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Abstract We revisit Wschebor’s theorems on the a.s. convergence of small incre-
ments for processes with scaling and stationarity properties. We focus on occupation
measures and proved that they satisfy large deviation principles.
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1 Introduction: Wschebor’s Theorem and Beyond

In 1992, Mario Wschebor [24] proved the following remarkable property of the
linear Brownian motion (W(t), t ≥ 0;W(0) = 0). Set

Wε
1 = ε−1/2W(· + ε)

If λ is the Lebesgue measure on [0, 1], then, almost surely, for every x ∈ R and
every t ∈ [0, 1]:

lim
ε→0

λ{s ≤ t : Wε
1 (s) ≤ x} = t�(x) , (1.1)

where � is the distribution function of the standard normal distribution N (0; 1).
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Let us give some notations. If � = R,R+ × R or [0, 1] × R, we denote by
M+(�) and Mr (�) the set of Borel measures on � positive and having total mass
r , respectively.

If Z is a measurable function from R
+ to R, let MZ ∈M+(R+ ×R) be defined

by

MZ (I × A) = λ{s ∈ I : Z(s) ∈ A} , (1.2)

for every Borel subset I ×A of R+ ×R. The first marginal of MZ is λ. The second
marginal μZ is the occupation measure

μZ =
∫ 1

0
δZ(t) dt ,

defined either by its action on a Borel set A

μZ (A) = MZ ([0, 1] × A) = λ{s ∈ [0, 1] : Z(s) ∈ A} (1.3)

or, by its action on a test function f ∈ Cb(R)

∫
R

f (x)dμZ(x) =
∫ 1

0
f (Z(t)) dt .

We will call MZ the space-time occupation measure. In this framework,(1.1) may
be considered as a law of large numbers (LLN):

MWε
1
⇒ λ×N (0; 1) (a.s.)

where⇒ stands for the weak convergence in M+(R+ × R).
It is then quite natural to ask for a possible Large Deviation Principle (LDP), i.e.

an estimation of the form

P(MWε
1
� M) ≈ exp−I (M)/ε

for some nonnegative functional I called the rate function. (We refer to [13] for
precise definition of LDP.)

Since the Brownian motion W is self-similar (Property P1) and has stationary
increments (P2), it is possible to reduce the study of μWε

1
(ε → 0) to the study of

an occupation measure in large time (T := ε−1 →∞) for a process Y independent
of ε. This new process is stationary and ergodic. Moreover, the independence of
increments of W (P3) and its self-similarity induce a 1-dependence for Y , which
allows to use the hypermixing property (see [8]) to get an LDP. This will be a
consequence of our Theorem 2.3.
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Actually, as the crucial properties (P1, P2, P3) are shared by α-stable Lévy
processes, we are able to state the LDP in this last framework.

Besides, inspired by the extension of (1.1) in [24, 25], we consider mollified
processes as follows.

Let BV be the set of bounded variation functions on R and also let BVc ⊂ BV

be the subset of compactly supported functions. For ψ ∈ BVc let

ψε(t) = ε−1ψ
(
tε−1

)

denote the rescaled version of ψ and for X a measurable function on R, set Xε
ψ =

X 	 ψε , i.e.

Xε
ψ(t) :=

∫
ψε(t − s)X(s)ds =

∫
ψε(s)X(t − s)ds , (1.4)

and

Ẋε
ψ(t) :=

∫
X(t − s)dψε(s) = ε−1

∫
X(t − εs)dψ(s) . (1.5)

Taking for X an extension of W vanishing on R−, and denoting

Wε
ψ (s) := √εẆε

ψ (s) , (1.6)

the LLN reads

lim
ε→0

λ{s ≤ t : Wε
ψ(s) ≤ x} = t�(x/||ψ||2) (a.s.) . (1.7)

Notice that when ψ = ψ1 := 1[−1,0], then Wε
ψ =Wε

1 .
The fBM with Hurst index H �= 1/2 shares also properties (P1, P2) but not (P3)

with the above processes. Nevertheless, since it is Gaussian, with an explicit spectral
density, we prove the LDP for (με) under specific conditions on the mollifier, thanks
to a criterion of [7].

Let us give now the general framework needed in the sequel. Recall that a real-
valued process {X(t), t ∈ R} is self-similar with index H > 0 if

(∀a > 0) {X(at), t ∈ R} (d)= {aHX(t), t ∈ R} .

If X is a self-similar process with index H we set, if ψ ∈ BV

X ε
ψ = ε1−HẊε

ψ , (1.8)
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where Ẋε
ψ (see (1.5)) is assumed to be well defined. In particular

X 1
ψ(t) =

∫
X(t − s)dψ(s) . (1.9)

The following lemma is the key for our study. Notice that we focus on the occupation
measure. We let the easy proof to the reader.

Lemma 1.1 Assume that X is self-similar with index H . For fixed ε and ψ ∈ BV ,
we have

(
X ε

ψ(t), t ∈ R

)
(d)=

(
X 1

ψ(tε−1), t ∈ R

)
(1.10)

μX ε
ψ

(d)= ε

∫ ε−1

0
δX 1

ψ(t)dt . (1.11)

From the above identity in law, it is clear that the asymptotic behavior of μX ε
ψ

is

connected to the long time asymptotics of the occupation measure of X 1
ψ . We will

focus on cases where the process X 1
ψ is stationary and ergodic, namely when the

underlying process X is an α-stable Lévy process or a fractional Brownian motion.
Both have stationary increments.

We give now a definition which will set the framework for the processes studied
in the sequel. Recall that the τ -topology on M1(R) is the topology induced by the
space of bounded measurable functions on R. It is stronger than the weak topology
which is induced by Cb(R).

Definition 1.2 Let F ⊂ BV . We say that a self-similar process X with index H

has the (LDPw,F ,H) (resp. (LDPτ ,F ,H)) property if the process X 1
ψ is well

defined and if for every ψ ∈ F , the family (μX ε
ψ
) satisfies the LDP in M1(R)

equipped with the weak topology (resp. the τ -topology), in the scale ε−1, with good
rate function

�∗ψ(μ) = sup
f∈Cb(R)

∫
f dμ−�ψ(f ) , (1.12)

(the Legendre dual of �ψ ) where for f ∈ Cb(R),

�ψ(f ) = lim
T→∞ T −1 logE exp

∫ T

0
f (X 1

ψ(t))dt , (1.13)

in particular, the above limit exists.

Roughly speaking, this means that for ε small, the probability of seeing μX ε
ψ

close to μ is of order e
−�∗ψ (μ)/ε. In this framework, here is the main result (the

precise version is given in Sects. 2 and 3).
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Theorem 1.3

1. The α-stable Lévy process has the (LDPτ ,BVc, 1/α) property.
2. The fractional Brownian motion of index H ∈ [0, 1) has the (LDPw,GH ,H)

property for some explicit GH .

Before giving the outline of our paper, let us mention that there is a broad
literature on the fluctuations around the LLN mentioned above. For example if g

is a real even function g such that E[g2(N)] <∞, then

(
ε−1/2

∫ t

0

(
g(Wε

ψ (s)) − Eg(N/||ψ ||2)
)

ds, t ∈ [0, 1]
)
⇒ (σ (g)W(t), t ∈ [0, 1]) ,

(1.14)

where σ(g) is an explicit positive constant [3]. In 2008, Marcus and Rosen in [19]
have studied the convergence of the Lp norm (this is g(x) = |x|p in (1.14)) of the
increments of stationary Gaussian processes and solved the problem in a somewhat
definitive form. In another article [20] they said that their proofs were initially based
on Wschebor’s method, but afterwards they changed, looking for a more general and
broadly used procedure.

Here is the outline. In Sect. 2 we prove the LDP for the occupation measure and
the space-time occupation measure, covering in particular the Brownian motion.
Section 3 is devoted to the fBm process, covering again the Brownian motion.
In Sect. 4, we state a result for some “process level” empirical measure. At last,
in Sect. 5 we study discrete versions of Wschebor’s theorem using the Skorokhod
embedding theorem.

Let us notice that except in a specific case in Sect. 3.3.2, we cannot give an
explicit expression for the rate function. Moreover if one would be able to prove
that the rate function is strictly convex and its minimum is reached at λ ×N (0; 1),
this would give an alternate proof of Wschebor’s results.

We let for a future work the study of increments for

• Gaussian random fields in R
d

• multi-parameter indexed processes
• the Rosenblatt process.

2 The α-Stable Lévy Process

Let α ∈ (0, 2] fixed. The α-stable Lévy process (S(t), t ≥ 0; S(0) = 0) has
independent and stationary increments and is 1/α-self-similar. If ψ ∈ BVc, we
set

Sε
ψ (t) := ε1−1/α

∫
S(t − s)dψε(s) ,
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where we have extended S to zero on R−. As in (1.2) and (1.3), we may build the
measures MSε

ψ
and μSε

ψ
. In [1], Theorem 3.1, it is proved that a.s.

MSε
ψ
⇒ λ×�α (a.s.)

where �α is the law of ||ψ||αS(1).

2.1 LDP for (μSε
ψ
)

Proposition 2.1 If F = BVc, then the α-stable Lévy process has the
(LDPτ ,F , 1/α) property.

Proof We apply Lemma 1.1 with X = S and H = 1/α.
Assume that the support of ψ is included in [a, b]. Since S has independent and

stationary increments, a slight modification of the argument in [22] ex. 3.6.2 p.138
proves that the process (S1

ψ(t), t ≥ b) is stationary. Moreover the process S1
ψ is (b−

a)-dependent. This last property means that σ(S1
ψ(u), u ∈ A) and σ(S1

ψ(u), u ∈ B)

are independent as soon as the distance between A and B is greater than (b − a).
Consequently, the process (S1

ψ) is clearly hypermixing and so satisfies the LDP in
the τ -topology (see [8] Theorem 2 p. 558) and the other conclusions hold. ��
Remark 2.2 When α = 2 we recover the Brownian case. In particular, when ψ =
ψ1

S1
ψ(u) = W(u+ 1)−W(u) . (2.1)

This process is often called Slepian process; it is Gaussian, stationary and 1-
dependent.

2.2 LDP for (MSε
ψ
)

We will now state a complete LDP, i.e. an LDP for (MSε
ψ
).1

Following the notations of Dembo and Zajic in [12] we denote by AC0 the set of
maps ν : [0, 1] →M+(R) such that

• ν is absolutely continuous with respect to the variation norm,

1 We could have presented the following Theorem 2.3 before Sect. 2.1 and then deduce an LDP as
in Proposition 2.1 for μX ε

ψ
by contraction. But this would have been in the weak topology, (and

Proposition 2.1 is in the τ -topology), and we choose the present exposition for the sake of clarity.
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• ν(0) = 0 and ν(t)− ν(s) ∈Mt−s(R) for all t > s ≥ 0,
• for almost every t ∈ [0, 1], ν(t) possesses a weak derivative.

(This last point means that (ν(t + η) − ν(t))/η has a limit as η → 0—denoted by
ν̇(t)- in M+(R) equipped with the topology of weak convergence).

Let F be the mapping

M+([0, 1] ×R) → D
([0, 1];M+(R)

)
M �→ (t �→ F(M)(t) = M([0, t], ·)) (2.2)

or in other words F(M)(t) is the positive measure on R defined by its action on
ϕ ∈ Cb:

〈F(M)(t), ϕ〉 = 〈M, 1[0,t ] × ϕ〉 .

Here D([0, 1]; ·) is the set of càd-làg functions, equipped with the supremum norm
topology. At last, let E be the image of M1([0, 1] ×R) by F .

Theorem 2.3 For ψ ∈ BVc, the family
(
MSε

ψ

)
satisfies the LDP inM1([0, 1]×R)

equipped with the weak topology, in the scale ε−1 with the good rate function

�∗(M) =

⎧⎪⎨
⎪⎩

∫ 1

0
�∗ψ(γ̇ (t))dt if γ := F(M) ∈ AC0,

∞ otherwise.
(2.3)

Proof As in the above sections, it is actually a problem of large deviations in large
time. For the sake of simplicity, set

Y = S1
ψ

and T = ε−1. Using Lemma 1.1, the problem reduces to the study of the family
(MY(·T )). First, we study the corresponding distribution functions:

HT (t) := F(MY(·T ))(t) =
∫ t

0
δY (sT )ds = T −1

∫ tT

0
δY (s)ds . (2.4)

In a first step we will prove that the family (HT ) satisfies the LDP, then in a second
step we will transfer this property to MY(·T ).

First Step We follow the method of Dembo-Zajic [12]. We begin with a reduction
to their “discrete time” method by introducing

ηk =
∫ k

k−1
δY (s)ds ∈M1(R) , (k ≥ 1) and ST (t) =

�tT �∑
1

ηk .
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It holds that

HT (t)− T −1ST = T −1
∫ tT

�tT �
δY (s)ds (2.5)

and this difference has a total variation norm less than T −1, so that the families
(T −1ST ) and (HT ) are exponentially equivalent (Def. 4.2.10 in [13]).

The sequence ηk is 1-dependent, hence hypermixing (see condition (S) in [12, p.
212]) which implies, by Th. 4 in the same paper that (T −1ST ) satisfies the LDP in
D([0, 1];M+(R)) provided with the uniform norm topology, with the convex good
rate function

I (ν) =
∫ 1

0
�	

ψ(ν̇(t))dt (2.6)

when ν ∈ AC0 and∞ otherwise.
We conclude, owing to Th. 4.2.13 in [13], that (HT ) satisfies the same LDP.

Second Step We now have to carry this LDP to (MY(·T )) (see (2.4)). For every
T > 0, HT ∈ E ⊂ D([0, 1);M+(R)). We saw that the effective domain of I is
included in E . So, by Lemma 4.1.5 in Dembo-Zeitouni [13], (HT ) satisfies the same
LDP in E equipped with the (uniform) induced topology.

Now, F is bijective fromM1([0, 1]×R) to E . Let us prove that F−1 is continuous
from E (equipped with the uniform topology) to M1([0, 1] ×R) equipped with the
weak topology.

For f : [0, 1] → R, let

‖f ‖BL = sup
x
|f (x)| + sup

x �=y

|f (x)− f (y)|
|x − y| (2.7)

dBL(μ, ν) = sup
f :‖f ‖BL≤1

∣∣∣∣
∫

f dμ−
∫

f dν

∣∣∣∣ (2.8)

The space M+(R) is a Polish space when equipped with the topology induced by
dBL, compatible with the weak topology.

It is known that Mn → M ∈M1([0, 1] ×R) weakly as soon as

Mn(1[0,t ] ⊗ f )→ M(1[0,t ] ⊗ f ) (2.9)

for every t ∈ [0, 1] and every f such that ‖f ‖BL <∞. But, for such t, f we have

sup
t
|Mn(1[0,t ] ⊗ f )−M(1[0,t ] ⊗ f )| ≤ dBL(F (Mn), F (M)) (2.10)

which implies that F−1 is continuous from E to M1([0, 1] × R).
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By the contraction principle (Th. 4.2.1 in [13]) we deduce that MY(·T ) satisfies
the LDP in M1([0, 1] × R) with good rate function J (M) = I (F (M)), where I is
given by (2.6). ��

3 The Fractional Brownian Motion

3.1 General Statement

We now treat the case of self-similar Gaussian processes with stationary increments,
i.e. fractional Brownian motion (fBm in short). The fBm with Hurst parameter H ∈
[0, 1) is the Gaussian process (BH (t), t ∈ R) with covariance

EBH (t)BH (s) = 1

2

(
|s|2H + |t|2H − |t − s|2H

)
.

It has a chaotic (or harmonizable) representation (see [22, Prop. 7.2.8])

BH (t) = 1

CH

∫
R

(
eiλt − 1

)
|λ|−H− 1

2 dW(λ) (3.1)

where W is a complex Brownian motion and

C2
H =

2π

�(2H + 1) sin(πH)
.

This process has stationary increments and is self-similar of index H . When H =
1/2 we recover the Brownian motion, and it is the only case where the increments
are independent.

All along this section, X will denote BH .
When ψ ∈ BVc, the LLN can be formulated as:

MX ε
ψ
⇒ λ×N (0; σ 2

ψ) (a.s.) , (3.2)

where N (0; σ 2
ψ) is the centered normal distribution of variance

σ 2
ψ = −

1

2

∫∫
|u− v|2Hdψ(u)dψ(v) ,

(see [1]).
To get an LDP we first apply Lemma 1.1 with X = BH . But now, for lack of

independence of increments, we cannot use the method of Sect. 2. The process X 1
ψ is

stationary and Gaussian. We will work with its spectral density and apply Theorem
2.1 in [7], which ensures the LDP as soon as the spectral density is in C0(R), the set
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of all continuous functions R→ R that vanish at ±∞. Actually we can extend the
set of admissible mollifiers.

From Fourier analysis we adopt the following notation: when f, g ∈ L1(R)

f̂ (θ) =
∫

eitθf (t)dt , ǧ(γ ) = 1

2π

∫
e−iγ xg(x)dx .

Let, for ψ ∈ L2

�
ψ
H (λ) = C−2

H |ψ̂(λ)|2|λ|1−2H , (3.3)

and

G̃H := {ψ ∈ L2(R) : �ψ
H ∈ L1} .

Notice that for 0 < H < 1/2, L1 ∩ L2 ⊂ G̃H . For ψ ∈ G̃H we can define as in
Pipiras and Taqqu [21]

∫
ψ(t − s)dBH (s)

as the limit of
∫

ψn(t − s)dBH (s) = ∫
BH (t − s)dψn(s) for ψn a sequence of

simple functions (see Th. 3.1 therein). For these functions ψn we have

∫
ψn(t − s)dBH (s) = iC−1

H

∫
eitλψ̂n(−λ)λ|λ|−H− 1

2 dW(λ)

Owing to the way of convergence of ψn we have, in the limit

∫
ψ(t − s)dBH (s) = iC−1

H

∫
eitλψ̂(−λ)λ|λ|−H− 1

2 dW(λ)

hence Xψ
1 is a Gaussian process and its spectral density is �

ψ
H .

Applying the criterion on the continuity of the spectral density, we arrive at the
following result on large deviations.

Theorem 3.1 The process BH has the (LDPw,GH ,H) property, where

GH = {ψ ∈ L2 : �ψ
H ∈ L1 ∩ C0} ⊂ G̃H .
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3.2 Contraction

Since the mapping μ �→ ∫ |x|pdμ(x) is not continuous for the weak topology, we
cannot obtain an LDP for the moments of μX ε

ψ
by invoking the contraction principle

(Th. 4.2.1 in [13])). Nevertheless, in the case of the fBm, the Gaussian stationary
character of the process allows to conclude by a direct application of Corollary 2.1
in [7].

Proposition 3.2 If either H ≤ 1/2 and ψ ∈ G or H > 1/2 and ψ ∈ G ∩ GH , then

the family
(∫ 1

0 |X ε
ψ(t)|2dt

)
, where X = BH , satisfies the LDP, in the scale ε−1 with

good rate function

Iψ (x) = sup
−∞<y<1/(4πM)

{xy − L(y)} ,

where

L(y) = − 1

4π

∫
log(1− 4πy�H(s))ds

�H is the spectral density given by (3.3) and

M = sup
λ

�H (λ) .

More generally, for 0 ≤ p ≤ 2, the family
(∫ 1

0 |X ε
ψ(t)|pdt

)
satisfies the LDP at

scale ε with a convex rate function.

3.3 Particular Cases

3.3.1 Remark: Two Basic Mollifiers

(1) As seen before, the function ψ1 = 1[−1,0] is the most popular. It allows to study
the first order increments X(t + ε)−X(t). It belongs to G but since

|ψ̂1(λ)| = | sin(λ/2)|
|λ/2| ,

it does not belong to GH for H > 1/2.
For H = 1/2, we recover the Brownian motion and replace the notation X

by W . The process W1
ψ1

is the Slepian process (2.1) with covariance

r(t) = (1− |t|)+ ,
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and spectral density:

ř(λ) = 1

2π

(
sin λ

2
λ
2

)2

.

As it is said above since ř is C0, the occupation measure satisfies a LDP in
the weak topology in the scale ε−1. This argument could have been used to
prove the LDP, instead of the argument in Sect. 2 (but for the weak topology
and not the τ -topology). Notice that although ř is differentiable, we cannot
apply Theorem 5.18 in Chiyonobu and Kusuoka [9], since the condition (5.19)
therein is violated in x ∈ 2πZ.

(2) Another interesting function is

ψ2 = 1

2

(
1[−1,0] − 1[0,1]

)

which yields

Ẋε
ψ2

(t) = X(t + ε)− 2X(t)+X(t − ε)

2ε
. (3.4)

Since

|ψ̂2(λ)| = sin2(λ/2)

|λ/2| ,

we see that ψ2 ∈ G ∩ GH for every H ∈ (0, 1) and then (μX ε
ψ2

) satisfies the

LDP.

In (3.4) we are faced with second order increments of the process X. These
increments are linked with the behavior of the second derivative of Xε when it
exists. Let us consider ψ smooth enough so that Xε

ψ , defined in (1.4), has a second
derivative. For instance, let ψ ∈ G such that ψ ′ ∈ G. Then the function Xε

ψ is twice
differentiable and

Ẍε
ψ(t) = ε−2

∫
X(t − εs)dψ ′(s) = ε−1Ẋε

ψ ′(t) .

Now, ψ ′ ∈ GH since

|ψ̂ ′(λ)||λ| 12−H = |ψ̂(λ)||λ| 32−H → 0

as λ→ 0.
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Since X ε
ψ ′ = ε2−HẌε

ψ , we conclude that for every H ∈ (0, 1), the family

(με2−HẌε
ψ
) satisfies the LDP in the scale ε−1 and good rate function �	

ψ ′ . The choice

ψ(t) = 1

2
(1− |t|)+

allows to recover ψ ′ = ψ2 and the second order increments.

3.3.2 Looking for an Explicit Rate Function

It is not easy to find examples of explicit rate functions for the occupation measures
of the above stationary processes X 1

ψ , since in general the limiting cumulant
generating function � is not explicit. A particularly nice situation in the Gaussian
case will occur if the process is also Markovian, i.e. if X 1

ψ is the Ornstein-Uhlenbeck
(OU) process. Indeed, for the OU, the rate function for the LDP of the occupation
measure is given by the Donsker-Varadhan theory [23, ex. 8.28]:

�∗(μ) = 1

2

∫
R

|g′(x)|2d�(x)

if dμ = g2d�. The goal is then to find a mollifier ψ such that X 1
ψ is distributed as

OU.
For OU, the covariance and spectral density are, respectively

r(t) = e−|t | , ř(λ) = 1

π(1+ λ2)
.

Let us assume that the underlying process is fBm. Remember that the process
X 1

ψ is then stationary Gaussian with spectral density given in (3.3).
Owing to (3.3), the equation

X 1
ψ

(d)= OU (3.5)

may be turned into

∣∣∣ψ̂(λ)

∣∣∣2 = C2
H

|λ|2H−1

π(1+ λ2)
. (3.6)

(1) For H < 1/2, this function is not continuous in 0, so it cannot be the Fourier
transform of an integrable kernel.
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(2) For H = 1/2, we present two answers.

(a) Let us choose

ψ̂(λ) =
√

2

1− iλ
, ψ(x) = √2e−x1[0,∞)(x) ,

and then, the formula (1.6) becomes

W1
ψ(t) = √2

∫ t

−∞
e−(t−s)dWs.

This is the classical representation of the stationary OU process as a
stochastic integral [22, p. 138].

(b) Let us choose ψ such that

ψ̂(λ) =
√

2√
1+ λ2

.

This function is in L2 but not in L1. We can recover it by the semi
convergent integral:

ψ(x) = 1

2π

∫ ∞
−∞

e−ixλ

√
2√

1+ λ2
dλ,

i.e.

ψ(x) =
√

2

π

∫ ∞
0

cos(xλ)√
1+ λ2

dλ =
√

2

π
K0(x),

where K0 is the MacDonald (or modified Bessel) function (see [11, p. 369]
or [14] formula 17 p. 9). This function can be expressed also as

K0(x) = √πe−x�(1/2, 1; 2x) ,

where � is the confluent hypergeometric function (see [15, p. 265]), or (see
[11, p. 369])

K0(x) =
∫ ∞

0
e−x cosh θdθ .

For these two kernels, (3.6) implies that ψ ∈ GH (defined in Theorem 3.1).

Remark 3.3 It is clear that other solutions of (3.5) hence of (3.6) exist. For the
general class of solutions corresponding to semimartingales see [2, Sec. 6].
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(3) For H > 1/2 we have if ψ is even,

ψ̂(λ) = CH
|λ|H− 1

2√
π(1+ λ2)

. (3.7)

This function is in L2 but not in L1 (again). The corresponding kernel is2

ψ(x) = CH

π

∫ ∞
0

cos(λx)
|λ|H− 1

2√
π(1+ λ2)

dλ . (3.8)

Again, (3.7) implies that ψ ∈ GH .

We have proved

Proposition 3.4 When X = BH with H ≥ 1/2 and ψ is given by (3.8), the family
(μX ε

ψ
) satisfies the LDP, in the scale ε−1 with good rate function

�∗(μ) = 1

2

∫
R

|g′(x)|2d�(x)

if dμ = g2d�.

Remark 3.5 In this case, �∗ has a unique minimum at μ = N (0; 1) which allows
to recover Wschebor’s result on a.s. convergence.

4 “Level Process” Study

In the study of strong convergence problems such as the almost sure CLT (see [17]
and [18]), an interesting problem is the LDP of empirical measures at the level
of processes. If we restrict us to the Brownian case to simplify, the corresponding
problem could be the behavior of

∫ 1

0
δ{

W(s+ε)−W(s)√
ε

, s≥t
}dt .

Here we do not see clearly the interest of such a study for the Wschebor’s theorem.
It seems more natural to consider the family (ξε

t , t ≥ 0) of shifted processes

ξε
t : s ∈ [0, 1] �→ W(t + εs)−W(t)√

ε
∈ C([0, 1]) , (4.1)

2 We did not find this integral in the literature on special functions.
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so that for every t > 0, ξε
t is C([0, 1])-valued. The new occupation measure is now

Lε :=
∫ 1

0
δξε

t
dt . (4.2)

By the scaling invariance, for every ε > 0,

(ξε
εt , t ≥ 0)

(d)= (ξ1
t , t ≥ 0) , (4.3)

and then

Lε =
∫ 1

0
δξε

t
dt

(d)= L̃ε := ε

∫ ε−1

0
δξ1

t
dt . (4.4)

Since we have

ξ1
t = (W(t + s)−W(t), s ∈ [0, 1]), (4.5)

the process (ξ1
t , t ≥ 0) will be called the meta-Slepian process in the sequel. For

every t , the distribution of ξ1
t is the Wiener measure W on C([0, 1]).

The meta-Slepian process is clearly stationary and 1-dependent. Since it is
ergodic, the Birkhoff theorem tells us that, almost surely when ε → 0, L̃ε

converges weakly to W. From the equality in distribution (4.4) we deduce that (Lε)

converges in distribution to the same limit. But this limit is deterministic, hence the
convergence of (Lε) holds in probability. We just proved:

Theorem 4.1 When ε → 0, the family of random probability measures (Lε) on
C([0, 1]) converges in probability weakly to the Wiener measure W on C([0, 1]).

The problem of a.s. convergence raises some difficulties. We have obtained on the
one hand a partial a.s. fidi convergence (which is no more than a multidimensional
extension of Wschebor’s theorem) and on the other hand an a.s. convergence when
we plug C([0, 1]) into the Hilbert space L2([0, 1]), equipped with its norm.

To this last purpose, if μ is a measure on C([0, 1]), we will denote by μL its
extension to L2([0, 1)], i.e. that for every Borel set B of L2([0, 1]),

μL(B) = μ(B ∩ C([0, 1])) .

Theorem 4.2

1. When ε → 0, for every integer d and every s1, . . . , sd ∈ [0, 1], the fam-
ily (Lεπ

−1
s1,...,sd

) of random probability measures on R
d converges weakly to

Wπ−1
t1,...,td

on C([0, 1]), where πt1,...,td is the projection: f ∈ C([0, 1]) �→
(f (t1), . . . , f (td)).

2. When ε → 0, almost surely, the family of random probability measures (LL
ε ) on

L2([0, 1]) converges weakly to the Wiener measureWL on L2([0, 1]).
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Remark 4.3 We called 1. a partial fidi convergence, since we failed to prove a full
almost sure fidi convergence, which would be: Almost surely, for every d, t1, . . . , td
(Lεπ

−1
s1,...,sd

) ⇒ Wπ−1
t1,...,td

on C([0, 1]). Nevertheless it is plausible that such a
statement holds true.

To prove Theorem 4.2, we need the following lemma, which is straightforward
in view of stationarity and 1-dependence.

Lemma 4.4 If F is a bounded differentiable function with bounded derivative from
C([0, 1]) (resp. L2([0, 1])) to R. Then

a.s. lim
ε→0

∫ 1

0
F(ξε

t )dt =
∫
C([0,1])

F (ξ)W(dξ) . (4.6)

Proof of Lemma 4.4 It is along the lines of the proof of Theorem 2.1 in [1]. We first
claim a quadratic convergence as follows. By Fubini and stationarity

E

(∫ 1

0
F(ξε

t )dt

)
=

∫ 1

0
EF(ξε

t )dt =
∫
C([0,1])

F (ξ)W(dξ) ,

and by Fubini and 1-dependence,

Var

(∫ 1

0
F(ξε

t )dt

)
=

∫ ∫
|t−s|<2ε

Cov
(
F(ξε

t ), F (ξε
s )

)
dtds ≤ 4ε||F ||2∞ . (4.7)

The Borel-Cantelli lemma implies a.s. convergence of
∫ 1

0 F(ξε
t )dt along any

sequence (εn) such that
∑

n εn <∞.
To go on, take εn+1 < ε < εn and notice that

∣∣∣∣
∫ 1

0
F(ξε

t )− F(ξ
εn
t )dt

∣∣∣∣ ≤ ||F ′||∞ sup
t,u∈[0,1]

∣∣ξε
t (u)− ξ

εn
t (u)

∣∣ . (4.8)

Now we use some properties of Brownian paths. On [0, 2] the Brownian motion
satisfies a.s. a Hölder condition with exponent β < 1/2, so that we can define the
a.s. finite random variable

M := 2 sup
u,v∈[0,2]

|W(u)−W(v)|
|v − u|β . (4.9)



164 J. R. León and A. Rouault

So,

sup
s∈[0,1]

|ξε
t (s)− ξ

εn
t (s)| ≤ M

2

(εn − ε)β

ε1/2
+ M

2
(εn)β

(
ε−1/2 − (εn)−1/2

)

= M

2

(εn)β

ε1/2

[(
1− ε

εn

)β

+
(

1−
√

ε

εn

)]
≤M

ε
β
n − εβ

ε1/2
≤ M

ε
β
n − ε

β
n+1

ε
1/2
n+1

.

(4.10)

The choice of εn = n−a with a > 1 and β ∈
(

a
2(a+1)

, 1
2

)
ensures that the right hand

side of (4.10), hence of (4.8) tends to 0 a.s., which ends the proof. ��
Proof of Theorem 4.2

1. The (random) characteristic functional of the (random) probability measure
Lεπ

−1
s1,...,sd

is

(a1, . . . , ad) �→
∫

Fa1,...,ad (ξ
ε
t )dt

where the function

Fa1,...,ad (ξ) := exp i
d∑
1

akξ(sk)

fulfills the conditions of Lemma 4.4. We have then, for every (a1, . . . , ad), a.s.

lim
∫

Fa1,...,ad (ξ
ε
t )dt =

∫
C([0,1])

Fa1,...,ad (ξ)W(dξ) (4.11)

Taking for A a countable dense subset of Rd , we have that a.s. for every a ∈ A,
(4.11) holds true This implies that, a.s. the family Lεπ

−1
s1,...,sd

indexed by ε has
Wπ−1

s1,...,sd
as its only limit point. It remains to prove tightness. Assume that d = 1

to simplify. A classical inequality [6, p. 359] gives:

λ{t ∈ [0, 1] : |ξε
t (s)| > M} ≤ M

2

∫ 2/M

−2/M

(
1−

∫
Fa(ξ

ε
t )dt

)
da .

The integrand is bounded by 2 and converges for a.e. a. By Lebesgue’s theorem,
this yields to

∫ 2/M

−2/M

(
1−

∫
Fa(ξ

ε
t )dt

)
da→

∫ 2/M

−2/M

(
1−

∫
C([0,1])

Fa(ξ)W(ξ)

)
da .

(4.12)

The rest is routine.
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2. We will use a method coming from [16, p. 46].3 It consists in checking
Billingsley’s criterion on intersection of balls [6, p. 18] and approximating
indicators by smooth functions. Let us give details for only one ball to shorten
the proof.

For δ ∈ (0, 1), define

φδ(t) = 1(0,1](t)+ 1[1,(1+δ)2](t)
1

C

∫ ((1+δ)2−t)

(2δ+δ2)

0
e
− 1

s(1−s) ds , (4.13)

where

C =
∫ 1

0
e
− 1

s(1−s) ds .

The function φδ has a bounded support and it is continuous and ||φδ||∞ = 1.
Now we consider ψδ : L2([0, 1] → R defined by

ψδ(ξ) = φδ(||ξ ||2).

This function is C∞ and has all its derivatives bounded. For every ξc ∈
L2([0, 1]), r > 0, δ ∈ (0, r) we have the nesting

1B(ξc;r−δ)(ξ ) ≤ ψ δ
r−δ

(
ξ − ξc

r − δ

)
≤ 1B(ξc;r)(ξ ) ≤ ψδ

r

(
ξ − ξc

r

)
≤ 1B(ξc;r+δ)(ξ ) .

(4.14)

Take a sequence δn → 0.

Let us remind that the measure LL
ε is random. We did not write explicitly the

item W for simplicity, although it is present in (4.1).
For every test function F as in Lemma 4.4, we have a null set NF such that for

W /∈ NF

∫
L2([0,1])

F (ξ)LL
ε (dξ)→

∫
C([0,1])

F (ξ)W(dξ) . (4.15)

Let (gk)k≥1 be a countable dense set in L2([0, 1]), and for q ∈ Q,

F−n,k,q (ξ) = ψδn/(q−δn)

(
ξ − gk

q − δn

)
, F+n,k,q (ξ) = ψδn/q

(
ξ − gk

q

)

3 It is used there to prove that in Hilbert spaces, convergence in the Zolotarev metric implies weak
convergence.
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and

N =
⋃
n,k,q

(
NF−n,k,q

∪NF+n,k,q

)
.

Take W /∈ N . Assume that the ball B(ξc; r) is given. For every γ > 0, one can find
k ≥ 1 and q ∈ Q

+ such that

||ξc − gk|| ≤ γ , |r − q| ≤ γ . (4.16)

By (4.14) we have

LL
ε (B(ξc; r)) ≤

∫
ψδn/r

(
ξ − ξc

r

)
LL

ε (dξ) . (4.17)

Besides, by (4.16) and by differentiability, there exists Cn > 0 such that

ψδn/r

(
ξ − ξc

r

)
≤ F+n,k,q (ξ)+ Cnγ . (4.18)

Now, by (4.15),

lim
ε

∫
L2([0,1])

F+n,k,q(ξ)LL
ε (dξ) =

∫
C([0,1])

F+n,k,q (ξ)W(dξ) , (4.19)

and by (4.14) again

∫
C([0,1])

F+n,k,q(ξ)W(dξ) ≤W(B(gk, q + δn)) . (4.20)

So far, we have obtained

lim sup
ε

LL
ε (B(ξc; r)) ≤W(B(gk, q + δn))+ Cnγ . (4.21)

It remains, in the right hand side, to let γ → 0 (hence gk → ξc and q → r), and
then n→∞ to get

lim sup
ε

LL
ε (B(ξc; r)) ≤W(B(ξc, r)) . (4.22)

With the same line of reasoning, using the other part of (4.14) we can obtain

lim inf
ε

LL
ε (B(ξc; r)) ≥W(B(ξc, r)) , (4.23)

which ends the proof for one ball.
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A similar proof can be made for functions approximating intersection of balls as
in Theorem 2.2 of [16] and as a consequence the a.s. weak convergence follows. ��

To end this section, we state the LDP for (Lε) defined in (4.2). It is an extension
of the scalar case (Proposition 2.1) and since the proof is similar, we omit it.

Proposition 4.5 The family (Lε) satisfies the LDP inM1(C([0, 1])) equipped with
the weak topology, in the scale ε−1 with good rate function

�∗(L) = sup
F∈Cb(C([0,1]))

∫
C([0,1])

F (ξ)L(dξ)−�(F ), (4.24)

(the Legendre dual of �) where for every F ∈ Cb(C([0, 1])),

�(F ) = lim
T→∞ T −1 logE

∫ T

0
F(ξ1

t )dt . (4.25)

5 Discretization and Random Walks

For a possible discrete version of Wschebor’s theorem and associated LDP, we can
consider a continuous process S observed in a uniform mesh of [0, 1] and study the
sequence {S (

k+r
n

) − S
(

k
n

)
, k ≤ n − r} where the lag r may depend on n. On that

basis, there are two points of view. When r is fixed, there are already results of a.s.
convergence of empirical measures of increments of fBm [4] and we explain which
LDP holds. When r depends on n with rn → ∞ and rn/n → 0, we are actually
changing t into k/n and ε into rn/n in the above sections. It allows to obtain results
on random walks.We state convergence (Theorem 5.1) and LDP (Theorem 5.2)
under specific conditions.

All the LDPs mentioned take place in M1(R) equipped with the weak conver-
gence.

5.1 Fixed Lag

In [4], beyond the Wschbebor’s theorem, there are results of a.s. convergence of
empirical statistics built with the increments of fBm. The authors defined p. 39 the
second order increments as

�nBH (i) = nH

σ2H

[
BH

(
i + 2

n

)
− 2BH

(
i + 1

n

)
+ BH

(
i

n

)]
.
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and proved that as n→∞

1

n− 1

n−2∑
0

δ�nBH (i) ⇒ N (0; 1) (a.s.) , (5.1)

(Th. 3.1 p. 44 in [4]). Moreover, in a space-time extension, they proved that

1

n− 1

n−2∑
0

δ i
n ,�nBH (i) ⇒ λ⊗N (0; 1) (a.s.) , (5.2)

(Th. 4.1 in [5]).
Let us restrict for the moment to the case H = 1/2. The empirical distribution in

(5.1) has the same distribution as

1

n− 1

n−2∑
0

δ2−1/2(Xi+2−Xi+1)

where the Xi are independent and N (0; 1) distributed. We can deduce the LDP (in
the scale n) from the LDP for the 2-empirical measure by contraction. If i is the
mapping

R
2 → R

(x1, x2) �→ (x2 − x1)/
√

2 (5.3)

the rate function is

I (ν) = inf{I2(μ);μ ◦ i−1 = ν} , (5.4)

where I2 is the rate function of the 2-empirical distribution (see [13, Th. 6.5.12]).
In the same vein, we could study the LDP for the empirical measure

1

n− r

n−r−1∑
0

δW(k+r)−W(k)√
r

which looks like Wr
1 . When this lag r is fixed, the scale is n and the rate function is

obtained also by contraction (r = 1 is just Sanov’s theorem).
This point of view could be developed also for the fBm using stationarity instead

of independence.
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5.2 Unbounded Lag

Let (Xi) be a sequence of i.i.d. random variables and (Si) the process of partial
sums. Let (rn) be a sequence of positive integers such that limn rn = ∞, and assume
that

εn := rn

n
↘ 0 . (5.5)

Set

V n
k :=

Sk+rn − Sk√
rn

, mn = 1

n

n∑
1

δV n
k

. (5.6)

The next theorems state some extensions of Wschebor’s theorem and give the
associated LDPs. The a.s. convergence is obtained only in the Gaussian case under
an additional condition. It seems difficult to find a general method.

Theorem 5.1

1. If EX1 = 0,EX2
1 = 1, then

mn ⇒ N (0; 1) (in probability) . (5.7)

2. If X1 ∼ N (0; 1) and if (εn) is such that there exists δ ∈ (0, 1/2) and a
subsequence (nk) satisfying

∑
k

εnk <∞ and εnk = εnk+1 + o(ε1+δ
nk+1

) , (5.8)

it holds that

mn ⇒ N (0; 1) (a.s.) . (5.9)

Theorem 5.2

1. Assume that X1 ∼ N (0; 1). If limn εnn
1/2 = ∞, then (mn) satisfies the LDP in

the scale ε−1
n with rate function given in (1.12) and (1.13) where ψ = �1.

2. Assume that X1 has all its moments finite and satisfies EX1 = 0, EX2
1 = 1 and

that

0 < lim inf
n

εn log n ≤ lim sup
n

εn log n <∞ . (5.10)

Then (mn) satisfies the LDP in the scale ε−1
n with rate function given in (1.12)

and (1.13) where ψ = �1.
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Remark 5.3 Two examples of (rn) satisfying the assumptions of Theorem 5.1(2)
are of interest, particularly in relation to the LDP of Theorem 5.2. The first one is
rn = �nγ � with γ ∈ (0, 1) (hence εn ∼ nγ−1), for which we can choose nk =
�ka(1−γ )� with a > 1. The second one is rn = �n/ log n� (hence εn ∼ (log n)−1),
for which we can choose nk = �ek2�.
Proof of Theorem 5.1 We use the method of the above Lemma 4.4 inspired by Azaïs
and Wschebor [1]. For a bounded continuous test function f

E

∫
f dmn = Ef

(
Srn√
rn

)
→

∫
f d�

thanks to the CLT. Moreover

Var

(∫
f dmn

)
= 1

n2

∑
|j−k|≤rn

Cov

(
f

(
Sj+rn − Sj√

rn

)
, f

(
Sk+rn − Sk√

rn

))
≤ 8rn

n
||f ||2∞ .

This gives the convergence in probability.
In the Gaussian case, it is possible to repeat the end of the proof of Lemma 4.4.

Under our assumption, we see that for any β ∈ (0, 1/2)

ε
β
nk
− ε

β
nk+1

ε
1/2
nk+1

= o

(
ε
δ+β− 1

2
nk+1

)
,

which implies that it is enough to choose β ∈
(

1
2 − δ, 1

2

)
. ��

Proof of Theorem 5.2

(1) If X1 ∼ N (0; 1), then

(V n
k , k = 1, . . . , n)

(d)=
(

(εn)
−1/2

(
W

(
k

n
+ εn

)
−W

(
k

n

))
, k = 1, . . . , n

)

and then it is natural to consider mn as a Riemannian sum. We now have to
compare mn with

μWεn
1
=

∫ 1

0
δ
ε
−1/2
n (W(t+εn)−W(t))

dt .
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It is known that dBL(μ, ν) given by (2.8) is a convex function of (μ, ν) so that:

dBL(mn,μWεn
1

) ≤
∫ 1

0
dBL(δ

ε
−1/2
n (W(t+εn)−W(t))

, δV n�nt�)dt

≤ ε
−1/2
n

∫ 1

0

∣∣∣∣W(t + εn)−W(t) −W

(�nt�
n
+ εn

)
+W

(�nt�
n

)∣∣∣∣ dt

≤ 2(εn)
−1/2 sup|t−s|≤1/n |W(t)−W(s)|

hence

P(dBL(mn, μWεn
1

) > δ) ≤ P

(
sup

|t−s|≤1/n

|W(t)−W(s)| > δ(εn)
1/2

2

)
≤ 2 exp−nεnδ

2

4
.

If limn εnn
1/2 = ∞ we conclude that

lim
n→∞ εn logP(dBL(mn,μWεn

1
) > δ) = −∞ ,

which means that (mn) and (μWεn
1

) are exponentially equivalent in the scale

ε−1
n (Def. 4.2.10 in [13]).

Now, from our Proposition 2.1 or Theorem 3.1, (μWεn
1

) satisfies the LDP in

the scale ε−1
n . Consequently, from Th. 4.2.13 of [13], the family (mn) satisfies

the LDP at the same scale with the same rate function.
(2) Let us go to the case when X1 is not normal. We use the Skorokhod representa-

tion, as in [17] or in [18] (see also [10] Th. 2.1.1 p.88).
When (Xi) is a sequence of independent (real) random variables such that

EX1 = 0 and EX2
1 = 1, there exists a probability space supporting a Brownian

motion (B(t); 0 ≤ t < ∞) and an increasing sequence (τi) of stopping times
such that

• (τi+1 − τi) are i.i.d., with Eτ1 = 1
• (B(τi+1)− B(τi )) are independent and distributed as X1 .

Moreover, if EX
2q

1 <∞, then Eτ
q

1 <∞.

We have

Sj+r − Sj
(d)= B(τj+r )− B(τj ),

so that

mn
(d)= m̃n := 1

n

n∑
1

δṼ n
k

with Ṽ n
k =

B(τk+rn )− B(τk)√
rn

. (5.11)
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We will compare these quantities with

πn = 1

n

n∑
1

δUn
k

with Un
k :=

B(k + rn)− B(k)√
rn

, (5.12)

which fall into the regime of the above part of the proof. We will prove that the
sequences (m̃n) and (πn) are exponentially equivalent.

Again by convexity of dBL, we have

dBL(m̃n, πn) ≤
n∑
1

1

n
dBL

(
δṼ n

k
, δUn

k

)

≤ 1√
rn

(
sup
k≤n

|B(τk+rn )− B(k + rn)| + sup
k≤n

|B(τk)− B(k)|
)

(5.13)

Our proof will be complete if we show that for all δ > 0

lim
n

rn

n
logP

(
max

k≤n+rn
|B(τk)− B(k)| > δ

√
rn

)
= −∞ . (5.14)

We will apply three times the following known result (cf. [18, Lemma 8] or [17,
Lemma 2.9]).

If (ξi) are i.i.d. centered with E(ξ1)
2p) <∞ for some p ≥ 1, then there exists a

universal constant C > 0 such that for all integers n ≥ 1

E(ξ1 + · · · + ξn)
2p ≤ C(2p)! E(ξ

2p

1 )np . (5.15)

Actually, for α ∈ (0, 1) and k ≤ rα
n , by Markov’s inequality and (5.15)

P(|B(τk)| > δ
√

rn) ≤ C(2p)! δ−2pr
−p
n E((X′1)2p)kp ≤ C(2p)! δ−2p

E((X′1)2p)r
(α−1)p
n ,

(5.16)

and for the same reasons

P(B(k)| > δ
√

rn) ≤ C(2p)! E(N2p)δ2pr
(α−1)p
n . (5.17)

Now, for k ≥ rα
n , and β > 1/2

P(|τk − k| ≥ kβ) ≤ C(2p)! E((τ1 − 1)2p)kp(1−2β) ≤ C(2p)! E((τ1 − 1)2p)r
αp(1−2β)
n .
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Besides,

P
(|B(τk)− B(k)| ≥ 2δ

√
rn , |τk − k| ≤ kβ

) ≤ P

(
sup

|t−k|≤kβ

|B(t)− B(k)| > 2δ
√

rn

)

≤ 2P

(
sup

t∈(0,kβ )

|B(t)| > 2δ
√

rn

)
≤ 4e−2δ2rnk−β

,

which, for k ≤ n+ rn < 2n, yields

P
(|Bτk − Bk| ≥ 2δ

√
rn, |τk − k| ≤ kβ

) ≤ 4e−21−βδ2rnn
−β

. (5.18)

Gathering (5.16), (5.17), and (5.18), we obtain, by the union bound,

P

(
max

k≤n+rn
|B(τk)− B(k)| > 2δ

√
rn

)
≤ Cp

(
δ2pr

1+(α−1)p
n + nr

α(1−2β)p
n

)

+8ne−21−βδ2rnn−β
, (5.19)

where the constant Cp > 0 depends on p and on the distribution of X′1.
Choosing β > 1/2 and rn such that

lim inf
n

rn

n
log rn > 0 , lim sup

n

rn

n
log n <∞ , lim inf

n

r2
n

n1+β
> 0 , (5.20)

we will ensure that for every p > 0

lim
n

rn

n
logP

(
max

k≤n+rn
|B(τk)− B(k)| > δ

√
rn

)
≤ −Cp (5.21)

where C is a constant independent of p, which will prove (5.14).
Now, the set of sufficient conditions (5.20) is equivalent to the condition:

0 < lim inf
n

rn

n
log n ≤ lim sup

n

rn

n
log n <∞ ,

which is exactly (5.10). ��
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