. Specifically, the selected criteria
were: integration, e2e, and test name.

Finally, on our third stage consisted on applying the three criteria selected
from the previous stage on two different sets. A set of 900 popular and active
projects from GitHub, and a set of 900 popular and active Java projects from
GitHub. Notice that for the first set of 900 projects, no language constraint was
enforced. The set contains projects on different languages, including Java. For
the project selection we used the same query as for the 100 selection, but selected
the first 900 projects. In the specific case of Java projects, we added to the query
the Java language, and again we selected the first 900 projects. We applied each
criterion to the 1,800 projects and noted which were positive on which criteria.

46 F. Gortázar et al.

4 Results

Our results are discussed in two stages. First, we report results for the 100
projects inspected manually. Then, we describe results for the 1,800 projects
automatically assessed with the three selected criteria.

For the 100 projects obtained from GitHub, the results are shown in Table 2.
The Automatic column shows the number of e2e tests reported automatically
by each criterion. The Manual column shows those reported by the criterion
for which the manual inspection determined it was a true positive. Finally, the
row Total reflects the number of projects where at least one criterion reported
a positive. According to the results, the best criterion (the one with more true
positives) is integration. Other criteria with true positives are far from this one,
like e2e, docker, test name. Some criteria were not useful in detecting e2e tests,
such as acceptance, distributed, end-to-end-test swagger, dependencies or ci-files.
Note that these criteria were selected because they appeared in some projects
as a feasible way of detecting e2e tests in those projects.

The effectiveness of these criteria is limited, as all of them are below a 50%
confidence. From the total 62 positives, only 13 were actual e2e test, that is,
only 20.9% of the positives were true positives and corresponded to e2e tests.

Table 2. Preliminary experiment results with 100 Java projects

Approach Occurrences

Automatic Manual

integration 29 11

system 46 1

e2e 10 3

itest 25 1

acceptance 2 0

distributed 6 0

end-to-end-test 0 0

docker 17 2

swagger 3 0

test name 65 2

dependencies 3 0

ci-files 3 0

Total 62 13

For our final experimentation, we applied the best three criteria (integration,
e2e, and test name) to two different sets of 900 projects: one agnostic of the
programming language, and the other one based in Java. Table 3 shows the
results for the 900 Java projects. In total 344 projects were reported as having
e2e tests at least by one criterion. The largest number of positives (298) is

Looking for the Needle in the Haystack 47

reported by the integration criterion, with more than twice positives than the
second one in the ranking (test name). The other criterion was only triggered
by 45 (e2e) projects.

Table 3. Experiment results with 900 Java projects for the three selected criteria

Approach Occurrences

integration 298

e2e 45

test name 121

Total 344

Table 4 shows the results for the three selected criteria on a set of 900 projects
from different programming languages. When languages other than Java are
selected, the number of positives decreases. In total, 270 projects had at least
one positive. Again, the criterion with more positives is integration, although in
this case the number of positives is slightly smaller (237). The second criterion
in the ranking is again test name (76 positives), but in this case, followed closely
by e2e with 69 positives.

Table 4. Experiment results with 900 projects (multi language)

Approach Occurrences

integration 237

e2e 69

test name 76

Total 270

It is worth noting that these 1,800 projects were not validated manually.
Hence, actual numbers might be considerably smaller. If the confidence reported
for the preliminary experiment with 100 projects holds, that would mean that out
of 270 positives for the multi-language experiment, around 54 would correspond
to projects with actual e2e tests. For Java projects, this number would be almost
70. Despite the low confidence of the criteria, these numbers might be enough
to find sufficient e2e tests to build a proper dataset of this kind of tests.

5 Conclusions

We investigated the presence of e2e tests in open source projects in GitHub,
with the aim of building a dataset of e2e tests from real tests in active projects.
Specifically, we envisioned 12 criteria that could reveal e2e tests in projects. In
a preliminary experiment with 100 projects, we pruned the list and selected the

48 F. Gortázar et al.

three most promising criteria. Then we performed two analysis: one on a set
of 900 Java project, and another one on a set of 900 projects from different
languages.

According to the selected criteria, 344 and 270 projects contained e2e tests
(at least one criterion was positive for that project). These numbers are big
enough to ensure many tens of projects will actually contain e2e tests. In a
future research we will validate these 614 projects and include those with real
e2e tests into a dataset. This dataset will be made available to researchers on
software testing.

References

1. Biswas, S., Islam, M.J., Huang, Y., Rajan, H.: Boa meets python: a boa dataset of
data science software in python language. In: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pp. 577–581. IEEE (2019)

2. Dallmeier, V., Zimmermann, T.: Extraction of bug localization bench-
marks from history. In: Proceedings of the Twenty-second IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2007, pp.
433–436. ACM, New York (2007). https://doi.org/10.1145/1321631.1321702.
http://doi.acm.org/10.1145/1321631.1321702

3. Gyimesi, P., Vancsics, B., Stocco, A., Mazinanian, D., Árpád Beszédes, Ferenc, R.,
Mesbah, A.: BugsJS: a benchmark of javascript bugs. In: Proceedings of 12th IEEE
International Conference on Software Testing, Verification and Validation (ICST)
(2019)

4. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to
enable controlled testing studies for java programs. In: Proceedings of the
2014 International Symposium on Software Testing and Analysis, ISSTA 2014,
pp. 437–440. ACM, New York (2014). https://doi.org/10.1145/2610384.2628055.
http://doi.acm.org/10.1145/2610384.2628055

5. Karampatsis, R.M., Sutton, C.: How often do single-statement bugs occur? The
manysstubs4j dataset. In: Proceedings of the 17th International Conference on Min-
ing Software Repositories, pp. 573–577 (2020)

6. Memon, A., et al.: Taming google-scale continuous testing. In: Proceedings of the
39th International Conference on Software Engineering: Software Engineering in
Practice Track, ICSE-SEIP 2017, pp. 233–242. IEEE Press, Piscataway (2017).
https://doi.org/10.1109/ICSE-SEIP.2017.16

7. Saha, R., Lyu, Y., Lam, W., Yoshida, H., Prasad, M.: Bugs. jar: a large-scale, diverse
dataset of real-world java bugs. In: 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR), pp. 10–13. IEEE (2018)

8. Soto-Sánchez, Ó., Maes-Bermejo, M., Gallego, M., Gortázar, F.: A dataset of regres-
sions in web applications detected by end-to-end tests. In: Shepperd, M., Brito e
Abreu, F., Rodrigues da Silva, A., Pérez-Castillo, R. (eds.) QUATIC 2020. CCIS,
vol. 1266, pp. 439–448. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58793-2 35

9. Widyasari, R., et al.: BugsInPy: a database of existing bugs in python programs to
enable controlled testing and debugging studies. In: Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2020, pp. 1556–1560. Associa-
tion for Computing Machinery, New York (2020). https://doi.org/10.1145/3368089.
3417943

https://doi.org/10.1145/1321631.1321702
http://doi.acm.org/10.1145/1321631.1321702
https://doi.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/2610384.2628055
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1007/978-3-030-58793-2_35
https://doi.org/10.1007/978-3-030-58793-2_35
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943

Evaluating Sensor Interaction Failures
in Mobile Applications

Euler Horta Marinho1,2(B) , João P. Diniz1 , Fischer Ferreira1 ,
and Eduardo Figueiredo1(B)

1 Computer Science Department, Federal University of Minas Gerais,
Belo Horizonte, MG, Brazil

{eulerhm,jpaulo,fischerjf,figueiredo}@dcc.ufmg.br
2 Computer and Systems Department, Federal University of Ouro Preto,

João Monlevade, MG, Brazil
euler@ufop.edu.br

Abstract. Mobile devices have a rich set of small-scale sensors which
improve the functionalities possibilities. The growing use of mobile appli-
cations has aroused the interest of researchers in testing mobile applica-
tions. However, sensor interaction failures are a challenging and still a
little-explored aspect of research. Unexpected behavior because the sen-
sor interactions can introduce failures that manifest themselves in spe-
cific sensor configurations. Sensor interaction failures can compromise the
mobile application’s quality and harm the user’s experience. We propose
an approach for extending test suites of mobile applications in order to
evaluate the sensor interactions aspects of mobile applications. We used
eight sensors to verify the occurrence of sensor interaction failures. We
generated all configurations considering the sensors enabled or disabled.
We observed that some pairs of sensors cause failures in some applica-
tions including those not so obvious.

Keywords: Mobile application testing · Software failures · Sensor
interactions

1 Introduction

Mobile devices have a rich set of small-scale microelectromechanical sensors
which improve the functionalities possibilities as illustrated in specific applica-
tion domains such as context-aware mobile applications [13]. Mobile applications
are context-aware in a unique way since they can integrate data from multiple
sensors [19,20]. Furthermore, the user interaction with device settings can enable
or disable some sensors increasing the space of the test inputs.

The growing use of mobile applications has aroused the interest of researchers
in testing mobile applications as evidenced by several works [10,15,16,21,24,27].
However, sensor interaction failures are a challenging and a still little-explored
aspect of research. Applications can present unexpected behaviors because the
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 49–63, 2021.
https://doi.org/10.1007/978-3-030-85347-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_5&domain=pdf
http://orcid.org/0000-0002-3288-2189
http://orcid.org/0000-0002-8066-8208
http://orcid.org/0000-0002-3643-8720
http://orcid.org/0000-0002-6004-2718
https://doi.org/10.1007/978-3-030-85347-1_5

50 E. H. Marinho et al.

sensor interactions can introduce failures that manifest themselves in specific
sensor configurations. Sensor interaction failures can compromise the mobile
application’s quality and harm the user’s experience. The literature presents
some works in this direction [4,12]. However, we lack work to evaluate sensor
interaction failures in real mobile applications and verify which sensors are most
related to failures. Testers may neglect to test mobile applications considering the
interaction of sensors due to a lack of knowledge of such failures. However, sensor
interaction failures may occur in the productive use of the mobile application
but may be imperceptible in the testing phase.

Feature interaction has been widely discussed in the configurable software
systems domain [2,7,14,18,22,23]. Initially, the feature interaction problem was
observed in the telecommunications domain [3]. Feature interactions occur when
features influence the behavior of other features. In this work, we look at sensor
interactions through an approach to turn sensors enabled or disabled.

We propose an approach for extending test suites of mobile applications in
order to evaluate the sensor interaction aspects of mobile applications. For the
sake of simplicity, we use the term “sensor” in the same sense as in the taxonomy
of Luo et al. [13] that consider hardware resources, such as Camera, Wi-Fi, and
Bluetooth, as sensors. Besides, we included devices settings that can influence
the behavior of sensors. For the sake of simplicity, we will refer to them also
as sensors. Therefore, we used eight sensors to verify the occurrence of sensor
interaction failures. We generated all combinations (28) considering the sensors
enabled or disabled. For each of the 256 configurations, we run the test suite
of 10 Android applications. Our study was designed to address the following
research questions:

RQ1: Do sensor interactions cause failures in mobile applications?
RQ2: What are the sensor interactions most likely to cause a failure?

Surprisingly, we can find sensor interaction failures that we were not aware
of before. We observed that some pairs of sensors cause failures in some appli-
cations. Moreover, the sensors used by the application must be identified in a
more systematic way, since this use can be indirect. For instance, the camera
can use location data for image tagging. Researchers can benefit from our anal-
ysis and replicate our study for other mobile applications technologies besides
Android. Testers can, through our results, see the importance of considering
sensor interaction when implementing their test suites.

The remainder of this paper is organized as follows. Section 2 describes a
motivating example. Section 3 describes the study design. Section 4 discusses
our achieved results. Section 5 presents the limitations of this work. Section 6
discusses some related work. Finally, Sect. 7 concludes this study and points
directions for future work.

2 Motivating Example

In this session, we show an example of how the combination of mobile sen-
sors, Android device settings, and application configurations may lead to an

Evaluating Sensor Interaction Failures in Mobile Applications 51

unexpected failure of the application. Traccar Client1 is an open source appli-
cation available to download at Google Play Store. In summary, it is a GPS
Tracker, which communicates with its own application server. Traccar Client
has a configuration called Accuracy, which can be set to three values: High,
Medium, or Low. To achieve the Accuracy High, it is necessary that the GPS,
Wi-Fi, Mobile data, and Bluetooth sensors are enabled on the smartphone.

According the the issue #390, opened at the Traccar issue manager at
GitHub2, it can be seen that, even if the four sensors are enabled, the appli-
cation stops changing location when its Accuracy is set do Medium. However,
works again for the other two possible values, i.e., High and Low. It is worth to
mention that the referred issue was registered in 2019 and remains “Open” until
this paper submission time3.

3 Study Design

This section presents the steps of our study. Figure 1 illustrates an overview
of these steps. Firstly, we conduct an application selection, and we define a
configuration set considering the target sensors. Second, we perform an extension
of test suites, aiming to control the test executions. Third, we executed the
extended test suites using each configuration. Finally, we conduct analysis of
the generated test reports.

Fig. 1. The steps of the study.

1 https://www.traccar.org.
2 https://github.com/traccar/traccar-client-android/issues/390.
3 Apr 20, 2021.

https://www.traccar.org
https://github.com/traccar/traccar-client-android/issues/390

52 E. H. Marinho et al.

3.1 Application Selection

We selected Android applications from public Github repositories. Initially, we
defined the search criteria to include repositories with at least 100 stars, whose
programming languages were Java or Kotlin, and with last commit on or after
January 1, 2017. We cloned the initial 1,000 repositories of the search. One of
the identified repositories4 contains a curated list of Kotlin applications. It was
analyzed apart, resulting in 123 additional repositories. For obtaining an initial
comprehension of the test suites, we use the cloc tool5 to get the test code size
of each project with instrumented tests6. In order to reduce the complexity of
the executions, we filter the applications with test code between 450 LOC and
3,000 LOC. Additionally, we use the Manifest file of the apps to find the sensor
related tags of Table 1. Finally, we select all the applications whose Manifest files
have at least one of those tags.

Table 1. Sensor related tags.

Sensor Tag Value

Bluetooth uses-feature android.hardware.bluetooth

Bluetooth uses permission bluetooth

Location uses-permission access fine location

Location uses-feature android.hardware.location

Wi-Fi, Mobile data uses-permission internet

Camera uses-feature android.hardware.camera

Others uses-feature android.hardware.sensor.*

The filtered applications were built and the test suites of the instrumented
tests were executed. We discarded applications presenting build or test execu-
tion issues not easily solvable. Table 2 shows some characteristics of the selected
applications.

3.2 Configuration Set Definition

We defined the target sensors to be evaluated in the study: usual sensors
(Accelerometer, Barometer, Camera, Gyroscope, Magnetometer, Microphone,
and Proximity), Location, Wi-Fi, Mobile Data, and Bluetooth. Moreover, we
included three device settings: Auto Rotation, Battery Saver, Do not Disturb.
Auto Rotation uses a synthetic sensor named Rotation Vector7. Battery Saver
limits the operation of background functionalities8. Do not Disturb can mute
4 https://github.com/androiddevnotes/awesome-android-kotlin-apps.
5 https://github.com/AlDanial/cloc.
6 A kind of test that runs on devices or emulators: https://developer.android.com/

studio/test.
7 https://developer.android.com/guide/topics/sensors/sensors position.
8 https://developer.android.com/about/versions/pie/power.

https://github.com/androiddevnotes/awesome-android-kotlin-apps
https://github.com/AlDanial/cloc
https://developer.android.com/studio/test
https://developer.android.com/studio/test
https://developer.android.com/guide/topics/sensors/sensors_position
https://developer.android.com/about/versions/pie/power

Evaluating Sensor Interaction Failures in Mobile Applications 53

Table 2. Characteristics of the selected applications.

Application Test LOC # Test cases Sensors Last commit

AnkiDroid 2,770 164 Wi-Fi, Mobile Data, Camera Mar 15, 2021

CovidNow 540 21 Wi-Fi, Mobile Data Aug 14, 2020

iosched 473 9 Wi-Fi, Mobile Data, Location Jun 25, 2020

lockwise-android 1,184 38 Wi-Fi, Mobile Data Dec 10, 2020

nl-covid19 1,114 20 Wi-Fi, Mobile Data, Bluetooth Mar 15, 2021

openScale 1,451 14 Bluetooth, Location Mar 9, 2021

owntracks 889 27 Wi-Fi, Mobile Data, Location Mar 15, 2021

pocketHub 1,663 107 Wi-Fi, Mobile Data Apr 11, 2020

SpaceXFollower 940 30 Wi-Fi, Mobile Data Feb 27, 2021

vocable-android 499 14 Camera Oct 28, 2020

sound, stop vibration, and block notifications9. As we can see in Table 2, part of
the target sensors were identified from the sensors of the selected applications.
We considered the Camera as a usual sensor.

A configuration is a 8-tuple of pairs (sensor name, state) where state can
be True or False depending on whether sensor name is enabled or disabled.
For the eight sensors, we generated all configurations (28 = 256). A file with the
configuration set is used as input for the test execution.

3.3 Application Test Extension

We extended the test suites of each application in order to enable or disable
sensors. We adopt a strategy using the control of buttons in Quick Settings10

shown in Fig. 2. We can see the buttons associated to the target sensors. The
button Sensors Off is activated by means of a developer option11. This button
enables or disables all usual sensors.

We implemented this strategy as a class with a setup method using the
UIAutomator testing framework12. We extended each test class with the referred
class. Besides, we modified the build scripts in order to use the Android Test
Orchestrator13, a tool that helps minimize possible shared states and isolate the
crashes.

3.4 Test Execution

We implemented the algorithm described in Fig. 3 for test execution management
as a Python script. We executed tests in Android 10 using two smartphones: a

9 https://support.google.com/android/answer/9069335?hl=en.
10 https://support.google.com/android/answer/9083864?hl=en.
11 https://source.android.com/devices/sensors/sensors-off.
12 https://developer.android.com/training/testing/ui-automator.
13 https://developer.android.com/training/testing/junit-runner.

https://support.google.com/android/answer/9069335?hl=en
https://support.google.com/android/answer/9083864?hl=en
https://source.android.com/devices/sensors/sensors-off
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/junit-runner

54 E. H. Marinho et al.

Fig. 2. Android quick settings.

Samsung Galaxy M30 with 4 GB RAM and a Samsung Galaxy S10 with 8 GB
RAM.

We use multiple executions (line 3) because this is a known approach
used to detect the existence of flaky tests [28]. The configuration set
(allConfigurations) is shuffled (line 4), aiming to deal with the effect of order-
ing dependencies between tests, a possible source of this kind of test [8].

3.5 Test Report Analysis

We analyze each test report in order to identify the tests with failures. We
implemented Python scripts for extracting the test names and recording this
information along with the respective configurations. Therefore, for each fail-
ure, we identify the name of the test, the description of the failure, and the
configuration related to the failure.

For each Android application, we use a Python implementation14 of the Apri-
ori algorithm [1] to perform a frequent itemset mining analysis on the occurrences
of all configurations that led a test case to fail. A frequent itemset is defined as
a set of items that occur together in at least a Support threshold value of all
transactions available. The Support of an itemset is defined as the proportion
of transactions in the data set which contain the itemset [9]. In this work, each
item is a sensor state, enabled or disabled, and we set the Support to 0.1 (10%).

14 http://rasbt.github.io/mlxtend/user guide/frequent patterns/apriori/.

http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/apriori/

Evaluating Sensor Interaction Failures in Mobile Applications 55

Fig. 3. Test execution manager.

The lower value for support allowed us to do a more in-depth analysis, as can
be seen in Sect. 4.2.

4 Results and Discussion

This section presents data from test reports and the discussion of the results
according to the research questions. In Sect. 4.1, we address the first research
question whereas in Sect. 4.2, we answer the second research question.

4.1 RQ1. Do Sensor Interactions Cause Failures in Mobile
Application?

We tabulated the test report data aiming to summarize the amount of occur-
rences of each failure. Along the test executions, we observed that test suites
can reveal multiple failures. For each failure, we identify the configuration used
during test execution.

Table 3 presents the failure occurrences by execution amount. Among paren-
theses, we mentioned the number of configurations followed by the failure iden-
tifier. The number of one-occurrence failures varied between 2 and 11. Two
applications (CovidNow and vocable-android) exhibited about 50% of this kind
of failure. The other applications had between 1% and 29% of failures with rela-
tion to the number of test cases. Two-occurrence failures varied between 1 and
7. One application (vocable-android) had 50% of this kind of failure. The other
applications had between 3% and 20% of failures. Three-occurrence failures var-
ied between 1 and 7. One application (vocable-android) exhibited 50% of this
kind of failure. The other applications had between 7% and 20% of failures.
Furthermore, openScale application does not exhibit failures.

We argue that failures manifested only in one or two executions can be related
to flaky tests or adverse conditions related to test infrastructure. Almost all con-
figurations were associated to some failure. For instance, we can see that Anki-
Android, iosched, and pocketHub applications had failures only in one execution.

56 E. H. Marinho et al.

Table 3. Failure occurrences by execution amount.

Application Occurrences Percentage

1 execution Anki-Android 4 (3A1, 1A2) 1%

CovidNow 33 (3B1, 10B2, 2B3, 2B4, 2B5,
2B6, 2B7, 2B8, 3B9, 2B10, 3B11)

52%

iosched 10 (5C1, 5C1) 22%

lockwise-android 95 (84D1, 1D2, 2D3, 1D4, 1D5,
1D6, 1D7, 1D8, 1D9, 1D10, 1D11)

29%

nl-covid19 74 (2E1, 3E2, 2E3, 3E4, 64E5) 25%

owntracks 42 (35F1, 6F3, 1F4) 11%

pockethub 22 (19G1, 2G2, 1G3) 3%

SpaceXFollower 188 (71H1, 89H2, 28H3) 10%

vocable-android 213 (19I1, 19I2, 19I3, 39I4, 39I5,
39I6, 39I7)

50%

2 executions lockwise-android 11 (11D4) 3%

nl-covid19 176 (35E1, 53E2, 35E3, 53E4) 20%

owntracks 46 (24F1, 22F2) 7%

SpaceXFollower 51 (17H1, 32H2, 1H3, 1H4) 13%

vocable-android 354 (62I1, 62I2, 62I3, 42I4, 42I5,
42I6, 42I7)

50%

3 executions CovidNow 128 (64B1, 64B2) 10%

nl-covid19 454 (91E1, 136E2, 91E3, 136E4) 20%

owntracks 305 (71F1, 234F2) 7%

SpaceXFollower 444 (75H1, 60H2, 54H3, 255H4) 13%

vocable-android 681 (111I1, 111I2, 111I3, 87I4,
87I5, 87I6)

50%

On the other hand, lockwise-android had failures in one and two executions.
Failures H4 in SpaceXFollower and F2 in owntracks occurred with an excessive
number of configurations. Therefore, as we can see that three-occurrence failures
are not so common, this highlights the need of developers and testers to take
care of sensor interactions.

4.2 RQ2. What Are the Sensor Interactions Most Likely to Cause a
Failure?

In order to explore the sensor interactions causing failures, we proceed with the
analysis of the results of the frequent item set mining procedure. The procedure
was focused only on applications with failures in three executions. Therefore, we
selected data from five applications: CovidNow, nl-covid19, owntracks, SpaceX-
Follower, and vocable-android. From the analysis, we can observe that sensor
pairs have more influence on failures compared to other combinations, since

Evaluating Sensor Interaction Failures in Mobile Applications 57

their support is more prominent. For instance, in combinations of size greater
than three, the range of the support was less than 0.3.

Table 4 shows, for each application, the sensor pairs and the support reached.
The name of the sensor is preceded by the exclamation mark when the sensor
is disabled. As we can see, the sensor pairs are related to sensors used by appli-
cations, according to the fourth column of Table 2. It is important to note, that
vocable-android had failures associated to location, since the device camera can
use location sensor to record location tags15.

Table 4. Sensor pairs.

Application Sensor pairs Support

CovidNow 〈!mobiledata, !wifi〉 1.0

nl-covid19 〈wifi, !bluetooth〉 0.8

owntracks 〈!location, !wifi〉 0.4

SpaceXFollower 〈!mobiledata, !wifi〉 0.5

vocable-android 〈location, !sensors〉 0.7

Figure 4 presents heat maps with the supports of sensor pairs for each appli-
cation. In CovidNow, failures are more associated to wifi and mobiledata com-
bined with other sensors. In nl-covid19, they are more associated to wifi and
bluetooth combined with other sensors, followed by location. In owntracks, fail-
ures are more associated to location and wifi, followed by mobiledata, bluetooth
and usual sensors. In SpaceXFollower, they are more related to wifi and mobile-
data, followed by other sensors. In vocable-android, failures are more related to
location and sensors.

Our findings highlight that some sensors can be used indirectly by some
applications, as the case of vocable-android with location sensor involved in
failures. However, the use of sensors in applications can be more intricate. Such
case happens with owntracks. As we mentioned, in this application, usual sensors
were involved in failures. A probable cause is due to the use of the Fused Location
Provider API16 that uses usual sensors such as Accelerometer and Gyroscope to
improve indoor tracking. Moreover, recent versions of Android are able to use
Bluetooth to enhance location services17.

5 Threats to Validity

We carefully designed and conducted our study (cf. Sects. 3 and 4). However,
some threats to validity may have harmed our study results and discussions. Dur-
ing the study conduction, we considered certain threats are obstacles we should
15 https://developer.android.com/reference/androidx/exifinterface/media/

ExifInterface.
16 https://developers.google.com/location-context/fused-location-provider.
17 https://support.google.com/nexus/answer/3467281?hl=en.

https://developer.android.com/reference/androidx/exifinterface/media/ExifInterface
https://developer.android.com/reference/androidx/exifinterface/media/ExifInterface
https://developers.google.com/location-context/fused-location-provider
https://support.google.com/nexus/answer/3467281?hl=en

58 E. H. Marinho et al.

Fig. 4. Two-sensors interactions.

Evaluating Sensor Interaction Failures in Mobile Applications 59

address minimally. We discuss below some major threats and their respective
treatments. We divided into construct, internal, and external threats to validity
below.

Construct Validity: There are two threats to construct validity. The first is
related to the implementation of our approach to extend test suites and control
the sensor states (enabled/disabled). To mitigate this threat, the implemented
code was carefully inspected and validated by all authors of this study. Moreover,
we conduct essays to evaluate the suitable behavior of the implemented code.
The second is the fact that we adopt a simplistic treatment for analysing the
found failures. We do not conduct a deep investigation for understanding the
cause of these failures, in other words, the probable software defects. However,
since we only selected applications without build or test execution issues, we
believed this threat was mitigated.

Internal Validity: There are four major threats to the internal validity of our
study. First, we discarded from our study the Android applications in which the
test suite failed before submitting the systems to 256 configurations. Second, the
downloaded systems could contain setup errors causing failures to run the test
suite. To mitigate the effect of using systems in which the test suite fails for any
configuration, we ensure that the Android applications do not have any setup
errors. Third, to minimize faults occurring because of our instrumentation for
faulty configurations, we set the sensor status manually and ran the tests that
identified faults. Finally, we restricted our study to run each test suite three
times for our system set for each 256 configurations. We empirically analyzed
the number of times viable to run the suite for the Android applications set.
Some systems took too long, for instance, test execution for pocketHub spent 4
days to complete 107 test cases for each 256 configurations. Therefore, we have
empirically chosen three times to run the test suite in different configurations.
This limitation was needed because it tested all test cases for the 256 different
configurations for some subject systems. This time constraint may affect our
findings since flaky tests can occur in other executions. However, according to
our evaluations (Sect. 4), we observed three separate runs were sufficient to find
the flaky tests.

External Validity: First, we have performed our study with 10 Android appli-
cations. As one could expect, our Android applications may not represent the
characteristics of all Android applications systems. To mitigate the effect of
the Android applications’ representativeness chosen to compose our study, we
are confident that we selected systems from various domains, longevity, sizes,
and test suite sizes (between 450 and 3,000 LOC). Nevertheless, our Android
applications set allowed us to achieve some preliminary insights on mobile appli-
cations’ sensor interaction failures. Second, we have restricted our analysis to
mobile applications developed in the Java and Kotlin programming languages.
We cannot generalize to other programming languages and frameworks such as
Flutter and React Native. This limitation may affect the generalization of our
results. We invite researchers to replicate our work in other technologies and

60 E. H. Marinho et al.

frameworks and validate our study findings. Third, our analysis focuses on sen-
sor interactions, but we may have chosen systems that do not use any sensors.
To minimize this threat, we use the Manifest file of the apps to find the sensor
related. We discarded Android applications that had no indication of using sen-
sors indicated in the Manifest file. Finally, a threat to our study is the quality of
the test suite in the selected applications. All of our analysis is conditioned on
the test suite’s ability to reveal failures. To mitigate the incomplete test suite’s
effect, we limited our analysis to applications with a test suite size of at least
450 LOC.

6 Related Work

This section discusses the related work, focusing on papers proposing or evalu-
ating approaches to support tests of mobile applications.

Some relevant works [12,25,26] investigated the problem of testing a large
set of configurations in mobile applications. For instance, Lu et al. [12] proposed
the preference-wise testing of applications to improve the efficacy of existing
testing approaches by considering the effects of user preferences. They argue
that the proposed approach can reduce test cost because it executes test cases
only under relevant preference combinations. Unlike Lu’s work, our study does
not aim to reduce test cost, but it investigates all combinations of sensors to
identify interaction failures.

Other studies [4,6,11] have also highlighted the problem of hidden failures
in mobile applications due to the large set of possible configurations, including
hardware and software options. For instance, Ceccato and his colleagues [4] pre-
sented an in-vivo study about testing of mobile applications. They relied on fea-
ture models to handle the representation of the configuration space and, then,
analyzed combinations of features, such as operating systems and supported
camera devices. Similarly to their work, we also investigate the combinations
of features and their impact on failures. However, we focus on enabling and
disabling sensors instead of hardware and software variations.

We can note an increasing number of studies focusing on Android fragmen-
tation/compatibility issues [11,25,26]. This is a broader research theme mainly
targeting the quality evaluation of Android applications. Our study treat one
dimension of device configurations, since other dimensions are present, such as
screen sizes, camera qualities etc. Wei et al. [26] highlight the relevance of sen-
sors behavior in device-specific issues arising from the interaction with Android
APIs, as in the case of the proximity sensor.

7 Conclusion

In this work, we propose an approach for extending test suites aiming to evaluate
the sensor interactions aspects of mobile applications. We used eight sensors to
verify the occurrence of sensor interaction failures. For each of the 256 possible

Evaluating Sensor Interaction Failures in Mobile Applications 61

combinations (28), we run the test suites of 10 real Android applications of
different domains, complexity, and size.

We observed that some pair of sensors are related to sensor interaction fail-
ures. However, the sensors used by the analysed applications cannot always be
directly inferred. In our study, we faced challenge factors as test execution issues
(e.g., flaky tests) and possible adverse conditions related to test infrastructure.

As future work, we will expand our analysis to construct a dataset of mobile
applications with sensor interaction failures. As a part of this effort, we plan
to validate these failures along the application developers and to explore the
software defects [5] that cause such failures. We aiming to improve the detection
of sensors used by the applications, possibly by using static and dynamic analysis
strategies. Another point of investigation are test patterns [17], in other words,
testing strategies, to deal with sensor interactions. The artifacts used in this
study are available in a Github repository18.

Acknowledgements. This research was partially supported by Brazilian funding
agencies: CNPq, CAPES, and FAPEMIG.

References

1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In:
Proceedings of 20th International Conference on Very Large Data Bases, VLDB,
vol. 1215, pp. 487–499. Citeseer (1994)

2. Apel, S., Speidel, H., Wendler, P., Rhein, A.V., Beyer, D.: Detection of feature
interactions using feature-aware verification. In: Proceedings of the 26th Interna-
tional Conference on Automated Software Engineering (ASE), pp. 372–375 (2011)

3. Bowen, T.F., Dworack, F., Chow, C., Griffeth, N., Herman, G.E., Lin, Y.J.: The
feature interaction problem in telecommunications systems. In: Proceedings of
the 7th International Conference on Software Engineering for Telecommunication
Switching Systems (SETSS), pp. 59–62 (1989)

4. Ceccato, M., Gazzola, L., Kifetew, F.M., Mariani, L., Orrú, M., Tonella, P.: Toward
in-vivo testing of mobile applications. In: 2019 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pp. 137–143. IEEE (2019)

5. Esteves, G., Figueiredo, E., Veloso, A., Viggiato, M., Ziviani, N.: Understanding
machine learning software defect predictions. Autom. Softw. Eng. 27(3), 369–392
(2020). https://doi.org/10.1007/s10515-020-00277-4

6. Farooq, U., Zhao, Z.: RuntimeDroid: restarting-free runtime change handling for
Android apps. In: Proceedings of the 16th Annual International Conference on
Mobile Systems, Applications, and Services, pp. 110–122 (2018)

7. Ferreira, F., Vale, G., Diniz, J.P., Figueiredo, E.: Evaluating T-wise testing strate-
gies in a community-wide dataset of configurable software systems. J. Syst. Softw.
179, 110990 (2021)

8. Gambi, A., Bell, J., Zeller, A.: Practical test dependency detection. In: Proceed-
ings of the IEEE International Conference on Software Testing, Verification, and
Validation (ICST), pp. 1–11 (2018)

18 https://github.com/quatic2021-sensorinterpaper/artifacts.

https://doi.org/10.1007/s10515-020-00277-4
https://github.com/quatic2021-sensorinterpaper/artifacts

62 E. H. Marinho et al.

9. Hornik, K., Grün, B., Hahsler, M.: arules-a computational environment for mining
association rules and frequent item sets. J. Stat. Softw. 14(15), 1–25 (2005)

10. Kong, P., Li, L., Gao, J., Liu, K., Bissyandé, T.F., Klein, J.: Automated testing of
Android apps: a systematic literature review. IEEE Trans. Reliabil. 68(1), 45–66
(2018)

11. Kowalczyk, E., Cohen, M.B., Memon, A.M.: Configurations in Android testing:
they matter. In: Proceedings of the 1st International Workshop on Advances in
Mobile App Analysis, pp. 1–6 (2018)

12. Lu, Y., Pan, M., Zhai, J., Zhang, T., Li, X.: Preference-wise testing for Android
applications. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 268–278 (2019)

13. Luo, C., Goncalves, J., Velloso, E., Kostakos, V.: A survey of context simulation
for testing mobile context-aware applications. ACM Comput. Surv. (CSUR) 53(1),
1–39 (2020)

14. Machado, I., McGregor, J., Cavalcanti, Y., Almeida, E.: On strategies for testing
software product lines: a systematic literature review. Inf. Softw. Technol. (IST)
56, 1183–1199 (2014)

15. Marinho, E.H., Figueiredo, E.: PLATOOL: a functional test generation tool for
mobile applications. In: Proceedings of the 34th Brazilian Symposium on Software
Engineering, Tools Track, SBES 2020, pp. 548–553 (2020)

16. Mendez-Porras, A., Quesada-Lopez, C., Jenkins, M.: Automated testing of mobile
applications: a systematic map and review. In: Proceedings of the Ibero-American
Conference on Software Engineering (CIbSE), pp. 195–208 (2015)

17. Morgado, I.C., Paiva, A.C.: The impact tool for Android testing. Proc. ACM Hum.-
Comput. Interact. 3(EICS), 1–23 (2019)

18. Nguyen, S., Nguyen, H., Tran, N., Tran, H., Nguyen, T.: Feature-interaction Aware
configuration prioritization for configurable code. In: Proceedings of the 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 489–501 (2019)

19. Oliveira, J., Viggiato, M., Santos, M., Figueiredo, E., Marques-Neto, H.: An empir-
ical study on the impact of Android code smells on resource usage. In: Proceedings
of the International Conference on Software Engineering and Knowledge Engineer-
ing (SEKE), pp. 314–313 (2018)

20. Rubinov, K., Baresi, L.: What are we missing when testing our Android apps?
Computer 51(4), 60–68 (2018)

21. Sahinoglu, M., Inckin, K., Aktas, M.S.: Mobile application verification: a system-
atic mapping study. In: Proceedings of the International Conference on Computa-
tional Science and Its Applications (ICCSA), pp. 147–163 (2015)

22. Siegmund, N., et al.: Predicting performance via automated feature-interaction
detection. In: Proceedings of the 34th International Conference on Software Engi-
neering (ICSE), pp. 167–177 (2012)

23. Soares, L.R., Schobbens, P., do Carmo Machado, I., de Almeida, E.S.: Feature
interaction in software product line engineering: a systematic mapping study. Inf.
Softw. Technol. (IST) 98, 44–58 (2018)

24. Tramontana, P., Amalfitano, D., Amatucci, N., Fasolino, A.R.: Automated func-
tional testing of mobile applications: a systematic mapping study. Softw. Qual. J.
27(1), 149–201 (2019). https://doi.org/10.1007/s11219-018-9418-6

25. Vilkomir, S.: Multi-device coverage testing of mobile applications. Softw. Qual. J.
26(2), 197–215 (2018). https://doi.org/10.1007/s11219-017-9357-7

https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1007/s11219-017-9357-7

Evaluating Sensor Interaction Failures in Mobile Applications 63

26. Wei, L., Liu, Y., Cheung, S.C., Huang, H., Lu, X., Liu, X.: Understanding and
detecting fragmentation-induced compatibility issues for Android apps. IEEE
Trans. Softw. Eng. 46(11), 1176–1199 (2018)

27. Zein, S., Salleh, N., Grundy, J.: A systematic mapping study of mobile application
testing techniques. J. Syst. Softw. 117, 334–356 (2016)

28. Zolfaghari, B., Parizi, R.M., Srivastava, G., Haleimariam, Y.: Root causing, detect-
ing, and fixing flaky tests: state of the art and future roadmap. Softw. Pract. Exp.
51(5), 1–17 (2020)

Software Evolution

Feature-Oriented Clone and Pull
for Distributed Development and

Evolution

Daniel Hinterreiter1, Lukas Linsbauer3, Herbert Prähofer2,
and Paul Grünbacher1(B)

1 Christian Doppler Laboratory MEVSS, Institute of Software Systems Engineering,
Johannes Kepler University, Linz, Austria

paul.gruenbacher@jku.at
2 Institute of System Software, Johannes Kepler University, Linz, Austria

3 Institute of Software Engineering and Automotive Informatics,

Technische Universität Braunschweig, Braunschweig, Germany

Abstract. Product line engineering aims at quickly delivering individ-
ual solutions to customers by customizing and evolving products based
on a common platform. Engineers commonly follow a distributed and
feature-oriented process, supported by version control systems, to track
implementation-level changes. For instance, feature branches are widely
used to add new or modify existing features. However, when merging
back features to the product line, the information how features map to
code is usually lost. Furthermore, the granularity of merging is limited to
branches, making it hard to transfer individual features from one product
to another. This paper thus presents feature-oriented clone and pull oper-
ations for the distributed development and evolution of product lines,
which are implemented in the FORCE2 platform. Our evaluation uses
the ArgoUML product line to assess the correctness and performance
of our approach. The results show that the feature-oriented operations
work with high precision and recall for different cases of feature interac-
tions. The performance measurements demonstrate that the clone and
pull operations can be integrated in typical workflows of engineers.

Keywords: Feature-oriented development · Distributed development ·
Variation control systems · Software product lines

1 Introduction

Software product line engineering is widely used to provide individual solutions
to customers. Engineers often follow a feature-oriented approach when devel-
oping customer-specific systems. They customize and evolve product lines in
different concurrent projects to quickly deliver solutions, e.g., by creating new
features or by selectively reusing and adapting existing features. Supporting such
a distributed and feature-oriented process is challenging. Version control systems
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 67–81, 2021.
https://doi.org/10.1007/978-3-030-85347-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_6

68 D. Hinterreiter et al.

like Git are widely used to track fine-grained, implementation-level changes to
product lines and products. Feature branches are a common mechanism to add
new or modify existing features. Pull requests are then used to integrate changes
of engineers into the platform in a controlled fashion. However, this approach
has two problems [7]: (i) the mapping of features to code is commonly lost after
integrating and merging a feature branch. As a consequence, the feature becomes
mandatory and cannot be used to systematically create variants. (ii) The gran-
ularity of integration is limited to branches, i.e., there is no support for merging
only selected features from a branch.

This paper thus presents feature-oriented operations for distributed develop-
ment. Our approach builds on our earlier work on variation control systems [7],
feature-to-artifact mappings [2], and workflows for feature-oriented develop-
ment [5]. In particular, we have realized and evaluated feature-oriented clone
and pull operations for our FORCE2 platform: cloning allows to create a new
product line based on an existing one by including only the features needed
for a specific development task. In distinction to existing version control sys-
tems such as Git, it composes only the features needed for a specific purpose.
Pulling allows transferring feature implementations between individual products
or product lines, thus supporting feature-level code reuse. For example, pulling
can be used to transfer a feature from a cloned product line back to its origin
product line to make it generally available. In distinction to Git, this means
that also fine-grained variants can be handled, i.e., variability is preserved by
managing traces to artifacts implementing the features.

2 Distributed Feature-Oriented Workflow

We illustrate typical workflows motivating our approach based on the ArgoUML
system (argouml.org) and use the ArgoUML variants used in Martinez et al.’s [8]
feature location benchmark study to explain scenarios for the distributed opera-
tions contributed by our paper. Figure 1 presents an overview: the scenario starts
with the ArgoUML product line ORIGIN containing the mandatory features
Base, Diagrams, and Class, which represent the common code of all ArgoUML
variants, as well as the optional features Activity and Logging. The cross-cutting
feature Logging interacts with the feature Activity, i.e., some code is only present
if both features are enabled.

In our scenario, an engineer decides to start a new development task based on
the ORIGIN product line using the feature-based clone operation. He chooses
to include only the mandatory features and the feature Logging from ORIGIN,
thus excluding the optional feature Activity. The result of the clone operation is
the product line CLONE A with the features Base, Diagrams, Class, and Log-
ging. The engineer extends CLONE A with a new feature Sequence for modeling
sequence diagrams and first adds it to the feature model (step 2). He then per-
forms a checkout for this task to create a product variant P1, which contains
the source code of all mandatory and a new optional feature Sequence in the
feature model. After developing the feature (step 4), the engineer commits the

http://argouml.org/

Feature-Oriented Clone and Pull for Distributed Development and Evolution 69

Fig. 1. A scenario illustrating feature-oriented operations in a distributed workflow.

new source code to the repository, which is thereby also automatically mapped
to the feature Sequence. The engineer further decides to also develop the code
handling the interaction [13] of the features Sequence and Logging. This is done
by checking out and composing a product variant for this task, which contains
the features Sequence and Logging. The engineer then adds the code ensuring
the joint operation of the two features, and then commits the changes (steps
6–8), thereby mapping the feature interaction code to both features.

Independently of these tasks another engineer derives a product line variant
CLONE B from ORIGIN (step 9). She includes Activity but decides to exclude
Logging. The engineer then develops the feature Cognitive and commits it to
the repository (steps 10–13). She also adds code handling the interaction of the
features Activity and Cognitive (steps 14–16). The engineer then notices that the
feature Sequence in CLONE A is useful for her own task. Therefore, she pulls
the feature and the source code mapped to it from CLONE A (step 17). She then
commits these changes to the local repository. However, as CLONE A not yet
includes the feature Cognitive, she needs to add code to cover the interaction. She

70 D. Hinterreiter et al.

thus checks out a product variant containing both features (step 18), develops
the required interaction code for Sequence and Cognitive (step 19), and commits
it to the repository (step 20).

Finally, the engineer maintaining the product line ORIGIN decides to inte-
grate all features developed in the product line CLONE B. For that purpose,
he pulls the features Sequence, Activity and Cognitive (step 21), thereby also
retrieving the code needed for the interaction of these features. However, the
feature interaction code of Sequence and Logging is still missing, as CLONE B
did not yet contain the feature Logging. CLONE A, however, for which the fea-
ture Sequence was originally developed, contains the feature Logging and thus
also the interaction code. Therefore, the engineers fetches the feature interaction
code for Sequence and Logging by pulling it from CLONE A (step 22). In this
scenario, code for the interaction of the features Cognitive and Logging might
still be missing, requiring the engineer of ORIGIN to develop and commit it as
described for other cases.

3 Feature-Oriented Clone and Pull Operations

The scenario demonstrates the need for clone and pull operations to support
distributed feature-oriented development. However, in contrast to existing ver-
sion control systems such as Git our operations are feature-oriented and allow
engineers to clone or pull a single feature, a set of features, or a (partial) config-
uration as needed for their development tasks.

This section describes the two feature-oriented operations clone and pull.
Our approach uses a product line platform comprising a repository with the
features of the product line, constraints among features in the form of a feature
model, fragments of implementation artifacts, as well as mappings between fea-
tures and fragments in the form of presence conditions (cf. [1,4,7,11]). In the
following we assume a product line PL with a set of features F . The presence
conditions are Boolean formulas in disjunctive normal form (DNF) with features
as literals. A DNF formula is a disjunction of clauses. Every clause is a conjunc-
tion of features and can be interpreted as a feature interaction, i.e., fragments
that map to such a condition implement the interaction of the involved features.
An example is the presence condition (Activity∧Logging)∨ (Sequence∧Logging).
Fragments related to this condition implement the interaction of the features
Activity and Logging as well as Sequence and Logging and are included in any
product variant that contains this combination of features. Another example is
Activity∧ ¬Cognitive. Artifact fragments with this mapping are included in any
product variant containing the feature Activity but not the feature Cognitive.
Many presence conditions, however, consist of a single variable, meaning that
the associated code fragment belongs to one feature only (e.g., Activity).

Clone. The feature-oriented clone operation is used to derive a new product line
from an existing one. While the clone operation in Git copies the entire repos-
itory, our feature-oriented clone creates a more specific product line excluding
optional features and their implementation, if they are not needed for a specific

Feature-Oriented Clone and Pull for Distributed Development and Evolution 71

development task. It also adapts and pre-configures the feature model, i.e., it
removes deselected features while selected features become mandatory or remain
variable. The cloned platform then serves as foundation for further development,
i.e., adding new or modifying existing features. If further features from the orig-
inal platform or features implemented in other platforms are required, they can
be pulled at any time. The clone operation is based on the subset operation
PL′ = subset(PL,C). It receives as input a product line PL and a partial con-
figuration C and creates another product line PL′ ⊆ PL, i.e., the features and
supported product variants of PL′ are a subset of the features and supported
product variants of PL.

A feature configuration is a set of positive or negative features. A partial
feature configuration is a feature configuration with some selected (value true)
or deselected (value false) features. However, features may also remain variable
(value undecided). Thus, a partial feature configuration for a clone operation
can be defined by the user from the set of features F as follows: A user can
(i) decide to keep a feature f variable; (ii) set a feature f to true and thus
make it mandatory; (iii) set a feature f to false and thus exclude it from the
partial configuration. That means, all features with a value assigned in C are
no longer variable in the target product line, i.e., they are either removed (value
false) or become mandatory (value true), in which case they could optionally be
merged with their parent feature. Moreover, a partial feature configuration must
be consistent such that all the feature constraints are fulfilled. For example, if a
feature from an XOR-group is set to true to become mandatory, all other features
in the XOR-group can no longer be selected and are set to false. However, if a
feature in an XOR-group is selected but kept variable, other features in the
group can still be set as variable or be deselected.

Artifact Fragments and Mappings. The cloned subset product line PL′ con-
tains only the mappings and related artifacts fragment from the original prod-
uct line, whose presence conditions are still satisfiable given the partial fea-
ture configuration C, i.e., only code fragments with satisfiable presence condi-
tions are included. In particular, features set to true or false may render pres-
ence conditions unsatisfiable. However, features which are still variable remain
in the DNF clauses as feature variables. Finally, the resulting presence con-
ditions are trimmed such that DNF clauses no longer satisfiable are removed
from the presence conditions. For example, consider a product line PL with
the optional features Activity, Sequence, Logging, and Cognitive (cf. Fig. 1).
Assume the product line contains a mapping m1 with condition Activity, a
mapping m2 with condition Activity ∧ ¬Cognitive and a mapping m3 with
condition (Activity ∧ Logging) ∨ (Sequence ∧ Logging). When creating a clone
by selecting the features Activity and Sequence but excluding the features
Logging and Cognitive, i.e., clone(PL, {¬Logging,¬Cognitive}), the condition
(Activity ∧ Logging) ∨ (Sequence ∧ Logging) is not satisfiable anymore and the
mapping m3 and its associated code fragments are thus not included. The con-
dition Activity∧¬Cognitive of mapping m2 on the other hand becomes Activity,
which is still satisfiable, meaning that its code fragments are included. The con-

72 D. Hinterreiter et al.

dition Activity of m1 (which is not modified) is also satisfiable, i.e., m1 and its
code fragments are therefore also included.

Pull. The feature-oriented pull operation allows transferring one or more fea-
tures between related product line platforms. In contrast to a Git pull, which
always pulls an entire platform, our feature-oriented pull only fetches the
selected set of features and associated artifacts. Besides performance benefits,
this allows getting specific features from a product line without bothering about
other features, for which different versions may already exist in the target plat-
form. The pull operation is based on the previously explained subset operation,
followed by the merge operation. Thus, it also relies on a partial feature configu-
ration C representing the set of features to pull. However, in contrast to clone,
the partial configuration is built depending on the feature f ∈ F or subset of
features F ′ ⊆ F the user selects for pulling. When a user specifies a feature
f ∈ F : (i) the specified feature f remains variable (i.e., is NOT set to true as
it would then become mandatory in the target platform), (ii) all interactions
of the selected feature with other features already in the target platform will
also be pulled, and (iii) all other features are deselected (i.e., set to false) in
the partial feature configuration used in the subset operation. Note that case
(ii) guarantees that also feature interactions of the selected feature, which are
needed in the target platform, are pulled. The approach naturally expands when
several features are selected for pulling.

The merge operation then integrates the transferred subset product line into
the target product line. PL′ = merge(PLpull, PLtarget) receives two product
lines PLpull and PLtarget as input and merges them to produce another product
line PL′. Merging two product lines means merging their feature models as well
as their artifact fragments and mappings. Feature models are merged by making
as few changes as possible in the target platform and leaving the fundamental
decisions about the intended feature model structure deliberately to the engineer:
when a pulled feature is already contained in the target platform, it is added
as a new revision. When a feature is already contained in the target platform,
but in a different position in the feature model, the engineer is notified and the
feature remains at its original position in the target model. In case the pulled
feature does not yet exist in the target feature model, it is inserted as the feature
which is the next common ancestor in both models. In both cases, it is up to
the engineer to confirm the final position of the feature in the target model
and update constraints accordingly [2]. The pull operation then adds the set of
mappings and related artifact fragments to the target platform.

The state of the platform repository depends on whether the pull was com-
plete or incomplete. In a complete pull no further interaction of an engineer is
required to generate a semantically and syntactically correct product line vari-
ant. A pull is complete if the origin platform contains a superset of the features
and their revisions in the target platform. This means that the origin platform
contains all features and feature revisions also contained in the target platform,
also including the required code for all feature interactions. Recall case (ii) of
building the partial feature configuration for the pull: feature interaction code is

Feature-Oriented Clone and Pull for Distributed Development and Evolution 73

also transferred to the target platform, thus making it complete. A pull is incom-
plete if certain artifact fragments and their mappings are missing. This usually
happens if the target platform repository contains features not contained in the
origin repository. This means that interaction code needed for the combined
use of features is missing. There are different ways to address this problem as
illustrated from a developer perspective in the scenario in Sect. 2. An engineer
can checkout a variant containing the feature combinations and then implement
the missing or adapt the conflicting glue code such that these feature will work
together. Afterwards, the glue code can be committed to the repository. Alter-
natively, the engineer can pull feature interaction code from another repository
already containing both features and thus their corresponding glue code.

4 Evaluation

Our evaluation pursues two research questions:

RQ1. Correctness – Do the feature-oriented operations provide correct results?
We showed that both clone and pull rely on the subset operation. The clone
operation is realized by pulling the selected features into an empty repository.
Our evaluation thus investigates the correctness of pulling code in different sce-
narios and for different cases of feature interactions. As discussed a pull is com-
plete if the origin platform contains a superset of the features in the target
platform. In this case no further interaction of an engineer is required to gen-
erate a semantically and syntactically correct product line variant. Otherwise,
the pull is regarded as incomplete and closer inspections are required to assess
correctness. Section 4.2 summarizes the different cases we explored.

RQ2. Performance – Does the execution time of the feature-oriented operations
allow their use in engineering workflows? We evaluated the run-time perfor-
mance of the pull operation for different numbers of feature-to-code mappings
and artifact fragments.

4.1 Method

Figure 2 gives an overview of the research method we used for our evaluation. We
used the well-known ArgoUML system for evaluating our approach and adopted
the ArgoUML benchmark suite [8] for our experiments. The benchmark suite
allowed us to generate all 256 variants of ArgoUML based on its eight optional
features. We first created FORCE2 platforms and repositories for all ArgoUML
variants based on a script containing a series of commit operations. The order of
the commits mimics the evolution from a small variant containing just the base
feature to larger variants containing all of the available features. The correctness
of the commit operation was evaluated already in earlier work [6].

The evaluation then continued with both a manual procedure regarding
RQ1 and an automated procedure regarding both RQ1 and RQ2. Our first
research question investigates whether the feature-to-artifact mappings of the

74 D. Hinterreiter et al.

Fig. 2. Research method.

platform repository created via pull operations are equal to the mappings cre-
ated via the commit operations. For the manual part we executed 15 scenarios
of pulling feature sets of different sizes to cover different cases of incomplete
pulls (cf. Sect. 4.2). We manually inspected and compared these cases based on
our ArgoUML baseline. For the automated part, we developed a script creating
new FORCE2 platforms and repositories based on existing ones and then incre-
mentally extended them using pull operations. In particular, for this part of the
evaluation we pulled features from a FORCE2 platform containing a superset of
the features of the platform (pull case I in Sect. 4.2). This process was done for
all FORCE2 platforms, i.e., all ArgoUML variants.

Specifically, our script starts with a repository only containing the manda-
tory features of ArgoUML. Hence, with respect to this basic platform, all other
ArgoUML variants represent supersets, meaning that pulling features would be
possible from any platform. However, the script incrementally increases the num-
ber of platform features with one new feature per pull. Hence, we pull a single
optional feature from a repository containing exactly this feature in addition to
the common features in the platforms. We repeat this process for each variant
containing a single optional feature, always starting with a repository only con-
taining the base features. After the first iteration, the script starts with the repos-
itories containing the newly pulled optional feature, copies them and continues
with pulling another optional feature from a superset platform. The resulting
projects can then be compared to their baseline FORCE2 project variants to
answer RQ1.

We use precision and recall to measure the correctness of the automated
part: Precision is the number of matching feature mappings contained in both
the origin and the target repository divided by the overall number of mappings
in the target repository. Recall is the number of matching feature mappings
contained in both the origin and the target repository divided by the overall
number of mappings in the origin repository.

4.2 Pull Cases

As already mentioned pulls can have different outcomes with respect to their
completeness, so different cases need to be distinguished: in case of tightly cou-
pled features we can expect interactions between them. For instance, crosscut-

Feature-Oriented Clone and Pull for Distributed Development and Evolution 75

ting features often require certain interaction code to work correctly with other
features. Examples are the ArgoUML features Logging and Cognitive. No inter-
actions are expected if features do no exchange data or functionally rely on each
other. However, even in this case interactions may be discovered in the code,
e.g., related to the configuration, initialization or declaration of features, as such
source code often depends on the presence of certain features. If such interac-
tions can not be pulled from the origin repository, glue code may need to be
developed. However, often the feature interaction code is already contained in
the origin platform repository as we will show. Specifically, we distinguished the
following four cases in our evaluation:

I. Pulling features from a superset. In this case a feature (or set of features)
is pulled from an origin platform repository containing a superset of the fea-
tures in the target platform. As all potential interactions are already included
in the target platform a complete pull is possible. We covered this case with
the automated evaluation procedure (cf. Sect. 4.1), i.e., we created repositories
by incrementally pulling features from superset repositories and compared the
resulting repository with the one created with the commit operations.

II. Pulling independent features from a non-superset. Pulling features from an
origin that contains features which are not a superset of the features in the
target platform will often result in missing feature interaction code. In this case
the pull can still succeed completely if the pulled features are truly independent
from any features in the target platform. We did not assess this pull case in our
evaluation as there are no truly independent features in the ArgoUML data set.

III. Pulling interacting features from a non-superset. If a target platform contains
features not contained in the origin platform and one or more interacting features
are pulled from an origin, the target platform will miss glue code needed for
the joint operation of the features. An engineer then needs to implement the
glue code ensuring their correct interaction. There are many possibilities with
respect to the kinds of artifacts that might be missing as we will discuss later. To
cover this pull case we manually selected eight variants (cf. Table 1) and pulled
certain features from an origin to a target platform. When selecting variants
we excluded trivial variants (e.g., target repositories with only base features)
and included different sizes of repositories and pull feature sets. The goal of this
evaluation was to verify that the only missing elements in the repository are the
ones representing the feature interactions.

IV. Pulling features from multiple non-supersets. As just described, pulling cross-
cutting features leads to missing interaction code with existing features in the
target platform. However, an alternative to developing the missing interaction
code is to pull it from a platform already containing the code. A prerequisite
is that the involved features in the origin and target platform share the same
revision. Note that pulling the interaction code also works for different revisions,
but requires merging of the revisions to solve potential issues. The features in
the ArgoUML case study do not have revisions and thus pulling missing fea-
ture interactions works without further involvement from an engineer. For the

76 D. Hinterreiter et al.

Table 1. Pull Case III – We confirmed the missing feature interaction code via inspec-
tion when pulling features from a repository for the following scenarios.

Origin Target Pulled Missing feature interaction
code

B, UC B, ST, cog UC No Interaction

B, SQ B, ST, cog SQ SQ-cog

B, SQ, cog B, ST, UC, log SQ SQ-log

B, DP B, cog DP DP-cog

B, DP, CL, cog B, AC, UC, cog, log DP, CL DP-log, CL-log, UC-DP

B, AC, SQ B, cog, log AC, SQ AC-log, SQ-cog, SQ-log

B, AC, UC, CL B, ST, DP, SQ, log, cog AC, CL AC-log, AC-ST, UC-SQ,
CL-SQ, CL-log, CL-SQ-log

B, log B, AC log AC-log

Features. B = Base+Class diagram, ST = State diagram, SQ = Sequence diagram,
UC = Use Case diagram, CL = Collaboration diagram, DP = Deployment diagram,
AC = Activity diagram, log = Logging, cog = Cognitive

evaluation of this case we thus selected 7 scenarios (cf. Table 2) for which fea-
ture interactions exist that require the implementation of glue code or pulling
of interactions from other repositories. We reused the selected variants from
the previous evaluation step and only excluded one variant with no interaction
present. We pulled the missing interactions from another repository and again
checked if the repository contains all required elements after the pull. Obviously,
directly pulling the features from the more complete repository would be more
efficient. However, we wanted to demonstrate that pulling different parts of a
feature and feature interactions from different repositories works correctly.

5 Results

We summarize and discuss the main results of our evaluation:

RQ1: Correctness. We can report interesting results for the different cases.

I. Pulling features from a superset. The automated part of our evaluation showed
very high values for precision (0.987) and recall (0.966). While these numbers
are very good it is interesting to find out what prevented perfect values for the
pull operation. Upon closer inspection of selected repositories we learned that
the small problems are not caused by the pull operation itself but are already
rooted in the commit operation of the variation control system. Specifically, the
diffing and merging algorithms of ECCO already introduce these slight imperfec-
tions. As a consequence, in some rare cases no presence condition was assigned
to artifact mappings. This happened when for artifact fragments with an already
assigned valid condition a contradicting condition for the supposedly same arti-
fact fragments was found in a later commit. This minor problem can be fixed by

Feature-Oriented Clone and Pull for Distributed Development and Evolution 77

Table 2. Pull Case IV – We checked for the following cases that no code is missing
when pulling missing interaction code from multiple repositories.

Origin 1 Origin 2 Origin 3 Target Pull
from 1

Pull
from 2

Pull
from 3

B, SQ B, SQ, cog B, SQ, ST B, ST, cog SQ SQ, cog SQ, ST

B, SQ, cog B, ST, SQ,
log

– B, ST, UC,
log

SQ SQ, log –

B, DP B, DP, cog – B, cog DP DP, cog –

B, DP, CL,
cog

B, DP, UC,
log

B, CL, AC,
log

B, AC, UC,
cog, log

DP, cog DP, log CL, AC,
cog

B, AC, SQ B, AC, LC,
cog

B, SQ, log,
cog

B, CL, log AC, SQ AC, SQ,
log, cog

B, AC, UC,
CL

B, AC, SQ,
ST, UC, DP,
log, cog

– B, ST, DP,
SQ, log, cog

AC, CL AC, ST,
UC, SQ,
CL, log

–

B, log B, AC, log,
cog

– B, AC log AC, log –

Features. B = Base+Class diagram, ST = State diagram, SQ = Sequence diagram, UC =
Use Case diagram, CL = Collaboration diagram, DP = Deployment diagram, AC = Activity
diagram, log = Logging, cog = Cognitive

improving the comparison and matching algorithm in ECCO or by using coding
conventions to avoid problematic program structures.

II. Pulling interacting features from a non-superset: The results for the first part
of the manual evaluation case are presented in Table 1. The first column Origin
lists the features present in the platform from where a feature was pulled. The
second column Target shows the features which were already present in the plat-
form. The third column lists the features pulled from origin. The fourth column
presents the expected missing mappings. All test scenarios met the expectations
with respect to the missing mappings and corresponding artifact fragments. How-
ever, as in case I, we discovered some unexpected missing mappings, which are
caused by the matching algorithm or artifact plugin of ECCO. The missing ele-
ments are mostly related to initialization and declaration aspects, or user inter-
face elements changing slightly depending on the features present. Again, such
problems could be fixed by improving the source code structure or by improving
the mapping precision.

III. Pulling features from multiple non-supersets: Table 2 presents the results of
the second part of our manual evaluation. Specifically, the columns Origin 1–3
list the features contained in the different platforms from which features were
pulled. The column Target lists the features contained in the target platform
before executing the pulls. The three right columns describe the features pulled
from the different origin platforms: Pull from 1 presents the features which
are originally of interest to be reused in the target platform and pulled from
Origin 1 while Pull from 2 and Pull from 3 are the feature combinations pulled
to retrieve the missing interactions from Origin 2 and Origin 3, respectively.

78 D. Hinterreiter et al.

Again, all results were correct, meaning that after all pulls no artifacts or traces
were missing, and no unnecessary elements were transferred.

RQ2: Performance. During the automated execution of our pull operation,
we measured the run time for the execution of each pull and also logged the
number of mappings and artifacts involved. These measurements were executed
on a Windows 10 system, with an Intel Core i9-9900K 3.6 GHz, 32 GB RAM
using Hotspot Java VM 1.8 inside an Eclipse IDE. The results of the run time
measurement of more than 1000 pulls show that the run time lies between about
8 and 14 s. There is a high correlation of the run time and number of mappings
involved in the pull operation with a Spearman rank correlation coefficient of
0.86. We also analyzed the distribution showing the number of artifact fragments
pulled from the origin platform for all pulls. Numbers mostly vary between 1000
and 4000 artifact fragments, while some outliers have more than 14000 artifacts.
However, the number of artifact fragments did not have a noticeable influence
on the run time of the pull operation.

Threats to Validity. FORCE2 utilizes ECCO as a variation control system.
One might argue that the generated FORCE2 platforms can not be used as a
baseline for checking the correctness of the pull operation. However, existing
research [9] already demonstrated that ECCO extracted the location of features,
i.e., feature-to-artifact mappings, for ArgoUML variants with high precision. We
did not evaluate and investigate the ECCO commit and checkout operations as
part of this paper, as positive evaluation results are already reported in existing
research [6]. Additionally, there might be a bias due to using ArgoUML, which
consists primarily of Java source code. We did not investigate the potential influ-
ence of other artifact types. Furthermore, the ArgoUML software product line
was originally extracted from ArgoUML for a feature location benchmark [8].
ArgoUML was not developed as an SPL from the beginning. Therefore, the
extracted feature locations, which might have an influence on feature-to-code
mapping results, could be inaccurate. However, as discussed above, ECCO has
been evaluated for different types of artifacts. Furthermore, the quality of the
pull operation is independent of the plugins used by ECCO to support differ-
ent languages. In terms of performance one might argue that ArgoUML is not
comparable with an industry-size case study. However, ArgoUML is a complex
system (120 KLoC) and the performance results show that the feature-oriented
operations can be integrated in the daily workflows of developers.

Discussion. As demonstrated in this section, we achieved very high correct-
ness values, close to 1.0 for both precision and recall for the feature-oriented
pull operation. The minor problems we discovered were caused by the mappings
automatically extracted by the variation control system, which depend on the
used diffing and matching algorithms as well as the reader for the specific arti-
fact types. An example of a program structure causing problems is a highly frag-
mented if-elseif cascade mapping to many different features. Due to its structure
it can be problematic to maintain correct mappings during evolution. One way
to address the problem is replacing the if-elseif cascade with a switch-statement

Feature-Oriented Clone and Pull for Distributed Development and Evolution 79

providing a clearer and more uniform structure. Another approach to eliminate
this uncertainty is an improved matching algorithm. However, this problem is
not subject to the distributed operation but caused by ECCO’s commit opera-
tion and the reader used for the specific artifact type (in this case Java code)
and thus out of the scope of this paper.

Proving usefulness usually is much more difficult than proving correctness.
However, in this case, we argue that the usefulness of feature-oriented distributed
development operations is already evident in everyday practice. The success of
distributed version control systems such as Git and platforms such as GitHub,
which were adopted by open source projects as well as large corporations, is evi-
dence of the demand for support of distributed development. The fact that many
popular branching models for Git use feature branches shows that developers try
to find ways to introduce feature-oriented development into their workflows even
with lack of dedicated tool support (which our work provides). Another piece
of evidence for the usefulness and applicability of distributed feature-oriented
development is related research on extracting features from forks [13]. Such work
shows that current development practices already map well to feature-oriented
development paradigms, despite a lack of tool support. Using feature-oriented
distributed operations in the first place would make the retroactive extraction of
features from forks (resulting from conventional distributed operations) obsolete.

6 Related Work

Clone-and-Own Reuse. Several approaches provide support for creating and
managing clones in product line engineering. Rubin et al. [10] present an oper-
ator framework covering atomic operations for managing cloned variants. For
instance, they provide operations for checking dependencies between features,
distinct implementations of similar features, and conflicting features.

Variation Control Systems. The variation control system ECCO [6] is a key com-
ponent of the FORCE2 platform. A similar approach is SuperMod [11], which
provides feature-oriented support in the area of model-driven software product
line engineering. SuperMod also provides a collaborative development environ-
ment and support for merging and solving conflicts. Similar to our approach,
SuperMod also provides a pull operation, which allows to pull evolved product
lines from a remote repository. However, the distributed operations of Super-
Mod are not feature-aware, i.e., one cannot limit the features transferred and
thus always transfers the entire repository.

Feature Interactions. Interactions between software features have been investi-
gated in multiple communities. For instance, Zave [12] reported on the prob-
lem of feature interactions in continuously evolving systems. Dependencies and
interactions between features can be inferred from the hierarchical feature mod-
els representing commonalities and variability of a system but they also exist as
cross-tree relations in the feature tree. Ferber et al. have shown that such depen-
dencies are often difficult to represent in feature models [3]. This gap has been

80 D. Hinterreiter et al.

addressed by Feichtinger et al. who present an approach combining feature-to-
code mappings, static code analysis, and a variation control system to identify
inconsistencies between features and the code implementing them [2].

7 Conclusions and Future Work

We presented an approach supporting distributed development with feature-
oriented operations for clone and pull. While current version control systems
support cloning of entire repositories, the distribution operations presented in
this paper support handling variants at the level of features. Our approach is
implemented in the FORCE2 approach and relies on a variation control system.
It expands our approach towards a distributed platform for managing develop-
ment in multiple distributed product lines, which is highly important in soft-
ware ecosystems. Our evaluation demonstrates high precision and recall of the
feature-oriented pull operation for transferring features and corresponding arti-
facts between platforms. We also looked at specific pull cases to confirm the
behaviour for cases of interacting features. Furthermore, our performance eval-
uation demonstrates that the operations are fast enough to be integrated in the
development workflows of engineers.

Acknowledgements. The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for Research, Technology and
Development, and KEBA AG is gratefully acknowledged.

References

1. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wasowski, A.: Cool fea-
tures and tough decisions: a comparison of variability modeling approaches. In: Pro-
ceedings of the 6th International Workshop on Variability Modeling of Software-
Intensive Systems, pp. 173–182 (2012)

2. Feichtinger, K., Hinterreiter, D., Linsbauer, L., Prähofer, H., Grünbacher, P.: Guid-
ing feature model evolution by lifting code-level dependencies. J. Comput. Lang.
(2021)

3. Ferber, S., Haag, J., Savolainen, J.: Feature interaction and dependencies: modeling
features for reengineering a legacy product line. In: Chastek, G.J. (ed.) SPLC 2002.
LNCS, vol. 2379, pp. 235–256. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45652-X 15

4. Hinterreiter, D., Linsbauer, L., Feichtinger, K., Prähofer, H., Grünbacher, P.: Sup-
porting feature-oriented evolution in industrial automation product lines. Concurr.
Eng. Res. Appl. 28, 265–279 (2020)

5. Hinterreiter, D., Linsbauer, L., Reisinger, F., Prähofer, H., Grünbacher, P., Egyed,
A.: Feature-oriented evolution of automation software systems in industrial soft-
ware ecosystems. In: Proceedings of the 23rd IEEE International Conference on
Emerging Technologies and Factory Automation, pp. 107–114 (2018)

6. Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Variability extraction and mod-
eling for product variants. Softw. Syst. Model. 16(4), 1179–1199 (2016). https://
doi.org/10.1007/s10270-015-0512-y

https://doi.org/10.1007/3-540-45652-X_15
https://doi.org/10.1007/3-540-45652-X_15
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1007/s10270-015-0512-y

Feature-Oriented Clone and Pull for Distributed Development and Evolution 81

7. Linsbauer, L., Schwägerl, F., Berger, T., Grünbacher, P.: Concepts of variation
control systems. J. Syst. Softw. 171, 110796 (2021)

8. Martinez, J., et al.: Feature location benchmark with ArgoUML SPL. In: Proceed-
ings of the 22nd International Systems and Software Product Line Conference, pp.
257–263 (2018)

9. Michelon, G.K., Linsbauer, L., Assunção, W.K.G., Egyed, A.: Comparison-based
feature location in ArgoUML variants. In: Proceedings of the 23rd International
Systems and Software Product Line Conference, pp. 93–97 (2019)

10. Rubin, J., Czarnecki, K., Chechik, M.: Managing cloned variants: a framework
and experience. In: Proceeding of the 17th International Software Product Line
Conference, pp. 101–110 (2013)

11. Schwägerl, F., Westfechtel, B.: Integrated revision and variation control for evolv-
ing model-driven software product lines. Softw. Syst. Model. 18(6), 3373–3420
(2019). https://doi.org/10.1007/s10270-019-00722-3

12. Zave, P.: Feature interactions and formal specifications in telecommunications.
Computer 26(8), 20–28 (1993)

13. Zhou, S., Vasilescu, B., Kästner, C.: What the fork: a study of inefficient and
efficient forking practices in social coding. In: Proceedings of the 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 350–361 (2019)

https://doi.org/10.1007/s10270-019-00722-3

Detecting Sudden Variations in Web
Apps Code Smells’ Density:

A Longitudinal Study

Américo Rio1,2(B) and Fernando Brito e Abreu1

1 Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Lisboa, Portugal
{jaasr,fba}@iscte-iul.pt

2 NOVAIMS, Universidade Nova de Lisboa, Lisboa, Portugal
americo.rio@novaims.unl.pt

https://www.iscte-iul.pt, https://www.novaims.unl.pt/

Abstract. Code smells are considered potentially harmful to software
maintenance. Their introduction is dependent on the production of new
code or the addition of smelly code produced by another team. Code
smells survive until being refactored or the code where they stand is
removed. Under normal conditions, we expect code smells density to
be relatively stable throughout time. Anomalous (sudden) increases in
this density are expected to hurt maintenance costs and the other way
round. In the case of sudden increases, especially in pre-release tests in an
automation server pipeline, detecting those outlier situations can trigger
refactoring actions before releasing the new version.

This paper presents a longitudinal study on the sudden variations in
the introduction and removal of 18 server code smells on 8 PHP web
apps, across several years. The study regards web applications but can
be generalized to other domains, using other CS and tools. We propose
a standardized detection criterion for this kind of code smell anoma-
lies. Besides providing a retrospective view of the code smell evolution
phenomenon, our detection approach, which is particularly amenable to
graphical monitoring, can make software project managers aware of the
need for enforcing refactoring actions.

Keywords: PHP · Code smells · Web apps · Sudden variations ·
Anomaly detection · Outliers

1 Introduction

1.1 Motivation

A major manifestation of maintenance issues is the existence of code smells
[10], since they are seen as potential catalysts of software evolution costs, due
to increased defect incidence, poorer code comprehension, and longer times to
release. A code smell (CS) may be something like a long method, or many param-
eters in a method. Java desktop applications have been particularly analyzed
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 82–96, 2021.
https://doi.org/10.1007/978-3-030-85347-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_7&domain=pdf
http://orcid.org/0000-0003-2686-7094
http://orcid.org/0000-0002-9086-4122
https://doi.org/10.1007/978-3-030-85347-1_7

Detecting Sudden Variations in Web Apps Code Smells’ Density 83

regarding this aspect [21,25]. The Software Engineering community has pro-
posed several techniques and tools, both for CS detection and refactoring, but
several problems remain such as detection subjectivity [5] and, low coverage of
existing CS catalogs and programming languages [22,28].

While looking for the CS phenomenon on a quantitative basis, we should not
analyze the raw number of existing (or removed) CS, because that number will
largely depend on system size. Some measure of CS density (the number of CS
divided by a size measure) should be used instead, like for instance in [8,17].
For a reasonably large project, maintained by a large team, developing code as
usual, we expect to observe an inertia effect, i.e. that CS density is relatively
stable throughout time. However, there are moments in the history of a project
where that density may have sudden variations.

CS sudden variations are relevant to understand the story of a project, can be
used as an explanatory factor (e.g. for consequent variations in reported issues
and maintenance effort) and, justify the relevance of refactoring actions. Software
managers should: (i) be aware if CS are under control (i.e. if CS infection is not
going wild) and, if not, (ii) prioritize refactoring of detected CS. A solution to
prevent the first problem is proposed in this paper for PHP web apps. A solution
to the second can be found in [9] in the context of Java systems.

Web apps are different from desktop and mobile apps. The latter run on
the OS, while the former run both on a browser and a server, and thus have
server-side programming and client/browser-side programming, that run in two
separate environments. Thus, they encompass a heterogeneity of target plat-
forms, programming, and content formatting languages. Due to this difference
and diversity, it is necessary to perform similar and different studies (from the
applications that run directly in the OS), regarding their specificity. In the study,
we focus on web applications using the PHP programming language, currently
reported to hold 79% of the market share in that sector [27]. We considered as
many years as possible for each web app, summing up a total of 441 versions.

1.2 Research Questions

During data collection for another study [23], we noticed that sudden variations
in CS density, in both directions (steep increase or steep decrease), occur in
some versions (also called releases) of the target web apps. These anomalous
situations deserve our attention, either for recovering the story of a project or,
if used just-in-time (e.g., integrated into a pre-release tests battery), to provide
awareness to decision-makers that something unusual is taking place for good
or bad. In this paper we aim at providing an answer to the following research
questions in the context of web apps using PHP as the server language:

RQ1 – How to detect sudden variations in the evolution of code smells?
RQ2 – When are the sudden variations in changes of code smells in a new
version considered too high? or When are there too many code smells?

To answer these research questions, we perform a longitudinal study with
8 web applications and 18 server-side CS. This paper is structured as follows:

84 A. Rio and F. Brito e Abreu

Sect. 2 introduces the study design; Sect. 3 describes the results of data anal-
ysis, while Sect. 4 discusses the findings and identifies validity threats; Sect. 5
overviews the related work on longitudinal studies on CS and in web apps;
finally, Sect. 6 outlines the major conclusions and outlines future work.

2 Study Design

2.1 Applications Sample

The criteria for selecting the sample of PHP web apps were the following:

Inclusion criteria: code availability (open source); complete or self-
contained applications, taken from the GitHub top listings; programmed with
an object-oriented programming (OOP) style; covering a long period (at least
5 years)
Exclusion criteria: libraries; frameworks or applications used to build other
applications; web apps built using a framework.

We excluded frameworks and libraries because we want to study typical web
apps. We excluded web apps built with frameworks because we want to analyze
app code and not the framework code itself, thus aiming for comparability among
apps. Probably, apps made with frameworks would deserve a separate study.
Another reason is that we have apps with a long history, and many started when
modern frameworks were not available. Some apps that we had as candidates
failed the requisite of being OOP. PHP allows for a procedural development
paradigm, but the detected CS are OOP in nature. Table 1 shows the sample of
apps used, including some metrics.

Table 1. Characterization of the target web apps (* on last version)

Name Purpose #Versions(period) Last version LOC* #Classes*

PhpMyAdmin Database administration tool 181 (09/2008-09/2019) 4.9.1 301748 1174

DokuWiki Wiki solution 40 (07/2005-01/2019) 04-22b 271514 402

OpenCart Shopping cart solution 28 (04/2013-04/2019) 3.0.3.2 206253 955

PhpBB Forum/bulletin board solution 50 (04/2012-01/2018) 3.2.2 341159 1330

PhpPgAdmin Database administration tool 29 (02/2002-09/2019) 7.12.0 71210 54

MediaWiki Wiki solution 145 (12/2003-10/2019) 1.33.1 754941 2479

PrestaShop Shopping cart solution 74 (06/2011–08/2019) 1.7.6.1 516737 2597

Vanilla Forum/bulletin board solution 75 (06/2010–10/2019 3.3 193435 533

For each app we collected as many versions as possible. Sometimes we could
not get the whole lifecycle either because not all versions were available online
or did not match the OOP criterion in the earlier versions. The LOC (Lines Of
Code) and “number of Classes” are size metrics from the last version and were
measured by the PHPLOC tool.

https://phpqa.io/projects/phploc.html

Detecting Sudden Variations in Web Apps Code Smells’ Density 85

2.2 CS Sample

We used PHPMD , an open-source tool that detects CS in PHP. PHPMD was
the base for many other PHP CS detection tools existing today, and we can
automatize it via the command line. Although the tool supports more CS, we
chose the maximum number of highly cited ones in the literature for other lan-
guages, leaving us with the 18 CS which are briefly characterized in Table 2.
For comparability among apps, the thresholds are the same among apps, and
the default ones used in PHPMD, witch in turn came from PMD, and are gen-
erally accepted from the references in the literature [4,16]. For individual app
evaluation these could be optimized [13].

Table 2. Characterization of the target code smells

Code smell name Code smell description Threshold

CyclomaticComplexity Determined by the number of decision
points in a method plus one for the
method entry

10

NPathComplexity Number of acyclic execution paths
through that method

200

ExcessiveMethodLength (Long method) the method is doing too
much

100

ExcessiveClassLength (Long Class) class does too much 1000

ExcessiveParameterList Method with too long parameter list 10

ExcessivePublicCount A large number of public methods and
attributes declared in a class

45

TooManyFields Class with too many fields 15

TooManyMethods Class with too many methods 25

TooManyPublicMethods Class with too many public methods 10

ExcessiveClassComplexity Excessive Sum of complexities of all
methods in a class

50

NumberOfChildren Class with an excessive number of children 15

DepthOfInheritance Class with many parents 6

CouplingBetweenObjects Class with too many dependencies 13

DevelopmentCodeFragment Development Code ex: var dump(),
print r() etc.

1

UnusedPrivateField A private field is declared and/or assigned
a value, but not used

1

UnusedLocalVariable A local variable is declared and/or
assigned, but not used

1

UnusedPrivateMethod A private method is declared but is unused 1

UnusedFormalParameter Unused parameters in
methods/constructors that are not used

1

https://phpmd.org/

86 A. Rio and F. Brito e Abreu

2.3 Data Collection and Preparation

In the data collection and preparation phase, we downloaded the source code of
all versions of the selected web applications, in ZIP format, from GitHub, Source-
Forge, and application site (when not available), except the alpha, beta, release
candidates, and corrections for old versions. We created a database table with
the application versions, later exported to a CVS file, containing the timestamps
for each downloaded version. Using PHPMD, we extract the CS, file and line
locations, dates, and other CS indicators from every version, and store them in a
database. For the applications, we excluded some directories that were not part
of the applications (vendor, libraries, images, etc.). The data at this point was
stored by version/smell. We then exported the results to CVS format, in prepa-
ration for the data analysis phase. We used the PHPLOC tool to extract several
code metrics from the source code of each version of each app. The collected
dataset is available here, in csv format, for replication purposes.

3 Results and Data Analysis

3.1 Evolution of the Number of CS per Version

Figure 1 presents the evolution of CS by version. Software delivery occurs at
unequally spaced moments in time, that we usually call “versions”, or “releases”.
The visualization in Fig. 1 allows identifying the versions where a major refac-
toring occurred. For example, in PhpMyAdmin, from a graph of survival of code
smells not shown here (space constrictions), versions 4.6, 4.7 and 4.8 seem to
have a lot of refactoring. We drilled down this behavior in the code of ver-
sion 4.8 because a lot of smells were introduced in this version, and a lot were
removed. By code inspection we found that during that refactoring some files
changed their names, so the smell appears in another file. In other words, a
rename in a file or class causes the fake conclusion that some existing smells
were removed while new ones were created. To block this fake effect, we should
observe the evolution of the total number of occurrences for each CS, by ver-
sion. We observed these phenomena in the record of each CS, in our data. If
we observe Fig. 2, we do not understand if the smells are all new or came from
renaming operations but observing the total number of CS in Fig. 3 we have a
different perspective. We also pinpoint that for 2 of the applications, Vanilla and
MediaWiki, the number of CS increases steadily during the life of the applica-
tion. The “ExcessiveMethodLength” (aka Long Method) CS is one of the more
recurrent. However, the “complexity” smells play an important part in the total
computation, and also in some applications, the “unused” group of smells.

3.2 Anomalies in CS Evolution

During data analysis, we found versions where refactoring on file names and
location in folders occurred, but CS prevailed in a different file/folder. So, is it

https://github.com/americorio/articledata/tree/master/suddenvariations-webapps/

Detecting Sudden Variations in Web Apps Code Smells’ Density 87

CodeSmell

CyclomaticComplexity

NPathComplexity

ExcessiveMethodLength

ExcessiveClassLength

ExcessiveParameterList

ExcessivePublicCount

TooManyFields

TooManyMethods

TooManyPublicMethods

ExcessiveClassComplexity

NumberOfChildren

DepthOfInheritance

CouplingBetweenObjects

DevelopmentCodeFragment

UnusedPrivateField

UnusedLocalVariable

UnusedPrivateMethod

UnusedFormalParameter

Fig. 1. Evolution of the total number of each code smell by app and version

88 A. Rio and F. Brito e Abreu

Fig. 2. CS and KLLOC rate of change evolution

possible to check those versions for anomalies (sudden variations) in the num-
ber/intensity of CS?

In Fig. 2, we can see the relative change of CS from the previous version
(black), and the relative change in KLLOC (thousands of logical lines of code)

Detecting Sudden Variations in Web Apps Code Smells’ Density 89

from the previous version (blue/dashed). KLOC (thousands of lines of code) is a
well know measure, although here we used the logical lines of code. The relative
change in the number of CS is given by:

Δcs =
csi − csi−1

csi−1
=

csi
csi−1

− 1 (1)

where Δ is the rate of change, csi is the number of CS in the current version
and csi−1 is the number of CS in the previous version. The same is calculated
for the size, i.e. the Logical Lines of Code (LLOC).

The sudden variations occur when there is a large increase in the number of
CS and the size does not grow accordingly. It is also possible to get the version
in which a lot of CS were removed by refactoring. For comparability sake, we
use CS density or ρcs = number of CS/LLOC. We can now calculate the rate of
change of the CS density, which we calculate in the same way as referred before
for the CS number:

Δρcs =
ρcsi − ρcsi−1

ρcsi−1
=

ρcsi
ρcsi−1

− 1 (2)

where Δρcs is the rate of change of density of CS, ρcsi is the density of CS
in the current version and ρcsi−1 is the density of CS in the previous version.
Figure 3 presents the evolution of CS density, making it easy to pinpoint the
peaks, labeled according to the corresponding version.

In the graphs per application, we use lines representing thresholds, signaling
the increase of 50% and 100% and the reduction of 50% in the rate of change
in the density of CS. The thresholds can be changed according to application,
team, quality, and company, if applicable.

In Table 3 we can observe the variance of CS by KLLOC, as well as the
Cyclomatic Complexity by LLOC (aka Cyclomatic Complexity Density) from the
current and previous versions, a long used objective metric for maintainability
prediction [11].

Table 3. Metrics for the outliers

App Version Date CS LLOC CS/kLLOC var(CS/kLLOC) CC/LLOC CC/LLOC

previous

phpmyadmin 3.3.0 2010-03-07 1145 130863 8.75 0.55 0.129 0.095

phpmyadmin 3.4.0 2011-05-11 1617 57338 28.20 2.02 0.425 0.137

phpmyadmin 4.7.1 2017-05-26 948 56192 16.87 1.11 0.391 0.321

phpbb 2.0.7 2004-03-13 226 12511 18.06 4.88 0.436 0.073

phpbb 3.0.0 2007-12-12 1781 32291 55.15 1.90 0.547 0.462

phppgadmin 5.1.0 2013-04-14 402 37098 10.84 0.71 0.152 0.095

4 Discussion

4.1 Introduction

We could find CS sudden variations in 4 web apps (PhpMyAdmin, PhpBB, PhpP-
gAdmin and MediaWiki). For example, PhpMyAdmin has 3 of these anomalies,

90 A. Rio and F. Brito e Abreu

Fig. 3. CS density rate of change evolution

where CS rose abnormally without a correspondent rise in the app size. This
can point to problems in those versions. We also spot a decrease anomaly, in
version 4.7. By reading the code we confirmed that refactoring was then applied

Detecting Sudden Variations in Web Apps Code Smells’ Density 91

considerably, which is in line with the changes observed in Fig. 2. The other 4
apps (DokuWiki, OpenCart, PrestaShop and Vanilla) are not exactly stable but
do not have anomalies crossing the warning threshold. This somewhat simple
method to implement - measuring Δρcs - is able to detect the anomalies/sudden
variations in the CS density.

4.2 Answers to Research Questions

RQ1 – How to detect sudden variations in the evolution of code smells? - As
shown in Figs. 2 and 3 it is possible to detect these CS anomalies or peaks. We
can analyze the rate of change (current version vs previous version) on the CS
intensity alone (Eq. 1) or their relative rate of change by size (density), given
by Eq. 2, which will be a more comparable metric across versions of the same
application and even among applications.

RQ2 – When are the sudden variations of code smells in a new version considered
too high? - or When are there too many code smells? Similar to limits in control
charts, where you have limits equal to 3 times the variance, in this case we have
to define thresholds, that can be chosen among development teams. We believe
that a threshold of 50% will be sufficient to rise maintainability alerts. Knowing
that we can never remove all the CS from an application, a 50% increase would
raise a yellow flag, and a 100% increase would raise a red flag (stop immediately).
Looking at Table 3 we can see that peaks also affect the cyclomatic complexity
per LLOC, which it turn affects maintainability [11].

4.3 Applicability

Ideally, the removal of CS can be done in a “Total Quality” manner, where
the developer is responsible to avoid the introduction of CS in the code, but
often this is not possible. CS density thresholds detection can be integrated into
an automation server tool such as Jenkins , that runs a battery of tests before a
release - comparing it with the previous released version. If a threshold is reached,
the release could be put on hold for some refactoring to be performed. This would
act as a safeguard with the other tests in the test battery. Since Jenkins already
has support for PHPMD in PHP projects, it is feasible to add our approach to
the pipeline. The value of the threshold should be decided by each development
team, depending on the development circumstances and requirements.

4.4 Comparison to Other Techniques

We also tried other methods, and among them, to apply SPC (Statistical Process
Control) techniques with 2 or 3 standard deviations as limits, but we could not
get limits due to the nature of the evolution (for long periods the value of number
of CS was the same, then this value sudden increases). The main problem was
that the standard deviation is 0 or close to 0. Another problem that arises with
methods that use the average, for example [7], is that you have to know all

https://www.jenkins.io/
https://www.jenkins.io/zh/solutions/php/

92 A. Rio and F. Brito e Abreu

the history of the project, while in the method shown here, the computation at
each point in time is just based on data collected from the previous and current
versions.

4.5 Threats to Validity

Threats to construct validity concern the statistical relation between the theory
and the observation, in our case the measurements and treatment to the data.
We detected the CS using PHPMD, where we detected 18 smells. We could
expand this study to consider even more CS, and compare the detection with
other tools for PHP. However, some of them are based in PHPMD.

Threats to internal validity concern external factors we did not consider
that could affect the variables and the relations being investigated. We can say
that PHPMD allows to change the thresholds of the of the CS detection, but
we worked with the default values for comparing between applications. These
values can, however, be questioned for different applications.

Threats to conclusion validity concern the relation between the treatment and
the outcome. One can argue that CS are often considered by absolute number or
normalized by LOC or LLOC. However, our experiments have shown that the
normalization by LLOC describes the peaks better.

Threats to external validity concern the generalization of results. We recog-
nize that having just 8 web applications may not be enough for generalization
sake.

5 Related Work

Much literature in software evolution has been published in the last decades, but
few on web apps.

Longitudinal on CS: In [17] are described different phases in the evolution
of CS and reported that components infected with CS have a higher change
frequency. Later, [19] results indicate: CS lifespan is close to 50% of the lifespan
of the systems. In [6] it is reported that a large percentage of CS was introduced in
the creation of class/methods, but very few CS are removed. Later, [26] sustains
that most CS are introduced when artifacts are created and not because of
their evolution. In [20] the authors claim that the latest versions of the observed
application have more CS/design issues than the oldest ones. They also note
that the first version of the software is cleaner. In [8] the authors found that TD
(Technical Debt) increases for most observed systems. However, TD normalized
to the size of the system decreases over time in most systems. In [12], the authors
conclude that CS can remain in the application code for years before removal,
and CS detected and prioritized by linters, disappear from code before other CS.
Recently [7] find that the number of TD items introduced through new code is
a stable metric, although it presents some spikes; and also that the number of
commits is not strongly correlated to the number of introduced TD items.

Detecting Sudden Variations in Web Apps Code Smells’ Density 93

Non-longitudinal in Web Apps: These studies include [24], which found that
for JS applications, and for the time before a fault occurrence, files without CS
have hazard rates 65% lower than files with CS. As an extension to the previous
paper, [14] show the results: files without CS have hazard rates of at least 33%
lower than files with CS. In [2] study with PHP TD, which includes CS, they
find that, on average, the number of times that a file with high TD is modified is
1.9 times more than the number of times a file with low TD is changed. In terms
of the number of lines, the same ratio is 2.4. In [3] the authors find: complex and
large classes and methods are frequently committed in PHP files; smelly files are
more prone to change than non-smelly files. Studies in Java [18] report similar
findings to the last two studies.

Longitudinal with PHP, without CS: Studies of this type include [15], where
authors study 5 PHP web apps, and some aspects of their history, like unused
code, removal of functions, use of libraries, stability of interfaces, migration to
OOP, and complexity evolution. They found these systems undergo systematic
maintenance. Later in [1], they expanded the study to analyze 30 PHP projects
extracting their metrics, and found that not all of Lehman’s laws of software
evolution were confirmed in web applications.

Longitudinal with Fluctuations in CS: The only study we found regarding
this aspect, which indeed is the most related to our work, is an already referred
recent study [7], about the fluctuation in the evolution of technical dept (which
includes CS). Their authors propose to divide applications into stable and sensi-
tive (if they have spikes). To perform this classification, they use SMF (Software
Metrics Fluctuation), which is defined as the average deviation from successive
version pairs.

Related Work Discussion: The method described in [7] should prove effective
for detecting anomalies or outliers in a continuous growing metric, or a metric
that varies around a average value (fluctuates), with variations different from 0,
witch was not the case with CS evolution with these apps. Another difference is
that you have to known the history of the project.

6 Conclusions and Future Work

We studied the evolution and sudden variations of 18 CS in 8 widely used PHP
web apps, across many years. It is important for PHP project managers to
have an evolutionary perspective on the CS in an application, to decide on
the allocation of resources to mitigate their maintainability effects. We observed
sudden variations in CS occurrence in specific versions, whose root causes deserve
investigation and are important for project managers to understand, especially
for long-lived projects where managers’ turnover inevitably happens.

In this paper we proposed a normalized technique that is simple to imple-
ment, for detecting those sudden variations in specific versions during the evo-
lution of web apps, allowing us to unveil the CS story of a development project
and make managers aware of the need for enforcing regular refactoring practices.

94 A. Rio and F. Brito e Abreu

This technique can also be useful in an automation server pipeline, to add in
the quality certification before the release. Our main goal was to achieve a sim-
ple technique that prevents a given version of software to be released with an
extraordinary increase in CS, which later will be costly to maintainability. We
used web applications in our study, but we think this method can be generalized
to other domains or types of apps.

Regarding future work, we would like to increase the number of applications
and CS studied, with more computing power. The obvious way forward here, is
comparing PHP to Java since many more longitudinal studies on CS exist for
the latter.

Acknowledgments. This work was partially supported by the Portuguese Founda-
tion for Science and Technology (FCT) projects UIDB/04466/2020 e UIDP/04466/
2020.

References

1. Amanatidis, T., Chatzigeorgiou, A.: Studying the evolution of PHP web appli-
cations. Inf. Softw. Technol. 72(April), 48–67 (2016). https://doi.org/10.1016/j.
infsof.2015.11.009

2. Amanatidis, T., Chatzigeorgiou, A., Ampatzoglou, A.: The relation between techni-
cal debt and corrective maintenance in PHP web applications. Inf. Softw. Technol.
90, 70–74 (2017). https://doi.org/10.1016/j.infsof.2017.05.004

3. Bessghaier, N., Ouni, A., Mkaouer, M.W.: On the diffusion and impact of code
smells in web applications. In: Wang, Q., Xia, Y., Seshadri, S., Zhang, L.-J. (eds.)
SCC 2020. LNCS, vol. 12409, pp. 67–84. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-59592-0 5

4. Bieman, J.M., Kang, B.K.: Cohesion and reuse in an object-oriented system. SIG-
SOFT Softw. Eng. Notes 20(SI), 259–262 (1995). https://doi.org/10.1145/223427.
211856

5. Bryton, S., Brito e Abreu, F., Monteiro, M.: Reducing subjectivity in code smells
detection: experimenting with the long method. In: 7th International Conference
on the Quality of Information and Communications Technology (QUATIC 2010),
pp. 337–342. IEEE (2010)

6. Chatzigeorgiou, A., Manakos, A.: Investigating the evolution of code smells in
object-oriented systems. Innov. Syst. Softw. Eng. 10(1), 3–18 (2013). https://doi.
org/10.1007/s11334-013-0205-z

7. Digkas, G., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P.: On the temporality
of introducing code technical debt. In: Shepperd, M., Brito e Abreu, F., Rodrigues
da Silva, A., Pérez-Castillo, R. (eds.) QUATIC 2020. CCIS, vol. 1266, pp. 68–82.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58793-2 6

8. Digkas, G., Lungu, M., Chatzigeorgiou, A., Avgeriou, P.: The evolution of technical
debt in the apache ecosystem. In: Lopes, A., de Lemos, R. (eds.) ECSA 2017. LNCS,
vol. 10475, pp. 51–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65831-5 4

9. Fontana, F.A., Ferme, V., Zanoni, M., Roveda, R.: Towards a prioritization of code
debt: a code smell intensity index. In: 7th International Workshop on Managing
Technical Debt (MTD 2015), pp. 16–24. IEEE (2015)

https://doi.org/10.1016/j.infsof.2015.11.009
https://doi.org/10.1016/j.infsof.2015.11.009
https://doi.org/10.1016/j.infsof.2017.05.004
https://doi.org/10.1007/978-3-030-59592-0_5
https://doi.org/10.1007/978-3-030-59592-0_5
https://doi.org/10.1145/223427.211856
https://doi.org/10.1145/223427.211856
https://doi.org/10.1007/s11334-013-0205-z
https://doi.org/10.1007/s11334-013-0205-z
https://doi.org/10.1007/978-3-030-58793-2_6
https://doi.org/10.1007/978-3-319-65831-5_4
https://doi.org/10.1007/978-3-319-65831-5_4

Detecting Sudden Variations in Web Apps Code Smells’ Density 95

10. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

11. Gill, G.K., Kemerer, C.F.: Cyclomatic complexity density and software mainte-
nance productivity. Trans. Softw. Eng. 17(12), 1284 (1991)

12. Habchi, S., Rouvoy, R., Moha, N.: On the survival of android code smells in the
wild. In: 6th International Conference on Mobile Software Engineering and Sys-
tems (MOBILESoft 2019), pp. 87–98. IEEE, May 2019. https://doi.org/10.1109/
MOBILESoft.2019.00022

13. Herbold, S., Grabowski, J., Waack, S.: Calculation and optimization of thresholds
for sets of software metrics. Empir. Softw. Eng. 16(6), 812–841 (2011). https://
doi.org/10.1007/s10664-011-9162-z

14. Johannes, D., Khomh, F., Antoniol, G.: A large-scale empirical study of code smells
in JavaScript projects. Softw. Qual. J. 27(3), 1271–1314 (2019). https://doi.org/
10.1007/s11219-019-09442-9

15. Kyriakakis, P., Chatzigeorgiou, A.: Maintenance patterns of large-scale PHP web
applications. In: 30th International Conference on Software Maintenance and Evo-
lution (ICSME 2014), pp. 381–390 (2014). https://doi.org/10.1109/ICSME.2014.
60

16. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice. Springer, Heidel-
berg (2007)

17. Olbrich, S., Cruzes, D.S., Basili, V., Zazworka, N.: The evolution and impact of
code smells: a case study of two open source systems. In: 3rd International Sym-
posium on Empirical Software Engineering and Measurement (ESEM 2009), pp.
390–400. IEEE (2009). https://doi.org/10.1109/ESEM.2009.5314231

18. Palomba, F., Bavota, G., Penta, M.D., Fasano, F., Oliveto, R., Lucia, A.D.: On
the diffuseness and the impact on maintainability of code smells: a large scale
empirical investigation. Empir. Softw. Eng. 23(3), 1188–1221 (2017). https://doi.
org/10.1007/s10664-017-9535-z

19. Peters, R., Zaidman, A.: Evaluating the lifespan of code smells using software
repository mining. In: European Conference on Software Maintenance and Reengi-
neering (CSMR 2012), pp. 411–416. IEEE (2012). https://doi.org/10.1109/CSMR.
2012.79

20. Rani, A., Chhabra, J.K.: Evolution of code smells over multiple versions of soft-
wares: an empirical investigation. In: 2nd International Conference for Convergence
in Technology (I2CT 2017), vol. 2017-January, pp. 1093–1098. IEEE, December
2017. https://doi.org/10.1109/I2CT.2017.8226297

21. Rasool, G., Arshad, Z.: A review of code smell mining techniques. J. Softw. Evol.
Process 27(11), 867–895 (2015). https://doi.org/10.1002/smr.1737

22. Pereira dos Reis, J., Brito e Abreu, F., de Figueiredo Carneiro, G., Anslow, C.:
Code smells detection and visualization: a systematic literature review. Arch. Com-
put. Methods Eng. (2021). https://doi.org/10.1007/s11831-021-09566-x

23. Rio, A., Brito e Abreu, F.: Code smells survival analysis in web apps. In: Piat-
tini, M., Rupino da Cunha, P., Garćıa Rodŕıguez de Guzmán, I., Pérez-Castillo,
R. (eds.) QUATIC 2019. CCIS, vol. 1010, pp. 263–271. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29238-6 19

24. Saboury, A., Musavi, P., Khomh, F., Antoniol, G.: An empirical study of code
smells in JavaScript projects. In: 24th International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER 2017), pp. 294–305. IEEE, March
2017. https://doi.org/10.1109/SANER.2017.7884630

https://doi.org/10.1109/MOBILESoft.2019.00022
https://doi.org/10.1109/MOBILESoft.2019.00022
https://doi.org/10.1007/s10664-011-9162-z
https://doi.org/10.1007/s10664-011-9162-z
https://doi.org/10.1007/s11219-019-09442-9
https://doi.org/10.1007/s11219-019-09442-9
https://doi.org/10.1109/ICSME.2014.60
https://doi.org/10.1109/ICSME.2014.60
https://doi.org/10.1109/ESEM.2009.5314231
https://doi.org/10.1007/s10664-017-9535-z
https://doi.org/10.1007/s10664-017-9535-z
https://doi.org/10.1109/CSMR.2012.79
https://doi.org/10.1109/CSMR.2012.79
https://doi.org/10.1109/I2CT.2017.8226297
https://doi.org/10.1002/smr.1737
https://doi.org/10.1007/s11831-021-09566-x
https://doi.org/10.1007/978-3-030-29238-6_19
https://doi.org/10.1109/SANER.2017.7884630

96 A. Rio and F. Brito e Abreu

25. Singh, S., Kaur, S.: A systematic literature review: refactoring for disclosing code
smells in object oriented software. Ain Shams Eng. J. 9(4), 2129–2151 (2018).
https://doi.org/10.1016/j.asej.2017.03.002

26. Tufano, M., et al.: When and why your code starts to smell bad (and whether the
smells go away). Trans. Softw. Eng. 43(11), 1063–1088 (2017). https://doi.org/10.
1109/TSE.2017.2653105

27. W3techs.com: Usage Statistics and Market Share of Server-side Programming Lan-
guages for Websites, January 2021. https://w3techs.com/technologies/overview/
programming language

28. Zhang, M., Hall, T., Baddoo, N.: Code bad smells: a review of current knowledge.
J. Softw. Maintenance Evol. 23(3), 179–202 (2011). https://doi.org/10.1002/smr.
521

https://doi.org/10.1016/j.asej.2017.03.002
https://doi.org/10.1109/TSE.2017.2653105
https://doi.org/10.1109/TSE.2017.2653105
https://w3techs.com/technologies/overview/programming_language
https://w3techs.com/technologies/overview/programming_language
https://doi.org/10.1002/smr.521
https://doi.org/10.1002/smr.521

Risk and Complexity Assessment
on the Context of Language Migration

Santiago Bragagnolo1,2(B), Abderrahmane Seriai1, Stéphane Ducasse2,
and Mustapha Derras1

1 Berger-Levrault, Montpellier, France
{santiago.bragagnolo,abderrahmane.seriai,

mustapha.derras}@berger-levrault.com
2 Université de Lille, CNRS, Inria, Centrale Lille, UMR 9189 – CRIStAL,

Lille, France
stephane.ducasse@inria.fr

Abstract. Language Migration is a highly risky and complex process.
Many authors have provided different ways to tackle down the problem,
but it still not completely resolved, even-more it is considered almost
impossible on many circumstances. Despite the approaches and solutions
available, no work has been done on measuring the risks and complexity
of a migration process based on the technological gap. In this article we
contribute a first iteration on Language Migration complexity metrics,
we apply and interpret metrics on an industrial project. We end the
article with a discussion and proposing future works.

Keywords: Migration · Challenges · Risk · Assessment · Metrics

1 Introduction

With the fast evolution of programming languages and frameworks, companies
must evolve their systems. This evolution may imply the full migration of their
applications to new technological environments. Our work takes place in collab-
oration with Berger-Levrault, a major IT company selling information systems
developed in Microsoft Access among others. Microsoft Access is ageing and not
able to respond to the architectural needs of modern times, threatening the con-
tinuity of these information systems and pushing them into the classification of
Legacy Systems.

To respond to the process of obsolescence, as explained by [5], we are working
on a software evolution process of modernization by migration of Microsoft
Access applications (source application) to a web architecture (target applica-
tion). The technological choice of the target web architecture is Angular for the
front-end and microservices for the back-end, in alignment with the migration
policy of the company.

According to [5] a generic iterative migration responds to the iterative appli-
cation following process steps: (i) Plan (ii) Understand system (iii) Understand
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 97–110, 2021.
https://doi.org/10.1007/978-3-030-85347-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_8

98 S. Bragagnolo et al.

destination (iv) transform knowledge (v) Produce Destination. Our article aims
to help to plan by measuring the potential complexity of the transform knowl-
edge phase, by measuring the distance in between the origin system and the
destination system.

Modernization is a risky and complex case of software evolution that could be
near to impossible or just not worthy in certain circumstances. This complex and
risky nature is not only due to the quality of the source project (as many other
articles already spotted [1,17]), but also due to the gap in between the origin
and destination technologies. Much has been told about the impact of cohesion
and coupling to the decomposability of software, and how this decomposability
is key for iterative processes of migration [2,8,10,15,21,25], but to the best of
our knowledge there are not works on the measure of the technological gap,
despite the conscious acknowledgement on the literature [22] of the correlation
between the difficulty of a migration and the difference between origin and target
technological platforms.

Following we explain the context and highlight the challenges of our migra-
tion project (Sect. 2). We introduce our different counters and highlight their
relationship with the complexity of the process of migration on different levels
in our particular setup (Sect. 3). We extract the proposed metrics on an indus-
trial project, and propose an interpretation of the extracted numbers (Sect. 4).
After interpretation, we discuss the flaws of this kind of metrics and what it still
to be done for having a functional set of gap metrics useful to predict complex-
ity (Sect. 5) We finish the article with a preview of future works (Sect. 6) and a
conclusion (Sect. 7).

2 Challenges

The migration of Microsoft Access applications to a web technology is a difficult
task. Indeed, it requires working on several levels of abstraction, namely: the
architectural level and the source code level. In this section we present, in a
non-exhaustive way, the difficulties inherent in the process of migrating VBA
applications to a web technology.

It is important to remark that these challenges are not solved yet, but exposed
to give context to the metrics. The metrics should contribute to the measurement
of these challenges.

2.1 Software Architecture Challenges

Moving from a Centralized/Standalone Application to a Distributed Application.
Microsoft Access is a development environment used to create database based
applications. It comes with a programming language called Visual Basic For
Application (VBA) and various libraries. This language and the libraries are
used in a programming environment called Microsoft Visual Basic, which also
comes with Microsoft Access. Microsoft Access applications are so-called “stan-
dalone” applications, i.e. they are developed to be deployed centrally, although

Risk and Complexity Assessment on the Context of Language Migration 99

they have the ability to interact with remote data servers. Furthermore, a stan-
dalone application can access the resources of its deployment environment (user
computer), such as the operating system used, the file system, printers, etc.
In contrast, a distributed application rarely access users resources but network
resources, assuming the existence of a network and shared resources. [20] is a
good example of how radical may be this kind of modification. The difference
between this two environments makes many original development assumptions
to not be valid any more, requiring to be adapted or completely redeveloped
during a migration process. Further, in this article (Sect. 3), we propose the
paradigmatic change and the dependencies counters which measure the amount
of entities that are related with this aspect.

Moving from a Monolithic Application to a Microservice Application. A mono-
lithic application is often described as a single-tier system in which the user
interface, business logic and data layer are combined into a single applica-
tion. Microservices is one of the latest trends in software development that has
emerged from service-oriented architecture styles. Microservices are expected to
be specialized on specific concerns, small, highly cohesive, loosely coupled ser-
vices, each independently deployable and communicating with communication
mechanisms (such as REST or a message bus like RabbitMQ). In addition, there
is a lot of microservices architectures and existing approaches for this kind of
migration, that are not addressed in this paper, since we have not yet made the
decision of which specific composition and migration approach to take. The con-
trast between this two architectures is dramatic. The original source code has
been developed with the assumption of local synchronized execution with low-
level shared resources (as memory and stack), while the destination proposes full
distribution as assumption, requiring to be adapted or completely redeveloped
during a migration process. Alongside it also requires the production of configu-
ration files that allow to find a service composition that produces an equivalent
work to the original software. [10,25] have exposed with detail the case serving
monolithic applications as web pages or services, identifying the multiple chal-
lenges that come from such a modernization. Further, in this article (Sect. 3), we
propose the paradigmatic change and the dependencies counters which measure
the amount of entities that are also related with this aspect.

Moving from a Desktop Application GUI to a Web Application GUI. Graphical
user interfaces for Microsoft Access applications are developed using Microsoft
Office GUI components. These components generally use the libraries provided
by the Microsoft Windows operating system. Even when the GUI can be highly
customized, it is no wonder that most of these applications respond to the unified
aesthetics of the operative system, using not only the same look and feel, but
the same navigation metaphor (from pop-up and dialogue windows to modal
and non-modal sub windows). However, the GUIs of a web application typically
use HTML and CSS (or derivations) used to customize the look-and-feel of the
web page. The originality of aesthetics is encouraged and welcomed, as part of
the company identity. Along with that, navigation methods such as pop-up and

100 S. Bragagnolo et al.

dialogues are not welcomed and even banned by many web browsers. These two
paradigms are completely different. Thus, a mapping work is necessary in order
to be able to transform the VBA graphical interfaces into web interfaces. All
of these differences together mean that the migration of graphical constructs,
both visual and behavioural [23] are developed with assumptions that are not
valid on the destination platform, and may require to be adapted or completely
redeveloped during a migration process. [7,12,13,18,19] and many others have
contributed in identifying the challenges and validation opportunities of GUI
migration. Because of lack of time for further experiments we do not provide
metrics for this challenge in this article.

2.2 Source Code Difficulties

VBA/Macro Code to Typescript/Java. VBA (Visual Basic for Applications) is a
language similar to Visual Basic that requires a host application to run (Access
in our case). Microsoft Access projects provide two kinds of source code: The
“macros” language – a specific user-friendly language for Microsoft Access– and
VBA, a language inspired by Visual Basic, adapted for use in the Microsoft
Office context, and Microsoft Access. It is an interpreted language, and devel-
oped to run in the context of a database. Furthermore, VBA does not support
namespaces nor packages, meaning that all the module functions and classes
defined in a project are visible within the project. By other hand, TypeScript
is a statically typed programming language that transpiles to JavaScript code.
TypeScript allows for development in both the procedural and object-oriented
paradigms. Regardless to support for both procedural and object-oriented, an
Angular application (the technological target for the GUI), is expected to be
written by using mainly object-oriented and component-oriented code. Java is
an object-oriented programming language used to develop mainly object-oriented
and component oriented software. Both languages are file-oriented, and require
the usage of namespaces or packages and importing for visibility. All this code
must be generated by instrumentation of algorithms as type inference. Also, the
clustering of functions into classes is compulsory in java and mostly desirable in
the context of an Angular project [15,26]. The difference between grammatical
constructs, the existence of namespaces and the file oriented source code are
really challenging chasms to cross, and in many cases leading to problems as
the impossibility of expressing important semantic on the destination target or
requiring to adapt the semantic into concepts that may lead to ambiguity or in
extreme cases requiring the redevelopment of a component during a migration
process [22].

Moving the Internal Structural Representation from VBA to Angular. As an
extension of the language difference, the graphical constructs are designed and
developed differently. In Microsoft Access the development of graphical interfaces
is done using a wizard (drag and drop). This drag and drop adds graphical
controls to the built GUI. Each of these controls and the form itself can be bound
to a database table directly. However, GUI development in Angular is done

Risk and Complexity Assessment on the Context of Language Migration 101

using the Angular templating language. This language mixes HTML, HTML
code generation directives and directives for linking to GUI behavioural code.
Angular manual encourage the developers to use interface objects for storing
the data produced by the user interaction, and use this objects afterwords as
data transfer objects. Therefore, this migration implies the production of state-
holding objects, the production of database CRUD code, and to produce calls
to remote services thus none of these calls or objects exists in the origin system.
[18,23] have discussed on challenges related with the structural representation
of the GUI. [11] also has discussed the user interaction impact over a software
adaptation that can shed light also to the potential risks on invalidating the
assumptions that were followed during the development of the original software.

3 Metrics

The various difficulties related to the migration of VBA applications (source
of the migration) to a web architecture (target of the migration) highlight the
incompatibilities that exist between VBA and its paradigm as well as web appli-
cations and their paradigm. In this section, we present a set of metrics that
measure these incompatibilities and try to quantify the different gaps between
source and destination technologies, in an intent to measure the inherent risks
to the semi-automatic migration process. These metrics are the result of our
experiences as well as our readings in the literature.

3.1 Risks Related to the Relevance of the Source Code Analysis

Parsers has been used largely in the migration and reverse-engineering literature,
as we have seen in different works as [3,6,8,13,23,24] and many others. We know
also from other studies that Microsoft access projects are complex to analyse [4].
Often, to count with a parser able to parse all possible program on a language
is key for the automatic and semi-automatic approaches.

A parser is a program that analyses a string written according to the rules of
a formal grammar and produces some kind of output. Among the set of tools we
have developed to work with Microsoft Access projects, we have a VBA parser
that takes as input a source code and produces a so-called Abstract Syntax Tree
(AST). Our parser is based on the grammar of the VBA language as described in
the Microsoft Access documentation. For ensuring the completeness we created
tests for each of the grammar cases proposed by the documentation. We test also
our tool by parsing the Microsoft Northwind Traders1 example project, covering
the full extension of the program.

Risk. Despite our efforts to ensure completeness, we found that at least in one
of the companies projects, our parser fails to produce an AST in %30 of the
modules/class modules, due to unexpected usage of different grammatical con-
structions. The lack of documentation coverage of these grammatical formulas
1 https://docs.microsoft.com/en-us/powerapps/maker/canvas-apps/northwind-install.

https://docs.microsoft.com/en-us/powerapps/maker/canvas-apps/northwind-install

102 S. Bragagnolo et al.

threatens the validity of our semantic analysis since we have to interpret ourselves
what these grammatical composition means, opening the door to ambiguity and
misinterpretation. The measuring of this risk contributes to the understanding
of the source code related challenges, depicted in Subsect. 2.2.

Parsing Error Counter. In order to quantify the parsing errors, we use the
following Parsing error counter metric In the context of interpreting VBA source
code with our parser, we have defined the “SyntaxError” counter. This gives us
the amount of parsing errors due to a syntax error (especially those mentioned in
the previous paragraph). The higher the value of this counter, the more complex
the migration will be.

3.2 The Risks of Language Translation

Programming languages often respond to specific formal grammar, that define
the limits and possibilities of a language. These grammatical constructions allow
expressing semantics that respond to a proposed programming paradigm. Many
approaches to software migration are based on the interpretation of the seman-
tics of the different source artefacts (contained in the language/application to
be migrated) and the expression of an equivalent semantic in the target lan-
guage/paradigm. Many times the grammatical constructions and or the paradig-
matic concepts are incompatible, leading to the inability to express an equivalent
semantic.

The Risks of Mapping Entities from One Formal Grammar to
Another. One of the most important steps in a migration process is the trans-
formation of grammatical entities from the source language to their equivalents
in the target language. This consists in associating each element of the source
language dataset with one or more elements of the target language dataset. This
task is not trivial, because it is possible to have elements of the source language
dataset that have no equivalents in the target language.

Risk. The lack of equivalent grammatical entity causes loss of semantics during
the transformation.[22]. VBA is a language that has a particularly rich gram-
mar. Thus, the same semantics can be expressed in several ways, this is even true
when it comes to information flow control or error handling. Therefore, we find it
important to map the elements of the VBA dataset that do not have equivalents
in the destination environment and to count them when analysing the code of
VBA applications. The measuring of this risk contributes to (i) the understand-
ing of the VBA/Macro code to Typescript/Java related challenges, since the lack
of equivalence implies, depicted in Subsect. 2.2, and (ii) the complexity of error
management, what gives insight of the complexity of the architectural challenges
depicted in Subsect. 2.1.

Risk and Complexity Assessment on the Context of Language Migration 103

Incompatible Grammatical Construct Counter. Different languages provide dif-
ferent ways to control the flow of execution of a program. Control flow man-
agement includes normally conditional branching (such as if, else if and switch),
loops (such as for, while and repeat) and error management (such as try/catch).
There are other less popular and harder to predict such as conditional and
unconditional jumps (also known as go-to statements). There are many VBA
grammatical entities that are used for error handling and control flow and for
which we do not have an equivalent in Typescript/Java, we mention: Resume
Label, Resume Empty, Error Resume Next, OnError GoTo, Resume Next, Prop-
erty, PropertyAccessors. This grammatical entity counter counts the amount of
appearances of these entities in a given source code. The higher the value of
these counters, the more complex the migration.

The Risks of Paradigm Shift. A programming paradigm is a way of
approaching computer programming and conceiving problem solutions and their
formulation in an appropriate programming language. It thus provides (and
determines) the developer’s understanding of the execution of his programme.
For example, in object-oriented programming, developers may conceive the pro-
gram as a collection of interacting objects, while in functional programming
a program may be seen as a sequence of stateless function evaluations. VBA
proposes a hybrid paradigm programming language that aims the development
of information technology systems focused on human-machine interaction with
direct impact on an integrated database, we find many concepts that do not
exist in the paradigms of our target languages.

Risk. While VBA allows the usage of functions and procedures, all our destina-
tion require the code to be expressed in object oriented fashion. This requires
the identification of concerns, and clusterization of variables and functions into
potential classes. This kind of problem does not have automatic solutions, since
most of the approaches are based on heuristics and multiple results are pos-
sible, exposing seriously the consistency of the produced code [15,16,26]. Fur-
thermore, VBA includes many first-class citizen that do not exist in the tar-
get environments such as Tables Queries and Macros. Each of these cases are
mean to be transformed into something else, risking the loss of semantics and
of consistency.[22]. The measuring of this risk contributes to understand (i)
the complexity of the VBA/Macro code to Typescript/Java related challenge,
depicted in Subsect. 2.2, and (ii) the complexity of Moving from a monolithic
application to a microservices-based application, depicted in Subsect. 2.1.

Counter for Incompatible Entities. Among the all the first class citizens of VBA
language, we find the followings that have no equivalent on our target platforms:
Modules, Tables, Queries, Macros. For measuring the paradigm shift complexity
we opt for counting the amount of entities belonging to these categories. The
higher the value of this counter, the more complex the migration.

104 S. Bragagnolo et al.

3.3 The Risks of Using Libraries as Dependencies

A VBA project interacts with other projects or libraries. These are called depen-
dencies. They can be of three types: (i)“BuiltInDependency”: dependencies
that are part of Microsoft Access (standard) (ii)“BinaryDependency”: depen-
dencies provided by a third party or by Berger-Levrault (iii)“MicrosoftAccess
Dependency”: dependencies developed in Microsoft Access Each kind of depen-
dencies is different, and may not have an equivalent on the target technology.
These dependencies need to be taken into account in our migration process.

Risk. There are many risks associated with dependencies update or migration
[9]. In this article we consider the fact that in different runtime and languages
there is a high probability that the same library is not going to be available,
[8]. Therefore, each library used by the program, is likely to be changed. The
measuring of this risk contributes to understand the general complexity, since
affect all the proposed challenges depicted in Sect. 2.

Dependency Counter. In the context of interpreting VBA source code with our
parser, we have defined a counter for each type of dependency. The higher the
value of these counters, the more complex the migration.

4 The eGRC Use Case

eGRC is an extremely complex project. Indeed, we have seen that it contains
all the types of risks that were mentioned in the previous sections. Therefore, in
order to get a clear picture of the proportion of these risks in the eGRC project,
we have activated all the metrics mentioned above in our VBA code parser. To
understand these metrics, we provide graphs that explain the proportion of risks
in eGRC and its sub-projects. As a demographic, eGRC counts with 900.000
LoC distributed in between 1232 widgets, 564 reports, 271 function-modules,
491 class-modules and 18 macros. These different modules are implemented by
using a total of 21 libraries, 1172 queries and 1437 tables. This project has in
charge a heavy load of business rules since it is in charge of the management
of several public services such as electoral planning, civil status and cemetery
management.

4.1 The Pareto Chart

As largely explained on books as [14], the purpose of the Pareto chart is to iden-
tify important individuals in a sample of data. The diagram follows the Pareto
principle (also known as the 80-20 principle), which is an empirical phenomenon
found in some fields: about 80% of the effects are the product of 20% of the
causes. The Pareto chart consists of two graphs: a histogram of frequencies on
the measured variable (grouped by project complexity in our case), where the

Risk and Complexity Assessment on the Context of Language Migration 105

individual values are represented in descending order by bars, and an accumu-
lation line. In our case, we want to identify the 20% of eGRC sub-projects that
cover the 80% of the risks. This will help us to focus only on the important
sub-projects. For this reason, we have decided to use the Pareto chart.

4.2 Study of the Complexity of Syntactic Errors

The objective is to show the coverage of our parser by making explicit the gram-
matical entities that are not recognized by our code analysis tool. The histogram
shows the number of syntactic errors for each of the eGRC sub-projects. Exam-
ple: The magact sub-project has just over 85 syntax errors. The accumulation
line shows us the percentage of the cumulative frequency. Example: If we solve
the syntax problems in the magact sub-project, we will cover 15% of the total
number of syntax errors in the eGRC project, and if we solve the syntax prob-
lems in both the magact and magelereu sub-projects, we will cover just over 30%
of the total number of syntax errors in the eGRC project. To get 80% coverage
we need to solve the syntax problems in the first 7 sub-projects (Fig. 1).

Fig. 1. Study of the complexity of syntactic errors.

4.3 Study of the Complexity Related to the Differences
in the Source (VBA) and Target (Typescript/Java) Grammar

The objective is to show the degree of mismatch between the grammar of VBA
and Typescript/Java. This consists of counting the number of grammatical ele-
ments in the source language (VBA) that have no equivalent in the target lan-
guages (Typescript/Java). The histogram shows us the number of occurrences
of grammatical elements for which we have no equivalent in each of the eGRC
sub-projects. Example: The magact sub-project has just over 9000 occurrences
of grammatical elements with no Typescript/Java equivalent. The accumulation
line shows us the cumulative frequency percentages. Example: if we solve the

106 S. Bragagnolo et al.

equivalence problems in the magact sub-project, we will cover 28% of the total
number of elements without Typescript/Java equivalents in the eGRC project,
and if we solve the problems of elements without equivalents in both the mag-
act, and cimcode sub-projects, we will cover a little more than 45% of the total
number of elements without Typescript/Java equivalents in the eGRC project.
In order to achieve 80% coverage, we need to solve the problems of grammatical
elements without equivalents in the first 6 sub-projects (Fig. 2).

Fig. 2. Study of the complexity related to the differences in the source.

4.4 Study of the Complexity Related to the Paradigm Shift

As mentioned in a previous section, many of the notions related to the hybrid
paradigm of VBA have no equivalent in the object and component oriented
paradigm: Modules, Tables, Queries, Macros, etc. The objective is to show the
degree of mismatch between the VBA and Typescript/Java paradigms. This
consists of counting the number of paradigm elements in the source language
(VBA) that do not have equivalents in the target languages (Typescript/Java).
The histogram shows us the number of occurrences of paradigm elements for
which we have no equivalents in each of the eGRC sub-projects. Example: the
magact sub-project has just over 650 occurrences of paradigm elements without
Typescript/Java equivalents. The accumulation line shows us the cumulative
frequency percentages. Example: if we solve the equivalence problems in the
magele sub-project, we will cover more than 25% of the total number of elements
without Typescript/Java equivalents in the eGRC project, and if we solve the
problems of elements without equivalents in both the magele, and magelereu sub-
projects, we will cover a little more than 40% of the total number of elements
without Typescript/Java equivalents in the eGRC project. In order to achieve
80% coverage, we need to solve the problems of paradigm elements without
equivalents in the first 8 sub-projects (Fig. 3).

Risk and Complexity Assessment on the Context of Language Migration 107

Fig. 3. Study of the complexity related to the paradigm shift.

4.5 Study of the Complexity of the Use of Dependencies

The objective is to show the degree of use of dependencies in each of the eGRC
sub-projects. The histogram shows the number of occurrences of dependencies
in each of the eGRC sub-projects. Example: The magact sub-project has 17
occurrences of dependencies. The accumulation line shows us the percentage of
the cumulative frequency. Example: If we solve the dependencies in the magact,
magelereu, magform, maggpeg subprojects, we will only cover 30% of the total
number of occurrences of dependencies in the eGRC project. All dependencies
must be handled in the same way, this can be very time-consuming (Fig. 4).

Fig. 4. Study of the complexity of the use of dependencies.

5 Discussion

The metrics we proposed are based on our understanding of the problems encoun-
tered in the literature, and some found in our own migrating experience. Regard-
less the link with previous empirical experiments, our work still shallow, since all

108 S. Bragagnolo et al.

the proposed metrics measure complexity in Nominal Scale units. Validability
and Reliability have not being tested nor enhanced, the experiments using our
metrics still few, and our work on the generalization of these metrics still far.

Nominal Scale metrics are useful to understand how many entities do we have
in a continuum. This is useful to get an idea of how many of these entities we are
bound to find but nothing more. More work is required to be able to establish
the contribution of each of these variables to the complexity of the migration.

Validability and Reliability are two of the most important fundamental aspects of
measurement [14], and there are required to be measured, validated and empir-
ically proofed. While validability can be enhanced and validated by more exact
means, the reliability of the metric requires empirical validation, what implies
the requirement of statistical samples on the usage of such metrics.

Uses nevertheless, we have put to work these counters already to be able to
select elements from many experiments still to be done. The required expertise
to respond to a survey on the utility our context is quite unique.

Our metrics work has been already leveraged by our selves on the detection
of projects and files that are more likely to be interesting for the study of layer
violation on Microsoft Access elements.

6 Future Work

From this point we plan to wide-up the measurement of complexity to other
dimensions of migration such as architectural migration complexity, or the third-
party migration complexity. We expect also to work on the unification of the
measurement units and on the empirical analysis of the reliability of the metrics
in the context of an industrial migration.

7 Conclusion

In this article we contribute a first iteration on Language Migration complexity
metrics. We also contribute the interpretation and study the application of such
metrics on our current migration project for obtaining a general overview. We
contribute also our first use case of these metrics, what is our first step into
the iterative enhancement. We discuss on the scales, and our lack of studies
on validability and reliability, remarking their importance. We conclude that
our metrics give a some understanding of the potential risks during the effort
measurement of a migration, but this understanding still fuzzy. More work must
be done in the refinement of the proposed metrics to make them useful.

Risk and Complexity Assessment on the Context of Language Migration 109

References

1. Adjoyan, S., Seriai, A.D., Shatnawi, A.: Service identification based on quality
metrics object-oriented legacy system migration towards SOA. In: SEKE: Software
Engineering and Knowledge Engineering, pp. 1–6. Knowledge Systems Institute
Graduate School (2014)

2. Ahmad, A., Babar, M.A.: A framework for architecture-driven migration of legacy
systems to cloud-enabled software. In: Proceedings of the WICSA 2014 Companion
Volume, WICSA 2014 Companion. Association for Computing Machinery, New
York (2014). ISBN 9781450325233

3. Angulo, G., Mart́ın, D.S., Santos, B., Ferrari, F.C., de Camargo, V.V.: An approach
for creating KDM2PSM transformation engines in ADM context: the RUTE-K2J
case. In: Proceedings of the VII Brazilian Symposium on Software Components,
Architectures, and Reuse, SBCARS 2018, pp. 92–101. Association for Computing
Machinery, New York (2018). ISBN 9781450365543

4. Bragagnolo, S., Anquetil, N., Ducasse, S., Abderrahmane, S., Derras, M.: Analysing
Microsoft access projects: building a model in a partially observable domain. In:
Ben Sassi, S., Ducasse, S., Mili, H. (eds.) ICSR 2020. LNCS, vol. 12541, pp. 152–
169. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64694-3 10

5. Bragagnolo, S., Anquetil, N., Ducasse, S., Seriai, A., Derras, M.: Software migra-
tion: a theoretical framework (a grounded theory approach on systematic literature
review). Empirical Softw. Eng. (2021)

6. Bragagnolo, S., Rocha, H., Denker, M., Ducasse, S.: Ethereum query language.
In: 1st International Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB), pp. 1–8, May 2018

7. Bragagnolo, S., Verhaeghe, B., Seriai, A., Derras, M., Etien, A.: Challenges for
layout validation: lessons learned. In: Shepperd, M., Brito e Abreu, F., Rodrigues
da Silva, A., Pérez-Castillo, R. (eds.) QUATIC 2020. CCIS, vol. 1266, pp. 107–119.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58793-2 9

8. Brant, J., Roberts, D., Plendl, B., Prince, J.: Extreme maintenance: transforming
Delphi into C#. In: ICSM 2010 (2010)

9. Cossette, B.E., Walker, R.J.: Seeking the ground truth: a retroactive study on the
evolution and migration of software libraries. In: Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software Engineering,
FSE 2012, pp. 55:1–55:11. ACM, New York (2012). ISBN 978-1-4503-1614-9

10. De Lucia, A., Francese, R., Scanniello, G., Tortora, G.: Developing legacy system
migration methods and tools for technology transfer. Softw. Pract. Exp. 38(13),
1333–1364 (2008)

11. DeLine, R., Zelesnik, G., Shaw, M.: Lessons on converting batch systems to support
interaction: experience report. In: Proceedings of the 19th International Confer-
ence on Software Engineering, ICSE 1997, pp. 195–204. Association for Computing
Machinery, New York (1997). ISBN 0897919149

12. Di Santo, G., Zimeo, E.: Reversing GUIs to XIML descriptions for the adaptation
to heterogeneous devices. In: Proceedings of the 2007 ACM Symposium on Applied
Computing, SAC 2007, pp. 1456–1460. Association for Computing Machinery, New
York (2007). ISBN 1595934804

13. Garcés, K., et al.: White-box modernization of legacy applications: the oracle forms
case study. Comput. Standards Interfaces 57, 110–122 (2017)

14. Kan, S.H.: Metrics and Models in Software Quality Engineering. O’Reilly (2006)

https://doi.org/10.1007/978-3-030-64694-3_10
https://doi.org/10.1007/978-3-030-58793-2_9

110 S. Bragagnolo et al.

15. Kontogiannis, K., Martin, J., Wong, K., Gregory, R., Müller, H., Mylopoulos, J.:
Code migration through transformations: an experience report. In: Proceedings of
the 1998 Conference of the Centre for Advanced Studies on Collaborative Research,
CASCON 1998, p. 13. IBM Press (1998)

16. Martin, J., Muller, H.A.: C to Java migration experiences. In: Proceedings of the
Sixth European Conference on Software Maintenance and Reengineering, pp. 143–
153. IEEE (2002)

17. Mateus, B.G., Martinez, M., Kolski, C.: An experience-based recommendation sys-
tem to support migrations of Android applications from Java to Kotlin (2021)

18. Moore, Rugaber, Seaver: Knowledge-based user interface migration. In: Proceed-
ings 1994 International Conference on Software Maintenance, pp. 72–79, IEEE
Computer Society Press (1994). ISBN 978-0-8186-6330-7

19. Moore, M.M.: Rule-based detection for reverse engineering user interfaces. In: Pro-
ceedings of WCRE 1996: 4th Working Conference on Reverse Engineering, pp.
42–48. IEEE (1996)

20. de Souza, P., McNair, A., Jahnke, J.H.: Network-centric migration of embedded
control software: a case study. In: Proceedings of the 2003 Conference of the Centre
for Advanced Studies on Collaborative Research, pp. 54–65 (2003)

21. Su, X., Yang, X., Li, J., Wu, D.: Parallel iterative reengineering model of legacy sys-
tems. In: 2009 IEEE International Conference on Systems, Man and Cybernetics,
pp. 4054–4058. IEEE (2009)

22. Terekhov, A.A., Verhoef, C.: The realities of language conversions. IEEE Softw.
17(6), 111–124 (2000). ISSN 0740–7459

23. Verhaeghe, B., et al.: GUI migration using MDE from GWT to Angular 6: an
industrial case. In: 2019 IEEE 26th International Conference on Software Analysis.
Evolution and Reengineering (SANER 2019), Hangzhou, China, pp. 579–583 (2019)

24. Williams, J.R., Paige, R.F., Polack, F.A.C.: Searching for model migration strate-
gies. In: Proceedings of the 6th International Workshop on Models and Evolution,
ME 2012, pp. 39–44. Association for Computing Machinery, New York (2012).
ISBN 9781450317986

25. Zhang, Z., Yang, H.: Incubating services in legacy systems for architectural migra-
tion. In: 11th Asia-Pacific Software Engineering Conference, pp. 196–203. IEEE
(2004)

26. Zou, Y., Kontogiannis, K.: A framework for migrating procedural code to object-
oriented platforms. In: Proceedings Eighth Asia-Pacific Software Engineering Con-
ference, pp. 390–399. IEEE (2001)

Automatically Assessing Complexity
of Contributions to Git Repositories

Rolf-Helge Pfeiffer(B)

IT University of Copenhagen, Rued Langgaards Vej 7, Copenhagen, Denmark
ropf@itu.dk

Abstract. Lehman’s second law of software evolution suggests that
under certain conditions software “becomes more difficult to evolve”.
Similarly, Technical Debt (TD) is often considered as technical com-
promises that render future changes of software more costly. But how
does one actually assess if modifying software becomes more difficult or
costly? So far research studied this question indirectly by assessing inter-
nal structural complexity of successive software versions arguing that
increasing internal complexity renders evolution tasks more difficult and
costly too. Our goal is to assess complexity of evolution tasks directly.
Therefore, we present an algorithm and tool that allows to automatically
assess Contribution Complexity (CC), which is the complexity of a con-
tribution respecting difficulty of integration work. Our initial evaluation
suggests that our proposed algorithm and readily available tool are suit-
able to automatically assess complexity of contributions to software in
Git repositories and the results of applying it on 8 686 contributions to
two open-source systems indicate that evolution tasks actually become
slightly more difficult.

1 Introduction

Software is usually evolving to adapt to changing environments or requirements,
to correct errors, to address “problems . . . that are not carried out adequately
during . . . development” [18], etc. Software is said to become increasingly diffi-
cult to evolve over time unless it is continuously refactored to decrease internal
complexity. For example, Lehman’s second law of software evolution says: “As
[software] is changed its complexity increases and [it] becomes more difficult to
evolve unless work is done to maintain or reduce the complexity.” [14] Similarly,
the term technical debt is used to describe software constructs that render future
contributions increasingly complex. For example, the participants of Dagstuhl
Seminar 16162 agreed to define TD as: “a collection of design or implementation
constructs that are expedient in the short term, but set up a technical context that
can make future changes more costly or impossible.” [3].

But how does one actually assess if software “becomes more difficult to evolve”
or if “future changes [are] more costly”? Either human developers possess a skill
allowing them to assess if modifying existing software becomes more difficult,

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 111–124, 2021.
https://doi.org/10.1007/978-3-030-85347-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_9

112 R.-H. Pfeiffer

managers unearth such knowledge from business/process data, or such assess-
ments are conducted indirectly by assessing complexity of successive versions
of software. For example, researchers apply various complexity metrics, such as,
size in LOC, cyclomatic (McCabe) complexity [16], coupling of functions or mod-
ules [12] to assess change of internal complexity of software over time and argue
by induction that more complex systems are more complex to evolve. Using these
metrics researchers invalidate Lehman’s second law, see [10] for an overview or,
e.g., [2].

To the best of our knowledge, there is no research or tool available that allows
to directly and automatically assesses if the actual work of evolving a software
system is getting more difficult/complex. In this paper we present an algorithm
that allows to directly asses if evolution work becomes more complex and thereby
more costly. Our Contribution Complexity (CC) algorithm computes a score
that indicates mainly how difficult it is to integrate work (a set of commits)
into an existing software system. The CC score is computed on basic size-based
and entropy-based metrics on commit and file level, i.e., number of modified
lines/files, degree of scattered work across files/methods, etc. Together with this
paper, we publish a tool (https://pypi.org/project/contribution-complexity/)
that implements the proposed algorithm. The tool can be used by practitioners
to enhance CI/CD chains and by researchers to study software evolution and
TD.

The contributions of this paper are a) presentation of an algorithm to auto-
matically assess CC of contributions to Git repositories (Sect. 3), b) implementa-
tion of that algorithm in a readily installable open-source tool, c) initial evalua-
tion of the CC demonstrating its suitability for the task (Sect. 4), and d) together
with initial results of applying CC to two open-source database systems (Sect.
4.2), we provide a corresponding dataset containing CC scores together with the
tool.

2 Background, Terminology, and Motivation

In this section we explain the terminology that we use in the remainder of
the paper and motivate our CC score. In this and the following sections we
refer to examples from development of the graph database Gaffer, which is cre-
ated mainly by the British Government Communications Headquarters (GCHQ).
More details about Gaffer and why it appears in this paper follow in Sect. 4.

Terminology: Work in software projects is often organized via issue track-
ers, e.g., Atlassian’s Jira (https://www.atlassian.com/software/jira) or Github’s
integrated issue tracker, and work on files is handled via VCS like Git.

Tickets in issue trackers describe work, such as, perfective or adaptive main-
tenance task, new features, etc. Tickets may be resolved without any contribution
to the developed software. For instance, unwanted features or not reproducible
bugs are marked accordingly and respective tickets are closed without modi-
fication of the software. Other tickets get resolved by implementing a required
change via one or more commits to a VCS repository. Commonly, a commit refers

https://pypi.org/project/contribution-complexity/
https://www.atlassian.com/software/jira

Automatically Assessing Complexity of Contributions to Git Repositories 113

Fig. 1. A contribution resolving a ticket. The contribution consists of three commits
with in total four modifications (file changes) over time.

to a corresponding ticket via a ticket identifier in the commit message, i.e., mul-
tiple commits can refer to one ticket. To present a clean development history
(https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History) multiple com-
mits are sometimes squashed into a single commit when merging branches. Con-
sequently, there exists a one to many relation between tickets and commits.

Each commit consists of zero or more file modifications where conflict-free
merges contain zero modifications. The term modification is synonymous to a
change of a file, see Spadini et al. [20]. Modifications can be considered as edit
deltas even though Git stores commits as snapshots of entire files. Most Git

tools present modifications as deltas or patches too, see e.g., commit ee3e2a in
the Gaffer repository on Github. Modifications carry information about the kind
of change that was applied. For example, Git records if a file is added, deleted,
modified, copied, or renamed.

In this paper, we call one or more commits to a Git repository, which consist of
one or more modifications a contribution. Contributions, contain the work that
eventually resolves tickets. Figure 1 shows a conceptual illustration of tickets,
contributions, commits, and modifications, where two file modifications (A to A′

and B to B′) form commit 1, commits 2 and 3 are formed by one file modification
respectively, and the three commits form a contribution that resolves a ticket.

Complexity: This work is based on two conceptions of complexity. Basili [4],
describes complexity as the difficulty a developer faces when performing tasks
like coding, debugging, or modifying software. Clearly, different kinds of work
on existing software are differently complex. For example, implementing a new
feature in an object-oriented system via inheritance and conformance to interface
specifications is less complex than implementing a feature for which existing
abstractions have to be refactored or a patch has to be woven into existing classes
and methods. This varying cognitive complexity of tasks is described by Dörner
via the “. . . existence of many independent variables in a given system. The
more variables and the greater their interdependence, the greater that system’s
complexity. Great complexity places high demands on a planner’s capacities to
gather information, integrate findings, and design effective actions.” [6] The
exemplary extension of an object-oriented system via inheritance deals with a low
amount of independent variables (conformance to class interfaces and interface
specifications provide a low number of integration points) compared to a higher

https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
https://github.com/gchq/Gaffer/commit/ee3e2a78e21fcaf206126179f82918e9161054e5

114 R.-H. Pfeiffer

amount of strongly interdependent variables when integrating scattered changes
during refactoring of existing abstractions.

We believe that besides the inherent complexity of a contribution (conceptual
difficulty of realizing it), the complexity of integration work (scattered changes
to integrate a solution into an environment) characterizes to a large degree the
complexity of a contribution. We call the complexity of a contribution respecting
the work of integrating it into existing software Contribution Complexity (CC).

Motivational Example: Before formally defining CC in the next section, we
illustrate it on three examples from the Gaffer project:

Ticket gh-1808 describes a bug which prevents release of a package to the Maven
Central package store.

Ticket gh-2228 specifies that copyright headers in all code files need to be
updated to point to the correct time range.

Ticket gh-190 asks to refactor Gaffer’s storage engine to be better encapsulated
and more descriptive.

Gaffer’s Git repository contains a single commit (31e23a) that refers to
ticket gh-1808, another commit (ee3e2a) that refers to ticket gh-2228, and 21
commits that refer to ticket gh-190. Of the 21 commits, 17 contain modifica-
tions and 4 are empty merge commits. Due to constrained space, we refer to the
online representations of the respective contributions (https://github.com/gchq/
Gaffer/commits). The bug fix that resolves ticket gh-1808 excludes a conflicting
dependency from a file with project meta-information (pom.xml). The contribu-
tion is of low complexity since it consists only of six contiguous lines, which are
added in a single commit to a single file. More complex than this minuscule
contribution is the update of all copyright headers (ticket gh-2228 with commit
ee3e2a). Even though conceptually only four digits need to change, they are
changed across 1 975 code files replacing 1 977 lines with a new line. Note, Git

operates with lines as smallest unit of change. Even changing one character of a
line in a file, first deletes that entire line and subsequently adds its new version.

Certainly the most complex contribution of the three examples, is the refac-
toring of Gaffer’s storage engine (ticket gh-190). Over multiple commits multiple
hundreds of lines in dozens of files are modified and the changes are scattered
within files and across methods, see e.g., commit 2874da.

These three examples shall illustrate that traditional complexity metrics,
such as, size of change in LOC/number of files or change of McCabe complexity
alone are not suitable to assess CC. For example, size-wise the largest contri-
bution (modifying 1 977 lines in 1 975 files) updates the copyright headers, see
commit ee3e2a. Contrary, only some dozens of files with some hundreds of lines
are modified to refactor the storage engine. However, these changes are scattered
within files and across methods (high entropy). When considering complexity
as the difficulty of performing tasks like coding or software modification [4],
then only the high entropy of the modifications in refactoring of the storage
engine suggests higher complexity than the size-wise bigger copyright header
update. Furthermore, complexity measures like McCabe complexity would not

https://github.com/gchq/Gaffer/issues/1808
https://github.com/gchq/Gaffer/issues/2228
https://github.com/gchq/Gaffer/issues/190
https://github.com/gchq/Gaffer/commit/31e23af223db190d9fc73ecdf474ce2c8c9d37eb
https://github.com/gchq/Gaffer/issues/1808
https://github.com/gchq/Gaffer/commit/ee3e2a78e21fcaf206126179f82918e9161054e5
https://github.com/gchq/Gaffer/issues/2228
https://github.com/gchq/Gaffer/issues/190
https://github.com/gchq/Gaffer/commits
https://github.com/gchq/Gaffer/commits
https://github.com/gchq/Gaffer/issues/1808
https://github.com/gchq/Gaffer/issues/2228
https://github.com/gchq/Gaffer/commit/ee3e2a78e21fcaf206126179f82918e9161054e5
https://github.com/gchq/Gaffer/issues/190
https://github.com/gchq/Gaffer/commit/2874da50c0c1eb33238170962ef54d6afd158a4b
https://github.com/gchq/Gaffer/commit/ee3e2a78e21fcaf206126179f82918e9161054e5

Automatically Assessing Complexity of Contributions to Git Repositories 115

yield insightful results for the three examples. Either it is not applicable to rel-
evant artifacts (McCabe complexity of a pom.xml file?), not all relevant changes
are analyzed by it (update of copyright headers), or it ’overlooks’ complexity
caused by distributed nature of changes.

To overcome these restrictions of traditional complexity metrics when assess-
ing complexity of contributions, we develop an algorithm that should mimic
human intuitions as presented above. We implement it in a tool and we call
both the algorithm in the next section and the tool uniformly Contribution
Complexity (CC).

3 Computing Contribution Complexity

In this section we describe how to compute a discrete Contribution Complexity
(CC) score (ccontrib) for a set of commits using basic metrics on modification,
commit, and contribution level. A priori, we decided that a CC score should
map a contribution to the discrete values low, moderate, medium, elevated, or
high. To facilitate presentation, we use the following notation: C denotes the set
of all commits of a contribution and M denotes the set of all modifications of
all commits of a contribution. The CC score is computed in two stages. First,
a set of metrics is applied to modifications, whose results are aggregated and
subsequently merged with the results of metrics computed for commits. Our
presentation follows these two stages.

Per modification (m ∈ M), i.e., per modified file in a commit, the following
basic metrics are computed:

Number of lines added (ml+(mod)) The total number of lines added to the
file in this modification.

Number of lines removed (ml−(mod)) The total number of lines removed
from the file in this modification.

Number of hunks (mh(mod)) The total number of blocks that are modified
contiguously. For example, A′′ in Fig. 1 contains two hunks and C′ contains one
hunk. The number of hunks indicates how scattered a change is and thereby
how difficult is it to integrate it into the file.

Number of modified methods (mmth(mod)) In case a modified file con-
tains programming language source code, the number of modified methods
(or functions) is counted. For non-programming language artifacts the met-
ric evaluates to zero. Similar to mh(mod), the rationale is that work with
changes scattered over multiple methods is more difficult. Note, since our
tool depends internally on pydriller (https://pydriller.readthedocs.io/) which
uses the lizard (https://github.com/terryyin/lizard) tool to parse source code,
the number of methods can only be non-zero for the 16 languages that are
currently supported by lizard.

Modification kind (mmk(mod)) This metric returns the kind of file modifica-
tion in Git terms, i.e., one of the values added, deleted, modified, copied, or
renamed.

https://pydriller.readthedocs.io/
https://pydriller.readthedocs.io/
https://github.com/terryyin/lizard
https://github.com/terryyin/lizard

116 R.-H. Pfeiffer

Before the final CC score is computed, a separate modification complexity
score (cmod) is computed for each modification (mod) separately. It is defined as
the arithmetic mean of the lines added complexity (cl+), the lines removed com-
plexity (cl−), the hunk complexity (ch), and the method complexity (cmth), see
Eq. 1. In case a file is deleted or copied in a commit, its modification complexity
is low, since there is no ‘real’ work behind all the removed or newly added lines.

cmod =

{
low if mmk(mod) = deleted|added
1
4 × (cl+(ml+(mod)) + cl−(ml−(mod)) + ch(mh(mod)) + cmth(mmth(mod))) if otherwise

(1)
The lines added and the lines removed complexity (cl+ and cl− respectively)

are computed via the same model as in Eq. 2, i.e., cl+(l) = cl−(l), and only the
former is presented here. The hunk and the method modified complexity (ch and
cmth) are both computed via the mapping in Eq. 3, i.e., ch(n) = cmth(n), and
only ch(n) is presented here. Note, that we assume that the complexity values
low to high are equivalent to the numerical values 1 to 5, so that we can use
them in calculations.

cl+(l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

low if 0 ≤ l ≤ 15
moderate if 15 < l ≤ 30
medium if 30 < l ≤ 60
elevated if 60 < l ≤ 90
high if l > 90

(2) ch(n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

low if 0 ≤ n ≤ 2
moderate if 2 < n ≤ 5
medium if 5 < n ≤ 7
elevated if 7 < n ≤ 9
high if n > 9

(3)

Rationale for the Modification Complexity Models: The line modification com-
plexity models (cl+ and cl−) are adapted from Visser et al. [22], where the authors
argue that maintainable methods shall contain less than 15 LOC and higher val-
ues render a method progressively more complex. We re-use their thresholds
only extending them by a fifth level for high complexity. The hunk and method
complexity model (ch and cmth) are based on Miller [17] who argues that human
short-term memory usually deals well with is 7 ± 2 entities. Visser et al. use
similar thresholds [22], e.g., for assessing complexity of method signatures.

All modification complexities cmod contribute to the CC score (ccontrib) not
individually but in aggregated form. First, the frequencies of all modification
complexity
values are collected into a set of pairs (K = hist ([cmod(m) : m ∈ M])). For exam-
ple, K = {(low, 12), (moderate, 14), (medium, 5), (elevated, 3), (high, 0)} would
mean that a contribution consists of 12 modifications with low complexity,
14 with moderate complexity, etc. The modification complexity frequencies are
aggregated into a single value c∀mod as a weighed average of all the frequency
pairs c∀mod = 1

5 × ∑
(i,j)∈K

ii × j. The exponential weights (ii) are inspired
by using Fibonacci numbers for time estimation [21]. We use exponentials to
express that it is way harder to work on high complexity modifications than low
complexity modifications.

To compute the overall CC score, the following metrics are computed over
all commits (c ∈ C), i.e., for the entire contribution:

Automatically Assessing Complexity of Contributions to Git Repositories 117

Number of modified files in commit (m|f |(c)) The total number of files
that were either added, deleted, modified, copied, or renamed in a commit.

Number of lines in commit (m|l|) The sum of all added and removed lines
in all modifications of a commit.

The CC score (ccontrib) is defined as the arithmetic mean of the modi-
fied files complexity (c|f |), changed lines per file complexity (cl/f), modifica-
tion kind complexity (cmk), and the overall modification complexity (c∀m),
see Eq. 4. There, nfiles is the total number of modified files in all commits
(nfiles =

∑
nf∈{m|f|(c):c∈C} nf), nlines is the total number of modified lines in

all commits (nlines =
∑

nl∈{m|l|(c):c∈C} nl), and the cardinality of all work kinds
(nmk = |{mmk(m) : m ∈ M}|) encodes the variety of work in a contribution.
nmk ranges from 1 to 5 denoting, e.g., if files were only added or only modi-
fied (nmk = 1) or if files were added, deleted, renamed, copied, and modified
(nmk = 5).

ccontrib = 1
4 × c|f |(nfiles) + cl/f

(
nlines

nfiles

)
+ cmk(nmk) + c∀m(c∀mod) (4)

The modified files complexity model (c|f |) and the changed lines per file com-
plexity (cl/f) use the same thresholds as the line modification complexity models
cl+ and cl−, see Eq. 2, and are therefore omitted here. The modification kind
complexity (cmk), and the overall modification complexity (c∀m) are computed
via the mappings in Eq. 5 and Eq. 6 below.

cmk(n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

low if n = 1
moderate if n = 2
medium if n = 3
elevated if n = 4
high if n = 5

(5)
c∀m(n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

low if 0 ≤ n ≤ 195
moderate if 195 < n ≤ 390
medium if 390 < n ≤ 781
elevated if 781 < n ≤ 1562
high if n > 1562

(6)

Computation Example: For brevity, we illustrate calculation of CC on a small
contribution to Gaffer. Consider ticket gh-2304, which reports a bug on lost sta-
tus information when certain exceptions are caught and re-raised. The contribu-
tion resolving the issue consists of a single commit (291111) that modifies two
files, i.e., nfiles = 2. In both files, in total 29 lines are modified (nlines = 29).
In the first file 5 lines of a method are replaced by two new lines in one hunk,
i.e., ml+(mod) = 2, ml−(mod) = 5, mh(mod) = 1, and mmth(mod) = 1. In
the second file 20 lines of a method, and two new import lines are newly added
over three hunks, i.e., ml+(mod) = 22, ml−(mod) = 0, mh(mod) = 3, and
mmth(mod) = 1. That is, we have one modification (cmod 1) of low and another
one (cmod 2) of moderate modification complexity, see below.

cmod 1 =
cl+(2) + cl−(5)) + ch(1) + cmth(1)

4
=

1 + 1 + 1 + 1
4

=
4
4

= 1 = low

cmod 2 =
cl+(22) + cl−(0)) + ch(3) + cmth(1)

4
=

2 + 1 + 2 + 1
4

=
6
4

= 1.5 = moderate

K = [(low, 1), (moderate, 1), (medium, 0), (elevated, 0), (high, 0)]

c∀mod =

∑
(i,j)∈K

ii × j

5
=

11 × 1 + 22 × 1 + 33 × 0 + 44 × 0 + 55 × 0
5

=
5
5

= 1 = low

(7)

https://github.com/gchq/Gaffer/issues/2304
https://github.com/gchq/Gaffer/commit/291111c0385a611d2f80a785bcb203a9169078ac

118 R.-H. Pfeiffer

Since both files exist before the contribution the only modification kind is
modified, i.e., nmk = 1. That leads to a contribution of low CC via the final
ccontrib formula.

ccontrib =
c|f |(2) + cl/f

(
29
2

)
+ cmk(1) + c∀m(1)
4

=
4
4

= low (8)

4 Evaluation

In this section, we evaluate to which degree the CC scores that our tool computes
are aligned with human assessment of complexity of selected contributions and
we provide results of an initial experiment of distribution of CC scores of all
contributions to two open-source case systems.

Case Systems: To evaluate our CC score and for initial experimentation, we
need software projects as cases that have publicly available Git repositories and
issue trackers so that we can compute CC scores of actual contributions. Further-
more, these cases should be of a certain size and age so that contributions of var-
ious complexities exist. Due to our work for the Research Center for Government
IT at IT University of Copenhagen, we are interested in studying software that is
developed and deployed at public agencies. To identify possible case systems, we
manually search Github’s list of public agencies that use the platform for devel-
opment (https://government.github.com/community). There, we identify Gaffer

(https://gchq.github.io/gaffer-doc) as a suitable case. It is a graph database,
that is created mainly by the British signals intelligence agency GCHQ. A first
version of it was open-sourced in 2015 (with 125 releases since then), and the
project’s issue tracker is available on Github (https://github.com/gchq/Gaffer/
issues). Since we cannot identify a software project from the same domain on the
mentioned list, we choose Apache Cassandra (https://cassandra.apache.org) as a
second case. It is an open-source, distributed, wide-column store, NoSQL DBMS
that was originally developed by Facebook [13]. It was open-sourced in 2008 (with
265 releases since then). The project uses Jira (https://issues.apache.org/jira/
projects/CASSANDRA) as issue tracker. Both systems are written mainly in
Java, are licensed under Apache License 2.0, and their sources are available as
Git repositories (https://github.com/gchq/Gaffer, https://github.com/apache/
cassandra.

Even though, Gaffer (version 1.9.1) and Cassandra (version 3.9) consist of
approximately the same amount of files (2 294 and 2 316 respectively), Cassandra
is circa twice as large as Gaffer (588 017 lines with 424 733 LOC versus 291 071
lines with 199 816 LOC). Statistics are generated with the Succinct Code Counter
tool (version 2.13.0) https://github.com/boyter/scc.

Dataset Creation: With two Python scripts, we export all tickets, ticket iden-
tification keys, ticket resolution dates, etc., from the respective issue track-
ers. Using our tool, we compute a mapping from ticket identifiers to com-
mits. The mapping is created by matching ticket identifiers via regular expres-
sions in commit messages. For example, the regular expression for Gaffer is

https://government.github.com/community
https://gchq.github.io/gaffer-doc
https://github.com/gchq/Gaffer/issues
https://github.com/gchq/Gaffer/issues
https://github.com/gchq/Gaffer/issues
https://cassandra.apache.org
https://issues.apache.org/jira/projects/CASSANDRA
https://issues.apache.org/jira/projects/CASSANDRA
https://issues.apache.org/jira/projects/CASSANDRA
https://github.com/gchq/Gaffer
https://github.com/apache/cassandra
https://github.com/apache/cassandra
https://github.com/boyter/scc

Automatically Assessing Complexity of Contributions to Git Repositories 119

(Gh |gh-)<issue key>(|$) and for Cassandra it is CASSANDRA-<issue key>(|$),
where <issue key> is an integer in both cases. We identify these regular expres-
sions by brief manual inspection of the commit histories, and via the contribution
guidelines of the respective project. The resulting dataset with all tickets and
corresponding contributions contains 2 403 tickets for Gaffer, of which 2 300 are
resolved and 820 of these are resolved with contribution, i.e., with at least one
commit attached to the respective ticket. For Cassandra, the dataset includes
16 485 tickets, of which 14 158 are resolved, and 7 866 are resolved with contri-
bution. We let our CC tool compute the a CC score for each resolved ticket
with contribution from both projects. The resulting datasets are stored as CSV
files and are available online (https://raw.githubusercontent.com/HelgeCPH/
contribution-complexity/master/data/cassandra contrib compl.csv, https://git
hub.com/HelgeCPH/contribution-complexity/blob/master/data/gaffer contrib
compl.csv).

For the manual evaluation, see Sect. 4.1, we sample 25 contributions (five
from each possible CC score) from Cassandra and 23 for Gaffer (five from each
CC score except for high, where there are only three contributions). The author
of this paper manually classifies the CC scores for each of these 48 contributions,
that consist in total of 247 commits. Thereafter, we compare our manually clas-
sified CC scores with those created by the tool. The protocols, for this step are
available online too (https://github.com/HelgeCPH/contribution-complexity/
blob/master/data/cas evaluation tab.md, https://github.com/HelgeCPH/contr
ibution-complexity/blob/master/data/gaf evaluation tab.md).

Note, the entire experiment setup with dataset creation and data reproduc-
tion is automatically reproducible via a Shell script in the experiment directory
in the CC tool’s repository. We provide a replicable environment specification
for a virtual machine on DigitalOcean via a Vagrant file.

4.1 Manual Evaluation Results

In 36 cases (75%) our manual classification is equal to the tool’s CC score. For
the remaining 25% of the cases, most often (8 cases ≈17%) our assessment is one
level higher than the score computed by the tool and in 4 cases (≈8%) the tool’s
assessment is one level higher than our classification. Discrepancies between our
classification and tool’s score is actually most frequent around the two scores
moderate and medium. In six cases (12.5%) we assigned a moderate CC and
the tool a medium score or vice versa. The second most frequent discrepancy is
between medium and elevated scores (in 3 cases ≈6%).

That is, our classification differs from the tool’s assessment always only by
one level and in most cases on those centered around medium contribution com-
plexity. Our experience during manual classification, was also that we found it
hardest to distinguish complexities on closely related levels. That is, we found
coarse-grained assessment into three levels (low, medium, and high) more easy
than deciding between more fine-grained five levels of CC.

Threats to Validity: The manual classification of the CC score would likely
have been more accurate if performed by developers from the Gaffer and

https://raw.githubusercontent.com/HelgeCPH/contribution-complexity/master/data/cassandra_contrib_compl.csv
https://raw.githubusercontent.com/HelgeCPH/contribution-complexity/master/data/cassandra_contrib_compl.csv
https://github.com/HelgeCPH/contribution-complexity/blob/master/data/gaffer_contrib_compl.csv
https://github.com/HelgeCPH/contribution-complexity/blob/master/data/gaffer_contrib_compl.csv
https://github.com/HelgeCPH/contribution-complexity/blob/master/data/gaffer_contrib_compl.csv
https://github.com/HelgeCPH/contribution-complexity/blob/master/data/cas_evaluation_tab.md
https://github.com/HelgeCPH/contribution-complexity/blob/master/data/cas_evaluation_tab.md
https://github.com/HelgeCPH/contribution-complexity/blob/master/data/gaf_evaluation_tab.md
https://github.com/HelgeCPH/contribution-complexity/blob/master/data/gaf_evaluation_tab.md
https://github.com/HelgeCPH/contribution-complexity

120 R.-H. Pfeiffer

Fig. 2. Development of complexities (CC) of all contributions of Apache Cassandra

(left) and Gaffer (right), with linear regression model (yellow line). (Color figure
online)

Cassandra projects. Since we do neither know the design or architecture of the
systems our assessments are prone to be too high. We try to mitigate this risk
by carefully examining each contribution and the corresponding modifications.
Our classification might be biased since the author performing it also developed
and implemented the CC score. We tried to minimize this risk by running the
manual classification first 10 days after the last modification to the CC score,
which should be sufficient with regards to memory retention [15].

Here, we evaluate if CC scores correspond to human assessment of complex-
ity of contributions. We do not evaluate to which degree the CC metric assesses
the actual complexity of contributions. Even though not a software quality met-
ric, a thorough and more rigid evaluation of the CC metric along the lines of
the validation criteria of IEEE 1061 Standard for a Software Quality Metrics
Methodology [1], should complement the provided initial evaluation in future.

4.2 Contribution Complexities of Two Open-Source Systems

Figure 2 illustrates the distribution of CC scores over time. Each blue dot is a
resolved ticket with contribution (ticket closing times on x-axis). Obviously, the
different complexity levels are not equally distributed. Table 1 shows the frequen-
cies of the various complexity levels per system. For Cassandra, the amount of
contributions with a low CC is highest. 67.0% of all contributions possess that
complexity and frequencies decrease for higher CC scores. Only five contribu-
tions (0.1%) are of high CC. For Gaffer moderately complex contributions are
most frequent (44.3%) followed by low complexity contributions (35.5%) and
from medium to high frequencies decrease, though with higher ratios compared
to Cassandra.

The yellow lines in Fig. 2 are linear regression models that should provide
an impression of development of CC over time, i.e., if software “becomes more
difficult to evolve”. For Cassandra it suggests that contributions become more
complex, whereas for Gaffer it suggest the opposite. To accommodate for the

Automatically Assessing Complexity of Contributions to Git Repositories 121

Table 1. Absolute and relative (rounded) frequencies of contribution complexity scores.

Low Moderate Medium Elevated High

Gaffer 291 35.5% 363 44.3% 91 11.1% 72 8.8% 3 0.4%

Cassandra 5 273 67.0% 2 055 26.1% 363 4.6% 170 2.2% 5 0.1%

impact of location of the contributions with high CC on the regression models,
we also compare the first full year of contributions with the last full year of
contributions per system. In 2016, Gaffer has 194 contributions with avg. CC
1.91 (std 0.91) and median CC moderate versus 37 contributions with avg. CC
2.08 (std 0.83) and median CC moderate in 2020. In 2010, Cassandra has 606
contributions with average CC 1.51 (std 0.74) and median CC low versus 461
contributions with avg. CC 1.59 (std 0.73) and median CC low in 2020. These
numbers suggest, that there is actually a slight increase in CC for less work in
both systems.

5 Related Work and Discussion

There exists a plethora of software complexity metrics, see e.g., Zuse’s
overview [23] over many of them. Usually, these assess internal structural com-
plexity of programs, e.g., how many branch points there are [16], how difficult
programs are to understand [19], how well structured they are [12], their size [9],
etc. Based on these metrics, higher level models are developed, such as, the SIG
Maintainability Model (SIG-MM) [8], which combines multiple such complexity
metrics to compute a maintainability score for software.

The Contribution Complexity score described in this paper is different to,
e.g., the SIG-MM in that it is not constrained to analyzing complexity of source
code artifacts. In essence, it is an aggregate of multiple basic size- and frequency-
based metrics (number of changed lines per modification/commits, number of
hunks per modifications, number of changed files per commits, etc.), which yields
useful results for any textual artifacts including configuration files, build scripts,
schema files, documentation, etc. The contributions to Gaffer and Cassandra that
we studied (Sect. 4.1) contain modifications of such files. However, computation
of CC (Sect. 3) is inspired by SIG-MM [8,22] in that results of basic metrics are
aggregated and mapped to a single score.

By counting frequencies of hunks, of changed methods per modification, and
number of changed files per commit, our CC includes a measure of entropy. This
is similar to Hassan’s Code Change Models [7] that consider scattered changes
across files to be highly entropic. Hassan equates high entropy changes with com-
plexity and our work follows the same reasoning. However, Hassan operates only
on the level of file changes. Our approach is more fine-grained since it includes,
e.g., number of hunks and number of changed methods. Unlike Hassan, who aims
to predict faults from patterns of frequently changing files, we are interested in
the complexity of contributions to enable research of software evolution. Also

122 R.-H. Pfeiffer

Hindle et al. [11] compute complexity of changes, i.e., of commits instead of
entire systems or modules. They compute the complexity of source code patches
(modifications in our terminology) based on indentation-levels of code, which
they demonstrate to be similarly expressive as, e.g., McCabe complexity. Our
work is similar to Hindle et al. in that we provide a language agnostic and simple
–in the sense of underlying basic metrics– solution that operates mostly on syn-
tactic properties of modifications. However, in case a modification’s source code
is in a supported programming language, our solution incorporates the number
of changed methods too.

The Delta Maintainability Model (DMM) by di Biase et al. [5] assesses how
much a commit in-/decreases the maintainability of a software system, which is
based on multiple structural complexity metrics, such as, McCabe complexity,
coupling, size, etc., The DMM can be considered an adaptation of SIG-MM [8]
to commit level instead of system level. Our CC score is different than both
whitespace-complexity [11] and DMM [5] since both of them are concerned about
assessing the internal structural complexity of commits. By including entropy
measures (number of hunks, changed method/files) our CC score captures com-
plexity of integration work too. Also, Hassan and di Biase et al. study only
certain kinds of changes “Feature Introduction modifications” and bug fixes,
requests for enhancement, and improvements respectively. We consider our CC
score more universal since it is applicable to any kind of change including work
on documentation, tests, etc., which all are part of the initial experiment in Sect.
4.2.

Unfortunately, CC scores of different systems are currently not directly com-
parable since our algorithm consumes absolute numbers, see Sect. 3. The main
reason for not relying on normalized values yet, is that the absolute numbers of
files/methods that would serve as denominator in normalization are not fixed per
contribution. They can change with every single modification. Hassan suggests
to resort on the number of recently changed files as denominator instead. We
consider such time-/period-based normalization future work. Another concern
about our CC tool might be that the thresholds of the complexity classification
models (c∗) that map input values to discrete scores (Sect. 3) appear arbitrary
and do not fit across domains. To mitigate this risk, all these functions are
user configurable in the tool and we present in this paper the default models.
Similarly, weights of certain aggregation functions may be adapted in the tool.

Implications for Practitioners: Next to this paper, we provide a readily
installable open-source tool (usable as Python library and CLI tool), which can
be integrated into development processes, e.g., in CI/CD chains, to automatically
assess and report on development of CC of contributions to Git repositories. That
would not only allow for more accurate assessment of which work tasks (tickets)
are most difficult to work on and thereby guide potential refactorings but it
would also allow to gradually adjust time and effort estimations when planning
new tasks that are similar to resolved ones.

Note however, that our tool analyses local Git repositories only. It does not
have any dependency to platforms like Github of Gitlab and can therefore not

Automatically Assessing Complexity of Contributions to Git Repositories 123

assess richer knowledge that might be present there. For example, Github tracks
related commits of remote repositories, which cannot be assessed by our tool
unless explicitly merged with the respective repository.

Implications for Researchers: With our work it is now possible to study
for example Lehman’s second law of software evolution [14] or implications of
TD [3] directly. Previous work, see e.g., [10], studied development of certain
internal complexity metrics on successive versions of entire systems or modules
and thereby invalidated Lehman’s second law of software evolution. But our
results for Gaffer and Cassandra (Sect. 4.2) suggest a slight increase in diffi-
culty of evolving software, i.e., they support Lehman’s second law. It would be
interesting to replicate previous studies and compare indirect complexity met-
rics with CC over time to understand if previous results are only due to indirect
assessment of complexity.

6 Conclusions

Our goal with this work is to create, implement, and evaluate an algorithm and
tool to automatically assesses complexity of contributing a change into an exist-
ing software system. We present the Contribution Complexity (CC) algorithm
(Sect. 3) and we provide a readily installable tool for it. To evaluate our CC algo-
rithm and tool, we compare the tool computed CC scores of 48 randomly sampled
contributions from two open-source systems (Gaffer and Cassandra) with man-
ually assessed CC scores of the same contributions (Sect. 4). Our results show
that in 75% of the cases the automatic assessment matches the human assess-
ment and we interpret the remaining cases to be due to the tool’s superiority
when assessing finer-grained complexity differences.

To illustrate applicability of our solution, we present an initial empirical
analysis of 8 686 contributions from two open-source systems. Our results show
that the average CC scores of both systems are slightly increasing with decreas-
ing contribution frequency, which might hint at, that Lehman’s second law of
software evolution is not invalid when complexity of evolution tasks is directly
assessed instead of indirectly as in previous work.

In future work we plan to extend the study of in-/decrease of difficulty of evo-
lution tasks with the help of our CC to identify root causes of TD. Furthermore,
we plan to conceptually extend CC to better distinguish inherent complexity of
a contribution versus complexity of integration work.

References

1. IEEE Standard for a Software Quality Metrics Methodology. Technical report
(1998)

2. Amanatidis, T., Chatzigeorgiou, A.: Studying the evolution of PHP web applica-
tions. Inf. Softw. Technol. 72, 48–67 (2016)

3. Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Managing technical debt in soft-
ware engineering (dagstuhl seminar 16162). In: Dagstuhl Reports, vol. 6. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

124 R.-H. Pfeiffer

4. Basili, V.R.: Qualitative software complexity models: a summary. Tutorial on mod-
els and methods for software management and engineering (1980)

5. di Biase, M., Rastogi, A., Bruntink, M., van Deursen, A.: The delta maintain-
ability model: measuring maintainability of fine-grained code changes. In: 2019
IEEE/ACM International Conference on Technical Debt (TechDebt), pp. 113–122.
IEEE (2019)

6. Dörner, D.: The Logic of Failure: Recognizing and Avoiding Error in Complex
Situations. Merloyd Lawrence Book, Basic Books (1997)

7. Hassan, A.E.: Predicting faults using the complexity of code changes. In: 2009
IEEE 31st International Conference on Software Engineering, pp. 78–88. IEEE
(2009)

8. Heitlager, I., Kuipers, T., Visser, J.: A practical model for measuring maintain-
ability. In: 6th International Conference on the Quality of Information and Com-
munications Technology (QUATIC 2007), pp. 30–39. IEEE (2007)

9. Herraiz, I., Hassan, A.E.: Beyond lines of code: do we need more complexity met-
rics? Making Software: What Really Works, and Why We Believe It, pp. 125–141
(2010)

10. Herraiz, I., Rodriguez, D., Robles, G., Gonzalez-Barahona, J.M.: The evolution of
the laws of software evolution: a discussion based on a systematic literature review.
ACM Comput. Surv. (CSUR) 46(2), 1–28 (2013)

11. Hindle, A., Godfrey, M.W., Holt, R.C.: Reading beside the lines: indentation as
a proxy for complexity metric. In: 2008 16th IEEE International Conference on
Program Comprehension, pp. 133–142. IEEE (2008)

12. Hitz, M., Montazeri, B.: Measuring coupling and cohesion in object-oriented sys-
tems. Citeseer (1995)

13. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

14. Lehman, M.M., Fernández-Ramil, J.C.: Rules and tools for software evolution plan-
ning and management. Softw. Evol. Feedback 539–560 (2006)

15. Loftus, G.R.: Evaluating forgetting curves. J. Exp. Psychol. Learn. Mem. Cogn.
11(2), 397 (1985)

16. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)
17. Miller, G.A.: The magical number seven, plus or minus two: some limits on our

capacity for processing information. Psychol. Rev. 63(2), 81 (1956)
18. Rios, N., de Mendonça Neto, M.G., Sṕınola, R.O.: A tertiary study on techni-

cal debt: types, management strategies, research trends, and base information for
practitioners. Inf. Softw. Technol. 102, 117–145 (2018)

19. Shao, J., Wang, Y.: A new measure of software complexity based on cognitive
weights. Can. J. Electr. Comput. Eng. 28(2), 69–74 (2003)

20. Spadini, D., Aniche, M., Bacchelli, A.: Pydriller: python framework for mining
software repositories. In: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 908–911 (2018)

21. Tamrakar, R., Jørgensen, M.: Does the use of Fibonacci numbers in planning poker
affect effort estimates? (2012)

22. Visser, J., Rigal, S., van der Leek, R., van Eck, P., Wijnholds, G.: Building Main-
tainable Software, Java Edition: Ten Guidelines for Future-Proof Code. 1st edn.
O’Reilly Media Inc. (2016)

23. Zuse, H.: Software Complexity: Measures and Methods, vol. 4. Walter de Gruyter
GmbH & Co KG (1991)

Process Modeling, Improvement
and Assessment

Scrum for Safety: Agile Development
in Safety-Critical Software Systems

Riccardo Carbone , Salvatore Barone(B) , Mario Barbareschi ,
and Valentina Casola

Department of Electrical Engineering and Information Technologies,
University of Naples Federico II, Via Claudio, 21, 80125 Naples, Italy

ric.carbone@studenti.unina.it, {salvatore.barone,
mario.barbareschi,valentina.casola}@unina.it

Abstract. The adoption of agile methodologies in all domains of soft-
ware development is a desired goal. Unfortunately, many obstacles have
been meet in the past for a full adoption in secure and safe systems, where
different standards and operational constraints apply. In this paper we
propose a novel agile methodology to be applied in the development of
safety critical systems. In particular, we developed an extension of the
well-known Scrum methodology and discussed the complete workflow.
We finally validated the applicability of the methodology over a real
case study from the railway domain.

Keywords: Agile software development · Agile processes · Software
development · Safety-critical software systems

1 Introduction

The adoption of agile methodologies has been introduced in different domains to
improve the management of software development life-cycle, and to considerably
reduce the time to market. In spite of its advantages, it still encounters obstacles
when referring to secure and safe systems, where the adoption of automatic tools
to design, develop, test and continuously integrate components is conflicting with
the need of coping with strict standards that mainly refer to traditional waterfall
models.

Indeed, some pioneering works concerning the adoption of agile methods
in the safety-critical domain concluded, hastily, that the former and the lat-
ter are incompatible [4,15]. Nevertheless, more recent results questioned this
conclusion, identifying four main challenges inherently arising while adopting
agile methods in the safety-critical context, i.e.: (i) documentation, since it is
not essential in agile software development; (ii) requirements, since traditional
safety-critical development processes discourage requirement changes [25]; (iii)
project life-cycle, since safety-critical projects are developed neither iteratively
nor incrementally [12], and (iv) testing, which, in the safety-critical context, is
done only at final stages of the development [18].
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 127–140, 2021.
https://doi.org/10.1007/978-3-030-85347-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_10&domain=pdf
http://orcid.org/0000-0003-0680-8863
http://orcid.org/0000-0003-2007-3744
http://orcid.org/0000-0002-1417-6328
http://orcid.org/0000-0003-0964-7014
https://doi.org/10.1007/978-3-030-85347-1_10

128 R. Carbone et al.

As for the adoption of agile methodologies in the development of secure sys-
tems, authors in [3] introduced a novel methodology to extend the DevOps app-
roach towards secure systems. They mainly implemented an automated security-
by-design approach that can be easily mapped with the well-known Scrum
methodology.

In this paper, we propose an extension of the Scrum agile methodology,
namely Scrum for Safety (S4S), to guide and help research & development groups
involved in the design and development of safe solutions in the railway domain. In
this domain, the software development is not linear as expected, yet the output
of a regular mediation between multiple stakeholders, heterogeneous complex
technologies and mandatory regulations to be satisfied. Therefore, an agile-based
process instead of a classical waterfall has been developed.

The reminder of this paper is structured as follows. In Sect. 2 we review
the current state of the art. In Sect. 3 we present our novel proposal for the
adoption of Scrum in the development of safe software. In Sect. 4 we illustrate
the applicability of our methodology over a real case-study from the railway
domain. Finally, in Sect. 5 we will discuss some conclusions and future work.

2 Related Works

With regards to the obstacles identified in the scientific literature, documen-
tation is considered one of the major obstacles hindering the adoption of agile
methods in the safety-critical context [19,21,29]. Indeed, regulatory agencies
responsible for inspecting of software do not agree to less documentation of soft-
ware requirements and design [31], as the limited focus on documentation makes
cumbersome to determine the quality of systems [32]. The scientific literature,
however, empirically proved that the documentation is not a problem, since agile
processes strive to deliver what is requested by the customer, which includes doc-
umentation to prove the safety in the case of safety-critical software [11,19]. In
addition, in order to keep the documentation at a minimum, the purpose of the
documentation itself must be taken into account, determining which knowledge
needs to be expressed [14,21].

Testing is yet another aspect that seriously limits the adoption of agile meth-
ods in the safety critical context, since incorporating verification techniques is
challenging, and these activities are work intensive [26]. Indeed, while test-driven
development is widely used in the agile community [24], in safety-critical software
development, instead, testing is done only in the final phases [18]. Moreover, some
standards, such as the CENELEC EN50128 [7], mandate that the testers must be
responsible for specifying the test and that developers and testers must be sepa-
rate persons [17]. This is in contrast with test-driven development, which require
developers to write the tests themselves. The scientific literature reports exam-
ples of safety-critical software development in which test-first processes have
been implemented successfully [9,13]. In [30], for instance, authors proposed a
test-aware development process: test developers are involved in the development
of requirements, in order to ensure that the latter are testable at the needed

Scrum for Safety: Agile Development in Safety-Critical Software Systems 129

level. This allows mitigating the risk of requirement changes due to untestable
requirements being identified only during the testing phase of a program.

Over time, the experiences of individual work groups flowed into more artic-
ulate and better formalized methodologies, such as R-Scrum [10] and Safe-
Scrum [16]. The latter represents the result of a theoretical work in which Scrum
has been brought into compliance with various standards in the critical systems
world, including the IEC 61508 [8] and the CENELEC EN 50128. Recently, this
agile development methodology has been profitably used in a variety of contexts,
including military [2,20], railway [23] and aerospace [28]. However, we consider
still insufficient the current empirical evidence on agile benefits in critical con-
texts. Therefore, in this paper, we describe our novel methodology, showing its
impact on a complex case study in the railway environment.

3 Scrum for Safety

Scrum for Safety (S4S) aims to guide and help research & development groups
involved in the exploration of effective, efficient and safe solutions in the railway
domain. Nevertheless, it can be adopted in every domain in which safety must
be taken into account. Indeed, in the R&D context, software development is not
a linear and graceful activity, rather the output of a regular mediation between
multiple actors, various complex technologies and strict regulations to satisfy.
Therefore, an agile-based process allows engineers to rapidly explore and validate
every single possibility before taking any crucial decision.

In this Section, we provide the reader with full details concerning our pro-
posed methodology, including its principles, roles and workflow.

3.1 Principles

S4S embraces all the agile core principles and Scrum values [27], yet extends them
with some new objectives, which are derived from critical software requirements.
Results of this extension are the following eight principles, which constitutes the
main base of the development process:

1. Cover all the alternatives before making some decision: all architectural or
detailed design decisions must be preceded by an in-depth evaluation of all
possible options. Valuable solutions could be cut-off if one restricts and focus
its attention on a single alternative;

2. Experiment and fail frequently : the best way to evaluate the effect of a single
design choice is to try it, and potentially fail. System modeling and simulation
are good tools, but research groups have also to implement and test their
solutions on target architectures and operative conditions to prove their real
effectiveness;

3. Deliver software continuously to the users: as soon as the research started
to produce partially implemented software architectures, principal financiers
have to begin a review of the achieved results. This is one of the core values
of agile where the stakeholders have a central role in the development process
[1];

130 R. Carbone et al.

4. Integrate software continuously with other actors: large and complex projects
are frequently broken into small and much more controllable ones. In that
case, coordination and periodic integration activities between the various
research groups could anticipate a great number of subsequent incompati-
bilities among the developed subsystems;

5. Continuously V&V (Verify and Validate): in order to release software in criti-
cal environments, where a single failure could potentially cause loss of human
lives, environmental pollution or huge economic losses, each developed sub-
system must be meticulously verified and validated. Verification & Validation
(V&V) are two core activities for Software Quality Assurance (SQA): they
must be done to increase our trust that the developed product satisfies its
specification, and it is adequate to resolve the original research purpose. Fur-
thermore, V&V activities have to be applied continuously, possibly when the
research work reaches a new development step, in order to rapidly identify
and manage deviations that could affect critical properties, such as security
and safety;

6. Make your work traceable: a trace of all the done work for the currently devel-
oped software must be always present and available to researchers. In that
way, all the principal design decision and software architecture are visible, and
they determine the basis for the subsequent work. Moreover, it constitutes
the only way to prove to an independent Assessor how the risks related to
software functionalities were identified and mitigated. Otherwise, it is impos-
sible to observe and appreciate the fundamental design choices for the final
product;

7. Let your approach be risk-based : finding, covering and monitoring risks related
to software functionalities constitutes a vital activity for critical software. A
risk-based approach is much more effective than a “no one”, since it explicitly
identifies and addresses all the software failures which could cause tangible
damages to people or to the environment;

8. Don’t break or lose the already achieved quality : as the work proceeds, and
the SQA techniques improve its internal and external quality, it becomes
essential to preserve it. In particular, new requested changes to the software
must not conflict or undermine the already done risk management activities
and software implemented functions.

3.2 Roles and Workflow

Principal roles and workflow of S4S take into account the requirements described
in the CENELEC EN50126 [5], EN50128 [7], EN50129 [6] standards.

Roles. Table 1 reports the professional figures described in CENELEC stan-
dards. It is pretty noticeable that the Scrum basic roles of Product Owner, Scrum
Master and Development Team [27] fit perfectly with figures related to software
development, i.e. Requirements Managers, Designers and Implementers, while
others not frequently mentioned roles – like Managers – correspond for respon-
sibilities to Project Managers.

Scrum for Safety: Agile Development in Safety-Critical Software Systems 131

Despite this evident matching, the Scrum framework does not provide any
professional independent figure related to the SQA process [27]. Therefore, since
the central role that SQA has for critical software, Verifiers, Validators and
Assessors roles have to introduced, in order to be able to check for software
technical quality, and its adequacy to the original problem. In particular, S4S
extends the set of Scrum roles with these figures, which are strictly related to crit-
ical software development, while adapting their activity in an agile perspective.
Thus, as we will observe after, V&V and Assessment activities are potentially
executed after the end of each Sprint, providing rapid identification of possibly
compliance and safety issues.

Another fundamental point regards the independence of Integrators and
Testers from software implementation. Although in the CENELEC standards
domain, tests written by programmers could be accepted by the Verifier whether
they are adequate and completely specified [7], verification independence is con-
sidered crucial for safety-critical products. Therefore, S4S prescribes that during
each Sprint, the same person can not cover both development and verification
activities. In that way, developers will not influence testers or integrators judg-
ment.

Workflow. The S4S workflow is constructed on the Scrum key concepts of iter-
ative development and time-boxed sprints [27]. Moreover, it enriches the single
iteration with a set of activities that empower researchers with fine-grained con-
trol on quality of developed software. Indeed, Scrum is a general framework that
was born to be adapted to the specific needs of a single user [27].

Many techniques have been discovered and analyzed in literature during the
last years to make an agile process much safer. Two noticeable works are Safe-
Scrum [16,22,23,29] and R-Scrum [10], from which we started to reach the more
depth concept of safe-sprint depicted in Fig. 1.

In S4S, the starting point of all successive Safe-Sprints is not an isolated
and self-contained Product-Backlog, rather a strongly linked one to the parent
project. The software product constitutes, in fact, only a single part of a large
industrial railway project, which inherits from the latter a set of well-defined
functional and non-functional responsibilities. Making the Backlog stories trace-
able to the global System Requirements Specification and the Hazard Analysis
Report becomes the only way to prove how those responsibilities were designed
and implemented. Therefore, researchers, as in Safe-Scrum, have to distinguish
user stories related to safety concerns and maintain two traceability matrices.
The first one must show how each requirement was divided into a set of user
stories and how they were implemented. The second, instead, serves to prove
that all identified safety stories cover all the most crucial and not negligible
hazards. Only once the research team has produced a strongly linked backlog,
Safe-Sprints can be planned and implemented.

132 R. Carbone et al.

Sp
rin

t A
ct

iv
ity

 F
lo

w

Tr
ac

ea
bi

lit
y

Fl
ow

Sp
rin

t A
ct

iv
ity

Su
pp

or
tin

g
To

ol
s

St
or

ie
s,

 T
as

ks
, G

oa
ls

an
d

Ac
ce

pt
an

ce
 T

es
ts

So
ftw

ar
e

Ar
te

fa
ct

s

Sp
rin

t A
ct

or
s

K
ey

Sp
rin

t P
la

nn
in

g
Sp

rin
t B

ac
kl

og
 Im

pl
em

en
ta

tio
n

Ta
sk

s
R

eq
ui

re
m

en
ts

Ac
ce

pt
an

ce
Te

st
s

Sp
rin

t
Ba

ck
lo

g

D
es

ig
n

M
od

el
s

C
od

e
D

es
ig

n
D

oc
um

en
ts

C
od

e
C

om
m

en
ts

Ac
ce

pt
an

ce
 T

es
tin

g
an

d
So

ftw
ar

e
Ve

rif
ic

at
io

n

Te
st

 h
ar

ne
ss

Te
st

 re
po

rt

PO
D

ev
. T

ea
m

Sc
ru

m
 M

as
te

r
D

ev
. T

ea
m

: D
ev

el
op

er
s

D
ev

. T
ea

m
: T

es
te

rs

C
I/C

D

D
ev

. T
ea

m
: I

nt
eg

ra
to

rs

In
te

gr
at

io
n

re
po

rt

Tr
ac

ea
bi

lit
y

Sw
R

S

SA
S

SC
D

S

Te
st

sp
ec

ifi
ca

tio
n

Q
ua

lit
y

As
su

ra
nc

e

D
ev

. T
ea

m
Q

.A
. T

ea
m

: V
er

ifi
er

s,
 V

al
id

at
or

s
an

d
A

ss
es

so
rs

U
se

r
St

or
ie

s

Sa
fe

ty
St

or
ie

s

Sy
st

em
R

eq
ui

re
m

en
ts

Sp
ec

ifi
ca

tio
n

(S
R

S)

Sp
rin

t
G

oa
l

H
az

ar
d

An
al

ys
is

R
ep

or
t

G
lo

ba
l S

ys
te

m
D

es
cr

ip
tio

n

R
eg

re
ss

io
n

te
st

in
g

D
ev

. T
ea

m
: T

es
te

rs

Te
st

 s
ui

te
s

Te
st

 re
po

rt

Sp
rin

t R
ev

ie
w

 a
nd

 fi
na

l R
et

ro
sp

ec
tiv

e

Sc
ru

m
 T

ea
m

C
us

to
m

er

Th
e

Sc
ru

m
 T

ea
m

So
ftw

ar
e

in
te

gr
at

io
n

on
ta

rg
et

 p
la

tfo
rm

In
te

gr
at

io
n

Te
st

 s
ui

te
s

Te
st

in
g

To
ol

s

Te
st

in
g

To
ol

s
Te

st
in

g
To

ol
s

F
ig
.
1
.
S
4
S

w
o
rk

fl
ow

Scrum for Safety: Agile Development in Safety-Critical Software Systems 133

Table 1. CENELEC standards defined roles

Role Responsibilities

Project Manager Creating the development team; Defining the project
scheduling and milestones; Overseeing the respect of the
defined schedules; Monitoring the quality of the
produced software

Requirements Manager Managing the requirements engineering process; Specify
the software requirements

Designer Select the design principles, techniques and tools;
Specify the software architecture

Implementer Transform the software design in code; Applying a
coding standard; Maintain the codebase under version
control; Integrate the software with the target hardware

Configuration Manager Managing all the defined software configurations

Tester Managing the software testing process; Select the
testing techniques and tools; Communicate any
observed deviation of software from its specification to
the “Change Management Body”

Integrator Managing the software integration process; Specify a set
of test suites for each integration activity; Communicate
any observed deviation of software from its specification
to the “Change Management Body”

Verifier Overseeing the software verification process; Check the
adequacy of the testing and integration processes to the
verification objectives; Guarantee the independence of
the verification process; Communicate any observed
deviation of software from its specification to the
“Change Management Body”

Validator Validate the software requirements specification; Check
the compliance of the development process with the
CENELEC standards; Check the correctness and
consistency of the verification process; Check the
existence and correctness of a unique trace between the
requirements and the software implementation; Check
that all the hazard are classified, identified and
correctly mitigated; Communicate any identified
problem to the “Change Management Body”

Assessor Check the conformity of the developed software and the
adopted development process with the CENELEC
standards; Verifying the adequacy of the V&V;
Verifying the organization personnel competence;
Verifying the correctness of the software quality
assurance process adopted; Verifying the correctness of
the configuration management process adopted; Check
that all the hazard are classified, identified and
correctly mitigated

134 R. Carbone et al.

As depicted in the Fig. 1, researchers have to begin with Sprint Planning.
Here, the objective remains the same as in Scrum, i.e. to select a group of
manageable and most important user stories (the Sprint Goal), and refine them
into a set of more detailed tasks, distributed across the development team (Sprint
Backlog) [27].

Planning is then followed by the Sprint Implementation phase, which repre-
sents the research practical part beginning. During that phase, the team must
experiment and fail to explore and try all the available design alternatives.
Researchers have to evaluate every single valuable solution, otherwise, they could
discard a more efficient one. Moreover, every single task derived from a single
user story and related design, implementation and testing artifacts must be
linked together. This third trace is essential, since it actually enables in-depth
inspections on how single user stories were implemented and verified.

Another remarkable aspect during the Sprint Implementation phase is to
make the subsequent testing and verification activities independent from all the
design consideration. In S4S, we prescribe that during a Safe-Sprint, people can
not cover both development and testing activities. Therefore, the team splits
into two groups, the first one formed by developers and the second with testers
and integrators, preventing potential verification conflicts. This division spans
until all testing and integration stages end.

After that, the two presented groups will work in parallel, so when the imple-
mentation is finished, verification of the newly implemented features could begin.
Here, the Acceptance Testing and Software Verification phase take place: testers
check whether all the selected user stories are correctly implemented and soft-
ware behaviors as expected. Other techniques, such as static analysis and formal
methods, may be employed by testers if they retain it useful. Nevertheless, for
Safety Integrity Level (SIL) 3 & 4 software systems, combining testing with one
of these techniques is strictly required.

After user stories were accepted and tested, a typical Scrum Sprint generally
ends. However, for critical software research projects, there are other fundamen-
tal needed steps.

Firstly, although user stories added to the Sprint Goal have been tracked and
verified, there is no confirmation that they did not adversely impact the already
available features and covered hazards. Thus, a subsequent Regression Testing
step becomes vital in order to preserve the already achieved technical quality.
That activity, differently from the expectations, is straightforward to realize into
the context of an iterative development process. Indeed, already planned tests
may be reused without the need of producing new code. Furthermore, integra-
tors have to realize a complete stage of Continuous Integration and Deployment
(CI/CD) to check that software preserves its quality on the selected target archi-
tectures.

The second step is to provide a Taceability phase during which all the Devel-
opment Team contributes to update the software specification documents with
the newly discovered observations. Indeed, the research purpose is not to pro-
duce a vendible product, but guidelines to construct it. In that way, documents
could be employed multiple times to create an engineered version of the final

Scrum for Safety: Agile Development in Safety-Critical Software Systems 135

product and prove its functional safety. By default, S4S adopts the set of doc-
uments described in the CENELEC standards for railway signaling. Anyway,
needed documents can be adapted depending on the developed product.

Finally, there is a last essential phase of Quality Assurance, which implements
the Continuous V&V concept described in the literature. Letting an independent
group of Verifiers,Validator, and Assessors, to check the produced increment
against the software requirements specification, and the applicable standards
allows to identify and rapidly correct any critical violation. Ideally, the output
of each Sprint could be potentially released to the final user. However, the reality
is quite different. In most cases, research groups are small, and SQA experts, if
available, can review the work on a timeline of months, not weeks. Therefore,
in S4S this phase could be also planned after a group of Sprints, and possibly
exploiting automatic SQA tools and external experts, if any.

After the Quality Assurance phase ends, the Safe-Sprint terminates with the
Scrum known activities of Review and Retrospective.

4 A Case Study

In order to evaluate the impact of S4S, observing its main effects on a very highly
complex research product with changeable requirements, we adopted our pro-
posed methodology in the context of a real-world safety-critical product, owned
by one of the most important Italian company in the railway domain. Concerning
complexity, the software exhibits some technical difficulties due to the presence
of (i) SIL 4 safety functions, (ii) constrained embedded targets and (iii) many
different deployment platforms. For what pertains to changes in requirements,
the entire project is continuously subjected to the vast plethora of platform
technologies, and requirements imposed from research groups developing other
crucial parts of the global system.

In order to address these challenges, we did ten Safe-Sprints, completing 38
user stories from a Product Backlog of 126 (30%). This allowed us to get some
important considerations, which we briefly report in the following.

The first consideration pertains to Sprint duration. We deemed a time interval
between either 3 or 4 weeks to be a good thread-off between achieved software
quality and frequent releases. This choice correlates to the scheduling of activities
pertaining Sprints of 3 weeks, which is the following:

1. in the first week, we define and implement the Sprint Backlog, including the
code for successive testing activities;

2. the second week is split in two parts: (i) in the first part, we execute the
developed tests for every user story and do non-regression checks. Here, we
used to employ an automatic testing framework to speed up the entire process;
(ii) in the last part, we update software requirements and architecture with
all the captured observations in order to be ready for the Quality Assurance
phase;

3. during the third week, we release the product to our customer experts in order
to check its quality with V&V activities. However, if they are not available,

136 R. Carbone et al.

we will use only automatic tools to check and extract quality metrics from
code. We, then, review all the done work with our final customer, updating
the Product Backlog with all feedback and finally proceed with the Sprint
Retrospective. Here, we discuss how to pass-over some obstacles appeared
during the development.

Sprints of 4 weeks are almost the same and imply only a longer time for SQA.
As one could observe, we typically spend two or three weeks to guarantee

that potential hazards are adequately covered, and that software performs as
expected without dangerous side-effects. Automatic tools could help to reduce
this time, but quality assurance investments must not be eliminated or shrank.
Otherwise, we risk to adversely impact product safety. Thus, the S4S adoption
had the first effect to lay down Sprint duration, due to risk-related reasons.

The second consideration pertains to sustainable documentation. S4S, in fact,
revisits the purpose and the use of software specifications by stopping to con-
sider them as a driver of the development process, rather documentation is one
of its main outputs. Moving away from this classical document-driven philoso-
phy substantially reduced the quantity of documentation rework, since theoretic
and unproved decisions do not need to be documented. Therefore, although for-
mal specifications had an intrinsic long time to be written, the process avoids
investing time on not yet verified solutions.

The third observation focuses on tests: by continuously testing the prod-
uct, avoiding relegating the verification only at the last part of the development
cycle, S4S allows to rapidly discover errors, and to correct them before their
fixing-cost would explode. Moreover, by investing efforts in automatic tools and
testing framework, tests written for a certain user story can be reused to check
for non-regressions. Thus, we consider continuous testing as one of the main
benefits of the iterative development, which our process inherits and enforces
with independent testing activities. In Table 2 and Table 3 we report the per-
centages of testable and completely covered requirements as the achieved results
for code lines and branches. Please kindly note that, although the actual cov-
erage percentage has to be increased to become acceptable, the adoption of an
iterative approach ensures that coverage increases as far as new users stories,
functionalities and tests are defined and implemented in successive sprints.

Table 2. Software requirements coverage data

Total number
of requirements

Totale number
of testable
requirements

Value 94 63

% of coverage 32,98% (31/94) 49,21% (31/63)

% of fully covered 19,15% (18/94) 28,57% (18/63)

% of partially covered 13,83% (13/94) 20,63% (13/63)

Scrum for Safety: Agile Development in Safety-Critical Software Systems 137

Table 3. Code coverage data extracted with gcov

Software
components

Line coverage Functions Branches

COMP.A 76,8% 383/505 75,0% 45/60 46,3% 174/384

COMP.B 71,4% 65/91 75,0% 6/8 32,8% 19/56

COMP.C 84,4% 81/96 100,0% 4/4 58,2% 33/55

COMP.D 48,8% 184/377 46,2% 12/26 41,1% 60/146

COMP.E 0,0% 0/10 0,0% 0/2 – 0/0

COMP.F 92,5% 74/80 100,0% 6/6 78,7% 37/47

COMP.G 30,5% 102/334 33,3% 7/21 76,3% 45/59

Total 59,54% 889/1493 62,99% 80/127 49,26% 368/747

The last remarkable point concerns requirements change. As mentioned, soft-
ware requirements may be subject to changes due to our customer, platform
technologies and other research groups. As for the first ones, they typically
start introducing new requirements as soon as their comprehension of software
improves. As for the seconds, they follow the floating market trends, which must
be taken into account during the long development time characterizing critical
software. As for research groups, they eventually introduce new requirements in
order to accommodate their specific product functions.

In this situation, even inside a strongly regulated environment, the agile core
mindset of S4S demonstrated to remain an effective tool for uncertain prob-
lem solution. Thanks to frequent reviews and releases, our customer and other
involved teams became an integrative part of the development workflow, con-
tributing to stabilizing software requirements. Also, by not planning all future
sprints, we always reserved the possibility to accept some new features and tech-
nological changes, absorbing market trends. However, for each change, we had to
pay a cost to update our formal specifications, which had to reflect the research
state of work, in order to enable successive quality assurance activities.

In conclusion, we could state that the S4S iterative development is not less
safe than the classical V-model, since:

1. CENELEC documentation, required to prove the safety of the final product,
is equally produced. Indeed, not specifying unverified solutions only reduces
rework activities;

2. Continuous V&V and Traceability activities incrementally increase the team
trust in achieved product quality. Indeed, people become much more reactive
in discovering bugs and critical violation of applicable standards;

3. Requirements change is accepted and taken into account by (i) directly involv-
ing customers and other teams in the development process and (ii) experiment
frequently with new technologies.

138 R. Carbone et al.

5 Conclusion

In this paper, we proposed an extension of the Scrum agile methodology, namely
S4S, suitable to guide and help the design and development of software compo-
nents in safety-critical domains, in particular, in the railway domain. We dis-
cussed S4S in full details, including its principles, roles and workflow. Further-
more, in order to evaluate the methodology, we report a case-study on a real,
highly complex safety-critical research product with changeable requirements,
which represents a typical situation for research groups.

The reported case study highlighted that S4S (i) enables iterative and evolu-
tive development of safety-critical software, even if architecture and/or require-
ments need to be refined, (ii) allows documentation to be produced – and kept
updated – as an output of the entire process, and (iii) makes the entire process
much more safe and reactive w.r.t human errors.

Therefore, from these conclusions, we could state that the agile mindset
remains effective in a critical context if it embraces all its values in terms of
quality. Nevertheless, this paper only constitutes a starting point: we are bound
to apply S4S in other different critical research projects, even those involving
third-party and/or legacy software components, in order to add new tools and
techniques that would increase its current efficiency and safety.

References

1. Beck, K., et al.: Manifesto for agile software development (2001). http://www.
agilemanifesto.org/

2. Benedicenti, L., et al.: Applying scrum to the army: a case study. In: Proceedings
of the 38th International Conference on Software Engineering Companion, pp.
725–727 (2016). https://doi.org/10.1145/2889160.2892652

3. Casola, V., Benedictis, A.D., Rak, M., Villano, U.: A novel security-by-design
methodology: modeling and assessing security by SLAs with a quantitative app-
roach. J. Syst. Softw. 163, 110537 (2020). https://doi.org/10.1016/j.jss.2020.
110537

4. Cawley, O., Wang, X., Richardson, I.: Lean/Agile software development method-
ologies in regulated environments – state of the art. In: Abrahamsson, P., Oza, N.
(eds.) LESS 2010. LNBIP, vol. 65, pp. 31–36. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-16416-3 4

5. Européen de normalisation en électronique et en électrotechnique (CENELEC), C.:
Railway applications the specification and demonstration of reliability, availability,
maintainability and safety (rams). Standard, Comité européen de normalisation en
électronique et en électrotechnique (CENELEC) (1999)

6. Européen de normalisation en électronique et en électrotechnique (CENELEC), C.:
Railway application - communications, signaling and processing systems - safety
related electronic systems for signaling. Standard, Comité européen de normalisa-
tion en électronique et en électrotechnique (CENELEC) (2003)

7. Européen de normalisation en électronique et en électrotechnique (CENELEC), C.:
Railway applications - communication, signalling and processing systems - software
for railway control and protection systems. Standard, Comité européen de normal-
isation en électronique et en électrotechnique (CENELEC) (2011)

http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://doi.org/10.1145/2889160.2892652
https://doi.org/10.1016/j.jss.2020.110537
https://doi.org/10.1016/j.jss.2020.110537
https://doi.org/10.1007/978-3-642-16416-3_4
https://doi.org/10.1007/978-3-642-16416-3_4

Scrum for Safety: Agile Development in Safety-Critical Software Systems 139

8. International Electrotechnical Commision: Functional safety of electri-
cal/electronic/programmable electronic safety-related systems. Standard,
International Electrotechnical Commision (2010)

9. Drobka, J., Noftz, D., Raghu, R.: Piloting XP on four mission-critical projects.
IEEE Softw. 21(6), 70–75 (2004). https://doi.org/10.1109/MS.2004.47

10. Fitzgerald, B., Stol, K., O’Sullivan, R., O’Brien, D.: Scaling agile methods to reg-
ulated environments: an industry case study. In: 2013 35th International Con-
ference on Software Engineering (ICSE), pp. 863–872 (2013). https://doi.org/10.
1109/ICSE.2013.6606635

11. Gary, K., et al.: Agile methods for open source safety-critical software. Softw.
Pract. Exp. 41(9), 945–962 (2011). https://doi.org/10.1002/spe.1075

12. Ge, X., Paige, R.F., McDermid, J.A.: An iterative approach for development of
safety-critical software and safety arguments. In: 2010 Agile Conference, pp. 35–
43. IEEE (2010). https://doi.org/10.1109/AGILE.2010.10

13. Górski, J., �Lukasiewicz, K.: Towards agile development of critical software. In:
Gorbenko, A., Romanovsky, A., Kharchenko, V. (eds.) SERENE 2013. LNCS, vol.
8166, pp. 48–55. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40894-6 4

14. Grenning, J.: Launching extreme programming at a process-intensive company.
IEEE Softw. 18(6), 27–33 (2001). https://doi.org/10.1109/52.965799

15. Hajou, A., Batenburg, R., Jansen, S.: How the pharmaceutical industry and agile
software development methods conflict: a systematic literature review. In: 2014
14th International Conference on Computational Science and Its Applications, pp.
40–48. IEEE (2014). https://doi.org/10.1109/ICCSA.2014.19

16. Hanssen, G., St̊alhane, T., Myklebust, T.: SafeScrum R© - Agile Development of
Safety-Critical Software. Springer, Heidelberg (2018). https://doi.org/10.1007/
978-3-319-99334-8

17. Jonsson, H., Larsson, S., Punnekkat, S.: Agile practices in regulated railway soft-
ware development. In: 2012 IEEE 23rd International Symposium on Software Relia-
bility Engineering Workshops, pp. 355–360. IEEE (2012). https://doi.org/10.1109/
ISSREW.2012.80

18. McCaffery, F., Trektere, K., Ozcan-Top, O.: Agile – is it suitable for medical device
software development? In: Clarke, P.M., O’Connor, R.V., Rout, T., Dorling, A.
(eds.) SPICE 2016. CCIS, vol. 609, pp. 417–422. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-38980-6 30

19. McHugh, M., McCaffery, F., Casey, V.: Barriers to adopting agile practices when
developing medical device software. In: Mas, A., Mesquida, A., Rout, T., O’Connor,
R.V., Dorling, A. (eds.) SPICE 2012. CCIS, vol. 290, pp. 141–147. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-30439-2 13

20. Messina, A., Fiore, F., Ruggiero, M., Ciancarini, P., Russo, D.: A new agile
paradigm for mission-critical software development. CrossTalk 29(6), 25–30 (2016)

21. Misra, S.C., Kumar, V., Kumar, U.: Identifying some critical changes required in
adopting agile practices in traditional software development projects. Int. J. Qual.
Reliabil. Manage. (2010). https://doi.org/10.1108/02656711011035147

22. Myklebust, T., St̊alhane, T., Hanssen, G.: Important considerations when apply-
ing other models than the waterfall/V-model when developing software according
to IEC 61508 or EN 50128. Technical report, Norwegian University of Science
and Technology and SINTEF Digital/Software Engineering, Safety and Security,
August 2015. https://doi.org/10.13140/RG.2.1.4739.2480

https://doi.org/10.1109/MS.2004.47
https://doi.org/10.1109/ICSE.2013.6606635
https://doi.org/10.1109/ICSE.2013.6606635
https://doi.org/10.1002/spe.1075
https://doi.org/10.1109/AGILE.2010.10
https://doi.org/10.1007/978-3-642-40894-6_4
https://doi.org/10.1007/978-3-642-40894-6_4
https://doi.org/10.1109/52.965799
https://doi.org/10.1109/ICCSA.2014.19
https://doi.org/10.1007/978-3-319-99334-8
https://doi.org/10.1007/978-3-319-99334-8
https://doi.org/10.1109/ISSREW.2012.80
https://doi.org/10.1109/ISSREW.2012.80
https://doi.org/10.1007/978-3-319-38980-6_30
https://doi.org/10.1007/978-3-319-38980-6_30
https://doi.org/10.1007/978-3-642-30439-2_13
https://doi.org/10.1108/02656711011035147
https://doi.org/10.13140/RG.2.1.4739.2480

140 R. Carbone et al.

23. Myklebust, T., St̊alhane, T., Lyngby, N.: Application of an agile development pro-
cess for EN50128/railway conformant software. In: Safety and Reliability of Com-
plex Engineered Systems, September 2015. https://doi.org/10.1201/b19094-529

24. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile method-
ologies. Commun. ACM 48(5), 72–78 (2005). https://doi.org/10.1145/1060710.
1060712

25. Notander, J.P., Runeson, P., Höst, M.: A model-based framework for flexible safety-
critical software development: a design study. In: Proceedings of the 28th Annual
ACM Symposium on Applied Computing, pp. 1137–1144 (2013). https://doi.org/
10.1145/2480362.2480575

26. Paige, R.F., Charalambous, R., Ge, X., Brooke, P.J.: Towards agile engineering of
high-integrity systems. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008.
LNCS, vol. 5219, pp. 30–43. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-87698-4 6

27. Rubin, K.S.: Essential Scrum: A Practical Guide to the Most Popular Agile Pro-
cess. 1st edn. Addison-Wesley Professional (2012)

28. Smith, J., Bradbury, J., Hayes, W., Deadrick, W.: Agile approach to assuring
the safety-critical embedded software for NASA’s orion spacecraft. In: 2019 IEEE
Aerospace Conference, pp. 1–10. IEEE (2019). https://doi.org/10.1109/AERO.
2019.8742095

29. St̊alhanea, T., Myklebustb, T., Hanssenb, G.: The application of safe scrum to IEC
61508 certifiable software, pp. 6052–6061. Curran, Associates, Inc. (2012)

30. VanderLeest, S.H., Buter, A.: Escape the waterfall: agile for aerospace. In: 2009
IEEE/AIAA 28th Digital Avionics Systems Conference, pp. 6-D. IEEE (2009).
https://doi.org/10.1109/DASC.2009.5347438

31. Vogel, D.: Agile methods: most are not ready for prime time in medical device
software design and development. DesignFax Online 2006 (2006)

32. Wolff, S.: Scrum goes formal: agile methods for safety-critical systems. In: 2012
First International Workshop on Formal Methods in Software Engineering: Rigor-
ous and Agile Approaches (formsera), pp. 23–29. IEEE (2012). https://doi.org/10.
1109/FormSERA.2012.6229784

https://doi.org/10.1201/b19094-529
https://doi.org/10.1145/1060710.1060712
https://doi.org/10.1145/1060710.1060712
https://doi.org/10.1145/2480362.2480575
https://doi.org/10.1145/2480362.2480575
https://doi.org/10.1007/978-3-540-87698-4_6
https://doi.org/10.1007/978-3-540-87698-4_6
https://doi.org/10.1109/AERO.2019.8742095
https://doi.org/10.1109/AERO.2019.8742095
https://doi.org/10.1109/DASC.2009.5347438
https://doi.org/10.1109/FormSERA.2012.6229784
https://doi.org/10.1109/FormSERA.2012.6229784

Empirical Evaluation of Agile Teamwork

Paolo Ciancarini1,2(B) , Marcello Missiroli1 , and Sofia Zani1

1 University of Bologna, Bologna, Italy
paolo.ciancarini@unibo.it

2 Innopolis University, Innopolis, Russia

Abstract. During the fall 2020 we observed and tracked several student
teams working remotely and independently to develop a non-trivial soft-
ware product as the capstone project for a course of Software Engineering
in our university. The teams used an integrated open-source development
environment that we designed to be useful to support and measure Agile
development efforts, storing all artifacts and logging productivity and
interaction data. Moreover, teams were required to use the Essence visual
language during the retrospectives in order to analyze and improve their
Scrum-like process. The tools used by the teams were used to store and
collect several process data, that post-mortem were also integrated by
the answers given by the students to some questionnaires. This paper
proposes an empirical evaluation of the process followed by the teams,
using a teamwork quality model and an Agile maturity model. The two
models highlight different facets of the teamwork. We have studied and
compared the development and interaction activities of the teams, and
found a correlation between the results of the two models.

Keywords: Agile · Essence · Teamwork quality

1 Introduction

Traditionally, undergraduate student projects are either personal or group-based.
It is possible to assign a project to a whole class seen as a unique group, but it
requires a quite complex organization [2,32].

In Software Engineering courses, student projects are usually team-based;
the evaluation of the result is often based on the quality of the process enacted
by the team, including the quality of the teamwork [21].

If there are several teams developing independently and in parallel, the task of
the instructors is complex, because they need to track and compare the progress
of all the teams. This problem is well known, and in literature some tool-based
solutions have been proposed, see for instance TeamScope [10].

During the fall 2020 we observed and tracked 21 student teams working
remotely and independently to develop a non-trivial software product as the
capstone project for our course of Software Engineering at the University of
Bologna. The teams used the Compositional Agile System (CAS for short), an

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 141–155, 2021.
https://doi.org/10.1007/978-3-030-85347-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_11&domain=pdf
http://orcid.org/0000-0002-7958-9924
http://orcid.org/0000-0002-9243-3406
http://orcid.org/0000-0002-7471-5995
https://doi.org/10.1007/978-3-030-85347-1_11

142 P. Ciancarini et al.

integrated open-source development environment we built and useful to support
and measure team-based Agile development efforts [4]. The Agile Manifesto min-
imized the importance of both processes and tools, in fact the first of the four
Agile values says: “(...we have come to value...) Individuals and interactions over
processes and tools”. The issue of effective interactions is especially important
for a successful teamwork [18]. However most Agile developments in COVID-19
pandemic required the usage of tools to organize remote work and to support
interactions of team members, who all worked at home. It was also important
to stress the process rules - we used Scrum - as a way of making the teams more
cohesive and self-organizing.

In order to support the teamwork, the teams practiced some team building
activities before and during the project. In fact, we devoted some care to the topic
of team building, as there was no chance of face-to-face, colocated collaboration
due to the pandemic sanitary rules applied in our country. We have chosen to
train students to the Scrum process model using a serious game called Scrumble1,
that could be played remotely and self-evaluated by the students. Moreover,
teams were required to use the Essence visual language during the retrospectives
in order to analyze and improve their Scrum-like process [9]. We hoped that the
use of Essence cards could support the recording of retrospective analysis. In fact,
each retrospective had to prepare an Essence-based report discussing eventual
problems met during the sprint and which remedies should be introduced in the
next sprint.

This paper proposes an empirical evaluation of the process followed by the
teams, using a teamwork quality model and an Agile maturity model. The two
models highlight different facets of the teamwork. We discuss the development
and interaction activities of the teams and study the correlation between the
results of the two models.

The structure of this paper is the following: in Sect. 2 we summarize some
works related to our approach; in Sect. 3 we present the experiment we set up
with our students, describing the most important activities and tools used; in
Sect. 4 we give an overview of the results we obtained; finally, in Sect. 5 we draw
our conclusions and describe some future plans.

2 Related Works

The problem of evaluation is central in education, and in case of problem-based
learning (PBL) it is particularly challenging, as it requires the integration of
several different dimensions.

Agile teamwork is especially complex to evaluate, as there are several possible
viewpoints and approaches. For example, Poženel [22] and Wedemann evaluated
teamwork interactions [30], whereas Mahnic [16] and Baham [1] evaluated the
students’ perceptions when using Agile practices and tools. Scott [26] and Lang
[13], instead, focused on the evaluation of Scrum learning outcomes related to

1 See http://scrumble.pyxis-tech.com/.

http://scrumble.pyxis-tech.com/

Empirical Evaluation of Agile Teamwork 143

different learning styles of students. Surprisingly, not much research exists on
software process quality education, one of the few exceptions is [14]. Sussy and
others present a study on the Team Software Process enacted by graduate stu-
dents [29]. Instead, here we focus on undergraduates using Agile practices and
Scrum.

In 2008 Dingsøyr et al. [6] wrote that Scrum was not enough studied: it was
already popular in companies, but not used in university course. Since then,
studies have progressed, and some focus on the approach to Agile practices in
an educational context.

Kropp and Meier [12] described a course organization and some tools similar
to our case. There are important differences though, such as the intensive use
of Essence cards [9] and the evaluation of both process and product. Another
recent paper with an approach similar to ours is [23], which exploited a number
of tools for Agile collaboration and surveyed students by questionnaires. Two
important differences are that we insisted that students should use only open
source tools, and use Essence to guide their retrospectives.

Retrospectives are in fact a crucial practice in Agile developments and team
building. Recently, Steghöfer et al. [27] completely re-imagined their course in
order to teach Agile methods - and Scrum in particular - introducing student
reflection in the evaluation process. Their practice has been followed by others,
such as [17] and ourselves.

Traditionally, Agile developers have frowned upon tools usage [11], and
though the tendency has changed through the years [5], the current pandemic
crisis has been the real game-changer. Currently, most development happens
remotely, even at the educational level, and required us to use a tool-intensive
approach. Previous studies pioneered remote development: [25], which describes
and evaluates a virtual Scrum environment, [19], that outlines a distributed
Scrum activity involving students of two different universities located in two
continents, and more.

3 Methods

The Software Engineering course offered at our university is based on about 75 h
of theory lectures and 150 h of project work for third year Computer Science
students. The theory lectures are devoted to presenting the basics of software
process models, especially Agile including some practices like test driven pro-
gramming or pair/mob programming. We devote time to explain and demon-
strate examples of user stories, design patterns, architecture diagrams in UML,
estimation techniques of development efforts, and software quality metrics.

This year we had more than 100 students, who self organized in 21 teams.
They all worked remotely, as the department rooms and laboratories were off
limits for sanitary reasons.

144 P. Ciancarini et al.

3.1 The Project Work

The students’ project work has been organized in phases as shown in Fig. 1.

Fig. 1. Work phases illustration.

1. Students profiled themselves by filling personal cards using Trello, describing
their previous programming experiences and their specific knowledge and
skills in software development. Trello is not open source, and was chosen
because it was quite popular among students, and easy to use online.

2. Using Microsoft Teams students were able to dialog and freely move cards
forming groups of five or six people. This was also the time where Scrum Mas-
ters where chosen. Usually SM where chosen either because they volunteered
declaring to be less able as programmers, or because they declared a strong
interest in leading the team.

3. The first meeting of each group was devoted to a specific team building activ-
ity: playing remotely (mandatory, given the pandemic) a game of Scrumble
to learn with a gamified approach the Scrum process model2. The game was
useful to improve the self confidence of Scrum Masters and clarify roles and
responsibilities; at the end of this activity each team had a retrospective
meeting for self evaluating its own performance using a Goal-Question-Metric
approach suggested by the instructors.
This game and the subsequent Goal-Question-Metric (GQM) self-evaluation
were useful to the teams for familiarizing with Scrum and discuss some critical
issues, like technical debt.

4. The first sprint started when the POs introduced software requirements.
Moreover, in order to inspire the teams POs gave them access to the codebase
of a previous project with similar software requirements. The code base had
been developed by a single student as his graduation project. Teams were
allowed to reuse this code, but only two decided to reuse and extend it. The
initial product backlog was formulated by the teams using a standard user
story template (As a User I need this Goal for this Motivation). Each team
built its own product backlog containing its own user stories.

5. Project work was organized over three week sprints. Three sprint were carried
out by all teams, but they had the chance to add additional sprints. At the
end of the work, the teams released their final software product version and a
document called “Final team report”, which summarized artifacts and process
documentation produced during each sprint.

2 Game manual and materials are freely available at http://scrumble.pyxis-tech.com/.

http://scrumble.pyxis-tech.com/

Empirical Evaluation of Agile Teamwork 145

Each sprint devoted some time to a retrospective, that the team’s Scrum
Master coordinated referring to the Essence cards for Agile3.

The product to develop was a Twitter client, enriched with features for data
analytics: the product should be able to capture large sets of geolocalizable
tweets and: a) put them on a map b) create a word cloud with their contents
c) create a temporal diagram to show the distribution of collected tweets across
time, and so on. The main use cases were: a) using Twitter in an emergency, like
an earthquake, to collect help messages; b) using tweets to track the movements
and collect the picture of a group of travelers in a city or across a region; c)
using tweets for simple diachronic sentiment analysis. The teams were instructed
to create independently their own user stories, so each product backlog was
different. Also, the teams were free to use any technology they prefered. Most
of them used Javascript with some framework, like Vue. The other teams used
Java.

Each team had to develop the software product using the open source ser-
vices included in the development environment hosted by a university server,
and to adopt some Agile best practices and a Scrum-like process. Teams were
encouraged to gather together periodically, in daily Scrum meetings, but most
teams usually performed bi-weekly meetings. Moreover they practiced pair or
mob programming to increase collective code ownership.

In the beginning of the sprint each team gathered together in a sprint plan-
ning meeting using an audio and/or video calling app (either MS Teams or
Discord). Each team planned independently their sprint backlog, namely the
selection of user stories, from their own product backlog. Each user story was
decomposed in tasks and had a story point effort estimate given by the team.
The process of effort estimation was performed by Planning poker.

During the sprint, each member with the assignment to complete an user
story had to update its state in Taiga virtual kanban. When an user story was
put in “done” status Taiga updated the sprint burn down chart.

Each personal IDE had to be instrumented with a plug-in able to log and
track productivity counting keystrokes, modified lines of code, and actions on the
main tools like Taiga, GitLab, and SonarQube. The plug-in was open source but
not available for commercial IDEs, so several teams replaced it with Wakatime,
with the difference that it tracked working hours.

The codebase had to be organized with version control inside a GitLab repos-
itory.

Source code quality had to be checked by SonarQube, which produced a
report with quality ratings for each test.

Team textual communication had to be managed with Mattermost.
In the end of the sprint each team gathered together in sprint review and

sprint retrospective meetings.
They stored in Taiga Wiki the following artifacts: demo video of software

increment with last functionalities implemented, SonarQube report of the final
release, team diary, Essence cards arrangement produced during each sprint
retrospective, UML diagrams.

3 https://www.scruminc.com/better-scrum-with-essence/.

https://www.scruminc.com/better-scrum-with-essence/

146 P. Ciancarini et al.

3.2 The Research Questions

The practices and tools used by the teams recorded a lot of data concerning the
process enacted by the teams. We study how agile processes can be improved,
thus we aimed to compare the teamwork performances, asking the following
research questions:

RQ1: How can we evaluate the teamwork performed during the project?
RQ2: How can we evaluate how Agile was the teamwork?

We used a teamwork quality model in order to answer RQ1 and an Agile
maturity model to answer RQ2. We also compared the two evaluations.

The teamwork quality model is inspired from [8], thus we name it the Hoegl-
Gemuenden model. It is based on the assumption that any human behaviour
in a team can be summarized in two major areas: activities and interactions.
Inspired by the Hackman model [7], which sustained that interactions influence
product, performance, and satisfaction, Hoegl and Gemuenden created a survey
to analyze the aspects which followed the conceptual model shown in Fig. 2.

Fig. 2. Conceptual representation of Hoegl-Gemuenden’s quality model [8].

The paper [15] reformulated the Hoegl-Gemuenden approach to apply it to
Agile teams. Similarly, our analysis is also inspired by the Hoegl-Gemuenden
model, but we applied some changes due to our educational context. Our eval-
uation constructs are the following:

– interaction analysis, with all the six constructs of Hoegl-Gemuenden’s team-
work quality category;

– effectiveness analysis about software quality;
– work efficiency, which only considers schedule efficiency, because there was

no budget;
– satisfaction analysis, which considers team satisfaction about learning, prod-

uct, and process of Hoegl-Gemuenden’s “personal success” category. Since our
study was conducted in a short time period, questions about future personal
success of team members were excluded.

Since the data collection involved different evaluation metrics (1 to 5 Likert
scale for students’ opinions from questionnaire about team interactions, decimal
scale for instructors’ evaluation of process and product, marks of SonarQube for

Empirical Evaluation of Agile Teamwork 147

the product internal quality ratings, and percentages of completing user stories
and tasks), in the data processing they were all converted in percentages.

The Agile maturity model we used is inspired by the Yin model presented
in [31]. It includes five maturity levels and explores seven inner categories of
analyses. The conceptual model is shown in Fig. 3.

Level 1 - Initial. This maturity level represents the lack of achievement of level
2 goals. This level of Agile maturity does not have a clearly defined process
for Agile development, and the possible project success depends solely on the
competence of individuals.

Level 2 - Managed. This maturity level represents fulfillment of the two main
goals: basic Scrum management and software requirements engineering. The
first area of analysis ensures the minimum acceptable usage of the Scrum
methodology and structure: Scrum roles, artifacts, and meetings are used by
the team. The second area of analysis comprises product backlog management
and successful sprint planning meetings.

Level 3 - Defined. This maturity level focuses on the relationship with clients
and on timely delivery of software products (which includes best Agile prac-
tices associated with the technical programming aspects of engineering soft-
ware). The first area of analysis requires the establishment of a Definition of
Done (DoD), frequent meetings with PO, and systematic sprint review meet-
ings. The second area of analysis requires sprint backlog management, con-
tinuous product deliveries, verifying software quality in each delivery, usage
of pair or mob programming sessions.

Level 4 – Quantitatively Managed. This maturity level includes the achieve-
ment of a standardized - repeatable - software development process aided by
the management of the process performance through measurement and anal-
ysis practices.

Level 5 – Optimizing. This level focuses on the achievement of continuous
self-improvement and high levels of satisfaction of both the client and the
development team. The main goal for this level is: performance management
through daily Scrum meetings, successful sprint retrospective meetings, causal
risk analysis and mitigation and resolution.

Fig. 3. Conceptual representation of Yin’s Scrum maturity model.

Yin based his model on Patel’s Agile Maturity Model [20]. The paper [24]
using Yin’s Model proposes a evaluation system based on Patel’s Key Process

148 P. Ciancarini et al.

Area (KPA) formula. Following this approach, we set a GQM evaluation schema
in which answers to questions are: “Yes”, “No”, “Partially”, “Non applicable”.

The Key Process Area (KPA) formula is:
∑

Yn + 1
2

∑
Pm

t− ∑
NAf

× 100

where n is the number of “Yes” (Y) answers, m is the number of “Partially” (P)
answers, t is the total number of questions in the GQM schema, f is the number
of “Non applicable” (NA) answers.

To assess the maturity level in the software development process, all its inter-
nal categories have to be fully achieved so equal or above 86%.

3.3 Collecting the Data

As depicted in Fig. 4 data were collected by surveys and observing team projects
and reports stored inside in two available services: gitlab and SonarQube.

“Survey 1” and “Survey 2” were addressed to Scrum Masters. Both surveys
included questions about team efficiency in each sprint, which was analyzed by
counting completed tasks and user stories done in each sprint backlog. Moreover
“Survey 2” included questions about ratings of maintainability, reliability, and
security as obtained in SonarQube. These ratings were confirmed by a direct
observation of the values reported by each team inside their specific SonarQube
data repository.

The “Final individual report” was a survey addressed to all the members
of each team at the end of the last sprint. It included several questions, which
mostly required an answer from 1 to 5 Likert scale. The questions investigated
about interactions, productivity data (lines of code personally written and work-
ing hours personally spent, either individually or in teamwork) and open-ended
questions about describing the personal IDE and logger tool usage, process and
practices, personal satisfaction, strengths and weaknesses of the team.

Fig. 4. Data collection process.

Empirical Evaluation of Agile Teamwork 149

We performed a systematic analysis of data stored as Taiga artifacts (kanban,
Wiki, tasks recorded by total power points), SonarQube reports (if each team
used it in all sprints), Gitlab artifacts (if each team applied version control,
updating the code throughout all work period observing contributors’ graphs of
commits).

4 Results

The radar graphs in Fig. 5 show the percentages obtained in each category of
quality and maturity model, respectively.

Hackman’s theory [7] about influence of internal interactions on satisfac-
tion, effectiveness and efficiency is confirmed. Indeed teams which, on average,
obtained the best evaluation in the teamwork quality model obtained high evalu-
ations in these three aspects, while teams which, on average, obtained the worst
evaluation resulted highly variable in these aspects.

Fig. 5. Radar graphs of worst teams (G, F, J) and best teams (E, C, I) of areas analysis
in team work quality

The teams which performed worst were characterized by:

– low quality of internal communication,
– low perception of effort spent in the project,
– unbalance of members’ contribution to the project.

Moreover, these teams exposed often a conflict of opinions about team inter-
actions, clearly indicating different perceptions and attitudes about teamwork.

We reported only internal communication because all teams said to not have
consulted with experts or other teams. This is a behavior typical of our Computer
Science students, who rarely ask for help outside their team.

Concerning the maturity model we can make two different observations about
two aspects of the maturity model: one about each category of analysis, the other
about levels reached by the teams.

150 P. Ciancarini et al.

Fig. 6. Radar graphs of worst teams (G, F, J) and best teams (E, C, I) of areas analysis
in Scrum maturity model

Considering the first aspect, let us consider the radar graphs in Fig. 6. Except
for “basic Scrum management” category, the majority of worst teams obtained
low evaluations in all categories. A common aspect of these teams is the absence
of using Gitlab to apply a version control strategy, which corresponds to “Stan-
dardized project management” category.

Furthermore we observed some common difficulties in most teams in the
categories of process performance management and iteration management.

Concerning process performance management, students were not constant in
collecting personal productivity data neither using the logger tool which counted
lines of code nor in updating burn down charts after each sprint.

Concerning iteration management, this included sprint backlog management
in Taiga kanban, continuous delivery, use of SonarQube in each sprint to check
and improve codebase quality, peer and mob programming sessions.

The only problematic aspect is the sprint backlog management in Taiga kan-
ban: several teams forgot updating it most of the time, so many teams were
evaluated with a “Partially” in this evaluation point. However, the majority of
teams applied the other development techniques included in this category, in par-
ticular pair programming. Indeed several open-ended answers from students refer
to pair programming as a valuable and useful technique. The answers underline
it as a technique which encourages mutual improvement of knowledge, fast res-
olution of issues, a way to acquire more self-esteem about own code production,
increased productivity, and creativity and fun.

Considering the second aspect of the maturity model, the majority of teams
reached level two or higher, proving a basic Scrum management and good soft-
ware requirements management.

In the leftmost image of Fig. 7 each point represents a team with its average
KPA value in x-axis and average value of quality model evaluations in y-axis.

Data show a 0.8 Pearson correlation coefficient: this value suggests the possi-
ble presence of not perfect linear relationship among the two evaluations. Indeed
the rightmost image in Fig. 7 shows a regression line not so far from the points.
The average error of point distance from the line is 3.5.

We can assert that when there is a frequent use of Agile practices and con-
trol tools, there are also a good satisfaction, efficiency, product, and team work
quality.

Empirical Evaluation of Agile Teamwork 151

Fig. 7. Scatter graphs with average evaluations of the two models

Indeed in the analysis the worst and best teams were the same for both
models. We remark that he students were not aware of any of the quality models
we have used.

4.1 Students’ Perceptions of Agile Practices

On the basis of students’ answers to the open-ended question “List Agile prac-
tices used”, as shown in Fig. 8 the top three practices used were sprint planning,
pair programming, and daily scrum.

Sprint retrospective and sprint review, code refactoring, Essence and backlog
usage were Agile practices quoted as useful and effective by at least 20% of
students.

It is instead a strange result that kanban, burndown chart, versioning and
continuous delivery were not quoted, because they were actually practices used
by the majority of the teams. Our hypothesis is that since for all students this
was the first experience with Agile and with Scrum, these practices were not
perceived as crucial, but in some sense they were “part of the game” required
by the project rules.

Fig. 8. Histogram of Agile practices

152 P. Ciancarini et al.

The uses of the kanban and versioning repository were actually widespread
and effective. Instead, the idea of tracking the team’s effort using the automatic
burndown diagram capability of Taiga was neglected by some teams.

4.2 Threats to Validity

In this paragraph we discuss some threats to validity concerning this study. We
focus first on issues connected with the pandemic, that impacted strongly the
activities of this project.

First, we have chosen a specific set of open source tools, that not necessarily
are the best ones for Agile developments and record data useful for quality
evaluations. A different set of tools could result in different outcomes: an example
is Jira, that however is not open source. Interestingly, although we insisted that
the teams use the open source tools included in the environment we offered them,
teams additionally used MS Teams and Discord, that are not open source but
used daily for lectures and at no charge for the students. Some tools, e.g. the
productivity logger, were used only partially because had some defects.

Second, the evaluation models we have used are taken and adapted from the
literature of Agile developments in the industry, for teams working face to face.
We found that most constructs and questions in questionnaires make sense in an
academic context working remotely, however we had to delete or adapt a number
of questions. We did not investigate for instance in this case study the impact
of pandemic on non verbal interactions, that in Agile are quite relevant and we
investigated in a recent work [3].

The students received a personal questionnaire and had to answer to ques-
tions concerning their teamwork and companions. We took measures to ensure
the anonymity of the answers.

However, the same questionnaires may contain biased questions. For instance
we avoided all questions connected to gender issues, but other bias could have
remained unnoticed. In order to limit this aspect before sending the questionnaire
to the students, we asked the opinion of two colleagues from another university
expert in Agile development.

Finally, the case study has been applied once. We are replicating it in another
academic context, with the same product but different students, to verify and
possibly confirm or modify our findings.

5 Conclusions and Future Work

This research involved 107 students grouped in 21 teams, who worked for approx-
imately three months at the end of 2020 and in the first weeks of 2021. All teams
passed the final exam at the end of this period, delivering a product that was
more or less usable and complete. In this paper we have discussed the quality of
the teamwork. We remark that the data collected by the tools are available for
further analyses. The experiment itself is also repeatable, as the CAS environ-
ment is all made of open source services and components.

Empirical Evaluation of Agile Teamwork 153

Analyzing the results of the quality and maturity models we observed a linear
relation. This relation is not perfect, indeed it has a medium error of 3.5, but it
shows a possible relationship between teamwork quality and following closely a
work methodology.

We argue that initiating the process with a team building game and exploiting
Essence cards for guiding the teams during the retrospectives were activities very
helpful for improving the quality of the teamwork observed during the project.

The main goal of this experiment was to exploit open source tools working
remotely on a project developed with an Agile method and related practices,
in order to collect data for quality evaluations. The teams were able to use
some tools quite effectively, like Taiga, GitLab and SonarQube. Some teams
decided also spontaneously to add Jenkins for automating their testing. In a
future edition of our course we intend to suggest to use a tool for animating
requirements [28].

Some other tools were less appreciated by our students, like Mattermost and
the productivity logger. Mattermost, like Slack, is apparently superseded by MS
Teams; moreover, teams based their communications on Telegram and Discord.
These however are neither open source services, nor make available their data for
inspections. We decided not to insist too much on using open source, trackable
tools, in order to not increase the burden managed by the teams.

We believe that open source collaboration platforms, like Mattermost, need
specific training when used for software development. We have also found that
educating developers to self-tracking their own developing activity is quite diffi-
cult, and that the data recorded concerning productivity are not very reliable,
as the developers tend to conceal or even to manipulate them. In the future we
plan to improve the dashboard for self-tracking productivity data.

Acknowledgments. We wish to thank the students who participated to the project
as developers.

References

1. Baham, C.: Teaching tip: implementing scrum wholesale in the classroom. J. Inf.
Syst. Educ. (JISE) 30, 141–159 (2019)

2. Blake, M.: Integrating large-scale group projects and software engineering
approaches for early computer science courses. IEEE Trans. Educ. 48(1), 63–72
(2005)

3. Ciancarini, P., Farina, M., Succi, G., Yermolaieva, S., Zagvozkina, N.: Non verbal
communication in software engineering - an empirical study. IEEE Access (2021,
to appear)

4. Ciancarini, P., Missiroli, M., Poggi, F., Russo, D.: An open source environment for
an agile development model. In: Ivanov, V., Kruglov, A., Masyagin, S., Sillitti, A.,
Succi, G. (eds.) OSS 2020. IAICT, vol. 582, pp. 148–162. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-47240-5 15

5. Ciancarini, P., Missiroli, M., Sillitti, A.: Preferred tools for agile development: a
sociocultural perspective. In: Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A.
(eds.) TOOLS 2019. LNCS, vol. 11771, pp. 43–58. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29852-4 3

https://doi.org/10.1007/978-3-030-47240-5_15
https://doi.org/10.1007/978-3-030-29852-4_3
https://doi.org/10.1007/978-3-030-29852-4_3

154 P. Ciancarini et al.

6. Dingsøyr, T., Dyb̊a, T., Abrahamsson, P.: A preliminary roadmap for empirical
research on agile software development. In: Agile Conference, pp. 83–94 (2008)

7. Hackman, J.: The design of work teams. In: Lorsch, W. (ed.) Handbook of Orga-
nizational Behavior, pp. 67–102. Prentice Hall (1987)

8. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innovative
projects: a theoretical concept and empirical evidence. Organ. Sci. 12(4), 435–449
(2001)

9. Jacobson, I., et al.: The Essentials of Modern Software Engineering: Free the Prac-
tices from the Method Prisons! Association for Computing Machinery and Morgan
& Claypool (2019)

10. Ju, A., Fox, A.: TEAMSCOPE: measuring software engineering processes with
teamwork telemetry. In: Proceedings of the 23rd ACM Conference on Innovation
and Technology in Computer Science Education, pp. 123–128 (2018)

11. Kelter, U., Monecke, M., Schild, M.: Do we need ‘Agile’ software development
tools? In: Aksit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591,
pp. 412–430. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36557-
5 29

12. Kropp, M., Meier, A.: Teaching agile software development at university level:
values, management, and craftsmanship. In: Proceedings of the 26th International
Conference on Software Engineering Education and Training (CSEE & T), pp.
179–188 (2013)

13. Lang, G.: Agile learning: sprinting through the semester. Inf. Syst. Educ. J. 15,
14–21 (2017)

14. Lee, M., Barta, B.-Z., Juliff, P.: Software Quality and Productivity: Theory, Prac-
tice, Education and Training. Springer, Heidelberg (2013)

15. Lindsjørn, Y., et al.: Teamwork quality and project success in software develop-
ment: a survey of agile development teams. J. Syst. Softw. 122, 274–286 (2016)

16. Mahnic, V., Rožanc, I.: Students’ perceptions of scrum practices. In: Proceedings
of the 35th International Convention MIPRO, pp. 1178–1183 (2012)

17. Masood, Z., Hoda, R., Blincoe, K.: Adapting agile practices in university contexts.
J. Syst. Softw. 144, 501–510 (2018)

18. McEwan, D., et al.: The effectiveness of teamwork training on teamwork behav-
iors and team performance: a systematic review and meta-analysis of controlled
interventions. PLoS One, 12(1) (2017)

19. Paasivaara, M., et al.: Teaching students global software engineering skills using
distributed Scrum. In: Proceedings of the 35th International Conference on Soft-
ware Engineering (ICSE), pp. 1128–1137 (2013)

20. Patel, C., Ramachandran, M.: Agile maturity model (AMM): a software process
improvement framework for agile software development practices. Int. J. Softw.
Eng. (IJSE) 2(1), 3–28 (2009)

21. Poth, A., Kottke, M., Riel, A.: Evaluation of agile team work quality. In: Paasi-
vaara, M., Kruchten, P. (eds.) XP 2020. LNBIP, vol. 396, pp. 101–110. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58858-8 11

22. Poženel, M.: Assessing teamwork in a software engineering capstone course. World
Trans. Eng. Technol. Educ. 11(1), 6–12 (2013)

23. Raibulet, C., Fontana, F.A.: Collaborative and teamwork software development in
an undergraduate software engineering course. J. Syst. Softw. 144, 409–422 (2018)

24. Ridha, F., Hegarini, E.: Analysis of maturity level project management of software
development in scrum framework: case research on tribe enterprise PT. XYZ. IT
J. Res. Dev. 5, 87–97 (2020)

https://doi.org/10.1007/3-540-36557-5_29
https://doi.org/10.1007/3-540-36557-5_29
https://doi.org/10.1007/978-3-030-58858-8_11

Empirical Evaluation of Agile Teamwork 155

25. Rodŕıguez, G., Soria, A., Campo, M.: Teaching scrum to software engineering stu-
dents with virtual reality support. In: Cipolla-Ficarra, F., Veltman, K., Verber, D.,
Cipolla-Ficarra, M., Kammüller, F. (eds.) ADNTIIC 2011. LNCS, vol. 7547, pp.
140–150. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34010-
9 14

26. Scott, E., et al.: Are learning styles useful indicators to discover how students use
Scrum for the first time? Comput. Hum. Behav. 36, 56–64 (2014)

27. Steghöfer, J., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., Ericsson, M.:
Teaching agile - addressing the conflict between project delivery and application
of agile methods. In: IEEE/ACM 38th International Conference on Software Engi-
neering Companion (ICSE-C), pp. 303–312 (2016)

28. Sterling, L., Ciancarini, P., Turnidge, T.: On the animation of “not executable”
specifications by prolog. Int. J. Softw. Eng. Knowl. Eng. 6(01), 63–87 (1996)

29. Sussy, B.O., Calvo-Manzano, J.A., Gonzalo, C., et al.: Teaching team software
process in graduate courses to increase productivity and improve software quality.
In: Proceedings of the 32nd International Computer Software and Applications
Conference, pp. 440–446. IEEE (2008)

30. Wedemann, G.: Scrum as a method of teaching software architecture. In: Pro-
ceedings of the 3rd European Conference on Software Engineering Education, pp.
108–112. ACM (2018)

31. Yin, A., et al.: Scrum maturity model: validation for IT organizations’ roadmap to
develop software centered on the client role. In: The Sixth International Conference
on Software Engineering Advances, ICSEA 2011 (2011)

32. Young, P.E., Needham, D.M.: Using a class-wide, semester-long project to teach
software engineering principles. GSTF J. Comput. (JoC) 3(3) (2014)

https://doi.org/10.1007/978-3-642-34010-9_14
https://doi.org/10.1007/978-3-642-34010-9_14

STAMP 4 NLP – An Agile Framework
for Rapid Quality-Driven NLP

Applications Development

Philipp Kohl1(B), Oliver Schmidts1, Lars Klöser1, Henri Werth1, Bodo Kraft1,
and Albert Zündorf2

1 FH Aachen - University of Applied Sciences, 52428 Jülich, Germany
{p.kohl,schmidts,kloeser,werth,kraft}@fh-aachen.de

2 University of Kassel, 34127 Kassel, Germany
zuendorf@uni-kassel.de

Abstract. The progress in natural language processing (NLP) research
over the last years, offers novel business opportunities for companies, as
automated user interaction or improved data analysis. Building sophisti-
cated NLP applications requires dealing with modern machine learning
(ML) technologies, which impedes enterprises from establishing success-
ful NLP projects. Our experience in applied NLP research projects shows
that the continuous integration of research prototypes in production-like
environments with quality assurance builds trust in the software and
shows convenience and usefulness regarding the business goal. We intro-
duce STAMP 4 NLP as an iterative and incremental process model for
developing NLP applications. With STAMP 4 NLP, we merge software
engineering principles with best practices from data science. Instantiating
our process model allows efficiently creating prototypes by utilizing tem-
plates, conventions, and implementations, enabling developers and data
scientists to focus on the business goals. Due to our iterative-incremental
approach, businesses can deploy an enhanced version of the prototype to
their software environment after every iteration, maximizing potential
business value and trust early and avoiding the cost of successful yet
never deployed experiments.

Keywords: Natural language processing · Process model · Machine
learning · Best practices · Avoiding pitfalls · Quality assurance

1 Introduction

The field of artificial intelligence in general and natural language processing as
one of its sub-fields offers tremendous novel business opportunities in a steadily
growing market [13]. Recent progress in NLP research shows the potential for
business applications, leading to a demand for more advanced NLP applications
[7].

The state-of-the-art in NLP differs from research to industrial domains.
Besides the progress in research, the application of ML-based NLP in many
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 156–166, 2021.
https://doi.org/10.1007/978-3-030-85347-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_12

STAMP 4 NLP – Agile NLP Application Development 157

enterprises is severely limited [6]. The black-box behavior of ML models, missing
know-how, complex technological landscape, and the decision on an appropri-
ate tool stack discourage enterprises from implementing NLP approaches [1,10].
They discard promising projects due to the combination of high and uncertain
effort estimation [23].

Many ML projects fail because of exceeding budgets, deadlines or they do
not meet the business requirements [11]. The late integration of several projects
can lead to a services shutdown [17,27]. We minimize the risk of these situations
with agile methodology to handle the uncertainties and generate business value
and feedback on the application as early as possible. This increases the quality
and trust in the software for all involved stakeholders [5].

We propose a new process model adjusted for developing NLP applications:
Standardized Modeling Process for Natural Language Processing (STAMP 4
NLP).

With STAMP 4 NLP, we merge software engineering principles with best
practices from data science to improve and accelerate the development cycle and
integrate prototypes with every iteration into a test or production environment.
STAMP 4 NLP provides a transparent development process, including roles,
tasks, artifacts, and best practices.

Our main contributions1 are:

– A novel process model for developing NLP applications, with formally spec-
ified roles, activities, and artifacts focusing on quality, and early business
value.

– Usage of predefined environment and software templates based on prior expe-
riences for accelerating the development start.

2 Related Work

Knowledge Discovery in Databases (KDD) [9] represents one of the first process
models for data mining. It offers a generic guided process of the technical tasks
to reveal patterns in data and building knowledge.

Cross Industry Standard Process for Data Mining (CRISP-DM) [4] also con-
siders business requirements and models the application development process in
an applied context in contrast to KDD. Modern ML process models originate
from CRISP-DM. It consists of six stages: Business Understanding, Data Under-
standing, Data Preparation, Modeling, Evaluation, and Deployment. Depending
on the stage’s results, it allows transitions to previous stages.

CRISP-ML(Q) [24] extends CRISP-DM for machine learning and explicitly
considers the differences between data mining (revealing patterns in data) and
machine learning (training and inference). Studer et al. focus on quality assur-
ance on every specific task. CRISP-ML(Q) merges Business Understanding and
Data Understanding into a single stage and adds the Monitoring and Mainte-
nance stage, addressing particular challenges of machine learning applications
not considered by CRISP-DM.
1 https://github.com/philipp-kohl/stamp4nlp.

https://github.com/philipp-kohl/stamp4nlp

158 P. Kohl et al.

While CRISP-DM and CRISP-ML(Q) mainly focus on application creation,
Weber et al. [28] introduced an approach with defined transitions between model
development and model operation. Thus, they cover the whole model lifecycle
from planning over production until retirement. Their process does not explicitly
consider business requirements.

Similar to KDD, Amershi et al. [2] focuses on the modern, mainly technical
process for developing a machine learning model but also incorporates funda-
mental operational analytics with transitions to previous stages.

In contrast to the mentioned process models, we focus on NLP. We treat
manual data annotations and annotation guidelines as central project artifacts.
Our approach is especially suitable for supervised NLP tasks as information
extraction. Further, our focus is on strong quality assurance with different levels
of applied tests. We leverage approaches and best practices from software engi-
neering, combining them with machine learning approaches, such as supporting
versioning of code, data, models, and tracking experiment results [16].

Agile software development [5] uses iterations and increments instead of tran-
sitions between process stages. This leads to a stronger focus on running software
during the development process. The incremental aspect allows isolated investi-
gation of the experimental effects and the usage of continuous integration and
delivery (CI/CD) [8]. Developers receive feedback, and stakeholders gain value
and trust in the application with every deployed increment. In comparison to [24]
with task-agnostic quality assurance, we measure technical and business-oriented
metrics on a higher level after every iteration [18,19,22].

Inspired by Spring [14], maven archetypes [25] and NLPf [20], we deliver
STAMP 4 NLP with a framework, which supports the developer with a prede-
fined development environment, code for well-known standard tasks [12,26] for
creating a rapid prototype as basline or proof of concept, which the developer
enhances over iterations and increments. STAMP 4 NLP decreases the risk of
not deployed valuable experiments and failing projects.

3 Process Model

STAMP 4 NLP is an instantiable, iterative, and incremental process model for
developing natural language processing applications with a focus on quality,
business value, and simplified prototyping.

STAMP 4 NLP uses agile methodology [5] by establishing software in incre-
ments developers enhance in various iterations (c.f. Fig. 1). The Evolution Loop
works in sprints (e.g., 2–4 weeks) to create a new release candidate that the
developers integrate into the customer’s test or production environment to gain
trust in the software and receive feedback for further improvements to fit the
customer’s needs [8]. The workflow is as follows: the developers start with the
Evolution Loop to define or refine the requirements, followed by multiple itera-
tions in the Development Loop (hours to days) to create a model that satisfies
the specified requirements. Deployment and testing are also a part of the inner

STAMP 4 NLP – Agile NLP Application Development 159

loop. Once the software fulfills them, the developers leave the inner loop and pro-
ceed to the outer loop to integrate and monitor the release candidate. Depending
on the monitoring results, they trigger a new iteration.

Goal Specification

Domain Discovery &
Data Selection

Domain Adoption &
Customization

Application
Engineering

Customer Integration
& Evaluation

Quality Assurance passed?

Refinement needed?

Yes

Yes

No

No

Fig. 1. STAMP 4 NLP consists of five subprocesses
arraned in two nested loops: Development Loop (green
+ solid) for developing the NLP application and model.
Evolution Loop (blue + dashed) surrounds the Develop-
ment Loop and covers mainly the interaction with the
customer: creation and refinement of the project goals
with associated requirements and integration and mon-
itoring of the application. Note: The solid and dashed
connectors have the same meaning of sequence flow but
help distinguish the loops in black and white print. (Color
figure online)

The process model
provides particular levels
of transparency. At first,
every stakeholder can fol-
low the complex process,
even if they are unfami
liar with NLP. They can
also track the order of
tasks by consulting the
documentation. Thereby
the responsibilities are
clearly defined, and every
involved party knows their
tasks. Clearly defined res-
ponsibilities are helpful
to prevent conflicts and
create rational processes
that the users can moni-
tor and optimize. We use
the MEDIATION [19]
approach to provide the
application state transparent via a dashboard with project specific business met-
rics for all stakeholders.

The development environment equips the user with a standard set of tools
for rapidly building a proof of concept while maintaining the flexibility to let the
user choose other preferred libraries. Creating a project instance provides folder
structure, development environment, documentation, and boilerplate code (e.g.,
REST-Service with predefined endpoints, etc.). The standard folder facilitates
the automatic loading and storing of data, models, and results to their desti-
nation by convention. Furthermore, no settling-in period for already STAMP-
involved members; they know where to find code, documentation, experiments,
and data.

ML metrics serve as a common benchmark for different models. High or low
metrics show the averaged performance but do not allow making conclusions
which use-cases a model cannot handle appropriately. Model interpretability is
a current research subject [1]. To minimize the interpretability gap in machine
learning and to receive more feedback on a low application level, we incorporated
CheckList [18] for creating behavioral tests aiming for specific capabilities the
NLP application should cover. Besides CheckList, we use MEDIATION [19] for
testing the NLP application on a business level: the developers and stakeholders
define test cases strongly related to their intended use cases in the form of
annotated documents. Thus, this additional test set serves as an indicator of

160 P. Kohl et al.

the business readiness of the NLP application. In combination with the CI/CD
approach, we receive this feedback for every iteration and increment. Involving
testers or real user groups into the increment testing generates feedback for
business and practical usage.

STAMP 4 NLP supports the user to keep the reproducibility of experiments
and models as high as possible. We incorporated parts of Pineau’s reproducibility
list [16] into the process by documentation and tools supporting versioning of
code, data, models, and tracking experiment’s results.

In the following, we give a short description of each subprocess with its
primary artifacts. We show exemplarily a detailed BPMN diagram of the Domain
Adoption and Customization in Fig. 2. Our GitHub repository provides the other
subprocess diagrams and the detailed description of each task and artifact.

3.1 Goal Specification

Description: The Goal Specification aims to establish a common business
understanding. The stakeholders define and refine the business goals, and their
associated technical, machine learning, business, and MEDIATION requirements
and update the documentation accordingly. It includes an evaluation of all data
sources and the data provision for the data scientists. This stage involves all
currently relevant stakeholders to minimize the bias and possibly wrong model
assumptions.

Artifacts: The primary artifacts are the refined and reviewed requirements, test
cases, and access to all mandatory data sources.

3.2 Domain Discovery and Data Selection

Description: Data scientists and domain experts prepare the annotation pro-
cess (c.f. Fig. 2). They identify NLP tasks and corresponding annotation schemas
helpful to fulfill the business goals. Additionally, data scientists include domain
knowledge from experts to steadily improve annotation guidelines and collect
and evaluate data samples for the annotation process and necessary metadata.

Artifacts: The primary artifacts are the annotation guidelines, the new cor-
pus versions prepared for annotation, and documentation about licenses, data
protection, and data security.

3.3 Domain Adoption and Customization

Description: This subprocess (c.f. Fig. 2) includes data annotation and model
training. The annotation process setup involves planning and, if necessary a
domain training for annotators. The annotated texts build a new corpus version,
which is used for training a new model. To minimize the annotation effort, we
want to stop further annotating when noticing the resulting model’s metrics

STAMP 4 NLP – Agile NLP Application Development 161

Domain Adoption & Customization
Data Scientist Domain Expert Annotator Documentation Data

Tool
Composition

Staffing and
Project

Management

Corpus
Stratifying

Training

Metric
Compliance

Domain
Knowledge

Transfer

Create new
corpus version

Apply Data
Augmentation

Data
Annotating

Annotation Process

Test Dataset

Fork

Fork

Join

Knowledge for
annotation present?

Annotation Guidelines

Data Augmentation
Strategies

Model

Metric Report

Corpus

Test Dataset

Evaluation Dataset

Augmented Training
Dataset

Evaluation Dataset

Training Dataset

Yes
No

Fig. 2. Showing the task order of the subprocess Domain Adoption and Customization
as BPMN Diagram with the involved roles displayed as swimlanes. Additional informa-
tion is provided by Documentation and Data lane. Create new corpus version, Training,
and Apply Data Augmentation are automatic tasks, which run without human inter-
action. Training requires the execution of one command as trigger.

stagnate. We incorporated the continuous integration and delivery approach of
Schreiber et al. [21]. Thus, annotators receive feedback after each annotation
session. The feedback can motivate to continue or stop annotating because the
further annotations do not impact the model’s performance remarkably.

Artifacts: The primary artifacts are the new corpus version, the new model,
and metric reports about the model’s performance.

3.4 Application Engineering

Description: Software developers package the model and all necessary depen-
dencies. A CI/CD pipeline deploys the application in a test or production-like
environment and runs evaluations to ensure the quality gates (software quality,
machine learning metrics MEDIATION and behavioral tests via CheckList [18])
defined in the goal specification. The software package is versioned to provide
transparency, whether the made modifications improved the previous version and
for fallback solutions. Depending on the evaluation results, the application stays
in the Development Loop or transitions into the Evolution Loop for integrating
the software into the customer’s application landscape (c.f. Fig. 1).

Artifacts: The primary artifacts are the software package and a quality assur-
ance report.

162 P. Kohl et al.

3.5 Customer Integration and Evaluation

Description: Software developers integrate the packaged NLP application in
the customer’s application landscape. On the customer side, a monitoring ser-
vice checks the model’s performance. The resulting reports build the basis for a
refinement of the quality gates comparable to [19,22] ensuring the fulfillment of
the business requirements during the production phase.

Artifacts: An operation manual documents the deployment, and an integra-
tion plan explains the integration in the customer application. The performance
reports support recommendations and business decisions.

4 Project Template

STAMP 4 NLP facilitates focusing on the project-specific challenges such as
analyzing the data and the domain, annotating, experimenting with different
concepts, and deep learning architectures. To decrease the overhead data scien-
tists face while starting a new project, we offer a template with development
environment, folder structure2, tools, code and process documentation. Further-
more, the framework can generate customizable implementations for specific
NLP tasks (e.g., named entity recognition (NER) [12], or text classification [26])
into the project, helping the developers implement a first baseline or proof of
concept.

The template serves the paradigm convention over configuration [3]. There-
fore the template comes with, but is not limited to a standard set of tools
and libraries. If the user stays with the standard, no additional configuration
is needed. But the user has the opportunity to use additional libraries or tools,
resulting in extra configuration. The basic configuration provides, for exam-
ple, the library spacy3 to create prototypes quickly. Depending on the business
goal, it is necessary to preserve more control over used architecture and training
routines. Therefore the developer can exchange the conventional added spacy
module with PyTorch4 or similar frameworks. The same applies to the folder
structure, environment, and infrastructure. We recommend to start with the
standard configuration and specialize on demand.

5 Example

This section demonstrates a simplified STAMP 4 NLP usage over a few iter-
ations to show the intuition behind the process model. We focus on a real-
world project we performed with our business partners: The profile extraction
from social media messages of an advertising group conversation. We use named

2 Similar to https://drivendata.github.io/cookiecutter-data-science/.
3 https://spacy.io/.
4 https://pytorch.org/.

https://drivendata.github.io/cookiecutter-data-science/
https://spacy.io/
https://pytorch.org/

STAMP 4 NLP – Agile NLP Application Development 163

entity recognition (NER) as a standard NLP task, for which we can use existing
approaches. NER describes the task of finding domain-relevant terms in doc-
uments: e.g., persons, brands, products, and their prices. On top of that, we
implement a business layer to aggregate the named entities to a profile.

First Iteration – Requirements Analysis and Dry Run: The first itera-
tion focuses on the requirements analysis and the infrastructure test run (also
called dry run). Instantiating the process model provides a development envi-
ronment including a prototypical web-service, a pre-configured CI/CD pipeline,
and prepared documentation. We define and document the NER as the applied
NLP task. Based on the documentation, we invoke the framework for generat-
ing a reference implementation for NER as a first baseline. Among others, we
define the corresponding machine learning metrics we want to achieve with the
NLP application. We skip the most tasks of all other subprocesses for this itera-
tion since its the iteration’s goal to ensure the infrastructure: training a model,
embed the model into a software package, deploy into a test environment, model
evaluation, publish results via a dashboard. The scores do not matter at this
stage.

Fig. 3. An excerpt of a Grafana Dashboard
visualizes the F1, precision, and recall score
for the NER component over several iterations
of annotating and architecture decision. Preci-
sion measures the correctness of positive clas-
sifications (here for a named entity) by penal-
izing false positives. Recall shows if our model
has found all named entities by penalizing false
negatives. F1 is the harmonic mean of preci-
sion and recall. It is commonly used for model
evaluation and comparison.

Second Iteration – Baseline:
The second iteration focuses on cre-
ating a first baseline. This itera-
tion covers the Development Loop
exclusively. We prepare the annota-
tion process by defining the annota-
tion guidelines, deciding on a suit-
able corpus format, and transfer-
ring the data to the corpus for-
mat in Domain Discovery and Data
Selection. Domain Adoption and
Customization mainly focuses on
annotating a subset of the data
in this iteration to create the first
baseline with the standard imple-
mentation. We embed the model
into our software architecture and
add a business layer to combine
the named entities to a profile.
Our CI/CD approach packages and
deploys the software into the test
environment, where the framework performs detailed quality assurance. The
results are published on a dashboard (c.f. Fig. 3).

Additional Iterations – Beat the Baseline: Further iterations focus isolated
on specific aspects to enhance the baseline. We incorporate the aspects as isolated
as possible to ensure the cause-effect relationships:

164 P. Kohl et al.

Annotations. Annotating new data points, improve existing annotations,
decide to incorporate new labels, enhance annotation guideline based on
gained experience.

Architectural Decisions. Use different common neural network components
or pretrained contextualizes embedding layers [7,15].

If the application fulfills the requirements, we have a possible release candidate
and exit the Development Loop and continue the Evolution Loop. If the results
do not show the expected behavior or do not fulfill the business need, we begin
a new iteration to investigate the cause and start new experiments improving
the application’s quality.

6 Limitations and Drawbacks

Our proposed process model has a strong focus on supervised NLP. We have
many subprocesses with corresponding roles and artifacts for problems that
include the manual annotation of corpora. They may be unbeneficial for unsu-
pervised tasks. We further define clear responsibilities and processes but assume
that a practical application involves loose compliance to those in some cases. The
process needs to be adapted to each project individually. A significant benefit of
the instantiable framework is a low application barrier. The resulting standard-
ized configuration and black box code can lead to laborious error detection or
adaptions when moving too far from these conventions.

7 Summary

We introduced STAMP 4 NLP a novel instantiable and iterative-incremental pro-
cess model to develop NLP applications. It supports developers to create valu-
able and deployable increments rapidly, results in earlier feedback, and improves
quality and trust in the application for all stakeholders.

Our approach equips the user with templates, development environment, and
documentation to reduce the starting and integration overhead. That minimizes
implementation barriers, avoids common pitfalls, and sets the focus on the busi-
ness goal. Thus, STAMP 4 NLP reduces the risk of failing projects.

In the future, we plan to create a benchmark project for different groups
to work on: some groups work with the STAMP 4 NLP and others work from
scratch. Thus, we want to measure various project milestones, key performance
indicators and observe the challenges the different teams face and pitfalls they
could avoid. Furthermore, we want to use it for educational purposes to set the
focus appropriately with incremental depth increase. We want to improve the
development of generic NLP tasks, including unsupervised problem settings.

STAMP 4 NLP – Agile NLP Application Development 165

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018). https://doi.org/
10.1109/ACCESS.2018.2870052

2. Amershi, S., et al.: Software engineering for machine learning: a case study. In:
Proceedings of the 41st International Conference on Software Engineering: Soft-
ware Engineering in Practice, ICSE-SEIP 2019, pp. 291–300. IEEE Press (2019).
https://doi.org/10.1109/ICSE-SEIP.2019.00042

3. Baechle, M., Kirchberg, P.: Ruby on rails. Softw. IEEE 24, 105–108 (2007). https://
doi.org/10.1109/MS.2007.176

4. Chapman, P., et al.: CRISP-DM 1.0 step-by-step data mining guide. In: SPSS
(2000)

5. Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Pearson
Education Limited (2009). ISBN 978-0-32166-056-5

6. Costello, K.: Gartner survey shows 37 percent of organizations have implemented
AI in some form (2019). https://www.gartner.com/en/newsroom/press-releases/
2019-01-21-gartner-survey-shows-37-percent-of-organizations-have. Accessed 24
Apr 2021

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers),
pp. 4171–4186. Association for Computational Linguistics, Minneapolis (2019).
https://doi.org/10.18653/v1/N19-1423. https://www.aclweb.org/anthology/N19-
1423

8. Duvall, P., Matyas, S.M., Glover, A.: Continuous Integration: Improving Software
Quality and Reducing Risk. Addison-Wesley Professional, Boston (2007).ISBN 0-
32133-638-0

9. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery in databases. AI Mag. 17(3), 37 (1996)

10. Goasduff, L.: 3 barriers to AI adoption (2019). https://www.gartner.com/
smarterwithgartner/3-barriers-to-ai-adoption/. Accessed 24 May 2021

11. Jyoti, R., Shirer, M.: Idc survey finds artificial intelligence adoption being driven
by improved customer experience, greater employee efficiency, and accelerated
innovation (2020). https://www.idc.com/getdoc.jsp?containerId=prUS46534820.
Accessed 24 May 2021

12. Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recogni-
tion. IEEE Trans. Knowl. Data Eng, p. 1 (2020). https://doi.org/10.1109/TKDE.
2020.2981314

13. Liu, S.: Global natural language processing market 2017–2025 (2020). https://
www.statista.com/statistics/607891/worldwide-natural-language-processing-
market-revenues/. Accessed 24 May 2021

14. Mane, D., Chitnis, K., Ojha, N.: The spring framework: an open source java plat-
form for developing robust java applications. Int. J. Innov. Technol. Explor. Eng.
(IJITEE) (2013)

15. Peters, M.E., et al.: Deep contextualized word representations. CoRR.
abs/1802.05365 (2018). http://arxiv.org/abs/1802.05365

16. Pineau, J., et al.: Improving reproducibility in machine learning research (a report
from the neurips 2019 reproducibility program) (2020). arXiv:2003.12206. Version
3

https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/MS.2007.176
https://doi.org/10.1109/MS.2007.176
https://www.gartner.com/en/newsroom/press-releases/2019-01-21-gartner-survey-shows-37-percent-of-organizations-have
https://www.gartner.com/en/newsroom/press-releases/2019-01-21-gartner-survey-shows-37-percent-of-organizations-have
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.gartner.com/smarterwithgartner/3-barriers-to-ai-adoption/
https://www.gartner.com/smarterwithgartner/3-barriers-to-ai-adoption/
https://www.idc.com/getdoc.jsp?containerId=prUS46534820
https://doi.org/10.1109/TKDE.2020.2981314
https://doi.org/10.1109/TKDE.2020.2981314
https://www.statista.com/statistics/607891/worldwide-natural-language-processing-market-revenues/
https://www.statista.com/statistics/607891/worldwide-natural-language-processing-market-revenues/
https://www.statista.com/statistics/607891/worldwide-natural-language-processing-market-revenues/
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/2003.12206

166 P. Kohl et al.

17. Reuters: Amazon ditched AI recruiting tool that favored men for techni-
cal jobs (2018). https://www.theguardian.com/technology/2018/oct/10/amazon-
hiring-ai-gender-bias-recruiting-engine. Accessed 24 May 2021

18. Ribeiro, M.T., Wu, T., Guestrin, C., Singh, S.: Beyond accuracy: behavioral test-
ing of NLP models with CheckList. In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pp. 4902–4912. Association for
Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-
main.442. https://www.aclweb.org/anthology/2020.acl-main.442

19. Schreiber, M., Kraft, B., Zündorf, A.: Metrics driven research collaboration: focus-
ing on common project goals continuously. In: 2017 IEEE/ACM 4th International
Workshop on Software Engineering Research and Industrial Practice (SER IP),
pp. 41–47 (2017). https://doi.org/10.1109/SER-IP.2017.6

20. Schreiber, M.: Towards effective natural language application development. Disser-
tation, University of Kassel (2019). https://doi.org/10.17170/kobra-20190529539

21. Schreiber, M., Kraft, B., Zündorf, A.: Cost-efficient quality assurance of natural
language processing tools through continuous monitoring with continuous integra-
tion. In: Proceedings of the 3rd International Workshop on Software Engineering
Research and Industrial Practice, SER&IP 2016, pp. 46–52. Association for Com-
puting Machinery, New York (2016). https://doi.org/10.1145/2897022.2897029

22. Sildatke, M., Karwanni, H., Kraft, B., Schmidts, O., Zündorf, A.: Automated soft-
ware quality monitoring in research collaboration projects. In: Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering Workshops,
ICSEW’20, pp. 603–610. Association for Computing Machinery, New York (2020).
https://doi.org/10.1145/3387940.3391478

23. Staff, V.: Why do 87% of data science projects never make it into produc-
tion? (2019). https://venturebeat.com/2019/07/19/why-do-87-of-data-science-
projects-never-make-it-into-production/. Accessed 24 May 2021

24. Studer, S., et al.: Towards CRISP-ML(Q): a machine learning process model with
quality assurance methodology (2020). arXiv:2003.05155

25. Varanasi, B., Belida, S.: Maven archetypes. In: Introducing Maven. Apress, Berke-
ley (2014). https://doi.org/10.1007/978-1-4842-0841-0 6

26. Vijayan, V.K., Bindu, K.R., Parameswaran, L.: A comprehensive study of text clas-
sification algorithms. In: 2017 International Conference on Advances in Comput-
ing, Communications and Informatics (ICACCI), pp. 1109–1113 (2017). https://
doi.org/10.1109/ICACCI.2017.8125990

27. Vincent, J.: Twitter taught microsoft’s AI chatbot to be a racist asshole
in less than a day (2016). https://www.theverge.com/2016/3/24/11297050/tay-
microsoft-chatbot-racist. Accessed 24 May 2021

28. Weber, C., Hirmer, P., Reimann, P., Schwarz, H.: A new process model for the
comprehensive management of machine learning models. In: Proceedings of the
21st International Conference on Enterprise Information Systems, vol. 1: ICEIS, pp.
415–422. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007725304150422

https://www.theguardian.com/technology/2018/oct/10/amazon-hiring-ai-gender-bias-recruiting-engine
https://www.theguardian.com/technology/2018/oct/10/amazon-hiring-ai-gender-bias-recruiting-engine
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://www.aclweb.org/anthology/2020.acl-main.442
https://doi.org/10.1109/SER-IP.2017.6
https://doi.org/10.17170/kobra-20190529539
https://doi.org/10.1145/2897022.2897029
https://doi.org/10.1145/3387940.3391478
https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
http://arxiv.org/abs/2003.05155
https://doi.org/10.1007/978-1-4842-0841-0_6
https://doi.org/10.1109/ICACCI.2017.8125990
https://doi.org/10.1109/ICACCI.2017.8125990
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://doi.org/10.5220/0007725304150422

Evaluating Predictive Business Process
Monitoring Approaches on Small Event

Logs

Martin Käppel1(B), Stefan Jablonski1, and Stefan Schönig2

1 Institute for Computer Science, University of Bayreuth, Bayreuth, Germany
{martin.kaeppel,stefan.jablonski}@uni-bayreuth.de

2 University of Regensburg, Regensburg, Germany
stefan.schoenig@ur.de

Abstract. Predictive business process monitoring is concerned with the
prediction how a running process instance will unfold up to its completion
at runtime. Most of the proposed approaches rely on a wide number of
machine learning techniques. In the last years numerous studies revealed
that these methods can be successfully applied for different prediction
targets. However, these techniques require a qualitatively and quantita-
tively sufficient dataset. Unfortunately, there are many situations in busi-
ness process management where only a quantitatively insufficient dataset
is available. The problem of insufficient data in the context of BPM is
still neglected. Hence, none of the comparative studies investigates the
performance of predictive business process monitoring techniques in envi-
ronments with small datasets. In this paper an evaluation framework
for comparing existing approaches with regard to their suitability for
small datasets is developed and exemplarily applied to state-of-the-art
approaches in next activity prediction.

Keywords: Process mining · Predictive business process monitoring ·
Small sample learning · Process prediction

1 Introduction

Predictive business process monitoring aims at predicting how a running pro-
cess instance will unfold up to its completion at runtime based on its current
state of execution. This can help to identify problems before the process instance
runs in and enables to take adequate preventive measures to avoid them. One
can distinguish several prediction targets, e.g., performance predictions such
as the remaining execution time [15], business rule violations [11,12], predic-
tions regarding the outcome of a process instance [3,21], and predictions of the
next event [6] including further information as when it / they will occur and
which resource(s) is/are responsible for it [2,17]. The majority of the proposed
approaches rely on a wide number of different machine learning (ML) techniques
to perform these predictions.
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 167–182, 2021.
https://doi.org/10.1007/978-3-030-85347-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_13&domain=pdf
http://orcid.org/0000-0002-7666-4482
https://doi.org/10.1007/978-3-030-85347-1_13

168 M. Käppel et al.

In the last years numerous comparative studies, reviews, and benchmarks of
predictive business monitoring approaches have been published [4,9,14,21,23].
These studies reveal that ML techniques can be successfully applied for all the
mentioned prediction tasks. However, all ML techniques are faced with the fun-
damental requirement of a qualitatively and quantitatively sufficient dataset.
In business process management (BPM) we can have an insufficient dataset
since a process (i) is executed very seldom or has not been executed often yet,
(ii) its instances are long running, (iii) legal regulations like the General Data
Protection Regulation lead to significantly less data, or (iv) there are funda-
mental changes in the intended process execution so that some historic data are
not usable anymore. Especially small and medium sized companies frequently
cannot fulfill this fundamental requirements of ML since not enough data is
recorded. On the other hand, small data can also be a desired objective because
of limited computational power or real-time feedback. The latter is, for example,
characteristic for Stream Process Mining or Concept Drift.

The problem of insufficient data in the context of BPM is still neglected [8].
Hence, none of the comparative studies or benchmarks investigates the perfor-
mance of predictive business process monitoring techniques on small data, i.e.,
small event logs. Hence, the contribution of the paper is two-fold: (i) we intro-
duce an evaluation framework for comparing existing approaches w.r.t. their
suitability for small event logs, and (ii) analyse the suitability of existing state-
of-the-art approaches in predictive business process monitoring on small event
logs. This analysis is also a step towards answering the question of whether there
is a lower bound for a minimum of required data for predictive business process
monitoring and, if so, in which range this lower bound is located. Our results
show that in many cases the algorithms allow a significant reduction of training
data and, hence, training times and computational effort can be significantly
reduced.

The remainder of the paper is structured as follows: In Sect. 2 we recall basic
terminology and give a short introduction to the area of Small Sample Learning.
Section 3 highlights the difference between this comparative study and other
surveys. In Sect. 4 we describe our evaluation framework and how it can be
tailored to the different areas of BPM. In Sect. 5 we use this framework for
comparing selected state-of-the-art approaches for predicting the next activity
w.r.t. their suitability for small event logs. Finally, Sect. 6 outlines future work.

2 Background

2.1 Process Mining

The input of process mining techniques is a (process) event log, i.e., a set of traces
of a business process (model). A trace (also called case) is a temporaly ordered
sequence of events that are related to the same process instance. An event is
related to an activity (i.e., a step in a business process) and is characterized by
various event attributes with at least a case id (C), the name of the corresponding
activity (A), and the timestamp of occurrence (T). Optionally, an event contains

Evaluating Predictive Process Monitoring Approaches on Small Event Logs 169

Table 1. Sample process event log

Case ID Event ID Activity Timestamp Resource Amount Key

Case1 e11 A 2020-10-09T14:50:17 MF SD-1

Case1 e12 T 2020-10-09T14:51:01 SL 100 HG-4

Case1 e13 W 2020-11-09T12:54:39 KH HZ-2

Case2 e21 A 2019-04-03T08:55:38 MF SD-2

Case2 e22 T 2019-04-03T08:55:53 SL 340 HK-7

Case2 e23 C 2019-05-19T09:00:28 KH SGH-3

Case3 e31 A 2019-11-06T10:47:35 MK SD-3

Case3 e32 T 2019-11-06T10:48:53 PE 235 UG-2

Case3 e33 C 2019-11-25T08:18:07 SJ KL-6

Case4 e41 A 2019-04-05T08:59:38 MF SD-5

Case4 e42 T 2019-04-05T09:55:52 SL 140 HK-2

further event attributes, such as the resources or systems involved in executing
the activity (L) or further data payload (Di). Often additional event attributes
(e.g., the role of a process participant) are derived by process mining approaches
and added to the events.

Let us consider the sample event log shown in Table 1 that provides the
following event attributes: a case identifier, the name of the executed activity,
the timestamp of execution, the involved resource, and two further information
(amount, key) in form of data payload.

Definition 1. Let E be the universe of events, P the set of event attributes,
and ε the empty element. For each event attribute p ∈ P, we define a function
πp : E → dom (P) ∪ {ε} that assigns a value of the domain of p to an event.
However, ε can only be assigned to optional event attributes.

For example, for event e13, holds πA(e13) = "W", πC(e13) = "Case1", πL(e13) =
"KH", πT (e13) = "2020-11-09T12:54:39", πDAmount(e13) = ε, and πDKey(e13) =
"HZ-2".

Definition 2. Let S be the universe of traces. A trace σ ∈ S is a finite non-
empty sequence of events σ = 〈e1, ..., en〉 such that for 1 ≤ i < j ≤ n : ei, ej ∈
E ∧ πC(ei) = πC(ej) ∧ πT (ei) ≤ πT (ej), where |σ| = n denotes the length of σ
and σ(i) refers to the i-th element in σ.

This definition states that each event is unique, time within a trace is increasing,
and all events with the same case identifier refer to the same process instance.

If a process instance has finished, i.e., no additional events related to this
instance are executed in the future, the trace is completed.

Definition 3. A trace σ ∈ S is called completed if there is no e′ ∈ E such that
πC(e′) = πC(e) with e′ /∈ σ and e ∈ σ. An event log L is a set L = {σ1, ..., σl}
of completed traces.

170 M. Käppel et al.

As an example, the event log shown in Table 1 consists of four traces, related
to the process instances Case1, Case2, Case3, and Case4. We consider traces
to be equivalent with respect to one or more process perspectives (e.g., control
flow) by introducing the concept of trace variants, which defines an equivalence
relation on an event log:

Definition 4. Let L be an event log, σ1, σ2 ∈ L traces, and P ⊆ P a set of event
attributes. We write σ1 ∼P σ2, if σ1 and σ2 are equivalent with regard to P, i.e.,
for all p ∈ P there is πp(σ1(i)) = πp(σ2(i)) for all 1 ≤ i ≤ max{|σ1|, |σ2|} with
πp(σ(i)) = ε if i > |σ|. The set [σ]∼P

:= {σ′ ∈ L|σ′ ∼P σ} is called a trace
variant.

It is obvious that ∼P is an equivalence relation. Applying this relation to an
event log provides in dependency of P a more abstract or a less fine-grained
view on the event log, since we can disregard one or more process perspectives
(to be exact event attributes). For example applying the relation with P = {A}
on the event log in Table 1 results in three trace variants: the trace with id
Case1 represents the trace variant 〈A, T, W〉; a second trace variant 〈A, T, C〉 is
represented by the two remaining traces, since they are identical with regard to
the controlflow; a third trace variant 〈A, T〉 is represented by trace with id Case4.
If we additionally consider the organizational perspective, i.e., P = {A,L} four
trace variants evolve, since the traces with case id Case2, Case3, and Case4 differ
with respect to the involved resources: 〈(A, MF),(T, SL),(W, KH)〉, 〈(A, MF),
(T, SL), (C, KH)〉, 〈(A, MK),(T, PE),(C, SJ)〉, and 〈(A, MF), (T, SL)〉. On
the other hand, if we only consider the organizational perspective, the traces
with case id Case1 and Case2 represent the same trace variant (〈MF, SL, KH〉).
Usually the more event attributes are considered, the more trace variants occur
since it is highly probable that they differ in one of the perspectives. We can
consider the frequency distribution of the trace variants within the event log.

Definition 5. Let L be an event log, Ω the set of trace variants with regard to
∼P on L, and X : Ω → R a discrete random variable that represents the trace
variants. Then the probability for the occurence of a trace variant is given by:

P (X = [σ]∼P
) =

| [σ]∼P
|

|L| .

We call the frequency distribution of X the distribution of the trace variants.

For the example from Table 1, we obtain the following frequency distribution:
If only the property A is considered, a frequency distribution of 0.33 to 0.67
follows. If additionally property L is regarded, three trace variants with equal
probability of 0.33 result.

2.2 Small Sample Learning

In recent years a new and promising area in artificial intelligence research called
Small Sample Learning (SSL) has emerged [18]. SSL deals with ML on quantita-
tively inadequate datasets. This also encompass partial insufficient datasets like

Evaluating Predictive Process Monitoring Approaches on Small Event Logs 171

imbalanced datasets, where for some classes are significantly more examples than
for other classes. Although, SSL has its origins in the field of computer vision,
meanwhile many SSL techniques are applied in various application areas. The
current SSL research is divided into two main branches: concept learning and
experience learning [18]. Experience learning attempts to solve a SSL problem
by applying conventional ML techniques, by either transforming the problem
into a classical ML problem through increasing the amount of data or reducing
the preliminaries of the required ML algorithms. In contrast, concept learning
aims to detect new concepts from only a small number of examples. Within the
two branches numerous methods can be identified. Although there are numerous
situations with qualitatively insufficient data in the context of BPM, the appli-
cation of SSL methods is still neglected in this area. This might be caused by
the fact that most common SSL techniques are strongly tailored to computer
vision or NLP problems and must be adapted to BPM first in order to become
applicable [8].

3 Related Work

This work relates to the stream of research in predictive business process moni-
toring and touches the area of SSL. Since, SSL methods are barely used in BPM
so far, related work mainly focuses on comparative studies of existing business
process monitoring approaches and the approaches themselves. The problem of
quantitatively insufficient data in BPM was systematically addressed the first
time in [8], where the authors propose the idea of leveraging SSL methods for this
issue. They describe their concept by the example of predictive business process
monitoring, suggests SSL methods that seems promising for BPM, and describe
an idea of how the effectiveness of such methods can be proven. A survey of
existing SSL methods outside of BPM is presented in [18].

The problem of insufficient training data in context of predictive business
process monitoring in case of next event prediction was addressed in [20] where
the authors proposed the use of Generative Adversarial Networks (GANs) for
solving this issue. This network architecture outperforms other existing deep
learning approaches w.r.t. accuracy and earliness of prediction. However, the
authors use conventional, i.e., not small, event logs for training and evaluation.
Hence, it is unclear whether it only improves results on conventional event logs
or if it works for small event logs, too.

The necessity of evaluation frameworks for comparing the performance of
different algorithms in BPM, respectively process mining, is not new, since the
disparity of event logs, experimental setups, and different assumptions makes it
often difficult to make fair comparisons [12,14]. In [16] the authors motivate the
need of an evaluation framework for process mining approaches and propose a
framework for comparing model discovery algorithms. In the subfield of predic-
tive business process monitoring there is a plenty set of different comparative
studies depending on the different prediction tasks [4,9,14,21,23]. However, all
of them depend on large event logs and do not consider environments with a

172 M. Käppel et al.

APPROACHES TO BE
COMPARED

PREPROCESSING
SPLITTING INTO
TRAINING AND

TEST DATAPROCESS EVENT LOG

GENERATING
SMALL EVENT

LOGS

ANALYSING
APPROACHES ON

SMALL EVENT LOGS

…

Fig. 1. Conception of the evaluation framework

small amount of data. Outcome-oriented techniques are reviewed and compared
in [21], in [9] with special focus on deep learning techniques. In [23] the authors
give a survey and benchmark of remaining time predictions methods. In [14] the
authors focus on deep learning techniques for next activity prediction, activity
suffix prediction, next timestamp prediction, and remaining time prediction by
evaluating approaches with publicly available source code on 12 real-life event
logs from various domains.

The above discussed comparative studies observed that deep learning
approaches for next activity prediction outperform classical predictions tech-
niques, which use an explicit model representation such as Hidden Markov Mod-
els [10], probabilistic finite automata or state-transition [1,22]. These deep learn-
ing approaches are based on different types of neural networks. Most of them use
Long-Short-Term-Memory (LSTM) Neural Networks [2,6,17,19], Gated Recur-
rent Units (GRUs) as a variant of LSTMs [7], or Convolutional Neural Networks
(CNN) [5,13]. The approaches use different encoding techniques for sequences
and events and consider different input data for making predictions. An overview
about existing deep learning approaches including a detailed description of the
underlying architectures is given in [14].

4 Evaluation Framework

In this section we describe the structure of our evaluation framework. We identify
different challenges that must be considered by the evaluation framework.

4.1 The Issue of Small Event Logs

The evaluation framework (cf. Fig. 1) gets two inputs: the approaches to be
compared and small event logs. However, providing small event logs is a cru-
cial challenge. This is due to the missing definition of “small event log”. This
question is strongly related to the question what is “big data”. Also, this is still
an open question in research. Due to inconsistent and sometimes contradicting
definitions, that often include time dependency (i.e., define as big data what
is today the largest available amount of data), domain dependency or circular
reasoning (e.g., big data is the opposite to small data) this question cannot be
conclusively clarified. We bypass this technical and conceptual problem by reduc-
ing event logs with various reduction factors and thereby generate small event
logs of different sizes. The use of different reduction factors enables us to fully
cover the broad range of “smallness”, which ranges from zero or a single case
up to, for example, several 1000 cases. Hence, we are independent of concrete

Evaluating Predictive Process Monitoring Approaches on Small Event Logs 173

definitions. In a strict sense, the generated small event logs are rather “relatively
small” event logs, than “small” event logs. The exact procedure of generating
small event logs is described in detail in Sect. 4.3.

In addition to bypassing this definition problem, generating small event logs
by reducing conventional event logs has another advantage: Since we can fall back
to the non-reduced event log (so called reference log), it is possible to compare
results of an analysis achieved on a small log with the results obtained on the
reference log1. This comparison allows us to make quantitative statements about
the impact of reducing an event log. Such a comparison is necessary to determine
whether any potential loss of quality that goes in hand with the data reduction,
can be better compensated by one method or by another. Hence, we measure
how an approach performs depending on the reduction factor. It is likely that
the achieved results also depend on the domain and structure of the considered
event log (e.g., number of event per case).

4.2 Preserving Comparability

When we talk about comparability in our approach, we mean to compare the
prediction quality of predictive business process monitoring approaches mea-
sured on the reference log and the generated small event logs. For preserving
comparability, it is essential to evaluate all trained models with the same test
data. Hence, we first divide the event log into training and test data and after-
wards we reduce only the training data and not the whole reference log. The
selection of the test data is discussed in Sect. 4.4. However, excluding the test
data from reduction has a far-reaching consequence: Usually ML techniques,
which require a split into training and test data, use training-test ratios like
80:20 or 70:30. Since we keep the test data and only reduce the training data the
ratio between train and test data shifts more and more towards test data with
increasing reduction factor. Hence, the less training data are used, the relatively
more tests the model must pass afterwards. This seems to be unusual, however it
ensures comparability and guarantees that the quality of the trained model and,
as a result, the performance of the method used for training, are not overesti-
mated but rather underestimated. In consequence, also the frequently used cross
validation that enables the use of all available data for training as well as for
testing are not applicable anymore, since through the reduction step reference
log and small event logs differ. It should be noted that dispense on comparability
would avoid this shift problem but would be accompanied with interpretation
problems due to meaningless splits in training and test data. Suppose that a
reduced event log would only contain 10 traces left and we would split this event
log into training and test data using a ratio of 80:20. Then the metrics used for
evaluation would hardly be meaningful. For example the accuracy metric could
only attain three different values: 0%, 50%, or 100%.

1 At this point we implicitly assume that the event logs currently used in research can
be considered as quantitatively sufficient.

174 M. Käppel et al.

It is obvious that comparability and keeping the ratio between training and
test data are diametrically opposed to each other. Since, the comparability
between the reduced event logs is essential for our aims and cannot be neglected,
we accept the shift of the training-test ratio in our evaluation framework.

4.3 Reducing Event Logs

The amount of training data is reduced by removing as many process instances
from the training data such that a given reduction factor is reached. We select
process instances for removal either randomly or along the time dimension.
Removing instances randomly means selecting process instances randomly. When
reducing along the time dimension, we order the process instances ascending by
its first event timestamp and then remove the first process instances according to
the reduction factor. Note that the way how the process instances to be removed
are selected leads to different interpretations: In case of randomly removing pro-
cess instances, we simulate that a process is executed very seldom or due to legal
regulations there are only a few records available for analysis. Reason for this
interpretation is that the underlying time window of the event log (spanned by
the earliest and latest timestamp of an event) stays nearly unchanged. However,
in case of removing process instances along the time dimension, the time window
is shortened. Hence, this reduction method reflects a scenario where a process
has not been executed often yet or due to fundamental changes in the intended
process execution some historic data (up to a specific time) are not usable any-
more. Hence, these two reduction methods are sufficient to simulate all in the
introduction mentioned reasons for quantitatively insufficient event logs. Nev-
ertheless, we implement some alternative selection methods, like removing the
most recent data or removing only specific trace variants, as defined in Defini-
tion 4.

However, the reduction of the training data bears two further issues: (i) the
possible loss of activities and resources, and (ii) statistical bias.

Loss of Activities and Resources. Since we generate small event logs out of large
event logs, there is a risk that activities or resources get completely lost or
are finally only represented in the test data. In case of getting completely lost,
the trained model would not be able to handle these activities or resources, if
they occur later in productive use, since they are not encoded and therefore are
unknown to the model. Therefore, we extract and buffer all occurring activities
and resources from the reference log before splitting into training and test data
and before generating the small event logs. Hence, these activities and resources
can be considered even if no training sample reflects them. However, this also
implies that process instances in the test data that contain activities or resources
that are not represented in the training data cannot be predicted well.

Statistical Bias. The reduction of the training data may be accompanied by
statistical bias in the probability distribution of the trace variants (cf. Defini-
tion 5). Since most of the ML techniques are statistical methods, it affects the
model quality and must therefore be considered adequately. Suppose that a trace

Evaluating Predictive Process Monitoring Approaches on Small Event Logs 175

variant is represented by exactly one representative in a training dataset, which
consists of 100 traces. Then this trace variant has an empirical probability of 1%.
If we reduce the training data by 50% and the representative of the considered
trace variant is not removed, then the empirical probability of this trace variant
increases to 2%. At the same time other trace variants are either completely
eliminated or their empirical probability decreases. In case of an even stronger
reduction and under the assumption that the considered trace variant is not
removed, the increase of empirical probability could be much stronger. Hence,
the probability distributions of the trace variants in the considered event logs
can differ significantly or reflects no longer their occurrence frequency in reality.

However, the problem becomes less relevant the more process perspectives
are considered, since process perspectives foster the singularity of traces and
the number of trace variants represented in the event log tends to the number
of traces in the event log. In the case that each trace variant occurs only once
in the event log, removing a trace directly leads to a loss of a trace variant.
This observation prohibits to reduce the event log along the distribution of its
trace variants. However, considering this issue only from the perspective of trace
variants is not sufficient. Because from the ML perspective there may be a sig-
nificantly lower statistical bias since this perspective also takes the similarity
between the trace variants into account (for example two trace variants only
differ in a single event). Hence, often removing a trace variant is sufficiently
compensated by another very similar trace variant that is still included in the
event log. However, it is difficult to determine this compensatory effect, because
it strongly depends on the considered ML technique and therefore cannot be
adequately considered in the evaluation framework.

The effects discussed above are affected by the chosen reduction method. In
case of a randomly reduction, the distribution of trace variants can be extremely
distorted. The reduction along the time dimension alleviates this issue, since the
distribution of the trace variants in a sufficiently large time window should be
more similar to the distribution of the entire event log than the distribution in
a randomly selected subset of the event log. This assumption also holds for the
compensatory similarity effect. Hence, it is expected that via reduction along
the time dimension the statistical bias can be reduced. However, it is clear, that
it also depends on the particular event logs and in case of strong reduction the
statistical bias cannot be longer compensated.

4.4 Splitting into Training and Test Data

Still, the question remains how the event log should be split into training and
test data. We use the same procedure for selecting test data as for reducing
the training data, i.e., the test data is either selected randomly or along the
time dimension. In the latter case, the newest process instances are used for
testing and the oldest for training. The chosen split procedure may affect the
achieved results, since training and test data may overlap in time by splitting the
event log randomly. This could be problematic if the underlying process evolves

176 M. Käppel et al.

APPROACHES TO BE
COMPARED

EXTRACTING ACTIVITIES AND RESOURCES + PREPROCESSING

SPLITTING INTO TRAINING AND TEST DATA

RE
PE

AT
IN

G
 W

IT
H

 D
IF

FE
RE

N
T

EV
EN

T
LO

G
S

SPLIT PERCEN-
TAGES

PROCESS EVENT LOG

Sec. 4.4

Sec. 4.3
REDUCTION

FACTORS

EVALUATING ON TEST DATA

PREPROCESSED LOG

TRAINING DATA (METHOD 1)

TRAINING DATA (METHOD 2)

REDUCED TRAINING DATA (METHOD 1)

REDUCED TRAINING DATA (METHOD 2)

TEST DATA (METHOD 1)

TEST DATA (METHOD 2)

GENERATING SMALL EVENT LOGS

APPLYING APPROACHES TO SMALL EVENT LOGS

…

Sec. 4.1
Sec. 4.3

Sec. 4.2

Method 1: Spli�ng randomly
Method 2: Spli�ng along the �me dimension

Method 1: Reducing randomly
Method 2: Reducing along the �me dimension

METRICS

TRAINED MODELS

Fig. 2. Architecture of the evaluation framework

during time and, hence, different process variants are mixed up in the event
log. However, splitting along the time dimension does not prevent this issue,
since the splitting can lead to a separation of a specific process variant (i.e., the
test data represents a process variant that does not occur in the training data).
Nevertheless, splitting along the time dimension appears closer to reality, since
knowledge of the past is used to predict the future. Furthermore, the splitting
along the time dimension also provides a better reproducibility.

4.5 Architecture of the Evaluation Framework

In summary, the proposed evaluation framework depicted in Fig. 2 comprises
five successive steps. In a first step, an event log is preprocessed depending on
the selected approaches to be compared and all activities and resources of the
event log are extracted and registered. Further preprocessing encompasses, for
example, the removal of traces with events that have missing values. Afterwards
(cf. Step 2) a preprocessed event log is split into training and test data according
to one or more split ratios. The resulting training data is then reduced in the
third step according to various reduction factors to generate a set of small event

Evaluating Predictive Process Monitoring Approaches on Small Event Logs 177

Table 2. Statistic of the used event logs. Time related measures are shown in days.

Event Log BPIC12 Helpdesk BPIC13 BPIC15 2 BPIC15 5

Number of cases 9559 4580 1487 832 1156

Number of activities 36 14 7 410 389

Number of roles 8 4 4 11 10

Number of events 140863 21348 6660 44354 59083

Maximal case length 163 15 35 132 154

Minimal case length 3 2 1 1 5

Average case length 14.74 4.66 4.49 53.31 51.11

Maximal duration 76.90 59.99 2254.85 1325.96 1343.96

logs. The framework selects the traces to be removed with the same methods as
used for selecting test and training data. The approaches to be compared are
trained with the training data resulting from the splitting step as well as the
reduced training data of the reduction step (cf. Step 4). In order to measure the
performance of the considered approaches, the trained models are evaluated on
the corresponding test data (cf. Step 5). For measuring the performance one or
more suitable metrics are used. The selection of the metrics primarily depends
on the types of approaches. After the completion of the evaluation step, all steps
are repeated with further event logs to get representative results.

In general, the framework is extensible by adding alternative methods for
splitting and reducing the processed data. In Fig. 2, all parts of the framework
that can be adapted and configured are marked with dashed lines. Fields with
a grey background represent input parameters that have to be set to config-
ure the framework. The remaining dashed fields can be extended to add more
functionality to the framework.

We conclude this section by a brief discussion whether the evaluation frame-
work is tailored to specific process mining methods. Since the framework offers
flexible preprocessing and the splitting into test and training data can be skipped
it is also possible to evaluate unsupervised ML techniques. For ML techniques,
which require a split into training, validation, and test data some smaller adap-
tions would be necessary. Since the evaluation framework does not implement any
approach specific particularities, the framework can be considered as approach-
agnostic.

5 Evaluation of Existing Approaches on Small Event Logs

5.1 Dataset Description and Experimental Setup

The first three steps of the framework that are responsible for generating small
event logs are implemented as a Java application. Step 4 is covered by the modi-
fied implementations of the considered approaches. Modification becomes neces-
sary, since approaches must deal with the generated small event logs and the test

178 M. Käppel et al.

data generated in the previous steps. Hence, parts in the implementations of the
considered approaches that are responsible for splitting into training and test
data or extracting activities and resources must be modified. Also, the approach
specific evaluation components must be replaced by the evaluation component
of the framework (Step 5) to ensure a consistent evaluation procedure.

We evaluate our framework with a small comparative study of selected state-
of-the-art approaches for next activity and role prediction. We select approaches
[2] and [13] since they represent the most frequently used deep learning archi-
tectures (LSTM and CNN respectively) for next activity prediction, provides
publicly available source code, and achieve good results in various comparative
studies. We modified the approaches in the above described way and additional
changed the implementations to run with Python 3.7 and to support training on
GPU. The experiments are run on a system equipped with a Windows 10 oper-
ating system, an Intel Core i9-9900K CPU3.60GHz, 64GB RAM, and a NVIDIA
Quadro RTX 4000 having 6GB of memory.

We perform our experiment using 5 real-life event logs from different domains
with diverse characteristics (cf. Table 2) extracted from the 4TU Center for
Research Data2. For our experiment, we preprocess the event logs in the same
way as it is done in the considered approaches. Due to the missing resource event
attribute in some traces we removed 3528 of the 13087 traces in the BPIC12 log.

5.2 Tailoring the Evaluation Framework to Predictive Monitoring

We tailor the evaluation framework for evaluating predictive business process
monitoring approaches in the following way. We use a training-test ratio of 70:30.
The test data is selected by applying the two methods from Sec. 4.4: (i) splitting
randomly, and (ii) splitting along the time dimension. Training data are reduced
according to the following reduction factors: 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, and 0.99.
Hereby, the traces are either removed randomly or along the time dimension. For
evaluation, we use the following common metrics that can be derived from the
confusion matrix3: (i) Recall (also called sensitivity) defined as R = TP/(TP +
FN), (ii) Precision P = TP/(TP + FP), (iii) F-Measure defined as harmonic
mean F = 2RP/(R + P) of precision and recall, and (iv) Accuracy defined as
A = (TP + TN)/(TP + FN + FP + FN). These metrics coincide with those
from other comparative studies.

5.3 Results and Discussion

Due to the large number of trained models and measures and since the achieved
results are comparable for all considered approaches we report in this paper
only an exemplarily excerpt of the detailed measures (cf. Table 3 and 4) and

2 https://data.4tu.nl.
3 i.e., it can be calculated from true positives (TP), true negatives (TN), false positives

(FP), and true positive (TP).

https://data.4tu.nl

Evaluating Predictive Process Monitoring Approaches on Small Event Logs 179

Table 3. Next activity prediction results (accuracy measures in %) for approach [2]
(architecture “shared categorical”)

Reduced along time dimension Reduced randomly

Applied reduction factors Applied reduction factors

Event Log 0.0 0.2 0.4 0.6 0.8 0.9 0.95 0.99 0.0 0.2 0.4 0.6 0.8 0.9 0.95 0.99

BPIC 15 2 0.10 0.09 0.09 0.08 0.11 0.21 0.17 0.07 0.11 0.09 0.09 0.06 0.08 0.05 0.06 0.04

BPIC 15 5 0.16 0.20 0.24 0.28 0.28 0.26 0.22 0.22 0.16 0.14 0.13 0.14 0.09 0.09 0.08 0.03

BPIC 13 0.54 0.64 0.58 0.61 0.60 0.57 0.51 0.39 0.56 0.52 0.53 0.51 0.53 0.49 0.50 0.44

Helpdesk 0.74 0.74 0.79 0.79 0.78 0.79 0.78 0.70 0.74 0.74 0.73 0.74 0.73 0.73 0.72 0.72

BPIC 12 0.85 0.86 0.85 0.84 0.85 0.84 0.84 0.79 0.85 0.85 0.85 0.85 0.84 0.84 0.84 0.74

Table 4. Next role prediction results (accuracy measures in %) for approach [2] (archi-
tecture “shared categorical”)

Reduced along time dimension Reduced randomly

Applied reduction factors Applied reduction factors

Event Log 0.0 0.2 0.4 0.6 0.8 0.9 0.95 0.99 0.0 0.2 0.4 0.6 0.8 0.9 0.95 0.99

BPIC 15 2 0.85 0.87 0.86 0.86 0.86 0.82 0.84 0.55 0.87 0.78 0.75 0.85 0.85 0.82 0.68 0.55

BPIC 15 5 0.90 0.91 0.91 0.92 0.93 0.88 0.91 0.89 0.90 0.91 0.90 0.91 0.87 0.87 0.87 0.52

BPIC 13 0.96 0.96 0.92 0.96 0.95 0.93 0.83 0.63 0.97 0.97 0.97 0.97 0.97 0.93 0.91 0.95

Helpdesk 0.95 0.95 0.94 0.95 0.94 0.95 0.94 0.84 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.93

BPIC 12 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.94 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.93

limit ourselves to the discussion of the overall results. All further measures are
provided in the repository of our implementation4.

The most surprising observation is that only a very strong reduction factor
of 95% or 99% significantly worsens the performance measured by different met-
rics. This applies for event logs where good results are achieved as well as for
event logs that show poor results. A further surprising fact is that in case of
a reduction along the time dimension the best results (highlighted in red) are
not achieved by the reference values (reduction factor 0.0), i.e., often a reduced
amount of training data achieves better results. However, this observation does
not hold for a randomly performed reduction. This reduction method either
achieves similar or slightly worse results. Hence, this observation supports the
hypothesis of Sect. 4.3 that reduction along the time dimension leads to a more
representative dataset. Since, we remove those traces that have the earliest first
timestamp this behaviour might also be an indicator that there is some process
evolution within the logs. We also observe that the most complex event logs
BPIC15 2 and BPIC15 5, which contain a relatively large number of activities
for a comparatively small number of traces shows poor results. The reason for
this behaviour seems to be the high number of activities per number of traces
(cf. Table 2). This interpretation is supported by the fact that the prediction of

4 https://github.com/mkaep/SSL-Evaluation-Framework.

https://github.com/mkaep/SSL-Evaluation-Framework

180 M. Käppel et al.

the next roles performs significantly better. Hence, for learning such complex
logs we would need significantly more training data.

In a deeper analysis of the results we analysed whether the prediction quality
between the activities differ. This analysis reveals that all trained models (also
the reference models) are good in predicting frequent activities but perform poor
in predicting rare activities. As a result, frequent trace variants (i.e., standard
cases) are predicted very well, while rare trace variants are barely predicted
correct, since the prediction model treat them as standard cases. This is some-
how natural, since ML methods try to generalize the data in a simple way by
neglecting rare activities.

Hence, we can draw the following conclusions: for learning to predict frequent
trace variants of less complex logs even a significantly reduced amount of data
is sufficient. For learning rare trace variants, however, it is necessary to increase
the amount of data, especially by better representing rare trace variants. For
complex logs, like the BPIC15 logs, the currently available amount of data is
not sufficient, to achieve acceptable results. Hence, our results reinforce the need
for SSL methods in the area of predictive business process monitoring.

6 Future Work

In this paper, we propose a customizable evaluation framework for investigat-
ing predictive business process monitoring approaches w.r.t their suitability for
small event logs. Our experiments reveal that training times and computational
effort can be significantly reduced without any loss of quality with regard to the
common metrics. For further improvement, however, it would be necessary to
cope with the problem of rare trace variants. In future work the study should be
extended to further approaches, event logs, and should investigate how different
types of sequence and event encoding affect the performance. Furthermore, other
prediction tasks, like the prediction of suffixes or the remaining time should be
investigated. It is also necessary to adopt the framework for use in other subfields
of process mining, like process model discovery or conformance checking.

References

1. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive
models for business processes. MIS Q. 40(4), 1009–1034 (2016)

2. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM mod-
els of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M.,
Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26619-6 19

3. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P.: Supporting risk-
informed decisions during business process execution. In: Salinesi, C., Norrie, M.C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 116–132. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38709-8 8

https://doi.org/10.1007/978-3-030-26619-6_19
https://doi.org/10.1007/978-3-642-38709-8_8

Evaluating Predictive Process Monitoring Approaches on Small Event Logs 181

4. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process
monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber,
I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98648-7 27

5. Di Mauro, N., Appice, A., Basile, T.M.A.: Activity prediction of business process
instances with inception CNN models. In: Alviano, M., Greco, G., Scarcello, F.
(eds.) AI*IA 2019. LNCS (LNAI), vol. 11946, pp. 348–361. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35166-3 25

6. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep
learning. Decis. Supp. Syst. 100, 129–140 (2017)

7. Hinkka, M., Lehto, T., Heljanko, K.: Exploiting event log event attributes in RNN
based prediction. In: Welzer, T., et al. (eds.) ADBIS 2019. CCIS, vol. 1064, pp.
405–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30278-8 40

8. Käppel, M., Schönig, S., Jablonski, S.: Leveraging small sample learning for busi-
ness process management. Inf. Softw. Technol. 132, 106472 (2020)

9. Kratsch, W., Manderscheid, J., Röglinger, M., Seyfried, J.: Machine learning in
business process monitoring: a comparison of deep learning and classical approaches
used for outcome prediction. BISE 63, 261–271 (2020). https://doi.org/10.1007/
s12599-020-00645-0

10. Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: A Markov
prediction model for data-driven semi-structured business processes. Knowl. Inf.
Syst. 42(1), 97–126 (2013). https://doi.org/10.1007/s10115-013-0697-8

11. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitor-
ing of business processes. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-
6 31

12. Metzger, A., et al.: Comparing and combining predictive business process moni-
toring techniques. IEEE Trans. Syst. Man Cybern. 45(2), 276–290 (2015)

13. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using convolutional
neural networks for predictive process analytics. In: Proceedings of ICPM 2019
(2019)

14. Rama-Maneiro, E., Vidal, J., Lama, M.: Deep learning for predictive business pro-
cess monitoring: review and benchmark. ArXiv arXiv:2009.13251 (2020)

15. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-
Markovian stochastic petri nets. Inf. Syst. 54, 1–14 (2015)

16. Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der
Aalst, W.M.P.: The need for a process mining evaluation framework in research
and practice. In: ter Hofstede, A., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007.
LNCS, vol. 4928, pp. 84–89. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-78238-4 10

17. Schönig, S., Jasinski, R., Ackermann, L., Jablonski, S.: Deep learning process pre-
diction with discrete and continuous data features. In: Proceedings of ENASE 2018
(2018)

18. Shu, J., Xu, Z., Meng, D.: Small sample learning in big data era. CoRR
abs/1808.04572 (2018). arXiv:1808.04572

19. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process mon-
itoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017.
LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59536-8 30

https://doi.org/10.1007/978-3-319-98648-7_27
https://doi.org/10.1007/978-3-030-35166-3_25
https://doi.org/10.1007/978-3-030-30278-8_40
https://doi.org/10.1007/s12599-020-00645-0
https://doi.org/10.1007/s12599-020-00645-0
https://doi.org/10.1007/s10115-013-0697-8
https://doi.org/10.1007/978-3-319-07881-6_31
https://doi.org/10.1007/978-3-319-07881-6_31
http://arxiv.org/abs/2009.13251
https://doi.org/10.1007/978-3-540-78238-4_10
https://doi.org/10.1007/978-3-540-78238-4_10
http://arxiv.org/abs/1808.04572
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-59536-8_30

182 M. Käppel et al.

20. Taymouri, F., Rosa, M.L., Erfani, S., Bozorgi, Z.D., Verenich, I.: Predictive busi-
ness process monitoring via generative adversarial nets: the case of next event
prediction. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020.
LNCS, vol. 12168, pp. 237–256. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58666-9 14

21. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive
process monitoring: review and benchmark. TKDD 13(2), 1–57 (2019)

22. Unuvar, M., Lakshmanan, G.T., Doganata, Y.N.: Leveraging path information to
generate predictions for parallel business processes. Knowl. Inf. Syst. 47(2), 433–
461 (2015). https://doi.org/10.1007/s10115-015-0842-7

23. Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and cross-
benchmark comparison of remaining time prediction methods in business process
monitoring. ACM TIST 10(4), 1–34 (2019)

https://doi.org/10.1007/978-3-030-58666-9_14
https://doi.org/10.1007/978-3-030-58666-9_14
https://doi.org/10.1007/s10115-015-0842-7

Analyzing a Process Core Ontology and Its
Usefulness for Different Domains

Pablo Becker(B), Fernanda Papa, Guido Tebes, and Luis Olsina

GIDIS_Web, Engineering School, UNLPam, General Pico, LP, Argentina
{beckerp,pmfer,guido_tebes,olsinal}@ing.unlpam.edu.ar

Abstract. Awell-specified strategy should define and integrate consistently three
capabilities: process,method, and common vocabulary specifications. The domain
vocabularies of different strategies should be built on common reference termi-
nologies. For example, a process ontology should be a common reference since
it considers cross-cutting concerns for different domains. This work specifies and
defines themain terms of ProcessCO (Process CoreOntology). This is an ontology
placed at the core level in the context of a four-layered ontological architecture.
A practical use of an upper-level ontology is to semantically enrich the lowest-
level ontologies. For example, ThingFO (an ontology at the foundational level
in that architecture) enriches ProcessCO. Since ProcessCO is at the core level,
ontologies at the domain level benefit from reusing and extending its concepts.
Therefore, ProcessCO can be seen as a reusable resource to semantically enrich
domain ontologies. To illustrate its applicability, this work shows the semantic
enrichment of two top-domain ontologies. By using ProcessCO (and other core
ontologies) as a common terminological reference, the domain ontologies used
in the different strategies are conceptually harmonized. Hence, strategies ensure
terminological uniformity and consistency, thus facilitating the understanding of
process and method specifications.

Keywords: Process · Vocabulary · Ontology · Core ontology · Ontological
architecture · Semantic enrichment

1 Introduction

Engineering purposes can be classified into four main areas, such as evaluation, testing,
development andmaintenance [13]. For the development and/or maintenance categories,
possible goal purposes are to create, add, delete or modify a specific feature and/or
capability of a target entity and/or its context. On the other hand, examples of evaluation
purposes may include to understand, monitor, control, improve, select an alternative,
among others, while examples of testing purposes can embrace to find defects, review,
verify, validate, find vulnerabilities, etc.

To achieve these goal purposes, strategies may be used. A strategy is a key resource
of an organization that defines a specific course of action to follow. It specifies what to do
and how to do it. As per [13], strategies should integrate process, method, and vocabulary
specifications. These three capabilities promote, therefore, knowing what activities are

© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 183–196, 2021.
https://doi.org/10.1007/978-3-030-85347-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_14

184 P. Becker et al.

involved, and how to carry them out through methods and tools in the framework of a
common vocabulary, which can be structured in an ontology [6, 10].

Summarizing each of these three capabilities, process specifications describe a set
of domain activities, tasks, input and output artifacts, roles, and so forth to reach a spe-
cific goal purpose. Process specifications can consider process perspectives [7], such
as functional, informational, behavioral and organizational. On the other hand, method
specifications represent the particular ways to perform the activity descriptions. Finally,
vocabularies explicitly establish the needed domain terms to specify processes andmeth-
ods consistently. The use of a common vocabulary is very useful to avoid ambiguities,
inconsistencies and incompleteness in the process and method specifications of a certain
application domain. One example of an ontology is TestTDO (a Top-Domain Ontol-
ogy for Software Testing) [19], and another is MEvalTDO (a Top-Domain Ontology for
Measurement and Evaluation).

The authors of this paper are primarily interested in building strategies for differ-
ent domains (e.g., testing, evaluation) that integrate the three abovementioned capabil-
ities. Particularly, the domain vocabularies of the different strategies should be built
on common reference terminologies. Heijst et al. [20] distinguish different types of
ontologies regarding the subject of the conceptualization, e.g., domain ontologies, which
express conceptualizations that are intended for particular domains (e.g. TestTDO and
MEvalTDO); and core or generic ontologies, which include concepts that are consid-
ered to be general across many domains. Core ontologies can be used to enrich domain
ontologies [17]. A process ontology should be a common reference since it considers
cross-cutting concerns for different domains. Process terms such as activity, task,method,
tool, agent and work product, among others, are used in different domains. For instance,
the terms ‘evaluation specification’ (in MEvalTDO) and ‘test case’ (in TestTDO) have
the semantics of ‘artifact’ (i.e. a kind of ‘work product’), from the process terminology
standpoint. Therefore, a core ontology for processes can be seen as a reusable resource,
useful to enrich semantically diverse domain ontologies, for example, those used in the
set of strategy families.

This paper analyzes ProcessCO, which is an ontology placed at the core level in
the context of a four-layered ontological architecture called FCD-OntoArch (Founda-
tional, Core, and Domain Ontological Architecture for Sciences) [14]. This architecture
considers foundational, core, domain and instance levels. In FCD-OntoArch, ontologies
at the same level can be related to each other. In addition, ontologies at lower levels
can be semantically enriched by ontologies at upper levels. For instance, TestTDO at the
domain level is enriched by concepts of the ProcessCO ontology placed at the core level.
In turn, the latter is enriched by concepts of ThingFO [14] at the foundational level, as
will be seen later. It is important to remark that ProcesCO is based on [3], but expanding
it by including new process terms, properties and relationships, and harmonizing it in
the framework of FCD-OntoArch.

In summary, as a contribution, this work documents and analyzes ProcessCO ontol-
ogy and its terminological harmonization with the four-layered ontological architecture.
To analyze the usefulness of ProcessCO to enrich domain ontologies, it also illustrates
enriched terms of a couple of ontologies at the domain level such as TestTDO and
MEvalTDO. To this end, the applicability of ProcessCO to enrich not only terms but

Analyzing a Process Core Ontology 185

also to reuse some of its properties and relationships is shown. Additionally, the reuse
or mirroring of some ProcessCO conceptual blocks or patterns is also described. As
a result, by using ProcessCO (and other core ontologies) as a common terminologi-
cal reference, the domain ontologies used in the different strategies are conceptually
harmonized. Hence, strategies ensure terminological uniformity and consistency, thus
facilitating the understanding of their specifications.

The remaining sections are arranged as follows: Sect. 2 provides a summary of related
work on process ontologies. Section 3 gives an overview of FCD-OntoArch. Section 4
documents and analyzes the main concepts included in ProcessCO. Section 5 illustrates
the usefulness of ProcessCO for enriching the terms of a couple of domain ontologies.
Finally, Sect. 6 summarizes conclusions and future work.

2 Related Work

When analyzing related work for ontologies or vocabularies of process, some syntactic
disagreement is observed, as well as in the semantics of some terms, properties and
relationships. It seems that so far there is no broad and unanimous consensus on many
key terms and their meaning for work processes.

A work cited in the process area is ISO 12207 [12], which is structured as a glossary.
Also, it depicts a diagram where the relations between process, activity and task terms
are represented. According to this diagram, a process can group other processes, and
can also contain at least one activity; in turn, an activity can group one or more related
tasks. ProcessCO adopts to a great extent this process/activity/task hierarchy.

In an effort to standardize terms for the process domain, OMG (Object Manage-
ment Group) developed SPEM (Software & Systems Process Engineering Meta-Model
Specification), a meta-model for process engineering as well as a conceptual framework,
which provides the concepts necessary to model, document and manage processes [15].
SPEMfocuses on defining a generic framework for processmodeling.Note that in SPEM
a process is defined as a special type of activity, so that the hierarchy between activity
and process differs from that in ISO 12207, where a process groups activities, and an
activity groups tasks.

In [18], authors present Software Engineering Ontology Network (SEON), which is
a collection of ontologies related together and organized in layers. Briefly, in the bottom
layer, they put foundational ontologies. In the middle layer of SEON, they include core
ontologies to represent the general domain knowledge. Finally, in the top layer, there
are (sub) domain ontologies, which describe the more specific knowledge. Particularly,
a core ontology is named Software Process Ontology (SPO) [4]. It is based on UFO
(Unified Foundational Ontology) [11], which provides robustness to SPO -as indicated
by authors. However, some semantic inconsistencies are observed, for example: in the
SPO version documented in [11], the authors show that hardware resource, software
resource and human resource inherit from resource, while in [4] a human resource is not
a resource. On the other hand, SPO uses terminology that to some extent differs from
recognized standards such as SPEM and ISO 12207. Thus, instead of using the work
product term, they use the artifact term, not making the distinction between outcome and
service terms. In addition, they do not use the task term but rather the atomic activity
term.

186 P. Becker et al.

A recent work is [9], which presents a Verification-Oriented Process Ontology that
supports verification of behavioral properties of processes. The ontological representa-
tion of the processes is oriented both to the application of formal verification methods
and to the extraction of information from technical documentation. However, this ontol-
ogy is neither placed nor harmonized in an ontological architecture nor is it based on
a foundational ontology. Additionally, it does not include very common terms of the
quoted standards like work product, activity and task, among others.

In order to provide a shared and explicit vocabulary related to business process, in
[16] the authors developed the Business Process Ontology (BPO). It focuses on business
process definition, not addressing business process execution. BPO is based on UFO and
business process literature. It is modular, being divided into three sub-ontologies: Busi-
ness Process Goals and Types, which addresses organization’s goals, business processes
types and relations between them; Business Processes and Activities, dealing with the
definition of business processes and their activities; and Business Process Supporting
Enterprise Applications, dealing with applications, applications services and their sup-
port to business processes and activities. Since BPO is for business processes has fewer
general (core) terms than ProcessCO.

Lastly, in [3] authors specify a process ontology, which considers SPEM and ISO
12207, among other process seminal works. ProcessCObuilds on [3], but expanding it by
adding more terms, such as ProcessModel, Allocation, among others. The ontology pre-
sented in [3] does not allow to know if its included terms were domain-dependent or not,
since the ontologywas not located in a layered architecture like FCD-OntoArch. Instead,
ProcessCO is included in it and is enriched by the ThingFO foundational ontology.While
UFO ismade up of a set of ontologies:UFO-A (endurants),UFO-B (perdurants or events)
and UFO-C (social entities, built on top of UFO-A and B), FCD-OntoArch includes just
one foundational ontology, i.e., ThingFO. It has a small set of terms that makes it easy
to specialize in lower-level ontologies, such as ProcessCO.

On the other hand, in [13], the authors use their process ontology to specify a family
of strategies for evaluation. Although they model the processes of evaluation strategies
from different perspectives, the ontology of [3] does not include terms such as Process
Model and Process Perspective, which are terms included in ProcessCO.

3 ProcessCO in the Context of the Ontological Architecture

As commented in the Introduction Section, ProcessCO is placed at the core-domain
level into FCD-OntoArch. It is a four-layered ontological architecture, which considers
foundational, core, domain and instance levels. In turn, the domain level is split down into
two sub-levels, namely: top-domain and low-domain. As depicted in Fig. 1, ontologies
at the same level can be related to each other, except for the foundational level where
only the ThingFO ontology is. Additionally, lower-level ontologies can be semantically
enriched with higher-level ontologies. For example, TestTDO placed at the top-domain
level is mainly enriched by terms, properties and relationships of the SituationCO and
ProcessCO ontologies placed at the core level. In turn, both are enriched by the concepts
of ThingFO.

At this point, what does it mean that ontologies at one level can be semantically
enriched by other higher-level ontologies? This means that the terms, properties and/or

Analyzing a Process Core Ontology 187

relationships of an ontology at a certain level (e.g. top-domain or core) can reuse or
‘inherit’ the semantics of the corresponding more general terms/properties and/or rela-
tionships. For example, Artifact is a core term in ProcessCO, and Test Specification in
TestTDO is semantically enriched by it. That is, Test Specification is an Artifact, or
inherits the semantics, or is semantically enriched by the Artifact term. Moreover, Arti-
fact has the semantics of particular Thing, which is a term in ThingFO. Therefore, the
definition of the term Test Specification must be defined according to the test domain,
but the designer already has the advantage of knowing the holistic meaning of the term
Artifact, as it is explicitly defined in the ProcessCO ontology. In other words, these core
terms provide a semantic basis that gives support to better define and understand more
specific domain terms.

As commented above, ThingFO is at the foundational level. Therefore, its terms
such as Thing, Thing Category and Assertion semantically enrich terms of components
at lower levels. Thing represents a particular or concrete, tangible or intangible object of a
given particularworld, but not a universal category or class –which ismodeled by the term
Thing Category. Additionally, Assertion is defined as “positive and explicit statement
that somebody makes about something concerning Things, or their categories, based
on thoughts, perceptions, facts, intuitions, intentions, and/or beliefs that is conceived
with an attempt at furnishing current or subsequent evidence” [14]. Assertions can be
represented and modeled using informal, semiformal or formal specification languages.
There are Assertion on Particulars for Thing, and Assertion on Universals for Thing
Category.

Fig. 1. Four-layered ontological architecture, which considers Foundational, Core, Domain and
Instance levels. Some conceptual components are shown at the corresponding level. Note that
NFRs stands for Non-Functional Requirements, FRs for Functional Requirements, MEval for
Measurement and Evaluation, and PEvent for Particular Event. Also note that this figure is adapted
from [14]

188 P. Becker et al.

Dealing with a Thing through the use of Assertions, ThingFO allows speci-
fying aspects of its action, substance, relations, structure, behavior, intentionality,
quantity and quality, among other aspects. For example, the conceptualization of an
ontology as an artifact (e.g., ProcessCO in Fig. 2) represents a mixture of substance-,
relation-, structure-, intention-, and situation-related assertions. Axioms of an ontology
are constraint-related assertions.

4 ProcessCO: A Process Core Ontology

Key terms in ProcessCO are Work Process, Activity and Task. Specifically, a Work
Process -term thus labeled to differentiate it from a natural process- is composed of sub-
processes and/or Activities, and in turn, an Activity is formed by sub-activities and/or
Tasks. A Task is an atomic, fine-grained Work Entity that cannot be decomposed. The
semantics given to these three terms comply with the meaning given in ISO 12207 [12].
As represented in Fig. 2, these three terms are kinds of Work Entities. While the Work
Process,Activity andTask terms have slightly different semantics, they do share common
properties such as name, objective, description, status and start/end dates. Also, they
involve Roles, consume Product Entities, produce Work Products and have Conditions
–both preconditions and postconditions. Note in Fig. 2 that the high-level Work Entity
term has the semantics of Thing (from ThingFO). The Work Entity term is defined as “a
Thing (a particular) that describes the work by means of consumed and produced Work
Products, Conditions, and involved Roles”.

It is important to note that ontologies in this work use stereotypes as a particular
mechanism to semantically enrich and harmonize terms. Regarding the procedural way
to enrich a given term from a higher-level term, in [3] authors argued that stereotypes
are a more suitable mechanism than inheritance relationships, since it generates a loose
coupling between a lower-level component and a higher-level component. Conversely, in
some cases, defining a term as a specialization (inheritance relationship) of less specific
terms canminimize the reuse of, for instance, a domain ontology, in addition to promoting
tight coupling between components. Furthermore, stereotypes can reduce the complexity
of the model, also promoting understandability and communicability.

As commented above, a Work Entity has a description (work description), which
specifies the steps for achieving its objective. It represents “what” should be done instead
of “how” should be performed. The “how” is represented by the Method term, i.e., the
specific and particular way to perform the specified steps for instance in a Task. Note
in Fig. 2 that the Method concept has the procedure and rules properties. A procedure
is an arranged set of method instructions or operations, which specifies how the steps
of a description of a Work Entity must be performed. On the other hand, a rule is a set
of principles, conditions, heuristics, axioms, etc., associated with the procedure. The
explicit relationship between Method (the “how”) and work description (the “what”) is
not made as clear in other proposals as in this one.

It should be noted that to perform a Work Entity, i.e., a Task, an Activity or a Work
Process, an Allocation of Work Resources should be done. Useful Work Resources in
any project are Method, Tool and Agent (i.e. a performer playing a Role), among others.

Another key concept is Work Product, where Outcome, Artifact and Service are
kinds of Work Products. Outcome is defined as “a Work Product that is intangible,

Analyzing a Process Core Ontology 189

Fig. 2. Main terms, properties and relationships of the ProcessCO ontology. Note that TFO stands
for ThingFO and PjCO for ProjectCO represented in Fig. 1

storable and processable”, while Artifact “is a tangible or intangible, versionable Work
Product, which can be delivered”. Lastly, Service is defined as “a Work Product that is
intangible, non-storable and deliverable”. Note in Fig. 2 that a Work Product is a kind
of Product Entity. Natural Product is another type of Product Entity. A key difference
between Work Product and Natural Product is that the latter is not produced by a Work
Entity, however it can be consumed by a Work Entity.

Finally, a Work Entity can be represented from different Process Perspectives [7],
such as: i) functional that includes the Work Entities’ structure, Work Products as inputs
and outputs, etc.; ii) informational that includes the structure and interrelationships
among Work Products produced or consumed by Work Entities; iii) behavioral that
models the dynamic view ofWork Entities, includingConditions; and, iv) organizational

190 P. Becker et al.

that deals with Agents and Roles. A Process Model specifies and models one or more
related Process Perspectives using a given process specification language. Note in Fig. 2
that a Process Perspective has the semantics of Assertion on Particulars, which is a
term reused from ThingFO. Depending on the particular situation at hand a Process
Perspectivemaybe aBehavior-relatedAssertion, or a Structure-relatedAssertion, among
others. For example, the informational view shown in [2] is a Structure-relatedAssertion.

Ultimately, this core ontology for process contains the key concepts that are able
to enrich semantically different domains as exemplified below. The reader can see the
ProcessCO documentation, i.e., the definitions of the terms, properties and relationships
as well as the verification of non-taxonomic relationships at http://bit.ly/P_CO.

5 Semantically Enriching Domain Ontologies with ProcessCO

In the sequel, Sub-sect. 5.1 describes how some ProcessCO terms are stereotyped in
MEvalTDO to semantically enrich their terms, in addition to highlighting how some
ProcessCO properties, relationships and conceptual blocks or patterns are reused or
extended in MEvalTDO. Similarly, Sub-sect. 5.2 does an analogous description and
analysis for TestTDO. Finally, Sub-sect. 5.3 includes an abridged discussion on the
ProcessCO quality evaluation. It is important to note that this paper is not going to
emphasize and discuss the content of the MEvalTDO and TestTDO ontologies, but
rather the enrichment and reuse mechanism of terms, properties and relationships. The
reader interested in MEvalTDO ontology can see its documentation at http://bit.ly/MEv
alTDO, while for TestTDO can take a closer look at the reference [19].

5.1 Enriching Domain Ontologies for Measurement and Evaluation

MEvalTDO is a top-domain ontology that addresses measurement and evaluation activ-
ities and methods in general. While MetricsLDO and IndicatorsLDO are ontologies at
the low-domain level as depicted in Fig. 1, which addresses, in particular, measurement
and evaluation activities andmethods based onmetrics and indicators, respectively. Note
that MEvalTDO can also be specialized by other low-domain ontologies such as Ques-
tionsLDO, i.e., a Questionnaire-basedMeasurement Low-Domain Ontology (not shown
in Fig. 1).

Figure 3 depicts an excerpt from theMEvalTDO ontology with some terms and rela-
tionships semantically enriched or reused from ProcessCO. Some terms (highlighted in
orange in Fig. 3) are enriched semantically by Work Process and Activity terms, such
as Evaluation, Design Measurement and Implement Measurement; some terms have the
semantics of Work Product (highlighted in light blue), such as Measurement Specifica-
tion (Artifact) and Measurement Value (Outcome); and other terms are enriched with
Method (highlighted in green), such as Measurement Method and Evaluation Method.

Note that some terms enriched byMethod (e.g. Measurement DesignMethod, which
is defined as “a Measurement and Evaluation Design Method for a task included in the
Design Measurement activity”) and Artifact (e.g. Conclusion Report, which is defined
as “an Artifact that documents the analysis of all Measurement and Evaluation Values”)
are not included in Fig. 3 so as not to overload the model with too many terms.

http://bit.ly/P_CO
http://bit.ly/MEvalTDO

Analyzing a Process Core Ontology 191

Fig. 3. Some terms, relationships and properties of MEvalTDO enriched semantically with
ProcessCO (PCO) terms. Note that ME stands for Measurement and Evaluation

Additionally, MEvalTDO reuses and extends some conceptual blocks or patterns
represented in ProcessCO. For example, the consumes/produces pattern, which indicates
that all Work Entity consumes one or more Product Entities and produces one or more
Work Products (Fig. 2), is mirrored in MEvalTDO.

As an example, in Fig. 3, Design Evaluation (which has the semantics of Activity
and, in turn, of Work Entity) consumes one or more Measurement Specifications and
one NFRs Specification (which are Artifacts and, in turn, have the semantics of Work
Product and Product Entity). In the same way, Design Evaluation produces one or more
Evaluation Specifications (which are Artifacts and, in turn, share the semantics of Work
Product).

Another reused conceptual block is the work breakdown pattern, which indicates
that a Work Process is composed of sub-Processes and Activities, and the latter by sub-
Activities and Tasks (see in Fig. 2 the aggregation relationships between these terms).
MEvalTDO considers this pattern since an Evaluation work process aggregates at least
three Measurement and Evaluation Activities (at least one Design Measurement and
Evaluation, one Implement Measurement and Evaluation, and one Analyze Evaluation
Results- note that this restriction is supported by an axiom not shown here). Also, the
DesignME aggregates sub-activities such asDefineNFRs, DesignMeasurement, among
others.

5.2 Enriching a Domain Ontology for Software Testing

TestTDO is a top-domain ontology for software testing activities and methods. Figure 4
depicts an excerpt fromTestTDOontologywith some terms, properties and relationships
semantically enriched or reused from ProcessCO. Like in MEvalTDO, terms enriched

192 P. Becker et al.

semantically with Work Process and Activity are orange highlighted in Fig. 4, e.g.,
Testing, Testing Design and Functional Dynamic Testing; terms that have the seman-
tics of Work Product are light-blue highlighted, e.g., Test Case (Artifact) and Actual
Result (Outcome); terms that are enriched with Method are green highlighted, e.g.,
Specification-based Method, Structure-based Method and Experience-based Method.
Additionally, terms enriched with Role and Agent are blue highlighted.

It should be noted that to perform a Testing Activity, i.e., a Testing Design, Testing
Realization and Testing Analysis, an Allocation of Work Resources, such as Agents
and Methods should be done. Particularly, Fig. 4 shows that at least a Testing Agent is
assigned to a Testing Activity. Moreover, Fig. 4 also shows that a Testing DesignMethod
is assigned to a Testing Design activity. Note that, like in Fig. 3, Fig. 4 does not show
all the TestTDO terms.

TestTDO also reuses and extends some conceptual blocks represented in ProcessCO.
For example, the consumes/produces and work breakdown patterns, which were ana-
lyzed for MEvalTDO. Another conceptual block is the method pattern. Figure 2 shows
that procedure is a property ofMethod. Following this pattern, Fig. 4 shows, for example,
that a Testing Realization Method is composed of a Realization Procedure.

Fig. 4. Some terms, relationships and properties of TestTDO enriched semantically with
ProcessCO (PCO) terms

5.3 Quality Evaluation of ProcessCO

In order to evaluate some aspects of the quality of ProcessCO, a non-functional require-
ments (NFRs) tree was built (see the first column of Table 1 and its defintions at http://

http://bit.ly/NFRdefs

Analyzing a Process Core Ontology 193

bit.ly/NFRdefs). For this, some dimensions or characteristics were considered for “beau-
tiful ontologies” identified by D’Aquin et al. [8] from quality practices in the design of
ontologies. Two (out of three) dimensions are formal structure and conceptual coverage,
which are characterized by if the ontology is designed in a principled way; it is formally
rigorous; it implements also non-taxonomic relations; it implements an international
standard; and it reuses foundational ontologies, among others. Note that the considered
NFRs tree in Table 1, even with limitations as to the number of characteristics and
attributes included, is useful to evaluate any ontology at any level.

After building the NFRs tree, metrics and elementary indicators were designed for
each attribute. Also, a linear additive scoring model was selected for derived indicators
considering the characteristics and sub-characteristics. Table 1 conveys the obtained
values for metrics and indicators for each quality attribute and characteristic.

For the sake of illustration only the indirect metric and the elementary indicator
related to the “Balanced NTR/TR Availability” (1.1.3.2) attribute is considered in this
paper. The indirect metric named “Percentage of Taxonomic Level” (%TxOntoLvl) has
the formula (1). See the entire specification at http://bit.ly/metricSpec.

%TxOntoLvl = (#TR/(#TR + #NTR)) ∗ 100 (1)

where #TR is the amount of taxonomic relationships; #NTR is the amount of non-
taxonomic relationships; and (#TR + #NTR) �= 0.

The measured value for 1.1.3.2 using the formula (1) is 59%. Then, by interpreting
this percentage using the indicator “Performance Level of the Balanced NTR Avail-
ability”, it is possible to know if an ontology is well balanced regarding the amount
of taxonomic relationships (TR) and non-taxonomic relationships (NTR). To this end,
the elementary indicator considers the formula (elementary model) and decision criteria
shown in Fig. 5.

As shown in Table 1, the performance level for 1.1.3.2 attribute is 86.36% (), which
is satisfactory. This attribute is part of the Balanced Relationships Availability (1.1.3)
sub-characteristic, which is defined as “Degree to which an ontology has a balance
between the amount of NTR and TR in addition to the former are defined”. Note that
NTRs are those that are not ‘kind of’ (is_a) or ‘whole-part’ (part_of). Therefore, they
should be defined.

As a result of the 1.1.3 sub-characteristic, ProcessCOmet the satisfactory acceptabil-
ity level (93.18%). For the Ontological Structural Quality (1.1), ProcessCO has met
97.72% () since all the terms and properties are explicitly defined but it is not perfectly
balanced. Looking at the Compliance to other Vocabularies (1.2), ProcessCO adheres
to some extent its terminology to the ISO 12207 glossary, as commented in Sect. 2.
Also, ProcessCO was built considering the ThingFO foundational ontology. Finally, the
Ontological Internal Quality achieved 98.86% ().

It is important to mention that the data produced by metrics often allow interesting
findings. For example, the ontologies described in [1] and [5] have fully taxonomic
relations (%TxOntoLvl = 100). So these are taxonomies rather than ontologies, as the
authors claim. In both cases, all represented relationships are ‘kind of’.

http://bit.ly/NFRdefs
http://bit.ly/metricSpec

194 P. Becker et al.

Fig. 5. Excerpt from the “Performance Level of the Balanced NTR Availability” elementary
indicator specification. Note that the values of the Ranges are expressed in [%]

Table 1. Evaluation results of the Ontological Internal Quality characteristic for ProcessCO.
The green icon () indicates a satisfactory acceptability level. Values for Measure, Elementary
Indicators (EI) and Derived Indicators (DI) are expressed in [%]. NTR stands for Non-Taxonomic
Relationships while TR for Taxonomic Relationships

Characteristic/Attribute Measure EI Value DI Value
1. Ontological Internal Quality 98.86

1.1 Ontological Structural Quality 97.72
1.1.1 Defined Terms Availability 100 100
1.1.2 Defined Properties Availability 100 100
1.1.3 Balanced Relationships Availability 93.18

1.1.3.1 Defined NTR Availability 100 100
1.1.3.2 Balanced NTR/TR Availability 59.09 86.36

1.2 Compliance to other Vocabularies 100
1.2.1 Terminological use of International Standard

Glossaries
2 100

1.2.2 Terminological Compliance to Foundational
Ontologies

yes 100

6 Concluding Remarks and Future Work

This work has documented and analyzed ProcessCO, which is a domain-independent
ontology for work processes placed at the core level in the context of a four-layered onto-
logical architecture. This multilayer ontological architecture promotes a clear separation
of concerns by considering the ontological levels that allow the allocation of conceptual

Analyzing a Process Core Ontology 195

components accordingly. This architecture thus encouragesmodularity, extensibility and
reuse of ontological elements at all lower levels. Since ProcessCO is at the core level,
ontologies at lower levels benefit from reusing and extending its key concepts. There-
fore, ProcessCO can be seen as a reusable artifact and resource, which can be used to
enrich semantically many domain ontologies, both top domain and low domain. In turn,
ProcessCO extends the key three terms of ThingFO, namely Thing, Thing Category and
Assertion. It also specializes its non-taxonomic relationships, which were verified for
consistency as documented in the link provided in Sect. 4.

Furthermore, to analyze the applicability and usefulness of ProcessCO, this work has
illustrated the semantically enriched terms of the MEvalTDO and TestTDO ontologies
at the top-domain level. In particular, to show the applicability of ProcessCO alongside
these two domain ontologies, it also addressed the mechanism to not only enrich terms,
but also to reuse properties and specialize relationships. Moreover, this work has also
presented how some conceptual blocks or patterns available in ProcessCO were clearly
reflected in MEvalTDO and TestTDO.

The goals to build ontologies can be manifold, such as: to share a common under-
standing and then facilitating the communication among people and software agents;
to reuse and integrate the disparate and heterogeneous representations; to formalize the
representation of a domain problem or theory; and, as the basis to support semantic
reasoning to full-fledged knowledge-based applications, among other aims. Particularly,
considering that authors of this paper are primarily interested in building strategies for
different domains, by using ProcessCO (and other core ontologies) as a common ter-
minological base, the domain ontologies, which nourish different strategies, can be har-
monized. So, strategies may ensure terminological uniformity and consistency, favoring
thus the specifications of their processes and methods.

Authors in [13] developed a set of evaluation strategies but these were not well-
founded considering domain ontologies in the framework of the ontological architecture
depicted in Fig. 1. Therefore, a future work is to improve these strategies so that their
terminologies harmonize with the FCD-OntoArch framework. In addition, strategies for
testing are being developed, thus expanding the family of strategies proposed by [13].

Acknowledgments. This line of research is supported partially by the Engineering School at
UNLPam, in the project named “Family of Strategies for Functional and Non-Functional Software
Testing considering Different Test Goal Purposes”.

References

1. Arnicans, G., Romans, D., Straujums, U.: Semi-automatic generation of a software testing
lightweight ontology from a glossary based on the ONTO6 methodology. In: Frontiers in
Artificial Intelligence and Applications, vol. 249, pp. 263–276 (2013)

2. Becker, P., Olsina, L., Peppino, D., Tebes, G.: Specifying the process model for systematic
reviews: an augmented proposal. J. Softw. Eng. Res. Dev. (JSERD) 7, 1–23 (2019). https://
doi.org/10.5753/jserd.2019.460

3. Becker, P., Papa, F., Olsina, L.: Process ontology specification for enhancing the process
compliance of a measurement and evaluation strategy. CLEI Electron. J. 18(1), 1–26 (2015).
https://doi.org/10.19153/cleiej.18.1.2

https://doi.org/10.5753/jserd.2019.460
https://doi.org/10.19153/cleiej.18.1.2

196 P. Becker et al.

4. Bringuente,A.C., Falbo, R.A.,Guizzardi, G.:Using a foundational ontology for reengineering
a software process ontology. J. Inf. Data Manag. 2(3), 511–526 (2011)

5. Cai, L., Tong, W., Liu, Z., Zhang, J.: Test case reuse based on ontology. In: 15th IEEE Pacific
Rim International Symposium on Dependable Computing, pp. 103–108 (2009)

6. Corcho, O., Fernández-López, M., Gómez-Pérez, A.: Methodologies, tools and languages for
building ontologies. Where is their meeting point? Data Knowl. Eng. 46(1), 41–64 (2003)

7. Curtis, B., Kellner, M., Over, J.: Process modelling. Commun. ACM 35(9), 75–90 (1992)
8. D’Aquin, M., Gangemi, A.: Is there beauty in ontologies? Appl. Ontol. 6(3), 165–175 (2011)
9. Garanina, N.O., Anureev, I.S., Borovikova, O.I.: Verification-oriented process ontology.

Autom. Control. Comput. Sci. 53(7), 584–594 (2019). https://doi.org/10.3103/S01464116
19070058

10. Gruber, T.R.: A translation approach to portable ontologies. Knowl. Acquis. 5(2), 199–220
(1993)

11. Guizzardi, G., Falbo, R., Guizzardi, R.: Grounding software domain ontologies in the uni-
fied foundational ontology (UFO): the case of the ODE software process ontology. In: 11th
Conferencia Iberoamericana de Software Engineering (CIbSE 2008), pp. 127–140 (2008)

12. ISO/IEC 12207: Systems and software engineering - Software life cycle processes (2008)
13. Olsina, L., Becker, P.: Family of strategies for different evaluation purposes. In: 20th Confer-

encia Iberoamericana en Software Engineering (CIbSE 2017) held in the framework of ICSE,
CABA, Argentina, pp. 221–234. Curran Associates (2017)

14. Olsina, L.: Analyzing the usefulness of ThingFO as a foundational ontology for sciences. In:
Proceedings of ASSE 2020, Argentine Symposium on Software Engineering, 49 JAIIO, Held
Virtually, CABA, Argentina, October 2020, pp. 172–191 (2020). ISSN 2451-7593

15. OMG-SPEM: Software & Systems Process Engineering Meta-Model Specification v2.0
(2008)

16. Renault, L., Barcellos, M., Falbo, R.: Using an ontology-based approach for integrating appli-
cations to support software processes. In: 17th Brazilian Symposium on Software Quality
(SBQS), pp. 220–229. ACM, New York (2018)

17. Ruiz, F., Hilera, J.R.: Using ontologies in software engineering and technology. In: Calero,
C., Ruiz, F., Piattini, M. (eds.) Ontologies in Software Engineering and Software Technology,
pp. 49–102. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-34518-3_2

18. Ruy, F.B., Falbo, R.A., Barcellos, M.P., Costa, S.D., Guizzardi, G.: SEON: a software engi-
neering ontology network. In: 20th International Conference on Knowledge Engineering and
Knowledge Management, pp. 527–542 (2016)

19. Tebes, G., Olsina, L., Peppino, D., Becker, P.: TestTDO: a top-domain software testing
ontology. In: 23rd CIbSE 2020, pp. 364–377. Curran Associates (2020)

20. van Heijst, G., Schreiber, A.Th., Wielinga, B.J.: Using explicit ontologies in KBS develop-
ment. Int. J. Hum.-Comput. Stud. 46, 183–292 (1997)

https://doi.org/10.3103/S0146411619070058
https://doi.org/10.1007/3-540-34518-3_2

Towards Understanding Quality-Related
Characteristics in Knowledge-Intensive
Processes - A Systematic Literature

Review

Rachel Vital Simões1(B) , Glaucia Melo2 , Fernando Brito e Abreu3 ,
and Toacy Oliveira1

1 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
{rachelvital,toacy}@cos.ufrj.br

2 University of Waterloo, Waterloo, Canada
gmelo@uwaterloo.ca

3 ISTAR-Iscte, University Institute of Lisbon, Lisbon, Portugal
fba@iscte-iul.pt

Abstract. Context: Contemporary process management systems have
been supporting users during the execution of repetitive, predefined busi-
ness processes. Many business processes are no longer limited to explicit
business rules as processes can be unpredictable, knowledge-driven and
emergent. In recent years, knowledge-intensive processes (KIPs) have
become more important for many businesses. However, quality-related
aspects of these processes are still scarce. Therefore, it is hard to evalu-
ate these types of processes in terms of their quality. Objective: In this
paper, we present a Systematic Literature Review aiming at investigat-
ing and reporting quality-related aspects of KIPs. Results: We identified
in the selected studies the characteristics and methods related to KIPs.
Although several papers present quality aspects of processes, literature
still lacks directions on the quality-related approaches in KIPs.

Keywords: Knowledge-intensive processes · Knowledge intensive
business process · Process flexibility · KIP quality

1 Introduction

In recent years, many changes have been observed in the approaches of business
processes. In many cases, business processes are flexible, unpredictable, adapt-
able and knowledge-driven. The characteristics of these processes also vary in
organizations. Hence, knowing these characteristics could potentially aid the
understanding of the mechanisms for improving these types of processes.

Moreover, the quality aspects of Knowledge-Intensive Processes (KIPs) are
an important source of competitive advantages for contemporary companies. The
quality-related characteristics have been carried out in the literature in several

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 197–207, 2021.
https://doi.org/10.1007/978-3-030-85347-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_15&domain=pdf
http://orcid.org/0000-0002-6046-8620
http://orcid.org/0000-0003-0092-2171
http://orcid.org/0000-0002-9086-4122
http://orcid.org/0000-0001-8184-2442
https://doi.org/10.1007/978-3-030-85347-1_15

198 R. V. Simões et al.

ways. Although several papers present some relation with quality aspects, there
is a lack of studies that focus on quality-related characteristics in KIPs.

The importance and complexity of KIPs were exposed as hardly predefined,
and compliance can be ensured only at run-time [7]. Therefore, the application of
traditional Business Process Management (BPM) practices is difficult to imple-
ment in KIP environments and new ways to handle KIP processes need to be
researched.

In this paper, we present a Systematic Literature Review on quality-related
characteristics of KIPs to address the lack of literature on the topic. We con-
tribute by exposing the lack of studies that present quality aspects for KIPs,
and suggest avenues for defining quality metrics for KIPs.

The structure of this article is as follows. We start by laying an introduction
to the topic. Then, in Sect. 2, we present the Related Work. Section 3 presents
the protocol of the Systematic Literature Review, and the results of the study.
Following, Sect. 4 discusses the threats of this research and Sect. 5 concludes the
paper with our main considerations.

2 Related Work

Some quality metrics of business process models are used to evaluate a traditional
process (prescriptive) model such as the number of elements, the complexity of
the flow control, the immersion of the depth decision, the degree of clarity and
the complexity of interconnections [25]. However, in the context of KIPs, these
metrics are not fully applicable.

During our studies, we did not find specific treatments that address quality
in knowledge-intensive processes. However, analyzing the state of the art we
observed that many works address the related and repeated characteristics even
in various contexts.

We highlight four papers that present critical studies in knowledge-intensive
processes: Di Ciccio et al., 2015 [10]; Isik et al., 2012 [38]; Marjanovic and Freeze,
2012 [22]; Sarnikar and Deokar, 2010 [29]. KIPs are often associated with Adap-
tive Case Management (ACM). Pillaerds et al. (2017) [26] assesses the character-
istics cited by Di Ciccio et al. (2015) in four different Business Process Support
Systems (BPSS) as ACM and others.

Observing these characteristics is fundamental for the development of future
works that evaluate the quality of the KIPS.

3 Systematic Literature Review

The Systematic Literature Review presented in this paper is based on the
methodology proposed by Kitchenham et al. [19]. This methodology was con-
ceived with a particular emphasis on Systematic Literature Review (SLR) con-
ducted within the software engineering domain. Kitchenham’s methodology is
structured according to the following three steps, which have to be performed
one after the other, as presented in Fig. 1.

Each of the three presented steps is described next.

Understanding Quality-Related Characteristics in KIPs 199

Fig. 1. SLR methodology steps [19].

– Planning - In the first step, we lay the objectives and needs for this review.
We have defined the set of research questions and the review protocol.

– Conduction - In this second step, we have defined a search strategy to
select a set of relevant research studies. The search was done according to
the protocol established. This step has executed by two researchers, using a
pair review strategy. This refinement step was quite critical since we had the
opportunity to compare results. Finally the data extraction is performed and
classified according to its relevant characteristics for each selected research
work.

– Reporting - In this last step, we present the results and answers to the
defined research questions.

Next, we present the details of each step of the systematic study.

3.1 Planning

In this section, we present the planning of this SLR. First, we introduce research
questions. Then, we present the details of the applied protocol of the search.

Research Questions. We defined the following research questions to discover
references in the state-of-the-art that could include relevant quality characteris-
tics in KIPs. The questions resulted from sets of brainstorming sessions carried
on by the authors and are listed next.

RQ1. What are the quality factors associated with Knowledge-Intensive Pro-
cesses? This question aims to discover which quality characteristics are asso-
ciated with KIPs.
RQ2. What methods, instruments or techniques are used to deal with KIPs?
This question aims to understand the instruments, methods or techniques
that handle KIPs and support these processes’ quality aspects.

Developing the Protocol. The protocol has been defined according to
Kitchenham’s suggestions [19]. To retrieve relevant research papers, we per-
formed an automatic search on Scopus Science, IEEE Xplore and ACM Digital
Library in April 2021. The search string defined in Table 1.

We tested several combinations of keywords until we had achieved a suitable
search string. To assess the quality of the search string, we first defined two con-
trol papers, depicted in Table 2. The control papers CP1 and CP2 were defined
based on the results of pilot searches, before defining the final search string.

200 R. V. Simões et al.

Table 1. Search string.

(“Knowledge-intensive process” OR “flexible Process” OR “process flexibility” OR
“Intentional Process” OR “Goal-oriented process”) AND (“Quality” OR
“Assessment” OR “Maturity”) AND (“Business process” OR “BPM” OR “Process
aware information system”)

Table 2. Control papers.

ID Title Year Reference

CP1 Assessing suitability of adaptive
case management

2017 [26]

CP2 Improve Performance Management
in Flexible Business Processes

2017 [11]

As part of the protocol implementation, a set of inclusion/exclusion criteria
was specified and is reported in Table 3. These criteria secure that only relevant
papers are included in the study.

Table 3. Selection criteria.

ID Inclusion Criteria

I.1 Included studies must have been published in the last 6 years (included)

I.2 The work is a primary study

ID Exclusion Criteria

E.1 Works outside the computing area

E.2 The work does not relate to the context of BPM and flexible processes

E.3 The paper is not written in English Language

3.2 Conduction

Identification and Selection of the Research Papers. The study selection
process was performed by two researchers, as advised in the protocol, to mitigate
possible biases.

For the selected articles, the two researchers independently filled out a spread-
sheet with the basic information about the paper (e.g. title, authors, year of pub-
lication) and the option for including or not including the article in this study.
The authors read the title and abstract of papers in this phase. The papers
included were considered eligible when the researchers evaluated that the arti-
cle should be included in our research. The data from the eligibility forms were
stored in the spreadsheet, and the validation procedure was carried out. To mea-
sure the disagreements between the researchers on the eligibility of some papers,

Understanding Quality-Related Characteristics in KIPs 201

we used Cohen’s kappa to assess the reliability of the diagnosis by measuring
the agreement between the two judges.

Cohen’s kappa is a measure of the agreement between two raters who deter-
mine which category a finite number of subjects belonging to whereby agreement
due to chance is factored out. The two raters either agree or disagree. There are
no degrees of disagreement (i.e., no weightings) [21].

To select the set of relevant studies, the following steps were performed.
First, the search string was used in the selected databases returning an initial
set of papers. Next, duplicates were identified and removed. After, we evalu-
ated the papers according to the contents of their title and abstract using both
the inclusion and exclusion criteria. This step was separately performed by two
researchers.

In the face of results, we applied Cohen’s kappa (k) agreement measure to
determine the level of agreement between two judges, as shown in Table 4.

Table 4. Author’s agreement results.

Judge B Judge A

Read Exclude Include Total

Read 27 3 0 30

Exclude 0 30 3 33

Include 2 1 0 3

Total 29 34 3 66

Considering the results shown in Table 4, we observed 57 papers with a per-
fect agreement between the judges, where 27 papers the researchers agreed that
they should be read and 30 papers both agreed that they should be excluded
from the study. Only six different papers are in total disagreement, where three
papers have found by judge A and he rated them as valid articles for the study.
Three others papers were found by judge B and they have rated these additional
papers as valid as well.

The Cohen’s k are calculated in Table 5. To interpret your Cohen’s Kappa,
the classification below was used [21]:

Table 5. Percentage of agreement among researchers.

Read Exclude Include Total

Agreement (pa) 27 30 0 57

By chance 14.54 15.5 0.14 30.18

(%) Perc. of Agreement 86.36%

Cohen’s k 74.87%

202 R. V. Simões et al.

– 1%–20%: slight agreement
– 21%–40%: fair agreement
– 41%–60%: moderate agreement
– 61%–80%: substantial agreement
– 81%–100%: almost perfect or perfect agreement

We verified a percentage of agreement of 86.36% in Table 5. Furthermore, the
Cohen’s k index was 74,87% following the adopted classification, representing a
substantial agreement in the results.

Finally, of the 66 papers retrieved by the researchers, 33 were selected for
the last step for data extraction and synthesis. These 33 papers were fully read
and we extracted the information related to the defined RQs, which consists
of quality-related characteristics and methods/approaches for deal with KIP
processes. These studies constituted the new selection for the next step of the
study.

Data Extraction and Synthesis. The data extraction and synthesis step aim
to design a suitable form to record and collect the relevant information obtained
from fully reading the selected research papers. The 33 relevant studies the two
researchers selected were fully read, and the pertinent data to the research ques-
tions were extracted and recorded in a spreadsheet. Finally, we have analyzed
the results, focusing on producing the desired answers for the RQs.

3.3 Reporting Results

In this section, we present the results of the SLR. At first, we reported some
general information on the collected data in Sect. 3.2. Then considering the
research questions listed in Sect. 3.1 we discuss (1) quality-related characteristics
of Knowledge-Intensive Processes and (2) methods to deal with KIP.

– RQ1. What are the quality factors associated with Knowledge-Intensive Pro-
cesses?

We observed a gap in studies about quality in knowledge-intensive processes,
as literature lacks specific studies that aim at understanding and exploring this
topic. Acknowledging this gap is essential to encourage increases in specific qual-
ity studies associated with KIPs.

Di Ciccio, Marrella and Russo [10] defined eight main key representative char-
acteristics of KIPs: Knowledge-driven, Collaboration-oriented, Unpredictable,
Emergent, Goal-oriented, Event-driven, Constraint- and rule-driven and Non-
repeatable. Their work provides a precise characterization of KIPs and, starting
from three real-world application scenarios. In our study, we extended this anal-
ysis to 33 more papers with different application scenarios. To classify the 33
papers, we build the following tables with synonyms, in Table 6. These synonyms
were extracted from the selected papers and classified by the author.

Understanding Quality-Related Characteristics in KIPs 203

Table 6. Synonyms for KIP characteristics based on DiCiccio et al. [10].

Characteristics Synonyms

C1 Knowledge-
driven

Data-oriented, human, information exchange,
people-centric, user decision, drive human

C2 Collaboration-
oriented

Multi-user environment, participants with different
roles, human-centred, transfer the data, interactive

C3 Unpredictable Can be fully specified, iterative and incremental,
unexpected conditions, flexibility, weak structured, may
change during process execution

C4 Emergent Ad-hoc changes, adaptability, uncertainty, complex

C5 Goal-oriented Milestones to be achieved, objectives determined at
run-time, intermediate goals

C6 Event-driven Changes in the process, decisions, contextual changes

C7 Constraint- and
rule-driven

Adapt to changes/change during process
execution/Unpredictable situations

C8 Non-repeatable Customizable, temporal changes, multi-variant

Fig. 2. Main characteristics of KIPs per occurrences.

In the selected studies, we found the following characteristics cited by Di
Ciccio, demonstrated in Fig. 2. In addition to these characteristics defined in
[10], we found characteristics such as traceability, control and transparency, as
presented in Table 7.

– RQ2. What methods, instruments or techniques are used to deal with KIPs?

The studies found show several instruments and mechanisms to deal with
KIPs. We have not found works that specifically focus on the quality of KIPs.

204 R. V. Simões et al.

Table 7. Characteristics’ summary.

Characteristics Papers

C1 - Knowledge-driven [2,6,12,14,17,26,27,31,33,35,36]

C2 - Collaboration-oriented [2–4,6,11,12,17,18,23,23,26,28,32,35]

C3 - Unpredictable [1,2,4,9,11,12,14,15,17,18,23,24,26–
28,30,30,33–36,36,37]

C4 - Emergent [3,5,9,14,16,17,20,24,26–28,34–36]

C5 - Goal-oriented [12,18,26]

C6 - Event-driven [3,12,18,23,24,26,30,33,34,36]

C7 - Constraint- and rule-driven [2–4,8,11,12,14,18,23,26,27,30,33–37]

C8 - Non-repeatable [11,12,14,23,26,30,35]

C9 - Control [6,13]

C10 - Traceability [16]

C10 - Transparent [26]

However, all the proposals found seek, somehow, innovative ways to approach
these types of processes.

4 Threats to Validity

We present the categorization (Sect. 3.3) based on the characteristics presented
by [10]. This is a threat because the classification was defined based on Table 6
carried out by just one researcher. However, we believe that the result presented
can be interesting because it reinforces the characteristics of KIPs in different
environments.

5 Conclusions and Future Work

This SLR has identified a gap in qualitative aspects to measure or qualify
knowledge-intensive processes. We did not find models, guidelines or good prac-
tices in the studies for dealing with quality aspects in these processes. Although
[10] defines the characteristics of KIPs processes well, we did not find applicable
quality models in this context. We also have not found basic concepts that can
serve as an initial guideline for developing quality models for KIPs. In this work,
we seek to encourage and discover new ways of research to deal with aspects of
qualities in KIPs.

We provided an overview of the current works on quality-related characteris-
tics in Knowledge-Intensive Processes. In this paper, we performed an SLR using
Kitchenham’s guidelines [19]. The results confirmed the importance of the topic
as an important research area. We examined several groups of contributions: i

Understanding Quality-Related Characteristics in KIPs 205

we found the characteristics cited by [10] in 33 different domains and application
scenarios; ii we identified mechanisms to deal with KIPs in recent works.

In terms of concepts or methods of quality assurance of KIP processes, we
did not find a comprehensive picture of the topic in the literature. Despite the
significant efforts of researchers and practitioners in the domain, more research
is still required to enhance KIP’s environments mainly when we need to think
about quality aspects.

As future work, we propose to define coding protocols to better classified the
papers found according to KIP characteristics presented by [10]. The authors
could discuss the coded studies to identify discrepancies and shortcomings in
the codes. We can use coding techniques to characterize the methods, instru-
ments or mechanisms used to deal with KIP in these studies. We propose to use
some of the quality aspects found in structured process analysis and use these
as a start when analyzing KIPs. In this sense, we propose to include the eval-
uation in the most detailed study on the use of ISO/IEC 25000 (systems and
software product quality) and ISO/IEC 3300X (Process assessment) in KIPs.
Evaluating quality models that do not meet knowledge-intensive processes are
also important contributions to the area.

References

1. Abbad Andaloussi, A., Davis, C.J., Burattin, A., López, H.A., Slaats, T., Weber,
B.: Understanding quality in declarative process modeling through the mental
models of experts. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM
2020. LNCS, vol. 12168, pp. 417–434. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58666-9 24

2. Andrews, K., Steinau, S., Reichert, M.: Enabling ad-hoc changes to object-aware
processes, pp. 85–94. Institute of Electrical and Electronics Engineers Inc. (2018)

3. Andrews, K., Steinau, S., Reichert, M.: Enabling runtime flexibility in data-centric
and data-driven process execution engines. Inf. Syst. (2019)

4. Benner-Wickner, M., Brückmann, T., Gruhn, V., Book, M.: Process mining for
knowledge-intensive business processes, 21–22-October-2015, pp. 1–8. Association
for Computing Machinery (2015)

5. Bernardi, M.L., Cimitile, M., Maggi, F.M.: Automated development of constraint-
driven web applications, 04–08-April-2016, pp. 1196–1203. Association for Com-
puting Machinery (2016)

6. Bider, I., Jalali, A.: Limiting variety by standardizing and controlling knowledge
intensive processes, 2016-September, pp. 33–41. Institute of Electrical and Elec-
tronics Engineers Inc. (2016)

7. Boissier, F., Rychkova, I., Le Grand, B.: Challenges in knowledge intensive pro-
cess management, 2019-October, pp. 65–74. Institute of Electrical and Electronics
Engineers Inc. (2019)

8. Botangen, K.A., Yu, J., Sheng, M.: Towards measuring the adaptability of an
ao4bpel process. Association for Computing Machinery (2017)

9. BǍdicǍ, A., BǍdicǍ, C., Leon, F., Buligiu, I.: Modeling and enactment of business
agents using Jason. 18–20-May-2016, Association for Computing Machinery (2016)

https://doi.org/10.1007/978-3-030-58666-9_24
https://doi.org/10.1007/978-3-030-58666-9_24

206 R. V. Simões et al.

10. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: character-
istics, requirements and analysis of contemporary approaches. J. Data Semant. 4,
29–57 (2015)

11. Estrada-Torres, B.: Improve performance management in flexible business pro-
cesses, vol. 2, pp. 145–149. Association for Computing Machinery (2017)

12. Estrada-Torres, B., et al.: Measuring performance in knowledge-intensive processes.
ACM Trans. Internet Technol. 19, 1–26 (2019)

13. Fichtner, M., Schönig, S., Jablonski, S.: Process management enhancement by
using image mining techniques: a position paper, vol. 1, pp. 249–255. SciTePress
(2020)

14. Haarmann, S.: Fragment-based case management models: metamodel, consistency,
and correctness, vol. 2839, pp. 1–8. CEUR-WS (2021)

15. Heinrich, B., Schiller, A., Schön, D., Szubartowicz, M.: Adapting process models
via an automated planning approach. J. Decis. Syst. 29, 223–259 (2020)

16. Hildebrandt, T.T., et al.: Ecoknow: engineering effective, co-created and compliant
adaptive case management systems for knowledge workers, pp. 155–164. Associa-
tion for Computing Machinery Inc. (2020)

17. Huber, S., Schott, P., Lederer, M.: Adaptive open innovation - solution approach
and tool support, 23–24-April-2015. Association for Computing Machinery (2015)

18. Jaanus, J., Sihver, M., Ley, T.: Managing requirements knowledge in business net-
works: a case study, 21–22-October-2015. Association for Computing Machinery
(2015)

19. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering (2007)

20. Koehler, J., Woodtly, R., Hofstetter, J.: An impact-oriented maturity model for
it-based case management. Inf. Syst. 47, 278–291 (2015)

21. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. JSTOR, Biometrics (1977)

22. Marjanovic, O., Freeze, R.: Knowledge-intensive business process: deriving a sus-
tainable competitive advantage through business process management and knowl-
edge management integration. Knowl. Process Manag. 19, 180–188 (2012)

23. Marrella, A., Mecella, M., Sardina, S.: Intelligent process adaptation in the
SmartPm system. ACM Trans. Intell. Syst. Technol. 8, 11 (2017)

24. Moyon, F., Beckers, K., Klepper, S., Lachberger, P., Bruegge, B.: Towards contin-
uous security compliance in agile software development at scale, pp. 31–34. IEEE
Computer Society (2018)

25. Pavlicek, J., Hronza, R., Pavlickova, P., Jelinkova, K.: The business process model
quality metrics. In: Pergl, R., Lock, R., Babkin, E., Molhanec, M. (eds.) EOMAS
2017. LNBIP, vol. 298, pp. 134–148. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-319-68185-6 10

26. Pillaerds, J., Eshuis, R.: Assessing suitability of adaptive case management, pp.
566–580. Association for Information Systems (2017)

27. Rapina, R., Martusa, R., Wijaya, I.N.A., Zelien, A.: The impact of a collection
of tasks and activities on accounting information quality: survey in Indonesia, pp.
233–236. Association for Computing Machinery (2020)

28. Russo, D., Ciancarini, P., Falasconi, T., Tomasi, M.: A meta-model for information
systems quality: a mixed study of the financial sector. ACM Trans. Manag. Inf.
Syst. 9, 9 (2018)

29. Sarnikar, S., Deokar, A.: Knowledge management systems for knowledge-intensive
processes: design approach and an illustrative example (2010)

https://doi.org/10.1007/978-3-319-68185-6_10
https://doi.org/10.1007/978-3-319-68185-6_10

Understanding Quality-Related Characteristics in KIPs 207

30. Sigmanek, C., Lantow, B.: The staps method: Process-Taylored introduction of
knowledge management solutions, vol. 3, pp. 181–189. SciTePress (2016)

31. De Souza, E.F., et al.: Experience report on developing an ontology-based app-
roach for knowledge management in software testing. Association for Computing
Machinery (2020)

32. Vukšic, V.B., Vugec, D.S., Lovric, A.: Social business process management: Croa-
tian IT company case study. Bus. Syst. Res. 8, 60–70 (2017)

33. Wen, S.F.: Learning secure programming in open source software communities: a
socio-technical view, pp. 25–32. Association for Computing Machinery (2018)

34. Wondoh, J., Grossmann, G., Stumptner, M.: Dynamic temporal constraints in
business processes. Association for Computing Machinery (2017)

35. Wu, H., Lu, T., Wang, X., Zhang, P., Jiang, P., Xu, C.: KBCBP: a knowledge-based
collaborative business process model supporting dynamic procuratorial activities
and roles. In: Sun, Y., Lu, T., Yu, Z., Fan, H., Gao, L. (eds.) ChineseCSCW 2019.
CCIS, vol. 1042, pp. 311–319. Springer, Singapore (2019). https://doi.org/10.1007/
978-981-15-1377-0 24

36. Zhang, Y., Chen, J.L.: Knowledge-learning service construction based on events,
pp. 681–688. Institute of Electrical and Electronics Engineers Inc. (2016)

37. Zhao, X., Liu, C., Yongchareon, S., Kowalkiewicz, M., Sadiq, W.: Role-based pro-
cess view derivation and composition. ACM Trans. Manag. Inf. Syst. 6, 5 (2015)

38. Işik, Ö., Van Den Bergh, J., Mertens, W.: Knowledge intensive business processes:
an exploratory study, pp. 3817–3826. IEEE Computer Society (2012)

https://doi.org/10.1007/978-981-15-1377-0_24
https://doi.org/10.1007/978-981-15-1377-0_24

Quality Aspects in Quantum Computing

KDM to UML Model Transformation
for Quantum Software Modernization

Luis Jiménez-Navajas , Ricardo Pérez-Castillo(B) , and Mario Piattini

University of Castilla-La Mancha, 13071 Ciudad Real, Spain
{luis.jimeneznavajas,ricardo.pdelcastillo,

mario.piattini}@uclm.es

Abstract. Thanks to the last engineering advances, quantumcomputing is gaining
an increasing importance in many sectors that will be benefited from its superior
computational power. Before achieving all those promising benefits, companies
must be able to combine their classical information systems and the new quantum
software to operate with the so-called hybrid information systems. This implies, at
some point of such a modernization process, that hybrid information systems will
have to be (re)designed. UML can be used for defining abstract design models,
not only for the classical part as done before, but also for the quantum software in
an integrated manner. This paper proposes a model transformation for generating
UML models that represents quantum circuits as activity diagrams. Thanks to the
usage of UML, these designs are technological-independent which contributes to
the modernization of hybrid information systems. The outgoing UML models are
compliant with a vast amount of design tools and might be understood by a big
community.

Keywords: Quantum software engineering ·Modernization · Reengineering ·
KDM · UML ·Model transformation

1 Introduction

In the last few years, the interest in quantum computing has been dramatically increased.
More andmore organizations have become aware of the benefits that this new computing
paradigm can bring to the society [1]. This is due to researchers around the world are
providing evidence, albeit still theoretical, of the benefits and challenges of quantum
computing. This means that companies around the world must be prepared for this new
technological leap, which may leverage a new “golden age” in the software engineering
field [2].

Nevertheless, this technological leap cannot be made by discarding everything that
has been built up to now and starting from scratch with the quantum paradigm [3].
There are several reasons for this, one of them being that, possibly, there are certain
operations in the systems of the companies that are so simple that it does not make sense
to implement them using quantum computing because of the cost versus the potential
gain [4]. Another reason is that companies have based strategic decisions on the business

© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 211–224, 2021.
https://doi.org/10.1007/978-3-030-85347-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_16&domain=pdf
http://orcid.org/0000-0001-6257-7153
http://orcid.org/0000-0002-9271-3184
http://orcid.org/0000-0002-7212-8279
https://doi.org/10.1007/978-3-030-85347-1_16

212 L. Jiménez-Navajas et al.

rules embedded in their classical information systems overtime (which is not available
anywhere else) and its replacement becomes too risky.

The solution to this problem is simply not to replace the currently systems (hence-
forth called classical systems), but to modernize those systems that could benefit from
the computational power of the quantum paradigm. So, create classical-quantum infor-
mation systems, also known as hybrid information systems. The software modernization
challenge is actually claimed by the Talavera Manifesto on Software Engineering and
Programming [6].

ADM (Architecture Driven Modernization) [5] may be the right path to accomplish
the evolution of classical systems toward hybrid ones, as it has been proved in the past
to be effective in the evolution of legacy systems. ADM is the evolution of traditional
reengineering by following a MDE (Model Driven Engineering) approach. The concept
of Quantum Software Reengineering was introduced in [3], where it was depicted how
the reverse engineering phase must be extended in order to work with the different
quantum entities. In particular, this paper focuses on the restructuring phase, the next
step in themodernization software approach. Themain contribution is the transformation
of extended KDM models to UML. This model transformation has been accomplished
employing ATL [7]. The outgoing UMLmodel uses the quantum UML profile proposed
in [8] and allows to represent quantum circuits in UML activity diagrams. These models
can be integrated into bigger UML models with other design concerns, both classical
and quantum ones.

The main implication of this proposal is that, at some point of the hybrid systems
modernization it will be necessary to (re)design the target system.We believe that adapt-
ing UML to be capable of analyzing and identifying quantum components is the right
path forward for its development. Additionally, the usage of UML ensures the indepen-
dence of quantum technology and software platforms, as well as its support in many
design tools.

The remaining of this paper is structured as follows: Sect. 2 introduces the different
reasons for believing that hybrid systems will be implemented in a future and then how
the classical systems will be modernized toward them. Section 3 explains how KDM
andUML have been extended for the purpose of working with the quantum components.
In Sect. 4 is detailed the transformation of KDM models to UML. Finally, in Sect. 5
conclusions and future work are related.

2 Modernization Towards Hybrid Information Systems

This section first introduces the concept of hybrid information systems, i.e., classical-
quantum software systems (cf. Sect. 2.1). Then, the software modernization process for
this kind of systems is explained (cf. Sect. 2.2).

2.1 Hybrid Information Systems

Quantum computing brings us many benefits to the different fields of science, like in
finances [9], chemistry [10] or machine learning [11]. Even those benefits are only
theoretical, the expectation for implementing quantum computers is huge.

KDM to UML Model Transformation 213

Once the commercial quantum computers arrive (with an acceptable number of
qubits), companies will migrate part of those classical systems with complex and/or
demanding algorithms to quantum computers. The implementation of quantum comput-
ing does not necessarily imply a full replacement of the classical information systems,
but at some point both paradigms couldwork together, creating hybrid classical-quantum
information. However, this evolution of the systems does not imply discarding the whole
classical information systems given that they are still useful for their organizations. Those
systems may embed a vast amount of critical-mission knowledge that probably is not
located elsewhere, and their replacement is highly risky.

The hybrid information systems will consist of parts developed using quantum com-
puting and the others according to the classical paradigm. The classical part will perform
those processes and procedures that do not make sense to do using quantum computing
due to the cost and complexity that it would entail compared to the gain acquired, e.g.,
simplistic functionalities.

This evolution of the actual systems can be accomplished through software mod-
ernization. This software modernization is the evolution traditional reengineering but
following an MDE approach and it has been proved being successful in the last decades
in industrial projects, as in the European projects MOMOCS [12] and MODELWARE
[13].

However, the software modernization must be adapted in order to being capable to
work with the quantum paradigm and so, to allow the evolution of the classical systems
towards hybrid systems. Such adaptation of the modernization will be explained in
Sect. 2.2.

2.2 Software Modernization of Hybrid Information Systems

Software engineering has evolved as new technologies andmethodologies have emerged
by adapting to the problems that have arisen in the development of new systems.
Now, even though we are dealing the new quantum paradigm, we still face the same
development problems as in classical systems.

A solution based on reengineering and, more specifically on ADM [14], was already
proposed in [4] to achieve the evolution of classical information systems towards hybrid
ones. That solution introduced “Quantum software reengineering” and ensured that it
might be used in three complementary scenarios (see Fig. 1):

1. Migrate existing, isolated quantum algorithms and integrate them into the hybrid
information systems.

2. Migrate classical legacy information systems toward hybrid architectures that
support the integration of classical-quantum information systems.

3. Transform or add new business operations supported by quantum software that will
be integrated into the target hybrid systems.

Figure 1 shows the complete quantum software reengineering process and as can be
seen, the use of already existing KDM or UML standards is proposed. The first phase
is reverse engineering, where the artifacts (either source code or database schemas)
of the classical systems (scenario 1) and quantum if they exist (scenario 2) will be

214 L. Jiménez-Navajas et al.

UML Model KDM Model

Target Classical-Quantum
System

Classical
Informa�on System

Expert-based
model refactoring

Automa�c
model refactoring

Code, docs,
database,…

parsers

ATL Model
transforma�on

Re
ve

rs
e

En
gi

ne
er

in
g

Fo
rw

ar
d

En
gi

ne
er

in
g

Restructuring

Familiy Extension UML Profile

Exis�ng Quantum
Programs

Low-code
genera�ve
techniques

New Quantum
Programs

Fig. 1. Quantum software modernization approach.

analyzed, and a model will be generated that will represent, in a technology-agnostic
way, the components and their interrelationships of the system. The restructuring phase
(the second reengineering phase) is the scope of this paper. The restructuring phase
consists of the transformation of the previously generated KDM models into a different
high-abstraction level models that may be used later to generate the target code. The
metamodel chosen has been UML as it is a well-proven modelling language that has
been widely employed by industry for some time. UML also follows the philosophy of
the previous step for representing models in a technological-agnostic manner. Finally,
the last phase consists of forward engineering, where tools can be used to automatically
generate code fragments of the hybrid system designed in UML. Although there are
currently tools that generate code based on UML diagrams, they cannot automatically
implement quantum algorithms.

Using UML for system design has several advantages, such as the possibility of
being able to visualize the same system from different viewpoints thanks to the various
diagrams that exist or the large number of tools that allow modelling UML designs,
which are known by a broad community. Additionally, it should be noticed that UML
represents a collection of best practices and its use in the design of complex systems has
already been validated [15].

This paper defines a model transformation for automatically generate UML models
from KDM models that were generated from existing quantum programs, i.e., scenario
1. Scenarios 2 and 3 are outside of this research.

KDM to UML Model Transformation 215

3 Quantum Metamodel Extensions

For defining the model transformation between KDM and UML, KDM and UML
metamodels have been extended to incorporate quantum semantics. These extensions
have been proposed in two previous papers. Next sections summarize the metamodel
extensions provided that are involved in the model transformation.

3.1 Quantum KDM Extension

The Knowledge Discovery Metamodel-ISO /IEC 19506 is a standard developed for the
modernization of those systems that have suffered the passing of time and the technology
with which they have been developed is obsolete or close to being obsolete. These
systems are known as legacy information systems.

KDM was the first of the standards proposed within ADM and it provides a com-
prehensive view of the application structure and data [16]. KDM identifies the different
components of the systems and its interrelationships and represents it in a technology-
agnostic way at a higher abstraction level. However, KDM was not created with the aim
to evolve classical information systems toward hybrid ones. Therefore, it was necessary
to extend it through its built-in extension mechanism to support the representation of
the different quantum entities. The full headway of the adaptation of KDM to quantum
programs was proposed in [4], which is briefly summarized in the next lines.

The default extension mechanism provided by KDM is the extension family. In this
extension family the different components that can be found in a quantum programming
language are represented in this group, shown in Fig. 2. This mechanism collects a set
of stereotypes that are then used in the ordinary elements provided by KDM.

Table 1 shows the KDM elements in which each stereotype is applied to represent
all the different quantum entities (shown in Fig. 2). In KDM, the CodeModel are those
elements which collect the facts of the same program, so as it will appears once in every
program, it was assigned the stereotype Quantum Program. The Quantum Operations
are the typical methods of any usual programming language that we already know,
but these ones use quantum components. Nevertheless, because the different Quantum
Operations can be called between them, were assigned the CallableUnit element. The
ActionElement element is assigned to those elements whose describe a basic unit of
behavior, just like theQuantum Gate andQubit measure (this last stereotype is assigned
to the Measure gate) do.

<extensionFamily>
<stereotype name="quantum programming language" />
<stereotype name="quantum program" />
<stereotype name="quantum operation" />
<stereotype name="quantum gate" />
<stereotype name="qubit" />
<stereotype name="qubit measure" />
<stereotype name="control qubit" />
<stereotype name="qubit array" />

</extensionFamily>

Fig. 2. Extension family of KDM for quantum components.

216 L. Jiménez-Navajas et al.

The Qubit and Qubit Array stereotype are mapped in KDM to StorableUnit since in
the different quantum programming languages, a qubit is nothing more than a variable
with a stored value (in this case a 0 or 1). Further details about the usage of the KDM
extension are in previous work [4].

Table 1. Matching KDM elements with the defined one of the extension family.

KDM Element Extension Family Element
CodeModel Quantum program
CallableUnit Quantum operation
ActionElement Quantum gate
StorableUnit and ParameterUnit Qubit
ActionElement Qubit measure
ActionRelation Control qubit
StorableUnit Qubit array

3.2 Quantum UML Extension

In order to manage all the different quantum entities in UML, it is necessary to extend
the UMLmetamodel. There are several ways to do this, but we proposed [8] an extension
by creating an UML Profile. UML profiles are created as a set of stereotypes, tagged
values and constraints defined for some of the existing UML elements. A key aspect of
this extension mechanism is that the defined profile would remain fully compliant with
UML. This advantage would allow us to use existing modelling tools.

In Fig. 3 can be seen the preliminary UML profile to graphically represent quantum
programs by means of activity diagrams. On the right side of the image, the stereotypes
that have been added to be able to work with the different quantum entities are grouped
together: quantum circuit, qubit, quantum gate, controlled qubit, measure and reset. The
left side of Fig. 3 shows the UML metamodel excerpt for representing UML Activity
Diagrams. Leftwards arrows from stereotypes to metaclass elements in are extension
elements that are used to indicate that the properties of a metaclass are extended through
the respective stereotype.

The <<QuantumCircuit>> stereotype points directly to the Activity metaclass
because, to represent a quantum algorithm, a single activity diagram with the
<<QuantumCircuit>> stereotype will be used. Within this activity diagram, qubits
will be represented as ActivityPartition with the <<Qubit>> stereotype. Graphically,
the qubits can be seen as horizontal lineswhere the different quantumgates can be placed.
This way of representing qubits is similar to the way IBM Quantum Experience [17]
does it. All the quantum gates are action elements but depending on the way they act or
behave on a qubit they will have one stereotype or another. The gates that affect the state
of the qubit without any control qubit (such as the Hadamard gate or the Pauli’s fam-
ily) are represented as call operation actions plus the stereotype <<QuantumGate>>.
However, those quantum gates employing a control qubit are represented by multi-
ple action elements. The control qubit of the gate is represented as send signal action

KDM to UML Model Transformation 217

with the stereotype <<controlled qubit>> and the other part of the gate as accept
event action with the <<quantum gate>> stereotype. In order to keep the relationship
between both parts, constraints have been used between the involved elements. Addi-
tionally, special operations like qubit measuring and qubit resetting are represented with
value specification action elements and the respective stereotypes <<measure>> and
<<reset>>.

Fig. 3. Quantum UML profile extracted from [8]

4 KDM to UMLModel Transformation

This section explains in detail the main contribution of this paper, the transformation
from KDM to UML models for quantum information. This proposal is framed in the
restructuring stage of the overall quantumsoftware reengineering process [3] (cf. Sect. 2).

KDM models, represented according to the quantum extension family [4], are able
to manage all the different quantum programs’ components and their interrelationships
(e.g., quantum circuits, qubits, quantum gates, etc.). Additionally, KDM represents such
components independently on the quantum technology and programming languages.
Such standardization of the quantum code allows to manage quantum elements without
a specific concern on the quantum platform or framework where it was developed. The
proposal of this paper follows the same technology-agnostic approach since it focuses

218 L. Jiménez-Navajas et al.

on transforming KDM models into the well-known standard UML. The outgoing UML
models are useful since these can be used for capturing further analysis and design details
for hybrid information systems in restructuring and forward engineering stages.

The designed KDM-to-UML has been formally defined in ATL [7]. ATL is a model
transformation language as a combination of declarative and imperative language that
provides mechanisms to produce a set of target models compliant with the specified
metamodel, from a set of source models. ATL additionally supports OCL [18] for defin-
ing additional constraints in transformation rules. An ATL transformation program is
composed of rules that define what elements of the input metamodel are transformed in
other elements regarding the output metamodel.

A key part for designing the model transformation is to define the input and output
metamodels. The input metamodel is an extension of KDM which allows the iden-
tification of quantum elements proposed in [4] and explained in Sect. 2. The output
metamodel is the ECOREmetamodel for UML version 2.5.1, which defines the abstract
syntax of UML. This ECORE metamodel can be seen in [19] and contains the UML
model description compliant with EMOFmetamodel [20]. The UMLmetamodel is used
as is, although a quantum UML profile as depicted in [8] is used for modelling quantum
circuits as UML activity diagrams (cf. Sect. 3).

Having defined the metamodels, the design of the ATL transformation attempts to
identify which quantum entities could match with elements of the UML metamodel.
In Sect. 3 is explained on detail the Quantum UML Profile and the reasoning of its
equivalences. This identification of the elements with the metamodel is essential for the
transformation.

The KDM-to-UML transformation followed a top-down order. Thus, the first KDM
elements that were transformed to UML are those that group the remaining nested
elements, i.e., the Segment element as the KDM model’s root element (which may
contains from different perspectives, the description of a whole system, including its
components and interrelationships [21]).Whilst the last, andmore atomic,KDMelement
is the actionRelation, which specifies on which qubit a quantum gate acted and its flow
control.

The remainder of this section will be devoted to explaining the ATL rules employed
on transformation of the main sets of KDM elements, which are the quantum program
(referred to the whole quantum algorithm file), the qubit declaration, the quantum gate
usage (as the different kinds of quantum gates) and the execution flow.

4.1 Quantum Program Rule

In KDM, the full quantum program is represented as a CompilationUnit, because it
defines a container of all the program elements, so it was an essential element on the
transformation. This CompilationUnit has been transformed into Interaction due to the
similarities in its definitions, since this last one groups all the elements or actions that
share a common objective.

As in the KDMmodel, all elements that are nested in the sameCompilationUnit will
be nested in Interaction but with corresponding transformations, such as the declaration
of a qubit or the usage of a quantum gate.

KDM to UML Model Transformation 219

A simplified and graphical example of this transformation can be seen in Fig. 4. On
the left-hand side of the image is located the input model defined in KDM that contains
a CompilationUnit and inside it is nested a qubit (with the attribute “name”) and a
Hadamard gate (which has the attribute “target” that defines the qubit on which it acts).
In themiddle of the image is the transformation programwith theCompUnit2Interaction
rule, where it is defined that all qubits will be of type edge and the Hadamard gate of
type ownedNode. Finally, on the right side of the image is the resulting model, with the
CompilationUnit transformed to Interaction and with it, the nested elements together
with their attributes.

Source model KDM Model Transformation Target model UML

CompliationUnit A {
qubit{

name = q1
}
hadamard{

target = q1
}

}

rule CompUnit2Interaction{
edge = qubit
ownedNode = hadamard

}

Interaction B {
<edge qubit name =“q1” />
<ownedNode hadamard

target = “q1” />
}

Fig. 4. Quantum program rule transformation

The CompilationUnit to Interaction transformation rule can be seen in Fig. 5, where
the type of element to be identified is specified in line 3 and the type to which it has
to be transformed in line 5. From line 6 to 7 it is specified by means of OCL that the
ownedBehavior attribute of the output model will have as attributes the CallableUnit
type elements of the input model.

4.2 Qubit Declaration Rules

In order to define the qubits in the KDM model, StorableUnit has been used, this is
because qubits, when implementing algorithms, are nothing more than variables with
a stored value (in this case 0 or 1). For the UML model, these StorableUnit have been
transformed to ActivityPartition because the qubits in the final model will be represented
as horizontal lines where the quantum gates can be placed, thus representing that such
a quantum gate acts on a certain qubit. This way of representing qubits is the same way
we can find in the different graphical editors of quantum algorithms, such as IBM Q
Experience or Quirk. The rule used to transform the StorableUnit into ActivityPartition
can be seen in Fig. 6, where the ActivityPartition simply has the same “name” attribute
as the StorableUnit.

220 L. Jiménez-Navajas et al.

Fig. 5. Compilation unit to interaction ATL rule.

Fig. 6. StorableUnit to ActivityPartition rule.

4.3 Quantum Gates Rules and Execution Flow

In KDM, all quantum gates are identified asActionElement because they have a behavior
on another element (in this context, on a qubit). However, UML allows to define more
precisely what kind of behavior it is. Therefore, depending on the type of quantum gate,
they will be of one type or another or will have certain attributes or not.

The whole Hadamard’s gate transformation to UML can be seen in Fig. 7. As it just
affects to the state of a qubit, it has been defined as CallOperationAction in UML. This
is because CallOperationAction transmits an operation call request to a target object.
In the left side of the image is located the gate represented in KDM with two attributes
(“name” and “id”) and three children (one “source” and two “actionRelation”). The
actionRelation element of type Addresses points with the to attribute to the qubit which
the quantum gate is applied andwith from to the gate that acts (itself). The actionRelation
element of typeFlow specifies the flow that the information follow, where the to attribute
points to the quantum entity that precedes.

In the middle of Fig. 7 are located the two rules necessary for the transformation. At
the upper part is located the rule for the transformation of Address to CallOperationAc-
tion (to make it simpler, the methods that check whether such quantum gate is Hadamard
or not have been omitted), where the attributes of the output model defined in that rule
are “name” and “inPartition”. The “name” attribute specifies the name of the gate and
is taken from the element pointed to by its “from” attribute and the “inPartition” attribute
defines which qubit is the quantum gate acting on, that is why the “to” attribute is used
as explained previously. In the lower middle part of the image, you can see the rule to
transform the actionRelation from Flow to ControlFlow type. The standard mechanism
of UML for specify the flow of the information is by means of ControlFlow, therefore
this transformation is one of the most important. So, for defining the target and source
of the flow of the information, were employed the to and from attributes of Flow.

KDM to UML Model Transformation 221

Fig. 7. Hadamard’s gate transformation.

Finally, in the right side of Fig. 7 can be seen how the transformation ends, with Cal-
lOperationAction and ControlFlow each one with its corresponded attributes. Thanks
to the bidirectionality of the transformation, the outgoing attribute is set automati-
cally in CallOperationAction due to the target attribute in ControlFlow. The real UML
representation of the Hadamard’s gate can be seen in Fig. 8.

Fig. 8. Hadamard’s gate in UML.

4.4 Running Example

As an example of the transformation of KDM to UML, Fig. 9 briefly shows the result
of transforming the quantum teleportation algorithm. The teleportation Q# code from
which the KDM model was build is available in [22]. Due to the extension limitations,
the input and output model are visualized hierarchically with the modelling tools of
the Eclipse IDE [23]. The whole resources for this example can be found at [24] (i.e.,
metamodel, input and output models).

The generation of the KDM model by reverse engineering can be observed on the
left-hand side of Fig. 9. The definition of the extension family (previously explained) is

222 L. Jiménez-Navajas et al.

placed at the beginning of the model. The elements of the KDM model Teleport, Tele-
portClassicalMessage and TeleportRandomMessage belong to the CallableUnit type
because, as explained in Sect. 3.1, they correspond to the methods working with qubits,
being in the case of the Callable Unit Teleport, the qubit with the name register. In case
the qubits are passed by reference, those qubits will be found as children of an element
of type Signature.

Fig. 9. Result of the model transformation for the teleportation algorithm.

The right-hand side of Fig. 9 is shown the outgoing UML model (available in [24]).
Unlike the KDM model, the methods defined on the previous paragraph are now of
Activity type. We can distinguish that, at the beginning of each Activity, an Initial Node
is declared to denote where the action flow starts and a Final Node to indicate where it
ends. In contrast with the KDM model, to denote the flow of action, in UML it is done
through the Control Flow that can be observed at the beginning of each method, while
in KDM it is done through attributes of the elements.

One major change with respect the KDM model, is that depending on the type of
action a quantum gate does, in the UMLmodel has on type or another, whereas on KDM
model they are all justElements. Furthermore, the ControlledNot gate in theUMLmodel
is divided into two elements, one for the lecture of the control qubit as a Send Signal
Action and the other one for representing the qubit state transformation with a Accept
Event Action.

KDM to UML Model Transformation 223

5 Conclusions and Future Work

This paper presented a solution for addressing the challenge of the modernization of
classical information systems towards hybrid ones. This research specially focuses on
the designing of hybrid systems through UML. In order to perform the design of the new
systems, paper proposes amodel transformation betweenKDMandUMLmodels, which
has been implemented in ATL. The corresponding metamodels have been extended to
work with the different quantum entities (qubits, quantum gates, etc.). In particular, the
quantum circuits are modelled as activity diagrams by using a specific quantum UML
profile.

The KDM-to-UML transformation has been accomplished and its usage with a real
model has been demonstrated. Thus, quantum algorithms can be modelled as UML
activity diagrams that can be combined with the other design models of the system. This
integration contributes to define high-level designs within the modernization process of
hybrid information systems. Additionally, this research makes it possible to visualize
quantum algorithms in UML designs, enabling a graphical view of the flow of the action
through activity diagrams.

When gathering quantum algorithms into KDM models, specific quantum informa-
tion is already abstracted thanks to KDM. Then, the proposed model transformation is
performed between KDM and UML that could be considered to be at the same abstrac-
tion level. However, the future research will study in-depth how affect the gap between
the abstraction level of UML (originally intended to deal with object-oriented software)
and circuits (set a very low abstraction level). Furthermore, as future work, wewill define
transformations to other types of UML diagrams, like classes, sequence, or state.

Acknowledgments. Thiswork is part of the SMOQUINproject (PID2019-104791RBI00) funded
by the Spanish Ministry of Science and Innovation (MICINN) and “QHealth: Quantum Pharma-
cogenomics Applied to Aging”, 2020 CDTI Missions Programme (Center for the Development
of Industrial Technology of the Ministry of Science and Innovation of Spain). We would like to
thank all the aQuantum members, and particularly Guido Peterssen and Pepe Hevia, for their help
and support.

References

1. Haroche, S., Raimond, J.-M.J.P.T.: Quantum computing: dream or nightmare? Phys. Today
49(8), 51–54 (1996)

2. Piattini, M., Peterssen, G., Pérez-Castillo, R.: Quantum computing: a new software engineer-
ing golden age. ACM SIGSOFT Softw. Eng. Notes 45(3), 12–14 (2020). https://doi.org/10.
1145/3402127.3402131

3. Pérez-Castillo, R., Serrano, M.A., Piattini, M.: Software modernization to embrace quantum
technology. Adv. Eng. Softw. 151, 102933 (2021)

4. Jiménez-Navajas, L., Pérez-Castillo, R., Piattini, M.: Reverse engineering of quantum pro-
grams toward KDM models. In: Shepperd, M., Brito e Abreu, F., Rodrigues da Silva, A.,
Pérez-Castillo, R. (eds.) QUATIC 2020. CCIS, vol. 1266, pp. 249–262. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58793-2_20

https://doi.org/10.1145/3402127.3402131
https://doi.org/10.1007/978-3-030-58793-2_20

224 L. Jiménez-Navajas et al.

5. OMG. ADM Task Force by OMG (2020). Accessed 25 May 2020. https://www.omg.org/
adm/

6. Piattini, M., et al.: The talavera manifesto for quantum software engineering and program-
ming. In: QANSWER (2020)

7. Foundation, E.: ATL - a model transformation technology. https://www.eclipse.org/atl/
8. Pérez-Castillo, R., Jiménez-Navajas, L., Piattini, M.: Modelling quantum circuits with UML.

In: Second International Workshop on Quantum Software Engineering (Q-SE 2021). IEEE
Computer Society, Madrid (2021). In Press

9. Egger, D.J., et al.: Quantum computing for finance: state of the art and future prospects (2020)
10. Cao, Y., et al.: Quantum chemistry in the age of quantum computing. Chem. Rev. 119(19),

10856–10915 (2019)
11. Ristè, D., et al.: Demonstration of quantum advantage in machine learning. npj Quant. Inf.

3(1), 1–5 (2017)
12. Bagnato, A., et al.: MOMOCS: MDE for the modernization of complex systems. Genie Log.

85, 49–52 (2008)
13. Comission, E.:MODELWARE: a new approach tomodel-driven development (2005). https://

cordis.europa.eu/article/id/97188-modelware-a-new-approach-to-modeldriven-development
14. Pérez-Castillo, R., de Guzmán, I.G.R., Piattini, M.: Architecture-driven modernization. In:

Modern Software Engineering Concepts and Practices: Advanced Approaches, pp. 75–103.
IGI Global (2011)

15. Selic, B.: Using UML for modeling complex real-time systems. In: Mueller, F., Bestavros,
A. (eds.) LCTES 1998. LNCS, vol. 1474, pp. 250–260. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0057795

16. Pérez-Castillo, R., et al.: Knowledge discovery metamodel-ISO/IEC 19506: a standard to
modernize legacy systems. Comput. Stand. Interfaces. 33(6), 519–532 (2011)

17. IBM. IBM Quantum Experience Webpage. https://quantum-computing.ibm.com/
18. OMG. Object Constraint Language (2014). https://www.omg.org/spec/OCL/2.4. Accessed

18 Mar 2021
19. UML ECORE. https://github.com/ricpdc/qrev-api/blob/main/qrev-api/resources/metamo

dels/uml.ecore
20. Eclipse. EMF, ECore & Meta Model. https://www.eclipse.org/modeling/emft/search/con

cepts/subtopic.html. Accessed 27 March 2021
21. OMG. Architecture-Driven Modernization: Knowledge Discovery Meta-Model (KDM)

(2016). https://www.omg.org/spec/KDM/1.4/PDF
22. Microsoft. Teleportation Algorithm in Q#. https://github.com/ricpdc/qrev-api/blob/main/

qrev-api/test/casestudy/qsharp_programs/TeleportationSample.qs
23. Eclipse. Eclipse Modeling Project Website. https://www.eclipse.org/modeling/
24. Luis Jiménez-Navajas, R.P.-C.: Folder in a Github repository with the resources (2021).

https://github.com/ricpdc/qrev-api/tree/main/qrev-api/test/es/alarcos/qrev/atl/models

https://www.omg.org/adm/
https://www.eclipse.org/atl/
https://cordis.europa.eu/article/id/97188-modelware-a-new-approach-to-modeldriven-development
https://doi.org/10.1007/BFb0057795
https://quantum-computing.ibm.com/
https://www.omg.org/spec/OCL/2.4
https://github.com/ricpdc/qrev-api/blob/main/qrev-api/resources/metamodels/uml.ecore
https://www.eclipse.org/modeling/emft/search/concepts/subtopic.html
https://www.omg.org/spec/KDM/1.4/PDF
https://github.com/ricpdc/qrev-api/blob/main/qrev-api/test/casestudy/qsharp_programs/TeleportationSample.qs
https://www.eclipse.org/modeling/
https://github.com/ricpdc/qrev-api/tree/main/qrev-api/test/es/alarcos/qrev/atl/models

Hybrid Classical-Quantum Software
Services Systems: Exploration of the

Rough Edges

David Valencia , Jose Garcia-Alonso(B) , Javier Rojo , Enrique Moguel ,
Javier Berrocal , and Juan Manuel Murillo

Social and Pervasive Innovation Lab (SPILab), University of Extremadura,
Avda. de la Universidad s/n, 10003 Cáceres, Spain

{davaleco,jgaralo,javirojo,enrique,jberolm,juanmamu}@unex.es
http://spilab.es/

Abstract. The development that quantum computing technologies are
achieving is beginning to attract the interest of companies that could
potentially be users of quantum software. Thus, it is perfectly feasi-
ble that during the next few years hybrid systems will start to appear
integrating both the classical software systems of companies and new
quantum ones providing solutions to problems that still remain unman-
ageable today. A natural way to support such integration is Service-
Oriented Computing. While conceptually the invocation of a quantum
software service is similar to that of a classical one, technically there are
many differences. To highlight these differences and the difficulties to
develop quality quantum services, this paper takes a well-known prob-
lem to which a quantum solution can be provided, integer factorization,
and the Amazon Braket quantum service platform. The exercise of try-
ing to provide the factorization as a quantum service is carried out. This
case study is used to show the rough edges that arise in the integration
of classical-quantum hybrid systems using Service-Oriented Computing.
The conclusion of the study allows us to point out directions in which
to focus research efforts in order to achieve effective Quantum Service-
Oriented Computing.

Keywords: Quantum services · Classical services · Quality

1 Introduction

Quantum computing is starting to establish itself as a commercial reality [15].
Several major computing corporations have already built working quantum com-
puters, there are tens of quantum programming languages and simulators, and
real quantum computers can already be used by the general public through the
cloud. All this is motivating software development companies to take the first
steps by launching their own proposals for the integral development of quan-
tum software [2,22,23,25,31]. All of these signals are an urgent call to software
engineers to prepare and enroll to sail the quantum seas.
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 225–238, 2021.
https://doi.org/10.1007/978-3-030-85347-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_17&domain=pdf
http://orcid.org/0000-0001-5571-2142
http://orcid.org/0000-0002-6819-0299
http://orcid.org/0000-0001-9189-1133
http://orcid.org/0000-0002-4096-1282
http://orcid.org/0000-0002-1007-2134
http://orcid.org/0000-0003-4961-4030
https://doi.org/10.1007/978-3-030-85347-1_17

226 D. Valencia et al.

It is generally assumed that on the way to a new world in which software
systems are mostly quantum there will be a transition time in which classical
and quantum systems must not only coexist but collaborate by interacting with
each other [27]. This is what has been called classical-quantum hybrid systems
[16,17]. The advances provided by software engineering in the last two decades
allow us to affirm that a natural way to approach such collaborative coexistence
is by following the principles of service engineering and service computing.

Among the reasons for this, two can be highlighted. On the one hand, as
hardware technology matures and achieves more affordable costs, it is reasonable
to think that companies will be inclined to use quantum infrastructure and
quantum software as a service, as they are used to do nowadays with classical
computing resources. On the other hand, it is reasonable to think that, at least
initially, quantum systems will be used to solve only those parts of problems that
cannot be solved by classical architectures, while those parts of problems that
are already efficiently solved by classical architectures will continue to be treated
as before. A natural way to achieve these quantum solutions is by consuming
quantum services.

Conceptually, the invocation of a quantum program is similar to that of a
classical service. A piece of software needs a result to be produced by a quantum
system and to do so it consumes a service. For the sake of service engineering
principles, such an invocation should even be agnostic of whether the service that
will return the result is quantum or not. Technically, however, the invocation of
a quantum service is very different from that of a classical service and still poses
a challenge today. This is due to the inherent nature of quantum computing,
meaning that a quantum service differs from classical services in which it includes
entanglement and superposition of solutions, and will collapse to a single solution
when interacting with external world, leading to having a probability amplitude
associated to the results obtained upon observations of the quantum system.

Servitizing a quantum piece of software, namely converting it in a service
endpoint that can be invoked through a standard service request, is possible
with the existing technology. However, in the current status of quantum soft-
ware it means eliminating most of the advantages that made Service-Oriented
Computing a commercial success. Specially, those related with software quality
like composability, modularity, maintainability, reusability, etc.

The reasons for this are multiple. First and foremost, the specificity of each
architecture makes quantum algorithms and their parameters dependent on the
specific quantum hardware in which they will be executed. But also, the return
of the result of a quantum process is subject to errors or does not support the
intermediate verification of results (due to the system collapse). Thus, different
quantum architectures require very different skillsets. For example, circuit based
quantum programming require developers to know the details of quantum gates
[31], while quantum annealing programming requires to adapt the problem to
that specific metaheuristic [3]. Consequently, invoking a quantum program in an
agnostic way is impossible today and violates all the principles of service engi-
neering. All above highlights the need for the development of Quantum Service
Engineering.

Hybrid Classical-Quantum Software Services Systems 227

In this paper we explore the current state of quantum software engineering
from a service-oriented point of view. The integer factorization problem [11,20] is
used to illustrate the different problems that arise when a quantum piece of code
is tried to be used as a service. Amazon Braket1, the quantum computing service
offered by Amazon as part of their AWS suite is used as the services platform.
Amazon is globally recognized as the leader company in services technology and
through Braket they offer access to quantum computers from three different
hardware providers. Using this platform as the basis for quantum services devel-
opment, we identify the problems and limitations of current technology using the
lessons learned from service-oriented computing. The paper provides an explo-
ration of the problems to be addressed pointing out different research directions
for the development of a future Quantum Service Engineering.

In order to do that, the rest of the paper is organized as follows. Section 2
details this work background in both fields service-oriented computing and quan-
tum software development. Section 3 addresses the servitization of quantum soft-
ware using Amazon Braket. Section 4 lists the main limitations found in today
technology that limits the benefits of quantum services. Section 5 details the
most relevant related works. And finally, Sect. 6 presents the paper conclusion
and future works.

2 Background

Service-oriented computing is a paradigm that utilizes services as the fundamen-
tal elements for developing software [21]. One of its pillars is Service Oriented
Architecture (SOA) that proposes the implementation of complex software solu-
tions through the use of a set of services that are composed and choreographed
[7]. The basic composition mechanism is the service call that allows a service to
be invoked from another piece of code (potentially another service) agnostically
with respect to the place, technology or architecture of the invoked service. The
services can thus be maintained, evolved, replaced and reused independently
without affecting the software that invokes them. It is precisely these properties
what makes them especially attractive to create quality software. Over the last
two decades, service-oriented computing and SOA in general, and web services
in particular, have been at the center of intense research [4] leading to monolithic
software being gradually replaced by service-based software run in the cloud.

The success of Service-Oriented Computing has been possible, to a great
extent, thanks to the development of Cloud Computing as a paradigm that aims
to provide reliable and customized dynamic computing environments [29]. Some
of the main reasons behind the success of the cloud includes: the ability for
companies to better control their costs, since they do not have to buy, upgrade
and maintain expensive hardware and only pay for their use; and the flexibility
and scalability provided by cloud vendors that allow companies to instantly
increase or decrease their hardware capabilities according to their needs. These
have made the cloud one of the most successful business models of the last
1 https://aws.amazon.com/braket/.

https://aws.amazon.com/braket/

228 D. Valencia et al.

decades. Recent estimations calculate that, in the USA only, cloud computing
contributed with approximately 214 billion dollars in value-added to the GDP
and 2.15 million jobs in 2017 [9].

Given these numbers is not a surprise that current quantum computers, which
are still a very expensive hardware to build and operate, are being offered fol-
lowing this model. In its current form, most quantum computers can be accessed
through the cloud in a model called by some researchers Quantum Computing
as a Service (QCaaS) [26]. This model can be compared to the classical Infras-
tructure as a Service (IaaS) model offered in cloud computing. QCaaS allows
developers to access some of the world existing quantum computers, neverthe-
less, this access is very dependent of the specific hardware and developers must
have great proficiency in Quantum Computing to benefit from its advantages.

To increase the abstraction level of QCaaS, there are multiple ongoing
research efforts. From a commercial perspective, platforms like the above men-
tioned Amazon Braket provide a development environment for quantum software
engineers or, like QPath2, an ecosystem that covers a wide range of possible
applications by integrating the software classical and quantum worlds in a quan-
tum development and application life-cycle platform for high-quality quantum
software.

From a more academic perspective, a significant number of works are starting
to appear in the field of quantum software engineering [24,32]. These works focus
on translating the lessons learnt in classical software engineering to improve the
quality of quantum software. However, as far as the authors know, very few
works focus on the perspective of service engineering for quantum and hybrid
software.

However, some works are starting to appear in this domain, like [1] where
Quantum application as a Service (QaaS) is proposed to narrow the gap between
classical service engineering and quantum software. Works like this reveal the
need to focus on a service oriented approach for the development of quantum
services.

3 Quantum Servitization: The Amazon Braket Case

To address the current state of quantum services, in this paper we have decided
to use Amazon Braket. Amazon defines Braket as a fully managed quantum
computing service. Specifically, Braket provides a development environment to
build quantum algorithms, test them on quantum circuit simulators, and run
them on different quantum hardware technologies.

Given that Amazon is currently the global leader regarding cloud computing
and services technologies through AWS, Braket seems a good alternative to
develop quantum services. Nevertheless, since the state of quantum software
development is roughly the same in the different existing platforms, we expect
similar results to the ones presented in this paper if the quantum services were
developed on a different platform.
2 https://www.quantumpath.es/.

https://www.quantumpath.es/

Hybrid Classical-Quantum Software Services Systems 229

The basic building block of service-oriented computing is a service, defined as
a self-describing, platform-agnostic computational element that support rapid,
low-cost composition of distributed applications [21]. However, Braket is not
directly prepared to offer the developed quantum algorithms as services that
can be invoked through an endpoint to compose a more complex application.

This shortcoming can be addressed by wrapping the quantum algorithm in a
classical service. This implies including a classical computer to run the classical
service that, in turn, invokes the quantum computer. As far as the authors
know, there is currently no way of directly invoking a quantum algorithm as a
service. Figure 1 shows an example of this approach. One of the simplest and
well-known quantum circuits, the one used to create Bell states between two
qubits is wrapped by a Flask3 service. This Flask service can be deployed in a
classical computer and provides a simple way to include quantum algorithms in
a complex service-oriented solution.

Next, we present a more complex quantum algorithm used as a case study to
identify the problems and limitations of current technology from the perspective
of Service-Oriented Computing.

3.1 Integer Factorization Case Study

In order to make the analysis as broad and interdisciplinary as possible, we have
decided to select a problem well-known by the scientific community working in
quantum computing. At the same time, the selected problem is simple enough to
be comprehended by any newcomer. Between the several applications that sat-
isfy both conditions, we have decided to tackle on Integer Factorization, more
precisely with a particular application of the later denoted Prime Factorization.
As we all know, although this fundamental problem in number theory is compu-
tationally hard, it is not believed to belong to the NP-hard class of problems [11].
Nonetheless, it is a problem that has been used as a basic hardness assumption
for cryptographic algorithms, such as the famous RSA algorithm. Thus, integer
factorization and identification of new methods to address this task acquire an
important role in information security.

There are multiple proposals and algorithms for the solution of this prob-
lem, being the most famous Shor’s algorithm [20]. This algorithm is normally
described in terms of quantum gates and circuits, suitable for development and
execution on machines such as IBM’s Q computing chip [8], but when considering
other approaches to quantum computing, such as Adiabatic Quantum Comput-
ing based on concepts such as quantum annealing, it is not possible to implement
Shor’s algorithm directly. Nonetheless, other algorithms have been proposed for
prime factoring, such is the case of the algorithm proposed by Wang et al. in
[28]. Thus, in the studies conducted on this paper these will be the algorithms
proposed for integer factorization: Shor’s algorithms for quantum machines pro-
grammed with quantum circuits and gates, such as Rigetti’s [19] and IonQ’s

3 https://flask.palletsprojects.com/.

https://flask.palletsprojects.com/

230 D. Valencia et al.

Fig. 1. Quantum algorithm wrapped by a classical service

[12]; and integer factorization based on quantum annealing for adiabatic quan-
tum machines such as D-Wave’s [10].

These algorithms also serve as an illustration of a problem derived of the rel-
ative novelty of quantum computing and its different existing implementations.
Namely, the nonexistence of algorithms with do-it-yourself characteristics. This
is mainly due to the complex nature of the problems addressed by quantum
computing and to the proximity of the algorithms with the underlying hardware
used. This context is producing problems similar to those of the 60’s software
crisis [18], where each algorithm was designed for each particular computing
hardware, many times having to recreate the algorithms for each new machine
or even for each new increment of the problem. A reminiscent of this is found, for
example, when having to generate a new circuit in Shor’s algorithm for primes
to be factorized. Although this is done relatively easy by using algorithms to
generate these circuits automatically, for the great majority of possible users of
quantum computing, the ability of being able to create these types of “meta-
algorithms” is beyond their capabilities, complicating the expansion of quantum
computing usage out of the specialized field. Thus, it is necessary to offer solu-
tions to non-specialized users for the utilization of quantum computing, such as
the case of deployment of quantum services which allow to hide the complexity

Hybrid Classical-Quantum Software Services Systems 231

to users, only providing with entry end-points and returning the results of the
execution.

3.2 Integer Factorization in Amazon Braket

To illustrate the actual situation of quantum services that can be developed on
Amazon Braket we have translated the above mentioned integer factorization
algorithms to this platform.

At the moment of writing this paper Braket support three different quantum
computer simulators and real quantum computers from three different hardware
vendors. Specifically, the supported quantum computers include two vendors
whose development is based on quantum circuits, Rigetti and IonQ, and one
vendor based on quantum annealing, D-Wave. The integer factorization algo-
rithms have been tested in all supported quantum machines and simulators.

Since the supported simulators are also based on quantum circuits, Shor’s
algorithm has been used in both, simulators and quantum circuits hardware.
Figure 2 shows a fragment of the quantum period-finding subroutine of Shor’s
algorithm implemented using Amazon Braket. The complete circuit for Shor’s
algorithm can be executed without changes in the three simulators and the two
circuit based computers supported by Braket. Nevertheless, is interesting to note
that the measurement and reinitialization of qubits supported by many other
existing simulators, and that can be therefore found in public implementations
of Shor’s algorithm, are not supported by Braket. In the figure, this part of the
algorithm is left commented as an example. This difference with other existing
solutions causes that the implementation presented here only works on certain
occasions. Shor’s algorithm can be adapted to avoid the use of these operations
which means additional efforts to adapt one of the most well-known algorithms
to the specifics of a given quantum platform.

Although, the quantum circuit would be the same regardless of the quantum
hardware or simulator used, the way in which the algorithm is invoked changes
depending on where it will be run. Figure 3 shows the Braket invocation code for
the three simulators and the two quantum computers supported. As can be seen
in the Figure, using the local simulator is the most straightforward invocation.
To run the algorithms in the other simulators an s3 (Amazon simple storage
system) destination has to be defined, where results will be stored, alongside
a timeout for polling these results (if polling timeout is too short, results may
not be returned within the polling time). Finally, for running the algorithm
on real quantum computers a recovery task has to be defined. The quantum
algorithm execution is an asynchronous operation and the developer is in charge
of consulting the results when ready.

Finally, the code has to change significantly to run integer factorization in
an adiabatic quantum machine, such as D-Wave’s, since they are based on the
adiabatic theorem closely related to quantum annealing. Thus, the mapping
challenge differs from gate-based machines rendering quantum circuits inappro-
priate. Figure 4 shows the Braket code to factorize the number 21 using a D-Wave
quantum machine.

232 D. Valencia et al.

Fig. 2. Fragment of the quantum circuit needed to run Shor’s algorithm in Amazon
Braket

These examples, although small, are enough to remark the current limitations
of quantum software from the point of view of service-oriented computing.

4 Current Limitation of Quantum Services

The analysis carried out during and after the experiments allows us to conclude
that there is some roughness, limitations and problems that arise when a quan-
tum piece of software is expected to be provided as a service. The mentioned
limitations are not related to the fact that quantum services cannot be built but
to the fact that, by implementing quantum services with current service tech-
nologies, the potential benefits of Service-Oriented Computing are lost. Such
roughness can be classified into three different types depending on their nature.

Hybrid Classical-Quantum Software Services Systems 233

Fig. 3. Fragment of the Amazon Braket code to invoke the Shor’s algorithm in different
devices

Fig. 4. Fragment of the Amazon Braket code to run the integer factorization algorithm
in a D-Wave device

First, those related to the impossibility of abstracting the service from the archi-
tecture in which they are executed. Second, those associated with shortcomings
of the actual abstractions to express or conceive architectures of quantum ser-
vices. Finally, a third category related to the lack of support infrastructure for
quantum services execution. The rest of this section delves into each of these
categories.

In the case of the first category, problems related with the impossibility
of abstracting the service from the architecture in which they are executed,
they can be directly connected to vendor locking. This creates many different
complications when generating and deploying services, such as, different types
of parameters depending on the underlying machine to execute the code, as
can be seen in the previous examples (see Figs. 3 and 4). In particular, when
considering quantum annealing, the architecture itself restricts the specification
of the problems. In this particular machine, the specification must be formulated
using a QUBO or Ising form (see Fig. 4), defining it by means of graphs with
valued vertex and valued links between these vertex. Any high order interrelation
such as those found on terms involving 3 or greater number of variables must
be mathematically transformed to simpler 2 variables related terms, a task with
great complexity due to the necessity of ample and profound comprehension of
the problem and dexterity on mathematical knowledge and tools.

Another difficulty of this category lies in the results generated. This is linked
to the underlying physical phenomena that serve as base for the quantum archi-

234 D. Valencia et al.

tecture, such as the case of ion traps or quantum chips. Thus, apart from the
well-known situation where the algorithms must be run several times to ensure
statistical certainty adding a probability term to the results, depending on the
architecture one must work with a panoply of solutions ranging from energy lev-
els of solutions to “simple” probabilities and cases. This is directly incompatible
with the philosophy of services.

Thus, to tackle these particular problems, the science of quantum services
has to determine ways to abstract the algorithms and their results of the partic-
ularities of the machines.

Continuing with the categories, in the case of problems associated with short-
comings of the actual abstractions to express or conceive architectures of quan-
tum services, this could be related to the misconception of directly using clas-
sical software abstractions for quantum software development. Reality posses
that these abstractions are, in the best case, limited or directly inappropriate
to express quantum services architectures. For example, the transparency and
feature hiding typical of services cannot be achieved, even when working with
solutions thought to serve as a simplification such as Amazon Braket. In other
words, taking as starting point code developed in a well-known quantum pro-
gramming language, almost standard of fact, such as Qiskit [31], the migration
of the code to Amazon bracket’s platform forces a conversion of code to the
particular solution, having to generate new code and not doing a simple change
of gates or functions denomination, along with different forms of invocations
depending on the architecture selected to execute the code. This is a subset of a
bigger drawback of quantum computing algorithms such are defined nowadays,
first, having to accommodate the problems to new formulations to be used on
quantum computing, such as the case of changing from integer factorization to
period finding in the case of Shor’s algorithm. Second, in many cases it is neces-
sary “almost” significant modifications of the algorithm for each significant step
of the problem size, i.e. different circuits for Shor’s algorithm for factoring 15,
143 and so on. In order to work on this and further develop quantum services,
it is necessary to rethink actual software development for quantum computing,
having to abandon easy-to-carry preconceptions and contemplate the possibility
and necessity of new quantum software engineering strategies.

Lastly, the problems related to the lack of general infrastructure for quantum
services execution induces some situations that make it difficult to further imple-
ment and deploy quantum services. Such is the case of not being able to deploy
quantum code on a quantum machine and only being able to execute it through
remote invocations, along with other aspects related on how to manage the busi-
ness side of quantum services, such as uptime, usage, and so on. Thus, quantum
service researchers will have to further explore the transformations needed to
evolve from small number of quantum machines owned by few enterprises to
quantum cloud ecosystems fully available to a more general public.

Hybrid Classical-Quantum Software Services Systems 235

5 Related Works

Due to the young nature of the quantum software engineering discipline, there
is still not a lot of works focusing on quantum servitization. Nevertheless, some
researchers are staring to delve in this area.

Works like [13] start to explore the potential of quantum services in the cloud
and the research opportunities of quantum as a service. Some of the research
opportunities presented are similar to the problems detected in this work. Specif-
ically, the different implementations of the same quantum algorithms between
different vendors or the problems to deploy quantum services in quantum com-
puters.

Further exploring the deployment of quantum services, in [30] authors pro-
pose the use of TOSCA for quantum services. TOSCA is a standard for automat-
ing the deployment and orchestration of cloud applications. In this work, the
authors define an extension to allow TOSCA to deploy quantum software. This
proposal is similar to the work presented here in the sense that, since quantum
applications must be newly deployed for each invocation, a classical computer
is needed to host and deploy them. In our case, our wrapping classical service,
as shown in Fig. 1, meets both function, hosting and deploying the quantum
algorithm when invoked, but also converting the quantum algorithm in a service
that can be included in a service-oriented architecture.

From a commercial perspective, along with Amazon Braket, there are other
proposals also related to the simplification and homogenization of quantum
access to machines and services. Such is the case of Azure Quantum [6], the
counterpart of Amazon Braket. Azure Quantum not only includes Microsoft
and IonQ, but also other partners such as Honeywell, Quantum Circuits Inc.,
1Qloud and Toshiba. Azure Quantum provides a quantum development kit that
allows the unification of an heterogeneous set of hardware and software solutions.

Similarly, other companies and software developers are creating high level
development environments, toolkits and APIs to increase the abstraction level
of quantum software. For example, IBM proposes IBM Quantum [5], although it
only allows developers to run quantum algorithms in IBM quantum hardware or
simulators. While other focus on specific domains like quantum machine learning
[10]. However, as far as the authors know they do not provide any advance on
quantum services over Amazon Braket.

Moreover, to be able to offer quality quantum services is not enough to sim-
plify the development and deployment of quantum algorithms. Other aspects of
quality service engineering [14] cannot be overlooked. Specifically, works needs
to be done in the areas of orchestration, testing, security... of quantum services.

6 Conclusion and Future Works

In this paper we have presented an analysis of current quantum software from
the point of view of Service-Oriented Computing. We have used Amazon Braket
to deploy quantum services by wrapping them on a classical service and used

236 D. Valencia et al.

the integer factorization problem to show the differences of running the same
service on different quantum hardware, even when doing it under the common
umbrella of Braket.

This experiment has allowed us to clearly present the current limitations in
building and using quantum services. We have organized these limitations under
three different categories and argued that intensive research efforts are needed
to bring the benefits of Service-Oriented Computing to the quantum world.

Due to the young nature of quantum software engineering most areas in this
discipline, including Service-Oriented Computing, are still giving their first steps.
Nevertheless, the paradigm change that underlies quantum computing implies
that there cannot be a direct translation of proposals and techniques. Running
quantum algorithms as traditional services is not enough to bring the benefit of
Service-Oriented Computing to the quantum era. There needs to be an effort to
generate new techniques, methodologies and tools that bring all these benefits,
already shown by the cloud and service computing, to quantum software and
services.

Acknowledgements. This work was supported by the projects 0499 4IE PLUS 4 E
(Interreg V-A España-Portugal 2014–2020) and RTI2018-094591-B-I00 (MCIU/AEI/
FEDER, UE), by the FPU19/03965 grant, by the Department of Economy and Infras-
tructure of the Government of Extremadura (GR18112, IB18030), and by the European
Regional Development Fund.

References

1. Barzen, J., Leymann, F., Falkenthal, M., Vietz, D., Weder, B., Wild, K.: Relevance
of near-term quantum computing in the cloud: a humanities perspective. In: Fer-
guson, D., Pahl, C., Helfert, M. (eds.) CLOSER 2020. CCIS, vol. 1399, pp. 25–58.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72369-9 2

2. Bergholm, V., et al.: Pennylane: automatic differentiation of hybrid quantum-
classical computations. arXiv preprint arXiv:1811.04968 (2018)

3. Boixo, S., Albash, T., Spedalieri, F.M., Chancellor, N., Lidar, D.A.: Experimental
signature of programmable quantum annealing. Nat. Commun. 4(1), 1–8 (2013)

4. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60(4), 64–72 (2017)

5. Cross, A.: The IBM Q experience and QISKIT open-source quantum computing
software. APS March Meet. Abs. 2018, L58-003 (2018)

6. Cuomo, D., Caleffi, M., Cacciapuoti, A.S.: Towards a distributed quantum com-
puting ecosystem. IET Quantum Commun. 1(1), 3–8 (2020)

7. Endrei, M., et al.: Patterns: service-oriented architecture and web services. IBM
Corporation, International Technical Support Organization, New York (2004)

8. Haring, R., et al.: The IBM blue GENE/Q compute chip. IEEE Micro 32(2), 48–60
(2011)

9. Hooton, C.: Examining the economic contributions of the cloud to the United
States economy. Report. Internet Association, Washington, DC (2019)

10. Hu, F., Wang, B.N., Wang, N., Wang, C.: Quantum machine learning with d-wave
quantum computer. Quantum Eng. 1(2), e12 (2019)

https://doi.org/10.1007/978-3-030-72369-9_2
http://arxiv.org/abs/1811.04968

Hybrid Classical-Quantum Software Services Systems 237

11. Jiang, S., Britt, K.A., McCaskey, A.J., Humble, T.S., Kais, S.: Quantum annealing
for prime factorization. Sci. Rep. 8(1), 1–9 (2018)

12. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap
quantum computer. Nature 417(6890), 709–711 (2002)

13. Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B., Wild, K.: Quan-
tum in the cloud: application potentials and research opportunities. In: Pro-
ceedings of the 10th International Conference on Cloud Computing and Service
Science (CLOSER 2020), pp. 9–24. SciTePress (2020). https://doi.org/10.5220/
0009819800090024

14. Li, S., et al.: Understanding and addressing quality attributes of microservices
architecture: a systematic literature review. Inf. Softw. Technol. 131, 106449 (2021)

15. MacQuarrie, E.R., Simon, C., Simmons, S., Maine, E.: The emerging commercial
landscape of quantum computing. Nat. Rev. Phys. 2(11), 596–598 (2020)

16. McCaskey, A., Dumitrescu, E., Liakh, D., Humble, T.: Hybrid programming for
near-term quantum computing systems. In: 2018 IEEE International Conference
on Rebooting Computing (ICRC), pp. 1–12. IEEE (2018)

17. McCaskey, A.J., Lyakh, D.I., Dumitrescu, E.F., Powers, S.S., Humble, T.S.: XACC:
a system-level software infrastructure for heterogeneous quantum-classical comput-
ing. Quantum Sci. Technol. 5(2), 024002 (2020)

18. Moguel, E., Berrocal, J., Garćıa-Alonso, J., Murillo, J.M.: A roadmap for quan-
tum software engineering: applying the lessons learned from the classics. In: Pérez-
Castillo, R., Piattini, M., Peterssen, G., Hevia, J.L. (eds.) Short Papers Proceed-
ings of the 1st International Workshop on Software Engineering & Technology (Q-
SET’20) co-located with IEEE International Conference on Quantum Computing
and Engineering (IEEE Quantum Week 2020), (Online Conference) Broomfield,
Colorado, USA, October 2020. CEUR Workshop Proceedings, vol. 2705, pp. 5–13.
CEUR-WS.org (2020). http://ceur-ws.org/Vol-2705/short1.pdf

19. Motta, M., et al.: Determining eigenstates and thermal states on a quantum com-
puter using quantum imaginary time evolution. Nat. Phys. 16(2), 205–210 (2020)

20. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
21. Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and direc-

tions. In: Proceedings of the Fourth International Conference on Web Information
Systems Engineering, WISE 2003, pp. 3–12. IEEE (2003)

22. Pérez-Castillo, R., Piattini, M.: The quantum software engineering path. In: Pérez-
Castillo, R., Piattini, M., Peterssen, G., Hevia, J.L. (eds.) Short Papers Proceed-
ings of the 1st International Workshop on Software Engineering & Technology
(Q-SET’20) co-located with IEEE International Conference on Quantum Com-
puting and Engineering (IEEE Quantum Week 2020) Broomfield, Colorado, USA,
October 2020. CEUR Workshop Proceedings, vol. 2705, pp. 1–4. CEUR-WS.org
(2020). http://ceur-ws.org/Vol-2705/invited1.pdf

23. Pérez-Castillo, R., Serrano, M.A., Piattini, M.: Software modernization to embrace
quantum technology. Adv. Eng. Softw. 151, 102933 (2021)

24. Piattini, M., Peterssen, G., Pérez-Castillo, R.: Quantum computing: A new soft-
ware engineering golden age. ACM SIGSOFT Softw. Eng. Notes 45(3), 12–14
(2020)

25. Piattini, M., Serrano, M., Perez-Castillo, R., Petersen, G., Hevia, J.L.: Toward a
quantum software engineering. IT Prof. 23(1), 62–66 (2021)

26. Rahaman, M., Islam, M.M.: A review on progress and problems of quantum com-
puting as a service (QCAAS) in the perspective of cloud computing. Glob. J.
Comput. Sci. Technol. (2015)

https://doi.org/10.5220/0009819800090024
https://doi.org/10.5220/0009819800090024
http://ceur-ws.org/Vol-2705/short1.pdf
http://ceur-ws.org/Vol-2705/invited1.pdf

238 D. Valencia et al.

27. Sodhi, B.: Quality attributes on quantum computing platforms. arXiv preprint
arXiv:1803.07407 (2018)

28. Wang, B., Hu, F., Yao, H., Wang, C.: Prime factorization algorithm based on
parameter optimization of Ising model. Sci. Rep. 10(1), 1–10 (2020)

29. Wang, L., et al.: Cloud computing: a perspective study. New Gener. Comput.
28(2), 137–146 (2010)

30. Wild, K., Breitenbücher, U., Harzenetter, L., Leymann, F., Vietz, D., Zimmer-
mann, M.: TOSCA4QC: two modeling styles for TOSCA to automate the deploy-
ment and orchestration of quantum applications. In: 24th IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2020, Eindhoven,
The Netherlands, 5–8 October 2020, pp. 125–134. IEEE (2020). https://doi.org/
10.1109/EDOC49727.2020.00024

31. Wille, R., Van Meter, R., Naveh, Y.: IBM’S Qiskit tool chain: working with and
developing for real quantum computers. In: 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1234–1240. IEEE (2019)

32. Zhao, J.: Quantum software engineering: landscapes and horizons. CoRR
abs/2007.07047 (2020). https://arxiv.org/abs/2007.07047

http://arxiv.org/abs/1803.07407
https://doi.org/10.1109/EDOC49727.2020.00024
https://doi.org/10.1109/EDOC49727.2020.00024
https://arxiv.org/abs/2007.07047

Towards a Set of Metrics for Quantum Circuits
Understandability

José A. Cruz-Lemus(B) , Luis A. Marcelo , and Mario Piattini

Institute of Technologies and Information Systems and Escuela Superior de Informática,
University of Castilla-La Mancha, 13071 Ciudad Real, Spain

{JoseAntonio.Cruz,Mario.Piattini}@uclm.es,

LuisAlberto.Marcelo@alu.uclm.es

Abstract. Quantum computing is the basis of a new revolution. Several quantum
computers are already available and,with them, quantumprogramming languages,
quantum software development kits and platforms, quantum error correction and
optimization tools are proposed and presented continuously. In connection with
this, disciplines such as the Quantum Software Engineering are appearing for
applying the knowledge acquired through time in their corresponding classical
relatives. Besides, measurement is well known as a key factor for assessing, and
improving if needed, the quality of any model in terms of, for instance, its under-
standability. The easier to understand a model is, the easier to maintain, reuse,
etc. In this work, we present the definition of a set of metrics for assessing the
understandability of quantum circuits. Some examples of the calculation of the
metrics are also presented. This is just the beginning of a more thorough process in
which they will be empirically validated by the performance of empirical studies,
especially experiments.

Keywords: Quantum circuits · Quantum metrics · Quantum circuits
understandability · Quantum circuits complexity

1 Introduction

If the 19th century was the machine age and the 20th century was the information age,
the 21st century will be the quantum age [18]. Several knowledge and business areas
might be benefited by quantum computing: economics and finance services, chemistry,
medicine and health, supply chain and logistics, energy and agriculture, cybersecurity,
artificial intelligence, etc.

In fact, several quantum computers are already available: D-Wave, Google Quan-
tum, IBM Q, IonQ, Microsoft Quantum, Rigetti, etc. Dozens of quantum programming
languages (e.g., OpenQASM, Q Language, qGCL, Qiskit, QML, Quipper, Q#) [11,
22], quantum software development kits (e.g., Cirq, Forest, Orquestra, QDK, Qiskit)
[19], platforms (e.g., Forge, LIQUi|>, IQ Experience, Quantum Inspire, Quantum Play-
ground), and quantum error correction and optimization tools have been proposed in the
recent years. Several quantum algorithms have been created since the seminal ones of
Shor, Grover and Deutsch [1].

© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 239–249, 2021.
https://doi.org/10.1007/978-3-030-85347-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_18&domain=pdf
http://orcid.org/0000-0002-0470-609X
http://orcid.org/0000-0003-1478-286X
http://orcid.org/0000-0002-7212-8279
https://doi.org/10.1007/978-3-030-85347-1_18

240 J. A. Cruz-Lemus et al.

Besides, the Quantum Software Manifesto, promoted by several researchers and
practitioners, states that “Given the recent rapid advances in quantum hardware, it is
urgent that we step up our efforts in quantum software”. This Manifesto stresses the
importance of quantum software. But quantum software is not enough on its own. It is
necessary to go a step further and raise awareness on “Quantum Software Engineering”
(QSE) to produce quantum software with the adequate quality and productivity [29].

The main approach for quantum computing is the gate-based quantum computing,
consisting in dividing an algorithm into a sequence of a few very basic primitive oper-
ations or gates. So, one of the most used tools for creating quantum programs is the
quantum circuit. There exist several quantum circuits simulators (e.g., Quirk1), while
IBM uses the circuit as the main element for Qiskit2 programming.

Quantumcircuits could be taken as quantumsoftwaremodels and theymust be under-
standable and flexible enough to easily incorporate modifications that reflect changes in
the thing they model. It is well known that a model that is easy to understand will be
easier to maintain, reuse, etc. In fact, understandability has traditionally been recognized
as one of the main factors influencing software quality. Before any desired changed of
any model -including quantum circuits- can be identified, designed or implemented, it
must be well understood first. Understandability of conceptual models has been widely
recognized in the literature as a relevant quality attribute [9, 12–14, 23, 31] but, as far
as we are concerned, it has not been studied yet in the context of quantum circuits. So,
we claim that it is very important that quantum programmers and designers understand
the quantum circuits properly in order to design high quality circuits. Having this idea
in mind, it would be important to have metrics at a conceptual level because, as stated
in the Talavera Manifesto, Quantum Software Engineering must be agnostic [28].

That intends to be precisely the main contribution of this work: the initial proposal
of a set of metrics for establishing the basis of the measurement of quantum circuits
understandability.

In the remainder of this paper, Sect. 2 introduces an overview of quantum circuits;
Sect. 3 summarized the related work, focusing on several metrics which have already
been proposed related to different aspects of quantum software; Sect. 4 presents the set
of proposed metrics; an example of calculation of these is explained in Sect. 5; and
finally, Sect. 6 highlights the main conclusions of this work, together to the following
steps to be taken as future work.

2 Quantum Circuits

A circuit model for quantum computation describes all computations in terms of a circuit
composed of simple gates followed by a sequence of measurements [30].

Quantum circuits were originally described by Deutsch in 1989 [10] while the stan-
dard acyclic variant of the quantum circuit model was proposed and investigated a few
years later by Yao [34].

1 https://algassert.com/quirk.
2 https://qiskit.org/.

https://algassert.com/quirk
https://qiskit.org/

Towards a Set of Metrics for Quantum Circuits Understandability 241

A quantum circuit generalizes the idea of classical circuit families, replacing the
AND, OR, and NOT gates by elementary quantum gates, which can also be repre-
sented as 2nx2n matrices and will be applied to n qubits. But a significant distinction
between classical (i.e., CMOS) and quantum circuits design is that all quantummechan-
ical operations are unitary or reversible. Every quantum circuit is composed of gates
which represent quantum mechanical operations. Thus, all quantum circuits must have
a one-to-one correspondence and be reversible. Because of this, quantum circuit design-
ers must use reversible gates and, sometimes, additional resource costs, such as ancilla
qubits [33].

3 Related Work

There is a lot of research about metrics for classical conceptual models [9, 12–14, 23,
31], but very few for quantum software.

For quantum circuits, there exist the ‘quantum volume’ metric which summarizes
performance against some factors: number of physical qubits, number of gates, con-
nectivity of the device, and number of operations that can be run in parallel [5]. But
it is thought as a hardware performance metric (measuring the useful amount of quan-
tum computing done by a device in space and time, as an alternative means for for-
malizing quantum algorithms complexity [30], for reduction in the physical layer and
implementation costs [16], or for quantum circuit simulation [7].

Quantum volume is very useful for quantum researchers to systematically measure
and understand how incremental technology, configuration, and design changes affect
a quantum computer’s overall power and performance. Also, it would benefit the CEO
or investor who lacks the in-depth technical knowledge necessary to make confident
investment decisions in the technology3.

Maslov and Miller [20] proposed three different measures:

• The NCV-111 cost of a circuit composed of NCV gates as the number of gates
(quantum NOT, CNOT, controlled-V and controlled-V +) in the circuit.

• The NCV-012 cost of an NCV circuit linear with weights 0, 1, and 2 associated with
the gates NOT, CNOT, controlled-V and controlled-V +, respectively.

• The NCV-155 cost of an NCV circuit linear with weights 1, 5, and 5 associated with
the gates NOT, CNOT, controlled-V and controlled-V +, respectively.

They used these metrics in their breadth-first search method for determining optimal
3-line circuits composed of quantum circuits.

Thapliyal and Muñoz-Coreas [33] point out different ‘quantum circuit performance
measures’:

• Qubit cost: total number of qubits required to design the quantum circuit.
• Gate count: total number of gates used in quantum circuit.

3 https://www.forbes.com/sites/moorinsights/2019/11/23/quantum-volume-a-yardstick-to-mea
sure-the-power-of-quantum-computers/?sh=1b74bacd5bf4.

https://www.forbes.com/sites/moorinsights/2019/11/23/quantum-volume-a-yardstick-to-measure-the-power-of-quantum-computers/%3Fsh%3D1b74bacd5bf4

242 J. A. Cruz-Lemus et al.

• Garbage outputs: any outputs which exist to preserve reversibility but are not primary
inputs or useful outputs.

• Ancillae: all constant inputs to the quantum circuit.
• Depth: the number of gate layers in the circuit.

Oumarou et al. [26] propose QUANTIFY, an open-source framework for the quan-
titative analysis of quantum circuits. The metrics used are the number of physical qubits
(determined by the width of the computation) and the amount of time for operating
the physical qubits (determined by the depth of the computation). These metrics also
influence on the total energy consumed to perform the computation.

Miller [20] propose to use T-count, the number of Toffoli and Fredkin (CSWAP)
gates to produce accurate resource estimations of the implemented circuits.

Azad et al. [4] uses the circuit size and the circuit depth on the interaction and
connection between different qubits circuit centric quantum architecture design.

Other authors focus the quantum metrics on the quantum algorithm complexity. For
instance, Chaudhuri et al. [8] define some metrics as the Number of Gates required in
a network, the Quantum Cost, the Number of Two-Qubit Gates required for generating
the given network and the Complexity of the network. The Quantum Cost (QC) of a
reversible function f(X) is defined as

∑n TOFxi; where TOFxi is the cost of the ith

Toffoli Gate. And the Complexity ‘Cf’ of a given m-variable reversible function f(X)
is given by

∑m−1
i = 0 δ(Ai, Bi); where Ai and Bi are the corresponding 2m input-output

patterns of f(X).
Haug et al. [17] investigate the capacity and trainability of hardware efficient PQC

(ParametrizedQuantumCircuits) using the quantumgeometric structure of the parameter
space. They introduce the effective quantum dimensionGC and the parameter dimension
DC as a quantitative measure of the capacity of a PQC. The parameter dimension DC
measures the total number of independent parameters a quantum state defined by the
PQCcan express. And the effective quantumdimensionGC is a localmeasure to quantify
the space of states that can be accessed by locally perturbing the parameters of the PQC.

Bu et al. [6] focus on quantummachine learning andmeasure the power of a learning
model, which depends on its statistical complexity, proposing some measures as the
Vapnik-Chervonenkis (VC) dimension, the metric entropy, the Rademacher complexity,
and the Gaussian complexity.

Nevertheless, all these algorithms, learning model computational complexity, or
resource (hardware oriented) cost metrics are not enough, and it is necessary to define
metrics considering quantum software complexity.

In this sense, Sicilia et al. [32] propose a preliminary study on the structure of the
source code of quantum software, using initially the same metrics typically used in
classical software, and focused on the Q# language. But these metrics were defined at a
logical level not at a conceptual one.

Zhao [36] recently proposed some software metrics to measure the inherent
complexity for quantum software measuring:

• Code Size, by Lines-of-Code (LOC) and Halstead’s Software Science
• Design Size, by considering Architectural Design Size and Detailed Design Size.

Towards a Set of Metrics for Quantum Circuits Understandability 243

• Specification Size, based on an extension of UML, called Q-UML [26] by counting
the number of quantum classes (objects), number of quantum elements (quantum
variables or quantum operations), number of quantum interfaces, number of quantum
attributes, and the number of all quantum methods.

The best-known artifact for designing quantum software is the quantum circuit.
So, after the review stated in this section, we could conclude that there is still a need
for quantum circuits metrics oriented to the designers’ needs, understandability among
others.

4 Metrics Proposal

In this section, the definition of the proposed metrics for assessing the understandability
of quantum circuits is presented. They have been grouped by several categories.

• Circuit size. Intuitively, the bigger a circuit is the more complex to be understood
should be too.

– Width: Number of qubits in the circuit.
– Depth: Maximum number of operations applied to a qubit in the circuit.

• Circuit density. As Fig. 1 shows, we can find several equivalent circuits in which
the gates are deployed differently. Thus, the density of the circuit is referred to the
quantity of gates applied to each qubit of the circuit at a certain step of it.

– MaxDens: Maximum number of operations applied to the circuit qubits in parallel.
– AvgDens: Average of the number of operations applied to the circuit qubits in parallel.

Fig. 1. Two equivalent circuits with different densities

• Single qubit gates. The most commonly used gates in quantum circuits.

244 J. A. Cruz-Lemus et al.

– NoP-X: Number of Pauli-X (NOT) gates.
– NoP-Y: Number of Pauli-Y gates.
– NoP-Z: Number of Pauli-Z gates.
– TNo-P: Total number of Pauli gates in the circuit (calculated as the addition of the
previous three).

– NoH: Number of Hadamard gates.
– %SpposQ: Ratio of qubitswith aHadamardgate as initial gate (qubits in superposition
state).

– NoOtherSG: Number of other4 single-qubit gates in the circuit.
– TNoSQG: Total number of single-qubit gates.
– TNoCSQG: Total number of controlled single-qubit gates.

• Multiple qubit gates. Gates involving several qubits as input and output.

– NoCAnyG: Number of controlled (any) gates.
– NoSWAP: Number of swap gates.
– NoCNOT; Number of Controlled NOT (CNOT) gates.
– %QinCNOT: Ratio of qubits affected by CNOT gates.

• Both the controlled and the target qubit in a CNOT will be considered as affected
for the calculation of this metric.

– AvgCNOT: Average number of CNOT gates targeting any qubit of a circuit.
– MaxCNOT: Maximum number of CNOT gates targeting any qubit of a circuit.
– NoToff: Number of Toffoli gates.
– %QinToff: Ratio of qubits affected by Toffoli gates.

• The controlled qubit and the target qubits will be taken into account as affected for
the calculation.

– AvgToff: Average number of Toffoli gates targeting any qubit of a circuit.
– MaxToff: Maximum number of Toffoli gates targeting any qubit of a circuit.

• All gates in the circuit.

– NoGates: Total number of gates in the circuit.
– NoCGates: Total number of controlled gates in the circuit.
– %SGates: Ratio single vs total gates.

• Oracles.Weare aware that there are certain characteristics relatives to the use of oracles
in quantum circuits which could affect their understandability but, while behaving as
‘black boxes’ are not possible to be calculated. Nevertheless, a thorough study of how
oracles affect the understandability of quantum circuits is intended as a future work.

4 Other is referred to any other single-qubit gate which is not any of the Pauli nor a Hadamard
gate.

Towards a Set of Metrics for Quantum Circuits Understandability 245

– NoOr: Number of oracles in the circuit.
– NoCOr: Number of controlled oracles in the circuit.
– %QinOr: Ratio of qubits affected by oracles.

• Only the input qubits of the oracle will be considered as affected for the calculation
of this metric.

– %QinCOr: Ratio of qubits affected by controlled oracles.

• The controlled qubit and input qubits of the oracle will be considered as affected
for the calculation of this metric.

– AvgOrD: Average depth of an oracle in the circuit.
– MaxOrD: Maximum depth of an oracle in the circuit.

• Measurement gates.

– NoQM: Number of qubits measured.
– %QM: Ratio of qubits measured.

• Other.

– %Anc: Ratio of ancilla (auxiliary) qubits in the circuit.

The definition of these metrics is just a first step mainly based in the experience of
the authors dealing with other models understandability measurement [9]. The metrics
validity, in terms of their relationship with the understandability of quantum circuits
needs to be confirmed through the performance of empirical studies such as experiments.

5 Metric Calculation Examples

In this section, a couple of examples are used for illustrating the calculation of themetrics
proposed in the previous section. Table 1 shows these calculations when applied to the
examples in Fig. 2.

Fig. 2. Two examples of quantum circuits

246 J. A. Cruz-Lemus et al.

Table 1. Calculation of the proposed metrics

Metric Value
(Fig. 2-left)

Value
(Fig. 2-right)

Explanation

Width 5 5

Depth 10 7 Measurement gates are not taken into account

MaxDens 3 1

AvgDens 1.20 1 12/10 -- 7/7

NoP-X 0 0 NOT in CNOT are not taken into account

NoP-Y 0 0

NoP-Z 0 0

TNo-P 0 0

NoH 6 0

%SpposQ 0.60 0.00

NoOtherSG 3 0 S, T

TNoSQG 9 0

TNoCSQG 3 0

NoCAnyG 6 7

NoSWAP 0 0

NoCNOT 0 6

%QinCNOT 0 1.00 q0, q1, q2, q3, q4

AvgCNOT 0 1.20 0(q0) 2(q1) 0(q2) 3(q3) 1(q4)

MaxCNOT 0 3 q3

NoToff 0 1 q1, q3, q4

%QinToff 0 0.60

AvgToff(q) 0 0.20 q4

MaxToff(q) 0 1 q4

NoGates 12 7

NoCGates 6 7

%SGates 0.75 1.00

NoOr 3 0

NoCOr 3 0

%QinOr 0.40 0

%QinCOr 1.00 0

AvgOrD 2 0 3 oracles, 2 depth each

MaxOrD 2 0

NoQM 3 0

%QM 0.60 0.00

%Anc 0.40 0.00 s0, s1

6 Conclusions and Future Work

We are involved in the dawning of a new era in software in which quantum computing
will take down the limitations established by the hardware of traditional computers.
Establishing strong foundations when creating new disciplines, such as the Quantum
Software Engineering (QSE) is crucial. One of the main principles for the QSE is set
the establishment of a QSE agnostic regarding quantum programming languages and
technologies which assures the quality of quantum software [27]. Thus, we are aware

Towards a Set of Metrics for Quantum Circuits Understandability 247

that the easier to understand a quantum circuit (or any other kind of modeling artifact) is,
the easier the tasks of quantum software debugging, testing and, in general, maintaining
it will become.

It is necessary to develop several refactoring techniques for quantum circuits which
allow us to improve their understandability in any new improved and equivalent version
which keeps every original functionality [7]. This iswhy in thiswork,we have introduced
a set of metrics for assessing the understandability of quantum circuits, as a first step.

After this first step there are several challenges in which we will put our efforts.
The first one will, obviously, consists in the validation of this set of metrics through the
performance of empirical studies, such as experiments and case studies. Our intention is
also to develop a software tool able to automatize the calculation of the validatedmetrics,
as well as the correct visualization and interpretation of their results. We also intend to
explore the definition of a set of more complex metrics, derived from the initial set of
metrics, proposed in this paper, which get empirically validated. Possible correlations
and interactions among the metrics will also be estudied.

We are also interested in having a closer look at how the presence of oracles affects
the understandability of quantum circuits. Moreover, being able to spot design patterns
in quantum circuits is another topic we will be able to face in the future, and another
promising topic of the QSE: to which extent this set of metrics can be used for easing
the reuse of circuits [36] as it could allow the design-by-reuse of quantum circuits [2].

In a nearby concept, we are also interested in studying in depth the use of subcir-
cuits in quantum circuits. A quantum algorithm comes normally down to a sequence of
elementary gates and measurements, but many quantum algorithms are more naturally
described in terms ofmanipulations at the level of entire sub-circuits, rather than individ-
ual gates [15]. In [3] a method is introduced that breaks a circuit into smaller subcircuits
or fragments, and thus makes it possible to run circuits that are either too wide or too
deep for a given quantum processor. We consider that this circuit ‘fragmentation’ could
be very promising in order to increase a quantum circuit understandability.

Finally, an interesting aspect to study in the future is to which extent the complexity
of a quantum circuit affects the complexity of the quantum programs generated from it
in the different existing quantum platforms.

Acknowledgments. We would like to thank all the aQuantum members, especially Guido
Peterssen and Pepe Hevia, for their help and support. This work was partially funded by the
“QHealth: Quantum Pharmacogenomics Applied to Aging” project, part of the 2020 CDTI Mis-
sions Program (Center for the Development of Industrial Technology of the Ministry of Science
and Innovation of Spain) and the GEMA and TESTIMO projects, funded by “Consejería de Edu-
cación, Cultura y Deportes de la Junta de Comunidades de Castilla La Mancha” and “Fondo
Europeo de Desarrollo Regional FEDER” under Grants SBPLY/17/180501/000293 (GEMA) and
SBPLY/17/180501/000503 (TESTIMO).

References

1. Abhijith, J., et al.: Quantum algorithm implementations for beginners. arXiv:1804.03719v2
(2020)

http://arxiv.org/abs/1804.03719v2

248 J. A. Cruz-Lemus et al.

2. Allouche, C., Baboulin,M., Goubault deBrugière, T., Valiron, B.: ReuseMethod forQuantum
Circuit Synthesis. In: Kilgour, D.M., Kunze, H., Makarov, R., Melnik, R., Wang, Xu. (eds.)
AMMCS 2017. SPMS, vol. 259, pp. 3–12. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99719-3_1

3. Ayral, T., Le Régent, F., Saleem, Z., Alexeev, Y., Suchara, M. Quantum divide and compute:
hardware demonstrations and noisy simulations. arXiv:2005.12874v1 (2020)

4. Azad,U., Papneja, A., Saini, R., Behera, B., Panigrahi, P.: Circuit centric quantum architecture
design. IET Quantum Commun. 2, 14–25 (2021)

5. Bishop, L., Bravyi, S., Cross, A., Gambetta, J., Smolin, J. Quantum volume. https://storageco
nsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf. Accessed 14
May 2021

6. Bu, K., Koh, D., Li, L., Luo, Q., Zhang, Y.: Effects of quantum resources on the statistical
complexity of quantum circuits. arXiv:2102.03282 (2021)

7. Burgholzer, L., Wille, R., Advanced equivalence checking for quantum circuits. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. (2020). https://doi.org/10.1109/TCAD.2020.303
2630

8. Chaudhuri, A., Sultana, M., Sengupta, D., Chaudhuri, A.: A novel reversible two’s com-
plement gate (TCG) and its quantum mapping. In: Devices for Integrated Circuit (DevIC),
252–256. Kalyani, India (2017)

9. Cruz-Lemus, J., Maes, A., Genero, M., Poels, G., Piattini, M.: The impact of structural
complexity on the understandability of UML statechart diagrams. Inf. Sci. 180(11), 2209–
2220 (2010)

10. Deutsch, D.: Quantum computational networks. Proc. R. Soc. Lond. A425, 73–90 (1989)
11. Garhwal, S., Ghorani, M., Ahmad, A.: Quantum programming language: a systematic review

of research topic and top cited languages. Arch. Comput. Methods Eng. 28, 289–310 (2021)
12. Genero, M., Piattini, M., Calero, C.: A survey of metrics for UML class diagrams. J. Object

Technol. 4(9), 59–92 (2005)
13. Genero, M., Manso, M., Visaggio, C., Canfora, G., Piattini, M.: Building measure-based

prediction models for UML class maintainability. Empir. Softw. Eng. 12(5), 517–549 (2007)
14. Genero, M., Piattini, M., Chaudron, M.: Quality of UMLmodels. Inf. Softw. Technol. 51(12),

1629–1630 (2009)
15. Green, A., Lumsdaine, P., Ross, N., Selinger, P., Valiron, B.: Quipper: a scalable quantum

programming language. ACM SIGPLAN Not. 48(6), 333–342 (2013)
16. Gyongyosi, L., Imre, S. Optimizing high-efficiency quantummemory with quantummachine

learning for near-term quantum devices. Sci. Rep. 10, 135 (2020)
17. Haug, T., Bharti, K., Kim, M. Capacity and quantum geometry of parametrized quantum

circuits. arXiv:2102.01659v1 (2021)
18. Humble, T., Thapiliyal, H., Muñoz-Correas, E., Mohiyaddin, F., Bennink, R.: Quantum

computing circuits and devices. IEEE Des. Test 36(3), 69–94 (2019)
19. LaRose, R. (2019). Overview and comparison of gate level quantum software platforms.

Quantum 3, 130. arXiv:1807.02500v2 (2019)
20. Maslov, D., Miller, M.: Comparison of the cost metrics for reversible and quantum logic

synthesis. IET Comput. Digital Tech. 1(2), 98–104 (2007)
21. Miller, S.: Quantum resource counts for operations constructed from an addition circuit. In:

2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 141–146. Limassol,
Cyprus (2020)

22. Mosca, M., Roetteler, M., Selinger, P.: Quantum programming languages (Dagstuhl Seminar
10381). Dagstuhl Rep. 8, 112–132 (2018)

23. Nelson, H., Poels, G., Genero,M., Piattini,M.: Quality in conceptual modeling: five examples
of the state of the art. Data Knowl. Eng. 55(3), 237–242 (2005)

https://doi.org/10.1007/978-3-319-99719-3_1
http://arxiv.org/abs/2005.12874v1
https://storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf
http://arxiv.org/abs/2102.03282
https://doi.org/10.1109/TCAD.2020.3032630
http://arxiv.org/abs/2102.01659v1
http://arxiv.org/abs/1807.02500v2

Towards a Set of Metrics for Quantum Circuits Understandability 249

24. Nielsen, M., Chuang, L.: Quantum Computation and Quantum Information. Cambridge
University Press, UK (2010)

25. Oumarou, O., Paler A., Basmadjian, R.: QUANTIFY: a framework for resource analysis and
design verification of quantum circuits. In: 2020 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), 126–131, Limassol, Cyprus. (2020)

26. Pérez-Delgado, C., Perez-Gonzalez, H.: Towards a quantum software modeling language.
In: First International Workshop on Quantum Software Engineering (Q-SE 2020), 442–444
(2020)

27. Piattini, M., Peterssen, G., Pérez-Castillo, R.: Quantum Computing: a new Software
Engineering Golden Age. ACM SIGSOFT Softw. Eng. Newsl. 45(3), 12–14 (2020)

28. Piattini, M., et al.: The talavera manifesto for quantum software engineering and program-
ming. In: 1st InternationalWorkshopon theQuantumSoftwareEngineering andProgramming
(QANSWER 2020), 11–12. Talavera de la Reina, Spain (2020)

29. Piattini, M., Serrano, M., Pérez-Castillo, R., Peterssen, G., Hevia, J.: Toward a quantum
software engineering. IT Prof. 23(1), 62–66 (2021)

30. Rieffel, E., Polak, W.: Quantum computing: a gentle introduction. The MIT Press (2011)
31. Serrano, M., Trujillo, J., Calero, C., Piattini, M.: Metrics for data warehouse conceptual

models understandability. Inf. Softw. Technol. 49(8), 851–870 (2007)
32. Sicilia, M.-A., Sánchez-Alonso, S., Mora-Cantallops, M., García-Barriocanal, E.: On the

source code structure of quantum code: insights from Q# and QDK. In: Shepperd, M., Brito e
Abreu, F., Rodrigues da Silva, A., Pérez-Castillo, R. (eds.) QUATIC 2020. CCIS, vol. 1266,
pp. 292–299. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58793-2_24

33. Thapliyal, H., Muñoz-Coreas, E.: Design of quantum computing circuits. IT Prof. 21(6),
22–26 (2019)

34. Yao, A.: Quantum circuit complexity. In: Proceedings of the 34th Annual IEEE Symposium
on Foundations of Computer Science, 352–361. Palo Alto, USA (1993)

35. Zhao, J.: Quantum software engineering. Landscapes and Horizons. arXiv:2007.07047v1
(2020)

36. Zhao, J.: Some size and structure metrics for quantum software. In: Second International
Workshop on Quantum Software Engineering (Q-SE 2021) co-located with ICSE 2021.
Madrid, Spain. arXiv:2103.08815v1 (2021)

https://doi.org/10.1007/978-3-030-58793-2_24
http://arxiv.org/abs/2007.07047v1
http://arxiv.org/abs/2103.08815v1

Safety, Security and Privacy

A Critique on the Use of Machine
Learning on Public Datasets for Intrusion

Detection

Marta Catillo(B), Andrea Del Vecchio, Antonio Pecchia, and Umberto Villano

Dipartimento di Ingegneria, Università degli Studi del Sannio, Benevento, Italy
{marta.catillo,andrea.delvecchio,antonio.pecchia,villano}@unisannio.it

Abstract. Intrusion detection has become an open challenge in any
modern ICT system due to the ever-growing urge towards assuring secu-
rity of present day networks. Various machine learning methods have
been proposed for finding an effective solution to detect and prevent net-
work intrusions. Many approaches, tuned and tested by means of public
datasets, capitalize on well-known classifiers, which often reach detec-
tion accuracy close to 1. However, these results strongly depend on the
training data, which may not be representative of real production envi-
ronments and ever-evolving attacks. This paper is an initial exploration
around this problem. After having learned a detector on the top of a
public intrusion detection dataset, we test it against held-out data not
used for learning and additional data gathered by attack emulation in
a controlled network. The experiments presented are focused on Denial
of Service attacks and based on the CICIDS2017 dataset. Overall, the
figures gathered confirm that results obtained in the context of synthetic
datasets may not generalize in practice.

Keywords: Denial of service · Machine learning · Public intrusion
datasets

1 Introduction

The research community strongly relies on public intrusion datasets, such
UNSW-NB15 [17], NDSec-1 2016 [3] and CICIDS2017 [19], for designing, eval-
uating and comparing novel Intrusion Detection Systems (IDS). To this aim, a
large number of public datasets have been proposed over the past years [18]. Pub-
lic datasets provide ready-to-use network packets and labeled numeric records
–known as network flows– collected under normative operations and attack con-
ditions, which makes it straightforward to develop machine and deep learn-
ing models for intrusion detection. Not surprisingly, the intersection of intrusion
detection and machine learning is an extremely hyped research topic. A plethora
of attack detectors have spread in the literature [7,14]. Noteworthy, some of these
detectors achieve astonishing results. For example, solutions proposed in [11]
and [2] achieve an accuracy of 0.999 and 0.996, respectively. At the time being,
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 253–266, 2021.
https://doi.org/10.1007/978-3-030-85347-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_19

254 M. Catillo et al.

intrusion detection would seem a perfectly solved problem with no room for
further improvements.

Most of the existing –and impressive– intrusion detection results hold just in
the context of the datasets that were used to obtain the results themselves. We
believe that the results obtained on the top of synthetic and “lab-made” attacks
(such as those provided by many public datasets around) cannot be generalized
to production networks. Synthetic intrusion datasets simply do not summarize
complexity and uncertainty of production networks, which is intertwined with
ever-evolving sophistication of the attacks, heterogeneous and non-stationary
workloads, configurations and defense mechanisms of real-life servers. In conse-
quence, an attempt to learn intrusion detectors on top of a public dataset may
lead to partial –if not incorrect– patterns, which cannot be used to drive general
and rigorous security claims on the effectiveness of a given IDS technique. In our
opinion, the implications of using public datasets for advancing the state-of-the-
practice in intrusion detection and cybersecurity remain quite opaque.

This paper proposes an initial exploration of the proposition above with a
focus on the detection of Denial of Service (DoS) attacks. Detection is pursued by
capitalizing on network flows, which summarize the conversation between pairs
of endpoints, e.g., the attacker and the victim of an attack, through quantitative
features, such as duration, number and length of packets and flag counts. We
leverage benign and DoS network flows both (i) available in CICIDS2017 and
(ii) obtained by direct emulation of DoS attacks against a victim server in a
controlled testbed. It is worth noting that CICIDS2017 is a public dataset that
is gaining increasing attention by the community.

Our critique is based on a twofold experiment. First, we learn an intrusion
detector on the top of the flows of CICIDS2017, which encompasses benign traf-
fic and various types of DoS attacks and related tools, such as hulk, slowloris and
showhttptest. Second, we test the detector against held-out, i.e., not used for
learning, benign and DoS flows of CICIDS2017 and those gathered in our testbed
after the emulation of slowloris attacks (a specific type of DoS attack available
also in CICIDS2017). The effectiveness of the detector is assessed with the consol-
idated metrics of accuracy, precision, recall and F1 score. The detector achieves
0.9991 accuracy when tested with CICIDS2017 data, which is extremely high and
consistent with existing literature. Surprisingly, the same detector –instructed
to detect a wider class of DoS attacks beside slowloris– performs quite poorly,
i.e., 0.821 accuracy, against a slowloris attack conducted in our testbed; even
much worse, it achieves only 0.257 detection accuracy for a mitigated variant of
slowloris –obtained by hardening the configuration of the victim server through a
defense module– being capable of significantly disrupt operations in spite of the
activation of the defense. Overall, the experiment indicates that results obtained
within the “ideal” world of a synthetic dataset may not generalize in practice.

The rest of the paper is organized as follows. Section 2 presents related work
in the area. Section 3 describes the experimental testbed and how experiments
have been conducted. Section 4 provides an overview of the datasets available in
this study. Section 5 presents the results and lessons learned from our experiment.
Section 6 concludes the paper and provides future perspectives of our work.

A Critique on the Use of Machine Learning on Public Datasets 255

2 Related Work

Nowadays intrusion detection datasets have become increasingly pervasive
among researchers and practitioners, due to their usability and availability. In
general, data play a key role for the validation of any intrusion detection app-
roach. However, datasets composed of network packets or flows from real-life
environments are not easily available due to privacy issues. Therefore in recent
years public intrusion detection datasets have been widely used by the security
community with the aim of tuning and testing detection algorithms. The major-
ity of these datasets are generated in synthetic environments under normative
conditions and different intrusion scenarios. They emulate real network traffic –at
least in theory– and they do not contain any confidential data. Most datasets are
distributed as labeled network flows, organized in comma-separated values files
specially crafted to apply modern machine learning techniques. In particular,
each record is a flow and the label states if it is malicious or not. Customar-
ily, data are also distributed as Packet Capture (pcap) files. These files are an
ordered collection of network packets originating from one or more benign or
malicious sources. The usability of any intrusion detection dataset reflects its
power to provide information necessary for training intrusion detection models
efficiently. This is confirmed by numerous solutions available in the literature,
which capitalize around these datasets by achieving high levels of accuracy and
recall, often close to 1.

The earliest effort to create a public intrusion detection dataset was made
by DARPA (Defence Advanced Research Project Agency) in 1999 by providing
a comprehensive and realistic intrusion detection benchmarking dataset, named
KDD-CUP’991. It includes two weeks of attacks-free instances and five weeks of
attack instances that make it suitable for anomaly detection. Numerous intrusion
detection solutions have been tested using the KDD-CUP’99 dataset over the
last few decades, such as [22]. However, although this dataset was an essential
contribution to the research on intrusion detection, its accuracy and capabil-
ity to consider real-life conditions have been widely criticized [9,16]. This is also
true for the more recent NSL-KDD2 [21], a version of KDD-CUP’99 dataset with
duplicates removed and reduced in size. A public intrusion detection dataset that
has experienced strong popularity among the security world-wide researchers is
certainly CICIDS20173 [19]. Released by the Canadian Institute for Cyber-
security (CIC) in 2017, it simulates real-world network data and uses the tool
CICFlowMeter [12] to extract key statistics on network connections in order
to produce labeled flows. Its Authors implemented a testbed framework with
the aim to generate benign and attack data systematically using different pro-
files. Another recent public intrusion detection dataset is UNSW-NB154 [17],
whose synthetic network data were collected by the Australian Center for Cyber

1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
2 https://www.unb.ca/cic/datasets/nsl.html.
3 https://www.unb.ca/cic/datasets/ids-2017.html.
4 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-

Datasets/.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/

256 M. Catillo et al.

Security (ACCS) by means of the IXIA Perfect-Storm tool5, used as a normal and
abnormal traffic generator. It leverages the CVE vulnerability database6 to cre-
ate a modern threat environment. The dataset is accessible in comma-separated
values file and in pcap raw format. Since the aforementioned datasets are gen-
erated in a synthetic environment, they might fail to represent real-life network
behaviors. An attempt to overcome this limitation is suggested by the Authors of
the UGR’16 dataset7 [15], proposed by the University of Granada. In particular,
this dataset is a collection of netflow traces representing four months of network
traffic from an Internet Service Provider (ISP). UGR’16 includes unidirectional
flows, which identify both benign traffic and attacks. Other known public intru-
sion datasets are NDSec-20168 [3], MILCOM20169 [4] and TRAbID10 [23].
They are all accessible both as network flows and as raw pcap and contain dif-
ferent types of attacks. The interested reader is referred to [18] for a complete
survey of existing literature on intrusion detection datasets.

It is worth noting that in the last few years works that look more critically
at these datasets have spread. In particular, some of them, such as [20], consider
the quality of the data by analyzing statistical flaws that might introduce bias in
the model training phase. Other papers, such as [6] and [8], analyze instead the
representativeness of the data contained in public intrusion detection datasets.
In reference [10] it is reported a detailed analysis that considers the majority of
public intrusion detection datasets issues. In particular, the Authors state that
public datasets do not fit real-life conditions, and therefore the value of analysis
performed against them may be of questionable value.

Over the years, the usability of public datasets has fostered the spread of
machine-learning based intrusion detection systems tuned and tested on such
data. Frequently, intrusion detectors are implemented with well-known classi-
fiers, which are able to detect almost all the attacks contained in the dataset
used for the training phase. For example, a comparative analysis between dif-
ferent classifiers is reported in [1]. All algorithms are evaluated by means of the
CICIDS2017 dataset. In [11], instead, it is reported a feature reduction approach
based on the combination of filter-based algorithms, namely Information Gain
Ratio (IGR), Correlation (CR), and ReliefF (ReF). The proposed approach aims
to reduce the number of features and exploits a rule-based classifier called Pro-
jective Adaptive Resonance Theory (PART) in order to detect DoS attacks. The
Authors obtain 99.9593% accuracy with the CICIDS2017 dataset. The solution
proposed in [24] is specifically focused on DoS detection; a neural-network based
approach relying on the implementation of a simple Multi-Layer Perceptron is
compared to the Random Forest technique. Again focused on DoS detection
is the paper [13], where well-known machine learning approaches (e.g., Näıve
Bayes and Logistic Regression) are used to distinguish normative conditions

5 https://www.ixiacom.com/products/perfectstorm.
6 https://cve.mitre.org.
7 https://nesg.ugr.es/nesg-ugr16/.
8 https://www2.hs-fulda.de/NDSec/NDSec-1/Files/.
9 https://www.netresec.com/?page=ACS MILCOM 2016.

10 https://secplab.ppgia.pucpr.br/?q=trabid.

https://www.ixiacom.com/products/perfectstorm
https://cve.mitre.org
https://nesg.ugr.es/nesg-ugr16/
https://www2.hs-fulda.de/NDSec/NDSec-1/Files/
https://www.netresec.com/?page=ACS_MILCOM_2016
https://secplab.ppgia.pucpr.br/?q=trabid

A Critique on the Use of Machine Learning on Public Datasets 257

from malicious ones. In [2], instead, the Authors propose a method that exploits
the Bayesian Regularization (BR) backpropagation and Scaled Conjugate Gra-
dient (SCG) descent backpropagation algorithm. The results are promising for
the detection of DoS attacks. In particular, the model achieves an accuracy of
99.6% using Bayesian Regularization and of 97.7% in Scaled Conjugate Gradi-
ent Descent. It is worth pointing out that all the aforementioned works achieve
encouraging results in terms of performance metrics such as accuracy and recall.
However, all of them blindly use data and none of them make a speculative
analysis of the attacks considered during the experiments.

3 Experimental Testbed

Network flows that we consider during the experimentation come from both DoS
attacks of the CICIDS2017 dataset, and from our testbed after the emulation of
slowloris attacks against a victim web server. In order to evaluate the progression
and the effect of the emulated attacks, we collect service metrics by monitoring
the victim. In the following we present the experimental environment and the
data collection procedure.

3.1 Experimental Testbed

Our experiments were conducted on a private network infrastructure at the
University of Sannio. The experimental testbed consists of three Ubuntu 18.04
LTS nodes, equipped with Intel Xeon E5-2650V2 8 cores (with multithread-
ing) 2.60 GHz CPU and 64 GB RAM, within a local area network (LAN). The
structure of the testbed is sketched in Fig. 1.

The “victim” node hosts an installation of Apache web server 2.4.29. This
server is a significant case study, due its wide use for hosting real-world sites
and web apps. Furthermore, it can fit a wide range of attack targets available in
public intrusion datasets. The Apache web server supports a variety of modules
–including security-related ones– that can be enabled by adjusting the configura-
tion of the baseline server installation. In particular, for our case study, we have
selected mod reqtimeout. This module can mitigate some DoS attacks, such as
slowloris, and is typically enabled by default in the baseline server after instal-
lation from the standard Ubuntu repository, which means that its disablement
requires explicit changes of the configuration by the user.

In particular, it allows to set –according to the environment and domain
where the web server is deployed– minimum data rates and timeouts for receiving
HTTP request headers and body from clients. These conditions need to be met in
order to keep a connection open. If the conditions are violated, the connection
is dropped and the server responds with a 408 REQUEST TIMEOUT error. We
configured the mod reqtimeout according to the instructions from the Apache
docs11. At any time, mod reqtimeout can be seamlessly enabled or disabled by
acting on the configuration and re-starting the web server.
11 https://httpd.apache.org/docs/2.4/mod/mod reqtimeout.html.

https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html

258 M. Catillo et al.

DoS

DoS
Tools

benign http
requests

DoS

server
(victim node)

attacker node

client node

pcap

LAN

Fig. 1. Experimental testbed.

The “attacker” node generates potentially dangerous DoS traffic against
the victim server. Attacks are performed by means of a dedicated slowloris tool
(more on this later). The attacker node also runs an instance of tcpdump, which
is used to capture the traffic between the attacker and the victim in a pcap
packet data file. It is worth noting that the pcap file obtained after a given
attack is successively processed to obtain the network flows.

The “client” node hosts httperf12, which is a well-known load generator.
This tool makes it possible to set a desired level of workload by setting several
parameters. In our testbed, it is used to probe the web server by collecting several
convenient metrics that summarize its operational status.

Our experiments are performed according to the following schedule:

1. setup: boot of tcpdump and the web server;
2. metrics collection: start of httperf, which continuously exercises the web

server with benign HTTP requests –referred to as load (L) in the following–
and collects service metrics during the whole progression of the experiment;

3. attack : execution of a DoS attack by means of a dedicated tool; the web server
is under both benign load and DoS traffic;

4. experiment completion: shutdown of the attack tool, httperf, tcpdump and
web server, storage of the pcap packet data file, service metrics and event logs
for subsequent analysis. The pcap data file is processed to obtain network
flows, as previously mentioned.

It is worth pointing out that, in order to ensure independent experimental
conditions between pairs of subsequent experiments, we clear the logs of the web
server (i.e., access and error log), stop the workload generator, attack scripts
and the web server, and reboot the nodes. The web server is operated with the
12 https://github.com/httperf/httperf.

https://github.com/httperf/httperf

A Critique on the Use of Machine Learning on Public Datasets 259

default configuration –in terms of thread limits and maximum workers– available
after a typical installation of the web server (e.g., by means of apt-get install
apache2, pointing to the standard Ubuntu repository13).

4 Datasets

4.1 CICIDS2017

CICIDS2017 (See footnote 3) is a public dataset created in 2017 by the Cana-
dian Institute for Cybersecurity (CIC) [19]. It consists of benign traffic synthe-
sized by the abstract behavior of 25 users, mixed with malicious traffic from
most common attacks. In order to create the dataset, a laboratory environment
with attacker and victim networks has been set up. The dataset is delivered
both as a set of packet capture (pcap) files and bidirectional labeled flow format
(csv). In the latter format, each record is a labeled flow, obtained from the net-
work traffic by means of the tool CICFlowMeter and identified by 84 features.
These are mainly network traffic features (source IP, destination IP, source port,
destination port, protocol, etc.) along with the label, stating if the flow belongs
to normal traffic or to an attack. The data capture period started at 9 a.m.,
Monday, July 3, 2017 and ended at 5 p.m., Friday, July 7, 2017, for a total of 5
days. Monday is the “normal day” and contains only benign traffic; in the morn-
ing and afternoon of Tuesday, Wednesday, Thursday and Friday, in addition to
normal traffic, attacks were performed belonging to the categories Brute Force
FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and
DDoS. DoS attacks, such as hulk, slowloris and slowhttptest, belong to the
capture of “Wednesday”, i.e., the “DoS day”. In particular, the attacker was a
Kali Linux node and the victim an Ubuntu 16.04 system with an Apache web
server.

4.2 Slowloris Data from USB-IDS-1

Slowloris data obtained by means of the testbed in Sect. 3 belong to a wider col-
lection named USB-IDS-114, which is a recent public intrusion detection dataset
developed at the University of Sannio [5]. In particular, slowloris attacks, were
carried out by means of a publicly-available DoS tool: slowloris. It accom-
plishes a DoS attack by sending slow HTTP requests (slow DoS attacks) against
a victim server. This category of attacks uses low-bandwidth approaches, which
exploit a weakness in the management of TCP fragmentation of the HTTP pro-
tocol. We launched this attack by means of a well-known Python attack script15.
In particular, this implements the slow DoS attack by sending incomplete HTTP
requests. If the server closes a malicious connection, this is re-established by
keeping constant the total number of open connections. We gathered regular
network traffic and the attacks pcap files as described in Sect. 3. In order to

13 http://it.archive.ubuntu.com/ubuntubionic-updates/main amd64 Packages.
14 http://idsdata.ding.unisannio.it/.
15 https://github.com/gkbrk/slowloris.

http://it.archive.ubuntu.com/ubuntubionic-updates/main
http://idsdata.ding.unisannio.it/
https://github.com/gkbrk/slowloris

260 M. Catillo et al.

Fig. 2. Throughput of the web server during the progression of the slowloris attack
(no defense experiment).

Fig. 3. Throughput of the web server during the progression of the slowloris attack in
case of defense (mod reqtimeout experiment).

obtain network labeled flows the pcap files obtained from the attack are succes-
sively processed by means of the CICFlowMeter16 tool. The attacks collected
from our testbed are obtained in two different operating conditions, which lead
to the following datasets:

– NoDefense-TEST: flows obtained by running the slowloris DoS tool
against the web server with no defense module in place;

– Reqtimeout-TEST: flows obtained by running the slowloris DoS tool
after starting the web server with mod reqtimeout defense enabled.

The duration of each experiment is 600 s; the web server is exercised with
a client load L = 1000 reqs/s by httperf during the entire progression of the
attack. It is worth pointing out that we also collect information on the effective-
ness of the attack. In particular, Fig. 2 and Fig. 3 show the throughput (T), i.e.,
HTTP requests accomplished by the web server within the time unit measured in
reqs/s, during the progression of the attacks. Figure 2 –no defense experiment–
clearly shows the effectiveness of slowloris: the throughput is almost zero for
entire duration of the attack. Figure 3 –mod reqtimeout experiment– instead
shows an interesting result. The slowloris attack still remains effective despite
the mod reqtimeout defense module. Except for few spikes, which indicate a

16 https://github.com/ahlashkari/CICFlowMeter.

https://github.com/ahlashkari/CICFlowMeter

A Critique on the Use of Machine Learning on Public Datasets 261

sporadic recovery of the server, very low values of the throughput are observed
for the entire duration of the attack. Therefore, we can state that even the mit-
igated version of the attack is effective. It is worth pointing out that, for both
cases, in attack-free conditions the throughput of the server is steady at 1000
reqs/s; on the contrary, it can be noted that the attack significantly impacts the
throughput.

5 Results

5.1 Data Preprocessing and Analysis Framework

As for any machine learning experiment, we preprocess the CICIDS2017
“Wednesday” file and our slowloris data to make them suitable for the anal-
ysis. First, we remove non-relevant or biasing features, i.e., timestamp and id of
the flows, source address and port, destination address and port, which leads to
total 78 remaining features (label included). Moreover, it is worth noting that
the presented experiment refers to a binary classification scenario. As such, flows
referring to different types of attacks are considered as belonging to a unique
general class named ATTACK – encoded with the 0 numeric label; on the other
hand, BENIGN flows are assigned 1 as label.

Flows contained in the aforementioned CICIDS2017 “Wednesday” file are
split into three disjoint subsets used for the training, validation and test of
the IDS model. While splitting the file, we adopt a stratified sampling strategy
with no replacement, which means that (i) the ratio between benign and attack
classes of the original file is preserved in the output splits and (ii) each flow of the
original file is assigned to a unique split. The original CICIDS2017 file contains
692,703 flows, where 1,297 were discarded due to the presence of malformed or
unsuitable values (e.g., “Infinity” or “NaN”). The remaining 691,406 total flows
are divided as follows:

– CICIDS-TRAINING: 70% of the total (i.e., 483,982) divided into 307,778
BENIGN and 176,204 ATTACK flows;

– CICIDS-VALIDATION: 15% of the total (i.e., 103,707), divided into
65,952 BENIGN and 37,755 ATTACK flows;

– CICIDS-TEST: 15% of the total (i.e., 103,707), divided into 65,952 BENIGN
and 37,755 ATTACK flows.

It should be noted that the three splits above sum up to 691,396, i.e., 10
flows less than the total. Occasionally, the chosen percentages did not return an
integer number of flows to be assigned to a given split; in such cases, the number
is rounded down to the highest preceding integer.

Figure 4 provides a representation of the learning and evaluation frame-
work on the top of available datasets. CICIDS-TRAINING and CICIDS-
VALIDATION are used to learn the IDS model; CICIDS-TEST jointly with
NoDefense-TEST and Reqtimeout-TEST –our slowloris dataset– represent the
test sets used for evaluating the IDS model. CICIDS-TEST, NoDefense-TEST

262 M. Catillo et al.

Fig. 4. IDS learning and evaluation framework.

and Reqtimeout-TEST provide held-out benign and attack flows, i.e., not seen
at all by the IDS model during learning.

Evaluation is based on the typical metrics of accuracy (A), precision (P),
recall (R) and F-score (F). They are computed from the total number of true
negative (TN), true positive (TP), false negative (FN) and false positive (FP)
obtained by running the test sets against the IDS model. For instance, a TN is
a BENIGN flow of the test set that is classified BENIGN by the model; a FN is an
ATTACK flow of the test set that is deemed BENIGN by the model. Metrics are
computed as follows:

A =
TP + TN

TP + TN + FP + FN
P =

TP

TP + FP
R =

TP

TP + FN
F = 2 · P ·R

P + R
(1)

5.2 IDS Learning

Our experiment is based on a very popular machine learning technique, i.e.,
the decision tree. This technique is widely used in the literature to learn IDS
models because of its capability to infer explicable rules for classifying network
flows. The decision tree consists of predicates, i.e., nodes of the tree, which are
tested on a given input flow to be classified: based on the outcomes of the tests,
decision moves down through the tree until it is reached the class –either BENIGN
or ATTACK in our study– of the flow, i.e., a leaf of the tree.

The tree is learned from both BENIGN and ATTACK flows. Most notably,
decision tree is a supervised technique: in consequence, learning needs for the
availability of the labels of the flows. We capitalize on the python implemen-
tation of the decision tree provided by the package scikit-learn17. Accord-
ing to Fig. 4, we learn the decision tree with the flows in CICIDS-TRAINING
and CICIDS-VALIDATION. Learning is based on the hypopt18 package. More
detailed, hypopt performs an exhaustive search over desired ranges and combi-
nations of the hyperparameters of the tree, such as the maximum depth of the
17 https://scikit-learn.org/stable/.
18 https://pypi.org/project/hypopt/.

https://scikit-learn.org/stable/
https://pypi.org/project/hypopt/

A Critique on the Use of Machine Learning on Public Datasets 263

Fig. 5. Evaluation metrics of the IDS model across the test sets.

tree, which is the length of the path from the root to the furthest leaf of the
tree, or the minimum number of samples per leaf, i.e. the minimum number of
samples that needs to be collected by a leaf during the training phase, in order
to be accepted in the final configuration. During the search, hypopt (i) trains the
decision tree by means of CICIDS-TRAINING, and (ii) tests it with the flows
in CICIDS-VALIDATION. The learning stops when hypopt finds the optimal
combination of hyperparameters.

5.3 Evaluation of the Detection Metrics

Firstly we test the decision tree with CICIDS-TEST. The obtained metrics
are shown in Fig. 5a. The most striking result is that all the metrics are above
0.99, i.e., almost perfect detection. In fact, this is the finding achieved by most
of the papers on IDSs when machine learning techniques are applied to public
intrusion datasets. The values of the metrics represent an “ideal” baseline. Our
critique is that such impressive results will likely not hold outside the public
dataset itself.

In order to explore this proposition, we test the model against the net-
work flows of slowloris obtained in our testbed. Figure 5b shows the results for
NoDefense-TEST. It can be noted that the IDS model, although trained to
detect different types of DoS attacks –including slowloris– performs quite poorly.
For example, A and R drop from 0.991 (Fig. 5a) to 0.8210 and 0.7839, respec-
tively. This finding is quite surprising because the slowloris attack in NoDefense-
TEST is so obvious and proven to be 100% disruptive through all the duration
of the data collection, as clearly shown in Fig. 2 in Sect. 4. The IDS model was
purposely trained on a variety of DoS attacks to achieve more flexibility and
avoid that the model was “overfitted” only on slowloris data. However, accord-
ing to the outcome, embedding such attack knowledge in the model did not help
to achieve satisfactory results.

As for Reqtimeout-TEST in Fig. 5c, the evaluation metrics get even worse.
In this case accuracy and recall drop to 0.2573 and 0.2341, respectively. As
said, Reqtimeout-TEST hinges on a mitigated variant of slowloris obtained by

264 M. Catillo et al.

enabling the req timeout defense module. In principle, the reader may think
that an attack done under defense is harmless and not worthy to be detected;
however, Fig. 3 in Sect. 4 demonstrates that it is not the case for slowloris, which
strongly disrupts operations in spite of the defense. Our experiment indicates
that a model trained to detect a given attack might be ineffective to reveal a
“weaker” variant of the same attack.

5.4 Lessons Learned

There are several interesting lessons learned from our experience. We notice
that the “ideal” IDS model obtained in the context of its originating dataset
–CICIDS2017 in this study– does not generalize to a much more simple proof-
of-concept experiment. In consequence, it is hard to see if/how that IDS model
would generalize to a real-life network affected by all the sources of complexity
and uncertainty that do not exist in our small-scale, controlled, testbed.

More importantly, a minor difference with respect to the data gathering envi-
ronment of the public dataset, such as the enablement of a defense module, can
totally invalidate an IDS model inferred on the top of it. It must be noted that
defense modules are just a marginal example out of the large number of uncon-
trollable factors (e.g., sophistication of the attacks, workloads and configuration)
that characterize a production network. Public intrusion datasets provide only a
limited and incomplete view: our initial experiment demonstrates that one single
variation of the factors changes it all.

Overall, the implications of using public datasets for advancing the state-
of-the-practice of real-life networks and to drive general and rigorous security
claims on machine learning and IDS techniques remain quite opaque.

6 Conclusion

The recent spread of machine learning techniques has boosted significantly the
performance of intrusion detection systems. Machine learning models can learn
normal and anomalous patterns from training data and generate classifiers that
are successively used to detect attacks. Most proposals in the literature leverage
public intrusion detection datasets and achieve detection rates that often are
very impressive. However, these classifiers are hardly ever employed in real-life
networks as they could be ineffective under realistic traffic conditions.

This paper proposed an initial investigation of the inefficacy of machine learn-
ing on public datasets, with a focus on DoS attacks. In particular, we trained
an intrusion detector based on the flows of CICIDS2017 dataset, by considering
both benign and DoS attack traffic. In order to validate the effectiveness of this
detector, we tested it with held-out data, i.e., not used for learning. We lever-
aged benign and DoS network test flows from the CICIDS2017 dataset and from
a testbed emulating a slowloris attack. The detector exhibits 99% accuracy
when tested with data from CICIDS2017. Notably, performance drops against
the slowloris attack conducted in our testbed. This indicates that the “ideal”

A Critique on the Use of Machine Learning on Public Datasets 265

conditions that identify most intrusion detection datasets are not generalizable
to real-life environments. The finding contributes to establishing new knowledge
in this area and poses novel open challenges.

Our results are extremely relevant both for the release of new datasets and for
the implementation of machine learning algorithms, for the purpose of designing
increasingly robust and performing intrusion detection systems. In our future
work, we will extend the analysis by emulating other different DoS attacks.
More important, our long-term objective is to extend our study to other similar
public datasets and machine learning approaches. Our aim is also to analyze deep
learning techniques as far as their use on real-world data is concerned, since at
least in theory they could not be affected by the issues pointed out in this paper.

Acknowledgment. Andrea Del Vecchio gratefully acknowledges support by the “Orio
Carlini” 2020 GARR Consortium Fellowship.

References

1. Ahmim, A., Maglaras, L., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hier-
archical intrusion detection system based on decision tree and rules-based models.
In: Proceedings of International Conference on Distributed Computing in Sensor
Systems, pp. 228–233 (2019)

2. Ali, O., Cotae, P.: Towards DoS/DDoS attack detection using artificial neural
networks. In: Proceedings of 9th IEEE Annual Ubiquitous Computing, Electronics
Mobile Communication Conference, pp. 229–234 (2018)

3. Beer, F., Hofer, T., Karimi, D., Bühler, U.: A new attack composition for network
security. In: DFN-Forum Kommunikationstechnologien, pp. 11–20. Gesellschaft für
Informatik e.V. (2017)

4. Bowen, T., Poylisher, A., Serban, C., Chadha, R., Jason Chiang, C., Marvel, L.M.:
Enabling reproducible cyber research - four labeled datasets. In: Proceedings of
Military Communications Conference, pp. 539–544. IEEE (2016)

5. Catillo, M., Del Vecchio, A., Ocone, L., Pecchia, A., Villano, U.: USB-IDS-1: a pub-
lic multilayer dataset of labeled network flows for IDS evaluation. In: Proceedings
of International Conference on Dependable Systems and Networks - Supplemental
Volume. IEEE (2021)

6. Catillo, M., Pecchia, A., Rak, M., Villano, U.: A case study on the representative-
ness of public DoS network traffic data for cybersecurity research. In: Proceedings
of International Conference on Availability, Reliability and Security, pp. 1–10, Art.
no. 6. ACM (2020)

7. Catillo, M., Rak, M., Villano, U.: 2L-ZED-IDS: a two-level anomaly detector for
multiple attack classes. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Tak-
izawa, M. (eds.) WAINA 2020. AISC, vol. 1150, pp. 687–696. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-44038-1 63

8. Catillo, M., Pecchia, A., Rak, M., Villano, U.: Demystifying the role of public
intrusion datasets: a replication study of DoS network traffic data. Comput. Secur.
102341 (2021)

9. Kayacık, H.G., Zincir-Heywood, N.: Analysis of three intrusion detection system
benchmark datasets using machine learning algorithms. In: Kantor, P., et al. (eds.)
ISI 2005. LNCS, vol. 3495, pp. 362–367. Springer, Heidelberg (2005). https://doi.
org/10.1007/11427995 29

https://doi.org/10.1007/978-3-030-44038-1_63
https://doi.org/10.1007/11427995_29
https://doi.org/10.1007/11427995_29

266 M. Catillo et al.

10. Kenyon, A., Deka, L., Elizondo, D.: Are public intrusion datasets fit for purpose
characterising the state of the art in intrusion event datasets. Comput. Secur. 99,
102022 (2020)

11. Kshirsagar, D., Kumar, S.: An efficient feature reduction method for the detection
of DoS attack. ICT Express (2021)

12. Lashkari, A.H., Gil, G.D., Mamun, M.S.I., Ghorbani, A.A.: Characterization of
Tor traffic using time based features. In: Proceedings of International Conference
on Information Systems Security and Privacy, pp. 253–262 (2017)

13. Lee, J., Kim, J., Kim, I., Han, K.: Cyber threat detection based on artificial neural
networks using event profiles. IEEE Access 7, 165607–165626 (2019)

14. Liu, H., Lang, B.: Machine learning and deep learning methods for intrusion detec-
tion systems: a survey. Appl. Sci. 9(20), 4396 (2019)

15. Maciá-Fernández, G., Camacho, J., Magán-Carrión, R., Garćıa-Teodoro, P.,
Therón, R.: UGR’16: a new dataset for the evaluation of cyclostationarity-based
network IDSs. Comput. Secur. 73, 411–424 (2017)

16. McHugh, J.: Testing Intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln Labora-
tory. ACM Trans. Inf. Syst. Secur. 3(4), 262–294 (2000)

17. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intru-
sion detection systems (UNSW-NB15 network data set). In: Proceedings of Military
Communications and Information Systems Conference, pp. 1–6. IEEE (2015)

18. Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of
network-based intrusion detection data sets. Comput. Secur. 86, 147–167 (2019)

19. Sharafaldin, I., Lashkari, A.H., Ghorbani., A.A.: Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In: Proceedings of Inter-
national Conference on Information Systems Security and Privacy, pp. 108–116.
SciTePress (2018)

20. Silva, J.V.V., Lopez, M.A., Mattos, D.M.F.: Attackers are not stealthy: Statisti-
cal analysis of the well-known and infamous KDD network security dataset. In:
Proceedings of Conference on Cloud and Internet of Things, pp. 1–8 (2020)

21. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD
CUP 99 data set. In: Proceedings of Symposium on Computational Intelligence for
Security and Defense Applications, pp. 1–6. IEEE (2009)

22. Tavallaee, M., Stakhanova, N., Ghorbani, A.A.: Toward credible evaluation of
anomaly-based intrusion-detection methods. IEEE Trans. Syst. Man Cybern. Part
C (Appl. Rev.) 40(5), 516–524 (2010)

23. Viegas, E.K., Santin, A.O., Oliveira, L.S.: Toward a reliable anomaly-based intru-
sion detection in real-world environments. Comput. Netw. 127(C), 200–216 (2017)

24. Wankhede, S., Kshirsagar, D.: DoS attack detection using machine learning and
neural network. In: Proceedings of 4th International Conference on Computing
Communication Control and Automation, pp. 1–5 (2018)

A Comparison of Different Source Code
Representation Methods for Vulnerability

Prediction in Python

Amirreza Bagheri1 and Péter Hegedűs2,3(B)

1 Software Engineering Department, University of Szeged, Szeged, Hungary
bagheri@inf.u-szeged.hu

2 MTA-SZTE Research Group on Artificial Intelligence, ELKH, Szeged, Hungary
hpeter@inf.u-szeged.hu

3 FrontEndART Ltd., Szeged, Hungary

Abstract. In the age of big data and machine learning, at a time when
the techniques and methods of software development are evolving rapidly,
a problem has arisen: programmers can no longer detect all the security
flaws and vulnerabilities in their code manually. To overcome this prob-
lem, developers can now rely on automatic techniques, like machine learn-
ing based prediction models, to detect such issues. An inherent property
of such approaches is that they work with numeric vectors (i.e., feature
vectors) as inputs. Therefore, one needs to transform the source code
into such feature vectors, often referred to as code embedding. A popu-
lar approach for code embedding is to adapt natural language processing
techniques, like text representation, to automatically derive the necessary
features from the source code. However, the suitability and comparison
of different text representation techniques for solving Software Engineer-
ing (SE) problems is rarely studied systematically. In this paper, we
present a comparative study on three popular text representation meth-
ods, word2vec, fastText, and BERT applied to the SE task of detecting
vulnerabilities in Python code. Using a data mining approach, we col-
lected a large volume of Python source code in both vulnerable and fixed
forms that we embedded with word2vec, fastText, and BERT to vectors
and used a Long Short-Term Memory network to train on them. Using
the same LSTM architecture, we could compare the efficiency of the
different embeddings in deriving meaningful feature vectors. Our find-
ings show that all the text representation methods are suitable for code
representation in this particular task, but the BERT model is the most
promising as it is the least time consuming and the LSTM model based
on it achieved the best overall accuracy (93.8%) in predicting Python
source code vulnerabilities.

Keywords: Vulnerability prediction · Code embedding · Comparative
study · Machine learning

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 267–281, 2021.
https://doi.org/10.1007/978-3-030-85347-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_20

268 A. Bagheri and P. Hegedűs

1 Introduction

Security bugs (i.e., vulnerabilities) in software are becoming more and more
difficult to identify in today’s applications, allowing hackers and attackers to
profit from their exploit. Every year, tens of thousands of such vulnerabilities
are discovered and fixed. Manually auditing source code and finding vulnerabil-
ities is costly at best, if not impossible at all. Therefore, researchers and practi-
tioners have proposed various tools that can help in discovering vulnerabilities
automatically. Classical vulnerability detection tools rely on static [3,10,17] or
dynamic [20,22,24] code analysis, symbolic execution or taint analysis. However,
with the advent of efficient machine learning techniques, new approaches appear
that try to solve Software Engineering (SE) problems by training AI prediction
models on large amount of annotated code samples. Vulnerability detection is one
typical such SE task that has been addressed with these new ML approaches. As
of today, using prediction models to decide if a source code fragment is vulnera-
ble or has became a very common and effective approach. An inherent property
of such approaches is that they can work with numeric vectors (i.e., feature
vectors) as inputs. Therefore, one needs to transform the source code into such
feature vectors, often referred to as code embedding. This process can be either
manual (i.e., defining and extracting features from source code manually, like
lines of code, number of branches, code complexity) or automatic (i.e., applying
ML based techniques to automatically learn the vector representation of code).
A popular approach for automatic code embedding is to adapt natural language
processing techniques, like text representation [26], to automatically derive the
necessary features from the source code. Despite their popularity, the suitability
and comparison of different text representation techniques for solving SE prob-
lems has been rarely studied systematically. Given the fact that the accuracy of
prediction models relies heavily on the appropriate representation of input data,
we need empirical data about the effect of such representations on the underlying
SE task to be solved.

In this paper, we present a comparative study of three popular text repre-
sentation methods, word2vec [9], fastText [15], and BERT [11] applied to the
SE task of detecting vulnerabilities in Python code. We applied a data mining
approach to collect a suitable training data for training vulnerability prediction
models. Using a heuristic approach (i.e., searching for simple terms indicating
security fixes in commit logs) we collected a large volume of Python source
code from GitHub in both vulnerable and fixed forms. We generated the vector
representation of these code fragments using automatic code embedding based
on the word2vec, fastText, and BERT text representation methods and used
a Long Short-Term Memory [23] network to create a vulnerability prediction
model based on them. Training the LSTM model with the same architecture
on each of the different code representations, we could compare the efficiency of
the various embeddings in deriving meaningful feature vectors for vulnerability
prediction. We investigated the following two research questions using the above
described methodology:

Comparison of Source Code Representations 269

RQ1: Is there a significant difference in the performance of the vulnerability
prediction models based on the different code embedding methods?
RQ2: Are some of the code embedding methods more suitable for predicting
certain types of vulnerabilities than others?

Our findings show that all the text representation methods are suitable for
code representation in this particular task, but the BERT model is the most
promising, as it is the least time consuming, and the LSTM model based on
it achieved the best overall accuracy (93.8%) in predicting Python source code
vulnerabilities. Regarding the various vulnerability types, we observed slight
variances in model performances based on the applied source code embeddings.
Nonetheless, the prediction model based on the word2vec representation of
code clearly outperformed models based on fastText and BERT for detecting
SQL injection, while in case of Command Injection, Cross-Site Request Forgery
(XSRF), Remote Code Execution (RCE), and Path Disclosure the BERT based
models achieved better results than models based on the other two embeddings.

The rest of the paper is organized as follows. In Sect. 2 we introduce works
that are similar to ours. Section 3 gives details about our dataset collection
methodology, while in Sect. 4 we describe our overall approach for the systematic
comparison of the different source code embedding methods. Section 5 contains
the comparison results. We summarize the set of threats to the validity of our
work in Sect. 6 and conclude our findings in Sect. 7.

2 Related Work

Solving a SE task with machine learning requires the input source code to be
represented as a numeric vector. Therefore many approaches have been proposed
for deriving meaningful code representations to feed into ML models.

Alon et al. [2] introduce code2vec, a neural model for representing snippets of
code as continuous distributed vectors. The method first breaks down the code
to a collection of paths in its abstract syntax tree. Then, the network learns
the atomic representation of each path while simultaneously learning how to
aggregate a set of them.

Lozoya et al. [16] introduce a new code embedding technique called com-
mit2vec based on code2vec. This representation focuses on embedding code
changes rather than code snapshots, which they used to successfully train models
to detect vulnerability fixing commits.

Ben-Nun et al. [4] propose a code embedding technique called inst2vec that
is based on an Intermediate Representation (IR) of the code that is independent
of the source programming language. They provide a novel definition of con-
textual flow for this IR, leveraging both the underlying data- and control-flow
of the program. The authors of the paper demonstrate the effectiveness of the
approach on compute device mapping, optimal thread coarsening and algorithm
classification.

270 A. Bagheri and P. Hegedűs

Mou et al. [18] propose the “coding criterion” to build program vector rep-
resentations, which are the premise of deep learning for program analysis. They
evaluate the learned vector representations both qualitatively and quantitatively.

In our work, we do not propose new code embedding techniques, rather evalu-
ate the impact of different text representation methods (i.e., word embeddings)
used as code representations for vulnerability prediction. As these techniques
are usually used under the hood of the more complex code representations, this
is a natural first step towards better understanding the application of natural
language processing techniques for solving SE tasks.

There are also many related works that focus on vulnerability prediction or
similar SE tasks based on word embeddings in particular. Harer et al. [13] use
word2vec to create word embeddings for C/C++ tokens. Based on this code
representation they successfully train machine learning models to predict the
results of static analyzers.

White et al. [27] apply word2vec in the scope of automatic program repair.
In their approach, DeepRepair, they create Java token embeddings that they use
to start a recursive encoder for abstract syntax trees. Chen and Monperrus [7]
use word2vec to create Java token embeddings for automated program repair as
well, in order to find the correct ingredients.

Unlike the works mentioned above, we are not focusing on creating a state-
of-the-art prediction model for a particular SE task. Rather, we investigate the
capabilities of various text vectorization techniques as source code representa-
tions in the context of identifying vulnerabilities in Python code with ML.

The work of Russel et al. [19] is the closest one to ours. They developed a
fast and scalable vulnerability detection tool based on deep feature represen-
tation learning that directly interprets lexed source code. They compared the
bag-of-words (BOW) based simple source code embedding with code representa-
tions learned by CNN and RNN models automatically (i.e., with an embedding
layer). Although our approach is similar, we do not compare different ML models
and automatic code representation learning, but explicitly compare the effect of
applying word embeddings as features for an LSTM prediction model. To the
best of our knowledge, ours is the first attempt to systematically evaluate the
impact of word2vec, fastText, and BERT-based code embeddings on vulnerabil-
ity prediction.

3 Dataset Extraction

In order to compare the various word embedding based code representations,
we need a training dataset for the vulnerability prediction model relying on
them. We applied a data mining approach to gather actual vulnerability fixes
from various repositories and use them to train our model to recognize differ-
ent patterns of security vulnerabilities in source code. We chose GitHub as our
data source as it contains a wide range of open source applications, including
Python source code, which we focus on in this work. We searched for commits
in Python projects with some vulnerability related keywords included in their

Comparison of Source Code Representations 271

Fig. 1. GitHub data mining process to find vulnerability fixes

commit messages. There are numerous types of security vulnerabilities in pro-
gramming languages, but most of them are spread across languages. We focus
on some of the most popular vulnerability types, namely SQL and command
injection, cross-site scripting, cross-site request forgery, remote code execution,
and path disclosure. Our overall data mining process is displayed in Fig. 1.

3.1 Mining GitHub

We followed the guidance provided by Chaturvedi et al. [6], who demonstrated
how to use tools and datasets to mine database repositories and assist us in
gathering data in this time-consuming task. The first step is to collect a large
number of commits that are candidate vulnerability fixes. We searched for vul-
nerability fixing commits by querying GitHub data through its public REST
API. Because of GitHub constraints, we first had to extract a dataset containing
commits coming from different language projects and then filter out data related
to Python projects. We ended up collecting approximately 70k commits yielding
to 140k Python code snippets (vulnerable and fixed together) from 14k different
Python projects. To facilitate reproducibility, we published all the collected data
and processing scripts in the form of an online appendix.1

3.2 Filtering the Data

After collecting the candidate commits, we filtered them based on some security
relevant keywords. Some sample keywords we use in the heuristic data collection
scripts are shown in Fig. 2. For the complete list of search terms, see the script
source in the online appendix package.

We used the PyDriller tool [21] to download repositories and look for rele-
vant commits and extract information from them. We also filtered out commits
that did not contain changes in files with ‘.py’ extension. Once we identified
the commits that are related to vulnerability fixes, we downloaded the changed
source code before and after the fixes. It turned out that downloading the source
code in a reasonable amount of time was possible if all of the scanning was done
ahead of time in a clever way to keep the number of downloaded repositories to a
bare minimum. The diffs files we downloaded are essentially large text files that
represent the changes in the source code introduced by a commit; however, they

1 https://doi.org/10.5281/zenodo.4703996.

https://doi.org/10.5281/zenodo.4703996

272 A. Bagheri and P. Hegedűs

Fig. 2. Security related search terms used by our heuristic data collection script

contained some unnecessary details (file name, line number) that we eliminated
before assembling the final dataset using the previous and subsequent versions of
the code snippet. Both snippets contained the changed lines so we could extract
and label the functions in the previous version as vulnerable while after the fix,
they become not vulnerable.

3.3 Labels

After filtering the commits based on their messages and downloaded the relevant
code changes in form of diffs, we created the final labeled dataset as follows. We
removed the comments from the affected code blocks because they are unlikely to
impact a file’s vulnerability. After that, we extracted the fragments of code (i.e.,
code blocks) from the diff files that were affected by the fix in the commit and
assigned the vulnerable label to its pre-fixed version while not vulnerable label
was assigned to its fixed form. However, it is not trivial to identify the exact
code blocks within the whole source file that were affected by a vulnerability
fixing change. For this, we analyzed the downloaded diff files and implemented
the algorithm presented by Hovsepyan et al. [14] and Wartschinski et al. [25] to
find the appropriate code block.

4 Approach

The primary goal of this work is to compare various embedding layers based
on text representations in order to determine their capabilities in detecting vul-
nerabilities in Python programs. To achieve an objective comparison, we need
to apply the different source code embedding methods selected with the same
ML algorithm trained on the same dataset. We evaluate the embedding methods
by training a Long Short-Term Memory (LSTM) model with the same hyper-
parameters on the dataset described in Sect. 3.

4.1 The Evaluated Embedding Layers

To encode the code tokens we need to transfer the code tokens into vectors
using one of our selected embedding methods (word2vec, fastText and BERT).

Comparison of Source Code Representations 273

For word2vec and fastText we need to train a model that learns the embeddings
based on a large corpus of Python source code. To collect this, we also mined
GitHub for popular Python projects.

Word2vec: Word2vec is one of the most widely adopted word embedding meth-
ods to represent source code in vector form. To derive word2vec based source code
embeddings, we needed to train a suitable word2vec model on Python source
code to encode the code tokens into word2vec vectors. Training the word2vec
model requires a large corpus of Python source code (for further reference, see
the works of Bhoopchand et al. [5] and Allamanis et al. [1]).

To collect such a corpus, we searched for popular projects on GitHub. GitHub
uses two metrics to measure a repository’s popularity: stars (user-created high-
lights) and forks (number of copies of a repository). The list of selected reposi-
tories with a high number of stars and forks used as a code corpus is available
in our online appendix. We used PyDriller [21] for querying the most popular
projects and downloading their source files. The resulting source code, 11 mil-
lion lines in total from 38 of the most popular projects, is simply concatenated
to create a single massive Python code file. Another script is then used to fix
any issues with the text, such as indentation errors. We transform the Python
programs into Python tokens using the built-in Python tokenizer. We delete the
comments from files and add new lines at the end of the file. Tabs and indenta-
tions have been normalized. The word2vec model is then trained on the corpus
using the Gensim2 Python package (see Fig. 3). All the word2vec training scripts
are also part of our online appendix.

Fig. 3. Transforming code into vectors

2 https://radimrehurek.com/gensim/.

https://radimrehurek.com/gensim/

274 A. Bagheri and P. Hegedűs

FastText: We use the exact same process for calculating fastText [15] embed-
dings as for word2vec. This means, we apply the same data analysis and tokenizer
scripts and train the embedding model with the same Python code corpus. We
chose fastText as a study subject because word2vec only learns vectors for words
that are complete in the training corpus. FastText, on the other hand, learns
vectors for both the n-grams and the full words contained inside each word. Fast-
Text uses the mean of the target word vector and its component n-gram vectors
for training at each step. The change derived from the error is then applied uni-
formly to all of the vectors that were combined to form the target. This adds a
significant amount of extra computation to the training step. A word must sum
and average its n-gram component parts at each point.

BERT: Bidirectional Encoder Representations from Transformers (BERT) is a
Google-developed Transformer-based machine learning technique for natural lan-
guage processing (NLP) pre-training [11]. Jacob Devlin and his Google colleagues
developed and released BERT in 2018. We selected this embedding method for
comparison due to its recent successes within the NLP field. As the BERT model
is pre-trained on natural language texts, to adopt it to source code, we used its
Microsoft’s variant, called CodeBERT [12]. CodeBERT is a pre-trained BERT
model for programming languages. In the context of this paper, we used BERT
only as an embedding method and we feed all output tokens to an LSTM model.
The biggest difference between BERT and the other two embedding methods
is that the training part of the embedding model is done in advance using a
huge corpus in case of BERT, while for word2vec and fastText, we need to do
the training locally. This means that CodeBERT can be used out of the box,
without having to train a model for token embeddings.

4.2 Preparing the Data for Classification

The collected vulnerability dataset (see Sect. 3) contains data in the form of
vulnerable and not vulnerable code snippets. We need to transform these into
a list of tokens (such as ‘+’, ‘for’, ‘init’) and convert each token into its vector
representation according to the different embedding methods. Each list of such
vectors (representing the list of tokens of the underlying code snippet) will be
labeled, where label ‘1’ means that the code is vulnerable and ‘0’ means it is
not vulnerable. Since ML models require a fix-sized input, we took the overall
length of the concatenated vectors for the longest code snippet in our dataset
and padded all the shorter ones with zeros to make them have the same length.

We split the training dataset into three sets, train, validation and test. 80%
of the data selected randomly is used for training, 10% for validating and 10%
for testing. Note that the validation data is only used to evaluate the model
performance but all the results are presented on the test data, which the model
has never seen before, applying a 10-fold cross-validation.

Comparison of Source Code Representations 275

4.3 Training the LSTM

After transforming each of our learning samples into a fix-sized numeric vector,
we are ready for training the LSTM model on them. For the implementation
of the model, we used the Keras library [8]. The first component of the model
is the LSTM layer, which learns the features associated with the label of the
code snippet (i.e., whether it is vulnerable or not). We can use a variety of
hyper-parameters for the model, like dropout.

Then, there is an activation layer that creates a dense output layer with
one neuron. We used the Sigmoid activation function as our aim is to predict
between two classes: vulnerable and not vulnerable. We applied different hyper-
parameters and tried out several different combinations of them as a set. Tech-
nically, the evaluation metric and loss functions are also hyper-parameters. We
chose to compare the model performances based on the F1-score metric.

Fig. 4. The steps of creating and evaluating the vulnerability prediction models based
on different code representations

Our model’s base hyper-parameter is the number of neurons, which has a
direct impact on its learning capacity; the more neurons we use, the more com-
plex structures our model can recognize, but the training can also take longer.
Finally, we have the number of epochs, or the number of times the learning
algorithm can iterate over the entire training data set, which we set to 100 and
200. The high-level overview of our code representation evaluation/comparison
process is shown in Fig. 4.

5 Results

With data mining, we created a large dataset of Python code snippets from
GitHub and labeled them as being vulnerable or not vulnerable based on
detected vulnerability fixing commits. The dataset covers six common types
of vulnerabilities (SQL and command injection, cross-site scripting, cross-site
request forgery, remote code execution, and path disclosure). We trained an
LSTM classifier using different embedding layers (i.e., word2vec, fastText, and
BERT) with different hyper-parameters to compare the impact of the three

276 A. Bagheri and P. Hegedűs

Fig. 5. LSTM model results using word2vec, fastText and BERT with various epochs
and dropout ratio

different source code embeddings on vulnerability detection predicting perfor-
mance.

The results of the LSTM models based on the three different code embedding
layers are displayed in Figs. 5 and 6. Figure 5 shows the changes in F1 scores
based on the number of epochs and ratio of dropout applied for the training.
As can be seen, the results are very close for the three embedding approaches.
Word2vec based results are slightly outperforming the others for small number of
epochs and high dropout rate. However, for more than 75 epochs and a dropout
rate lower than 20%, BERT based models perform the best.

Fig. 6. LSTM model results using word2vec, fastText and BERT with various number
of neurons and batch sizes

Comparison of Source Code Representations 277

Figure 6 depicts F1 score changes based on the hyper-parameters of neuron
counts and batch sizes. Again, the results achieved with the different embedding
methods are very close. For smaller number of neurons, word2vec based models
work better, while for large number of neurons, BERT becomes superior to
others. BERT is also the best performing model when it comes to various batch
sizes. It works best with batch sizes between 400 and 600. It is also true, that
word2vec slightly outperforms fastText when applying larger batch sizes.

LSTM models using the BERT-based code representation achieve, on aver-
age, an accuracy of 93.8%, a recall of 83.2%, a precision of 91.4%, and an F1
score of 87.1%. The models based on the word2vec code representation achieve,
on average, an accuracy of 91%, a recall of 86.1%, a precision of 88.2%, and an
F1 score of 85.6%. While fastText code representation based models achieve, on
average, an accuracy of 91.8%, a recall of 86.4%, a precision of 85.1%, and an F1
score of 84%, on average, an accuracy of 91%, a recall of 81%, a precision of 90%
and an F1 score of 82%. Based on the results, we can answer RQ1 as follows.

RQ1. We did not observe significant differences in the vulnerability pre-
diction performances of the LSTM models trained on different code embed-
dings. All of them are suitable the represent code for this task (all the models
achieve an accuracy above 90%). However, for BERT based models seems
to perform slightly better, especially using larger batch sizes and smaller
dropout rate.

To answer RQ2, we calculated the same performance measures grouped by
the different vulnerability types. We categorized each code snippet according to
the keywords found in the vulnerability fixing commit. As it can be seen from
Figs. 7, 8, and 9, there is not much variance in model performance values within
the categories.

Fig. 7. LSTM+word2vec results for each vulnerability categories

The word2vec based models (see Fig. 7) show the least variance in model
performances within vulnerability categories. The only minor exception is the
recall for XSS, which is clearly lower than that of the others or the average,
mostly because finding good vulnerable dataset of it is difficult and we think
that we didn’t train it with enough data. On the other hand, word2vec based
models perform the best among all in detecting SQL injection vulnerabilities.

278 A. Bagheri and P. Hegedűs

Fig. 8. LSTM+fastText results for each vulnerability categories

The fastText based models (see Fig. 8) show a higher variance within vulner-
ability categories. They have similar average performance values to the word2vec
based models, but are less effective in finding XSS, XSRF, and Path disclosure
types of vulnerabilities.

Fig. 9. LSTM+BERT results for each vulnerability categories

The BERT based models (see Fig. 9) have the highest average performance
measures and the variance in the values is small within the categories. The only
exception is SQL injection, where BERT based models are less efficient than the
other models (recall of 78%, F1 score of 80.1%). However, in case of Command
Injection, Cross-Site Request Forgery (XSRF), Remote Code Execution (RCE),
and Path Disclosure the BERT based models achieved better results than models
based on other embeddings. We can sum up the above observations to answer
RQ2 as follows.

RQ2. The prediction models based on the different code representations
show balanced performance measures within vulnerability categories. How-
ever, we found that vulnerability fix detection on top of word2vec-based
embedded code outperform others in detecting SQL injection, while all
the remaining vulnerability types are detected most effectively when BERT
based models were used for code embedding.

Comparison of Source Code Representations 279

6 Threats to Validity

The heuristic data collection is a major threat to the validity of the results.
With a keyword based commit search we might include irrelevant commits (that
do not fix vulnerabilities) and we might miss out those that fix vulnerabilities
but do not contain the searched keywords. To mitigate this threat, we manually
investigated a small sample of the collected data, which we found to be accurate
in the majority of cases. Since we collected a very large amount of such training
data, the impact of several mis-classified commits should be negligible.

Many scenarios exist where a weakness arises from the interaction of lines
of code that are distributed over a large file (or multiple files). However, since
the examples for vulnerabilities used to train the model only concentrate on
the immediate vicinity of fixed lines, the model might be unable to learn the
consequences of far-reaching dependencies. Even though our results might not
generalize to all of the different types of vulnerabilities, we believe these prelim-
inary empirical results are already valuable.

Limitations in the chosen approach may also be a threat to the internal
validity. We selected one specific prediction model to compare three different
code embedding algorithms. Different ML models might yield to different results.
In the future, we plan to extend our scope and add multiple ML models and code
embeddings to the comparison.

7 Conclusion

In this paper, we presented an empirical study where we performed the compar-
ison of three word embedding based code representation methods in the context
of vulnerability prediction in Python code. These methods – word2vec, fastText,
and BERT – adopted from the field of natural language processing, are widely
used in practice to represent source code as numeric vectors and solve SE tasks
(e.g., code summarization, bug detection, or finding copy-pasted code parts)
with ML models trained on these representations. Despite their popularity, very
few works evaluate and compare their impact on the prediction performances of
the ML models relying on them.

With a data mining approach, we collected vulnerability fixing commits from
which we could extract vulnerable (before the fix) and not vulnerable (after the
fix) code snippets that formed our training dataset (140k Python code snippets
in total). We applied the three investigated code embeddings to these code snip-
pets and fed the resulting vectors into the same LSTM architecture to train a
prediction model. Our findings show that all the text representation methods are
suitable for code representation in this particular task, but the BERT model is
the most promising as it is the least time consuming and the LSTM model based
on it achieved the best overall accuracy (93.8%) in predicting source code vulner-
abilities. Regarding the various vulnerability types, we observed slight variances
in model performances based on the applied source code embeddings. Nonethe-
less, the prediction model based on the word2vec representation of code clearly

280 A. Bagheri and P. Hegedűs

outperformed models based on fastText and BERT for detecting SQL injec-
tion, while in case of Command Injection, Cross-Site Request Forgery (XSRF),
Remote Code Execution (RCE), and Path Disclosure the BERT based models
achieved better results than models based on other embeddings.

Our future work will focus on using different classifiers and improving the
approach for labelling the data, collecting a dataset of higher quality, and lever-
aging the commit context to create actionable fix recommendations. The work
could also be extended to other programming languages or types of vulnerabili-
ties.

Acknowledgment. The presented work was carried out within the SETIT Project
(2018-1.2.1-NKP-2018-00004)3 and supported by the Ministry of Innovation and Tech-
nology NRDI Office within the framework of the Artificial Intelligence National Labora-
tory Program (MILAB). The research was partly supported by the EU-funded project
AssureMOSS (Grant no. 952647).

Furthermore, Péter Hegedűs was supported by the Bolyai János Scholarship of the
Hungarian Academy of Sciences and the ÚNKP-20-5-SZTE-650 New National Excel-
lence Program of the Ministry for Innovation and Technology.

References

1. Allamanis, M., Sutton, C.: Mining source code repositories at massive scale using
language modeling. In: 2013 10th Working Conference on Mining Software Repos-
itories (MSR), pp. 207–216. IEEE (2013)

2. Alon, U., Zilberstein, M., Levy, O., Yahav, E.: code2vec: learning distributed rep-
resentations of code. In: Proceedings of the ACM on Programming Languages, vol.
3(POPL), pp. 1–29 (2019)

3. Arroyo, M., Chiotta, F., Bavera, F.: An user configurable clang static analyzer taint
checker. In: 2016 35th International Conference of the Chilean Computer Science
Society (SCCC), pp. 1–12. IEEE (2016)

4. Ben-Nun, T., Jakobovits, A.S., Hoefler, T.: Neural code comprehension: a learn-
able representation of code semantics. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems, NIPS 2018, Red Hook, NY,
USA, pp. 3589–3601. Curran Associates Inc. (2018)

5. Bhoopchand, A., Rocktäschel, T., Barr, E., Riedel, S.: Learning python code sug-
gestion with a sparse pointer network. arXiv preprint arXiv:1611.08307 (2016)

6. Chaturvedi, K.K., Sing, V., Singh, P.: Tools in mining software repositories. In:
2013 13th International Conference on Computational Science and Its Applica-
tions, pp. 89–98. IEEE (2013)

7. Chen, Z., Monperrus, M.: The remarkable role of similarity in redundancy-based
program repair. arXiv preprint arXiv:1811.05703 (2018)

8. Chollet, F., et al.: Keras: the python deep learning library. Astrophysics Source
Code Library, p. ascl-1806 (2018)

9. Church, K.W.: Word2vec. Nat. Lang. Eng. 23(1), 155–162 (2017)

3 Project no. 2018-1.2.1-NKP-2018-00004 has been implemented with the support pro-
vided from the National Research, Development and Innovation Fund of Hungary,
financed under the 2018-1.2.1-NKP funding scheme.

http://arxiv.org/abs/1611.08307
http://arxiv.org/abs/1811.05703

Comparison of Source Code Representations 281

10. Cousot, P., et al.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS,
vol. 3444, pp. 21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31987-0 3

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. arXiv:1810.04805 (2018)

12. Feng, Z., et al.: CodeBERT: a pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155 (2020)

13. Harer, J.A., et al.: Automated software vulnerability detection with machine learn-
ing (2018)

14. Hovsepyan, A., Scandariato, R., Joosen, W., Walden, J.: Software vulnerability
prediction using text analysis techniques. In: Proceedings of the 4th International
Workshop on Security Measurements and Metrics, pp. 7–10 (2012)

15. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fast-
Text.zip: Compressing text classification models. arXiv:1612.03651 (2016)

16. Lozoya, R.C., Baumann, A., Sabetta, A., Bezzi, M.: Commit2vec: learning dis-
tributed representations of code changes. SN Comput. Sci. 2(3), 1–16 (2021)

17. Olesen, M.C., Hansen, R.R., Lawall, J.L., Palix, N.: Coccinelle: tool support for
automated CERT C secure coding standard certification. Sci. Comput. Program.
91, 141–160 (2014)

18. Peng, H., Mou, L., Li, G., Liu, Y., Zhang, L., Jin, Z.: Building program vector rep-
resentations for deep learning. In: Zhang, S., Wirsing, M., Zhang, Z. (eds.) KSEM
2015. LNCS (LNAI), vol. 9403, pp. 547–553. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25159-2 49

19. Russell, R., et al.: Automated vulnerability detection in source code using deep
representation learning. In: 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 757–762. IEEE (2018)

20. Skaletsky, A., et al.: Dynamic program analysis of Microsoft windows applications.
In: 2010 IEEE International Symposium on Performance Analysis of Systems &
Software (ISPASS), pp. 2–12. IEEE (2010)

21. Spadini, D., Aniche, M., Bacchelli, A.: Pydriller: Python framework for mining
software repositories. In: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 908–911 (2018)

22. Srivastava, A., Eustace, A.: ATOM: a system for building customized program
analysis tools. ACM SIGPLAN Not. 39(4), 528–539 (2004)

23. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language mod-
eling. In: 13th Annual Conference of the International Speech Communication
Association (2012)

24. Waddington, D.G., Roy, N., Schmidt, D.C.: Dynamic analysis and profiling of
multithreaded systems. In: Advanced Operating Systems and Kernel Applications:
Techniques and Technologies, pp. 156–199. IGI Global (2010)

25. Wartschinski, L.: Detecting software vulnerabilities with deep learning. Master’s
thesis, Humboldt University, Berlin (2014)

26. Wen, Y., Zhang, W., Luo, R., Wang, J.: Learning text representation using
recurrent convolutional neural network with highway layers. arXiv preprint
arXiv:1606.06905 (2016)

27. White, M., Tufano, M., Martinez, M., Monperrus, M., Poshyvanyk, D.: Sorting
and transforming program repair ingredients via deep learning code similarities.
In: 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), February 2019

https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/1612.03651
https://doi.org/10.1007/978-3-319-25159-2_49
https://doi.org/10.1007/978-3-319-25159-2_49
http://arxiv.org/abs/1606.06905

Threat Modeling of Edge-Based IoT
Applications

Massimo Ficco , Daniele Granata(B) , Massimiliano Rak ,
and Giovanni Salzillo

Department of Engineering, University of Campania Luigi Vanvitelli,
via Roma 29, 81031 Aversa, CE, Italy

{massimo.ficco,daniele.granata,massimiliano.rak,
giovanni.salzillo}@unicampania.it

Abstract. The Multi-access Edge Computing (MEC) computing model
provides on-demand cloud resources and services to the edge of the net-
work, to offer storage and computing capacity, mobility, and context
awareness support for emerging Internet of Things (IoT) applications.
On the other hand, its complex hierarchical model introduces new vul-
nerabilities, which can influence the security of IoT applications. The
use of different enabling technologies at the edge of the network, such
as various wireless access and virtualization technologies, implies several
threats and challenges that make the security analysis and the deploy-
ment of security mechanisms a technically challenging problem. This
paper proposes a technique to model Edge-based systems and automat-
ically extract security threats and plan possible security tests. The pro-
posed approach is tested against a simple, but significant case study. The
main contribution consists of a threat catalog that can be used to derive
a threat model and perform a risk analysis process of specific MEC-based
IoT scenarios.

Keywords: IoT · Edge · Internet of Things · Threat model · Security

1 Introduction

The Multi-access Edge Computing (MEC) extends the cloud computing capa-
bilities to the edge of the network, in order to fulfil more stringent end to end
latency-sensitive, high-computing and -bandwidth-demanding, location aware-
ness, and mobility of the typical Internet of Things (IoT) applications [8,26].
Edge computing enables orchestrating and coordinate optimization actions over
local resources, with minimal interaction with remote resources, taking into
account the behaviour of local users. On the other hand, this emerging paradigm
introduces new security challenges because of the multiple interactions with
different access technologies, including WiFi, Bluetooth, Long Term Evolution
(LTE)/5G, etc., making the edge infrastructure more prone to attacks, such
as Denial-of-Service (DoS), wireless jamming, and man-in-the-middle attacks
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 282–296, 2021.
https://doi.org/10.1007/978-3-030-85347-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_21&domain=pdf
http://orcid.org/0000-0003-4199-8199
http://orcid.org/0000-0002-6776-9485
http://orcid.org/0000-0001-6708-4032
http://orcid.org/0000-0001-6491-9655
https://doi.org/10.1007/978-3-030-85347-1_21

Threat Modeling of Edge-Based IoT Applications 283

for traffic injection or eavesdropping [25]. Moreover, the provisioning of virtual
resources beyond the cloud to the edge nodes has negative effects: nodes could
be compromised by malicious users to orchestrate geographically coordinated
attacks, as well as used to collect fine-grained information, such as sensitive
users’ data [17]. The security assessment for IoT and Edge infrastructures is
a complex task, due to its highly distributed and heterogeneous nature: each
located nodes may suffer different security weakness, needing different counter-
measures.

In recent works, we proposed a set of techniques that aims at identifying
security issues and suggests correct countermeasures in an almost automated
way [6,20,23], in the context of IoT and cloud environments. The methodology
relies on a threat-based approach: starting from the architectural model of the
system under analysis, we automatically construct a threats model, i.e. the set
of threats the system is subject to. From the resulting threat list, supported by
automated risk analysis, we identify a set of possible attack patterns that can be
easily tested to verify possible security problems. The technique can be applied
to perform a systematic security assessment and risk analysis, and/or to drive
penetration tests.

In this paper, we propose an extension of the proposed approach in order to
take into account MEC architectures. As a summary, the main contribution of
this work is: (i) an extension of our model to support Edge architectures, (ii)
a threat catalogue that can be used to derive a threat model and perform a
risk analysis process of specific edge scenarios, and (iii) a demonstration of our
threat-based penetration testing approach over a simple case study.

The remainder of the paper is organized as follows: Sect. 2 analyzes the state
of the art of edge systems in terms of security, Sect. 3 summarizes the threat-
based security assessment approach and the case-study application. Section 4
describes the proposed modelling technique, together with the new Edge exten-
sion and a model of the case study. Section 5 illustrates our threat catalogue for
MEC servers, applying it to the case study. In Sect. 6, the conclusions and the
future works are described.

2 State of the Art

On the one hand, the Edge systems aim at improving performance and ensure
customers’ privacy, on the other hand, they could expose them to multiple classes
of security threats, if security is not taken properly into account. Abbas et al. [2]
evaluates the security problems deriving from the new emerging architectures
that impact on the confidentiality of the data exchanged with the cloud servers.
The authors also highlight how the MEC ecosystems involve various actors (end-
users, service providers and infrastructure providers). This could cause cloud
identification problems and man-in-the-middle attack scenarios. Cloud comput-
ing systems, but also grid computing have a lot of security problems, as stated
by the authors [4] who underline how the integration between cloud paradigm
and grid paradigm can lead to security issues. Unlike cloud systems, MEC-based

284 M. Ficco et al.

IoT applications introduce new security threats also due to several interactions
with various wireless access technologies, multi-tenant infrastructures, virtual-
ization, and different MEC based IoT applications [24]. One of the major security
threat is related to the lack of a well-defined global perimeter of the Edge-IoT
ecosystem. In particular, the whole ecosystem will not be controlled by one
single mobile network operator. Moreover, small companies, like stores, can also
deploy their own micro-edge data-centres, and allow their users to become active
participants in the provisioning of services. This makes a such ecosystem more
heterogeneous and vulnerable. The lack of a well-defined perimeter exposes this
paradigm to the external attackers (which do not control any infrastructure ele-
ment), as well as to malicious internal or external users that control elements
of the infrastructure (such as device users, servers, virtual machine, edge data-
centres, and entire network sections) with which they can influence the provided
services. The geographical distribution of the MEC gateways/servers to provide
services in the close proximity of local sources of data (e.g., mobile devices, enti-
ties inside a building), involves that each component of the infrastructure can
be indirectly targeted by malicious users. If an attacker compromises an edge
data-centre, he could control the services provided in neighbouring geograph-
ical locations. Moreover, the MEC paradigm can provide micro-servers (e.g.,
deployed on a SBC1, such as a Raspberry Pi) and user devices (mobile phones)
to provide their services. On these devices, the security policies might not be
properly implemented or maintained. In fact, the MEC paradigm allows the
creation of clusters of devices at the very edge of the network for providing ser-
vices, for example to exploit parallel mechanisms, which can be used to inject
malware and perform DoS attacks against legit participants. Roman et al. [21]
presented an overview of the threats that affect a generic MEC architecture.
In particular, at infrastructure level, the edge network is part of the last-mile
network. Therefore, different technologies are typically employed to build a net-
work, making the MEC infrastructure exposed to different attacks. For example,
the Denial-of-Service (DoS) and the wireless jamming are two of the most com-
mon attacks used to consume the bandwidth and computing resources of the
edge nodes. Man-in-the-middle attacks could be used to take control of a por-
tion of the network, or inject and eavesdrop on traffic from the nodes. It could
be also used to gain access to the gateway network interfaces that connects 3G
and other wireless networks. Similarly, a malicious gateway can be added to a
cluster of nearby user devices to eavesdrop on and/or inject traffic. Also, the
virtualisation environments adopted to share resources among ME applications
could be exploited to deploy malicious virtual machines/malware for depleting
the computing/networking resources shared between different VMs. Moreover,
although the MEC core infrastructure is typically managed by the same net-
work operator that deploys the edge data-centres, the interactions with a cloud
provider could be un-trusted and be the target of cloud-oriented attacks [10].
There are some solutions in the literature for the security problems described
above. Yahuka et al. [27] have classified the security requirements related to Edge

1 Single-Board-Computer.

Threat Modeling of Edge-Based IoT Applications 285

systems by providing a taxonomy of techniques to be used to guarantee them.
The available solutions require an assessment of the risks associated with these
systems. These techniques are described in a generic way and are valid only in
particular circumstances. A research conducted by Jiang et al. [15], analyzed
the security risks for a grid Edge computing system and proposed an analysis
model aimed at solving the security problems of grid Edge computing. Another
study was conducted by Karim [13], describing the security challenges for Fog
Computing. The author produced a list of potential threats describing possi-
ble attacks, cataloged according to the CIAA process (Confidentiality, Integrity,
Availability, Authentication) and the STRIDE classification [3]. Another study
was conducted by The European Union Agency for Cybersecurity (ENISA),
which reported a threat landscape in 5G context, also considering Edge solu-
tions. Some specific threats for MEC Server are used in next sections to build
a threat catalog. In [18], authors carried out a comparative analysis on systems
composed by MEC Servers and other Edge/Cloud components. In particular,
they focused on the security challenges in the Cloud and in the Edge, producing
a list of threats applicable in both the contexts.

3 Security Assessment Methodology

Hereafter are described the steps required by the security assessment method-
ology adopted within this work. The methodology was previously introduced
in [20,23] and enables less-skilled penetration testers to perform a threat-
modeling-driven penetration testing security evaluation, guiding them to look
for system vulnerabilities on a per threats-basis. As highlighted in Fig. 1, the
approach relies on four phases: (i) the System Modeling, during which a (semi-
)formal description of the system under test is produced, (ii) the Threat Mod-
eling, a phase devoted to the threat enumeration and identification, (iii) the
Planning phase, for the security test selection and attack planning, and (iv) the
final Penetration Testing phase, for the actual attack execution.

Fig. 1. The steps of the adopted methodology.

According to our approach, the System-under-Test (SuT) is described in the
Multi-cloud Application Composition Model (MACM) formalism [6], a graph-
based system modelling formalism, described in Sect. 4, that aims at offering a
simplified description of the system devoted to automate threat modelling and
security assessment and annotate security-concerning information [9]. Thanks to

286 M. Ficco et al.

the techniques described in [6,11], it is possible to generate a full list of threats
for the SuT, starting from a pre-organized and general-purpose catalog.

In the planning phase, penetration testers analyze the identified threats and
select the most promising one, on the basis of his experience and his own compe-
tencies in terms of possible attacks. Currently, we are working on techniques that
aim at automating this step (in [20] and in [23] are presented two alternative
approaches). Once selected the targeted component and the security objectives
to be tested, a penetration tester looks for available vulnerabilities and, eventu-
ally, set up the appropriate tools and frameworks to exploit and put into effect
the chosen threats.

3.1 A Walk-Through Case Study

The considered Edge-IoT experimental scenario consists of a Smart Building
Control system deployed to produce significant savings through its ability to
react quickly even to small changes that occur in the building (such as the air
temperature, the levels of occupation, and brightness of the environments).

The IoT infrastructure consists of smart sensors (meters, thermostats,
advanced lighting systems, etc.), deployed in different places of the building,
for monitoring and controlling the environment, e.g. temperature, gas presence,
etc. Transferring such a considerable amount of (personal) data to the central-
ized cloud servers could be impractical. Moreover, each apartment in the building
may have a different configuration and could involve different IoT devices.

Therefore, the MEC can leverage specialized local services for processing and
storage capabilities for the large IoT data produced within the building, extend-
ing the gateway functionalities to the edge of the network and reducing the com-
munication latency. As an example, the MEC would collect temperature from
different apartments and activate the cooling system just in some interleaved
apartments, thus reducing the overall energy consumption and continuing to
regulate the building temperature in a smarter way.

At the device level, these smart devices are able to collect and transmit
environmental parameters, whereas the local IoT Gateway collects such data
locally (a typical example is a system adopted in [6]).

Our proof-of-concept edge server, based on a Raspberry Pi 3 Model B+,
have been deployed in the building. The node is equipped with a GSM/GPRS
SIM808 module (with a GPS antenna for satellite localization). Moreover, a
simple Android App has been developed to remotely monitoring the implemented
scenario (e.g., monitor the temperature, the vital signs, etc.).

A custom Python script deployed on the MEC server collects data from
the IoT systems (they could be sent by IoT gateways and/or directly by smart
devices), react to an abnormal situation, and send data to a private cloud data
centre. All the communication with the local IoT systems relies on the MQTT
protocol, which is tailored for communication in resource-constrained environ-
ments such as IoT. At cloud level, an application, running a low-consumption
control workload, formats and displays the alerts and the data collected in user-
friendly interfaces (with basics search & filtering capabilities).

Threat Modeling of Edge-Based IoT Applications 287

Our proof-of-concept simply matches a pretty common configuration, which
is able to outline a typical Edge scenario, that includes an intermediary among
IoT systems and the remote cloud services, managed by a third party.

4 MACM Model for Edge Systems

The first step of our methodology is the system modelling that, as anticipated,
relies on the MACM (Multi-Application Cloud Composition Model) formalism
[19]. MACM is a graph-based model in which each graph node represents a
component of the system, and each link characterizes the existing connection
between two different components. The MACM offers a modelling technique to
catch the main features of a reference architecture and to (automatically) identify
security threats. In order to extend the proposed model to Edge systems, we need
to analyze the target architecture and their features, so that we can: (i) extend
the model and (ii) enrich our catalogue of threats for the new assets.

A general Edge-IoT architecture is represented in Fig. 2. Different types of
mobile devices and smart sensors are connected to the Internet through the MEC
nodes, whereas the cloud network can be reached through the core network. The
MEC consists of geo-distributed virtual servers/gateways deployed at the user’s
premises, for example, in a fixed outdoor or indoor location (e.g., a shopping
center, a bus terminal, a smart building, a park, etc.) and on devices located in
moving object (e.g., buses and cars). Each MEC gateway supports a set of built-
in services specific for the target environment, and exploits wireless network
elements for the communication, including WiFi access points, the cellular base
stations, including low power femtocells.

Fig. 2. MEC-IoT architectural model.

As there is no widely accepted standard for edge computing, the reference
architecture (RA) [1] provided by the Edge Computing Consortium describes
the paradigm from a conceptual, technological, and deployment point of view.
The RA outlines that edge systems are built in such a way that IoT devices pro-
duce data that is processed and stored not in the cloud, but through intermediate
processing systems (ECNs). Data processing on intermediate nodes gives the sys-
tem reduced response times. Possible Edge Nodes (ECNs) are classified as: smart

288 M. Ficco et al.

asset, smart gateway, and smart system. Smart assets (i.e., smart street lamp,
smart elevator) can be connected to smart service through a three-layer model, in
which there is a gateway that processes information near the device. However,
alternative reference architectures are proposed in other papers, like [16,26].
At state of art, there is no affirmed standard that states the components of
edge architectures. Something similar happened in IoT systems, as outlined in
[7], even if nowadays standards like ISO ISO30141 [14] are being commonly
accepted. It is worth noticing the core difference among pure IoT systems and
Edge concepts: IoT commonly relies on devices and gateways installed and con-
figured by the end-user, and may use (cloud) service. Instead, Edge solutions,
assume that an intermediary (ECNs and/or MEC server) acts between the IoT
devices/gateways and the (cloud) services. Such components behave similarly to
the IoT gateways but: (i) they are provided by an external provider, (ii) they
could be able to manage multiple independent IoT systems (i.e., IoT devices
that refers to different customers), and (iii) they are (differently from cloud
services) physically located nearby to the managed systems. As summary, Edge
architecture introduces a new type of asset with respect to cloud and IoT: the
ECN (Edge Compute Network) or MEC (Multi-access Edge Compute), which
is provided by CSP. It is physically located near to IoT systems and is able to
offer services that partially overlap the cloud services, but, at the same time,
have lower latency and are able to manage temporary data without the need
to remotely store them in the cloud. ECN/MEC may use remote cloud services
in order to perform the more complex evaluation or store historical data. Last,
but not least, an ECN/MEC system may coordinate with others physically near
ECN/MEC. A different technological solution may implement all or only a few
of such choices, depending on the vendor evaluations, but our modelling tech-
nique is able to support each of them, outlining the possible interaction (when
they exist): in fact, each additional feature introduces, even, additional possible
threats.

As anticipated, MACM models IoT, cloud, and (with this work) Edge sys-
tems through a graph-based model. Each node has a label that classifies the
component in the system deployment. These labels describe typical party roles,
like CSP, Cloud Service Provider, CSC, Cloud Service Customer, or assets types,
e.g., IaaS (infrastructure-as-a-service) for infrastructure services or IoTDevice
for physical devices, etc. Labels affect the relationships (the graph edges) in
which the nodes can be involved. Moreover, each node has a set of properties
that specifies the character of the node. A mandatory property, for the service
components, is the type, a field that specifies the Asset Type according to the
concepts expressed in the previous section. The Asset Type specifies the details
needed during the threat modelling phase to identify the threats to which an
asset is subject. As an example, IaaS nodes can be of type VM or container,
whereas a SaaS service can be a Web Application, a Database or a IDS (Identity
Management System). MACM supports many different types of assets, in par-
ticular, [6] summarizes the asset types introduced for IoT systems, based on the
ISO 30141 standard [14]. Table 1 summarizes some of the MACM nodes, labels,

Threat Modeling of Edge-Based IoT Applications 289

Table 1. MACM node labels and assets.

Labels Asset type (s) Example of asset

CSC CSC.Human A customer that uses services

CSP CSP A service Provider like Amazon,
Google, or a telecom provider

IaaS VM, Container Virtual Machine or Containers

SaaS Service.Web, Service.DB Services offering Web applications or
Databases

Network Network.WAN, Network.WiFi,
Network.LAN, Network.BLE,
Network.ZigBee

Network, the assets differs depending
on the involved technologies

HW HW.server, HW.PC,
HW.micro

A physical hosting hardware

IoTDevice Device.IoT, Device.UE IoT Devices, or user equipments like
Mobile phones or tablets

IoTGW Device.IoTGW An IoT gateway

ECN Device.MEC A MEC Server acting as an Edge
Compute Node

asset types, and the relationships for the supported cloud and IoT systems. Note
that, the labels depend on the reference architectures of the supported systems,
while the asset types are more specific and include technologies and vendor-
specific solutions. The MACM was extended by introducing a new label node
(ECN), outlined in the table in bold, modelling a generic Edge node, together
with an additional asset type (EDGE.MEC) to represent a generic Multi-access
Edge compute. In future, we aim at adding additional asset types to differentiate
the different MEC servers available in the literature. The (directed) edges of the
graph represent the relationship between the nodes. The model adopts different
kinds of relationships, such as: provides, hosts and uses. The relationship out-
lines how components interact, as, for example, the uses relationship between
two services outlines that a service uses the capabilities offered by the other ser-
vice. The model allows to associate properties to relationships, e.g., it is possible
to specify a protocol attribute to an uses relationship, with a value indicating
the protocol involved in the interaction. Table 2 summarizes the MACM rela-
tionships for the supported Cloud and IoT systems. It is worth to note that, the
model supports different relationship labels, indicating different kinds of interac-
tion. Edge extension to MACM are outlined by the new label ECN in the table.
Note that, a CSP directly provides the ECN (while CSP does not provides IoT
gateways) and the node is able to offer services of various kind, which can be
connected through network (differently from services, which are simply provided
to anyone that is connected on Internet). Moreover, ECNs may use other ECNs,

290 M. Ficco et al.

Table 2. Relationship in MACM models.

Relationship Start node(s) End node(s)

uses CSC, IaaS, SaaS, PaaS,
IOTDevice, IoTGW
ECN

IaaS, SaaS, PaaS, IOTDevice,
IoTGW, HW ECN

provides CSP IaaS, SaaS, PaaS, Network, ECN

hosts IaaS, HW, PaaS, ECN SaaS, PaaS

connects Network IaaS, IOTDevice, IoTGW, HW,
ECN

other cloud services (SaaS) and IoT gateways. IoT gateways and devices may
use the ECNs [5,6,19,20].

4.1 Smart Building MACM Model

Figure 3 shows the MACM model of our simple case study. Each node contains a
label that reports its asset type, whereas the relationships are reported near the
connecting edges. The proposed model outlines that the solution relies on two
different CSPs, one providing the cloud services and the second one devoted to
Edge components (it provides the ECN node). Although from a functional point
of view this choice could be non-relevant, from the security perspective this heav-
ily affects the system, due to both the different security grants that each CSP
may offer and the needed interaction between them. The proof-of-concept MEC
server relies on a simple node hosting two key assets: the MQTT broker devoted
to the collection of data packets from the IoT systems and the optimization ser-
vice (the Python code implementing the Edge logic), which performs some local
reductions and stores historical data in the cloud. CSPs, ECN, and IoT gate-
ways are able to communicate through Internet (connected through the WAN
network), while the IoTGW and the ECN are even connected through a LAN
network: we assume that the Smart Building Edge provider simply installs an
ECN node in each building and every apartment is able to connect its own IoT
system to the ECN through a dedicated connection. It is worth noticing that, the
MACM modelling process helps to define the key features of the proposed archi-
tecture, driving the analyst in the identification of some key features that could
affect the security aspect of the system, even if they can be easily neglected
by developers, for which such features are completely transparent. Moreover,
the model mutates when new assets are added to the system and/or some of
the components of the connection changes. Adding a BLE component and/or
a smartphone that can control the system affects the model: in fact, each of
such actions affects the global security of the infrastructure. It is worth noticing
that, it is very easy to maintain our models and keep them updated, thanks to
the adoption of graph databases, where we maintain the MACM model of the
systems under analysis. The description of such tools is out of the scope of this
paper.

Threat Modeling of Edge-Based IoT Applications 291

Fig. 3. A simple MACM model for the Smart Building example.

5 EDGE Security and ECN/MEC Threat Catalog

In this chapter we highlight some edge security issues and how we built a cat-
alogue of threats applicable to the ECN/MEC asset. The construction of the
catalogue is based on the study of the state of the art described in Sect. 2. Sec-
ondly, we report an attack planning phase in which we show how we plan attacks
based on the selected threats.

5.1 The Extended Threat Catalogue

In our methodology, a threat is modelled as the triple {Threat Agent, Asset,
Behavior}, representing the possibility of a Threat Agent, i.e., a malicious actor,
to cause damage to an Asset, i.e., something that has a value in the system,
through a specific Behavior, i.e., a set of actions that implies human and/or
automated interactions with the target systems [11]. All the threats in the cata-
logue are linked to the assets of the system under analysis, through the asset type
field and are obtained in an automated way through ad-hoc queries on threat
catalogue. While in previous works, we already collected the typical threats for
IoT-related assets, in this work we concentrate on the ECN/MEC introduced
with the edge extension for MACM. The following threat catalogue lists all the
threats applicable to the MEC server and was built through a detailed analysis
of the state of art, and by reformulating all the security issues and the threats
according to our format and concepts. The catalogue, which is independent of
our tools, will be used to automatically collect the threat model for the full
system architecture.

292 M. Ficco et al.

Threat catalog list

1. False or rogue MEC Gateway - The open nature of edge gateways allows a malicious
user to deploy their own gateway devices, this threat can produce the same result
as a Man-in-the-Middle attack.

2. Edge node overload - This threat refers to attacks on edge nodes by flooding the
node with requests from mobile Apps or IoT devices.

3. Abuse of edge open application programming interfaces (APIs) - The need for open
APIs in MEC is mainly to provide support for federated services and interactions
with different providers and content creators. This threat can be associated with
DoS, man-in-the-middle, malicious mode problems, privacy leakages.

4. Compromised supply chain, vendor and service providers - Threat from third par-
ties’ personnel accessing Mobile Network Operator’s facilities.

5. Erroneous use or administration of the network, systems and devices - The errors
resulting from a poorly maintained and administrated network may compromise
the confidentially, integrity and availability of the network.

6. Misconfigured or poorly configured systems/networks - The exploitation of a mis-
configured system creates the opportunity for a threat actor to reach critical assets
in the network or stage an attack.

7. Inadequate designs and planning or lack of adaption - Outdated system or network
from the lack of update or patch management.

8. Snooping on Buffered Information - One of the core objectives of Edge node is to
act as an intermediate buffer between the end devices and the cloud. A malicious
user can look into buffer systems such as hard disk.

9. System Profiling - A malicious user can use the unprotected ports of the nodes.
10. Sniffing Network Traffic - MEC-based system rely on network communication. An

attacker can sniff network channel for exposed data.
11. Memory Acquisition - An attacker can steal information from this de-allocated

memory by using any kind of memory acquisition tools.
12. Network Communication Jamming - An attacker can launch jamming attack in

these mediums to damage the integrity of the packets. She can flood the wired
network or broadcast in same wireless frequency.

13. Modifying Metadata - Since the Edge system is heavily virtualized, it has to keep
track of many logs. An attacker can manipulate log files and corrupt parts of the
system.

14. Memory Tampering - An attacker can acquire memory and read information from
it using any kind of memory accusation tool. With proper security privilege they
can access storage memory blocks and tamper the stored data.

15. Exhausting Log Space - Log files must be maintained on Edge systems in order to
ensure traceability of actions. An attacker can attempt to write garbage values on
these files and consume the log space.

16. Exhausting Buffer Space - An attacker can create a large number of unnecessary
files and request them continuously fill the available space. Also, attacker can
request buffer space with unresponsive connection similar to syn-flood attack in
TCP/IP communication.

17. Network Communication Distruptor - Adversaries can jam or disrupt the network
communication medium using different congestion techniques.

Threat Modeling of Edge-Based IoT Applications 293

18. User Impersonation - An attacker can impersonate an user by retrieving her cre-
dentials.

19. Power Disruption - Fog/Edge node can often be located at public space where
security is minimum. Adversaries can disrupt the power supply which will make
the Fog/Edge node unavailable for service.

20. Communication Disruption - An attacker can cut off the network line or break the
communication antenna.

21. Device Theft - An attacker can open the MEC server and detach the storage unit.
22. Physical Destruction - A MEC node can be physically damaged by the adversaries.

One can simply damaged a Fog node by hitting it with heavy object or putting it
in fire or pouring liquid like water.

23. Hardware Based Attack - An attacker can easily attach an USB stick and install
malicious software. Also, an attacker can connect to MEC node directly connecting
it via its own terminal at the location.

24. Privacy Leakage - The possibilities of adversaries accessing the information stored
at the upper layer of the edge infrastructure could warrant substantial concerns
for privacy leakage.

25. Man in the Middle - A Third malicious party interposed between two or more com-
municating parties or entities and secretly relaying or altering the communication
between such parties.

Due to space limitation we avoided to report a more detailed description
of the proposed threats. For what regards the threat agents, we identified them
using the methodology proposed in [11]. The technique provides a list of possible
threat agent categories based on some assumptions made by the system owner.
In this work, we only considered hostile attackers, and classified the “damage”,
“destroy” or “copy” data exchanged with the IoT devices as the most threaten-
ing actions exploitable to have a technological and business advantage. Under
these assumptions, we have identified 5 possible threat agent categories: Com-
petitor, Data Miner, Government Spy, Irrational Individual, Cyber Vandal. The
characterization of these categories enabled us to define the concept of threat
applicable to the scenario described in Sect. 3.1.

5.2 Attack Planning

The Smart Building threat model lists the threats in the form {Threat Agent,
Asset, Behaviour} and it can be automatically generated through our techniques.
It relies on the threat catalogues collected in other works for each of the assets
supported in MACM. The threat model offers the basis to set up the penetration
test plans, as described in [23] and constructs accordingly specific attacks. The
test plans include possible tests at different levels of the proposed Edge architec-
ture. Most of them, like the one that focuses on the lowest level, i.e., the sensor
and the local network level, includes attacks specific for different IoT pairing pro-
tocols and networks or communication technologies that were already analyzed
in previous works [12,20,22,23]. This collection is continuously updated. Among
the others, we illustrate a particular attack concerning the MQTT protocol that
implements the MITM threat on the MQTT session established between the IoT
Gateway and the MQTT broker hosted by the MEC server. It is worth noticing

294 M. Ficco et al.

that, as described in [23]. This threat requires the control of a personal WiFi
network in order to be implemented in an IoT context (this is possible through
the attacks described in [12,22]), whereas if applied to an Edge context, the
attacker can leverage the network segment shared among different systems, sub-
ject to different control policies. Even though the MQTT protocol is a standard
and broadly adopted protocols, it is subjected to multiple classes of threats and
attacks and, as a consequence, it could expose the customers or the management
networks to severe risks if its security parameters are not configured correctly.
Starting from the MITM threats of our threat model, we selected the MITM
attack plans specifically for the MQTT protocol [23]. The attack on which we
focused requires the attacker to perform an L2 ARP-poisoning on the LAN net-
work segment, enabling it to put itself in the middle between the gateway and
the MQTT broker. By relaying MQTT traffic back and forth in a completely
transparent way, the attacker can steal all the sensible data collected by the
sensor network. Additionally, he can manipulate the sensor measurements to
alter, for example, the building temperature control systems. As an example, in
a very warm day, the attacker could overwrite the measured temperature −1 ◦C,
thus triggering the heating system to the max power in every apartment of the
building. This is possible because the considered MQTT implementation (in our
proof-of-concept) did not implement the TLS and the HMAC security measures
(disable by default in multiple frameworks). As a matter of fact, the proposed
test plans outline the possible misconfigurations and, if applied before the system
deployment, can help to prevent many security issues.

6 Conclusion

Although the use of the Edge paradigm offers important advantages in terms
of information processing performance and latency reduction, it introduces new
security vulnerabilities, which affects the security of a typical IoT application.
Therefore, this paper provides a basis for the security assessment of Edge archi-
tectures, which is used to extend the presented MACM model to the Edge Com-
pute Network, adding new labels (the ECN) and introducing new asset types
(such as the EDGE-MEC). The extended MACM can be used to drive the anal-
ysis of the tested scenario in order to outline some key features affecting the
security of the involved systems. In the future work, a framework to analyze
how the derived threat model and the related attacks affect the different layers
of a specific MEC-IoT scenario.

References

1. Edge Computing Reference Architecture 2.0. Technical report, Edge Computing
Consortium, November 2017

2. Abbas, N., Zhang, Y.: Mobile edge computing: a survey. IEEE Internet Things J.
5(1), 16 (2018)

Threat Modeling of Edge-Based IoT Applications 295

3. Ansari, M.T., Pandey, D., Alenezi, M.: STORE: security threat oriented require-
ments engineering methodology, January 2019

4. Casola, V., Rak, M., Villano, U.: Identity federation in cloud computing, pp. 253–
259 (2010). https://doi.org/10.1109/ISIAS.2010.5604074, cited by 13

5. Casola, V., De Benedictis, A., Rak, M., Salzillo, G.: A cloud SecDevOps method-
ology: from design to testing. In: Shepperd, M., Brito e Abreu, F., Rodrigues da
Silva, A., Pérez-Castillo, R. (eds.) QUATIC 2020. CCIS, vol. 1266, pp. 317–331.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58793-2 26

6. Casola, V., De Benedictis, A., Rak, M., Villano, U.: Toward the automation of
threat modeling and risk assessment in IoT systems. Internet Things 7, 100056
(2019)

7. Di Martino, B., Rak, M., Ficco, M., Esposito, A., Maisto, S.A., Nacchia, S.: Internet
of things reference architectures, security and interoperability: a survey. Internet
Things 1, 99–112 (2018)

8. Ficco, M., Esposito, C., Xiang, Y., Palmieri, F.: Pseudo-dynamic testing of realistic
edge-fog cloud ecosystems. IEEE Commun. Mag. 55, 98–104 (2017)

9. Ficco, M., Palmieri, F., Castiglione, A.: Modeling security requirements for cloud-
based system development. Concurr. Comput. 27, 2107–2124 (2015)

10. Ficco, M., Rak, M.: Intrusion tolerance as a service: a SLA-based solution. In:
Proceedings of the 2nd International Conference on Cloud Computing and Services
Science, pp. 375–384 (2012)

11. Granata, D., Rak, M.: Design and development of a technique for the automation
of the risk analysis process in IT security, p. 14 (2021)

12. Granata, D., Rak, M., Salzillo, G., Barbato, U.: Security in IoT pairing & authen-
tication protocols, a threat model and a case study analysis, p. 10 (2021)

13. Hoque, M.A., Hasan, R.: Towards a threat model for vehicular fog computing, pp.
1051–1057 (2019)

14. ISO: Internet of Things Reference Architecture (IoT RA) ISO/IEC CD 30141
15. Jiang, Y., et al.: Security risk analysis of grid edge computing. IOP Conf. Ser.

Earth Environ. Sci. 693(1), 12–34 (2021)
16. Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I., Ahmed, A.: Edge computing: a

survey. Futur. Gener. Comput. Syst. 97, 219–235 (2019)
17. Kounev, S., et al.: Providing dependability and resilience in the cloud: challenges

and opportunities. In: Wolter, K., Avritzer, A., Vieira, M., van Moorsel, A. (eds.)
Resilience Assessment and Evaluation of Computing Systems, pp. 65–81. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29032-9 4

18. Okwuibe, J., Liyanage, M., Ahmad, I., Ylianttila, M.: Cloud and MEC security,
pp. 373–397, January 2018

19. Rak, M.: Security assurance of (multi-)cloud application with security SLA com-
position. In: Au, M.H.A., Castiglione, A., Choo, K.-K.R., Palmieri, F., Li, K.-C.
(eds.) GPC 2017. LNCS, vol. 10232, pp. 786–799. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57186-7 57

20. Rak, M., Salzillo, G., Romeo, C.: Systematic IoT penetration testing: Alexa case
study 2597, 190–200 (2020)

21. Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, Fog et al.: a survey
and analysis of security threats and challenges. Future Gener. Comput. Syst. 78,
680–698 (2018)

22. Salzillo, G., Rak, M.: A (in)secure-by-design IoT protocol: the ESP touch protocol
and a case study analysis from the real market. In: Proceedings of the 2020 Joint
Workshop on CPS&IoT Security and Privacy, CPSIOTSEC 2020, New York, NY,
USA, pp. 37–48. Association for Computing Machinery (2020)

https://doi.org/10.1109/ISIAS.2010.5604074
https://doi.org/10.1007/978-3-030-58793-2_26
https://doi.org/10.1007/978-3-642-29032-9_4
https://doi.org/10.1007/978-3-319-57186-7_57
https://doi.org/10.1007/978-3-319-57186-7_57

296 M. Ficco et al.

23. Salzillo, G., Rak, M., Moretta, F.: Threat modeling based penetration testing: the
open energy monitor case study. In: 13th International Conference on Security
of Information and Networks, SIN 2020, New York, NY, USA. Association for
Computing Machinery (2020)

24. Shirazi, S.N., et al.: The extended cloud: review and analysis of mobile edge com-
puting and fog from a security and resilience perspective. IEEE J. Sel. Areas Com-
mun. 35(11), 2586–2595 (2017)

25. Shropshire, J.: Extending the cloud with fog: security challenges & opportunities.
In: 20th Americas Conference on Information Systems, AMCIS 2014, January 2014

26. Weyrich, M., Ebert, C.: Reference architectures for the Internet of Things. IEEE
Softw. 33, 112–116 (2015)

27. Yahuza, M., et al.: Systematic review on security and privacy requirements in edge
computing: state of the art and future research opportunities. IEEE Access 8,
76541–76567 (2020)

Enforcing Mutual Authentication
and Confidentiality in Wireless Sensor
Networks Using Physically Unclonable

Functions: A Case Study

Mario Barbareschi , Salvatore Barone(B) , Alfonso Fezza,
and Erasmo La Montagna

Department of Electrical Engineering and Information Technologies,
University of Naples Federico II, Via Claudio, 21, 80125 Naples, Italy

{mario.barbareschi,salvatore.barone,erasmo.lamontagna}@unina.it,
al.fezza@studenti.unina.it

Abstract. The technological progress we witnessed in recent years has
led to a pervasive usage of smart and embedded devices in many appli-
cation domains. The monitoring of Power Delivery Networks (PDNs) is
an example: the use of interconnected sensors makes it possible to detect
faults and to dynamically adapt the network topology to isolate and com-
pensate for them. In this paper we discuss how Fault-Detection, Isolation
and Service Recovery (FDISR) for PDNs can be modeled according to
the fog-computing paradigm, which distributes part of the computation
among edge nodes and the cloud. In particular, we consider an FDISR
application on Medium-Voltage PDNs (MV-PDNs) based on a Wireless
Sensor Network (WSN) whose nodes make use of the Long Range (LoRa)
technology to communicate with each other. Security concerns and the
attack model of such application are discussed, then the use of a commu-
nication protocol based on the Physically Unclonable Functions (PUFs)
mechanism is proposed to achieve both mutual authentication and con-
fidentiality. Finally, an implementation of the proposal is presented and
evaluated w.r.t. security concerns and communication overhead.

Keywords: Wireless Sensor Networks · Power Delivery Networks ·
Smart grid · PUF · Mutual authentication · Fault detection and
isolation

1 Introduction

One of the most immediate advantages of the technological progress in the infor-
mation technology field is the general reduction in costs, size and energy con-
sumption of devices, which leads to a number of applications that would other-
wise be precluded. One of these applications is the continuous monitoring of com-
plex systems that extend over large geographical areas, such as medium-voltage

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 297–310, 2021.
https://doi.org/10.1007/978-3-030-85347-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_22&domain=pdf
http://orcid.org/0000-0002-1417-6328
http://orcid.org/0000-0003-2007-3744
http://orcid.org/0000-0003-3548-5856
https://doi.org/10.1007/978-3-030-85347-1_22

298 M. Barbareschi et al.

power distribution networks. These systems typically feed industrial facilities
that, in case of interruption of the energy supply service, can suffer considerable
damages and loss of quality of service. In order to minimize damages, electricity
distributors adopt protection systems aimed at detecting and isolating faults
that occur on the network and, consequently, minimizing the portion of the line
and the number of users affected by the fault [39].

Many of these monitoring systems make use of a Wireless Sensor Network
(WSN), i.e. a network of sensor nodes – distributed throughout the entire Power
Distribution Network (PDN) – that cooperate with each other to detect and
isolate faults while communicating using wireless communication [17]. Sensor
nodes consist of low power micro-controllers, equipped with sensors, and low
energy communication devices are employed. They cooperate by processing and
exchanging large amounts of data, including sensible information, which is sent
to central nodes to be further analyzed, according to a scheme known as fog-
computing [35].

Nevertheless, most of these devices are deployed in unattended environment
and may be subject to a wide-range of attacks aiming at disclosing the secrets
stored in devices [4]. Although apparently insignificant, in PDNs for instance, a
successful attack may prevent nodes from detecting a fault, causing damage to
the network, or mislead sensors causing them to detect a bogus fault, causing
service disruption to customers. Therefore, the most critical challenges in such
applications are security and safety: device identification and authentication are
fundamental requirements in order to protect data and prevent attacks [4]. Tra-
ditional encryption often require substantial computational resources [9] as well
as a key management and distribution system.

In this paper, a lightweight mutual-authentication approach is proposed.
The protocol allows sensor nodes to authenticate each other while exchanging
encrypted messages without constantly relying upon the authentication server
intervention.

In particular, a wireless sensor network for Fault-Detection, Isolation and
Service Recovery (FDISR) on a Medium-Voltage Power Distribution Network is
used as a case study to discuss and evaluate the adoption of the Extended Phys-
ical Hardware-Enabled Mutual Authentication Protocol (ExPHEMAP), com-
pared to well known strategies based on symmetric key encryption.

In addition, the overhead due to the protocol and the attacks that can be
prevented by adopting it will be evaluated with respect to classical encryption
schemes and plain-text solutions.

The remainder of this paper is organized as follows: Sect. 2 reports the state-
of-the-art for authentication protocols and the FDISR in PDN, Sect. 3 provides
preliminaries on Physical Unclonable Functions (PUFs) and Physical Hardware-
Enabled Mutual Authentication Protocol (PHEMAP), in order to present issues
and challenges faced by these protocols. The implementation of our approach,
the experiments we carried out for evaluation and the result we obtained are
discussed in Sect. 4 and Sect. 5 respectively. Finally, Sect. 6 draws the conclusion.

Mutual Authentication and Confidentiality in Wireless Sensor Networks 299

2 Related Works

A Wireless Sensor Network, capable of monitoring a Power Distribution Network,
can be modeled according to the fog-computing paradigm: resource-constrained
devices (e.g., sensors, actuators, etc.) at the edge of the network extract informa-
tion from the environment or execute commands received from an upper layer,
exchanging data by means of low-power communication technologies [36]. In
fog-computing, edge nodes communicate directly with closer devices, without
cloud server intercession, providing location awareness, low latency and improv-
ing quality of service for real-time applications. As discussed in [19,22,26,31],
since they are distributed in unattended and potentially hostile environments,
WSN nodes are exposed to several attacks, whatever the medium being cho-
sen to interconnect them. A comprehensive analysis of such attacks is available
in [7]. These attacks include physical tampering, man-in-the-middle attacks, jam-
ming on the communication channel, identity forgery, denial of service attacks to
deplete resources of the nodes, etc. The distributed nature of the WSN ecosystem
makes the devices easily exploitable, threats like tampering and authentication
failure are very typical in this scenario. In addition, nodes must be identified and
be able to mutually authenticate with one another, without relying upon any
centralized authentication service or user intervention [5]. As usual, WSN nodes
have low energy, memory, computational capabilities, furthermore they rely on
constrained communication channels. Thus, lightweight encryption is preferable
over traditional cryptography primitives.

Authors in [18] identified four classes of security challenges in Internet
of Things (IoT) environments: identity management, data provenance and
integrity, trust management and privacy. Many of the proposed mechanisms
that guarantee integrity and confidentiality are based on classical encryption
schemes: the parties, each provided with a pair of public and private keys,
exchange a session key using the key-exchange protocols, such as the Deffie-
Helmann method [16]. As proposed in [14,24], sensor nodes exchange a symmet-
ric encryption key, namely a session key, using asymmetric encryption; then, the
parties use the session key to exchange authenticated messages, providing both
integrity and confidentiality. An elliptic curve cryptography based authentica-
tion mechanism was proposed in [23] while a lightweight Merkle hash-tree based
message authentication mechanism was proposed in [21], in order to address
replay and message forgery attacks. Nevertheless, all these protocols require sig-
nificant computational resources, which may not be available in typical low-cost
sensor nodes for WSN. In addition, many of these protocols are only able to
authenticate messages but not network nodes, so they are not effective against
node theft.

Taking into account all the existing constraints, hardware security approaches
can be leveraged to build a secure Internet of Things (IoT) system. Several
approaches based on the symbiosis between the Radio-Frequency IDentifica-
tion (RFID) technology and both lightweight and traditional cryptography are
presented in [10]. Traditional encryption has larger computational and stor-
age overhead, while lightweight encryption relies on random number generators,

300 M. Barbareschi et al.

checksums and bit-wise operations, thus introduces negligible overhead and it is
best suited for our purposes. Authors in [38] proved the feasibility of an ultra-
lightweight mutual authentication protocol, based on RFID and bit-wise oper-
ations, that is able to ensure resiliency against man-in-the-middle, replay and
disclosure attacks as well as confidentiality and integrity of data. However, as
pointed out by authors in [20], RFID tags are subject to several security threats
due to their physical nature. In particular, tags may be cloned by first capturing
identification data from a legitimate tag and then copying them to a new unau-
thorized chip. Furthermore, RFID tags do not provide mutual authentication, as
a reader can properly authenticate the transponder embedded on a chip, but not
vice-versa. The approach proposed in [3] leverages the concept of PUFs, which
are hardware primitives that, when stimulated by a bit string, return an output
that is guaranteed to be unique, unclonable and tamper-evident [27]. Unfortu-
nately, the protocol proposed in [3] is subject to man-in-the-middle attack and
does not provide mutual-authentication; thus, the PHEMAP [4,5] was proposed.
It allows nodes to mutually authenticate each other and provide confidentiality
without using cryptographic primitives. Both PUF and the PHEMAP will be
detailed in Sect. 3, since our proposal is based on these two fundamental con-
cepts.

3 Preliminaries

3.1 Physical Unclonable Functions (PUFs)

PUFs, firstly introduced in [27], offer the possibility to harden device security by
providing a unique and unclonable physical fingerprints. Basically, PUFs map a
set of input bit-strings, namely challenges, into a set of output bit-strings, called
responses. Nevertheless, PUFs can be also used without any input, in order to
generate an unique code which may be useful for device identification.

Properties of PUFs are directly inherited from unpredictability of the
manufacturing process, thus the mapping mechanism between challenges and
responses is unique for a particular device; moreover, it can be computed in
polynomial time but it is hard to predict, so PUFs can also be employed to
provide cryptographic keys. However, PUF responses are subject to working
conditions of the circuits built into the devices, thus they are a non-negligible
source of instabilities and are not suitable for getting involved as secret keys in
cryptography schemes as they are. To deal with this issue, a recovering technique
known as Fuzzy Extractor (FE) has been proposed in [12]. Briefly, FE operate in
two different phases. During the enrollment phase (top part of Fig. 1), performed
once and within a secure perimeter, the key is computed from a PUF response
and an hash function (Privacy Amplification). The helper data is computed by
making use of a randomly-chosen secret symbol and an Error Correcting Code
(ECC). Contrary to the key, which must be kept secret and undisclosed, the
helper data do not require secrecy. Once the device has been deployed, it exe-
cutes the information reconciliation phase of the FE (bottom part of Fig. 1),

Mutual Authentication and Confidentiality in Wireless Sensor Networks 301

where the device is able to recover the key from the helper data and a noisy
PUF response (different from the one of the enrollment phase).

There are many possibilities to realize PUFs: an overview can be found in [30].
The approach proposed by us makes use of a memory-based Static Random
Access Memory (SRAM)-PUF [8,11,33,40], that exploits the random pattern
generated by memory circuits when being powered-up, since, by design, they are
not initialized on a given initial state.

Fig. 1. Fuzzy extractor algorithm phases

3.2 Mutual Authentication Using PUFs

Embedding PUFs within devices can solve problems such as maliciously modified
sensors, provide a unique device identification to cope with fake identity attacks,
and act as lightweight encryption functions to protect against confidentiality
attacks such as eavesdropping [15,32,37].

In order to enable authentication, both the node to be authenticated –from
now on, simply the node – and the authenticator node – i.e. the verifier, or
the Authentication Service (AS) – must share some knowledge about the PUF
embedded into the device, i.e. the verifier must collect a significant amount of
Challenge-Response Pairs (CRPs) during the enrollment phase. So, in a basic
authentication protocol, the verifier issues a challenge to the node and then
compares its response with the expected one [3]. However, this simple protocol
may be subject to man-in-the-middle attacks because an attacker may intercept
and collect CRP, in order to use them later. Moreover, it does not provide any
mechanism to the node to authenticate the verifier, so mutual authentication is
still not provided.

To cope with this issue, PHEMAP has been proposed in [4,5]. The protocol
relies on a set of distinct chains, extracted from the PUF embedded into the
device; a chain is generated from the device by recursively applying responses
as challenges, starting from a randomly chosen initial challenge. The enrollment
phase could benefit from using PUF-chains because the verifier follows the chain,
rather that issuing random challenges. During the enrollment phase, the verifier
generates a set of PUF chains for each device by picking different random initial
challenges, in order to generate different chains. The latter are then stored in a
secure database and will be used in a revised version of the challenge-response
protocol introduced in [3]. On the device side, the protocol only requires devices

302 M. Barbareschi et al.

to embed a register Q to store the last consumed link on the current chain. This
register is the only hardware status information maintained by the device and
it must be included in a tamper-proof secure perimeter, such that it cannot be
altered by a malicious user during the protocol execution.

PHEMAP leverages the concept of sentinel nodes, which are defined a-priori
and are known to both the verifier and the device. Sentinels protect against
tampering with the protocol by ensuring that no more than a given amount of
chain links are exposed during any of the phases of the protocol.

The basic PHEMAP protocol consists in two distinct phases: initialization
and verification. The initialization procedure is always started by the verifier
and consists in the exchange of messages made up of nonces and chain links.
After the initialization, both device and verifier are synchronized on a certain
link of the chain selected by the verifier. The next link on the chain, right after
the initialization phase, is called the root sentinel, and it will not be exchanged
during any of the following operations. The verification phase can be initiated
by both verifier or the device. It consists in a simple link exchange involving two
consecutive links on the chain. Basically, being lk the link sent by the initiator,
the other party must prove that it knows lk+1. Obviously, in order to prevent
reply attacks, each CRP must be used only once.

In [5] an accurate analysis of the protocol has been performed. This anal-
ysis proved that the protocol is immune to man-in-the-middle attacks, since
the un-clonability property of PUFs inherently ensures that malicious devices
cannot be authenticated by the verifier. The basic PHEMAP protocol is not suit-
able for Cloud-Edge (CE) applications, since the centralized verifier would easily
become a bottleneck and since it allows mutual authentication only between ter-
minal nodes and verifier, therefore no communication between terminal nodes
is possible without the verifier acting as an intermediary. The ExPHEMAP [4]
protocol overcomes the aforementioned difficulties of the basic protocol in CE
scenarios. It consists in two sub-protocols: Salted-PHEMAP, that enables a node
(equipped with a PUF circuit) and its reference gateway (an Edge node without
a PUF circuit) to mutually prove their identity while communicating, and Babel-
chain PHEMAP (BC-PHEMAP), that enables mutual authentication between
two nodes both embedding a PUF circuit. In [4,5] a full description of the pro-
tocol is provided.

3.3 Mutual Authentication Between Sensor Nodes

BC-PHEMAP allows two heterogeneous devices to mutually authenticate each
other, without the constant participation of the AS, leveraging the concept of
carnet to let devices accomplish only a limited number of authentication opera-
tions. Consider two nodes, namely A and B, and suppose A wants to communi-
cate with B for the first time. The BC-PHEMAP setup procedure requires the
exchange of two authentication messages between A and AS:

1. A sends a request to communicate with B to the AS; this request message
contains the next non-sentinel link on the chain and it also specifies the
expected number of interactions;

Mutual Authentication and Confidentiality in Wireless Sensor Networks 303

2. if the AS is able to authenticate the A node, it generates a carnet by extracting
a given amount of links from the current chain of the A and B, and XOR-
ing homologous links so that only A and B can make use of the carnet to
communicate to each other respectively; then it sends such carnet to A;

Since the carnet does not disclose any sensitive information about chains, it can
be exchanged in plain text and stored in local memory without causing harm. All
subsequent communications between A and B are carried out in the following
way:

1. A sends a message to B, by extracting a link from the carnet;
2. if B is able to authenticate A – i.e. the message B received contains the next

non-sentinel link on the chain – then it replies to A with the immediate next
link on the chain;

3. A compares the content of the received message with the next link in the
carnet; if they match, then A is able to successfully authenticate B.

4 Fault-Detection and Isolation on Medium-Voltage PDN
(MV-PDN)

As reported in [34], Zone Selectivity (ZS) can be effectively applied to isolate
faults and to restore the power supply in MV-PDN. The typical structure of a
Fault-Detection, Isolation and Service Recovery (FDISR) system for MV-PDNs
is depicted in Fig. 2 [6,13]. The structure can be seen as a sort of ring, with high-
voltage to medium-voltage transformers connecting the MV-PDN to the high
voltage backbone. Sensors capable of detecting over-voltage and/or over-current
are deployed along the network in order to implement ZS; these sensors impose
the opening of a normally-closed circuit-breaker, also known as protection-relay,
in the event a fault is detected on the section downstream of the sensor. HV/MV
transformer nodes are often equipped with the same sensors. The ring is split in
the middle by a normally-open circuit-breaker, known as the tie-recloser, that
could be closed to restore the service after a failure has been correctly isolated.

Suppose a fault is detected between nodes B and C in the network depicted in
Fig. 2. Since, wherever the failure happens, the fault is detected by all upstream
nodes (on the right side of Fig. 2), A and B open their protection-relay and,

A

HV/MV

High Voltage Backbone

B C O FD E

HV/MV

Protection
Relay

Protection
Relay

Protection
Relay

Protection
Relay

Protection
Relay

Protection
Relay

Tie
Recloser

Fig. 2. Structure of an MV-PDN.

304 M. Barbareschi et al.

at the same time, send an ignore message to the upstream node. Once a node
receives such kind of message, it knows that the downstream node detected the
fault, thus, it can close its circuit breaker to restore the power supply to the
downstream section. Conversely, if no ignore message is received after detecting
a fault, it means that the node is immediately upstream of the fault (in this case
B); as a consequence, in order to perform isolation and service restoration, the
node sends an isolate message to the downstream node – the C node in Fig. 2,
in the considered example – which cannot detect the fault, in order to inform it
that a fault has been detected on the network immediately ahead of its location.
Once a node receives the isolate message, it opens its circuit breaker, isolating
the failure. Moreover, a connect message to the tie-recloser is sent, so that the
faulty section is totally disconnected from the network and the supply on the
section downstream of the fault is restored. The connect message can be sent
either from the node immediately upstream the failure – i.e. the one that does
not receive the ignore message – or from the node downstream the failure –i.e.
the one that receives the isolate message. These two solutions are theoretically
equivalent, although the second allows to be confident that the supply is restored
only after isolating the faulty section.

Timing factor is of major importance in MV-PDN protection: if too much
time elapses between the occurrence of a fault and the reaction of the FDISR sys-
tem, the failure could propagate and cause severe damage to the entire network.
On the other hand, customers may witness severe economic damage in case the
portion of the network they belong to provides no energy supply for a long period
of time. Figure 3 shows the structure of the WSN for the protection of MV-PDN
in the fog-computing context: all protection-relays belonging to the same ring
form a sub-network, whose gateway node is the tie-recloser. In the following, we
will focus on the communication within a sub-network, while omitting aspects
related to communication between gateways and AS. As in [2], we make use of
the Long Range (LoRa) technology to interconnect nodes belonging to the same
sub-network. In this case study, rather than using plain text, the BC-PHEMAP,
which guarantees confidentiality and mutual authentication, is employed.

4.1 Achieving Mutual Authentication and Confidentiality

In order to embed a PUF into nodes, we referred to [1]; consequently, in order to
generate 128 bits long device fingerprints intended to be used as cryptographic
keys, 2816 SRAM bits are fed to SHA-256 while considering only the 128 less
significant bits of the hashsum. We implemented the fuzzy extractor scheme by
making use of first order, seventh grade Reed-Muller ECC [25,29] while AES-128
provides the privacy-amplification primitive. Therefore, challenges, responses as
well as chain links are 128 bits, i.e. 16 bytes, long.

The initialization of the devices follows the protocol specification reported
in [4]; nevertheless, a slight adaptation of the BC-PHEMAP protocol is required
to accomplish the FDISR application. Since each of the protection-relays, besides
the gateway of the sub-network to which it belongs, needs to be able to commu-
nicate with the protection-relay upstream and downstream of its position, three

Mutual Authentication and Confidentiality in Wireless Sensor Networks 305

A

HV/MV

High Voltage Backbone

B C O FD E

HV/MV

PHEMAP
sensor
node

PHEMAP
sensor
node

PHEMAP
sensor
node

PHEMAP
sensor
node

PHEMAP
sensor
node

PHEMAP
sensor
node

PHEMAP
gateway

INTERNET
PHEMAP

Authentication
Service

Fig. 3. View of the MV-PDN in the fog-computing context.

different Q-registers and suitable mechanisms are needed to communicate with
different devices at the same time, allowing to manage chain links consumption
separately and keeping the chains up to date at each node. During the start-up
phase of the FDISR system, thus the initialization phase of the PHEMAP, the
procedure that the node performs to obtain a carnet to be able to communi-
cate with the upstream node is fully compliant with that specified by the BC-
PHEMAP protocol. However, as an additional step, the AS must notify B in
order to let it aware that A wants to communicate using a certain number of
messages. Thus, B must update the Q register, in order to keep talking to the
AS, and it will store the first link it eventually receives from A in a different
Q register, to be able to talk with A. The purpose of the notification message
the AS sends is to align the Q register the node uses to talk to the AS to the
correct link, to allow communication with different devices at the same time.

The structure of a FDISR application message is reported in Fig. 4: it embeds
the source node identifier (SRC ID), the message type (MSG – ignore, connect,
isolate) and a Cyclic Redundancy Check (CRC). Since the set of messages is fixed
and predetermined, it is possible to pre-construct all of them, CRC included,
without any harm. Please note that part of the message is unused, but reserved
for future evolution.

The message construction process is invariant w.r.t. the particular FDISR
message: the node must merge the appropriate pre-computed FDISR message –
ignore, for instance – together with the first unused link from the current carnet,
using a bitwise XOR. Once a device receives a FDISR message, all it has to
do is compute the bitwise XOR between the message and the appropriate Q
register; then, by computing the CRC on the whole decoded message, it is able
to determine both the integrity of the message and the identity of the sender.

306 M. Barbareschi et al.

ReservedSRC ID MSG CRC
1 Byte 1 Byte 4 Bytes10 Bytes

Fig. 4. Structure of a FDISR application message

5 Evaluation

In this Section we will discuss the advantages and drawbacks of adopting the
BC-PHEMAP protocol for nodes belonging to the same sub-network. In order
to get a truthful evaluation, close to that of a real world case, we built a scale
prototype of the network shown in Fig. 3.

The AS is designed to manage multiple connections at the same time
and it has been implemented on an ordinary personal computer running
GNU/Linux. Each one of the protection-relays (sensor nodes) consists of two
ST-Microelectronics STM32L152RE development board, equipped with a 32-
bit ARM Cortex M3 CPU, 512 Kbytes of Flash memory and 80 Kbytes of
RAM. Each board is equipped with an SX1272MB2xAS extension boards, that
integrate a LoRa SX1272 half-duplex transceiver. The tie-recloser (the gate-
way node) consists in a STM32H745I board and a STM32L152RE development
boards, both equipped with a SX1272MB2xAS LoRa extension board. The for-
mer provides the gateway node with the capability to connect to the Internet
via a Gigabit Ethernet interface, while the latter is used only as a transmitter.
The need to use two development boards for the gateway node is related to the
fact that the available transceiver only allows half-duplex communications. Since
each node must always be ready to receive and transmit, and since there is no
possibility to assemble two extension boards on the same development board,
it was considered appropriate to separate the transmitter and the receiver. The
receiver board, which is the one on that runs the protocol, is configured to lis-
ten on a fixed frequency, which is different for each node in the sub-net, while
the frequency on which the transmitter operates is changed according to the
destination.

The base frequency for LoRa has been set at 868 MHz and the transmission
power at 14 dBm to comply with European standards. The on-air time for a
generic message can be expressed as the sum of the time needed to transmit
the LoRa preamble and the time needed to transmit the actual message payload,
both computed as a function of the Ts = 2SF

BW , i.e. the symbol-time, where SF is
the LoRa spreading factor and BW is the bandwidth. Taking into account the
recommendations in [28], we set the SF to 7 and the bandwidth to 500 KHz.
Consequently, approximately 13 ms are needed to transmit each of the 16 bytes
long messages, LoRa preamble and CRC included.

5.1 Protocol Overhead Evaluation

As mentioned above, the most time-critical aspect of an FDISR application is
the reaction to a fault being detected, which could be affected by the overhead

Mutual Authentication and Confidentiality in Wireless Sensor Networks 307

introduced by the protocol. However, since after the initialization phase of the
protocol the Q register already holds the link to be used to compose an ignore
message, and since nothing forbids to construct such a message beforehand, the
overhead due to the protocol depends only on the authentication message that
the upstream node must send in order to accomplish the mutual-authentication.
Therefore, we can express the protocol overhead as TL0 + Txor, where TL0 is
the time to transmit the link while Txor is the time to make the bitwise XOR
operation.

In order to measure the average time needed to resolve a fault both in plain-
text and using the PHEMAP we firstly measured the average time needed to
complete the transmission of a 16 bytes long message, which is about 19 ms. This
measure takes into account the time required by the transceiver to synchronize
on the desired transmitting frequency, which is approximately 7 ms. The average
time required to resolve a fault in plain-text and with PHEMAP is 35, 867 ms and
51, 571 ms, respectively, with a variance of 9,677 in the former case and 13,416
in the latter. The difference between the mean values gives us the overhead that
is equal to 15, 704 ms in accordance with the result we expected. To ensure that
we have statistical significance, a T-test was performed on the samples and the
null hypothesis was rejected with α = 0.01.

5.2 Threats Analysis

Among the various attacks that can be carried out, the replay attacks are poten-
tially the most dangerous. In particular, there are two messages that can cause
the most problems. The first attack scenario, foresees that an attacker sends an
isolate message to a node, causing the opening of its relay and leaving a portion,
or even the entire network, without power. The second scenario, instead, fore-
sees that a malicious attacker creates a fault on the network, let’s say between
node A and node B, and sends an ignore message to node A pretending to be
B. Node B does not notice the fault and therefore node A should not receive
any ignore message and leave its relay open. Receiving this message causes A to
close its protection relay and the FDISR system to fail, resulting in damage to
network equipment. Obviously, when PHEMAP is used, these two attacks are
not possible, since nodes A and B are mutually authenticated. Moreover, since
the chain links are only used once and since we make use of a CRC, we are
guaranteed by PHEMAP both confidentiality and data integrity, as discussed
extensively in [4]. This ensures that man-in-the-middle attacks cannot be car-
ried out. Additionally, given the use of PUF for link generation, and assuming
it has strong PUF characteristics, forgery attacks, as well as all other attacks
that aim to take control of a node, are not feasible. Moreover, when compared
to a classic protocol, PHEMAP does not expose any kind of sensitive informa-
tion and it does not store the key at any time, making it the ideal protocol for
nodes deployed in unattended and hostile environment in which it is easy for an
attacker to try to get hold of one of the nodes. Finally, it does not require high
computational resources, which makes it suitable for use with low-performance
and inexpensive sensor nodes.

308 M. Barbareschi et al.

6 Conclusion

In this paper it has been shown that a state-of-the-art mutual authentication
and confidentiality protocol – i.e. that is not based on the classic key-exchange
and encryption schema – can be adopted in resource limited WSN, considering a
fault detection, isolation and service recovery system for PDN as a case study. In
particular, considering the ZS application for MV-PDNs, it has been discussed
how to implement the BC-PHEMAP protocol, to allow mutual authentication
of sensor nodes within the network while ensuring confidentiality for application
messages.

The advantages of using such protocol have been highlighted, both w.r.t.
a plain-text system and a system that adopts a classical encryption scheme.
Although the proposed solution increases overhead and variance, these value
remain acceptable as demonstrated by the experimental evaluation. Attacks that
the adoption of the protocol would help to prevent have been also discussed. In
addition, the overhead due to the adoption of the protocol versus the plain text
solution has been analytically expressed and measured by referring to a scaled
prototype of the proposed solution. The analysis, which was reflected in the
measurements made, allows to establish the actual suitability of the solution
when the time constraints of the particular MV-PDN considered come into play,
showing that the transmission medium is the most significant factor to take into
account.

References

1. Barbareschi, M., Bagnasco, P., Amelino, D., Mazzeo, A.: Designing an SRAM PUF-
based secret extractor for resource-constrained devices. Int. J. Embedded Syst. 9,
353–364 (2017)

2. Angrisani, L., Bonavolontà, F., Liccardo, A., Schiano Lo Moriello, R.: On the use of
LoRa technology for logic selectivity in MV distribution networks. Energies 11(11),
3079 (2018)

3. Barbareschi, M., Bagnasco, P., Mazzeo, A.: Authenticating IoT devices with phys-
ically unclonable functions models. In: 2015 10th International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 563–567. IEEE
(2015)

4. Barbareschi, M., De Benedictis, A., La Montagna, E., Mazzeo, A., Mazzocca, N.:
A PUF-based mutual authentication scheme for cloud-edges IoT systems. Futur.
Gener. Comput. Syst. 101, 246–261 (2019)

5. Barbareschi, M., De Benedictis, A., Mazzocca, N.: A PUF-based hardware mutual
authentication protocol. J. Parallel Distrib. Comput. 119, 107–120 (2018)

6. Botton, S., Cavalletto, L., Marmeggi, F.: Schema project-innovative criteria for
management and operation of a closed ring mv network. In: 22th International
Conference and Exhibition on Electricity Distribution (CIRED 2013). IET (2013)

7. Bou-Harb, E., Fachkha, C., Pourzandi, M., Debbabi, M., Assi, C.: Communication
security for smart grid distribution networks. IEEE Commun. Mag. 51(1), 42–49
(2013)

8. Böhm, C., Hofer, M., Pribyl, W.: A microcontroller SRAM-PUF. In: 2011 5th
International Conference on Network and System Security, pp. 269–273 (2011)

Mutual Authentication and Confidentiality in Wireless Sensor Networks 309

9. Casola, V., Benedictis, A.D., Drago, A., Mazzocca, N.: Analysis and comparison
of security protocols in wireless sensor networks. In: 30th IEEE Symposium on
Reliable Distributed Systems Workshops, SRDS Workshops 2011, Madrid, Spain,
4–7 October 2011, pp. 52–56. IEEE Computer Society (2011)

10. Chien, H.: SASI: a new ultralightweight RFID authentication protocol providing
strong authentication and strong integrity. IEEE Trans. Dependable Sec. Comput.
4, 337–340 (2007)

11. Cortez, M., Dargar, A., Hamdioui, S., Schrijen, G.J.: Modeling SRAM start-up
behavior for physical unclonable functions. In: 2012 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp.
1–6. IEEE (2012)

12. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

13. D’Orazio, L., Calone, R.: Innovative protection system on distribution network. In:
22th International Conference and Exhibition on Electricity Distribution (CIRED
2013). IET (2013)

14. Fouda, M.M., Fadlullah, Z.M., Kato, N., Lu, R., Shen, X.S.: A lightweight message
authentication scheme for smart grid communications. IEEE Trans. Smart Grid
2(4), 675–685 (2011)

15. Frikken, K.B., Blanton, M., Atallah, M.J.: Robust authentication using physi-
cally unclonable functions. In: Samarati, P., Yung, M., Martinelli, F., Ardagna,
C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 262–277. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04474-8 22

16. Hellman, M.E.: An overview of public key cryptography. IEEE Commun. Mag.
40(5), 42–49 (2002)

17. Hung, K., et al.: On wireless sensors communication for overhead transmission line
monitoring in power delivery systems. In: 2010 First IEEE International Conference
on Smart Grid Communications, pp. 309–314. IEEE (2010)

18. Kanuparthi, A., Karri, R., Addepalli, S.: Hardware and embedded security in the
context of Internet of Things. In: Proceedings of the 2013 ACM Workshop on
Security, Privacy & Dependability for Cyber Vehicles, pp. 61–64 (2013)

19. Khan, M.A., Salah, K.: IoT security: review, blockchain solutions, and open chal-
lenges. Futur. Gener. Comput. Syst. 82, 395–411 (2018)

20. Kulkarni, G., Shelke, R., Sutar, R., Mohite, S.: RFID security issues & challenges.
In: 2014 International Conference on Electronics and Communication Systems
(ICECS), pp. 1–4, February 2014

21. Li, H., Lu, R., Zhou, L., Yang, B., Shen, X.: An efficient Merkle-tree-based authen-
tication scheme for smart grid. IEEE Syst. J. 8(2), 655–663 (2013)

22. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on internet of
things: architecture, enabling technologies, security and privacy, and applications.
IEEE Internet Things J. 4(5), 1125–1142 (2017)

23. Mahmood, K., Chaudhry, S.A., Naqvi, H., Kumari, S., Li, X., Sangaiah, A.K.: An
elliptic curve cryptography based lightweight authentication scheme for smart grid
communication. Futur. Gener. Comput. Syst. 81, 557–565 (2018)

24. Mahmood, K., Chaudhry, S.A., Naqvi, H., Shon, T., Ahmad, H.F.: A lightweight
message authentication scheme for smart grid communications in power sector.
Comput. Electr. Eng. 52, 114–124 (2016)

25. Muller, D.E.: Application of Boolean algebra to switching circuit design and to
error detection. Trans. IRE Prof. Group Electron. Comput. 3, 6–12 (1954)

https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1007/978-3-642-04474-8_22

310 M. Barbareschi et al.

26. Ni, J., Zhang, K., Lin, X., Shen, X.S.: Securing fog computing for internet of things
applications: challenges and solutions. IEEE Commun. Surv. Tutor. 20(1), 601–628
(2018)

27. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297(5589), 2026–2030 (2002)

28. Raychowdhury, A., Pramanik, A.: Survey on LoRa technology: solution for Internet
of Things. In: Thampi, S.M., et al. (eds.) Intelligent Systems, Technologies and
Applications. AISC, vol. 1148, pp. 259–271. Springer, Singapore (2020). https://
doi.org/10.1007/978-981-15-3914-5 20

29. Reed, I.S.: A class of multiple-error-correcting codes and the decoding scheme.
Technical report, Massachusetts Institute of Technology, Lincoln Laboratory, Lex-
ington (1953)

30. Roel, M.: Physically unclonable functions: constructions, properties and applica-
tions. Katholieke Universiteit Leuven, Belgium (2012)

31. Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, Fog et al.: a survey
and analysis of security threats and challenges. Futur. Gener. Comput. Syst. 78,
680–698 (2018)

32. Rostami, M., Majzoobi, M., Koushanfar, F., Wallach, D.S., Devadas, S.: Robust
and reverse-engineering resilient PUF authentication and key-exchange by sub-
string matching. IEEE Trans. Emerg. Top. Comput. 2(1), 37–49 (2014)

33. Schrijen, G., van der Leest, V.: Comparative analysis of SRAM memories used as
PUF primitives. In: 2012 Design, Automation Test in Europe Conference Exhibi-
tion (DATE), pp. 1319–1324 (2012)

34. Spalding, R.A., et al.: Fault location, isolation and service restoration (FLISR)
functionalities tests in a smart grids laboratory for evaluation of the quality of
service. In: 2016 17th International Conference on Harmonics and Quality of Power
(ICHQP), pp. 879–884. IEEE (2016)

35. Stojmenovic, I., Wen, S.: The Fog computing paradigm: scenarios and security
issues. In: 2014 Federated Conference on Computer Science and Information Sys-
tems, pp. 1–8, September 2014

36. Stojmenovic, I., Wen, S., Huang, X., Luan, H.: An overview of fog computing and
its security issues. Concurr. Comput. Practice Exp. 28(10), 2991–3005 (2016)

37. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and
secret key generation. In: 2007 44th ACM/IEEE Design Automation Conference,
pp. 9–14. IEEE (2007)

38. Tewari, A., Gupta, B.B.: Cryptanalysis of a novel ultra-lightweight mutual authen-
tication protocol for IoT devices using RFID tags. J. Supercomput. 73(3), 1085–
1102 (2017)

39. Valdes, M.E., Dougherty, J.J.: Advances in protective device interlocking for
improved protection and selectivity. IEEE Trans. Ind. Appl. 50(3), 1639–1648
(2013)

40. Xiao, K., Rahman, M.T., Forte, D., Huang, Y., Su, M., Tehranipoor, M.: Bit selec-
tion algorithm suitable for high-volume production of SRAM-PUF. In: 2014 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), pp.
101–106 (2014)

https://doi.org/10.1007/978-981-15-3914-5_20
https://doi.org/10.1007/978-981-15-3914-5_20

GRADUATION: A GDPR-Based
Mutation Methodology

Said Daoudagh1,2(B) and Eda Marchetti1

1 ISTI-CNR, Pisa, Italy
{said.daoudagh,eda.marchetti}@isti.cnr.it

2 University of Pisa, Pisa, Italy

Abstract. The adoption of the General Data Protection Regulation
(GDPR) is enhancing different business and research opportunities that
evidence the necessity of appropriate solutions supporting specification,
processing, testing, and assessing the overall (personal) data manage-
ment. This paper proposes GRADUATION (GdpR-bAseD mUtATION)
methodology, for mutation analysis of data protection policies test cases.
The new methodology provides generic mutation operators in reference
to the currently applicable EU Data Protection Regulation. The prelim-
inary implementation of the steps involved in the GDPR-based mutants
derivation is also described.

Keywords: Data protection · GDPR · Mutation Operators · Privacy
Policies · Security policies

1 Introduction

The widespread adoption of the General Data Protection Regulation (GDPR),
i.e., the EU Data Protection Regulation [12], if on the one hand is enhancing
different business and research opportunities within the Information and Com-
munication Technology (ICT) environment, on the other hand is struggling in
the definition of appropriate procedures and technical solutions for specifying the
privacy requirements, processing personal data, and testing the overall data man-
agement. Indeed, privacy legislation’s requires to deploy adequate fine-grained
mechanisms that are able to continuously enforce and verify legal requirements,
such as the data usage purpose, the user consent and the data retention period.
To this purpose, different proposals are currently available for automatic defin-
ing, implementing and testing privacy knowledge and rules [1,3,7,23,24], but
few attention is still devoted to the assessment of the testing suites or strategies
adopted for validating the different GDPR implementation aspects. Indeed, the
fault detection effectiveness is a fundamental parameter for ensuring the quality
properties of the final products and for prioritizing and/or selecting test cases
for regression testing activities [15]. To this purpose, one of the most adopted
approaches is the Mutation testing, i.e., a technique in which syntactic faults,
simulating typical programmer’s mistakes, are seeded in the original program in
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 311–324, 2021.
https://doi.org/10.1007/978-3-030-85347-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_23&domain=pdf
http://orcid.org/0000-0002-3073-6217
http://orcid.org/0000-0003-4223-8036
https://doi.org/10.1007/978-3-030-85347-1_23

312 S. Daoudagh and E. Marchetti

order to produce a set of faulty programs, called mutants, each containing one
fault. Therefore, a predefined set of test cases is executed both on the original
program and its mutants, and outputs collected: if the mutant’s output is differ-
ent from the original program’s one, the fault is detected and the mutant is said
to be killed. The mutation score is the ratio of the number of detected faults
over the total number of seeded faults and indicates the effectiveness of the test
suite.

In the context of the GDPR, and data privacy management in general, only
few proposals are targeting the definition of mutation operators able to deal with
the specific privacy characteristics and requirements of the privacy standards [2].
In these cases, the proposed mutation operators do not exhaustively cover all the
important criticalities of the GDPR. For instance, they do not consider mutation
operators concerning the erroneous use of the purpose defined by the controller
and the consent given by the data subject.

In this paper, we move a step ahead in this research direction by present-
ing the new GdpR-bAseD mUtATION (GRADUATION) methodology, partially
supported by a prototype tool, for: 1. analysing and managing model-based spec-
ifications of legal text (such as the GDPR), so as to extract main concepts and
useful data; 2. selecting and applying a set of mutation operators to a specific
GDPR-based model instance, so as to derive its mutated versions.

To better clarify the methodology application, we present the specialization
of the GRADUATION in the context of GDPR-based authorization systems.
Indeed, privacy legislation requires organizations to deploy adequate fine-grained
Access Control (AC) mechanisms [14] that take into account additional legal
requirements, such as the data usage purpose, the user consent and the data
retention period. Consequently, this rises up the problem of developing effective
and efficient test strategies able to guarantee the lack of unauthorized access to
personal data (security perspective) and unlawful processing (legal perspective).

It is important to notice that even if the specialization of the GRADUA-
TION tool refers to the AC mechanisms based on the Attribute-Based Access
Control (ABAC) model [14], the GRADUATION methodology, and in particu-
lar its mutation operators set, is agnostic with respect to the AC mechanisms
specification language, and can be applicable to any system that dealing with
the GDPR.

In this paper, with the aim of providing a comprehensive assessment envi-
ronment, the specialization of the GRADUATION presented includes: 1) all the
currently available AC-based mutation operators [8], i.e., the traditional ABAC
mutation operators [8]; and 2) the new conceived operators based on the GDPR’s
peculiarities.

Summarizing, the main contributions of this paper are:

– a generic methodology, called GRADUATION for automatically generating
GDPR-based mutants;

– a set of GDPR-based mutation operators focusing on the GDPR’s peculiari-
ties;

GRADUATION: A GDPR-Based Mutation Methodology 313

– a preliminary implementation of the steps involved in application of mutation
operators and mutants generation in the ABAC context; and

– an example of application GRADUATION methodology in the ABAC con-
text.

The objective therefore is to define an abstract process for the automatic
generation of GDPR-based mutants, useful for assessing generic GDPR-based
testing strategies through mutation analysis. Indeed, the derived test suites can
be used by:

1. The Controller to assess the GDPR’s readiness of the Processor, i.e., the
responsible of the Personal Data processing.

2. The Supervisor Authority for verifying the GDPR compliance of the processes
defined by the Controller; and

3. The Data Protection Officer (DPO) for ensuring that the organisation pro-
cesses Personal Data in compliance with the data protection rules.

Outline. Section 2 presents the background knowledge about the GDPR, ABAC
and mutation analysis; whereas, Sect. 3 illustrates related work. We present
GRADUATION methodology in Sect. 4, and the specific GDPR-based muta-
tion operators in Sect. 5. In Sect. 6, the implementation of the steps involved in
mutants generation are presented, while an example of the application of GRAD-
UATION methodology is provided in Sect. 7. Finally, Sect. 8 concludes the paper
by also hinting at future work.

2 Background

In this section, we briefly provide an overview of the GDPR and ABAC model.
Other basic concepts, useful for understanding the proposal are provided in line
within the text in Sect. 4.

GDPR Concepts. The GDPR [12] defines Personal Data as any information
relating to an identified or identifiable natural person called Data Subject. In this
view the, a Data Subject is a Natural Person and her/his data are managed by a
Controller. The GDPR rules the processing of personal data, whether it is auto-
mated (even partially) or not. The GDPR relies on the following principles and
demands: Purposes, i.e., data should only be collected for determined, explicit
and legitimate purposes, and should not be processed later for other purposes;
Accuracy, i.e., the processed data must be accurate and up-to-date regularly;
Retention, i.e., data must be deleted after a limited period; Subject explicit con-
sent, i.e., data may be collected and processed only if the data subject has given
her or his explicit consent. The most adopted model-based representation of the
GDPR relies on ontologies [4,16,20,21,25].

ABAC and Mutation. ABAC [14] is currently one of the mostly adopted
AC model in industrial environment [13] and “supplements and subsumes” the
other models [14]. The National Institute of Standards and Technology (NIST)

314 S. Daoudagh and E. Marchetti

defines ABAC as “[a]n access control method where subject requests to perform
operations on objects are granted or denied based on assigned attributes of the
subject, assigned attributes of the object, environment conditions, and a set of
policies that are specified in terms of those attributes and conditions” [13]. In
the recent years, several proposals used ABAC model to represent GDPR’s con-
cepts [5,6,10,11], by casting the conceived representation into the eXtensible
Access Control Markup Language (XACML) standard [19]. Indeed, XACML is
the only available standard implementation of ABAC model, and it is a platform-
independent XML-based language for the specification of Access Control Policies
(ACPs). The main purpose of an XACML policy is to define the constraints that
a subject (e.g., Data Subject or Controller) needs to comply with for accessing
a resource (e.g., Personal Data) and doing an action (e.g., a processing activ-
ity) in a given environment (e.g., purpose and consent). However, as stated in
the previous section, developing XACML-based ACPs rises up the problem of
developing effective and efficient test strategies able to guarantee the lack of
unauthorized access to personal data (security perspective) and unlawful pro-
cessing (legal perspective). Therefore, mutation analysis [22] can be applied on
ACPs for measuring the adequacy of the generated test suites. The general pro-
cess of mutation analysis consists of two steps: first, change the original program
(e.g., ACP) with predefined mutation operators and generates a set of mutated
program, called mutants; then, the mutants are executed against a test suite,
and information is collected during the execution for various purpose of analysis.

3 Related Work

In the context of the GDPR, and data privacy management in general, only few
proposals are targeting the definition of mutation operators able to deal with
the specific privacy characteristics and requirements of the privacy standards [2].
And in these cases, the proposed mutation operators do not exhaustively cover
all the important criticalities of the GDPR. For instance, they do not consider
mutation operators concerning the erroneous use of the purpose defined by the
controller and the consent given by the data subject.

Focusing in particular on mutation testing in the context of access control,
the most noteworthy proposals are: the fault models and relative set of mutation
operators simulating syntactic faults of XACML access control policies proposed
by [17]; the generic metamodel for the specification rule-based security policy and
the relative set of mutation operators provided by [18]; the XACMUT tool [8],
which includes and enhances the mutation operators of [17] and [18] addressing
specific faults of the XACML 2.0 language; and the proposal of [9] which imple-
ments mutation analysis at the level of the policy evaluation engine instead of
applying it at the level of access control policy.

On the contrary, considering the mutation testing in the context of the
GDPR, to the best of our knowledge the only proposal currently available is
represented by [2]. Indeed, this paper is the first attempts of extending mutation
operators for validating ontologies expressing the GDPR’s provisions. However,

GRADUATION: A GDPR-Based Mutation Methodology 315

even if generic, the mutation operators proposed in the paper do not cover all
the specific aspects of the privacy standard.

Therefore, our proposal on the one hand extends the set of mutation opera-
tors, so as to validating the test suites or strategies against the GDPR peculiar-
ities, on the other provides an implementation able to integrating into a unique
environment all the existing approaches for mutation testing in the area of access
control system.

4 Methodology for GDPR-Based Mutants Derivation

GRADUATION methodology is composed of four main steps (see Fig. 1): (1)
Model Derivation; (2) Model Parsing; (3) Implementation Parsing; and (4) Muta-
tion Application.

Although grounded in a domain-related implementation (i.e., the GDPR),
GRADUATION yields a more general spectrum, since it can be applied to dif-
ferent data protection regulations and more in general to any legal text that
implicitly contains, or suggests, data protection requirements. In the following,
details about the methodology steps are provided.

Fig. 1. GDPR-based mutation methodology.

Model Derivation (Step 1). Starting from a legal text, in our case the
GDPR, the model representing the main concepts and the relations between
them is obtained. To this purpose, in literature different proposals focused on the
derivation of a formal representation of legal text are available [4,16,20,21,25]. It
is out of the scope of this work investigating the most suitable approaches for this
purpose. The hypothesis of our work is that a GDPR-based model is available
in terms of a specification language, for instance an ontological representation,
a UML model or an access control model.

316 S. Daoudagh and E. Marchetti

Model Customization (Step 2). This step takes as input both the legal text
model and concrete inputs stored in Personal Data DB. In this step the legal-
based model (in our case the GDPR-based model) is analyzed to identify main
legal concepts and associate to each of them the proper input domain (i.e., the
data contained in Personal Data DB). Examples of legal data could be: personal
data, data subject, controller, processor, consent and purpose. The legal-based
model and the identified input are then used for deriving a specialized GDPR-
based implementation of the considered model.

GDPR-Based Implementation Parsing (Step 3). According to the muta-
tion testing approach, the derived GDPR-based implementation is classified as
gold implementation, and it is used for: i) identifying the set of data entities,
such as for instance the current ID of the Processor, the name of a Data Subject
and so on; ii) instrumenting the gold implementation so as to let the automatic
derivation of its mutated versions (i.e., mutants set).

Mutation Operators Application (Step 4). The set of GDPR-based muta-
tion operators is applied to the gold implementation so as to derive the mutants
set. In this step, two kinds of mutations are considered: intra-implementation
and inter-implementation mutations. The former set refers to the application
of mutation operators managing only the information and data extracted from
the gold implementation (i.e., during Step 3). The latter set refers to mutation
operator managing the information relative to the GDPR-based model (i.e., the
model derived during the Step 2).

The conceived GDPR-based mutation operators are reported in Sect. 5.

5 GDPR-Based Mutation Operators

The GDPR-based mutation operators can be classified in three main categories:

1. operators targeting the purpose of processing and the consent given by data
subject;

2. mutation operators targeting the roles defined in the GDPR such as Data
Subject, Controller and Processor; and finally,

3. operators focusing on Personal Data, i.e., the object of the EU legal frame-
work, and their categories.

These operators have the ability to be applied to different domains, because
voluntarily conceived as generic. Therefore, depending on the specific language or
formalism used for defining the GDPR’s requirements, they can be implemented
and applied accordingly.

The new generic GDPR-based mutation operators are as in the following:

Giving Consent (GC) this operator changes the value of the Consent given
by the data subject.

Withdraw Consent (WC) this operator is dual to GC, and it changes the
value of the consent element in the targeted implementation.

GRADUATION: A GDPR-Based Mutation Methodology 317

Change Purpose (CP) this operator replaces a purpose with other defined
in the considered implementation. In case there is only one purpose, CP
operator changes the purpose with a random one defined in the GDPR model
or in other available supporting sources.

Change Controller (CC) this operator replaces a Controller with another
one. In case missing candidates, CC changes the current Controller with a
randomly generated Controller. This operator is applied also when Joint Con-
trollers exit and involved in the processing of Personal Data, i.e., in defining
the Purpose of processing, obtaining the consent and using Personal Data
accordingly.

Replace Data Subject (RDS) this operator is able to replace a Data Subject
with another one. Similar to CC and CP operators, i.e., in case of missing
candidates, RDS chooses random Data Subject that replaces the current one.

Replace Controller with Processor (RCP) this operator changes a Con-
troller with a Processor presented in the current implementation;

Replace Processor (RP) this operator replaces a Processor with another
Processor.

Change Personal Data (CPD) this operator is able to change a personal
data with another one.

Change Personal Data Category (CPDC) this operator changes the cate-
gory of given personal data with another one.

6 GDPR-Based Mutation Operators Implementation

In this section, we describe the contextualization of GRADUATION method-
ology in the context of ABAC-based systems. For this purpose, steps of the
GRADUATION methodology (see Sect. 4) have been divided into three mod-
ules: Module A refers to the activities for modeling the GDPR and deriving
the ABAC policies (Steps 1 and 2 of Fig. 1); Module B refers to the ABAC
policy parsing (Step 3 of Fig. 1); and Module C contains specific activities for
the mutation testing application (Step 3 of Fig. 1).

In this section, however, we only provide the implementation of Modules B
and C , which are the most specific for the ABAC context1.

As reported in Fig. 2, Module B is implemented as parser of the ABAC
policy. Its role is to extract the data for deriving the mutated versions of the
ABAC policy. An example of the information collected by this parser is provided
in Table 1 of the following section.

Module C is composed of the following components:

– Mutation Operators Selector (Component a): this component implements
two set of mutation operators: (i) the GDPR-based Mutation Operators

1 GRADUATION has been implemented in Java, and it is currently available at:
http://security.isti.cnr.it/tools/graduation.

http://security.isti.cnr.it/tools/graduation

318 S. Daoudagh and E. Marchetti

Fig. 2. Overview of GRADUATION.

defined in the previous section; and (ii) Standard ABAC Mutation Opera-
tors. This last set of operators can be categorized based on the ABAC policy
elements. There are operators emulating fault at: (1) Policy Set element level
such as Policy Set Target True (PSTT), Policy Set Target False (PSTF) and
Change Policy Combining Algorithm (CPC); (2) Policy element level, e.g.,
Change Rule Combining Algorithm (CRC) and Policy Target False (PTF);
(3) Rule element level, such as Rule Target True (RTT), Rule Condition
False (RCF) and Change Rule Effect (CRE); and finally, (4) Policy Func-
tions level, for instance RemoveUniquenessFunction (RUF), ChangeLogical-
Function (CLF) and AddNotFunction (ANF). For a more detailed description
and comprehensive overview of the standard AC mutation operators, we refer
the reader to [8].

– Mutants Generator (Component b): this component has the responsibility
of generating mutated versions of the Gold (GDPR-based) policy by applying
the selected mutation operators (both standard and GDPR-based) by end-
user.

– Test Suite Executor (Component c): this component executes the AC
requests provided by the user on the original GDPR-based ABAC policy
(Gold Policy) and on the generated set of mutated policies. For requests eval-
uation this component integrates an ABAC PDP engine, which is able to
provide the corresponding result (Permit, Deny, NotApplicable or Indetermi-
nate) for a given policy P and a request Req.

– Results Analyzer (Component d): this component takes as input the results
obtained by the execution of the test suites on the original GDPR-based policy
and on its set of mutants, and computes the fault detection effectiveness. It
works as follows: for each request the result obtained by its execution on the
original policy is compared with that obtained on its mutants set. If the results
are different, the mutant is classified as killed. The component provides as
output the list of killed mutants, survived mutants, and the percentage of fault
detection effectiveness obtained by the requests execution. It also provides
functionalities allowing to filter by mutation operators, by test cases, and

GRADUATION: A GDPR-Based Mutation Methodology 319

by the expected authorization decision. This is useful for providing different
perspective of the data and for analyzing deeply the different aspects of these
mutation data views.

For the aim of completeness, even if out of the scope of this paper, com-
ponents c and d have been described in this section because part of the
implementation of Module C . However, they will be not further detailed in
the reminder of this paper.

7 Using GRADUATION Methodology

In this section, we briefly detail the application GRADUATION methodology
(see Sect. 4) by considering a use case scenario concerning a fitness environment
taken from the literature [10]. Specifically, we consider the situation in which
Alice, a Data Subject, wants to use a smart fitness application to monitor her
daily activities to achieve a predefined training objective. In this case, we sup-
pose that a customized (mobile) application is provided by a generic myFitness
company (the Controller). To meet Alice’s needs, myFitness has so far defined
two purposes (MyCholesterol and Untargeted Marketing), each related to a spe-
cific data set of Personal Data and achieved by allowing access to perform a
specific set of Actions. More precisely, the MyCholesterol purpose is achieved by
performing AGGREGATE, DERIVE and QUERY actions; whereas the Untar-
geted Marketing purpose is achieved by performing COLLECT, QUERY and
SEND actions.

At the time of subscribing to the myFitness application, Alice provided her
personal data (i.e., e-mail, Age, Gender, and Blood Cholesterol) and gave her
consent to process her e-mail and Age for Untargeted Marketing purpose, and
her Blood Cholesterol for MyCholesterol purpose. Additionally, Alice withhold
her consent to share her personal data with a third-party company named xxx-
HealthOrg company. In turn, myFitness gave to Alice controller’s contacts that
include: piiController, orgName, address, e-mail, and phone number.

According to GRADUATION methodology, the application of the first two
activities (see Fig. 1) involves:

– Model Derivation (Step 1): starting from the GDPR text, among the
different proposals, the Privacy Ontology (PrOnto) [20,21] ontology repre-
sentation of the GDPR is used for deriving the GDPR’s entities useful for
modeling GDPR-based ABAC policy. In particular we considered:
1. Data that is the object of the GDPR and it is target of its protection.

Data can be: Personal Data, non-personal data, anonymized data and
pseudonymised data;

2. Agents and Roles such as data subject, controller, processor, supervi-
sory authority and the new introduced figure the Data Protection Offi-
cer(DPO), as well as third-party;

3. Processing activities expressed as a set of actions such as delete, transmit
and store;

320 S. Daoudagh and E. Marchetti

4. Purposes and legal bases such as the consent; and finally,
5. Legal rules such as right, obligation, permission and prohibition.

According to the methodology presented in [6], an example of an abstract
representation of a GDPR-based ABAC policy model is reported below:

((Subject = Controller OR DataSubject) ∧ (Resource = Person-
alData) ∧ (Action = processing) ∧ (Action.purpose = Personal-
Data.purpose) ∧ (PersonalData.purpose.consent = YES)) =⇒
(Authorization = Permit)

– Model Customization (Step 2): the GDPR-based ABAC policy model
is then analyzed to identify main legal concepts and associate to each of them
the proper input domain. In particular, based on the above scenario, a pos-
sible access control policy can be derived as reported here below. The policy
allows a lawfulness of processing of personal data related to Alice in case of
subscription to the myFitness specific service for two different purposes.

LawfulnessOfProcessingPolicy:

R1: permission(Controller=myFitness, DataSubject=Alice PersonalData=Blood Choles-
terol, purpose=MyCholesterol, Action=DERIVE Consent=TRUE)

R2: permission(Controller=myFitness, DataSubject=Alice, PersonalData=EmailDS, pur-
pose=UntargetedMarketing, Action=SEND Consent=TRUE)

Fig. 3. GRADUATION main GUI. (Color figure online)

The GDPR-based Implementation Parsing (Step 3) is being per-
formed through the application of the implementation of Module B (see Fig. 2).
The end-user interaction is managed through an User Interface (UI) as depicted

GRADUATION: A GDPR-Based Mutation Methodology 321

in Fig. 3. Through this interface, the end-user can select the GDPR-based policy
(button B1 in Fig. 3) and starts its parsing. This access control policy, represent-
ing the gold implementation, is then analyzed for identifying the data useful for
deriving its mutated versions. In Table 1, the result of this activity is represented.
In particular, the table reports the set of GDPR-based entities (column GDPR
Entity), their classification (column Category), their names (column Name) and
related values (column Value). In the following, we describe the application of
the GDPR-based mutation operators by considering the above policy named
LawfulnessOfProcessingPolicy.

Table 1. The GDPR entities extracted from the model.

GDPR entity Category Name Value

Controller Agent orgName myFitness

Controller Biodata piiController myFitnessID

Controller Biodata address -

Controller Biodata e-mailC -

Controller Biodata phone number -

Third-party Agent orgName xxx-HealthOrg

Data Subject Agent DSName Alice

Personal Data Biodata Age -

Personal Data Biodata Gender -

Personal Data Biodata Blood Cholesterol -

Personal Data Biodata e-mailDS -

Purpose - Purpose MyCholesterol

Purpose - Purpose Untargeted Marketing

Processing - Action AGGREGATE

Processing - Action DERIVE

Processing - Action QUERY

Processing - Action COLLECT

Processing - Action SEND

The Mutation Operators Application (Step 4) is performed through
Module C . In particular, by means of the User Interface (UI) (see Fig. 3) the
end-user can select the GDPR-based mutation operators and the standard ones,
and apply them to the selected policy (button B2).

In the following, some examples of mutants related to LawfulnessOfProcess-
ingPolicy are reported. In particular, in bold-italics text we report the name of
the applied Mutation Operator, whereas in bold-blue we highlight the applied
mutation operators within R1 and R2 rules.

Finally, the end-user can execute the policy mutants against a given test suite
(button B3 of the User Interface (UI) of Fig. 3).

322 S. Daoudagh and E. Marchetti

WC MUTANT
LawfulnessOfProcessingPolicy-WC1:

R1: permission(Controller=myFitness, DataSubject=Alice PersonalData=Blood Choles-
terol, purpose=MyCholesterol, Action=DERIVE Consent=FALSE)

R2: permission(Controller=myFitness, DataSubject=Alice, PersonalData=e-mailDS, pur-
pose=UntargetedMarketing, Action=SEND Consent=YES)

CP MUTANT
LawfulnessOfProcessingPolicy-CP2:

R1: permission(Controller=myFitness, DataSubject=Alice PersonalData=Blood Choles-
terol, purpose=UntargetedMarketing, Action=DERIVE Consent=TRUE)

R2: permission(Controller=myFitness, DataSubject=Alice, PersonalData=e-mailDS, pur-
pose=UntargetedMarketing, Action=SEND Consent=TRUE)

CPD MUTANT
LawfulnessOfProcessingPolicy-CPD:

R1: permission(Controller=myFitness, DataSubject=Alice PersonalData=AGE, pur-
pose=MyCholesterol, Action=DERIVE Consent=TRUE)

R2: permission(Controller=myFitness, DataSubject=Alice, PersonalData=e-mailDS, pur-
pose=UntargetedMarketing, Action=SEND Consent=YES)

In particular, this step involves the selection of the set of AC requests to
be evaluated; the execution of the policy and the derived mutants against test
suite; and the evaluation of which mutants (both standard and GDPR-based)
have been killed by the application of the selected test suite. It is out of the scope
of this work discussing the results of this step because it strictly depends on the
test generation strategy or the test suite to be evaluated. The aim of this work
is therefore to present a mutation strategy targeting the GDPR’s peculiarities,
and provides specific mutation operators based on the GDPR.

8 Conclusions

In this paper, we introduced GRADUATION, a comprehensive methodology for
defining and applying mutation operators specifically conceived in the context of
the GDPR. The methodology and the proposed mutation operators have been
voluntarily conceived independent from any modeling language, used for formally
represent the GDPR. Although grounded in a domain-related implementation
(i.e., the GDPR), GRADUATION yields a more general spectrum, since it can
be applied to different data protection regulations, and more in general to any
legal text that implicitly contains, or suggests, data protection requirements. The
applicability of GRADUATION has been exemplified in the context of ABAC
domain. Thus, the ABAC-based GRADUATION implementation has been used
to generate mutated versions of GDPR-based ABAC Privacy policies. Currently,
we are working to extend the GDPR-based mutation operators set so as to cover
other GDPR’s demands as well as to improve its validation with real case studies.
Ongoing work includes also the specialization of GRADUATION methodology
considering other formalisms and languages such as UML and Semantic Web
Technologies.

GRADUATION: A GDPR-Based Mutation Methodology 323

Acknowledgment. This work is partially supported by the project BIECO H2020
Grant Agreement No. 952702, and by CyberSec4Europe H2020 Grant Agreement No.
830929.

References

1. Barsocchi, P., et al.: A privacy-by-design architecture for indoor localization sys-
tems. In: Shepperd, M., Brito e Abreu, F., Rodrigues da Silva, A., Pérez-Castillo,
R. (eds.) QUATIC 2020. CCIS, vol. 1266, pp. 358–366. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58793-2 29

2. Bartolini, C.: Software testing techniques revisited for OWL ontologies. In: Ham-
moudi, S., Pires, L.F., Selic, B., Desfray, P. (eds.) MODELSWARD 2016. CCIS,
vol. 692, pp. 132–153. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66302-9 7

3. Bartolini, C., Calabrò, A., Marchetti, E.: Enhancing business process modelling
with data protection compliance: an ontology-based proposal. In: Proceedings of
the 5th International Conference on Information Systems Security and Privacy,
ICISSP 2019, Prague, Czech Republic, 23–25 February 2019, pp. 421–428 (2019)

4. Bartolini, C., Calabrò, A., Marchetti, E.: GDPR and business processes: an effec-
tive solution. In: Proceedings of the 2nd International Conference on Applications
of Intelligent Systems, APPIS 2019, Las Palmas de Gran Canaria, Spain, 07–09
January 2019, pp. 7:1–7:5 (2019)

5. Bartolini, C., Daoudagh, S., Lenzini, G., Marchetti, E.: GDPR-based user stories
in the access control perspective. In: Piattini, M., Rupino da Cunha, P., Garćıa
Rodŕıguez de Guzmán, I., Pérez-Castillo, R. (eds.) QUATIC 2019. CCIS, vol. 1010,
pp. 3–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29238-6 1

6. Bartolini., C., Daoudagh, S., Lenzini., G., Marchetti., E.: Towards a lawful autho-
rized access: a preliminary GDPR-based authorized access. In: Proceedings of the
14th International Conference on Software Technologies: ICSOFT, vol. 1, pp. 331–
338. INSTICC, SciTePress (2019)

7. Basin, D., Debois, S., Hildebrandt, T.: On purpose and by necessity: compliance
under the GDPR. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957,
pp. 20–37. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-
6 2

8. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti., E.: XACMUT: XACML 2.0
mutants generator. In: Proceedings of 8th International Workshop on Mutation
Analysis, pp. 28–33 (2013)

9. Daoudagh, S., Lonetti, F., Marchetti, E.: Assessment of access control systems
using mutation testing. In: Proceedings of the First International Workshop on
TEchnical and LEgal Aspects of Data pRIvacy, pp. 8–13. IEEE Press (2015)

10. Daoudagh, S., Marchetti, E., Savarino, V., Bernardo, R.D., Alessi, M.: How to
improve the GDPR compliance through consent management and access control.
In: Proceedings of the 7th International Conference on Information Systems Secu-
rity and Privacy, ICISSP 2021, Online Streaming, 11–13 February 2021, pp. 534–
541. SCITEPRESS (2021)

11. Davari, M., Bertino, E.: Access control model extensions to support data privacy
protection based on GDPR. In: 2019 IEEE International Conference on Big Data
(Big Data), pp. 4017–4024 (2019)

https://doi.org/10.1007/978-3-030-58793-2_29
https://doi.org/10.1007/978-3-319-66302-9_7
https://doi.org/10.1007/978-3-319-66302-9_7
https://doi.org/10.1007/978-3-030-29238-6_1
https://doi.org/10.1007/978-3-662-58387-6_2
https://doi.org/10.1007/978-3-662-58387-6_2

324 S. Daoudagh and E. Marchetti

12. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation). Official Journal of the Euro-
pean Union L119, pp. 1–88, May 2016. http://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=OJ:L:2016:119:TOC

13. Hu, C.T., et al.: Guide to attribute based access control (ABAC) definition and
considerations [includes updates as of 02-25-2019]. Technical report (2019)

14. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31540-4 4

15. Khatibsyarbini, M., Isa, M.A., Jawawi, D.N., Tumeng, R.: Test case prioritization
approaches in regression testing: a systematic literature review. Inf. Softw. Technol.
93, 74–93 (2018)

16. Libal, T., Steen, A.: Towards an executable methodology for the formalization of
legal texts. In: Dastani, M., Dong, H., van der Torre, L. (eds.) CLAR 2020. LNCS
(LNAI), vol. 12061, pp. 151–165. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-44638-3 10

17. Martin, E., Xie, T.: A fault model and mutation testing of access control policies.
In: Proceedings of WWW, pp. 667–676 (2007)

18. Mouelhi, T., Fleurey, F., Baudry, B.: A generic metamodel for security policies
mutation. In: Proceedings of ICSTW, pp. 278–286 (2008)

19. OASIS: eXtensible Access Control Markup Language (XACML) Version 3.0 (2013).
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

20. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., Robaldo, L.: Legal ontol-
ogy for modelling GDPR concepts and norms. In: Legal Knowledge and Informa-
tion Systems - JURIX 2018: The Thirty-first Annual Conference, Groningen, The
Netherlands, 12–14 December 2018, pp. 91–100 (2018)

21. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., Robaldo, L.: PrOnto: privacy
ontology for legal reasoning. In: Kő, A., Francesconi, E. (eds.) EGOVIS 2018.
LNCS, vol. 11032, pp. 139–152. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98349-3 11

22. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y., Harman, M.: Mutation
testing advances: an analysis and survey. In: Advances in Computers, vol. 112, pp.
275–378. Elsevier (2019)

23. Ramadan, Q., Salnitriy, M., Strüber, D., Jürjens, J., Giorgini, P.: From secure
business process modeling to design-level security verification. In: Proceedings of
MODELS 2017, pp. 123–133. IEEE, September 2017

24. Ranise, S., Siswantoro, H.: Automated legal compliance checking by security policy
analysis. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS,
vol. 10489, pp. 361–372. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66284-8 30

25. Robaldo, L., Bartolini, C., Palmirani, M., Rossi, A., Martoni, M., Lenzini, G.:
Formalizing GDPR provisions in reified I/O logic: the DAPRECO knowledge base.
J. Logic Lang. Inform. 29(4), 401–449 (2020)

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://doi.org/10.1007/978-3-642-31540-4_4
https://doi.org/10.1007/978-3-030-44638-3_10
https://doi.org/10.1007/978-3-030-44638-3_10
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://doi.org/10.1007/978-3-319-98349-3_11
https://doi.org/10.1007/978-3-319-98349-3_11
https://doi.org/10.1007/978-3-319-66284-8_30
https://doi.org/10.1007/978-3-319-66284-8_30

A Proposal for the Classification of Methods
for Verification and Validation of Safety,
Cybersecurity, and Privacy of Automated

Systems

Jose Luis de la Vara1(B), Thomas Bauer2, Bernhard Fischer3, Mustafa Karaca4,
Henrique Madeira5, Martin Matschnig3, Silvia Mazzini6, Giann Spilere Nandi7,

Fabio Patrone8, David Pereira7, José Proença7, Rupert Schlick9, Stefano Tonetta10,
Ugur Yayan4, and Behrooz Sangchoolie11

1 Universidad de Castilla-La Mancha, Albacete, Spain
joseluis.delavara@uclm.es

2 Fraunhofer IESE, Kaiserslautern, Germany
thomas.bauer@iese.fraunhofer.de

3 Siemens, Vienna, Austria
{bernhard.bf.fischer,martin.matschnig}@siemens.com

4 Inovasyon Muhendislik, Odunpazari, Turkey
{mustafa.karaca,ugur.yayan}@inovasyonmuhendislik.com

5 Universidade de Coimbra, Coimbra, Portugal
henrique@dei.uc.pt

6 Intecs, Pisa, Italy
silvia.mazzini@intecs.it

7 ISEP, Porto, Portugal
{giann,drp,pro}@isep.ipp.pt
8 University of Genoa, Genova, Italy
f.patrone@edu.unige.it

9 AIT, Vienna, Austria
rupert.schlick@ait.ac.at

10 FBK, Povo, Italy
tonettas@fbk.eu

11 RISE, Borås, Sweden
behrooz.sangchoolie@ri.se

Abstract. As our dependence on automated systems grows, so does the need for
guaranteeing their safety, cybersecurity, and privacy (SCP). Dedicated methods
for verification and validation (V&V) must be used to this end and it is necessary
that the methods and their characteristics can be clearly differentiated. This can be
achieved via method classifications. However, we have experienced that existing
classifications are not suitable to categorise V&V methods for SCP of automated
systems. They do not pay enough attention to the distinguishing characteristics of
this system type and of these quality concerns. As a solution, we present a new
classification developed in the scope of a large-scale industry-academia project.
The classification considers both the method type, e.g., testing, and the concern
addressed, e.g., safety. Over 70 people have successfully used the classification on

© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 325–340, 2021.
https://doi.org/10.1007/978-3-030-85347-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_24

326 J. L. de la Vara et al.

53 methods.We argue that the classification is a more suitable means to categorise
V&Vmethods for SCP of automated systems and that it can help other researchers
and practitioners.

Keywords: Verification and validation · V&V ·Method · Classification ·
Safety · Cybersecurity · Privacy · Automated system

1 Introduction

Automated systems such as industrial robots and advanced driving systems play an
increasingly important role in society. They support many daily-life activities and we
strongly depend on them. On the other hand, as the use and complexity of these sys-
tems are growing, system manufacturers and component suppliers require methods that
help them to confirm that safety, cybersecurity, and privacy (SCP) requirements are
satisfied [4]. This is necessary so that the systems can be deemed dependable. From
a general perspective, a method corresponds to a particular procedure for accomplish-
ing or approaching something, especially a systematic or established one [31]. In this
paper we focus on methods for verification and validation (V&V) of automated systems.
Examples of these methods are fault injection [30] and model-based testing [26].

The features of the new generation of automated systems require that dedicatedV&V
methods (usually a combination of methods) are applied to them [4, 12]. The methods
must consider how to cope with the scale and complexity of the systems, the aspects
that make them cyber-physical, and their specific quality needs, among other issues.
For example, the use of software-focused V&V methods alone is often not sufficient.
This also implies that manufacturers and suppliers need to clearly distinguish among
different V&V methods and their characteristics to be able to select the most adequate
ones during a system’s lifecycle. Method classifications can aid in this task.

However, when involved in the analysis and characterisation of V&V methods for
SCP of automated systems, we have experienced that existing classifications are not
suitable. Among the issues identified, the classifications do not pay enough attention
to specific aspects such as the need for analysing possible faults and attacks at early
development stages or for ascertaining what SCP aspect a given V&V method deals
with. The descriptions of existing classification are also usually not clear enough to help
users decide upon how to best classify a V&V method and to select the most suitable
method for a given V&V need. If these problems arise, then the selection and use of
V&Vmethods for SCP of automated systems can be less effective, ultimately impacting
the cost and dependability of a system.

We aim to address these issues by proposing a new classification of V&V methods.
Wehave created it in the scope ofVALU3S [4], a large-scale industry-academia project in
which 41 partners from ten countries are cooperating towards improving how automated
systems are verified andvalidatedwith respect to SCP requirements.Among the activities
of the project, we identify, analyse, and classify methods that could improve V&V
of specific industrial use cases from the automotive, agriculture, railway, healthcare,
aerospace, and industrial automation domains.

A Proposal for the Classification of Methods 327

The classification distinguishes between two main facets of a V&V method: the
general method type and the concern addressed. For example, penetration testing [44]
is a testing method for cybersecurity. Thanks to the classification, we have managed to
classify tens of V&V methods and differentiate among them more precisely. Our initial
aim in VALU3S was to reuse some existing classification, but we found issues such
as insufficient consideration of automated system SCP needs and insufficient clarity
to know how to best classify a method. Nonetheless, relationships can be established
between our classification and others.

We consider that the classification can be useful for both researchers and practition-
ers. A more precise classification of V&V methods for SCP of automated systems can
help others to better determine the circumstances under which a given method should
be used, possible improvements and extensions on the methods, methods that can be
combined to jointly cover a wider V&V scope, and areas in which new methods could
be needed.

The rest of the paper is organised as follows. Section 2 reviews related work. Sec-
tions 3 and 4 present the classification and its application, respectively. Finally, Sect. 5
summarises our main conclusions.

2 Related Work

As part of the work done in VALU3S, we searched for and analysed existing V&V
method classifications to assess their adoption in the project.

Nair et al. [29] identified evidence types for certification of safety-critical systems
and created a taxonomy. Results of V&V methods is one of the types. It is refined into
tool-supported V&V and manual V&V. The former is divided into testing (13 basic
types for objective-based, environment-based, or target-based testing), simulation, and
formal verification (three basic types). Similar V&V method types are referred to in
engineering standards, e.g., EN 50128 [9] for railway software. The main issues with
the classification by Nair et al. are its focus on safety, thus cybersecurity and privacy
aspects are not sufficiently covered, and that it pays a much larger attention to testing
than to other method types. This results in an unbalanced classification for our purpose.

The Amalthea4public project [1] reviewed V&V methods for embedded multi- and
many-core software systems. The methods were divided into informal methods, static
methods, dynamic methods, formal methods, testing, simulation, and product line anal-
ysis. The main issue that we found in this classification was that it was not clear how
somemethods should be classified, e.g., dynamicmethods vs. formal methods or testing,
as defined by the project. SCP requirements are also not explicitly addressed.

We identified the same issues with several other classifications, e.g., one proposed by
the US Department of Defense [42]. This classification distinguishes four main method
types: informalV&Vmethods, staticV&Vmethods, dynamicV&Vmethods, and formal
V&V methods. These method types are commonly used. However, we consider that it
is necessary to distinguish among informal, semi-formal, and formal methods, as well
as explicitly among different types of dynamic methods such as testing and simulation.
This distinction is typical in engineering standards such as IEC 61508 [20], thus it is a
relevant aspect for systems in regulated application domains.

328 J. L. de la Vara et al.

There also exist classifications that specify the V&V methods that could be used in
the different system lifecycle activities [22]. We regard these classifications in isolation
as less useful because they do not represent well the reasons to use a method, how formal
it is, or the type of requirements addressed.

In summary, our classification fills gaps in prior work by considering a broader range
of general V&V method types, explicitly focusing on SCP, and providing a detailed
description of its elements, how they can be distinguished, and how to use them.

3 Classification for V&V Methods for SCP of Automated Systems

This section presents the classification that we propose for V&V methods. It is the
result of an effort in the VALU3S project to decide upon how to best categorise V&V
methods that we identified as relevant for evaluation of SCP of automated systems. We
also analysed the methods [43]. The current structure of the classification is the result
of several iterations and has been discussed among VALU3S partners.

The classification is based on two main facets of the V&V methods: the general
method type and the concern addressed. When categorising a method, a user of the
classification must choose (1) one or several general method types and (2) one or several
concerns. This is justified in the following paragraphs.

The general method types considered are:

• Injection, when some phenomenon is introduced in a system to analyse its response.
• Simulation, when the behaviour of a model of a system is studied.
• Testing, when system execution under certain conditions is checked before operation.
• Runtime verification, when system execution is evaluated during operation.
• Formal analysis, for V&V methods with a mathematical basis.
• Semi-formal analysis, for V&V methods that exploit some structured means but
without a full mathematical basis.

• Informal analysis, for V&V methods that do not follow any predefined structure or
do not have a mathematical basis.

Wehave identifiedfivemain concerns that SCPV&Vmethods for automated systems
might have to address:

• Safety, as the ability of a system to avoid injury, serious injury, or death.
• Cybersecurity, as the ability of a system to avoid unauthorised access, use, or
modification.

• Privacy, as the ability of a system to avoid disclosure of sensitive data.
• General, when a V&Vmethod analyses a general characteristic of a system that does
not directly contribute to SCP, but indirectly, e.g., traceability.

• System-type-focused, when a V&V method focuses on specific and distinguishing
characteristics of a system type, e.g., a method for CPUs.

The selection of general method types is based on categories in related classifica-
tions and on the decision upon how to fill the gaps that we found in the classifications.

A Proposal for the Classification of Methods 329

Regarding the concerns, we started focusing on SCP and realised that they needed to be
extended to also consider general V&V needs and system-type-focused ones.

Among the characteristics that differentiate the classification and its use, we believe
that considering injection as a separate independent general method type is very impor-
tant for automated systems. Injection-based V&Vmethods focus on SCP evaluation, are
essential for early system V&V, and can cope well with V&V of specific characteristics
of cyber-physical systems, addressing injection from the software, hardware, network,
mechanical, and real-world environment perspectives.

We also treat methods in a way that allows a user of the classification to consider
very specific methods or broader ones. This is inspired by how engineering standards
for critical systems [9, 20] present methods and it is also in line with how VALU3S
industrial partners distinguish V&Vmethods. For example, the standards can refer both
to general methods and categories such as performance testing and to specialisations
such as stress testing and response time analysis. Therefore, the classification needs to
be flexible regarding the abstraction level of the methods. This also implies that the
classification of broader methods, for which specialised ones or sub-methods could
be distinguished, might not be mapped to a single general method type or concern,
but to several. For example, failure detection and diagnosis in robotic systems can be
mapped to simulation and runtime monitoring as general method type and to safety and
cybersecurity as concerns. This is shown in more detail in Sect. 4.

The following sub-sections present each general method type and how specific
methods can be mapped to them, also considering the different concerns.

3.1 Injection

Injection-based V&V methods focus on introducing certain characteristics in a system,
providing a certain type of input, or triggering certain events, to confirm that the system
behaves suitably under the corresponding conditions. Two specific types of injection are
discussed: fault injection and attack injection.

Fault injection refers to deliberate insertion of artificial (yet realistic) faults in a
computer system or component. This way, it is possible to assess the behaviour of a
system in the presence of faults and allow the characterization of specific dependability
measures or fault tolerant mechanisms available in the system. According to the well-
known concepts and terminology proposed byAvizienis et al. [3], a fault is the “adjudged
or hypothesized cause of an error”, and an “error is the part of the total state of the system
that may lead to its subsequent service failure”. In other words, the faults injected may
lead to errors that, subsequently,may cause erroneous behaviour of the target component.
These errors may propagate in the system and may cause failures in other components
or even system failures. Fault injection can be seen as an approach to accelerate the
occurrence of faults in order to help in V&V of the fault handling mechanisms available
in the system under evaluation.

Avizienis et al. [3] define an attack as a special type of fault which is human made,
deliberate and malicious, affecting (or breaching) hardware or software from exter-
nal system boundaries and occurring during the operational phase. The system breach
exploits the vulnerabilities in a system and could result into a compromised system. The

330 J. L. de la Vara et al.

compromised system could result in a system failure such as software or hardware com-
plete failure or degraded performance. Thus, attack injection in a system is analogous
to fault injection. However, the aim is to evaluate the impact of cybersecurity attacks on
the overall security or safety of a system.

Fault and attack injection can be used in different phases of system development to
evaluate (or even predict) how systems and specific components behave in the presence of
faults, or to assess dependability properties such as safety, security, privacy, availability,
or reliability. Typically, faults injected in models (structural or behaviour-based models)
are useful in the early stages of system development, while faults injected in prototypes
or in real systems in controlled experiments allow V&V of actual properties of deployed
systems.

Examples of injection-based V&V methods for the different concerns include:

• Safety: Model-implemented fault injection [37], to evaluate the safety aspects of a
system’s design by injecting fault models directly into simulated systemmodels (such
as Simulink ones) at early product development phases.

• Cybersecurity: Vulnerability and attack injection in real systems or prototypes [15],
to evaluate globally how a system copes with attacks and to assess specific security
mechanisms in the target system.

• Privacy: SQL injection [17], to assess the possibility of unrestricted access to
databases.

• General: Noise injection [27], to add irrelevant data to the inputs during neural
network training and assess the impact for V&V.

• System-type-focused: Failure detection and diagnosis in robotic systems [24], to
analyse failures and possible failures in robotic system components via fault injection.

3.2 Simulation

Simulation enables early V&V of systems and components. It is based on the develop-
ment or use of digital models that behave or operate like real-world systems or compo-
nents, and on the provision of real-world-like inputs. Simulation-based V&V methods
provide virtual validation in software-intensive systems. Possible issues in automated
systems can be experimented and analysed through simulation.

This type of V&V methods provides solutions for different challenges for efficient
early V&V. For example, simulation methods enable integration tests and behaviour
tests without dealing with expensive hardware or test equipment. Test scenarios can
be created easily for most of real-world scenarios. Simulation-based test approaches
do not introduce direct safety risks in cases where human-machine interaction exists.
However, the effort and cost of the development of simulation and its test processes can
be high. The trade-off between simulation accuracy on the one hand, and simulation
speed, resource consumption, and effort for constructing simulation models on the other
hand, has to be considered.

Simulation supports different approaches for tackling challenges in V&V processes.
An approach is the virtual validation of complex systems and system architectures by

A Proposal for the Classification of Methods 331

coupling simulation models and simulators, existing code, and virtual hardware plat-
forms [25]. Another is the study of the safety and efficiency of human-robot collabora-
tion [40]. There exist also approaches that provide solutions for machine learning-based
systems through the provision of simulation environments for perception, planning, and
decision-making systems [19].

Simulation is closely related to other V&V method types. Injection-based methods
can be used in simulated environment. When aiming to highlight these characteristics,
they can be referred to, e.g., as simulation-based attack injection for cybersecurity and
simulation-based fault injection for safety. Simulationmethods also usually exploit semi-
formal methods, e.g., models, and testing aspects, e.g., test case management.

A major advantage of simulation is that V&V can be conducted without producing
any physical item and adding risk to the environment. On the other hand, simulation-
based applications mostly run on hierarchical models. This narrows the availability of
both academic and industrial resources in development. Simulation tools can require
significant computational power and limit real-time applications.

Examples of simulation methods for the different concerns include:

• Safety: Simulation-based robot verification [40], to assure a robot’s trajectory
safety and in turn to increase flexibility and robustness by maintaining the level of
productivity.

• Cybersecurity:V&Vofmachine learning-based systems using simulators [19],which
aims to provide efficient and effective V&V of SCP requirements of machine learning
in simulated environments without endangering human safety.

• Privacy: Simulation of obfuscation and negotiation [14], to safeguard location
information.

• General: Virtual and augmented reality-based user interaction V&V [6], for human
factor analysis and technology acceptance by end users before a system is built or
deployed.

• System-type-focused: CPU verification [18], to ensure that a CPU delivers its
functionality correctly and as intended, and which can exploit simulation.

3.3 Testing

This type of V&V methods focuses on validating a system by executing it in the frame
of so-called test cases. A test case contains at least two fundamental sets of information:
input data to be provided to the System Under Test (SUT) and a description of the
expected output or behaviour. To run a test case, an environment is used. It allows the
tester to feed the SUT with the input data in a controlled manner, as well as to monitor
SUT reactions. This environment is sometimes called test harness. Furthermore, usually
a means is needed to judge whether SUT reactions conform to expectations. Such means
is sometimes referred to as test oracle. For testing, the SUT can be the final system as
well as any artefact used during its development, such as models or specific hardware or
software components. The methods that focus on testing of models are especially useful
for early detection of conceptual flaws.

Among the different ways to distinguish them, testing approaches can be divided
into black-box testing and white-box testing. In black-box testing, only the interfaces of

332 J. L. de la Vara et al.

the SUT are considered and its interior is considered as a black box. White-box testing
monitors the SUT’s interior, e.g., inner states. A combination of both, i.e., grey box
testing, is also possible. The scope of testing can be functional, when assessing whether
the SUT behaves as expected (i.e., it fulfils its functions), and non-functional, when
characteristics such as performance, robustness, and security are assessed. Therefore,
testing can contribute significantly to establishing SCP. However, it must be considered
that testing is usually incomplete. Even successfully passing a large set of test cases (a
test suite) is no guarantee for the SUT’s correctness. A test suite’s quality is correlated
with two aspects: how good it covers the addressed issues (functionality, robustness,
etc.) and how efficiently it achieves this.

A way to get high quality test cases is (automated) test case generation, which is
used by many testing methods. Furthermore, various coverage criteria can be addressed,
such as scenarios, potential implementation faults, or potential impact of cybersecu-
rity attacks on safety. Many V&V methods for critical systems address testing of non-
functional issues such as safety, robustness, and cybersecurity, and also novel properties
of automated systems, e.g., machine learning.

Examples of V&V methods of this type for the different concerns include:

• Safety: Model-Based Robustness Testing [38], to derive unexpected or slightly out
of specification stimuli in order to check the robustness of the system or component
under test.

• Cybersecurity: Assessment of cybersecurity-informed safety [39], to black-box test
security-informed safety of automated driving systems and in turn produce an
understanding of the interplay between safety and security.

• Privacy: System testing for GDPR (General Data Protection Regulation) compliance
[33], to confirm adherence to its requirements before deployment.

• General: Model-based testing [26], to derive tests from (semi-)formal behaviour
models or to test models.

• System-type-focused:Penetration testing of industrial systems [44], to analyse sensor
data and server-PLCcommunication for evaluation (1) of system robustness in the case
of sensor data manipulation and (2) of effects of data manipulation in communication.

3.4 Runtime Verification

Runtime verification is a method that allows checking whether a run of a target system
satisfies or violates a set of correctness properties. It trades the computationally costly
approach adopted by exhaustive offline verification techniques by a lightweight and
limited, but still rigorous and precise, verification mechanism during execution time.

This V&V method type uses monitors to verify that a system’s behaviour complies
with its specification. In this context, behaviour expresses how the system evolves con-
cerning the passage of time and its states’ changes. To issue such verdicts, monitors
collect and analyse execution traces, using them to verify if the current system state, or
a set of recorded system actions, complies with a given specification. Such a specifica-
tion is in general encoded in some formal language typically belonging to the family of
temporal logics, state machines, rule systems, or regular expressions.

A Proposal for the Classification of Methods 333

The process of collecting data from the system and feeding them to monitors, called
instrumentation, is an essential part of this method type. Ideally, the instrumentation
process should be considered at design time, as overheads can be minimized and per-
formance can be optimized. However, legacy systems could also benefit from runtime
verification solutions. The way monitors can be implemented is classified in various
ways [8], covering aspects such as temporal and logical isolation from the monitored
system, howmuch amonitor synchronizes with the system’s execution flow, andwhether
a monitor is hardware- or software-based.

Although runtime verification solutions have a broad spectrum of applicability, V&V
of embedded safety-critical systems seems to be the area where it shines the most.
Considering their demanding safety and security levels, runtime verification is becoming
widespread given its ability to identify faulty behaviour accurately and in a timely way,
given its formal reasoning and lightweight resource usage.

Runtime verification methods are also especially suitable to verify properties that
static formal verification techniques fail to confirm in a timely and resource-constrained
way. On top of that, runtime verification tools need fewer model assumptions to work,
which is also a notorious downside of static tools. Testing is another area that lately
has been benefiting from runtime verification solutions as it can complement traditional
testing techniques, speeding up the validation of complex system parts.

Examples of runtime verification methods for the different concerns include:

• Safety: Dynamic analysis of concurrent programs [13], to find errors in synchro-
nisation of concurrently executing threads, processes, or any other tasks executed
concurrently.

• Cybersecurity: Test oracle observation at runtime [5], to dynamically assess system
behaviour by measuring how far the system is from satisfying or violating a property
specified formally, e.g., a cybersecurity property.

• Privacy: Monitoring of GDPR compliance [2], to confirm adherence to GDPR
requirements after a system is deployed, and to identify violations.

• General: Runtime verification based on formal specification [10], to formally specify
properties of runtime observations and verify them with monitors.

• System-type-focused: Model-based formal specification and verification of robotic
systems [28], to formally verify these systems with models that cope with the
intractable state space of complex systems, improving V&V coverage and assurance
by combining formal methods and runtime verification.

3.5 Formal Analysis

Formal analysis denotes a set of methods to prove properties of a system with formal
methods based onmathematical systemmodels. Formal analysis is typically not focused
on single executions of a system, but on proving properties exhaustively on all execu-
tions. Formal analysis comprises both V&V: for verification, the properties formalize
the system requirements specification, while for validation, the properties are used to
check if the model is the right representation of the system, e.g., consistency checking,
reachability of states, and vacuous satisfaction of requirements.

334 J. L. de la Vara et al.

Model checking [11] is a prominent class of formal analysis methods. It uses a vari-
ety of languages to represent systems, from finite-state to infinite-state machines, from
discrete-time to timed or hybrid systems, from non-deterministic automata to stochas-
tic models, and from synchronous to asynchronous communicating programs. Given a
formal semantics of the input language, model checking can also be applied to models
defined for other purposes, e.g., architectural description or simulation, or directly to
source code. There is a wide range of options for property specification, ranging from
simple reachability or invariant properties to temporal properties, and from safety to
liveness properties. Depending on the modelling language, temporal properties can be
specified in different logics, e.g., either propositional or first-order. The model checking
problem is solved algorithmically by a procedure that decides if the model satisfies the
property or finds a counterexample.When the problem is undecidable, e.g., for software,
the model checking procedure may be incomplete.

Anothermajor class of formal analysismethods corresponds to those based on deduc-
tive verification [11]. Properties and systems are usually represented in first-order logic,
higher-order logics, or specific theories (arithmetic, sets, continuous functions). Deduc-
tive verification methods are based on the generation of proof obligations that encode
the correctness of the system. Depending on the underlying logic, these proof obliga-
tions are discharged by interactive theorem provers, automatic theorem provers where
the proof is extracted from the specification and additional annotations, or Satisfiability
Modulo Theories (SMT) solvers.

In general, formal analysis methods are independent of specific concerns and can be
applied to SCP concerns as long as the requirements can be formalised in the property
language. There exist however more specific formal analysis methods for SCP taking
into account faults or attacker models.

Examples of formal analysis methods for the different concerns include:

• Safety:Model-based safety analysis [7], to formally analyse the fault configurations
leading to a system failure, given a behavioural model.

• Cybersecurity: Source code static analysis [36], to derive various runtime properties
and find various kinds of errors in programs without executing them, and which can
address cybersecurity considerations.

• Privacy:GDPR compliance formal verification [23], to formally ensure that a system
satisfies GDPR requirements.

• General:Deductive verification [21], to ensure that source code conforms to its formal
specification.

• System-type-focused: Reachability analysis-based verification for safety-critical
hybrid systems [41], to exhaustively explore a system’s evolution over time, given
an initial input range.

3.6 Semi-formal Analysis

This type ofV&Vmethods dealswith the evaluation of systems and components by using
structuredmeanswhose application does not result in amathematical proof. Themethods
enable that confidence in system dependability is developed in relation to characteristics
of an automated system such as risks, faults, vulnerabilities, and threats. The methods

A Proposal for the Classification of Methods 335

also contribute to the avoidance and identification of these issues, and to the recovery
from them.

As a mathematically rigorous approach to SCP V&V of complex systems is unfeasi-
ble in many cases, semi-formal techniques are used to complement formal V&V. System
decomposition, abstraction, and specific models reduce SCP V&V to sub-problems of
limited scope that may be addressed using semi-formal methods and tools. These meth-
ods and tools can rely on models, architectural principles, mathematical or probabilistic
calculus, qualitative and quantitative analysis, and simulation, among othermeans, while
also addressing compliance with engineering and assurance standards.

Semi-formal analysis also enables the evaluation of general characteristics of a sys-
tem that contribute to SCP, e.g., about the traceability between system artefacts. These
characteristics indirectly address automated system SCP by confirming the fulfilment of
conditions needed for SCP. For instance, requirements traceability contributes to assur-
ing that the correct and expected functionality has been implemented in a system. This in
turn contributes to developing confidence in system reliability and consequently in SCP.
In other words, if someone cannot confirm that the correct and expected functionality has
been implemented in a system, it might not be possible to develop sufficient confidence
in system SCP.

Examples of V&V methods of this type for the different concerns include:

• Safety: Model-based dependability assessment [16], with which system and safety
engineers share a common system model created using a model-based development
process and extend the system model with a fault model as well as relevant portions
of the physical system to be controlled, also enabling safety analysis automation.

• Cybersecurity:Wireless interface network security assessment [32], to analyse a sys-
tem’s robustness against network security attacks carried out through wireless inter-
faces by evaluating (1) CANBUS-based control network security and teleoperation
and (2) supervision network security.

• Privacy:Model-based assurance and certification [12], to justify system dependabil-
ity in compliance with standards, e.g., privacy ones, by taking advantage of structured
information specifications about a system, about the standards, and about their relation.

• General: Knowledge-centric system artefact quality analysis [34], to quantitatively
determine the suitability of system artefacts by exploiting ontologies and semantic
information, and according to selected criteria such as correctness, consistency, and
completeness.

• System-type-focused: Model-based avionics software specification and verification
[35], which is based on the modelling of the DO-178C standard and can contribute to
requirements V&V, among other tasks.

3.7 Informal Analysis

Although in VALU3Swe have not reviewed informal analysis methods, we include them
in our classification for completeness. These methods are based on human reasoning and
subjectivity, without a predefined underlying formalism or structure.

Walkthrough [20] is among the most common informal analysis methods. It cor-
responds to the situation in which the producer of some system artefact presents it to

336 J. L. de la Vara et al.

others for defect identification. A programmer performing a source code peer review is
another example. In both cases, the application of the method could aim to detect SCP
issues, as well as to analyse some general or system-type-focused characteristic.

4 Application of the Classification

The proposed classification scheme has been used for the review of V&V methods
[43] in VALU3S. Such usage shows how the classification has helped in a real method
classification effort. The outcome also allows us to claim that the scheme can be a feasible
means for the classification of V&V methods for SCP of automated system.

Seventy-three people from 31 organisations contributed to the review of 53 V&V
methods for automated systems. The people cover different roles for automated system
V&V, such as researchers, systems engineers, and tool vendors, and the organisations
include large enterprises, small and medium-sized enterprises, and research institutions
from the automotive, agriculture, railway, healthcare, aerospace, and industrial automa-
tion domains. The complete list of methods is presented in Table 1, considering their
different method types and concerns (Safety – Sa, Cybersecurity – C, Privacy – P, Gen-
eral – G, System-type-focused – Sy). Some V&V methods map to several types. For

Table 1. Classification of V&V methods with the proposed scheme.

Injection: Fault injection in FPGAs (Sa, Sy), Interface fault inj. (G), Model-based fault inj. for
safety analysis (Sa), Model-implemented attack inj. (C), Model-implemented fault inj. (Sa),
Simulation-based attack inj. at system-level (C), Simulation-based fault inj. at system-level
(Sa), Software-implemented fault inj. (Sa, G), Vulnerability and attack inj. (C)

Simulation: Assessment of cybersecurity-informed safety (Sa, C), CPU verification (Sa, C, G,
Sy), Failure detection and diagnosis in robotic systems (Sa, C, G, Sy), Fault injection in
FPGAs (Sa, Sy), Kalman filter-based fault detector (C), Model-implemented attack inj. (C),
Model-implemented fault inj. (Sa), Simulation-based fault inj. at system-level (Sa),
Simulation-based fault inj. at system-level (Sa), Simulation-based testing for human-robot
collaboration (Sa, Sy), Test optimization for simulation-based testing of automated systems
(Sa, G), V&V of machine learning-based systems using simulators (Sa, C), Virtual &
augmented reality-based user interaction V&V and technology acceptance (Sa, G),
Simulation-based robot verif. (Sa, G, Sy), Virtual architecture development and simulated
evaluation of software concepts (Sa, G)

Testing: Assessment of cybersecurity-informed safety (Sa, C), Behaviour-driven formal model
dev. (Sa, G), Behaviour-driven model dev. and test-driven model review (G), CPU verification
(Sa, C, G, Sy), Fault inj. in FPGAs (Sa, Sy), Interface fault inj. (G), Intrusion detection for
wireless sensor networks based on Weak Model Processes state estimation (C), Machine
learning model validation (Sa, G, Sy), Model-based mutation testing (G), Model-based
robustness testing (G), Model-based testing (G), Penetration testing of industrial systems (C,
Sy), Risk-based testing (G), Signal analysis and probing (G, Sy), Simulation-based testing for
human-robot collab. (Sa, Sy), Software component testing (Sa, G), Software-implemented
fault inj. (Sa, G), Test parallelization and automation (G), Vulnerability and attack inj. (C),
Wireless interface network security assessment (C)

(continued)

A Proposal for the Classification of Methods 337

Table 1. (continued)

Runtime verification: Behaviour-driven model dev. and test-driven model review (G),
Dynamic analysis of concurrent programs (Sa, G, Sy), Failure detection and diagnosis in
robotic systems (Sa, C, G, Sy), Fault inj. in FPGAs (Sa, Sy), Model-based formal specification
and verif. of robotic systems (Sa, G, Sy), Runtime verif. based on formal specification (Sa, G),
Simulation-based robot verif. (Sa, G, Sy), Test oracle observation at runtime (Sa, G)

Formal Analysis: Behaviour-driven formal model dev. (Sa, G), CPU verification (Sa, C, G,
Sy), Deductive verif. (Sa, G), Formal requirements validation (Sa, G), Model checking (Sa, G),
Model-based design verif. (Sa, G), Model-based fault inj. for safety analysis (Sa), Model-based
formal specification and verif. of robotic systems (Sa, G, Sy), Model-based safety analysis (Sa,
C), Reachability-analysis-based verif. for safety-critical hybrid systems (Sa, G, Sy), Source
code static analysis (Sa, C, P, G), Theorem proving and satisfiability modulo theories solving
(Sa, G), V&V of machine learning-based systems using simulators (Sa, C)

Semi-formal Analysis: Behaviour-driven model dev. and test-driven model review (G), Code
design and coding standard compliance checking (Sa), Failure detection and diagnosis in
robotic systems (Sa, C, G, Sy), Human interaction safety analysis (Sa), Intrusion detection for
wireless sensor networks based on Weak Model Processes state estimation (C), Kalman
filter-based fault detector (C), Knowledge-centric system artefact quality analysis (Sa, C, P, G),
Knowledge-centric traceability mngmt. (Sa, C, P, G), Model-based assurance and certification
(Sa, C, P, G), Model-based design verif. (Sa, G), Model-based safety analysis (Sa, C),
Model-based threat analysis (C), Risk analysis (Sa, C), Source code static analysis (Sa, C, P, G),
Traceability mngmt. of safety software (Sa), Vulnerability analysis of cryptographic modules
against hardware-based attacks (C), Wireless interface network security assessment (C)

instance, simulation-based robot verification uses both simulation and runtime verifica-
tion. Further information about the review of themethods can be found in [43], including
a description of the methods, an analysis of the relationships between them, information
about tool support, and an assessment of strengths and limitations.

5 Conclusion

It is essential that the manufacturers and component suppliers of automated systems
use adequate verification and validation (V&V) methods to confirm that the systems’
safety, cybersecurity, and privacy (SCP) requirements are satisfied. This requires that
the manufacturers and suppliers clearly understand the characteristics of the methods,
when the methods should be used, and for what purposes.

We have presented a new classification scheme to categorise V&V methods used
to evaluate automated systems with respect to SCP requirements. The scheme provides
practitioners and researchers with a clear and easy-to-understand set of categories where
V&V methods could be selected from. For example, the scheme can aid in identifying
V&Vmethods to evaluate safety of a system based on its response to some phenomenon
introduced. The method types considered are injection, simulation, testing, runtime ver-
ification, formal analysis, semi-formal analysis, and informal analysis. The methods can
deal with different concerns: SCP, general concerns that indirectly contribute to SCP, or
system-type-focused concerns.

338 J. L. de la Vara et al.

The scheme has been successfully used by 73 researchers and practitioners to classify
53 V&V methods, covering six different application domains. This makes us confident
in the validity of the classification scheme.

As future work, we will continue classifying V&V methods with the proposed
scheme, e.g., methods combined or developed in VALU3S. This will allow us to further
validate the classification. It will also be useful to extend the guidance on how to use the
classification and how to select methods from the classified ones.

Acknowledgments. The research leading to this paper has received funding from the VALU3S
(H2020-ECSEL grant agreement no 876852; Spain’s MICINN ref. PCI2020-112001), iRel4.0
(H2020-ECSEL grant agreement no 876659; MICINN ref. PCI2020-112240), and Treasure
(JCCM SBPLY/19/180501/000270; European Regional Development Fund) projects, and from
the Ramon y Cajal Program (MICINN RYC-2017-22836; European Social Fund). We are also
grateful to all the VALU3S partners that have provided input and feedback for the development
of the classification.

References

1. Amalthea4public project: D3.1 - Analysis of state of the art V&V techniques (2015)
2. Arfelt, E., Basin, D., Debois, S.: Monitoring the GDPR. In: Sako, K., Schneider, S., Ryan,

P.Y.A. (eds.) ESORICS2019. LNCS, vol. 11735, pp. 681–699. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29959-0_33

3. Avizienis, A., et al.: Fundamental concepts of dependability. University of Newcastle (2001)
4. Barbosa, R., et al.: The VALU3S ECSEL project: verification and validation of automated

systems safety and security. In: DSD 2020 (2020)
5. Bartocci, E., Manjunath, N., Mariani, L., Mateis, C., Ničković, D.: Automatic failure expla-

nation in CPS models. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS, vol. 11724,
pp. 69–86. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30446-1_4

6. Belmonte, L., et al.: Feeling of safety and comfort towards a socially assistive unmanned
aerial vehicle that monitors people in a virtual home. Sensors 21(3), 908 (2021)

7. Bozzano, M., Cimatti, A., Griggio, A., Mattarei, C.: Efficient anytime techniques for model-
based safety analysis. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 603–621. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_41

8. Cassar, I., et al: A survey of runtime monitoring instrumentation techniques. PrePost@iFM
(2017)

9. CENELEC: EN 50128 - Railway applications - Communication, signalling and processing
systems - Software for railway control and protection systems (2020)

10. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification with partial observ-
ability and resets. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757,
pp. 165–184. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_10

11. Clarke, E.M., et al.: Handbook of Model Checking. Springer, Heidelberg (2018). https://doi.
org/10.1007/978-3-319-10575-8

12. de la Vara, J.L., et al.: Assurance and certification of cyber-physical systems: the AMASS
open source ecosystem. J. Syst. Softw. 171, 110812 (2021)

13. Dias, R., et al.: Verifying concurrent programs using contracts. In: ICST 2017 (2017)
14. Duckham, M., Kulik, L.: Simulation of obfuscation and negotiation for location privacy.

In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 31–48. Springer,
Heidelberg (2005). https://doi.org/10.1007/11556114_3

https://doi.org/10.1007/978-3-030-29959-0_33
https://doi.org/10.1007/978-3-030-30446-1_4
https://doi.org/10.1007/978-3-319-21690-4_41
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/11556114_3

A Proposal for the Classification of Methods 339

15. Fonseca, J., et al.: Analysis of field data on web security vulnerabilities. IEEE Trans.
Dependable Secure Comput. 11(2), 89–100 (2014)

16. Gallina, B., et al.: Multi-concern dependability-centered assurance for space systems via
ConcertoFLA. Ada-Europe (2018)

17. Halfind, W.G.J., et al.: A classification of SQL injection attacks and countermeasures. In:
ISSSE 2006 (2006)

18. Herdt, V., et al.: Efficient cross-level testing for processor verification: a RISC-V case-study.
In: FDL 2020 (2020)

19. Humbatova, N., et al.: Taxonomy of real faults in deep learning systems. In: ICSE 2020 (2020)
20. IEC: IEC 61508 - Functional safety of electrical/electronic/programmable electronic safety-

related systems (2011)
21. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper proofs to

industrial tools. In: Steffen, B.,Woeginger, G. (eds.) Computing and Software Science. LNCS,
vol. 10000, pp. 345–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-
9_18

22. IEEE: IEEE Std 1012 - IEEE Standard for System, Software, and Hardware V&V (2016)
23. Kammueller, F.: Formal modeling and analysis of data protection for GDPR compliance of

IoT healthcare systems. In: SMC 2018 (2018)
24. Khalastchi, E.,Kalech,M.:On fault detection and diagnosis in robotic systems.ACMComput.

Surv. 51(1), 9 (2018)
25. Kuhn, T., Antonino, P.O., Bachorek, A.: A simulator coupling architecture for the creation

of digital twins. In: Muccini, H., et al. (eds.) ECSA 2020. CCIS, vol. 1269, pp. 326–339.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59155-7_25

26. Kramer, A., Legeard, B.: Model-Based Testing Essentials. Wiley, Hoboken (2016)
27. Laskey, M., et al.: DART: noise injection for robust imitation learning. In: CoRL 2017 (2017)
28. Luckcuck, M., et al.: Formal specification and verification of autonomous robotic systems: a

survey. ACM Comput. Surv. 52(5), 100 (2019)
29. Nair, S., et al.: An extended systematic literature review on provision of evidence for safety

certification. Inf. Softw. Technol. 56(7), 689–717 (2014)
30. Natella, R., et al.: Assessing dependability with software fault injection: a survey. ACM

Comput. Surv. 48(3), 44 (2016)
31. Oxford UK Dictionary: method (2021). https://www.lexico.com/definition/method
32. Pan, L., et al.: Cyber security attacks to modern vehicular systems. J. Inf. Secur. Appl. 36,

30–100 (2017)
33. Pandit, H.J., O’Sullivan, D., Lewis, D.: Test-driven approach towards GDPR compliance.

In: Acosta, M., Cudré-Mauroux, P., Maleshkova, M., Pellegrini, T., Sack, H., Sure-Vetter, Y.
(eds.) SEMANTiCS 2019. LNCS, vol. 11702, pp. 19–33. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-33220-4_2

34. Parra, E., et al.: Advances in artefact quality analysis for safety-critical systems. In: ISSRE
2019 (2019)

35. Paz, A., El Boussaidi, G.: A requirements modelling language to facilitate avionics software
verification and certification. In: RET 2019 (2019)

36. Rival, X., Yi, K.: Introduction to Static Analysis. An Abstract Interpretation Perspective. MIT
Press (2020)

37. Sangchoolie, B., et al.: A study of the interplay between safety and security using model-
implemented fault injection. In: EDCC 2018 (2018)

38. Savary,A., Frappier,M., Leuschel,M., Lanet, J.-L.:Model-based robustness testing in event-B
using mutation. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 132–
147. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-0_10

39. Skoglund, M., et al.: Black-box testing for security-informed safety of automated driving
systems. In: VTC 2021-Spring (2021)

https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-030-59155-7_25
https://www.lexico.com/definition/method
https://doi.org/10.1007/978-3-030-33220-4_2
https://doi.org/10.1007/978-3-319-22969-0_10

340 J. L. de la Vara et al.

40. Timperley, C.S., et al.: Crashing simulated planes is cheap: Can simulation detect robotics
bugs early? In: ICST 2018 (2018)

41. Tsachouridis, V.A., et al.: Formal analysis of the Schulz matrix inversion algorithm: a
paradigm towards computer aided verification of general matrix flow solvers. Numer. Algebra
Control Optim. 10(2), 177–206 (2020)

42. US DoD: Defense Modeling & Simulation Coordination Office, V&V Technique Taxonomy
(2001). https://vva.msco.mil/default.htm?Ref_Docs/VVTechniques/

43. VALU3S project: D3.1 - V&V methods for SCP evaluation of automated systems (2021)
44. Yang, Y., et al.: Man-in-the-middle attack test-bed investigating cyber-security vulnerabilities

in smart grid SCADA systems. In: SUPERGEN 2012 (2012)

https://vva.msco.mil/default.htm%3FRef_Docs/VVTechniques/

Risk Identification Based
on Architectural Patterns

Maritta Heisel1(B) and Aida Omerovic2

1 University of Duisburg-Essen, Duisburg, Germany
maritta.heisel@uni-due.de

2 Norwegian Computing Center, Oslo, Norway
aida@nr.no

Abstract. We present a novel approach for the identification of risks
for IT-based systems, where we base risk identification on the system
architecture, in particular, the architectural principles a system is built
on. Such principles can be expressed as architectural patterns, which are
amenable to specific risks. We represent those risks – concerning e.g.
safety, security or fault tolerance – as Risk Issue Questionnaires (RIQs).
A RIQ enumerates the typical risks associated with a given architectural
pattern. Risk identification proceeds by identifying the architectural pat-
terns contained in a system architecture and processing the associated
RIQs, i.e., for each issue in the RIQ it has to be assessed whether it is
relevant for the system under analysis or not. We present an example of
a RIQ, a RIQ-driven risk identification method, an application example,
and the results of an initial experiment evaluating the RIQ method.

1 Introduction

For critical IT-based systems, it is crucial to establish a proper risk manage-
ment process. Such a process consists of five steps (see e.g. [1]): 1) Establish the
context; 2) Identify risks; 3) Estimate risks; 4) Evaluate risks; 5) Treat risks.
The identification of relevant risks plays a crucial role, because risks that are
overlooked in the risk identification step will not be taken into account in the
subsequent steps of the risk management process. Note, however, that risk iden-
tification is not concerned with identifying possible risk mitigation measures.

This work aims at making the risk identification process systematic, repeat-
able, and as complete as possible, building on previously acquired risk knowledge
for similar systems. For this purpose, the architecture of the system to be ana-
lyzed is taken into account. Critical systems are often structured according to
general architectural principles, such as redundancy, or control loops. These pro-
vide valuable information about the possible risks involved with the system and
hence are a good basis to identify risks.

Each architectural principle can be represented by a pattern, and is associ-
ated with typical risks. For example, an interactive system where operators are
involved has the risk of a misbehavior or misconception of the operator. Every
communication channel between system components can be subject to attacks,
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 341–355, 2021.
https://doi.org/10.1007/978-3-030-85347-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_25

342 M. Heisel and A. Omerovic

etc. We propose risk issue questionnaires (RIQs) as a means to document the
risks that are relevant for an architectural pattern. Such risks can be related to
safety, security, or reliability in general. RIQs make up a knowledge base that can
be updated over time, when new risks become known for some class of system.

We start out from the architecture of the system to be analyzed for risks.
Either, that architecture is already implemented, or it has been chosen in the
design phase of the system development process. Then, our method can be used
to validate the architectural decisions before realizing them. The first step in
the risk identification process is to identify all architectural patterns that are
present in the system architecture, and to determine the instantiations of these
patterns. Then, the RIQs for the relevant patterns are processed, i.e., for each
risk enumerated in a RIQ, it is decided whether that risk is relevant for the
given system or not. In this way, all known risks (i.e., all risks documented in a
RIQ) that are associated with architectural patterns underlying the system are
collected and can be used as the basis for subsequent risk management steps.

This procedure helps to identify all relevant risks in a structured manner,
and serves as a documentation of the risk identification process, which may be
relevant for certification and assurance purposes.

We discuss RIQs in general and give an example of a RIQ in Sect. 2. Section 3
describes a risk identification method based on RIQs. Section 4 gives an example
of a risk identification for a patient monitoring system. That system was also used
for an experiment, where two groups of students were given the task to identify
risks, one using RIQs and one without (Sect. 5). Related work is discussed in
Sect. 6, before concluding and giving an outlook on future work in Sect. 7.

2 Risk Issue Questionnaires

Risk Issue Questionnaires refer to architectural patterns1 that can be given as
informal drawings, see Fig. 1. Here, we number the components and connections
and refer to these numbers in the corresponding RIQ. Different kinds of system
architectures are vulnerable to specific kinds of risks. For example, the process
monitoring architecture given in Fig. 1 has risks related to the functioning of
sensors and display, but also related to the communication channels between
those and the control software.

Each risk is associated with unwanted incidents that harm an asset, and a
risk level, often expressed by the likelihood of that incident to happen. The issues
in the RIQs describe conditions or scenarios that might lead to harm of an asset.
We use the term “issue” because we do not want to distinguish between threats,
vulnerabilities, attacks, etc. Everything that can lead to harm of an asset can
be listed in a RIQ. Thus, RIQs are independent of concrete threat models.

Issues deemed relevant must be investigated further, in later steps of the risk
management process. The unwanted incidents are not part of the RIQ, because
they depend on the concrete system and the assets related to it.
1 See e.g. [2] for software architectural patterns. System architectures are more general

than software architectures, because they can contain hardware components, as well.

Risk Identification Based on Architectural Patterns 343

Fig. 1. Architectural pattern: process monitoring

We have set up RIQs for a number of different architectural patterns,
instances of which often occur as parts of critical IT-based systems. In the fol-
lowing, we present the RIQ for process monitoring systems in Sect. 2.1. Further
RIQs are sketched in Sect. 2.2.

The architectural patterns for which we have set up RIQs occur in many
existing critical systems, but, of course, other kinds of architectures (e.g., peer-
to-peer systems) are relevant, too, and should also be equipped with RIQs in the
future. The RIQs existing so far were set up by the authors of this paper, who
have long-lasting experience in risk management, as well as safety and security
of IT-based systems. However, we do not claim that those RIQs are indeed
complete. The contribution of this work is not only the content of the specific
RIQs, but – more importantly – the idea to exploit architectural properties of
critical systems for risk identification. We aim for evolving RIQ repositories,
where many contributors can add new knowledge and experience.

2.1 RIQ for Process Monitoring

Figure 1 shows the architectural pattern for process monitoring systems. Such
systems use sensors to monitor a part of the physical world to inform operators
about its state, using a display. Based on the displayed information, the operator
may take actions that are outside the scope of the system to be analyzed.

In the following, we present the RIQ for process monitoring systems, using a
different font. The numbers of the RIQ items refer to the numbers used in Fig. 1.
Each entry describes a possible risk, and the question to be answered is whether
the described risk issue is relevant for the system under analysis or not. Each
high-level issue (numbered 1–8) may contain sub-issues that further detail the
high-level issue. If a high-level issue is assessed not to be relevant, its sub-issues
are irrelevant, too.

344 M. Heisel and A. Omerovic

RIQ 1 Process Monitoring (PM)

1 Sensors cannot read entities from physical world properly (even though they function
as intended)
1.1 Sensors not correctly installed
1.2 Inappropriate Sensors

1.2.1 Sensors not fast enough
1.2.2 Sensors do not measure what is needed

2 Sensor delivers wrong (HAZOP2) values
2.1 Sensor is single point of failure (insufficient redundancy)
2.2 Sensor not sufficiently physically protected against environmental influences
2.3 Sensor not sufficiently physically protected against attacks
2.4 Sensor needs maintenance / repair
2.5 Sensor is hacked
2.6 Sensor values do not reflect reality

3 Monitoring Software receives wrong (HAZOP) values from sensors
3.1 Because of wrong sensor values, see issue 2
3.2 Wrong value received from fake sensor (man-in-the-middle)
3.3 Issues with communication channel. Process RIQ for communication channels

4 Monitoring Software affected
4.1 Monitoring Software has inaccurate/wrong internal state

4.1.1 Because of wrong sensor values, see issues 1 - 3
4.1.2 Internal state not properly initialized
4.1.3 Wrong computation of internal state
4.1.4 Integrity of internal state destroyed by attack

4.2 Monitoring Software is broken down
4.2.1 Due to hardware problems
4.2.2 Due to attack on availability
4.2.3 Due to problems with system software

4.3 Monitoring Software computes wrong / incoherent (HAZOP) display commands
due to attack

4.4 Monitoring Software computes wrong / incoherent (HAZOP) display commands
due to programming errors

5 Display receives wrong (HAZOP) commands
5.1 Due to problems with Control Software (see issue 4)
5.2 Wrong command received from fake component (man-in-the-middle)
5.3 Issues with communication channel. Process RIQ CC

6 Display does not function correctly (HAZOP)
6.1 Display is single point of failure (insufficient redundancy)
6.2 Display not sufficiently physically protected against environmental influences
6.3 Display not sufficiently physically protected against attacks
6.4 Display needs maintenance / repair
6.5 Display is hacked

7 Operator does not react as intended
7.1 Operator cannot correctly interpret displayed information

7.1.1 Too much information given
7.1.2 Not enough information given
7.1.3 Irrelevant information given
7.1.4 Information incomprehensible

7.2 Problems with Operator
7.2.1 Operator is malicious
7.2.2 Operator is naive / careless / not concentrated

2 When we mention the term “HAZOP”, we mean that the HAZOP guide-words should
be considered to determine what “wrong” values may be: NO OR NOT, MORE,
LESS, AS WELL AS, PART OF, REVERSE, OTHER THAN / INSTEAD, EARLY,
LATE, BEFORE, AFTER.

Risk Identification Based on Architectural Patterns 345

7.2.3 Operator is mistaken about the situation / has wrong information
7.2.4 Operator is not authentic

7.3 Operator cannot act as intended
8 Unexpected condition in physical world

Note that this RIQ covers issues related to security (e.g., Issue 4.2.2) as
well as to safety (e.g., Issue 2.2) and fault tolerance (e.g., Issue 2.1). Also non-
technical risks are taken into account (e.g., Issue 7.2.2). In general, there is no
limitation to what kind of risk can be addressed in a RIQ.

2.2 Further RIQs

In addition to the RIQ for process monitoring systems, we have set up RIQs for
the following architectural patterns:

Process control systems. Such systems are similar to process monitoring
systems, but are equipped with actuators instead of a display, in order to
control the surrounding physical world. The corresponding RIQ has large
parts in common with RIQ 1.

Communication channels. The corresponding RIQ considers risks concerning
the connection between two components. Risks concerning the connected
components are not considered. The issues mainly concern confidentiality
and integrity of the data transmitted via the channel, as well as bandwidth
problems and hardware failures.

Interactive systems. The corresponding architecture consists of a system that
is connected to a user via input and output devices. The RIQ issues concern
malicious or non-authentic users (similarly to issue 7 of RIQ 1), as well as
failing or attacked input/output devices.

Persistent Storage Systems. Here, the architecture consists of a storage com-
ponent and its clients. Risk issues concern confidentiality, integrity and avail-
ability of the storage component.

3 Risk Identification Method

RIQs can be used to systematically identify risks for a given IT-based system,
based on its system architecture. Apart from the system architecture, the assets
that shall be protected are input to the method. The steps of the method are:

1. Identify the architectural patterns that are used in the system. This is done
based on a static architectural description of the system.

2. For each such pattern, instantiate it and the corresponding RIQs.
3. For each instantiated RIQ, cross out the issues that are not relevant; annotate

the reason why they are not relevant. For those issues that are relevant,
describe the corresponding risk.

In the first step of the method, the architectural patterns that are contained
in the system architecture must be identified, in order to determine the RIQs
that need to be processed. Then, in step 2, the identified architectural patterns

346 M. Heisel and A. Omerovic

as well as the corresponding RIQs have to be instantiated. Thus, patterns and
the questions of the RIQ become specialized for the system to be analyzed. For
example, if the operator in the process monitoring part of a system is instantiated
with a nurse, then Issue 7.2.2 of the RIQ becomes: “Nurse is naive/careless/not
concentrated”.

The so instantiated RIQ can then be processed (step 3). For each instantiated
issue, it is determined whether it is relevant or not. If a top-level issue is deemed
to be not relevant, its sub-issues do not need to be considered. The reasons
for assessing an issue to be irrelevant need to be documented. Often, systems
are subject to change, which makes it necessary to re-consider the identified
risks. When the reasons for disregarding an issue are documented, this helps to
determine whether the given reasons are still valid or not. For each issue assessed
to be relevant, the affected asset must be documented. There only is a risk for
the system, if one of its associated assets could be harmed. Furthermore, it is
of importance to document the unwanted incident that is made possible by the
condition or scenario described in the RIQ.

4 Example

We have applied the risk identification method on the example of a patient
monitoring system in an intensive care unit (ICU) of a hospital, taken from [3].
The informal description is as follows:

A patient monitoring program is required for the intensive-care unit of a
hospital. Each patient is monitored by an analog device which measures
factors such as pulse, temperature, blood pressure, and skin resistance.
The program reads these factors on a periodic basis (specified for each
patient) and stores the factors in a database. For each patient, safe ranges
for each factor are also specified by medical staff. If a factor falls outside
a patient’s safe range, or if an analog device fails, then the nurses’ station
is notified.

The system architecture is given in Fig. 2. As relevant assets we identify
the health of the patient, which is safety-related, and the confidentiality of the
patients’ data, which is security-related. This constitutes the input for the risk
identification method described in Sect. 3.

We identify four architectural patterns contained in the system architecture
(step 1):

– Process Monitoring. The instance of that pattern (as part of step 2 of the
method) is given in Fig. 3.

– Interactive System, where the instance consists of the Medical Staff as a user,
the Keyboard/ Mouse as an input device, and the Screen as an output device.

Risk Identification Based on Architectural Patterns 347

– Two instances of Persistent Storage, one with Periods & Ranges, one with
Factors Database as the persistent storage, both connected to the Monitor
Machine.

– Two instances of Communication Channel, one for the channel Register Value
between the Analog Devices and the Monitor Machine, the other for the
channel Notify between the Monitor Machine and the Nurses’ Station.

Fig. 2. System architecture for patient monitoring system

Fig. 3. Process monitoring part of patient monitoring system

After instantiating the architectural patterns, the RIQs have to be instan-
tiated, too (step 2), and subsequently, all issues contained in the instantiated
RIQs have to be processed (step 3).

We present the results of processing the RIQ for process monitoring in RIQ
2, using the instantiated RIQ 1. Issues that are assessed to be irrelevant are
grayed out. For irrelevant issues, the sub-issues are not shown. Comments are
given below.

348 M. Heisel and A. Omerovic

RIQ 2 Instantiated RIQ PM for Patient Monitoring System

1 Analog Devices cannot read entities from physical world properly (even though they
function as intended)
1.1 Analog Devices not correctly installed
1.2 Inappropriate Analog Devices

2 Analog Devices delivers wrong (HAZOP) values
2.1 Analog Devices are single point of failure (insufficient redundancy)
2.2 Analog Devices not sufficiently physically protected against environmental influ-

ences
2.3 Analog Devices not sufficiently physically protected against attacks
2.4 Analog Devices need maintenance / repair
2.5 Analog Devices are hacked
2.6 Analog Devices values do not reflect reality

3 Monitor Machine receives wrong (HAZOP) values from sensors
3.1 Because of wrong sensor values, see Issue 2
3.2 Wrong value received from fake sensor (man-in-the-middle)
3.3 Issues with communication channel. Process RIQ CC

4 Monitor Machine affected
4.1 Monitor Machine has inaccurate/wrong internal state

4.1.1 Because of wrong sensor values, see Issues 1 - 3
4.1.2 Internal state not properly initialized
4.1.3 Wrong computation of internal state
4.1.4 Integrity of internal state destroyed by attack

4.2 Monitor Machine is broken down
4.2.1 Due to hardware problems
4.2.2 Due to attack on availability
4.2.3 Due to problems with system software

4.3 Monitor Machine computes wrong / incoherent (HAZOP) display commands due
to attack

4.4 Monitor Machine computes wrong / incoherent (HAZOP) display commands due
to programming errors

5 Nurses’ Station receives wrong (HAZOP) commands
5.1 Due to problems with Control Software (see Issue 4)
5.2 Wrong command received from fake component
5.3 Issues with communication channel. Process RIQ CC

6 Nurses’ Station does not function correctly (HAZOP)
6.1 Nurses’ Station is single point of failure (insufficient redundancy)
6.2 Nurses’ Station not sufficiently physically protected against environmental influ-

ences
6.3 Nurses’ Station not sufficiently physically protected against attacks
6.4 Nurses’ Station needs maintenance / repair
6.5 Nurses’ Station is hacked

7 Nurse does not react as intended
7.1 Nurse cannot correctly interpret displayed information
7.2 Problems with Nurse

7.2.1 Nurse is malicious
7.2.2 Nurse is naive / careless / not concentrated
7.2.3 Nurse is mistaken about the situation / has wrong information
7.2.4 Nurse is not authentic

7.3 Nurse cannot act as intended
8 Unexpected condition in ICU Patients

Risk Identification Based on Architectural Patterns 349

By default, all issues should be considered relevant. Issues should be excluded
from further analysis only if there are good reasons to do so. That assessment
very much depends on the specific situation. For example, if the system is already
in use for some time, some issues can be eliminated because of past experience
with the system.

For our example, we assume that the system is already in operation. Then,
we can exclude for example Issues 1.2, 2.1, 2.6, 4.1.2, 4.1.3, 4.2.3. Regular main-
tenance leads to an exclusion of Issue 2.4. If we assume that the loudspeaker in
the Nurses’ Station is robust, installed in a room with no extreme environmen-
tal conditions, and is protected against physical manipulation, we can exclude
Issues 6.2 and 6.3.

As for the issues under 7, the intended reaction of the nurse is to go and look
after the patient whose vital signs lead to raising the alarm, or check the failed
Analog Device. Because of past experience, one can exclude the issues under
7.1. In contrast, the issues under 7.2 cannot be excluded, except 7.2.3, because
the nurses know what their task is. Issue 7.3 only needs to be considered if the
situation that a nurse falls ill in the Nurses’ Station and cannot go and see a
patient or inspect an Analog Device should be taken into account. An unexpected
situation among the ICU patients (Issue 8) might be that a patient disconnects
himself or herself from the Analog Devices.

For the Process Monitoring part of the patient monitoring system, all issues
concern the asset “health of the patient”. The unwanted incident is that exceeded
limits of vital signs are not noticed and not treated. Issues concerning the con-
fidentiality of patients’ data become apparent when processing the RIQs for
Persistent Storage and Communication Channels.

The RIQs corresponding to the other identified architectural patterns are
processed in a similar way.

5 Evaluation

To evaluate our method, we conducted an experiment with students of Com-
puter Science at the Master level, who took a course on the development of safe
and secure software, but had no experience in risk identification. The experiment
should serve to investigate whether a larger number of relevant risks could be
identified for a system when using RIQs than without. Two groups of about equal
size (about 8 persons each) were formed: the treatment group that received the
RIQs, and the corresponding method, and the control group that only received
information on the architectural patterns contained in the system to be consid-
ered, namely the patient monitoring system discussed in Sect. 4. The two assets
(“health of the patient” and “confidentiality of patients’ data”) were given to
both groups.

Both groups received a 10-minute introduction to the patient monitoring
system, the contained architectural styles, and the risk identification task to be
performed. Afterwords, both groups were given an informal example of a simple
risk identification for a party plan (taken from [3]), lasting 5 min and not using

350 M. Heisel and A. Omerovic

RIQs. No further input was provided to the control group. Both groups had
about 60 min to complete their risk identification. The control group did not use
the entire 60 min.

The treatment group was given a third presentation of about 10 min, intro-
ducing the concept of RIQs and the risk identification method presented in
Sect. 3, which was exemplified with the same party plan example that both
groups had seen before. For the treatment group, it has to be noted that the par-
ticipants mostly processed the top-level issues only and ignored the sub-issues.
This lead to identified risks that are quite high-level.

Considering the RIQ for Process Monitoring, the control group identified
only 3 risks out of 8 (considering only the top-level issues), which amounts to
5 false negatives. The treatment group correctly assessed that there are risks
associated with Issues 1–7. Issue 8 was mis-interpreted by the treatment group,
which can be counted as a false positive.

Considering the RIQ for Communication Channels, the participants of the
treatment group unfortunately did not distinguish between the two channels, for
which different risks are relevant. They did not see that the bandwidth of the
Notify channel is not an issue, because that channel only needs a very low band-
width. Hence, one can count a false positive here. The control group identified
4 risks that can be related to communication channels, one of which was very
general and could not be mapped to a RIQ issue, and one was incomprehensible.

Considering the RIQ for Persistent Storage, the treatment group correctly
identified each of the 4 RIQ issues as relevant, but did not consider sub-Issues.
The control group, on the other hand, identified 2 risks that can be related to
sub-issues of the RIQ, but had 2 false negatives.

Considering the RIQ for Interactive Systems, the treatment group correctly
identified 7 high-level risks, in comparison to 3 in the control group.

Furthermore, the control group identified 3 risks that were relevant but out
of scope, because they were not related to the system under consideration but
to general technical or organizational issues (e.g., blackout).

An in all, we can summarize the results of the experiment as follows:

– The control group missed a number of relevant risks, i.e., there were quite
a number of false negatives. This is more severe than false positives, which
would be detected in later phases of the risk management process.

– The control group identified risks not related to RIQs. However, these risks
are not specific to the patient monitoring system but apply to every socio-
technical system. Hence, there is no indication that the RIQs narrow the
scope of the analyzes too much.

– The treatment group did not produce false negatives, but rather false posi-
tives. This means, they just instantiated the RIQs and did not reflect whether
the identified risks were indeed relevant. However, this is less severe than over-
looking relevant risks.

– The treatment group disregarded the sub-issues of the RIQs and referred
only to the top-level issues. Hence, the identified risks are more general than
necessary. This means that the work to be done is postponed to the subsequent

Risk Identification Based on Architectural Patterns 351

phases of the risk management life-cycle, which also is the case for the false
positives.

All in all, the experiment indicates that the RIQs help to not overlook relevant
risks, which is the most important goal associated with their use.

We also tried out our method on the real-life example of a self-healing smart
power grid. An outline of the self-healing concepts as well as a part of its security
risk model are presented in [4]. The system architecture given in the paper
contains, among others, client-server and peer-to-peer parts, but also a process
control part and an interactive part. Those risks reported in [4] that are related to
the latter two architectural patterns would have been found using our RIQs. For
the distributed parts, we have set up preliminary RIQs that still need refinement,
but that are suitable to identify the risks enumerated in the paper.

6 Related Work

There are a number of collections of risk issues such as vulnerabilities, weaknesses
or best practices that are published by different organizations on the Internet.
They are exclusively concerned with cyber-security risks and do not consider
other kinds of risks. We mention just a few of them:

– Common Vulnerability Scoring System (CVSS)2 “is an open framework for
communicating the characteristics and severity of software vulnerabilities.”

– Common Weakness enumeration (CWE)3: “is a list of software and hardware
weaknesses types.”

– Common Weakness Risk Analysis Framework (CWRAF)4 “provides a frame-
work for scoring software weaknesses in a consistent, flexible, open manner,
while accommodating context for the various business domains.”

– Common Vulnerabilities and Exposures (CVE)5 “is a dictionary of publicly
disclosed cyber-security vulnerabilities and exposures”

– ENISA IoT security checklist6: “ENISA’s online tool for IoT and Smart
Infrastructures Security”

– ATT&CK for Industrial Control Systems7 “is a knowledge base useful for
describing the actions an adversary may take while operating within an ICS
network.”

All of these lists have in common that they are quite specific for cyber-security or
specific kinds of systems such as IoT (Internet of Things) systems, or industrial
2 https://www.first.org/cvss/, accessed April 19, 2020.
3 https://cwe.mitre.org/data/index.html, accessed April 19, 2021.
4 https://cwe.mitre.org/cwraf/, accessed April 19, 2021.
5 https://cve.mitre.org/cve/, accessed April 19, 2021.
6 https://www.enisa.europa.eu/news/enisa-news/your-must-have-iot-security-checkl

ist-enisas-online-tool-for-iot-and-smart-infrastructures-security, accessed April 19,
2021.

7 https://collaborate.mitre.org/attackics/index.php, accessed April 19, 2021.

https://www.first.org/cvss/
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/cwraf/
https://cve.mitre.org/cve/
https://www.enisa.europa.eu/news/enisa-news/your-must-have-iot-security-checklist-enisas-online-tool-for-iot-and-smart-infrastructures-security
https://www.enisa.europa.eu/news/enisa-news/your-must-have-iot-security-checklist-enisas-online-tool-for-iot-and-smart-infrastructures-security
https://collaborate.mitre.org/attackics/index.php

352 M. Heisel and A. Omerovic

control systems. Some of them focus on vulnerabilities of specific technologies,
some enumerate best practices (i.e., they are concerned with risk mitigation, not
risk identification). CWRAF mentions different kinds of systems, such as Con-
trol Systems and Network Communications, which are associated with so-called
vignettes8: “A vignette provides a shareable, formalized way to define a partic-
ular environment, the role that software plays within that environment, and an
organization’s priorities with respect to software security.” Thus, vignettes can
be regarded as a kind of pattern.

Apart from being specialized for security, none of the above-mentioned lists
takes architectural patterns as the basis for risk identification.

STRIDE [5] stands for Spoofing, Tampering, Repudiation, Information dis-
closure, Denial of service, Elevation of privilege. It is a method for identifying
security threats, which is based on a dataflow diagram of the system, rather than
its architecture.

The method for identification and modeling of cyber-security risks in the
context of smart power grids elaborated by Omerovic et al. [4] relies on brain-
storming sessions between risk and domain experts to identify relevant risks. Risk
identification is not reported to rely on the properties of the system architecture.

Pattern-based approaches to security analysis are abuse frames [6] and attack
patterns [7], which do not take the system architecture into account, as well as
misuse patterns [8], which are specialized to cloud computing.

The method proposed by Halikidis et al. [9] considers software architectures
that already contain security patterns. Their method assesses security risks for
such systems by using fuzzy-set theory and fuzzy fault trees. Thus, the method
does not address risk identification but supports later steps of the risk manage-
ment process.

Wirtz and Heisel have proposed patterns to represent threats [10]. Using such
patterns, they have defined a method for security risk identification [11], which
is based on problem-frame models of the functional requirements for the system
in question. System architectures are not taken into account. Casola et al. [12]
propose a format for a threat catalog that can be used in a risk analysis process.

All of the above-mentioned approaches to risk identification have in common
that none of them takes the system architecture as the basis for risk identifica-
tion, and they all focus on security risks. RIQs, in contrast, can also be used to
identify safety and other kinds of risk.

In safety, risks are often analyzed starting from unwanted incidents, mostly
accidents, which are possible because of hazards. Fault tree analysis (FTA) (see
e.g., [13]), Failure Modes and Effects Analysis (FMEA) [14], and Hazard and
Operability Study (HAZOP) [15] are well-known hazard analysis methods. The
more recent approach System-Theoretic Process Analysis (STPA) [16] also uses
guide-words, and is thus similar to HAZOP. Furthermore, safety standards such
as ISO 26262 [17] require a Hazard Analysis and Risk Assessment (HARA)
without specifying in detail how this has to be performed.

8 https://cwe.mitre.org/cwraf/data/vignettes.html, accessed April 19, 2021.

https://cwe.mitre.org/cwraf/data/vignettes.html

Risk Identification Based on Architectural Patterns 353

Beckers et al. [18] have proposed a model-based method for HARA in the
automotive sector, also using guide-words and taking ASILs (automotive safety
integrity levels) into account.

However, to the best of our knowledge, no risk identification method has
been proposed so far that is based on principles of system architectures (i.e.,
architectural patterns) and that is not specialized to identifying specific kinds of
risk, but supports the identification of all relevant kinds of risk.

Slyngstad et al. [19] use questionnaires to identify risks in the context of
software evolution. However, the identified risks are different from the ones that
we consider: they are not related to the operation of an IT-based system, but
rather its development process. The risks are problems that occur when the
architecture of some software needs to be changed.

7 Conclusion and Outlook

In this paper, we have presented a novel method for risk identification that is
based on the system architecture of the system to be analyzed. Risks are identi-
fied by determining the architectural patterns used in the system architecture,
and processing risk issue questionnaires associated with such patterns. Consid-
ering the risk management process mentioned in Sect. 1, our method provides a
traceable link between step 1 (context establishment) and step 2 (risk identifi-
cation), where the system architecture is a necessary part of the context.

Our method is neither confined to specific kinds of systems (such industrial
control systems), nor to specific kinds of risks (such as security risks). Hence, it
can be applied for any system for which risk management is deemed necessary,
provided that the system architecture contains patterns. Such patterns repre-
sent best practices in system design; hence, instantiations of such patterns can
expected to be found in a great number of existing and future IT-based systems.

Since a system architecture can be expected to contain more than one archi-
tectural pattern, one and the same component can play different roles when the
instantiations of architectural patterns overlap. Then, they are assessed accord-
ing to all of the roles they can play, which contributes to the completeness of
the analysis. In our example, this holds for the Monitor Machine (see Fig. 2).
On the one hand, it plays the role of monitoring software. On the other hand,
it also plays the role of an interactive system that has to communicate with its
users. Both of these roles are covered by processing the associated RIQs.

As a limitation of the method one can consider that – in its present form – it
cannot detect risks that emerge from the composition of different sub-systems.
Connecting sub-systems in the wrong way can lead to new risks that cannot
be identified by analyzing the subsystems in isolation. If the subsystems share
instantiations of architectural patterns, as discussed in the previous paragraph,
then the RIQ method may find emergent risks. However, there may be cases
where the composition is more intricate.

In the future, we will investigate possibilities to connect RIQs with the risk
issue collections discussed in Sect. 6. Furthermore, we will look for possibilities

354 M. Heisel and A. Omerovic

to collectively work on completing existing RIQs and setting up new ones, in
order to cover a broad range of systems. Also the documentation of the RIQs
can be enhanced by giving more detailed descriptions of the different issues.

To also address further steps of risk management, we will connect our risk
identification method using RIQs with risk modeling, e.g., using the CORAS
language [1]. For this purpose, we will annotate the RIQs with modeling rules.
First investigations of this topic have yielded promising results.

References

1. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis. The CORAS
Approach. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12323-
8

2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns. Wiley, Hoboken (1996)

3. Jackson, M.: Problem Frames: Analyzing and Structuring Software Development
Problems. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

4. Omerovic, A., Vefsnmo, H., Erdogan, G., Gjerde, O., Gramme, E., Simonsen, S.: A
feasibility study of a method for identification and modelling of cybersecurity risks
in the context of smart power grids. In: Muñoz, V.M., Firouzi, F., Estrada, E.,
Chang, V., (eds.) Proceedings of the 4th International Conference on Complexity,
Future Information Systems and Risk, pp. 39–51. COMPLEXIS, SciTePress (2019)

5. Shostack, A.: Threat Modeling: Designing for Security. Wiley, Hoboken (2014)
6. Lin, L., Nuseibeh, B., Ince, D.C., Jackson, M., Moffett, J.D.: Introducing abuse

frames for analysing security requirements. In: 11th IEEE International Conference
on Requirements Engineering, RE, pp. 371–372. IEEE Computer Society (2003)

7. Li, T., Paja, E., Mylopoulos, J., Horkoff, J., Beckers, K.: Security attack analy-
sis using attack patterns. In: Tenth IEEE International Conference on Research
Challenges in Information Science, RCIS, pp. 1–13. IEEE (2016)

8. Hashizume, K., Fernández, E.B., Yoshioka, N.: Misuse patterns for cloud comput-
ing. In: Proceedings of the 23rd International Conference on Software Engineering
& Knowledge Engineering (SEKE’2011), Eden Roc Renaissance, Miami Beach,
USA, 7–9 July 2011, pp. 683–686. Knowledge Systems Institute Graduate School
(2011)

9. Halkidis, S.T., Tsantalis, N., Member, S., Chatzigeorgiou, E., Stephanides, G.:
Architectural risk analysis of software systems based on security patterns. IEEE
Trans. Dependable Secure Comput. 5, 129–142 (2008)

10. Wirtz, R., Heisel, M.: A systematic method to describe and identify security
threats based on functional requirements. In: Zemmari, A., Mosbah, M., Cuppens-
Boulahia, N., Cuppens, F. (eds.) CRiSIS 2018. LNCS, vol. 11391, pp. 205–221.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12143-3 17

11. Wirtz., R., Heisel., M.: Risk identification: from requirements to threat models. In:
Proceedings of the 6th International Conference on Information Systems Security
and Privacy, vol. 1: ICISSP, pp. 385–396. INSTICC, SciTePress (2020)

12. Casola, V., Benedictis, A.D., Rak, M., Villano, U.: A novel security-by-design
methodology: modeling and assessing security by SLAs with a quantitative app-
roach. J. Syst. Softw. 163, 110537 (2020)

13. Leveson, N.: Safeware: System Safety and Computers. Addison-Wesley, Boston
(1995)

https://doi.org/10.1007/978-3-642-12323-8
https://doi.org/10.1007/978-3-642-12323-8
https://doi.org/10.1007/978-3-030-12143-3_17

Risk Identification Based on Architectural Patterns 355

14. Safety Management System and Safety Culture Working Group (SMS WG): Guid-
ance on hazard identification. Technical report (2009)

15. IEC: Hazard and Operability Studies (HAZOP studies). IEC 61882, International
Electrotechnical Commission (IEC) (2001)

16. Leveson, N.: Engineering a Safer World?: Systems Thinking Applied to Safety.
MIT Press, Cambridge (2011)

17. International Organization for Standardization: ISO 26262 road vehicles - func-
tional safety (2011)

18. Beckers, K., Frese, T., Hatebur, D., Heisel, M.: A structured and model-based haz-
ard analysis and risk assessment method for automotive systems. In: Proceedings
of the 24th IEEE International Symposium on Software Reliability Engineering,
pp. 238–247. IEEE Computer Society (2013)

19. Slyngstad, O.P.N., Li, J., Conradi, R., Babar, M.A.: Identifying and understanding
architectural risks in software evolution: an empirical study. In: Jedlitschka, A.,
Salo, O. (eds.) PROFES 2008. LNCS, vol. 5089, pp. 400–414. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69566-0 32

https://doi.org/10.1007/978-3-540-69566-0_32

Expressing Structural Temporal
Properties of Safety Critical Hierarchical

Systems

Massimo Benerecetti , Fabio Mogavero , Adriano Peron ,
and Luigi Libero Lucio Starace(B)

University of Naples Federico II, Naples, Italy
{massimo.benecetti,fabio.mogavero,adrperon,

luigiliberolucio.starace}@unina.it

Abstract. Software-intensive safety critical systems are becoming more
and more widespread and are involved in many aspects of our daily lives.
Since a failure of these systems could lead to unacceptable consequences,
it is imperative to guarantee high safety standards. In practice, as a way
to handle their increasing complexity, these systems are often modelled
as hierarchical systems.

To date, a good deal of work has focused on the definition and anal-
ysis of hierarchical modelling languages and on their integration within
model-driven development frameworks. Less work, however, has been
directed towards formalisms to effectively express, in a precise and rig-
orous way, relevant behavioural properties of such systems (e.g.: safety
requirements).

In this work, we propose a novel extension of classic Linear Tem-
poral Logic (LTL) called Hierarchical Linear Temporal Logic (HLTL),
designed to express, in a natural yet rigorous way, behavioural proper-
ties of hierarhical systems. The formalism we propose does not commit
to any specific modelling language, and can be used to predicate over a
large variety of hierarchical systems.

Keywords: Formal specification · Safety-critical software systems ·
Formal verification · Temporal logics

1 Introduction and Related Works

In today’s world, computer and software systems are ubiquitous and involved in
almost every aspect of daily life. From railway-traffic control systems to smart-
phones, from medical appliances to the stock exchange market, from power plants
to communication networks, society relies on such systems to an ever-growing
extent, making their reliability an issue of great social importance. Further-
more, it is increasingly rarer to find isolated computer systems, as they are typ-
ically embedded in larger contexts, interacting with several other concurrently-
executing systems over wired and wireless networks. Due to this interconnection
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 356–369, 2021.
https://doi.org/10.1007/978-3-030-85347-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_26&domain=pdf
http://orcid.org/0000-0003-4664-6061
http://orcid.org/0000-0002-5140-5783
http://orcid.org/0000-0002-7111-3171
http://orcid.org/0000-0001-7945-9014
https://doi.org/10.1007/978-3-030-85347-1_26

Expressing Structural Temporal Properties of Safety 357

trend and to the increasing variety and complexity of the performed tasks, the
complexity of computer systems is growing apace, along with the difficulty in
their design, specification, implementation and verification.

Of greatest concern, in particular, are the so-called safety-critical systems,
i.e., those systems whose failure could lead to consequences that are determined
to be unacceptable. Typical examples of safety-critical systems include medical
care devices, aircraft and railway traffic controllers, nuclear power plants, and so
on. However, a way broader class of systems has the potential for very high con-
sequences of failure, and these systems should be considered to be safety-critical
as well. For example, it is obvious and sadly known [10] that a malfunctioning
in commercial aircraft could lead to loss of lives. It is not obvious, on the other
hand, that also a malfunction in a telephone exchange system could kill people.
Indeed, a protracted loss of 911 service has very high potential of resulting in
serious consequences [12].

When dealing with the specification and design of large and complex
software-intensive reactive systems, the notion of hierarchy arises quite natu-
rally as witnessed by the establishment of hierarchical specification languages
such as Statechart [9] as a standard in the Software Engineering community.
Such systems can be indeed described as collections of nested components, or
modules, organized in a tree-like structures, evolving concurrently and interact-
ing with each other in some meaningful way.

Quite a lot of work has been directed towards the definition of hierarchical
models [3,7,13,15], towards the study of the complexity of basic decision prob-
lems, such as reachability and model checking of classic temporal logic proper-
ties [2], and towards their integration within model-driven development frame-
works [5,6,14]. Less work, however, has been devoted to languages to express
relevant behavioural properties of such models, taking into account also their
intrinsic hierarchical structure.

A notable exception is [8], which proposes a formal model for recursive con-
current programs, namely Communicating Recursive State Machines (CRMS).
In that work, the authors also propose a logic called ConCaRet, extending with
parallel operators the linear logic for Call and Return CaRet [1]. ConCaRet
is designed to specify behavioural properties of recursive sequential systems
such as CRMS, in which a computation can be seen as a sequence of (possibly
unbounded) ranked trees to model recursive calls. ConCaRet introduces opera-
tors to reason about tree paths corresponding to computation treads. Temporal
operators moves along a thread, intertwining temporal displacements and moves
within the recursive structure.

In this paper we propose a different extension of classic Linear Temporal
Logic (LTL [17]) called Hierarchical Linear Temporal Logic (HLTL). Among
temporal logics, Linear-time Temporal Logic (LTL) has been widely used as
a specification language to formalize behavioural properties of systems [16,18].
LTL allows for reasoning about behaviours represented as sequences of unstruc-
tured (flat) system states. When dealing with hierarchical models, however, the
ability of naturally contextualizing behavioural properties with respect to the

358 M. Benerecetti et al.

horizontal and vertical modular structure of the specification could prove to be
very useful. To this end, HLTL combines the analysis of the standard temporal
dimension of LTL with two additional orthogonal dimensions that account for
the hierarchical and concurrent nature that characterizes the computations of
hierarchical systems. This allows HLTL to naturally express behavioural local
properties of modules instead of being limited to reasoning about global system
states. Unlike ConCaRet, HLTL syntactically separates temporal moves along a
computation from the moves along its vertical and horizontal dimensions. The
clear separation between the temporal and the structural operators in HLTL
gives a clear way to precisely contextualize properties in a module of the system,
as opposed to ConCaRet which lacks this specification ability.

This paper is structured as follows. In Sect. 2 we provide some basic prelim-
inary notions on Dynamic State Machines (DSTM), a recently-proposed hier-
archical modelling language explicitly devised to meet industrial requirements
in design, verification and validation of complex, multi-process, control systems.
In Sect. 3 we introduce the logical formalism we propose, and show how it can
be applied to express properties of hierarchical systems, and in particular of
DSTMs. In Sect. 4, we hint at possible direct applications of HLTL in different
phases of the system development lifecycle. At last, in Sect. 5, we draw some
closing remarks and discuss future research directions.

2 Dynamic State Machines and Hierarchical
Computations

In this section, we provide some preliminary notions on hierarchical modelling
languages and on the formalization of their behaviours by giving an overview
of one of such formalisms, namely Dynamic State Machines (DSTM). For a
complete account of the formal syntax and semantics of DSTM we refer to [5].

2.1 Dynamic State Machines

The Dynamic STate Machine (DSTM) formalism is a recently-developed mod-
elling language originally proposed in [15] and explicitly devised to meet indus-
trial requirements in design, verification and validation of complex control sys-
tems. DSTM features both complex control flow constructs such as asynchronous
forks, preemptive termination, recursive execution and complex data flow con-
structs such as custom complex type definition, parametric machines, and inter-
process communication through global channels and variables.

DSTM takes many syntactic elements from UML Statecharts, and extends
them with the notion of re-usable module and with the possibility of recursion
and dynamic instantiation. A machine is capable of dynamically instantiating
one of its modules when the number of concurrently-executing instances of said
module is decided at run-time.

In more detail, a Dynamic STate Machine (DSTM) model is a sequence of
machines 〈M1,M2, . . . ,Mn〉 communicating over a set X of global variables and

Expressing Structural Temporal Properties of Safety 359

a set C of global communication channels. The first of such machines M1 is
the so-called initial machine, i.e., the highest level of the hierarchical system. A
machine Mi represents a module in the hierarchical specification and is defined
as a state-transition diagram composed by vertices connected by transitions. The
following kinds of vertices are defined:

node basic stable control state of a machine;
entering node initial pseudo-node of a machine. A machine may have multiple

entering nodes, corresponding to different initial conditions;
initial node default entering pseudo-node of a machine, to be used when no

entering node is explicitly specified. There must be exactly one for each
machine;

exit node final (or exiting) node of a machine. A machine may specify multiple
exiting nodes, corresponding to different termination conditions;

box node modelling the parallel activation of machines associated with the box
itself. A transition entering a box represents the parallel activation of the
corresponding machines, while a transition exiting a box corresponds to a
return from said activation.

fork control pseudo-node modelling the activation of new processes. Such activa-
tion may be either synchronous (the forking process is suspended and waits
for the activated processes to terminate) or asynchronous (the forking process
continues its activity along the newly-activated processes).

join control pseudo-node used to synchronize the termination of concurrently
executing processes or to force their termination when necessary (preemptive
join).

In the description above the vertices corresponding to stable, meaningful control
points are called nodes. On the other hand, pseudo-nodes represent transient
points.

Transitions represent changes in the control state of a machine. A transition
is labelled with a name and decorated with a trigger (an input event originating
from the external environment or from other concurrent machines), a guard (a
Boolean condition on the current contents of variables and channels) and an
action (one or more statements on variables and channels). For a transition to
be fired it is necessary that its trigger is fulfilled and that its guard is satisfied.
When a transition fires, its action is executed with possible side-effects.

Example 1 (The Counting DSTM). As an example, consider the Counting
DSTM, consisting of the machines Main, Counter and Incrementer represented
in Fig. 1. In the proposed graphical formalism, default entering pseudo-nodes
are depicted as black circles, entering pseudo-nodes as white circles, final nodes
as crossed-out white circles. Boxes are represented by rectangles and decorated
with a comma-separated list of associated machines enclosed in square brack-
ets. Nodes are drawn as rounded rectangles and fork and join pseudo-nodes are
represented by black bars. Each node and pseudo-node is decorated with its
name. Transitions are, as usual, drawn as directed edges between the source and
the target vertices. The transitions for these machines are detailed in Table 1,

360 M. Benerecetti et al.

Fig. 1. The Counting DSTM specification

in which we denote the trivial trigger and the trivial guard, which are always
satisfied, respectively with τ and True. The empty list of actions, which pro-
duces no side-effects, is represented with ε. As for the semantics of the Counting
DSTM, we describe it informally as follows. The initial machine, and highest
module in the hierarchy, is the Main DSTM, and its initial stable state is idle1.
Subsequently, by executing transition T2 (which has trivial trigger, guard, and
actions, and thus is always executable and has no side effects), Main performs
a call operation instantiating a Counter module by entering the counterBox
box. After instantiation, the Counter machine will be in its local stable state
idle2. After performing the fork operation consisting in transitions T6,T7,T8,
the counter Counter module can instantiate two instances of the Incrementer
module, which will run in parallel at the same level of the hierarchy. Back to the
Main module, notice that transition T3 can be executed at anytime when the
signal? trigger, which requires that a message is present on the communica-
tion channel named signal, is fulfilled. If T3 is executed, the Counter module
(and eventually the modules the latter instantiated) will be pre-emptively termi-
nated and deallocated. Transition T4, on the other hand, can be executed only
if the counter module has reached its limit termination state, which can happen
only once both the Incrementer modules have terminated and the join opera-
tion represented by transitions T9,T10,T11 is executed. As for the Incrementer
module, its initial stable state is simpleIncr. Then, until the global variable x is
incremented to 10 and transition T14 becomes executable, only transition T13
can be executed. This transition does not lead to a different local state, but is
associated with an action having the side-effect of incrementing x by 1. Summa-
rizing, the two Incrementer modules instantiated in parallel by Counter will, at
each computation step, increment each the global variable x by 1. After 5 com-
putation steps, x will be incremented up to 10, and the Incrementer modules

Expressing Structural Temporal Properties of Safety 361

will execute transition T4, reaching their exiting finished states. Subsequently,
the Counter module will perform the join operation we previously mentioned,
reaching its final limit state, and the Main module will be able to terminate,
reaching its stopped final state.

Table 1. Transition structure for the DSTM model Counting

T1 Source Target Trigger Guard Action

T1 initial idle1 τ True ε

T2 idle1 counterBox τ True ε

T3 counterBox interrupted signal? True ε

T4 (counterBox, limit) stopped τ True ε

T5 default idle2 τ True ε

T6 idle2 fk τ True ε

T7 fk boxIncr1 τ True ε

T8 fk boxIncr2 τ True ε

T9 boxIncr1 jn τ True ε

T10 boxIncr2 jn τ True ε

T11 jn limit τ True ε

T12 byOne simpleIncr τ True ε

T13 simpleIncr simpleIncr τ x<10 x++

T14 simpleIncr finished τ x≥10 ε

2.2 Hierarchical Computations

The evolution of a dynamic system can, in general, be seen as a sequence of stable
system states. When dealing with hierarchical systems such as DSTM, each state
has an intrinsic hierarchical structure, and thus can be represented using a tree-
like structure reflecting the internal organization of modules. In such a tree-like
representation, which we call configuration tree, each node represents a currently
active module, and a module is a child of another if the latter instantiated
the former. Hence, sibling modules execute concurrently at the same level of
the hierarchy and are instantiated by the same parent module. A behaviour
of a hierarchical system, i.e., a hierarchical computation, is thus a sequence of
configuration trees, each representing a state of the entire system. Adjacent
configuration trees in a hierarchical computation are the source and the target
of a single computation step of the system.

Along a hierarchical computation, adjacent configuration trees are not struc-
turally unrelated, but must reflect possible structural changes induced by com-
putational steps of the underlying system. To capture this intuition, the concept

362 M. Benerecetti et al.

of frontier is introduced. A frontier is a possibly empty subset of nodes of a con-
figuration tree marking the modules that take part in the current computation
step. All the points that are not descendant of the frontier remain unchanged
during the step, since they are not performing any action. In more detail, if a
point belongs to the frontier, we assume that the module instantiated in that
point is performing an action. Otherwise, if an ancestor of a point belongs to
the frontier, then the module instantiated in that point is deallocated. Finally,
if a module is an ancestor of a point belonging to the frontier, then the current
computation step affects a module internally invoked by the considered module.

As an example of hierarchical computation, consider the partial behaviour of
the Counting DSTM depicted in Fig. 2.

Main
State: idle1

Main
State: counterBox

Counter
State: idle2

Main
State: counterBox

Counter
State: boxIncr1, boxIncr2

Incrementer
State: simpleIncr

Incrementer
State: simpleIncr

T2

T6,T7,T8

S1 S2 S3

Fig. 2. A partial computation of the Counting DSTM

In the initial state S1, only the Main module is active, and is in its local
idle1 state. Then, after performing transition T2, the system reaches state S2,
in which, in addition to the Main module, also a Counter module is active.
In particular, the Counter module is instantiated by the Main one via the box
counterBox, and hence is its child in the hierarchy. The Counter module will be in
its idle2 local state. Subsequently, in our example, the Counter module performs
a fork operation instantiating two Incrementer modules. As a result of this
operation (which corresponds to transitions T6, T7 and T8 in the DSTM model),
the overall state of the systems is S3, in which the two Incrementer modules are
added as children of Counter. In our representation, modules belonging to the
frontier of each state are highlighted with a yellow background.

3 Hierarchical Linear-Time Temporal Logic

Temporal logic is a widely-used formalism for describing behaviours of dynamic
systems, which can be seen as a sequence of system states representing the
system evolution over time. Temporal logic extends propositional or predicate

Expressing Structural Temporal Properties of Safety 363

logic with modalities that permit to refer to the the temporal dimension of
behaviours. They provide a very intuitive but mathematically precise notation
for expressing properties about the relations between states in a behaviour [4].

Among temporal logics, Linear-time Temporal Logic (LTL), originally pro-
posed in [17], has been widely used as a specification language to formal-
ize behavioural properties of systems [16,18]. LTL allows for reasoning about
sequences of unstructured (flat) states. However, as discussed in the previous
section, hierarhical models such as DSTM represent systems whose global state
in a given instant can be described by tree-like structures. As a consequence,
a behaviour of such system can be represented as sequence of tree-structured
states. As a consequence, LTL cannot be used to express, in a natural way,
system properties that take into account the intrinsic structure of hierarchical
systems.

To address this issue, we propose an extension of LTL, which we name Hier-
archical Linear-time Temporal Logic (HLTL), which is designed to express prop-
erties of hierarchical computations, i.e., of sequences of tree-structured states.
HLTL is able to explicitly reference the tree-like structure of each state. The
main intuition behind HLTL is to use classic LTL operators to reason about the
evolution of a given module, while additional operators are used to contextualize
formulae in the hierarchy of activated modules. A HLTL formula is locally eval-
uated with regard to a context (i.e. a given module, corresponding to a vertex
in the tree-like hierarchical structure of the current state), and the context can
change during the evaluation of a formula by moving along both the vertical
and the horizontal dimension. The vertical dimension is related to the hierar-
chy (caller/called relations), while the horizontal one is related to concurrency
(left/right sibling in the tree).

Suppose that the current context is fixed in a given point of a configuration
tree, corresponding to a module committed to a call, which is to say that that
point has children (the modules it invoked) in the current state. It is possible to
express the fact that the formula φ is required to hold in the i-th child of that
module by means of the formula ↓i(φ). Notice that in HLTL it is possible to
navigate the vertical dimension only downwards. If the context has siblings in
the current state (i.e. is executing concurrently with other modules as a result
of a call operation performed by its parent), then it is possible to express the
fact that the formula φ is required to hold in its left (resp. right) sibling with
the formula ←(φ) (resp. →(φ)).

These vertical and horizontal displacement operators can be freely combined
with linear temporal operators that allow for expressing behavioural properties
of a module with regard to the temporal dimension.

Before going into details about the syntax and semantics of HLTL, we firstly
formalize the notion of hierarchical computation, which was informally intro-
duced in Sect. 2.

364 M. Benerecetti et al.

Definition 1 (Hierarchical computation). A hierarchical computation over
a set of atomic propositions P is a sequence of the form

〈(T0, v0),Fr0〉, 〈(T1, v1),Fr1〉, . . . , 〈(Ti, vi),Fri〉, . . .
such that, for all i ≥ 0:

1. (Ti, vi) is a labelled tree representing, with vi : Ti → 2P ;
2. the frontier Fri is a subset of the Ti;
3. all the nodes in Ti that are not descendant of the nodes in the frontier Fri

cannot be deallocated, i.e., they belong to Ti+1;
4. for all the nodes t ∈ Ti \ Fri it holds that vi(t) = vi+1(t).

In the above definition, Item 1 captures the idea that each state in a hierar-
chical computation has a tree structure in which each node is a currently active
module. The labelling function vi : Ti → 2P is used to assign, to each module in
the configuration tree, a set of atomic propositions that are satisfied in that mod-
ule. Item 2 requires that the set of nodes belonging to the frontier is well-formed,
i.e., it is a subset of the modules that are currently active. Of course, since the
frontier represents nodes that are involved in the current computation step, only
currently active modules can belong to it. Items 3 and 4 capture the fact that
adjacent configuration trees in a hierarchical computation are not structurally
unrelated, but must reflect changes induced by the computation step the system
performs. In particular, Item 3 guarantees that only nodes that are descendant
of the frontier can be deallocated (i.e., can be removed in the subsequent config-
uration tree) as a result of a preemptive termination performed by their ancestor
in the frontier. Item 4, on the other hand, requires that the labelling remains
unchanged for all the modules that do not belong to the frontier, capturing the
intuition that modules that do not take part in the current computation step
must remain unchanged, and thus must satisfy the same atomic propositions.

When dealing with sequences of states, the standard interpretation of LTL
has a global character, i.e. the concept of next state is relative to the overall sys-
tem state. With flat, unstructured states, this classic interpretation is perfectly
adequate, but it falls short when dealing with sequences of structured states of
concurrent hierarchical modular systems, as it is not able to fully capture the
concurrent nature of computations. To better capture the concurrent and hier-
archical nature of these computations, HLTL considers a local interpretation of
next, capturing a local notion of successor, which requires that the context is
directly interested by a local change. As follows, we formalize the notion of local
next we considered.

Definition 2 (Local interpretation of next). Given an interrupting hierar-
chical word

ξ = ξ0, ξ1, . . . , ξk, . . . ,

with ξi = 〈(Ti, vi),Fri〉, for all i ≥ 0 and t ∈ Ti (t is a node in the tree Ti) the
local next of a given module t in ξi, in symbols Next(ξi, t), is the hierarchical
computation symbol ξj (if any) such that j > i is the least index such that
t ∈ Frj−1 and, for each i < � < j there is no prefix t′ of t with t′ ∈ Fr�.

Expressing Structural Temporal Properties of Safety 365

As usual, Next∗(ξi, t), denotes the reflexive and transitive closure of Next∗(ξi, t)
and is defined inductively as the set of hierarchical symbols such that:

1. ξi ∈ Next∗(ξi, t);
2. ξj ∈ Next∗(ξi, t) iff ξj ∈ Next(ξk, t) and ξk ∈ Next∗(ξi, t).

As an example, consider the hierarchical computation ξ = ξ0, ξ1, ξ2, ξ3, ξ4
in Fig. 3, in which each node is represented by a circle and decorated with the
atomic proposition it satisfies, and nodes belonging to the frontier are depicted
with a double circle. In the figure, the local successor relation is depicted as a
dashed arrow connecting a module with its local next. Consider the only module
in the first state ξ0 of ξ. Its local next is the root in the subsequent state ξ1,
since 1 is the least index greater than 0 such that the root module belongs to
the frontier Fr0. When considering the root module in the state ξ1, on the other
hand, the local next is the corresponding module in state ξ4.

(0) (1) (2) (3) (4)

Fig. 3. An hierarchical computation decorated with the local next relation

With the definitions of hierarchical computation and local next in place, we
can introduce the syntax and semantics of HLTL.

Definition 3 (HLTL syntax). HLTL formulae are inductively defined as fol-
lows:

φ ::= 	 | p ∈ P | ¬φ | φ ∨ φ | φ ∧ φ | ↓n(φ) | ←(φ) | →(φ) | Xφ | φ Uφ | φ Rφ,

where P is a set of atomic propositions.

A HLTL formula is interpreted over interrupting hierarchical computations
according to the following semantics.

Definition 4 (HLTL semantics). The satisfaction of an HLTL formula φ in
node t ∈ Ti at the i-th symbol of a hierarchical computation ξ = ξ0, ξ1, . . . , ξk, . . . ,
with ξi = 〈(Ti, vi),Fri〉, is defined recursively as follows:

– 〈ξi, t〉 � p iff p ∈ vi(t), with p ∈ P;

366 M. Benerecetti et al.

– Boolean connectives are defined as usual;
– 〈ξi, t〉 � ↓j φ iff there exists a node t′ ∈ Ti being the j-th child of t and

〈ξi, t
′〉 � φ;

– 〈ξi, t〉 � ←(φ) iff there exists a node t′ ∈ Ti that is the left sibling of t and
〈ξi, t

′〉 � φ;
– 〈ξi, t〉 � →(φ) iff there exists a node t′ ∈ Ti that is the right sibling of t and

and 〈ξi, t
′〉 � φ;

– 〈ξi, t〉 � X(φ), iff there exists ξj such that ξj = Next(ξi, t) and 〈ξj , t〉 � φ.
– 〈ξi, t〉 � φ Uψ iff there exists ξj ∈ Next∗ such that 〈ξj , t〉 � ψ and, for all

ξk ∈ Next∗, with i ≤ k < j, 〈ξk, t〉 � φ.
– 〈ξi, t〉 � φ Rψ iff, for all ξj ∈ Next∗(ξi, t), if 〈ξj , t〉 � ψ, then there exists

ξk ∈ Next∗, with i ≤ k < j, such that 〈ξk, t〉 � φ.

A hierarchical computation ξ satisfies a HLTLE formula φ, in symbols ξ � φ, if
φ holds in the root of the first configuration tree.

The following abbreviations will be used hereafter: ⊥ for ¬	; φ ⇒ ψ for
¬φ∨ψ; Stopx for ¬ X	, expressing the fact that the current context has no local
future. Derived temporal operators eventually F and globally G can be defined as
follows. Fφ, requiring that, in some future point in Next∗, φ holds, is equivalent
to 	 Uφ. Similarly, Gφ, requiring for φ to hold in all points in Next∗, is equivalent
to ⊥ Rφ.

Example 2 (HLTL formulae). In this example, we hint at the expressive power of
HLTL through some examples which are then evaluated against the hierarchical
computation ξ depicted in Fig. 3.

1. Let ε denote the root node of each configuration tree in xi. It holds that
〈ξi∈{1,2,3}, ε〉 � XZ, since in each of these contexts, the local next 〈ξ4, ε〉 � Z.
The HLTL formula XZ, on the other hand, is not satisfied in the root of ξ0,
since its local next is the root of ξ1, and 〈ξ1, ε〉 �� Z.

2. The formula φ = (A ∨ B) U(XZ) is satisfied by ξ, i.e., 〈ξ0, ε〉 � φ, since there
exists the symbol ξ1 in Next∗(ξ0, ε) such that 〈ξ1, ε〉 � XZ and 〈ξ0, ε〉 �
(A ∨ B).

3. The formula ψ = G ((↓1(R)) ⇒ (↓2(Stop))) requires that, in each state of the
computation, if the first child of the primary module satisfies R, then the
second child has no local next. It is easy to see that it holds that ξ � ψ.

4. The formula μ = X (↓1 (P ⇒ → (X(S)))) requires that, in the local next rel-
ative to its context, if the first child satisfies P , then its right sibling has a
local next satisfying S. This formula is satisfied in ξ.

5. The formula λ = G (↓2(S ⇒ ↓1(T ∨ →(Y)))) requires that, at each step of
the computation, if the second module instantiated by the primary module
satisfies S, then its first child must either satisfy T , or have a right sibling
satisfying Y . It is easy to see that ξ � λ, as well.

Expressing Structural Temporal Properties of Safety 367

4 Towards Automatic Verification of HLTL Properties
for Hierarchical Systems

We envision that HLTL could prove to be a valuable tool in the specification
of behavioural properties of hierarchical systems, supporting different phases of
the system development lifecycle. For instance, HLTL could be used to formalize
system requirements in a more natural yet rigorous way, assisting requirement
engineers in the initial phases of system development. Moreover, by integrating
HLTL within existing verification frameworks, it is also possible to allow for
the fully-automatic verification (model checking) of HLTL properties against
hierarchical models.

As an example of this, let us consider again the existing work on DSTM pre-
sented in [5,6]. These works define a toolchain to ‘translate’ a DSTM model into
a semantically equivalent Promela specification for the well-known SPIN model
checker [11], enabling simulation and test case generation for DSTM models.
This translation was designed in such a way that the concurrent and hierar-
chical nature of DSTM modules is preserved in the Promela encoding. That
toolchain could be extended to support automatic verification of HLTL proper-
ties by including an additional module that translates a HLTL specification into
a semantically-equivalent, although possibly way more complex and less natu-
ral, LTL one. With the LTL equivalent in place, the SPIN Model Checker, which
natively supports LTL specifications, could then be used to perform automatic
verification. An overview of the resulting DSTM verification framework is shown
in Fig. 4.

Fig. 4. Automatic HLTL verification framework for DSTM models

5 Conclusions and Future Works

Driven by the increasing need of methodologies to support the design and verifi-
cation of safety critical systems, quite a lot of work has been directed towards the
definition of hierarchical models such as StateChart, Simulink, or Dynamic State
Machines. Less work, however, has been devoted to formal languages to express

368 M. Benerecetti et al.

in a precise, non-ambiguous and practical way properties of the computations of
such systems.

In this work, we present a novel formalism named Hierarchical Linear-time
Temporal Logic (HLTL), an extension of the well-known Linear-time Temporal
Logic (LTL) designed to express linear properties of hierarchical systems. Thanks
to the introduction of specific operators, our approach allows practitioners to
concisely express linear-time properties of hierarchical system that take into
account the intrinsic hierarchical structure of the states of such systems.

In future works, as discussed in Sect. 4, we plan to integrate HLTL within
the modelling framework for Dynamic State Machines (DSTM) proposed in [5,
6], allowing for fully-automated verification of properties, expressed as HLTL
formulae, of DSTM systems.

References

1. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-
2 35

2. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran,
S.: MOCHA: modularity in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0028774

3. Alur, R., Kannan, S., Yannakakis, M.: Communicating hierarchical state machines.
In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 169–178. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48523-6 14

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT press, Cambridge
(2008)

5. Benerecetti, M., et al.: Dynamic state machines for modelling railway con-
trol systems. Sci. Comput. Program. 133, 116–153 (2017). https://doi.
org/10.1016/j.scico.2016.09.002, https://www.sciencedirect.com/science/article/
pii/S0167642316301332. formal Techniques for Safety-Critical Systems (FTSCS
2014)

6. Benerecetti, M., et al.: From dynamic state machines to promela. In: Biondi, F.,
Given-Wilson, T., Legay, A. (eds.) Model Checking Software. SPIN 2019. Lecture
Notes in Computer Science, vol. 11636. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-30923-7 4

7. Benerecetti, M., Peron, A.: Timed recursive state machines: expressiveness and
complexity. Theor. Comput. Sci. 625, 85–124 (2016). https://doi.org/10.1016/j.
tcs.2016.02.021

8. Bozzelli, L., Torre, S.L., Peron, A.: Verification of well-formed communicating
recursive state machines. Theor. Comput. Sci. 403(2–3), 382–405 (2008)

9. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

10. Herkert, J., Borenstein, J., Miller, K.: The boeing 737 max: lessons for engineering
ethics. Sci. Eng. Ethics 26(6), 2957–2974 (2020)

https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/BFb0028774
https://doi.org/10.1007/BFb0028774
https://doi.org/10.1007/3-540-48523-6_14
https://doi.org/10.1007/3-540-48523-6_14
https://doi.org/10.1016/j.scico.2016.09.002
https://doi.org/10.1016/j.scico.2016.09.002
https://www.sciencedirect.com/science/article/pii/S0167642316301332
https://www.sciencedirect.com/science/article/pii/S0167642316301332
https://doi.org/10.1007/978-3-030-30923-7_4
https://doi.org/10.1007/978-3-030-30923-7_4
https://doi.org/10.1016/j.tcs.2016.02.021
https://doi.org/10.1016/j.tcs.2016.02.021

Expressing Structural Temporal Properties of Safety 369

11. Holzmann, G.J.: The model checker spin. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

12. Knight, J.C.: Safety critical systems: challenges and directions. In: Proceedings of
the 24th International Conference on Software Engineering, pp. 547–550 (2002)

13. Lanotte, R., Maggiolo-Schettini, A., Peron, A., Tini, S.: Dynamic hierarchical
machines. Fund. Inform. 54(2–3), 237–252 (2003)

14. Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T.: Test generation and test
prioritization for simulink models with dynamic behavior. IEEE Trans. Softw. Eng.
45(9), 919–944 (2018)

15. Nardone, R., et al.: Dynamic state machines for formalizing railway control system
specifications. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2014. CCIS, vol. 476,
pp. 93–109. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17581-2 7

16. Oyeleke, R.O., Chang, C.K., Margrett, J.: Situation-driven context-aware safety
model for risk mitigation using ltl in a smart home environment. In: 2020 IEEE
World Congress on Services (SERVICES), pp. 22–24. IEEE (2020)

17. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977), pp. 46–57 (Oct 1977). https://doi.org/
10.1109/SFCS.1977.32

18. Zhang, S., Zhai, J., Bu, L., Chen, M., Wang, L., Li, X.: Automated generation
of ltl specifications for smart home iot using natural language. In: 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 622–625.
IEEE (2020)

https://doi.org/10.1007/978-3-319-17581-2_7
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32

Quality Aspects in Machine Learning,
AI and Data Analytics

Facing Many Objectives for Fairness
in Machine Learning

David Villar and Jorge Casillas(B)

Department of Computer Science and Artificial Intelligence,
Data Science and Computational Intelligence Institute (DaSCI),

University of Granada, Granada 18071, Spain
daalma7@ugr.es, casillas@decsai.ugr.es

http://ccia.ugr.es/~casillas

Abstract. Fairness is an increasingly important topic in the world of
Artificial Intelligence. Machine learning techniques are widely used nowa-
days to solve huge amounts of problems, but those techniques may be
biased against certain social groups due to different reasons. Using fair
classification methods we can attenuate this discrimination source. Nev-
ertheless, there are lots of valid fairness definitions which may be mutu-
ally incompatible.

The aim of this paper is to propose a method which generates fair
solutions for machine learning binary classification problems with one
sensitive attribute. As we want accurate, fair and interpretable solu-
tions, our method is based on Many Objective Evolutionary Algorithms
(MaOEAs). The decision space will represent hyperparameters for train-
ing our classifiers, which will be decision trees, while the objective space
will be a four-dimensional space representing the quality of the classifier
in terms of an accuracy measure, two contradictory fairness criteria and
an interpretability indicator.

Experimentation have been done using four well known fairness
datasets. As we will see, our algorithm generates good solutions com-
pared to previous work, and a presumably well populated pareto-optimal
population is found so that different classifiers could be used depending
on our needs.

Keywords: Fairness in machine learning · Many objective
evolutionary algorithm · Decision trees

1 Introduction

In the last few years, fairness has become one of the main research topics in
the field of Machine Learning (ML). The problem of bias in ML has always
been there, as it comes from statistics. Dataset labeling and other kinds of data

Supported by FEDER and the Spanish Ministry of Science and Innovation, Institute
of Health Carlos III, grant no. PI20/01435.

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 373–386, 2021.
https://doi.org/10.1007/978-3-030-85347-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_27&domain=pdf
http://orcid.org/0000-0002-5887-3977
https://doi.org/10.1007/978-3-030-85347-1_27

374 D. Villar and J. Casillas

collection or even selecting a representative sample of the whole population, as
it is done by human experts, because of their inherent human nature, it is a
biased process, so algorithms have great bias tendencies.

Even though this inherent problem has been well known for several decades,
it has not got the relevance and attention it deserves until these days [5,17] due
to a variety of factors, including more social awareness and criticism in terms
of inequalities and discrimination or famous cases which stimulated that feeling
in ML community [2,16]. Bias is a serious problem, as it goes against some
subsets of the population, whose individuals share a certain or multiple features,
being even totally unrelated within the context of that task. This fact has been
observed in an extensive range of fields, such as human rights, privacy, health or
economics [2,6,16,23].

When an algorithm is biased against a social group, it can be worse than only
being harmful, as it can even lead to an increase of that biasing tendency for that
group as time goes by [8,15]. For this reason, trying to figure out how can we
reduce bias impact in our data driven decision models is a crucial task [20,24].
Having understood this context, we want to develop a method which not only
tries to optimise accuracy as further as possible, but that takes fairness into
account trying to minimise this negative impact.

But another problem arises when trying to come up with a mathematical
definition of fairness such that can be considered in ML systems. A wide range
of them have been proposed, which are closely related to legal and social sci-
ence legal concepts [13]. They can belong to three different classes: group, indi-
vidual and counterfactual fairness measures. Group fairness measures have a
clear advantage over the others, as they only depend on probabilities which can
be directly calculated independently of the context, while individual and coun-
terfactual measures require additional definitions of distances or causal graphs
respectively. Nonetheless, some group fairness metrics are incompatible [4].

We can divide algorithms which incorporate fairness into three non mutually
exclusive classes: preprocessing, inprocessing and postprocessing algorithms [9].
The method we have developed belongs to the inprocessing class. Group fairness
definitions are considered as objectives to optimise, as well as other criteria, in
this case, accuracy and interpretability. This last criterion is interesting as a
decision tree interpretability may greatly vary depending on its structure, thus
reducing their usefulness. There are intrinsical tradeoffs between accuracy and
fairness criteria [14] too, but we are still able to push the further as we can in
an optimization process, trying to get the best possible models, and expecting
them to be better than some current existing models [18].

Our algorithm interprets problems as a many objectives optimization ones,
using model hyperparameters as our decision space, and the objective space
will be built in terms of the criteria we want to optimise. It is based on Many
Objectives Evolutionary Algorithms (MaOEAs) which have been proven to be
really useful in this context. Furthermore, lots of different non Pareto dominated
decision trees will be generated and will describe the limits of our optimization
process.

Facing Many Objectives for Fairness in Machine Learning 375

2 Background

In this section we will expose a general background about simultaneous opti-
mization of accuracy and fairness in ML, as well as MaOEAs.

2.1 Accuracy and Fairness Optimization Background

With respect to simultaneous optimization of fairness and accuracy, efforts have
tended to introduce fairness constraints and optimizing for both criteria [22]. In
terms of Decision Trees, work incorporating fairness criteria in the own learning
process by modifying the information gain function has been done, exploring
some variants [11]. It has also been proposed to reinterpret the problem of fair
classification in order to incorporate cost functions which lead the learning pro-
cess [1]. In Zafar et al. [21] a problem which could be formulated as a convex
constrained optimization problem was considered. That formulation incorpo-
rated fairness in terms of a measure of the decision boundary. Thanks to that,
several statistical based fairness metrics are considered at the same time. In [10],
using Support Vector Machines regularization techniques showed that applying
strict fairness criteria may lead to worse welfare for the considered groups.

The recent work of Valdivia et al. [18] incorporated NSGA-II multiobjective
optimization based techniques to Decision Trees hyperparameters, optimising
for both accuracy and fairness. That work showed how are we able to optimise
our methods up to much further limits than some of historically applied ML
algorithms, such as COMPAS. In terms of the current work, we will generalise
the concept introduced in this paper, applying more sophisticated algorithms
and a more elaborated method to find Pareto optimal solutions using a Many
Objectives perspective, rather than use a 2-objective minimisation one.

2.2 MaOEAs Background

Let Ω and Θ be 2 sets such that Ω ⊂ R
n, Θ ⊂ R

m : m > 1. Let be f : Ω → Θ,
with f(ω) = (f1(ω), f2(ω), ..., fm(ω)),∀ω ∈ Ω, being each fi : Ω → R,∀i ∈
{1, 2, ...m}. A multiobjective minimization optimization problem consists of:

min
ω∈Ω

or max
ω∈Ω

(f1(ω), f2(ω), ..., fm(ω))

Where n is the dimension of the space Ω, which is also named as decision
space, whereas m is the dimension of the space Θ, also named objective space.
Each of the functions fi are named single objective functions, while f is our
multiobjective function.

We will try to minimise all functions at the same time, and it is clear that,
apart from extreme cases which have no interest of linear correlated single objec-
tive functions, we will reach a point where we will not be able to keep minimising
a single objective without having a tradeoff with at least 1 other objective.

A solution x ∈ Ω Pareto dominates or simply dominates another solution,
y ∈ Ω which will be written as x ≺ y ⇔ fi(x) ≤ fi(y)∀i ∈ {1, ...,m} ∧ ∃j ∈

376 D. Villar and J. Casillas

{1, ...,m} : fj(x) < fj(y). Solve a multiobjective problem consists of finding
as much non dominated solutions as we can for this problem, while also having
good distribution properties. This solutions are named Pareto optimal solutions,
and their image under f is named Pareto front (PF). For solving these problems,
Multiobjective Evolutionary Algorithms (MOEAs) are widely used and generate
high quality solutions.

A Many Objectives Optimization Problem is a multiobjective optimization
problem where m > 3. High dimensionality greatly hinders the task of find-
ing pareto optimal solutions, as it is more difficult that one solution dominates
another and the objective space grows in orders of magnitude in terms of dimen-
sion, so the size of the Pareto front tends to grow in size analogously. During last
years, MaOEAs have been widely utilised since they report good quality Pareto
fronts.

3 MaOEA to Achive Accurate, Fair, and Interpretable
Solutions

In this section we will discuss the design of our method. We will start showing
how both the objective and decision spaces are built. Then, a brief explanation
of the three base algorithms employed is exposed.

3.1 Objective Space

We want our solutions to be accurate, fair and interpretable. For that reason, an
accuracy metric, two group fairness metrics belonging to contradictory subfam-
ilies and an interpretability measure will be employed. Notating ŷ as our binary
classifier output, y as the true class and a being the protected attribute, those
metrics deffinitions are the following:

– Accuracy criterion: gmean inv. This criteron is calculated as 1−G-mean(ŷ, y),
where G-mean((ŷ, y) =

√
TPR · TNR =

√
P [ŷ = 1|y = 1] · P [ŷ = 0|y = 0].

Minimizing this measure, we ensure that both TPR and TNR are low, so the
accuracy of the prediction is high.

– 1st fairness criterion: FPRdiff or difference between False Positive Rates. This
measure is calculated as: FPRdiff = |P [ŷ = 1|y = 0, a = 0] − P [ŷ = 1|y =
0, a = 1]|. This is an objective to minimise. It will be minimum, when there
is no difference on the FPR value for both demographic groups. This fairness
criterion belongs to the subfamily of Equalised Odds, defined as P [ŷ|y, a =
0] = P [ŷ|y, a = 1].

– 2nd fairness criterion : PPVdiff, or difference between Positive Predictive Val-
ues. This measure is calculated as: PPVdiff = |P [y = 1|ŷ = 1, a = 0] − P [y =
1|ŷ = 1, a = 1]|. This is a measure to minimise, and will be minimum when
there is no difference between PPVs for both demographic groups. This fair-
ness criterion belongs to the subfamily of Predictive Rate Parity, defined as
P [y|ŷ, a = 0] = P [y|ŷ, a = 1]. No classifier can fulfill measures from both
Equalised Odds and Predictive Rate Parity at the same time [4].

Facing Many Objectives for Fairness in Machine Learning 377

– Interpretability criterion: Number of leaves. This measure is a direct estimator
about interpretability of the model, as those leaves represent decision paths
that our model can make. The least paths there are, the easier the whole
process will be to interpret.

3.2 Decision Space: Hyperparameters

Our base binary classifiers to apply learning processes will be Decision Trees.
We have used the implementation of scikit-learn, therefore our hyperparameters
and their range will be a subset of those available. These hyperparameters will
be:

– criterion: Represents the function which will measure the quality of a split.
Possible values we will use are Gini and Entropy.

– max depth: The maximum depth the tree could have. Possible values we will
use are {n ∈ N : n ≥ 3} plus a value which represents unrestriction, ∞.

– min samples split: The minimum number of samples required to divide an
internal node. Possible values we will use are {n ∈ N : 2 ≤ n ≤ 40}.

– max leaf nodes: Maximum number of nodes the tree could have. Possible val-
ues we will use are {n ∈ N : n ≥ 2}, plus a value which represents unrestriction
(∞).

– class weight: This parameter gives a weight to each class, which is really useful
for unbalanced datasets. It takes values in the range [0, 1], and a value of 1

2
means that both classes are evenly considered. Possible values we will use are
{ n

10 : n ∈ N, 1 ≤ n ≤ 9}.

3.3 Initial Population

The initial population will contain at least 2 individuals represented with the
following hyperparameters: (Gini, ∞, 2, ∞, 1

2), (Entropy, ∞, 2, ∞, 1
2). This

will generate the biggest possible trees, and we will use them to upper bound all
unbounded hyperparemeters. The rest of the initial population will be generated
using random values randomly distributed with uniform probability in the range
of each hyperparameter using the just calculated upper bounds when necessary.

3.4 MaOEAs Based Methods

As we know, MaOEAs suffer optimization problems due to the high dimension-
ality of the objective function. The number of non Pareto dominated solutions
increase exponentially, as well as the number of solutions we need to describe
and have a better understanding of the shape of the Pareto front [12]. Conse-
quently, we decided to program and adjust three different algortihms,with them
being NSGA-II, SMS-EMOA, and GrEA. Each of them has different properties,
which may initially lead to some different Pareto front approximations.

378 D. Villar and J. Casillas

NSGA-II Based Method. We will start with NSGA-II (Non-dominated Sort-
ing Genetic Algorithm). We chose this algorithm because it is a staple in the con-
text of Multiobjective Evolutionary Algorithms. It was the algorithm employed
in Valdivia et al. [18], giving really good results, and we want to assess the
behaviour of this algorithm in a Many Objectives Optimization context. The
same structure and parameters as in that paper were used.

NSGA-II performance quickly decreases as the number of objectives start
to grow, as it is particularly sensitive to the dominance resistance phenomenon
and active diversity promotion [12]. In order to overcome these problems, many
MaOEAs were specifically designed. We have selected two of them, both with
different features and based on different concepts, to have a decent variety of
methodologies. This is important as some of them could be better suited for
certain problems than others.

SMS-EMOA Based Method. The second algorithm considered is SMS-
EMOA (S metric Selection-EMOA) [7]. This algorithm uses S metric (better
known as hypervolume) contribution as an elitist selection criterion. For that
reason it belongs to the class of MaEOAs named indicator based measures, and
to the subclass of hypervolume driven algorithms [12].

This algorithm generates a single new individual on each generation, and
after adding it to the population, it removes the least contributing individual.
SBX crossover and polynomial mutation are operator used, as proposed by the
authors. Only for tournament purposes, crowding distance is calculated con-
sidering individuals on each Pareto Dominance rank, just as in NSGA-II. For
maximizing hypervolume in a minimisation optimization problem, we have to
compute the worst objective point in the objective space. To not be biased
against any objective, every objective whose maximum value is greater than 1 is
normalised to the range [0, 1] in terms of the worse individual for that objective
in the considered population.

GrEA Based Method. Finally, we have considered as our third algorithm
GrEA (Grid based Evolutionary Algorithm) [19]. This algorithm belongs to the
class of Relaxed dominance based MaOEAs, and in particular to Value-Based
Dominance MaOEAs [12].

GrEA’s main idea is to introduce a grid setting in the objective space, in
which individuals are placed, which changes dynamically depending on the indi-
viduals forming the population. Thanks to that grid structure, we can change
tournament and environmental selection criteria. For tournament, criteria used
are standard domination, grid domination and grid crowding distance. For selec-
tion, grid rating, grid crowding distance and grid coordinate point distance are
used.

Facing Many Objectives for Fairness in Machine Learning 379

4 Experimental Design

We have designed an experimentation process using four different ML prob-
lems which have been deeply studied in the context of fairness in ML, vary-
ing in scale and domain. All of these datasets are public and free to down-
load from GitHub: https://github.com/algofairness/fairness-comparison/tree/
master/fairness/data (last date accessed 24 March 2020). The data sets are as
follows:

– Adult: U.S. citizens information in 1994. There are 32561 instances and 14
attributes. The prediction task is to asses wether an individual earns more
than $50k per year or not. The sensitive attribute is race.

– German: Individuals’ financial information. There are 1000 instances and 20
attributes. The prediction task is to asses the credit risk of individuals. The
protected attribute considered is age.

– ProPublica Recidivism: Individuals’ information from the Broward County
(Florida) in 2013 and 2014. There are 72144 individuals containing 52
attributes. We want to predict if a person will reoffend in two years or not.
From these attributes, we have used the following 12 in the experiments of this
paper: sex, age, age cat, race, juv fel count, juv misd count, juv other count,
priors count, c charge degree, c charge desc, decile score, score text. The pro-
tected attribute is race.

– ProPublica Violent Recidivism: This data set describes the same scenario
as the previous one, but in this case the outcome is whether the rearrest
happened within 2 years was because of a violent crime. It contains 4743
individuals and the same 12 attributes. The protected attribute is race.

We have executed each algorithm 10 times with different random seeds. Each
execution was made with a population size of 150 individuals and 300 genera-
tions. The probability of mutation is 0.3, probability of crossover 0.9, and γ = 2
as stated in Valdivia et al. [18], for all methods which require those parameters.

To have a real Pareto front approximation to which evaluate convergence,
we will join Pareto fronts found by each run of each given algorithm for a given
problem, and then we filter those solutions sets, extracting only the non Pareto
dominated individuals among them.

We will use a good range of quality measures which evaluate different aspects
from the solution sets obtained. This measures help us to evaluate performance
regarding convergence, uniformity and spread of solutions. With the purpose
of defining those metrics, we will notate A as a set of solutions, and PF will
represent our best Pareto front approximation after all the processes previously
discussed:

– Hypervolume: It is defined as
∫
(0,1)m 1DA

(z)dz being DA = {z = (z1, ..., zm) ∈
(0, 1)m : ∃a ∈ A : a ≺ z} and 1DA

being the indicator function of DA. The
bigger it is, the better is the set in a general way, as it may have better
convergence, be more spread or have better uniformity on the distribution of
the solutions.

https://github.com/algofairness/fairness-comparison/tree/master/fairness/data
https://github.com/algofairness/fairness-comparison/tree/master/fairness/data

380 D. Villar and J. Casillas

– Generational Distance (GD): It is defined as (
∑|A|

i=0 d2
i)1/2

|A| , where di is calcu-
lated for a solution xi ∈ A as min{||f(xi) − f(y)||2 : y ∈ PF}. The lower it
is, the more converged is A with respect to PF on average.

– Inverted Generational Distance: It is defined as (
∑|P F |

i=0 d2
i)1/2

|PF | , where di is cal-
culated for a solution xi ∈ PF as min{||f(xi) − f(y)||2 : y ∈ A}. It is similar
to GD, but from a different perspective, which is better suited to analyse
convergence to PF analysing real Pareto front representation.

– Proportion: Proportion of PF solutions that also appear in A, i.e., |B|
|PF | ,

where B = {x ∈ A ∩ PF}
– Error Ratio: |B|

|A| where B = {x ∈ A ∧ x /∈ PF}
– Spacing: It is defined as

√
1

|A|−1

∑|A|
i=1(d − di)2, where di = minxj∈A,xj �=xi

{||f(xi) − f(xj)||1}, and d =
∑|A|

i=0 di

|A| . The bigger it is, the more separated is
each solution to each nearest neighbour, on average.

– Maximum spread: It is defined as ||z||2 where zα = maxxi,xj∈A |fα(xi) −
fα(xj)|. The bigger it is, the more extreme values on each coordinate of the
objective space are found.

– Overall Pareto front spread: It is defined as
∏m

i=1
| maxx∈A fi(x)−minx∈Afi(x)|

|PNi
−PIi

| ,
where PN is an approximation of the nadir point, and PI is an approximation
of the ideal point [3], which are calculated as follows: PIα

= minx∈PF fα(x),
and PNα

= maxx∈PF fα(x). The bigger it is, the exploration of extreme points
considering only 1 coordinate at a time better approaches the behaviour of
PF , leading to a better representation of it.

5 Experimental Results

We will first compare our results to a similar process as that done in Valdivia et
al. [18] and thus we will also execute our program using NSGA-II optimising for
both gmean inv and FPRdiff. In order to perform a fairer comparison, we used
the same execution parameters as for the rest of executions. Both PPVdiff and
number of leaves were calculated for each individual generated. We will refer to it
as NSGA-II2, whereas our four objective optimisation NSGA-II will be referred
as NSGA-II4.

We will analyse how the value of each objective changed when we go up from
optimising two to four objectives. We will take the mean of the median solutions
in terms of validation error from the Pareto fronts of all NSGA-II2 runs as a
reference. Then, for each other algorithm, we will select the two individuals with
the nearest value above in validation error with respect to the reference value,
and the two nearest individuals below in each run. Once found, we will calculate a
weighted average of those individuals, depending on how far in validation error
are them from that reference median value, being less significant the further
they are. Doing this, we can observe how algorithms behave at the same level of
error, for the rest of objectives, and thus we can compare their multiobjective
performance. Results can be seen on Table 1.

Facing Many Objectives for Fairness in Machine Learning 381

As we can see, solutions found by our four objectives algorithms tend to
behave better on the objectives which NSGA-II2 was not prepared to optimise,
but worse on FPRdiff, v. This was expected as the two objective algorithm tries
to minimise both error and FPRdiff without taking into account the other two
objectives, leading for worse results on the other objectives as they are contra-
dictory, while in our four objective algorithms, as all objectives are taken into
account, it generates more balanced solutions.

Table 1. Objective values of weighted average of individuals near the mean of the
medians in NSGA-II2 on validation error

4 Objectives

2 Objectives PPVdiff,v N.Leaves Errort FPRdiff,t PPVdiff,t

Errorv FPRdiff,v

Adult NSGA-II2 0.2362 0.0169 0.1163 256.8000 0.2390 0.0346 0.0715

NSGA-II4 0.2362 0.0413 0.0741 278.5704 0.2366 0.0410 0.0770

SMSEMOA 0.2362 0.0329 0.0604 210.8909 0.2374 0.0333 0.0722

GrEA 0.2362 0.0330 0.0391 137.9508 0.2364 0.0303 0.0605

German NSGA-II2 0.3155 0.0202 0.1631 38.3000 0.3498 0.1041 0.0972

NSGA-II4 0.3177 0.0891 0.1240 30.7936 0.3387 0.1215 0.0854

SMSEMOA 0.3172 0.0933 0.0941 34.3890 0.3436 0.1101 0.1035

GrEA 0.3190 0.0967 0.1021 20.4307 0.3516 0.0872 0.1312

ProPub NSGA-II2 0.3708 0.0290 0.0922 258.8000 0.3822 0.0533 0.0820

NSGA-II4 0.3708 0.0869 0.0520 158.9334 0.3722 0.0894 0.0602

SMSEMOA 0.3708 0.0504 0.0704 113.0509 0.3758 0.0742 0.0709

GrEA 0.3708 0.0612 0.0577 107.6457 0.3765 0.0777 0.0676

ProP. V. NSGA-II2 0.3645 0.0235 0.1223 102.2000 0.3798 0.0474 0.0991

NSGA-II4 0.3645 0.0781 0.0779 92.8691 0.3816 0.0716 0.0957

SMSEMOA 0.3645 0.0603 0.0703 99.5176 0.3763 0.0642 0.0898

GrEA 0.3645 0.0686 0.0700 57.5332 0.3770 0.0696 0.0915

All of them behave better on PPVval. It happens the same with the number
of leaves except for NSGA-II4 in Adult dataset. GrEA halves NSGA-II2 number
of leaves results. FPRval results are worse, as it is contradictory with respect to
the other objectives. Our Many Objective algorithms tend to behave, in general,
better than NSGA-II4, although that is not the case in German dataset.

We will now join all solutions from all runs for each algorithm and calculate
the coverage of these solution sets to each other. Results can be seen on Fig. 1.
Coverage done by a set A to a set B is calculated as C(A,B) = {b∈B:∃a∈A:a≺b}

|B| .
The bigger it is, the better solutions are in A with respect to those in B.

382 D. Villar and J. Casillas

(a) Coverages in Adult (b) Coverages in German

(c) Coverages in ProPublica (d) Coverages in ProPublica V.

(e) Mean of General PF distributions (f) Domination ranking

Fig. 1. Coverage matrices with General PF distribution and related rankings for all
datasets and algorithms

Facing Many Objectives for Fairness in Machine Learning 383

We have also calculated all non Pareto dominated individuals from all runs
and algorithms and join them together, giving the most accurate representation
of the real Pareto front, which will be named General Pareto front (General
PF). We then measure the proportion of those solutions that come from each
algorithm. These values are shown at the diagonals of matrixes in Fig. 1. It is
useful to understand which algorithm generated more solutions non dominated
by those generated by any other algorithm, which is preferable. Also mean dis-
tribution proportions of General PF and a ranking of domination which shows
how many times C(A,B) > C(B,A) for solutions of an algorithm A compared
to any other set of solutions B on the same dataset are shown in subfig. e and f.

We can now clearly see how SMS-EMOA and GrEA performed better in
general than both variants of NSGA-II. They win in both rankings by a huge
margin. SMS-EMOA solutions always cover more than others do with respect to
them. They are, in general terms, the most represented solutions among all non
dominated solutions found, with the exception of German dataset, where even
NSGA-II4 results are more represented. Both Many Objective algorithms tend
to cover a great proportion of solutions from both NSGA-II, mostly NSGA-II4
ones. NSGA-II2 solutions are less covered as some of them have more opsimised
results in error or FPR, while NSGA-II4 are more balanced ones, and in this
case they tend to be dominated with ease by solutions found by Many Objective
algorithms. This supports our theory that Many Objectives algorithms are better
suited for optimising fairness ML than NSGA-II in a 4 objective context.

In Table 2 we can see the quality measures previously discussed calculated
using our the Pareto fronts of the 4 objectives algorithms. The General PF to
which compare is now only calculated with respect to these algorithms. Measures
than can be calculated over General PF are also shown. SMS-EMOA solutions
are generally more converged than those from the rest of the algorithms, followed
by GrEA, as their GD and Inverted GD for SMS-EMOA is the lowest considering
every dataset except for German, meaning that they approximate well to the real
Pareto front and they are quite representative. German dataset has much less
instances, reason why their results consistently vary with respect to the rest of
datasets. Proportion values follow the same distribution as before. Error ratio
is consistent with results on proportion, as when one increases, the other one
should decrease, meaning in this case that the size of Pareto fronts obtained
by each run of all algorithms should be similar. In terms of spread measures
we can not see a clear and direct relationship between them and the rest of
measures or the quality of the solutions found by that algorithm. Both of them
seem correlated as higher values on one of them mean higher values on the other,
except for German dataset.

384 D. Villar and J. Casillas

Table 2. Many-objective quality measures obtained in each problem

Data Quality Measure NSGA-II SMS-EMOA GrEA General PF

Adult Hypervolume 0.8190 0.8249 0.8164 0.8249

GD 0.0068 0.0017 0.0023 –

Inverted GD 0.0040 0.0035 0.0032 –

Proportion 0.1114 0.4764 0.4122 1.0000

Error ratio 0.6432 0.1159 0.2507 –

Spacing 0.0229 0.0212 0.0162 0.0179

Maximum spread 1.4379 1.1036 1.2532 1.4840

Overall PF spread 0.9302 0.1386 0.5340 –

German Hypervolume 0.7162 0.7189 0.7133 0.7190

GD 0.0067 0.0086 0.0107 –

Inverted GD 0.0082 0.0052 0.0099 –

Proportion 0.3256 0.3101 0.3643 1.0000

Error ratio 0.0968 0.1563 0.3493 –

Spacing 0.0505 0.0443 0.0457 0.0404

Maximum spread 0.8996 1.1768 0.9737 1.2161

Overall PF spread 0.5217 0.7261 0.4982 –

ProPublica Hypervolume 0.6683 0.6766 0.6708 0.6765

GD 0.0076 0.0034 0.0034 –

Inverted GD 0.0057 0.0037 0.0052 –

Proportion 0.1689 0.4374 0.3937 1.0000

Error ratio 0.5643 0.1843 0.2791 –

Spacing 0.0257 0.0285 0.0194 0.0218

Maximum spread 1.0338 1.2271 0.8307 1.2578

Overall PF spread 0.6219 0.8109 0.2359 –

ProPublica V. Hypervolume 0.6850 0.6903 0.6833 0.6903

GD 0.0103 0.0041 0.0051 –

Inverted GD 0.0074 0.0063 0.0074 –

Proportion 0.1703 0.4444 0.3853 1.0000

Error ratio 0.6678 0.1276 0.4061 –

Spacing 0.0927 0.0288 0.0487 0.0542

Maximum spread 1.8360 1.0903 1.2151 1.8374

Overall PF spread 0.9974 0.0503 0.0590 –

6 Conclusions

In this paper we introduced an innovative method that generates a great variety
of models for ML problems considering several contradictory objectives, includ-
ing fairness definitions. The method uses hyperparameters of learning algorithm

Facing Many Objectives for Fairness in Machine Learning 385

as decision space, employing decision trees as base classifier. Therefore, the
method looks for optima settings of the learner to drive it to generate many mod-
els with different balances of accuracy, two fairness measures and interpretabil-
ity. Since dealing with four contradictory criteria is a challenge, we opted by
using the state-of-the-art many-objective optimization techniques SMS-EMOA
and GrEA. The methodology shows that it is possible to obtain good results
in terms of both equalized odds and predictive rate parity fairness while keep-
ing a good accuracy and interpretability. This makes us reflect on the room for
improvement in fairness that can be obtained without degrading accuracy.

Further studies using this method could involve employing other kinds of
classifiers, or utilising other accuracy, fairness, or interpretability contradictory
criteria. Adding more criteria could increase the gap in terms of quality of the
solutions generated by NSGA-II and other MaOEAs. An interesting development
path could involve incorporating fairness criteria in the own learning process of
the decision tree, depending on a hyperparameter which controls how impor-
tant fairness is. These models intrinsically consider fairness and add a relevant
hyperparameter to the decision space, so they would be worth studying.

References

1. Agarwal, A., Beygelzimer, A., Dud́ık, M., Langford, J., Wallach, H.: A reductions
approach to fair classification. arXiv preprint arXiv:1803.02453 (2018)

2. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias. ProPublica, 23 May
2016

3. Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., Salomon, L.: Performance indi-
cators in multiobjective optimization. Eur. J. Op. Res. (2020)

4. del Barrio, E., Gordaliza, P., Loubes, J.M.: Review of mathematical frameworks
for fairness in machine learning (2020)

5. Binns, R., Van Kleek, M., Veale, M., Lyngs, U., Zhao, J., Shadbolt, N.: ‘It’s reduc-
ing a human being to a percentage’ perceptions of justice in algorithmic decisions.
In: Proceedings of the 2018 Chi conference on human factors in computing systems,
pp. 1–14 (2018)

6. Bolukbasi, T., Chang, K.W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to
computer programmer as woman is to homemaker? Debiasing word embeddings.
Adv. Neural Inf. Process. Syst. 29, 4349–4357 (2016)

7. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume
measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A.,
Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31880-4 5

8. Eubanks, V.: Automating Inequality: How High-Tech Tools Profile, Police, and
Punish the Poor. St. Martin’s Press, New York (2018)

9. Friedler, S.A., Scheidegger, C., Venkatasubramanian, S., Choudhary, S., Hamil-
ton, E.P., Roth, D.: A comparative study of fairness-enhancing interventions in
machine learning. In: Proceedings of the Conference on Fairness, Accountability,
and Transparency, pp. 329–338 (2019)

10. Hu, L., Chen, Y.: Fair classification and social welfare. In: Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency, pp. 535–545 (2020)

http://arxiv.org/abs/1803.02453
https://doi.org/10.1007/978-3-540-31880-4_5

386 D. Villar and J. Casillas

11. Kamiran, F., Calders, T., Pechenizkiy, M.: Discrimination aware decision tree
learning. In: 2010 IEEE International Conference on Data Mining, pp. 869–874.
IEEE (2010)

12. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey.
ACM Comput. Surv. (CSUR) 48(1), 1–35 (2015)

13. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning (2019)

14. Menon, A.K., Williamson, R.C.: The cost of fairness in binary classification. In:
Conference on Fairness, Accountability and Transparency, pp. 107–118 (2018)

15. O’neil, C.: Weapons of Math Destruction: How Big Data Increases Inequality and
Threatens Democracy. Broadway Books, Portland (2016)

16. S.C. of the United States: Ricci v. DeStefano. Technical report. U.S. 557 (2009)
17. Selbst, A.D., Boyd, D., Friedler, S.A., Venkatasubramanian, S., Vertesi, J.: Fairness

and abstraction in sociotechnical systems. In: Proceedings of the Conference on
Fairness, Accountability, and Transparency, pp. 59–68 (2019)

18. Valdivia, A., Sánchez-Monedero, J., Casillas, J.: How fair can we go in machine
learning? Assessing the boundaries of accuracy and fairness. Int. J. Intell. Syst.
36(4), 1619–1643 (2021)

19. Yang, S., Li, M., Liu, X., Zheng, J.: A grid-based evolutionary algorithm for many-
objective optimization. IEEE Trans. Evolut. Comput. 17(5), 721–736 (2013)

20. Zafar, M.B., Valera, I., Gomez Rodriguez, M., Gummadi, K.P.: Fairness beyond
disparate treatment & disparate impact: learning classification without disparate
mistreatment. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 1171–1180 (2017)

21. Zafar, M.B., Valera, I., Gomez-Rodriguez, M., Gummadi, K.P.: Fairness con-
straints: a flexible approach for fair classification. J. Mach. Learn. Res. 20(75),
1–42 (2019)

22. Zafar, M.B., Valera, I., Rogriguez, M.G., Gummadi, K.P.: Fairness constraints:
mechanisms for fair classification. In: Artificial Intelligence and Statistics, pp. 962–
970. PMLR (2017)

23. Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., Baeza-Yates, R.: Fa*
ir: a fair top-k ranking algorithm. In: Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, pp. 1569–1578 (2017)

24. Zehlike, M., Castillo, C.: Reducing disparate exposure in ranking: a learning to rank
approach. In: Proceedings of The Web Conference 2020, pp. 2849–2855 (2020)

A Streaming Approach for Association
Rule Analysis of Spanish Politics on

Twitter

Pedro J. López, Elena Ruiz, and Jorge Casillas(B)

Department of Computer Science and Artificial Intelligence,
Data Science and Computational Intelligence Institute (DaSCI),

University of Granada, Granada, Spain
casillas@decsai.ugr.es

http://ccia.ugr.es/ casillas

Abstract. The technological era in which we live has supposed an expo-
nential rise in the quantity of data daily-generated in the Internet. Social
networks and particularly Twitter has been one of the most disruptive
factors in this era, allowing people to share easily opinions and ideas.
Data generated in this social network is an example of streams, which
are outlined by the challenges that arise from their particular features:
continue, unlimited, high-speed arrivals, demand of fast reaction and
with changes over time (known as concept drifts). The dynamism that
characterizes this type of problem requires from a streaming analysis in
order to perform an adequate treatment. In this situation, data stream
mining appears as an emergent field of data science with specialized
machine learning techniques according to the nature of streams. One
of the most prominent tasks in this field is association stream mining,
which focuses on the problem of dynamical extraction of interesting asso-
ciation rules from data features in a situation where it is not possible to
assume an priori data structure and there is an evolution of these data
features over the time. This paper aims to carry out a proof of concept
focused on politics by studying a real collection of tweets related to the
2019 Spanish Investiture process. Thereby, Fuzzy-CSar-AFP algorithm
has been applied in order to carry out an online analysis of association
rules among a collection of terms of interest from our Twitter database.

Keywords: Data stream analysis · Association rules · Twitter
analytics · Real-time systems

1 Introduction

Nowadays we live a technological era in which everything is automatized and
everyone is connected. Therefore, an exponential increase in the production of

Supported by MINECO/FEDER under the Spanish National Research Project
TIN2017-89517-P.

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 387–400, 2021.
https://doi.org/10.1007/978-3-030-85347-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_28&domain=pdf
http://orcid.org/0000-0002-5887-3977
https://doi.org/10.1007/978-3-030-85347-1_28

388 P. J. López et al.

new information and content in the Internet has implied a rise in the amount
of data that are generated. In this context, data sources that generate massive
amounts of information in chronological order are becoming increasingly com-
mon (social networks, energy consumption, internet of things, network traffic,
etc.). This has resulted in a growing interest in analyzing and understanding
information as soon as it is produced. Many of these data sources are usually
associated to some specific challenges, such as: high arrival rates, the require-
ment of immediate response or non-stationary distributions with the presence of
concept drifts [9] (i.e., data distribution may suffer changes along time).

These aforementioned scenarios can be addressed by means of data streams,
which are infinite sequences of structured records that arrive continuously. How-
ever, traditional data mining techniques cannot deal properly with them, since
they assume that all data are available by the time of the analysis while this is
not the case in data streams. Although one may be tempted to wait until all
data are collected in order to perform an analysis, a real-time analysis is needed
in some cases since the value of a data shrinks critically over time. Hence, an
online adaptive approach is required in order to successfully analyze streams.
An additional concern about streams is related to the management of computa-
tional resources, since data streams are loaded in memory and could eventually
surpass the available resources depending on the amount and speed of upcoming
data. Bearing this in mind, data structures are used in order to optimize memory
space while keeping the information from data.

Data stream mining [8] arises as a field of data mining which gathers those
techniques for streams analysis. These techniques apply particular methodologies
and have mechanisms for adapting to changes in data. Data from stream are
not stored in a permanent way but they are processed on-the-fly: each data
is analyzed, processed and finally forgotten, making possible managing huge
amounts of data in real-time. An interesting branch in the field of data stream
mining is association stream mining, which addresses the conceptual ideas from
association rules while keeping the online approach in order to deal with streams.

Twitter presents an ideal scenario in order to illustrate the aforementioned
digitalization and has risen as a huge source of information in the last years. It is a
microblogging social network in which millions of users post their opinions about
any topic, share multimedia content and read hot news. In the Twitter domain,
messages are called tweets. Tweets posted by users are an incessant source of
data. Tweets are sequentially created in time and could eventually appear in a
massive and unlimited quantity as a reaction to a trigger event. In addition, their
content changes over time as new topics arise, old topics disappear and even for
persistent topics changes might occur. Therefore, they are an example of textual
stream, in which content is continuously created with no limit in amount or
speed and their patterns are sensitive to evolve. Since a tweet consists on a
collection of words, it could be considered as a transaction whose items are the
words that compound it. Consequently, it is possible to mine association rules
from a collection of tweets.

A Streaming Approach for Association Rule Analysis of Spanish Politics 389

We have applied this idea in order to analyze the evolution of the association
rules extracted from a stream of tweets about a specific topic. Concretely, we
focused our efforts in those rules that present a link between terms and tweet
sentiment, obtained by means of a pre-trained sentiment analysis model. Pol-
itics is undoubtedly one of the hot topics in social networks, which are used
by political parties in order to foster their campaigns and attract voters. It has
motivated us for carrying out our study for the Spanish politics and specifically
for the process of Spanish Government investiture in 2019, which was quite con-
troversial. To do so, we deal with tweets collected by ourselves between July
2019 and August 2019.

The originality of our proposal lies in the application of association stream
mining to continuously create, update and delete association rules as new data
are received. These rules allow us to connect different concepts of the tweet in a
real-time manner, from the hashtags and keywords used to the sentiment with
which the text was written. Therefore, the methodology we propose goes far
beyond simple term frequency accounting, but rather uncovers reliable relation-
ships between concepts that evolve over time as a result of modifications in the
users opinions. These variations may be triggered by some landmark such as the
release of new information, a statement from a political party or even a move-
ment from some social groups. We present an elegant and visual approach for
analyzing electoral periods, which could be used by political parties in order to
prepare upcoming political campaigns as well as to enhance its comprehension of
the electorate based in a (progressively more) representative population sample
defined by Twitter community.

2 Related Work

Social networks are acquiring a key role in the current society, conforming an
unexploited and powerful source of information in which data mining techniques
could discover patterns on the users and their opinions. Streaming analysis
appears as a promising tool for analyzing complex information that formerly
was hardly accessible and have applications in business in order to attract cus-
tomers or even set marketing strategies [3]. These applications could be poten-
tially transferred to politics, since it is a topic progressively more bounded to
Twitter. Bearing this in mind, it is not surprising that during last decades sev-
eral researches prediction and analysis of political elections have been carried
out using Twitter as a source of data.

Tasks like semantic association rule mining for a political context have been
addressed in several researches by using variate sources of information. The
research in Afolabi et al. [10] considers a semi-automatic creation of domain
ontology in order to mine association rules from a collection of Nigerian politics-
related news. They use the GARW (Generating Association Rules based on
Weighting scheme) algorithm but just focus their approach in basic quality met-
rics such as support and confidence for a global study, without addressing any
online analysis. Moreover, an interesting approach is presented in [1], where a

390 P. J. López et al.

time-window association rule mining is used in order to create an automated,
streaming event detection in sports and politics for Twitter data. However, unlike
our proposal, this approach is not purely online, but employs an offline algorithm
(Apriori) for batches of data, which requires from defining an appropriate batch
size and means losing adaptability when data arrival rates vary.

The main researches in politics and Twitter focus on predicting electoral
results and monitoring political campaigns by heeding to patterns and senti-
ments. Wang et al. [19] applies a real-time analysis for USA elections based
on a real-time data processing infrastructure and statistical sentiment model in
order to evaluate public sentiment. In the same manner, elections in Europe
have been also a subject to studies on the relation between Twitter and political
results. 2013 Italian general elections motivated a Twitter-based study of several
aspects, such as association between topics and political parties and correlations
between volume of tweets and the election results [2]. Twitter sentiment analysis
has also been tackled in several researches. Tumasjan et al. [17] studied Twitter
importance in political discourse and analyzed if political sentiment on Twit-
ter reflects real-life results in 2009 German federal election. While these works
address interesting aspects such as an analysis at different timestamp and a topic
relevance for candidates, they do not present neither a machine learning nor a
real-time approach. Instead, they only take advantage of statistical calculations..
A forecasting of Singapore election was tackled by means of sentiment analysis in
Choy et al. [4], who combine reweighting techniques and online sentiment divi-
sions in order to avoid sampling bias. Although it is a compelling approach, they
just focus their efforts in accomplishing an overall sentiment for each candidate
within their respective party line. Meduru et al. [12] perform a sentiment analy-
sis of mining tweets opinions about government issues and political reforms. In
spite of an interesting tweet collection and processing, this approach does not
investigate about the topics that raise a certain sentiment but just analyze the
overall reaction of predefined country regions.

Regarding Spanish politics, Twitter has been recently used as a tool for
mining voters opinions. Criado et al. [5] analyzed tweets about 2011 general
elections, studying the correlation between the presence of political parties and
the election results. On other hand, Solé et al. [16] perform a study of Twitter
data in order to forecast Spanish political trends by means of a sentiment anal-
ysis and a political party affinity classification. As we can see, both works apply
straightforward Machine Learning approaches without distinguishing from tem-
poral aspects. However, as far as we know, association rule mining in a truly
online fashion has never been used for this type of data.

Within our research, we have been addressed the application of Fuzzy-CSar-
AFP [14] algorithm in a political context. Fuzzy-CSar-AFP is an evolution of
Fuzzy-CSar [13], which follows a Michigan-style learning classifier system archi-
tecture with the aim of mining online fuzzy association rules from data streams.
Fuzzy-CSar-AFP is a sophisticated version which includes two main improve-
ments: new knowledge representations as well as new evolutionary operators in
order to allow the use of fuzzy partitions with different granularities (i.e., num-

A Streaming Approach for Association Rule Analysis of Spanish Politics 391

ber of linguistic terms), and an online mechanism for updating attributes ranges.
This enhancements have meant fostering the capacity of the algorithm in order
to ensure a set of rules with more robust descriptiveness and wider diversity.
Both Fuzzy-CSar and Fuzzy-CSar-AFP performance as well as the quality of
the generated rules have been widely analyzed for both real and synthetic data
streams in Orriols et al. [13] and Ruiz and Casillas [15].

3 Proposed Methodology for Online Analysis of Tweets

3.1 Association Stream Mining

Association rules are an unsupervised technique used in order to mine patterns
and relations between elements. This task is particularly interesting in streaming
environments due to: (1) the demand of interpretability of the patterns discov-
ered in data, (2) the need for discovering patterns while they are happening,
and (3) the high and continuous volumes of data to be processed, which demand
scalable learners. Some basic concepts in association rules terminology are as
follow:

– Itemset: Given a database composed by a set of transactions, T =
{t1, . . . , tK}, we could define a set of items, I = {i1, . . . , iN}, which define a
collection of elements that appears together in a certain transaction ti. Such
a set is called itemset. If it contains k elements, it is called k-itemset.

– Support: Frequency count of a certain itemset in a database. It is a key
aspect in order to extract interesting rules.

– Frequent itemset: Those itemsets whose support count in a database is
greater than or equal to threshold support count specified by user.

– Association rule: Suppose two disjoint itemsets, X, Y such that X∩Y = ∅,
we define a rule X → Y , where X is the antecedent and Y is the consequent.

Quality of rules is assessed by specific measurements of the representative of
a rule within a database. For a rule X → Y , we consider three main metrics:

– Confidence: Measures the strength of an association rule by calculating the
ratio of the observed support of the rule and the support of its antecedent.

– Lift: Measures the ratio of the observed support of the rule and the expected
if X and Y were independent. Originally, it was called Interest.

Considering the aforementioned features and challenges presented by
streams, we required from an association rule mining technique which should
be capable of extracting rules from a time-evolving data stream which makes no
assumption about data structure.

In our study, we have applied Fuzzy-CSar-AFP [15], whose properties fit
into the requirements of our task. Fuzzy-CSar-AFP is an online genetic fuzzy
system designed to mine interesting association rules from streams of data in a
single step, i.e., it does not build any list of frequent itemsets. Instead, Fuzzy-
CSar-AFP directly evolves the set of fuzzy association rules. As it is presented

392 P. J. López et al.

in Ruiz and Casillas [15], it assumes that all the input variables can equally be
part of the antecedent or the consequent part of the rules. Nonetheless, we have
added to Fuzzy-CSar-AFP the capability of distinguishing between attributes
to form the antecedent and attributes to form the consequent of the rules. To
that aim, both the covering and genetic operators (crossover and mutation) [15]
of the algorithm have been modified. The lists of attributes that can be used in
each part of the rules are provided as input parameters of the algorithm. Using
this new capability of the algorithm, sentiment variable was set to appear only
in the consequent part. This allows the search space to be reduced and to focus
on generating rules of interest, thus improving the efficacy of the algorithm.

3.2 Natural Language Processing and Sentiment Analysis

Raw Twitter data requires from a preprocessing step in order to improve the
effectiveness of Machine Learning systems [7]. Since tweets are textual data,
Natural Language Processing (NLP) emerges as a key task in order to enhance
the quality in our analysis. NLP pursuits the understanding of unstructured,
textual data. It comprehends a collection of techniques capable of preprocessing
from raw messages in order to transform text into valuable information.

Special tweet features entail a need of a special preprocessing capable of
extracting the best possible information from them. Tweet preprocessing requires
from special considerations in order to deal with the special type of redaction
from Twitter users [20]. For our purpose, NLP techniques such as lemmatization,
stopwords suppression and part-of-speech have been applied in order to clean,
standardize and structure messages. We also considered the need of shorting
those words which are stretched out in order to emphasize a message as well
as removing URLs that may be contained in tweets. Another technique in our
NLP workflow is the detection of N-grams, which consist on a group of words
which together present a special meaning and should be considered as a global
concept. It is important for our work, since ignoring them will lead to the rise of
rules with the N-grams words, which could cover up the rules that are actually
interesting.

Sentiment analysis is applied in order to get the polarity of tweets. Senti-
ment analysis is the Machine Learning field focused on determining the opinion
orientation expressed within textual data, identified as a sentiment, attitude or
emotion. The popularity of this task has notably increased in last years due to
the increase of available textual data, thanks to social networks. However, tweets
are featured by their shortness, which hinder its performance. The effects of pre-
processing techniques in the ability of tweet polarity classification systems has
been addressed in several researches [11]. Sentiment analysis was a needed step
in our analysis, since we were interested in those association rules that present
a relation between key terms and sentiments from messages. Since our database
of tweets was not labeled, we applied a pre-trained model for sentiment analysis,
SentiStrength, which has been tested in several works [18]. It has been opti-
mized for general short social web texts and is capable of dealing with several

A Streaming Approach for Association Rule Analysis of Spanish Politics 393

languages. For our purpose, we have considered three possible tweet sentiments:
positive, neutral and negative.

4 Problem Statement and Data

4.1 Problem Statement

The aim of this work is to perform streaming association rule mining from Twit-
ter data. The selected topic for this proof of concept was the Spanish investiture
process from 2019, which was quite controversial since the fragmentation in the
Parliament lead to a necessity of covenants between political parties in order to
reach the Government. In this scenario, Twitter was an interesting tool for lis-
tening the opinion of the population. It is an interdisciplinar task which requires
from several fields of Data Science previously introduced.

Tweets are preprocessed by means of a NLP analysis and tagged by a senti-
ment classifier. Although sentiment classification can be processed in streaming,
our NLP task requires from a prior, offline analysis in order to be successfully
addressed: we perform a preliminar analysis in Twitter to define a bag of words
composed by the most representative political terms. These words will act as the
items that form the transactions in our association rule mining analysis. In the
same manner, the previously introduced analysis of N-grams should be based
on a previous analysis due to the need of counting the words. Therefore, in this
proof of concept we feed our streaming model with this information as a result
of an external, previous analysis.

4.2 Data

Our database is composed by 261,080 tweets posted in a 45-day range, from
15th July to 29th August, 2019. The database was accomplished by using the
official Twitter API, which allows us to retrieve those tweets which present
specific targets that are related to the main Spanish political parties and the
investiture process. We define the next set of hashtags as our targets: #PSOE,
#PP, #UnidasPodemos, #CiudadanosCs, #VOX, #InvestiduraCongreso19,
#InvestiDudaARV. Figure 1(a) shows the longitudinal distribution of tweets
over time, with a maximum of 30k tweets in 25, July. In addition, data also
have been labeled by using a pre-trained model for sentiment analysis: Fig. 1(b)
displays a stream graph with the sentiments distribution in time.

As aforementioned, data has been preprocessed by means of NLP techniques
which requires from a prior study in order to define standardize tweets. After
that, we perform an analysis of our bag-of-words in order to define the terms
of interest, which are those that were representative meaning in the political
context as well as have a notably frequency. We have selected 40 terms that are
shown in Fig. 2 as frequencies of appearance and word cloud. This set of terms
are used as the items that will represent the tweets from our database.

394 P. J. López et al.

(a) Tweet distribution over time

Jul 21 Jul 28 Aug 04 Aug 11 Aug 18 Aug 25

POSITIVE

NEUTRAL

NEGATIVE

(b) Streamgraph of sentiment evolution

Fig. 1. Longitudinal distribution of the retrieved tweets though the time

5 Results

5.1 Association Rule Mining in Twitter Politics

Firstly, we analyzed the performance of our algorithms regarding the quality
of the obtained rules so that we could verify whether these rules have enough
quality when it comes to diversity and representativity. We have performed a
quantitative analysis by means of Lift as our main metric for measuring the
quality of the mined rules.

Figure 3(a) shows the evolution of the amount of rules which beat a lift
threshold while the number of tweets increases in time. Total amount of rules
is determined by the lift metric, which allows us to assess those rules that are
more representative. We can observe that the higher the lift threshold the lower
the quantity of extracted rules. A lift threshold of 1.0 retrieves an average of
70 rules while lift 1.2 and 1.4 lead to 20 and 10 rules, respectively. Regarding

A Streaming Approach for Association Rule Analysis of Spanish Politics 395

Fig. 2. Terms of interest (frequency distribution and word cloud) used in our study.
For the shake of a better comprehension, terms has been translated into English and
political personalities has been completed with tag indicating the party they belong to.

Fig. 3(b), it shows the amount of rules for a specific timestamp with regards to a
minimum support threshold. We can observe how these quantities coincide with
red line values in Fig. 3(a) when there is no support limitation.

Figure 4 displays the amount of rules over time that cite the main political
parties in Spain. The rules considered for this analysis are those which include
within its antecedent either political parties or the politicians that belong to
them. We can observe that PSOE maintains its influence through time, while
the other parties exhibit booms and busts. This behavior coincides with their
influence during the investiture process, in which PSOE acted as the candidate to
form Government, while the rest of them gain prominence in specific moments.

5.2 Concept Drift in Twitter Politics

Given the changing nature of the stream of tweets, a key aspect is the ability
of the association stream mining method to react to changes in the patterns
which may appear in the data by evolving the mined set of rules accordingly.
We use a hybrid-chord diagrams as the visualization tool for rule representation.
We have analyzed the presence of concept drift phenomenon from the retrieved
patterns, which can be represented by a change in the type of rules for a specific
concept in near timestamps. Concretely, we have focused our efforts in analyzing
Fuzzy-CSar-AFP rules considering a 1.2 lift threshold.

A comparison between Fig. 5(a) and 5(b) allows us to illustrate the concept
drift phenomenon: UP term suffers a sudden change in the found rules, going

396 P. J. López et al.

(a) Timeline (b) Minimum rule support

Fig. 3. Amount of rules as data are processed and for minimum support thresholds
in a specific time. Red-vertical line in (a) denotes the timestamp for support analysis.
Results are compared for three lift thresholds (lift ≥ 1.0, lift≥ 1.2, lift ≥ 1.4) (Color
figure online)

from a set of positive rules to neutral rules. In the same manner, Sánchez (PSOE)
exhibits a drift from negative rules to neutral rules. In addition, it shows also a
notably decrease of its importance, as it is shown by the reduction of the chord
weight with respect to the whole diagram. PP term evolves from a set of just
neutral rules to a set of neutral and positive rules in which positive has a bigger
importance. On the contrary, Government shows an opposite behavior, running
from a mix of three opinions to just neutral and positive rules. These cases are
concept drift examples, in which retrieved rules evolve into different relations
because of a variation in the pattern within the new published tweets. More
examples of this behavior are available in terms like Iglesias(UP), Investiture,
PSOE and CS. Furthermore, rules related to other terms arise in time as a
results of new pattern in the posted messages. It is the case of terms such as
VOX, Left-wing and Right-wing.

Similarly, Fig. 5(c) and 5(d) let us observe how some rules arise, such as CS
with neutral sentiment and UP with positive sentiment, while other disappear
(Investiture). We can observe that VOX loses some importance in the panorama
despite the raise of neutral sentiment. Although it has gained rule diversity, its
weight in the set of rules has decreased. On the contrary, PP and PSOE increase
their weight in the panorama by new sentiments arising. Figure 5(a) shows a
diverse scenario with several actors. An interesting behavior is performed by
the main politicians in charge of the covenant (Sánchez and Iglesias), whose
sentiment is opposed to the parties they lead. Figure 5(d) shows how at advanced
stages parties have gathered prominence in Twitter debates, that agrees on a
polarization phenomena where users have identified themselves with a posture.

In order to visualize how concept drift phenomenon appears for some key
terms, we have studied the amount of rules through time for each sentiment by
means of a streamgraph representation. For instance, in Fig. 6(a) we can observe
how PP presents a change in the amount of rules for each sentiment: it starts
with positive and neutral assessments among Twitter community. However, as

A Streaming Approach for Association Rule Analysis of Spanish Politics 397

Jul 15 Jul 18 Jul 20 Jul 23 Jul 25 Jul 30 Aug 08 Aug 16 Aug 23 Aug 27

0

2

4

6

8

10

12

14

16

18

20

22

24

26 CS PP PSOE UP VOX

Fig. 4. Streamgraph of the amount of rules with lift ≥ 1.2 related to the main political
parties by considering both political parties and the politicians that belong to them

Positive

Neutral

Negative

UP

P.Sánchez (PSOE)

A.Rivera (Cs)

PSOE

PP

Investiture

P.Iglesias (UP)

Government

CS

(a) Jul 16, 2019

Positive

Neutral

Negative

VOX

UP

P.Sánchez (PSOE)
PSOE

PP

Left-wing

Investiture

P.Iglesias (UP)

Government

Right-wing

CS

(b) Jul 18, 2019

Positive

Negative
VOX

PSOE

PP

Investiture

Government

C.Calvo (PSOE)

(c) Jul 26, 2019

Positive

Neutral

Negative
VOX

UP

PSOE

PP

Government

CS

C.Calvo (PSOE)

(d) Jul 30, 2019

Fig. 5. Hybrid-chord visualization of rules with lift ≥ 1.2 retrieved by Fuzzy-CSar at
several timestamps of the stream processing.

time passes it causes mix of sentiments, while towards the end of the stream it
generates a negative opinion with a total agreement among the users of Twitter.
Similarly, the analysis of PSOE (Fig. 6(b)) also shows a clear evolution in user
opinions. It displays an interesting pattern, causing a mix of feelings in the early
stages of the analyzed period, but finally leading to a clear predominance of

398 P. J. López et al.

Jul 21 Jul 28 Aug 04 Aug 11 Aug 18 Aug 25

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

POSITIVE

NEUTRAL

NEGATIVE

(a) PP rules streamgraph
Jul 21 Jul 28 Aug 04 Aug 11 Aug 18 Aug 25

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

POSITIVE

NEUTRAL

NEGATIVE

(b) PSOE rules streamgraph

Fig. 6. Streamgraph with evolution of rules for each sentiment for the terms (a) PP
and (b) PSOE

positive sentiment among the community. Moreover, it is a term with sufficient
relevance in the set of tweets as to be part of different rules during the entire
duration of the stream. We can check that in both cases this behavior agrees
with the hybrid-chord diagram representation in Fig. 5.

5.3 Performance Analysis

Since we pursue an unsupervised streaming analysis, a key point lies in the
performance of the system: it should rapidly respond to upcoming streams which
may lead to critical situations because of its features (continuous, unlimited and
high speed arrivals). We have analyzed the performance for each task in order to
identify those that are computationally expensive and could lead to bottlenecks
(Table 1).

Table 1. Percentage of the average time invested in each task of online processing

Task Percentage of average time

Sentiment analysis 64%

NLP 35.9%

Association rules extraction 0.09%

The study shows an average time of processing per message of 0.5 secs. Notice
that the most of the time is invested in sentiment analysis task. Therefore, using
a more sophisticated tool could lead to better results in performance.

6 Conclusions

By means of association stream mining techniques, we perform an analysis of
users’ opinion from Twitter in order to extract relations between a set of terms of

A Streaming Approach for Association Rule Analysis of Spanish Politics 399

interest and sentiments. The presented work is a novel application of streaming
association rule analysis that, as far as we are aware, has not been used in order
to analyze this type of data. The proposal continuously evolve association rules
that allow us to relate in real time different concepts of the tweet, from the
hashtags and keywords used to the sentiment with which the text was written.

Particularly, we conducted this research by working with a dataset of tweets
related to Spanish government investiture process in 2019. We selected a hot-
topic in social networks such as politics in which the online analysis of associ-
ations between terms and sentiments is quite interesting. This type of research
is highly attractive since it allows to easily mine interesting conclusions about
what is happening at every instant in an open, non-limited source such as Twit-
ter. Our study of rule dynamics shows how user opinions go through different
phases, leading to intriguing pattern variations. Its potential is prominent, since
it could allow political parties to monitor political campaigns and gain lever-
age from Twitter in order to comprehend voters preferences by analyzing users
reactions to events within the political scene.

As future lines of improvement, it could be interesting to incorporate a spam
removal step in order to filter those messages which have a clear advertising
intention. In addition, regarding the high amount of time invested in the senti-
ment analysis, the application of BERT architectures [6] in this task would be
notably beneficial in order to speed processing up. Another feasible research line
is to use this streaming approach for online detection and identification of events
for a certain topic.

References

1. Adedoyin-Olowe, M., Gaber, M.M., Dancausa, C.M., Stahl, F., Gomes, J.A.B.: A
rule dynamics approach to event detection in Twitter with its application to sports
and politics. Expert Syst. Appl. 55(C), 351–360 (2016). https://doi.org/10.1016/
j.eswa.2016.02.028

2. Caldarelli, G., et al.: A multi-level geographical study of Italian political elections
from Twitter data. PLoS ONE 9, e95809 (2014). https://doi.org/10.1371/journal.
pone.0095809

3. Chamlertwat, W., Bhattarakosol, P., Rungkasiri, T., Haruechaiyasak, C.: Discov-
ering consumer insight from Twitter via sentiment analysis. J. Univ. Comput. Sci.
18, 973–992 (2012)

4. Choy, M., Cheong, M., Laik, M.N., Shung, K.: A sentiment analysis of singa-
pore presidential election 2011 using Twitter data with census correction. arXiv
preprint:1108.5520 (2011)

5. Criado, J.I., Mart́ınez-Fuentes, G., Silván, A.: Twitter en campaña: las elec-
ciones municipales españolas de 2011. In: Revista de Investigaciones Poĺıticas y
Sociológicas (RIPS), vol. 12 (2013)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp.
4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota
(June 2019). https://doi.org/10.18653/v1/N19-1423

https://doi.org/10.1016/j.eswa.2016.02.028
https://doi.org/10.1016/j.eswa.2016.02.028
https://doi.org/10.1371/journal.pone.0095809
https://doi.org/10.1371/journal.pone.0095809
https://doi.org/10.18653/v1/N19-1423

400 P. J. López et al.

7. Effrosynidis, D., Symeonidis, S., Arampatzis, A.: A comparison of pre-processing
techniques for Twitter sentiment analysis. In: 21st International Conference on
Theory and Practice of Digital Libraries (TPDL 2017) (2017). https://doi.org/10.
1007/978-3-319-67008-9 31

8. Gama, J.: Knowledge Discovery from Data Streams. Chapman & Hall/CRC, Boca
Raton (2010)

9. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on con-
cept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 1–37 (2014). https://
doi.org/10.1145/2523813

10. Ibukun, A., Okuboyejo, O., Daramola, O.: Semantic association rule mining in
text using domain ontology. Int. J. Metadata Semant. Ontol. 12(1), 28–34 (2017).
https://doi.org/10.1504/IJMSO.2017.087646

11. Krouska, A., Troussas, C., Virvou, M.: The effect of preprocessing techniques on
Twitter sentiment analysis. In: 2016 7th International Conference on Information,
Intelligence, Systems Applications (IISA), pp. 1–5 (2016). https://doi.org/10.1109/
IISA.2016.7785373

12. Meduru, M., Mahimkar, A., Subramanian, K., Padiya, P.Y., Gunjgur, P.N.: Opin-
ion mining using Twitter feeds for political analysis. Int. J. Comput. (IJC) 25(1),
116–123 (2017)

13. Orriols-Puig, A., Casillas, J., Mart́ınez-López, F.J.: Automatic discovery of poten-
tial causal structures in marketing databases based on fuzzy association rules.
In: Casillas, J., Mart́ınez-López, F.J. (eds.) Marketing Intelligent Systems Using
Soft Computing. Studies in Fuzziness and Soft Computing, vol. 258, pp. 181–206.
Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15606-
9 14

14. Ruiz, E., Casillas, J.: Adaptive fuzzy partitions for evolving association rules in
big data stream. Int. J. Approx. Reason. 93, 463–486 (2018). https://doi.org/10.
1016/j.ijar.2017.11.014

15. Sancho-Asensio, A., Orriols-Puig, A., Casillas, J.: Evolving association streams.
Inf. Sci. 334–335, 250–272 (2016). https://doi.org/10.1016/j.ins.2015.11.043

16. Solé Farré, M., Giné, F., Valls, M., Bijedic, N.: Real time classification of political
tendency of Twitter Spanish users based on sentiment analysis. Int. J. Comput.
Inf. Eng. 12(9), 697–706 (2018). https://doi.org/10.5281/zenodo.1474549

17. Tumasjan, A., Sprenger, T., Sandner, P., Welpe, I.: Predicting elections with Twit-
ter: what 140 characters reveal about political sentiment. In: Fourth International
AAAI Conference on Weblogs and Social Media, pp. 178–185 (2010)

18. Vilares, D., Thelwall, M., Alonso, M.A.: The megaphone of the people? Spanish
SentiStrength for real-time analysis of political tweets. J. Inf. Sci. 41(6), 799–813
(2015). https://doi.org/10.1177/0165551515598926

19. Wang, H., Can, D., Kazemzadeh, A., Bar, F., Narayanan, S.: A system for real-time
Twitter sentiment analysis of 2012 U.S. presidential election cycle. In: Proceedings
of the ACL 2012 System Demonstrations, pp. 115–120. ACL (2012)

20. Zhao, J., Gui, X.: Comparison research on text pre-processing methods on Twitter
sentiment analysis. IEEE Access 5, 2870–2879 (2017). https://doi.org/10.1109/
ACCESS.2017.2672677

https://doi.org/10.1007/978-3-319-67008-9_31
https://doi.org/10.1007/978-3-319-67008-9_31
https://doi.org/10.1145/2523813
https://doi.org/10.1145/2523813
https://doi.org/10.1504/IJMSO.2017.087646
https://doi.org/10.1109/IISA.2016.7785373
https://doi.org/10.1109/IISA.2016.7785373
https://doi.org/10.1007/978-3-642-15606-9_14
https://doi.org/10.1007/978-3-642-15606-9_14
https://doi.org/10.1016/j.ijar.2017.11.014
https://doi.org/10.1016/j.ijar.2017.11.014
https://doi.org/10.1016/j.ins.2015.11.043
https://doi.org/10.5281/zenodo.1474549
https://doi.org/10.1177/0165551515598926
https://doi.org/10.1109/ACCESS.2017.2672677
https://doi.org/10.1109/ACCESS.2017.2672677

On the Trade-off Between Robustness
and Complexity in Data Pipelines

Aiswarya Raj Munappy1, Jan Bosch1(B), and Helena Homström Olsson2

1 Department of Computer Science and Engineering, Chalmers University of
Technology, Hörselg̊angen 11, 412 96 Gothenburg, Sweden

{aiswarya,jan.bosch}@chalmers.se
2 Department of Computer Science and Media Technology, Malmö University,

Nordenskiöldsgatan, 211 19 Malmö, Sweden
helena.holmstrom.olsson@mau.se

Abstract. Data pipelines play an important role throughout the
data management process whether these are used for data analyt-
ics or machine learning. Data-driven organizations can make use of
data pipelines for producing good quality data applications. Moreover,
data pipelines ensure end-to-end velocity by automating the processes
involved in extracting, transforming, combining, validating, and loading
data for further analysis and visualization. However, the robustness of
data pipelines is equally important since unhealthy data pipelines can
add more noise to the input data. This paper identifies the essential ele-
ments for a robust data pipeline and analyses the trade-off between data
pipeline robustness and complexity.

Keywords: Data pipelines · Trade-off · Robustness · Complexity ·
Composite nodes · Data quality

1 Introduction

The era of Artificial Intelligence and Big Data is bringing the urgent need of
advanced mechanisms for the acquisition, management, and analysis of data [6].
Data analysis techniques like neural networks, data mining, machine learn-
ing, signal processing, and visualization methods demand high-quality data [2].
Recently, many organizations have begun implementing advanced, data-driven,
and real-time analytics for both operational and strategic decision making [3,9].
Machine learning algorithms are the foundation for such initiatives [4]. However,
poor data quality is the major factor challenging advanced analytics implementa-
tions as well as the performance of machine learning models [1]. To achieve good
data quality, it is mandatory to control and co-ordinate end-to-end data process.
Data pipelines play an important role throughout the data process whether it
is data analytics, machine learning, or deep learning [8]. The activities in a
data pipeline can be manual, semi-automated, or completely automated (with-
out any human intervention) and can be triggered periodically by scripts that
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 401–415, 2021.
https://doi.org/10.1007/978-3-030-85347-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_29&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_29

402 A. R. Munappy et al.

run all the time. The activities in the pipeline are interchangeable enough such
that the order of their execution does not matter. Alternatively, the order may
be extremely important because the activities depend on where in the pipeline
they run. In practice, data pipelines often encounter failures at different stages
and the impact of the failure is carried to the successive steps causing accumu-
lation of errors thereby negatively affecting the quality of data application. A
failure or bug in a single step of a data pipeline has cascading effects that can
require hours of manual intervention and cleanup. These kinds of issues consume
time and effort of data engineers, data scientists, and data analysts which make
teams wary of pushing out even the most innocuous changes to a data pipeline.
Moreover, data quality is negatively affected causing eroded end-user confidence.

Although data pipelines facilitate automated data flow from the data source
to the data sink, they can encounter failures at any stage of the data life cycle.
Robust data pipelines are strong and healthy data pipelines that are capable
of surviving failures. Robustness of data pipelines is critical as data pipelines
are built to ensure reliability, transparency, reproducibility, and traceability in
the data management process. Therefore, data pipelines should be monitored to
detect the failure at every stage. The detection of failures wouldn’t be enough to
provide sufficient strength to the pipeline. Further, defining mitigation strategies
is required to reduce the impact of failure. In this study, we model data pipelines
with components called nodes and connectors with different capabilities. These
components help to avoid data leakages through the links of the data pipeline
and provide better traceability, monitoring, and failure notification. However,
complexity is induced through the inclusion of components added to ensure
robustness.

The contribution of this paper is two-fold. First, it identifies the essential
components of a robust data pipeline. Second, it details the trade-off between
robustness and complexity in a data pipeline. The design of a conceptual model
for a robust data pipeline and its components are validated through a case study
with three leading companies in telecommunication and automobile domains.
The remainder of this paper is organized as follows. Section 2 discusses the
research methodology adopted for conducting the study. Section 3 introduces
the use cases and Sect. 4 describes the data pipeline model, its components, and
capabilities. Section 5 details the conceptual model for robust data pipelines and
Sect. 6 explains the trade-off between data pipeline robustness and complexity.
Section 7 summarizes our study and the conclusions.

2 Research Methodology

The objective of this study is to explore the existing data pipelines at three case
companies, identify the components of a pipeline, and to develop a conceptual

On the Trade-off Between Robustness and Complexity in Data Pipelines 403

model of a robust data pipeline with the least complexity. Based on the study
objectives, we formulated the following research questions:

– RQ1: What are the essential components of a robust data pipeline?
– RQ2: How is the data pipeline complexity impacted when we apply our

conceptual model of robust data pipeline?

2.1 Multiple Case Study

This study uses a multi-case study with an interpretive approach [11] as it allows
the researchers to explore, study, and understand real-world cases in its context
in more depth [11,13]. Multi-case study can facilitate a deep understanding of
a topic through different lenses. Second, the multiple case study approach can
investigate contemporary real-life situations and can provide a foundation for
the application of ideas and extension of methods. Each case in the study per-
tains to a use case that makes use of data. Table 1 details the selected five use
cases and roles of interviewed experts from three case companies.

Company A: Company A is a telecommunications equipment manufacturer
that also provides solutions and services for managing network operations.
Within Company A, we studied three data pipelines A1, A2, and A3.

Company B: Company B is a leading multinational automobile manufacturer.
Within Company B, we have studied a data pipeline B1 that they use to create
data quality reports based on the data collected from their manufacturing units,
repair centers, and delivery centers.

Company C: Company C is an innovation center of an automotive company.
Data pipeline C1 collects data from the data lake located at the development
center, analyses it, and creates data quality reports out of it. According to the
reports, actions are taken to fix the data quality issues and the good quality data
thus generated is stored in refined storage for training their machine learning
models.

2.2 Data Collection

Semi-structured interviews and weekly meetings [12] were the two research meth-
ods adopted for data collection. An interview guide with 30 questions categorized
into six sections was formulated for conducting semi-structured interviews. The
questions in the interview guide was formulated based on the objectives of the
research which was to explore and study the applications consuming data in
the companies. The first two sections intended on the background of the inter-
viewee. Next two sections focused on the data life cycle activities in various
use-cases. The remaining questions focused on the data pipelines failures and
the final section had questions about data testing and monitoring practices. All
interviews were conducted virtually via videoconferencing due to the COVID-
19 pandemic. The duration of the interviews were between 60 and 80 min and

404 A. R. Munappy et al.

Table 1. Use cases and roles of interviewed Experts

Company Use cases Interviewed Experts

ID Role

A Pipeline for Data
Collection

R1 Senior Data Scientist

A Pipeline for Data
Governance

R2 Data Scientist

R3 Analytics System
Architect

R4 Software Developer

A Data Pipeline for Machine
learning model

R5 Data Scientist

R6 Senior Data Scientist

R7 Software Developer

R8 Senior Data Scientist

B Pipeline for Data
Collection

R9 Senior Data Engineer

R10 Data Engineer

R11 Data Engineer

R12 Data Analyst and
Superuser

C Pipeline for Data Quality
monitoring

R13 Director of data analytics
team

R14 Data pipeline developer

R15 Software Developer

R16 Product Owner for data
analytics team

were recorded with the permission of respondents and were transcribed later
for analysis. Besides, the data was collected through by the first author who
attends weekly meetings and discussions with data scientists and data analysts
at companies A, B as part of action research.

2.3 Data Analysis

A summary of the interview was prepared by the first author to create an over-
all idea about the use cases, data pipeline stages, and associated challenges.
The interview transcripts were investigated for identifying the stages of the data
pipeline, the main purpose of the data pipeline, similarities, and dissimilarities
between the use cases. The transcripts were open coded [5] to build themes from
the transcripts. The first author prepared notes during the meetings with the
team and analyzed it further. These notes together with the codes from tran-

On the Trade-off Between Robustness and Complexity in Data Pipelines 405

scripts were further analyzed to obtain an end-to-end view of data pipelines at
the case companies. The themes developed from the transcripts helped to under-
stand the parts common to all use cases. The first author developed the findings
of the study after careful analysis of the empirical data and modified it based
on the inputs from the other two authors which were then validated with the
interviewees from the companies by conducting a follow-up meeting. For further
validation, the findings were also presented before another panel including super
users, managers, software developers, data engineers, and data scientists at all
three companies. The reflections were about the increase in complexity that is
induced with the introduction of fault detection, mitigation components.

3 Use Cases

Data was collected from three embedded system companies anonymized as com-
panies A, B, and C owing to a confidentiality agreement. This section presents
five data pipelines from these three case companies A, B, and C. For confiden-
tiality reasons, we can only describe each data pipeline at a very high level of
abstraction. Significant details have been studied by the authors, but cannot be
presented in the paper.

3.1 Case A1: Data Collection Pipeline

The Company A has to collect data from various globally distributed devices
which is a demanding task. The data collected from devices located in another
country or customer network requires compliance with the legal agreement.
Moreover, sensitive information like user details will be there in the network
data which demands responsible attention. Data generated by sources can be of
different formats and frequencies. For instance, data generation can be continu-
ous, intermittent, or batches. Consequently, the data collection pipeline should
be adaptable with different intensities of data flow. Figure 1 illustrates the auto-
matic data collection pipeline that does data collection from multiple distributed
devices. In this scenario, the data collection device is placed inside a piece of
equipment owned by customers. However, the device data is extracted by filtering
the customer’s sensitive information. Base stations have data generation devices
called nodes as well as a device for monitoring and managing the nodes. Data col-
lection agents at the customer premise can interact either with nodes directly.
However, access service is used for authentication. The data thus collected is
transmitted through a secure tunnel to the data collection toolkit located at the
company premise which also has access service for authentication. Data collec-
tion toolkit received the data and store it in the central data storage from where
the teams can access the data using their data user credentials.

3.2 Case A2: Data Governance Pipeline

Figure 2 shows the data pipeline that serves the teams in the company who
are working with data according to their requirement (The term ‘data’, here

406 A. R. Munappy et al.

Fig. 1. Data collection pipeline - A1

indicate the link for downloading original data). The data pipeline A2 receives
two types of data dumps: internal and external. The internal data dump is
the data that is ingested by the teams inside the company and external data
dump is the data collected directly from the devices in the fields. The data
pipeline in case A2 gathers both types of data dumps from various sources and
stores it in a data warehouse. The data ingestion method for internal data and
external data are different. i.e. the data ingestion method varies according to
the data source. The ingested data from multiple assorted sources are stored in
the refined data storage for future use. The data can be encrypted and requires
decryption before storing it for further uses. Therefore, data archiver module
sends encrypted data dump to the third-party services for decryption. Decrypted
links from the third party are sent to the archiver module which then stores it in
the data storage. Thus, data from several distributed sources are made available
in a central location. Teams can access data from any stage of the pipeline.
The monitoring mechanism in the pipeline is manually carried out by the ‘flow
guardian’ or data pipeline owner who manages the issues in the pipeline by
arranging fix.

Fig. 2. Data governance pipeline - A2

3.3 Case A3: Data Pipeline for Machine Learning Applications

Figure 3 shows the data pipeline for machine learning applications. Ingest, store,
transform, and aggregate are the four main steps in the data pipeline of case A3.
The data generated by the source is collected from the devices that are deployed

On the Trade-off Between Robustness and Complexity in Data Pipelines 407

in the dedicated zone in the field. These dedicated zones in the field which collects
the data and ingest into pipeline are connected to the data ingestion module.
A periodic check is performed to find out the compressed files. If a compressed
file is encountered, a transaction is logged and the file is downloaded. These
files are loaded into the archive directory of the data cluster. Machine learning
models cannot use the data directly from the cluster because either the data is
in compressed form or data logs collected from different devices are of different
formats. Data transformation step in the data pipeline checks for the new files in
the archive directory and when found it is fetched, uncompressed, and processed
to convert it to an appropriate format. Data aggregation module receives this
uncompressed data, aggregate and summarize to form structured data which the
machine learning models can use.

Fig. 3. Data pipeline for machine learning applications - A3

3.4 Case B1: Data Collection Pipeline

Three types of data plant data, delivery data, warranty data and repair data
are collected and stored by Company B and is distributed to all the teams and
co-working organization spread across the world. Manufacturing plants, service
centers, delivery centers and warranty offices are the sources from which these
data are collected. Every 24 h, from distributed manufacturing plants, company
B collects product data. For each product built there, data is generated by these
manufacturing units. The data collection agent at company B do not collect
all the data generated by the plants. The data which is to be collected from
the plants is demanded by the Group Quality IT platform in the company.
In the company’s warehouse, the data requested by the delivery centers are
also collected and stored. The data collection pipeline working in company B
is illustrated in Fig. 4. The data collected from different sources are in different
formats and volumes and as a result data transfer mechanism and data storage
are also different. The data is transformed into a uniform format and stored in
data warehouse after ingesting it from the primary storage. For teams as well as
other organizations that demands data, it then act as a supplier. For instance,
data about the products that are manufactured in the plants are a requisite for
the delivery centers.

3.5 Case C1: Data Quality Analysis Pipeline

Company B collects and stores data from manufacturing plants, delivery centers.
Company C collects data from the data pipeline of company B and creates data

408 A. R. Munappy et al.

Fig. 4. Data collection pipeline - B1

quality reports which are used by the data scientists team at company C for
analyzing the product quality. For example, the report can be used to identify
the product model that is sent to repair centers frequently. The investigation
is initiated if the data quality is not satisfactory, and actions are taken to fix
the data quality issues. Company B sends data through a private network to
company C and store it in their data storage. Data scientists from company
C access the data for creating reports and training machine learning models.
Figure 5 illustrates the data pipeline for data quality analysis at company C.

Fig. 5. Data quality analysis pipeline - C1

4 Components of a Robust Data Pipeline

This section gives an overview of components in a conceptual model of the
data pipeline. Data Pipelines are a collection of data processing components
connected such that the output of one component becomes the input to one or
more others. Data-flow through the data pipelines starts from a data source and
ends in a data sink. Use cases in Sect. 4 shows that data undergoes aggregation,
cleaning, transformation, and processing before reaching the destination or data
sink. Each of these steps can induce data error and data loss. Practitioners R2,
R5, R6, R8, and R12 indicated that data loss happens during the process of
aggregation, transformation, and cleaning. Therefore, we can infer that each
component in the data pipeline is a potential threat to data quality.

Organizations depending on data for decision-making have to ensure the
robustness of their data pipelines. A data pipeline is said to be robust when it
is strong and healthy which means that the data pipeline should be capable of
recovering from failures and produce the intended output with minimum errors.

On the Trade-off Between Robustness and Complexity in Data Pipelines 409

To design such a robust data pipeline functionalities such as monitoring, fault
detection and fault recovery are essential. To enable fault recovery, mitigation
strategies are required. To prevent data breaches, authentication mechanisms
should be included in the data pipeline. These functionalities are formulated
based on the MECE principle. The Mutually Exclusive, Completely Exhaustive
(MECE) is a methodology propounded by McKinsey and Company which means
no omission and no duplication [10]. Therefore, to implement strong and healthy
data pipelines, we need the components that perform data-flow monitoring, fault
detection, mitigation strategies and authentication mechanism.

We have modelled data pipelines with basic elements called nodes and con-
nectors as shown in Fig. 6. All data pipeline starts with a source node that
produces data and ends with a sink node that is the ultimate destination of
the data flowing through that pipeline. All the nodes in between the source
and the sink are intermediate nodes as illustrated in Fig. 6(c). The ability of a
component to perform an activity or task is called its capability. Therefore, the
functionalities such as fault detection, fault recovery, authentication are incor-
porated as capabilities. Capabilities in a data pipeline can be classified as node
level capabilities and connector level capabilities.

(a) Source Node (b) Intermediate Node (c) Sink Node

Fig. 6. Types of nodes

4.1 Node Level Capabilities

Node level Capability is the ability of a node to perform a certain activity. Data
generation, data collection, data ingestion, data storage, data processing, and
data reception are node level capabilities.

Data Generation: Data generation is typically the capability associated with
the source node. However, there is no strict requirement that the source node
of the data pipeline should have data generation capability. For instance, the
source node in case C1 can’t generate data. Instead, it can store data. Smart
homes, grids, sensors in airplanes, networks, wearable devices, mobile phones,
cars, etc. can be called data generation nodes.

Data Collection: Data collection nodes gather data from the source nodes.
Most often, source nodes will be multiple and distributed. In those cases, data
collection nodes will be also multiple and distributed as in cases A1, A2, A3,

410 A. R. Munappy et al.

and B1. The data collection node performs the activity according to the legal
agreement. Data generated/stored at the source can be in huge volumes. How-
ever, not all data are collected by the data collection agent due to the following
reasons.

– Data collection agent doesn’t have access to entire data (Case A1, A2, A3)
– Data pipeline requires only part of the data from the source (Case C1)
– Data collection agent can’t handle huge volume of data (Case B1)

Therefore, either data collection node filters the data that is required for the
data pipeline or the data source sends filtered data to the data collection agent.

Data Ingestion: Data ingestion is the process of collecting data from multiple
assorted sources. Data ingestion can be real-time, as batches, or as a combina-
tion of real-time and batches. Kafka, Hive, or Spark are the tools used in the use
cases described in the previous section. Cases A1, A2, and A3 use Kafka whereas
case B1 and C1 use Hive, Spark, and Kafka as data ingestion tools. According
to the type of data, the data ingestion method also varies within a single data
pipeline. For instance, case A2 at company A has Continuous Integration data
as well as Continuous Deployment data ingested using different methods.

Data Storage: Data Storage is often repeated in a pipeline. There are different
types of storage such as data lakes, data warehouses, file systems, etc. Storage of
data in raw format is critical as data processing, transformation, and aggregation
mechanisms may cause data loss. Data granularity is lost during aggregation and
transformation and consequently the data will come less suitable for applications
that demands fine-grained data [7]. Moreover, machine learning models trained
with processed data might not perform well while encountering real-time raw
data. Therefore, data stored for the future is better in its original form.

Data Processing: Data processing is an umbrella term that includes several
operations like data aggregation, data transformation, data extraction, data
selection, etc. Real-world data is often incomplete, inconsistent, and/or miss-
ing certain behaviors, and is likely to contain several errors. Data pre-processing
is an important capability implemented for resolving such issues.

Data Reception: Data reception is the capability of all nodes in a data pipeline
as all except data sources are receiving data from the previous node.

4.2 Connector Level Capabilities

Connector level Capability is the ability of the connector to perform a certain
activity. Capabilities like authentication, monitoring, fault detection, and miti-
gation are connector level capabilities.

On the Trade-off Between Robustness and Complexity in Data Pipelines 411

Authentication: To ensure the security of the data flowing through the
pipeline, authentication is essential. Authentication validates the right to access
data and information, and protect against identity theft and fraud. Moreover,
it ensures security tasks such as confidentiality, integrity, and availability. Con-
fidentiality restricts data access to authorized persons whereas integrity ensures
that data is modified only by authorized persons. Availability guarantees data
availability to authorized users. Thus authentication is a central component that
guards the data pipeline against external attacks.

Fault Detection: Continuous monitoring and fault detection is required in the
pipeline to prevent data leakage and thereby maintaining data quality. With the
increase in the number of nodes in the data pipeline, the chance for data leakage
also increases. Therefore, it is necessary to anticipate failures throughout the
data pipeline. For instance, in data pipeline A3, not all encrypted data links
sent to the third party for decryption are sent back, leading to missing files and
as a result, the quality of the final data product decreases. Similarly, each of
the stages may encounter failures resulting in the degradation of data quality.
Identifying a complete and exhaustive list of faults at each stage of the data
pipeline is not a practical task. However, it is possible to define typical faults
and thus try to minimize data loss or data quality degradation. Data Validation
is a special type of fault detection method consisting of automated checks, per-
formed to guarantee that the data input is rational and acceptable.

Data Validation: Data errors are a common challenge that cause significant
performance degradation in data-intensive software systems. To ensure early
detection of erroneous data and avoid the accumulation of bad data, research
and industrial practice suggest incorporation of automated data validation into
data pipelines. Thus, data validation is a critical component in the data pipeline
that can ensure data quality. Implementing the data validation component at
all steps of the data pipeline allows better traceability. On the other hand, it
demands considerable time and effort. Also, it increases the data pipeline com-
plexity.

Mitigation Strategies: Mitigation strategies are adopted to make the extent
of an impact less severe. Detection of faults will not be sufficient in building
robust data pipelines. Mitigation strategies also should be defined wherever pos-
sible so that the data-flow can continue by ameliorating the effect of faults.
Mitigation strategies involve mitigation goals, mitigation actions, and an action
plan for implementation. Mitigation strategies can be manual, automated, or
semi-automated. For instance, a change in data format can be easily detected
and as a mitigation strategy, the data can be transformed such that it becomes
compatible with the data storage of the data pipeline. Sending alarms is another
mitigation strategy that requires manual intervention. Although sending alarms
is one of the mitigation strategies, it is added separately here since all practi-
tioners mentioned that sending alarms is the first action taken while detecting a

412 A. R. Munappy et al.

fault. Case A1, A2, A3, and B1 adopt this as their default and manual mitigation
strategy even though it is not added as a component in their pipeline. Case C1
receives an alarm from the manufacturing units, repair units, and delivery units
when their data sending job fails. According to experts R3, R9, R10, R11, and
R14 sending alarms should be done even with the defined mitigation strategies
as mitigation strategies does not resolve the fault completely.

Sending Alarms: Sending alarm is a mechanism through which the teams
working with the data pipeline and consumers of the data pipeline can be notified
whenever something unexpected happens. This strategy can be adopted in case
of faults that cannot be fixed automatically or when the fault is encountered
for the first time. Sending alarms to the responsible person is the most simple
mitigation strategy. However, sending alarms continuously to the same person
for the same fault should be prevented.

5 Conceptual Model of Robust Data Pipeline

The data pipelines described in Sect. 3 are operational. However, practitioners
mentioned that they are not robust. Data pipelines in case A3 and case C1
are manually monitored which ensures that the flow of data is not broken in
between while the remaining cases do not have monitoring or fault detection.
Data pipeline connectors are prone to breakage at any time due to unexpected
load, change in data format or malfunctioning of nodes. Consequently, data-flow
will be interrupted which in turn leads to poor quality data product. Therefore,
our model has connector level capabilities that can guard the data flow through
the data pipeline. Failures in the data pipeline can be detected and mitigated
using fault detection and mitigation components.

The Fig. 7 illustrates the conceptual model of a robust data pipeline that
can be implemented for case A3. This data pipeline utilizes data generated by
devices employed at base stations that act as data sources. Data collection is
performed by a data collection agent that authenticates itself and gets access to
data generated at the source. The data thus collected is stored in the raw data
storage. Data ingestion is the process through which raw data stored in multiple
repositories are ingested and made available to the data pipeline. Through data
extraction, required data from the raw data dumps are obtained. The company
uses supervised algorithms for training the machine learning model. Therefore,
the data labeling step in the data pipeline annotates unlabeled data and stores
it in the refined data storage from where it is validated and fed to the machine
learning models for training. The trained model is evaluated using a test data set
and when sufficient performance is achieved, the model is deployed. The deployed
model also produces data while in operation. This data is again collected by the
data collection agent and the cycle repeats. Each connector in the data pipeline
has got six capabilities. Data transmission is the default activity performed by
the connectors. Authentication, fault detection, data validation, mitigation, and
sending alarms are the other five functionalities performed by the connectors

On the Trade-off Between Robustness and Complexity in Data Pipelines 413

among which fault detection, mitigation, and sending alarms are the capabilities
that should be implemented at all the connectors whereas data validation and
authentication are not mandatory for all connectors.

Fig. 7. Robust data pipeline model for case A3

6 Trade-off Between Data Pipeline Robustness
and Complexity

Robustness is a critical factor for the data pipelines presented in Sect. 3 as they
are serving various data applications. To ensure robustness, we have to contin-
uously monitor the data pipeline and detect the faults at each stage. Further,
we have to define mitigation strategies for reducing the impact of the faults.
However, adding more details to the data pipeline increases complexity.

Robustness is critical for data pipelines to produce good quality software
products. Section 5 clearly details how to model a robust data pipeline and what
components need to be included to maintain data pipeline health. Traceability
is also a factor contributing to robustness that can be ensured through the
separation of capabilities at the node level. Although a node can have more than
one capability, for better traceability we assign mutually exclusive capabilities
to each node in the data pipeline. For instance, if the data processing node has
the capabilities to aggregate and transform the data, it is difficult to identify
whether aggregation or transformation induced error. It would become even
worse if the fault is with the link between data generation and data storage
as fault at the initial stage is carried until the last step. Furthermore, it takes
time to identify the person who is responsible to fix the data pipeline breakage.
However, modeling such a data pipeline increases the complexity of it from the
developer’s point of view. Practitioners R4 and R15 who are software developers
and R14 who is a data pipeline developer raised the concern of difficulty in
implementation. R4 and R14 also pointed out the difficulty in identifying all
possible faults in the data pipeline stages.

None of the pipelines explained in Sect. 3 has implemented connector level
capabilities. Thus, identifying the exact point that induced error is difficult with

414 A. R. Munappy et al.

them. Moreover, significant human effort is required to fix the data pipeline in
case of failure. Because data errors are identified at the final stage and once iden-
tified they have to manually search for the broken link in the data pipeline. Nev-
ertheless, all those pipelines are comparatively easy to implement. Here “com-
plexity” of a given data pipeline model is measured in terms of the number of
components present in it. Therefore, the increased number of capabilities going
from left to right is a warning sign of unnecessary complexity. On the other
hand, very few connector capabilities are a warning sign of a poor data pipeline
with few quality securing capabilities. Thus, robustness and complexity are two
quality factors which are not attainable at the same time. The only possible
option is to prioritize one factor without completely compromising the other.

7 Conclusions

In this paper, we have shown that robustness-complexity trade-off play an impor-
tant role while modelling data pipelines and we have to prioritize either robust-
ness or reducing complexity. Using five case studies we have demonstrated that
it can be worthwhile to introduce connector level capabilities and node-level
capabilities to maximize the quality of the data product. Further, we identified
that robust data pipelines need capabilities such as fault detection, and miti-
gation strategies. However, an increased number of capabilities going from left
to right of a data pipeline is a warning sign of unnecessary complexity. On the
other hand, if there are very few connector capabilities, it is a warning sign of a
poor data pipeline with quality securing capabilities. From the study, we learned
that increased level of detail during data pipeline implementation saves effort
and increases quality while increased complexity might still be acceptable. Our
empirical study results show that it is essential to find the right balance between
data pipeline complexity and robustness. Nevertheless, practitioners feel that
robustness needs to be prioritized due to two reasons. First, data quality is criti-
cal for data-driven companies. Second, increased complexity can be compromised
since data pipelines can be used for a long duration once implemented. However,
we have not conducted a complexity-robustness analysis to find out when and
how robustness needs to be compromised in a specific context to achieve sim-
plicity in data pipelines. As future work, we plan to extend this study and frame
guidelines for using composite nodes for reducing the complexity.

Acknowledgment. This work is in part supported by the Software Center. The
authors would also like to express their gratitude for all the support provided by three
Software Center companies involved in the study.

References

1. Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the
big data era. Data Sci. J. 14 (2015)

2. Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and
technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)

On the Trade-off Between Robustness and Complexity in Data Pipelines 415

3. Goodhope, K., et al.: Building linkedin’s real-time activity data pipeline. IEEE
Data Eng. Bull. 35(2), 33–45 (2012)

4. Gudivada, V.N.: Data analytics: fundamentals. In: Data Analytics for Intelligent
Transportation Systems, pp. 31–67. Elsevier (2017)

5. Holton, J.A.: The coding process and its challenges. Sage Handb. Grounded Theory
3, 265–289 (2007)

6. Hu, H., Wen, Y., Chua, T.S., Li, X.: Toward scalable systems for big data analytics:
a technology tutorial. IEEE Access 2, 652–687 (2014)

7. Munappy, A., Bosch, J., Olsson, H.H., Arpteg, A., Brinne, B.: Data management
challenges for deep learning. In: 2019 45th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA), pp. 140–147. IEEE (2019)

8. O’Donovan, P., Leahy, K., Bruton, K., O’Sullivan, D.T.J.: An industrial big data
pipeline for data-driven analytics maintenance applications in large-scale smart
manufacturing facilities. J. Big Data 2(1), 1–26 (2015). https://doi.org/10.1186/
s40537-015-0034-z

9. Provost, F., Fawcett, T.: Data science and its relationship to big data and data-
driven decision making. Big Data 1(1), 51–59 (2013)

10. Rasiel, E.M.: The McKinsey Way. McGraw Hill, New York (2019)
11. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research

in software engineering. Empir. Softw. Eng. 14(2), 131 (2009)
12. Singer, J., Sim, S.E., Lethbridge, T.C.: Software engineering data collection for

field studies. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to Advanced
Empirical Software Engineering, pp. 9–34. Springer, London (2008). https://doi.
org/10.1007/978-1-84800-044-5 1

13. Verner, J.M., Sampson, J., Tosic, V., Bakar, N.A., Kitchenham, B.A.: Guidelines
for industrially-based multiple case studies in software engineering. In: 2009 Third
International Conference on Research Challenges in Information Science, pp. 313–
324. IEEE (2009)

https://doi.org/10.1186/s40537-015-0034-z
https://doi.org/10.1186/s40537-015-0034-z
https://doi.org/10.1007/978-1-84800-044-5_1
https://doi.org/10.1007/978-1-84800-044-5_1

Big Data Quality Models: A Systematic
Mapping Study

Osbel Montero1(B) , Yania Crespo1, and Mario Piatini2

1 School of Computer Engineering, University of Valladolid, Valladolid, Spain
2 Information Technologies and Systems Institute (ITSI), University of Castilla-La Mancha,

13071 Ciudad Real, Spain

Abstract. In the last decade, we have been witnesses of the considerable incre-
ment of projects based on big data applications and the evident growing interest in
implementing these kind of systems. It has become a great challenge to assure the
expected quality in Big Data contexts. In this paper, a Systematic Mapping Study
(SMS) is conducted to reveal what quality models have been analyzed and pro-
posed in the context of Big Data in the last decade, and which quality dimensions
support those quality models. The results are exposed and analyzed for further
research.

Keywords: Big data · Quality dimensions · Data quality models

1 Introduction

Big Data involves the management of large datasets that due to its size and structure
exceed the capabilities of traditional programming tools for collecting, storing, and
processing data in a reasonable time. In data generation the main big data sources are
users, applications, services, systems, sensors, and technological devices, among others
[18]. Them all contribute to BigData in the form of documents, images, videos, software,
files with a multi-diverse format style. The huge volume and heterogeneity present in
Big Data applications contribute to the complexity of any engineering process involved.

Currently, different kinds of Big Data applications can be identified such as Rec-
ommendations, Feature Prediction and Pattern Recognition [72]. The real-life domains
of big data applications include smart cities, smart carts, healthcare systems, financial,
business intelligence, environmental control and so on.

The importance and relevance that BigData is acquiring these days and the promising
future we can expect on this knowledge area has been discussed widely. The lack of
research on the adequate test modelling and coverage analysis for big data application
systems, and the clear practitioners’ demand for having stablished a well-defined test
coverage criterion is an important issue [62]. In addition, how to effectively ensure the
quality of big data applications is still a hot research issue [72].

© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 416–430, 2021.
https://doi.org/10.1007/978-3-030-85347-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_30&domain=pdf
http://orcid.org/0000-0002-9069-1321
https://doi.org/10.1007/978-3-030-85347-1_30

Big Data Quality Models: A Systematic Mapping Study 417

For defining a Big Data quality evaluation system, is necessary to know what quality
models have been investigated and proposed. The reminder of this study is organized as
follows: Sect. 2 exposes related papers where similar topics were investigated; Sect. 3
presents the research methodology used to conduct this study. In Sect. 4 we reveals
answers to our research questions, and finally in Sect. 5, we discuss considerations
based on our analysis and threats to validity our mapping study.

2 Related Work

In [52] a review on key non-functional requirements in the domain of Big Data systems
is presented, findingmore than 40 different quality attributes related to these systems and
concluding that non-functional requirements play a vital role at software architecture in
Big Data systems.

[71] presents another review that evaluates the state of the art of proposed Quality
of Services (QoS) approaches on the Internet of Things (IoT) where one of the research
questions mentions the quality factors that quality approaches consider when measuring
performance.

The research that comes closest to the actual work is [53]. In this paper a SMS is
presented involving concepts like “quality models”, “quality dimensions” and “machine
learning”. A selection of 10 papers is done where some quality models are reviewed and
a total of 16 quality attributes are presented that have some effects on machine learning
systems. Finally, the review is evaluated by conducting a set of Interviews with other
experts.

3 Methodology

By applying a SMS, we attempts to identify the quality models that have been proposed
to evaluate Big Data applications in the last decade by making a distinction between the
different types of quality models applied in the context of Big Data applications.

3.1 Definition of the Research Questions

• RQ1:What qualitymodels related to BigData have been proposed in the last 10 years?
• RQ2: For which Big Data context have these quality models been proposed?
• RQ3: What Big Data quality characteristics are proposed as part of these quality
models?

• RQ4: Have Big Data quality models been proposed to be applied to any type of Big
Data application?

3.2 Inclusion/Exclusion Criteria

In Table 1, pre-defined criteria for inclusion/exclusion of the literature are presented.
Papers included are published between 1st January 2010 and 31st December 2020whose
main contribution is the presentation of new or adapted quality models for Big Data

418 O. Montero et al.

applications or even the discussion of existing ones.A small databasewas preparedwhich
contained all documents and a special column was defined to determine the expected
level of correlation that the document might have with the topic being investigated.

Papers excluded where those duplicated in different databases or published in Jour-
nals and Conferences with the same topic. Papers which could not answer any of the
research questions proposed were equally excluded. In addition, those that could not be
accessed, or an additional payment was requested for access the full content, or with
non-English redaction were similarly excluded.

Table 1. Inclusion and exclusion criteria

Inclusion criteria

Papers published between 2010 and 2020

Papers whose main topic is the presentation or discussion of a quality model for Big Data
applications

Desirable: Papers published in a trustworthy and indexed source

Desirable: Papers with a peer-review

Exclusion criteria

Duplicate papers in different databases or under the same topic in different Conference papers
and Journal articles

Papers that do not answer any of the research questions

Papers that require an additional payment to provide access

Papers with a low quality in the defined methodology

Papers with non-English redaction

3.3 Search and Selection Process

The following search string: “Big Data” AND “Quality Model” was defined to obtain
papers which correlate these two concepts. After processing the results of these searches,
other papers could be analyzed by the applying “snowballing”.

Because the amount of information we are trying to collect, analyze and classify,
we will focus on this paper the search on scientific databases like SCOPUS and ACM.
Figure 1 resumes the steps conducted at this SMS following the review protocol and
finally afiltered excel sheet has beenobtainedwith the primary studies selected. SCOPUS
database indexes also publications indexed in other databases such as IEEE and Springer.
In such cases, a depuration was executed to eliminate duplicates.

After searching in Scopus andACMdatabases additional papers were included using
snowballing. From the total of 958 papers obtained, the inclusion/exclusion criteria were
applied and finally a resumed of 67 papers were selected as the primary studies.

Reviewing the number of citations in the primary studies, it has been found that
five papers stand out from the rest. The most cited with 121 citations, is related to

Big Data Quality Models: A Systematic Mapping Study 419

measuring the quality of Open Government Data using data quality dimensions [65].
With 76 citations, [42] proposes a Quality-in-use-model through their “3As model”
which involves Contextual Adequacy, Operational Adequacy and Temporal Adequacy.
The third most cited paper has 66 citations and explores the Quality-of-Service (QoS)
approaches in the context of Internet of Things (IoT) [71]. In [29] is reviewed the quality
of social media data in big data architecture and has 48 citations. Finally, [39] with 40
citations, proposes a framework to evaluate the quality of open data portals on a national
level.

Fig. 1. Facets inside the search and filtering process.

3.4 Quality Assessment

To assess the quality of the chosen literature some parameters were defined as Quality
Assessments (QA) such as:

• QA-1: Are the objectives and the scope clearly defined?
• QA-2: Do they proposes/discusses a quality model or related approaches? (if yes, the
quality model is applied to a specific Big Data application?)

• QA-3: Do they discuss and present quality dimensions/characteristics for specific
purpose?

• QA-4: Do they provide assessment metrics?
• QA-5: Where the results compared to other studies?
• QA-6: Where the results evaluated?
• QA-7: Do they present open themes for further searches?

At this point, the next step was assessing the quality to the selected primary studies
which overall results are presented in Table 2. This is a process which complements

420 O. Montero et al.

the inclusion/exclusion is assigned to answer on each paper the quality assessments
described above. These primary studies were scored to determine how well the seven
quality items defined were satisfied. The punctuation system used was basically a prede-
fined scale with Y-P-N (Y: Yes, P: Partially, N: No), which was weighted as Y: 1 point,
P: 0.5 points, N: 0 points.

Table 2. Quality assessment overall results

Quality
assessment

Total score Compliance ratio

QA-1 66 98,51%

QA-2 67 100,00%

QA-3 56 83,58%

QA4- 22,5 33,58%

QA-5 8,5 12,69%

QA-6 31,5 47,01%

QA-7 52,5 78,36%

4 Results

The overall results of this SMS are presented in the current section. A distribution per
document type exposed that the largest number of documents obtained (95,52%) are
distributed as conference papers and journal articles.

Regarding the year of publication inside the initial range of 2010 – 2020, a gradual
increase can be seen starting from 2014 in the number of studies published on the related
topics. The 67%of all selected studieswere published in the last three years (2018–2020),
the 88% of all selected studies were published in the last five years (2016–2020) which
is indicating that the issue of quality models in the context of Big Data is receiving more
attention among the researchers, and if this trend continues the theme could become in
one of the hottest research topics.

Regarding the publisher, Fig. 2 shows that most papers were published between
Springer (26,87%), IEEE (25,37%), ACM (11,94%), and Elsevier (8,96%), most of
them were indexed in SCOPUS.

Following, the research questions could be answered thanks to the review conducted,
the findings are presented as follows.

RQ1: What quality models related to Big Data have been proposed in the last 10 years?

The study has revealed that 12 different qualitymodel types has been published in the
last 10 years, the most commons are those related with measuring Data Quality, Service
Quality, Big Data Quality and Quality-In-Use. A complete distribution of these quality

Big Data Quality Models: A Systematic Mapping Study 421

Fig. 2. Paper distribution per publisher

models can be viewed in Fig. 3. It is not a surprise that the largest number of quality
models proposed are those related to measuring the quality of the data, representing
almost half of all models found.

RQ2: In what Big Data context have these quality models been proposed?

The majority of quality models proposed can be applied to any Big Data project
without distinguishing between the different types of BigData applications. A number of
8 approaches have been identified as possible field of application which can be regarded
in Table 3.

There is a differentiation between general Big Data projects and Open Data projects
mainly because the dimensions presented for those Open Data are related such as free
access, always available, data conciseness, data and source reputation, and objectivity
among others, are specially required in Open Data projects. For Big Data Analytics,
Decision Making and Machine Learning projects there is no such great differentiation
with other Big Data projects, only in the case where non-functional requirements must
be measured that are specific to the required purpose.

RQ3: What Big Data quality characteristics are proposed as part of these quality
models?

In this case, is necessary to make a differentiation among the quality model types,
because the authors have identified different quality dimensions depending upon the
focus of the quality model inside Big Data context.

Data Quality Models: Are defined as a set of relevant attributes and relationships
between them, which provides a framework for specifying data quality requirements

422 O. Montero et al.

1
1
1
1

2
2
2
2

4
4

14
33

0 5 10 15 20 25 30 35

Big Data Privacy Model
Web Quality Model

Product Quality Model
Quality Model for Decision-Making

Big Data Architectural Evalua on
Big Data Quality Management Evalua on

Big Data Performance Analysis
Quality Model for Machine Learning Systems

Big Data Quality Measurement
Quality-In-Use Model

Service Quality Models
Data Quality Models

Fig. 3. Paper distribution per quality model type

Table 3. Quality model distribution per Big Data context

Context Quantity Ratio

Any Big Data Project 50 74,63%

Cloud Projects 6 8,96%

Social Information Services (Facebook, Twitter, etc.) 2 2,99%

Big Data Analytics 2 2,99%

Open Data Projects 2 2,99%

Decision Making process 2 2,99%

Machine Learning Projects 2 2,99%

Smart Cities Ecosystem Project 1 1,49%

and evaluating data quality. Represents data quality dimensions and the association of
such dimensions to data. Good examples of those models are presented in [21, 29, 31,
48, 61, 65]. Figure 4 shows the categories that can be used to group the different data
quality dimensions presented in the quality models.

Quality dimensions are presented in 28 from 33 papers related with data quality
models. The most common dimensions for general data quality are:

• Completeness: characterizes the degree to which data have values for all attributes and
instances required in a specific context of use. Also, data completeness is independent
of other attributes (data may be complete but inaccurate).

• Accuracy: characterizes the degree to which data attributes represent the true value of
the intended attributes in the real world, like a concept or event in a specific context
of use.

Big Data Quality Models: A Systematic Mapping Study 423

• Consistency: characterizes the degree to which data attributes are not contradicted
and are consistent with other data in a context of use.

• Timeliness: characterizes the latest state of a data attribute and its period of use.

Fig. 4. Categories founded in the SMS that groups the data quality dimensions presented in the
quality models.

In addition, for those quality models where the attention was focused on measuring
the quality of metadata, in [29] the quality dimensions identified are believability, cor-
roboration, coverage, validity, popularity, relevance, and verifiability. Other four dimen-
sions are included apart from existing ones to Semantic Data [31] which are objectivity,
reputation, value added and appropriate amount of data. For Signal Data [35], other
dimensions were identified such as availability, noise, relevance, traceability, variance,
and uniqueness. Finally, other two dimensions were included for Remote Sensing Data
[7] which are resolution and readability.

It should be noted that quality dimensions proposed in each of these quality models
refer to quality aspects that need to be verified by them in the specific context of use.

Service Quality Models: Are used to describe the way on how to achieve desired qual-
ity in services. This model measures the extent to which the service delivered meets
the customer’s expectations. Good examples of these models are presented in [8, 30,
32, 36, 41, 64]. The most common quality dimensions collected from those papers are:
Reliability, Efficiency, Availability, Portability, Responsiveness, Real-time, Robustness,
Scalability, Throughput.

Quality-In-Use Models: Defines the quality characteristics that the datasets that are
used for a specific use must present to adapt to that use. In this research two papers
were found that present such type of models [11] and [42], other papers discuss about
them. These models are focused mainly in two dimensions: Consistency and Adequacy
represented in Fig. 5.

It should be noted that, depending upon the quality characteristics that wants to be
evaluated and the context of use, a different model should be applied. In those models,
the two dimensions analyzed are presented as:

• Consistency: The capability of data and systems of keeping the uniformity of specific
characteristics when datasets are transferred across the networks and shared by the
various types of consistencies.

424 O. Montero et al.

Fig. 5. Quality dimensions presented in Quality-In-Use Models

• Adequacy: The state or ability of being good enough or satisfactory for some
requirement, purpose or need.

Big Data Systems Quality Models: There isn’t a general definition for this types of
models because the enormous number of different kinds. In this research will be defined
as quality models applied to the context of Big Data viewed at a high level. Good
examples of these models are presented in [28, 37, 50, 56]. The quality dimensions
presented in these quality models are specified in Table 4, and can be separated in three
groups:

• Dimensions for Big Data value chain
• Dimensions for Non-Functional requirements in Big Data Systems
• Dimensions for measuring Big Data characteristics.

Table 4. Quality dimensions for big data systems quality models

Big data value chain Big data non-functional requirements (NFRs) Big data characteristics

Timeliness Scalability Volume

Accuracy High performance computing Velocity

Completeness Modularity Variety

Consistency Consistency Veracity

Security Valence

Real-time operations Value

Inter-operability Volatility

Availability Vitality

Vincularity

RQ4: Have Big Data quality models been proposed to be applied to any type of Big
Data application or by considering the quality characteristics required in specific types
of Big Data applications?

Big Data Quality Models: A Systematic Mapping Study 425

A Big Data application (BDA) processes a large amount of data by means of inte-
grating platforms, tools, and mechanisms for parallel and distributed processing. As was
presented in Table 3, the majority of quality models proposed (74,63%) can be applied
to any Big Data project and only a few studies were developed specifically for Big Data
Analytics such as [66], Decision Making process in [2] and Machine Learning presents
in [54] and [55].

This could be means that researchers are not interested on develop a quality model
for a specific Big Data application, instead a general quality model is proposed focusing
on such topics like assuring the quality of data, the Quality-in-use, the quality of services
involved, etc.

5 Threats to Validity of Our Mapping Study

The main threats to validity of our mapping study are:

• Selection of search terms and digital libraries. We search in two digital libraries and
to complete our study other libraries should be included such as: IEEE, Springer, and
Google scholar. In addition, because Big Data is an industrial issue it is recommended
to include gray literature search [24] and achieve a Multivocal Literature Review
(MLR).

• Selection of studies. Could be a better solution to apply other exclusion criteria such
as the quality of papers. For example, if the results have been validated and compared
to other studies.

• Quality model categorization. As a result of the small sample of papers in which
quality models are not related to data quality, it is an arduous task to obtain sample
quality metrics and quality dimensions for those Big Data quality models. With the
amplification of the current studymore samples could be obtained to support this task.

• Data categorization. We included all the categories identified in the primary papers,
the extraction and categorization process was carried out by the first author, a MSc
student with over five years of work experience in software and data engineering. The
other two coauthors provided input to resolve ambiguities during the process. In this
respect, the extraction and categorization process is partially validated.

6 Conclusions and Future Work

A SMS have been conducted to analyze and visualize the different quality models that
have been proposed in the context of Big Data and the quality dimensions presented on
each type of quality model. It has been found that different from what would have been
thought, there is a considerable number of paperswhich donot present or partially discuss
the quality metrics to evaluate the quality dimensions proposed in the model. Also, in
the majority of studies the results of their research was not analyzed and compared with
other similar studies.

This research have revealed that proposing, discussing, and evaluating new quality
models in the context of Big Data is a topic that is currently receiving more attention

426 O. Montero et al.

from researchers and with the actual tendency we should expect an increase of papers
related with quality models in Big Data context in the coming years.

As first topic for future work we will consider an in-depth review of the analyzed
papers where commonmetrics, quality dimensions and quality models evaluations could
be obtained for further analysis on each Big Data quality model type.

In the context of Big Data, most of the proposed quality models are designed for
any Big Data application and they are not explicit in evaluating a specific type of Big
Data application such as Feature Prediction Systems or Recommenders. Considering
their different specificities to assess the expected quality in the final result when using
these Big Data applications, we consider this as an open research topic.

References

1. Ali, K., Hamilton, M., Thevathayan, C., Zhang, X.: Big social data as a service: a service
composition framework for social information service analysis. In: Jin, H., Wang, Q., Zhang,
L.-J. (eds.) ICWS 2018. LNCS, vol. 10966, pp. 487–503. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94289-6_31

2. Alkatheeri, Y., Ameen, A., Isaac, O., Nusari, M., Duraisamy, B., Khalifa, G.S.A.: The effect
of big data on the quality of decision-making in Abu Dhabi government organisations. In:
Sharma, N., Chakrabarti, A., Balas, V.E. (eds.) Data Management, Analytics and Innovation.
AISC, vol. 1016, pp. 231–248. Springer, Singapore (2020). https://doi.org/10.1007/978-981-
13-9364-8_18

3. Asif, M.: Are QM models aligned with Industry 4.0? A perspective on current practices. J.
Clean. Prod. 256, 1–11 (2020)

4. Baillie, C., Edwards, P., Pignotti, E.: Qual: A provenance-aware quality model. J. Data Inf.
Qual. 5, 1–22 (2015)

5. Baldassarre,M.T., Caballero, I., Caivano,D., Garcia, B.R., Piattini,M.: Frombig data to smart
data: a data quality perspective. In: ACM SIGSOFT International Workshop on Ensemble-
Based Software Engineering, pp. 19–24 (2018)

6. Barbara Kitchenham, S.C.: Guidelines for performing systematic reviews in software
engineering. Durham, UK: EBSE Technical report. EBSE-2007-01 Version 2.3 (2007)

7. Barsi, Á., et al.: Remote sensing data quality model: from data sources to lifecycle phases.
Int. J. Image Data Fusion 10, 280–299 (2019)

8. Basso, T., Silva, H., Moraes, R.: On the use of quality models to characterize trustworthiness
properties. In: Calinescu, R., Di Giandomenico, F. (eds.) SERENE 2019. LNCS, vol. 11732,
pp. 147–155. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30856-8_11

9. Behkamal, B., Kahani, M., Bagheri, E., Jeremic, Z.: A metrics-driven approach for quality
assessment of linked open data. J. Theoret. Appl. Electron. Commer. Res. 9, 64–79 (2014)

10. Bhutani, P., Saha, A., Gosain, A.: WSEMQT: a novel approach for quality-based evaluation
of web data sources for a data warehouse. IET Softw. 14, 806–815 (2020)

11. Caballero, I., Serrano, M., Piattini, M.: A data quality in use model for big data. In: Indulska,
M., Purao, S. (eds.) ER 2014. LNCS, vol. 8823, pp. 65–74. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-12256-4_7

12. Cappiello, C., et al.: Improving health monitoring with adaptive data movement in fog
computing. Front. Robot. AI 7, 1–17 (2020)

13. Cappiello, C., Samá, W., Vitali, M.: Quality awareness for a successful big data exploitation.
In: International Database Engineering & Applications Symposium, pp. 37–44 (2018)

14. Castillo, R.P., et al.: DAQUA-MASS: an ISO 8000-61 based data quality management
methodology for sensor data. Sensors (Switzerland) 18, 1–24 (2018)

https://doi.org/10.1007/978-3-319-94289-6_31
https://doi.org/10.1007/978-981-13-9364-8_18
https://doi.org/10.1007/978-3-030-30856-8_11
https://doi.org/10.1007/978-3-319-12256-4_7

Big Data Quality Models: A Systematic Mapping Study 427

15. Cedillo, P., Valdez, W., Cárdenas-Delgado, P., Prado-Cabrera, D.: A data as a service
metamodel for managing information of healthcare and internet of things applications. In:
RodriguezMorales, G., Fonseca C., E.R., Salgado, J.P., Pérez-Gosende, P., Orellana Cordero,
M., Berrezueta, S. (eds.) TICEC 2020. CCIS, vol. 1307, pp. 272–286. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-62833-8_21

16. Ciancarini, P., Poggi, F., Russo, D.: Big data quality: a roadmap for open data. In: International
Conference on Big Data Computing Service and Applications, BigDataService, pp. 210–215
(2016)

17. Cichy, C., Rass, S.: An overview of data quality frameworks. IEEE Access 7, 24634–24648
(2019)

18. Davoudian, A., Liu, M.: Big data systems: a software engineering perspective. ACMComput.
Surv. 53, 1–39 (2020)

19. Demchenko, Y., Grosso, P., Laat, C.D., Membrey, P.: Addressing big data issues in Scientific
data infrastructure. In: International Conference on Collaboration Technologies and Systems,
CTS, pp. 48–55 (2013)

20. Fagúndez, S., Fleitas, J., Marotta, A.: Data streams quality evaluation for the generation
of alarms in health domain. In: International Workshops on Web Information Systems
Engineering, IWCSN, pp. 204–210 (2015)

21. Fernández, S.M., Jedlitschka, A., Guzmán, L., Vollmer, A.M.: A quality model for actionable
analytics in rapid software development. In: Euromicro Conference on Software Engineering
and Advanced Applications, SEAA, pp. 370–377 (2018)

22. Gao, T., Li, T., Jiang, R., Duan, R., Zhu, R., Yang,M.: A research about trustworthinessmetric
method of SaaS services based on AHP. In: Sun, X., Pan, Z., Bertino, E. (eds.) ICCCS 2018.
LNCS, vol. 11063, pp. 207–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00006-6_18

23. Garises, V., Quenum, J.G.: An evaluation of big data architectures. In: 8th International
Conference on Data Science, Technology and Applications, DATA, pp. 152–159 (2019)

24. Garousi, V., Felderer,M.,Mäntylä,M.V.:Guidelines for including grey literature and conduct-
ing multivocal literature reviews in software engineering. Inf. Softw. Technol. 106, 101–121
(2019). https://doi.org/10.1016/j.infsof.2018.09.006. ISSN 0950-5849

25. Ge, M., Lewoniewski, W.: Developing the quality model for collaborative open data. In:
International Conference on Knowledge-Based and Intelligent Information and Engineering
Systems, KES, pp. 1883–1892 (2020)

26. Gong, X., Yin, C., Li, X.: A grey correlation based supply–demand matching of machine
tools with multiple quality factors in cloud manufacturing environment. J. Ambient. Intell.
Humaniz. Comput. 10(3), 1025–1038 (2018). https://doi.org/10.1007/s12652-018-0945-6

27. Gyulgyulyan, E., Aligon, J., Ravat, F., Astsatryan, H.: Data quality alerting model for big data
analytics. In: Welzer, T., et al. (eds.) ADBIS 2019. CCIS, vol. 1064, pp. 489–500. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30278-8_47

28. Helfert, M., Ge, M.: Perspectives of big data quality in smart service ecosystems (quality of
design and quality of conformance). J. Inf. Technol. Manag. 10, 72–83 (2018)

29. Immonen, A., Paakkonen, P., Ovaska, E.: Evaluating the quality of social media data in big
data architecture. IEEE Access 3, 2028–2043 (2015)

30. Jagli, D., Seema Purohit, N., Chandra, S.: Saasqual: a quality model for evaluating SAAS on
the cloud computing environment. In: Aggarwal, V.B., Bhatnagar, V., Mishra, D.K. (eds.) Big
Data Analytics. AISC, vol. 654, pp. 429–437. Springer, Singapore (2018). https://doi.org/10.
1007/978-981-10-6620-7_41

31. Jarwar, M.A., Chong, I.: Web objects based contextual data quality assessment model for
semantic data application. Appl. Sci. (Switzerland) 10, 1–33 (2020)

https://doi.org/10.1007/978-3-030-62833-8_21
https://doi.org/10.1007/978-3-030-00006-6_18
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1007/s12652-018-0945-6
https://doi.org/10.1007/978-3-030-30278-8_47
https://doi.org/10.1007/978-981-10-6620-7_41

428 O. Montero et al.

32. Jich-Yan, T.,Wen, Y.X., Chien-Hua,W.: A framework for big data analytics on service quality
evaluation of online bookstore. In: Deng, D.-J., Pang, A.-C., Lin, C.-C. (eds.) WiCON 2019.
LNICSSITE, vol. 317, pp. 294–301. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-52988-8_26

33. Jung, Y., Hur, C., Kim, M.: Sustainable situation-aware recommendation services with
collective intelligence. Sustainability (Switzerland) 10, 1–11 (2018)

34. Khurana, R., Bawa, R.K.: QoS based cloud service selection paradigms. In: International
Conference on Cloud System and Big Data Engineering, Confluence, pp. 174–179 (2016)

35. Kirchen, I., Schutz, D., Folmer, J., Vogel-Heuser, B.: Metrics for the evaluation of data quality
of signal data in industrial processes. In: International Conference on Industrial Informatics,
INDIN, pp. 819–826 (2017)

36. Kiruthika, J., Khaddaj, S.: Software quality issues and challenges of internet of things.
In: International Symposium on Distributed Computing and Applications for Business,
Engineering and Science, DCABES, pp. 176–179 (2015)

37. Kläs, M., Putz, W., Lutz, T.: Quality evaluation for big data: a scalable assessment approach
and first evaluation results. In: Joint Conference of the Int’l Workshop on and International
Conference on Software Process and Product Measurement SoftwareMeasurement, pp. 115–
124 (2017)

38. Liu, Z., Chen,Q., Cai, L.:Application of requirement-oriented data quality evaluationmethod.
In: International Conference onSoftwareEngineering,Artificial Intelligence,Networking and
Parallel/Distributed Computing, SNPD, pp. 407–412 (2018)

39. Máchová, R., Lněnička, M.: Evaluating the quality of open data portals on the national level.
J. Theor. Appl. Electron. Commer. Res. 12, 21–41 (2017)

40. Manikam, S., Sahibudin, S., Kasinathan, V.: Business intelligence addressing service quality
for big data analytics in public sector. Indonesian J. Electr. Eng. Comput. Sci. 16, 491–499
(2019)

41. Mbonye, V., Price, C.S.: A model to evaluate the quality of Wi-Fi performance: case study at
UKZNWestville campus. In: International Conference on Advances in Big Data, Computing
and Data Communication Systems, icABCD, pp. 1–8 (2019)

42. Merino, J., Caballero, I., Rivas, B., Serrano, M., Piattini, M.: A data quality in use model for
Big Data. Futur. Gener. Comput. Syst. 63(1), 123–130 (2016)

43. Micic, N., Neagu, D., Campean, F., Zadeh, E.H.: Towards a data quality framework for
heterogeneous data. In: Cyber, Physical and Social Computing, IEEE Smart Data, iThings-
GreenCom-CPSCom-SmartDat, pp. 155–162 (2018)

44. Musto, J., Dahanayake, A.: Integrating data quality requirements to citizen science applica-
tion design. In: International Conference on Management of Digital EcoSystems, MEDES,
pp. 166–173 (2019)

45. Nadal, S., et al.: A software reference architecture for semantic-aware big data systems. Inf.
Softw. Technol. 90, 75–92 (2017)

46. Nakamichi, K., Ohashi, K., Aoyama, M., Joeckel, L., Siebert, J., Heidrich, J.: Requirements-
driven method to determine quality characteristics and measurements for machine learning
software and its evaluation. In: International Requirements Engineering Conference, RE,
pp. 260–270 (2020)

47. Nikiforova, A.: Definition and evaluation of data quality: User-oriented data object-driven
approach to data quality assessment. Baltic J. Mod. Comput. 8, 391–432 (2020)

48. Oliveira, M.I., Oliveira, L.E., Batista, M.G., Lóscio, B.F.: Towards a meta-model for
data ecosystems. In: Annual International Conference on Digital Government Research:
Governance in the Data Age, pp. 1–10 (2018)

49. Olsina, L., Lew, P.: Specifying mobileapp quality characteristics that may influence trust.
In: Central & Eastern European Software Engineering Conference in Russia, CEE-SECR,
pp. 1–9 (2017)

https://doi.org/10.1007/978-3-030-52988-8_26

Big Data Quality Models: A Systematic Mapping Study 429

50. Omidbakhsh, M., Ormandjieva, O.: Toward a new quality measurement model for big data.
In: 9th International Conference on Data Science, Technology and Applications, pp. 193–199
(2020)

51. Valencia-Parra, Á., Parody, L., Varela-Vaca, Á.J., Caballero, I., Gómez-López, M.T.: DMN
for data qualitymeasurement and assessment. In: Di Francescomarino, C., Dijkman, R., Zdun,
U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 362–374. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-37453-2_30

52. Pereira, J.D., et al.: A platform to enable self-adaptive cloud applications using trustworthiness
properties. In: International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS, pp. 71–77 (2020)

53. Rahman, M.S., Reza, H.: Systematic mapping study of non-functional requirements in big
data system. In: IEEE International Conference onElectro InformationTechnology, pp. 25–31
(2020)

54. Rudraraju, N.V., Boyanapally, V.: Data quality model for machine learning. Faculty of
Computing, Blekinge Institute of Technology, pp. 1–107 (2019)

55. Santhanam, P.: Quality management of machine learning systems. In: Shehory, O., Farchi, E.,
Barash, G. (eds.) EDSMLS 2020. CCIS, vol. 1272, pp. 1–13. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-62144-5_1

56. Serhani, M.A., Kassabi, H.T., Taleb, I., Nujum, A.: An hybrid approach to quality evaluation
across big data value chain. In: IEEE International Congress on Big Data, pp. 418–425 (2016)

57. Surendro, O.K.: Academic cloud ERP quality assessment model. Int. J. Electr. Comput. Eng.
6, 1038–1047 (2016)

58. Taleb, I., Serhani, M.A., Dssouli, R.: Big data quality assessment model for unstructured
data. In: International Conference on Innovations in Information Technology (IIT), pp. 69–74
(2018)

59. Taleb, I., Serhani, M.A., Dssouli, R.: Big data quality: a survey. In: 7th IEEE International
Congress on Big Data, pp. 166–173 (2018)

60. Taleb, I., Serhani, M.A., Dssouli, R.: Big data quality: a data quality profiling model. In:
Xia, Y., Zhang, L.-J. (eds.) SERVICES 2019. LNCS, vol. 11517, pp. 61–77. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-23381-5_5

61. Talha, M., Elmarzouqi, N., Kalam, A.A.: Towards a powerful solution for data accuracy
assessment in the big data context. Int. J. Adv. Comput. Sci. Appl. 11, 419–429 (2020)

62. Tao, C., Gao, J.: Quality assurance for big data application - issues, challenges, and needs.
In: International Conference on Software Engineering and Knowledge Engineering, SEKE,
pp. 375–381 (2016)

63. Tepandi, J., et al.: The data quality framework for the Estonian public sector and its evaluation:
Establishing a systematic process-oriented viewpoint on cross-organizational data quality. In:
Hameurlain, A., Küng, J., Wagner, R., Sakr, S., Razzak, I., Riyad, A. (eds.) Transactions on
Large-Scale Data- and Knowledge-Centered Systems XXXV. LNCS, pp. 1–26. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-56121-8_1

64. Vale, L.R., Sincorá, L.A., Milhomem, L.D.: The moderate effect of analytics capabilities on
the service quality. J. Oper. Supp. Chain Manag. 11, 101–113 (2018)

65. Vetrò, A., Canova, L., Torchiano, M., Minotas, C.O.: Open data quality measurement
framework: definition and application to open government data. Gov. Inf. Q. 33, 325–337
(2016)

66. Bautista Villalpando, L.E., April, A., Abran, A.: Performance analysis model for big data
applications in cloud computing. J. Cloud Comput. 3(1), 1–20 (2014). https://doi.org/10.
1186/s13677-014-0019-z

67. Vostrovsky, V., Tyrychtr, J.: Consistency of Open data as prerequisite for usability in
agriculture. Sci. Agric. Bohem. 49, 333–339 (2018)

https://doi.org/10.1007/978-3-030-37453-2_30
https://doi.org/10.1007/978-3-030-62144-5_1
https://doi.org/10.1007/978-3-030-23381-5_5
https://doi.org/10.1007/978-3-662-56121-8_1
https://doi.org/10.1186/s13677-014-0019-z

430 O. Montero et al.

68. Wan, Y., Shi, W., Gao, L., Chen, P., Hua, Y.: A general framework for spatial data inspection
and assessment. Earth Sci. Inf. 8(4), 919–935 (2015). https://doi.org/10.1007/s12145-014-
0196-9

69. Wang, B., Wen, J., Zheng, J.: Research on assessment and comparison of the forestry open
government data quality between China and the United States. In: He, J., et al. (eds.) ICDS
2019. CCIS, vol. 1179, pp. 370–385. Springer, Singapore (2020). https://doi.org/10.1007/
978-981-15-2810-1_36

70. Wang, C., Lu, Z., Wu, Z., Wu, J., Huang, S.: Optimizing multi-cloud CDN deployment
and scheduling strategies using big data analysis. In: International Conference on Services
Computing, SCC, pp. 273–280 (2017)

71. White, G., Nallur, V., Clarke, S.: Quality of service approaches in IoT: a systematic mapping.
J. Syst. Softw. 132, 186–203 (2017)

72. Zhang, P., Zhou, X., Li, W., Gao, J.: A survey on quality assurance techniques for big data
applications. In: IEEE Third International Conference on Big Data Computing Service and
Applications, pp. 313–319 (2017)

https://doi.org/10.1007/s12145-014-0196-9
https://doi.org/10.1007/978-981-15-2810-1_36

Business Process and Organizational Data
Quality Model (BPODQM) for Integrated

Process and Data Mining

Francisco Betancor, Federico Pérez, Adriana Marotta, and Andrea Delgado(B)

Instituto de Computación, Facultad de Ingenieŕıa, Universidad de la República,
J. Herrera y Reissig 565, Montevideo, Uruguay

{francisco.betancor.pallas,federico.andres.perez,
amarotta,adelgado}@fing.edu.uy

Abstract. Data Quality (DQ) is a key element in any Data Science
project to guarantee that its results provide consistent and reliable infor-
mation. Both process mining and data mining, as part of Data Science,
operate over large sets of data from the organization, carrying out the
analysis effort. In the first case, data represent the daily execution of
business processes (BPs) in the organization, such as sales process or
health process, and in the second case, they correspond to organiza-
tional data regarding the organization’s domain such as clients, sales,
patients, among others. This separate view on the data prevents orga-
nizations from having a complete view of their daily operation and cor-
responding evaluation, probably hiding useful information to improve
their processes. Although there are several DQ approaches and models
for organizational data, and a few DQ proposals for business process
data, none of them takes an integrated view over process and organiza-
tional data. In this paper we present a quality model named Business
Process and Organizational Data Quality Model (BPODQM) defining
specific dimensions, factors and metrics for quality evaluation of inte-
grated process and organizational data, in order to detect key issues in
datasets used for process and data mining efforts.

Keywords: Data quality model · Process mining and Data mining ·
Data science · Integrated process and organizational data

1 Introduction

In last years the need to exploit available data in organizations has increased
considerably, due to the continuous generation of data from different and inter-
connected sources. The complexity of socio-technical systems connecting people,
things, data and business processes (BPs), integrating heterogeneous technolo-
gies and elements, also increases the complexity of integrating and generating
useful datasets, as well as their management. Both Process mining [2] and Data
mining [15], as part of Data Science [12], operate over large datasets from the
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 431–445, 2021.
https://doi.org/10.1007/978-3-030-85347-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_31&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_31

432 F. Betancor et al.

organization carrying out the analysis effort. In the first case, data represent the
daily execution of BPs in the organization, such as sales process, health process,
and in the second case, they correspond to organizational data regarding the
organization’s domain such as clients, sales, patients, among others. Most orga-
nizations manage their process and organizational data separately. This separate
view on the data prevents organizations from having a complete view of their
daily operation and corresponding evaluation, hindering the recovery of useful
information to improve their processes.

On the one hand, Data Mining [15] aims at analyzing large datasets in search
for general rules, providing predictions and behavior patterns based on the input
data. Data Mining techniques are often classified as descriptive or predictive.
Descriptive techniques include clustering and association rules to characterize
data sets, while Predictive techniques are classification and regression, in the
first case mainly decision trees and neural networks, and in the second regres-
sion functions, among others. On the other hand, Process Mining [2] focus on
large datasets that are specific from process execution, in order to provide insight
on process execution. Process mining provides three main perspectives: i) discov-
ering BP models from event logs i.e. generating process models from execution
data; ii) process conformance by checking BP models against the real execu-
tion in event logs; and iii) enhancing BP models with extra information such as
participating roles and resources. Also, performance execution analysis can be
performed such as bottlenecks, duration of process cases, average, etc.

Data Quality (DQ) [5,18] is a key element in any Data Science project to
guarantee that its results provide consistent and reliable information. A DQ
model defines dimensions conceptualizing different aspects of quality, which are
composed of factors defining a specific quality aspect within a dimension, and
metrics to specify the way that a factor is measured. Very well-known dimensions
of data quality include Accuracy, Consistency, Completeness, Uniqueness, but
several others can be taken into account depending on the context and domain at
hand. Although there are several DQ approaches and models for organizational
data, and a few DQ proposals for BPs data, none of them takes an integrated
view over process and organizational data.

Business Process Management (BPM) [3,11,19] provides organizations with
the basis for managing their BPs, which can be supported by traditional Infor-
mation Systems or with process platforms such as BPM Systems [6]. In most
BPMS settings, the process engine is in charge of BP execution i.e. the con-
trol flow defined within the process model registering all events in a database
(schema) of its own, and the organizational data that is managed within the BP
cases (i.e. instances) are registered in another (or several) database/s (schema)
where other systems also register and query common organizational data i.e.
clients, patients, etc. A key step towards BPs continuous improvement [10] is to
be able to proactively assess their real execution to provide business people with
Business Intelligence support for evidence-based decision making. To provide a
complete view on data, process and organizational data must be integrated and
analyzed in an integrated manner. To generate such integrated datasets, for each

Business Process and Organizational Data Quality Model (BPODQM) 433

activity (human or automated) executed within a BP case, the organizational
data that was involved in the execution of the activity must be related back to
the corresponding activity.

In previous works we have addressed this problem by defining an integrated
framework [9] and working with integrated process and organizational data [8],
as well as identifying the need for a DQ model to be applied over the data
before the mining effort can be carried out. In this paper we present such DQ
model that we named Business Process and Organizational Data Quality Model
(BPODQM), which defines specific dimensions, factors and metrics for quality
evaluation of integrated process and organizational data, in order to detect key
issues in integrated data sets used for process and data mining efforts.

The rest of this document is organized as follows: in Sect. 2 we present con-
cepts and definitions and in Sect. 3 we introduced an example and preliminaries.
In Sect. 4 we present our proposal of a BPO Data Quality Model (BPODQM),
and in Sect. 5 we show an application of our proposal as proof of concept. In
Sect. 6 we discuss other approaches to DQ for process and organizational data,
and finally in Sect. 7 we present some conclusions.

2 Background

The model we present in this work is supported by some basic concepts of the
Data Quality (DQ) area, which are introduced in this section. We also present
concepts and definitions regarding BP event logs that contain process data for
process mining, and the extension we have made to integrate organizational data.

2.1 Data Quality

DQ is managed with a multi-faceted approach, where the notion of quality is
represented through dimensions that conceptualize different aspects of quality [5,
18]. Therefore, DQ dimensions address potential data problems, for example,
a mistyping error is a data problem that is addressed by the DQ dimension
accuracy. Additionally, as DQ dimensions are very general aspects, a second level
of detail is considered, so that a DQ dimension is decomposed in DQ factors, i.e.
a DQ factor is a specific quality aspect of a DQ dimension. Continuing with the
example above, a mistyping error would be addressed by the DQ factor syntactic
accuracy, which corresponds to the DQ dimension accuracy.

An essential part of DQ management is DQ measurement and evaluation.
In order to measure DQ of a dataset, it is necessary to define metrics, which
specify the way a DQ factor is measured, as well as the range of the numerical
result that is obtained and the data granularity over which it is applied. For
example, syntactic accuracy may be measured through a string-distance metric
that is applied between a value of the dataset and the values of a referential
dictionary of terms. The granularity of this metric is data value and the result
range is [0..1]. Alternatively, if the metric obtained the percentage of correct
values of a column of a data table, the granularity would be column. In addition,

434 F. Betancor et al.

for each metric, different aggregations may be defined. An aggregation states
the way that a set of measures, obtained through the metric application, are
aggregated for obtaining a summarized measure that corresponds to a coarser
data granularity. Continuing with the example, after applying the string-distance
metric, whose granularity is data value, to all the values of a column, we can
calculate an aggregation for obtaining one DQ value for the entire column.

The DQ literature shows a huge amount of DQ dimensions, factors and prop-
erties, as well as many different approaches for modeling quality characteristics.
However, there is consensus in some main DQ concepts, such as dimensions and
metrics, and in a basic set of dimensions, which address typical DQ problems and
are present in most cases. These dimensions, which are usually represented with
the same terms and have the same general semantics, are: accuracy, complete-
ness, consistency, timeliness/currency, uniqueness. In recent times, where big
data characteristics are present in most data scenarios, DQ dimensions related
to credibility, trustworthiness and reputation, have gained much attention and
relevance [14].

2.2 Process Mining and Event Logs

Process Mining [2] is a discipline within Data Science that uses and extends
data mining techniques to discover information from process execution data,
instead of organizational data i.e. clients, sales, etc. as data mining does. Data
from process execution also come from organization’s systems, where events that
happen within each process instance (case) are registered as traces in a so-called
event log. As mentioned before, process mining provides three main perspectives
to: discover process models, check process models conformance and enhance
process models with execution data.

Within BPM process mining can be used in the late phase of Evaluation in
the BPs lifecycle in order to evaluate process execution and discover information
based on process data to improve BPs and the operative of the organization, as
described above, or can also be used in the first phase of Analysis as another
input for the requirements elicitation and BP modeling. Whether there is a BP
model in place for the process or not, real process data execution will help to
get insights into the organization’s operation. The BP model corresponds to the
template of the process, where for structure process all execution possibilities
should be included i.e. in domains such as banks, management, etc., while this is
extremely challenging for unstructured BPs i.e. in domains such as health, knowl-
edge management, etc. Each execution of the process is a BP case (instance) in
which values of the specific execution are handled.

The input for process mining efforts is an Event log [2], which corresponds
to only one process, and contains BP cases (instances) which in turn contains
events that happened within the execution of the case. An event correspond
to only one case and refers to work that is carried out in the organization i.e.
activity, including when it is carried out (time stamps) and by whom (role,
people, system). Events in a trace are ordered by execution time i.e. time stamp
and a transaction type indicating the lifecycle event that is being registered e.g.

Business Process and Organizational Data Quality Model (BPODQM) 435

start or complete of an activity. Events can also have attributes such as cost,
etc. The most common format for event logs data is the XES (eXtensible Event
Stream) format [1], which is an XML format supported by process mining tools
such as ProM1. In next Sect. 3.2 we show an example of the XES format within
our extension for data integration.

3 Preliminaries

We present preliminary work over a real BP from our university that we have
been working with throughout the application of our complete approach [9].
The aim of this section is to present the context of our work and the settings we
are considering, as well as the extended Event log we generate from process and
organizational data execution to which apply our BPODQM proposal. Although
the BP has a simple control flow, the execution data i.e. event log contains pro-
cess and organizational data that present cases and elements that are commonly
included, so the quality example we present based on this process is both specific
enough to this context and general enough to be applied to other processes.

3.1 BP Model and Organizational Data Model

The BP is named “Students Mobility” [8] and deals with granting scholarships for
students who apply to exchange programs to attend courses in others country’s
universities which participate in the mobility programs. In Fig. 1a the BP model
for the Students Mobility process is shown specified in BPMN 2.0, and in Fig. 1b
the data model supporting the BP, extended from [8].

The BP Students Mobility depicted in Fig. 1a shows a simple path through
the complete BP, which starts when the Register office receives applications to
open Mobility programs from Students, and registers them in the task “Register
application”. After the period for applications is closed, registered applications
are checked to be compliant with the requirements from the mobility program,
in the task “Requirements assessment”. After that, the confirmed applications
i.e. the ones that comply with the requirements of the mobility call goes through
an evaluation process in the “Evaluate applicants” task, where applicants are
ordered and holders are selected, as well as substitutes. Then, with the list of
ordered applications the task “Approve scholarships results” approve the results,
then applicants are notified in task “Notify applicants” and in task “Sign contract
and payment” holders sign and get the money granted by the scholarship.

It can be seen that the organizational data (from the data model in Fig. 1b)
that is managed within the process is shown as a text comment associated to the
corresponding task, e.g. in the “Register application” task the table Application
is accessed in order to insert a new application for the Student with identifi-
cation idStudent in the State “initiated”. Other values are not shown, as the
validation of courses or the corresponding Program to which the application

1 https://www.promtools.org/.

https://www.promtools.org/

436 F. Betancor et al.

(a) Students Mobility business process from [8]

(b) Data model for the Students Mobility BP extended from [8]

Fig. 1. Students Mobility proof of concept

is being submitted. In the “Requirements assessment” task the list of applica-
tions is recovered from the organizational database, and it is updated with the
confirmed or rejected result. In the subsequent tasks the list of applications is
manipulated with corresponding updates and each application when the appli-
cant is notified of the results. Finally, the last task creates a new record in the
Mobility table including the start date of the mobility and the amount granted.

Business Process and Organizational Data Quality Model (BPODQM) 437

Fig. 2. Excerpt of the extended event log in XES format

3.2 Extended Event Log

Within our framework proposal we defined a XES extension for the Event
logs to include integrated data from process and organizational data execution.
Although the XES format allows to add attributes to events, they are added
as tags without a logical order or correspondence to the event, as we provide
in ours. As mentioned before, we integrate process execution data with corre-

438 F. Betancor et al.

sponding organizational data [8] handled by the process, by means of several
steps of data ETL from BPM systems and organizational databases, prior to
the generation of the Event log. In Fig. 2 we present an excerpt of the extended
Event log for the Students Mobility BP.

The extension adds two lists of attributes to the Event element: i) a vari-
ables list and ii) an entities list, which in turn contains a list of attributes. This
extension reflects the integration of process and organizational data, in the fol-
lowing way. First, variables correspond to process variables that are handled by
that event i.e. activity within the BPMS execution of the process, thus adding
information from the process execution side. Secondly, entities and attributes
correspond to organizational data that are handled by that event i.e. activity,
within an organizational database different from the process one, thus adding
information from the organizational data execution.

In the example, the activity that is shown corresponds to the “Register
application” task, the process variable handled by the process execution is the
“studentid” variable, which matches with the organizational database attribute
“idstudent” of the entity (table) application. It can be noticed that the value for
both elements is “89964588”. This corresponds to the fact presented above that
the “Register application” task inserted a new record in the application table
of the organizational database, for each student application received, for the
mobility program call. Thus, the application table, as shown in Fig. 1b has sev-
eral references to other existing tables such as the Students and Program tables.
As this is an excerpt of the extended event log, other variables, entities and
attributes related to the “Register application” task are omitted for simplicity.

4 BPO Data Quality Model (BPODQM)

In this section we present the DQ model we developed for managing the quality
of the integrated event log and organizational data (extended event log). For
this, we first must present the format in which data is obtained as well as the
granularities that are considered for its manipulation.

4.1 Data Format and Granularities

The extended event log shown in Fig. 2 is represented through the standard data
format XES [1], as mentioned. In order to define a DQ model for the log, it is
necessary to define the different granularities for identifying portions of data.
These granularities are the following:

– attribute value. This is a particular value of an attribute. For example, in
Fig. 2, the value “Register application”.

– attribute. It refers to the set of values corresponding to the same key. For
example, in Fig. 2, all the values that appear for key “concept:name”.

– event. It involves all data included in an event data. For example, in Fig. 2,
all data included in the event named “Register application”

– log. This granularity is used for properties that refer to the whole log.

Business Process and Organizational Data Quality Model (BPODQM) 439

4.2 BPODQM

This section presents the general DQ model BPODQM (Business Process and
Organizational Data Quality Model) we have defined, in which specific dimen-
sions, factors, and metrics for integrated process and organizational data are
provided. It is based on previous quality models we have defined for other con-
texts [7,16], and on [17] which we have adapted and extended. This model is
intended to serve as a general data quality model for the domain of integrated
process and organizational data, which may be instantiated for any extended
event log. Table 1 presents DQ dimensions, factors and metrics defined.

Accuracy dimension is composed by the following factors: (i) syntactic accu-
racy, which focuses on how the data is written, and whose metric measures if
the data fits with the required format for the attribute, (ii) semantic accuracy,
which refers to the existence of the attributes of an event with respect to reality,
and may be measured through two different metrics, where the first one verifies
the attributes that are not event identifiers, and the second one verifies the event
identifiers, and finally, (iii) precision, which captures the detail level of a data
item, and its metric is applied to an attribute value, which is a timestamp.

Consistency dimension is composed by the following factors: (i) domain con-
sistency, which has two metrics, such that the first one compares an attribute
value to a set of values and the second one verifies if an attribute value satisfy
a values set definition, (ii) inter-element consistency, whose metric verifies if
two attribute values of different events satisfy a consistency rule, and (iii) intra-
element consistency, whose metric verifies if two attribute values of an event
satisfy a consistency rule.

Completeness dimension has two factors: (i) coverage, which measures the
proportion of the quantity of events contained in a trace wrt the quantity of
events that the trace should contain, and (ii) density, for which there are three
metrics, the first one verifies if an attribute value is Null, the second if certain
attribute does not appear in an event, and the third one measures the density
of an event considering weights over the different attributes.

Uniqueness dimension is composed by two factors: (i) duplication-free, which
verifies if an attribute has duplicated values and if a trace has duplicated events,
through two different metrics, and (ii) contradiction-free, whose metric evaluate
if a trace has two different events that correspond to the same event in reality
and have contradictory information.

For Freshness dimension we define only the factor timeliness. This factor has
three different metrics, each one measuring attribute, event and trace timeliness,
respectively. They verify if the timestamp of the object (attribute, event or trace)
belongs to the time range of the parent object (event, trace or log, respectively).

Credibility dimension is composed of two factors: (i) provenance, which may
be measured by three metrics; responsibility, which gives a score to the credi-
bility of the person who is responsible of the log data, origin, which measures
the credibility of the event origin, and reproducibility, which verifies if a log is
reproducible following workflow rules, and (ii) trustworthiness, which may be
measured through three different metrics that are applied over attribute values;

440 F. Betancor et al.

Table 1. BPODQM dimensions, factors and metrics

Dimension Factor Metric Granularity

Accuracy Syntactic Accuracy Format Attribute value

Semantic Accuracy Weak Semantic Accuracy Event

Strong Semantic Accuracy Event

Precision Timestamp precision Attribute value

Consistency Domain Consistency Extensional Values Attribute value

Intensional Values Attribute value

Inter-element Consistency Inter-event Rule Activity

Intra-element Consistency Intra-event Rule Event

Completenes Coverage Coverage Ratio Trace

Density Not Null Attribute value

Inexistent Value Event

Weighted Density Event

Uniqueness Duplication-free Duplicate Attribute Attribute value

Duplicate Event Event

Contradiction-free Contradictory Event Event

Freshness Timeliness Attribute Timeliness Attribute value

Event Timeliness Event

Trace Timeliness Trace

Credibility Provenance Responsibility Log

Origin Event

Reproducibility Log

Trustworthiness Believability Attribute value

Reputation Attribute value

Verifiability Attribute value

Security User Permissions Authorized User Event

Encrypted Data Encrypted Attribute Attribute value

Ratio Encrypted Att Event

Anonymity Anonymous Attribute Attribute value

Ratio Anonymous Att Event

believability, which measures the degree of believability of the veracity of the
data value, reputation, which refers to the reputation of the data source, and
verifiability, which indicates if a data value es verifiable or not.

Finally, security dimension is composed by three factors: (i) user permissions,
which verifies for an event, if the users that participated in it have the necessary
rights, (ii) encrypted data, which has two metrics, one that verifies if all the
values of an attribute are encrypted and another one that calculates the ratio of
encrypted attributes of an event, and (iii) anonymity, which may be measured
through a metric that verifies if an attribute is anonymized or a metric that
calculates the ratio of anonymized attributes of an event.

Business Process and Organizational Data Quality Model (BPODQM) 441

All the results of a metric can be aggregated to the following granularity,
calculating the percentage of results “1” over the total. For example, the metric
format can be aggregated from attribute value to attribute granularity, obtaining
the percentage of values that satisfy the required format for a given attribute.

5 Example of Application

In this section we present an example of BPODQM application on the extended
event log we generated for the “Students Mobility” BP introduced in Sect. 3. In
the first place, we have to select the quality characteristics from the BPODQM
model, to be checked over the data in the extended event log. We have selected
some basic ones in order to show its evaluation and to provide a discussion on
the integrated process and organizational data to which we applied the model:

– Dimension: Accuracy, Factor: Syntactic correctness, Metric: Format
– Dimension: Consistency, Factor: Domain consistency, Metric: Extensional
values

– Dimension: Completeness, Factor: Density, Metric: Not null
– Dimension: Freshness, Factor: Timeliness, Metrics: Attribute Opportunity

Each one is applied over a specific element of the extended event log which
is also defined when selecting the characteristics to be evaluated, and specific
metrics are defined for it to be calculated over the element. In what follows we
present the definitions for each of the selected Metrics.

5.1 Metric Format

For this example, the Metric Format is applied to the existing timestamps in all
levels i.e. event, variables and attributes. We defined a specific Metric that takes
as correct format for the timestamp the one specified by the event log: yyyy-
MM-dd’T’HH:mm:ss. We then defined a specific function in order to calculate
the specific metric, with signature timestampFormat(date, format): bool ,
which returns true if the timestamp of an element of the log is in the defined
format, false if not.

In this example, we had 1980 timestamp tags corresponding to event times-
tamps and the integrated data in variables timestamps and attributes times-
tamps, as shown in Fig. 2. As we automatically generated the extended event
log from the integrated data formatting the timestamps as required, they all
returned true in the correct format by construction. This is a basic example of
the format metric that tools as ProM or Disco already check when importing
event logs, but it can be checked for other attribute values including organi-
zational data attributes that are domain specific for which specific formats are
defined.

442 F. Betancor et al.

5.2 Extensional Values

We defined to check this factor in the extended event log for the values corre-
sponding to the attribute idstate of the entity application as shown in Fig. 2. As
introduced before, in the Students Mobility a new application is registered in the
state “Initiated” whenever a student submits one for a mobility program. As the
process progresses the application status values are updated, following domain
predefined values, which are referenced from the application table i.e. “Initiated”
= 1, “Approved” = 2, an so on. So we defined the domain values by extension
as idstate = {1, 2, 3, 4} and we checked them within the extended event log,
and the specific function extensionalValueAttribute(attribute, dom): bool ,
which returns true if the attribute value lies between the defined domain, false
if not. In this case we did not find values off range.

5.3 Metric Not Null

We checked this factor at two levels: the process data and the organizational
data, to ensure key elements for the mining analysis will not be null. At the
process level we defined to check the resource attribute of the event, and at the
organizational level the notified attribute of the application entity. Due to the
specificity of the process implementation and supporting data model, the notified
attributed will be (correctly) null when associated with the first four tasks of the
model, until the process reaches the “Notify applicants” task where applicants
are notified and the attribute is updated with values {Yes, No}. We defined the
specific function NotNullAttribute(attribute): bool , which returns true if the
attribute value is not null, false if not.

Checking for the resource attribute is useful if you are going to use the
resource values for analysis, since tools such as ProM allows event logs without
resources for process model discovering purposes. In our case, all resources where
included either people or system values. Regarding the notified attribute, an
interesting discussion arises, since most values of the attribute returned as null.
It would be interesting to be able to select not only the attribute to be checked
but the event to which the attribute should be attached and not be null, which
in this case will be only the “Notify applicants” task.

5.4 Metric Attribute Timeliness

This metric was checked for all organizational data attributes of each entity
within the corresponding event i.e. task to which they are related. We define
the function attributeTimelinessTimestamp(attribute):bool which returns
true if the timestamp of the organizational data attribute is within the timestamp
of the corresponding event, and false if not. We detected several timestamps of
attributes which had values that do not correspond to the timestamps of the
event, i.e. were prior to the event timestamp. Although the log was correctly
imported in ProM, since the extended log attributes are not taken into account
in the checks, when importing it in Disco we got a warning on this fact, and

Business Process and Organizational Data Quality Model (BPODQM) 443

several registers were not imported correctly. This fact helped us to dig into the
generation of the log, the integration of data, and the process and organizational
data from the sources, in order to find the problem.

6 Related Work

Data quality dimensions have been defined in the last decades generating a
wide set of dimensions with focus on organizational data from which to choose.
This is both and advantage and a disadvantage since it can be overwhelming to
define, integrate and organize dimensions, factors and metrics in a model for an
organization. However, there is a sub-set agreed and used by most authors [13,14]
that could help in this task. [5] propose an organization of quality dimensions
providing six clusters with which to cover key dimensions such as accuracy,
completeness, consistency, among others. Data quality evaluation and cleaning
is a key step in data mining and other analysis approaches e.g. data warehouses.

Regarding process data quality evaluation for process mining, there are some
recent proposals which defined specific dimensions with focus on the process
data at the event log level such as [17], without dealing with organizational
data. It takes into account the guidelines for process data quality in [2], but it is
not clearly structured in dimensions, factors and metrics as ours, only defining
dimensions and less than ours. Also, metrics are defined in a fixed way and with
a predefined score. [4] presents an approach and application for the health area,
defining some dimensions and metrics.

Differently to these works, our proposal defines a quality model for integrated
process and organizational data, that are put together in an extended event log
where both quality and analysis take into account the complete data set of each
process. The model is instantiated for the extended event log of each process.

7 Conclusions

This paper presents a DQ model, called BPODQM, for evaluating DQ in the
extended event log, which is a log that contains data from process execution and
the related organizational data. The proposed DQ model is a general model that
can be instantiated for any extended event log, by selecting the most important
DQ dimensions, factors, metrics and data to evaluate, according to the char-
acteristics and requirements of the particular case. BPODQM contains a set of
dimensions, factors and metrics that were selected, adapted and extended from
the literature, considering the particularities of the BP domain, the goals of
process mining activities and the characteristics of the extended event log we
manage. On the other hand, this model was refined from its successive applica-
tion to particular cases of BP. We illustrated the model application through a
small part of an experience of DQ evaluation over a BP that deals with students
applications and granting for mobility programs.

We believe that this DQ model is rich enough, and at the same time con-
cise and practical, to address the most important issues that can appear when

444 F. Betancor et al.

working with event logs and associated organizational data in order to perform
process and data mining.

Acknowledgments. This work was supported by project “Mineŕıa de procesos y
datos para la mejora de procesos en las organizaciones” funded by Comisión Sectorial
de Investigación Cient́ıfica (CSIC), Universidad de la República (UdelaR), Uruguay.

References

1. IEEE: standard for extensible event stream (xes) for achieving interoperability in
event logs and event streams. IEEE Std. 1849–2016, pp. 1–50 (2016)

2. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016)

3. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process man-
agement: a survey. In: van der Aalst, W.M.P., Weske, M. (eds.) BPM 2003. LNCS,
vol. 2678, pp. 1–12. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
44895-0 1

4. Andrews, R., et al.: Leveraging data quality to better prepare for process mining:
an approach illustrated through analysing road trauma pre-hospital retrieval and
transport processes in Queensland. Int. J. Environ. Res. Pub. Health 16(7), 1138
(2019)

5. Batini, C., Scannapieco, M.: Data and Information Quality - Dimensions, Princi-
ples and Techniques. Data-Centric Systems and Applications, Springer, Heidelberg
(2016)

6. Chang, J.: BPM Systems: Strategy and Implementation. CRC Press, Boca Raton
(2016)

7. Cristalli, E., Serra, F., Marotta, A.: Data quality evaluation in document oriented
data stores. In: Woo, C., Lu, J., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) ER
2018. LNCS, vol. 11158, pp. 309–318. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01391-2 35

8. Delgado, A., Calegari, D.: Towards a unified vision of business process and orga-
nizational data. In: XLVI Latin American Computing Conference, CLEI 2020. p.
To appear. IEEE (2020)

9. Delgado, A., Marotta, A., González, L., Tansini, L., Calegari, D.: Towards a data
science framework integrating process and data mining for organizational improve-
ment. In: 15th International Conference on Software Technologies, ICSOFT 2020,
pp. 492–500. ScitePress (2020)

10. Delgado, A., Weber, B., Ruiz, F., de Guzmán, I.G.R., Piattini, M.: An integrated
approach based on execution measures for the continuous improvement of business
processes realized by services. Inf. SW Technol. 56(2), 134–162 (2014)

11. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of BPM, 2nd
edn. Springer, Heidelberg (2018)

12. IEEE: Task Force on Data Science & Adv. Analytics (2020). http://www.dsaa.co/
13. Scannapieco, M., Catarci, T.: Data quality under a computer science perspective.

Arch. Comput. 2, 1–15 (2002)
14. Shankaranarayanan, G., Blake, R.: From content to context: the evolution and

growth of data quality research. J. Data Inf. Qual. 8(2), 1–28 (2017)
15. Sumathi, S., Sivanandam, S.N.: Introduction to Data Mining and its Applications,

Studies in Computational Intelligence, vol. 29. Springer, Heidelberg (2006)

https://doi.org/10.1007/3-540-44895-0_1
https://doi.org/10.1007/3-540-44895-0_1
https://doi.org/10.1007/978-3-030-01391-2_35
https://doi.org/10.1007/978-3-030-01391-2_35
http://www.dsaa.co/

Business Process and Organizational Data Quality Model (BPODQM) 445

16. Valverde, M.C., Vallespir, D., Marotta, A., Panach, J.I.: Applying a data quality
model to experiments in software engineering. In: Indulska, M., Purao, S. (eds.)
ER 2014. LNCS, vol. 8823, pp. 168–177. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-12256-4 18

17. Verhulst, R.: Evaluating quality of event data within event logs: an extensible
framework (2016)

18. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data
consumers. J. Manag. Inf. Syst. 12(4), 5–33 (1996)

19. Weske, M.: BPM - Concepts, Languages, Architectures, 3rd edn. Springer, Heidel-
berg (2019)

https://doi.org/10.1007/978-3-319-12256-4_18
https://doi.org/10.1007/978-3-319-12256-4_18

A Checklist for Explainable AI
in the Insurance Domain

Olivier Koster1(B) , Ruud Kosman2,3 , and Joost Visser1

1 LIACS, Leiden University, Leiden, The Netherlands
j.visser@liacs.leidenuniv.nl
2 SIVI, Utrecht, The Netherlands

3 InnoValor, Enschede, The Netherlands

Abstract. Artificial intelligence (AI) is a powerful tool to accomplish a
great many tasks. This exciting branch of technology is being adopted
increasingly across varying sectors, including the insurance domain. With
that power arise several complications. One of which is a lack of trans-
parency and explainability of an algorithm for experts and non-experts
alike. This brings into question both the usefulness as well as the accu-
racy of the algorithm, coupled with an added difficulty to assess poten-
tial biases within the data or the model. In this paper, we investigate the
current usage of AI algorithms in the Dutch insurance industry and the
adoption of explainable artificial intelligence (XAI) techniques. Armed
with this knowledge we design a checklist for insurance companies that
should help assure quality standards regarding XAI and a solid foun-
dation for cooperation between organisations. This checklist extends an
existing checklist that SIVI, the standardisation institute for digital coop-
eration and innovation in Dutch insurance.

Keywords: Artificial intelligence · Explainability · Insurance ·
Finance

1 Introduction

Artificial intelligence (AI) is one of the leading technologies paving the way for
more efficient solutions and powerful automation. This exciting technology is
being deployed increasingly across various industries. For instance, AI is aiding
healthcare in its search for accurate diagnostic procedures in order to detect can-
cer early, assisting radiology by discovering patterns and accelerating medicine
development [5]. Similarly, in the insurance industry, the use of AI is starting to
gain traction, being used in assessing risks, handling claims and detecting fraud.
Aside from all this added ability, AI too comes with its own downsides. Much
like human cognition, technology has its flaws. The same goes for AI algorithms.
While early AI systems were relatively easy to comprehend, we have seen a
recent rise in opaque decision systems such as Deep Neural Networks. Although
these types of algorithms increase accuracy, they come with a higher level of

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 446–456, 2021.
https://doi.org/10.1007/978-3-030-85347-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_32&domain=pdf
http://orcid.org/0000-0003-1233-7156
http://orcid.org/0000-0002-3748-4198
http://orcid.org/0000-0003-0158-3095
https://doi.org/10.1007/978-3-030-85347-1_32

A Checklist for Explainable AI in the Insurance Domain 447

algorithmic complexity, often consisting of hundreds of layers and millions of
parameters [4]. In these instances, interpretability vastly decreases. This results
in a black-box algorithm that is difficult to understand for experts and non-
experts alike. This can create some unfavourable situations. In particular, when
decisions made by an algorithm affect human lives. For example, when black-box
algorithms make incorrect diagnoses, doctors may be subject to intense scrutiny
for taking the wrong course of action, being unable to explain the proper reason-
ing behind a diagnosis. This phenomenon can have an even more severe impact
on a larger scale. In 2020, The Dutch government deployed SyRi, an algorithmic
fraud risk scoring system. It used a non-disclosed algorithmic risk model to pro-
file citizens, allegedly targeting mostly low-income neighbourhoods and minority
residents. Dutch court deemed SyRi illegal for lacking transparent data usage
and violating privacy. Similarly, Apple revealed its AI driven credit risk system
showed a striking bias, as it deemed men far more creditworthy than women.
Consequently, individuals could be given different credit limits despite having
the same accounts, cards or assets [7]. In precision medicine, decisions cannot
be based on mere binary prediction, creating a need for extensive explanations
supporting a model’s output. The same holds true for other domains such as
autonomous vehicles, transportation, security, and finance [10].

Evidently, using AI to make impactful decisions can be a dangerous practice
when the legitimacy of the model is not justified. From this perspective, the
responsibility of the algorithms’ creator does not only concern its accuracy but
also its interpretability and transparency. This reasoning has spawned a new
field of research named Explainable Artificial Intelligence (XAI). Research on
this topic has spiked in recent years, reflecting a growing need for XAI. Even so,
to our knowledge, no prior research captures the state of AI adoption, and more
specifically of XAI techniques, in the (Dutch) insurance industry.

In this paper, we examine the current adoption and future prospects of AI
and XAI within the Dutch insurance industry. This is done through literature
research coupled with conducting exploratory interviews of industry experts.
All of this will lay the groundwork for the design of a checklist for insurance
companies that should help assure quality standards regarding XAI and a solid
foundation for cooperation between organisations. The checklist is evaluated
and tested by conducting confirmatory interviews, creating a feedback loop for
further refinement. The aforementioned checklist extends an existing checklist
regarding AI that SIVI, the standardisation institute for digital cooperation and
innovation in Dutch insurance.

2 Method

Our research methodology is based on the design science research paradigm
for information systems [6]. Contrary to behavioural science, design science is
focused on designing an artefact. In our case, this artefact is a checklist for
explainable and transparent AI applications. Similar to the methodology dis-
cussed in [6], research is done in three iterative cycles.

448 O. Koster et al.

We conduct two types of interviews during our research. Firstly, we per-
form semi-structured exploratory interviews to assess the current state of the
art with respect to AI techniques used within the insurance industry. This is
helpful because, while current literature tells us a lot about the possibilities and
practices of AI, it gives little insight into the actual adoption of AI techniques.
Additionally, practical context is usually missing in most available literature. We
interview four industry experts at companies that operate within the insurance
industry, ranging from software suppliers to insurance companies. The findings
can be found in Sect. 4. Secondly, we conduct confirmatory interviews with sim-
ilar companies to evaluate our findings and checklist design. This will give us a
strong indication of both the correctness, robustness as well as practicality of our
design. Similarly to the exploratory interviews, evaluation is done by conducting
four confirmatory interviews with industry experts from insurance companies,
and their software suppliers. The evaluation findings can be found in Sect. 6.
For privacy reasons we will not disclose the actual company names, nor will we
disclose employee names and information that could be used to identify organ-
isations and personnel. Instead, we will call the seven companies ‘company A’
through ‘company G’, respectively. Note, that with company B we have con-
ducted both an exploratory interview as well as a confirmatory interview.

3 Literature Background

Taxonomy of XAI. According to Vilone and Longo [12], there is little agree-
ment among scholars on what explanations are and what properties they might
have, as well as the correct terminology that should be used. Fortunately, For-
tunately, Barredo Arrieta et al. [2] have comprised a clear report on the most
common terms used in XAI research and their respective meaning. Notably, they
propose three distinct levels of transparency. Barredo Arrieta et al. [2] explain
how these levels of transparency apply to different AI algorithms, enabling them
to categorise the algorithms as either of type transparent or type opaque (or
non-transparent). Of course, a system itself is never opaque but rather opaque
with respect to some particular agent. Tomsett et al. [11] break down all differ-
ent agent groups within a system in fine detail. Depending on what a particular
agent is tasked with doing, they are likely to require a different kind of knowledge
to do it and, thus, seek a different kind of explanation. Barredo Arrieta et al.
[2] have comprised a list of the research goals that particular agents can achieve
through model explainability. To get a better grip on the concept of explain-
ing AI models, we must acknowledge that explanations come in many different
proverbial shapes. Vilone and Longo [12] describe attributes and characteristics
of explanations as well as define several types of explanations. In recent years,
several XAI methods have been developed to increase model transparency and
explainability. Vilone and Longo [12] have also compiled a list of all current
ante-hoc and post-hoc XAI methods.

A Checklist for Explainable AI in the Insurance Domain 449

Responsible AI. AI bias is a phenomenon that occurs when an algorithm pro-
duces results that are systemically prejudiced due to either erroneous (or correct
but undesired) assumptions in the machine learning process. This can happen
with learning algorithms when they are trained on their dataset. In this case,
we call the phenomenon algorithmic bias. Even so, other forms of bias exist.
It can also result from human errors (e.g. faulty collection or representation of
input data). Barocas and Selbst [1] break down all possible cause for bias. Some-
times biases can be functionally correct, but immoral to base results upon. These
undesired biases stem from a black-box model’s tendency to unintentionally cre-
ate unfair decisions by including sensitive factors such as the individual’s race
or gender. This phenomenon gives rise to certain discriminatory issues, either
explicitly (considering sensitive attributes) or implicitly (considering factors that
correlate with sensitive attributes). Barredo Arrieta et al. [2] gives several degrees
of fairness that should be considered to design responsible AI solutions.

Several guidelines for trustworthy AI have been proposed [3,8]. Similar to
the checklist we propose, these frameworks aim to give general guidance for
responsible use of AI. However, these frameworks, while being very high level
in nature, are not actionable for working developers. Serban et al. [9] provide
14 engineering practices for trustworthy ML applications, of which several are
related to explainability. These practices are not formulated in terms of checks.

4 Exploration

As mentioned, we carried out four exploratory interviews with industry experts
from financial institutes, insurance companies, and their software suppliers. A
summary of the interviewees is shown in Table 1. The priority of these inter-
views lies in achieving three primary goals. Firstly, we seek a more in-depth
understanding of the insurance industry and its related processes, stakeholders,
demands and concerns. Secondly, we want to know which AI techniques said
companies deployed and which they plan to deploy in the future. Thirdly, we
want to know how the industry values transparency and explainability.

Findings. The insurance industry is still in a preliminary phase when it comes
to the deployment of AI technologies. All of the four companies interviewed
have deployed some form of Rule-Based System (RBS), but some are hesitant
to adopt more complex AI techniques, like Machine Learning (ML) and Deep
Learning (DL). This is because most companies are focused on improving these
Rule-Based Systems and ironing out any inefficiencies. Additionally, the intervie-
wees from company B expressed a growing concern that people lack trust in ML
algorithms. It takes time and effort to convince people that ML algorithms work
better than Rule-Based Systems, even though oftentimes they are statistically
proven to do so. Thus, at the moment, all of them prefer Rule-Based Systems
because they are more explainable, even when the results that are explained are
sometimes less accurate. Two out of four companies interviewed have already
deployed ML algorithms in their processes. Notably, both company B and D

450 O. Koster et al.

Table 1. Summary of exploratory interview company information ∗Also takes part in
confirmatory interview

Company A Company B∗ Company C Company D

Core business Insurance
software
supplier

Insurance
intermediary
(software)

Financial
services

Financial
services

employees 100+ 100+ 1.000+ 10.000+

Job-title
interviewee(s)

Product owner ML engineer &
software
engineer

Manager client
contact
financial
services

Product Owner
& Innovation
Manager
Business
Automation

Uses RBS for Various
processes

Various
processes

Various
processes

Various
processes

Uses ML for – Fraud detection – Fraud detection

Uses DL for – – – –

have deployed the technology for insurance claim handling, specifically to detect
possible fraudulent activity. It is interesting to note, however, that both compa-
nies do so with different kinds of algorithms. Company B uses a decision tree
classifier (supervised learning), whereas company D uses a k-means clustering
algorithm for anomaly detection (unsupervised learning). Company B also uses
ML algorithms for calculating car insurance premiums. They are also experi-
menting with ML algorithms to calculate a customer’s risk coverage ratio, but
this system has yet to be deployed. Importantly, neither use non-transparent
algorithms (including DL) for these tasks. Company B and D are already exper-
imenting with DL. However, none of the interviewed companies have deployed
any DL systems thus far. There are four main reasons for this:

1. DL is less explainable: Even though DL algorithms are usually more accu-
rate than ML algorithms (and Rule-bases Systems), they are even less explain-
able. A balance between accuracy and explainability has to be found. Insur-
ance companies mostly choose explainability in favour of a marginal increase
in accuracy. They need increased explainability to understand and convey why
the system gives a certain output, otherwise, the results are not actionable.

2. Understanding DL requires technical/mathematical expertise:
Because DL algorithms (and some ML algorithms for that matter) have such
high complexity, they are less explainable. Thus, they require more expertise
to be understood and used (this is the case for all system agent roles, but
especially operators and executors). For most current employees this creates
a knowledge gap that is hard to overcome. Furthermore, if they were to over-
come this obstacle, their job description would change significantly. Claims
handlers would turn into model experts.

3. DL is less transferable: DL algorithms are sometimes less transferable
than other AI techniques. The input data that insurance companies use at

A Checklist for Explainable AI in the Insurance Domain 451

the moment is less suitable for these types of algorithms. Additionally, some
of the data that could be used to extract the most out of DL algorithms are
not present in the dataset or are off-limits due to privacy concerns.

4. Streamlining RBS has more value in the short term: More quality
gain can be found in streamlining current RBSs and ML processes, instead of
looking for accuracy gain with DL algorithms. Gains can especially be made
in the refinement of input data (e.g. feature selection), as this is where most
resource and thought is going at the moment.

Future prospects for all companies range from the initial deployment of ML to
the deployment of complex DL algorithms when the aforementioned issues start
to be resolved. Most expect to start incorporating (more of) these complex AI
technologies near the end of the 2025.

5 Design

Purpose. The checklist should be a list of ‘checks’ that, if answered properly,
should test the explainability and transparency of AI model applications, as well
as highlight potential weaknesses and areas for improvement. We define a check
as a component that features one or more questions, hence the collective is called
a checklist. Every check comes with an elucidation to clear any confusion for the
reader and to make sure the question is answered as intended. Checks either have
open answers or multiple choice answers. The complete checklist can be found in
the appendix. The checklist is designed with two main purposes in mind: Firstly,
it should be used to confirm the quality and completeness of an AI application
with regards to its explainability and transparency. In that way, the checklist
can essentially be used as a guide to evaluate if all facets, that make a well
designed explainable and transparent AI application, are accounted for. If, based
on this checklist, one would conclude their application is not complete or lacks
quality in certain key areas, it serves as an indication where further progress
should be made. Secondly, the checklist, if properly filled in, could be shared
with third parties (clients or companies) to show the quality and completeness
of an AI applications with regards to explainability and transparency. This is
especially helpful for collaboration between companies to give confidence that
certain information or assets can be shared. Moreover, this could be interesting
from a marketing standpoint, giving clients assurance that your application is
well designed and responsible.

Constraints. To fulfil these purposes we formulate several constraints for
the checklist design. The checklist is based on an existing checklist1 named
‘Checklist-KOAT’ or ‘Checklist Kwaliteit Onbemenste Advies- en Transacti-
etoepassingen’ by SIVI, the standardisation institute for digital cooperation and
innovation in Dutch insurance. This existing checklist covers several topics with

1 The Checklist-KOAT can be found at https://www.sivi.org/checklist-koat/.

https://www.sivi.org/checklist-koat/

452 O. Koster et al.

regards to computer applications for financial advice and financial transactions.
We can deduce several helpful constraints that are implied in this pre-existing
checklist. We will use these implied constraints as well as our design guidelines
to set constraints to design our checklist. The following constraints are used:

1. Practical relevance: We want our checklist to be applicable for practical
use. That means that all covered topics should be relevant from a practi-
cal standpoint. Furthermore, the checklist cannot be overly long or be too
technically in-depth, as this would disincline people from using it.

2. Non-expert terminology: The checks and elucidation should refrain from
using expert terminology as much as possible. If used in a practical environ-
ment by actual employees of financial companies, expert terminology may be
unclear and would not induce a full understanding of the covered topic.

3. Broadness-precision balance: Topics should be covered broadly enough to
be appropriate for most, if not all, AI model applications. Yet, checks should
be precise enough to get the most informative answer. A proper balance
should be found between these two ends.

6 Validation

As mentioned in Sect. 2, similarly to the exploratory interviews, evaluation is
done by conducting four confirmatory interviews with industry experts from
insurance companies, and their software suppliers. A summary of the intervie-
wees is shown in Table 2. Other than to evaluate our design, these interviews
essentially helped us confirm whether our original findings are correct and if
they still hold within new contexts. The structure of the interview is as follows:
For every check and its elucidation, we ask three things: 1. “Is the phrasing and
meaning clear?” 2. “How relevant is the check and its encompassing topic (with
regards to the purposes mentioned in Sect. 5)?” and 3. “What would your answer
be to the question for your specific application?” After all, topics are covered,
we ask two general questions about the entire set of topics: 1. “Do you deem the
sequence/order of topics logical and favourable?” 2. “Is the set of topics (and
checks) complete or do you think a topic is missing?”

Conforming to our used design science research methodology, evaluation is
done during the design phase. Therefore, the design process has an iterative
nature. Consequently, a new checklist draft is designed after each confirmatory
interview. This way the design is improved in a step by step manner. Most initial
constructive criticism, in the interview with company E, was aimed at phrasing
and meaning (of checks and their elucidation) being unclear. This resulted in the
inclusion of additional elucidations were needed, or rephrasing of said unclear
pieces of information. This was the case throughout the design. In most cases,
an illustrative example was also added in an attempt to clear up any remaining
confusion. The next iteration was found to be much more clear and comprehen-
sible, although slight improvements kept being made from version to version.
Until, in the last interview, no confusion was remarked explicitly.

A Checklist for Explainable AI in the Insurance Domain 453

Table 2. Summary of confirmatory interview company information ∗Also takes part
in exploratory interview

Company E Company F Company G Company B∗

Core business Software
supplier

Insurance &
pensions

Software
supplier
(insurance &
pensions)

Insurance
intermediary
(software)

employees 10+ 1.000+ 10+ 100+

Job-title
interviewee(s)

CCO\CMO sr. IT
Architect

User interaction
designer

ML engineer &
software
engineer

Use RBS for Various
processes

Various
processes

Various
processes

Various
processes

Use ML for – – Policy recom-
mendation

Fraud detection

Use DL for – – – –

7 Discussion

In the final iteration of the design, all checks and elucidations seemed to be
phrased clearly, to be fully understood by the interviewees, based on our assess-
ment of their answers. Also, based on the results, all checks and topics present
in the final iteration seemed to be relevant enough to be included in the design.
Interviewees specifically expressed relevance for the topics spanning bias. Given
this fact, more checks could be added towards this topic. Such questions could
dive deeper into why they include and exclude certain biases in their model
(thus, revealing which biases they would label as undesired biases). Eventually,
we landed on a design that puts a heavy emphasis on questions formulated with
open-ended answer in mind. This has two main advantages, whilst also running
the risk of some potential drawbacks. The first advantage is that phrasing the
questions in such a way, tends to squeeze as much interesting information out of
a single check as possible, as long as the checklist user is motivated to explore the
answer to the intended extent (interviewees have at least expressed the intention
to do so). The second advantage is that this open-ended phrasing creates room
for a certain broadness in the scope of a check’s applicability. By restricting the
answers too much, you run the risk of excluding some AI applications, rendering
the check useless for their specific model.

At the end of the day, the checklist needs to be relevant for companies that
only use RBSs, but must also be a guide to ML and DL technology, in order
to aid with applications in the future. Based on the results of our confirmatory
interviews, we feel our design fulfils this ambition.

454 O. Koster et al.

8 Conclusion

Contributions. Several contributions stand out when compared to other lit-
erature that we could find on the topics of XAI and AI in general. Firstly, we
propose a checklist that can be used to assess and help assure transparency and
explainability for AI application in a practical environment. It can also be used
to verify if enough thought has gone into the application and to share qual-
ity standards across parties. As such, our checklist is more actionable for the
working developer than the frameworks mentioned in Sect. 3. Secondly, we give
insight into AI and XAI adoption in the insurance industry. Few other papers
talk about AI and XAI in the financial sector. Presumably, this comes down to
the fact that most financial companies are only now starting to adopt AI algo-
rithms effectively, as knowledge on the subject has only started to grow in recent
years. After all, once a technology has been discovered, it takes some time for it
to develop into a commercially viable product. Thirdly, we have, to some extent,
validated existing theories and concepts about XAI in a practical environment.

Future Work. As with any study, some things could be done to further improve
the design research carried out. For example, while interviews were conducted to
learn about the adoption and prospects of AI and XAI techniques in the Dutch
insurance industry as a whole, more interviews would give a more complete view
of the industry. Additionally, since industry experts employed at insurance com-
panies and software suppliers were targeted for the interviews, end-customers,
consumers and lawmakers were not consulted. Moreover, only a small number
of companies in the industry are now starting to gain traction with ML and
DL concepts. This means that knowledge of the technologies among industry
experts is still relatively scarce. Considering, that in the future this knowledge
will grow, more detailed analyses could be done on the topic.

Finally, as initially mentioned, the checklist is meant to extend an existing
checklist, named ‘Checklist-KOAT’, which is made by SIVI. Specifically, the
design mentioned in this paper serves as a base for the eventual integration into
the ‘Checklist-KOAT’. This integration will be done by SIVI itself. SIVI will keep
improving the integrated design through field testing with associated member
companies. We presume the design will remain relevant for the foreseeable future,
although, as time progresses and new techniques become prevalent, eventual
updates will inevitably be advisable.

While developed and validated in the context of the insurance domain, our
checklist can likely be generalized to other domains.

A Checklist for Explainable AI in the Insurance Domain 455

Appendix: Checklist for AI in Insurance Applications

456 O. Koster et al.

References

1. Barocas, S., Selbst, A.D.: Big data’s disparate impact. Calif. Law Rev. 104, 671
(2016)

2. Barredo Arrieta, A., et al.: Explainable artificial intelligence (XAI): concepts, tax-
onomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–
115 (2020). ISSN 1566-2535. https://doi.org/10.1016/j.inffus.2019.12.012. http://
www.sciencedirect.com/science/article/pii/S1566253519308103

3. Van der Burgt, J.: General principles for the use of artificial intelligence in the finan-
cial sector (2019). https://www.dnb.nl/media/voffsric/general-principles-for-the-
use-of-artificial-intelligence-in-the-financial-sector.pdf. Guidance Document from
De Nederlandsche Bank. Accessed 25 May 2021

4. Castelvecchi, D.: Can we open the black box of AI? Nature 538(7623), 20–23
(2016). https://doi.org/10.1038/538020a

5. Daley, S.: 32 examples of AI in healthcare that will make you feel better about
the future (2019). https://builtin.com/artificial-intelligence/artificial-intelligence-
healthcare. Accessed 25 May 2021

6. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information sys-
tems research. MIS Q. 28(1), 75–105 (2004). ISSN 02767783. http://www.jstor.
org/stable/25148625

7. Kroes, M.: Fact-AI: a framework towards responsible AI (2020). https://
www.viqtordavis.com/en-us/media/whitepaper-fact-ai. Whitepaper from Viqtor
Davies. Accessed 25 May 2021

8. Reisman, D., Schultz, J., Crawfordand, K., Whittaker, M.: Algorithmic impact
assessments: a practical framework for public agency accountability (2018).
https://ainowinstitute.org/aiareport2018.pdf. Report from AI Now Institute.
Accessed 25 May 2021

9. Serban, A., van der Blom, K., Hoos, H., Visser, J.: Practices for engineering trust-
worthy machine learning applications. In: 1st Workshop on AI Engineering, WAIN
2021 (2021). https://arxiv.org/abs/2103.00964

10. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): toward
medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 1–21 (2020). ISSN 2162-2388.
https://doi.org/10.1109/tnnls.2020.3027314

11. Tomsett, R., Braines, D., Harborne, D., Preece, A., Chakraborty, S.: Interpretable
to whom? A role-based model for analyzing interpretable machine learning systems.
arXiv preprint arXiv:1810.00184 (2018)

12. Vilone, G., Longo, L.: Explainable Artificial Intelligence: A Systematic Review
(2020)

https://doi.org/10.1016/j.inffus.2019.12.012
http://www.sciencedirect.com/science/article/pii/S1566253519308103
http://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.dnb.nl/media/voffsric/general-principles-for-the-use-of-artificial-intelligence-in-the-financial-sector.pdf
https://www.dnb.nl/media/voffsric/general-principles-for-the-use-of-artificial-intelligence-in-the-financial-sector.pdf
https://doi.org/10.1038/538020a
https://builtin.com/artificial-intelligence/artificial-intelligence-healthcare
https://builtin.com/artificial-intelligence/artificial-intelligence-healthcare
http://www.jstor.org/stable/25148625
http://www.jstor.org/stable/25148625
https://www.viqtordavis.com/en-us/media/whitepaper-fact-ai
https://www.viqtordavis.com/en-us/media/whitepaper-fact-ai
https://ainowinstitute.org/aiareport2018.pdf
https://arxiv.org/abs/2103.00964
https://doi.org/10.1109/tnnls.2020.3027314
http://arxiv.org/abs/1810.00184

Evidence-Based Software Quality
Engineering

Where the Bugs are: A Quasi-replication
Study of the Effect of Inheritance Depth

and Width in Java Systems

Steve Counsell1(B), Stephen Swift1, and Amjed Tahir2

1 Department of Computer Science, Brunel University, London, UK
steve.counsell@brunel.ac.uk

2 School of Fundamental Sciences, Massey University,

Palmerston North, New Zealand

Abstract. The role of inheritance in the OO paradigm and its inher-
ent complexity has caused conflicting results in the software engineer-
ing community. In a seminal empirical study, Basili et al., suggest that,
based on a critique of the Chidamber and Kemerer OO metrics suite,
a class located deeper in an inheritance hierarchy will introduce more
bugs because it inherits a large number of definitions from its ancestors.
Equally, classes with a large number of children (i.e., descendants) are
difficult to modify and usually require more testing because the class
potentially affects all of its children. In this paper, we use a large data
set containing bug and inheritance data from eleven Java systems (seven
open-source and four commercial) to explore these two research ques-
tions. We explore whether it is the case that a class deeper in the hier-
archy is more buggy because of its deep position. Equally, we explore
whether there is a positive relationship between the number of children
and bugs, if classes with large numbers of children are indeed more dif-
ficult to modify. Results showed no specific trend for classes deeper in
the hierarchy to be more buggy vis-a-vis shallower classes; the four com-
mercial systems actually showed a negative relationship. The majority
of classes across the hierarchy were also found to have no children and
those classes included the most buggy.

1 Introduction

The concept of inheritance is a cornerstone of the OO paradigm and plays a
key role in the functioning of any reasonably-sized OO system [12]. Inheritance
promotes reuse, encourages specialisation and is meant to reflect the way that
humans naturally structure information [4]. Controversy still surrounds inheri-
tance, not least because the deep levels that were typically envisaged in systems
have not materialised; systems still tend to be relatively flat with shallow inher-
itance structures [5]. Past studies have also argued about the optimum level of
inheritance, some suggesting that three levels of inheritance is the most efficient
depth for developers to or that flat systems without any significant depth to the

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 459–472, 2021.
https://doi.org/10.1007/978-3-030-85347-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_33&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_33

460 S. Counsell et al.

hierarchy is less likely to cause maintenance problems [7]. Very few empirical
studies have looked at inheritance particularly with respect to “buggyness” in
the past five to ten years and because of the different application type, nature,
artefacts, subjects used and research questions of studies that have looked at
inheritance in the past and our desire to cast light on those results, the most we
can hope to achieve is a “quasi-replication”. So we see our work as supporting
or refuting prior results, but with the many caveats of aforementioned factors.

In an early paper of Basili et al. [2] the six metrics of Chidamber and Kemerer
(C&K) [6] were validated using eight C++ systems as a basis. The analysis
included the Depth in the Inheritance Tree of a class (DIT) and Number of
Children (NOC) C&K metrics. The DIT is a measure of the distance from the
root (in Java, the root is class Object from which all classes inherit). So, a class
at DIT level 1 is a class with only Object as its superclass; a class at DIT has 2
classes which it inherits from (in a line) between it and root etc. The NOC metric
is the number of immediate descendants below a class. So, if two classes X and
Y inherit from class Z, then Z has an NOC value of 2. The basis of their analysis
and validation of the DIT metric was the assumption that “....a class located
deeper in a class inheritance lattice is supposed to be more fault-prone because
the class inherits a large number of definitions from its ancestors.” Equally, the
study of NOC in the same paper was made on the basis that “a class with
numerous children has to provide services in a larger number of contexts and
must be more flexible. We expect this to introduce more complexity into the class
design.” The assumptions of Basili et al., were heavily informed by the claims
of the two metrics by C&K in their original paper.

In this paper, we use a large data set of seven open-source systems and four
commercial systems containing thousands of classes to explore the relationship
between DIT, NOC and bugs. Since we have no developer maintenance infor-
mation for the systems analysed, we use bugs as a surrogate for maintenance
complexity. We justify this on the basis that a class with higher numbers of bugs
reflects a class which is likely to be complex and has, over its lifetime, been more
difficult to maintain. We investigate two research questions. Firstly, we explore
whether there is a correspondence between the level of inheritance and the inci-
dence of bugs. Put another way, are classes at deep levels of inheritance more
buggy than shallower classes? Secondly, is there a relationship between NOC and
bugs? In other words, does a larger number of children belonging to a class (given
by a higher NOC) indicate that the class will be more bug-prone? Results showed
no specific trend for classes deeper in the hierarchy vis-a-vis shallow classes; the
majority of the open-source systems showed no relationship between DIT and
bugs. The four commercial systems showed a strong negative relationship for our
first question. In terms of the other research question related to NOC, the vast
bulk of classes across the hierarchy were found to have zero children, including
the one hundred most bug-prone classes in every system. The message seems
from our work is quite stark: empirical studies provide useful results and others
may support and refute those results. Ultimately however, a “one size fits all”

Where the Bugs are......Depth and Width in Java Systems 461

approach to the use of inheritance and advocating a specific depth or width of
inheritance may simply be unattainable.

The remainder of the paper is structured as follows. In the next section, we
describe preliminary information. We then analyse our two research questions by
examining bug data in the eleven systems (Sects. 3 and 4). In Sect. 5, we look at
related work and threats to our study before concluding and pointing to future
work (Sect. 6).

2 Preliminaries

The data used in this study was originally produced by Madeyski et al. [11] and
comprises a range of metrics from 43 releases of eleven Java open source and
27 releases of 6 industrial Java projects. The four industrial projects belonged
to the insurance domain and all projects were developed by the same software
development company. We note that the data used in this study is freely avail-
able to download from a repository link in the original paper by Madeyski et
al. [11]. In contrast to our work, the analysis described in their paper was not
related specifically to inheritance; the study empirically evaluated process met-
rics for those which most significantly improved defect prediction models based
on product metrics. In their work, the cjkm tool [16] was used to collect the DIT
and NOC metrics and the BugInfo tool, developed by one of the authors of [11],
was used to collect bug information.

Table 1 shows the number of classes, the mean DIT and NOC and corre-
sponding median (med.) values for all classes where there was at least one
bug across the eleven systems we studied1. We note that class Object is con-
sidered to be at DIT level 0. The four commercial systems are named Prop-1
to Prop-4 in the table. We can see, for example, that the Ant system has 350
buggy classes and the mean DIT of those classes is 2.55, with median 3. The
mean NOC for this system is 0.67, with median 0. The DIT data seems to sug-
gest that for the open-source systems, it is between DIT level 1 (below root)
and DIT level 2 that the bulk of the bugs seem to lie; for the four commercial
systems, there is a clear pattern for classes at DIT level 3 to be the source of
problems - all four DIT mean and median values for the commercial systems are
approximately 3. This is an interesting characteristic of the data since at least
one study in the past has suggested that DIT level 3 may be the point beyond
which code comprehension starts to become excessively complex for developers
[7] and that is when problems start arising in the maintenance process. The four
commercial systems stand out from the rest of the table in that sense.

A further striking feature of the table are the low values for NOC across all
systems. For the set of bug-prone classes shown in the table, only one system
(Camel) has an NOC value exceeding 1. The lowest NOC value was for the jEdit
system (with an NOC value of just 0.20); all median NOC values were 0. The
low values for NOC in our systems reflect the similar conclusion by Basili et al.
1 ant.apache.org, camel.apache.org, ant.apache.org/ivy, jedit.org, logging.apache.org/

log4j, lucene.apache.org, poi.apache.org.

462 S. Counsell et al.

Table 1. Summary of DIT and NOC (all systems)

System #Classes DIT mean med. NOC mean med.

Ant 350 2.55 3.00 0.67 0.00

Camel 562 1.98 2.00 1.23 0.00

Ivy 119 1.73 1.00 0.52 0.00

jEdit 303 3.23 2.00 0.20 0.00

Log4j 260 1.71 1.00 0.32 0.00

Lucene 438 1.78 2.00 0.71 0.00

Poi 707 1.84 2.00 0.89 0.00

Prop-1 2436 3.02 3.00 0.79 0.00

Prop-2 1514 3.09 3.00 0.72 0.00

Prop-3 840 3.10 3.00 0.35 0.00

Prop-4 1299 3.45 3.00 0.80 0.00

[2] that most classes do not tend have more than one child and that flat systems
(with low levels of DIT) are frequent [5].

3 DIT Metric Analysis

3.1 Summary of DIT Data

For our analysis, we first explore the relationship between DIT and bugs and we
then consider NOC. Henceforward, for expressiveness and clarity, we now refer
to classes at inheritance level 1, 2 as simply DIT1, DIT2, respectively. Table 2
summarises the number of classes at each inheritance level (given by the DIT)
for the eleven systems. Here, we report DIT6 and greater as a single total in
the final column of the table for the purposes of brevity (this is chiefly because
relatively few classes were found at levels greater than 6). For example, for the
Ant system, there were 997 classes at DIT1, 498 classes at DIT2 and 521 classes
at DIT3 etc.

The most noticeable feature of the table is the relatively stable numbers of
classes evenly distributed across the four proprietary systems, when compared
with the seven open-source systems. To put this into perspective, only 13943
classes from a total of 53649 (25.99%) for the four commercial systems were
found at DIT1; for the open-source systems, the corresponding figure was 6917
from 13942 classes; this represents 49.61% of the total number of classes across
the seven systems. For the four proprietary systems, DIT3 contained more classes
than its corresponding DIT1 value in every case, reflecting the relatively even
spread of classes in those systems. It is also interesting to note that the number
of classes in the DIT ≥ 6 category for the seven open-source systems was far
lower compared to the four commercial systems. Only jEdit shows significant
numbers of classes at DIT6 and greater. jEdit is an editor tool and that type of

Where the Bugs are......Depth and Width in Java Systems 463

Table 2. Summary of DIT levels (per system)

System/Depth DIT1 DIT2 DIT3 DIT4 DIT5 DIT ≥ 6

Ant 997 498 521 265 130 31

Camel 1827 683 584 182 127 25

Ivy 617 149 64 63 22 18

jEdit 1971 919 151 63 167 424

Log4j 349 130 43 18 6 11

Lucene 590 426 144 40 5 0

Poi 566 966 111 26 12 2

Prop-1 4343 1682 6364 4744 2087 3838

Prop-2 3100 1312 3939 2125 2150 527

Prop-3 2162 621 2724 1014 940 1406

Prop-4 1395 386 2129 2073 1969 619

system (based on panels, frames, boxes and labels) is acknowledged to contain
a richer inheritance structure because of their very structured nature. We note
that the maximum depths across all eleven systems was 9 (Prop-3) followed by
DIT8 for jEdit, Prop-1 and Prop-4. Ant, Log4j and Prop-2 all had maximum
DIT7, so the systems were broadly comparable in that sense.

Table 3 shows the eleven systems studied, the number of classes in each sys-
tem, the number of bug-prone classes (i.e., classes containing at least one bug)
and the number of bug-free classes of that total. It also provides the percentages
that these values represent. For example, Ant comprised 2442 classes, of which
350 were bug-prone and 2092 bug-free. This represents 14.33% and 85.67% of the
total, respectively. The table shows that the most buggy of the eleven systems
was Log4j, where 46.68% of classes contained at least one bug. The least buggy

Table 3. System summary by bugs

System #Classes Buggy Bug-free %Buggy #Bugs

Ant 2442 350 2092 14.33 637

Camel 3428 562 2866 16.39 1371

Ivy 933 119 814 12.75 307

jEdit 3695 303 3392 8.20 943

Log4j 557 260 297 46.68 645

Lucene 1205 438 767 36.35 1314

Poi 1683 707 976 42.00 1377

Prop-1 23058 2436 20622 10.56 4102

Prop-2 13153 1514 11642 11.49 2167

Prop-3 8867 840 8027 9.47 1362

Prop-4 8571 1299 7272 15.52 1930

464 S. Counsell et al.

system was jEdit, where only 8.2% of classes contained at least one bug. Gener-
ally speaking, the four proprietary systems were less bug-prone than the seven
open-source systems; however Prop-4 stood out from the other three commercial
systems, with a relatively high bug level (15.52%).

3.2 Correlation of DIT vs Bugs

One way of determining the relationship between DIT and bugs is through cor-
relation of the variables studied. Table 4 shows the results of correlation between
DIT and bugs for the eleven systems and for completeness we provide three
correlation coefficients: Pearson’s r, Spearman’s and Kendall’s rank. Pearson’s
is a parametric measure and Spearman’s and Kendall’s coefficients are non-
parametric, making no assumption about the data distribution [8]. Here, single
asterisked values (“∗”) in the table represent significance at the 1% level and
double asterisked values (“∗∗”) represent significance at the 5% level.

Table 4. Correlation of DIT and bugs

System Pearson’s Spearman’s Kendall’s

Ant 0.04 0.10 0.08

Camel −0.04 −0.01 0.00

Ivy −0.01 0.10 0.09

jEdit −0.01 −0.02 −0.02

Log4j 0.10 0.20* 0.17*

Lucene −0.04 0.00 0.00

Poi −0.20* −0.11* −0.10*

Prop-1 −0.14* −0.08* −007*

Prop-2 −0.09* −0.09* −0.07*

Prop-3 −0.07** 0.04 0.03

Prop-4 −0.19* −0.11* −0.10*

The table shows a clear trend for the set of open-source systems; only two
of the seven sets of correlation values show any significance and they are in
opposing direction to each other (one is positive and one negative); for five of
the open-source systems, there is clearly no notable relationship between DIT
and bugs, with all values around the zero mark (i.e., just below or just above).
This supports the view that there is no observable pattern to the distribution
of bugs across the systems in terms of a DIT “landscape”. So, it does not seem
to be the case that classes at deep levels of the inheritance hierarchy are more
buggy than at lower levels and, if we associate bugs with classes that are difficult
to maintain, which is a reasonable assumption, then buggy classes do not seem
to discriminate between one level or another.

Where the Bugs are......Depth and Width in Java Systems 465

The POI system stands out from Table 4, since the correlation values for this
system are all negative and significant at the 1% level. In these cases, a higher
DIT therefore suggests a lower incidence of bugs. In terms of OO theory, this is
what we might expect to occur, since classes at deeper levels of the inheritance
hierarchy would be smaller (because of specialisation), be more maintainable as a
result and therefore be the source of fewer bugs. But that is not how in practice
it seems to work out. For the set of four proprietary systems, a different, yet
equally distinct pattern can be seen; for three of the four systems there is a
negative, significant association between DIT and bugs which was only present
in one of the open-source systems (we saw the same for the POI system). The
data for the four industry systems suggests that the deeper in the inheritance
hierarchy a class resides, the lower its propensity for bugs. Prop-4 has the highest
correlation coefficients overall.

From Table 4, we also see that the Log4j system is positively and significantly
correlated at the 1% level. It is worth remarking that this system had the highest
percentage of bugs (46.68%), as can be seen from Table 3. For this system, it
appears that a higher DIT value does indicate a higher propensity for bugs, but
this is probably because there are so many bugs in this system that this result
was inevitable anyway. Table 5 shows the distribution of bugs across the DIT
levels for this system. For example, at DIT1 there were 345 bugs, representing
52.83% of the total number of bugs (i.e., 636). The table also shows “bug-density”
values which we define as the number of bugs at a particular DIT level, divided
by the number of classes at that level containing at least one bug; this reflects
the average number of bugs per class. If we now inspect these values, we see
an interesting trend. The lowest bug-density of 2.25 was found at DIT1 and the
highest at DIT4 (value 3.6). In other words, the highest propensity for bugs was
found at DIT4 and the lowest bug density at DIT1.

Table 5. Bugs and bug-density (Log4j)

Depth DIT1 DIT2 DIT3 DIT4 DIT5 DIT ≥ 6

Bugs 345 201 51 18 11 19

% Bugs 52.83 31.60 8.02 2.83 1.73 2.99

Classes 153 71 18 5 4 8

Bug-density 2.25 2.83 2.83 3.6 2.75 2.38

Figure 1 shows the bug-densities for the seven open-source systems and Fig. 2
the corresponding values for the four commercial systems. The most striking
feature is for the jEdit system which stands out for the peak at DIT4 (bug
density 9.43). The most notable feature across the two figures more generally is
that the bug density varies, but for the four commercial systems that variance is
relatively small. The bug density ranges between 1.14 and 2.44 for those systems,
indicating that bugs do not seem to dominate any particular level. While the

466 S. Counsell et al.

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6

Bu
g

de
ns

ity

DIT level

Lucene Poi
jEdit Log4j
Ant Camel
Ivy

Fig. 1. DIT vs. Bug density (seven open-source systems)

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6

Bu
g

de
ns

ity

DIT level
Prop-4 Prop-2 Prop-3 Prop-1

Fig. 2. DIT vs. Bug density (four commercial systems)

variance is wider for the open-source systems (values range between 0 and 3.67
in most cases) there seems to be no standout DIT. The two figures support thus
the view that there is no harmful, useful or remarkable level of inheritance - a
view stated unequivocally by Prechelt et al. [14].

3.3 The Role of Class Size

One relevant question that arises from the preceding analysis is why there are
such differences between the open-source systems and the proprietary systems in
terms of results from Table 4 and from Figs. 1 and 2? One possible explanation
is that commercial systems are arguably better maintained and have cleaner
code structures than open-source systems (although we cannot generalise in
this sense). They may also be subjected more to practices such as refactoring

Where the Bugs are......Depth and Width in Java Systems 467

[9] throughout their lifetime, which has the effect of stemming code decay and
stopping code smells emerging. Smaller class sizes would be the norm and smaller
classes we know are generally easier to maintain than larger classes, as well as
generating fewer bugs on average. Table 6 shows the median and mean class sizes
for each of the eleven systems. We again measure class size using the C&K WMC
metric.

Table 6. WMC data per system

System Median Mean Max.

Ant 8.74 5 120

Camel 6.93 4 166

Ivy 9.43 5 205

jEdit 7.59 3 413

Log4j 6.64 5 105

Lucene 7.68 5 166

Poi 12.23 9 134

Prop-1 4.84 4 347

Prop-2 4.42 3 140

Prop-3 4.30 3 136

Prop-4 3.96 2 212

The table shows that for only one open-source system (jEdit) is the median
lower than the commercial systems and no mean WMC is lower in across the
set of open-source systems. The most striking aspect of the table is the low class
sizes for the four commercial systems. This evidence, together with the results
from Table 4 and Fig. 2 suggests that keeping classes relatively small may be one
way of preserving a system’s structure and, although our analysis is based on
just eleven systems, potentially minimising the number of bugs in the system. To
verify that smaller classes arise across the hierarchy, Table 7 shows the correlation
values of DIT versus WMC for all eleven systems.

As we might expect, for the four commercial systems Prop-1 to Prop-4,
Spearman’s and Kendall’s values are positive and significant at the 1% level.
The same cannot necessarily be said of the seven open-source systems (where
only Ivy shows the same type of relationship). Our belief that the commercial
systems (Prop-1 to Prop-4) may be better maintained and looked after seems to
have some traction. That said, whichever way this is looked at, bugs still do not
seem to discriminate at any particular DIT level. It also suggests that there is
no pattern in terms of the size of a class at any level.

468 S. Counsell et al.

Table 7. Correlation of DIT vs. WMC per system

System Pearson’s Spearman’s Kendall’s

Ant 0.04 0.09 0.07

Camel −0.13* −0.12* −0.09*

Ivy 0.04 0.32* 0.26*

jEdit −0.06 −0.08 −0.07

Log4j −0.10 0.07 0.06

Lucene −0.15* −0.15* −0.12*

Poi −0.08** 0.06 0.05

Prop-1 −0.16* 0.26* 0.23*

Prop-2 0.01 0.24* 0.20*

Prop-3 −0.13* 0.29* 0.25*

Prop-4 −0.14* 0.34* 0.29*

�

�

�

�

Summary: No clear pattern to the relationship between the depth of a class
(given by DIT) and the incidence of bugs was found for the eleven systems
studied.

4 NOC Metric Analysis

The study of Basili et al., suggests from C&K’s suite of metrics that classes
with a high NOC value would be more complex and difficult to maintain. In
their words: “Classes with large number of children are difficult to modify and
usually require more testing because the class potentially affects all of its children.
Thus, a class with numerous children has to provide services in a larger number
of contexts and must be more flexible. We also believe that classes with a high
NOC value will contain more bugs than classes with a low or zero NOC because
of the extra complexity in classes with that high NOC. As per DIT, and for
brevity, we now refer to a class with zero children as NOC0.

4.1 Correlation of NOC vs. Bugs

To explore the relationship between NOC and bugs, we correlated their values
across the eleven systems. Table 8 shows these correlation values for all classes
containing at least one bug.

As we found for the DIT analysis, there is no clear trend in the data. For
the open-source systems, there is only one system with a positive, significant
relationship (Log4j). Interestingly, the same system showed the same result for
DIT. This system had the highest percentage of bugs and it may simply be that
is the only reason why the correlations were so significant. Most of the values
in the table are close to zero, suggesting no obvious or standout relationship

Where the Bugs are......Depth and Width in Java Systems 469

Table 8. Correlation of NOC and bugs

System Pearson’s Spearman’s Kendall’s

Ant −0.03 0.04 0.03

Camel 0.09** 0.06 0.06

Ivy 0.00 0.07 0.07

jEdit −0.02 −0.14* −0.13*

Log4j 0.13** 0.13** 0.11**

Lucene 0.00 0.05 0.04

Poi 0.00 −0.05 −0.05

Prop-1 0.04 0.10* 0.10*

Prop-2 −0.01 0.06** 0.06**

Prop-3 −0.01 0.02 0.02

Prop-4 0.00 0.02 0.02

between NOC and bugs. For the four commercial systems, there is some evidence
of positive, significant relationships, but it only applies to two systems (Prop-1
and Prop-2).

One explanation for the lack of any trend in the NOC data and a feature of
the eight systems studied by Basili et al. [2] is that most classes in the eleven
systems had few or mostly zero children. Inspection of the NOC data revealed
that for example, in the Ant system, 2163 of the 2442 classes (88.57%) had zero
children; for the Camel system, the corresponding value was 90.15%. For Prop-1,
the figure was 95.75% and for Prop-2, 94.45% of classes had zero children. We
then listed the hundred most buggy classes in each of the eleven systems and
found that for the Ant system, 77 of those 100 classes were at NOC0. For the
Camel system, we found the corresponding value of 71 classes. For Prop-1, the
number of classes with NOC0 in the top 100 buggy classes was 90 and for Prop-2,
the figure was 88. Our original research question regarding whether classes with
large numbers of children were more bug-prone seems to be largely overshadowed
by the fact that so few classes in all the systems have children at all and that
the most buggy classes are contained in that group.

�

�

�

�

Summary: No clear pattern to the relationship between NOC belonging to a
class and the incidence of bugs was found for the eleven systems studied. The
vast majority of classes had zero children.

5 Related Work

There have been many (often conflicting) empirical results on the role of inher-
itance and as a community we are still no nearer establishing an optimal level
of inheritance depth. Perhaps, as our study suggests, it will always elude us.

470 S. Counsell et al.

Twenty-four years ago, Daly et al. [7] published the results of a controlled exper-
iment into inheritance and its relationship with class maintainability using the
C++ language. The study evaluated subjects in their task of maintaining code
written with different levels of inheritance (3 and 5); these were then compared
with the effectiveness of similar tasks on systems containing no inheritance (flat
systems). Results showed that subjects maintaining code with three levels of
inheritance completed the tasks more quickly than those working on tasks on
the flat system. The interesting observation however, was that subjects working
on code with five levels of inheritance struggled with the inherent complexity
at that depth and took longer to complete than tasks for the corresponding flat
system. This suggests that beyond a level of inheritance, maintenance becomes
problematic. One study that did “semi-replicate” the work of Daly et al., was
by Prechelt et al. [14]. In their empirical study, they used a longer and more
complex program and added a different type of maintenance task also. They
cast doubt on the results of Daly et el., and concluded that: “....previous results
plus ours suggest that there is no such thing as usefulness or harmfulness of a
certain inheritance depth as such”. Results from the paper herein seem to back
up this claim.

In our paper, we also note that a big impediment to analysis of NOC was the
high number of NOC0 values (i.e.. most classes having zero children). Interest-
ingly, previous work on inheritance by Nasseri et al. [13] showed that, over time
and as they evolved, inheritance hierarchies in open-source systems tended to
collapse to bring classes up to shallower levels. Perhaps it is the case that as sys-
tems evolve, structures start to fragment through maintenance and it is simply
easier to amalgamate classes and move them to shallower levels closer to the root
than to try to maintain them at the deeper levels. This feature of systems ties
with work by Bieman et al. [3] who describe a study of nineteen C++ systems
(with 2744 classes in total); only 37% of these systems had a median class DIT
>1. Other studies have shown that flat systems (with low inheritance depths)
are more easily maintained. Perhaps flat systems leads to fewer “mistakes” by
developers and by implication, fewer bugs. Alternatively, moving classes to shal-
lower levels is what the developers hope will happen. Finally, the danger of using
inheritance were pointed out by Wood et al. [17]: inheritance should only be used
with care and only when it is felt absolutely necessary.

5.1 Threats to Validity

For any empirical study, need to consider the threats to its validity [1,15]. Firstly,
we only used eleven systems in our study. In this paper, our intention was to
highlight key features of inheritance through the prism of DIT and NOC and
while there is no such thing as the right number of systems to use in any empir-
ical study, we feel that the work gives a fairly representative insight in the more
broader issues typical of all systems. The four industrial systems were all devel-
oped in the same company and so we accept that this represents a “sub-threat”
in this category. Secondly, we have made the assumption throughout the paper
that bugs are a surrogate for complex classes and that a complex class will har-
bour and generate more bugs than a simple, less complex class. While we accept

Where the Bugs are......Depth and Width in Java Systems 471

that this may not always be true, we feel that in the absence of developer main-
tenance data to work with, this is a reasonable assumption to make. Thirdly,
class size per se would influence the propensity for bugs (larger classes, more
bugs) and we have looked at depth versus bugs as one indicator; however, this
factor was not a key motivator of our work - rather that a class had experienced
at least one bug. Fourthly, many of the previous empirical studies of inheritance
used C++ systems, whereas we use Java. We defend this stance on the basis
that while there are significant differences between the two languages, the OO
paradigm is common to both and developer behaviour when maintaining sys-
tems does not seem to differ that greatly in the OO paradigm; one could argue
that the different constructs used by OO languages may however have made a
difference (this is a topic for future work). Fifthly, we have focused on classes
where at least one bug was found and also of the twenty-five systems at their
latest version point; this is because we wanted to understand the distribution of
those bugs across inheritance as it stands presently. The study could be criti-
cised because it failed to compare those results to classes without any bugs or
indeed to look at version data. In our defence however, we were trying to quasi-
replicate earlier work of studies where bugs were the dependent variable (and
versions/version history were not explored). Sixthly, we have used a data set with
different projects (open source and commercial), built by different developers,
facing different development issues. This presents a risk to the generalisability
of the results. Finally, the reader will have noted that the literature on empir-
ical studies of inheritance has been fairly static over the past ten years. (The
references in this paper are mostly from the mid-90’s to around latest 2010.)
We feel however, that this in no way undermines the need for studies like ours.
In fact, it begs the question “why have there been no contemporary studies of
inheritance on an empirical basis?” And also “what has changed in the past ten
years?” such that no researchers are exploring this facet of systems any more.

6 Conclusions and Further Work

In this paper, we explored two research questions related to inheritance. The
first explored the relationship between the depth of a class in the inheritance
hierarchy and bugs and the second that a high number of children belonging to
a class would render that class as more buggy. We found no evidence that classes
at a specific depth of inheritance were more bug-prone than at any other depth.
We did note some interesting differences between commercial and open-source
systems, however, suggesting that the former are better maintained and looked
after more generally. We also found no evidence to support the view that classes
with a high NOC were any more buggy than other classes. The overwhelming
number of classes had no children. Inheritance hierarchies, either through design
or evolution do not tend to follow that pattern. One conclusion is that how a
system evolves depends on factors such as the type of system, whether open-
source or commercial and possibly system age. Work by Harrison et al. [10]
suggested that large systems were equally difficult to maintain regardless of use

472 S. Counsell et al.

of inheritance. Perhaps it is the case that as systems grow and evolve, inheritance
is just one more problem amongst an array of other problems that a developer
faces. It thus becomes relatively less of a problem.

Future work will focus on extending the study to more commercial and open-
source systems. We would also like to investigate the role that refactoring and
code smells [9] play in the removal and possible introduction of bugs into code
at different levels and the difference that such practices make to the shape of a
system.

References

1. Ampatzoglou, A., Bibi, S., Avgeriou, P., Chatzigeorgiou, A.: Guidelines for manag-
ing threats to validity of secondary studies in software engineering. In: Felderer, M.,
Travassos, G. (eds.) Contemporary Empirical Methods in Software Engineering,
pp. 415–441. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32489-
6 15

2. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design met-
rics as quality indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)

3. Bieman, J.M., Zhao, J.: Reuse through inheritance: a quantitative study of C++
software. In: ACM SIGSOFT Symposium on Software Reusability, Seattle, USA,
pp. 47–52 (1995)

4. Booch, G.: Object-oriented development. IEEE Trans. Softw. Eng. 12(2), 211–221
(1986)

5. Cartwright, M., Shepperd, M.: An empirical investigation of an object-oriented
software system. IEEE Trans. Soft. Eng. 26(8), 786–796 (2000)

6. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

7. Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M.: Evaluating inheritance depth
on the maintainability of object-oriented software. Empir. Softw. Eng. 1(2), 109–
132 (1996)

8. Field, A.: Discovering Statistics Using IBM SPSS Statistics, 4th edn. Sage Publi-
cations Ltd. (2013)

9. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

10. Harrison, R., Counsell, S., Nithi, R.: Experimental assessment of the effect of inher-
itance on the maintainability of object-oriented systems. J. Syst. Softw. 52(2–3),
173–179 (2000)

11. Madeyski, L., Jureczko, M.: Which process metrics can significantly improve defect
prediction models? An empirical study. Softw. Qual. J. 23(3), 393–422 (2015)

12. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall, Hoboken (1997)
13. Nasseri, E., Shepperd, M.J.: Class movement and re-location: an empirical study

of java inheritance evolution. J. Syst. Softw. 83(2), 303–315 (2010)
14. Prechelt, L., Unger, B., Philippsen, M., Tichy, W.: A controlled experiment on

inheritance depth as a cost factor for code maintenance. J. Syst. Softw. 65(2),
115–126 (2003)

15. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples, 1st edn. Wiley, Hoboken (2012)

16. Spinellis, D.: Tool writing: a forgotten art? IEEE Softw. 22(4), 9–11 (2005)
17. Wood, M., Daly, J., Miller, J., Roper, M.: Multi-method research: an empirical

investigation of object-oriented technology. J. Syst. Softw. 48(1), 13–26 (1999)

https://doi.org/10.1007/978-3-030-32489-6_15
https://doi.org/10.1007/978-3-030-32489-6_15

30 Years of Automated GUI Testing:
A Bibliometric Analysis

Olivia Rodŕıguez-Valdés1(B), Tanja E. J. Vos1,2 , Pekka Aho1,
and Beatriz Maŕın2

1 Open Universiteit, Heerlen, The Netherlands
orv@ou.nl

2 Universitat Politècnica de València, Valencia, Spain

Abstract. Context: Over the last 30 years, GUIs have changed consider-
ably, becoming everyday part of our lives through smart phones and other
devices. More complex GUIs and multitude of platforms have increased
the challenges when testing software through the GUI. Objective: To
visualise how the field of automated GUI testing has evolved by studying
the growth of the field; types of publications; influential events, papers
and authors; collaboration among authors; and trends on GUI testing.
Method: To conduct a bibliometric analysis of automated GUI testing
by performing a systematic search of primary studies in Scopus from
1990 to 2020. Results: 744 publications were selected as primary stud-
ies. The majority of them were conference papers, the most cited paper
was published on 2013, and the most published author has 53 papers.
Conclusions: Automated GUI testing has continuously grown. Keywords
show that testing applied to mobile interfaces will be the trend in next
years, along with the integration of Artificial Intelligence and automated
exploration techniques.

Keywords: Automated testing · Graphical user interface ·
Bibliometric analysis · Secondary study

1 Introduction

A Graphical User Interface (GUI) is a human-computer interface that includes
graphical elements commonly called widgets, for example buttons, menus, text-
boxes, scrollbars, and icons. The first GUIs were developed in early 70s to
improve the usability of operating software systems. Before GUIs, the only way
to interact with the systems was through CLIs (Command Line Interfaces). GUIs
allow end-users to interact with the system functionality more easily, and provide
output and feedback in a graphical form based on the actions of end-users.

In GUI testing, the system is tested through the elements of the GUI and
their properties. To do that, test sequences are comprised of actions (such as
click, type, drag and drop) and the corresponding test oracles to check the state
of the system after the execution of the actions. GUI testing is of paramount
importance since it allows testing systems from the end-user’s point of view.
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 473–488, 2021.
https://doi.org/10.1007/978-3-030-85347-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_34&domain=pdf
http://orcid.org/0000-0002-6003-9113
http://orcid.org/0000-0001-8025-0023
https://doi.org/10.1007/978-3-030-85347-1_34

474 O. Rodŕıguez-Valdés et al.

Automated GUI testing has been researched for over three decades. The first
papers on this topic are from the late 80s [8]. Automating GUI testing faces
several challenges. GUIs change frequently during the life cycle of a system (e.g.,
controls are removed or re-positioned, new controls are added, etc.). This has
severe implications for the practice of automated testing: instead of creating new
test cases to find new faults, testers struggle with repairing the old ones in order
to maintain the test suite and adapt it to the changed GUI layout.

Over the last 30 years, in accordance to the evolution of programming lan-
guages from 3rd generation to the 5th, GUIs have evolved with better graphics,
becoming more realistic and their graphical components more skeuomorphic. A
lot of desktop applications have been replaced by web applications, representing
challenges to testing in form of distributed services and systems of systems. With
the rise of smartphones and other portable devices, new testing challenges arose
due to a much smaller screen and more complex interactions. Mobile GUIs have
to be more simple (with less elements), but at the same time, the complexity on
the functionality of applications is growing.

To cover the state of the art of GUI testing, Bao et al. [1] conducted a
mapping study from 1991 to 2011 that included 136 publications. The field has
been growing considerably since then.

To understand the community, publication patterns and trends in automated
GUI testing, this paper presents a bibliometric study [17]. As far as we know,
this paper presents the first bibliometric analysis on this field over the last 30
years. The main contributions are to:

1. Provide facts about the size and growth of the field.
2. Indicate the type of publications and their rankings, including most cited

papers, most prolific authors, and most influential journals and conferences.
3. Show the distribution of the publications among the available sources and

over the years using a spectroscopy.
4. Present and discuss the productivity and the level of collaboration among

researchers in the literature.
5. Use the bibliometric laws of Bradford [3] to know the most influencing jour-

nals, and of Lotka [11] to evaluate scientific productivity of authors.
6. Show the evolution of the major research topics in the field by analysing the

keywords used by the authors.
7. Make a public repository for Automated GUI testing.

The rest of the paper is organized as follows. Section 2 defines the scope of the
study. Section 3 presents the methodology for the bibliometric analysis, and the
results are presented in Sect. 4. Section 5 presents the main conclusions.

2 Scope: Automated GUI Testing

To make the scope of the study clear, this section explains the definition of
automated GUI testing that was used to decide which papers should be included
in this bibliometric study. Executing sequences of events on the GUI widgets
of a system under test (SUT) and checking test oracles is called GUI testing.

30 Years of Automated GUI Testing: A Bibliometric Analysis 475

Table 1. Family of words for the search string

Term Family

Automated Automated OR automatic OR automatically OR automation OR
automating OR automate OR generation OR generate OR
generating OR generator

GUI GUI OR UI OR “graphical user interface”

Testing Testing OR test OR tested

The goal of executing these tests – like in any other type of testing – is finding
failures, reducing risks, and analysing and increasing the quality of the SUT.

Evidently, it is possible to automate the execution of these test sequences
and call it automated GUI testing. However, more activities related to GUI test-
ing can be automated. To be able to define clear inclusion/exclusion criteria for
the papers of this bibliometric analysis, the definition of automated GUI testing
was refined to include also other activities of GUI testing, as follows:

Automating the creation of test sequences: Test sequences in GUI testing
consist of sequences of GUI actions/events on widgets together with input
values. Test sequences are made to cover some test goal of the SUT (e.g.,
checking some specific functionality or finding a failure). Test sequence defines
which path through the SUT should be taken (which states should be visited),
i.e., what actions will be executed, and in which order.

Automating the definition or checking of the oracles: Oracles [2] are
procedures that distinguish between the correct and incorrect behavior of
the SUT. Since test cases in GUI testing are sequences, we can check the
oracles after each action (test step) during the execution (online oracle), just
one time at the end of each sequence, or analyse the results after the execution
(offline oracle). Test oracle automation is important for removing the current
bottleneck that inhibits greater overall test automation [2]. Without test
oracle automation, a human has to determine whether observed behaviour is
correct.

Automating the analysis of test results: This consists of analysing, for
example, the failures that were found in a specific SUT, or evaluating the
quality of the test cases that were executed, using a set of defined metrics.

When at least one of these activities is automated, it will be considered
automated GUI testing (even when the test execution is done manually), and
therefore, the corresponding papers will be included in this study.

3 Methodology

In this study, we follow the workflow for bibliometric analysis defined in [6].

3.1 Data Retrieval

We used Scopus for the search process since it is the largest database of peer-
reviewed literature with the largest coverage in comparison to other scientific

476 O. Rodŕıguez-Valdés et al.

1: (TITLE-ABS-KEY((Automated W/5 Testing) AND GUI)
2: OR TITLE-ABS-KEY ((Automated W/5 GUI) AND Testing)
3: OR TITLE-ABS-KEY((GUI W/5 Testing) AND Automated))
4: AND LIMIT-TO(LANGUAGE , “English”)
5: AND PUBYEAR > 1989 AND PUBYEAR < 2021
6: AND
7: (LIMIT-TO(DOCTYPE , “cp”) OR LIMIT-TO(DOCTYPE , “ar”) OR
8: LIMIT-TO(DOCTYPE , “ch”) OR LIMIT-TO(DOCTYPE , “Undefined”))
9: AND
10: (LIMIT-TO(SUBJAREA , “COMP”) OR LIMIT-TO(SUBJAREA , “ENGI”)
11: OR LIMIT-TO(SUBJAREA , “MATH”))

Fig. 1. The used search query

repositories, such as WoS [20]. The search string evolved from the initial terms
“Automated GUI testing” – to reduce the probability of missing relevant papers,
a family of words was derived from every term (see Table 1).

The complete search query is shown in Fig. 1. As can be seen in lines 1–3, the
terms must appear in the article’s title, abstract or keywords since the Scopus
operator TITLE-ABS-KEY is used. To fine-tune the results, a minimum distance of
terms was established, using the “W/” operator. The distance was set to 5 after
several tests observing the results. In Fig. 1, each family of words is represented
by its main term. Each term was replaced by the derived family of terms, using
the OR operator to accept the appearance of at least one of the terms within its
family. Using the Scopus facilities, papers were also excluded according to their
type, language and publication date, excluding works that:

exC1: are not written in English (in line 4, using the Scopus Document field
code: LANGUAGE and limiting it to “English”)

exC2: are published before year 1990 and after 2020 (in line 5 using the Scopus
Publication field code: PUBYEAR)

exC3: are not conference, workshop, journal publications or book chapters (in
lines 7 and 8) using the Scopus Document field code: DOCTYPE and limit-
ing it to types Conference Paper-“cp”, Article-“ar”, Book Chapter-“ch” and
“Undefined”). The last one was included because some documents that have
been accepted for publication, but have not yet been assigned to a journal
or conference, so that they are temporarily indexed as “Undefined”.

exC4: do not belong computer science area (in lines 10 and 11) using the Scopus
subject areas: COMP, ENGI and MATH.

The search was performed on January 2021. The total amount of papers
retrieved was 2240.

3.2 Pre-processing

First of all, we manually excluded in Scopus the papers belonging to other fields,
reducing the total amount of papers to 1233. This was needed because, for

30 Years of Automated GUI Testing: A Bibliometric Analysis 477

instance, a document can be classified as Computer Science and Social Science
because it describes a social science study using some computational system.
Since these papers are also categorized as COMP, ENG or MATH, they were
retrieved by the search query, even if they also belonged to other fields. The
papers that were clearly off-topic were manually rejected.

Driven by our additional goal to create a GUI testing research repository, we
searched for a simple and flexible environment that, besides assisting our work,
would allow future interactions with the extracted papers. Thus, we decided
to use BUHOS [4], an open source web-based paper management system. We
uploaded the 1233 papers in BUHOS, we defined additional exclusion criteria
(exC5 and exC6 below), and manually applied these exclusion criteria by screen-
ing the title and abstract of each paper.

exC5: clearly off topic, i.e. not at all related to the scope (Sect. 2)
exC6: not a primary study

The 1233 papers were divided among the authors, who, after reading the
title and abstract, marked them as included, excluded or undecided. Next, a
collective analysis was carried out to make a final decision on the undecided
papers, resulting 720 papers. Then, a backward snowballing [21] on the 720
papers resulted 50 new papers that were screened based on the title and abstract.
This added 24 papers, resulting in the total of 744 included publications.

3.3 Analysis and Visualization

CRExplorer [19] and Biblioshiny1 were used to analyse and visualize the data.
These tools were selected because they have specific functionalities to visual-
ize bibliometric maps. In addition, Scopus was used in conjunction with Excel
to generate the charts. Before the analysis, normalization was required on the
keywords using a thesaurus of synonyms2, and the author’s names by taking
accents and different formatting into account. Related to the conferences, it was
necessary to split the description in order to properly obtain the name of the
conference separately from the publisher and the year of publication.

4 Results

4.1 Size of the Area and Growth

The number of publications in a field over time is a central piece of information to
investigate its growth and development. In Fig. 2 the evolution of the growth per
year along with the trend is depicted. The first decade covered by our study only
has 18 papers related to field. There are even two years (1992 and 1993) with no
papers at all. In the second decade of our study this increased to 170 works. And,
in the third decade we found 556 works. Since a 41.4% of all documents have

1 https://www.bibliometrix.org/Biblioshiny.html.
2 https://gui-testing-repository.testar.org/keywords.

https://www.bibliometrix.org/Biblioshiny.html
https://gui-testing-repository.testar.org/keywords

478 O. Rodŕıguez-Valdés et al.

Fig. 2. Evolution of the number of publications

Table 2. Papers in journals (J), conferences (C), workshops (W) and chapters (B).

Total 1991–2020 J C W B

744 122 528 87 7

been published in the last 5 years, we expect that the automated GUI testing
field continues to grow like it did in the last decade.

Between 2009 and 2013 we see an increase in the amount of papers that
deviates from the trend. Reasons for this could be various. In 2008 the first
edition of the ICST conference was held, being the first international conference
entirely dedicated to software testing. Moreover, in 2009 the first edition of the
TESTBEDS workshop was celebrated at ICST. There was also an increase in
papers related to web testing, this can be related to the fact that in 2009, it
was decided to merge Selenium RC and Webdriver and called the new project
Selenium WebDriver, or Selenium 2.0. A third reason might be that Sikuli started
in 2009 [15]. Sikuli is a visual approach to search GUIs using screenshots, allowing
users to take a screenshot of a GUI element (such as a toolbar button, icon, or
dialog box) and query a help system using the screenshot instead of the element’s
name. Finally, in 2009 there is an increase on papers related to mobile testing.
This is probably related to the fact that in July 2008 the Apple’s App Store
went live and in August, the Android Market.

During 2020, we observe that the number of publications decreases, this could
be explained by the pandemic since several conferences were canceled, mobility
was reduced and therefore the research outcomes could be affected.

4.2 Types of Publications and Their Ranking

We found papers published in journals, conferences, workshops and as book
chapters. Table 2 and Fig. 3 show the amount of papers of each kind.

We can observe that the majority of papers have been published in conference
proceedings. This make sense since conferences provide feedback to researchers
more quickly than journals. Moreover, in many cases papers describing part of
a larger solution are presented in conferences in order to obtain feedback and

30 Years of Automated GUI Testing: A Bibliometric Analysis 479

Fig. 3. Number of papers published in (journals + books) vs (conferences + workshops)

Table 3. Top 11 of most contributing journals

Journal name # papers % SJR

Transactions on Software Engineering (TSE) 12 9,83% 1.19

Information and Software Technology (IST) 8 6,55% 0.78

Software Quality Journal (SQJ) 7 5,73% 0.36

IEEE Software 6 4,92% 0.81

Transactions on Software Engineering and Methodology (TOSEM) 5 4,10% 0.76

Software Testing Verification and Reliability (STVR) 5 4,10% 0.31

Empirical Software Engineering (ESE) 4 3,28% 1.08

Information Technology Journal 4 3,28% 0.11

ACM SIGPLAN Notices 3 2,46% 4.90

IEEE Access 3 2,46% 3.90

Innovations in Systems and Software Engineering 3 2,46% 1.90

Remaining 54 from the total of 65 journals 62 50,82%

Total number of papers 122 100%

validate each piece of work and later the entire proposal is presented in a journal.
This is also the behavior in the entire Computer Science field [7].

Table 3 shows that IEEE Transactions on Software Engineering (TSE) has
been the top one journal with 12 published articles on the field. Even though the
automated GUI testing field has been steadily growing during the last 3 decades,
STVR is the first journal that launched a special issue entirely dedicated to this
field in only 2020. Papers included in that special issue have not been counted
for our study because they were not yet published in 2020. By examining the
data in Table 3, Bradford’s Law [3] can be applied. This law establishes that the
total set of journals in a research field can be divided into 3 categories or zones,
each containing approximately one third of the total papers in the field. The

480 O. Rodŕıguez-Valdés et al.

Table 4. Bradford’s Law zones applying Leimkuhler model [9]

Zones # journals # papers

Zone 1 6 43

Zone 2 16 37

Zone 3 43 42

Total 65 122

Table 5. Top 10 of most influential Conferences

Conference name # papers %

International Conference on Software Engineering (ICSE) 37 7,01%

International Conference on Software Testing, Verification
and Validation (ICST)

36 6,81%

International Conference on Automated Software
Engineering (ASE)

27 5,11%

International Symposium on Software Testing and Analysis
(ISSTA)

26 4,92%

Joint Meeting European Software Engineering Conference
and Symposium on the Foundations of Software Engineering
(ESEC/FSE)

22 4,17%

IEEE International Symposium on Software Reliability
Engineering (ISSRE)

15 2,84%

International Conference on Software Maintenance (ICSM) 14 2,65%

International Computer Software and Applications
Conference (COMPSAC)

11 2,08%

International Conference on Software Engineering and
Knowledge Engineering (SEKE)

9 1,70%

International Conference on Software Quality, Reliability
and Security (QRS)

9 1,70%

Remaining 45 conferences from the total of 56 conferences 322 60,98%

Total number of papers 528 100%

first category is related to articles which are published in an small number of
journals, called core journals. The second category corresponds to the journals
with an average of papers. And the last category corresponds to several journals
that publish few papers.

From Table 3 we can derive that the top 6 journals are the core journals,
since they correspond to 43 articles, which is 35.2% of all 122 journal papers.
The next group is found in the next 16 journals (37 articles or 30.3%). In order to
represent the last articles, the 42 remaining journal are necessary. The Bradford
relation for journals is 6:16:43 and the details per zone can be found in Table 4.

30 Years of Automated GUI Testing: A Bibliometric Analysis 481

The 528 papers were presented at 386 conferences of which 4.15% has CORE
ranking A∗, 16.32% CORE A, 16.84% CORE B, 10.36% CORE C and 37.31%
has no CORE ranking. The remaining 14.51% conferences were in years when
no CORE ranking was given (yet). The 87 workshop papers were presented
at 56 workshops of which 37.50% was co-located at a CORE A∗ conference,
28.57% at a CORE A conference, 3.57% at CORE B conference and 12.50% at
CORE C conference, 5.36% at conferences with no CORE ranking, and 5.36% at
workshops not co-located with any conference. The remaining 7.15% workshops
were in years when no CORE ranking was given (yet). Table 5 shows the most
contributing conferences. ICSE and ICST are almost even at the top while in
2020 ICSE had celebrated 42 editions and ICST only 13.

4.3 Citations and Reference Publication Year Spectroscopy

In Table 6 we list the top 10 papers that have the most cites in Scopus, together
with the year of publication, the complete reference, the number of cites retrieved
by Scopus (Sc), and the number of cites retrieved by Google Scholar (GS). The
cites from Scopus and Scholar differ in that Scholar has a much higher count.
From [12], we learn that Scholar citation data is essentially a superset of Scopus,
but with substantial extra coverage. We can see that 7 out of the top 10 most
cited papers are concerned with Android testing. The remaining 3 papers are
related to models (event-flow or state models) and widget detection (Sikuli).

The technique of Reference Publication Year Spectroscopy (RPYS) [13] is a
quantitative method to identify the historical origins or turning points of research
fields. This method analyzes the publication years of the references cited by all
the papers in a specific field. A Reference Publication Year (RPY) is reflected in
the spectrogram as a pronounced peak, usually corresponding to a publication
that has been referenced very frequently. These publications are of significant
importance, as they may represent the origins of the research field in question.

An RPYS chart was obtained using CRExplorer and is shown in Fig. 4, from
1960, although there are references up to 1901. The most influential year seems
to be 2001, this is the year when Atif M. Memon finished his PhD entitled A
comprehensive framework for testing graphical user interfaces [14]. In that year
he published two final papers for his thesis. The first paper [MPS01] presents
a new test case generation technique based on Artificial Intelligence Planning
and using a model based on a GUI structure. Both Artificial Intelligence and
Model-based Testing are trends that will guide the research field in the posterior
years to this publication, as we explain later on in Sect. 4.7. In the second paper,
Memon et al. [MSP01] introduce different coverage criteria for GUI testing and
evaluate them through a case study, for the first time.

In addition, years 2012 and 2013 appear as peaks in the Spectroscopy chart.
Five publications [AFT+12a,MTN13,CNS13,YPX13,AN13] appear among the
most cited within the field. All of them have one common topic: Android testing.

482 O. Rodŕıguez-Valdés et al.

Fig. 4. Reference publication year spectroscopy

Table 6. Top 10 papers with most cites in Scopus (includes cites in Google Scholar)
(https://gui-testing-repository.testar.org/bibliography)

Ref Title Author Year Sc GS

[MTN13] Dynodroid: An input
generation system for
android apps

Machiry, A., Tahiliani,
R., Naik, M

2013 397 672

[AFT+12b] Using GUI ripping for
automated testing of
android applications

Amalfitano, D., Fasolino,
A., Tramontana, P., De
Carmine, S., Memon, A

2012 343 563

[CGO16] Automated test input
generation for android:
Are we there yet?

Choudhary S.R., Gorla
A., Orso A

2016 245 401

[ANHY12] Automated concolic
testing of smartphone
apps

Anand, S., Naik, M.,
Harrold, M., Yang, H

2012 231 428

[AOA05] Testing Web applications
by modeling with FSMs

Andrews A.A., Offutt J.,
Alexander R.T

2005 227 477

[YCM09a] Sikuli: Using GUI
screenshots for search
and automation

Yeh T., Chang T.-H.,
Miller R.C

2009 217 400

[MHJ16] Sapienz: Multi-objective
automated testing for
android applications

Mao K., Harman M., Jia
Y

2016 207 336

[GNAM13] RERAN: Timing- and
touch-sensitive record and
replay for Android

Gomez L., Neamtiu I.,
Azim T., Millstein T.
Total

2013 202 341

[Mem07] An event-flow model of
GUI-based applications
for testing

Memon A.M 2007 193 364

[HLN+14] PUMA: Programmable
UI-automation for
large-scale dynamic
analysis of mobile apps

Hao S., Liu B., Nath S.,
Halfond W.G.J.,
Govindan R

2014 192 321

https://gui-testing-repository.testar.org/bibliography

30 Years of Automated GUI Testing: A Bibliometric Analysis 483

Table 7. Ranking of author by number of publications in journals (J), conferences
(C), workshops (W) and book chapters (B)

Name Total J C W B Year of first publication

Memon, A.M. 53 18 29 5 1 1999

Paiva, A.C.R. 31 6 20 5 0 2005

Alégroth, E. 17 3 8 5 1 2013

Vos, T.E.J. 16 2 11 3 0 2012

Xie, Q. 15 4 10 1 0 2004

Fasolino, A.R. 13 4 5 4 0 2010

Zeller, A. 13 1 10 2 0 2012

Aho, P. 12 0 7 4 1 2011

Amalfitano, D. 11 3 4 4 0 2010

Coppola, R. 11 4 3 4 0 2016

Ramler, R 11 1 8 2 0 2008

Table 8. Distributions of number of author per number of publications

Papers 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 31 53

Authors 1128 198 60 36 21 14 8 3 3 6 3 1 2 1 1 1 1 1

4.4 Most Influential Authors

The 744 documents that integrate this study have been written by a total of 1,488
authors. Table 7 shows the 11 most prolific authors, among them contributing
203 publications (27.28 %). For this ranking we count all authors of each paper,
not only the first one. One notable fact is that 7 of the 11 authors published
their first paper in the field since 2010, and only one published before 2000.

The distribution of the number of publications among authors is presented in
Table 8. The largest group consists on authors who published a single paper, rep-
resenting 75.81%. As show in the table, as the number of publications increases,
the number of authors tends to decrease. The Lotka’s law describes this behavior
and states that the number of authors y publishing a certain amount of papers
x is in inversely proportional to x, as y = c

xn , where n and c are two constants
to be estimated for every data set. We used the software Lotka [16], to apply
the Maximal Likelihood method and estimate the parameters for this study,
resulting in n ≈ 2.59 and c ≈ 0.77 i.e., our data set follows Lotka’s general law
as y = 0.77

x2.59 . To assess the fitness between this hypothesized Lotka model and
the actual distribution of the data, the Kolmogorov-Smirnov statistical test was
applied. Even for a level of significance of 0.2, the results support the hypothesis.

4.5 Productivity and Funding

As shown in Fig. 5, there is a large gap between the most contributing country,
United States, and the rest. China published its first papers in 2006 and since

484 O. Rodŕıguez-Valdés et al.

Fig. 5. Most contributing countries

Fig. 6. Collaboration network of authors

then has contributed 108 publications, keeping a rate of 7.2 publications per
year, similar to that of United States, with 7.5 annual papers since 1991.

Although China and the US are the main contributing countries to the field,
the European region has had a boost in the last decade, and since 2015 occupies
the first place with 308 publications. The Asian continent has contributed 242
publications, closely following North America with 245 publications so far.

A 21% of the papers included funding information. From all the mentions,
9,7% came from private funding by big companies such as Google, Microsoft,
Amazon Web Services, and Boeing, amongst others. Asia is the continent that
provides most funding resources for the majority of sponsored works (33,7%),
followed by Europe (28,6%) and North America (27,1%). The leading funding
agency in Asia is the National Natural Science Foundation of China. Likewise,
the leading funding agencies in Europe and North America are the European
Commission and the National Science Foundation, respectively. It is worth to
mention that the only South American country that has funding is Brazil.

4.6 Collaboration

In Fig. 6 we depict the collaboration between the most prolific authors in the
field from Table 7. Six authors have been co-authors with Atif M. Memon, who
can also been related with another two authors through those six. Only 2 of the
11 authors do not have co-authorship with any of the most contributing authors.

30 Years of Automated GUI Testing: A Bibliometric Analysis 485

Fig. 7. Authorship evolution

Fig. 8. Cumulative frequency of keywords

Figure 7 shows the evolution of author’s collaboration over the 30 years. Sin-
gle author publications have historically remained low, while publications of
more than 4 authors have been increasing. However, only 18.95% of the papers
have been the result of collaboration among affiliations from different countries.

4.7 Trends in Keywords

By analysing the keywords provided by the authors, we aim to reveal the details
of a domain’s major research topics and their introduction into the field. This is
not as easy as just counting the most used keywords [5,18]. Many keywords do
not give specific information on the details of the field because they are inherent
to it, e.g. software testing, GUI testing, tools, regression testing, etc. In addition,
different words can be used for describing the same concept, and thus we had to
group them. We started standardizing plural forms into their singular form, by
means of NLTK [10]. In order to group the keywords, the authors of this paper
studied all the available keywords, and each made their individual classification.
We set-up two brain-storming sessions to come to the following classification as a
representation of relevant research themes in the domain that we want to study:

486 O. Rodŕıguez-Valdés et al.

web, mobile, model-based testing (MBT), search-based testing (SBT),
visual-based testing (VBT), Artificial Intelligence and Machine Learning
(AI&ML), Capture and Replay (C&R) and Automated Exploration

The objective is to study: Web and mobile: to distill the trend in the types
of SUTs that are tested ; MBT, SBT, VBT, AI&ML: to visualize the timeline
of the pick-up of different technologies into automated GUI testing; C&R: to
investigate the evolution of the trend where the focus was on these tools; and
Automated Exploration: for the shift from scripted to scriptless testing using
random testing, traversal techniques and crawling. Figure 8 shows the cumulative
frequency values per each group of keywords, annually. We see that both MBT
and C&R have their first appearance in 1998. Since then MBT has been the
main topic of the field, until Mobile reached a greater number of papers in 2019.
As of 2010, two topics were introduced: SBT and Automated Exploration.

Publications mentioning Web-based SUT have remained constant. It is
remarkable that 50% of MBT papers have been published as of 2014, being MBT
one of the first topics in the field. C&R has seen a decrease in its frequency, coin-
ciding with the considerable increase in VBT. This might indicate that C&R is
being replaced by Image Recognition or Image Comparison techniques.

AI&ML has appeared in 56 papers: by 2013, it had appeared in 48 papers
(26.79%) and it took 5 years to reach 50% of its total frequency. However, just
one year was needed for AI&ML to reach 75%. In the last two years AI&ML
appeared in as many papers as in the entire previous history of the field.

4.8 Discussion

To avoid internal validity threats, we use Scopus, the largest database of peer-
reviewed scientific literature; we define a search string and we validate the results
with a small set of relevant works. Since computer science works are mainly
published in English, we advocate that we found the majority of works even
though we aware that some works are not retrieved due to they are published in
a different language.

Regarding the replicability of the study, we clearly define a protocol and
documented all the process to mitigate this threat. We use the metadata of the
works to perform the analysis to mitigate the threat that results may be biased
by researchers’ judgement. In order to deeper understand the techniques used for
automated GUI testing, we propose to follow this work with a mapping review
in order to establish the trends in the area.

5 Conclusions

This paper provides facts about automated GUI testing field. Publications have
increased continuously, with exponential growth in the last decade. Lotka’s Law

30 Years of Automated GUI Testing: A Bibliometric Analysis 487

and Bradford’s Law were found applicable to the field. Analysis of author’s
collaboration, keywords and the geographic dispersion of the field was provided.
The most common type of publication is the conference papers. The 6 core
journals were identified, as well as the most prolific authors. A repository3 was
developed, with all the 744 referenced papers and further bibliometric results.

We conclude that this study offers relevant information for the field, its evo-
lution over 30 years and trending topics for future research.

Acknowledgements. We thank Fernando Pastor for his valuable contribution.
This research has been funded by DECODER (decoder-project.eu), iv4XR (iv4xr-
project.eu), and IVVES (ivves.weebly.com) projects.

References

1. Banerjee, I., Nguyen, B., Garousi, V., Memon, A.: Graphical user interface testing:
systematic mapping and repository. IST 55(10), 1679–1694 (2013)

2. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: a survey. TSE 41(5), 507–525 (2015)

3. Bradford, S.C.: Sources of information on specific subjects. Engineering 137, 85–86
(1934)

4. Navarrete, C.B., Malverde, M.G., Lagos, P.S., Mujica, A.D.: Buhos: a web-based
systematic literature review management software. SoftwareX 7, 360–372 (2018)

5. Chen, G., Xiao, L.: Selecting publication keywords for domain analysis in biblio-
metrics: a comparison of three methods. J. Informetr. 10, 212–223 (2016)

6. Cobo, M., López-Herrera, A., Herrera-Viedma, E., Herrera, F.: Science mapping
software tools: review, analysis, and cooperative study among tools. J. Am. Soc.
Inform. Sci. Technol. 62(7), 1382–1402 (2011)

7. Franceschet, M.: The role of conference publications in CS. Commun. ACM 53(12),
129–132 (2010)

8. Johnson, M.: Automated testing of user interfaces. In: Pacific North West Software
Quality Conference, pp. 285–293 (1987)

9. Leimkuhler, F.: An exact formulation of Bradford’s law. J. Doc. (1980)
10. Loper, E., Bird, S.: NLTK: the natural language toolkit. arXiv:0205028 (2002)
11. Lotka, A.J.: The frequency distribution of scientific productivity. J. Wash. Acad.

Sci. 16(12), 317–323 (1926)
12. Mart́ın-Mart́ın, A., Orduna-Malea, E., Thelwall, M., Delgado López-Cózar, E.:

Google scholar, web of science, and scopus: a systematic comparison of citations
in 252 subject categories. J. Informetr. 12(4), 1160–1177 (2018)

13. Marx, W., Bornmann, L., Barth, A., Leydesdorff, L.: Detecting the historical roots
of research fields by reference publication year spectroscopy (RPYS). J. Am. Soc.
Inf. Sci. 65(4), 751–764 (2014)

14. Memon, A.M.: A comprehensive framework for testing graphical user interfaces.
Ph.D. (2001). Advisors: Mary Lou Soffa and Martha Pollack; Committee members:
Prof. Rajiv Gupta (University of Arizona), Prof. Adele E. Howe (Colorado State
University), Prof. Lori Pollock (University of Delaware)

3 https://gui-testing-repository.testar.org.

http://arxiv.org/abs/0205028
https://gui-testing-repository.testar.org

488 O. Rodŕıguez-Valdés et al.

15. Paulos, E.: The rise of the expert amateur: DIY culture and citizen science. In:
Proceedings of the 22nd Annual ACM Symposium on User Interface Software and
Technology, pp. 181–182 (2009)

16. Rousseau, B., Rousseau, R.: LOTKA: a program to fit a power law distribution to
observed frequency data. Cybern. Int. J. Scientometr. Informetr. Bibliometr. (4),
4 (2000)

17. Small, H.: Visualizing science by citation mapping. J. Am. Soc. Inf. Sci. 50(9),
799–813 (1999)

18. Su, H.N., Lee, P.C.: Mapping knowledge structure by keyword co-occurrence: a
first look at journal papers in Technology Foresight. Scientometrics 85(1), 65–79
(2010). https://doi.org/10.1007/s11192-010-0259-8

19. Thor, A., Marx, W., Leydesdorff, L., Bornmann, L.: Introducing CitedReference-
sExplorer (CRExplorer): a program for reference publication year spectroscopy
with cited references standardization. J. Informet. 10(2), 503–515 (2016)

20. Vieira, E.S., Gomes, J.A.N.F.: A comparison of scopus and web of science for a
typical university. Scientometrics 81(2), 587–600 (2009)

21. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, pp. 1–10 (2014)

https://doi.org/10.1007/s11192-010-0259-8

A Large-Scale Investigation of Local
Variable Names in Java Programs: Is

Longer Name Better for Broader Scope
Variable?

Hirohisa Aman1(B) , Sousuke Amasaki2 , Tomoyuki Yokogawa2 ,
and Minoru Kawahara1

1 Ehime University, Matsuyama, Ehime 790-8577, Japan
{aman,kawahara}@ehime-u.ac.jp

2 Okayama Prefectural University, Soja, Okayama 719-1197, Japan
{amasaki,t-yokoga}@cse.oka-pu.ac.jp

Abstract. Variables are fundamental elements of software, and their
names hold vital clues to comprehending the source code. It is ideal that
a variable’s name should be informative that anyone quickly understands
its role. When a variable’s scope gets broader, the demand for such an
informative name becomes higher. Although the standard naming con-
ventions provide valuable guidelines for naming variables, there is a lack
of concrete and quantitative criteria regarding a better name. That chal-
lenge in naming variables is the motivation of the quantitative investi-
gation conducted in this paper. The investigation collects 637,077 local
variables from 1,000 open-source Java projects to get a detailed view
of the variable naming trend. The data analysis reveals frequently-used
terms for variable names, the naming styles, and the length of names
when the variable scopes are broad. The results showed that developers
prefer to use fully spelled English words or compounded names for broad-
scope variables, but they tend to avoid long names; Developers often use
simple words or abbreviations shorter than seven or eight characters.

Keywords: Variable name · Variable scope · Quantitative
investigation

1 Introduction

Variable names play essential roles in program comprehension [8,11]. Meaningful
and easy-to-understand names enhance the readability of the source code [10].
By naming variables appropriately, both the author programmers themselves
and other developers can easily understand and review the source code [16]. On
the other hand, making a variable’s name hard-to-understand is a fundamental
way of code obfuscation. We can easily obfuscate a source code by replacing all
variable names with single meaningless characters [9]. Hence, a variable name

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 489–500, 2021.
https://doi.org/10.1007/978-3-030-85347-1_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_35&domain=pdf
http://orcid.org/0000-0001-7074-5225
http://orcid.org/0000-0001-8763-3457
http://orcid.org/0000-0001-6681-2608
http://orcid.org/0000-0002-3542-5039
https://doi.org/10.1007/978-3-030-85347-1_35

490 H. Aman et al.

can be a double-edged sword in terms of code quality because of its power of
influence on the code readers.

The proper naming of variables has been attracting attention in the program-
ming world. Many coding standards and practices mention the variable naming
issue [2,13,16]. The standard rules and practices say that it is better to give a
meaningful name to a variable. That is, it looks good to name a variable using
a well-chosen English word or phrase (compounded words) describing the vari-
able’s role. On the other hand, developers sometimes prefer shorter names than
fully-spelled English-word names or compounded ones. For example, many devel-
opers would favor “i” as the name of a loop counter rather than “loop counter”
if there is no chance of being misunderstood [2,16]. Indeed, we often see many
variables whose names are “i” in various source programs for such a use case.

Here, we focus on the opposite case, such that a short variable name like “i” is
undesirable. A representative example is a case that the variable’s scope is broad.
We are questionable whether “i” is suitable for the name of a loop counter even
when its scope is broader than several dozen or more lines of code. In such a case,
programmers may prefer a longer and more descriptive name for the variable to
make it more informative. However, to the best of our knowledge, there are no
clear and concrete criteria to decide whether a variable name is proper or not
when the scope is broad. If such criteria become available, we can build them into
a static analysis tool or an advanced editor to evaluate the variable names and
recommend better names in an automated way. That is a challenge in naming
variables, and it motivated us to conduct a large-scale quantitative investigation
of variables. In this paper, we report our investigation and discuss the results.

2 Related Work

Caprile and Tonella [8] prepared a standard dictionary of terms used for iden-
tifiers and a pre-defined naming grammar (a set of naming patterns), then pro-
posed a method for detecting meaningless names and renaming them. Allamanis
et al. [3] proposed a more enhanced framework that infers the coding conven-
tion adopted in a development project by mining the code repository. Their
framework works to detect the undesired variable names (identifiers) violating
the project’s coding convention and to suggest better names for renaming such
undesired ones by utilizing natural language processing techniques. Although the
studies in [3,8] provided helpful ways of improving variable names, the variables’
scopes might also significantly impact their naming. Therefore, in this paper, we
will conduct our investigation while considering the variable scope as well.

There have been large-scale investigations of variable names in the past.
Beniamini et al. [6] focused on single-letter names such as “i” and investigated
how programmers use those variables in their programs. They collected vari-
able names from 1000 open-source projects whose languages include C, Java,
JavaScript, PHP, and Perl. Although the single-letter name is the shortest name
for a variable, their investigation revealed that some names could be meaningful
in particular contexts, e.g., “i,” and “j” as loop counters. Swidan et al. [17] con-
ducted another investigation on Scratch programs and reported Scratch-specific

A Large-Scale Investigation of Local Variable Names in Java Programs 491

variable naming trends: Scratch programmers tend to avoid single-letter names
for variables and prefer longer names with 4–10 characters. The investigation
reported in [6] motivated us to analyze the variable naming trends further. More-
over, the data reported in [17] shows the possibility that the naming trends vary
from language to language. Thus, we focus only on one programming language
(Java) and conduct a further investigation of variable names while considering
other aspects of variables, including the variable types and scopes.

There have been studies focusing on the length of the variable name.
Although a longer name is easier to describe its role, developers get harder
to memorize the name as it becomes longer in their programming and code
review. Binkley et al. [7] conducted an experiment involving 158 programmers
to examine the relationship between the variable name’s length and the program-
mer’s short-term memory and proved that too long names adversely affect pro-
gram comprehension. Moreover, they pointed out that a longer name may raise
the risk of choosing a wrong name when programmers use a program editor’s
auto-completion function. Hofmeister et al. [15] and Aman et al. [4,5] reported
empirical results showing that long names may have harmful impacts on program
comprehension and fault-proneness. Thus, we have considered that a long and
descriptive variable name is not always the best, even if its scope is broad. That
thought is also one of our motivations for conducting a large-scale investigation.

3 Quantitative Investigation

We conducted a large-scale quantitative investigation regarding variable names
in Java programs. In this section, we report and discuss the results.

3.1 Aim and Surveyed Software

This study aims to capture the features of broad-scope variable names through a
data collection. Moreover, we can get a corpus of terms used in variable names by
organizing the collected data. Such a corpus would help an automatic evaluation
of variable names and a recommendation toward better namings. We discuss the
following two research questions by analyzing the collected data.

RQ1: What are the features of the variable names when their scopes are broad?
RQ2: What kind of terms do developers use for broad-scope variable names?

As we mentioned in Sect. 2, we collect variable data from only Java software
to avoid the impact caused by the difference in the programming language. More-
over, we focus only on the local variables1 in this study because the names of the
global variables, i.e., fields in Java, tend to depend on the class design, and the
programmers may have no power to decide their names. Since local variables are
available only within a method, the naming would usually be the programmer’s
discretion. We believe a large-scale data collection of variable names would be

1 The local variables include the formal arguments (parameters) of methods.

492 H. Aman et al.

worthwhile to understand the naming trend and the programmers’ preference
regarding broad-scope variables’ names. In this study, we survey (collect data
from) 1,000 Java open-source projects having high “stars” ranks at GitHub.

3.2 Results of Data Collection

As a result, we successfully got 472,665 Java source files from 971 projects. We
could not analyze source files from 29 out of 1,000 projects due to one of the
following three reasons: (a) the project had no Java source file (5 projects), (b)
all source files were the ones to be excluded (e.g., test programs) (22 projects),
and (c) our source file analysis failed because the source file path included a
multi-byte character (2 projects). We could extract 637,077 local variables, i.e.,
the local variable declarations or formal argument declarations in methods.

Table 1 presents the distribution of variables’ scope length. The scopes of
the most variables were shorter than about 40 lines; the 90 percentile was 42
lines. The method length would cause this result because the local variables are
available only within the method. On the other hand, we found variables whose
scope lengths are broader than 3,000 lines. We manually checked the details of
the variables with the broadest top 10 scopes. Then, we revealed that such ones
appeared in a simple but huge method which only performs many assignments
to an array. Such methods seem to be automatically generated code. Thus, we
decided to exclude local variables with too-broad scopes from our analysis as
outliers. Consequently, we use the variables whose scope ranges are between 90
and 99 percentiles (42 and 157 lines) as our sample set of broad-scope variables.

3.3 Results of Variable Name Categorization

Next, we report the results of our heuristic categorization of variable names. We
began with four categories of variable names: i) single letter names, ii) dictionary-
word ones, iii) compounded ones, and iv) other names. Then, we found 62,236
other names (9.8%), and we manually checked their names to explore a better
categorization. Then, we detected the following six exceptions.

(a) Technical terms: We observed 131 technical terms that we usually see
in programs, but Aspell’s dictionary does not include them: for example,
“default,” “git,” and “setter.” We prepared a user dictionary that comple-
ments the default dictionary for capturing the above technical terms.

Table 1. Summary statistics of scope length.

min Percentile (unit: source lines) max

10 20 30 40 50 60 70 80 90

1 2 3 4 6 8 11 16 24 42 3,680

A Large-Scale Investigation of Local Variable Names in Java Programs 493

(b) Type-derived names: We encountered the variable name “fos.” That
name seems to be derived from its type, i.e., the class name, “FileOutput-
Stream.” Through our additional exploration, we also found the variable
names that contain the type name as a substring (e.g., “tLabel” whose type
is “Label”). Moreover, we noticed that there might be the plural form of
a type-derived name such as “mqs” whose type is “Set<MessageQueue>”; It
may mean that the variable contains two or more “MessageQueue” objects.
Hence, we also check the above string matching for the name by dropping the
trailing “s.”
(c) Abbreviated words: Before our data collection, we expected to
encounter local variables whose names are abbreviated words. However, we
did not initially provide the name category of abbreviated words because it is
challenging to prepare the complete list of abbreviations. Instead, we contin-
ued updating our abbreviation dictionary by checking the names included in
the “other names” category to build the additional name category, “abbrevi-
ated words.” When we update the dictionary, we checked if the abbreviated
word is common or not by referencing https://www.abbreviations.com/. Our
abbreviation dictionary consists of 201 terms, and it is available from our
data website. We accept the plural form of abbreviations (e.g., args) as the
ones being in this category.
(d) Numbered names: We saw many “numbered” names like “x2.” Devel-
opers would add numbers to the end of variable names to declare two or more
variables whose roles are similar. Any name in any category can become the
base name of a numbered variable name, including single letter names, dictio-
nary word ones, abbreviated word ones, compounded ones, and type-derived
ones.
(e) Variants produced by adding an extra character: We also saw
variants of dictionary names, which are produced by adding an extra character
to the head or the end of the words (e.g., f name, cellx). We consider an
additional category for such variants and denote it by “dict word name +1.”
We also introduce similar “+1” categories to the remaining categories to cover
any variants.
(f) Concatenated names: There were exceptional names made by merely
concatenating two words, such as “filename.” Because there is no character-
case change nor delimiter in such concatenated names, we implemented the
following simple algorithm to fix the name category: if a name can be split
into two substrings and both are in the English dictionary, our technical term
dictionary, or our abbreviation dictionary, then we regard the original name
as a compounded name. Although the above algorithm cannot work for a
potential compounded name made by concatenating three or more words,
there are almost no such names in our dataset, so we did not adopt a more
sophisticated algorithm [12].

We have updated our variable name categories through heuristics, considering
the above exceptions. Consequently, we made 17 categories of variable names
shown in Table 2. Notice that we did not prepare the “+1” category (variant

https://www.abbreviations.com/

494 H. Aman et al.

Table 2. Local variable name category and frequency of names by category.

No. Category Frequency (%) Example

All variables Broad scope only

1 single letter 109,471 (17.2%) 2,884 (5.1%) i

2 single letter + num 7,092 (1.1%) 1,074 (1.9%) t1

3 dict word 251,723 (39.5%) 17,982 (32.1%) result

4 dict word + 1 3,328 (0.5%) 464 (0.8%) stepx (step + x)

5 dict word + num 5,422 (0.8%) 742 (1.3%) count5

6 dict word + num + 1 109 (0.0%) 28 (0.0%) inputp1 (input+p+1)

7 type derived 19,942 (3.1%) 1,578 (2.8%) fos (FileOutputStream)

8 type derived + 1 1,097 (0.2%) 66 (0.1%) jconf (j+Configuration)

9 type derived + num 433 (0.1%) 37 (0.1%) str2

10 type derived + num + 1 26 (0.0%) 1 (0.0%) tvecs2 (t+Vec[] +2)

11 abbrev word 10,625 (1.7%) 778 (1.4%) buf

12 abbrev word + 1 433 (0.1%) 37 (0.1%) imgw (img + w)

13 abbrev word + num 486 (0.1%) 29 (0.1%) tmp2

14 abbrev word + num + 1 16 (0.0%) 0 (0.0%) ctrly1 (ctrl+y+1)

15 compounded 218,138 (34.2%) 28,758 (51.3%) commaIndex

16 compounded + num 2,910 (0.5%) 875 (1.6%) upperString2

17 other 5,826 (0.9%) 727 (1.3%) xy

Total 637,077 56,060

name category) for the single letter names (No. 1–2) and the compounded names
(No. 15–16). In the case of a single letter name, it is hard to decide which
character is the base name. For compounded names, we can split them into sub
names. Then, the split sub names can also be classified into the remaining name
categories. Although we could have divided the compounded name category
by applying the remaining ones recursively, we avoided making the category
organization too complex.

As a result, we classified the collected 637,077 local variables into the above
17 name categories, as shown in Table 2 (see “all variables” column). The most
major categories are No. 3: dictionary word names (39.5%), No. 15: compounded
names (34.2%), and No. 1: single letter names (17.2%). In the table, we also show
the frequencies of names when we focus only on the broad-scope variables whose
scope lengths are between 42 and 157 lines (see “broad scope only” column). For
the broad-scope 56,060 variables, the most major category was the compound
names, and about half of the variables belong to this category. The second and
the third most major categories were the dictionary word names (32%) and the
single-letter names (5%), respectively. Although we also observed type-derived
names, abbreviated-word names, numbered names, and variants (“+1” names),
all of their rates are about or less than 3%, so they seem to be the minorities in
the Java local variable names regardless of their scope lengths.

A Large-Scale Investigation of Local Variable Names in Java Programs 495

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Name Category No.

N
am

e
R

el
at

iv
e

F
re

qu
en

cy
 (

%
)

all variables
broad−scope variables only

Fig. 1. A comparison of name category shares: all variables vs. broad-scope variables.

3.4 Discussion

We discuss the results from the perspective of our RQs.

RQ1 (What Are the Features of the Variable Names When Their
Scopes Are Broad?). We regarded the variables whose scopes are between
the 90 and 99 percentiles as the broad-scope variable samples. About half of the
variables’ names are compounded names, and about one-third of the ones are
single dictionary (fully spelled) words, as we saw in Table 2. Developers seem
to prefer such names when the variables’ scopes get wider. Figure 1 presents
the comparison of the name category shares between “all variables” and “broad-
scope variables.” Table 2 and Fig. 1 show that the following three name cat-
egories’ shares are relatively specific to the broad-scope variables’ names: No.
1 (single letter), No. 3 (dictionary word), and No. 15 (compounded names).

0

10

20

30

40

50

<= median median − 90% 90−99%
set of variable names

va
ria

bl
e

na
m

e
le

ng
th

 (
in

 c
ha

ra
ct

er
)

Fig. 2. A comparison of variable names’ length.

496 H. Aman et al.

While the shares of the single letter names and the dictionary ones decrease,
the share of compounded names increases when the scope is broad. The remain-
ing 14 categories’ shares did not show large differences between “all variables”
and “broad-scope variables.” Thus, the broader scope would lead developers to
adopt more descriptive compounded names rather than single-letter names and
single-word names. Although developers also use single-letter names, its share
is only about 5%. We additionally checked broad-scope variable samples with
single-letter names and revealed that the symbolic names are “i” and “v.” A
variable “i” tends to play a control variable of a loop or an index of an array,
and a variable “v” seems to be used for meaning a “value” of an object or a
“vector” of objects.

Because developers tend to use compounded names for broad-scope variables,
their variable name lengths may become longer than the others. We additionally
examined the distribution of variable name length by counting the number of
characters comprising the variable names. Figure 2 shows a comparison of the
variable name lengths. In the figure, we considered three sets of variable names:
(1) The variables whose scope lengths are equal to or narrower than the median;
(2) The variables whose scope lengths are between the median and the 90 per-
centile; (3) Our broad-scope sample set, i.e., the variables whose scope lengths
are between the 90 and 99 percentiles.

Although there is a gradually increasing trend as the variable scope gets
broad, their differences are minor; the medians of variable name lengths are 5,
6, and 7, respectively. We cannot say the broad-scope variable has a notable
long name. When a variable’s scope gets broader, developers are likely to make
the variable name more informative by successfully combining simple words or
abbreviated words while controlling variable name length.

Therefore, we answer RQ1 as follows: Developers seem to name the broad-
scope variables using compounded terms or fully spelled words, but they tend
to avoid long names. The median name length is seven characters. Although
single-letter names are not well-used, “i” and “v” are exceptions.

RQ2 (What Kind of Terms Do Developers Use for Broad-Scope Vari-
able Names?). To comprehend the trend of words used for broad-scope vari-
ables’ names, we tallied up the terms appearing in those variable names. Table 3
presents the most frequently-appearing terms (top 50), where the portions of a
compounded name are also included; For example, when we have a compounded
name “toString,” we split it into “to” and “string” and tally up each of them.

The top 50 terms consist of 42 dictionary words, six abbreviations (id, max,
num, pos, info, url), and two single letters (i and v). Here, we see that the length
of the most terms (46 out of 50) is shorter than seven characters. Because well-
used abbreviations “id” and “info” may be from “identifier” or “identification”
(10 or 14 characters) and “information” (11 characters), developers might use
shorter names instead. Interestingly, both “pos” and “position” ranked in the
top 50 list. Some developers might consider the word “position” (8 characters)
to be a bit longer for a variable name and preferred “pos.” That is, such a length

A Large-Scale Investigation of Local Variable Names in Java Programs 497

Table 3. Most frequent terms used in single names or portions of compounded names
of broad-scope variables (Top 50).

name type id index count start i size width list

file result data view height is v max time end

offset value path to current num key field line new

length text item last in pos map info child position

class action first builder left request url color string layout

Table 4. Top 10 abbreviations.

num idx params buf src args tmp param arg ret

may be a threshold to decide whether the name looks long or not, and this result
corresponds to the trend of broad-scope variable’s name length (the median is
7; see Fig. 2). Notice that our main focus of the above discussion is on the name
length and not on the semantics. Because different programmers might use the
same term to represent different concepts, the results might mix up such terms.

We further checked the details of 28,758 compounded names used for broad-
scope variables. Then, we found that about 87% of compounded names consist
of only dictionary words, and about 6% of them are mixups of dictionary words
and abbreviations. That is, developers prefer to use dictionary words even in a
compounded name. Table 4 presents the top 10 abbreviations, which appeared in
broad-scope variable names. The abbreviations “param” and “params” would be
valuable examples showing the above trend of avoiding longer names. Although
we can consider a similar reason for “args,” they may also have another reason:
“args” often appears as the default parameter of “main” method in Java.

Therefore, we answer RQ2 as follows: For broad-scope variables, developers
prefer fully spelled words to make their names informative even in a compounded
name. However, they also tend to avoid making the name longer. The threshold of
character counts would be seven or eight. When the name gets longer, developers
will likely to replace the fully spelled words with their abbreviations. They often
use short and meaningful terms shown in Tables 3 and 4.

Although our investigation is preliminary work on variable names, we could
prove the trend that many programmers avoid long names even if their variables’
scopes are broad. Such a trend seems to correspond to the harmfulness of too
long names pointed out by Binkley et al. [7]. Moreover, we successfully found
a quantitative baseline of name length to judge if a name is long or not. We
plan to design an automated system for evaluating and recommending variable
names using our findings and our dataset2 of variable names in the future.

2 Our dataset is available from https://bit.ly/3xLuaLK.

https://bit.ly/3xLuaLK

498 H. Aman et al.

3.5 Threats to Validity

We describe threats to validity in our study below.

Construct Validity: We measured the length of a local variable’s scope by
focusing on the starting line number and the ending line number of the variable’s
scope in the source file. For example, when a variable is declared at the 15th
line and is valid until the 26th line in the source file, we regard the length of
the variable’s scope as 12 lines (= 26 − 15 + 1). Because it might also count
the comment lines and blank lines, the truth scope lengths might be slightly
shorter than the values we reported in this paper. In addition to the camelCase
names (e.g., fileName) and snake case names (e.g., file name), we classified
the two-term concatenation names (e.g., filename) into the compounded name
category as well. However, our classification cannot treat the exceptions made
by concatenating three or more terms. We further checked the “other names”
category and found 25 exceptional variable names like “linestartpos” which
may be “line” + “start” + “pos” (position). We might successfully classify
such exceptions if we utilized more sophisticated variable (identifier) splitting
studies [14]. However, those exceptional names are less than 0.1% of the studied
names, so we consider they have almost no impact on our findings.

Internal Validity: To automatically collect local variable data in this study,
we developed a program analysis tool using the Eclipse Java development tools
(JDT) [1]. Due to the version of the JDT parser we used, our tool does not
support the Java lambda expressions using the arrow operator “->.” That is, the
tool misses the data on local variables appearing in the functional programming
context. Although our dataset includes most of the local variables used in Java
programs, such a lack of data is a threat to our study’s internal validity.

External Validity: We conducted a large-scale investigation of local variable
names by collecting the data from many open-source software projects. Because
we chose popular projects without any bias in the project domain and scale
(numbers of source files and developers), we believe our dataset is a sample set
of the general trend regarding local variable names. However, our data collec-
tion is limited to Java open-source software. That is, our findings might not be
generalized to commercial software or other programming language software.

4 Conclusion and Future Work

In this paper, we have focused on local variables’ names in Java programs.
Although programmers often use single-letter names for local variables, the nam-
ing trend might change to make a variable’s name more informative when the
variable’s scope gets broader. To understand the naming trend for broad-scope
variables, we conducted a large-scale quantitative investigation of local variable
names with the following two research questions.

RQ1: What are the features of the variable names when their scopes are broad?
RQ2: What kind of terms do developers use for broad-scope variable names?

A Large-Scale Investigation of Local Variable Names in Java Programs 499

For RQ1, we found that developers tend to use compounded names or fully-
spelled ones for broad-scope variables. Meanwhile, they are likely to avoid making
long names; The median name length is seven characters. Although single-letter
names are not well-used, “i” and “v” are exceptions. For RQ2, we affirmed that
developers prefer short and meaningful dictionary words to make their names
informative even in a compounded name. Nonetheless, they also tend to avoid
long names, and the threshold of character counts would be seven or eight.
When a variable’s name gets longer, developers seem to shorten it by replacing
the fully-spelled words with their abbreviated words or shorter other terms.

Although longer variable names would be more informative or descriptive,
our investigation results proved that longer names are not always the better
names for broad-scope variables. Choosing simple but meaningful terms would
become the core of beneficial variable naming. Our data would be useful in an
automated evaluation of variable names and a recommendation of proper names
for enhancing the code readability; Our dataset is available from https://bit.ly/
3xLuaLK.

Our future work includes applications of the investigation results into auto-
matic aid for enhancing code readability. The naming trend and the variable
name corpus would help enrich static code analysis tools (code analyzers). We
plan to develop a code-review supporting tool that detects problematic variable
names and suggests better alternatives based on our survey dataset.

Acknowledgment. This work was supported by JSPS KAKENHI #20H04184,
#21K11831, and #21K11833.

References

1. Eclipse Java development tools (JDT). https://www.eclipse.org/jdt/
2. Linux kernel coding style (2016). https://www.kernel.org/doc/html/v4.10/

process/coding-style.html
3. Allamanis, M., Barr, E.T., Bird, C., Sutton, C.: Learning natural coding conven-

tions. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 281–293, November 2014

4. Aman, H., Amasaki, S., Sasaki, T., Kawahara, M.: Empirical analysis of change-
proneness in methods having local variables with long names and comments. In:
Proceedings of 9th International Symposium on Empirical Software Engineering
and Measurement, pp. 50–53, October 2015

5. Aman, H., Amasaki, S., Yokogawa, T., Kawahara, M.: Local variables with com-
pound names and comments as signs of fault-prone Java methods. In: Joint Pro-
ceedings of the 4th International Workshop on Quantitative Approaches to Soft-
ware Quality and 1st International Workshop on Technical Debt Analytics, pp.
4–11, December 2016

6. Beniamini, G., Gingichashvili, S., Orbach, A.K., Feitelson, D.G.: Meaningful iden-
tifier names: the case of single-letter variables. In: Proceedings of the 25th Inter-
national Conference on Program Comprehension, pp. 45–54, May 2017

7. Binkley, D., Lawrie, D., Maex, S., Morrell, C.: Identifier length and limited pro-
grammer memory. Sci. Comput. Program. 74(7), 430–445 (2009)

https://bit.ly/3xLuaLK
https://bit.ly/3xLuaLK
https://www.eclipse.org/jdt/
https://www.kernel.org/doc/html/v4.10/process/coding-style.html
https://www.kernel.org/doc/html/v4.10/process/coding-style.html

500 H. Aman et al.

8. Caprile, B., Tonella, P.: Restructuring program identifier names. In: Proceedings of
the International Conference on Software Maintenance, pp. 97–107, October 2000

9. Ceccato, M., Di Penta, M., Falcarin, P., Ricca, F., Torchiano, M., Tonella, P.:
A family of experiments to assess the effectiveness and efficiency of source code
obfuscation techniques. Empir. Softw. Eng. 19(4), 1040–1074 (2014)

10. Corazza, A., Martino, S.D., Maggio, V.: LINSEN: an efficient approach to split
identifiers and expand abbreviations. In: Proceedings of the 28th International
Conference on Software Maintenance, pp. 233–242, September 2012

11. Deissenboeck, F., Pizka, M.: Concise and consistent naming. Softw. Qual. J. 14(3),
261–282 (2006)

12. Enslen, E., Hill, E., Pollock, L., Vijay-Shanker, K.: Mining source code to automat-
ically split identifiers for software analysis. In: Proceedings of the 6th International
Working Conference on Mining Software Repositories, pp. 71–80, May 2009

13. Gosling, J., Joy, B., Steele, G.L., Jr., Bracha, G., Buckley, A.: The Java Language
Specification. Addison-Wesley, Boston (2014)

14. Hill, E., Binkley, D., Lawrie, D., Pollock, L., Vijay-Shanker, K.: An empirical study
of identifier splitting techniques. Empir. Softw. Eng. 19(6), 1754–1780 (2014)

15. Hofmeister, J., Siegmund, J., Holt, D.V.: Shorter identifier names take longer to
comprehend. In: Proceedings of the 24th International Conference on Software
Analysis, Evolution, and Reengineering, pp. 217–227, February 2017

16. Kernighan, B.W., Pike, R.: The Practice of Programming. Addison-Wesley Long-
man, Boston (1999)

17. Swidan, A., Serebrenik, A., Hermans, F.: How do scratch programmers name vari-
ables and procedures? In: Proceedings of the 17th International Working Confer-
ence on Source Code Analysis and Manipulation, pp. 51–60, September 2017

Quality in Cyber-physical Systems

KNN-Averaging for Noisy
Multi-objective Optimisation

Stefan Klikovits(B) and Paolo Arcaini

National Institute of Informatics, Tokyo, Japan
{klikovits,arcaini}@nii.ac.jp

Abstract. Multi-objective optimisation is a popular approach for find-
ing solutions to complex problems with large search spaces that reliably
yields good optimisation results. However, with the rise of cyber-physical
systems, emerges a new challenge of noisy fitness functions, whose objec-
tive value for a given configuration is non-deterministic, producing vary-
ing results on each execution. This leads to an optimisation process that
is based on stochastically sampled information, ultimately favouring solu-
tions with fitness values that have co-incidentally high outlier noise. In
turn, the results are unfaithful due to their large discrepancies between
sampled and expectable objective values. Motivated by our work on
noisy automated driving systems, we present the results of our ongoing
research to counteract the effect of noisy fitness functions without requir-
ing repeated executions of each solution. Our method kNN-Avg identifies
the k-nearest neighbours of a solution point and uses the weighted aver-
age value as a surrogate for its actually sampled fitness. We demonstrate
the viability of kNN-Avg on common benchmark problems and show that
it produces comparably good solutions whose fitness values are closer to
the expected value.

Keywords: Multi-objective optimisation · Noisy fitness functions ·
Genetic algorithms · k-nearest neighbours · Cyber-physical systems

1 Introduction

In the past, multi-objective optimisation (MOO) has proven to be a robust and
reliable means in the software engineering toolbox. Through iterative modifi-
cations of existing problem solutions, the algorithms try to approach optimal
valuations. A fitness function evaluates the quality of each individual solution
in one generation so that the best individuals can be used to guide the next
generation. After reaching a target fitness or a given number of generations, the
algorithm terminates and yields the best solutions found.

The authors are supported by ERATO HASUO Metamathematics for Systems Design
Project (No. JPMJER1603), JST. Funding reference number: 10.13039/501100009024
ERATO. S. Klikovits is also supported by Grant-in-Aid for Research Activity Start-up
20K23334, JSPS.

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 503–518, 2021.
https://doi.org/10.1007/978-3-030-85347-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_36&domain=pdf
http://orcid.org/0000-0003-4212-7029
http://orcid.org/0000-0002-6253-4062
https://doi.org/10.1007/978-3-030-85347-1_36

504 S. Klikovits and P. Arcaini

MOO algorithms such as genetic algorithms (GAs) have been successfully
applied to various optimisation problems, ranging from evolutionary design [3],
biological and chemical modelling [6], to artificial intelligence [14]. MOO are par-
ticularly well-suited for modern cyber-physical systems (CPSs) and internet of
things (IoT) applications, given the high-dimensional search space, where com-
binatorial testing and exhaustive verification reach their limits. When applied
to CPSs, however, a new difficulty arises. Many such systems suffer from sen-
sor errors and measurement noise. Similarly, with growing component numbers,
inter-process communication causes non-deterministic behaviour due to message
delays and synchronisation time variations. As the messages’ processing times
differ at runtime, noisy behaviour emerges [1]. Due to the noise, the reported
fitness and the actually expected value (the mean over several evaluations) might
vastly differ, leading to distrust of the method.

One of our lines of work is to identify problematic behaviour in auto-
mated driving systems (ADSs) by creating driving scenarios through map design
changes (e.g. road shape), altering traffic participants (vehicles and pedestrians)
and driving behaviour (e.g. aggressiveness). However, due to noisy inter-process
communication, repeated executions of the same scenario can lead to differing
observations, s.t. the distance between two cars may vary up to several meters.
In other words, in our search for consistent collision scenarios, outliers for typical
non-crash scenarios might be identified as crash scenarios. This leads to volatile
test scenarios, non-reproducible crash reports, and otherwise inconsistent sce-
nario design.

Evidently, a naive fix is to repeatedly run each configuration and select the
mean or median fitness value to check for robustness. However, in our setting
this is not possible, as a typical simulation takes 1 to 2 min. Assuming 1000
total optimisation steps, re-evaluating every run five more times adds some 80
to 160 h of simulation time to each individual scenario search, rendering this
method infeasible for broad application.

In this paper, we introduce kNN-averaging to overcome the problem of lack-
ing fitness robustness and outliers in noisy optimisation problems and provide our
advances on common, theoretical benchmark problems. Our method kNN-Avg
uses the k-nearest neighbours (kNN) (k being a hyper-parameter) to compute
the fitness value and thereby reduce the noise. We show that in a typical setting
without noise mitigation, GAs tend to predict outlier values and that kNN-Avg
helps to overcome this problem, making the found solutions more robust. To
evaluate our approach, we adapt three well-known MOO benchmarks to noisy
environments and quantify our results using common quality indicators (QIs).

2 Multi-objective Optimisation and Genetic Algorithms

Multi-objective optimisation problems are a family of problems that aim to
optimise multiple function values. Formally, the goal is to find the minimum
parameter (a.k.a. variable) values x ∈ X such that the function values of a
vector of objective functions f are minimised. X ⊆ R

n represents the solution

KNN-Averaging for Noisy Multi-objective Optimisation 505

space, i.e. the input to f , and relates to the scenario parameters that we defined
above. x is called a solution.

min
x∈X

f(x) = {f1(x), . . . , fm(x)},∀i ∈ {1, . . . , m}, fi : X → R (1)

The output f(x) ∈ Y is called the objective value of x; Y ⊆ R
m being the

objective space. An optimisation problem is called multi-objective if m > 1.1

While for single-objective optimisation problems, a solution leading to a
smaller objective value than another is considered better (dominant), this notion
is not as clear in the MOO setting. Here, given two solutions xa,xb ∈ X, we say
that xa dominates xb (xa ≺ xb) iff ∀i ∈ {1, . . . , n}, fi(xa) � fi(xb) ∧ ∃j ∈
{1, . . . , n} : fj(xa) < fj(xb).

A solution is Pareto optimal iff there is no other solution that dominates it.
A Pareto set PS∗ ∈ X is the set of all Pareto optimal solutions, a Pareto-front
PF∗ is the image of the Pareto set in the objective space. Roughly speaking, PS∗

is the set of solutions where we cannot optimise one fi-dimension without having
to reduce optimality in another one. This means, however, that there might be
numerous Pareto optimal solutions for some problems. Figure 1a shows a solution
set for the benchmark problem ZDT1 [17] alongside its Pareto front PF∗. Note
that each value of the solution set is Pareto optimal.

Quality Indicators (QI). QIs allow an estimation of a MOO’s performance.
Numerous QIs have been proposed [13]. In this paper, we focus on two of the
most common ones.

Hypervolume (HV) It calculates the hypervolume between a given reference point
in the objective space and each of the solutions’ objective values. Typically,
it uses a reference that is worse than all expected objective values. Thus, the
HV increases as the solutions approach the Pareto-optimality.

Inverse generational distance (IGD) IGD calculates the average Euclidean
distance from each PF∗-point to its closest solution. IGD decreases when
approaching PF∗.

Genetic algorithms (GAs). GAs [7] are a subfamily of evolutionary algo-
rithms (EAs) whose working principle is based on the iterative creation of pop-
ulations (sets of solutions, a.k.a. generations). An initial population can be cre-
ated from random samples, and all following generations are based on the best
candidates from their predecessors. This is achieved by ranking the solutions
according to their fitness values f(x) and applying operators to the best ones:
selection keeps the good ones, crossover produces new solutions by “mating”
two others, and mutation creates a slightly altered version of an existing one.

1 In this paper, we consider unconstrained MOO problems, meaning that f(x) always
produces feasible output. For an introduction on constrained MOO see [8].

506 S. Klikovits and P. Arcaini

(a) A solution set for the MOO problem
ZDT1 and optimal Pareto front PF∗

(b) Noisy ZDT1σ=0.1 objectives after op-
timisation, and the solutions’ mean objec-
tives.

Fig. 1. Left: search problem without noise; Right: noisy search problem

3 Noisy MOO and K-Nearest-Neighbour Averaging

We use the term noisy MOO to refer to problems whose fitness function f(x)
is non-deterministic. The formal problem statement, introduced in Eq. 1, can be
updated to

min
x∈X

f(x) = {f1(x) + δ1, . . . , fm(x) + δm} (2)

where each δi is a noise value sampled from a distribution. In many real-world
systems, as well as common benchmark studies, the noise in the system is
Gaussian-distributed [11]. To make our results comparable, we follow this lead,
and therefore, for the rest of this paper, we fix that δi is sampled from a nor-
mal distribution with mean μ = 0 and a standard deviation σ. We use σ as a
variable and alter it depending on the particular benchmark. For noisy systems,
we indicate the problem’s noise σ-parameter as subscript, e.g. ZDT1σ=0.1, as in
Fig. 1b.

Noise Effect. When introducing noise into an optimisation problem, the effect
is that PF∗ no longer represents the optimal objective values but instead marks
the mean objective values for PS∗. Given a solution s ∈ PS∗ and high enough
repetitions, the mean value should be placed near the solution’s expected (non-
noisy) objective.

Interestingly though, when executing a GA on such a problem, the typical
result (see also [10]) is that the algorithm computes a set of solutions that
approaches PS∗, but predicts objective values with high negative noise, falsely
indicating extraordinarily good fitness values. Thus, in the final solution set S ,
the GA “pushes” the reported fitness value far beyond PF∗, as can be seen in
Fig. 1b. The result is that the objective values do not match the actual distribu-
tions of the solutions’ expected mean objective values, and in fact over-estimate
the quality of the S . Figure 1b displays both the sampled solutions’ objective

KNN-Averaging for Noisy Multi-objective Optimisation 507

values as well as these solutions’ mean objective values. S was obtained by run-
ning 100 iterations of the GA-optimisation of the noisy ZDT1σ=0.1 problem. In
the figure, we can observe several properties:

1. The objective values of the found non-dominated solution set S (marked by
crosses) actually significantly surpass PF∗.

2. By evaluating s ∈ S repeatedly (or by removing the noise), we reveal the
actual mean objective values, i.e. the centre points of the noisy objective
distributions (marked by asterisks).

3. Some of the mean objective values are clearly dominated by others. Thus,
evaluating s ∈ S will likely lead to non-dominated solutions.

4. The observed objective values are typically based on large noise values, i.e.
they are outliers.

5. On average, the distance between observed objectives and the mean objec-
tives (indicated by the arrows) is rather large—even exceeding σ. Thus, the
obtained solutions’ fitness is misleading.

6. Even though the solutions’ objective values do not match the mean objec-
tive values, the solutions’ mean objective values approach PF∗. This means
that while we cannot expect fitness values to be as good as predicted by the
optimisation process, on average the solution values will still be good.

7. It appears that the noise causes the search to stop further improvement, since
outlier noise suggests the greatest possible fitness was already reached.

Ideally, the solutions’ mean objectives would align with PF∗, s.t. this result
would produce the best fitness on average.

Research Goal. Indeed, in Fig. 1 where we know that the noise (induced by
σ) is constant throughout the search space and as we know PF∗, we can eas-
ily see the offset. However, for unknown problems, problems with potentially
fluctuating noise magnitudes or similar situations, we should aim to produce
solutions whose sampled objective values are close to the mean objective values.
This way, we know that the individuals’ objectives are reliable and the obtained
values representative. In other words, our goal is to push the crosses in Fig. 1b
closer towards the asterisks, while keeping the asterisks close to the ideal Pareto
front PF∗.

Mean Offset. Δf We introduce a new measure Δf to calculate the mean
Euclidean distance between S ’s reported objective values f(s), s ∈ S—as
obtained by the search—and the mean expected objective values f̃(s)—obtained
e.g. by taking the mean of repeated invocations of f on s. Δf thus measures
the average length of the arrows in Fig. 1b. The rest of this section describe
our method which leverages the weighted average of the k-nearest neighbours to
robustify the sampling process and reduce Δf .

Δf =

∑
s∈S

√
(f(s) − f̃(s))2

| S | (3)

508 S. Klikovits and P. Arcaini

3.1 KNN-Averaging

Theoretically, inputs to noisy fitness functions can be repeatedly evaluated and
the sampled values averaged. Given high enough repetition frequency, this mean
objective value should approach the actual expectation value. The problem of
this method is the cost involved in the re-sampling of values, which can be signif-
icant for complex systems such as automated driving simulators, even rendering
the search effectively infeasible.

Our novel approach kNN-Avg aims to approximate the re-sampling process
and decrease the objective values noise, without actually performing the costly
repeated sampling. Our concept is based on the hypothesis that solutions that
are close to one another in the solution space will produce similarly distributed
objective values. Thus, the goal is to identify previously evaluated solutions close
to the currently sampled point and use their fitness values to help decrease the
impact of outliers.

Standardised Euclidean Distance. Euclidean distance (ED) is one of the
go-to distance measures when it comes to evaluating the proximity of multi-
dimensional data points, providing the “shortest direct distance” between two
points. On closer inspection, however, we notice that often the values depend
on the individual dimensions’ units. Thus, the Euclidean distance of values
expressed in kilometres is vastly different than the one in metres. Moreover, the
measure is not robust against large magnitude differences. When one dimension
expresses vehicle size in metres, but the other travelled distances in kilometres,
the second dimension will probably dominate the measure.

Our goal is thus to use a measure that normalises over the actually used
search space to avoid such tilting of the distance measure. We therefore use the
standardised Euclidean distance (SED), which normalises the values by relating
the value difference to the dimension’s variance within the total set of values in
that dimension.

Definition 1 (Standardised Euclidean distance). The standardised
Euclidean distance (SED) of two vectors is the square-root of the sum of the
squared element-wise difference divided by the dimension’s variance σ2

i :

sed(x1,x2) =

√
√
√
√

N∑

i=1

(x1,i − x2,i)2

σ2
i

, (4)

Note that the difference to the “common” Euclidean distance, i.e. the division
by the dimension’s variance σ2

i , places each dimension in relation to the global
value spread. This robustifies standardised Euclidean distance (SED) against
magnitude changes in the solution space and we can—in theory—even change,
e.g. the units from km to m.

KNN-Averaging for Noisy Multi-objective Optimisation 509

3.2 Hyper-parameters of kNN-Avg

Next to the choice of distance measure, the kNN-Avg algorithm offers several
other configuration parameters. Here, we will briefly outline some of the ques-
tions that have to be answered before executing the algorithm.

How big should k be? Intuitively, we might want to include as many neigh-
bours as possible to minimise the noise factor. The problem is, however, that
higher k-values take more distant neighbours into account, which are less sim-
ilar to the solution under investigation. Typically, the answer also depends
on the shape of the search space and the standard deviation of the noise.

When does a neighbour stop being “near”? Especially at the beginning of
the search when the sampling history is still sparse, a kNN algorithm without
a cutoff limit might select rather distant neighbours for the averaging. To
avoid this, we use a maximum distance MD to limit the kNN search to the
local neighbourhood.

Should close neighbours weigh more? By default, our hypothesis is that
close neighbours produce more similar value distributions than those further
away. Based on an informal initial exploration, our algorithm uses the squared
SED to decrease a neighbours impact weight. Nonetheless, this raises the
question as to how those weights are shaped in general. We leave this more
general question as future works.

We performed an upfront literature search, but it did not reveal conclusive
answers or best practices for good choices on these hyper-parameter values. Thus,
k and maximum distance MD are left variable. The experiments section explores
the relationship between these hyper-parameter values and the performance of
the MOO process. The weight measure on the other hand was fixed as the
inverse-square of the SED. Before choosing squared, we also experimented with
linear and uniform distance weights, but did not observe as good results.

3.3 Algorithm

Based on the kNN-Avg approach and the identified hyper-parameters we imple-
mented the algorithm, as displayed in Listing 1.1. The algorithm is presented in
a Python-like pseudo-language and makes references to “mock” functions such as
get_variances. The actual implementation uses common Python libraries such
as numpy and pandas.

The listing’s knn_evaluate-function is meant to replace the native evaluate-
function of a GA implementation. It is called once per generation and takes as
input a list of solutions, as well as the KNN and MAX_DIST hyper-parameters. The
output is a list of Solution objects, each containing variables and kNN-averaged
objective values. Specifically, each population cycles through the following steps:

1. The algorithm first invokes the (noisy) default evaluate method (L 6). This
can be e.g. the triggering of a simulator.

510 S. Klikovits and P. Arcaini

Listing 1.1. KNN-Evaluation algorithm in (Python-ish) pseudo-code
� �

1 """ Store the solutions with actually sampled values . """

2 HISTORY = list () # global store of solutions

3 """ Calculate KNN - averaged objectives for a list of solutions . """

4 def knn_evaluate (population : List [Solution] , KNN : int , MAX_DIST :
float) -> List [Solution] :

5 # standard evaluation of each solution ; add results to the history

6 sampled = [evaluate (solution) for solution in population]
7 HISTORY . extend (sampled)
8 # calculates the list of variance (one per variable dimension)

9 variances = get_variances (HISTORY)
10 # calculate solutions with KNN - averaged objectives

11 knn_solutions = list ()
12 for solution in population :
13 # store a map of solution -to - SED

14 distances={other : SED (solution , other , variances) for other in

HISTORY }
15 # remove those that are larger than MAX_DISTANCE

16 knn = { sol : val for sol , val in knn . items () if val <= MAX_DIST)
17 # sort by distance and limit to KNN values

18 knn = distances . sort (by=distances . values ()) [: KNN]
19 # calculate the weights as the square of distance values ;

20 # negate and add MAX_DIST so sol itself is largest

21 weights = math . square (knn . values ()) ∗ - 1 + MAX_DIST

22 objs = [sol . objs for sol in knn]
23 avgs = weighted_mean (objs , weights , column=True)
24 # append to the list of returned solutions

25 knn_solutions . append (Solution (solution . vars , avgs))
26 return knn_solutions

27

28 """ Data - class for solutions and corresponding objective values . """

29 class Solution (object) :
30 vars = list () # variables will be filled by the GA

31 objs = list () # objectives are filled by us
� �

2. After this evaluation, the solutions (now containing the sampling results) are
added to the global HISTORY (L 2 and L 7).

3. In the next step, the variances are calculated for each solution dimension
separately (L 9). The variances are later used to calculate the SED.

4. Then, each solution iterates through the following steps:
(a) Calculate the solution’s SEDs to each other solution in the global

history—including itself and all other newly generated solutions (L 14).
(b) Select all solutions closer than MAX_DIST (L 16).
(c) Sort solutions by the SED and only keep the k-nearest neighbours (L

18).
(d) Calculate the weights of each knn as the negative square of its SED (L

21). Then add MAX_DIST to make all values positive.
(e) Calculate the objective values as the weighted mean values. Note that

since objectives is a two-dimensional list, we have to specify column-wise
aggregation, such that each dimension is averaged separately (L 22–23).
The solution variables and averaged objectives are used to append a new
Solution to the list that will be returned to the algorithm.

KNN-Averaging for Noisy Multi-objective Optimisation 511

kNN-Avg Effect. The effect of the algorithm is visualised in Fig. 2. It shows
the kNN-Avg approach at the evaluation of the 25th generation of a search
problem. The evaluation history is shown as coloured crosses. Red dots display
the sampled objective values, arrows indicate the corresponding objective values
after kNN-Avg (red crosses).

Fig. 2. 10-NN averaging at generation #25 for ZDT1σ=0.1. Arrows connect sampled
and respective 10-NN-averaged objective values. (Color figure online)

4 Evaluation

This section describes the experiments and analyses we performed to answer the
following research questions (RQs):

– RQ1: Can kNN-Avg mitigate the outlier-effect of noisy MOO and bring the
reported and mean objective values closer together (i.e. reduce Δf)?

– RQ2: How do the solutions of kNN-Avg compare to those of the baseline in
terms of optimality (measured by quality indicators (QIs))?

– RQ3: Does the level of noise have an impact on whether kNN-Avg is able to
produce good results?

– RQ4: What influence does the choice of hyper-parameters have on the effi-
ciency of the approach?

Experimental Setup. To evaluate the kNN-Avg method, we implemented a
set of noisy benchmarks. The implementation is based on the pymoo Python
library [4], which provides a flexible framework for evaluation of MOO problems
and algorithms.

For the kNN-Avg evaluation, we developed a KNNAvgMixin-wrapper that we
can dynamically add to existing pymoo problems. The wrapper serves two pur-
poses: First, it modifies the wrapped problem and artificially injects noise into

512 S. Klikovits and P. Arcaini

Table 1. Configurations of benchmarks and search algorithms

Label Values Comment

Problem ZDT1, ZDT2, ZDT3 Benchmark name

Num variables 2, 4, 10 Benchmark configuration

σ (noise std. dev.) 0.00, 0.05, 0.10, 0.25, 0.50 Benchmark noise

Population size 10, 20 GA setting

k (num neighbours) 10, 25, 50, 100, 1000 kNN-Avg hyper-parameter

MD maximum distance 0.25, 0.5, 1.0, 2.0, 4.0 kNN-Avg hyper-parameter

the evaluated solutions. Second, it implements the kNN-Avg algorithm to coun-
teract the effects of the noise. The wrapper also stores the full evaluation history
and adds data logging for our analysis. It can be flexibly added to existing
benchmark problems, e.g. those already available in pymoo.

Using this class, we ran experiments on three benchmark problems: ZDT1,
ZDT2 and ZDT3 [17]. These artificial MOO benchmarks aim to minimise two-
function objectives, based on a variable number of up to 30 inputs. In total,
we selected six individual settings with multiple values each, to avoid biasing
our algorithm and also obtain an overview of the influence of various hyper-
parameters (RQ4). Following guidelines [2], we executed 30 repetitions in each
setting to avoid statistical fluctuations and gain enough data for our later anal-
ysis. Table 1 displays the experiment settings and the values that each one may
take. The total number of experimental settings is given by the Cartesian prod-
uct of the settings’ values. In total, we executed 67,500 individual optimisation
runs.

As MOO method we use NSGA-II, configured with a random initial pop-
ulation, simulated binary crossover (probability 0.9) and polynomial mutation
(probability 1.0). The search was run for 100 generations using population size
10 or 20 (see Table 1).

4.1 Experimental Results

In order to evaluate the effectiveness of the approach, we proceeded as follows.
For each experiment, we took the set of optimised solutions S as computed by

the GA; then for each solution s ∈ S , we computed its “mean” objective value
s̃; all solutions s̃ constitute the “adjusted” solution set S̃ . Based thereon, we
computed the following metrics: (i) Δf , the average error in estimation between
the objective values of solutions in S and the adjusted ones in S̃ (see Eq. (3));
(ii) H̃V and ĨGD, the hypervolume and IGD (see Sect. 2) of the mean objectives
s̃ ∈ S̃ .

As an example, Fig. 3 shows H̃V, ĨGD, and Δf for the ZDT1σ=0.1 exper-
iment with 2 variables, grouped by k and maximum distance MD, i.e. by the

KNN-Averaging for Noisy Multi-objective Optimisation 513

Fig. 3. Pairplot of average QI and Δf of 30 runs for ZDT1σ=0.1. Diagonal plots show
kernel density estimates. Baseline B(k = 1; no averaging) is shown as a vertical line.
(Color figure online)

hyper-parameters we want to evaluate2. The plots show the mean results of 30
individual NSGA-II optimisation runs after 100 generations with population size
10. The individual plots show two metrics plotted against each other, while the
diagonal plots display the kernel density estimate3 by k value. Roughly speak-
ing, this is a distribution of where the individual metrics (grouped by k) are
along the x-axis. Thus, for ĨGD and Δf , lower (left) is better, while for H̃V
higher (right) is advantageous. Further, a flat, wide density shows a spread of
values along the axis, while a short, high curve signifies a concentrated values.
The baseline represents the standard (non-averaging) noisy MOO, where only
the sampled value is chosen without any neighbours(i.e. k = 1). It is is drawn as
vertical blue line. Note, that a comparison to other solution approaches to noisy
MOO is left as future work.

We see from the positions of the data points, as well as from the density plots,
that for most k values (except k=1000) the ĨGD is lower than B(blue line). For

2 The implementation of our algorithm and the plots of all other experimental set-
tings are available online https://github.com/ERATOMMSD/QUATIC2021-KNN-
Averaging.).

3 https://www.mvstat.net/tduong/research/seminars/seminar-2001-05.

https://github.com/ERATOMMSD/QUATIC2021-KNN-Averaging
https://github.com/ERATOMMSD/QUATIC2021-KNN-Averaging
https://www.mvstat.net/tduong/research/seminars/seminar-2001-05

514 S. Klikovits and P. Arcaini

Table 2. Comparison between the kNN-based settings KNNMDk and the baseline B.

(a) No noise

App. ˜HV ˜IGD Δf

KNN0.25
10 ≡ ✗ ✗

KNN0.5
10 ✗ ✗ ✗

KNN1.0
10 ✗ ✗ ✗

KNN2.0
10 ✗ ✗ ✗

KNN4.0
10 ✗ ✗ ✗

KNN0.25
25 ✗ ✗ ✗

KNN0.5
25 ✗ ✗ ✗

KNN1.0
25 ✗ ✗ ✗

KNN2.0
25 ✗ ✗ ✗

KNN4.0
25 ✗ ✗ ✗

KNN0.25
50 ✗ ✗ ✗

KNN0.5
50 ✗ ✗ ✗

KNN1.0
50 ✗ ✗ ✗

KNN2.0
50 ✗ ✗ ✗

KNN4.0
50 ✗ ✗ ✗

KNN0.25
100 ✗ ✗ ✗

KNN0.5
100 ✗ ✗ ✗

KNN1.0
100 ✗ ✗ ✗

KNN2.0
100 ✗ ✗ ✗

KNN4.0
100 ✗ ✗ ✗

KNN0.25
1000 ✗ ✗ ✗

KNN0.5
1000 ✗ ✗ ✗

KNN1.0
1000 ✗ ✗ ✗

KNN2.0
1000 ✗ ✗ ✗

KNN4.0
1000 ✗ ✗ ✗

(b) σ = 0.05

App. ˜HV ˜IGD Δf

KNN0.25
10 ✗ ≡ ✓

KNN0.5
10 ≡ ≡ ✓

KNN1.0
10 ✗ ✗ ✓

KNN2.0
10 ✗ ✗ ✓

KNN4.0
10 ✗ ✗ ✓

KNN0.25
25 ≡ ≡ ✓

KNN0.5
25 ✗ ✗ ✓

KNN1.0
25 ✗ ✗ ✓

KNN2.0
25 ✗ ✗ ✓

KNN4.0
25 ✗ ✗ ≡

KNN0.25
50 ≡ ≡ ✓

KNN0.5
50 ≡ ≡ ✓

KNN1.0
50 ✗ ✗ ✓

KNN2.0
50 ✗ ✗ ≡

KNN4.0
50 ✗ ✗ ≡

KNN0.25
100 ≡ ≡ ✓

KNN0.5
100 ✗ ✗ ✓

KNN1.0
100 ✗ ✗ ≡

KNN2.0
100 ✗ ✗ ≡

KNN4.0
100 ✗ ✗ ≡

KNN0.25
1000 ≡ ≡ ✓

KNN0.5
1000 ✗ ✗ ✓

KNN1.0
1000 ✗ ✗ ≡

KNN2.0
1000 ✗ ✗ ✗

KNN4.0
1000 ✗ ✗ ✗

(c) σ = 0.1

App. ˜HV ˜IGD Δf

KNN0.25
10 ≡ ✓ ✓

KNN0.5
10 ≡ ≡ ✓

KNN1.0
10 ≡ ≡ ✓

KNN2.0
10 ✗ ✗ ✓

KNN4.0
10 ✗ ✗ ✓

KNN0.25
25 ≡ ✓ ✓

KNN0.5
25 ≡ ≡ ✓

KNN1.0
25 ✗ ≡ ✓

KNN2.0
25 ✗ ✗ ✓

KNN4.0
25 ✗ ✗ ✓

KNN0.25
50 ≡ ≡ ✓

KNN0.5
50 ≡ ≡ ✓

KNN1.0
50 ≡ ≡ ✓

KNN2.0
50 ✗ ✗ ✓

KNN4.0
50 ✗ ✗ ✓

KNN0.25
100 ≡ ≡ ✓

KNN0.5
100 ≡ ≡ ✓

KNN1.0
100 ≡ ≡ ✓

KNN2.0
100 ✗ ✗ ✓

KNN4.0
100 ✗ ✗ ✓

KNN0.25
1000 ≡ ✓ ✓

KNN0.5
1000 ≡ ≡ ✓

KNN1.0
1000 ≡ ≡ ✓

KNN2.0
1000 ✗ ✗ ≡

KNN4.0
1000 ✗ ✗ ✗

(d) σ = 0.25

App. ˜HV ˜IGD Δf

KNN0.25
10 ≡ ≡ ✓

KNN0.5
10 ≡ ✓ ✓

KNN1.0
10 ≡ ✓ ✓

KNN2.0
10 ≡ ✓ ✓

KNN4.0
10 ✗ ≡ ✓

KNN0.25
25 ≡ ≡ ✓

KNN0.5
25 ≡ ≡ ✓

KNN1.0
25 ≡ ≡ ✓

KNN2.0
25 ✗ ≡ ✓

KNN4.0
25 ✗ ≡ ✓

KNN0.25
50 ✓ ✓ ✓

KNN0.5
50 ≡ ≡ ✓

KNN1.0
50 ≡ ✓ ✓

KNN2.0
50 ✗ ≡ ✓

KNN4.0
50 ✗ ≡ ✓

KNN0.25
100 ≡ ✓ ✓

KNN0.5
100 ≡ ✓ ✓

KNN1.0
100 ≡ ✓ ✓

KNN2.0
100 ≡ ≡ ✓

KNN4.0
100 ✗ ≡ ✓

KNN0.25
1000 ≡ ✓ ✓

KNN0.5
1000 ≡ ✓ ✓

KNN1.0
1000 ≡ ✓ ✓

KNN2.0
1000 ≡ ✓ ✓

KNN4.0
1000 ≡ ≡ ✓

(e) σ = 0.5

App. ˜HV ˜IGD Δf

KNN0.25
10 ≡ ≡ ✓

KNN0.5
10 ≡ ≡ ✓

KNN1.0
10 ≡ ≡ ✓

KNN2.0
10 ≡ ≡ ✓

KNN4.0
10 ≡ ≡ ✓

KNN0.25
25 ≡ ≡ ✓

KNN0.5
25 ≡ ≡ ✓

KNN1.0
25 ≡ ✓ ✓

KNN2.0
25 ≡ ≡ ✓

KNN4.0
25 ≡ ≡ ✓

KNN0.25
50 ≡ ≡ ✓

KNN0.5
50 ≡ ≡ ✓

KNN1.0
50 ≡ ≡ ✓

KNN2.0
50 ≡ ≡ ✓

KNN4.0
50 ≡ ≡ ✓

KNN0.25
100 ≡ ≡ ✓

KNN0.5
100 ≡ ≡ ✓

KNN1.0
100 ≡ ≡ ✓

KNN2.0
100 ≡ ≡ ✓

KNN4.0
100 ≡ ≡ ✓

KNN0.25
1000 ≡ ≡ ✓

KNN0.5
1000 ≡ ≡ ✓

KNN1.0
1000 ≡ ✓ ✓

KNN2.0
1000 ≡ ✓ ✓

KNN4.0
1000 ≡ ✓ ✓

(f) All

App. ˜HV ˜IGD Δf

KNN0.25
10 ≡ ✓ ✓

KNN0.5
10 ≡ ✓ ✓

KNN1.0
10 ✗ ≡ ✓

KNN2.0
10 ✗ ≡ ✓

KNN4.0
10 ✗ ✗ ✓

KNN0.25
25 ≡ ✓ ✓

KNN0.5
25 ≡ ≡ ✓

KNN1.0
25 ✗ ≡ ✓

KNN2.0
25 ✗ ✗ ✓

KNN4.0
25 ✗ ✗ ✓

KNN0.25
50 ≡ ✓ ✓

KNN0.5
50 ≡ ≡ ✓

KNN1.0
50 ✗ ≡ ✓

KNN2.0
50 ✗ ✗ ✓

KNN4.0
50 ✗ ✗ ✓

KNN0.25
100 ≡ ≡ ✓

KNN0.5
100 ≡ ≡ ✓

KNN1.0
100 ✗ ≡ ✓

KNN2.0
100 ✗ ✗ ✓

KNN4.0
100 ✗ ✗ ✓

KNN0.25
1000 ≡ ✓ ✓

KNN0.5
1000 ≡ ≡ ✓

KNN1.0
1000 ≡ ≡ ✓

KNN2.0
1000 ✗ ≡ ✓

KNN4.0
1000 ✗ ✗ ≡

Legend: ≡: there is no statistically significant difference between KNNMDk and B.
✓: KNNMDk is statistically significantly better. ✗: Bis statistically significantly better.

H̃V the value is higher, except k=25. Of particular interest is Δf , which shows
a significant discrepancy between the kNN-Avg evaluations and B, in favour of
kNN-Avg.

Thus, we conclude that for this particular benchmark, the kNN-Avg approach
produces better results on average than B. We report in the online repository2

the detailed analyses of all the 45 benchmarks. In the following, we perform an
overall analysis to assess how the proposed approach performs in general.

We calculated the experiments results’ average (grouped by k and MD) and
compared them with the results of the baseline B, across all experiment configu-
rations (all combinations of Problem, Num Variables, σ, and Population size). By
following guidelines for conducting experiments with randomised algorithms [2],
we compared them using the Wilcoxon signed rank test for the statistical sig-
nificance (at significance level α=0.05), and the Vargha-Delaney’s Â12 as effect
size. Table 2 reports the results of the statistical tests, displaying whether kNN-
Avg’s performance is statistically significantly better, equal, or worse than the
B’s. Table 2a reports the results for the benchmarks with no noise, Table 2b–2e
the results for the benchmarks having a specific noise level σ = a, and Table 2f
the results by benchmarks with any level of noise.

4.2 Evaluation

RQ1: Can kNN-Avg mitigate the outlier-effect of noisy MOO and
bring the reported and mean objective values closer together? From

KNN-Averaging for Noisy Multi-objective Optimisation 515

Table 2a, it is clear there is no advantage in using kNN-Avg for non-noisy sys-
tems. Indeed, the approach computes approximated fitness values, although the
sampled ones are already precise. Instead, for any noise level (Table 2b–2e) and
most experimental settings, statistically, kNN-Avg outperforms Bin terms of Δf .
This clearly shows that kNN-Avg succeeds in producing solutions whose sampled
objective values are closer to their mean values.

RQ2: How do the solutions of kNN-Avg compare to those of Bin
terms of optimality (i.e. in terms of quality indicators)? For non-noisy
benchmarks (Table 2a), kNN-Avg is worse than Bin term of solution quality;
this effect is expected, as the approach perturbates the fitness value when it is
not needed. Nonetheless, for any noise level (Table 2b–2e), we observe that there
are several hyper-parameter configurations where kNN-Avg produces equal or
better results for both H̃V and ĨGD.

RQ3: Does the level of noise have an impact on whether kNN-Avg
is able to produce good results? With increasing noise level, kNN-Avg’s
results improve. For noise σ = 0.5 (Table 2e), none of the settings of kNN-Avg
produces worse solutions. This shows that our approach is particularly efficient
for highly noisy systems.

RQ4: Which is the influence of the method hyper-parameters on the
efficiency of the approach? kNN-Avg is initialised with two parameters, the
number of neighbours k, and the maximum distance MD. The results suggest
that there is no big influence of the used k. For MD on the other hand, lower
values usually provide better results across noise levels. This is reasonable, as
smaller values of MD make the approach more conservative and avoid averaging
too different values.

4.3 Threats to Validity

The validity of kNN-Avg could be affected by some threats. We discuss them in
terms of construct, conclusion, internal, and external validity.

Construct Validity. One threat is that the evaluation metrics may not reflect
the object of the investigation, that is, the ability of kNN-Avg to produce solu-
tions with low Δf and still have a good quality in terms of the objective func-
tions. Furthermore, it may be that the newly introduced measure Δf is not a
faithful measure for robustness in this context. As different QIs may give dif-
ferent results (in terms of solution ranking), we used two distinct ones [13] to
avoid biasing; of course, many more indicators could have been used. We further
applied this result on several benchmarks to judge the results.

Conclusion Validity. Different factors can affect the ability to draw definitive
conclusions; one of these is the random behaviour of the search algorithms. To
mitigate such a threat, we executed each experiment 30 times, as suggested
in a guideline on conducting experiments with randomised algorithms [2]. Still
following [2], we compared the results of different versions of kNN-Avg and of

516 S. Klikovits and P. Arcaini

the baseline approach by using suitable tests that account both for statistical
significance and effect size.

Internal Validity. One threat could be to wrongly identify a causal relationship
between the usage of kNN-Avg and the improvement in Δf . To mitigate, we
carefully tested the implementation, and we make it available for inspection and
experiments reproduction.

External Validity. kNN-Avg has been experimented on 45 benchmark models,
varying in objective functions, variable numbers, and noise. The benchmarks are
commonly used in the MOO community to assess search algorithms. However,
more experiments are needed to claim the generability of the approach, possibly
using more complex CPSs affected by noise, such as ADSs. This is left as future
work.

5 Related Works

Other approaches have been proposed for handling noise in multi-objective opti-
misation; see [11] for a survey. Early works [9] suggest performing multiple eval-
uations of the fitness functions and try to understand the sufficient number of
evaluations; such approaches may not be applicable in practice when evaluating
the fitness functions is expensive (e.g. using ADS simulators).

Park and Ryu [15] propose to handle the noise by performing multiple eval-
uations of the solutions over several different generations. The approach differs
from ours, as we rely on the average fitness values of the kNN, while they cal-
culate the average of multiple re-executions of the same solution.

Other methods [12,16], instead, propose to modify the ranking method to
take the system noise into account. The main problem of these works is that
they make prior assumptions on the distribution of objective function values;
kNN-Avg, instead, makes no assumption on the noise distribution and tries to
discover it at runtime.

The closest approach to ours is proposed by Branke [5]. It considers averaging
as one of the 10 possible ways to estimate fitness. However, the approach differs
in several ways: (i) the approach only applies to single-objective problems; (ii)
the distance function does not consider the different dimensions (as we do with
SED, see Sect. 3.1); (iii) it takes the whole population into account, instead of
limiting the averaging to the kNN.

6 Conclusion and Future Works

This paper presents a novel approach to multi-objective optimisation (MOO)
of noisy fitness functions. In such settings, MOO methods such as genetic algo-
rithms tend to wrongly rely on outlier values to guide the optimisation. This
results in the problem that the fitness of the reported solutions differs signif-
icantly from the expected fitness values obtained by re-running the solutions,

KNN-Averaging for Noisy Multi-objective Optimisation 517

which harms trustworthiness. A naive fix would be to repeatedly sample a solu-
tion and calculate the mean of observed values, which can easily become very
costly for more complex systems.

We present an approach for reducing the noise while avoiding re-sampling.
Our kNN-Avg algorithm works by keeping the history of all evaluated solutions
and calculates the weighted mean of the k-nearest neighbours (kNN). We show
the details of our implementation and provide an experimental evaluation based
on three common benchmark problems, modified with different noise levels. The
results indicate that our kNN-Avg method indeed succeeds in reducing the dis-
crepancy between the solution’s fitness and the actual target fitness, thereby
increasing the trustworthiness of results.

In future, we plan to extend our approach in several directions. First, we
plan on applying kNN-Avg to more benchmark problems, including constrained
ones, and evaluate its performance on different types of noise. Next, we are
in the process of evaluating the method in a scenario generation setting for
an automated driving system. Finally, we want to investigate the algorithm’s
hyper-parameters and test if any correlations between problem, noise level and
algorithm configuration exist.

References

1. Afzal, A., Goues, C.L., Hilton, M., Timperley, C.S.: A study on challenges of testing
robotic systems. In: 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST), pp. 96–107 (2020)

2. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, pp. 1–10. ACM, New York (2011)

3. Bentley, P.J., Wakefield, J.P.: Generic evolutionary design. In: Chawdhry, P.K.,
Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufactur-
ing, pp. 289–298. Springer, London (1998). https://doi.org/10.1007/978-1-4471-
0427-8 31

4. Blank, J., Deb, K.: Pymoo: multi-objective optimization in Python. IEEE Access
8, 89497–89509 (2020)

5. Branke, J.: Creating robust solutions by means of evolutionary algorithms. In:
Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS,
vol. 1498, pp. 119–128. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0056855

6. Carroll, D.L.: Chemical laser modeling with genetic algorithms. AIAA J. 34(2),
338–346 (1996)

7. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8

8. Fan, Z., Fang, Y., Li, W., Lu, J., Cai, X., Wei, C.: A comparative study of con-
strained multi-objective evolutionary algorithms on constrained multi-objective
optimization problems. In: 2017 IEEE Congress on Evolutionary Computation
(CEC), pp. 209–216. IEEE (2017)

9. Fitzpatrick, J.M., Grefenstette, J.J.: Genetic algorithms in noisy environments.
Mach. Learn. 3(2–3), 101–120 (1988)

https://doi.org/10.1007/978-1-4471-0427-8_31
https://doi.org/10.1007/978-1-4471-0427-8_31
https://doi.org/10.1007/BFb0056855
https://doi.org/10.1007/BFb0056855
https://doi.org/10.1007/978-3-662-44874-8

518 S. Klikovits and P. Arcaini

10. Goh, C.K., Tan, K.C.: An investigation on noisy environments in evolutionary
multiobjective optimization. IEEE Trans. Evol. Comput. 11(3), 354–381 (2007)

11. Goh, C.K., Tan, K.C.: Evolutionary Multi-objective Optimization in Uncertain
Environments, vol. 186. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-540-95976-2

12. Hughes, E.J.: Evolutionary multi-objective ranking with uncertainty and noise.
In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO
2001. LNCS, vol. 1993, pp. 329–343. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44719-9 23

13. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation:
a survey. ACM Comput. Surv. (CSUR) 52(2), 1–38 (2019)

14. Mirjalili, S.: Genetic Algorithm. In: Mirjalili, S. (ed.) Evolutionary Algorithms
and Neural Networks. Studies in Computational Intelligence, vol. 780, pp. 43–55.
Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93025-1 4

15. Park, T., Ryu, K.R.: Accumulative sampling for noisy evolutionary multi-objective
optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evo-
lutionary Computation, GECCO 2011, pp. 793–800. Association for Computing
Machinery, New York (2011)

16. Teich, J.: Pareto-front exploration with uncertain objectives. In: Zitzler, E., Thiele,
L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp.
314–328. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9 22

17. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

https://doi.org/10.1007/978-3-540-95976-2
https://doi.org/10.1007/978-3-540-95976-2
https://doi.org/10.1007/3-540-44719-9_23
https://doi.org/10.1007/3-540-44719-9_23
https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1007/3-540-44719-9_22

Software Quality Education
and Training

Exercise Perceptions: Experience Report
from a Secure Software Development

Course

Akond Rahman1(B) , Shahriar Hossain2, and Dibyendu Brinto Bose3

1 Tennessee Technological University, Cookeville, TN, USA
arahman@tntech.edu

2 Kennessaw State University, Kennessaw, GA, USA
3 Reeve Systems, Dhaka, Bangladesh

Abstract. The ubiquitous use of software in critical systems necessi-
tates integrating cybersecurity concepts into the software engineering
curriculum so that students studying software engineering have adequate
knowledge to securely develop software projects, which could potentially
secure critical systems. An experience report of developing and conduct-
ing a course can help educators to gain an understanding of student
preferences on topics related to secure software development. We pro-
vide an experience report related to the ‘Secure Software Development’
course conducted at Tennessee Technological University. We discuss stu-
dent motivations, as well as positive and negative perceptions of students
towards exercises. Based on our findings, we recommend educators to
integrate real-world exercises into a secure software development course
with careful consideration of tool documentation, balance in exercise
diversity, and student background.

Keywords: Devsecops · Education · Experience report · Secure
software

1 Introduction

With the emergence of the fourth industrial revolution1 the use of software is
becoming pervasive in critical systems, such as energy, health care, and trans-
portation [4]. Security weaknesses in software used in critical systems can cre-
ate serious consequences, such as creating large-scale outages, as it happened
for Americold, a U.S.-based cold storage company2. Examples of cybersecurity
attacks similar to that of Americold, highlight the need of educating software
developers about cybersecurity concepts. Educators have also acknowledged to
1 https://jia.sipa.columbia.edu/fourth-industrial-revolution-shaping-new-era.
2 https://threatpost.com/food-supply-americold-cyberattack/161402/.

Partially funded by the U.S. National Science Foundation (NSF) award # 2026869.
Special thanks to the PASER group at TnTU for their feedback.

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 521–535, 2021.
https://doi.org/10.1007/978-3-030-85347-1_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_37&domain=pdf
http://orcid.org/0000-0002-5056-757X
https://jia.sipa.columbia.edu/fourth-industrial-revolution-shaping-new-era
https://threatpost.com/food-supply-americold-cyberattack/161402/
https://doi.org/10.1007/978-3-030-85347-1_37

522 A. Rahman et al.

bring in cybersecurity research concepts into the curriculum of software engi-
neering so that students gain knowledge about the cybersecurity concepts [18].

To strengthen the computer science curriculum at Tennessee Technological
University (TnTU), a faculty at the Department of Computer Science (CS) intro-
duced the ‘Secure Software Development’ course in Fall 2020. The purpose of this
graduate-level course was to provide students with fundamental knowledge and
training on secure software development. The course focused on using a hands-on
approach where students will learn about cybersecurity and software engineering
concepts via class lectures as well as by solving programming exercises.

We present an experience report of the exercises that were conducted as part
of the ‘Secure Software Development‘ course. Our reported experience related to
exercises can be helpful for other educators who want to adopt secure software
development as a course into their CS curriculum. Furthermore, our experience
report can provide clues for researchers on how to better integrate cybersecurity
into software engineering.

We answer the following research questions:

– RQ1: What are students’ motivations for enrolling in the ‘Secure Software
Development’ course? Based on student feedback, which components of the
‘Secure Software Development’ are aligned with student motivations?

– RQ2: What is the performance of students in exercises conducted as part of
the ‘Secure Software Development’ course?

– RQ3: What are the positive perceptions of exercises conducted as part of the
‘Secure Software Development’ course?

– RQ4: What are the negative perceptions of exercises conducted as part of the
‘Secure Software Development’ course?

We answer the research questions by analyzing grade books and survey results
collected from a graduate course titled ‘Secure Software Development’, which
was introduced for the first time at TnTU. To synthesize students’ positive and
negative perceptions we apply open coding [17], a qualitative analysis technique
to generate high-level categories from text input. Prior to conducting the sur-
vey and analysis we obtain Internal Review Board (IRB) approval from TnTU
(IRB#2316).

Our contributions are listed as follows:

– A list of positive perceptions expressed by students regarding exercises con-
ducted in the ‘Secure Software Development’ course;

– A list of negative perceptions expressed by students regarding exercises con-
ducted in the ‘Secure Software Development’ course;

– A list of students’ motivations to enroll in the ‘Secure Software Development’
course; and

– A publicly-available repository of materials used to conduct exercises in the
‘Secure Software Development’ course [2].

Exercises in a Secure Software Development Course 523

2 Overview of the Course and Exercises

The course is titled ‘Secure Software Development’, which was introduced in the
graduate curriculum in the Department of Computer Science (CS) at TnTU for
the first time. The pre-requisite of this course for students was to be enrolled
as a graduate student in the Department of CS at TnTU. Prior to conducting
the course, the syllabus of the course was shared amongst all graduate students
through e-mails in April 2020. A total of 12 students enrolled in the course.
The instructor of the course conducted an initial survey of students’ experience
in software engineering and cybersecurity. The students’ reported academic and
professional experience in software engineering and cybersecurity is presented in
Table 1. The course included three components: class lectures, exercises, and a
semester long project assigned individually to each student.

Table 1. Students’ experience in cybersecurity and software engineering

Experience Cybersecurity Soft. engg.

<1 year 8 4

1–2 years 2 1

3–4 years 2 4

>4 years 0 3

The course included eight exercises that discussed eight topics related to
secure software development. Before assigning each exercise necessary theoret-
ical concepts were covered by the instructor. Each of the exercises maps to a
knowledge unit (KU) recommended by the U.S. National Center of Academic
Excellence in Cyber Defense Education (CAE-CD) [13]. KUs are CS-related
topics deemed essential or recommended by the U.S. National Center of Aca-
demic Excellence to develop a curriculum related to cyber defense education.
We describe each of the exercises below:

Exercise#1 - Git Hooks for Automated Security Static Analysis: The
purpose of this exercise was to help students learn how to integrate security using
a single example of Git hook3. Automated security static analysis is considered
as a good practice to integrate security into software development workflows. If
a software repository uses Git, then using Git-based utilities, such as Git Hooks,
automated security static analysis can be performed. As part of this exercise,
students were asked to learn about Git hooks, and how to create a Git hook
so that upon committing a file, a security static analysis tool can run and scan
all files in the repository. To perform security static analysis the students used
cppcheck, a security static analysis tool for C/C++ code4.

3 https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks.
4 http://cppcheck.sourceforge.net/.

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
http://cppcheck.sourceforge.net/

524 A. Rahman et al.

Exercise#2 - Logging Location: The purpose of this exercise was to identify
locations where logging needs to be enabled for machine learning projects. In
this exercise the students were asked to inspect machine learning code imple-
mentation in Python and identify locations where logging needs to be enabled
but is not. Before assigning this exercise the students were exposed to concepts
related to security-related logging provided by prior work [5,9].

Exercise#3 - Privacy Violations in Software Projects: The purpose of
this exercise was to make students aware of how implementation of a software
project can violate privacy properties of individuals using the software. As part of
this exercise, first, the students read a scientific paper [15] and identified person-
ally identifiable identifiers (PIIs), i.e., what utilities of the Android development
kit are susceptible to leaking information that can identify an individual. Exam-
ples of PIIs include permissions used in Android, such as ACCESS FINE LOCATION
and GET ACCOUNTS. Second, the students had to identify if these permissions are
used in a set of 50 Android applications. Finally, the students were required to
report which of the identified permissions from the first step were used in the
source code of the collected Android applications.

Exercise#4 - Security Requirements Validation: The purpose of this exer-
cise was to help students understand how security requirements can be translated
to test cases and observe if a given piece of software satisfy the specified require-
ments. Security requirements are a specific sub-category of software requirements
that are related to ensuring confidentially, integrity, or availability [7]. As part
of this exercise the students conducted test driven development, where they first
wrote test cases for a simple calculator to satisfy the following requirements:
(i) the calculator must be able to multiply and divide, (ii) all methods related
to mathematical operations should sanitize input, (iii) all methods related to
mathematical operations should handle division-by-zero exceptions, and (iv) all
methods related to mathematical operations should be fast. Second, following the
practice of test-driven development, the students were required to write code so
that the test cases written in the first step are satisfied.

Exercise#5 - Security Smells: The purpose of this exercise was to allow
students to apply their knowledge related to security smells gathered in the
lecture and apply it to SaltStack5 scripts. Security smells are recurring coding
patterns that are indicative of security weaknesses [16]. SaltStack scripts are
used to implement the practice of infrastructure as code (IaC), the practice
of managing system configuration automatically using dedicated programming
languages and by applying recommended software engineering best practices [16].
As part of this exercise the students were asked to perform two tasks: first,
the students were asked to manually inspect three SaltStack scripts to identify
security smells. Second, the students were asked to build an automated program
to detect the identified security smell instances.

Exercise#6 - Security Static Analysis for Adversarial Machine Learn-
ing: The purpose of this exercise was to help students learn about how security
5 https://www.saltstack.com/.

https://www.saltstack.com/

Exercises in a Secure Software Development Course 525

static analysis can be conducted for machine learning projects at scale. Adver-
sarial machine learning focuses on securing implementation of machine learning
projects to protect against adversaries. Practitioners consider application of secu-
rity static analysis as an important practice to protect machine learning projects
against adversarial attacks [10]. As part of the exercise, first, the students were
asked to use bandit, a static analysis tool for Python6, and apply it automati-
cally for 175 machine learning projects collected from the ModelZoo repository7.
Second, the students were asked to automatically filter static analysis results that
are of ‘low’ severity as reported by Bandit.

Exercise#7 - Taint Analysis: The purpose of this exercise was to give stu-
dents hands-on experience about taint analysis. Taint analysis is the technique
of tracking a potential security weakness in the source code for the software of
interest [8]. Taint analysis can help to reduce false positives during security static
analysis and also help understand which parts of the software are affected by
the security weaknesses. As part of this exercise, the students had to inspect one
Python file and perform two tasks: first, they had to report the complete flow of
a taint, i.e., hard-coded password in the Python file. Second, they had to mine
abstract syntax tree of the Python file to automatically report the complete flow
of the taint.

Exercise#8 - White-box Fuzzing: The purpose of this exercise was to help
students get hands-on experience on white box fuzzing and understand how white
box fuzzing can help find faults in software. White-box fuzzing is the technique
of providing malicious input by inspecting the source code of software artifacts
and identify faults within the software [1]. In this exercise the students were
asked to craft malicious input semi-automatically for an Ansible script. Ansible
is a tool to implement the practice of IaC [16], which compiles and executes
Ansible scripts to automatically provision cloud computing resources.

3 RQ1: Student Motivations

In this section we provide the methodology and findings for RQ1: What are
students’ motivations for enrolling in the ‘Secure Software Develop-
ment’ course? Based on student feedback, which components of the
‘Secure Software Development’ are aligned with student motivations?

3.1 Methodology to Answer RQ1

We collect student responses through an online survey that was deployed at
the beginning of the semester. The purpose of this survey was to understand the
experience level of students with software engineering and cybersecurity. As part
of the survey we asked: “What were your motivations to enroll in the ‘Secure
Software Development’ course”? The question was open-ended.
6 https://bandit.readthedocs.io/en/latest/.
7 https://modelzoo.co/.

https://bandit.readthedocs.io/en/latest/
https://modelzoo.co/

526 A. Rahman et al.

We apply a qualitative analysis technique called open coding [17] to generate
categories from the text responses to the question. The derived categories of
student perceptions are susceptible to rater bias as the categories are all derived
by the first author. We mitigate this limitation by allocating another rater who
is the last author of the paper. The last author provided a mapping for the
obtained responses to the identified categories. The agreement rate is 100% with
a Cohen’s Kappa [6] of 1.0.

3.2 Answer to RQ1

We identify three motivation categories for enrolling in the ‘Secure Software
Development’ course. We describe these categories below. The name of each
category related to student motivations is followed by the count of students who
mentioned the identified category:

Motivation#1 - Academic Requirements (2 out of 12): Two students
enrolled in the course to satisfy course requirements: “this class will be helpful
for my masters thesis and professional career”.

Motivation#2 - Career Development (7 out of 12): Students were moti-
vated by the fact that the content of the course could help in their career pursuits.
As reported in Table 1, the enrolled students’ experience in software engineering
and cybersecurity varied, yet majority of the students perceived the course con-
tent to advance their professional career. One student stated “I will be pursuing
a cybersecurity related position, but I think that it [the course] will be something
that will serve me well whether I choose to stay in a government position, go
into private industry, or in academia”. Strengthening software engineering skills
was also a motivating factor as one student stated “software development is not
my strong suit and I want to gain knowledge on how I can develop software
applications in a more robust way considering security”.

Motivation#3 - Gain Research Background (3 out of 12): Students
mentioned the focus and the content of the course may help them to conduct
their research projects. One student mentioned “I enjoy working in software
security and I will be doing my course project consistent with my research work”.

We also asked students about which course component helped them to sat-
isfy their motivations. The question was presented as a survey and all students
participated. As shown in Table 2 we observe students to perceive exercises to
be most aligned with their motivations to enroll in the course, followed by the
semester-long project.

Exercises in a Secure Software Development Course 527

Table 2. Exercises are perceived to be best suited with enrollment motivations

Experience Respondent count

Exercise 11

Semester-long project 9

Lectures 8

4 RQ2: Student Performance in Exercises

In this section, we provide the methodology and results for RQ2: What is the
performance of students in exercises conducted as part of the ‘Secure
Software Development’ course?

4.1 Methodology to Answer RQ2

We answer RQ2 by using information related to percentage of task completed
obtained from the course gradebook. Once the deadline for each exercise passed
the instructor inspected and graded the submission materials. Grades were
assigned based on the amount completed and correctness of the provided solu-
tion.

4.2 Answer to RQ2

We answer RQ2 by reporting summary statistics for grades obtained for each
exercise. The summary statistics for grades is provided in Table 3. From the
statistics presented in Table 3, we observe students to perform the worst for
taint analysis. Students performed the best for security requirements validation.

Table 3. Summary statistics of grades for eight exercises

Exercise name Stats (min., median, max.)

Git hooks for automated security static
analysis

(30%, 100%, 100%)

Logging location (71%, 100%, 100%)

Privacy violations in software projects (50%, 95%, 100%)

Security requirements validation (85%, 100%, 100%)

Security smells (45%, 65%, 100%)

Security static analysis for adversarial machine
learning

(80%, 100%, 100%)

Taint analysis (20%, 30%, 70%)

White-box fuzzing (45%, 100%, 100%)

528 A. Rahman et al.

5 RQ3: Positive Perceptions of Exercises

In this section we provide the methodology and results for RQ3: What are
the positive perceptions of exercises conducted as part of the ‘Secure
Software Development’ course?

5.1 Methodology to Answer RQ3

For each exercise the students were required to participate in a survey that asked
two questions: (i) Survey Q1: What are the positive aspects of the exercise?,
and (ii) Survey Q2: What are the negative aspects of the exercise? We use the
answers provided by the students for Survey Q1 to answer RQ3. We apply open
coding [17] to determine categories that express positive aspects of the students
for each exercise. Our process of applying open coding was similar to that of
deriving student motivations described in Sect. 3.1. Similar to RQ1, we conduct
rater verification, where the last author provided a mapping for the obtained
responses to the identified categories related to positive perceptions of students.
The agreement rate between the first and last author for the obtained responses
is 65% with a Cohen’s Kappa [6] of 0.53.

5.2 Answer to RQ3

We identify six categories of positive perceptions. A mapping between each iden-
tified category and each exercise is presented in Table 4. The number of students
who have reported the category for an exercise is presented in parenthesis. For
example according to Table 4, skill set development was mentioned by six stu-
dents for the exercise related to security smell detection. We describe each iden-
tified category related to positive perception below:

Positive Perception#1 - Lecture Reinforcement: The conducted exercises
provided students the opportunity to get a better understanding of what was
being taught in the class lectures. The exercises complemented the class lectures
by providing students clarity, as noticed by one student for the security smell
exercise “[it] was nice to actually use what we learned in class and reinforce the
material”. For the logging-related exercise one student stated “I got to actually
implement some of the concepts discussed in class which can be beneficial to
future work I will perform”. One student found the exercises to be a better
medium for learning the concepts taught as part of the lecture “I always learn
better from assignments that involve coding rather reading/studying the subject”.

Positive Perception#2 - Practicality: All exercises were perceived as prac-
tical by the students. For the exercise related to privacy violation one stu-
dent stated “practical knowledge of identifying personally identifiable informa-
tion (PII) in Android project source code”. For the exercise related to security
requirements validation one student stated “I had been introduced to TDD before
theoretically, and the process did not really make sense to me. With this [exer-
cise] and actually going through the process with a practical, hands-on example

Exercises in a Secure Software Development Course 529

Table 4. Positive perceptions and corresponding exercises.

Exercise topic Reported positive perception

Git hooks for automated
security static analysis

Skill set development (8), Practicality (7)

Logging location Skill Set Development (4), Lecture
reinforcement (4), Program comprehension (1),
Practicality (4)

Privacy violations in
software projects

Skill set development (7), Practicality (4)

Security requirements
validation

Skill set development (4), Practicality (3)

Security smells Skill set development (6), Lecture
reinforcement (3), Practicality (5), Sense of
accomplishment (1)

Security static analysis for
adversarial machine
learning

Practicality (4)

Taint analysis Skill Set Development (5), Program
comprehension (3), Practicality (2), Self
evaluation (1)

White-box fuzzing Skill set development (6), Lecture
reinforcement (2), Practicality (7), Sense of
accomplishment (2), Self evaluation (1)

was very helpful in understanding how it works and the usefulness of the practice;
practical knowledge gain”.

Positive Perception#3 - Program Comprehension: For exercises related
to logging location, security smell detection, and taint analysis, students were
required to inspect source code. As part of the assignment students navigated
source code files written in Python and SaltStack, which helped them to better
navigate source code. The exercises helped students to get better at program
comprehension. For example, in the case of taint analysis one student stated
“The exercise of manually going through the code to track the tainted paths was
a valuable and helpful exercise”.

Positive Perception#4 - Self Evaluation: Students mentioned how the
exercises helped them to self-evaluate their programming skills. The exercise
related to taint analysis required programming using the ‘ast’ library8, which
helped students to assess what they knew. One student stated that the exercises
are helpful because: “they are highly applicable and from my personal point of
view they exposing my shortcomings in programming”.

8 https://docs.python.org/3/library/ast.html.

https://docs.python.org/3/library/ast.html

530 A. Rahman et al.

Positive Perception#5 - Sense of Accomplishment: The exercises helped
students to gain a sense of accomplishment. For the white-box fuzzing exercise
one student was able to find a bug in the Ansible compiler, which the student
perceived as an accomplishment: “Being able to use fuzzing to test a production
application and being able to cause a crash in that application”.

Positive Perception#6 - Skill Set Development: For multiple exercises
the students mentioned that the assigned exercises help them to learn new tools
and techniques needed in software engineering. For the security smell exercise
one student stated exercises of this nature “is highly appreciated as it helps to get
a diverse skill set”. Completion of the fuzzing-related exercise required students
to learn on how to parse YAML files, which one student perceived positively and
stated “it was cool to use pyyaml, I haven’t done that before”. About the exercise
that involved security requirement validation a student stated: “I’ve never used
the python unit test module, and I believe this [exercise] gave me exposure and a
hands on experience on performing/creating unit tests in Python”. The idea of
using Git hooks for secure software development came as a pleasant surprise for
one student “Very cool to learn about git hooks and realize how useful it could be
for software projects. I was not aware that git provided this feature prior”.

6 RQ4: Negative Perceptions of Exercises

In this section, we provide the methodology and results for RQ4: What are
the negative perceptions of exercises conducted as part of the ‘Secure
Software Development’ course?

6.1 Methodology to Answer RQ4

We use the answers provided by the students for Survey Q2 (‘What are the
negative aspects of the exercise?’) included in our survey to answer RQ4. We
apply open coding [17] to determine categories that express negative perceptions
of students for each exercise. Our process of applying open coding was similar to
that of RQ1 and RQ3. We also conduct rater verification, where the last author
provided a mapping for the obtained responses to the identified categories related
to negative perceptions of students. The agreement rate between the first and
last author for the obtained responses is 83% with a Cohen’s Kappa [6] of 0.62.

6.2 Answer to RQ4

We identify three categories of negative perceptions expressed by students for
exercises. A complete mapping between the identified categories and the appli-
cable exercise is provided in Table 5. In Table 5, the ‘Reported Negative Percep-
tion’ column states the negative perception category names and the count of
students who stated the category enclosed within parenthesis. ‘None’ indicates
that no negative perceptions were reported by students for a certain exercise.
We describe each of the categories below:

Exercises in a Secure Software Development Course 531

Negative Perception#1 - Artifact Management: All artifacts i.e., datasets
and scripts for each exercise was shared using a Docker image. The Docker
image was available using the instructor’s DockerHub account, which included
all necessary dependencies to run certain programs needed to complete each
exercise. While downloading the Docker images one student commented: “seems
unnecessary to download a docker image of some 800+ MB to work on a small
python file”. Transfer of files back and forth between the Docker image and the
development environment also created negative experience for one student: “dev
environment is in Windows ... Docker is in a virtual machine ... passing files
back and forth is tedious”.

Negative Perception#2 - Lack of Background: Despite detailed written
instructions, we observe students to express a lack of background for each of
the eight exercises. For example, while identifying and detecting security smells
in SaltStack scripts one student found comprehension of SaltStack scripts to be
difficult: “I think SaltStack scripts are hard to look through especially if your not
familiar ... I spent a lot of time trying to look up and research how to get the
scripts to parse”. For the logging-related exercise, one student was not famil-
iar with machine learning, and stated “I cannot really think of any negatives
other than my limited experience with machine learning and zero experience
with the Keras library. I struggled to know exactly what the code was doing in
the doDeepLearning function.”. Even though the instructions on how to use
the Docker image were given for each exercise, the students faced challenges:
“I didn’t know that ‘exiting’ from the shell will destroy the running image, and
when I rerun the Docker image all my work was gone”.

Negative Perception#3 - Limiting Documentation: Students expressed
negative perceptions while following the instructions provided in the documen-
tation of software libraries. For the taint analysis exercise one student found
the documentation of the Python-based ‘ast’ library: “Need to use the python
library AST, which is difficult to understand from the documentation”. Such
views were expressed by multiple students for the Python-based ‘javalang’ library
that was needed to complete the exercise related to privacy: “Struggled to find
good resources for the javalang library beyond the basic examples and just ran
out of time to try to get it to work”. Another student stated “Couldn’t find good
documentation for javalang. Figuring out how to use the package was mostly
trial and error with the dir() function and interactive python console to learn
how to get the needed information”.

532 A. Rahman et al.

Table 5. Negative perceptions and corresponding exercises.

Exercise topic Reported negative perception

Git hooks for automated security
static analysis

None

Logging location Lack of background (2), Artifact
management (1)

Privacy violations in software
projects

Limiting documentation (4)

Security requirements validation None

Security smells Lack of background (2), Artifact
management (1)

Security static analysis for
adversarial machine learning

Artifact management (1)

Taint analysis Limiting documentation (2), Artifact
management (1)

White-box fuzzing Artifact management (3)

7 Discussion

We discuss the lessons that we learned from our findings as follows:

Students Prefer Real-world Exercises: We observe students to positively
perceive exercises that involve code snippets collected from real-world open
source projects and usage of real-world tools that are well-known in industry.
Based on our findings, we advocate cybersecurity educators to design exercises
and exams using real-world projects for a secure software development course.

The Good and the Bad of Exercise Diversity: Topic-wise exercises in
the ‘Secure Software Development’ course are diverse, which involved a diverse
set of technologies, such as SaltStack, Ansible, Python-based TDD, Android
applications, Git hooks, and machine learning code developed in Python. On one
side we have observed positive aspects of such diversity, for example, students
being exposed to a diverse set of tools and techniques that enhance their skill
set. On the other hand, students face challenges as they do not have necessary
background. Based on our experience, we urge educators to be aware of the
possible and negative aspects for introducing a diverse set of exercises, and find
a balance that is adequate for a secure software development course.

Documentation and Tool Challenges: For multiple exercises students men-
tioned existing documentation to be limiting. For example, while completing
the exercise related to taint analysis the documentation for ‘ast’ was hard to
comprehend. Similarly, for the privacy violation exercise, students found the
‘javalang’ documentation to be hard to follow. Our findings show that students
face documentation-related challenges while completing exercises. We urge soft-
ware engineering researchers to systematically investigate the pervasiveness of

Exercises in a Secure Software Development Course 533

the reported documentation-related challenges and identify techniques to miti-
gate such challenges.

From our reported findings in Sect. 6.2, we observe that use of Docker image
may be inappropriate for exercises as it incurs overhead with respect to com-
putation time and storage. We urge CS education researchers to synthesize the
best practices on sharing artifacts for students, which will ensure that necessary
dependencies of a software artifact is installed with limited overhead.

The Curious Case of Taint Analysis: From Table 3, we observe majority of
the students to not complete the exercise related to taint analysis. Even though
the students expressed positive perceptions about the exercise itself, we observe
a disconnect between their perceptions and their ability to complete the exercise.
One possible explanation can be attributed to the documentation of ast, which
students found lacking. Another possible explanation is that students were not
previously exposed to compiler-related courses, which hindered the students to
conduct the exercise. Till date, TnTU does not offer compiler-related course,
which could have exposed students to concepts, such as parse trees and abstract
syntax trees. The instructor used one class lecture to expose students to concepts,
such as parse trees, liveness of variables, and recursion, but that may not have
been sufficient to mitigate the deficiency of the students. The lesson learned from
conducting the taint analysis exercise is that (i) not all graduate students may
not be proficient in parse tree mining and/or recursion, and (ii) before assigning
taint analysis exercises instructors should dedicate multiple lectures on program
analysis and recursion.

Limitations of the Paper: Our derived categories related to perceptions are
susceptible to rater bias, as they were derived by the first author. We mitigate
this limitation by assigning another rater who mapped student response to the
identified categories. We also acknowledge the identified findings are limited to
the sample size: our findings may not be generalizable to other courses related to
secure software development that are conducted at other universities. Further-
more, our findings are derived from a course that was conducted once.

8 Related Work

Our paper is closely related with prior publications related to cybersecurity edu-
cation. Beach [3] surveyed 129 education institutions that offer cybersecurity
programs and reported 62% of the surveyed institutions do not consider human
factors while developing their cybersecurity curriculum. Wood and Raj [20]
described how key-logger exercises can be integrated into cybersecurity education
curriculum. Lukowiak et al. [11] reported that presenting the course materials
in an incremental manner helped students to reinforce the content provided in
class lectures. Veneruso et al. [19] described their experience of using ‘CyberVR’,
a game that uses visual reality, to teach cybersecurity concepts to students.
Mountrouidou et al. [12] described their experience in integrating cybersecu-
rity concepts into the general curriculum of a liberal arts degree and reported

534 A. Rahman et al.

that if cybersecurity modules are flexible, then they can be incorporated into
a general education curriculum. Olano et al. [14] reported their experience of
introducing ‘SecurityEmpire’ in an undergraduate course to teach cybersecu-
rity concepts to students. They [14] reported SecurityEmpire to help increase
awareness and engagement about cybersecurity amongst students. Veneruso et
al. [19] reported CyberVR to be equally effective, but more engaging in teaching
cybersecurity-related concepts, compared to that of textbook-based methods.
Theisen et al. [18] documented their experience of conducting a massively online
open course (MOOC) related to secure software development, and observed on-
campus students to have higher quiz scores than that of MOOC students.

The above-mentioned description shows the prevalence of experience reports
related to a wide range of cybersecurity education concepts, such as hardware
device, gaming, MOOCs, virtual reality, and industrial control systems. However,
we observe a lack of research that discusses the experience of conducting a course
related to secure software development, which we address in this paper.

9 Conclusion

We have reported our experience in conducting a secure software development
course for the first time at TnTU. We document multiple types of perceptions
that express students’ positive attitude towards the assigned exercises, such as
self evaluation, skill set development, and practicality. Students reported three
categories of negative perceptions too, namely, lack of background, limiting docu-
mentation, and artifact management. Based on our findings, we recommend edu-
cators to integrate real-world exercises into a secure software development course
with careful consideration of tool documentation, balance in exercise diversity,
and student background.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2016)

2. Anonymous: Materials for the Secure Software Development Course, December
2020. https://figshare.com/s/f40c6df28ab2a2b55165

3. Beach, S.K.: Usable cybersecurity: human factors in cybersecurity education cur-
ricula. Nat. Cybersecur. Inst. J. 1(1), 5–15 (2014)

4. Bures, T., et al.: Software engineering for smart cyber-physical systems: challenges
and promising solutions. ACM SIGSOFT Softw. Eng. Notes 42(2), 19–24 (2017)

5. Chuvakin, A., Peterson, G.: How to do application logging right. IEEE Secur. Priv.
8(4), 82–85 (2010). https://doi.org/10.1109/MSP.2010.127

6. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur.
20(1), 37–46 (1960). https://doi.org/10.1177/001316446002000104

7. Firesmith, D., et al.: Engineering security requirements. J. Object Technol. 2(1),
53–68 (2003)

https://figshare.com/s/f40c6df28ab2a2b55165
https://doi.org/10.1109/MSP.2010.127
https://doi.org/10.1177/001316446002000104

Exercises in a Secure Software Development Course 535

8. Gupta, M.K., Govil, M.C., Singh, G.: Static analysis approaches to detect SQL
injection and cross site scripting vulnerabilities in web applications: a survey.
In: International Conference on Recent Advances and Innovations in Engineering
(ICRAIE-2014), pp. 1–5 (2014). https://doi.org/10.1109/ICRAIE.2014.6909173

9. King, J., Pandita, R., Williams, L.: Enabling forensics by proposing heuristics
to identify mandatory log events. In: Proceedings of the 2015 Symposium and
Bootcamp on the Science of Security, HotSoS 2015, Association for Computing
Machinery, New York (2015). https://doi.org/10.1145/2746194.2746200

10. Kumar, R.S.S., et al.: Adversarial machine learning-industry perspectives. arXiv
preprint arXiv:2002.05646 (2020)

11. Lukowiak, M., Radziszowski, S., Vallino, J., Wood, C.: Cybersecurity education:
bridging the gap between hardware and software domains. ACM Trans. Comput.
Educ. 14(1), 1–20 (2014). https://doi.org/10.1145/2538029

12. Mountrouidou, X., Li, X., Burke, Q.: Cybersecurity in liberal arts general educa-
tion curriculum. In: Proceedings of the 23rd Annual ACM Conference on Innova-
tion and Technology in Computer Science Education, ITiCSE 2018, pp. 182–187.
Association for Computing Machinery, New York (2018). https://doi.org/10.1145/
3197091.3197110

13. NIETP: NIETP About CAE Program (2020). https://www.iad.gov/nietp/
CAERequirements.cfm. Accessed 18 Dec 2020

14. Olano, M., et al.: SecurityEmpire: development and evaluation of a digital
game to promote cybersecurity education. In: 2014 USENIX Summit on Gam-
ing, Games, and Gamification in Security Education (3GSE 14). USENIX Asso-
ciation, San Diego, August 2014. https://www.usenix.org/conference/3gse14/
summit-program/presentation/olano

15. Onik, M.M.H., Kim, C.S., Lee, N.Y., Yang, J.: Personal information classification
on aggregated android application’s permissions. Appl. Sci. 9(19), 3997 (2019)

16. Rahman, A., Rahman, M.R., Parnin, C., Williams, L.: Security smells in ansible
and chef scripts: a replication study. ACM Trans. Softw. Eng. Methodol. 30(1),
1–31 (2021). https://doi.org/10.1145/3408897

17. Saldana, J.: The Coding Manual for Qualitative Researchers. Sage (2015)
18. Theisen, C., Williams, L., Oliver, K., Murphy-Hill, E.: Software security educa-

tion at scale. In: Proceedings of the 38th International Conference on Software
Engineering Companion, pp. 346–355 (2016)

19. Veneruso, S.V., Ferro, L.S., Marrella, A., Mecella, M., Catarci, T.: CyberVR: an
interactive learning experience in virtual reality for cybersecurity related issues. In:
Proceedings of the International Conference on Advanced Visual Interfaces, AVI
2020, Association for Computing Machinery, New York (2020). https://doi.org/10.
1145/3399715.3399860

20. Wood, C., Raj, R.: Keyloggers in cybersecurity education. In: Security and Man-
agement, pp. 293–299. Citeseer (2010)

https://doi.org/10.1109/ICRAIE.2014.6909173
https://doi.org/10.1145/2746194.2746200
http://arxiv.org/abs/2002.05646
https://doi.org/10.1145/2538029
https://doi.org/10.1145/3197091.3197110
https://doi.org/10.1145/3197091.3197110
https://www.iad.gov/nietp/CAERequirements.cfm
https://www.iad.gov/nietp/CAERequirements.cfm
https://www.usenix.org/conference/3gse14/summit-program/presentation/olano
https://www.usenix.org/conference/3gse14/summit-program/presentation/olano
https://doi.org/10.1145/3408897
https://doi.org/10.1145/3399715.3399860
https://doi.org/10.1145/3399715.3399860

A Software Quality Course: The Breadth
Approach

Luigia Petre(B)

Åbo Akademi University, Turku, Finland
lpetre@abo.fi

Abstract. We present a Software Quality course taught in a MSc
program in Computer Science and Engineering. The course takes an
overview (‘breadth’) approach, reviewing the most important topics that
contribute to the quality of software. The course has been taught tradi-
tionally as well as online; we discuss the advantages and disadvantages of
both styles and point out what should be kept from the online experience.
We also discuss the students’ evaluation and feedback.

Keywords: Software quality · Requirements · Formal methods ·
Software architectures · Software metrics · Online teaching · Learning
journals · Polls

1 Introduction

The hiring policies in software industry differ substantially from other domains.
A person who has not graduated the heavy medical education programs will
never be hired as a doctor in a respectable hospital, nor would anyone hire
lawyers who have not passed their bar exam. A software company does not
follow the same protocol. The candidates to hire are certainly scrutinised by
their prospective future companies, maybe subjected to coding interviews and/or
other methods, but a diploma is not necessarily a requirement [8] for working
as a software engineer. Persons deemed intelligent and malleable enough can be
hired by a company, who then trains them in developing specific skills in demand.
This practice has an immediate consequence: many students drop from their
university programs once they find suitable employment, with their education
only partially completed. Given the ubiquity of software in our society, this
situation is rather alarming: are these software engineers able to ensure the
quality of the software running our lives?

Even more worrisome, the existing university curricula do not offer much in
terms of software quality education. While students are offered a rather wide
selection of programming languages and paradigms to choose from, the qual-
ity of their code is not much emphasised. Some curricula can have courses on
algorithmic complexity, requirements, or software architecture, but they are not
as common as the programming courses. Formal methods courses are often left

c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 536–552, 2021.
https://doi.org/10.1007/978-3-030-85347-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_38&domain=pdf
http://orcid.org/0000-0002-0648-3301
https://doi.org/10.1007/978-3-030-85347-1_38

A Software Quality Course: The Breadth Approach 537

out completely, as are the software metrics courses. In this context, even the
students who do graduate their respective programs, are not well prepared to
analyse how ‘good’ certain software is or how to build software of good quality.

In this paper we present a course entitled ‘Software Quality’, taught in a
MSc program in Computer Science and Engineering. After taking this course,
the students should be able to:

– Identify and experiment with four pillars of quality software: requirements,
analysis (formal methods), software architecture, and software met-
rics

– Devise a requirements document
– Perform basic software analysis with formal methods
– Distinguish several software architectures with their advantages and

disadvantages for quality
– Recognize and evaluate different software metrics
– Enumerate and apply different quality management techniques

While this is surely not the first time a course on Software Quality was
taught, the novelty of our approach consists in recognising the complex nature of
software quality and, hence, investigating a wide array of topics that contribute
to it. For instance, formal methods are not typically considered an essential
topic for software quality, unless formal methods researchers are involved. Still,
formal methods are the only way to capture software ‘blueprints’ and to provide
qualitative assessment of various software properties. It is also important to
recognise that formal methods do not (cannot) tell the whole story of software
quality, one reason being scalability.

We argue that, for students completing their software engineering education,
a course like this one is beneficial, as it offers the big picture of what good soft-
ware is about. Depending on the topic they will specialise and be employed in,
they can later focus on certain aspects, be that requirements, formal analysis,
software architecture and/or software metrics. Moreover, for students not com-
pleting their software engineering degrees, working with a skilled software quality
manager may be instrumental. These no-degree employees are the stereotypical
intelligent programmers, more than able to assimilate and eventually master
needed topics. Knowledgeable software quality managers can pinpoint exactly
the techniques needed in their particular jobs, be that requirements elicitation,
feature verification, unit testing, documentation readability, etc.

In addition to the content, we also explain the teaching methods we used in
the course. They essentially boil down to the Roman ‘repetitio mater studiorum’
proverb, meaning that repetition is the mother of learning. We use various tech-
niques for this, such as weekly learning journals and regular polls and quizzes
to enforce repetition. The feedback from students has been positive; apparently
they are engaged by these methods rather that overwhelmed.

The online teaching aspect is also discussed. We compare the results of teach-
ing this course traditionally vs online and point out what we believe should be
kept from the online experience.

538 L. Petre

We proceed as follows. In Sect. 2, we present the main tenets of the course
and we overview its structure. Section 3 reviews the teaching of the four pil-
lars: requirements, formal methods, software architectures and software met-
rics, respectively. Section 4 explains the quality management topic. In Sect. 5 we
explore the evaluation of students throughout the course and in Sect. 6 their
feedback. Conclusions are presented in Sect. 7.

2 Basic Concepts and the Particulars of the Course

As with many concepts related to software, terminology can be vague and mean
many things. The notion of Software Quality is no exception. Expectations of a
‘good’ software may include code ‘cleverly’ built - whatever that might mean,
fast software, or a good user interface, to name a few. This is the starting point
for the course, exploring the terms of software, quality, and software quality for
a whole 1.5-h lecture.

Software. We begin with the idea that software is eating the world [2]. Soft-
ware is a wonderful human development, which has increased our quality of life
tremendously. It has revolutionised entire industries, with businesses replaced
almost completely by software, such as in music and photography, to businesses
where their products’ value comes increasingly more from software, such as in
the car manufacturing. It has created an immense work space and continues
to be employed in aiding or solving a huge array of problems, leading to its
increased complexity: it is harder to pinpoint exactly all it does. This leads to
the concept of software crisis, where methods for developing small software sys-
tems kept being applied for their large counterparts, leading to famous software
failures. For avoiding the latter, we need to better understand the definition and
nature of software, which we do by investigating a classical reference [5].

Quality. To grasp what is meant by quality, in general, we delve into a bit of
history, recognising notable personalities with an influence on quality, such as
Frederick Winslow Taylor (1910s), Henry Ford (1863–1947), Walter Shewhart
(1920s), and W. Edwards Deming (1950s). Often, we only present the technical
aspect of our topics (to save time), but explanations about the people who led to
particular developments (and why) are motivating the students. We distinguish
between quality assurance and quality control, explaining that quality assurance
allows a shift to the ‘left’: we take care of this earlier in the product lifecycle.

Software Quality. With an adequate understanding of the concepts of software
and quality, we move on to explore what is usually understood by the concept
of software quality. Based on a classical source [5], we first underline the four
main software characteristics contributing to the challenge of ensuring its qual-
ity: complexity, conformity to other interfaces, changeability, and invisibility.
We then emphasize four partial solutions to software quality, namely the ‘buy

A Software Quality Course: The Breadth Approach 539

vs build’ solution, the refinement of requirements and rapid prototyping, the
incremental development, and the contribution of great designers. We analyse
these in some detail and emphasize how they keep being valid more than three
decades after they were suggested.

We then move on to more concrete terms and topics we will explore in some
detail during the course. We first distinguish between functional (what the sys-
tem should do) and structural quality (how the system should do it). The con-
cepts of fault, error and failure are also defined and placed in the context of
quality assurance vs control. We point to some bodies whose mission is, in a
form or another, software quality and explain their main role in quality manage-
ment, hence their treatment in that module of the course. We end this part by
explaining the four pillars of the course, namely Requirements Engineering, For-
mal Methods, Software Architectures, and Software Metrics. We also show how
they correspond to the classical principles proposed by Turing award recipient
Fred Brooks [5].

It always seems to be a surprise to the students to learn that a software
of good quality is the one implementing its requirements (functional and struc-
tural), nothing more and nothing less.

2.1 Structure and Teaching Methods

This course has been taught several times, always in an 8-week period, both typ-
ically, in a classroom, as well as online. The components of the course are: (1)
Lectures (with polls), (2) Learning Journals (mandatory), (3) Quizzes, (4) Dis-
cussion Seminars, and (5) Exam (mandatory). The components are distributed
as follows during the 8 weeks:

– Lect. 1 (week 1) → The concepts of software, quality, and software quality
– Lect. 2 (week 1) → Requirements - types and elicitation
– Lect. 3 (week 2) → Requirements - specification, validation, evolution
– Discussion seminar 1 (week 2) → we exercise requirements
– Lect. 4 (week 3) → Models and TLA+: the case of Amazon Web Services
– Lect. 5 (week 3) → The case of the French metro and modelling in Event-B
– Lect. 6 (week 4) → Program verification, the case of Dafny
– Discussion seminar 2 (week 4) → we discuss examples of specifications in

TLA+, Event-B and Dafny
– Lect. 7 (week 5) → Model checking, SAT and SMT solvers run our provers
– Lect. 8 (week 5) → Software Architecture is key
– Lect. 9 (week 6) → More software architecture fundamentals for quality and

how could measurement and metrics for software help us
– Discussion seminar 3 (week 6) → we discuss logical properties, we ponder

about some architecture questions and reflect on testing, bugs and correctness
– Lect. 10 (week 7) → Software metrics for internal product attributes (mostly

size)
– Lect. 11 (week 7) → Software metrics for internal and external product

attributes (structure, usability, maintainability, security)

540 L. Petre

– Lect. 12 (week 8) → Quality Management - planning, standards, ISO 9001,
reviews and inspections

– Invited lecture (week 8) → Quality in Space Software

The optional components of the course are the lectures, the quizzes, and the
discussion seminars. There are typically 12 regular lectures and one invited lec-
ture at the end of the course, to exemplify how software quality is ensured in
space software. There are three discussion seminars, where we typically explore
the concepts of the previous lectures in more depth. During every lecture,
the teacher poses several online and anonymous polls checking whether some
explained concepts have been well understood. Each poll consists in 1–2 multi-
choice questions relating to a concept or methodology just explained by the
teacher. After the students reply online (they are given a minute usually), the
teacher displays the proportion of answers on each option and discusses what is
the correct answer. Since not all the students can (nor have they to) participate
in the lectures, these polls are then posted as quizzes to be - optionally - taken
at any time during the course. Each taken quiz is worth max one point (out of
100 for maximum grade of the course).

The only mandatory components of the course are the learning journals and
the exam. Every week, the student has to fill in a learning journal entry, of half
a page to one page (or longer if desired). In each entry, they should explain what
are the main concepts they learned during that week, give some definitions and
examples, and discuss the topics in any way they see fit. They are encouraged
to also ask questions, to point out what topics were new to them or were seen
before, as well as what they enjoyed and what they did not. The teacher then
reads each entry and replies to questions, comments on the entry and awards
maximum 2.5 points per lecture. In a week with two lectures, this means the
learning journal can earn maximum 5 points, and in a week with one lecture and
one discussion seminar - maximum 2.5 points. Hence, the learning journals can
bring up to 30% of the grade. The remaining 70% is to be obtained from the
exam, which reviews the concepts learned during the course.

As seen, the maximum grade can be obtained only from the mandatory
components (learning journals and exam), but additional points can be obtained
from quizzes (max 12 points in total).

3 Content of the Course

The four main pillars of the software quality that we explore in the course are
requirements, formal methods, software architecture, and software metrics. In
the following we shortly overview our approach in teaching them.

3.1 Requirements

Getting the requirements wrong, even partially, is the single most devastating
reason for software problems, be them only faults or errors, or full blown failures.

A Software Quality Course: The Breadth Approach 541

Although many universities (including ours) have at least one course dedi-
cated to (functional) requirements, we dedicate two lectures to requirements in
this course and emphasize their role in software quality. There were some stu-
dents (up to 10%) who remarked that they knew all about this topic, but the
vast majority appreciated the overview, especially in light of the ‘surprising’ def-
inition of software quality - implementation of requirements. Below we discuss
the topics we cover with respect to requirements.

Requirements Definition and Types. Given the vast diversity of software,
understanding what a requirement is, who formulates it and how is of high
relevance. There are several ways of classifying requirements, the most impor-
tant of which are descriptive vs prescriptive, user vs system, and functional
vs non-functional. We discuss these in some details, with the help of exam-
ples. Understanding the levels of abstraction implicit to classes of stakeholders,
the immutability of some requirements, or the necessary measurability of non-
functional requirements are topics that contribute to the quality of software we
develop.

Requirements Engineering. Getting the requirements into a requirements
document is referred to as requirement engineering. This is an iterative process,
well described in standard software engineering books [12]. We investigate the
following topics:

– Requirements Elicitation. We start with the extreme approaches of busi-
ness geniuses such as Steve Jobs’ opinion that customers do not know what
they want or Henry Ford’s observation that, if queried, customers would have
desired faster horses (not cars). Obtaining the requirements from customers
is a complex process, involving often contradictory, incomplete or changing
requirements. Several methods of elicitation are analysed, such as interviews,
ethnography and stories.

– Requirements Specification. There are several alternatives to formulating
requirements, in natural language, in some structured or tabular forms, or as
use cases. We review all these with examples, and then ponder on the sections
of the requirements document and its users.

– Requirements Feasibility and Validation. Not all systems can or should
be built; in feasibility studies we focus on asking the right questions to deter-
mine if it is worth to develop a software. Once we determine it is, validating
the requirements with the stakeholders is very useful.

– Requirements Change. Software is infinitely malleable, as debated in the
initial lecture, hence changing it and its requirements is to be accounted for.
Traceability is one essential aspect that, if not handled properly, can threaten
software quality. For that, we explore traceability methods especially.

3.2 Formal Methods

A formal method allows to analyse a model of the software or even the software
itself, to verify it respects certain properties.

542 L. Petre

Why Formal Methods. Formal Methods are not a mainstream teaching
subject in today’s universities. Their promoters are the researchers and, more
recently, some industrial giants: Amazon [6,9], Facebook [10], and Google [11].

Software is embedded almost in all aspects of the society, so it is necessary
to be able to guarantee what it does before deploying it. This is particularly
essential in critical software, such as air transportation, army, nuclear plants,
medicine, etc. Mass software construction does not rely on formal methods, but
on simulation and testing. While these techniques have their uses, we argue for
them being insufficient: clear analysis of models is needed, and we discuss models
to understand their role in formal methods.

When Formal Methods. The software lifecyle with respect to quality is
four-stepped: (1) we collect the relevant (user and system, functional and non-
functional) requirements, (2) we draw the software architecture of the system,
(3) we apply formal methods to the modules identified via software architecture,
and (4) we evaluate our results with software metrics. The effective implemen-
tation of the software takes place during steps (2)–(3).

In this course we treat formal methods before software architectures, because
they address the analysis of functional requirements; software architecture deals
with analysing the non-functional requirements. In addition, formal methods
require a special mindset that is likelier to be present in the first half of the
course.

Three Formal Methods. We assume we have a correct set of requirements:
how do we transform them into software and how do we guarantee that all
the requirements and nothing more is implemented? We explore this with three
formal methods: TLA+, Event-B, and Dafny.

– TLA+ TLA+ is reviewed with two case studies: its adoption at Amazon [9]
and by following its inventor, Turing award laureate Leslie Lamport, teaching
the modeling and verification of a famous logical problem: the water jug
riddle. This was part of the quest in the Bruce Willis and Samuel Jackson
movie Die Hard 3. At some point, the heroes need precisely 4 gallons of water
and they have two jugs, a 3-gallon one and a 5-gallon one, that they can
fill with water from a tap. Model checking is employed to verify properties,
i.e., all states of the modeled system are explored for these properties. In
particular, model checking is used to verify that there is no possible sequence
of actions that can end up with the bigger jug having exactly 4 gallons of
water; the TLA+ model checker returns a counterexample, meaning it found
a particular sequence of actions that achieves that.

– Event-B Event-B is motivated by its active use at Siemens, to develop the
software on driverless trains [4]. Event-B comes with a tool for proving: we
first write the model and the tool verifies its correct syntax; nothing out of
ordinary so far. But then, we also formulate properties that we would like
our model (the future software) to respect: the tool verifies if these properties

A Software Quality Course: The Breadth Approach 543

hold for the model. Moreover, we can start from a simple model capturing
just the essence of the software, and then add details. The tool keeps checking
if the more complex version still respects the properties and if it is indeed a
correct development of the simpler model. This development strategy is called
refinement.

– Dafny Dafny is two languages into one: an imperative language, with an exe-
cutable core and a functional, specification language for annotations. Annota-
tions describe what a program should do, and Dafny generates proofs that the
annotations match the code; if it cannot, then it asks for proof hints, which
might be given or might suggest a problem t0 resolve. Amazon Web Services
(AWS) use Dafny and other formal tools [6] and claim that this is one of the
main reasons why people move to AWS: they want formal guarantees that
their data is stored correctly.

How Formal Methods Prove. An extra lecture delving into the proving tech-
niques in formal methods is necessary at this point. We investigate mainly model
checking and satisfiability (SAT and SMT) checkers. With this, the students are
shown the breadth of the topic of formal methods as well as the richness of its
aspects. It equips the students with knowledge that - given the scarcity of higher
education in this field - can offer them a big advantage compared to their peers.
The relatively brief excursion into formal methods (4 lectures) is not exhaustive
by far, but with it, the students know the main coordinates as well as where to
look for more.

3.3 Software Architectures

We now address non-functional requirements, after the treatment of function-
ality with formal methods. Non-functional requirements are a direct conse-
quence of the unavoidable complexity of software, hence the overall structure
of the software system becomes relevant. In software architecture, we refer to
non-functional requirements as software qualities and to design decisions for
achieving them as tactics.

– Software Qualities. We focus on availability, modifiability, performance and
security. Availability is concerned with failures, modifiability with changes,
performance with timing, while security combines availability (providing ser-
vices to legitimate users) with resisting unauthorised users.

– Tactics. For each quality, there are tactics that favour it and tactics that do
not. This is one of the cornerstones of understanding software architecture:
there are many ways to implement a certain functionality, some better for
certain goals. It is impossible to satisfy all possible qualities, hence defining
the most important ones for a system allows a trade-off with the various
stakeholders [3].

– Architectural styles. A collection of tactics forms a particular software
architecture. People have devised generic styles that promote or inhibit cer-
tain software qualities. We analyse several styles and focus on cloud architec-
tures, since the concepts are familiar to students; they have an easier time to

544 L. Petre

depict the main architectural issues of interest and then to generalise them
to other styles [12].

– Views and Documentation. Another aspect of complexity inherent to soft-
ware is that we can decompose a system based on various criteria: function-
ality, concurrency, physical allocation, etc. These are structures of a system
that can be viewed in different ways, for instance in certain templates or dia-
grams. This is important for building the system, but also for documenting
it.

3.4 Software Metrics

In this module we describe how we can measure the quality of software [7].

– Software measurement. We start by clarifying what we want to measure,
for instance the likelihood of product failure or delay, of losing key personnel,
of bankruptcy, etc. In general, the ideal is of getting a ‘big picture’ indicator of
software ‘goodness’ during development or maintenance. We clarify that there
are several entities we can measure, such as products, processes, or resources,
and for each we can have several attributes we are interested in, both internal
(say, size for code) or external (say, reliability for code). The problem in
software measurement is that we want to control external attributes such as
reliability of code (a product), productivity for personnel (a resource), or cost-
effectiveness for design (a process). However, we can only measure internal
attributes, for instance code, team or design size.

– Software size. Size is an interesting internal attribute that is used widely
to predict many other measures. We learn to express size in the number of
lines of code, differentiating between more and less important lines; Halstead’s
length, vocabulary and volume; the number of function points. We learn to
use size to normalize measures of other attributes, quantify the amount of
reuse, and measure attributes related to software testing.

– Software structure. Software structure manifests as structure of data (trail
of data items as created or handled by the program) and structure of control
(sequence in which instructions are executed in a program). This can indicate
issues impossible to see with the number of lines of code, for instance, the
iterative and looping nature of the program. Since there is a link between
structure and quality of software, we investigate structure in some detail.
Structure is usually detected by studying flowgraphs, so we quickly review
them. We discuss structured programming, prime decomposition, cyclomatic
complexity, and as an example, their applicability in testing. Flowgraphs illus-
trate the inner structure of software modules, but there are also attributes
for measuring the overall structure of a software system and its inter-module
relations. We study here modularity, morphology, tree impurity and internal
reuse.

– External attributes. We are interested in measuring the quality of software
code, especially its external attributes that depend on users. What we can
measure, however, are the internal attributes, that can well be predictors

A Software Quality Course: The Breadth Approach 545

of external attributes and that are available for measurement early in the
software lifecycle. In contrast, the external attributes depend on the user’s
interaction with the (ready) system, so much later in the software lifecycle.
We discuss in some detail the measuring of defects, usability, maintainability
and security.

4 Quality Management

Should software quality be the job of the software engineers, should some admin-
istrators take care of it, or both? We argue for the last option and explain what
it means to have both a software engineering and a software quality team [12].

Quality Processes and Culture. While small and large software projects
have different quality assurance processes, we can apply a quality process to
any software project. A specific quality management team (different from the
software engineering team) needs to ensure the realisation of such a process. The
expectation is that a ‘good’ process will lead to a ‘good’ software. The quality and
the project managers can agree on a particular quality assurance process, with a
certain number of milestones. The process can follow standards for quality that
are specific to the organisation and/or to the specific product being developed.
The quality manager should report to higher management, while the project
manager should have the freedom to ratify what quality procedures are relevant
to the current project.

Standards. Software standards are important for several reasons. They can be
a reservoir of best practices, used to avoid past mistakes; they can clarify the
organisation’s view on quality or even the user expectations; they can provide
for smooth adaptation and/or continuity for new employees, who understand
the organisation through the prism of its standards. The quality and project
managers can define both process and product standards. Both types should
avoid being over-prescriptive and requiring excessive clerical work. A method of
convincing software engineers on the worth of following standards is to include
them in the process of devising them. There are numerous international and
national standards as well, and certain companies require to work only with other
companies who have followed particular software standards (e.g., ISO 9001).
However, such standards typically confirm the presence of a particular process
that has been followed in creating certain products; the quality of said products
is a totally different issue.

Reviews and Inspections. The most typical type of quality ‘assurance’ in
companies is that of organising reviews and inspections. The reviews can ‘sign
off’ a certain product, to move into the next phase and should be organised
with several participants well in advance. Program inspections can be simpler,
such as peer reviews where the most common mistakes are checked, e.g., ‘have

546 L. Petre

all variables been initialised?’ or ‘is each loop certain to terminate?’ or ‘has
space been allocated correctly?’, etc. The existence of a quality culture in the
organisation is of utmost interest here, since blame pointing is really unhelpful
and can lead to people hiding and refusing to share their code.

5 Course Evaluation

As can be seen from the described course content, the topics are modular and we
delve into each of them only to some level of detail. Ideally, a university should
have more courses to offer on each of the topics (requirements, formal methods,
software architectures, software metrics, and quality management). In a software
quality course we can only have an overview (breadth-approach) of these topics
and study how they contribute to improving the software products.

Fig. 1. Some software quality slides

This breadth-approach required a certain approach to teaching, based on
repetition, to better cement the certainly new concepts. First off, the lectures
were made as interesting as possible, with each slide well-thought of in terms
of content and pictures. Some examples of slides are shown in Fig. 1. Then, to
interrupt the monotony of the teacher talking, we introduced several polls per
lecture. These polls are very easy to implement in Zoom, for instance, but can be
certainly kept when returning to traditional teaching. One thing we can safely
assume about our students is that they all have a mobile device with them, and
so they can type some tiny-url addresses that can take them to the anonymous
polls. DirectPoll [1] is one such resource. The results of their voting can be
then shown on the big screen. This feature is entertaining both for teachers and

A Software Quality Course: The Breadth Approach 547

Fig. 2. A poll

Fig. 3. A quiz question

students, makes the students more willing to focus on what is taught, knowing
there will be a check-up very soon, and contributes to the repetition of concepts,
as argued in Sect. 1. It is also very friendly: it is anonymous, the teacher explains
the correct choice immediately after, and can also discuss the probable reasons
some other options were chosen as well as why they were not correct. If some
students really do not have a mobile device with them, then the polls are available
as quizzes during the whole duration of the course; this also helps people who
do not take part in the lectures. An example of a poll is shown in Fig. 2 and its
quiz counterpart in Fig. 3.

The second way of implementing repetition to favour learning is by using
weekly learning journals. They are rather modern and many courses implement
them; the difference from the approaches in many other courses is that, in the
presented course, the teacher really reads all entries and provides feedback, even
if short. While a student listens to a lecture, certain questions and comments
arise, but they are maybe unexpressed due to a variety of reasons (shyness, not
wanting to interrupt the teacher, what will other people think if I ask this, etc.).
The learning journals are the place to ask everything; they offer regular slices
of personalised teaching, each learning journal entry being a private discussion
between the teacher and the student. It is in fact very enriching for both par-
ties. Comments like ‘more polls’, ‘less slides’, ‘go slower’, ‘can we study cloud
architectures too?’ are only some examples of feedback to the teaching style.
The most interesting and thought provoking questions and comments are those

548 L. Petre

Fig. 4. A learning journal entry

related to content, because the students understand the material in their own
unique way, influenced also by their background and sometimes work experience.
An example of a learning journal entry is shown in Fig. 4.

The third way of implementing repetition is by introducing three discussion
seminars, paced throughout the course, one after three lectures. There we discuss
ideally all that students would like to delve deeper into. In practice, students are
again shy and expect the teacher to come up with topics of discussion. We set up
little problems and exercises (sometimes posed a few days before the seminar)
to sparkle up the discussion. This works better in the traditional setting than
online, but overall, people like to be poked and prodded a little and asked to
explain their opinion.

All in all, these three methods (polls, learning journals and discussion semi-
nars) contribute to exercise all the topics we discuss about in the lectures. They
reinforce the concepts, clarify them, and keep the students engaged and inter-
ested. The most rewarding aspect is that the students appreciate the effort (for
instance to read and reply to the learning journals questions) and so it all seems
like a good idea worth continuing with.

6 Students’ Feedback

In our university, the students’ feedback is not mandatory nor recompensed,
hence we have rather low rates of participation, about 30%. With this is mind,
we explored the following questions for student feedback:

1. “I believe that the content of the course was, overall, according to its learning
objectives.” (4)

2. “The structure of the course helped me to achieve its learning objectives”
(4)

A Software Quality Course: The Breadth Approach 549

3. “The course materials helped me achieve its learning objectives.” (3.93)
4. “The teacher’s pedagogical skills supported my learning.” (3.73)
5. “I have actively participated in the course activities.” (3.47)
6. “I feel that the course supported my education and/or future work.” (3.8)
7. “I feel that the course has worked well in digital form.” (4)
8. “Free comments on questions 1–7 and the course in general. What worked

well and what less well?”
9. “The experience of writing a learning journal helped.” (4)

10. “Could you please explain in a few words how was your experience of learn-
ing the whole course online? Was it lonely? Was it better? Did you miss
anything?”

11. “Do you feel like you understand software quality better after this course?”

For questions 1.–7. and 9., students must choose between grades 1–4, 4 rep-
resenting ‘totally of the same opinion’ and 1 meaning ‘totally of the opposite
opinion’. The scores obtained are indicated in parentheses. The comments for
question 8. are below:

1. “Some lectures had a tad too much info, otherwise the format was good”.
2. “Great material and engaging polls during the lectures”.
3. “The course was quite interesting and thanks to the teacher, she never made

the course boring”.
4. “It was a very helpful course. The only thing which was quite hard for me is

size of lecture slides, in my opinion there were too many slides”.
5. “I feel good about the course content and the teaching method. Big thank to

the lecturer!”
6. “For a remote course all went really well in my opinion”
7. “There’s been only one issue with the course. I think it would have been

better if students were expected to gain a certain number of points from their
learning journal entries instead of having to submit all of them. Otherwise
the course was very informative and the streaming format worked very well.
I’m also glad that the teacher provided feedback to our learning journal”.

8. “Very thorough course. I learned several concepts during this course. I like
that it is in digital form”.

9. “The course is designed, structured and executed well”.

The answers to question 10. are below:

1. “Was better for me as i work besides school so was nice that the lectures
were recorded so I could watch them later”.

2. “It was well planned and went smoothly for me. In fact, online course is
better than the traditional one as learning at own pace and own comfort
zone is easier”.

3. “It was ok, no problems”.
4. “Face-to-face courses are always better in my opinion, but the teacher han-

dled the distance courses very well. Being able to watch again the lectures
is a big plus”.

550 L. Petre

5. “It was great, easier to focus”.
6. “I missed the face to face interaction with fellow students, but also the

teacher. I can’t speak to if the course was “better” when it was held online
this year. But I can say that the course lectures did not suffer because of it.
Maybe even better, because of the Zoom polls”.

7. “Specifically for this software quality, it was quite good, not lonely at all. I
like it”.

8. “It worked perfectly with my situation at the moment, online studies and
work are a perfect fit, almost”

9. “My online learning experience is good in general. Some major benefits: I
can arrange my time to watch the recorded lessons later. I can target the
interesting parts of the course. I can skip some parts that I already knew”.

10. “For me remote learning is preferred, since I have to actively work. I could
tackle immediate work tasks when needed (once during this course) without
losing time to move around the campus”.

11. “I actually prefer it to normal lectures, because I can always go back to
recorded videos. I can also watch materials whenever it fits my schedule. I
can manage my time more efficiently and so I learn better. Distant learning
has been a bit lonely, but I think it works well with courses that consist
mostly of lectures”.

12. “My experience of this course is very good. I was learning it in my own time
and I didn’t feel much pressure”.

13. “It was challenging to always try to keep focused when you are at home
with so many distractions”.

14. “I am used to the online mode of learning now, and it was designed engag-
ingly with the discussion seminars and quizzes”.

The replies to question 11. were different shades of ‘yes’; one answer stood
out: “Even if I have years of experience working as a programmer, the course
is still very helpful to connect and fulfil my understanding of software quality,
especially regarding the software quality practices from big companies”.

7 Conclusions

Given freedom in the job of teaching a course whose content is not totally stan-
dard, there is a big temptation to choose one’s favourite topic related to the
course name. In the present case, formal methods were briefly considered to form
the (only) body of the course, also given their relative under-representation in
Computer Science and Engineering curricula. But formal methods require a cer-
tain background and a certain openness in the local industry - not everyone lives
in Seattle to be hired by Amazon. More importantly, they do not tell the whole
story of Software Quality. Getting the requirements well is certainly the starting
point. The huge complexity of contemporary software makes formal methods
inapplicable on the whole system in all details, requiring software architecture
techniques to reach modules of functionality. Finally, we need a way to measure

A Software Quality Course: The Breadth Approach 551

what we produce; logical properties again do not tell the whole story and need
to be supplemented by measuring a variety of attributes (e.g., structure).

We taught this course in both settings - traditional and online. The tradi-
tional setting has the advantage of ‘reading’ the students much better. Compare
discussing our topics with and in front of our students and getting immediate
body language feedback on the quality of our discourses with looking at cameras
and talking in front of our laptops, with tens of black rectangles representing
the students, neither seen nor heard. The online setting has made it possible for
more students to take the course (51 compared to 19), since the barriers of being
in the classroom were eliminated. We recorded the lectures and saved the videos
in the Moodle page of the course; we (a digital assistant) even split each main
video of a lecture into several smaller videos addressing certain topics and saved
those too in the Moodle page. These are likely to remain useful regardless of the
teaching style. A hybrid style is in fact very probable, in which the traditional
teaching is resumed, but the lectures are still recorded for those who cannot
make it to class.

Finally, we found especially the learning journals and the polls to be
extremely useful for learning. They seemed to also be entertaining for both
teachers and students, and so learning becomes almost a game. These ideas can
certainly be re-purposed for other courses as well, especially those courses with
abstract and harder to grasp topics.

References

1. Direct poll. https://www.directpoll.com. Accessed 20 Apr 2021
2. Andreessen, M.: Why software is eating the world. Wall Street J. (2011). Accessed

9 Apr 2021
3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn.

Addison-Wesley, Boston (2013)
4. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application

of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48119-2 22

5. Brooks, F.P.: No silver bullet - essence and accident in software engineering. Com-
put. J. 20(4), 10–19 (1987). Accessed 9 Apr 2021

6. Cook, B.: Formal reasoning about the security of Amazon web services. In: Chock-
ler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 38–47. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 3

7. Fenton, N., Bieman, J.: Software Metrics: A Rigorous and Practical Approach, 3rd
edn. CRC Press, Boca Raton (2015)

8. Milord, J.: No degree? No problem. Here are the jobs at top companies you can
land without one. LinkedInNews, 8 April 2019. Accessed 20 Apr 2021

9. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon web services uses formal methods. CACM 58(4), 66–73 (2015)

10. O’Hearn, P.: Continuous reasoning: scaling the impact of formal methods. In: Logic
in Computer Science, pp. 13–25. ACM (2018)

https://www.directpoll.com
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/978-3-319-96145-3_3

552 L. Petre

11. Sadowski, C., van Gogh, J., Jaspan, C., Söderberg, E., Winter, C.: Tricorder: build-
ing a program analysis ecosystem. In: International Conference on Software Engi-
neering, pp. 598–608. IEEE (2015)

12. Sommerville, I.: Software Engineering, 10th edn. Pearson Education, London
(2016). Accessed 20 Apr 2021

Students Projects’ Source Code Changes
Impact on Software Quality Through

Static Analysis

Sivana Hamer(B), Christian Quesada-López, and Marcelo Jenkins

University of Costa Rica, San José, Costa Rica
{sivana.hamer,cristian.quesadalopez,marcelo.jenkins}@ucr.ac.cr

Abstract. Monitoring and examining source code and quality metrics is
an essential task in software development projects. Still, it is challenging
to evaluate for educational projects due to the time and effort required
by instructors, and constant change during the software project evolu-
tion. In this paper, we used an automated approach to analyze source
code and quality metrics’ evolution and impact in software engineer-
ing projects using static code analysis on each software change (com-
mits and merges). We examined five undergraduate software engineering
projects’ changed modules, compilability, and source code and quality
metrics (size, complexity, duplication, maintainability, and security). In
total, we assessed 12,103 changes from 103 students contributing to the
projects. Our approach allowed us to identify students’ project trends in
the impact of the source code changes, providing insights into behaviors
such as technology knowledge deficiencies, issues in continuous integra-
tion practices, and software quality degradation. We believe that the
early, constant feedback on student software engineering project qual-
ity can help instructors improve their courses and students enhance
their development practices. Tracking of source code evolution could be
done via static analysis and instructors could use the analysis results for
teaching.

Keywords: Change analysis · Quality metrics · Project based
learning · Software engineering education · Mining software repositories

1 Introduction

Software development emphasizes the importance of delivering functionality, but
it is also vital to focus on software quality [1]. Quality is essential for the reliabil-
ity and effectiveness of the software products [2]. Software engineering education
requires more attention in improving quality skills, among others, as there is a
gap for early career software engineering graduates between what they know and
what the industry requires [3]. This gap has lead to a paradigm shift in education
towards project-based learning to help students acquire skills needed in their pro-
fessional careers [4]. Still, there are several challenges in assessing students’ skills
c© Springer Nature Switzerland AG 2021
A. C. R. Paiva et al. (Eds.): QUATIC 2021, CCIS 1439, pp. 553–564, 2021.
https://doi.org/10.1007/978-3-030-85347-1_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85347-1_39&domain=pdf
https://doi.org/10.1007/978-3-030-85347-1_39

554 S. Hamer et al.

as it evolves, consumes considerable time and effort, lacks objective and widely
accepted metrics, and requires timely feedback [5,6]. Therefore, instructors and
students require early, constant, and real-time feedback in software engineering
projects with tools that automatically extract software metrics.

To gather insights into the evolution of quality in student projects, measure-
ments can be used to assess the status of projects and products [7]. Specifically,
source code metrics allow us to gain insights into software attributes measured,
including code quality measurements [8]. Recent approaches have focused on not
only analyzing the quality of different software versions and their evolution, but
also the impact of each change in a project using Distributed Version Control
Systems, such as Git [9], that save every source code change [1]. Automating the
collection of metrics can help instructors identify trends gaining insights into
students’ behavior, and students improve their development practices.

In this paper, we applied an automated approach [10] to analyze the evolu-
tion and impact [1] of source code and quality attributes in software engineering
projects. Our goal was to gain insights in students’ development practices and
software quality trends and behaviors by analyzing the source code changes. We
analyzed how changes impact the source code and quality of different aspects
of software engineering projects using a static code analyzer. We examined five
undergraduate software development projects’ changed modules, compilability
and software quality based on attributes for size, complexity, duplication, main-
tainability and security. With the recollected data, we found several improvement
opportunities for software engineering practices in software courses. This work
investigated the following research questions:

RQ1. To what extent do students commit impactful changes?
RQ2. To what extent impactful changes affect software quality attributes?

This is a work in progress evaluating our approach in five students’ projects to
determine the feasibility of the tool. For future work, we plan on gathering both
instructors’ and students’ feedback on our approach to study the benefits in the
learning process. The remainder of the paper is organized as follows. Section 2
details related work. Section 3 presents the methodology. Section 4 details the
results. Finally, Sect. 5 details the conclusions and future work.

2 Related Work

Several approaches have focused on measuring student projects. Mierle et al. [11]
determine indicators for student performance using behavior, work habits, and
code quality measures. Robles and González-Barbona [12] automatically evalu-
ate students’ assignments using code quality, software metrics, and work metrics.
Bai et al. [6] developed an online-offline approach that provides an automatic
customized assessment and feedback tool, measuring aspects for the issues, com-
mits, branches, test coverage, and code quality. Koetter et al. [5] examined, at
the end of the life cycle of a software project, maintainability metrics, and code
history. Hamer et al. [13] analyzed Git contributions and their distribution of
contributions for students, teams, and projects. Recent approaches have also

Students Projects’ Source Code Changes Impact on Software Quality 555

focused on incorporating software quality assurance practices in development
courses. Gomes et al. [14] propose a tool and an approach for software quality
assurance, finding that the tool provided support in understanding source code
quality. Raibulet and Fontana [15] found that students were enthusiastic about
developing a software project using GitHub, SonarQube, and Microsoft Project.
Lu et al. [16] incorporated a continuous inspection tool in students’ software
development projects and evaluated how it affects software quality. Plösch and
Neumüller [17] studied the impact of using static analysis tools on students’
software quality. We extend our previous work by creating a tool and analyzing
four additional projects, focusing on the instructors’ point of view [10].

3 Empirical Study

3.1 Measurement Approach and Change-Impact Analysis

Our approach was based on the work of Behnamghader et al. [1]. For the appli-
cation of our automated measurement procedure, the modules were obtained
from the changes metadata in the repository, the compilability by executing
each change in the project, and the source code, and quality metrics by ana-
lyzing each version of the source code (snapshot) using the static code analyzer
SonarQube (version 8.4 with default settings). These metrics were used to deter-
mine the impact of a change (commit and merges), and the difference between
the current and previous snapshot. The tool maintains the link between each
change, and the students or teams who contributed to the change to provide
real-time feedback about these metrics.

Fig. 1. Automated measurement approach. Adapted from [10].

Figure 1 shows the stages of the automated measurement approach. In Stage
A the project repository is selected and the changes extracted. Then, in Stage B,
the changes are parsed, where students with multiple identities are grouped up
into one account using mailmaps. From our analysis we excluded students who
withdrew from a course. Next, in Stage C, we selected the changes that impacted
the main modules. The main modules were the modules that save the major-
ity of the source code [1]. In our case, as the web applications were developed

556 S. Hamer et al.

in ASP.NET MVC, the main modules were the folders of Controllers (appli-
cation logic), Models (data entities), and Views (user-interface). The database
project files (DB) and the testing project files were also considered for the anal-
ysis (but as non-main modules). The testing project files includes test cases for
Unit & Integration testing (U&I tests) and User Interface testing (UI tests).
Finally, in Stage D the snapshot for each impactful change is compiled and
built, and the metrics for the compilable changes are extracted using the static
analysis tool. We considered five groups of metrics provided by the tool1: size,
complexity, duplication, maintainability, and security. Size represents the mag-
nitude, measured in lines of code (LC), number of functions (FN), number of
classes including nested classes, interfaces, enums and annotations (CS), and
commented lines of code (CL). Complexity is measured in cyclomatic complex-
ity (CX) and cognitive complexity (CC). Cyclomatic complexity is calculated
based on the number of paths through the code [18]. Cognitive complexity mea-
sures how hard it is to understand the code’s control flow [19]. It is calculated
based on ignoring structures with multiple statements into only one, the lin-
ear code flow and nested structures [20]. Duplication refers to duplicated source
code. Duplicated lines (DL) are the number of lines repeated, while duplicate files
(DF) are the number of files with duplicated lines. Maintainability refers to the
ease of maintenance, measured in number of code smells (SM), and minutes of
technical debt (TD). Finally, security references how protected a software system
is, measured in the number of vulnerabilities (VL). The formula to calculate the
impact of the metrics on the changes depends on the type of change. The impact
of the initial change is the value of each software attribute, for changes with one
parent (i.e., commit) is the difference between the current software attribute
and the preceding change (parent change), and for changes with more than one
parent (i.e., merge) is the difference between the current software attribute and
the average of the preceding changes (parent changes).

3.2 Projects and Git Repositories

The student projects were developed in a third-year undergraduate course offered
at the University of Costa Rica, with 16 to 25 students working on each project.
The students applied agile methodologies (mostly scrum) divided into teams of 4
to 7 members using scrums of scums. Each project developed one web application
with a relational database. The main technologies used were ASP.NET MVC,
Visual Studio, SQL Server, C#, JavaScript, HTML, CSS, and Git. All projects
planned were in the same domain (transnational information systems), and they
were comparable in size and complexity to the teams size that developed them.
Examples of the developed projects include assessment systems for teachers and
classroom reservation systems. Table 1 summarizes the projects, including the
number of student, teams, changes (commits and merges), impactful changes
(IC), and cumulative size in lines of code (LC). In total, we analyzed 12,103
changes from 103 students contributing to the projects.

1 https://docs.sonarqube.org/latest/user-guide/metric-definitions/.

https://docs.sonarqube.org/latest/user-guide/metric-definitions/

Students Projects’ Source Code Changes Impact on Software Quality 557

4 Results

In this section, we answer each research question. The results and visualizations
for the projects are available at https://tinyurl.com/dve55xae.

4.1 Changes’ Impact on the Software (RQ1)

We calculate the percentage of impactful changes (Fig. 1 Eq. 1) using the number
of changes (NC) and impactful changes (NIC). We also determine the percentage
of students with impactful changes (Fig. 1 Eq. 2) with the number of students
changes (ND) and the students who performed impactful changes (NID). Table 2
shows, per each main module, the number of changes (Changes, n), the impactful
changes and percentage of changes (Changes, Impactful), the number of students
(Students, n), and students contributing to impactful changes and percentage of
students (Students, Impactful). We also calculated the percentage of compilable
impactful changes (Fig. 1 Eq. 3) with the number of impactful changes (NIC) and
compilable impactful changes (NCIC). Table 2 shows the number and percentage
of compiled impactful changes (Changes, Compilability).

In total there are 7, 983 commits and 4, 120 merges. Thus, there are 1.94 com-
mits per merge. This allows us to identify continuous integration practices during
the project. This allowed us to identify continuous integration practices during
the project which seemed to be high. Still, if students had difficulties merging
code this could increase this metric, thus more training should be conducted to
improve this practice. On average 84% of the changes impacted the main mod-
ules with an emphasis on changing Views (64%). Therefore students’ primary
focus was the main module, specifically focusing on the front-end. The module
with the most change variation was Models, ranging from 34% to 54%. There
are differences in behavior between commits and merges. Merges are more likely
to be impactful than commits, as 97% of the merges and 78% of the commits
are impactful. Impactful commits always have as the most to least contributed
modules Views, Controllers and Models.

Figure 2 shows the number of changes that impacted each module set. Subfig-
ure 2a shows the main modules impacted by changes. Out of the 10, 130 impactful
changes in the main module, 4, 323 (43%) change only one, 2, 613 (26%) change

Table 1. Student projects

Project Students Teams Changes IC LOC

SE1 25 5 3,477 2,789 27,726
SE2 21 4 1,656 1,452 7,123
SE3 20 4 2,253 1,820 16,881
SE4 21 4 2,464 2,094 21,006
SE5 16 3 2,253 1,975 11,527
∑

103 20 12,103 10,130 84,263

https://tinyurl.com/dve55xae

558 S. Hamer et al.

Table 2. Average percentages of impactful changes, students, and compilable impactful
changes

Module
Changes Students Changes

A IMP A IMP COM
% % %

Controllers

2
,4
2
1

1, 363 57

2
1

21 100 1, 168 86

Models 951 41 21 100 778 83

Views 1,513 63 21 100 1,324 88

All 2,026 84 21 100 1,766 88

St. dev 593 438 3 3 3 0 286 7

two and 3, 194 (31%) change all three of the main modules. Hence, changes tend
to cover multiple development layers. Views is the module that is significantly
most likely to be contributed without changes to other modules, with 29% of the
changes only affecting this module. When students contributed to two modules,
they tended to focus on changes to adjacent development layers (i.e., between
the Controllers and Views, or Controllers and Models). Subfigure 2 shows all the
projects modules impact of changes. Other modules were also highly contributed,
with 5, 401 changes (44% out of the 12, 103 changes). Only 1, 298 (10%) changes
affected only other modules. The most to least changed non-main modules are
DB with 4, 418, U&I tests with 2, 109 and UI tests 397. Non-main modules also
are more likely to have cross-functional changes. There are 675 changes that
are not included in any of these six modules, including changes to the files for
configuring git, JavaScript source code, and project configuration.

The percentage of students with impactful changes shows that all students
contribute to at least one impactful change and merge in the main modules
across every project. Meanwhile, impactful commits were not always contributed.
All students contributed to a change in DB and U&I test modules. But, 18%
of the students did not contribute to UI tests. Furthermore, this problem in
non-main modules contributions is very widespread. The number of students
who did not commit to the DB, U&I test and UI test is 5%, 11% and 50%,
respectively. Specifically, in UI tests, SE1 and SE2 commit participation ranges
from 67% to 84% of students not participating. Still, even the project with the
highest participation in commits for UI tests, SE4, has 19% of the students
not-contributing.

The percentage of compilable impactful changes results indicate that, on
average, 88% of the impactful changes compile. Merges are less compilable (83%)
than commits (91%) across all projects. The most compilable module for all the
projects is Views (88%), followed by Controllers (86%) and lastly Models (83%).
The compilable changes drastically varied from projects ranging from 69% to
94%, with all projects having compilability issues. Furthermore, merges are still
considerably less compilable than commits across all projects.

Students Projects’ Source Code Changes Impact on Software Quality 559

(a) Main module (b) Main & non-main modules

Fig. 2. Modules impacted by changes

We also analyzed for the non-compilable changes how many errors were there,
who produced them, which modules caused the errors, what compilability issues
were raised, and why the errors were produced. Out of the 1, 302 non-compilable
impactful changes, we found 8, 782 errors were 97%, 75%, and 93% of the stu-
dents participated in non-compilable changes, commits and merges, respectively.
Compilability errors were widespread for all students, with more errors while
merging. Errors originated from changes to the Controllers, Models, application
and session events, packages, configurations, and binaries. Compilability prob-
lems originated from the Version Control Systems while merging and configuring
Git files. Changes may have compiled locally but due to modifications to the con-
figuration files, files were missing when changes were integrated. Students also
had issues with the project’s Models and configuration.

Results show that not all students are contributing to all the modules, though
all of them do seem to contribute to the main module. Hence, further attention
must be given to the projects to verify if students are actually developing full-
stack development skills, specially related with testing practices. Students faced
several difficulties with Git and the development framework. Therefore, students
require further training with the development technologies with workshops or
laboratories. Furthermore, good development practices such as compiling the
code before integrating branches and following pull request procedures need to
be further emphasized with stricter protocols.

4.2 Changes’ Impact on Quality Metrics (RQ2)

We analyze how changes impacted each quality attribute (percentage of impact-
ful changes). The percentage of impactful changes (Fig. 1 Eq. 4) is calculated with
the impactful changes with compilable parents CIC and compilable impactful
changes that either increased or decreased the quality attribute change(Qy).
Table 3 shows the average percentage of change that impacted the source
code metrics (P), changes which increased the metrics (�) and changes which
decreased the metrics (�). We also examine how the changes evolve and impact

560 S. Hamer et al.

Table 3. Source code metrics changes

Module LC FN CS CL CX CC DL DF SM TD VL
P � � P � � P � � P � � P � � P � � P � � P � � P � � P � � P � �

Controllers 84 70 14 52 45 7 19 17 2 65 49 16 69 59 10 60 51 9 22 13 9 11 8 2 64 46 18 67 45 21 2 1 1

Models 34 31 3 30 27 3 20 19 2 15 13 2 30 27 3 5 5 0 2 2 0 2 2 0 25 22 3 26 21 4 0 0 0

Views 80 62 17 0 0 0 0 0 0 30 22 8 28 23 5 0 0 0 36 21 15 23 15 7 21 17 4 22 17 5 0 0 0

All 78 63 16 38 32 5 17 15 2 51 38 13 50 43 7 40 34 6 33 19 14 20 14 6 48 35 13 49 34 15 1 1 0

St. dev 7 6 2 6 6 0 5 5 1 2 2 1 7 6 1 6 5 2 7 4 3 3 3 2 6 4 2 4 3 2 2 2 1

(a) Evolution (b) Impact

Fig. 3. Cyclomatic complexity evolution and impact by project

the quality attributes. For example, Fig. 3 shows the evolution of the Cyclo-
matic Complexity metric for each project with the accumulative changes and
the impact of the changes. The Y-axis represents the values of the analyzed
attribute, and the X-axis the evolution during the project.

For the size metrics, LC changes in 78% and increases in 63%. The Models is
the module that changes this metric the least and also has the highest variation
between projects. Hence, the contributions to Models vary by project. Further-
more, this metric increases around deadlines mostly in a step-like pattern. This
step like increase can be seen for all metrics except VL across all projects. The
average impact of a commit is 18 LC. Furthermore, FN changes in 38% and
increases in 30% of the changes. For the Views, the metrics FN, CS and CC had
a 0% percentage of change, hence were mostly not detected in the case of our
technology. Models also have 15% of variation between projects. On average, a
commit impacts in 1 FN. CS change percentage is 17%, with a 15% of increase.
The LC per CS shows that the size of classes varies greatly between projects.
This shows that students add code more frequently than they comment it. Fur-
thermore, as the size metrics can be separated by module the languages used
could be further analyzed.

For complexity metrics, we found that the CX percentage of change is 50%,
increasing in 43% of the changes. On average, commits impact 0 CX and changes
impact 5 CX. We found that the relationship between LC and CX is not linear in
some projects. Most of the projects have the percentage of change for the Models

Students Projects’ Source Code Changes Impact on Software Quality 561

near 0%. In the case of these MVC projects, this indicates that the students
follow the instructions to implement business rules in the business layer.

DL changes in 33% of the changes, increasing in 19% of the changes. The
average impact of a commit is 4 DL. Therefore, DL seems to be quite prevalent
in student projects. Views is the module that has the most changes in DL,
increasing the metric in 21% of the changes. The DL per LC, for all projects
except SE2, is around 4, hence DL is very prevalent in the projects. DF changes
in 20% of the changes and increases in 14% of the changes. The module with the
most DF is also Views. DL and DF have a step-like behavior but also dips a bit
around deadlines. Thus students are considerably reducing duplicate code.

SM changes on average in 48% of the changes, increasing in 35% of the
changes. On average, a commit impacts in 1 SM. The Controllers module has
the highest percentage of change of SM. Furthermore, SE3 has the highest SM, by
a considerable margin, out of all the projects even though it is not the biggest
project in LC. Thus, SM does not also follow a linear relationship with LC.
The SM per CS ranges between 5 to 11. TD percentage of change is 49%, and
percentage of change increase is 34%. On average, a commit impacts, for the
metric TD, is 2 minutes. Also, the module with the most changes for TD is
Controllers. The technical debt varies considerably between projects, ranging
from 1, 432 to 3, 647 minutes. The relationship between TD and LC is also not
linear, as SE3 and SE4 have a higher TD per LC (10) than SE5 (8).

Lastly, the metric of VL detected at most 10 VL in the Controllers and Views.
For this metric, future work is addressed to identify the types of vulnerabilities
to analyze their impact on projects from a security perspective.

We also examined why impactful changes occurred by analyzing 10 commits
across all projects, whose impact is the farthest away from the average for each
metric. In total, this generated 62 commits, as some commits were impacted by
multiple metrics. We found 8 commits that either commented or uncommented
code due to problems generated by changes in the Models, impacting the size,
complexity and maintainability of the software significantly. In 5 commits, we
found refactoring efforts reducing considerably at least a complexity metric and
generally the maintainability. Also, we found in 7 commits that removed old
code, considerably reducing the size, complexity and maintainability metrics.
CS changes were affected in 4 commits by changing the Models metadata or
creating a Model manually. In 8 commits, a View was either added or updated
that severely increased the duplication and LC metrics. Lastly, we found 8 cases
were most or all a feature was added, usually from end-to-end, always increasing
the complexity and LC metrics.

Students had difficulties in producing high quality software with degradation
over time, thus a bigger focus should be given to training students in produc-
ing quality software. Specifically, we found evidence that students contribute a
lot of duplicate code to the Views, while the Controllers module requires the
most attention with regards to complexity and maintainability. Therefore, qual-
ity assurance activities should be followed throughout the project using the met-
rics to determine the quality deficiencies and improve the product. Instructors

562 S. Hamer et al.

should also consider the complexity and effort required by each module in their
analysis.

5 Conclusions

Analyzing source code changes can offer useful insights about software develop-
ment practices and courses improvement opportunities for student projects. The
results show the feasibility of our approach to collect data about the changes,
changed modules, developers, compilability, and software quality. Our findings
give instructors’ information for multiple improvement opportunities for stu-
dents’ software projects. Our approach helps to determine patterns in students’
changes that include software modules students are contributing to, who is
contributing to each of the modules, what are the trends in the compilability
errors, why students produce compilability errors, and what effects (evolution
and impact) do changes have on software attributes (size, complexity, duplica-
tion, maintainability, and security). The results could be used to identify recur-
ring problems in projects, such as lack of technology competency, continuous
integration deficiencies and evidence that software quality degration. We believe
our approach can be applied in any project where instructors desire to improve
students’ software development practices and competencies, providing constant,
early and real-time data to instructors and students alike.

Instructors can gain data-driven insights into how impactful changes affect
different facets of the software projects, specifically, the changed modules, compi-
lability and software quality. This helps instructors understand what is happen-
ing in software projects, and plan how to improve the courses and instructions.
Furthermore, as the approach can be automated instructors can focus on tackling
didactic issues from the collected data. We recommend instructors to consider
the data in real-time to determine improvement opportunities in courses, such as
additional activities or protocols, and aid in grade assignment. Students benefit
from gaining timely and objective feedback on their development skills, particu-
larly in creating high-quality software. This helps students understand how their
changes affect software attributes and identify future areas for improvement that
they can focus on, becoming more marketable to employers. These benefits are
not limited to students but also include software development professionals.

As future work, we plan to analyze in more depth the causes, types, and
patterns of code smells, vulnerabilities, and technical debt of changes for students
and teams to determine expected and outlier behavior. As we only included
metrics available from SonarQube, we also plan to include other tools to gather
more metrics. Furthermore, the changes impact could be further analyzed to
determine patterns between the different metrics. Finally, we plan on applying
the approach in an online student project, and gather both instructors’ and
students’ perceptions of the tool to reveal the real value of the approach.

Acknowledgments. This research was partially funded by Universidad de Costa
Rica, project No. 834-C1-011.

Students Projects’ Source Code Changes Impact on Software Quality 563

References

1. Behnamghader, P., Alfayez, R., Srisopha, K., Boehm, B.: Towards better under-
standing of software quality evolution through commit-impact analysis. In: 2017
IEEE International Conference on Software Quality, Reliability and Security
(QRS), pp. 251–262. IEEE (2017)

2. Gillies, A.: Software Quality: Theory and Management. Lulu. com (2011)
3. Garousi, V., Giray, G., Tuzun, E., Catal, C., Felderer, M.: Closing the gap between

software engineering education and industrial needs, IEEE Software (2019)
4. Quesada-López, C., Martínez, A.: Implementation of project based learning: lessons

learned. In: XLV Latin American Computing Conference (CLEI), pp. 1–10. IEEE
(2019)

5. Koetter, F., Kochanowski, M., Kintz, M., Kersjes, B., Bogicevic, I., Wagner, S.:
Assessing software quality of agile student projects by data-mining software repos-
itories. In: Proceedings of the 11th International Conference on Computer Sup-
ported Education-Volume 2: CSEDU, INSTICC. SciTePress, 2019, pp. 244–251
(2019)

6. Bai, X., Li, M., Pei, D., Li, S., Ye, D.: Continuous delivery of personalized assess-
ment and feedback in agile software engineering projects. In: Proceedings of the
40th International Conference on Software Engineering: Software Engineering Edu-
cation and Training, 2018, pp. 58–67 (2018)

7. Fenton, N., Bieman, J.: Software Metrics: A Rigorous and Practical Approach,
Third edn. CRC Press, Boca Raton (Oct 2014)

8. Nuñez-Varela, A.S., Pérez-Gonzalez, H.G., Martínez-Perez, F.E., Soubervielle-
Montalvo, C.: Source code metrics: a systematic mapping study. J. Syst. Softw.
128, 164–197 (2017)

9. Chacon, S., Straub, B.: Pro git. Apress (2014)
10. Hamer, S., Quesada-López, C., Martínez, A., Jenkins, M.: Measuring students’

source code quality in software development projects through commit-impact anal-
ysis. In: Rocha, Á., Ferrás, C., López-López, P.C., Guarda, T. (eds.) ICITS 2021.
AISC, vol. 1331, pp. 100–109. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-68418-1_11

11. Mierle, K., Laven, K., Roweis, S., Wilson, G.: Mining student CVS repositories for
performance indicators. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–5 (2005)

12. Robles, G., Gonzalez-Barahona, J.M.: Mining student repositories to gain learning
analytics. In: IEEE Global Engineering Education Conference (EDUCON), pp.
1249–1254. IEEE (2013)

13. Hamer, S., Quesada-López, C., Martínez, A., Jenkins, M.: Measuring students’
contributions in software development projects using git metrics. In: 2020 XLVI
Latin American Computing Conference (CLEI). IEEE (2020)

14. de Andrade Gomes, P.H., Garcia, R.E., Spadon, G., Eler, D.M., Olivete, C., Cor-
reia, R.C.M.: Teaching software quality via source code inspection tool. In: 2017
IEEE Frontiers in Education Conference (FIE), pp. 1–8 (Oct 2017)

15. Raibulet, C., Arcelli Fontana, F.: Collaborative and teamwork software develop-
ment in an undergraduate software engineering course. J. Syst. Softw. 144, 409–422
(2018)

16. Lu, Y., Mao, X., Wang, T., Yin, G., Li, Z.: Improving students’ programming
quality with the continuous inspection process: a social coding perspective. Front.
Comput. Sci. 14(5), 145205 (2020)

https://doi.org/10.1007/978-3-030-68418-1_11
https://doi.org/10.1007/978-3-030-68418-1_11

564 S. Hamer et al.

17. Plösch, R., Neumüller, C.: Does static analysis help software engineering students?
In: Proceedings of the 2020 9th International Conference on Educational and Infor-
mation Technology, ser. ICEIT 2020. New York, NY, USA: Association for Com-
puting Machinery, pp. 247–253 (Feb 2020)

18. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)
19. Barón, M.M., Wyrich, M., Wagner, S.: An empirical validation of cognitive com-

plexity as a measure of source code understandability. In: Proceedings of the 20:
ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE Computer Society Press, 2020, pp. 1–12 (2020)

20. Campbell, G.A.: Cognitive complexity-a new way of measuring understandability,
SonarSource SA, p. 10 (2018)

Author Index

Abreu, Fernando Brito e 197
Aho, Pekka 473
Aman, Hirohisa 489
Amasaki, Sousuke 489
Arcaini, Paolo 503
Ayad, Amani 18

Bagheri, Amirreza 267
Barbareschi, Mario 127, 297
Barboni, Morena 29
Barone, Salvatore 127, 297
Bauer, Thomas 325
Becker, Pablo 183
Benerecetti, Massimo 356
Berrocal, Javier 225
Bertolino, Antonia 29
Betancor, Francisco 431
Bosch, Jan 401
Bose, Dibyendu Brinto 521
Bragagnolo, Santiago 97
Brito e Abreu, Fernando 82

Carbone, Riccardo 127
Casillas, Jorge 373, 387
Casola, Valentina 127
Catillo, Marta 253
Ciancarini, Paolo 141
Contreras Padilla, Jorge 40
Counsell, Steve 459
Crespo, Yania 416
Cruz-Lemus, José A. 239

Daoudagh, Said 311
De Angelis, Guglielmo 29
de la Vara, Jose Luis 325
Del Vecchio, Andrea 253
Delgado, Andrea 431
Derras, Mustapha 97
Diniz, João P. 49
Ducasse, Stéphane 97

Ferreira, Fischer 49
Fezza, Alfonso 297

Ficco, Massimo 282
Figueiredo, Eduardo 49
Fischer, Bernhard 325

Gallego, Micael 40
Garcia-Alonso, Jose 225
Gortázar, Francisco 40
Granata, Daniele 282
Grünbacher, Paul 67

Hamer, Sivana 553
Hegedűs, Péter 267
Heisel, Maritta 341
Hinterreiter, Daniel 67
Hossain, Shahriar 521

Jablonski, Stefan 167
Jenkins, Marcelo 553
Jiménez-Navajas, Luis 211

Käppel, Martin 167
Karaca, Mustafa 325
Kawahara, Minoru 489
Khaireddine, Besma 18
Klikovits, Stefan 503
Klöser, Lars 156
Kohl, Philipp 156
Kosman, Ruud 446
Koster, Olivier 446
Kraft, Bodo 156

La Montagna, Erasmo 297
Leotta, Maurizio 3
Linsbauer, Lukas 67
López, Pedro J. 387

Madeira, Henrique 325
Maes-Bermejo, Michel 40
Marcelo, Luis A. 239
Marchetti, Eda 311
Marín, Beatriz 473
Marinho, Euler Horta 49
Marotta, Adriana 431

Marsit, Imen 18
Matschnig, Martin 325
Mazzini, Silvia 325
Melo, Glaucia 197
Mili, Ali 18
Missiroli, Marcello 141
Mogavero, Fabio 356
Moguel, Enrique 225
Montero, Osbel 416
Munappy, Aiswarya Raj 401
Murillo, Juan Manuel 225

Nandi, Giann Spilere 325

Olianas, Dario 3
Oliveira, Toacy 197
Olsina, Luis 183
Olsson, Helena Homström 401
Omerovic, Aida 341

Papa, Fernanda 183
Patrone, Fabio 325
Pecchia, Antonio 253
Pereira, David 325
Pérez, Federico 431
Pérez-Castillo, Ricardo 211
Peron, Adriano 356
Petre, Luigia 536
Pfeiffer, Rolf-Helge 111
Piatini, Mario 416
Piattini, Mario 211, 239
Prähofer, Herbert 67
Proença, José 325
Quesada-López, Christian 553

Rahman, Akond 521
Rak, Massimiliano 282

Ricca, Filippo 3
Rio, Américo 82
Rodríguez-Valdés, Olivia 473
Rojo, Javier 225
Ruiz, Elena 387

Salzillo, Giovanni 282
Sangchoolie, Behrooz 325
Schlick, Rupert 325
Schmidts, Oliver 156
Schönig, Stefan 167
Seriai, Abderrahmane 97
Simões, Rachel Vital 197
Starace, Luigi Libero Lucio 356
Swift, Stephen 459

Tahir, Amjed 459
Tebes, Guido 183
Tonetta, Stefano 325

Valencia, David 225
Villa, Luca 3
Villano, Umberto 253
Villar, David 373
Visser, Joost 446
Vos, Tanja E. J. 473

Werth, Henri 156

Yayan, Ugur 325
Yokogawa, Tomoyuki 489

Zani, Sofia 141
Zündorf, Albert 156

566 Author Index

	Preface
	Technical Review Summary
	Invited Talk

	Acknowledgments
	Organization
	Contents
	ICT Verification and Validation
	Reducing Flakiness in End-to-End Test Suites: An Experience Report
	1 Introduction
	2 The Printo Web App and the Associated E2E Test Suite
	2.1 The Printo Web Application
	2.2 Original Printo's E2E Test Suite

	3 Overview of the Approach for Reducing Flakiness
	3.1 Test Suite Refactoring
	3.2 Statistics on the Test Suite Refactoring Costs
	3.3 Details on the Kind of Explicit Waits Inserted and Corresponding Costs

	4 Quantifying the Obtained Improvements
	4.1 Test Method Granularity Analysis
	4.2 Test Suite Granularity Analysis
	4.3 Execution Time

	5 Discussions, Lessons Learnt, and Future Extensions
	5.1 Following a Precise Procedure Is Extremely Important
	5.2 Conservative Solutions Are Too Time-Consuming
	5.3 It Is Hard to Be Too Prescriptive
	5.4 Thread Sleeps Substitution Can be Automated
	5.5 Manual Intervention Is Needed

	6 Related Work
	7 Conclusions and Future Work
	References

	Mutation Subsumption as Relative Incorrectness
	1 Subsumption and Relative Correctness
	2 Mutant Subsumption
	3 Absolute Correctness and Relative Correctness
	3.1 Absolute and Relative Correctness
	3.2 Relative Correctness
	3.3 A Relative Correctness Graph

	4 Subsumption as Relative Incorrectness
	5 Implications
	6 Conclusion
	6.1 Summary and Assessment
	6.2 Prospects

	References

	What We Talk About When We Talk About Software Test Flakiness
	1 Introduction
	2 Scoping Review of White and Grey Literature
	3 Commonalities in Test Flakiness Concepts
	3.1 Definitions of Flaky Test Concepts
	3.2 Classification of Flaky Tests

	4 Conclusions and Future Work
	References

	Looking for the Needle in the Haystack: End-to-end Tests in Open Source Projects
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	5 Conclusions
	References

	Evaluating Sensor Interaction Failures in Mobile Applications
	1 Introduction
	2 Motivating Example
	3 Study Design
	3.1 Application Selection
	3.2 Configuration Set Definition
	3.3 Application Test Extension
	3.4 Test Execution
	3.5 Test Report Analysis

	4 Results and Discussion
	4.1 RQ1. Do Sensor Interactions Cause Failures in Mobile Application?
	4.2 RQ2. What Are the Sensor Interactions Most Likely to Cause a Failure?

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

	Software Evolution
	Feature-Oriented Clone and Pull for Distributed Development and Evolution
	1 Introduction
	2 Distributed Feature-Oriented Workflow
	3 Feature-Oriented Clone and Pull Operations
	4 Evaluation
	4.1 Method
	4.2 Pull Cases

	5 Results
	6 Related Work
	7 Conclusions and Future Work
	References

	Detecting Sudden Variations in Web Apps Code Smells' Density: A Longitudinal Study
	1 Introduction
	1.1 Motivation
	1.2 Research Questions

	2 Study Design
	2.1 Applications Sample
	2.2 CS Sample
	2.3 Data Collection and Preparation

	3 Results and Data Analysis
	3.1 Evolution of the Number of CS per Version
	3.2 Anomalies in CS Evolution

	4 Discussion
	4.1 Introduction
	4.2 Answers to Research Questions
	4.3 Applicability
	4.4 Comparison to Other Techniques
	4.5 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References

	Risk and Complexity Assessment on the Context of Language Migration
	1 Introduction
	2 Challenges
	2.1 Software Architecture Challenges
	2.2 Source Code Difficulties

	3 Metrics
	3.1 Risks Related to the Relevance of the Source Code Analysis
	3.2 The Risks of Language Translation
	3.3 The Risks of Using Libraries as Dependencies

	4 The eGRC Use Case
	4.1 The Pareto Chart
	4.2 Study of the Complexity of Syntactic Errors
	4.3 Study of the Complexity Related to the Differences in the Source (VBA) and Target (Typescript/Java) Grammar
	4.4 Study of the Complexity Related to the Paradigm Shift
	4.5 Study of the Complexity of the Use of Dependencies

	5 Discussion
	6 Future Work
	7 Conclusion
	References

	Automatically Assessing Complexity of Contributions to Git Repositories
	1 Introduction
	2 Background, Terminology, and Motivation
	3 Computing Contribution Complexity
	4 Evaluation
	4.1 Manual Evaluation Results
	4.2 Contribution Complexities of Two Open-Source Systems

	5 Related Work and Discussion
	6 Conclusions
	References

	Process Modeling, Improvement and Assessment
	Scrum for Safety: Agile Development in Safety-Critical Software Systems
	1 Introduction
	2 Related Works
	3 Scrum for Safety
	3.1 Principles
	3.2 Roles and Workflow

	4 A Case Study
	5 Conclusion
	References

	Empirical Evaluation of Agile Teamwork
	1 Introduction
	2 Related Works
	3 Methods
	3.1 The Project Work
	3.2 The Research Questions
	3.3 Collecting the Data

	4 Results
	4.1 Students' Perceptions of Agile Practices
	4.2 Threats to Validity

	5 Conclusions and Future Work
	References

	STAMP 4 NLP – An Agile Framework for Rapid Quality-Driven NLP Applications Development
	1 Introduction
	2 Related Work
	3 Process Model
	3.1 Goal Specification
	3.2 Domain Discovery and Data Selection
	3.3 Domain Adoption and Customization
	3.4 Application Engineering
	3.5 Customer Integration and Evaluation

	4 Project Template
	5 Example
	6 Limitations and Drawbacks
	7 Summary
	References

	Evaluating Predictive Business Process Monitoring Approaches on Small Event Logs
	1 Introduction
	2 Background
	2.1 Process Mining
	2.2 Small Sample Learning

	3 Related Work
	4 Evaluation Framework
	4.1 The Issue of Small Event Logs
	4.2 Preserving Comparability
	4.3 Reducing Event Logs
	4.4 Splitting into Training and Test Data
	4.5 Architecture of the Evaluation Framework

	5 Evaluation of Existing Approaches on Small Event Logs
	5.1 Dataset Description and Experimental Setup
	5.2 Tailoring the Evaluation Framework to Predictive Monitoring
	5.3 Results and Discussion

	6 Future Work
	References

	Analyzing a Process Core Ontology and Its Usefulness for Different Domains
	1 Introduction
	2 Related Work
	3 ProcessCO in the Context of the Ontological Architecture
	4 ProcessCO: A Process Core Ontology
	5 Semantically Enriching Domain Ontologies with ProcessCO
	5.1 Enriching Domain Ontologies for Measurement and Evaluation
	5.2 Enriching a Domain Ontology for Software Testing
	5.3 Quality Evaluation of ProcessCO

	6 Concluding Remarks and Future Work
	References

	Towards Understanding Quality-Related Characteristics in Knowledge-Intensive Processes - A Systematic Literature Review
	1 Introduction
	2 Related Work
	3 Systematic Literature Review
	3.1 Planning
	3.2 Conduction
	3.3 Reporting Results

	4 Threats to Validity
	5 Conclusions and Future Work
	References

	Quality Aspects in Quantum Computing
	KDM to UML Model Transformation for Quantum Software Modernization
	1 Introduction
	2 Modernization Towards Hybrid Information Systems
	2.1 Hybrid Information Systems
	2.2 Software Modernization of Hybrid Information Systems

	3 Quantum Metamodel Extensions
	3.1 Quantum KDM Extension
	3.2 Quantum UML Extension

	4 KDM to UML Model Transformation
	4.1 Quantum Program Rule
	4.2 Qubit Declaration Rules
	4.3 Quantum Gates Rules and Execution Flow
	4.4 Running Example

	5 Conclusions and Future Work
	References

	Hybrid Classical-Quantum Software Services Systems: Exploration of the Rough Edges
	1 Introduction
	2 Background
	3 Quantum Servitization: The Amazon Braket Case
	3.1 Integer Factorization Case Study
	3.2 Integer Factorization in Amazon Braket

	4 Current Limitation of Quantum Services
	5 Related Works
	6 Conclusion and Future Works
	References

	Towards a Set of Metrics for Quantum Circuits Understandability
	1 Introduction
	2 Quantum Circuits
	3 Related Work
	4 Metrics Proposal
	5 Metric Calculation Examples
	6 Conclusions and Future Work
	References

	Safety, Security and Privacy
	A Critique on the Use of Machine Learning on Public Datasets for Intrusion Detection
	1 Introduction
	2 Related Work
	3 Experimental Testbed
	3.1 Experimental Testbed

	4 Datasets
	4.1 CICIDS2017
	4.2 Slowloris Data from USB-IDS-1

	5 Results
	5.1 Data Preprocessing and Analysis Framework
	5.2 IDS Learning
	5.3 Evaluation of the Detection Metrics
	5.4 Lessons Learned

	6 Conclusion
	References

	A Comparison of Different Source Code Representation Methods for Vulnerability Prediction in Python
	1 Introduction
	2 Related Work
	3 Dataset Extraction
	3.1 Mining GitHub
	3.2 Filtering the Data
	3.3 Labels

	4 Approach
	4.1 The Evaluated Embedding Layers
	4.2 Preparing the Data for Classification
	4.3 Training the LSTM

	5 Results
	6 Threats to Validity
	7 Conclusion
	References

	Threat Modeling of Edge-Based IoT Applications
	1 Introduction
	2 State of the Art
	3 Security Assessment Methodology
	3.1 A Walk-Through Case Study

	4 MACM Model for Edge Systems
	4.1 Smart Building MACM Model

	5 EDGE Security and ECN/MEC Threat Catalog
	5.1 The Extended Threat Catalogue
	5.2 Attack Planning

	6 Conclusion
	References

	Enforcing Mutual Authentication and Confidentiality in Wireless Sensor Networks Using Physically Unclonable Functions: A Case Study
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Physical Unclonable Functions (PUFs)
	3.2 Mutual Authentication Using PUFs
	3.3 Mutual Authentication Between Sensor Nodes

	4 Fault-Detection and Isolation on Medium-Voltage PDN (MV-PDN)
	4.1 Achieving Mutual Authentication and Confidentiality

	5 Evaluation
	5.1 Protocol Overhead Evaluation
	5.2 Threats Analysis

	6 Conclusion
	References

	GRADUATION: A GDPR-Based Mutation Methodology
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology for GDPR-Based Mutants Derivation
	5 GDPR-Based Mutation Operators
	6 GDPR-Based Mutation Operators Implementation
	7 Using GRADUATION Methodology
	8 Conclusions
	References

	A Proposal for the Classification of Methods for Verification and Validation of Safety, Cybersecurity, and Privacy of Automated Systems
	1 Introduction
	2 Related Work
	3 Classification for V&V Methods for SCP of Automated Systems
	3.1 Injection
	3.2 Simulation
	3.3 Testing
	3.4 Runtime Verification
	3.5 Formal Analysis
	3.6 Semi-formal Analysis
	3.7 Informal Analysis

	4 Application of the Classification
	5 Conclusion
	References

	Risk Identification Based on Architectural Patterns
	1 Introduction
	2 Risk Issue Questionnaires
	2.1 RIQ for Process Monitoring
	2.2 Further RIQs

	3 Risk Identification Method
	4 Example
	5 Evaluation
	6 Related Work
	7 Conclusion and Outlook
	References

	Expressing Structural Temporal Properties of Safety Critical Hierarchical Systems
	1 Introduction and Related Works
	2 Dynamic State Machines and Hierarchical Computations
	2.1 Dynamic State Machines
	2.2 Hierarchical Computations

	3 Hierarchical Linear-Time Temporal Logic
	4 Towards Automatic Verification of HLTL Properties for Hierarchical Systems
	5 Conclusions and Future Works
	References

	Quality Aspects in Machine Learning, AI and Data Analytics
	Facing Many Objectives for Fairness in Machine Learning
	1 Introduction
	2 Background
	2.1 Accuracy and Fairness Optimization Background
	2.2 MaOEAs Background

	3 MaOEA to Achive Accurate, Fair, and Interpretable Solutions
	3.1 Objective Space
	3.2 Decision Space: Hyperparameters
	3.3 Initial Population
	3.4 MaOEAs Based Methods

	4 Experimental Design
	5 Experimental Results
	6 Conclusions
	References

	A Streaming Approach for Association Rule Analysis of Spanish Politics on Twitter
	1 Introduction
	2 Related Work
	3 Proposed Methodology for Online Analysis of Tweets
	3.1 Association Stream Mining
	3.2 Natural Language Processing and Sentiment Analysis

	4 Problem Statement and Data
	4.1 Problem Statement
	4.2 Data

	5 Results
	5.1 Association Rule Mining in Twitter Politics
	5.2 Concept Drift in Twitter Politics
	5.3 Performance Analysis

	6 Conclusions
	References

	On the Trade-off Between Robustness and Complexity in Data Pipelines
	1 Introduction
	2 Research Methodology
	2.1 Multiple Case Study
	2.2 Data Collection
	2.3 Data Analysis

	3 Use Cases
	3.1 Case A1: Data Collection Pipeline
	3.2 Case A2: Data Governance Pipeline
	3.3 Case A3: Data Pipeline for Machine Learning Applications
	3.4 Case B1: Data Collection Pipeline
	3.5 Case C1: Data Quality Analysis Pipeline

	4 Components of a Robust Data Pipeline
	4.1 Node Level Capabilities
	4.2 Connector Level Capabilities

	5 Conceptual Model of Robust Data Pipeline
	6 Trade-off Between Data Pipeline Robustness and Complexity
	7 Conclusions
	References

	Big Data Quality Models: A Systematic Mapping Study
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Definition of the Research Questions
	3.2 Inclusion/Exclusion Criteria
	3.3 Search and Selection Process
	3.4 Quality Assessment

	4 Results
	5 Threats to Validity of Our Mapping Study
	6 Conclusions and Future Work
	References

	Business Process and Organizational Data Quality Model (BPODQM) for Integrated Process and Data Mining
	1 Introduction
	2 Background
	2.1 Data Quality
	2.2 Process Mining and Event Logs

	3 Preliminaries
	3.1 BP Model and Organizational Data Model
	3.2 Extended Event Log

	4 BPO Data Quality Model (BPODQM)
	4.1 Data Format and Granularities
	4.2 BPODQM

	5 Example of Application
	5.1 Metric Format
	5.2 Extensional Values
	5.3 Metric Not Null
	5.4 Metric Attribute Timeliness

	6 Related Work
	7 Conclusions
	References

	A Checklist for Explainable AI in the Insurance Domain
	1 Introduction
	2 Method
	3 Literature Background
	4 Exploration
	5 Design
	6 Validation
	7 Discussion
	8 Conclusion
	References

	Evidence-Based Software Quality Engineering
	Where the Bugs are: A Quasi-replication Study of the Effect of Inheritance Depth and Width in Java Systems
	1 Introduction
	2 Preliminaries
	3 DIT Metric Analysis
	3.1 Summary of DIT Data
	3.2 Correlation of DIT vs Bugs
	3.3 The Role of Class Size

	4 NOC Metric Analysis
	4.1 Correlation of NOC vs. Bugs

	5 Related Work
	5.1 Threats to Validity

	6 Conclusions and Further Work
	References

	30 Years of Automated GUI Testing: A Bibliometric Analysis
	1 Introduction
	2 Scope: Automated GUI Testing
	3 Methodology
	3.1 Data Retrieval
	3.2 Pre-processing
	3.3 Analysis and Visualization

	4 Results
	4.1 Size of the Area and Growth
	4.2 Types of Publications and Their Ranking
	4.3 Citations and Reference Publication Year Spectroscopy
	4.4 Most Influential Authors
	4.5 Productivity and Funding
	4.6 Collaboration
	4.7 Trends in Keywords
	4.8 Discussion

	5 Conclusions
	References

	A Large-Scale Investigation of Local Variable Names in Java Programs: Is Longer Name Better for Broader Scope Variable?
	1 Introduction
	2 Related Work
	3 Quantitative Investigation
	3.1 Aim and Surveyed Software
	3.2 Results of Data Collection
	3.3 Results of Variable Name Categorization
	3.4 Discussion
	3.5 Threats to Validity

	4 Conclusion and Future Work
	References

	Quality in Cyber-physical Systems
	KNN-Averaging for Noisy Multi-objective Optimisation
	1 Introduction
	2 Multi-objective Optimisation and Genetic Algorithms
	3 Noisy MOO and K-Nearest-Neighbour Averaging
	3.1 KNN-Averaging
	3.2 Hyper-parameters of kNN-Avg
	3.3 Algorithm

	4 Evaluation
	4.1 Experimental Results
	4.2 Evaluation
	4.3 Threats to Validity

	5 Related Works
	6 Conclusion and Future Works
	References

	Software Quality Education and Training
	Exercise Perceptions: Experience Report from a Secure Software Development Course
	1 Introduction
	2 Overview of the Course and Exercises
	3 RQ1: Student Motivations
	3.1 Methodology to Answer RQ1
	3.2 Answer to RQ1

	4 RQ2: Student Performance in Exercises
	4.1 Methodology to Answer RQ2
	4.2 Answer to RQ2

	5 RQ3: Positive Perceptions of Exercises
	5.1 Methodology to Answer RQ3
	5.2 Answer to RQ3

	6 RQ4: Negative Perceptions of Exercises
	6.1 Methodology to Answer RQ4
	6.2 Answer to RQ4

	7 Discussion
	8 Related Work
	9 Conclusion
	References

	A Software Quality Course: The Breadth Approach
	1 Introduction
	2 Basic Concepts and the Particulars of the Course
	2.1 Structure and Teaching Methods

	3 Content of the Course
	3.1 Requirements
	3.2 Formal Methods
	3.3 Software Architectures
	3.4 Software Metrics

	4 Quality Management
	5 Course Evaluation
	6 Students' Feedback
	7 Conclusions
	References

	Students Projects' Source Code Changes Impact on Software Quality Through Static Analysis
	1 Introduction
	2 Related Work
	3 Empirical Study
	3.1 Measurement Approach and Change-Impact Analysis
	3.2 Projects and Git Repositories

	4 Results
	4.1 Changes' Impact on the Software (RQ1)
	4.2 Changes' Impact on Quality Metrics (RQ2)

	5 Conclusions
	References

	Author Index

