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Preface

The present volume contains contributions of the XV Latin American Congress of
Probability and Mathematical Statistics (CLAPEM, by its acronym in Spanish), held
at Merida, Mexico during December 2–6, 2019.

Endorsed by the Bernoulli Society, this event is the official meeting of the
Sociedad Latinoamericana de Probabilidad y Estadística Matemática (SLAPEM)
and it is the major event in probability and statistics in the region. It gathers an
important number of researchers and students, predominantly from Latin America,
serving as an ideal forum to discuss and to disseminate recent advances in the field,
as well as to reveal the future of our profession.

Over nearly 40 years, the CLAPEMs have greatly contributed to the development
of probability and statistics by promoting collaborations in the region as well as
with the rest of the world. Previous editions were held in Caracas (1980, 1985,
2009), Montevideo (1988), Ciudad de México (1990), San Pablo (1993), Viña del
Mar (1995, 2012), Córdoba (1998), La Habana (2001), Punta del Este (2004), Lima
(2007), Cartagena (2014), and San José (2016).

On this occasion, the congress gathered scholars from over 20 countries and
included a wide set of topics on probability and statistics. The scientific program
included four plenary talks delivered by Gerard Ben Arous, Sourav Chatterjee,
Thomas Mountdford, and Judith Rousseau. The event also benefited from eight
semi-plenary talks given by Pablo Ferrari, Michele Guindani, Chris Holmes, Jean
Michel Marin, Lea Popovic, and Fernando Quintana. The program also included two
courses: “ Hierarchical Bayesian Modeling and Analysis for Spatial BIG Data ” by
Sudipto Banerjee and “ Sharpness of the phase transition in percolation ” by Vincent
Tassion, 10 thematic sessions, 21 contributed sessions, and several contributed talks
and poster presentations.

The volume begins with the chapter by Andrade, Calvillo, Manrique, and
Treviño where the authors present a probabilistic analysis of random interval graphs
associated with randomly generated instances of the data delivery on a line problem
(or DDLP). Angel and Spinka consider the infinite random geometric graph on
a circle of circumference L, which is a random graph whose vertex set is given
by a dense countable set in such circle, and find a dependency behavior on the
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rationality of L. The asymptotic behavior of four binary classification methods,
when the dimension of the data increases and the sample sizes of the classes are
fixed, are studied by Bolivar-Cime. A class of transport distances based on the
Wassertein distances for random vectors of measures is considered by Catalano,
Lijoi, and Prünster. The latter leads to a new measure of dependence for completely
random vectors, and the quantification of the impact of hyperparameters in notable
models for exchangeable time-to-event data. Gil-Leyva studies the construction of
random discrete distributions, taking values in the infinite dimensional simplex, by
means of latent random subsets of the natural numbers, which are then applied
to construct Bayesian non-parametric priors. The connection between generalized
entropies based on a certain family of α-divergences and the class of some predictive
distributions is studied by Gutiérrez-Peña and Mendoza. A class of discrete-time
stochastic controlled systems composed by a large population of N interacting
individuals is considered by Higuera-Chan. The problem is studied by means of the
so-called mean field model. Kouarfate, Kouritzin, and Mackay provide an explicit
weak solution for the 3/2 stochastic volatility model which is used to develop a
simulation algorithm for option pricing purposes. Finally, León and Rouault revisit
Wschebor’s theorems on the a.s. convergence of small increments for processes with
scaling and stationarity properties and then apply such results to deduce that large
deviation principles are satisfied by occupation measures.

In summary, the high quality and variety of these chapters illustrate the rich
academic program at the XV CLAPEM. It is worth noting that all papers were
subject to a strict refereeing process with high international standards. We are very
grateful to the referees, many leading experts in their own fields, for their careful and
useful reports. Their comments were addressed by the authors, allowing to improve
the material in this volume.

We would also like to extend our gratitude to all the authors whose original
contributions appear published here as well as to all the speakers of the XV
CLAPEM for their stimulating talks and support. Their valuable contributions
encourage the interest and activity in the area of probability and statistics in Latin
America.

We hold in high regard the editors of the series Progress in Probability: Davar
Khoshnevisan, Andreas E. Kyprianou, and Sidney I. Resnick for giving us the
opportunity to publish the symposium volume in this prestigious series.

Special thanks go to the Universidad Autónoma de Yucatán and its staff for its
great hospitality and for providing excellent conference facilities. We are indebted to
Rosy Dávalos, whose outstanding organizational work permitted us to concentrate
mainly in the academic aspects of the conference.

The XV CLAPEM as well as the publication of this volume would not have been
possible without the generous support of our sponsors and the organizing institu-
tions: Bernoulli Society; Centro de Investigación en Matemáticas; Consejo Nacional
de Ciencia y Tecnología; Facultad de Ciencias–UNAM; Gobierno de Yucatán;
Google; Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas–UNAM;
Instituto de Matemáticas–UNAM; Universidad Autónoma de Chapingo; Universi-
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dad Autónoma Metropolitana; Universidad Autónoma de Yucatán; and Universidad
Juárez Autónoma de Tabasco.

Finally, we hope the reader of this volume enjoys learning about the various
topics treated as much as we did editing it.

Guanajuato, Mexico Daniel Hernández-Hernández
São Paulo, Brazil Florencia Leonardi
Mexico City, Mexico Ramsés H. Mena
Guanajuato, Mexico Juan Carlos Pardo Millán
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Asymptotic Connectedness of Random
Interval Graphs in a One Dimensional
Data Delivery Problem

Caleb Erubiel Andrade Sernas, Gilberto Calvillo Vives,
Paulo Cesar Manrique Mirón, and Erick Treviño Aguilar

Abstract In this work we present a probabilistic analysis of random interval
graphs associated with randomly generated instances of the Data Delivery on
a Line Problem (DDLP) (Chalopin et al., Data delivery by energy-constrained
mobile agents on a line. In Automata, languages, and programming, pp. 423–434.
Springer, Berlin, 2014). Random Interval Graphs have been previously studied by
Scheinermann (Discrete Math 82:287–302, 1990). However, his model and ours
provide different ways to generate the graphs. Our model is defined by how the
agents in the DDLP may move, thus its importance goes beyond the intrinsic
interest of random graphs and has to do with the complexity of a combinatorial
optimization problem which has been proven to be NP-complete (Chalopin et
al., Data delivery by energy-constrained mobile agents on a line. In Automata,
languages, and programming, pp. 423–434. Springer, Berlin, 2014). We study the
relationship between solvability of a random instance of the DDLP with respect to
its associated interval graph connectedness. This relationship is important because
through probabilistic analysis we prove that despite the NP-completeness of DDLP,
there are classes of instances that can be solved polynomially.

Keywords Connectedness analysis · Data delivery problem · Mobile agents ·
Random interval graph

1 Introduction

The research presented in this work is in the intersection of several disciplines,
Probability Theory, Computer Science, Operations Research, and Graph Theory.
So, in this introduction we define the problem, and provide the basic concepts of
computational complexity and random graphs that are needed to make the work
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self-contained. We also include several references for those that may want to go
deeper in the study of these subjects.

1.1 The Data Delivery on a Line Problem

The production of inexpensive, simple-built, mobile robots has become a reality
nowadays, to the point that a swarm of mobile agents can be used for different
tasks. A practical application would be, for instance, to use a swarm of drones to
explore a cave and produce a map of it by collecting and sharing geospatial data
whenever two drones meet. Or the use of a network of drones to deliver packages
to customers from retail stores or courier services. The Data Delivery Problem is
a mathematical abstraction of such scenarios and has been studied a lot lately, see
e.g., [1, 3, 4, 8, 9, 12]. Here we deal with a specific Data Delivery Linear Problem
(DDLP), namely where agents (robots) are constrained to move in a line. In this
version, a set of n energy-constrained mobile agents are placed on positions 0 ≤
xi ≤ 1, i = 1, . . . , n on the unit interval and have ranges ρi > 0 (denoting the
maximum length of a walk for each agent), the question is whether there is an order
in which the mobile agents should be deployed to pick up the data at a point s called
the source, and collectively move it to a predetermined destination called the target
t > s. The first agent, in the order found, moves to the source, picks up the data
and move it to the right according to its capacity. The second agent moves to the
point where the first agent is, takes the data and move further to the right where
a third agent comes to take over and so on until the data arrives, if possible, at its
destination t . Observe that there are two cases for the movement of an agent. If the
agent is to the left of the position d where the data is, it moves always to the right.
First to pick up the data and then to move it further to the right. If it is to the right of
d , then it has to move first to the left to reach d and then to the right as far as it can.
In both cases, the agent covers the range [xi − aρi, xi + (1 − 2a)ρi] where a = 0
for the first case and a = (xi − d)/ρi for the second. This observation is key to
define graphs associated to the problem. Observe also that the DDLP is a decision
problem; that is to say, the answer is yes or no. In this framework now we can talk
about the computational complexity of the problem.

This problem was introduced by Chalopin et al. [9], and it was shown to be
NP-complete, although for instances where all input values are integers they gave
a quasi-pseudo-polynomial time algorithm. In Sect. 2 we show how this problem is
equivalent to a graph theoretical problem which in turn is analyzed using random
graphs in Sect. 3. So let us first briefly recall some computational complexity and
graph theoretical concepts.
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1.2 Computational Complexity

This field has several roots: The seminal ideas of Jack Edmonds [13] about good
algorithms and good characterizations; the foundational work of Stephen Cook [11]
and Dick Karp [17], to name a few. The field is now represented by one of the
millennium problems: Is P=NP?. A systematic treatment of the subject can be found
in [15], [2].

A decision problem is a collection of instances (propositions) each of which is
true or false. The DDLP is one such decision problems. Each instance is of the
form: The set of agentsQ = {(xi, ρi), i = 1, . . . , n} can move the data from s to t .
This proposition is true or false. The problem is to decide for each instance which
is the correct answer. A decision problem is said to belong to the class P if there
is an algorithm (Turing Machine) that decides correctly which is the answer and
runs in polynomial time, which means that the number of steps the corresponding
Turing Machine has to perform is bounded by a polynomial in the size of the
instance (usually measured in bits). For the DDLP, the size of an instance is the
number of bits required to store Q, s and t . A famous Decision Problem in the
class P is to decide if a given set of linear inequalities has a solution. A decision
problem belongs to the class NP if for every instance with answer YES, there is a
polynomial algorithm to verify that the answer is correct. The DDLP is NP since
for an affirmative answer it suffices to show the sequence in which the agents are
used and check that effectively they move the data from s to t . This, of course can
be done very efficiently. A decision problem S belongs to the class NP-complete
if it is NP and any other NP problem can be reduced polynomially to S. Cook
provided the first NP-complete problem (satisfiability) and then Karp [17] added
a bunch of combinatorial problems to that class. Chalopin showed that DDLP is a
NP-complete problem. While question is P=NP? is open, we do not know if the
NP complete problems can be solved by polynomial time algorithms. At present,
the generalized belief is that P �= NP . If this is so, NP problems will remain as
difficult problems, including the DDLP. One of the drawbacks of this theory is that
it does not recognize clearly that a large amount of an NP-complete problem can be
solved efficiently. The recognition of that fact has motivated the use of probability
to asses fringes of “easy” instances and thus isolate the really hard instances of a
problem. A good example of this methodology is in [6]. Our work follows that path.
In Sect. 5 we interpret the results presented in Sect. 3 in this sense.

1.3 Graphs

For the purpose of this work it is sufficient to deal with simple graphs and so
we omit the adjective. A graph consists of a set V whose elements are called
vertices and a collection of subsets of V of cardinality 2 which we denote by
E and call them edges. If a vertex v belongs to an edge e we say that v is an
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extreme of e. Clearly every edge has two extremes. If u and v are the two extremes
of an edge we say that they are adjacent. A simple path (or path) is a sequence
v0, e1, v1, e2, v2, . . . , vn+1, en, vn in which all vertices vi, i = 1, . . . , n are different
and vi and vi+1 are the extremes of edge ei . Such path is said to connect vertices v0
and vn; when v0 = vk , the graph is a cycle, denoted by Ck . A graph is connected if
for every pair of vertices u and v of the graph, there exists a path connecting them.
Given a set V of real closed intervals in the real line we can construct a graph in the
following way: The set of vertices is V and two vertices are adjacent (form an edge)
if they intersect as intervals. A graph constructed in this way is called an interval
graph. The graphs that can be constructed in this way are a small part of all possible
graphs. For example, any cycle Ck with k > 3 is not an interval graph. However
they are nice graphs to work with because they have remarkable properties. There
are several ways in which a collection of intervals can be defined. We are interested
in two of them.

Definition 1 The symmetric model of a interval graph is generated by intervals Ii
defined by its center xi and its radius ρi in the form Ii = [xi − ρi, xi + ρi ]. The
interval graph associated to the symmetric model will be denoted by GS(Q) where
Q = {(xi, ρi), i = 1, . . . n}.

The asymmetric model is obtained from instances of DDLP considering Ii =
[xi − aiρi , xi + (1 − 2ai)ρi ] defined in Sect. 1.1. It will be denoted by GA(Q, a),
where againQ = {(xi, ρi), i = 1, . . . n} and a is a vector in the unit box of Rn.

A standard reference in graph theory is [7].

1.4 Random Interval Graphs

Random graphs were firstly introduced by Gilbert [16], but the work of Erdős and
Rényi [14] set the basis for the study of their evolution (a comprehensive study
on random graphs can be found in [6]). Later on, Cohen studied the asymptotic
probability that a random graph is a unit interval graph [10], and Scheinermann
replicated the ideas of Erdős and Rényi to study the evolution of random interval
graphs [18].

To continue our discussion, we introduce a probabilistic framework, so let
(Ω,F ,P) be a probability space with F a σ -algebra on the set of scenarios Ω
and P a probability measure on F . All random variables and our asymmetric model
will be defined there.

Scheinerman [18] obtained random interval graphs, using the symmetric model,
by defining two random variables for each interval, the centers {xi}ni=1 and the
radii of the intervals {ρi}ni=1, the centers with uniform distribution in [0,1] and the
radii also uniform in the interval [0, r] with r < 1, so intervals are constructed as
[xi − ρi, xi + ρi ]. We use the asymmetric model fixing the parameters {ai}ni=1, ai ∈
[0, 1] and considering 2n independent random variables, the locations {xi}ni=1 (all
identically distributed uniformly in [0, 1]), and the ranges {ρi}ni=1 (all identically
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distributed uniformly in [0, r]). The intervals are [xi − aiρi, xi + (1 − 2ai) ρi],
which are substantially different to the intervals of the symmetric model. First they
are asymmetric, second they are shorter as specified by the parameter ai which
represents the percentage of a mobile agent’s energy used to move backwards to
pick up the load before going forward with it, thus it determines the behavior of
the agent. The asymptotic analysis presented in this work is analogous to the one of
Scheinermann’s, but here we consider an asymmetric model which is more general.
Moreover, it is related to a NP-complete combinatorial problem which makes the
new model interesting from the point of view of computational complexity, a fact
that we show in this work.

2 Graph Theoretical Formulation of the Data Delivery on a
Line Problem

In this section we show how the DDLP is equivalent to an existence problem
for interval graphs. The transformation from one another is completely general
and does not assume that the data have been randomly generated. The equivalent
graph theoretical decision problem is the following: Given a finite collection
Q = {(xi, ρi), i = 1, . . . n} of points in R

2 decide if there exists a vector
a = (a1, . . . , an) such that the interval graph GA(Q, a) defined by the asymmetric
model is connected. This problem will be called the Existential Connectedness
Problem (ECP).

We say that two decision problems are equivalent if for every instance of one
there is an instance of the other such that both have an affirmative answer or both
have a negative answer.

Theorem 1 DDLP and ECP are equivalent.

Proof First we will show that for every instance (Q, s, t) of DDLP there exists
an instance of ECP whose solution conforms with the one of the DDLP instance.
First, discard all points of Q such that either xi + ρi < s or xi − ρi > t then add
two new points (s, 0) and (t, 0). Call this new set of points Q′ which defines an
instance of the ECP. A positive answer to this instance comes with a vector a∗ such
that GA(Q′, a∗) is a connected graph. So there exists a path T in GA(Q′, a∗) from
the vertex defined by (s, 0) to the vertex defined by (t, 0). The interior vertices of
T correspond to points of Q and so to agents in the DDLP instance. The order in
which the vertices of T are traversed from s to t define the order in which the agents
have to be deployed. The adjacency of consecutive vertices of T guarantee that the
corresponding agents can get in touch to pass the data from one to the next. So the
existence of an affirmative solution of ECP translates into a solution of DDLP.

It remains to be proven that if the solution to the ECP instance is negative so is
the answer to the DDLP. The contrapositive of this is that any YES answer to an
instance of DDLP translates into an affirmative answer of ECP. To prove this let
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(Q, s, t) be an instance of DDLP with a true answer and a sequence ri1 , . . . , rik of
agents that carry the data from s to t . This behaviour of the agents in the sequence
define a set of parameters ai1, . . . , aik . For the rest of the agents, which do not play
any role in the transportation of the data, let ai = 0 if xi < t and ai = 1 if xi ≥ t . We
claim that the graphGA(Q, a) is connected. The parameters ai1, . . . , aik define a set
of intervals, a path T ′ in GA(Q, a), that cover the segment [s, t]. We will show that
every other interval intersects T ′. For an agent ri such that xi < t the corresponding
interval is [xi, xi+ρi], if xi ≥ s, then xi is in [s, t] and so it intersects some interval
of T ′; if xi < s, then since irrelevant agents have been removed xi + ρi ≥ s and
therefore the interval intersects T ′ too. The case xi ≥ t is resolved similarly. �	

The next result is a direct consequence to Theorem 1. We omit the details of the
proof.

Corollary 1 ECP is NP-complete

Theorem 1 shows that DDLP, which is NP-complete, is reducible to ECP.
Moreover the reduction is polynomial since to transform a DDLP given by (Q, s, t)
to a ECP given by Q′ it is only needed to compute which robots (xi, ρi) satisfy
xi − ρi < s or xi + ρi > t; and to include the points (s, 0), (t, 0). This can be done
in linear time assuming arithmetic operations are performed in constant time. The
equivalence between DDLP and ECP allow us to deal with the graph theoretical
formulation and use the results and ideas of Random Graphs in order to obtain
some asymptotic results in the ECP and therefore the DDLP problems. Specifically,
parameters’ domain can be partitioned into regions, one in which the problems can
efficiently be solved. The relevance of the connectedness of an interval graph in
relation to the solvability of its associated DDLP instance cannot be overstated.
That is, if for any DDLP instance (Q, s, t) there exists a vector a in the unit box
such thatGA

(
Q′, a

)
is connected, then the DDLP instance is solvable, the converse

is certainly not true, as shown in the counterexamples of Fig. 1. On the other hand,
given a DDLP instance (Q, s, t), if for all possible vectors a in the unit box none
of the associated interval graphsGA

(
Q′, a

)
is connected, it is then assured that the

instance is not solvable. This last statement is summarized in the following corollary.

Corollary 2 Given a DDLP instance (Q, s, t) if its associated symmetric interval
graphGS

(
Q′) is disconnected, the instance is not solvable.

Proof For every vector a in the unit box we have that

[xi − ayi, xi + (1 − 2a) yi] ⊂ [xi − yi, xi + yi] .

Now, recall that Q′ = Q ∪ {(s, 0) , (t, 0)}, so if GS
(
Q′) is disconnected, it means

that for every vector a in the unit box GA
(
Q′, a

)
is disconnected as well. This

means that ECP is not solvable, so by Theorem 1 DDLP is not solvable. �	
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Fig. 1 For this example we take Q =
{(

1
4 ,

3
4

)
,
(

1
2 ,

1
2

)}
. In panel (a) we have a =

(
1
3 ,

1
3

)
, in

(b) a = (0, 0), and in (c) a =
(

1
3 , 0

)
. In the first two cases GA

(
Q′, a

)
is disconnected, but in the

third case it is connected and therefore solvable

3 Probabilistic Analysis of GA(Q, a)

We denote as usual the degree of a vertex vi by d(i). We write vi �∼ vj when there
is no edge joining the vertices vi and vj . We denote by v+i = xi + (1 − 2a)ρi (resp.
v−i = xi − aρi) the right (resp. left) boundary of vi . In this section we analyze
the connectedness of random interval graphs of the form GA(Q, a). The approach
that we follow is to fix a and analyze the asymptotic behavior of the connected
components of GA(Q, a). In order to do so, we first introduce random variables
that count the connected components of a random graph GA(Q, a). In this section
and the sequel we will specialize to the case in which a is a scalar, that is ai = a

for all i. Furthermore, we assume a ∈ [0, 1/2]. Estimations with this specification
will already yield lower bounds for the probability of solvability due to Theorem 1
which is our main goal.

For each i, i = 1, . . . , n let

Xi :=
{

1 if the right end point of vi is contained in no other interval vj , j �= i,
0 otherwise.

The family of random variablesX1, . . . , Xn indicates where a connected component
ends. For example, assume that X1 = X2 = 1 and Xi = 0 for i > 2. Assume
without loss of generality that the interval v1 is on the left of the right end point
of v2. Since X1 = 1 the right end point of v1 is not included in any other interval,
implying that all the intervals on the left of v+1 are disjoint from all other intervals
on its right. Thus, there are at least two components. In order to see that there are
exactly two components, assume that there is one more. For this component denote
by vj the interval such that v+j attains the supremum over all right ends of intervals
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in the components. Then, necessarily Xj = 1 with j > 2. This is a contradiction.
Then, there exists exactly two components.

We also define

X(n) :=
n∑

i=1

Xi

is the random variable that counts the number of connected components of
GA(Q, a). Note that P (X(n) = 0) = 0. The distribution of X(n) depends on
the parameter r . However, we do not write this explicitly in order not to overload
notation. In our first asymptotic result, we let the numbers of vertices n goes to
infinite while at the same time shrinking the range of the intervals (the parameter
r). The theorem gives the right trade-off for those processes in order to have
connectedness with high probability.

Theorem 2 Let β := 2
1−a and r(n) := β 1

n
(log(n)+ c). Then,

lim inf
n→∞ P (X(n) = 1) ≥ 1 − e−c. (1)

Proof Denote by v+i = xi + (1 − 2a)ρi the right point of the interval vi . Let

B(i) := {ω | v+i (ω) ∈ ∪k �=ivk}

be the event in which the right boundary of the interval vi is included in at least one
of the other intervals. The event {X(n) = 1} satisfies

{X(n) = 1} =
n⋃

k=1

⋂

i �=k
B(i).

Hence

P (X(n) = 1) = P

⎛

⎜⎜
⎝

n⋃

k=1

n⋂

i=1
i �=k

B(i)

⎞

⎟⎟
⎠ ≥ P

(
n⋂

i=2

B(i)

)

.

Moreover

1 − P

⎛

⎝
n⋂

j=2

B(j)

⎞

⎠ = P

⎛

⎝

⎧
⎨

⎩

n⋂

j=2

B(j)

⎫
⎬

⎭

c⎞

⎠ ≤
n∑

j=2

P
(
Bc(j)

) = (n− 1)P
(
Bc(2)

)
.
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Hence:

P (X(n) = 1) ≥ 1 − (n− 1)P
(
Bc(2)

)
. (2)

So now we estimate P (Bc(2)). The right end point v+i is a random variable and we
denote by μ it probability distribution function under P . Note that the distribution
does not depend on i. Then,

P
(
Bc(2)

) =
∫ 1+(1−2a)r

0
(1 − P (t ∈ v2)))

n−1 μ(dt),

due to the independency of the intervals. For a < 1
2 the random variable v+i is the

sum of two independent uniform distributions and then, we can easily see that μ is
a distribution concentrated on [0, 1 + r(1 − 2a)] with density

f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x
r(1−2a) [0, r(1 − 2a)]
1 [r(1 − 2a), 1]
−x+1+r(1−2a)

r(1−2a) [1, 1 + r(1 − 2a)]
0 otherwise.

For t ∈ [0, 1 + r(1 − 2a)] let h(t, x, ρ) be the indicator function of {x − aρ ≤
t} ∩ {x + (1 − 2a)ρ ≥ t} and g(t, ρ) := {

(t + aρ) ∧ 1 − (t − (1 − 2a)ρ)+ ∧ 1
}
.

We have

P (t ∈ v2) = 1

r

∫ r

0

∫ 1

0
h(t, x, ρ)μ(dx)dρ

= 1

r

∫ r

0
g(t, ρ)dρ.

For t ∈ [0, (1 − 2a)r] the function g simplifies to g(t, ρ) = t + aρ − (t − (1 −
2a)ρ)1{t>(1−2a)ρ}. Hence

P (t ∈ v2) = t + 1

2
ar − 1

r

[
tρ − 1

2
(1 − 2a)ρ2

] t
1−2a

0

= t + 1

2
ar − 1

2r(1 − 2a)
t2.
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Note that P (t ∈ v2) ≥ 1
2ar . Then

1

(1 − 2a)r

∫ (1−2a)r

0
(1 − P (t ∈ v2)))

n−1 tdt

≤ 1

(1 − 2a)r

∫ (1−2a)r

0

(
1 − 1

2
ar

)n−1

tdt

=
(

1 − 1

2
ar

)n−1

(1 − 2a) r.

For x ∈ R we will make use of the following basic inequality:

(
1 − x

n

)n ≤ e−x .

Then

(n− 1)

(
1 − 1

2
ar(n)

)n−1

(1 − 2a) r(n)

≤n exp{− (n− 1)a

2
r(n)}r(n)

=
(

1

n

) aβ
2
n−1
n

exp

{
−aβ

2

n− 1

n
c

}
β(log(n)+ c).

Thus, the contribution of (n − 1)
∫ (1−2a)r(n)

0 (1 − P (t ∈ v2)))
n−1 μ(dt) to (n −

1)P (Bc(2)) goes to zero asymptotically. In a similar fashion we can see that

lim
n→∞(n− 1)

∫ 1+(1−2a)r(n)

1−ar(n)
(1 − P (t ∈ v2)))

n−1 μ(dt) = 0.

For t ∈ [(1 − 2a)r, 1 − ar] we have

g(t, ρ) = (t + aρ) ∧ 1 − (t − (1 − 2a)ρ)+ ∧ 1

= t + aρ − t + (1 − 2a)ρ

= (1 − a)ρ.

Hence, for t ∈ [(1 − 2a)r, 1 − ar]

P (t ∈ v2) = 1

r

∫ r

0
(1 − a)ρdρ

= 1

2
(1 − a)r.
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Moreover

(n− 1)
∫ 1−ar

(1−2a)r
(1 − P (t ∈ v2)))

n−1 μ(dt) =(n− 1)(1 − 1

2
(1 − a)r)n−1(1 − (1 − a)r)

≤(n− 1) exp

{
−1

2
(1 − a)nr(n)

}

≤e−c.

We have proved the theorem. �	
Remark 1 Theorem 2 tells us that the probability that the interval graph is connected
is bounded from below as n → ∞ and r(n) converges to zero but not too fast. The
intuition behind this threshold comes from the order statistics of uniform random
variables. If we generate n random points with uniform distribution in the interval

[0, 1], and call U(k) the k-th order statistic, then U(k)
k/n

→ 1 in probability as k → ∞;
see e.g., [5, Thm. 1.4]. That is to say, the random points tend to be homogeneously
spattered as n grows, such that the spacing between consecutive points tends to
be 1/n. It might be reasonable to think that if r decreases as ≈ 1

n
the symmetric

intervals [xi − ρi, xi + ρi ] would yield a connected component. Still, we need a
little adjustment to account for the random lengths of each interval. In fact logn

n
is

the threshold to ensure connectivity in the symmetric model [18]. Our model is not
symmetric but rather the intervals are of the form [xi − aρi, xi + (1 − 2a) ρi ], and
in Theorem 2 we showed that the connectivity threshold must be adjusted to account
for this asymmetry.

The random variable X(n) counts the number of connected components, so
X(n) = 1 means that the interval graph is connected. If the interval graph
associated to a DDLP instance is a single connected component, with the additional
requirements that there exists intervals intersecting the boundaries, the instance is
solvable due to Theorem 1. In the next theorem we show that the parametrization
of r as function of n in Theorem 2 is optimal. For the statement of the theorem we
introduce some random variables. Let Y (n) := ∑n

i=1 Yi where

Yi :=
⎧
⎨

⎩
1 if d (i) = 0 and xi ∈

[
1
3 ,

2
3

]

0 otherwise.

Observe that Y (n) counts the number of intervals vi = [xi − aiρi, xi + (1 − 2ai) ρi ]
for which xi ∈ [1/3, 2/3] with isolated associated vertices in the interval graph.

Theorem 3 Let β be as in Theorem 2. Let α(n) := 1
β
nr(n)
logn . If α := limn→∞ α(n) <

1 then

lim
n→∞

1

log(n)
E[Y (n)] = ∞ (3)
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and

lim
n→∞P

(
Y (n) ≥ 1

log(n)
E[Y (n)]

)
= 1. (4)

In particular, with high probability all graph instances are not connected.

Proof We start with the idea of the proof for (4). Let σ 2(n) := variance(Y (n)). For

ε > 0, Chebyshev’s inequalityP (|Y (n)− E[Y (n)]| ≥ ε) ≤ σ 2(n)

ε2 yields 1− σ 2(n)

ε2 ≤
P (−ε + E[Y (n)] ≤ Y (n)). In particular, for ε(n) := (1 − 1

log(n) )E[Y (n)]

σ 2(n)

ε2(n)
= (1 − 1

log(n)
)−2

(
E[Y 2(n)]
E2[Y (n)] − 1

)
,

and we will show

lim
n→∞

E[Y 2(n)]
E2[Y (n)] = 1.

This establishes (4) since

{−ε(n)+ E[Y (n)] ≤ Y (n)} = {Y (n) ≥ 1

log(n)
E[Y (n)]}.

Next we compute E(Yi). We have

E(Yi) = P (d(i) = 0 and xi ∈ [1/3, 2/3])
= P (vi �∼ vk for all k �= i and xi ∈ [1/3, 2/3])
=
∫

1{xi∈[1/3,2/3]} (P (vi �∼ v))n−1 dμ(vi),

where μ is the distribution associated to the random vertex vi . Note that

P (vi �∼ v | ρ = t) = 1 − (1 − a)ρi − (1 − a)t.
Now we have

∫
1{xi∈[1/3,2/3]} (P (vi �∼ v))n−1 dμ(vi)

=
∫

1{xi∈[1/3,2/3]}
(

1 − (1 − a)ρi − (1 − a) r
2

)n−1
dμ(vi)

=
[∫ 2/3

1/3
dxi

] [
1

r

∫ r

0

[
1 − (1 − a)ρi − (1 − a) r

2

]n−1
dρi

]

= 1

3
·
[
1 − 1−a

2 r
]n −

[
1 − 3(1−a)

2 r
]n

n(1 − a)r . (5)
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From (5), we determine E[Y (n)] by

E(Y (n)) = 1

3

β

2

[
1 − 1

β
r(n)

]n −
[
1 − 3 1

β
r(n)

]n

r

= 1

6
β

n

log(n)

[
1 − 1

β
nr(n)
log(n)

log(n)
n

]n −
[
1 − 3 1

β
nr(n)
log(n)

log(n)
n

]n

nr(n)
log(n)

= 1

6

1

α(n)

n

log(n)

{[
1 − α(n) log(n)

n

]n
−
[

1 − 3α(n)
log(n)

n

]n}

≈ n1−α − n1−3α

6α log(n)
. (6)

Let us estimate E(Y 2(n)). To this end, note first that E(Y 2(n)) = E(Y (n)) +
n(n − 1)E(Y1Y2) and E(Y1Y2) = P (Y1Y2 = 1, v1 �∼ v2). For this last probability,
we have

P (Y1Y2 = 1, v1 �∼ v2) =
∫

1{v1 �∼v2}1{x1,x2∈[1/3,2/3]}P (v1, v2 �∼ vk for all k �= 1, 2) dμ(v1, v2). (7)

Note for k0 fixed, P (v1, v2 �∼ vk for all k �= 1, 2) = [
P
(
v1, v2 �∼ vk0

)]n−2. Condi-
tioning

P
({v1, v2 �∼ v} ∩ {∣∣v±1 − v∓2

∣
∣ ≥ (1 − a)ρ} | ρ) = 1 − (1 − a)ρ1 − (1 − a)ρ2 − 2(1 − a)ρ

(8)

P
({v1, v2 �∼ v} ∩ {∣∣v±1 − v∓2

∣
∣ < (1 − a)ρ} | ρ) = 1 − (1 − a)ρ1 − (1 − a)ρ2 − (1 − a)ρ.

(9)

Note that
∣
∣v±1 − v∓2

∣
∣ < (1−a)ρ happens with probabilityO(r) as r → 0. Wrapping

all together

P (Y1Y2 = 1, v1 �∼ v2) = (1 −O(r))P (Y1Y2 = 1, v1 �∼ v2,
∣
∣v±1 − v∓2

∣
∣ ≥ (1 − a)ρ)

= (1 −O(r))
∫

1{x1,x2∈[1/3,2/3]}
[
P
(
v1, v2 �∼ v, ∣∣v±1 − v∓2

∣
∣ ≥ (1 − a)ρ)]n−2

dμ(v1, v2)

= (1 −O(r))
∫

1{x1,x2∈[1/3,2/3]}
[
1 − (1 − a)ρ1 − (1 − a)ρ2 − 2(1 − a) r

2

]n−2
dμ(v1, v2)

= (1 −O(r))
[∫

1{x1,x2∈[1/3,2/3]}dμ(x1, x2)

]
× (10)
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[
1

r2

∫ r

0

∫ r

0

[
1 − (1 − a)ρ1 − (1 − a)ρ2 − 2(1 − a) r

2

]n−2
dρ1dρ2

]

= (1 −O(r))1
9

· [1 − (1 − a)r]n − 2 [1 − 2(1 − a)r]n + [1 − 3(1 − a)r]n
n(n− 1)r2(1 − a)2 . (11)

Since α < 1 and αβ = limn→∞ nr
log n , from (5) and (10), we have

n(n− 1)E(Y1Y2) = (1 −O(r))1
9

· [1 − (1 − a)r]n − 2 [1 − 2(1 − a)r]n + [1 − 3(1 − a)r]n
r2(1 − a)2

≈ n2

36α2 log2(n)

[
n−2α − 2n−4α + n−6α

]
. (12)

From (6) and (12), we get

E(Y 2(n))

(E(Y (n)))2
→ 1,

when n→ ∞. �	
Now returning to our original motivation of a DDLP, Theorem 3 does not yet

fully address the issue to determine if a connected interval graph is synonym
of solvability of the DDLP. If the interval graph associated to a DDLP instance
is a single connected component, but none of its intervals actually intersect the
boundaries, we cannot say that the instance is solvable. However, the next result
shows that the boundaries will be reached with high probability.

Theorem 4 Let r(n) be as in Theorem 2. LetG(n) be the event that the associated
interval graph is connected. Define the random variables

R(n) = max
i=1...,n

{xi} , L(n) = min
i=1...,n

{xi} (13)

R′(n) = max
i=1...,n

{xi + (1 − 2a) ρi} , L′(n) = min
i=1...,n

{xi − aρi} . (14)

Then R(n) − L(n) has Beta distribution with parameters (n− 1, 2). Furthermore,
for ε ∈ (0, 1)

lim
n→∞P

(
R′(n)− L′(n) ≤ ε | G(n)) = 0. (15)

Proof To simplify notation we write R, L and R′, L′. Recalling {xi}i=1...,n are
independent and identically distributed in [0, 1], it is straightforward to check that
P (L ≤ t) = 1 − (1 − t)n so that its density function is fL (t) = n (1 − t)n−1.
Analogously, P (R ≤ t) = tn and its density function is fR (t) = ntn−1. Now,
because L and R are not independent we cannot compute the density of R − L as
the convolution of R and −L, so we proceed as follows.

For d ∈ (0, 1) we want to compute P (R − L ≤ d). To this end, let do some
conditioning on L. Let t ∈ [0, 1] denote the actual minimum of {xi}i=1...,n. We
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must distinguish two cases that are mutually exclusive. The first case is t < 1 − d ,
so given that L = t , the probability that the remaining n − 1 points fall within the

interval [t, t + d] is given by
(
d

1−t
)n−1

. The second case is t ≥ 1−d , so all n points

fall in the interval [t, 1] thus R − L < d . Therefore, by the law of total probability

P (R − L ≤ d) =
∫ 1−d

0
fL (t)

(
d

1 − t
)n−1

dt + P (L ≥ 1 − d)

=
∫ 1−d

0
n (1 − t)n−1

(
d

1 − t
)n−1

dt + dn

= n (1 − d) dn−1 + dn.

As a consequence we see that the density function of R−L is given by fR−L (t) =
n (n− 1) tn−2 (1 − t). Recall that the density of a Beta distribution is given by
f (t) = 1

β(r,s)
tr−1 (1 − t)s−1, where β (r, s) = Γ (r)Γ (s)

Γ (r+s) . Notice that β (n− 1, 2) =
1

n(n−1) , so fR−L (t) = 1
β(n−1,2) t

n−2 (1 − t) is a Beta density function, as claimed.
Now we prove (15). Take t ∈ (0, 1). Clearly L′ ≤ L and R ≤ R′ so that

R − L ≤ R′ − L′, then it follows P (R − L ≥ t) ≤ P
(
R′ − L′ ≥ t). Also,

aρi + (1 − 2a) ρi ≤ ar + (1 − 2a) r so R′ − L′ ≤ R − L + (1 − a) r , thus
P
(
R′ − L′ ≥ t) ≤ P (R − L+ (1 − a) r ≥ t). Hence

P (R − L ≥ t) ≤ P
(
R′ − L′ ≥ t) ≤ P (R − L+ (1 − a) r ≥ t) . (16)

The law of total probability yields

P
(
R′ − L′ ≤ t) = P

(
R′ − L′ ≤ t | G)P (G)+ P

(
R′ − L′ ≤ t | Gc)P (Gc)

which implies P
(
R′ − L′ ≤ t) ≤ P

(
R′ − L′ ≤ t | G)P (G) + P (Gc) and

P
(
R′ − L′ ≤ t) ≥ P

(
R′ − L′ ≤ t | G)P (G). We then obtain the inequality

P
(
R′ − L′ ≤ t)− P (Gc)

P (G)
≤ P

(
R′ − L′ ≤ t | G) ≤ P

(
R′ − L′ ≤ t)
P (G)

(17)

Now we have for ε ∈ (0, 1), sufficiently large n and forM and c as in Theorem 2
the following

P
({R′(n)− L′(n) ≤ ε} | G(n)) ≤ P

({R′(n)− L′(n) ≤ ε})
P (G(n))

≤ P
({R′(n)− L′(n) ≤ ε})

1 −Me−c

≤ P ({R(n)− L(n) ≤ ε})
1 −Me−c ,
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where the first inequality follows from (17), the second from Theorem 2 and the last
from R−L ≤ R′ −L′. Now the result follows from the Beta(n− 1, 2) distribution
of R(n)− L(n). �	

4 Simulations

In this section we present the results of simulation experiments illustrating the main
findings of Theorems 2, 3, and 4. In Fig. 2, panel (a), we see simulations of random
interval graphs in which r follows the regime of Theorem 2 in the form r(n) =
β

log(n)+c
n

for a = 0.2, β = 2
1−a and c = 3.1. The number of nodes (n) changes as

indicated in each graph in the panel. What we see is that all graphs are connected
in agreement with the main claim in Theorem 2 of having connected instances with
high probability. In Fig. 2, panel (b), we see simulations of random interval graphs
in which r(·) follows the dynamic r(n) = αβ

log(n)
n

with α = 0.5 and β as before.
What we see is that all of the simulated graphs are disconnected and with many
isolated nodes, which is to be expected by Theorem 3.

In Fig. 3 we see simulations illustrating Theorem 4. On the left side Fig. 3a
we see the histogram after 2e5 simulations of the difference R(100) − L(100),
where the random variables R(n) and L(n) are defined in Theorem 4 and the
parameters are as in the simulation exercise for Theorem 2, the only difference
is that here the number of nodes is fixed. It presents visual evidence of the
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Fig. 2 In panel (a) we see simulations of random interval graphs under the specifications of
Theorem 2. As expected, graphs are always connected. In panel (b) we see simulations of random
interval graphs under the specifications of Theorem 3. As expected, graphs have always more than
one component
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Fig. 3 Empirical distributions illustrating Theorem 4. (a) Histogram of R − L. The red line
displays the density function of a Beta(n − 1, 2) distribution. (b) Histogram of R′(n) − L′(n)
on the event of a connected graph

convergences to a Beta(n− 1, 2) distribution with n = 100. Beyond this evidence,
we estimated a Wasserstein distance of 0.00014 between the Beta distribution and
the empirical distribution function obtained from the simulations. To this end, we
applied R package “transport”. On the right side Fig. 3b we see the histogram of
R′(100) − L′(100) for the same 2e5 simulations as before but intersected with
the event that the interval graph was connected. The random variables R′(n) and
L′(n) are defined in Theorem 4. We see a very high probability of reaching or even
surpassing the intended length, again, as predicted.

The bifurcation of (non) connectedness for random interval graphs in our
asymmetric model has been illustrated on Fig. 2.

In Fig. 3 we started to see the behavior of empirical probabilities and now we go
deeper into characterizing by simulation the sensibility of these probabilities with
respect to parameters. In all experiments we generated a hundred trials per set of
parameters, then we checked connectedness and saved the percentage of connected
instances.

In Fig. 4, following the hypothesis of Theorem 2, we fixed two different values
for a = 0.33, 0.66 in order to numerically illustrate that our requirement of a < 1/2
is crucial. We ran simulations for different values of c, while varying the number of
agents from 0 to 10,000, to observe how the choice of c affects the convergence
speed to obtain connected interval graphs with high probability. For low values of
a we found experimentally that a value of c between 3 and 4 suffices, as shown
in Fig. 4a. As expected, high values of a yield a slow convergence speed, which is
illustrated by the low empirical probabilities of connected interval graphs observed
in Fig. 4b.
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Fig. 4 Simulations illustrating the sensibility of empirical probabilities to parameters. The
dynamic of r(n) is according to Theorem 2

Fig. 5 Simulations illustrating the sensibility of empirical probabilities to parameters. The
dynamic of r(n) is according to Theorem 3

Next, following the hypothesis of Theorem 3, we considered two fixed values for
n, namely n = 10 and 100, to see how the change of the order of magnitude of n
affects the approximation of the probability that graph instances are not connected,
as stated in Theorem 3, but not only that, we also vary a to observe how fast this
result is achieved. Figure 5 shows ten different trajectories for ten values of α. As
expected, there is a monotone relationship with α. Experimentally, we found that a
value around 0.5 is a critical value where disconnected interval graphs appear with
high probability for moderate values of n. As it is to be expected, by Theorem 3, as
n grows arbitrarily large, the probability of generating disconnected interval graphs
increases for any value of α. Also, experimentally we found that large values of a
dramatically increases the probability of generating disconnected interval graphs.

In Fig. 6, following the hypothesis of Theorem 4, additionally to connectedness,
we also account for R′ − L′ ≥ 1, guaranteeing this way solvability. As before,
we compute the empirical probability by executing a hundred trials per set of
parameters. We fix the number of agents in n = 10, 100, and consider seven
different values for c. We observe from the experiments, as a variates from 0 to
1, the empirical probability raises until a peak is reached when a ≈ 3, consistently
for the two values of n. Also, we note that as the value of n increases, the empirical
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Fig. 6 Simulations illustrating the sensibility of empirical probabilities to parameters. Probabil-
ities are conditioned to the event of hitting the boundaries of the interval [0, 1]. According to
Theorem 4, this probability is asymptotically high

probabilities increase for all practical purposes. A last observation is, confirming the
hypothesis that a < 1

2 , beyond the value a ≥ 1
2 it is impossible that R′ − L′ ≥ 1

and therefore the empirical probability crushes to zero.

5 Conclusion

As we have seen in Theorem 1, the DDLP has an equivalent representation as a
graph theoretical problem. Specially, solvability of a DDLP instance translates into
the existence of a connected interval graph. This interpretation is far reaching since
DDLP is NP-complete, and therefore it is likely that no efficient algorithm can solve
it. In contrast, checking for connectedness can be performed very efficiently.

The use of probability theory allowed us to explore the characteristics of a subset
of solvable DDLP instances. On the one hand, Theorem 2, showed a threshold for
the regime of r (n), under which GA (Q, a) is connected almost everywhere. Our
simulations gave a visual illustration of Theorem 2, where the selection parameter
of a and c played an important role in order to observe convergence speed,
so that connectedness shows up for reasonable values of n. On the other hand,
characterizing disconnectedness in Theorem 3, the function r(n) follows a different
regime under which disconnectedness ofGA (Q, a) has high probability.

Disconnectedness in the asymmetric model does not tell us if an instance
is not solvable, but the symmetric model does guarantee that a disconnected
interval graph renders unsolvable DDLP instances. This will produce fringes for
solvability/connectedness and unsolvability/disconnectedness as we now discuss.
Indeed, Theorem 2 implies connectedness with high probability under the regime
r(n) = 2

1−a
log(n)+c
n

while Sheinerman shows that for r(n) ≤ log(n)/n almost all
graphsGS (Q) are disconnected, and thus the corresponding DDLP is unsolvable.

Theorem 3 determines that regimes r(n) = 2
1−a

log(n)α(n)
n

with limn α(n) < 1
have high probability of disconnectedness (in a severe way!). Note that there is a
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gap in between both regimes in which solvability is ambiguous since it depends on
asymmetry of the model.

Our simulations for Theorem 3 showed sensitivity to the choice of parameters α
and a, in order to appreciate the asymptotic result for reasonable values of n. Lastly,
Theorem 4 provides insight into how solvable DDLP instances arise with high
probability, as we considered the connectedness ofGA

(
Q′, a

)
. Our experimentation

showed that a ≈ 1
3 and a value of c > 3 are good parameters to generate solvable

DDLP instances with high probability for most values of n.
The analysis in the paper sets up for a taxonomy to generate feasible-to-

solve DDLP instances, which lead to use efficient approaches, such as checking
connectedness in an interval graph, as its inherent difficulty makes very difficult
to solve DDLP instances in general. The DDLP representation as a graph theory
problem, showed to be fruitful, because it allowed us to discover asymptotic
behavior in randomly generated instances, analogous to the one described by Erdős
and Rényi, and Scheinermann.
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Geometric Random Graphs on Circles

Omer Angel and Yinon Spinka

Abstract Given a dense countable set in a metric space, the infinite random
geometric graph is the random graph with the given vertex set and where any
two points at distance less than 1 are connected, independently, with some fixed
probability. It has been observed by Bonato and Janssen that in some, but not all,
such settings, the resulting graph does not depend on the random choices, in the
sense that it is almost surely isomorphic to a fixed graph. While this notion makes
sense in the general context of metric spaces, previous work has been restricted to
sets in Banach spaces. We study the case when the underlying metric space is a
circle of circumference L, and find a surprising dependency of behaviour on the
rationality of L.

Keywords Rado graph · Graph isomorphism · Geometric random graphs

1 Introduction and Main Results

Erdős and Rényi initiated the systematic study of the random graph on n vertices,
in which any two vertices are connected with probability p, independently. In 1964,
Erdős and Rényi [8] showed that the infinite version of this random graph, where
there are countably many vertices and any two are independently connected with
probability p, is very different from its finite counterpart. Specifically, there exists
a fixed graph R such that the infinite random graph is almost surely isomorphic
to R. Moreover, R is the same for all p ∈ (0, 1). Rado [9] gave a concrete and
concise description of R. The graph R (or, more precisely, its isomorphism type)
is therefore sometimes called the Rado graph. The Rado graph has several nice
properties. One such property, which in fact characterizes the graph, is that it is
existentially closed: for any disjoint finite sets of vertices A and B, there exists a
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vertex which is adjacent to every vertex in A and to no vertex in B. We refer the
reader to [7] for more information on the Rado graph and its properties.

The Erdős–Rényi random graph, both its finite version and its infinite version, are
non-geometric models—they are random subgraphs of a complete graph. Random
geometric graphs have been studied extensively. In these graphs, the vertices are
embedded in some previously defined metric space (X, d), and the probability of
a connection depends on the distance between the vertices. If the set of vertices is
locally finite, the structure of the resulting graph can be expected to mirror that of the
underlying metric space X. However, if the set is dense in X, a very different story
unfolds. Bonato and Janssen [2] initiated the study of random geometric graphs in
which any two points of a countable metric space that are at distance less than one
from each other are independently connected with probability p. They introduced
a property of these graphs called geometric existentially closed (g.e.c.), analogous
to the existentially closed property of the Rado graph. A graph G whose vertex set
is a metric space (V , d) is said to satisfy g.e.c. if, for any vertex s ∈ V , any disjoint
finite sets of vertices A,B ⊂ V which are contained in the open unit-ball around s,
and any ε > 0, there exists a vertex v ∈ V \(A∪B) which is adjacent to every vertex
in A, is not adjacent to any vertex in B, and satisfies that d(v, s) < ε. They then
showed that, for any countable metric space in which every point is an accumulation
point, the corresponding geometric random graph almost surely satisfies the g.e.c.
property.

A countable metric space is said to be Rado if the infinite random geometric
graph has a unique isomorphism type, i.e., if two independent samples of the
geometric random graph, possibly with distinct p, are almost surely isomorphic.
Such a space is called strongly non-Rado if two such samples are almost surely
non-isomorphic. When referring to these terms in the context of a countable subset
of a metric space, we are actually referring to the metric space induced on that set.
Thus, if S is a countable subset of a metric space (V , d), then we say that S is Rado
(strongly non-Rado) if the metric space induced on S, namely (S, d|S×S), is Rado
(strongly non-Rado). We informally say that a metric space has the Rado property
if a typical (e.g., generic or random) dense countable subset of it is a Rado set.
To make this precise, if the metric space has some probability measure, one can
consider the set S given by an infinite i.i.d. sequence of samples from the measure.
The basic question then arises: which metric spaces have the Rado property? For
example, if the space has diameter less than 1, then any two points are connected
with probability p and the geometric random graph is nothing but the original Rado
graph.

In the case of the metric space (R, | · |), Bonato and Janssen [2] prove that the
Rado property holds: there exists a fixed graph, denoted GR(R), such that for a
generic dense countable subset of R (more precisely, for any dense countable set
having no two points at an integer distance apart) and for any p, the random graph is
almost surely isomorphic to GR(R). They also extend this to the case of the metric
space (Rd , 
∞). Here too, there is a fixed graph GR(Rd ) for each d ≥ 1. The
graphs R,GR(R),GR(R2), . . . are all non-isomorphic to one another. In contrast,
they show that this is not true for the Euclidean metric space (Rd , 
2), where every
dense countable set is strongly non-Rado [2], nor for the hexagonal norm on R

2,
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where a randomly chosen dense countable set is almost surely strongly non-Rado
[3]. They later showed that many normed spaces fail to have the Rado property [4],
including (Rd , 
p) for any 1 < p < ∞ (and also for p = 1 when d ≥ 3). Balister,
Bollobás, Gunderson, Leader and Walters [1] subsequently showed that (Rd, 
∞)
are the unique finite-dimensional normed spaces for which the Rado property holds.
In fact, in any other normed space, a generic dense countable subset is strongly
non-Rado.

Certain infinite-dimensional normed spaces (all of which are Banach spaces)
have also been considered. Bonato, Janssen and Quas [5] studied the space c of
real convergent sequences with the sup norm and the subspace c0 of sequences
converging to zero, and showed that both have the Rado property. They also showed
that Banach spaces can be recovered from the random graph in the sense that,
if two Banach spaces yield isomorphic random graphs, then the two spaces are
isometrically isomorphic. In a subsequent paper [6], the same authors considered
the space C[0, 1] of continuous functions with sup norm, and proved that the Rado
property holds for certain subspaces, including the spaces of piece-wise linear paths,
polynomials, and Brownian motion paths.

Though the notion of an infinite random geometric graph is defined in the general
context of (countable) metric spaces, we are unaware of any previous works which
deal with metric spaces other than normed spaces. One of the goals of this paper is
to investigate the random graph in such spaces, and we do so through the example
of the cycle.

Let L > 0 and consider SL := R/LZ, the circle of circumference L with its
intrinsic metric (so that, for example, the diameter of the metric space is L/2). Let
S be a dense countable subset of SL. Let GL,S be the unit-distance graph on S,
i.e., the graph whose vertex set is S and whose edge set consists of all pairs of
points in S whose distance in SL is less than 1. Given p ∈ (0, 1), let GL,S,p be a
random subgraph ofGL,S obtained by retaining each edge ofGL,S with probability
p, independently for different edges. See Fig. 1 for an example with a finite set S.

As usual, we say that two graphs G and G′ are isomorphic if there exists a
bijection ϕ from the vertex set of G to that of G′ such that ϕ(u) and ϕ(v) are
adjacent inG′ if and only if u and v are adjacent inG. In this case, we writeG ∼= G′.
If L ≤ 2, then GL,S,p is easily seen to be isomorphic to the Rado graph R. Thus,
we henceforth always assume that L ≥ 2.

Our first result is concerned with distinguishing between the different metric
spaces, showing that different values of L produce non-isomorphic graphs, so that
one can recover the lengthL of the circle from (the isomorphism type of) the random
graph. When L = ∞, it is natural to interpret S∞ as the metric space (R, | · |).
Theorem 1.1 For any L ∈ [2,∞], any dense countable S ⊂ SL and any p ∈
(0, 1), the cycle length L can be recovered almost surely as a measurable function
of the graphGL,S,p which is invariant to graph isomorphisms.

Remark 1.2 There is a minor delicate issue with the definition of recoverability of
L. For a graph on some countable set of vertices, which may be enumerated by N,
we have the usual product σ -algebra generated by the presence of edges. The claim
is that there exists a measurable function f from the set of graphs on vertex set N
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Fig. 1 A random geometric graph in S3 with 32 equally spaced vertices

to R+ such that, for any L ∈ [2,∞], any p ∈ (0, 1), any dense countable S ⊂ SL

and any enumeration of S, we almost surely have f (GL,S,p) = L. Moreover, f is
invariant to relabeling the vertices of the graph. Crucially, this invariance is complete
and not just probabilistic. That is, f (G) is invariant to any permutation of the vertex
labels ofG, even if the permutation is allowed to depend on which edges are present
in G. To clarify the strength of this property, consider i.i.d. sequences (Xi) of
Bernoulli random variables. The expectation p can be recovered almost surely from
the law of large numbers as lim 1

n

∑
i≤n Xi . However, this function is not invariant

to arbitrary permutations of the sequence if the permutation is allowed to depend
on the sequence. The reason our function is strongly invariant to relabeling is that,
for any 
, the set of graphs with f (G) ≤ 
 is described as those graphs satisfying a
certain second-order proposition, which does not involve the labels.

Our second and main result is concerned with self-distinguishability, showing
that SL has the Rado property if and only if L is rational. For rational L, we say
that a set S ⊂ SL is integer-distance-free if no two points in S are at a distance
which is a multiple of 1

m
, where L = 


m
is irreducible. This terminology may seem

mysterious, so we remark that a set S is integer-distance-free if and only if, starting
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at any point of S and moving an integer distance along the cycle, possibly winding
multiple times around the cycle, one can never terminate at another point of S.

Theorem 1.3 Let L ≥ 2, let S, S′ be dense countable subsets of SL and let p,p′ ∈
(0, 1). LetG = GL,S,p andG′ = GL,S ′,p′ be independent. Then, almost surely,

1. G �∼= G′ if L /∈ Q.
2. G ∼= G′ if L ∈ Q and S and S′ are integer-distance-free.

The theorem implies that, for rational L, a generic dense countable set is a Rado
set, whereas, for irrational L, every such set is strongly non-Rado. In the rational
case, there exist dense countable sets which are non-Rado (see Remark 5.4). In the
irrational case, we can show more—namely, that up to isometries of SL, one may
recover S from (the isomorphism type of) the random graph.

Theorem 1.4 Let L > 2 be irrational, let S, S′ be dense countable subsets of SL
and let p,p′ ∈ (0, 1). Suppose thatG = GL,S,p andG′ = GL,S ′,p′ can be coupled
so thatG ∼= G′ with positive probability. Then S and S′ differ by an isometry of SL.

2 Definitions and Notation

We view elements of SL as real numbers modulo L, and we sometimes identify SL

with the interval [0, L). An open arc is the image of an open interval in R modulo
L. For a, b ∈ SL, we write (a, b)SL for the positive/anti-clockwise open arc from
a to b, i.e., for (a, b) when 0 ≤ a ≤ b < L and for (a, b + L) modulo L when
0 ≤ b < a < L. Thus, (a, b)SL and (b, a)SL partition SL \ {a, b}. The length of
an open arc (a, b)SL is b − a if b ≥ a and is b − a + L if a > b. When a and b
are real numbers (not necessarily in SL) with ‖a− b‖ < L, we may unambiguously
define (a, b)SL by interpreting a and b modulo L. With a slight abuse of notation,
we simply write (a, b) for (a, b)SL . Closed arcs and half-open-half-closed arcs are
similarly defined. The distance between two points u, v ∈ SL, denoted ‖u − v‖, is
the length of the shorter of the two arcs between u to v and can be written as

‖u− v‖ = min{|u− v|, L− |u− v|}.

Given a graphG, we writeN(v) for the neighbourhood of a vertex v inG, and we
write distG(u, v) for the graph-distance between vertices u and v in G. The length
of a path inG is the number of edges in the path, so that distG(u, v) is the length of
a shortest path between u and v.

A graph G whose vertex set is a subset S of SL is called g.e.c. (geometrically
existentially closed) if, for any vertex s ∈ S, any disjoint finite sets A,B ⊂ S which
are contained in (s − 1, s + 1), and any ε > 0, there exists a vertex v ∈ S \ (A∪B)
which is adjacent to every vertex inA, is not adjacent to any vertex inB, and satisfies
that ‖v − s‖ < ε. The graph G is said to have unit threshold if any two adjacent
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vertices u, v ∈ S satisfy that ‖u − v‖ < 1. The notions of g.e.c. and unit threshold
exist in the general context of a graph whose vertex set is a metric space.

For a dense countable subset S of SL, let GL,S denote the collection of all g.e.c.
graphs on S having unit threshold. Let GL denote the union of GL,S over all such S.
As it turns out, once we establish the following simple property thatGL,S,p belongs
to GL,S , almost all our arguments become completely deterministic.

Lemma 2.1 Let L ∈ [2,∞], let S be a dense countable subset of SL and let p ∈
(0, 1). Then, almost surely, GL,S,p ∈ GL,S .

Proof It is trivial from the definition that GL,S,p almost surely has unit threshold.
Fix a vertex s ∈ S, disjoint finite sets A,B ⊂ S which are contained in the open
unit-ball around s, and a rational 0 < ε < 1 − maxu∈A∪B ‖u − s‖. Since S is
countable, it suffices to show that, almost surely, there exists a vertex v /∈ A ∪ B
which is adjacent to every vertex inA, is not adjacent to any vertex inB, and satisfies
that ‖v − s‖ < ε. Since the open ball of radius ε around s contains infinitely many
points v which are not in A ∪ B, and since the sets of edges incident to these v are
independent, it suffices to show that each such v has a positive (fixed) probability to
be adjacent to all of A and to none of B. Indeed, since any such v has ‖u − v‖ < 1
for all u ∈ A ∪ B, this event has probability p|A|(1 − p)|B|. �	

3 Distinguishing Graphs Arising from Different L

In this section, we prove Theorem 1.1. Our strategy is to introduce a graph-theoretic
quantity which allows to differentiate between graphs arising from different L.

For a graph G, define λ(G) to be the supremum over λ ≥ 0 such that for
every finite set of vertices U ⊂ G, there exists a vertex in G having at least λ|U |
neighbours in U . Thus,

λ(G) := inf
U⊂G

0<|U |<∞
sup
v∈G

|N(v) ∩ U |
|U | .

Consider a graph G ∈ GL,S . It is easy to check that λ(G) = 1 if L ≤ 2, since
G is just the Rado graph. If L = ∞, then λ(G) = 0, since S contains arbitrarily
large finite sets U such that all vertices of U are at distance more than 2 from each
other, so that |N(v) ∩ U | ≤ 1 for all v. In fact, as we now show, λ(G) depends
on G only through L, and moreover, is equal to 2/L. Theorem 1.1 is an immediate
consequence of Lemma 2.1 and the following.

Proposition 3.1 Let L ∈ [2,∞] and G ∈ GL. Then λ(G) = 2/L.

Proof Let L ∈ [2,∞] and G ∈ GL. By definition of GL, the vertex set of G is a
dense countable subset S of SL. For a finite U ⊂ S and an arc A ⊂ SL, we call
|U ∩ A|/|U | the density of U in A.
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We begin by proving the upper bound λ(G) ≤ 2/L. Since G has unit threshold,
for any v, N(v) is contained in an arc of length 2. Thus it suffices to exhibit, for
any ε > 0, a finite set U ⊂ S whose density is no more than 2/L + ε in any
arc of length 2. Any set that is close to evenly distributed on the cycle will do.
For completeness, here is one construction: Let n be a large integer and consider
the set V consisting of points v0, . . . , vn−1 ∈ SL, where vi := iL/n. Since S is
dense, there exist a finite set U consisting of points u0, . . . , un−1 ∈ S such that
‖ui − vi‖ < 1/n. It is straightforward to verify that, for any arc A of length r , we
have that |U ∩ A| ≤ |V ∩ A| + 2 ≤ �rn/L� + 3. Thus, U has density at most
2/L+ 3/n in any arc of length 2.

We now turn to the lower bound λ(G) ≥ 2/L. To show this, we show that the
situation described above is essentially the worst case. Precisely, given a finite U ⊂
S, we claim that there exists an open arcA of length 2 in whichU has density at least
2/L. This is easy to verify, since if x is uniform in SL, then the expected number of
points of U in the arc (x − 1, x + 1) is (2/L)|U |, so for some x it is at least that
large. Since S is dense, and G is g.e.c., the arc A contains a vertex v ∈ S which is
adjacent to all vertices of U in A. This proves the lower bound λ(G) ≥ 2/L. �	

4 Recovering Distances and Non-isomorphism for
Irrational L

In this section, we prove part (1) of Theorem 1.3, namely that for irrational L > 2,
the independent graphsGL,S,p and GL,S ′,p′ are almost surely non-isomorphic. The
key step is to show that by looking at the graph-structure of G alone, it is possible
to determine the distance in SL between any two vertices.

Throughout this section, we fix L ∈ [2,∞] and assume G ∈ GL,S for some
dense countable S ⊂ SL. It is easy to check that, for any two vertices u, v ∈ S and
any integer k ≥ 2, we have

‖u− v‖ < k ⇐⇒ distG(u, v) ≤ k.

Indeed, if ‖u− v‖ < k, then for some ε > 0, there is a path u = x0, x1, . . . , xk = v
with ‖xi−xi−1‖ < 1−ε. By g.e.c. there is a perturbation x ′

i of xi for i = 1, . . . , k−1
so that (x ′

i, x
′
i−1) are edges ofG for all i = 1, . . . , k. Conversely, the unit-threshold

property shows that a path of length at most k inG from u to v implies that the cycle
distance is less than k. Note that for k = 1 this equivalence fails, since {u, v} may
or may not be an edge of G. See [2, Theorem 2.4] for a similar statement.

We may rewrite the above as

distG(u, v) =
{
�‖u− v‖� + 1 if ‖u− v‖ ≥ 1

1 or 2 if ‖u− v‖ < 1
. (1)
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Thus, distances in G are predetermined for points of S which are at distance at
least 1 in SL. However, we are more interested in the other direction of implication:
forgetting that the vertices of G are labelled by elements of SL and looking only at
the graph structure of G in relation to (u, v), one may recover �‖u− v‖�, unless it
is 0 or 1.

To formalize these types of ideas, we require some definitions. A graph with k
distinguished vertices is a graphG, together with an ordered k-tuple (v1, . . . , vk) of
distinct vertices of G. Let GL,•,• denote the collection of all graphs in GL with
two distinguished vertices. Let π denote the projection from GL,•,• to the class
G•,• of isomorphism classes of graphs with two distinguished vertices. The above
may be restated as saying that the function (G, u, v) �→ �‖u− v‖�1{‖u−v‖≥2} from
GL,•,• to Z can be written as a composition of a function from G•,• to Z with π .
Indeed, (1) gives a concrete such description, since the graph-distance between the
distinguished vertices is invariant to isomorphisms of the graph. In this case, we say
that �‖u− v‖�1{‖u−v‖≥2} can be recovered from the graph structure of (G, u, v).

More generally, we say that a function f : GL,•,• → � can be recovered from
the graph structure of (G, u, v) if f = F ◦π for some F : G•,• → �. For brevity, we
say that f (G, u, v) can be recovered from π(G, u, v). We extend these definitions to
graphs with k distinguished points, writing π also for the projection from GL,•,...,•
to the corresponding set of isomorphism classes of graphs with k distinguished
vertices. We shall also talk about sets of vertices being recoverable from the graph.
For example, Lemma 4.4 below says that the set of vertices in the shorter arc
between u and v along the cycle is recoverable. Formally, a set A = A(G, u, v)

of vertices of G can be recovered from π(G, u, v), if the function 1{x∈A} can be
recovered from π(G, u, v, x) for any x ∈ G.

The main ingredient in this section is the following proposition, which shows
that we can recover plenty of information on the distances in SL from the graph
structure (for both rational and irrational L). Given this, part (1) of Theorem 1.3 is
easily deduced.

Proposition 4.1 Let L > 2, let G ∈ GL and let u, v ∈ G be adjacent. Then the
sequence

(�‖u− v‖ + kL�)k≥1

can be recovered from π(G, u, v).

The values ‖u − v‖ + kL can be thought of as the distance from u to v, moving
k additional times around the cycle instead of directly. The assumption that u, v are
adjacent in G can be removed from this proposition, but it simplifies the proof and
does not significantly impact the application for the proof of Theorem 1.3. In the
case of irrational L, this gives the following, stronger corollary, which immediately
implies the more general result.

Corollary 4.2 Let L > 2 be irrational, letG ∈ GL and let u, v ∈ G. Then ‖u− v‖
can be recovered from π(G, u, v).
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Proof Consider first the case when u and v are adjacent inG, so that Proposition 4.1
applies. It suffices to see that the mapping x �→ (�x+kL�)k≥1 is injective on [0, L).
It is a well known fact that for irrationalL the fractional parts (kL−�kL�) are dense
in [0, 1]. Let 0 ≤ x < y < L. Since the fractional parts are dense, it follows that for
some k we have �x + kL� �= �y + kL�, and the sequences differ.

For any path in G, we can therefore recover from G the total length of the
edges along SL. If u and v are not adjacent, then there is a path in G from u to
v which moves around SL in the shorter direction without backtracking. Since we
can recover the cycle distance in each edge of the path, the sum is the distance from
u to v. Any other path inG must give a larger sum. Thus we can recover ‖u− v‖ as
the minimal sum of cycle distances along paths from u to v in the graph. �	

Since the cycle distance between any two vertices can be recovered from the
graph, we have the following.

Corollary 4.3 Let L > 2 be irrational, let S, S′ be dense countable subsets of SL
and G ∈ GL,S,G′ ∈ GL,S ′ . If f : S → S′ is a graph isomorphism between G and
G′, then it is an isometry between S and S′.

Corollary 4.3 immediately implies Theorem 1.4. We now prove part (1) of
Theorem 1.3.

Proof of Theorem 1.3(1) Let G = GL,S,p and G′ = GL,S ′,p′ be independent, as in
the statement of the theorem. Consider a bijection f : S → S′. By Corollary 4.3,
if f is not an isometry between S and S′, then it is not an isomorphism between
G and G′. Thus it suffices to consider isometries f . There are at most countably
many isometries between S and S′ (for an arbitrary v0 ∈ S, there are at most two
isometries for any given choice of f (v0)). Since any fixed isometry f is almost
surely not an isomorphism betweenG andG′, we conclude that there almost surely
does not exist an isomorphism between G andG′. �	

4.1 Proof of Proposition 4.1

The overall strategy for the proof of Proposition 4.1 is as follows: we define a
graph-theoretic notion of a cyclic ordering of vertices. This notion, though defined
completely in terms of the graph G, will be such that it guarantees that the
corresponding points in SL are cyclically ordered as well. This will allow to define
another graph-theoretic notion of a uni-directional path inG, which will correspond
to a path in SL that winds around the circle in a fixed direction. We then show
that any uni-directional path in G has a well-defined (again, in terms of the graph)
winding number which counts the number of times the corresponding path in SL

winds around the circle. Finally, using this we deduce that from the graphG, for any
two adjacent vertices u, v ∈ G, we may recover the sequence (�‖u− v‖+ kL�)k≥1,
which is Proposition 4.1.
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Fix L > 2, a dense countable subset S ⊂ SL and a graphG ∈ GL,S . For x, y ∈ S
having ‖x−y‖ < 1, let Ax,y denote the set of points of S in the shorter arc of [x, y]
and [y, x]. It is convenient to include the endpoints x, y in the arc.

The starting point of our argument is the following lemma which shows that
the shortest arc between two adjacent vertices can in fact be described as a graph-
theoretic property. Its proof is postponed to the end of the section.

Lemma 4.4 Let a, b ∈ G be adjacent. ThenAa,b can be recovered from π(G, a, b).

We say that a triplet (a, b, c) of distinct points in G is cyclically ordered in SL

if Aa,b ∩Ab,c = {b}. This means that when moving from a to b to c along the cycle
(always via the shorter arc), the direction of movement is maintained. We say that
a path p = (v0, . . . , vn) in G consisting of distinct vertices is a uni-directional if
the triplet (vi−1, vi , vi+1) is cyclically ordered in SL for each 1 ≤ i ≤ n− 1. Thus,
by going along the shorter arc between consecutive vertices, a uni-directional path
in G may be thought to correspond to a continuous path in SL that always winds
around the circle in a single direction. In light of Lemma 4.4, this property can be
determined from the graph structure of G, so that we may talk about the path being
uni-directional in G. The winding number of a uni-directional path p is defined
as the number of complete revolutions its continuous counterpart makes around the
cycle—if its total cycle-length is 
, this is �
/L�. The winding number can also
be calculated as the number of indices 1 ≤ i ≤ n − 1 such that v0 ∈ Avi,vi+1 .
Consequently, the winding number of a uni-directional path p can be recovered
from π(G, v0, . . . , vn).

It will also be useful to be able to identify the direction in which a uni-directional
path winds around the circle; by this we do not mean the absolute direction
(clockwise/anticlockwise), but rather whether it goes from the start point to the
end point by starting through the short/long arc between them. This can be done
in one of several ways. We choose here a simple definition, which comes at the cost
of requiring the start and end points to be at distance less than 1. For u, v ∈ S, a
good path from u to v is a uni-directional path p = (x0, x1, . . . , xn) in G such that
x0 = u, xn = v and v ∈ Au,x1 . Thus, a good path is required to go towards v in the
shorter direction, and overshoot v in its first step. In particular, its winding number
is at least 1. Of course, this is only possible if ‖u − v‖ < 1. The following shows
that good paths exist.

Lemma 4.5 Let k ≥ 1 and u, v ∈ G be such that ‖u− v‖ < 1. Then G contains a
good path from u to v with winding number k and length n = �‖u− v‖ + kL� + 1.
Moreover, there is no good path from u to v with winding number k and length less
than n.

Proof For concreteness, we assume that the short arc from u to v is in the positive
direction, so that v = u+‖u−v‖. Set 
 := ‖u−v‖, so that we seek a path of length
n = �
+kL�+1. We start by specifying approximate locations for the points of the
path. These approximate locations, denoted xi , are points of the circle and need not
be vertices of the graph. Let x1 = u+ t for some t ∈ (
, 1), so that v ∈ Au,x1 and
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‖x1 − u‖ < 1. The total cycle-length of the path will be 
+ kL, and the remaining
points (xi)

n−1
i=2 will be equally spaced with gap

� = 
+ kL− t
n− 1

.

Thus, the approximate points are xi = u + t + �(i − 1) for 1 ≤ i ≤ n − 1. Note
that for t close enough to 1, we have � < 1, since 
+ kL < n.

Fix ε > 0 such that max{t,�} < 1 − 2ε, and set U0 := {u}, Un := {v} and
Ui := S ∩ (xi − ε, xi + ε) for 1 ≤ i ≤ n − 1. This choice guarantees that any
point in Ui is at distance less than 1 from any point in Ui−1, and the shorter arc
between them is positively oriented. SinceG is g.e.c., there exists u1 ∈ U1 such that
u1 is adjacent to u0 := u in G. Continuing by induction, we see that there exists
a sequence (ui)0≤i≤n−2 such that ui ∈ Ui \ {v, u0, . . . , ui−1} and ui is adjacent to
ui−1 in G. Finally, there exists un−1 ∈ Un−1 \ {v, u0, . . . , un−2} which is adjacent
to both un−2 and un := v. By construction, (u0, . . . , un) is a good path inG from u
to v of length n and winding number k.

Finally, there can be no uni-directional path (good or otherwise) from u to v with
winding number k and length at most �
+ kL�, since the total length of the arcs in
such a path is smaller than 
+ kL. �	

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1 Let u, v ∈ G be adjacent and fix k ≥ 1. Our goal is to
recover 
k := �‖u − v‖ + kL� from π(G, u, v). By Lemma 4.5, 
k + 1 is the
shortest length of a good path from u to v with winding number k. Since whether a
path (x0, . . . , xn) is good can be determined from π(G, x0, . . . , xn), this shows that

k can be recovered from π(G, u, v). �	

4.2 Proof of Lemma 4.4

Let a, b ∈ G be adjacent. Recall that Aa,b is the set of points of S in the shorter arc
of [a, b] or [b, a]. As a warm-up, the reader may find it instructive to note that, when
L ≥ 5, one may easily recover Aa,b as the intersection over v ∈ S of all intervals
(v− 2, v+ 2)∩ S which contain {a, b}. By (1), each such interval can be recovered
as the set of vertices at graph-distance at most 2 from v.

When L ≥ 3, one may try a similar approach, recoveringAa,b as the intersection
over v ∈ S of all intervals (v − 1, v + 1) ∩ S which contain {a, b}. Indeed, it is not
hard to check that this produces the correct set, however, as (1) does not allow to
recover intervals of the form (v − 1, v+ 1)∩ S, we will need to slightly modify the
approach.

The proof is split into two cases according to whether L ≥ 3 or 2 < L < 3. The
following lemma will be useful in both cases. Say that a set U ⊂ G is small if it is
finite and some vertex of G is adjacent to every vertex in U . Say that U is large if
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it is finite and not small, i.e., no vertex of G is adjacent to every vertex in U . The
following simple lemma shows that a finite set is small if and only if it is contained
in some open arc of length 2. Equivalently, a finite set is large if and only if it leaves
no gap of length greater than L− 2 in its complement.

Lemma 4.6 Let U ⊂ G be finite. Then U is small if and only if U ⊂ (v− 1, v+ 1)
for some v ∈ G.

Proof Suppose first that U is small. By definition, there exists a vertex w ∈ G that
is adjacent to every vertex in U . Since G has unit threshold, ‖u − w‖ < 1 for all
u ∈ U . Thus, U ⊂ (w − 1, w + 1), as required.

Suppose now that U ⊂ (v − 1, v + 1) for some v ∈ G. Since G is g.e.c., there
exists a vertex w ∈ G which is adjacent to all of U . Thus, U is small, as required.

�	

4.2.1 Proof of Lemma 4.4 when L ≥ 3

Step 1 Let (a, b, c, d) be a path in G and suppose that {a, b, c, d} is large. Then
Ab,c can be recovered from π(G, a, b, c, d).

We first show that such a path (a, b, c, d) must be uni-directional. Indeed, if the
arcs (a, b) and (b, c) are in opposite directions in SL, then {a, b, c, d} ⊂ (c−1, c+
1), and so the set is small. Similarly, if (b, c) and (c, d) are in opposite directions,
then {a, b, c, d} ⊂ (b − 1, b + 1). This shows that {a, b, c, d} are distinct vertices
and that Aa,b ∩ Ab,c = {b} and Ab,c ∩ Ac,d = {c}.

For a finite U ⊂ G, we denote

C(U) := {w ∈ G : U ∪ {w} is small}.

We will show that Aa,b ∪ Ab,c is precisely the set

W := {w ∈ G : C({a, b, c}) = C({a, b, c,w})}.

Since Ab,c ∪ Ac,d is similarly obtained, this will show that we can determine Ab,c
as

Ab,c = (Aa,b ∪ Ab,c) ∩ (Ab,c ∪ Ac,d).

Before showing that Aa,b ∪ Ab,c = W , we first observe that any interval (v −
1, v+1) containing {a, b, c}, containsAa,b∪Ab,c and does not contain d . Indeed, no
such interval contains {a, b, c, d} since {a, b, c, d} is large. Suppose that (a, b, c, d)
winds in the positive direction (the other case being similar). Since L ≥ 3, the circle
is a disjoint union of the arcs [a, b), [b, c), [c, d), and [d, a). Thus any interval in
the circle that contains a, b, c but not d also contains [a, b] ∪ [b, c]. Since [a, b] is
the short arc between a, b, we have Aa,b = [a, b] ∩ S, and similarly for Ab,c. Thus
any such interval (v − 1, v + 1) must contain Aa,b ∪ Ab,c.
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To see that Aa,b ∪ Ab,c ⊂ W , fix w ∈ Aa,b ∪ Ab,c and let us show that
C({a, b, c}) = C({a, b, c,w}). The containment C({a, b, c,w}) ⊂ C({a, b, c})
is clear, and the opposite containment follows from the fact that any interval
(v − 1, v + 1) containing {a, b, c} also contains Aa,b ∪ Ab,c.

To see thatW ⊂ Aa,b∪Ab,c, letw ∈ W and suppose towards a contradiction that
w /∈ Aa,b ∪ Ab,c. In order to reach a contradiction with the fact that C({a, b, c}) =
C({a, b, c,w}), it suffices to find a vertex of G which belongs to an interval (v −
1, v + 1) containing {a, b, c}, but does not belong to any interval (v − 1, v + 1)
containing {a, b, c,w}.

Recall that (a, b, c, d) is a uni-directional path, and note that one of
(a, b, c, d,w) or (a, b, c,w, d) is also a uni-directional path. Suppose for
concreteness that it is the latter, and that moreover, (a, b, c,w, d) winds around the
cycle in the positive direction. In particular,Aa,b = [a, b]∩S and Ab,c = [b, c]∩S.
Moreover, A := [c,w] ∩ S is the arc between c and w, which does not contain a,
b or d (it is not necessarily the short arc between c and w). Note that, since any
interval (v − 1, v + 1) containing {a, b, c} must contain Aa,b ∪ Ab,c and cannot
contain d , it follows that any interval (v − 1, v + 1) containing {a, b, c,w} must
contain Aa,b ∪ Ab,c ∪ A = [a,w] ∩ S. Observe also that any such interval is
contained in (w − 2, a + 2). However, if v ∈ (c − 1, w − 1), then the interval
(v − 1, v + 1) contains {a, b, c}, but is not contained in (w − 2, a + 2) (note that
the latter is not all of SL since (a,w) is longer than (a, c), which in turn has length
more than 1). We have thus reached a contradiction.

Step 2 Let a, b ∈ G be adjacent. Then Aa,b can be recovered from π(G, a, b).
In light of the previous step, it suffices to show that there exists a path (x, a, b, y)

so that {x, a, b, y} is large. Denote 
 := ‖a − b‖ and suppose they are oriented so
that b = a + 
. There exists x ∈ (a − 1, a − 1 + 
/2) adjacent to a, and similarly,
there exists y ∈ (b + 1 − 
/2, b + 1) adjacent to b. Since L ≥ 3, the only way
{x, a, b, y} is contained in an open arc of length 2 is if y − x < 2, which is not the
case by our choice of x and y.

4.2.2 Proof of Lemma 4.4 when 2 < L < 3

We write L = 2 + δ for some δ ∈ (0, 1). The reader may keep in mind that small δ
is the more difficult case.

Step 1 Let u, v ∈ G. Then 1{‖u−v‖<δ} can be recovered from π(G, u, v).
This will follow if we show that

‖u− v‖ < δ ⇐⇒ U ∪ {u} and U ∪ {v} are large for some small U.

Suppose first that U ∪ {u} and U ∪ {v} are large for some small U . Let us show
that ‖u − v‖ < δ. Let {u−, u+} be the two vertices of U nearest to u from either
side. Recall that a finite set is large if and only if it leaves no gap of length greater
than δ = L − 2 in its complement. Therefore, since U ∪ {u} is large, (u−, u) and
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(u, u+) each has arc-length at most δ. Since U ∪ {v} is large, but U is small, it must
be that v ∈ (u−, u+) so that ‖u− v‖ < δ, as required.

Suppose next that ‖u− v‖ < δ. Let us show that U ∪ {u} and U ∪ {v} are large
for some small U . Assume without loss of generality that u ∈ (v, v + δ), and let
0 < ε < (δ−‖u− v‖)/3. Let V be the arc (v+ δ− ε, v− 2ε). Note that v /∈ V and
|V | = L − (δ + ε) = 2 − ε < 2. Recall that a finite set is small if and only if it is
contained in some open arc of length 2. Thus, any finite subset of V is small. Since
(v−2ε, v) and (v, v+ δ−ε) each has arc-length less than δ, it follows that U1 ∪{v}
is large for some finite U1 ⊂ V . Similarly, since (v− 2ε, u) and (u, v+ δ− ε) each
has arc-length less than δ, we have that U2 ∪ {u} is large for some finite U2 ⊂ V .
Thus, U := U1 ∪ U2 is a small set such that both U ∪ {v} and U ∪ {u} are large, as
required.

Step 2 Let a, b ∈ G satisfy ‖a − b‖ < δ. Then Aa,b can be recovered from
π(G, a, b).

By the first step, Av := (v − δ, v + δ) ∩ S can be recovered from π(G, v). Let
W be the intersection of all Av containing {a, b}. We claim that Aa,b = W .

To see that Aa,b ⊂ W , we must show that Av containsAa,b whenever it contains
{a, b}. Indeed, if {a, b} ⊂ Av then, since Av has arc-length 2δ, ‖a − b‖ < δ and
3δ < L, it follows that Aa,b ⊂ Av .

To see thatW ⊂ Aa,b, we must show that for any u ∈ G\Aa,b there exists v ∈ G
such that {a, b} ⊂ Av and u /∈ Av . Since 2δ < L, it is straightforward that such a v
exists.

Step 3 Let a, b ∈ G be adjacent. Then Aa,b can be recovered from π(G, a, b).
Set n := �1/δ�, so that 1 ≤ δn < 1 + δ. Since ‖a − b‖ < 1 ≤ δn, g.e.c. implies

that there exists a uni-directional path P = (u0, . . . , un) in G such that u0 = a,
un = b, and ‖ui − ui−1‖ < δ for all i. Since the long arc from a to b has length
larger than 1+ δ, and since the total cycle-length of P is at most δn < 1+ δ, it must
be that Aa,b = Au0,u1 ∪ · · · ∪Aun−1,un . Thus, by the previous steps, one can recover
Aa,b from π(G, a, b).

5 Constructing an Isomorphism for Rational L

In this section, we prove part (2) of Theorem 1.3, namely, that GL,S,p and GL,S ′,p′
are almost surely isomorphic when L is rational and S and S′ are integer-distance-
free. In light of Lemma 2.1, this is an immediate consequence of the following. Let
GL,idf ⊂ GL consist of those graphs whose vertex sets are integer-distance-free.

Proposition 5.1 Let L > 2 be rational and let G,G′ ∈ GL,idf. Then G ∼= G′.

Bonato and Janssen proved the analogous statement for the case L = ∞
(corresponding to the real line) [2, Theorem 3.3]. Our construction follows similar
lines.
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LetG ∈ GL,S andG′ ∈ GL,S ′ , where S and S′ are integer-distance-free. Our goal
is to construct an isomorphism f between G and G′. In fact, we have the flexibility
to map one vertex of G to an arbitrary vertex of G′. Thus, by translating S and S′ if
necessary, we may assume without loss of generality that both S and S′ contain 0,
and we aim to construct an isomorphism f : S → S′ such that f (0) = 0.

For a point v ∈ SL, consider the sequence (�v + kL�)k≥0. We have seen in the
previous section that a similar sequence can be recovered from π(G, v, 0). Thus,
when trying to construct an isomorphism between G and G′, we shall want to
preserve this sequence. That is, we will always map a vertex v ∈ S to a vertex v′ ∈ S′
in such a way that (�v+kL�)k≥0 = (�v′ +kL�)k≥0. A key observation is that, since
L = 
/m is rational, (�v + kL�)k≥0 is determined by its first m elements. More
precisely, the sequence is periodic after subtracting the fixed sequence (�kL�)k≥0.
Since there are only finitely many possibilities for the sequence, there are many
candidates for such a v′ ∈ S′.

To be more precise, let

L = 


m

be irreducible. Then there are precisely 
 possibilities for the sequence (�v +
kL�)k≥0, according to the value of �mv�. We thus partition SL into the arcs

[ i
m
, i+1
m
) for 0 ≤ i ≤ 
− 1.

Note that two points u ∈ [ i
m
, i+1
m
) and v ∈ [ j

m
,
j+1
m
) satisfy (�u + kL�)k≥0 =

(�v + kL�)k≥0 if and only if i = j . We henceforth let qv ∈ {0, . . . , 
 − 1} and
rv ∈ [0, 1

m
) be the unique numbers such that

v = qv

m
+ rv.

Note that qv = �mv� and v ∈ [ qv
m
,
qv+1
m
). Moreover, since S is integer-distance-free,

rv �= ru for distinct u, v ∈ S, and in particular rv �= 0 for v �= 0 in S, and similarly
for S′.

Let S̄ ⊂ S and S̄′ ⊂ S′, and suppose that both contain 0. A bijection f : S̄ → S̄′
is called an extended step-isometry if f (0) = 0 and, for every u, v ∈ S̄, we have

qu = qf (u) and ru < rv ⇐⇒ rf (u) < rf (v).

Though we will not require it, we note that such an extended step-isometry f
satisfies that

�m · ‖u− v‖� = �m · ‖f (u)− f (v)‖� for all u, v ∈ S̄.
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Proof of Proposition 5.1 Let S = {sn}n≥0 and S′ = {s′n}n≥0, where s0 = s′0 = 0.
Set S0 = S′

0 = {0} and let f0 : S0 → S′
0 satisfy f0(0) = 0. For n ≥ 1, we inductively

define a pair of finite sets (Sn, S′
n) and a bijection fn : Sn → S′

n such that

• Sn−1 ⊂ Sn ⊂ S and S′
n−1 ⊂ S′

n ⊂ S′,
• sn ∈ Sn and s′n ∈ S′

n,
• fn−1 is the restriction of fn to Sn−1,
• fn is an extended step-isometry and an isomorphism betweenG[Sn] andG′[S′

n],
where G[U ] denotes the subgraph of G induced by U .

The limiting function
⋃
n fn will then be the desired isomorphism.

Fix n ≥ 0 and suppose that we have already constructed (Sn, S′
n) and fn. To

construct (Sn+1, S
′
n+1) and fn+1, we use the back-and-forth method: First, we find

a suitable image, say s′, for sn+1 in S′ (this is the ‘forth’ part). If the image of sn+1
was already determined in a previous step, i.e., sn+1 ∈ Sn, then we skip this part
and set s′ = fn(sn+1). Next, we find a suitable preimage, say t , for s′n+1 in S (this
is the ‘back’ part). As before, if the preimage of s′n+1 was already determined, i.e.,
s′n+1 ∈ S′

n ∪{s′}, then we skip this part and set t to be this preimage. We then define
Sn+1 = Sn∪{sn+1, t}, S′

n+1 = S′
n∪{s′n+1, s

′} and fn+1 = fn∪{(sn+1, s
′), (t, s′n+1)}.

In this way, the first three properties above will automatically hold, so that ‘suitable’
refers solely to satisfying the fourth property. The two parts are analogous to one
another, and so we only explain the first part.

Denote s := sn+1 and suppose that s /∈ Sn. We wish to find a suitable image
s′ ∈ S′ for s. Thus we need an element of S′ such that fn ∪ {(s, s′)} is an extended
step-isometry and an isomorphism between G[Sn ∪ {s}] and G′[S′

n ∪ {s′}]. Let us
first describe those candidates which ensure the former condition.

Consider the values

a := max{rfn(u) : u ∈ Sn and ru < rs},
b := min{rfn(u) : u ∈ Sn and ru > rs} ∪ { 1

m
}.

Note that the set defining a is not empty, since 0 ∈ Sn and 0 = r0 < rs . Since fn is
an extended step-isometry, any element in the set defining a is strictly smaller than
any element in the set defining b, and hence a < b. Denote

I := qs

m
+ (a, b).

Observe that, since S is integer-distance-free, I ∩ S′ is precisely the set of s′ ∈ S′
such that fn ∪ {(s, s′)} is an extended step-isometry.

It remains only to show that I∩S′ contains an element s′ such that fn∪{(s, s′)} is
an isomorphism betweenG[Sn∪{s}] andG′[S′

n∪{s′}]. Since fn is an isomorphism
between G[Sn] and G′[S′

n], it suffices to show that I ∩ S′ contains an element s′
which is adjacent to every element in fn(N(s) ∩ Sn) and to no other element in S′

n.
This will follow from the fact that G′ is g.e.c. and has unit threshold once we show
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that fn(J ) is contained in the open arc (z − 1, z + 1) for some z ∈ I ∩ S′, where
J = N(s) ∩ Sn. We will in fact show that this holds for every z ∈ I .

Note that, since G has unit threshold, J ⊂ N(s) ⊂ (s − 1, s + 1). Fix z ∈ I , let
x ∈ J and denote y := fn(x). We need to show that y ∈ (z − 1, z+ 1). Recall that
qy = qx and qz = qs . Since x < s + 1, we have qx ≤ qs +m (if s > L− 1, so that
qs +m ≥ 
, this should be interpreted modulo 
).

• If qx �= qs +m then also qy < qz +m which implies y < z+ 1.
• If qx = qs +m, more care is needed. Since x− s = (qx −qs)/m+ rx − rs < 1 it

follows that rx < rs . Let u, v ∈ Sn be the points with rfn(u) = a and rfn(v) = b.
By the definition of a and b, we cannot have rx ∈ (ru, rs), so rx ≤ ru and so
ry ≤ a. Therefore,

y = qy

m
+ ry ≤ qs +m

m
+ a < 1 + z.

The other direction (that y > z− 1) is almost identical. Either qx > qs −m and
all is well, or else qx = qs −m and then rx ≥ rv and ry ≥ b, concluding as above.
A small difference is that if b = 1/m, there are no points in Sn with rx > rs , so the
latter case is impossible. �	

For the most part, the L = ∞ case handled in [2] (corresponding to the metric
space (R, | · |)) behaves similarly to the case of rational L > 2. In particular, both
have the Rado property and every dense countable set which is integer-distance-
free is Rado. However, for sets which are not integer-distance-free, there are subtle
differences between the two cases. As an example, we contrast the set of rationals
in R and in SL.

Proposition 5.2 The set of rationals Q is strongly non-Rado in (R, | · |).
This statement—as well as an analogous statement for (Rd, 
∞)—appeared in

the proof of Theorem 2(i) in [1]. We give a proof for completeness.

Proof LetG,G′ ∈ G∞,Q. Let us first show that any isomorphism f : Q → Q from
G to G′ must map x + Z to f (x) + Z. More specifically, there exists ε ∈ {±1}
such that f (x + n) = f (x) + εn for all x ∈ Q and n ∈ Z. To see this, observe
that x is the unique vertex in G which is at graph-distance 3 in G from both x − 2
and x + 2 (by (1), points at distance 3 from x are precisely those in (x − 3, x −
2] ∪ [x + 2, x + 3)). Moreover, if for some u and v there is a unique vertex x with
distG(x, u) = distG(x, v) = 3, then necessarily |u− v| = 4 (otherwise there would
be no such vertex or infinitely many). This implies that {f (x ± 2)} = {f (x) ± 2}.
A similar argument shows that {f (x ± k)} = {f (x) ± k} for any integer k ≥ 2
and any x. It is easy to deduce from this that for any x there is εx ∈ {±1} such
that f (x + n) = f (x) + εxn for all n. For any x, y ∈ [0, 1), we have by (1) that
distG′(f (x+n), f (y+n)) = distG(x+n, y+n) ≤ 2 and distG′(f (x)+n, f (y)−
n) ≥ |2n| − 1. Thus, εx = εy for all x and y, which yields our claim.
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Now let G,G′ ∈ G∞,Q,p be independent and consider two nearby points in G,
say 0 and 1

2 . For u, v ∈ Q, consider the sets

A := {n ∈ Z : n and 1
2 + n are adjacent in G},

B±
u,v := {n ∈ Z : u± n and v ± n are adjacent in G′}.

By Lemma 2.1 and the above, almost surely, if G ∼= G′ then A = B+
u,v or A = B−

u,v

for some u and v (namely, for u = f (0) and v = f ( 1
2 ), where f is an isomorphism

from G to G′). However, since B±
u,v is a sequence of independent Ber(p) random

variables, independent also of A, this clearly has probability zero for any fixed u
and v. Since there are countably many choices for u and v, we deduce that P(G ∼=
G′) = 0. �	
Proposition 5.3 Let L > 2 be rational. Then Q ∩ SL is Rado.

Proof The proof is essentially the same as for integer-distance-free S (Proposi-
tion 5.1), with a small twist—instead of finding a suitable image for a single vertex
s at a time, we do so for several vertices at a time, those in a certain equivalence
class of s.

Let L = 

m

be irreducible. Say that u, v ∈ Q ∩ SL are equivalent if ‖u− v‖ is a
multiple of 1

m
and write [u] for the equivalent class of u. Note that |[u]| = 
 and that

[u] = v + 1
m
{0, . . . , 
− 1} for some v ∈ [0, 1

m
). We also write [U ] := ⋃

u∈U [u].
Let S = {sn}n≥0 be an enumeration of representatives of Q ∩ SL, where s0 = 0

and sn ∈ (0, 1
m
) for n ≥ 1. The isomorphism f : Q ∩ SL → Q ∩ SL between G

and G′ that we aim to construct will be defined completely by a permutation of S
by requiring that

f (s + i
m
) = f (s)+ i

m
for all s ∈ S and 0 ≤ i ≤ 
− 1. (2)

We shall also require that f (0) = 0. Thus, we only need to prescribe the value of f
at one element in each equivalence class, as the rest are then determined by this.

Suppose that we have already constructed a partial permutation of S which
gives rise through (2) to a function f which is an extended step-isometry and an
isomorphism of the induced subgraphs. That is, f is a bijection between some
Sn ⊂ S and S′

n ⊂ S, and it extends to a bijection from [Sn] to [S′
n] by (2).

To proceed with the ‘forth’ step of the back-and-forth method, we choose some
s ∈ S \ Sn. We need to find an image s′ ∈ S \ S′

n for s such that f ∪ {(s +
i
m
, s′ + i

m
) : 0 ≤ i < 
} is an extended step-isometry and an isomorphism between

G[[Sn] ∪ [s]] and G′[[S′
n] ∪ [s′]]. A similar argument to the one given in the proof

of Proposition 5.1 shows that there is an open interval of candidates in (0, 1
m
) which

satisfy the extended step-isometry requirement. Since each such candidate satisfies
the isomorphism requirement with positive (constant) probability, and since these
events are independent, there almost surely exists a suitable choice for s. Other than
this difference, the proof proceeds identically. �	
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Remark 5.4 WhenL > 2 is rational, one can also construct dense countable subsets
of SL which are neither Rado nor strongly non-Rado, so that the probability to have
an isomorphism is neither zero nor one. One such way is to take a dense integer-
distance-free set and add the points of { i2m : 0 ≤ i < 2
}. We omit the details.
See [1, Theorem 2] for a similar statement when the underlying metric space is a
finite-dimensional normed space.
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More About Asymptotic Properties
of Some Binary Classification Methods
for High Dimensional Data

Addy Bolivar-Cime

Abstract In this manuscript we study the asymptotic behavior of the following
binary classification methods: Support Vector Machine, Mean Difference, Distance
Weighted Discrimination and Maximal Data Piling, when the dimension of the data
increases and the sample sizes of the classes are fixed. We consider multivariate data
with the asymptotic geometric structure of n-simplex, such that the multivariate
standard Gaussian distribution, as the dimension increases and the sample size
n is fixed. We provide the asymptotic behavior of the four methods in terms of
the angle between the normal vector of the separating hyperplane of the method
and the optimal direction for classification, under more general conditions than
those of Bolivar-Cime and Cordova-Rodriguez (Commun Stat Theory Methods
47(11):2720–2740, 2018). We also analyze the asymptotic behavior of the prob-
abilities of misclassification of the methods. A simulation study is performed to
illustrate the theoretical results.

Keywords High dimensional data · Binary discrimination · Asymptotic
behavior · Machine learning · Support vector machine

1 Introduction

For random samples from the multivariate standard Gaussian distribution, it is
known that as the dimensión d increases while the sample size n is fixed, the data
tend to be at vertices of an n-simplex, that is, a regular polyhedron of n vertices,
see [5]. This asymptotic geometric representation of the high dimensional standard
Gaussian data can be observed for more general distributions, see for example
[2, 5, 6, 9, 13].
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Considering an asymptotic geometric structure of high dimensional data, the
asymptotic behavior of several binary classification methods have been studied as
the dimension increases and the sample sizes of the classes are fixed, some works
in this direction are [1, 3–5, 7–10]. These authors studied the asymptotic behavior
of binary classification methods in terms of the probability of misclassification or
in terms of the angle between the normal vector of the separating hyperplane of the
method and the optimal direction for classification, some of the authors consider
both approaches.

In the present work we consider the binary classification methods Mean Differ-
ence [11], Support Vector Machine [12], Distance Weighted Discrimination [8] and
Maximal Data Piling [1]. We provide the asymptotic behavior of the angles between
the normal vectors of the separating hyperplanes of the methods and the optimal
direction for classification, under more general conditions that those considering
in [3], as the dimension tends to infinity and the sample sizes are fixed, when the
data of the classes have the asymptotic geometric representation. We also analyze
the asymptotic behavior of the probabilities of misclassification of these methods.
Finally, we perform a simulation study to illustrate the theoretical results.

The manuscript is divided as follows. In Sect. 2 we provide the asymptotic
behavior of the four methods, in terms of the angle between the normal vector of
the separating hyperplane and the optimal direction, and in terms of the probability
of misclassification. In Sect. 3 we present a simulation study. The conclusions are
given in Sect. 4. Finally, in the Appendix we provide some technical details.

2 Asymptotic Behavior of Binary Classification Methods

We consider two independent classes C+ = {X1,X2, . . . , Xm} and C− =
{Y1, Y2, . . . , Yn} of independent and identically distributed d-dimensional random
vectors with means μ+ and μ− and covariance matrices �+ and �−, respectively,
with the asymptotic geometric representation as the dimension increases and the
sample sizes are fixed, in the sense that

‖ Xi − μ+ ‖2

d

P−→ σ 2, ∀i; ‖ Xi −Xj ‖2

d

P−→ 2σ 2, ∀i �= j ; (1)

‖ Yi − μ− ‖2

d

P−→ τ 2, ∀i; ‖ Yi − Yj ‖2

d

P−→ 2τ 2, ∀i �= j ; (2)
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as d → ∞, for some constants σ > 0 and τ > 0. Let vd = μ+ − μ−. Additionally
we suppose that

‖ vd ‖2

d
= ‖ μ+ − μ− ‖2

d
−→ c2, (3)

‖ Xi − Yj ‖2

d

P−→ σ 2 + τ 2 + c2, ∀i, j, (4)

as d → ∞, for some constant c > 0.
Some conditions that imply (1)–(4) are given in [2, 5, 9]. When (1)–(4) hold, after

rescaling by d−1/2, the vectors of the classes C+ and C− tend to be the vertices of
an m-simplex and n-simplex, respectively, as the dimension increases. Since the
rescaled distances between the vertices of one simplex and the vertices of the other
simplex tend to a constant as the dimension increases, all the data tend to be at the
vertices of an N-polyhedron, with N = n + m, m of its vertices arranged in an
m-simplex and the other n vertices arranged in an n-simplex.

2.1 Angle Between the Normal Vector and the Optimal
Direction

Considering the classes C+ and C− as before, satisfying (1)–(4), the optimal
direction for the normal vector of a separating hyperplane is vd = μ+ − μ− as
the dimension increases. Therefore, a good linear classification method is expected
to have its normal vector of the separating hyperplane approximately in the same
direction as the optimal direction. We consider the linear classification methods
Mean Difference (MD), Support Vector Machine (SVM), Distance Weighted
Discrimination (DWD) and Maximal Data Piling (MDP). In the next theorem
we provide the asymptotic behavior of the angles between the normal vectors
of the separating hyperplanes of the four methods and the optimal direction for
classification, as the dimension tends to infinity and the sample sizes are fixed, when
the data of the classes have the asymptotic geometric representation.

Theorem 2.1 Let the classes C+ and C− be as before, satisfying (1)–(4). If v
represents the normal vector of the MD, SVM, DWD or MDP hyperplane for the
training dataset, then

Angle(v, vd )
P−→ arccos

[
c

(σ 2/m+ τ 2/n+ c2)1/2

]
as d → ∞.

The proof of the last theorem is given in Sect. 4. Observe that if c → 0 the
distance, scaled by d−1/2, between the class means approaches to zero and, by
Theorem 2.1, Angle(v, vd ) approaches to π/2, that is v and vd tend to be orthogonal,
and we say that the four methods tend to be strongly inconsistent in terms of the
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angle between the normal vector and the optimal direction. On the other hand,
if c → ∞ the scaled distance between the class means tends to infinity and
Angle(v, vd ) approaches to 0, that is v and vd tend to be in the same direction,
and in this case we say that the four methods tend to be consistent in terms of the
angle between the normal vector and the optimal direction. Therefore, the larger the
scaled distance between the class means, the smaller the angles between the normal
vectors and the optimal direction, when the dimension is large.

In [3] a similar result to Theorem 2.1 is proven. They consider classes C+ and
C− with the same covariance matrix �d ; C+ and C− have means vd and zero,
respectively; the data in C+ and C− satisfy (1) and (2) with σ = τ ; vd satisfies
(3); and �d and vd satisfy D�d (0, vd)

2/(d ‖ vd ‖2) → 0 as d → ∞, where
D�d (x, y) = [(x − y)��d(x − y)]1/2 is the Mahalanobis distance corresponding
to �d . It is easy to show that the last condition implies (4), therefore the conditions
of Theorem 2.1 are more general than those of the result of [3].

Moreover, in [9] a similar result (their Theorem 6) to Theorem 2.1 is proven,
but they only consider the DWD method and the weighted Distance-Weighted
Discrimination (wDWD), and they take different assumptions. From their results,
it can be seen that their assumptions imply the conditions (1)–(4), therefore the
conditions of Theorem 2.1 are more general than those of Theorem 6 of [9].

As mentioned before, the conditions (1)–(4), that imply an asymptotic geometric
structure of N-polyhedron of the data, can be obtained under several assumptions.
Therefore, Theorem 2.1 provides a theoretical explanation of the asymptotic
behavior of the four considered methods as the dimension increases while the
sample sizes are fixed, in terms of the directions of the normal vectors of the
methods, considering a general setting where the data have an asymptotic geometric
structure.

The normal vectors of the separating hyperplanes of MD, SVM and DWD
are proportional to the difference between two points on the convex hulls of the
two classes, see for example [4]. The Lemma 3.1 given in [3] about an explicit
asymptotic representation for the normal vectors of the MD, SVM and DWD
hyperplanes, still holds under the assumptions of Theorem 2.1, since we only need
the asymptotic geometric structure of N-polyhedron of the data, which is given by
the conditions (1)–(4). We reformulate that lemma as follows. Let α = (α�+, α�−)�
be an N-dimensional vector, where α+ = (α1+, α2+, . . . , αm+)� and α− =
(α1−, α2−, . . . , αn−)� are subvectors of α of dimensionsm and n, respectively. Let
1k be the k-dimensional vector of ones.

Lemma 2.1 Consider the same assumptions as in Theorem 2.1. Let X =
[X1,X2, . . . , Xm] and Y = [Y1, Y2, . . . , Yn]. If ṽ = Xα+ − Yα−, with α ≥ 0
and 1�

mα+ = 1�
n α− = 1, is proportional to the normal vector of the MD, SVM or

DWD hyperplane, then

αi+
P−→ 1

m
, αi−

P−→ 1

n
, (5)

as d → ∞, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
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The last lemma tell us that, when dimension tends to infinity, the normal vectors
of the SVM and DWD hyperplanes tend to be in the same direction as the normal
vector of the MD hyperplane. As we will see in the proof of Theorem 2.1, this is
also true for the normal vector of the MDP hyperplane.

2.2 Probability of Misclassification

From [5] we have, under the same assumptions as in Theorem 2.1, the following
results about the probabilities of misclassification of the MD, SVM and DWD
methods:

(a) Assume that σ 2/m ≥ τ 2/n; if need be, interchange X and Y to achieve this.
If c2 > σ 2/m − τ 2/n, then the probability that a new datum from either the
X-population or the Y -population is correctly classified by the SVM or MD
hyperplane converges to 1 as d → ∞. If c2 < σ 2/m − τ 2/n, then with
probability converging to 1 as d → ∞ a new datum from either population will
be classified by the SVM or MD hyperplane as belonging to the Y -population.

(b) Assume that σ 2/m3/2 ≥ τ 2/n3/2; if need be, interchange X and Y to achieve
this. If c2 > (n/m)1/2σ 2/m−τ 2/n, then the probability that a new datum from
either the X-population or the Y -population is correctly classified by the DWD
hyperplane converges to 1 as d → ∞. If c2 < (n/m)1/2σ 2/m−τ 2/n, then with
probability converging to 1 as d → ∞ a new datum from either population will
be classified by the DWD hyperplane as belonging to the Y -population.

As we mentioned at the end of Sect. 2.1, under the same assumptions as in
Theorem 2.1, the normal vector of the MDP hyperplane tends to be in the same
direction as the normal vector of the MD hyperplane as d → ∞. Therefore, taking
the intercept of the MDP hyperplane as b = −v�(X + Y )/2, where v is the normal
vector of the MDP hyperplane and X and Y are the sample means of the X and Y
population, respectively, the MDP and MD hyperplanes coincide when d → ∞.
Hence, (a) holds for the MDP hyperplane.

Observe that if m = n and σ = τ , then for any c > 0 the four methods achieve
asymptotically correct classification of a new datum from any population as d →
∞. On the other hand, if m �= n or σ �= τ , then the methods SVM, MD and MDP
can have a different asymptotic behavior from the DWD method in terms of the
probability of misclassification. For example, let

M1 = σ 2

m
− τ

2

n
and M2 =

( n
m

)1/2 σ 2

m
− τ

2

n
, (6)

and suppose n > m and σ 2/m > τ 2/n, then M1 < M2 and if M1 < c
2 < M2 we

have by (a) that the SVM, MD and MDP methods achieve asymptotically correct
classification of a new datum from any population as d → ∞, while the DWD
method achieves asymptotically perfect classification for the Y -population and
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completely incorrect classification for the X-population. This shows an advantage
of the SVM, MD and MDP methods over the DWD method when the dimension
increases, since the first three methods classify correctly new data from any
population for a wider range of values of c.

As it was noted in [3], we can have the property of inconsistency of a method in
terms of the angle between the normal vector of the separating hyperplane and the
optimal direction, in the sense that the angle do not tend to zero as the dimension
increases, and at the same time we can have the property of consistency of this
method in terms of the classification error rate, in the sense that the error rate tends
to zero as the dimension tends to infinity. By Theorem 2.1 and the previous results,
we have that the four methods are inconsistent in terms of the angle between the
normal vector of the hyperplane and the optimal direction for any c > 0, and they are
consistent in terms of the classification error rate if, for example, n ≥ m, σ 2/m ≥
τ 2/n andM1 ≤ M2 < c

2. However, we observe that as c increases the four methods
tend to be consistent in terms of the angle between the normal vector and the optimal
direction.

3 Simulation Study

In order to illustrate the theoretical results presented in Sects. 2.1 and 2.2, we
consider analogous multivariate data to those considered in [3], but now we take
two classes C+ and C− satisfying the assumptions given in the beginning of Sect. 2,
with n �= m, �+ �= �− and σ �= τ .

Consider the d-dimensional random vector Z = (Z(1), Z(2), . . . , Z(d)), with
d even, where Z(i), for i = 1, 2, . . . , d/2 are independent univariate standard
Gaussian variables, and where Z(j) = Z(i)2 + Z(i) − 1, for j = d/2 + i with
i = 1, 2, . . . , d/2. It can be seen that Z has mean zero and covariance matrix

�d =
[
Id/2 Id/2

Id/2 3Id/2

]
.

As it is shown in [3], if Z1 and Z2 are independent random vector with the same
distribution as Z, then

‖ Zi ‖2

d

P−→ 2 and
‖ Z1 − Z2 ‖2

d

P−→ 4, (7)

as d → ∞, for i = 1, 2.
Let C+ be the class of independent and identically distributed random vectors

X1,X2, . . . , Xm, with the same distribution as rZ + β1d , where r > 0 and β >
0. Let C− be the class of independent and identically distributed random vectors
Y1, Y2, . . . , Yn, with the same distribution as Z. Then the classes C+ and C− have
meansμ+ = β1d andμ− = 0, and covariance matrices�+ = r2�d and�− = �d ,
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respectively. Suppose that C+ and C− are independent. In the Appendix, it is shown
that C+ and C− satisfy the conditions (1)–(4), with σ = √

2r , τ = √
2 and c = β.

We considered the classes C+ and C− with m = 16, n = 40, r = 2 and the
dimensions d = 100, 500, 1500, 2500. The thresholds of c2 for the consistency, in
terms of the classification error rate, of the methods SVM, MD, MDP and DWD,
given by (6), are equal to M1 = 9/20 = 0.45 and M2 = √

2.5/2 − 1/20 ≈ 0.74.
SinceM1/2

1 ≈ 0.67 andM1/2
2 ≈ 0.86, we took c = 0.5, 0.75 and 1 in order to have

c < M
1/2
1 < M

1/2
2 ,M1/2

1 < c < M
1/2
2 andM1/2

1 < M
1/2
2 < c, respectively.

For each value of d and c, we generated 500 training datasets (of sizes m =
16 and n = 40 for the classes C+ and C−, respectively), then we calculated the
means of the angles between the normal vectors of the four methods and the optimal
direction vd = μ+ − μ− = β1d . We also calculated the means of the classification
error rates of the four methods taking test dataset of size 100 for each class.

We summarize the results of the simulations in the Figs. 1, 2, and 3, and we
observe the following:

• For the case c = 0.5, by Theorem 2.1 the angles between the normal vectors of
the four methods and the optimal direction converge in probability to 0.9776 as
d → ∞, and we observe in (a) of Fig. 1 that as the dimension increases the means
of angles approach to that value. On the other hand, by the results mentioned
in Sect. 2.2, since c < M1/2

1 < M
1/2
2 , the four methods achieve asymptotically

perfect classification for the Y -population and completely incorrect classification
for the X-population as d → ∞, and this is observed in (b) of Fig. 1 since for
the four methods the means of the classification error rates approach to 0.5 as the
dimension increases. In this case the four methods are inconsistent in terms of
the angle between the normal vector and the optimal direction, and they are also
inconsistent in terms or the classification error rate.

• For c = 0.75, by Theorem 2.1 the angles between the normal vectors of the four
methods and the optimal direction converge in probability to 0.7798 as d →

Fig. 1 (a) Means of the angles between the normal vectors and the optimal direction, (b) means
of the classification error rates, for the case c = 0.5
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Fig. 2 (a) Means of the angles between the normal vectors and the optimal direction, (b) means
of the classification error rates, for the case c = 0.75

Fig. 3 (a) Means of the angles between the normal vectors and the optimal direction, (b) means
of the classification error rates, for the case c = 1

∞, and this agrees with (a) of Fig. 2, where we observe that as the dimension
increases the means of the angles approach to that value. By the results mentioned
in Sect. 2.2, since in this case M1/2

1 < c < M
1/2
2 , the SVM, MD and MDP

methods achieve asymptotically correct classification of a new datum from any
population as d → ∞, and DWD achieves asymptotically perfect classification
for the Y -population and completely incorrect classification for theX-population.
This is observed in (b) of Fig. 2, where the means of the error rates of the SVM,
MD and MDP methods decrease toward zero as the dimension increases, while
the mean of the error rate of DWD increases toward 0.5. Therefore, in this case
the four methods are inconsistent in terms of the angle between the normal vector
and the optimal direction. On the other hand, SVM, MD and MDP are consistent
while DWD is inconsistent in terms or the classification error rate.
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• For the case c = 1, by Theorem 2.1 the angles between the normal vectors of
the four methods and the optimal direction converge in probability to 0.6381
as d → ∞, which is observed in (a) of Fig. 3, since the means of the angles
approach to that value as the dimension increases. By the results in Sect. 2.2,
since in this case M1/2

1 < M
1/2
2 < c, the four methods achieve asymptotically

correct classification of a new datum from any population as d → ∞, and this
is observed in (b) of Fig. 3 where the error rates approach zero as the dimension
increases. Hence, the four methods are inconsistent in terms of the angle between
the normal vector and the optimal direction, however they are consistent in terms
of the classification error rate.

• With respect to the angles between the normal vectors of the methods and the
optimal direction, we observe that for all the considered values of d and c, the
MD method has the smaller angles, followed by DWD, SVM and MDP.

• For the considered values of c, we observe that the SVM, MD and MDP methods
have very similar error rates, and this is because their hyperplanes asymptotically
coincide as the dimension tends to infinity. Furthermore, the error rates of these
three methods are smaller than the error rate of the DWD method.

4 Conclusions

In this manuscript we showed that when data of the two classes C+ and C− have the
asymptotic geometric structure of N-polyhedron, with N = m+ n, where m of the
vertices correspond to an m-simplex and the remaining n vertices correspond to an
n-simplex, the angles between the normal vectors of the separating hyperplanes of
the MD, SVM, DWD and MDP methods and the optimal direction for classification,
converge in probability to the same constant as the dimension d tends to infinity.
The limit in probability of the angles depends on the limit of the distance, scaled
by d−1/2, between the class means. As the limit of this scaled distance increases
toward infinity, the limit in probability of the angles approaches to zero, therefore
we say that the four methods tend to be asymptotically consistent in terms of the
angle between the normal vector and the optimal direction; as the limit of the scaled
distance between the class means decreases toward zero, the limit in probability
of the angles approaches to π/2, therefore we say that the four methods tend to
be asymptotically strongly inconsistent in terms of the angle of the normal vector
and the optimal direction. This result is similar to the one given in [3], but now we
consider more general assumptions.

It is interesting that these four methods can be inconsistent in terms of the angle
between the normal vector and the optimal direction, in the sense that this angle do
not tend to zero as the dimension increases, and at the same time the four methods
can be consistent in terms of the classification error rate, in the sense that this
error rate tends to zero as the dimension increases. This phenomenon is due to the
asymptotic geometric structure of the data.
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We observed that even when the four methods have the same asymptotic behavior
in terms of the angle between the normal vector and the optimal direction, and the
normal vectors of the four methods tend to be in the same direction, the SVM,
MD and MDP methods can have a very different behavior from the DWD method
in terms of the classification error rate. This is because the separating hyperplanes
of SVM, MD and MDP asymptotically coincide as the dimension increases, while
the separating hyperplane of DWD can be asymptotically different from the others
under some conditions.

Appendix

Proof of Theorem 2.1

Case 1: The vector v is the normal vector of the MD, SVM or DWD hyperplane. Let
ṽ be the vector given in Lemma 2.1. Let X′

i = Xi − μ+ and Y ′
j = Yj − μ−, for

i = 1, 2, . . . ,m and j = 1, 2, . . . , n. We denote by 〈x, y〉 the dot product between
the d-dimensional vectors x and y. Note that

‖ ṽ ‖2 =
m∑

i=1

α2
i+ ‖ X′

i ‖2 +
n∑

j=1

α2
j− ‖ Y ′

j ‖2 + ‖ vd ‖2

+ 2
∑

i<j

αi+αj+
〈
X′
i , X

′
j

〉
+ 2

∑

i<j

αi−αj−
〈
Y ′
i , Y

′
j

〉

+ 2
m∑

i=1

αi+
〈
X′
i , vd

〉− 2
n∑

j=1

αj−
〈
Y ′
j , vd

〉
− 2

m∑

i=1

n∑

j=1

αi+αj−
〈
X′
i , Y

′
j

〉
.

(8)

Dividing both sides of (8) by d , we have by Lemma 2.1 and (1)–(3) that the sum of
the first three terms of the right side converges in probability to σ 2/m+τ 2/n+c2 as
d → ∞. Now we will see that the sum of the last five terms converges in probability
to zero as d → ∞. By (1) we have that

〈
X′
i , X

′
j

〉

d
= 1

2

(
‖ X′

i ‖2

d
+ ‖ X′

j ‖2

d
− ‖ Xi −Xj ‖2

d

)
P−→ 1

2
(σ 2 + σ 2 − 2σ 2) = 0

(9)

as d → ∞, for i �= j . Analogously

〈
Y ′
i , Y

′
j

〉

d

P−→ 0 as d → ∞, for i �= j. (10)
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Observe that sum of the last three terms of the right side of (8) is equal to

2
m∑

i=1

n∑

j=1

αi+αj−[〈X′
i , vd

〉−
〈
Y ′
j , vd

〉
−
〈
X′
i , Y

′
j

〉
].

From (1)–(4) and the equality

‖ Xi − Yi ‖2

d
= ‖ X′

i ‖2

d
+ ‖ Y ′

j ‖2

d
+ ‖ vd ‖2

d

+ 2

d

[〈
X′
i , vd

〉−
〈
Y ′
j , vd

〉
−
〈
X′
i , Y

′
j

〉]
,

we have that

1

d
[〈X′

i , vd
〉−

〈
Y ′
j , vd

〉
−
〈
X′
i , Y

′
j

〉
] P−→ 0 as d → ∞, ∀i, j. (11)

Therefore, by Lemma 2.1 and (9)–(11), we have that the sum of the last five terms
of the right side of (8) divided by d converges in probability to zero as d → ∞.
Thus,

‖ ṽ ‖2

d

P−→ σ 2

m
+ τ 2

n
+ c2 as d → ∞. (12)

From the results of [5], under the asymptotic geometric structure of the data, if
Y ∗

1 , Y
∗
2 , . . . , Y

∗
k are independent and identically distributed d-dimensional random

vectors with the same distribution as the vectors of the class C− and Y
∗
k =∑k

j=1 Y
∗
j /k, we have

‖ Xi − Y ∗
k ‖2

d

P−→ c2 + σ 2 + τ
2

k
as d → ∞.

Since Y
∗
k converges in probability to μ− as k → ∞, we have that

‖ Xi − μ− ‖2

d

P−→ c2 + σ 2 as d → ∞.

Furthermore, by (1) and (3)

‖ Xi − μ+ ‖2

d

P−→ σ 2 and
‖ μ+ − μ− ‖2

d

P−→ c2,

as d → ∞. Thus by the Pythagoras theorem, after rescaling by d−1/2, the segments
Xiμ−, Xiμ+ and μ+μ− tend to form a right triangle as d → ∞, where the
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hypotenuse is Xiμ−. Therefore, X′
i/d

1/2 = (Xi − μ+)/d1/2 and vd/d1/2 =
(μ+ − μ−)/d1/2 tend to be orthogonal as d → ∞, then

〈
X′
i , vd

〉

d

P−→ 0 as d → ∞, ∀i. (13)

We also have that
〈
X′
i , vd

〉

d1/2 ‖ vd ‖ =
〈
X′
i , vd

〉

d

d1/2

‖ vd ‖
P−→ 0 ∗ c−1 = 0 as d → ∞, ∀i. (14)

Analogously,

〈
Y ′
j , vd

〉

d

P−→ 0,

〈
Y ′
j , vd

〉

d1/2 ‖ vd ‖
P−→ 0, as d → ∞, ∀j. (15)

Note that

〈̃v, vd 〉 =
m∑

i=1

αi+
〈
X′
i , vd

〉−
n∑

j=1

αj−
〈
Y ′
j , vd

〉
+ ‖ vd ‖2 . (16)

Therefore, dividing both sides of (16) by d1/2 ‖ vd ‖, from Lemma 2.1, (3), (14)
and (15) we have

〈̃v, vd 〉
d1/2 ‖ vd ‖

P−→ c as d → ∞. (17)

By (12) and (17) we have

〈̃v, vd 〉
‖ ṽ ‖‖ vd ‖ = 〈̃v, vd 〉 /(d1/2 ‖ vd ‖)

‖ ṽ ‖ /d1/2
P−→ c

(
σ 2/m+ τ 2/n+ c2

)

as d → ∞. Then

Angle(̃v, vd) = arccos

( 〈̃v, vd 〉
‖ ṽ ‖‖ vd ‖

)
P−→ arccos

[
c

(σ 2/m+ τ 2/n+ c2)1/2

]

as d → ∞.
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Case 2: The vector v is the normal vector of the MDP hyperplane. Let X′
i and

Y ′
j be as in case 1, for i = 1, . . . ,m and j = 1, 2, . . . , n. From (1) and the results

of [5] we have

‖ X − μ+ ‖2

d

P−→ σ 2

m
, (18)

‖ Xi −X ‖2

d

P−→ m− 1

m
σ 2, (19)

as d → ∞. By (11), (13) and (15) we have

〈
X′
i , Y

′
j

〉

d

P−→ 0 as d → ∞, ∀i, j. (20)

Note that

〈
Xi −X,X − Y 〉 = 〈

X′
i − (X − μ+), (X − μ+)− (Y − μ−)+ vd

〉

= 1

m
‖ X′

i ‖2 + 1

m

∑

j �=i

〈
X′
i , X

′
j

〉
− 〈
X′
i , Y − μ−

〉+ 〈
X′
i , vd

〉

− ‖ X − μ+ ‖2 + 〈
X − μ+, Y − μ−

〉− 〈
X − μ+, vd

〉
.

Dividing both sides of the last equality by d1/2 ‖ vd ‖, from (1), (9), (13), (18) and
(20) we have

〈
Xi −X,X − Y 〉
d1/2 ‖ vd ‖ = d1/2

‖ vd ‖
〈
Xi − X,X − Y 〉

d

P−→ c−1
(
σ 2

m
− σ

2

m

)
= 0 (21)

as d → ∞. Furthermore, by (3) and (12) we have

‖ X − Y ‖
‖ vd ‖

P−→ (σ 2/m+ τ 2/n+ c2)1/2

c
as d → ∞. (22)

Thus, by (19), (21) and (22) it follows that

Angle(Xi −X,X − Y) = arccos

[ 〈
Xi −X,X − Y 〉

‖ Xi −X ‖‖ X − Y ‖

]

= arccos

[ 〈
Xi − X,X − Y 〉 /(d1/2 ‖ vd ‖)

(‖ Xi −X ‖ /d1/2)(‖ X − Y ‖ / ‖ vd ‖)

]

P−→ arccos(0) = π

2
(23)
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as d → ∞, ∀i. Analogously

Angle(Yj − Y ,X − Y ) P−→ π

2
as d → ∞, ∀j. (24)

As it was shown in the proof of Theorem 3.1 of [3], (23) and (24) imply that
when d is large, the normal vector v of the MDP hyperplane is approximately in the
same direction as (X − Y )/ ‖ X − Y ‖. Hence, Angle(v, vd ) = arccos(〈v, vd 〉 /(‖
v ‖‖ vd ‖)) is approximately

arccos[〈X − Y , vd
〉
/(‖ X − Y ‖‖ vd ‖)] (25)

when d is large, which by case 1 converges in probability to

arccos
[

c
(σ 2/m+τ 2/n+c2)1/2

]
as d → ∞.

The Data in the Simulations Satisfy Conditions (1)–(4)

We have that Xi is equal in distribution to rZi + β1d , for i = 1, 2, . . . ,m, and
Yj is equal in distribution to Zm+j , for j = 1, 2, . . . , n, where Z1, Z2, . . . , Zm+n
are independent and identically distributed with the same distribution as the random
vector Z given at the beginning of Sect. 3. Therefore, by (7)

‖ Xi − μ+ ‖2

d
= ‖ Zi ‖2 r2

d

P−→ 2r2, ∀i;
‖ Xi −Xj ‖2

d
= ‖ Zi − Zj ‖2 r2

d

P−→ 4r2, ∀i �= j ;
‖ Yi − μ− ‖2

d
= ‖ Zm+i ‖2

d

P−→ 2, ∀i;
‖ Yi − Yj ‖2

d
= ‖ Zm+i − Zm+j ‖2

d

P−→ 4, ∀i �= j ;

as d → ∞. Thus conditions (1) and (2) hold with σ = √
2r and τ = √

2. We also
have

‖ vd ‖2

d
= ‖ μ+ − μ− ‖2

d
= ‖ β1d ‖2

d
= β2, (26)

therefore condition (3) holds with c = β.
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Now we will see that condition (4) holds. Observe that

‖ Xi − Yj ‖2

d
= ‖ Zi ‖2

d
r2 + ‖ Z2

m+j ‖
d

+ ‖ vd ‖2

d

− 2r

〈
Zi,Zm+j

〉

d
+ 2r

〈Zi, vd 〉
d

− 2

〈
Zm+j , vd

〉

d
, (27)

for all i, j . From the properties of Z given in [3], we have that

〈
Zi,Zj

〉

d

P−→ 0, ∀i �= j, 〈Zi, vd 〉
d

P−→ 0, ∀i, as d → ∞. (28)

Therefore, by (7) and (26)–(28) we have

‖ Xi − Yj ‖2

d

P−→ 2r2 + 2 + β2 = σ 2 + τ 2 + c2 as d → ∞.

Then the condition (4) holds.
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Transport Distances on Random Vectors
of Measures: Recent Advances
in Bayesian Nonparametrics

Marta Catalano, Antonio Lijoi, and Igor Prünster

Abstract Random vectors of measures are at the core of many recent developments
in Bayesian nonparametrics. For a deep understanding of these infinite-dimensional
discrete random structures and their impact on the inferential and theoretical
properties of the induced models, we consider a class of transport distances based
on the Wasserstein distance. The geometrical definition makes it ideal for measuring
similarity between distributions with possibly different supports. Moreover, when
applied to random vectors of measures with independent increments (completely
random vectors), the interesting theoretical properties are coupled with analytical
tractability. This leads to a new measure of dependence for completely random
vectors and the quantification of the impact of hyperparameters in notable models
for exchangeable time-to-event data.

Keywords Bayesian nonparametrics · Completely random measures ·
Completely random vectors · Compound Poisson approximation · Dependence ·
Lévy copula · Partial exchangeability · Wasserstein distance

1 Introduction

Many notable Bayesian nonparametric models allow to make inference for partially
exchangeable sequences. Thanks to de Finetti’s representation theorem, the law of
any such sequence may be specified in terms of a random vector of probabilities
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(P̃1, . . . , P̃m). Let (Xi,j )j≥1, with i = 1, . . . ,m, be a partially exchangeable
sequence on X. Then,

(Xi1,j1, . . . , Xik,jk )|(P̃1, . . . ., P̃m) ∼ P̃i1 × · · · × P̃ik ; (P̃1, . . . , P̃m) ∼ Q;

for any k ≥ 1, i
 ∈ {1, . . . ,m}, j
 ∈ N \ {0} such that (i
, j
) �= (i
′, j
′),
for 
 �= 
′ = 1, . . . , k. When m = 1 or P̃1 = · · · = P̃m almost surely
(a.s.), the model degenerates to exchangeability, which can thus be seen as a
special case. There have been many proposals on how to specify the law Q by
modeling the dependence structure between random probabilities [21]. Among the
most successful specifications, many build on random vectors of measures with
independent increments (μ̃1, . . . , μ̃m), which we denote as completely random
vectors (CRVs) in analogy with the one-dimensional case of completely random
measures (CRMs). Completely random vectors have appealing properties in terms
of analytical tractability, typically because of the existence of a multivariate Lévy
intensity that characterizes their distribution. For this reason, many random vectors
of probabilities may be derived from suitable transformation of CRVs, including
normalization [22], kernel mixtures for densities [9, 18] and hazards [7] and
exponential transformation for survival functions [6].

The derived nonparametric models for partially exchangeable sequences [8,
10, 15–17, 23] are very flexible but often difficult to interpret, making the prior
elicitation more demanding. In order to ease the interpretation and foremost the
comparison between different models, we introduce a distance between CRVs,
based on the Wasserstein distance. The relationship between the Wasserstein
distance and optimal transport theory [25] sheds light on its intrinsically geometric
definition. This makes the Wasserstein distance an ideal measure of discrepancy
between distributions with possibly different support, in contrast to other com-
mon choices, such as the total variation distance, the Hellinger distance and the
Kullback–Leibler divergence.

To date the transport distance between CRVs has been used in two different
scenarios: to create a new measure of dependence for partially exchangeable models
[3] and to measure the discrepancy between hazard rates models for exchangeable
observations [2]. The dependence between random measures regulates the
borrowing of information between different groups of observations with a major
impact on the posterior inference. In order to elicit the prior, one needs a measure
of dependence that can be expressed in terms of the hyperparameters of the model.
State-of-the-art measures typically consist in linear correlation, thus capturing only
a portion of the dependence structure. By leveraging the transport distance between
CRVs, Catalano et al. [3] propose a new measure of dependence that goes beyond
linear correlation. On the other hand, the transport distance between CRMs, i.e.
one-dimensional CRVs, has been fruitfully used in the context of survival analysis.
One of the most popular Bayesian nonparametric models for time-to-event data [7]
represents the hazard rate function as a kernel mixture over a CRM. For a careful
prior elicitation, Catalano et al. [2] find the analytical expression for the Wasserstein
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distance between the hazards, as the hyperparameters of the CRMs and the kernels
vary. When treating the kernel of [7], i.e. k(t|x) = β(x)1(0,t ], calculations are
performed only for constant β(x) = β > 0, which is often used in applications.
This assumption implies that the index of dispersion of the induced hazard h̃(t) is
constant in time, which is often too restrictive. We thus consider the case where
β(x) increases linearly and compare it to the constant scenario. We find informative
bounds on the Wasserstein distance between these two specifications that show how
the distance increases quadratically in time.

The work is structured as follows. In Sect. 2 we introduce completely random
vectors and in Sect. 3 we define a class of transport distances on them. In Sect. 4
we describe how these distances may be used to define a measure of dependence,
reviewing the recent results of [3], whereas in Sect. 5 we focus on its applications in
survival analysis, following [2]. New results on time-varying kernels are contained
in Sect. 6.

2 Completely Random Vectors

In this section we recall the definition of completely random vectors and their main
properties. Let X be a Polish space with Borel σ -algebra X . We denote byMX the
space of boundedly finite measures on X, endowed with the weak� topology [5] and
the corresponding Borel σ -algebra. An m-dimensional random vector of measures
is a measurable function μ̃ : � → Mm

X
, where (�,�,P) is some probability

space and Mm
X

= ∏m
i=1MX denotes the m-fold product space with corresponding

product topology and induced Borel σ -algebra. Let πi : Mm
X

→ MX be the i-th
projection, i.e. πi(μ1, . . . , μm) = μi , for i = 1, . . . ,m. We denote the marginal
random measures μ̃i = πi ◦ μ̃ : �→ MX, so that μ̃ = (μ̃1, . . . , μ̃m).

Definition 2.1 A random vector of measures μ̃ is said to be a completely random
vector (CRV) if for every disjoint collection of bounded Borel sets A1, . . . , An, the
one-dimensional distributions μ̃(A1), . . . , μ̃(An) are independent.

We observe that for i = 1, . . . ,m, the marginal random measure μ̃i of a CRV μ̃

is a completely random measure (CRM) in the sense of [14]. Thus, we can look at
CRVs μ̃ = (μ̃1, . . . , μ̃m) as vectors of dependent CRMs. This property makes them
particularly appealing, since dependent CRMs offer the ground for most tractable
nonparametric priors in presence of multiple populations.

We focus on CRVs without fixed atoms. Thanks to [13, Theorem 3.19], this
ensures the existence of a Poisson random measure N on R

m+ × X s.t. for every
A ∈ X ,

μ̃(A)
d=
∫

R
m+×A

s N (ds1, . . . , dsm, dx), (2.1)
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where
d= denotes equality in distribution and s = (s1, . . . , sm). It follows that

the distribution of a CRV μ̃ is characterized by a multivariate Lévy intensity
ν(ds1, . . . , dsm, dx) = E(N (ds1, . . . , dsm, dx)) such that (1) ν(Rm+ × {x}) = 0
for every x ∈ X; (2) for every boundedA ∈ X and every ε > 0,

∫

R
m+×A

min{s1 + · · · + sm, ε} ν(ds1, . . . , dsm, dx) < +∞. (2.2)

We will focus on infinitely active CRVs, i.e. such that for every Borel set A, the
Lévy measures of the marginal CRMs satisfy

∫

R+×A
νi(dsi, dx) =

∫

R
m+×A

ν(ds1, . . . , dsm, dx) = +∞. (2.3)

In the next section we define a class of distances between laws of CRVs, whose
analytical tractability heavily relies on the existence of multivariate Lévy intensities.

3 Transport Distances

In this section we define a class of transport distances on CRVs. These are built on
the Wasserstein distance [25], whose geometric definition makes it an ideal choice
for measuring the similarity between distributions.

Let ‖ · ‖m denote the Euclidean distance on R
m and let N+ = N \ {0}. For any

pair π1, π2 of probability measures on (Rm, ‖ · ‖m), we indicate by C(π1, π2) the
Fréchet class of π1 and π2, i.e. the set of distributions (couplings) on the product
space R2m whose marginal distributions coincide with π1 and π2 respectively.

Definition 3.1 The Wasserstein distance of order p ∈ N
+ on (Rm, ‖·‖m) is defined

as

Wp(π1, π2) = inf
(Z1,Z2)∈C(π1,π2)

{
E(‖Z1 − Z2‖pm)

} 1
p .

By extension, we refer to the Wasserstein distance between two random vectors
X1,X2 on R

m as the Wasserstein distance between their laws, i.e. Wp(X1,X2) =
Wp(L(X1),L(X2)).

In the next proposition we show how the Wasserstein distance may be used to
define a distance between CRVs in a natural way. The proof is a straightforward
generalization of results in [3]. Before providing the main statement, we underline
that a CRV has finite moments up to order p ∈ N

+ if for every 
 ∈ {1, . . . , p},
∫

R
m+×X

s
 ν(ds1, . . . , dsm, dx) < +∞, (3.1)
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where s
 = (s
1, . . . , s


m) and +∞ = (+∞, · · · ,+∞). Denote by Pp(M

m
X
) =

{L(μ̃) s.t. μ̃ is a CRV that satisfies (3.1)}.
Proposition 3.2 For every p ∈ N

+, the following function dW,p : Pp(M
m
X
) ×

Pp(M
m
X
)→ [0,+∞) defines a distance:

dW,p(L(μ̃1),L(μ̃2)) = sup
A∈X

Wp(μ̃1(A), μ̃2(A)). (3.2)

By extension, we refer to the distance dW,p between CRVs as the distance
between their laws. The natural definition of dW,p is often coupled with analytical
tractability, as shown in [2] and [3], which makes it particularly attractive in a
number of statistical applications. In particular, in [2], dW,1 was used in the one-
dimensional scenario, i.e. between the laws of completely random measures, to
measure the discrepancy between Bayesian nonparametric models for exchangeable
time-to-event data. On the other hand, in [3], dW,2 was used to measure the
dependence structure of a CRV.

4 Measuring Dependence in Bayesian Nonparametrics

In the last 20 years Bayesian nonparametric models have gone beyond the exchange-
ability assumption through the introduction of dependent random measures, which
provide a flexible framework for modeling the heterogeneity across multiple
populations. The prior dependence between random measures regulates the bor-
rowing of strength across different populations and thus needs a careful elicitation.
The current state-of-the-art is to provide the analytical expression for the linear
correlation Corr(μ̃1(A), μ̃2(A)), which only captures partial information about
the dependence structure. In [3] the authors propose to use the distance defined
in Proposition 3.2 to compare different dependence structures between CRVs with
equal marginal distributions, i.e. in the same Fréchet class. In particular, one may
define an overall measure of dependence of μ̃ by considering its distance from the
maximally dependent CRV in the same Fréchet class, usually referred to as the
comonotonic vector μ̃co:

Dep(μ̃) = dW,2(μ̃, μ̃
co) (4.1)

The goal is to find tight bounds for Dep(μ̃) in terms of the hyperparameters of
the model, in order to quantify their impact on the dependence structure for a
principled prior elicitation. This is achieved in [3] by (1) using compound Poisson
approximations; (2) finding a new upper bound on the Wasserstein distance between
bivariate compound Poisson distributions; (3) finding the expression for the optimal
coupling between a distribution on R

2 and the comonotonic one in the same
Fréchet class. In particular, one finds tight upper bounds for Dep(μ̃) in terms
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of the underlying bivariate Lévy measures. This allows to treat many noteworthy
dependence structures, such as GM-dependence [11, 16, 17], compound random
measures [10, 23] and Clayton Lévy copulae [4, 8, 15, 24].

5 Survival Analysis in Bayesian Nonparametrics

Completely random measures play a particularly important role in Bayesian non-
parametric models for time-to-event data. Here the main quantities of interest
are typically the survival function, cumulative hazards and the hazard function.
Consequently, the most notable Bayesian nonparametric models in survival analysis
and reliability theory provide closed form estimates of these functions, in terms of
underlying CRMs. Among the models for the hazard function, the one proposed by
Dykstra and Laud [7] stands out for combining both flexibility and tractability. The
random hazard function h̃ is modeled as a kernel mixture over a CRM:

h̃(t) =
∫

X

k(t|x) μ̃(dx), (5.1)

where t ∈ R
+, k : X×R

+ → R
+ is a measurable kernel and μ̃ is a CRM on X with

Lévy intensity ν. The original model in [7] was defined for k(t|x) = β(x)1(0,t ](x),
where β : R+ → R

+ is a measurable function, and μ̃ a gamma CRM, i.e. such that
the Lévy intensity satisfies

ν(ds, dx) = e−bs

s
1(0,+∞)(s) ds α(dx), (5.2)

for b > 0 and α ∈ MX. We write μ̃ ∼ Ga(b, α). The extension to a general
kernel was proposed in [19]. Later work by James [12] also extended this model to
a general CRM.

The hazard model (5.1) is very flexible and incorporates a wide variety of
distributional assumptions. On the other hand, it is not easy to understand how
the parameters of the CRM and the kernel function impact the distribution of the
random hazard. For a careful prior elicitation and sensitivity analysis, a principled
quantification of the discrepancy at the level of the hazards is of fundamental need.
We choose the Wasserstein distance of order 1 as a measure of discrepancy and we
seek for an analytical expression of

sup
t∈[0,T ]

W1(h̃1(t), h̃2(t)) (5.3)

where T > 0 and h̃1, h̃2 are two different specifications for (5.1). We point out that
[0, T ] may be interpreted as a time interval of interest, typically coinciding with the
start and the end of the study. The analytical evaluation of a distance is a difficult task
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in general, even more so since the law of the random variable in (5.1) is defined in an
indirect way through the Lévy measure of the mixing CRM. Nonetheless, in [2] the
authors were able to find informative bounds on the distance in (3.2) in terms of the
corresponding Lévy measures by (1) leveraging compound Poisson approximations
of the completely random measures; (2) bounding the Wasserstein distance between
compound Poisson distributions, as first suggested by Mariucci and Reiß [20] in the
context of Lévy processes. Then, the deep connections between (5.3) and (3.2) lead
to the following theorem, whose proof may be found in [2]. Before providing the
main statement, we stress two conditions on the kernels.

lim
t→∞

∫ t

0

∫

R+×X

k(u | x) s duN (ds, dx) = +∞, (5.4)

∫

R+×X

k(t|x) s ν(ds, dx) < +∞. (5.5)

Theorem 5.1 Let h̃1 = {h̃1(t) | t ≥ 0} and h̃2 = {h̃2(t) | t ≥ 0} be random hazard
rates as in (5.1) with associated infinitely active CRMs μ̃i , Lévy intensity νi , and
kernel ki that satisfy (5.4) and (5.5), for i = 1, 2. Then the Wasserstein distance
between the marginal hazard rates is finite and for every t ≥ 0,

glow(t) ≤ W1(h̃1(t), h̃2(t)) ≤ gup(t),

where

glow(t) =
∣∣
∣∣

∫

R+×X

k1(t |x) s ν1(ds, dx) −
∫

R+×X

k2(t |x) s ν2(ds, dx)

∣∣
∣∣,

gup(t) =
∫ +∞

0

∣∣
∣∣

∫

(u,+∞)×X

1

k1(t | x)ν1

(
d

s

k1(t | x) , dx
)

− 1

k2(t | x)ν2

(
d

s

k2(t | x) , dx
)∣∣
∣∣ du.

In particular if there exists a dominating measure η such that the Radon–Nikodym
derivatives νi(s, x) satisfy, for i �= j in {1, 2},

1

ki(t|x)νi
( s

ki(t|x) , x
)

≤ 1

kj (t|x)νj
( s

kj (t|x), x
)

(5.6)

for all (s, x) ∈ R
+ × X, then

W1(h̃1(t), h̃2(t)) =
∣∣
∣
∣

∫

R+×X

k1(t|x) s ν1(ds, dx)−
∫

R+×X

k2(t|x) s ν2(ds, dx)

∣∣
∣
∣.
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Theorem 5.1 was used in [2] to measure the discrepancy between hazards with
kernels of the type of [7], i.e. k(t|x) = β(x)1[0,t ](x), which is a popular choice
when modeling increasing hazards, in the particular case where β(x) = β is a
constant function. This specification is very common in applications and brings to
the following measurement of discrepancy, whose proof may be found in [2]. We
denote by Leb+ the Lebesgue measure on (0,+∞).
Theorem 5.2 Let μ̃i ∼ Ga(bi,Leb+) as defined in (5.2) and let ki(t|x) =
βi1[0,t ](x), with bi, βi > 0, for i = 1, 2. If h̃1 and h̃2 are the corresponding hazard
rate mixtures, then

W1(h̃1(t), h̃2(t)) = t
∣
∣∣
∣
β1

b1
− β2

b2

∣
∣∣
∣.

6 Time-Dependent Kernels

In this section we make some progress in the understanding of the distributional
implications of the hazard rate model in (5.1) when μ̃ ∼ Ga(b,Leb+) as defined
in (5.2). In particular, the goal is to understand the impact of using a kernel of the
type of [7] when the time influences also the functional form of the kernel and not
only the support, i.e. β(·) is not constant in (0, t]. This scenario is of particular
importance when we judge that the index of dispersion varies in time, since when
β(x) = β > 0,

Var(h̃(t))

E(h̃(t))
= β

b
.

We thus consider the scenario where β(x) = β + γ x, with β, γ > 0.

Theorem 6.1 Let μ̃i ∼ Ga(bi,Leb+) as defined in (5.2) and let k1(t|x) =
β1[0,t ](x) and k2(t|x) = (β + γ x)1[0,t ](x), with b1, b2, β, γ > 0. If h̃1 and h̃2
are the corresponding hazard rate mixtures, then

1. If b1 ≥ b2,

W1(h̃1(t), h̃2(t)) =
(

1

b2
− 1

b1

)
βt + γ

2b2
t2.

2. If b1 ≤ b2 and t ≤ β(b2 − b1)/(b1γ )

W1(h̃1(t), h̃2(t)) =
(

1

b1
− 1

b2

)
βt − γ

2b2
t2.

3. Otherwise,

glow(t) ≤ W1(h̃1(t), h̃2(t)) ≤ gup(t),
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where

glow(t) =
(

1

b2
− 1

b1

)
βt + γ

2b2
t2

gup(t) =
(

1

b2
− 1

b1

)2
β2b2

γ
+
(

1

b2
− 1

b1

)
βt + γ

2b2
t2

Proof First of all we observe that

νk,1(ds, dx) = 1

k1(t|x)ν1

(
d

s

k1(t|x) dx
)

= e
− s b1

β

s
1(0,+∞)(s)1[0,t ](x) ds dx,

νk,2(ds, dx) = 1

k2(t | x)ν2

(
d

s

k2(t|x) dx
)

= e
− s b2
β+γ x

s
1(0,+∞)(s)1[0,t ](x) ds dx.

Since γ > 0, (5.6) holds whenever b1 ≥ b2. Part 1 of the statement thus holds by
Theorem 5.1, by observing that

∫

R+×R

k2(t | x) s ν2(ds, dx) = β

b2
t + γ

2b2
t2.

As for part 2 of the statement, it suffices to prove the expression for the upper bound.
With a slight abuse of notation, indicate by νk,i(s, x) the Radon–Nikodym derivative
of νk,i(ds, dx), for i = 1, 2. We observe that νk,1(s, x) ≤ νk,2(s, x) for every s > 0
and every t ≥ y ≥ β(b2 − b1)/(b1γ ), so that the Radon–Nikodym derivatives are
not globally ordered. We denote by δ = min(β(b2 − b1)/(b1γ ), t). We then have

∫ +∞

0

∣
∣
∣∣

∫

(u,+∞)×R

(νk,1(s, x)− νk,2(s, x)) ds dx
∣
∣
∣∣ du

≤
∫ +∞

0

∫

(u,+∞)

∫

R

|νk,1(s, x)− νk,2(s, x)| dx ds du.

By interchanging the integrals thanks to Fubini’s Theorem, this is equal to

∫ +∞

0

∫

R

(∫ s

0
du

)
|νk,1(s, x)− νk,2(s, x)| dx ds

=
∫ +∞

0

∫

R

|sνk,1(s, x)− sνk,2(s, x)| dx ds

=
∫ +∞

0

(∫ δ

0
(e

− s b1
β − e−

s b2
β+γ x ) dx +

∫ t

δ

(e
− s b2
β+γ x − e−

s b1
β ) dx

)
ds
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=
∫ δ

0

(
β

b1
− β + γ x

b2

)
dx +

∫ t

δ

(
β + γ x
b2

− β

b1

)
dx.

The conclusion follows by simple calculations. �	
Theorem 6.1 allows one to measure the impact of introducing a time dependent

function in the kernel of [7]. In particular, we underline how the discrepancy grows
quadratically in time, thus greatly influencing our prior opinion on the process
for large t . Moreover, as t → +∞ we observe that the upper and lower bounds
are asymptotically equivalent, providing the exact leading term for the Wasserstein
distance.

7 Discussion and Further Work

In this paper we have discussed two different frameworks where transport distances
between random vectors of measures provide deeper insights on notable Bayesian
nonparametric models, favoring the elicitation of the prior. The amount of depen-
dence in partially exchangeable models regulates the borrowing of information
across groups, with a large impact on the inference. It is thus of fundamental
importance to translate our prior beliefs on the dependence structure into the spec-
ification of the prior. Since exchangeability corresponds to a situation of maximal
dependence, it seems natural to encode the prior beliefs on the dependence structure
in terms of distance from the exchangeable scenario, as in (4.1). By choosing a
subjective threshold τ for such distance, the tight upper bounds found in [3] may be
set to be equal to τ by choosing appropriate values of the hyperparameters of the
model. Moreover, Theorem 6.1 may be used for the prior elicitation of hazard rate
models as in (5.1). The kernel k(t|x) = β1[0,t ](x) with β > 0 is the most common
specification in applications involving increasing hazard rates and may be treated as
a reference kernel. However, if one believes that the index of dispersion varies over
the time interval of interest (0, t∗], it is natural to use a time varying specification
as k(t|x) = (β + γ x)1[0,t ](x), though securing a certain degree of similarity with
respect to the reference kernel for every t ∈ (0, t∗]. By measuring the similarity in
terms of Wasserstein distance and fixing a subjective threshold τ , the exact value of
the distance or its upper bound in Theorem 6.1 is maximized in t∗. One can then set
the upper bound at time t∗ equal to τ , so that the hyperparameter γ may be chosen
and elicited accordingly.

Completely random measures are widely used because they combine modeling
flexibility with analytical tractability. In particular, there are many closed form
results for the posterior distribution of the random measures given exchangeable
or partially exchangeable observations. These have been used for example in [2]
to evaluate approximation errors of a posterior sampling scheme in terms of the
Wasserstein distance. Future research will concern the analysis of the dependence
structure of the posterior distribution μ̃∗ through Dep(μ̃∗) in (4.1). The plan would
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then be to use this to test whether the data supports the heterogeneity assumption
across groups, along the lines of the parametric tests developed in [1].
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Bayesian Non-parametric Priors Based
on Random Sets

María F. Gil-Leyva

Abstract We study the construction of random discrete distributions, taking values
in the infinite dimensional simplex, by means of a latent random subset of the natural
numbers. The derived sequences of random weights are then used to establish a
Bayesian non-parametric prior. A sufficient condition on the distribution of the
random set is given, that assures the corresponding prior has full support, and taking
advantage of the construction, we propose a general MCMC algorithm for density
estimation purposes. This method is illustrated by building a new distribution over
the space of all finite and non-empty subsets of N, that subsequently leads to a gen-
eral class of random probability measures termed Geometric product stick-breaking
process. It is shown that Geometric product stick-breaking process approximate,
in distribution, Dirichlet and Geometric processes, and that the respective weights
sequences have heavy tails, thus leading to very flexible mixture models.

Keywords Bayesian non-parametric prior · Density estimation · Dirichlet
process · Geometric process · Random sets

1 Introduction

The study of distributions over the infinite dimensional simplex, �∞, arises
naturally in the theory of Bayesian non-parametric statistics, as they allow the
construction of mathematically tractable random probability measures, that are
latter assumed to drive some exchangeable sequence. Namely, given a sequence
of weights, W = (wj )j≥1, taking values in �∞ = {(wj )j≥1 ∈ [0, 1]∞ : wj ≥
0,
∑
j≥1 wj = 1}, an independent sequence � = (ξ j )j≥1

iid∼ P0, for some diffuse

M. F. Gil-Leyva (�)
IIMAS, Universidad Nacional Autónoma de México, CDMX, Mexico
e-mail: marifer@sigma.iimas.unam.mx

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Hernández-Hernández et al. (eds.), Advances in Probability and Mathematical
Statistics, Progress in Probability 79, https://doi.org/10.1007/978-3-030-85325-9_5

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85325-9_5&domain=pdf
mailto:marifer@sigma.iimas.unam.mx
https://doi.org/10.1007/978-3-030-85325-9_5


72 M. F. Gil-Leyva

distribution, P0 over a Polish space (S,B(S)), and probability kernel,1 ψ , from S
into the Polish space (R,B(R)), one can construct the random mixture,

p =
∑

j≥1

wjψ(·|ξ j ), (1.1)

and given p, model data, {y1, y2, . . .}, as i.i.d. sampled from p ({y1, y2, .. | p} iid∼ p).
This is generally interpreted as if yk is sampled from the distribution ψ(·|ξ j ), with
probability wj , for every j ≥ 1. In this context two widely studied and useful sub-
classes of random mixtures are the ones that allow a density and the class of species
sampling processes. The first class arises when for each s ∈ S, ψ(·|s) has a density,
f (·|s) with respect to a suitable diffuse measure. This way one can consider the
random mixture of densities

∑
j≥1 wj f (·|ξ j ), and work with this one instead of p.

The second class emerges if we fix S = R and ψ(·|ξ j ) = δξ j , then p becomes
a (proper) species sampling process [17]. While mixtures of random densities
describe random probability measures that are diffuse almost surely, proper species
sampling processes are purely atomic almost surely. Arbitrary random mixtures,
can be constructed by means of measurably transforming a proper sampling process∑
j≥1 wj δξ j , through

∑

j≥1

wj δξ j �→
∫

S
ψ(·|s)μ(ds) =

∑

j≥1

wj ψ(·|ξ j ).

For this reason, the distribution of the (latent) species sampling processes, in a
Bayesian context, is referred to as the prior distribution of the model. Evidently, the
prior distribution is completely characterized by choosing the diffuse probability
measure, P0, and defining the distribution of the weights, W, which is the most
challenging part. The canonical example of Bayesian non-parametric priors is
the Dirichlet process [3, 5, 19], searching for generalizations and competitive
alternatives to the canonical model, various techniques to place distributions on�∞
have been developed. Some of the most notable are through the normalization of
the jumps of a subordinator (e.g. [9, 11, 13, 18]), through a prediction rule (e.g.
[3, 16, 17]), and by means of the stick-breaking construction of a weights sequence
(e.g. [10, 14, 19]). The latter consists in decomposing the weight as

w1 = v1, wj = vj

j−1∏

i=1

(1 − vi ), j ≥ 2, (1.2)

1 Recall that a probability kernel ψ from S into (R,B(R)) is a function, ψ : B(R) × S → [0, 1],
such that for every s ∈ S fixed ψ(·|s) is a probability measure, and for every B ∈ B(R) fixed,
ψ(B|·) is a measurable with respect to B(S) and B([0, 1]).
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for some sequence taking values in [0, 1], V = (vi )i≥1, hereinafter referred to

as length variables. Particularly, if (vi )i≥1
iid∼ Be(1, θ), for some θ > 0, the

Dirichlet processes [3, 5, 19] arises. Another well-known stick-breaking process
is the Geometric process [7], which has length variables vi = λ ∼ Be(α, β)
for every i ≥ 1, so that (1.2) reduces to wj = λ(1 − λ)j−1, j ≥ 1. Further
examples of Bayesian non parametric priors, random mixtures, related models and
their applications can be found in [6, 8, 9].

In spite of the construction method of a random mixture, as explained in [2],
an essential requirement to the prior distribution is for it to have full support. This
property is determined by the weights, and assures that if the support of P0 is S,
then the support of the prior (with respect to the topology of weak convergence) is
the set of all probability measures over (S,B(S)). As also shown in [2], the prior
has full support if and only if for every ε > 0, P[maxj≥1 wj < ε] > 0. This
immediately discards sequences of weights for which there exists m ∈ N, such that∑m
j=1 wj = 1 almost surely, as this implies wj > 1/m, for all j ≥ 1. In other

words, random mixtures depending on arbitrarily many random variables are the
most flexible models, however, the same characteristic also makes them challenging
to implement. In order to overcome this, Walker in [20] suggested to construct a
latent random set, say �, that takes values in FN = {A ⊆ N : 0 < |A| < ∞},
and that makes sampling from p equivalent to sampling from the uniform finite
mixture |�|−1 ∑

j∈� ψ(·|ξ j ). This approach not only solves the practical problem
of dealing with infinitely many random variables, but also suggests a new form to
construct distributions over�∞.

The rest of the paper is organized as follows. In Sect. 2 we formalize the
procedure of how to construct a distribution over �∞ given a parametric distri-
bution, π�, over FN. Inhere we also give sufficient conditions on π� to assure the
corresponding prior has full support, and propose a general MCMC algorithm for
density estimation purposes. In Sect. 3.1 we illustrate the notions analysed in Sect. 2,
by reviewing some examples that already appear in the literature, and in Sect. 3.2
we do so by means of a new class of distributions over FN, characterized by the fact
that the elements of corresponding random sets, are chosen by means of independent
Bernoulli trials. The fourth and final section, is dedicated to study further properties
of the model that arises from the construction in Sect. 3.2, such as the fact that
Geometric processes and Dirichlet processes can be recovered for extreme values of
the hyper-parameters and that the corresponding weights sequence is heavy-tailed.

2 Distributions on the Simplex Based on Distributions of
Random Sets

Consider a random element, τ , taking values in some Polish space (T ,B(T )) and
a mass probability kernel π� from T into FN, so that for each t ∈ T , π�(· | t)
is a mass probability function over FN, and for each A ∈ FN, π�(A | ·) is a
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measurable function from (T ,B(T )) into ([0, 1],B([0, 1]). Let � be some random
set satisfying {�|τ } ∼ π�(·|τ ), and say that given �, we uniformly pick one of its
elements, d. Define wj as the conditional probability that d = j given τ , that is
wj = P[d = j | τ ]. Under the assumption that d is conditionally independent of τ

given �, by the tower property of conditional expectation we obtain,

wj = E

[
1

|�|1{j∈�}
∣
∣
∣∣ τ
]

=
∑

A∈FN

1

|A|1{j∈A}π�(A | τ ), j ≥ 1. (2.1)

Insomuch as the events (d = j)j≥1 are mutually disjoint and its union (d ∈ N)

occurs almost surely we must have
∑
j≥1 wj = 1. In other words, by conditional

monotone convergence theorem, and since
∑
j≥1 1{j∈�} = |�|, we get

∑

j≥1

wj = E

⎡

⎣ 1

|�|
∑

j≥1

1{j∈�}

∣
∣
∣
∣∣
∣
τ

⎤

⎦ = 1, (2.2)

almost surely. Thus, each parametric distribution, π�, over FN, together with a
randomization of its parameters, τ , and through (2.1), characterizes completely the
law of W = (wj )j≥1, which takes values in the infinite dimensional simplex. In
other words, if we denote by πτ to the distribution of τ , the pair (π�, πτ ), defines a
distribution, say πW, over�∞.

A major advantage of constructing distributions over �∞ through distributions
over FN, becomes evident when one is interested in sampling from (or infer about)
a random mixture, p = ∑

j≥1 wj ψ(· | ξ j ), where the weights are as in (2.1).
For instance, if one is interested in sampling d from P[d = j | W] = wj , one
can alternatively, first sample from the latent random set �, and then uniformly
choose an element of �. In terms of the mixture, if one is able to sample to from
ξ j ∼ P0, τ ∼ πτ and {� | τ } ∼ π�(· | τ ) then a sample from {y | �, (ξ j )j∈�} ∼
|�k|−1 ∑

j≥1ψ(· | ξ j ) is also a sample from {y | W,�} ∼ p. The following result
formalizes this notion in a slightly more general scenario.

Proposition 2.1 Let (T ,B(T )) be a Polish space and consider a mass probability
kernel π� from T to FN. Let τ be a random element taking values in T , consider

{�1, . . . ,�n | τ } iid∼ π�(· | τ ) and define W = (wj )j≥1 as in (2.1). Also
consider an independent collection � = (ξ j )j≥1 taking values in the Polish space
(S,B(S)) and a probability kernel ψ from S into the Polish space (R,B(R)).
Say that {y1, . . . , yn} are conditionally independent given �,�1, . . . ,�n, with
{yk | �k,�} ∼ |�k|−1 ∑

j∈�k
ψ(· | ξ j ), and also assume that, yk is conditionally

independent of τ , given �k , for 1 ≤ k ≤ n. Then {y1, . . . , yn | W,�} iid∼∑
j≥1 wj ψ(· | ξ j ).
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Proof Fix B1, . . . , Bn ∈ B(R). By the tower property of conditional expectation
and conditional monotone convergence theorem we obtain

P

[
n⋂

k=1

(yk ∈ Bk)
∣
∣
∣∣
∣
τ ,�

]

= E

[

P

[
n⋂

k=1

(yk ∈ Bk)
∣
∣
∣∣
∣
τ ,�,�1, . . .�n

] ∣∣
∣∣
∣
τ ,�

]

= E

⎡

⎣
n∏

k=1

⎛

⎝ 1

|�k|
∑

j∈�k

ψ(Bk | ξ j )

⎞

⎠

∣
∣
∣
∣
∣
∣
τ ,�

⎤

⎦

=
n∏

k=1

E

⎡

⎣ 1

|�k|
∑

j≥1

1{j∈�k}ψ(Bk | ξ j )

∣
∣
∣
∣
∣
∣
τ ,�

⎤

⎦

=
n∏

k=1

⎛

⎝
∑

j≥1

E

[
1

|�k|1{j∈�k}
∣
∣
∣
∣ τ
]
ψ(Bk | ξ j )

⎞

⎠

=
n∏

k=1

⎛

⎝
∑

j≥1

wj ψ(Bk | ξ j )

⎞

⎠

Finally from (2.1) it is evident that W is τ -measurable, from which we conclude

P

[
n⋂

k=1

(yk ∈ Bk)
∣
∣
∣
∣
∣
W,�

]

=
n∏

k=1

⎛

⎝
∑

j≥1

wj ψ(Bk | ξ j )

⎞

⎠

�	
This said, the next task is to determine under which conditions of π� and πτ ,

does the corresponding prior (the distribution of
∑
j≥1 wj δξ j ) has full support. To

this aim consider τ ,� and W as in (2.1) and define N = |�|. Notice that, for every
ε > 0, conditioning on the event (N > 1/ε) = (N−1 < ε), we have that

wj = E

[
1

N
1{j∈�}

∣
∣
∣
∣ τ
]

≤ E

[
1

N

∣
∣
∣
∣ τ
]
< ε,

for every j ≥ 1. Hence, (N > 1/ε) is contained is the event (maxj≥1 wj < ε),
which means that

P

[
max
j≥1

wj < ε
]

≥ P

[
N >

1

ε

]
. (2.3)
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If we define

πN(n | t) =
∑

A∈FN

π�(A | t)1{|A|=n}, (2.4)

for every t ∈ T and n ∈ N, so that πN(· | τ ) is the conditional mass probability
function of N given τ , then we can rewrite (2.3) as

P

[
max
j≥1

wj < ε
]

≥
∫ ∑

n≥(1/ε)
πN(n | t)πτ (dt) =

∑

n≥(1/ε)

∫
πN(n | t)πτ (dt).

From these equations, the following results are straight forward.

Proposition 2.2 Let (T ,B(T )) be a Polish space and consider a mass probability
kernel π� from T to FN. Let τ be a random element taking values in T , {� | τ } ∼
π�(· | τ ), and define W through (2.1). Let N = |�| and say that for every n ∈ N,
P[N > n] > 0. Then for every ε > 0, P

[
maxj≥1 wj < ε

]
> 0.

Corollary 2.3 In the context of Proposition 2.2, define πN through (2.4). If there
exist B ∈ B(T ) such that P[τ ∈ B] > 0, and for every t ∈ B and m ∈ N, we have
that

∑
n≥m πN(n | t) > 0. Then for every ε > 0, P

[
maxj≥1 wj < ε

]
> 0.

Roughly speaking, if � is allowed to contain arbitrarily many random elements,
the largest weight can be arbitrarily small. The latter then shows that the corre-
sponding prior has full support and hence is feasible for Bayesian non-parametric
inference. In the following we describe a density estimation algorithm for these
models via Gibbs sampler implementation.

2.1 Density Estimation Scheme

Say we model elements in Y = {y1, . . . , ym} as conditionally i.i.d. sampled from a
random mixture p = ∑

j≥1 wjψ(· | ξ), where W satisfies equation (2.1) for some
τ ∼ πτ and π�. After possibly enlarging the original probability space, we can

construct some latent random sets {�1, . . .�n | τ } iid∼ π�(· | τ ) that satisfy the
conditions of Proposition 2.1. So that the following are equivalent in terms of the
law of Y,

�
iid∼ P0, W ∼ πW, {y1, y2, . . . |W,�} iid∼ p,

and

�
iid∼ P0, τ ∼ πτ , {�1, . . .�n | τ } iid∼ π�(· | τ ), {yk | �k} ∼ 1

|�k |
∑

j∈�k

ψ(· | ξ j ),



Bayesian Non-parametric Priors Based on Random Sets 77

for 1 ≤ k ≤ m. If we further define the membership random variables, dk = j

if and only if yk is ultimately sampled from ψ(· | ξ j ), we get that {yk | �k} ∼
|�k|−1 ∑

j∈�k
ψ(· | ξ j ) is equivalent to {dk | �k} ∼ Unif(�k) and {yk | dk} ∼

ψ(· | ξdk ). Under the assumption that ψ(· | s) has a density f (· | s) for each s, and
taking into account the latent random variables, the likelihood is easily seen to be

π
({yk,dk,�k}mk=1 | τ ,�

) =
n∏

k=1

f (yk | ξdk )
1

|�k|1{dk∈�k}π�(�k | τ ).

The full conditional distributions required to update the random elements at each
iteration of the Gibbs sampler are given below.

Updating ξ j for j ≥ 1

π
(
ξ j | . . .) ∝ p0(ξ j )

∏

k∈Dj
f
(
yk
∣∣ξ j
)

(2.5)

where Dj = {k : dk = j }, for every j ≥ 1, and under the assumption that P0 has a
density p0 with respect to a suitable measure. If p0 and f form a conjugate pair, the
above is easy to sample from.

Updating dk for k ∈ {1, . . . , n}

π (dk = j | . . .) ∝ f (yk | ξ j
)
1{j∈�k}, j ≥ 1, (2.6)

for every k ∈ {1, . . . ,m}. Insomuch as �k is non-empty and finite a.s., the full
conditional of dk is a discrete distribution with finite support, hence easy to sample
from.

Updating �k for k ∈ {1, . . . , n}

π (�k = A | . . .) ∝ πφ(A | τ )

|A| 1{dk∈A}, A ∈ FN, (2.7)

for every k ∈ {1, . . . ,m}.
Updating τ

π (τ | . . .) ∝ πτ (τ )
m∏

k=1

πφ(�k | τ ). (2.8)

Evidently the method to sample form Eqs. (2.7) and (2.8) depends on the choice
of π� and πτ . In the following section we illustrate how to sample from (2.7) and
(2.8) for some examples that have already been studied in the literature and a new
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one. Before moving on we shall mention that when sampling from (2.7) and (2.8) is
feasible, given the samples,

((
d(i)k

)

k
,
(
�
(i)
k

)

k
,
(
τ (i)

)

k
,
(
ξ
(i)
j

)

j

)I

i=1
,

obtained after I iterations of the Gibbs sampler, once the burn-in period has elapsed,
we estimate the density of the data at y through

E

⎡

⎣
∑

j≥1

wj f (y | ξ j )

∣
∣
∣∣
∣
∣
y1, . . . yn

⎤

⎦ ≈ 1

I

I∑

i=1

1

m

m∑

k=1

1
∣
∣�(i)k

∣
∣

∑

j∈�
(m)
k

f
(
y

∣
∣∣ ξ (m)j

)
.

(2.9)

3 Examples

3.1 Random Sets with No Gaps

Consider a random set, �, taking the almost sure form � = {1, . . . ,N}, for some
random variable, N, that takes values in N. Evidently � takes values in FN and its
distribution is completely characterized by that of N. Let τ ∼ πτ and let πN(·|τ )
denote the conditional distribution of N given τ , so that the conditional distribution
of � given τ is

π�(A|τ ) = πN(n|τ )1{A={1,...,n}}, A ∈ FN (3.1)

Note that |�| = N and 1{j∈�} = 1{j≤N}, so (2.1) reduces to

wj = E

[
1

N
1{j≤N}

∣∣
∣
∣τ
]

=
∑

n≥j

πN(n|τ )
n

, j ≥ 1. (3.2)

Clearly, wi ≥ wj almost surely, for every i ≤ j . Thus, this type of distributions over
FN will always derive in almost surely decreasing weights sequences. Distributions
on the simplex based on random sets with no gaps have already been studied, for
instance [7] showed that the choice τ = λ for some λ ∼ Be(α, β), and

πN(n|λ) = nλ2(1 − λ)n−11{n∈N} (3.3)
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gives

wj =
∑

n≥j
λ2(1 − λ)n−1 = λ(1 − λ)j−1, j ≥ 1, (3.4)

so the decreasingly ordered Geometric weights are recovered. In [4] the authors
analyse further examples such as λ ∼ Ga(a, b) and

πN(n|λ) = e−λλn−1

(n− 1)! 1{n∈N}, (3.5)

in which case the weights simplify to

wj = λ−1e−λ

⎛

⎝eλ −
j−1∑

k=0

λk

k!

⎞

⎠ . (3.6)

In general, if πN describes a parametric family whose support is N, the conditions
in Corollary 2.3 are satisfied, thus the corresponding prior has full support. As to
the MCMC algorithm, we note that for random sets with no gaps, in order to update
�k , it suffices to sample Nk from

π(Nk = n | . . .) ∝ πN(n | τ )

n
1{dk≤n}, n ∈ N, (3.7)

and set �k = {1, . . . ,Nk}, this can be easily seen by embedding (3.1) into (2.7).
Analogously, equation (2.8) reduces to

π (τ | . . .) ∝ πτ (τ )
m∏

k=1

πN(Nk | τ ). (3.8)

In particular, for the model described by Eq. (3.3), the above posterior distributions
simplify to π(Nk = n | . . .) ∝ (1 − λ)n1{dk≤n}, and π(λ | . . .) ∝ (λ)α+2m−1(1 −
λ)β+

∑
k Nk−m−11{λ∈[0,1]}. From which is easy to sample, as the former describes a

truncated Geometric distribution and the latter a Beta distribution. As to the model
that corresponds to Eq. (3.5), the distributions (2.7) and (2.8) reduce to π(Nk = n |
. . .) ∝ λn(n!)−11{dk≤n} and π(λ | . . .) ∝ e−λ(b+m)λa+

∑
k Nk−m−11{λ∈[0,∞)}, which

are a truncated Poisson and a Gamma distribution, respectively.
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3.2 Random Sets with Bernoulli Chosen Elements

Consider τ = (λ,υ1,υ2, . . .) a collection of independent random variables, with
λ ∼ πλ, and υi ∼ Be(αi , βi). As above, let N be a random variable taking values in
N, whose conditional mass probability function given λ is πN(·|λ). Independently,
for i ≥ 1, let {zi |υi} ∼ Ber(υi ). Define � as the set containing the N smallest
indexes i such that zi = 1. That is

j ∈ � ⇔ zj = 1 and
∑

i<j

zi < N. (3.9)

For example, say that for some realization N = 3, z1 = 1, z2 = 1, z3 = 0, z4 = 0
and z5 = 1, then we would have � = {1, 2, 5}. In general, for � to be well defined
we require the events (zi = 1)i≥1 to occur infinitely often, this assures that for
every n ∈ N there exist at least n indexes i such that zi = 1. As z1, z2, . . . inherit
the mutual independence of υ1,υ2, . . ., whenever

∑

i≥1

αi

αi + βi = ∞, (3.10)

we have that

∑

i≥1

P[zi = 1] =
∑

i≥1

E[P[zi = 1|υi]] =
∑

i≥1

E[υi ] = ∞,

and by Borel-Cantelli lemma, we obtain

P

[
lim sup
i→∞

{zi = 1}
]

= 1,

that is, zi = 1, for infinitely many i’s. In such case, � is well defined and the
conditional distribution of � given τ decomposes as

π�(A|τ) = πN(n|λ)
[
∏

i∈A
υ i

][
∏

i∈A′
(1 − υ i )

]

1{|A|=n}, A ∈ FN (3.11)

where A′ = {i < maxA : i �∈ A}.
In many instances the explicit computation of the weights is not necessary. For

example, as explained in Sect. 2.1, in a density estimation context it suffices to
characterize the latent random sets. Despite, being able to compute the weights can
be very useful when studying the theoretical properties of the model. For π� as in
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Eq. (3.11) and τ = (λ,υ1,υ2, . . .) as above, by Eqs. (2.1) and (3.9) we find that the
corresponding weights simplify to

wj = E

[
1

N
1{zj=1}1{∑

i<j zi<N
}
∣
∣
∣∣ τ
]

= E

[
1

N
1{Z(j)<N}

∣
∣
∣
∣ τ
]
E[1{zj=1} | υj ]

= E

[
1

N
1{Z(j)<N}

∣∣
∣
∣ τ
]

υj ,

(3.12)

where Z(j) = ∑
i<j zi , for j ≥ 1. Obtaining an analytical expression for the

weights, clearly depends on the possibility to compute E

[
1
N1

{
Z(j)<N

}

∣
∣
∣
∣τ
]

. For

instance, if we let πN(·|λ) be as in (3.3) for some λ ∼ Be(α, β), by the tower
property of conditional expectation and following (3.4) we obtain

E

[
1

N
1{Z(j)<N}

∣
∣
∣∣ τ
]

= E

[
λ(1 − λ)Z

(j)
∣
∣
∣ τ
]

= λ

j−1∏

i=1

E
[
(1 − λ)zi

∣
∣ λ,υ i

]

= λ

j−1∏

i=1

[(1 − λ)υ i + (1 − υi )] .

(3.13)

Hence, embedding (3.13) into (3.12), we get

wj = υjλ

j−1∏

i=1

(1 − υ iλ), j ≥ 1, (3.14)

with the convention that the empty product equals 1. Note that πN as in (3.3) satisfies
the conditions of Corollary 2.3, thus, the prior corresponding to the weights given
by (3.14) has full support. This proves the following result

Proposition 3.1 Let λ ∼ Be(α, β) and independently for i ≥ 1 consider υ i ∼
Be(αi , βi) for some α, β, αi, βi > 0 such that

∑
i≥1 αi/(αi + βi) = ∞. Fix τ =

(λ,υ1,υ2, . . .) and consider a random set {� | τ } ∼ π�(· | τ ), for π� as in (3.11),
where πN is as in (3.3). Define W = (wj )j≥1 through (2.1). Then,

(i) W = (wj )j≥1 is a stick-breaking sequence featuring conditionally independent
length variables (vi = υiλ)i≥1.

(ii) For every ε > 0, P
[
maxj≥1 wj < ε

]
> 0. That is, any the prior with weights

W has full support.
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Further theoretical properties of the model described in Proposition 3.1 will be
analysed in the following section. For now we explain how to sample from (2.7)
and (2.8) for this example. In order to update �k , note that it can be defined as the
first Nk indexes i’s such that zk,i = 1, where Nk is sampled from πN

(·∣∣λ) as in
(3.3), and independently for i ≥ 1, zk,i ∼ Ber (υi ). That is, �k = A if and only
if Nk = |A|, zk,i = 1 for every i ∈ A, and zk,i = 0 for every i ∈ A′ = {i ≤
maxA : i �∈ A}. Thus, to sample from (2.7), we can equivalently sample from
π
(
Nk = n, zk,i = zi , i ≥ 1

∣
∣ . . .

)
and later construct �k as aforementioned. To this

aim we compute

π
(
Nk = n, zk,i = zi, i ≥ 1

∣
∣ . . .

)

∝ 1

n
1{
zdk=1

}1{∑dk
i=1 zi−1<n

}
n (λ)2 (1 − λ)n−1

∏

i≥1

(υi )
zi (1 − υi )

1−zi

∝
⎡

⎣
dk−1∏

i=1

(υi )
zi (1 − υi )

1−zi
⎤

⎦

⎡

⎣(1 − λ)n−11{∑dk
i=1 zi≤n

}

⎤

⎦
[
1{
zdk

=1
}
]
×

×
⎡

⎣
∏

i>dk

(υi )
zi (1 − υi )

1−zi
⎤

⎦

∝
⎡

⎣
dk−1∏

i=1

(υi (1 − λ))zi (1 − υi )
1−zi

⎤

⎦

⎡

⎣ (1 − λ)n−1

(1 − λ)
∑dk
i=1 zi−1

1{∑dk
i=1 zi≤n

}

⎤

⎦
[
1{
zdk=1

}
]
×

×
⎡

⎣
∏

i>dk

(υi )
zi (1 − υi )

1−zi
⎤

⎦ .

(3.15)

Sampling from the above distribution can be easily achieved by first sampling zk,i ∼
Ber (υ̃i ), where υ̃i = υi (1 − λ)/{υ i (1 − λ) + (1 − υ i )}, for i ≤ dk − 1, and
setting zk,dk = 1. Then conditionally given

∑dk
i=1 zk,i , sample N(k)l from a truncated

Geo (λ). Finally, conditionally given Nk , sample zk,i ∼ Ber (υ i ) for i > dk until∑
i zk,i = Nk.
Now, to update the random parameter of the sets, since τ = (λ,υ1,υ2, . . .) is a

sequence of independent random variables, we first sample λ from

π (λ | . . .) ∝ Be
(
λ
∣
∣α, β

) m∏

k=1

πN (Nk | λ)

∝ (λ)α+2m−1 (1 − λ)β+
∑m
k=1 Nk−m−1
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which is a Be
(
α + 2m,β +∑m

k=1 Nk −m) distribution, and latter, independently
for i ≥ 1, we sample υ i from

π (υ i | . . .) ∝ Be (υ i | αi, βi)
m∏

k=1

π� (�k | τ )

∝ Be (υ i | αi, βi)
∏

k∈ϕi
(υ i )

zk,i (1 − υ i )
1−zk,i

∝ (υi )αi+
∑
k∈ϕi zk,i−1

(1 − υi )
βi+|ϕi |−∑k∈ϕi zk,i−1

,

that describes a Be
(
αi +∑

k∈ϕi zk,i, βi + |ϕi | −∑
k∈ϕi zk,i

)
, where ϕi = {k : i ≤

max �k}.

4 Geometric Product Stick-Breaking Processes

To any weight sequence W = (wj )j≥1 as in (3.14) for some independent random
variables λ ∼ Be(α, β) and υ i ∼ Be(αi , βi), such that (3.10) holds we call
a Geometric product stick-breaking weights sequence (GPSBW). To any random
mixture, p, as in (1.1) whose weights sequence is a GPSBW, we call a Geometric
product stick-breaking mixture (GPSBM). In particular if ψ(·|s) = δs we call p
a Geometric product stick-breaking process (GPSBP). The first thing to mention
is that by construction, equation (2.2), and Proposition 3.1 we have the following
result.

Corollary 4.1 The elements of any GPSBW sum up to 1, and any GPSBP has full
support.

Notice that for λ and (υ i )i≥1 as above,

ŵj = λ(1 − λ)j−1, j ≥ 1 (4.1)

define the Geometric weights, whilst

w̃j = υj

j−1∏

i=1

(1 − υ i ), j ≥ 1 (4.2)

form a stick-breaking sequence featuring independent length variables. So each
length variable of GPSBW is precisely the product of a length variable of Ŵ =
(ŵj )j≥1 and one of W̃ = (w̃j )j≥1. Recalling that a Be(a, b) distribution converges
weakly to δ1, as a → ∞ or b→ 0, it is clear that vi = λυ i converges in distribution
to λ or to υ i for extreme values of the parametersα, β, (αi, βi)i≥1. This convergence
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property is inherited to the weights sequences, for example, if αi = α = 1, and
βi = θ > 0, as β → 0 the GPSBW’s converges in distribution to the Dirichlet
weights. If otherwise we fix β > 0, as θ → 0 the GPSBW’s converge in distribution
to the Geometric weights. Although this is a consequence of elementary properties
of the Beta distribution, for the sake of completeness we include the proof below.

Proposition 4.2 For every i ≥ 1 let v(α,β,αi,βi)i = λ(α,β)υ
(αi ,βi)

i for some

independent random variables
(
υ
(αi ,βi)
i ∼ Be(αi , βi)

)

i≥1
and λ(α,β) ∼ Be(α, β).

Then

(a) For every (αi , βi)i≥1 and α fixed,
(
v(α,β,αi,βi)i

)

i≥1

d→
(
υ
(αi ,βi)
i

)

i≥1
, as β → 0.

(b) For every (αi , βi)i≥1 and β fixed,
(
v(α,β,αi,βi)i

)

i≥1

d→
(
υ
(αi ,βi)

i

)

i≥1
, as α →

∞.
(c) For every (αi)i≥1, α and β fixed,

(
v(α,β,αi,βi)i

)

i≥1

d→ (
λ(α,β),λ(α,β), . . .

)
, as

maxi βi → 0.

(d) For every (βi)i≥1, α and β fixed,
(
v(α,β,αi,βi)i

)

i≥1

d→ (
λ(α,β),λ(α,β), . . .

)
, as

mini αi → ∞.

Proof Fix (αi, βi)i≥1. Let (t1, . . . , tn) ∈ R
n, and let us denote �(n) =

∑n
i=1 tiυ

(αi ,βi)
i . Then

E

[

exp

{
n∑

i=1

tiv
(α,β,αi,βi)
i

}]

= E

[

exp

{

λ(α,β)
n∑

i=1

tiυ
(αi ,βi)
i

}]

= E

[
E

[
exp

{
λ(α,β)�(n)

} ∣∣
∣
∣�(n)

]]

= E

[

1 +
∞∑

k=1

(
k−1∏

r=0

α + r
α + β + r

)
�(n)k

k!

]

.

As e�(n) ≤ ∏n
i=1 e

ti < ∞ a.s., by Lebesgue dominated convergence theorem we
obtain that for fixed α, as β → 0

E

[

exp

{
n∑

i=1

tiv
(α,β,αi,βi)
i

}]

→ E

[
e�(n)

]
= E

[

exp

{
n∑

i=1

tiυ
(αi ,βi)
i

}]

,

that is
(
v(α,β,αi,βi)i

)n

i=1

d→
(
υ
(αi ,βi)
i

)n

i=1
, and same holds for β fixed, as α → ∞.

Since n was arbitrary, we have proven (a) and (b).
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To prove (c) and (d) fix α, β > 0. Let (t1, . . . , tn) ∈ R
n, then

E

[

exp

{
n∑

i=1

tiv
(α,β,αi ,βi)
i

}]

= E

[

E

[

exp

{
n∑

i=1

λ(α,β)tiυ
(αi ,βi )
i

} ∣
∣∣∣λ
(α,β)

]]

= E

[
n∏

i=1

E

[
exp

{
λ(α,β)tiυ

(αi ,βi)

i

} ∣∣
∣∣λ
(α,β)

]]

= E

[
n∏

i=1

{

1 +
∞∑

k=1

(
k−1∏

r=0

αi + r
αi + βi + r

)
(λ(α,β)ti)

k

k!

}]

.

As
∏n
i=1 e

λti ≤ ∏n
i=1 e

ti <∞ a.s. and for fixed i, eλti ≤ eti <∞ a.s., by Lebesgue
dominated convergence theorem, for (αi)i≥1 fixed, as maxi βi → 0, we obtain

E

[

exp

{
n∑

i=1

tiv
(α,β,αi,βi)
i

}]

→ E

[
n∏

i=1

eλ
(α,β)ti

]

= E

[

exp

{
n∑

i=1

λ(α,β)ti

}]

,

that is
(
v(α,β,αi,βi)i

)n

i=1

d→ (
λ(α,β)

)n
i=1, and the same holds if we fix (βi)i≥1 and let

mini αi → ∞. Since n was arbitrary, this proves (c) and (d). �	
Remark 4.3 Insomuch as the mapping

(v1, v2 . . . , vj ) �→
⎛

⎝v1, v2(1 − v1), . . . , vj

j−1∏

i=1

(1 − vi)
⎞

⎠

is continuous with respect to the product topology, and under mild conditions of ψ ,

{(w1, w2, . . .), (s1, s2, . . .)} �→
∑

j≥1

wjψ(·|sj ),

is continuous with respect to the topology of weak convergence (see Appendix A),
similar limiting properties to that of Proposition 4.2 are inherited to the correspond-
ing GPSBW’s and GPSBM’s.

For extreme values of the Beta parameters, W as in (3.14) converges in
distribution to Ŵ as in (4.1) and W̃ as in (4.2), this does not mean GPSBW’s
are some kind of hybrid between Geometric weights sequences and stick-breaking
sequences with independent length variables. In fact, GPSBW’s are less likely to
be decreasingly ordered, and have heavier tails than their limiting counterparts.
Explicitly, for each every j ≥ 1, the event

(wj > wj+1) = (υj > υj+1 − λυjυj+1) ⊆ (υj > υj+1 − υjυj+1) = (w̃j > w̃j+1),
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hence P[wj > wj+1] ≤ P[w̃j > w̃j+1], and trivially, P[wj > wj+1] ≤ 1 =
P[ŵj > ŵj+1] holds as well. As to the tails of these random discrete distributions,
we have that (1 − λυi ) > (1 − υi ) almost surely for every i ≥ 1, thus

∑

j≥n
wj =

∏

j≥n−1

(1 − λυj ) >
∏

j≥n−1

(1 − υj ) =
∑

j≥n
w̃j

almost surely for every n ≥ 2, and analogously
∑
j≥nwj >

∑
j≥n ŵj . To

illustrate this, in the right side of Fig. 1 we show three independent simulations of
(wj )20

j=1 (dashed lines), (w̃j )20
j=1 (dot-dashed lines) and (ŵj )20

j=1 (solid lines), with
parameters α = αi = 1 and β = βi = 5, for every i ≥ 1. Inhere, we can descry

Fig. 1 In the left side (A.v,B.v, and C.v) we exhibit three independent simulations of the length
variables (λυ i )

20
i=1 (dashed lines), (υ i )20

i=1 (dot-dashed lines) and (λ)20
i=1 (solid lines), where the

parameters were fixed to α = αi = 1 and β = βi = 5, for every i ≥ 1, in all cases. The graphs in
the right side (A.w,B.w, and C.w) show the corresponding stick-breaking weights, respectively
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that ŵj ≥ ŵj+1 for every j ≥ 1, and that whenever wj ≥ wj+1 we also have that
ŵj ≥ ŵj+1, but the converse is not true, for in example, in A.w, ŵ14 ≥ ŵ15 and
w14 ≤ w15. In the same figure it can be appreciated that

∑20
j=1 wj <

∑20
j=1 ŵj and

∑20
j=1 wj <

∑20
j=1 w̃j , since each weights sequence sums up to 1, this must mean

that (wj )j≥1 accumulates more mass after the index 20 than (ŵj )j≥1 and (w̃j )j≥1
do.

4.1 Illustrations

To test the performance of GPSBM’s in the context of Sect. 2.1, we simulated a
dataset containing 220 observations, and estimate its density through five distinct
mixtures. In all cases we assume a Gaussian kernel with random location and
scale parameters, so that for each j ≥ 1, ξ j = (mj ,qj ), and ψ(· | ξ j ) =
N(mj ,q

−1
j ). To attain a conjugacy for f and p0 as in (2.5), we assume p0(ξ j ) =

N(mj |ϑ, τq−1
j )Ga(qj |a, b), where ϑ is the mean of the data, τ = 100 and

a = b = 0.5. Two of the adjusted mixtures correspond to a Geometric mixture
with length variable λ ∼ Be(1, 1), and a Dirichlet mixture with parameter θ = 1,

that is, a stick-breaking mixtures with i.i.d. length variables (υi )i≥1
iid∼ Be(1, 1).

The remaining models are GPSBM’s where λ ∼ Be(1, β) and υ i ∼ Be(1, θ)
independently for i ≥ 1. For one of these mixtures we fixed (β, θ) = (1, 1) for
a second one we took (β, θ) = (0.5, 1), and for the last one (β, θ) = (1, 0.5).
For the sake of simplicity, and taking advantage of Proposition 4.2 and Remark 4.3,
in Fig. 2 we also refer to the Geometric and Dirichlet mixtures as GPSBM’s with
(β, θ) = (1, 0) and (β, θ) = (0, 1), respectively.

In Fig. 2 we observe that the Dirichlet mixture (dashed lines) confuses two
of the modes featured in the histogram of the data, the same happens with the
GPSBM with β = 0.5 (long dash-dotted lines) which a priori behaves similar to
the Dirichlet model. It is well-known that this type of problems arise when the total
mass parameter, θ , of the Dirichlet process is not carefully choosen for a dataset. The
three remaining models correct this issue, and overall seem adapt well enough to the
data. Naively, the GPSBM with parameters β = θ = 1, appears to be the one that
performs better, given that at the high-density areas, the Geometric mixture (solid
line) and the GPSBM with parameter θ = 0.5 (long dashed line) differ slightly from
the rest of the models. If we focus in the Dirichlet mixture, the Geometric mixture
and the GPSBM with β = θ = 1, it should be expected that the latter performs
better than its limiting counterparts. This, due to the fact that a priori the GPSBW
has a heavier tail, leading to a more flexible mixture. However, we must mention
that this flexibility comes with a cost at efficiency, in the sense that the GPSBM is
prone to use more mixture components to estimate the density than the Geometric
and Dirichlet mixtures.
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Fig. 2 Histogram of the data, and estimated densities after 5000 iterations of the Gibbs sampler,
with a burn-in period of 2000, for a Geometric mixture ((β, θ) = (1, 0)), a Dirichlet mixture
((β, θ) = (0, 1)) and three GPSBM’s

5 Final Remarks

We took a relatively simple idea, originally used for simulation purposes, and exploit
it to define a novel class of Bayesian non-parametric priors. Taking advantage of the
context in which the construction arose, we propose an estimation method via Gibbs
sampler implementation.

In contrast to other models that rely on a latent random sets with no gaps, and
that have already been analysed in the literature. The general class considered, not
only recovers such random probability measures, but can also lead to sequences
of weights with heavier tails. From a Bayesian non-parametric perspective there
are drawbacks of working with heavy tailed weights, for example if truncation
is necessary, working with weights that decrease slower makes the truncation
error decrease slower as well. Another disadvantage is that for density estimation
purposes, and when the data features few modes, models with slowly decreasing
weights tend to use an unnecessarily large amount of mixture components, so in
this sense the model losses efficiency. On the other side, a nice advantage of heavily
tailed weights is that the estimated density will very likely recognize every mode
in the data, while other models might not, so for example if we encounter a dataset
whose histogram features a large amount of modes, it seems like a good idea to use
a mixture model with heavily tailed weights.
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Now, in essence, the random set construction builds a distribution over the infinite
dimensional simplex, inhere we used this weights’ distribution to define the prior
of a random mixture. However, we shall highlight that distributions on the infinite
dimensional simplex, can be used in a wide variety of contexts. For example, a
distribution, πW, over�∞ automatically determines a the law of a random partition

� = {[0,w1), [w1,w1 + w2), [w1 + w2,w1 + w2 + w3), . . .},

of the interval [0, 1), where (wj )j≥1 ∼ πW, which can be useful in theoretical and
applied stochastic models. In this context heavy-tailed weights would allow the lat-
ter blocks of � to have bigger sizes. This said, while working with slowly deceasing
weights in a Bayesian non-parametric context can have significant drawbacks, we
shall highlight that in other applications it can be extremely interesting.
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Appendix

The purpose of this section is to prove that under mild conditions of ψ , the mapping

{(w1, w2, . . .), (s1, s2, . . .)} �→
∑

j≥1

wjψ(·|sj ),

is continuous with respect to the weak topology. This assures that if W(n) =(
w(n)j

)

j≥1
converges in distribution to W = (

wj
)
j≥1, and �(n) =

(
ξ
(n)
j

)

j≥1

converges in distribution to � = (
ξ j
)
j≥1

, then
∑
j≥1 w

(n)
j ψ

(
·
∣∣
∣ ξ (n)j

)
converges

weakly in distribution to
∑
j≥1 wj ψ(· | ξ j ).

Proposition A.1 Let (S,B(S)) and (R,B(R)) be Polish spaces and let ψ be a
probability kernel from S into R such that ψ(· | sn) converges weakly to ψ(· | s) as
sn → s in S. Then the mapping

{(w1, w2, . . .), (s1, s2, . . .)} �→
∑

j≥1

wjψ(·|sj ),

from �∞ × S∞ into the space of all probability measures over (S,B(S)) is
continuous with respect to the weak topology.
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Proof LetW = (w1, w2, . . .),
{
W(n) =

(
w
(n)
1 , w

(n)
2 , . . .

)}

n≥1
be elements of�∞,

and S = (s1, s2, . . .),

{
S(n) =

(
s
(n)
1 , s

(n)
2 , . . .

)

n≥1

}
, be elements of S∞, such that

w
(n)
j → wj and s(n)j → sj , for every j ≥ 1. Define p(n) = ∑

j≥1w
(n)
j ψ

(
·
∣
∣
∣ s(n)j

)

and p = ∑
j≥1wj ψ(· | sj ). By the Portmanteau theorem (see for instance [1],[12]

or [15]) it suffices to prove that for every continuous and bounded function f : S →
R,

p(n)(f ) =
∫
f (s) p(n)(ds)→

∫
f (s) dp(s) = p(f ).

So fix a continuous and bounded function f : S → R. First note that by hypothesis

ψ
(
·
∣
∣∣ s(n)j

)
converges weakly to ψ(· | sj ), for every j ≥ 1, by the Portmanteau

theorem this implies

ψ
(
f

∣
∣
∣ s(n)j

)
=
∫
f (s) ψ

(
ds

∣
∣
∣ s(n)j

)
→

∫
f (s) ψ(ds | sj ) = ψ(f | sj ),

thus w(n)j ψ
(
f

∣
∣∣ s(n)j

)
→ wjψ(f | sj ), for j ≥ 1. Since f is bounded, there exist

M such that |f | ≤ M , hence, using the fact thatψ
(
·
∣∣
∣ s(n)j

)
is a probability measure,

we obtain
∣
∣
∣w(n)j ψ

(
f

∣
∣
∣ s(n)j

)∣∣
∣ ≤ w(n)j ψ

(
|f |

∣
∣
∣ s(n)j

)
≤ w(n)j M,

for every n, j ≥ 1. Evidently, Mw(n)j → Mwj , and
∑
j≥1Mw

(n)
j = M =∑

j≥1Mwj . Then, by general Lebesgue dominated convergence theorem, we
conclude

p(n)(f ) =
∑

j≥1

w
(n)
j ψ

(
f

∣
∣
∣ s(n)j

)
→

∑

j≥1

wjψ(f | sj ) = p(f ).

�	
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Conjugate Predictive Distributions
and Generalized Entropies

Eduardo Gutiérrez-Peña and Manuel Mendoza

Abstract It is well-known that maximizing the Shannon entropy gives rise to an
exponential family of distributions. On the other hand, some Bayesian predictive
distributions, derived from exponential family sampling models with standard con-
jugate priors on the canonical parameter, maximize a generalized entropy indexed
by a parameter α. As α → ∞, this generalized entropy converges to the usual
Shannon entropy, while the predictive distribution converges to its corresponding
sampling model. The aim of this paper is to study this type of connection between
generalized entropies based on a certain family of α-divergences and the class of
predictive distributions mentioned above. We discuss two important examples in
some detail, and argue that similar results must also hold for other exponential
families.

Keywords Conjugate distribution · Deformed exponential function · Deformed
logarithm · Exponential family · Shannon entropy

1 Introduction

The maximum entropy principle is often called up in situations where one wishes
to select a single distribution P∗ for a random variable X, as a representative
of a class � of probability distributions, with the fewest assumptions about the
true distribution of X. This is often done for purposes of inductive inference or
for choosing an optimal decision; see, for example, Jaynes [13]. As discussed by
Grünwald and Dawid [9], the distribution P∗ that maximizes the entropy over �
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also minimizes the worst-case expected logarithmic score. In the terminology of
statistical decision theory, P∗ is a robust Bayes (or �-minimax) action when loss is
measured by the logarithmic score. This provides a decision-theoretic interpretation
of maximum entropy.

The choice of the class � is typically based on partial prior information available
to the analyst. This information must be accounted for, but otherwise the selected
distribution is sought to be as non-informative as possible. Partial information
is usually described in terms of constraints on (some of) the moments of the
distribution. Here we assume that X is defined on R, and take � = �d ≡ {P :
EP (S) = ς} where ς ∈ Rd and S = s(X) is a statistic taking values on Rd for
some d ≥ 1.

Let p denote the density of P with respect to a counting measure (discrete
case) or to the Lebesgue measure (continuous case). Denote this measure by η. The
Shannon entropy of the distribution P is defined by

H(P) = −
∫
p logp dη = −

∑

i

pi logpi

if P is discrete [23]. If P is continuous, then a suitably defined “reference”
distribution P0 is introduced and the entropy is defined by

H(P) = −
∫

log

{
dP

dP0

}
dP

when P is absolutely continuous with respect to P0, and H(P) = −∞ otherwise.
When both P and P0 admit densities with respect to the Lebesgue measure then

H(P) = −
∫
p(x) log

{
p(x)

p0(x)

}
dx, (1.1)

where p0 is the density function of P0; see [16]. The Shannon entropy H(P) is
interpreted as a measure of the amount of uncertainty described by the probability
distribution P (with respect to P0, usually taken as a uniform distribution).

Maximizing the Shannon entropy over the class �d generates a d-dimensional
exponential family [3, 16]. Specifically, if there exists a distribution P∗ maximizing
(1.1) over the class �d , then its density p∗ satisfies

p∗(x) = p0(x) exp{λT s(x)}
∫
p0(x) exp{λT s(x)} dη(x)

,

where λ = (λ1, . . . , λd) is a vector of Lagrange multipliers and is determined
by the moment constraints EP (S) = ς which define the class �d ; see [12].
Suppose, for example, that X is a continuous random variable and that d = 2,
s(X) = (X,X2), and ς = (μ1, μ2) with μ1 ∈ R and μ2 > μ

2
1 (finite). Suppose
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also that P0 corresponds to the Lebesgue measure (that is, a uniform distribution).
Then the distribution P∗ that maximizes (1.1) is normal with mean μ1 and variance
σ 2 = μ2 − μ2

1.
From (1.1), it is clear that maximizing the Shannon entropy with respect to

P is equivalent to minimizing the Kullback-Leibler divergence between P and
the reference distribution P0. This motivates the so-called minimum discrimination
information principle; see [15].

Despite its intuitive appeal, the maximum entropy principle is controversial.
However, Topsøe [24] provides an interesting decision theoretical justification for
the maximum entropy principle. Grünwald and Dawid [9] extend the work of
Topsøe by considering a generalized concept of entropy related to the choice of
the loss function. They also discuss generalized divergences and the corresponding
generalized “exponential” families of distributions. These families do not seem
to have been systematically studied, nor have they been widely used for actual
data analysis. The purpose of this paper is to study a connection between a well-
known family of f -divergences and a class of distributions that arise as predictive
distributions in the analysis of exponential families when standard conjugate priors
are assumed on the canonical parameter.

Consider, for example, the Student’s t distribution which arises as the predictive
distribution for normal data when the precision parameter is assumed to have a
conjugate (gamma) prior. When the degrees of freedom tend to infinity, we recover
the normal distribution. On the other hand, the Student’s t distribution can be
derived as the solution to an optimization problem involving a family of generalized
divergences indexed by a parameter α which is related to the degrees of freedom.
As α tends to infinity, this generalized divergence converges to the Kullback-Leibler
divergence, which is minimized by the normal distribution.

In this paper, we discuss this and another important example in some detail, and
argue that similar results must also hold for other exponential families. The layout of
the paper is as follows. In the next section, we briefly review a family of divergences
that has been extensively discussed in the literature. Then, in Sect. 3, we work out
the connection described above for the case of the Student’s t and Pareto Type II
distributions. Finally, in Sect. 4 we discuss how these results could be generalized
to other exponential families.

2 A Family of Divergences

Consider the following parametrized family of divergences for α ≥ 1:

Dα(p, p0) =

⎧
⎪⎨

⎪⎩

α2

(α−1)

{
1 − ∫ [p0(x)

p(x)

]1/α
p(x) dη(x)

}
(α > 1)

∫
p0(x) log

{
p0(x)
p(x)

}
dη(x) (α = 1),

(2.1)
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which includes the Kullback-Leibler divergence as the limiting case α → ∞. The
above family appears to date back to Rényi [22] (see also Csiszár [5, 7], Havrda and
Charvat [11], Rathie and Kannappan [21] and Amari [2]) and is a particular case of
the general class of f -divergences defined by

D(f )(p, p0) =
∫
f

(
p(x)

p0(x)

)
p0(x) dη(x), (2.2)

where f : [0,∞) → (−∞,∞] is a convex function, continuous at 0 and such that
f (1) = 0 (see [1, 5, 6, 17]).

For the general entropyH(f )(P ) = −D(f )(p, p0), let

F(p) = H(f )(P ) + λT {E[s(X)] − ς} + λ0

{∫
p(x) dη(x)− 1

}
,

be the Lagrange function, where the vector λ and the scalar λ0 are Lagrange
multipliers. The generalized maximum entropy distribution P∗ subject to the
moment constraints, if it exists, has a density p∗ satisfying

− ḟ
(
p∗(x)
p0(x)

)
+ λT s(x)+ λ0 = 0,

where ḟ denotes the first derivative of f . Then

p∗(x) = p0(x) g(λ0 + λT s(x))

with g(·) = ḟ−1(·).
The α-divergence (2.1) is obtained when

f (x) = fα(x) ≡
{

α
α−1 {(1 − x)− αx(x−1/α − 1)} α > 1
(x − 1)− log(x) α = 1,

It is derived from the well-known limit1

lim
α→∞α(x

1/α − 1) = log(x). (2.3)

The Kullback-Leibler divergence in (1.1) corresponds to the case f (x) = f∞(x) ≡
limα→∞ fα(x) = (1 − x)+ x log(x). Thus,

Hα(P) = −Dα(p, p0) (2.4)

generalizes the entropy (1.1).

1 Here used in the form log(x) = − log(1/x).
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In the next section, we show how the Student’s t distribution can be derived as
the distribution on R which maximizes (2.4) over the class of distributions having
first- and second-order moments. Similarly, we also show how the Pareto Type II
distribution can be obtained as the distribution on R+ that maximizes (2.4) over the
class of distributions having first-order moments.

3 Main Idea

3.1 Student’s t Distribution

The Student’s t distribution has a density with respect to the Lebesgue measure
given by

St(x|μ, σ 2, γ ) = �((γ + 1)/2)

σ
√
γπ �(γ /2)

[
1 + 1

γ

(x − μ)2
σ 2

]−(γ+1)/2

(x ∈ R),

where μ ∈ R is the location parameter, σ > 0 is the scale parameter and γ > 0
denotes the degrees of freedom. Provided that γ > 2, the first two moments exist
and are given by E(X) = μ and Var(X) = γ σ 2/(γ − 2).

The t distribution is often used as an alternative to the normal distribution
in situations where a robust analysis is required, for instance to account for the
presence of possible outliers in the data. It can be regarded as a generalization
of the normal distribution in the sense that a t distribution converges to a normal
distribution as the degrees of freedom tend to infinity.

Let d = 2 and s(X) = (X,X2). We now show that the Student’s t distribution
arises as a generalized maximum entropy distribution, in the sense that it maximizes
the generalized entropy Hα(P) subject to the constraints EP (S) = ς , where ς =
(μ1, μ2) with μ1 ∈ R and μ2 > μ

2
1 (finite). In order to obtain the usual Student’s

t distribution, we take the density p0 to be proportional to the Lebesgue measure,
that is, p0(x) = r for all x ∈ R (r > 0).

As pointed out above, in the particular case of the α-divergences given by (2.1)
we have f (x) = fα(x), and hence g(y) = 1/(1 − y/α)α . Now, since

∫ ∞

−∞
p∗(x) dx = 1,

we must have
∫ ∞

−∞
r dx

(
1 − λ0+λ1x+λ2x2

α

)α = 1.
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Now, setting λ0 = −(γ − 1)/2 − μ2/σ 2, λ1 = 2μ/σ 2, and λ2 = −1/σ 2, we get

(
2γ

γ + 1

)(γ+1)/2 ∫ ∞

−∞
r

[

1 + 1

γ

(
x − μ
σ

)2
]−(γ+1)/2

dx = 1,

where γ = 2α − 1 (hence, we must have α > 3/2 for E(X) and Var(X) to exist).
Finally, we also require that

r = �((γ + 1)/2)

σ
√
γπ �(γ /2)

(
γ + 1

2γ

)(γ+1)/2

.

Therefore, we have shown that

p∗(x) = St(x|μ, σ 2, γ ),

that is, a Student’s t density with location parameter μ, scale parameter σ and
degrees of freedom γ , and such that μ = μ1 and μ2 − μ2

1 = γ σ 2/(γ − 2). An
alternative derivation of this result can be found in [8].

Now recall that the density function of a Student’s t distribution can be written
as

St(x|μ, σ 2, γ ) =
∫ ∞

0
N(x|μ, σ 2/y)Ga(y|γ /2, γ /2) dy.

This expression shows that the t distribution corresponds to the predictive dis-
tribution for normal data when the precision parameter is assumed to have a
conjugate (gamma) prior; see, for example, [4, Section 3.2.2]. As γ → ∞, the
gamma distribution degenerates at its expected value of 1 and St(x|μ, σ 2, γ ) →
N(x|μ, σ 2). We close this example by noting that N(x|μ, σ 2) maximizes H(P)
subject to the same constraints, namely EP (S) = ς .

3.2 Pareto Type II Distribution

The Gamma-Gamma distribution has a density with respect to the Lebesgue
measure given by

Gg(x|γ, β, ν) = βγ

�(γ )

�(γ + ν)
�(ν)

xν

(β + x)γ+ν (x > 0),
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where γ > 0, β > 0 and ν = 0, 1, 2, . . . Provided that γ > 2, the first two moments
exist and are given by

E(X) = ν β

(γ − 1)
and Var(X) = β2[ν2 + ν(γ − 1)]

(γ − 1)2(γ − 2)
.

This distribution corresponds to the predictive distribution of a gamma sampling
model when the scale parameter is assumed to have a conjugate (gamma) prior; see
[4, Section 3.2.2].

The Exponential-Gamma distribution (also known as the Pareto Type II distribu-
tion) is the particular case where ν = 1. Let μ = β/γ , then

Eg(x|γ, γμ) ≡ Gg(x|γ, γμ, 1) =
[
μ

(
1 + x

μ

)]−(γ+1)

.

In this case

E(X) = γ μ

(γ − 1)
and Var(X) = γ 3μ2

(γ − 1)2(γ − 2)
.

This distribution can be expressed as a continuous scale mixture of exponential
distributions as follows

Eg(x|γ, γμ) =
∫ ∞

0
Exp(x|μ/y)Ga(y|γ, γ ) dy,

where Exp(x|μ) denotes the density of an exponential distribution with mean μ.
As γ → ∞, the Gamma distribution degenerates at its expected value of 1 and
Eg(x|γ, γμ)→ Exp(x|μ).

The Pareto Type II distribution can thus be regarded as a generalization of the
exponential distribution in this sense. It can be used in situations where a more
flexible model is required, for instance to allow for overdispersion or to account for
outliers in the data.

It is convenient to recall at this point that the exponential distribution is the
maximum entropy distribution over the class of continuous distribution on R+
having first-order moments. Let d = 1 and s(X) = X. We now show that the
Pareto Type II distribution arises as a generalized maximum entropy distribution.
Specifically, it maximizes the generalized entropy Hα(P) subject to the constraint
EP (S) = μ, where μ ∈ R+ (finite). As before, we take the density p0 to be
proportional to the Lebesgue measure, so that p0(x) = r for all x ∈ R+ (r > 0).

Since g(y) = 1/(1 − y/α)α and

∫ ∞

0
p∗(x) dx = 1,
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we must have
∫ ∞

0

r dx
(

1 − λ0+λ1x
α

)α = 1.

Now, setting λ0 = 0 and λ1 = −(γ + 1)/μ, we get

∫ ∞

0

(
1 + x

μ

)−(γ+1)

= 1,

where γ = α − 1. Finally, we also require that r = 1/μ.
We have then shown that

p∗(x) = Eg(x|γ, γμ),

which, as pointed out above, tends to Exp(x|μ) as γ → ∞. We close this example
by noting that Exp(x|μ) maximizes H(P) subject to the same constraint, namely
EP (S) = μ.

4 Discussion

These results open the door to the development of similar methods of analysis
for related or more general cases. For example, it is well-known that the Poisson
distribution is not the maximum entropy distribution over the class of distributions
on the non-negative integers (the geometric distribution claiming this property).
Nonetheless, the Poisson distribution is the maximum entropy distribution over the
class of ultra log-concave distributions on the non-negative integers [14], so we can
expect the Poisson-Gamma distribution to maximize the generalized entropy (2.4)
over the same class. A similar result can be expected to hold in the Binomial case
[10].

The predictive distributions considered in this paper are related to the q-
exponential families introduced by Naudts [19]; see also [20, Chap. 7]. These
families are based on the so-called deformed logarithmic function (inspired by
expressions such as (2.3)) and the corresponding (suitably defined) inverse, the
deformed exponential function, which can also be used in the definition of the
generalized entropy (2.4). Such generalized “exponential” families share some of
the nice properties of standard exponential families, but unfortunately are not as
tractable. These deformed logarithmic and exponential functions can be further
generalized, and one may be able to define the f -divergence (2.2) in terms of them;
see [18, 20].

Conjugate predictive distributions can be seen as flexible, robust versions of the
corresponding exponential family sampling models. The former seem to share an
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important optimality property with the latter, and in that sense can be regarded as
generalized exponential families. We conjecture that conjugate predictive distribu-
tions share other properties and may inherit some of the tractability of standard
exponential families, including the existence of useful conjugate priors. Last, but
not least, the mixture representation of these predictive distributions should lead to
relatively simple analyses via sampling-based methods (such as the Gibbs sampler)
when used as sampling models for data analysis.
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Approximation and Mean Field Control
of Systems of Large Populations

Carmen G. Higuera-Chan

Abstract We deal with a class of discrete-time stochastic controlled systems
composed by a large population of N interacting individuals. Given that N is large
and the cost function is possibly unbounded, the problem is studied by means of
a limit model M, known as the mean field model, which is obtained as limit as
N → ∞ of the model MN corresponding to the system of N individuals in
combination with an approximate algorithm for the cost function.

Keywords Systems of interacting individuals · Mean field theory ·
Approximation algorithm · Discounted criterion

1 Introduction

In this work, we consider a class of discrete-time controlled stochastic systems
composed by a population ofN interacting individuals. Each individual is classified
according to the category where it is located. Let S be the set of categories, which
is assumed to be a countable set, and XNn (t) be the category of the n-th individual
at time t . Moreover, we consider that the evolution of XNn (t) is determined by a
conditional distribution, defined as follows. For i, j ∈ S and at is the action (or
control) selected by a central controller

Kij (a) := Pr[XNn (t + 1) = j |XNn (t) = i, at = a] t = 0, 1, . . . .

Additionally, at each stage, a cost is incurred as a consequence of the movement of
the individuals in the population. We propose a Markov control model to study this
kind of systems and its optimality according to the discounted criterion.
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This class of controlled models has been studied, for example, in [2, 8–10, 12].
In fact, this paper can be seen as a sequel to [9]. The essential characteristic in these
works is the limitation imposed by the factN is large. Thinking about this point, the
analysis of each individual is complex, and for this reason our approach is directed
to the context of the mean field theory. In general terms, let MN be the model
of the system conformed by N individuals, where the states are conformed by the
proportions of individuals in each category. Then, the mean field theory enables to
set up an approximating model M obtained as a limit of MN as N → ∞ where
the states are the proportions corresponding to the limit of such proportions. The
model M, called the mean field control model, results in a deterministic system
and independent ofN , characterizations that make this model easier to analyze than
the model MN . Further, an optimal policy π∗ associated with M will have a good
performance on the original model MN .

We allow for the cost function r to be unbounded. In works [2, 8–10, 12], authors
have been developed their results assuming bounded costs. This fact has allowed to
apply fixed point theorems to obtain solutions of the optimality equation, which is
not possible in the scenario of our work. This leads to an extra challenge in this
problem. To handle this, we introduce an approximation algorithm, defined by a
sequence of bounded costs {rl} converging to r . This algorithm is applied in the
mean field model M and is being used to characterize the optimal value v∗ and the
optimal policies. Finally, we measure its optimal performance in the control model
MN . The key point in our procedure is to adapt the result in [4, 5, 13] for standard
Markov control processes to the mean field theory.

The paper is organized as follows. In Sect. 2, we introduce the Markov control
model associated with the system of N individuals, as well as the corresponding
optimal control problem. Next, in Sect. 3, we define the mean field control model
M, the approximation algorithm, and our main results. The proofs are provided in
Sect. 4.

Notation
The set N represents the positive integers, N0 := N ∪ {0}, and R denotes the set of
real numbers.

A Borel space is a Borel subset of a complete and separable metric space. For a
Borel space Z, the Borel σ -algebra is denoted by B(Z), and “measurable”, for sets
and functions, means “Borel measurable”.

The set B(Z) denotes the class of real-valued bounded functions on Z endowed
with the supremum norm ‖h‖ := supz∈Z |h(z)| , similarly the set C(Z) denotes the
class of real-valued continuous functions, and the set Cb(Z) ⊂ B(Z) is the subspace
of all real-valued bounded and continuous functions on Z.

In addition,P(Z) is the set of all probability measures onZ, which is also a Borel
space. For instance, if Z has the form Z = {z1, z2, . . .}, a probability measure p ∈
P(Z) is identified by p := {p(zi)}i∈N, where p(zi) ≥ 0, ∀i ∈ N and

∑∞
i=1 p(zi) =
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1. Furthermore, ‖·‖∞ denotes the corresponding L∞-norm, that is, for each vector
p ∈ P(Z):

‖p‖∞ := sup
i∈N

{|p(zi)|} .

Let Z and Y be Borel spaces. A stochastic kernel Q(·|·) on Z given Y, is a
function Q : B(Z) × Y → [0, 1], such that Q(·|y) ∈ P(Z) for each y ∈ Y, and
Q(D|·) is a measurable function on Y for each D ∈ B(Z). We denote by P(Z|Y )
the set of all stochastic kernels on Z given Y.

Finally, 1D denotes the indicator function of the set D.

2 The N -Objects Markov Control Model

Specifically, we consider a discrete-time controlled system composed by a large
population of interacting individuals. The population consists of N (N ∼ ∞)
individuals which can be classified according to a set of categories at each time
denoted by S := {c1, c2, . . .} = {1, 2, . . .}. Let XNn (t), n = 1, . . . , N , be the
category of the n-th individual at time t . In this sense XNn (t) ∈ S. There is a central
controller that at each time t picks an action at from a Borel set A, producing a
random movement among categories for each individual in the population. This
movement is determined by a transition probability, homogeneous in N and n, of
the form

P [XNn (t + 1) = j |XNn (t) = i, at = a] = Kij (a), i, j ∈ S, a ∈ A. (2.1)

The relation Kij (a) represents the probability for any object goes from category
i to category j when the controller picks the action a ∈ A. Thus, we denote by
K(a) = [

Kij (a)
]

the transition matrix corresponding to the action a ∈ A.
Because N is large, the analysis of each individual is practically infeasible. So

throughout this work it is assumed that individuals are observable through their
current categories, that is, the controller only observes the number of individuals in
each of the categories. In this sense, the behavior of the system will be analyzed by
means of the proportion of individuals at each category i ∈ S at time t defined as

MNi (t) :=
1

N

N∑

n=1

1{XNn (t)=i},

and we denoteMN(t) = {MNi (t)}i∈S be the empirical distribution of the population
over S.

Observe thatMN(t) belongs to the set PN := {p ∈ P(S) : Np(i) ∈ N0, ∀i ∈ S}
and represents the state of the system at time t . The dynamic of MN(t) depends
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on particular properties of the population, but it is possible to obtain a stochastic
difference equation which defines its evolution as in [2, 3]. Specifically, in [3, 11]
it is proved that the process

{
MN(t)

}
form a no-homogeneous Markov chain. So

applying Markov chain simulation techniques it is possible to obtain a function
HN : PN ×A×R

N → PN such that

MN(t + 1) = HN(MN(t), at , wt ), t ∈ N0, (2.2)

where {wt } is a sequence of independent and identically distributed (i.i.d.) random
vectors on [0, 1]N , with common distribution θ defined as follows. For w =
(w1, w2, . . . , wN) ∈ [0, 1]N ,

θ(B) = P [w ∈ B], B ∈ [0, 1]N

where each componentwi ∼ Unif [0, 1], i = 1, . . . , N .
In the remainder, we assume that the dynamic of the process {MN(t)} (see (2.2))

is given by the functionHN as in (2.6). To define this function, we use the transition
matrix K(a) and simulate the dynamic of an arbitrary individual of the population.
For each k, j ∈ S and a ∈ A let

�kj (a) := [�k,j (a),�k,j+1(a)] ⊆ [0, 1], (2.3)

where

�k,j (a) :=
j−1∑

d=1

Kkd(a), k, j ∈ S. (2.4)

Observe that for each k ∈ S fix, {�kj (a)}j∈S is a partition of [0, 1] and the length
of �kj (a) represents the probability that an individual moves from k to j when the
controller takes the action a ∈ A.

Now, for each t ∈ N0 we define
{
wkn(t)

}
, n = 1, 2, . . . , N , k ∈ S, a family

of i.i.d. random variables uniformly distributed on [0, 1], which are organized
according to the next form

wt := {wi(t)}i∈S,

wi(t) := (wi1(t), · · · , wiNMNi (t)(t)), i ∈ S.

Thus, the proportion of individuals at time t + 1 in category j takes the form

MNj (t + 1) := 1

N

∞∑

k=1

NMNk (t)∑

n=1

1�kj (at )(w
k
n(t)), j ∈ S. (2.5)
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Therefore, by (2.5) the function HN takes the form

HN(m, a,w) = {HNi (m, a,w)}i∈S (2.6)

for (m, a,w) ∈ PN ×A× [0, 1]N , where

HNj (t + 1) := 1

N

∞∑

k=1

Nmk∑

n=1

1�kj (a)(w
k
n),

m = {mi}i∈S .
Finally, for a stateMN(t) the controller incurs a cost r(MN(t)). This cost can be

represented by a measurable function

r : P(S)→ R. (2.7)

2.1 Formulation of the N -Markov Control Model (N -MCM)

We define the discrete-time Markov control model, associated with the system of N
individuals introduced above (N-MCM), as follows:

MN :=
(
PN,A,H

N, θ, r
)
.

The model MN describes the evolution of a system over time. Indeed, at time
t ∈ N0, the controller observes the state m = MN(t) ∈ PN which represents
the configuration of the population. Next, he/she picks an action a = at ∈ A.
As a consequence, a cost r(m) incurred, and the system moves to a new state
m′ = MN(t + 1) according to the transition law

Q(D|m, a) := P
[
MN(t + 1) ∈ D|MN(t) = m, at = a

]
(2.8)

=
∫

[0,1]N
1D
[
HN (m, a,w)

]
θ(dw), D ∈ B(PN),

with HN as in (2.2). Once the state is m′, the procedure is repeated, and the
performance of the cost flow {r(MN(t))} is measured using an infinite horizon
discounted criterion. Therefore the actions picked by the controller are directed to
minimize his/her cost flow.

We impose the following continuity and compactness conditions on the model
MN .
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Assumption 2.1

(a) The action space A is a compact Borel space.
(b) The mapping a �−→ Kij (a) defined in (2.1) is continuous, for all i, j ∈ S.
(c) For each j ∈ S and a ∈ A, there exists a finite subset Sj (a) ⊆ S such that
Kij (a) > 0 for all i ∈ Sj (a) and Kij (a) = 0 for i /∈ Sj (a). Moreover,

R := sup
a∈A

sup
j∈S

#(Sj (a)) <∞.

(d) The one-stage cost r is bounded below and uniformly Lipschitz function with
constant Lr ; that is, for every m,m′ ∈ P(S),

|r(m)− r(m′)| ≤ Lr
∥
∥m−m′∥∥∞ .

Remark 2.2 Observe that Assumptions (a), (b) and (d) are used in [2, 3, 9, 10]
and, they are standard in stochastic control theory (see [6, 7]). On the other hand,
Assumption 2.1(c) can be interpreted as follows: once the controller takes an action
a ∈ A, an individual can move in one step to a category j ∈ S if it belongs to a
category in Sj (a). Another interpretation is that once the controller takes an action
a, a generic individual of the population can move to a category j ∈ S only if the
individual belongs to a finite number of categories Sj (a). So, it is not possible to
move to a category j ∈ S from and state in one movement.

Now, we introduce the missing elements to define the optimal control problem
for a population with N individuals. Let HN0 := PN and H

N
t := (PN ×A)t × PN ,

t ≥ 1. An element hNt of HNt takes the form

hNt = (MN(0), a0, . . . ,M
N(t − 1), at−1,M

N(t)),

representing the history of the control system up to time t .A policy for the controller
is a sequence πN = {

πNt
}

of stochastic kernels πNt ∈ P(A|HNt ) such that
πNt

(
A|hNt

) = 1 ∀hNt ∈ H
N
t , t ∈ N0. We denote by N the family of the strategies.

We denote by F the class of all measurable functions f : P(S)→ A. In addition
we defineFN := F|PN and a policy πN = {

πNt
} ∈  N is said to be a Markov policy

if there exists fNt ∈ F
N such that πNt

(·|hNt
) = f Nt (·|MN(t)) for every t ∈ N0 and

hNt ∈ H
N
t . In this case πN takes the form πN = {

f Nt
}
. The class of all Markov

strategies is denoted by  NM. In particular, if f Nt ≡ fN for some f N ∈ F
N and for

all t ∈ N0, we say that πN is a stationary policy.

Remark 2.3 Let  M be the sets of Markov policies, when we use F instead of FN .
Observe that for a policy π = {ft } ∈  M , if ft is restricted to PN , π turns out to be
an element of N .
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2.2 Optimality in the N -MCM

We fix the discount factor α ∈ (0, 1). Thus, for each policy πN ∈  N and initial
state mN(0) = m ∈ PN , we define the total expected discounted cost as

VN(πN,m) := EπNm
∞∑

t=0

αt r(MN(t)),

whereEπ
N

m denotes the expectation operator with respect to the probability measure

Pπ
N

m induced by the policy πN and the initial state m. See, for instance, [1] for the

construction of Pπ
N

m .

Remark 2.4

(a) For each πN ∈  N and MN(0) = m ∈ PN , there exist a probability space
(�′,F ′, PπNm ) with Pπ

N

m satisfying

(i) Pπ
N

m (MN(0) ∈ B) = δm(B), B ∈ B(PN)
(ii) Pπ

N

m (at ∈ D|hNt ) = πNt (D|hNt ), D ∈ B(A)
(iii) Markov-like property

Pπ
N

m

[
mN(t + 1) ∈ D|hNt , at

]
= Q(D|mN(t), at )

=
∫

[0,1]N
1D

[
HN

(
mN(t), at , w

)]
θ(dw), D ∈ B(PN),

(2.9)

whereQ is the transition law in (2.8).

(b) As a consequence of Assumption 2.1, taking into account the structure of
function HN (see (2.5)-(2.6)), it is easy to prove that the mapping (m, a) �−→
HN(m, a,w) is continuous for w ∈ [0, 1]N . Further, following standard
arguments (see, e.g., [7]) and (2.9) the function

(m, a) �→
∫

PN

u(m′)Q(dm′|m, a) =
∫

[0,1]N
u[HN(m, a, θ)]θ(dw)

is continuous for each bounded and continuous function u : PN → R.

Hence, the objective for the controller is to find a policy πN∗ ∈  N such that

VN∗ (m) := inf
πN∈ N

VN(πN,m) = V N(πN∗ ,m), m ∈ PN. (2.10)

In this case πN∗ is called the optimal policy, whereas VN∗ is the N-value function.
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Remark 2.5 (Sufficiency of Markov Strategies) It is well-known that (see, e.g., [7])
for each πN ∈  N there is a policy ψN ∈  NM such that

V N(ψN, ·) ≤ VN(πN, ·).
Then, we can restrict our analysis to the set of Markov policies NM .

Once defined, the control problem in the N-MCM MN , we state the following
result, Proposition 2.7 below, that provide a characterization of the optimality of the
N-values function and the optimal policies (for references, see [6, 14]).

Assumption 2.6 There exists πN ∈  NM such that V N(πN,m) <∞, m ∈ PN .

For u ∈ C(P(S)), m ∈ P(S) and a ∈ A we define

T̄ u(m) := min
a∈A

{
r(m)+ α

∫

[0,1]N
u[HN(m, a,w)]θ(w)

}

Proposition 2.7 Suppose that Assumptions 2.1 and 2.6 hold. Then:

(a) V N∗ is the minimal solution in C(PN) satisfying the optimality equation

V N∗ (m) = T̄ V N∗ (m), m ∈ PN (2.11)

(b) There exist f N∗ ∈ F
N , such that f N∗ (m) attains the minimum in (2.11), i.e.,

V N∗ (m) := r(m)+ α
∫

[0,1]N
V N∗

[
HN

(
m,f N∗ , w

)]
θ(dw), m ∈ PN,

(2.12)

or, equivalently

�N(m, f N∗ (m)) = 0,

where �N : PN ×A→ R is the discrepancy function defined as

�N(m, a) := r(m)+ α
∫

[0,1]N
V N∗ [HN(m, a,w)]θ(dw)− V N∗ (m). (2.13)

Moreover, the policy πN∗ = {fN∗ } ∈  NM is optimal.

Observe that in the case that r is continuous and bounded function, applying the
Banach fixed point Theorem (see [6, 7, 14]) it can be proved that the corresponding
optimal value function is the unique solution bounded and continuous of the opti-
mality equation, i.e., V N∗ ∈ Cb(PN). This fact will be used below, in Proposition 3.2.
Furthermore, another limitation of Proposition 2.7 is that the optimality equation
(2.12) depends on an N-dimensional multiple integral, which, since N → ∞,
is practically impossible to handle. These obstacles will be overcome in the next
section.
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3 The Mean Field Control Model

We consider a controlled deterministic system {m(t)} ∈ P(S) whose evolution is
according to a difference equation

m(t + 1) = H(m(t), at ), (3.1)

with a given initial conditionm(0) = m ∈ P(S), where at ∈ A represents the action
at time t , and H : P(S)× A→ P(S) is the function defined by

H(m, a) := mK(a),

where K(a) is the transition matrix of each individual (see (2.1)). Observe that the
functionH is continuous by the continuity of K(a) in Assumption 2.1(b).

Moreover, because {m(t)} ∈ P(S) is a deterministic process, we have that the
actions are selected by the controller using Markov strategies from the set  M ,
introduced in Remark 2.3.

The convergence of the process
{
MN(t)

} ∈ PN to {m(t)} ∈ P(S) when the
controller takes the same control is deduced from the following result, Theorem 3.1.

Let E �= ∅ be the set of arrays ε = {εij }i,j∈S where εij are positive numbers such
that

‖ε‖E := sup
j∈S

∞∑

i=1

εij <∞. (3.2)

In effect, E is not an empty set. An element of E is, for example, ε = { 1
(j+1)i

},
because for each j ∈ S fixed

∑∞
i=1

1
(j+1)i

is a geometric series.

Theorem 3.1 Suppose that MN(0) = m(0) = m ∈ PN . Then, there exist positive
constants C and λ, and a function μT : E → R, where μT (ε) → 0 as ‖ε‖E → 0,
such that

(a) for any T ∈ N and ε = {εij } ∈ E ,

sup
π∈ M

Pπm

{

sup
0≤t≤T

∥
∥
∥MN(t)−m(t)

∥
∥
∥∞ > μT (ε)

}

≤ CT e−λNε2
ij ∀i, j ∈ S.

(b) Furthermore, for each m ∈ PN, T ∈ N, and ε = {εij } ∈ E ,

sup
π∈ M

Eπm

[

sup
0≤t≤T

‖MN(t)−m(t)‖∞

]

≤ CT e−λNε2
ij + μT (ε) ∀i, j ∈ S.

(3.3)

For its proof, see Sect. 4 Proofs.
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Accordingly to previous description, we introduce the following deterministic
control model corresponding to the state process (3.1):

M = (P(S),A,H, r),

where r is the one-stage cost function in (2.7), which we call the mean field control
model.

Now, for each strategy π ∈  M and initial condition m(0) = m ∈ P(S), we
define the total discounted cost in the mean field as

v(π,m) =
∞∑

t=0

αt r (m(t)) ,

and the associated mean field optimal control problem is to find a policy π∗ ∈  M
such that

v∗(m) := inf
π∈ M

v(π,m) = v∗(π∗,m), m ∈ P(S),

where v∗ is the mean field value function and π∗ is said to be an optimal policy for
the mean field control model M.

3.1 Approximation via Bounded Costs

Recall that r is assumed to be a possibly unbounded function, which in turns implies
that so is v∗. Clearly, this fact makes the analysis difficult. Hence, we introduce
an approximation scheme defined by a sequence of bounded cost functions {rl}
increasingly converging to r , that is

rl ↗ r as l → ∞. (3.4)

To fix ideas we set

rl(m) := min{r(m), l}. (3.5)

Each rl is a bounded function and inherits the Lipschitz property from r . Now, for
each l ∈ N we define the total discount cost in the mean field model associated with
the cost function rl as

ul(π,m) :=
∞∑

t=0

αt rl(m(t))
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and the corresponding mean field mean field control problem is to find a policy
πl∗ ∈  M such that

u∗l (m) := inf
π∈ M

ul(m, π).

Under Assumption 2.1 and using the fact that H is a continuous function, it is
easy to prove that the dynamic programming operator

Tlh(m) := inf
a∈A

{
rl(m)+ αh[H(m, a)]

}
, m ∈ P(S),

maps Cb(P(S)) into itself, that is, Tlh ∈ Cb(P(S)) for h ∈ Cb(P(S)). Moreover we
have the following result (see [6, 14]).

Proposition 3.2 Suppose that Assumption 2.1 (a), (b), (c) holds and {rl} as in (3.5).
Then:

(a) For each l ∈ N, the function ul∗ is the unique solution in Cb(P(S)) satisfying

ul∗(m) = Tlul∗(m), m ∈ PN .

(b) There exist f l∗ ∈ F such that for each m ∈ P(S),

ul∗(m) := rl(m, f l∗)+ αvl∗
[
H
(
m,f l∗

)]
. (3.6)

Next, we present the approximation result for v∗ in the mean field control model
M, which is one of the main problems we addressed.

Assumption 3.3 There exist π ∈  M such that v(π,m) <∞, m ∈ P(S).

Theorem 3.4 Suppose that Assumptions 2.1 and 3.3 hold.

(a) The mean field value function v∗ is the minimal function in C(P(S)) that satisfies
the optimality equation for the control model, i.e.,

v∗(m) = inf
a∈A{r(m)+ αv∗[H(m, a)]}, m(0) = m ∈ P(S). (3.7)

(b) There exist f ∈ F, such that attains the minimum in (3.7). Moreover, the policy
π̂ = {f } is optimal for the mean field control problem in M.

(c) As l → ∞, ul∗(m)↗ v∗(m) for m(0) = m ∈ P(S);
(d) The policy π̂∗ = {f 1∗ , f 2∗ , . . .} where f l∗ satisfy (3.6) for each l ∈ N is

eventually optimal for the mean field control problem in M. That is, for any
initial condition m(0) = m ∈ P(S)

lim
l→∞�(m(l), al) = 0,
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where al = f l∗(m(l)) and

�(m, a) := r(m)+ αv∗[H(m, a)] − v∗(m).

Proof See Sect. 4. �	
In what follows, we consider the set of policies

 ̄M := {π ∈  M |v(π,m) <∞ for each m ∈ P(S)},

and

 ̄NM := {π ∈  NM |V N(π,m) <∞ for each m ∈ PN },

which are non empty sets by Assumptions 2.6 and 3.3. These assumptions guarantee
that the discounted indices are well defined even though the cost function r may not
be bounded.

Observe that Theorem 3.4 provides a way to approximate the mean field value
function v∗ as well as the corresponding optimal policy via the sequences {ul∗} and
{f l∗}, easily computable from Proposition 3.2. Thus, our objective is to study the
behavior of the policy π̂∗ = {f l∗} in the original control model MN . In other words,
we analyze the optimality deviation in MN when π̂∗ is used to control the original
process {MN(t)}. Specifically we prove that such optimality deviation vanishes as
N → ∞, as long as V N∗ approaches v∗. We state our main result as follows.

Theorem 3.5 Suppose that Assumptions 2.1, 2.6 and 3.3 hold, and MN(0) =
m(0) = m ∈ PN . Then:

(a) For ε ∈ E (see (3.2)), T ∈ N, 0 ≤ t ≤ T , and π ′ ∈  M,

Eπ
′
m

[∣∣
∣VN∗ (MN(t)) − v∗(m(t))

∣
∣
∣
]

≤ Eπ ′
m γ̄T (m(t)) + Eπ

′
m γ̄

′
T (M

N(t))+ Lr 1 − αT
1 − α

[
CT e

−λNε2
ij + μT (ε)

]
∀i, j ∈ S,

where the constant Lr comes from Assumption 2.1, while C, λ and μT (ε) are
as in Theorem 3.1, Eπ

′
m γ̄T (m(t)) → 0 and Eπ

′
m γ̄

′
T (M

N(t)) → 0 as T → ∞.
Hence,

lim
N→∞

∥
∥
∥VN∗ − v∗

∥
∥
∥ = 0.

(b) The policy π̂∗ = {f l∗} is eventually asymptotically optimal for control model
MN , that is

lim
l→∞ lim

N→∞�
N(m(l), f l∗(m)) = 0.
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Proof The proof is given in Sect. 4. �	
Remark 3.6 Observe that for each t ∈ N0, m ∈ PN and π ∈  M ,

lim
l→∞ lim

N→∞E
π
m|VN∗ (MN(t))− ul∗(m(t))| = 0. (3.8)

Indeed, for each t ∈ N0,

|VN∗ (MN(t))− ul∗(t)| ≤ |VN∗ (MN(t))− v∗(m(t))| + |v∗(m(t))− ul∗(m(t))|,

Hence, (3.8) follows from Theorem 3.4(b) and Theorem 3.5(a).

4 Proofs

4.1 Proof of Theorem 3.1

For an arbitrary policy π = {ft } ∈  M , let {at } ∈ A be sequence of actions
corresponding to its application, andm ∈ PN be initial condition. We define

BNinj (t) := 1�ij (at )(w
i
n(t)), i, j, n ∈ S, (4.1)

where win(t) are i.i.d.random variables uniformly distributed on [0, 1] (see (2.3)).
Hence, for each t ∈ N0, {BNinj (t)}inj is a family of i.i.d. Bernoulli random variables
with mean

Eπm

[
BNinj (t)|at = a

]
= Kij (a).

For a fixed ε ∈ E (see 3.2), from Hoeffding’s inequality, we have for each t ∈
N0, i, j ∈ S,

Pπm

⎡

⎣

∣
∣
∣
∣
∣
∣

NMNi (t)∑

n=1

BNinj (t)−NMNi (t)Kij (at )
∣
∣
∣
∣
∣
∣
< Nεij

⎤

⎦ > 1 − 2e−2Nε2
ij . (4.2)

Now, let

�ij =
⎧
⎨

⎩
w ∈ �′ :

∣
∣
∣∣
∣
∣

NMNi (t)∑

n=1

BNinj (t)− NMNi (t)Kij (at)
∣
∣
∣∣
∣
∣
< Nεij

⎫
⎬

⎭
⊂ �′,

and define �̄ = ⋂

i,j∈S
�ij .
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On the other hand, we define the sequence {μt(ε)}t∈N0 as

μ0(ε) = 0; μt(ε) = ‖ε‖E
t−1∑

d=0

Rd,

where R := supa∈A supj∈S #(Sj (a)) (see Assumption 2.1(c)). Now we prove that
on �̄ the following holds

‖MN(t)−m(t)‖∞ ≤ μt(ε) ∀t ∈ N0. (4.3)

We proceed by induction. For t = 0, by assumption, we have ‖MN(0)−m(0)‖∞ =
0. We assume that ‖MN(k) − m(k)‖∞ ≤ μk(ε) for some k ∈ N. Then from (2.5),
(3.1), and (4.1), for each j ∈ S

|MNj (k + 1)−mj(k + 1)| =
∣
∣
∣
∣
∣∣

∞∑

i=1

1

N

⎡

⎣
NMNi (k)∑

n=1

BNinj (k)− Nmi(k)Kij (ak)
⎤

⎦

∣
∣
∣
∣
∣∣

≤
∞∑

i=1

1

N

∣
∣
∣∣
∣
∣

NMNi (k)∑

n=1

BNinj (k)−Nmi(k)Kij (ak)
∣
∣
∣∣
∣
∣

≤
∞∑

i=1

1

N

∣
∣∣
∣
∣
∣

NMNi (k)∑

n=1

BNinj (k)−NMNi (k)Kij (ak)
∣
∣∣
∣
∣
∣

+
∞∑

i=1

|MNi (k)−mi(k)|Kij (ak)

≤
∞∑

i=1

εij + #(Sj (ak))μk(ε) ≤
∞∑

i=1

εij + Rμk(ε).

Hence, |MNj (k+ 1)−mj(k+ 1)| ≤ ∑∞
i=1 εij +Rμk(ε) ∀k ∈ N0, on the set �̄, and

‖MN(k + 1)−m(k + 1)‖∞ ≤ sup
j∈S

∞∑

i=1

εij + Rμk(ε)

= ‖ε‖E + Rμk(ε) = ‖ε‖E + R‖ε‖E
k−1∑

d=0

Rd

= ‖ε‖E
k∑

d=0

Rd = μk+1(ε),

which proves (4.3).
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Now, observe that {μt (ε)} form an increasing sequence on t . Thus, for any T ∈
N, μt(ε) ≤ μT (ε) ∀t ≤ T . Therefore, from (4.2), (4.3), and a direct induction over
T , under the policy π ∈  M we have

Pπm

[

sup
0≤t≤T

‖MN(t + 1)−m(t + 1)‖ > μT (ε)
]

≤ 2T e−2Nε2
ij ∀i, j ∈ S.

Taking C = λ = 2 we prove part (a).
(b) We denote by YT := sup0≤t≤T ‖MN(t) − m(t)‖∞. Let π ∈  M be an

arbitrary policy. For each m ∈ PN , T ∈ N, and ε ∈ E , since YT ≤ 1 we have

Eπm[YT ] = Eπm[YT 1{YT >μT (ε)} + YT 1{YT≤μT (ε)}]
≤ Pπm (YT > μT (ε))+ μT (ε)Pπm (YT ≤ μT (ε)) .

Hence from part (a) we obtain

sup
π∈ M

Eπm[YT ] ≤ CT e−λNε2
ij + μT (ε), ∀i, j ∈ S,

that is, part (b) holds. �

4.2 Proof of Theorem 3.4

Part (a) and (b) is a well-known result in discounted Markov control processes (see
[7]), while part (c) follows from [7, Theorem 4.4.1] (see also [4, 5, 13]).

We proceed to prove part (d). For each l ∈ N0 we define the function

�l(m, a) := rl(m)+ αul∗[H(m, a)] − ul∗(m), m ∈ P(S). (4.4)

Observe that�l(m, f l∗(m)) = 0 (see (3.6)).
On the other hand, for each m ∈ P(S) and n ∈ N0,

sup
a∈A

|�(m, a)−�l(m, a)|

= sup
a∈A

|r(m)+ αv∗[H(m, a)] − v∗(m)− rl(m)− αu∗l [H(m, a)] + u∗l (m)|

≤ sup
a∈A

| r(m)− rl(m)| + α|v∗[H(m, a)] − ul∗[H(m, a)]| + |v∗(m)− u∗l (m)|
(4.5)
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Now, because A is a compact set and the continuity of the functions r, v∗, ul∗,
and H , letting l → ∞ in (4.5), from (3.4) and part (b) we obtain

sup
a∈A

|�(m, a)−�l(m, a)| → 0 as l → ∞,m ∈ P(S). (4.6)

Finally, we denote al = f l∗(m(l)) and observe that

|�(m(l), al)| = |�(m(l), al)−�l(m(l), al)| ≤ sup
a∈A

|�(m, a)−�l(m, a)|. (4.7)

Taking limit as l → ∞ in (4.7), from (4.6) we get

�(m(l), al)→ 0 as l → ∞.

Therefore π̂∗ is eventually optimal in the model M.�

4.3 Proof of Theorem 3.5

(a) For an arbitrary policy π ′ ∈  M . We denote byMN(t) := MN
π ′(t) and m(t) :=

mπ ′(t) the corresponding trajectories to application of the policy π ′, with initial
conditionMN(0) = m(0) = m ∈ PN .

On the other hand, we define the selector

f̄ (·|m) = f N∗ (·|m)1PN (m)+ f̃ (·|m)1[PN ]c (m) ∈ F.

where f N∗ corresponds to the optimal stationary policy πN∗ = {fN∗ } in the model
MN (see Proposition 2.7) and f̃ is an arbitrary selector in F such that π̄ = {f̄ } ∈
 ̄M .

From (2.2) and the assumption thatMN(0) = m(0) = m ∈ PN , we have that the
process

{
MN(t)

}
evolves in the set PN, that is MN(t) ∈ PN ∀t ∈ N0. Thus, from

Proposition 2.7, relation (2.10), the definition of π̄ ∈  M , and Remark 2.5, we have

inf
π∈ NM

VN(π,MN(t)) = inf
π∈ ̄NM

V N(π,MN(t)) = V N∗ (MN(t)) = V N(πN∗ ,MN(t))

= VN(π̄,MN(t)) = inf
π∈ ̄M

V N(π,MN(t)) Pπ
′

m − a.s, t ∈ N0,

and for π̂ ∈  ̄M as in Theorem 3.4(b), we have

v∗(m(t)) = inf
π∈ ̄M

v(π,m(t)) = v(π̂ ,m(t)).
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These facts imply

V N∗ (MN(t))− v∗(m(t)) ≥ V N(π̄,MN(t))− v(π̄ ,m(t))
V N∗ (MN(t))− v∗(m(t)) ≤ V N(π̂,MN(t))− v(π̂ ,m(t))

and consequently

|VN∗ (MN(t)) − v∗(m(t))|
≤ max{|VN(π̄,MN(t)) − v(π̄ ,m(t))|, |V N(π̂ ,MN(t)) − v(π̂ ,m(t))|}

Pπ
′

m − a.s, t ∈ N0.

With out loss of generality, we suppose that

|VN∗ (MN(t))− v∗(m(t))| ≤ |VN(π̄,MN(t))− v(π̄ ,m(t))|. (4.8)

Furthermore, for each m ∈ PN, 0 ≤ t < T , we define V NT and vT as the total
discounted cost with finite horizon T , that is, for each m ∈ PN

V NT (π,m) := Eπm
[
T−1∑

k=0

αkr(MN(k))

]

, vT (π,m) :=
T−1∑

k=0

αkr(m(k)).

Continuing with (4.8)

|V N∗ (MN(t))− v∗(m(t))| ≤ |V N(π̄,MN(t))− v(π̄ ,m(t))|
≤
∣
∣∣V N(π̄,MN(t))− VNT (π̄,MN(t))

∣
∣∣ (4.9)

+
∣
∣
∣V NT (π̄,M

N(t))− vT (π̄ ,m(t))
∣
∣
∣ (4.10)

+ |vT (π̄,m(t))− v(π̄ ,m(t))| Pπ
′

m − a.s. (4.11)

We now proceed to analyze the terms of in relations (4.9)–(4.11). From Assump-
tion 2.1(c) and (3.3), for an arbitrary ε = {εij } ∈ E (see (3.2))

Eπ̄m

∣
∣
∣r(MN(t))− r(m(t))

∣
∣
∣ ≤ LrEπ̄m

[
‖MN(t)−m(t)‖∞

]

≤ LrEπ̄m
[

sup
0≤t≤T

‖MN(t)−m(t)‖∞

]

≤ Lr
(
CT e

−λNε2
ij + μT (ε)

)
∀i, j ∈ S.
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Hence, for 0 ≤ t ≤ T ,

|v(π̄ ,m(t))− vT (π̄,m(t))|

≤
∣
∣
∣∣
∣

∞∑

k=0

αkr(m(k))−
T−1∑

k=0

αkr(m(k))

∣
∣
∣∣
∣

=
∣∣
∣
∣
∣

∞∑

k=T
αkr(m(k))

∣∣
∣
∣
∣
=: γ̄T (m(t)) Pπ ′

m − a.s. (4.12)

where γ̄T (m(t)) is a finite function due to v(π̄ ,m) < ∞ and is decreasing when
T → ∞. Similarly, we can prove for (4.9) that, for 0 ≤ t ≤ T , the following bound
holds:

|V NT (π̄ ,m(t))− V N(π̄,m(t))|

≤
∣
∣
∣
∣
∣
Eπ̄
MN(t)

∞∑

k=T
αkr(MN(k))

∣
∣
∣
∣
∣
=: γ̄ ′

T (M
N(t)) Pπ

′
m − a.s. (4.13)

We also have, for the term (4.10) the following relations. For 0 ≤ t ≤ T ,

|VNT (π̄,MN(t))−vT (π̄,m(t))| (4.14)

=
∣∣
∣
∣
∣
Eπ̄
MN(t)

[
T−1∑

k=0

αkr(MN(k))−
T−1∑

k=0

αkr(m(k))

]∣∣
∣
∣
∣

≤
T−1∑

k=0

αkEπ̄
MN(t)

∣
∣
∣r(MN(k))− r(m(k))

∣
∣
∣

≤ Lr 1 − αT
1 − α

[
CT e

−λNε2
ij + μT (ε)

]
∀i, j ∈ S, Pπ ′

m − a.s.
(4.15)

Finally, by (4.9)–(4.11), (4.12)–(4.15), and taking expectation Eπ
′
m , we prove the

part (a) of the Theorem 3.5. �
(b) First observe that for all policies π = {ft } ∈  M , from the Markov property

(2.9), and using thatMN(0) = m(0) = m ∈ PN , we have

Eπm

[
V N∗

(
MN (1)

)]
=
∫

[0,1]N
V N∗

[
HN (m, f0, w)

]
θ (dw) .
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Now, let m ∈ P(S) fixed. Then, from the definition of �l and �N (see (4.4) and
(2.13)) we have

�N(m, f l∗(m)) = |�N(m, f l∗(m))−�l(m, f l∗(m))|

≤ |r(m)− α
∫

[0,1]N
V N∗ [HN(m, f l∗(m),w)]θ(dw)− V N∗ (m)

− rl(m)− αul∗[H(m, a)] + ul∗(m)|
≤ |r(m)− rl(m)| + |VN∗ (m)− ul∗(m)|

+ |
∫

[0,1]N
V N∗ [HN(m, f l∗(m),w)]θ(dw)− ul∗[H(m, a)]|

≤ |r(m)− rl(m)| + |VN∗ (m)− ul∗(m)|
+ Eπ̂∗

m |VN∗ (MN(1))− ul∗(m(1))|.

Hence, lettingN → ∞ and l → ∞, (3.4) and Remark 3.6 proves the desired result.
�
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Explicit Solution Simulation Method
for the 3/2 Model

Iro René Kouarfate, Michael A. Kouritzin, and Anne MacKay

Abstract An explicit weak solution for the 3/2 stochastic volatility model is
obtained and used to develop a simulation algorithm for option pricing purposes.
The 3/2 model is a non-affine stochastic volatility model whose variance process is
the inverse of a CIR process. This property is exploited here to obtain an explicit
weak solution, similarly to Kouritzin (Int J Theor Appl Finance 21(01):1850006,
2018) for the Heston model. A simulation algorithm based on this solution is
proposed and tested via numerical examples. The performance of the resulting
pricing algorithm is comparable to that of other popular simulation algorithms.

Keywords 3/2 model · Explicit solutions · Weak solutions · Stochastic
volatility · Monte Carlo simulations · Option pricing · Non-affine volatility

1 Introduction

Recent work by Kouritzin [17] shows that it is possible to obtain an explicit weak
solution for the Heston model, and that this solution can be used to simulate asset
prices efficiently. Exploiting the form of the weak solution, which naturally leads
to importance sampling, Kouritzin and MacKay [18] suggest the use of sequential
sampling algorithms to reduce the variance of the estimator, inspired by the particle
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filtering literature. Herein, we show that the main results of [17] can easily be
adapted to the 3/2 stochastic volatility model and thus be exploited to develop an
efficient simulation algorithm that can be used to price exotic options.

The 3/2 model is a non-affine stochastic volatility model whose analytical
tractability was studied in [15] and [19]. A similar process was used in [1] to model
stochastic interest rates. Non-affine stochastic volatility models have been shown
to provide a good fit to empirical market data, sometimes better than some affine
volatility models; see [3] and the references provided in the literature review section
of [22]. The 3/2 model in particular is preferred by Carr and Sun [8] as it naturally
emerges from consistency requirements in their proposed framework, which models
variance swap rates directly.

As a result of the empirical evidence in its favor, and because of its analytical
tractability, the 3/2 model has gained traction in the academic literature over the
past decade. In particular, Itkin and Carr [16] price volatility swaps and options
on swaps for a class of Levy models with stochastic time change and use the 3/2
model as a particular case. The 3/2 model also allows for analytical expressions for
the prices of different volatility derivatives; see for example [10, 12, 21]. Chan and
Platen [9] consider the 3/2 model for pricing long-dated variance swaps under the
real world measure. Zheng and Zeng [22] obtain a closed-form partial transform of
a relevant density and use it to price variance swaps and timer options. In [13], the
3/2 model is combined with the Heston model to create the new 4/2 model.

For the 3/2 model’s growing popularity, there are very few papers that focus on
its simulation. One of them is Baldeaux [4], who adapts the method of [7] to the 3/2
model and suggests variance reduction techniques. The capacity to simulate price
and volatility paths from a given market model is necessary in many situations, from
pricing exotic derivatives to developing hedging strategies and assessing risk. The
relatively small size of the literature concerning the simulation of the 3/2 model
could be due to its similarity with the Heston model, which allows for easy transfer
of the methods developed for the Heston model to the 3/2 one. Indeed, the 3/2 model
is closely linked to the Heston model; the stochastic process governing the variance
of the asset price in the 3/2 is the inverse of a square-root process, that is, the inverse
of the variance process under Heston.

This link between the Heston and the 3/2 model motivates the present work;
Kouritzin [17] mentions that his method cannot survive the spot volatility reaching
0. Since the volatility in the 3/2 model is given by the inverse of a “Heston volatility”
(that is, the inverse of a square-root process), it is necessary to restrict the volatility
parameters in such a way that the Feller condition is met, in order to keep the
spot volatility from exploding. In other words, by definition of the 3/2 model,
the variance process always satisfies the Feller condition, which makes it perfectly
suitable to the application of the explicit weak solution simulation method of [17].

It is also worthwhile to note that Kouritzin and MacKay [18] notice that the
resulting simulation algorithm performs better when the Heston parameters keep
the variance process further from 0. It is reasonable to expect that calibrating the
3/2 model to market data give such parameters, since they would keep the variance
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process (i.e. the inverse of the Heston variance) from reaching very high values.
This insight further motivates our work, in which we adapt the method of [17] to the
3/2 model.

As stated above, many simulation methods for the Heston model can readily be
applied to the 3/2 model. Most of these methods can be divided into two categories;
the first type of simulation schemes relies on discretizing the spot variance and the
log-price process. Such methods are typically fast, but the discretization induces a
bias which needs to be addressed, see [20] for a good overview. Broadie and Kaya
[7] proposed an exact simulation scheme which relies on transition density of the
variance process and an inversion of the Fourier transform of the integrated variance.
While exact, this method is slow, and has thus prompted several authors to propose
approximations and modifications to the original algorithm to speed it up (see for
example [2]). Bégin et al. [5] offers a good review of many existing simulation
methods for the Heston model.

The simulation scheme proposed by Kouritzin [17] for the Heston model relies on
an explicit weak solution for the stochastic differential equation (SDE) describing
the Heston model. This result leads to a simulation and option pricing algorithm
which is akin to importance sampling. Each path is simulated using an artificial
probability measure, called the reference measure, under which exact simulation
is possible and fast. The importance sampling price estimator is calculated under
the pricing measure by multiplying the appropriate payoff (a function of the
simulated asset price and volatility paths) by a likelihood, which weights each
payoff proportionally to the likelihood that the associated path generated from the
reference measure could have come from the pricing measure. The likelihood used
as a weight in the importance sampling estimator is a deterministic function of
the simulated variance process, and is thus easy to compute. The resulting pricing
algorithm has been shown to be fast and to avoid the problems resulting from
discretization of the variance process.

In this paper, we develop a similar method for the 3/2 model by first obtaining a
weak explicit solution for the two-dimensional SDE. We use this solution to develop
an option price importance estimator, as well as a simulation and option pricing
algorithm. Our numerical experiments show that our new algorithm performs at
least as well as other popular algorithms from the literature. We find that the
parametrization of the model impacts the performance of the algorithm.

The paper is organized as follows. Section 2 contains a detailed presentation of
the 3/2 model as well as our main result. Our pricing algorithm is introduced in
Sect. 3, in which we also outline existing simulation techniques, which we use in
our numerical experiments. The results of these experiments are given in Sect. 4,
and Sect. 5 concludes.
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2 Setting and Main Results

We consider a probability space (Ω,F ,P), where P denotes a pre-determined risk-
neutral measure1 for the 3/2 model. The dynamics of the stock price under this
chosen risk-neutral measure are represented by a two-dimensional process (S, V ) =
{(St , Vt ), t ≥ 0} satisfying

{
dSt = rSt dt + √

VtStρ dW(1)t + √
VtSt

√
1 − ρ2 dW(2)t

dVt = κ Vt (θ − Vt) dt + εV 3/2
t dW(1)t ,

(2.1)

with S0 = s0 > 0 and V0 = v0 > 0, and whereW = {(W(1)t ,W(2)t ), t ≥ 0} is a two-
dimensional uncorrelated Brownian motion, r , κ , θ and ε are constants satisfying

κ > − ε2

2 , and ρ ∈ [−1, 1]. The drift parameter r represents the risk-free rate and ρ
represents the correlation between the stock price S and its volatility V .

The restriction κ > − ε2

2 imposed on the parameters keeps the variance
process from exploding. This property becomes clear when studying the process
U = {Ut, t ≥ 0} defined by Ut = 1

Vt
for t ≥ 0. Indeed, it follows from Itô’s lemma

that

dUt = κθ
(
κ + ε2

κθ
− Ut

)
dt − ε√Ut dW(1)t

= κ̃(θ̃ − Ut) dt + ε̃√Ut dW(1)t

where κ̃ = κθ , θ̃ = κ+ε2

κθ
and ε̃ = −ε. In other words, with the restriction

κ > − ε2

2 , U is a square-root process satisfying the Feller condition κ̃ θ̃ > ε̃2

2 , so
that P(Ut > 0) = 1 for all t ≥ 0.

In order to use results obtained for the Heston model and adapt them to the 3/2
model, we express (2.1) in terms of the inverse of the variance process,U , as follows

⎧
⎨

⎩
dSt = rSt dt +

√
U−1
t St ρ dW(1)t +

√
U−1
t St

√
1 − ρ2 dW(2)t

dUt = κ̃(θ̃ − Ut) dt + ε̃√Ut dW(1)t ,
(2.2)

with S0 = s0 and U0 = 1/v0.
Although U is a square-root process, (2.2) is of course not equivalent to the

Heston model. Indeed, in the Heston model, it is the diffusion term of S, rather than
its inverse, that follows a square-root process. However, the ideas of Kouritzin [17]
can be exploited to obtain an explicit weak solution to (2.2), which will in turn be
used to simulate the process.

1 Since our goal in this work is to develop pricing algorithms, we only consider the risk-neutral
measure used for pricing purposes.
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It is well-known (see for example [14]) that if n := 4κ̃θ̃
ε̃2 is a positive integer,

the square-root process U is equal in distribution to the sum of n squared Ornstein-
Uhlenbeck processes. Proposition 1 below relies on this result.

Proposition 1 Suppose that n = 4κ̃ θ̃
ε̃2 ∈ N

+ and let W(2), Z(1), . . . , Z(n) be
independent standard Brownian motions on some probability space (Ω,F ,P). For
t ≥ 0, define

St = s0 exp

{
ρ

ε̃
log

(
Ut

U0

)
+
(
r + ρκ̃

ε̃

)
t

−
(
ρ

ε̃

(
κ̃ θ̃ − ε̃2/2

)
+ 1

2

)∫ t

0
U−1
s ds +

√
1 − ρ2

∫ t

0

√
U−1
s dW(2)s

}
,

Ut =
n∑

i=1

(
Y
(i)
t

)2
,

where

Y
(i)
t = ε̃

2

∫ t

0
e−

κ̃
2 (t−u) dZ(i)u + e− κ̃

2 tY
(i)
0 , with Y0 = √

U0/n

and

W
(1)
t =

n∑

i=1

∫ t

0

Y
(i)
u√∑n

j=1(Y
(j)
u )2

dZ(i)u .

Let X = (S,U), W = (W(1),W(2)) and let {Ft }t≥0 be the augmented filtration
generated by (W(2), Z(1), . . . , Z(n)). Then,

• W(1) is a standard Brownian motion, and
• (X,W), (Ω,F ,P), {Ft}t≥0 is a weak solution to (2.2).

Proof We first observe that Y (i), i ∈ {1, . . . , n}, are independent Ornstein-
Uhlenbeck processes, and that by Lévy’s characterization, W(1) is a Brownian
motion. It follows from an application of Itô’s lemma that

dUt =
n∑

i=1

(
ε̃2

4
− κ̃(Y (i)t )2

)
dt + ε̃Y (i)t dZ(i)t

=
(
nε̃2

4
− κ̃

n∑

i=1

(Y
(i)
t )

2

)

dt + ε̃
n∑

i=1

Y
(i)
t dZ(i)t

=
(
nε̃2

4
− κ̃Ut

)
dt + ε̃√Ut dW(1)t , (2.3)
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where the last equality is obtained by multiplying and dividing the second term on

the right-hand side by
√∑n

j=1(Y
(i)
t )

2. Here, since we work under the assumption

that n = 4κ̃ θ̃
ε̃2 , (2.3) can be re-written as

dUt = κ̃
(
θ̃ − Ut

)
dt + ε̃√Ut dW(1)t .

An application of Itô’s lemma to St completes the proof. �	
An alternative, systematic way to verify the functional form for St that avoids

our Itô-lemma-based guess and verify technique can be found in [17].

It is likely that for a given market calibration of the 3/2 model, n = 4κ̃ θ̃
ε̃2 is not

an integer. For this reason, a more general result is needed to develop a simulation
algorithm based on an explicit weak solution.

We generalize the definition of n and let n = max
(⌊

4κ̃ θ̃
ε̃2 + 1

2

⌋
, 1
)

. We further

define θ̃n by

θ̃n = nε̃2

4κ̃
.

It follows that κ̃ θ̃n = nε̃2

4 .
While U above cannot hit 0 under the Feller condition, it can get arbitrarily close,

causing U−1
t to blow up. To go beyond the case 4κ̃θ̃

ε̃2 ∈ N treated in Proposition 1,
we want to change measures, which is facilitated by stopping U from approaching
zero.

This change of measure is needed to readjust the distribution of the paths of
U simulated using the (wrong) long-term mean parameter θ̃n and Proposition 1.

Indeed, Proposition 1 can be used with θ̃n since 4κ̃ θ̃n
ε̃2 = n is an integer. Under

the new measure, the adjusted paths have the correct distribution, that is, the one
associated with the desired parameter θ̃ . This idea is made more precise below.

Given a filtered probability space (Ω,F , {Ft }t≥0, P̂) with independent Brow-
nian motions Z(1), . . . , Z(n) and W(2), and a fixed δ > 0, we can define
(Ŝ, Û ) = {(Ŝt , Ût )}t≥0 by

Ŝt = s0 exp

{
ρ

ε̃
log(Ût /U0)+

(
r + ρκ̃

ε̃

)
t

−
(
ρ

ε̃

(
κ̃ θ̃ − ε̃2/2

)
+ 1

2

)∫ t

0
Û−1
s ds +

√
1 − ρ2

∫ t

0
Û

−1/2
s dW(2)s

}
,

(2.4)

Ût =
n∑

i=1

(Y
(i)
t )

2, (2.5)
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and τδ = inf{t ≥ 0 : Ût ≤ δ}, where

Y
(i)
t = ε̃

2

∫ t∧τδ

0
e−

κ̃
2 (t−u) dZ(i)u + e− κ̃

2 (t∧τδ)Y (i)0 , with Y0 = √
U0/n (2.6)

for i ∈ {1, . . . , n}.
Theorem 1, to follow immediately, shows that it is possible to construct a

probability measure on (Ω,F) under which (Ŝ, Û ) satisfies (2.2) until Û drops
below a pre-determined threshold δ.

Theorem 1 Let (Ω,F , {Ft}t≥0, P̂) be a filtered probability space on which
Z(1), . . . , Z(n),W(2) are independent Brownian motions. Let (Ŝ, Û ) be defined
as in (2.4) and (2.5) and let τδ = inf{t ≥ 0 : Ût ≤ δ} for some δ ∈ (0, 1). Define

L̂
(δ)
t = exp

⎧
⎨

⎩
− κ̃(θ̃n − θ̃ )

ε̃

∫ t

0
Û−1/2
v dŴ (1)v − κ̃2

2

(
θ̃n − θ̃
ε̃

)2 ∫ t

0
Û−1
v dv

⎫
⎬

⎭

(2.7)

with

Ŵ
(1)
t =

n∑

i=1

∫ t

0

Y
(i)
u√∑n

j=1(Y
(j)
u )

2
dZ(i)u (2.8)

and P
δ(A) = Ê[1AL̂(δ)T ] ∀A ∈ FT for T > 0.

Then, under the probability measure Pδ, (W(1),W(2)), where

W
(1)
t = Ŵ (1)t + κ̃ θ̃ − θ̃n

ε̃

∫ t∧τδ

0
Û

−1/2
s ds,

are independent Brownian motions and (Ŝ, Û ) satisfies

dŜt =
{
rŜt dt + Û−1/2

t Ŝt ρ dW(1)t + Û−1/2
t Ŝt

√
1 − ρ2 dW(2)t , t ≤ τδ

rδŜt dt + σδŜt dW(2)t , t > τδ,

dÛt =
{
κ̃(θ̃ − Ût ) dt + ε̃Û1/2

t dW(1)t , t ≤ τδ
0, t > τδ

(2.9)

on [0, T ], with

rδ = r + ρ

2ε̃δ

(
2κ̃δ − 2κ̃ θ̃ + ε̃2 − ρε̃2

)
,

σδ =
√

1 − ρ2

δ
.
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Proof Let D = S(R2), the rapidly decreasing functions. They separate points and
are closed under multiplication so they separate Borel probability measures (see [6])
and hence are a reasonable martingale problem domain.

To show that (X̂,W), (Ω,F ,Pδ), {F̂t }t≥0, with X̂ = (Ŝ, Û ) and W =
(W(1),W(2)), is a solution to (2.9), we show that it solves the martingale problem
associated with the linear operator

At f (s, u) =
(
rsfs(s, u)+ κ̃(θ̃ − u)fu(s, u)+ 1

2
s2u−1fss(s, u)+ ρε̃sfsu(s, u)

+1

2
ε2ufuu(s, u)

)
1[0,τδ](t)+

(
rδsfs(s, u)+ 1 − ρ2

2δ2
fsss

2
)
1[τδ,T ](t)

where fs = ∂f (s,u)
∂s

, fu = ∂f (s,u)
∂u

, fss = ∂2f (s,u)

∂s2 , fuu = ∂2f (s,u)

∂u2 and fsu = ∂2f (s,u)
∂s∂u

.
That is, we show that for any function f ∈ D, the process

Mt(f ) = f (Ŝt , Ût )− f (Ŝ0, Û0)−
∫ t

0
(Asf )(Ŝv, Ûv) dv,

is a continuous, local martingale.
First, we note by (2.4), (2.5), (2.6) as well as Itô’s lemma that (Ŝ, Û ) satisfies

a two-dimensional SDE similar to the 3/2 model (2.2), but with parameters κ , θn,
rδ and r̂t = r − κ̃ρ

ε̃
(θ̃ − θ̃n)Û−1

t . That is, ((Ŝ, Û ), Ŵ ), (Ω,F , P̂), {F̂t }t≥0, where
{F̂t }t≥0 is the augmented filtration generated by (Z1, . . . , Zn,W

(2)), is a solution
to

dŜt =
{
r̂t Ŝt dt + Û−1/2

t Ŝt ρ dŴ (1)t + Û−1/2
t Ŝt

√
1 − ρ2 dW(2)t , t ≤ τδ,

rδŜt dt + σδŜt dW(2)t , t > τδ,

(2.10)

dÛt =
{
κ̃(θ̃n − Ût ) dt + ε̃Û1/2

t dŴ (1)t , t ≤ τδ,
0, t > τδ.

(2.11)

with Ŝ0 = s0, Û0 = 1/v0 and Ŵ (1) defined by (2.8). It follows that for any function
f ∈ D,

df (Ŝt , Ût ) = L(δ)t f (Ŝt , Ût )dt

+
(
ρŜt Û

−1/2
t fs(Ŝt , Ût )+ ε̃Û1/2

t fu(Ŝt , Ût )
)
1[0,τδ](t) dŴ (1)t

+
(
Û

−1/2
t 1[0,τδ ](t)+ δ−1/21[τδ,T ]

)√
1 − ρ2Ŝt fs(Ŝt , Ût ) dW(2)t ,

(2.12)
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where the linear operator L(δ) is defined by

L(δ)t f (s, u) =
(
r̂t sfs (s, u)+ κ̃(θ̃n − u)fu(s, u)+ 1

2
s2u−1fss(s, u)+ ρε̃sfsu(s, u)

+1

2
ε2ufuu(s, u)

)
1[0,τδ](t)+

(
rδsfs(s, u)+ 1 − ρ2

2δ2 fsss
2
)
1[τδ,T ](t).

(2.13)

We observe that L̂(δ)t satisfies the Novikov condition, since by definition of Ût ,

|κ̃(θ̃n − θ̃ )|2
ε̃2Ût

≤ |κ̃(θ̃n − θ̃ )|2
ε̃2δ

,

P̂-a.s. for all t ≥ 0. It follows that L̂(δ)t is a martingale and that Pδ is a probability
measure.

We also have from (2.7) and (2.12) that for f (s, u) ∈ C2([0,∞]2),

[
L̂(δ), f (Ŝ, Û )

]

t
=
∫ t∧τδ

0
L̂(δ)v

(
(r − r̂v)Ŝvfs(Ŝv, Ûv)+ κ̃(θ̃ − θ̃n)fu(Ŝv, Ûv)

)
dv.

(2.14)

Next we define the process M̂(f ) for any f ∈ D by

M̂t (f ) = L̂(δ)t f (Ŝt , Ût )− L̂(δ)0 f (Ŝ0, Û0)−
∫ t

0
L̂(δ)v Avf (Ŝv, Ûv) dv

= L̂(δ)t f (Ŝt , Ût )− L̂(δ)0 f (Ŝ0, Û0)−
[
L̂(δ), f (Ŝ, Û)

]

t
−
∫ t

0
L̂(δ)v L(δ)v f (Ŝv, Ûv) dv.

(2.15)

Using integration by parts, we obtain

M̂t (f ) =
∫ t

0
L̂(δ)v df (Ŝv, Ûv) dv +

∫ t

0
f (Ŝv, Ûv) dL̂(δ)v −

∫ t

0
L(δ)v L(δ)v f (Ŝv, Ûv) dv

=
∫ t

0
L̂(δ)v

[
κ̃(θ̃ − θ̃n)Û−1/2

v f (Ŝv, Ûv)+
(
ρŜvÛ

−1/2
v fs(Ŝv, Ûv)

+ε̃Û1/2
v fu(Ŝv, Ûv)

)
1[0,τδ ](v)

]
dŴ (1)v

+
∫ t

0
L̂(δ)v

(
Û−1/2
v 1[0,τδ ](v)+ δ−1/21[τδ,T ](v)

)√
1 − ρ2Ŝvfs(Ŝv, Ûv) dW(2)v

so M̂t (f ) is a local martingale. However, since f is rapidly decreasing, sfs(s, u),
ufu(s, u), sfsu(s, u) and ufuu(s, u) are all bounded. We also have that Ûv ≥ δ and
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L̂
(δ)
v is integrable for all v. Hence, it follows by (2.13), (2.14), (2.15) and Tonelli

that M̂(f ) is a martingale.
To finish the proof, it suffices to follow the remark on p.174 of [11] and show

that

E

[(
f (Ŝtn+1 , Ûtn+1)− f (Ŝtn , Ûtn )−

∫ tn+1

tn

Avf (Ŝv, Ûv) dv

) n∏

k=1

hk(Ŝtk , Ûtk )

]

= 0,

(2.16)

for 0 ≤ t1 < t2 < . . . < tn+1, f ∈ D, h ∈ B(R2) (the bounded, measurable
functions) and where Ê[·] denotes the P̂-expectation. To do so, we re-write the left-
hand side of (2.16) as

Ê

[

L̂
(δ)
tn+1

(
f (Ŝtn+1 , Ûtn+1 )− f (Ŝtn , Ûtn )−

∫ tn+1

tn

Avf (Ŝv, Ûv) dv

) n∏

k=1

hk(Ŝtk , Ûtk )

]

= Ê
[(
L̂
(δ)
tn+1
f (Ŝtn+1 , Ûtn+1 )− L̂(δ)tn f (Ŝtn , Ûtn )−

∫ tn+1

tn

L̂(δ)v Avf (Ŝv, Ûv) dv

) n∏

k=1

hk(Ŝtk , Ûtk )

]

= Ê
[
(
M̂tn+1 (f )− M̂tn (f )

) n∏

k=1

hk(Ŝtk , Ûtk )

]

,

which is equal to 0 since M̂(f ) is a martingale. We can then conclude that (Ŝ, Û )
solves the martingale problem for A with respect to P̂. �	
Remark 1 In Theorem 1, we indicate the dependence of the process L̂(δ) on the
threshold δ via the superscript. Indeed, L̂(δ) depends on δ through Û . Going forward,
for notational convenience, we drop the superscript, keeping in mind the dependence
of the likelihood process on δ.

3 Pricing Algorithm

In this section, we show how Theorem 1 can be exploited to price a financial option
in the 3/2 model. First, we justify that (Ŝ, Û ) defined in (2.4) and (2.5) can be used
to price an option in the 3/2 model, even if they satisfy (2.2) only up to τδ . We also
present an algorithm to simulate paths of (Ŝ, Û ) under the 3/2 model as well as the
associated importance sampling estimator for the price of the option.
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3.1 Importance Sampling Estimator of the Option Price

For the rest of this paper, we consider an option with maturity T ∈ R
+ whose payoff

can depend on the whole path of {(St , Vt )}t∈[0,T ], or equivalently, {(St , Ut )}t∈[0,T ].
Indeed, since Vt = U−1

t for all 0 ≤ t ≤ T and to simplify exposition, we will
keep on working in terms of U , the inverse of the variance process, going forward.
We consider a payoff function φT (S,U) with E[|φT (S,U)|] < ∞. We call π0 =
E[φT (S,U)] the price of the option and the function φT , its discounted payoff. For
example, a call option, which pays out the difference between the stock price at
maturity, ST , and a pre-determined exercise price K if this difference is positive,
has discounted payoff function e−rT max(ST −K, 0) and price E[e−rT max(ST −
K, 0)].
Remark 2 We work on a finite time horizon and the option payoff function φT only
depends on (S,U) up to T . We use the index T to indicate this restriction on (S,U).

The next proposition shows that it is possible to use (Ŝ, Û ), rather than (S,U),
to price an option in the 3/2 model.

Proposition 2 Suppose (S,U) is a solution to the 3/2 model (2.2) on probability
space (Ω,F ,P) and τδ = inf{t ≥ 0 : Ut ≤ δ}. Define (Ŝ, Û ) by (2.4) and (2.5),
set τ̂δ = inf{t ≥ 0 : Ût ≤ δ} for δ ∈ (0, 1) and let φT (S,U) be a payoff function
satisfying E[|φT (S,U)|] <∞. Then,

lim
n→∞E

1/n[φT (Ŝ, Û )1τ̂1/n>T }] = E[φT (S,U)],

where Eδ[·] denotes the expectation under the measure P
δ defined in Theorem 1.

Proof By Theorem 1, (Ŝ, Û ) satisfies (2.2) on [0, τ̂1/n] under the measure P
1/n. It

follows that

E1/n[φT (Ŝ, Û )1{̂τ1/n>T }] = E[φT (S,U)1{τ1/n>T }].

Because U satisfies the Feller condition, limn→∞ 1{τ1/n≤T } = 0, P-a.s. and

lim
n→∞E

1/n[φT (Ŝ, Û )1{̂τ1/n>T }] = lim
n→∞E[φT (S,U)1{τ1/n>T }] = E[φT (S,U)]

by the dominated convergence theorem.
�	

We interpret Proposition 2 in the following manner: by choosing δ small enough,
it is possible to approximate π0 by π(δ)0 := Eδ[φT (Ŝ, Û )1{τδ>T }], that is, using
(Ŝ, Û ) rather than (S,U). The advantage of estimating the price of an option via
(Ŝ, Û ) is that the trajectories can easily be simulated exactly under the reference
measure P̂ defined in Theorem 1. In practice, we will show in Sect. 4 that for
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reasonable 3/2 model calibrations, it is usually possible to find δ small enough that
Eδ[φT (Ŝ, Û )1{τ̂δ>T }] is almost undistinguishable from π0.

In the rest of this section, we explain how π(δ)0 can be approximated with Monte
Carlo simulation. As mentioned above, paths of (Ŝ, Û ) are easily simulated under
the reference measure P̂, not under Pδ . It is therefore necessary to express π(δ)0 using
Theorem 1 in the following manner

π
(δ)
0 = Eδ[φT (Ŝ, Û )1{τδ>T }] = Ê[L̂T φT (Ŝ, Û )1{τδ>T }]. (3.1)

From (3.1) and the strong law of large numbers, we can define π̂ (δ)0 , an

importance estimator for π(δ)0 , by

π̂
(δ)
0 =

∑N
j=1 φT (Ŝ

(j), Û (j))L̂
(j)

T 1{τ (j)δ >T }
∑N
j=1 L̂

(j)
T

, (3.2)

where
{
Ŝ(j), Û (j), L̂(j)

}N
j=1 are N ∈ N simulated paths of (Ŝ, Û , L̂).

3.2 Simulating Sample Paths

In light of Proposition 2, we now focus on the simulation of (Ŝt , Ût , L̂t )t≤τδ . Using
(2.4) and (2.6), Ŝ and Y can easily be discretized for simulation purposes. To
simplify the simulation of the process L̂, we write (2.7) as a deterministic function
of Û in Proposition 3 below.

Proposition 3 Let L̂t be defined as in Theorem 1, with Û defined by (2.5). Then,
for t ≤ τδ, L̂t can be written as

L̂t = exp

{
−(κ̃ θ̃n − κ̃ θ̃ )

ε̃2

[

log(Ût /Û0)+ κ̃t + κ̃ θ̃ − 3κ̃ θ̃n + ε̃2

2

∫ t

0
Û−1
s ds

]}

.

(3.3)

Proof An application of Itô’s lemma to log Ût for t ≤ τ̂δ yields

log(Ût /Û0) = (κ̃θ̃n − ε̃2/2)
∫ t

0
Û−1
s ds − κ̃t + ε̃

∫ t

0
Û

−1/2
s dŴ (1)s . (3.4)

Isolating
∫ t

0 Û
−1/2
s dŴ (1)s in (3.4) and replacing the resulting expression in (2.7)

gives the result. �	
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For t ∈ [0, T ) and h ∈ (0, T − t), for simulation purposes, we can re-write (2.4),
(2.6) and (3.3) in a recursive manner as

Ŝt+h = Ŝt exp

{
ρ

ε̃
log(Ût+h/Ût )+ ah− b

∫ t+h

t

Û−1
s ds

+
√

1 − ρ2

∫ t+h

t

Û
−1/2
s dW(2)s ,

}
(3.5)

Y
(i)
t+h = Y (i)t e−

κ̃
2 h + ε̃

2

∫ (t+h)∧τδ

t

e−
κ̃
2 (t+h−u) dZu, for i = 1, . . . , n, (3.6)

and

L̂(t+h)∧τδ = Lt exp
{
c
(
log(Û(t+h)∧τδ/Ût )+ κ̃(h ∨ (τδ − t))

+d
∫ (t+h)∧τδ

t

Û−1
s ds

)}

,

(3.7)

where

a = r + ρκ̃
ε̃

b = ρ

ε̃
(κ̃ θ̃ − ε̃2/2) c = − κ̃ θ̃n − κ̃ θ̃

ε2 d = κ̃ θ̃ − 3κ̃ θ̃n + ε̃2

2
.

We now discuss the simulation of (Ŝt+h, Ût+h, L̂t+h) given (Ŝt , Ût , L̂t ), as well
as {Y (i)t }ni=1. Typically, h will be a small time interval, that is, we consider h - T .

It is easy to see from the above that given Y (i)t , Y (i)t+h follows a Normal distribution

with mean Y (i)t e
− κ̃

2 h and variance ε̃2

4κ̃ (1 − e−hκ̃ ). The simulation of Y (i)t+h given Y (i)t
is thus straightforward. Ût+h can then be obtained by (2.5) as the sum of the squares
of each Y (i)t+h, for i = 1, . . . , n.

Given simulated values Ût+h and Ût , the term
∫ t+h
t Û−1

s ds, which appears in
both Ŝt+h and L̂t+h, can be approximated using the trapezoidal rule by letting

∫ t+h

t

Û−1
s ds ≈ (Û−1

t + Û−1
t+h)

2
h. (3.8)

More precise approximations to this integral can be obtained by simulating interme-
diate values Û−1

t+ih for i ∈ (0, 1) and using other quadrature rules. In [17] and [18],

Simpson’s 1
3 rule was preferred. In this section, we use a trapezoidal rule only to

simplify the exposition of the simulation algorithm.
Given that Ût+h > δ and once an approximation for the deterministic inte-

gral
∫ t+h
t Û−1

s ds is calculated, L̂t+h can be simulated using (3.7). To gener-
ate a value for Ŝt+h, it suffices to observe that conditionally on {Ûs}s∈[t,t+h],
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∫ t+h
t Û

−1/2
s dW(2)s follows a Normal distribution with mean 0 and variance

∫ t+h
t

Û−1
s ds.

The resulting algorithm produces N paths of (Ŝ, Û , L̂) and the stopping times
τδ associated with each path; it is presented in Algorithm 1, in the appendix. These
simulated values are then used in (3.2) to obtain an estimate for the price of an
option.

4 Numerical Experiment

4.1 Methods and Parameters

In this section, we assess the performance of the pricing algorithm derived from
Theorem 1. To do so, we use Monte Carlo simulations to estimate the price of
European call options. These Monte Carlo estimates are compared with the exact
price of the option, calculated with the analytical expression available for vanilla
options in the 3/2 model (see for example [19] and [8]). More precisely, we consider
the discounted payoff function φT (S,U) = e−rT max(ST − K, 0) for K > 0
representing the exercise price of the option and we compute the price estimate
according to (3.2).

The precision of the simulation algorithm is assessed using either the mean
square error or the relative mean square error, as indicated. We define the mean
square error by

MSE = E[(π0 − π̂ (δ)0 )
2]

and the relative mean square error by

RelMSE = E[(π0 − π̂ (δ)0 )
2]

π0
,

where π0 is the exact price of the option and π̂ (δ)0 is the estimate calculated with
(3.2). The expectations above are approximated by calculating the estimates a large
number of times and taking the mean over all runs.

Throughout this section, we consider the five parameter sets presented in Table 1.
Parameter set 1 (PS1) was used in [4]. Parameter set 2 (PS2) was obtained by
Drimus [10] via the simultaneous fit of the 3/2 model to 3-month and 6-month
S&P500 implied volatilities on July 31, 2009. The three other parameter sets are

modifications of PS2: PS3 was chosen so that 4κ̃ θ̃
ε̃2 ∈ N, and PS4 and PS5 were

selected to have a higher n. Recalling that n = max
(⌊

4κ̃ θ̃
ε̃2 + 1

2

⌋
, 1
)

represents

the number of Ornstein-Uhlenbeck processes necessary to simulate the variance
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Table 1 Parameter sets

S0 V0 κ θ ε ρ r 4κ̃ θ̃/ε̃2

PS1 1 1 2 1.5 0.2 −0.5 0.05 204

PS2 100 0.06 22.84 0.218 8.56 −0.99 0.00 5.25

PS3 100 0.06 18.32 0.218 8.56 −0.99 0.00 5.00

PS4 100 0.06 19.76 0.218 3.20 −0.99 0.00 11.72

PS5 100 0.06 20.48 0.218 3.20 −0.99 0.00 12.00

process, we have that n = 204 for PS1, n = 5 for PS2 and PS3 and n = 12 for
PS4 and PS5.

Throughout the numerical experiments, the threshold we use is δ = 10−5. For
all parameter sets, the simulated process U never crossed below this threshold.
Therefore, any δ below 10−5 would have yielded the same results.

4.2 Results

In this section, we present the results of our numerical experiments. We first test
the sensitivity of our simulation algorithm to n, the number of Ornstein-Uhlenbeck
processes to simulate. We then compare the performance of our algorithm to other
popular ones in the literature.

4.2.1 Sensitivity to n

We first test the impact of n on the precision of the algorithm. Such an impact was
observed in [18] in the context of the Heston model. To verify whether this also
holds for the 3/2 model, we consider the first three parameter sets and price at-the-
money (that is,K = S0) European call options. For PS1, we follow [4] and compute
the price of a call option with maturity T = 1. The exact price of this option is
0.4431. PS2 and PS3 are used to obtain the price of at-the-money call options with
T = 0.5, with respective exact prices 7.3864 and 7.0422. In all three cases, the
length of the time step used for simulation is h = 0.02.

Here, we assess the precision of the algorithm using the relative MSE in order
to compare all three parameter sets, which yield vastly different prices. The relative
quadratic error is approximated by computing the price estimators 20 times, for
N ∈ {5000, 10,000, 50,000} simulations. The integral with respect to time (see step
(3) of Algorithm 1) is approximated usingM ∈ {2, 4} sub-intervals and Simpson’s
1
3 rule.

The results of Table 2 show that the precision of the simulation algorithm seem
to be affected by n. Indeed, as a percentage of the exact price, the MSE of the
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Table 2 Relative MSE as a percentage of π0

PS1 PS2 PS3

N M = 2 M = 4 M = 2 M = 4 M = 2 M = 4

5000 0.271 0.316 0.183 0.225 0.239 0.214

10,000 0.203 0.158 0.111 0.112 0.172 0.143

50,000 0.158 0.135 0.085 0.083 0.067 0.070

Table 3 Exact prices π0 of
European call options

K/S0 PS2 PS3 PS4 PS5

0.95 10.364 10.055 11.657 11.724

1 7.386 7.042 8.926 8.999

1.05 4.938 4.586 6.636 6.710

price estimator is higher for PS1 than for the other parameter sets. This observation
becomes clearer as N increases.

We recall that for PS3, 4κ̃θ̃
ε̃2 is an integer, while this is not the case for PS2. It

follows that for this latter parameter set, the weights L̂(j)T are all different, while
they are all equal to 1 for PS3. One could expect the estimator using uneven weights
to show a worse performance due to the possible great variance of the weights.
However, in this case, both estimators show similar a performance; the algorithm
does not seem to be affected by the use of uneven weights.

Finally, Table 2 shows that increasing M may not significantly improve the
precision of the price estimator. Such an observation is important, since adding
subintervals in the calculation of the time-integral slows down the algorithm.
Keeping the number of subintervals low reduces computational complexity of our
algorithm, making it more attractive.

4.2.2 Comparison to Other Algorithms

In this section, we compare the performance of our new simulation algorithm for
the 3/2 model to existing ones. The first benchmark algorithm we consider is based
on a Milstein-type discretization of the log-price and variance process. The second
one is based on the quadratic exponential scheme proposed by Andersen [2] as
a modification to the method of [7], which we adapted to the 3/2 model. These
algorithms are outlined in the appendix.

To assess the relative performance of the algorithms, we price in-the-money
(K/S0 = 0.95), at-the-money (K/S0 = 1) and out-of-the-money (K/S0 = 1.05)
call options with T = 1 year to maturity. The exact prices of the options, which are
used to calculate the MSE of the price estimates, are given in Table 3. We consider
all parameter sets with the exception of PS1, since this parametrization requires
the simulation of 204 Ornstein-Uhlenbeck process, which makes our algorithm
excessively slow. Run times for the calculation of the Monte Carlo estimators using
N = 50,000 simulations andM = 2 subintervals are reported in Table 4.
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Table 4 Run times (in
seconds), N = 5 × 105,
M = 2

Quadratic

Parameters Milstein exponential Weighted

PS2 0.445 2.222 0.712

PS3 0.446 2.224 0.615

PS4 0.444 2.226 1.314

PS5 0.444 2.222 1.312
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Fig. 1 Relative MSE as a function of N , PS2 and PS4, algorithms: Milstein (dot), quadratic
exponential (triangle), weighted,M = 2 (square), weighted,M = 4 (cross)

Figures 1 and 2 present the relative MSE of the price estimator as a function of
the number of simulations. We note that the parametrizations considered in Fig. 1

are such that 4κ̃ θ̃
ε̃2 /∈ N, while the opposite is true for Fig. 2.
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Fig. 2 Relative MSE as a function of N , PS3 and PS5, algorithms: Milstein (dot), quadratic
exponential (triangle), weighted,M = 2 (square), weighted,M = 4 (cross)

Overall, the precision of our weighted simulation algorithm is similar to that of
the other two algorithms studied. However, certain parameter sets result in more
precise estimates. Figure 1 shows that the MSE is consistently larger with the
weighted simulation algorithms than with the benchmark ones for PS2. However,
with PS4, the weighted algorithm performs as well as the other two algorithms, or
better. We note that for PS2, n = 5 while for PS4, n = 12. It was observed in [18] in
the case of the Heston model that as n increases, the weighted simulation algorithm
seems to perform better relatively to other algorithms. This observation also seems
to hold in the case of the 3/2 model.
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For parametrizations that satisfy 4κ̃ θ̃
ε̃2 ∈ N, such as in Fig. 2, we observe that the

weighted simulation algorithm is at least as precise, and often more, than the other
algorithms. In this case, all the weights L̂T are even, which tends to decrease the
variance of the price estimator and thus, to decrease the relative MSE. It is also

interesting to note that in the case of Fig. 2, since 4κ̃ θ̃
ε̃2 ∈ N, it is not necessary to

simulate τ̂δ and the trajectories L̂T . Indeed, in this case, it is possible to simplify the
algorithm using Proposition 1, which tends to speed it up.

The run times presented in Table 4 show that in general, our method is slower
than Milstein’s, but faster than the quadratic exponential approximation of [2].
While the run times of the two benchmarks we consider are somewhat constant
across the different parametrizations we tested, the speed of our method depends
on a two factors; the number of Ornstein-Uhlenbeck processes n to simulate

and whether or not 4κ̃θ̃
ε̃2 ∈ N. This second factor explains the minor differences

between the run times reported for PS2 and PS3. However, it should be noted that
simulating the weights L̂ is not particularly time consuming, as they are obtained
as a deterministic function of Û and therefore require no additional simulation.
The most significant difference in run times is due to n; for example, it takes

twice as long to obtain a price estimate using PS5 (n = 12, 4κ̃θ̃
ε̃2 /∈ N) than PS3

(n = 5, 4κ̃θ̃
ε̃2 ∈ N). While our method is always faster than the one of [2] for the

parametrizations studied, we expect that in certain cases (when n is high), it could
become slower. Nonetheless, in those cases, our method should be very precise.

We also remark that, when it is used to simulate Heston prices and volatilities,
Milstein’s method can lead to poor accuracy, especially when the Feller condition
is not respected. In the 3/2 model, the Feller condition is always met, so it is normal
to expect Milstein’s algorithm to perform well. Indeed, Figs. 1 and 2 show that it
reaches a similar level of precision as the other methods considered.

5 Conclusion

In this paper, we present a weak explicit solution to the 3/2 model, up until the
inverse of the variance process drops below a given threshold. We develop a
simulation algorithm based on this solution and show that it can be used to price
options in the 3/2 model, since in practice, the inverse variance process stays away
from 0. Numerical examples show that our simulation algorithm performs at least
as well as popular algorithms presented in the literature. Precision is improved

when the parameters satisfy 4κ̃θ̃
ε̃2 ∈ N and when n is larger. We also show that it

is significantly faster than the quadratic exponential approximation of [2] to the
method of [7], which is generally considered to present a good balance between
precision and computation time.

It is important to note that the method that we present in this paper could be
significantly sped up by the use of sequential resampling, as implemented in [18] for
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the Heston model. Such improvements, left for future work, could give a significant
advantage to our weighted simulation algorithm for the 3/2 model.

Appendix

This section presents the simulation algorithms used to produce the numerical
examples in Sect. 4. Algorithm 1 stems from the results we present Theorem 1.
Algorithm 2 is a Milstein-type algorithm applied to the 3/2 model. Algorithm 3 is
[2]’s approximation to the algorithm proposed by Broadie and Kaya [7], modified
for the 3/2 model, since the original algorithm was developed for the Heston model.
Algorithms 2 and 3 are considered for comparison purposes.

For all algorithms, we consider a partition {0, h, 2h, . . . ,mh}, with mh = T of
the time interval [0, T ], and outline the simulation of N paths of (Ŝ, Û , L̂), as well
as the associated stopping times τ̂δ .

To simplify the exposition of Algorithm 1, we define the following constants:

αh = e− κ̃
2 h, σh = ε̃2

4κ̃

(
1 − e−hκ̃

)
.

We also drop the hats to simplify the notation.

Algorithm 1 (Weighted explicit simulation)
I. Initialize:

Set the starting values for each simulated path:

{(S(j)0 , L
(j)

0 , τ
(j)
δ ) = (S0, 1, T + h)}Nj=1, {Y (l,j)0 = √

U0/n}n,Nl,j=1

II. Loop on time: for i = 1, . . . ,m

Loop on particles: for j = 1, . . . , N , do

(1) For l = 1, . . . , n, generate Y (l,j)ih using Y (l,j)ih ∼ N
(
αhY

(l,j)

(i−1)h, σ
2
h

)
.

(2) Set U(j)ih = ∑n
l=1(Y

(l,j)
ih )2.

(3) Let IntU(j)ih ≈ ∫ ih
(i−1)h(U

(j)
s )

−1 ds using (3.8) (or another quadrature rule).

(4) Generate S(j)ih from S
(j)

(i−1)h using (2.4), with
∫ (i−1)h
ih (̂U

(j)
s )

−1/2dW
(2)
s ∼

N(0, IntU(j)ih ).

(5) If ih ≤ τ (j)δ ,

(i) If U(j)ih > δ, generate L(j)ih from L(j)(i−1)h using (3.7).

(ii) Otherwise, set τ (j)δ = t .
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Algorithm 2 (Milstein)
I. Initialize:

Set the starting values for each simulated path:

{(S(j)0 , U
(j)

0 ) = (S0, U0}Nj=1

II. Loop on time: for i = 1, . . . ,m

Loop on particles: for j = 1, . . . , N , do

(1) Correct for possible negative values: ū(j) = max(U((i − 1)h), 0)
(2) Generate U(j)ih from U(j)(i−1)h:

U
(j)
ih = U(j)(i−1)h + κ̃(θ̃ − ū(j))h

+ ε̃
√
ū(j)hZ

(j)

1 + 1

4
ε̃2((Z

(j)

1 )
2 − 1)h,

with Z(j)1 ∼ N(0, 1).
(3) Generate S(j)ih from S(j)(i−1)h:

Sih = S(i−1)h exp

{(
r − 1

2ū

)
h+

√
h

ū
Z
(j)

2

}

,

with Z(j)2 ∼ N(0, 1).
Algorithm 3 (Quadratic exponential)
I. Initialize:

(1) Set the starting values for each simulated path:

{(S(j)0 , U
(j)
0 ) = (S0, U0)}Nj=1

(2) Fix the constant φc ∈ [1, 2].
II. Loop on time: for i = 1, . . . ,m

Loop on particles: for j = 1, . . . , N , do

(1) Set the variables mi,j and si,j :

mi,j = θ̃ + (U(j)(i−1)h − θ̃ )e−κ̃h

si,j = U(i−1)hε̃
2e−κ̃h

κ̃
(1 − e−κ̃h)+ θ̃ ε̃

2

2κ̃
(1 − e−κ̃h)2
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(2) Set φi,j = s2
i,j

m2
i,j

.

(3) If φi,j < φc,

Generate U(j)ih from U(j)
(i−1)h:

U
(j)
ih = ai,j (bi,j + Z(j))2,

where Z(j) ∼ N(0, 1) and

b2
i,j = 2φ−1

i,j − 1 +
√

2φ−1
i,j

√
2φ−1
i,j − 1

ai,j = mi,j

1 + b2
i,j

(4) If φi,j ≥ φc,
Generate U(j)ih from U(j)(i−1)h:

U
(j)

ih = 1

β
log

(
1 − pi,j
1 −X(j)

)
,

where X(j) ∼ Unif orm(0, 1) and

pi,j = ψi,j − 1

ψi,j + 1
, βi,j = 1 − pi,j

mi,j

(5) Let IntU(j)ih ≈ ∫ ih
(i−1)h(U

(j)
s )

−1 ds using (3.8).

(6) Generate S(j)ih from S
(j)

(i−1)h using (2.4), with
∫ (i−1)h
ih

(̂U
(j)
s )

−1/2dW
(2)
s ∼

N(0, IntU(j)ih ).
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Large Deviations and Wschebor’s
Theorems

José R. León and Alain Rouault

Abstract We revisit Wschebor’s theorems on the a.s. convergence of small incre-
ments for processes with scaling and stationarity properties. We focus on occupation
measures and proved that they satisfy large deviation principles.

Keywords Brownian motion · Stable processes · Scaling properties · Strong
theorems · Large deviations

1 Introduction: Wschebor’s Theorem and Beyond

In 1992, Mario Wschebor [24] proved the following remarkable property of the
linear Brownian motion (W(t), t ≥ 0;W(0) = 0). Set

Wε
1 = ε−1/2W(· + ε)

If λ is the Lebesgue measure on [0, 1], then, almost surely, for every x ∈ R and
every t ∈ [0, 1]:

lim
ε→0

λ{s ≤ t : Wε
1 (s) ≤ x} = t�(x) , (1.1)

where� is the distribution function of the standard normal distribution N (0; 1).
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Let us give some notations. If � = R,R+ × R or [0, 1] × R, we denote by
M+(�) and Mr (�) the set of Borel measures on � positive and having total mass
r , respectively.

If Z is a measurable function from R
+ to R, letMZ ∈ M+(R+ ×R) be defined

by

MZ (I × A) = λ{s ∈ I : Z(s) ∈ A} , (1.2)

for every Borel subset I ×A of R+ ×R. The first marginal ofMZ is λ. The second
marginal μZ is the occupation measure

μZ =
∫ 1

0
δZ(t) dt ,

defined either by its action on a Borel set A

μZ (A) = MZ ([0, 1] × A) = λ{s ∈ [0, 1] : Z(s) ∈ A} (1.3)

or, by its action on a test function f ∈ Cb(R)
∫

R

f (x)dμZ(x) =
∫ 1

0
f (Z(t)) dt .

We will call MZ the space-time occupation measure. In this framework,(1.1) may
be considered as a law of large numbers (LLN):

MWε
1

⇒ λ× N (0; 1) (a.s.)

where ⇒ stands for the weak convergence in M+(R+ × R).
It is then quite natural to ask for a possible Large Deviation Principle (LDP), i.e.

an estimation of the form

P(MWε1
. M) ≈ exp −I (M)/ε

for some nonnegative functional I called the rate function. (We refer to [13] for
precise definition of LDP.)

Since the Brownian motion W is self-similar (Property P1) and has stationary
increments (P2), it is possible to reduce the study of μWε

1
(ε → 0) to the study of

an occupation measure in large time (T := ε−1 → ∞) for a process Y independent
of ε. This new process is stationary and ergodic. Moreover, the independence of
increments of W (P3) and its self-similarity induce a 1-dependence for Y , which
allows to use the hypermixing property (see [8]) to get an LDP. This will be a
consequence of our Theorem 2.3.



Large Deviations and Wschebor’s Theorems 149

Actually, as the crucial properties (P1, P2, P3) are shared by α-stable Lévy
processes, we are able to state the LDP in this last framework.

Besides, inspired by the extension of (1.1) in [24, 25], we consider mollified
processes as follows.

Let BV be the set of bounded variation functions on R and also let BVc ⊂ BV
be the subset of compactly supported functions. For ψ ∈ BVc let

ψε(t) = ε−1ψ
(
tε−1

)

denote the rescaled version of ψ and for X a measurable function on R, set Xεψ =
X # ψε , i.e.

Xεψ(t) :=
∫
ψε(t − s)X(s)ds =

∫
ψε(s)X(t − s)ds , (1.4)

and

Ẋεψ(t) :=
∫
X(t − s)dψε(s) = ε−1

∫
X(t − εs)dψ(s) . (1.5)

Taking for X an extension ofW vanishing on R−, and denoting

Wε
ψ (s) :=

√
εẆεψ (s) , (1.6)

the LLN reads

lim
ε→0

λ{s ≤ t : Wε
ψ(s) ≤ x} = t�(x/||ψ||2) (a.s.) . (1.7)

Notice that when ψ = ψ1 := 1[−1,0], then Wε
ψ = Wε

1 .
The fBM with Hurst index H �= 1/2 shares also properties (P1, P2) but not (P3)

with the above processes. Nevertheless, since it is Gaussian, with an explicit spectral
density, we prove the LDP for (με) under specific conditions on the mollifier, thanks
to a criterion of [7].

Let us give now the general framework needed in the sequel. Recall that a real-
valued process {X(t), t ∈ R} is self-similar with index H > 0 if

(∀a > 0) {X(at), t ∈ R} (d)= {aHX(t), t ∈ R} .

If X is a self-similar process with index H we set, if ψ ∈ BV

X εψ = ε1−HẊεψ , (1.8)
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where Ẋεψ (see (1.5)) is assumed to be well defined. In particular

X 1
ψ(t) =

∫
X(t − s)dψ(s) . (1.9)

The following lemma is the key for our study. Notice that we focus on the occupation
measure. We let the easy proof to the reader.

Lemma 1.1 Assume that X is self-similar with index H . For fixed ε and ψ ∈ BV ,
we have

(
X εψ(t), t ∈ R

)
(d)=

(
X 1
ψ(tε

−1), t ∈ R

)
(1.10)

μX εψ
(d)= ε

∫ ε−1

0
δX 1

ψ(t)
dt . (1.11)

From the above identity in law, it is clear that the asymptotic behavior of μX εψ is

connected to the long time asymptotics of the occupation measure of X 1
ψ . We will

focus on cases where the process X 1
ψ is stationary and ergodic, namely when the

underlying process X is an α-stable Lévy process or a fractional Brownian motion.
Both have stationary increments.

We give now a definition which will set the framework for the processes studied
in the sequel. Recall that the τ -topology on M1(R) is the topology induced by the
space of bounded measurable functions on R. It is stronger than the weak topology
which is induced by Cb(R).

Definition 1.2 Let F ⊂ BV . We say that a self-similar process X with index H
has the (LDPw,F ,H) (resp. (LDPτ ,F ,H)) property if the process X 1

ψ is well

defined and if for every ψ ∈ F , the family (μX εψ ) satisfies the LDP in M1(R)

equipped with the weak topology (resp. the τ -topology), in the scale ε−1, with good
rate function

$∗
ψ(μ) = sup

f∈Cb(R)

∫
f dμ−$ψ(f ) , (1.12)

(the Legendre dual of $ψ ) where for f ∈ Cb(R),

$ψ(f ) = lim
T→∞ T

−1 logE exp
∫ T

0
f (X 1

ψ(t))dt , (1.13)

in particular, the above limit exists.

Roughly speaking, this means that for ε small, the probability of seeing μX εψ
close to μ is of order e−$

∗
ψ (μ)/ε. In this framework, here is the main result (the

precise version is given in Sects. 2 and 3).
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Theorem 1.3

1. The α-stable Lévy process has the (LDPτ ,BVc, 1/α) property.
2. The fractional Brownian motion of index H ∈ [0, 1) has the (LDPw,GH ,H)

property for some explicit GH .

Before giving the outline of our paper, let us mention that there is a broad
literature on the fluctuations around the LLN mentioned above. For example if g
is a real even function g such that E[g2(N)] <∞, then

(
ε−1/2

∫ t

0

(
g(Wε

ψ (s)) − Eg(N/||ψ ||2)
)
ds, t ∈ [0, 1]

)
⇒ (σ (g)W(t), t ∈ [0, 1]) ,

(1.14)

where σ(g) is an explicit positive constant [3]. In 2008, Marcus and Rosen in [19]
have studied the convergence of the Lp norm (this is g(x) = |x|p in (1.14)) of the
increments of stationary Gaussian processes and solved the problem in a somewhat
definitive form. In another article [20] they said that their proofs were initially based
on Wschebor’s method, but afterwards they changed, looking for a more general and
broadly used procedure.

Here is the outline. In Sect. 2 we prove the LDP for the occupation measure and
the space-time occupation measure, covering in particular the Brownian motion.
Section 3 is devoted to the fBm process, covering again the Brownian motion.
In Sect. 4, we state a result for some “process level” empirical measure. At last,
in Sect. 5 we study discrete versions of Wschebor’s theorem using the Skorokhod
embedding theorem.

Let us notice that except in a specific case in Sect. 3.3.2, we cannot give an
explicit expression for the rate function. Moreover if one would be able to prove
that the rate function is strictly convex and its minimum is reached at λ × N (0; 1),
this would give an alternate proof of Wschebor’s results.

We let for a future work the study of increments for

• Gaussian random fields in R
d

• multi-parameter indexed processes
• the Rosenblatt process.

2 The α-Stable Lévy Process

Let α ∈ (0, 2] fixed. The α-stable Lévy process (S(t), t ≥ 0; S(0) = 0) has
independent and stationary increments and is 1/α-self-similar. If ψ ∈ BVc, we
set

Sεψ (t) := ε1−1/α
∫
S(t − s)dψε(s) ,
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where we have extended S to zero on R−. As in (1.2) and (1.3), we may build the
measuresMSεψ and μSεψ . In [1], Theorem 3.1, it is proved that a.s.

MSεψ ⇒ λ×�α (a.s.)

where �α is the law of ||ψ||αS(1).

2.1 LDP for (μSε
ψ
)

Proposition 2.1 If F = BVc, then the α-stable Lévy process has the
(LDPτ ,F , 1/α) property.

Proof We apply Lemma 1.1 with X = S and H = 1/α.
Assume that the support of ψ is included in [a, b]. Since S has independent and

stationary increments, a slight modification of the argument in [22] ex. 3.6.2 p.138
proves that the process (S1

ψ(t), t ≥ b) is stationary. Moreover the process S1
ψ is (b−

a)-dependent. This last property means that σ(S1
ψ(u), u ∈ A) and σ(S1

ψ(u), u ∈ B)
are independent as soon as the distance between A and B is greater than (b − a).
Consequently, the process (S1

ψ) is clearly hypermixing and so satisfies the LDP in
the τ -topology (see [8] Theorem 2 p. 558) and the other conclusions hold. �	
Remark 2.2 When α = 2 we recover the Brownian case. In particular, when ψ =
ψ1

S1
ψ(u) = W(u+ 1)−W(u) . (2.1)

This process is often called Slepian process; it is Gaussian, stationary and 1-
dependent.

2.2 LDP for (MSε
ψ
)

We will now state a complete LDP, i.e. an LDP for (MSεψ ).
1

Following the notations of Dembo and Zajic in [12] we denote by AC0 the set of
maps ν : [0, 1] → M+(R) such that

• ν is absolutely continuous with respect to the variation norm,

1 We could have presented the following Theorem 2.3 before Sect. 2.1 and then deduce an LDP as
in Proposition 2.1 for μX ε

ψ
by contraction. But this would have been in the weak topology, (and

Proposition 2.1 is in the τ -topology), and we choose the present exposition for the sake of clarity.
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• ν(0) = 0 and ν(t)− ν(s) ∈ Mt−s(R) for all t > s ≥ 0,
• for almost every t ∈ [0, 1], ν(t) possesses a weak derivative.

(This last point means that (ν(t + η) − ν(t))/η has a limit as η → 0—denoted by
ν̇(t)- in M+(R) equipped with the topology of weak convergence).

Let F be the mapping

M+([0, 1] ×R) → D
([0, 1];M+(R)

)

M �→ (t �→ F(M)(t) = M([0, t], ·)) (2.2)

or in other words F(M)(t) is the positive measure on R defined by its action on
ϕ ∈ Cb:

〈F(M)(t), ϕ〉 = 〈M, 1[0,t ] × ϕ〉 .

Here D([0, 1]; ·) is the set of càd-làg functions, equipped with the supremum norm
topology. At last, let E be the image of M1([0, 1] ×R) by F .

Theorem 2.3 For ψ ∈ BVc, the family
(
MSεψ

)
satisfies the LDP in M1([0, 1]×R)

equipped with the weak topology, in the scale ε−1 with the good rate function

$∗(M) =

⎧
⎪⎨

⎪⎩

∫ 1

0
$∗
ψ(γ̇ (t))dt if γ := F(M) ∈ AC0,

∞ otherwise.
(2.3)

Proof As in the above sections, it is actually a problem of large deviations in large
time. For the sake of simplicity, set

Y = S1
ψ

and T = ε−1. Using Lemma 1.1, the problem reduces to the study of the family
(MY(·T )). First, we study the corresponding distribution functions:

HT (t) := F(MY(·T ))(t) =
∫ t

0
δY (sT )ds = T −1

∫ tT

0
δY (s)ds . (2.4)

In a first step we will prove that the family (HT ) satisfies the LDP, then in a second
step we will transfer this property toMY(·T ).

First Step We follow the method of Dembo-Zajic [12]. We begin with a reduction
to their “discrete time” method by introducing

ηk =
∫ k

k−1
δY (s)ds ∈ M1(R) , (k ≥ 1) and ST (t) =

�tT �∑

1

ηk .
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It holds that

HT (t)− T −1ST = T −1
∫ tT

�tT �
δY (s)ds (2.5)

and this difference has a total variation norm less than T −1, so that the families
(T −1ST ) and (HT ) are exponentially equivalent (Def. 4.2.10 in [13]).

The sequence ηk is 1-dependent, hence hypermixing (see condition (S) in [12, p.
212]) which implies, by Th. 4 in the same paper that (T −1ST ) satisfies the LDP in
D([0, 1];M+(R)) provided with the uniform norm topology, with the convex good
rate function

I (ν) =
∫ 1

0
$#ψ(ν̇(t))dt (2.6)

when ν ∈ AC0 and ∞ otherwise.
We conclude, owing to Th. 4.2.13 in [13], that (HT ) satisfies the same LDP.

Second Step We now have to carry this LDP to (MY(·T )) (see (2.4)). For every
T > 0, HT ∈ E ⊂ D([0, 1);M+(R)). We saw that the effective domain of I is
included in E . So, by Lemma 4.1.5 in Dembo-Zeitouni [13], (HT ) satisfies the same
LDP in E equipped with the (uniform) induced topology.

Now,F is bijective fromM1([0, 1]×R) to E . Let us prove thatF−1 is continuous
from E (equipped with the uniform topology) to M1([0, 1] ×R) equipped with the
weak topology.

For f : [0, 1] → R, let

‖f ‖BL = sup
x

|f (x)| + sup
x �=y

|f (x)− f (y)|
|x − y| (2.7)

dBL(μ, ν) = sup
f :‖f ‖BL≤1

∣∣
∣
∣

∫
f dμ−

∫
f dν

∣∣
∣
∣ (2.8)

The space M+(R) is a Polish space when equipped with the topology induced by
dBL, compatible with the weak topology.

It is known thatMn → M ∈ M1([0, 1] ×R) weakly as soon as

Mn(1[0,t ] ⊗ f )→ M(1[0,t ] ⊗ f ) (2.9)

for every t ∈ [0, 1] and every f such that ‖f ‖BL <∞. But, for such t, f we have

sup
t

|Mn(1[0,t ] ⊗ f )−M(1[0,t ] ⊗ f )| ≤ dBL(F (Mn), F (M)) (2.10)

which implies that F−1 is continuous from E to M1([0, 1] × R).
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By the contraction principle (Th. 4.2.1 in [13]) we deduce that MY(·T ) satisfies
the LDP in M1([0, 1] × R) with good rate function J (M) = I (F (M)), where I is
given by (2.6). �	

3 The Fractional Brownian Motion

3.1 General Statement

We now treat the case of self-similar Gaussian processes with stationary increments,
i.e. fractional Brownian motion (fBm in short). The fBm with Hurst parameterH ∈
[0, 1) is the Gaussian process (BH (t), t ∈ R) with covariance

EBH (t)BH (s) = 1

2

(
|s|2H + |t|2H − |t − s|2H

)
.

It has a chaotic (or harmonizable) representation (see [22, Prop. 7.2.8])

BH (t) = 1

CH

∫

R

(
eiλt − 1

)
|λ|−H− 1

2 dW(λ) (3.1)

where W is a complex Brownian motion and

C2
H = 2π

�(2H + 1) sin(πH)
.

This process has stationary increments and is self-similar of indexH . WhenH =
1/2 we recover the Brownian motion, and it is the only case where the increments
are independent.

All along this section, X will denote BH .
When ψ ∈ BVc, the LLN can be formulated as:

MX εψ ⇒ λ× N (0; σ 2
ψ) (a.s.) , (3.2)

where N (0; σ 2
ψ) is the centered normal distribution of variance

σ 2
ψ = −1

2

∫∫
|u− v|2Hdψ(u)dψ(v) ,

(see [1]).
To get an LDP we first apply Lemma 1.1 with X = BH . But now, for lack of

independence of increments, we cannot use the method of Sect. 2. The process X 1
ψ is

stationary and Gaussian. We will work with its spectral density and apply Theorem
2.1 in [7], which ensures the LDP as soon as the spectral density is in C0(R), the set
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of all continuous functions R → R that vanish at ±∞. Actually we can extend the
set of admissible mollifiers.

From Fourier analysis we adopt the following notation: when f, g ∈ L1(R)

f̂ (θ) =
∫
eitθf (t)dt , ǧ(γ ) = 1

2π

∫
e−iγ xg(x)dx .

Let, for ψ ∈ L2



ψ
H (λ) = C−2

H |ψ̂(λ)|2|λ|1−2H , (3.3)

and

G̃H := {ψ ∈ L2(R) : 
ψH ∈ L1} .

Notice that for 0 < H < 1/2, L1 ∩ L2 ⊂ G̃H . For ψ ∈ G̃H we can define as in
Pipiras and Taqqu [21]

∫
ψ(t − s)dBH (s)

as the limit of
∫
ψn(t − s)dBH (s) = ∫

BH (t − s)dψn(s) for ψn a sequence of
simple functions (see Th. 3.1 therein). For these functions ψn we have

∫
ψn(t − s)dBH (s) = iC−1

H

∫
eitλψ̂n(−λ)λ|λ|−H− 1

2 dW(λ)

Owing to the way of convergence of ψn we have, in the limit

∫
ψ(t − s)dBH (s) = iC−1

H

∫
eitλψ̂(−λ)λ|λ|−H− 1

2 dW(λ)

hence Xψ1 is a Gaussian process and its spectral density is 
ψH .
Applying the criterion on the continuity of the spectral density, we arrive at the

following result on large deviations.

Theorem 3.1 The process BH has the (LDPw,GH ,H) property, where

GH = {ψ ∈ L2 : 
ψH ∈ L1 ∩ C0} ⊂ G̃H .
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3.2 Contraction

Since the mapping μ �→ ∫ |x|pdμ(x) is not continuous for the weak topology, we
cannot obtain an LDP for the moments of μX εψ by invoking the contraction principle
(Th. 4.2.1 in [13])). Nevertheless, in the case of the fBm, the Gaussian stationary
character of the process allows to conclude by a direct application of Corollary 2.1
in [7].

Proposition 3.2 If either H ≤ 1/2 and ψ ∈ G or H > 1/2 and ψ ∈ G ∩ GH , then

the family
(∫ 1

0 |X εψ(t)|2dt
)

, whereX = BH , satisfies the LDP, in the scale ε−1 with

good rate function

Iψ (x) = sup
−∞<y<1/(4πM)

{xy − L(y)} ,

where

L(y) = − 1

4π

∫
log(1 − 4πy
H(s))ds


H is the spectral density given by (3.3) and

M = sup
λ


H (λ) .

More generally, for 0 ≤ p ≤ 2, the family
(∫ 1

0 |X εψ(t)|pdt
)

satisfies the LDP at

scale ε with a convex rate function.

3.3 Particular Cases

3.3.1 Remark: Two Basic Mollifiers

(1) As seen before, the function ψ1 = 1[−1,0] is the most popular. It allows to study
the first order increments X(t + ε)−X(t). It belongs to G but since

|ψ̂1(λ)| = | sin(λ/2)|
|λ/2| ,

it does not belong to GH forH > 1/2.
For H = 1/2, we recover the Brownian motion and replace the notation X

by W . The process W1
ψ1

is the Slepian process (2.1) with covariance

r(t) = (1 − |t|)+ ,
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and spectral density:

ř(λ) = 1

2π

(
sin λ2
λ
2

)2

.

As it is said above since ř is C0, the occupation measure satisfies a LDP in
the weak topology in the scale ε−1. This argument could have been used to
prove the LDP, instead of the argument in Sect. 2 (but for the weak topology
and not the τ -topology). Notice that although ř is differentiable, we cannot
apply Theorem 5.18 in Chiyonobu and Kusuoka [9], since the condition (5.19)
therein is violated in x ∈ 2πZ.

(2) Another interesting function is

ψ2 = 1

2

(
1[−1,0] − 1[0,1]

)

which yields

Ẋεψ2
(t) = X(t + ε)− 2X(t)+X(t − ε)

2ε
. (3.4)

Since

|ψ̂2(λ)| = sin2(λ/2)

|λ/2| ,

we see that ψ2 ∈ G ∩ GH for every H ∈ (0, 1) and then (μX εψ2
) satisfies the

LDP.

In (3.4) we are faced with second order increments of the process X. These
increments are linked with the behavior of the second derivative of Xε when it
exists. Let us consider ψ smooth enough so that Xεψ , defined in (1.4), has a second
derivative. For instance, let ψ ∈ G such that ψ ′ ∈ G. Then the functionXεψ is twice
differentiable and

Ẍεψ(t) = ε−2
∫
X(t − εs)dψ ′(s) = ε−1Ẋεψ ′(t) .

Now, ψ ′ ∈ GH since

|ψ̂ ′(λ)||λ| 1
2 −H = |ψ̂(λ)||λ| 3

2 −H → 0

as λ→ 0.
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Since X ε
ψ ′ = ε2−HẌεψ , we conclude that for every H ∈ (0, 1), the family

(με2−HẌεψ ) satisfies the LDP in the scale ε−1 and good rate function$#
ψ ′ . The choice

ψ(t) = 1

2
(1 − |t|)+

allows to recover ψ ′ = ψ2 and the second order increments.

3.3.2 Looking for an Explicit Rate Function

It is not easy to find examples of explicit rate functions for the occupation measures
of the above stationary processes X 1

ψ , since in general the limiting cumulant
generating function $ is not explicit. A particularly nice situation in the Gaussian
case will occur if the process is also Markovian, i.e. if X 1

ψ is the Ornstein-Uhlenbeck
(OU) process. Indeed, for the OU, the rate function for the LDP of the occupation
measure is given by the Donsker-Varadhan theory [23, ex. 8.28]:

$∗(μ) = 1

2

∫

R

|g′(x)|2d�(x)

if dμ = g2d�. The goal is then to find a mollifier ψ such that X 1
ψ is distributed as

OU.
For OU, the covariance and spectral density are, respectively

r(t) = e−|t | , ř(λ) = 1

π(1 + λ2)
.

Let us assume that the underlying process is fBm. Remember that the process
X 1
ψ is then stationary Gaussian with spectral density given in (3.3).
Owing to (3.3), the equation

X 1
ψ

(d)= OU (3.5)

may be turned into

∣
∣
∣ψ̂(λ)

∣
∣
∣
2 = C2

H

|λ|2H−1

π(1 + λ2)
. (3.6)

(1) For H < 1/2, this function is not continuous in 0, so it cannot be the Fourier
transform of an integrable kernel.
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(2) For H = 1/2, we present two answers.

(a) Let us choose

ψ̂(λ) =
√

2

1 − iλ , ψ(x) =
√

2e−x1[0,∞)(x) ,

and then, the formula (1.6) becomes

W1
ψ(t) =

√
2
∫ t

−∞
e−(t−s)dWs.

This is the classical representation of the stationary OU process as a
stochastic integral [22, p. 138].

(b) Let us choose ψ such that

ψ̂(λ) =
√

2√
1 + λ2

.

This function is in L2 but not in L1. We can recover it by the semi
convergent integral:

ψ(x) = 1

2π

∫ ∞

−∞
e−ixλ

√
2√

1 + λ2
dλ,

i.e.

ψ(x) =
√

2

π

∫ ∞

0

cos(xλ)√
1 + λ2

dλ =
√

2

π
K0(x),

whereK0 is the MacDonald (or modified Bessel) function (see [11, p. 369]
or [14] formula 17 p. 9). This function can be expressed also as

K0(x) = √
πe−x�(1/2, 1; 2x) ,

where� is the confluent hypergeometric function (see [15, p. 265]), or (see
[11, p. 369])

K0(x) =
∫ ∞

0
e−x cosh θdθ .

For these two kernels, (3.6) implies that ψ ∈ GH (defined in Theorem 3.1).

Remark 3.3 It is clear that other solutions of (3.5) hence of (3.6) exist. For the
general class of solutions corresponding to semimartingales see [2, Sec. 6].
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(3) For H > 1/2 we have if ψ is even,

ψ̂(λ) = CH |λ|H− 1
2

√
π(1 + λ2)

. (3.7)

This function is in L2 but not in L1 (again). The corresponding kernel is2

ψ(x) = CH

π

∫ ∞

0
cos(λx)

|λ|H− 1
2

√
π(1 + λ2)

dλ . (3.8)

Again, (3.7) implies that ψ ∈ GH .

We have proved

Proposition 3.4 When X = BH with H ≥ 1/2 and ψ is given by (3.8), the family
(μX εψ ) satisfies the LDP, in the scale ε−1 with good rate function

$∗(μ) = 1

2

∫

R

|g′(x)|2d�(x)

if dμ = g2d�.

Remark 3.5 In this case, $∗ has a unique minimum at μ = N (0; 1) which allows
to recover Wschebor’s result on a.s. convergence.

4 “Level Process” Study

In the study of strong convergence problems such as the almost sure CLT (see [17]
and [18]), an interesting problem is the LDP of empirical measures at the level
of processes. If we restrict us to the Brownian case to simplify, the corresponding
problem could be the behavior of

∫ 1

0
δ{W(s+ε)−W(s)√

ε
, s≥t

}dt .

Here we do not see clearly the interest of such a study for the Wschebor’s theorem.
It seems more natural to consider the family (ξεt , t ≥ 0) of shifted processes

ξεt : s ∈ [0, 1] �→ W(t + εs)−W(t)√
ε

∈ C([0, 1]) , (4.1)

2 We did not find this integral in the literature on special functions.
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so that for every t > 0, ξεt is C([0, 1])-valued. The new occupation measure is now

Lε :=
∫ 1

0
δξεt dt . (4.2)

By the scaling invariance, for every ε > 0,

(ξεεt , t ≥ 0)
(d)= (ξ1

t , t ≥ 0) , (4.3)

and then

Lε =
∫ 1

0
δξεt dt

(d)= L̃ε := ε
∫ ε−1

0
δξ1
t
dt . (4.4)

Since we have

ξ1
t = (W(t + s)−W(t), s ∈ [0, 1]), (4.5)

the process (ξ1
t , t ≥ 0) will be called the meta-Slepian process in the sequel. For

every t , the distribution of ξ1
t is the Wiener measure W on C([0, 1]).

The meta-Slepian process is clearly stationary and 1-dependent. Since it is
ergodic, the Birkhoff theorem tells us that, almost surely when ε → 0, L̃ε
converges weakly to W. From the equality in distribution (4.4) we deduce that (Lε)
converges in distribution to the same limit. But this limit is deterministic, hence the
convergence of (Lε) holds in probability. We just proved:

Theorem 4.1 When ε → 0, the family of random probability measures (Lε) on
C([0, 1]) converges in probability weakly to the Wiener measure W on C([0, 1]).

The problem of a.s. convergence raises some difficulties. We have obtained on the
one hand a partial a.s. fidi convergence (which is no more than a multidimensional
extension of Wschebor’s theorem) and on the other hand an a.s. convergence when
we plug C([0, 1]) into the Hilbert space L2([0, 1]), equipped with its norm.

To this last purpose, if μ is a measure on C([0, 1]), we will denote by μL its
extension to L2([0, 1)], i.e. that for every Borel set B of L2([0, 1]),

μL(B) = μ(B ∩ C([0, 1])) .

Theorem 4.2

1. When ε → 0, for every integer d and every s1, . . . , sd ∈ [0, 1], the fam-
ily (Lεπ−1

s1,...,sd
) of random probability measures on R

d converges weakly to

Wπ−1
t1,...,td

on C([0, 1]), where πt1,...,td is the projection: f ∈ C([0, 1]) �→
(f (t1), . . . , f (td)).

2. When ε → 0, almost surely, the family of random probability measures (LLε ) on
L2([0, 1]) converges weakly to the Wiener measure WL on L2([0, 1]).
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Remark 4.3 We called 1. a partial fidi convergence, since we failed to prove a full
almost sure fidi convergence, which would be: Almost surely, for every d, t1, . . . , td
(Lεπ−1

s1,...,sd
) ⇒ Wπ−1

t1,...,td
on C([0, 1]). Nevertheless it is plausible that such a

statement holds true.

To prove Theorem 4.2, we need the following lemma, which is straightforward
in view of stationarity and 1-dependence.

Lemma 4.4 If F is a bounded differentiable function with bounded derivative from
C([0, 1]) (resp. L2([0, 1])) to R. Then

a.s. lim
ε→0

∫ 1

0
F(ξεt )dt =

∫

C([0,1])
F (ξ)W(dξ) . (4.6)

Proof of Lemma 4.4 It is along the lines of the proof of Theorem 2.1 in [1]. We first
claim a quadratic convergence as follows. By Fubini and stationarity

E

(∫ 1

0
F(ξεt )dt

)
=
∫ 1

0
EF(ξεt )dt =

∫

C([0,1])
F (ξ)W(dξ) ,

and by Fubini and 1-dependence,

Var

(∫ 1

0
F(ξεt )dt

)
=
∫ ∫

|t−s|<2ε
Cov

(
F(ξεt ), F (ξ

ε
s )
)
dtds ≤ 4ε||F ||2∞ . (4.7)

The Borel-Cantelli lemma implies a.s. convergence of
∫ 1

0 F(ξ
ε
t )dt along any

sequence (εn) such that
∑
n εn <∞.

To go on, take εn+1 < ε < εn and notice that

∣∣
∣
∣

∫ 1

0
F(ξεt )− F(ξεnt )dt

∣∣
∣
∣ ≤ ||F ′||∞ sup

t,u∈[0,1]
∣
∣ξεt (u)− ξεnt (u)

∣
∣ . (4.8)

Now we use some properties of Brownian paths. On [0, 2] the Brownian motion
satisfies a.s. a Hölder condition with exponent β < 1/2, so that we can define the
a.s. finite random variable

M := 2 sup
u,v∈[0,2]

|W(u)−W(v)|
|v − u|β . (4.9)
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So,

sup
s∈[0,1]

|ξεt (s)− ξεnt (s)| ≤ M

2

(εn − ε)β
ε1/2

+ M

2
(εn)

β
(
ε−1/2 − (εn)−1/2

)

= M

2

(εn)
β

ε1/2

[(
1 − ε

εn

)β
+
(

1 −
√
ε

εn

)]

≤M ε
β
n − εβ
ε1/2

≤ M ε
β
n − εβ

n+1

ε
1/2
n+1

.

(4.10)

The choice of εn = n−a with a > 1 and β ∈
(

a
2(a+1) ,

1
2

)
ensures that the right hand

side of (4.10), hence of (4.8) tends to 0 a.s., which ends the proof. �	
Proof of Theorem 4.2

1. The (random) characteristic functional of the (random) probability measure
Lεπ−1

s1,...,sd
is

(a1, . . . , ad) �→
∫
Fa1,...,ad (ξ

ε
t )dt

where the function

Fa1,...,ad (ξ) := exp i
d∑

1

akξ(sk)

fulfills the conditions of Lemma 4.4. We have then, for every (a1, . . . , ad), a.s.

lim
∫
Fa1,...,ad (ξ

ε
t )dt =

∫

C([0,1])
Fa1,...,ad (ξ)W(dξ) (4.11)

Taking for A a countable dense subset of Rd , we have that a.s. for every a ∈ A,
(4.11) holds true This implies that, a.s. the family Lεπ−1

s1,...,sd
indexed by ε has

Wπ−1
s1,...,sd

as its only limit point. It remains to prove tightness. Assume that d = 1
to simplify. A classical inequality [6, p. 359] gives:

λ{t ∈ [0, 1] : |ξεt (s)| > M} ≤ M

2

∫ 2/M

−2/M

(
1 −

∫
Fa(ξ

ε
t )dt

)
da .

The integrand is bounded by 2 and converges for a.e. a. By Lebesgue’s theorem,
this yields to

∫ 2/M

−2/M

(
1 −

∫
Fa(ξ

ε
t )dt

)
da →

∫ 2/M

−2/M

(
1 −

∫

C([0,1])
Fa(ξ)W(ξ)

)
da .

(4.12)

The rest is routine.



Large Deviations and Wschebor’s Theorems 165

2. We will use a method coming from [16, p. 46].3 It consists in checking
Billingsley’s criterion on intersection of balls [6, p. 18] and approximating
indicators by smooth functions. Let us give details for only one ball to shorten
the proof.

For δ ∈ (0, 1), define

φδ(t) = 1(0,1](t)+ 1[1,(1+δ)2](t)
1

C

∫ ((1+δ)2−t)
(2δ+δ2)

0
e
− 1
s(1−s) ds , (4.13)

where

C =
∫ 1

0
e
− 1
s(1−s) ds .

The function φδ has a bounded support and it is continuous and ||φδ||∞ = 1.
Now we consider ψδ : L2([0, 1] → R defined by

ψδ(ξ) = φδ(||ξ ||2).

This function is C∞ and has all its derivatives bounded. For every ξc ∈
L2([0, 1]), r > 0, δ ∈ (0, r) we have the nesting

1B(ξc;r−δ)(ξ ) ≤ ψ δ
r−δ

(
ξ − ξc
r − δ

)
≤ 1B(ξc;r)(ξ ) ≤ ψδ

r

(
ξ − ξc
r

)
≤ 1B(ξc;r+δ)(ξ ) .

(4.14)

Take a sequence δn → 0.

Let us remind that the measure LLε is random. We did not write explicitly the
itemW for simplicity, although it is present in (4.1).

For every test function F as in Lemma 4.4, we have a null set NF such that for
W /∈ NF

∫

L2([0,1])
F (ξ)LLε (dξ)→

∫

C([0,1])
F (ξ)W(dξ) . (4.15)

Let (gk)k≥1 be a countable dense set in L2([0, 1]), and for q ∈ Q,

F−
n,k,q (ξ) = ψδn/(q−δn)

(
ξ − gk
q − δn

)
, F+
n,k,q (ξ) = ψδn/q

(
ξ − gk
q

)

3 It is used there to prove that in Hilbert spaces, convergence in the Zolotarev metric implies weak
convergence.
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and

N =
⋃

n,k,q

(
NF−

n,k,q
∪NF+

n,k,q

)
.

TakeW /∈ N . Assume that the ball B(ξc; r) is given. For every γ > 0, one can find
k ≥ 1 and q ∈ Q

+ such that

||ξc − gk|| ≤ γ , |r − q| ≤ γ . (4.16)

By (4.14) we have

LLε (B(ξc; r)) ≤
∫
ψδn/r

(
ξ − ξc
r

)
LLε (dξ) . (4.17)

Besides, by (4.16) and by differentiability, there exists Cn > 0 such that

ψδn/r

(
ξ − ξc
r

)
≤ F+

n,k,q (ξ)+ Cnγ . (4.18)

Now, by (4.15),

lim
ε

∫

L2([0,1])
F+
n,k,q(ξ)L

L
ε (dξ) =

∫

C([0,1])
F+
n,k,q (ξ)W(dξ) , (4.19)

and by (4.14) again

∫

C([0,1])
F+
n,k,q(ξ)W(dξ) ≤ W(B(gk, q + δn)) . (4.20)

So far, we have obtained

lim sup
ε

LLε (B(ξc; r)) ≤ W(B(gk, q + δn))+ Cnγ . (4.21)

It remains, in the right hand side, to let γ → 0 (hence gk → ξc and q → r), and
then n→ ∞ to get

lim sup
ε

LLε (B(ξc; r)) ≤ W(B(ξc, r)) . (4.22)

With the same line of reasoning, using the other part of (4.14) we can obtain

lim inf
ε

LLε (B(ξc; r)) ≥ W(B(ξc, r)) , (4.23)

which ends the proof for one ball.
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A similar proof can be made for functions approximating intersection of balls as
in Theorem 2.2 of [16] and as a consequence the a.s. weak convergence follows. �	

To end this section, we state the LDP for (Lε) defined in (4.2). It is an extension
of the scalar case (Proposition 2.1) and since the proof is similar, we omit it.

Proposition 4.5 The family (Lε) satisfies the LDP in M1(C([0, 1])) equipped with
the weak topology, in the scale ε−1 with good rate function

�∗(L) = sup
F∈Cb(C([0,1]))

∫

C([0,1])
F (ξ)L(dξ)− �(F ), (4.24)

(the Legendre dual of �) where for every F ∈ Cb(C([0, 1])),

�(F ) = lim
T→∞ T

−1 logE
∫ T

0
F(ξ1

t )dt . (4.25)

5 Discretization and RandomWalks

For a possible discrete version of Wschebor’s theorem and associated LDP, we can
consider a continuous process S observed in a uniform mesh of [0, 1] and study the
sequence {S ( k+r

n

) − S ( k
n

)
, k ≤ n − r} where the lag r may depend on n. On that

basis, there are two points of view. When r is fixed, there are already results of a.s.
convergence of empirical measures of increments of fBm [4] and we explain which
LDP holds. When r depends on n with rn → ∞ and rn/n → 0, we are actually
changing t into k/n and ε into rn/n in the above sections. It allows to obtain results
on random walks.We state convergence (Theorem 5.1) and LDP (Theorem 5.2)
under specific conditions.

All the LDPs mentioned take place in M1(R) equipped with the weak conver-
gence.

5.1 Fixed Lag

In [4], beyond the Wschbebor’s theorem, there are results of a.s. convergence of
empirical statistics built with the increments of fBm. The authors defined p. 39 the
second order increments as

�nBH (i) = nH

σ2H

[
BH

(
i + 2

n

)
− 2BH

(
i + 1

n

)
+ BH

(
i

n

)]
.
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and proved that as n→ ∞

1

n− 1

n−2∑

0

δ�nBH (i) ⇒ N (0; 1) (a.s.) , (5.1)

(Th. 3.1 p. 44 in [4]). Moreover, in a space-time extension, they proved that

1

n− 1

n−2∑

0

δ i
n ,�nBH (i)

⇒ λ⊗ N (0; 1) (a.s.) , (5.2)

(Th. 4.1 in [5]).
Let us restrict for the moment to the caseH = 1/2. The empirical distribution in

(5.1) has the same distribution as

1

n− 1

n−2∑

0

δ2−1/2(Xi+2−Xi+1)

where the Xi are independent and N (0; 1) distributed. We can deduce the LDP (in
the scale n) from the LDP for the 2-empirical measure by contraction. If i is the
mapping

R
2 → R

(x1, x2) �→ (x2 − x1)/
√

2 (5.3)

the rate function is

I (ν) = inf{I2(μ);μ ◦ i−1 = ν} , (5.4)

where I2 is the rate function of the 2-empirical distribution (see [13, Th. 6.5.12]).
In the same vein, we could study the LDP for the empirical measure

1

n− r
n−r−1∑

0

δW(k+r)−W(k)√
r

which looks like Wr
1 . When this lag r is fixed, the scale is n and the rate function is

obtained also by contraction (r = 1 is just Sanov’s theorem).
This point of view could be developed also for the fBm using stationarity instead

of independence.
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5.2 Unbounded Lag

Let (Xi) be a sequence of i.i.d. random variables and (Si) the process of partial
sums. Let (rn) be a sequence of positive integers such that limn rn = ∞, and assume
that

εn := rn

n
↘ 0 . (5.5)

Set

V nk := Sk+rn − Sk√
rn

, mn = 1

n

n∑

1

δV nk . (5.6)

The next theorems state some extensions of Wschebor’s theorem and give the
associated LDPs. The a.s. convergence is obtained only in the Gaussian case under
an additional condition. It seems difficult to find a general method.

Theorem 5.1

1. If EX1 = 0,EX2
1 = 1, then

mn ⇒ N (0; 1) (in probability) . (5.7)

2. If X1 ∼ N (0; 1) and if (εn) is such that there exists δ ∈ (0, 1/2) and a
subsequence (nk) satisfying

∑

k

εnk <∞ and εnk = εnk+1 + o(ε1+δ
nk+1
) , (5.8)

it holds that

mn ⇒ N (0; 1) (a.s.) . (5.9)

Theorem 5.2

1. Assume that X1 ∼ N (0; 1). If limn εnn1/2 = ∞, then (mn) satisfies the LDP in
the scale ε−1

n with rate function given in (1.12) and (1.13) where ψ = �1.
2. Assume that X1 has all its moments finite and satisfies EX1 = 0, EX2

1 = 1 and
that

0 < lim inf
n

εn logn ≤ lim sup
n

εn logn <∞ . (5.10)

Then (mn) satisfies the LDP in the scale ε−1
n with rate function given in (1.12)

and (1.13) where ψ = �1.
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Remark 5.3 Two examples of (rn) satisfying the assumptions of Theorem 5.1(2)
are of interest, particularly in relation to the LDP of Theorem 5.2. The first one is
rn = �nγ � with γ ∈ (0, 1) (hence εn ∼ nγ−1), for which we can choose nk =
�ka(1−γ )� with a > 1. The second one is rn = �n/ logn� (hence εn ∼ (logn)−1),
for which we can choose nk = �ek2�.

Proof of Theorem 5.1 We use the method of the above Lemma 4.4 inspired by Azaïs
and Wschebor [1]. For a bounded continuous test function f

E

∫
f dmn = Ef

(
Srn√
rn

)
→

∫
f d�

thanks to the CLT. Moreover

Var

(∫
f dmn

)
= 1

n2

∑

|j−k|≤rn
Cov

(
f

(
Sj+rn − Sj√

rn

)
, f

(
Sk+rn − Sk√

rn

))
≤ 8rn
n

||f ||2∞ .

This gives the convergence in probability.
In the Gaussian case, it is possible to repeat the end of the proof of Lemma 4.4.

Under our assumption, we see that for any β ∈ (0, 1/2)

ε
β
nk − εβnk+1

ε
1/2
nk+1

= o
(
ε
δ+β− 1

2
nk+1

)
,

which implies that it is enough to choose β ∈
(

1
2 − δ, 1

2

)
. �	

Proof of Theorem 5.2

(1) If X1 ∼ N (0; 1), then

(V nk , k = 1, . . . , n)
(d)=

(
(εn)

−1/2
(
W

(
k

n
+ εn

)
−W

(
k

n

))
, k = 1, . . . , n

)

and then it is natural to consider mn as a Riemannian sum. We now have to
comparemn with

μWεn
1

=
∫ 1

0
δ
ε
−1/2
n (W(t+εn)−W(t))dt .
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It is known that dBL(μ, ν) given by (2.8) is a convex function of (μ, ν) so that:

dBL(mn,μWεn
1
) ≤

∫ 1

0
dBL(δε−1/2

n (W(t+εn)−W(t)), δV n�nt�)dt

≤ ε−1/2
n

∫ 1

0

∣
∣
∣
∣W(t + εn)−W(t) −W

(�nt�
n

+ εn
)

+W
(�nt�
n

)∣∣
∣
∣ dt

≤ 2(εn)−1/2 sup|t−s|≤1/n |W(t)−W(s)|

hence

P(dBL(mn, μWεn
1
) > δ) ≤ P

(

sup
|t−s|≤1/n

|W(t)−W(s)| > δ(εn)
1/2

2

)

≤ 2 exp −nεnδ
2

4
.

If limn εnn1/2 = ∞ we conclude that

lim
n→∞ εn logP(dBL(mn,μWεn

1
) > δ) = −∞ ,

which means that (mn) and (μWεn
1
) are exponentially equivalent in the scale

ε−1
n (Def. 4.2.10 in [13]).

Now, from our Proposition 2.1 or Theorem 3.1, (μWεn
1
) satisfies the LDP in

the scale ε−1
n . Consequently, from Th. 4.2.13 of [13], the family (mn) satisfies

the LDP at the same scale with the same rate function.
(2) Let us go to the case when X1 is not normal. We use the Skorokhod representa-

tion, as in [17] or in [18] (see also [10] Th. 2.1.1 p.88).
When (Xi) is a sequence of independent (real) random variables such that

EX1 = 0 and EX2
1 = 1, there exists a probability space supporting a Brownian

motion (B(t); 0 ≤ t < ∞) and an increasing sequence (τi) of stopping times
such that

• (τi+1 − τi) are i.i.d., with Eτ1 = 1
• (B(τi+1)− B(τi )) are independent and distributed as X1 .

Moreover, if EX2q
1 <∞, then Eτ

q

1 <∞.

We have

Sj+r − Sj (d)= B(τj+r )− B(τj ),

so that

mn
(d)= m̃n := 1

n

n∑

1

δṼ nk
with Ṽ nk = B(τk+rn )− B(τk)√

rn
. (5.11)
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We will compare these quantities with

πn = 1

n

n∑

1

δUnk with Unk := B(k + rn)− B(k)√
rn

, (5.12)

which fall into the regime of the above part of the proof. We will prove that the
sequences (m̃n) and (πn) are exponentially equivalent.

Again by convexity of dBL, we have

dBL(m̃n, πn) ≤
n∑

1

1

n
dBL

(
δṼ nk
, δUnk

)

≤ 1√
rn

(

sup
k≤n

|B(τk+rn )− B(k + rn)| + sup
k≤n

|B(τk)− B(k)|
)

(5.13)

Our proof will be complete if we show that for all δ > 0

lim
n

rn

n
logP

(
max
k≤n+rn

|B(τk)− B(k)| > δ√rn
)

= −∞ . (5.14)

We will apply three times the following known result (cf. [18, Lemma 8] or [17,
Lemma 2.9]).

If (ξi) are i.i.d. centered with E(ξ1)
2p) <∞ for some p ≥ 1, then there exists a

universal constant C > 0 such that for all integers n ≥ 1

E(ξ1 + · · · + ξn)2p ≤ C(2p)! E(ξ2p
1 )n

p . (5.15)

Actually, for α ∈ (0, 1) and k ≤ rαn , by Markov’s inequality and (5.15)

P(|B(τk)| > δ√rn) ≤ C(2p)! δ−2pr
−p
n E((X′

1)
2p)kp ≤ C(2p)! δ−2p

E((X′
1)

2p)r
(α−1)p
n ,

(5.16)

and for the same reasons

P(B(k)| > δ√rn) ≤ C(2p)! E(N2p)δ2pr
(α−1)p
n . (5.17)

Now, for k ≥ rαn , and β > 1/2

P(|τk − k| ≥ kβ) ≤ C(2p)! E((τ1 − 1)2p)kp(1−2β) ≤ C(2p)! E((τ1 − 1)2p)rαp(1−2β)
n .
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Besides,

P
(|B(τk)− B(k)| ≥ 2δ

√
rn , |τk − k| ≤ kβ) ≤ P

(

sup
|t−k|≤kβ

|B(t)− B(k)| > 2δ
√
rn

)

≤ 2P

(

sup
t∈(0,kβ )

|B(t)| > 2δ
√
rn

)

≤ 4e−2δ2rnk
−β
,

which, for k ≤ n+ rn < 2n, yields

P
(|Bτk − Bk| ≥ 2δ

√
rn, |τk − k| ≤ kβ) ≤ 4e−21−βδ2rnn

−β
. (5.18)

Gathering (5.16), (5.17), and (5.18), we obtain, by the union bound,

P

(
max
k≤n+rn

|B(τk)− B(k)| > 2δ
√
rn

)
≤ Cp

(
δ2pr

1+(α−1)p
n + nrα(1−2β)p

n

)

+8ne−21−βδ2rnn
−β
, (5.19)

where the constant Cp > 0 depends on p and on the distribution of X′
1.

Choosing β > 1/2 and rn such that

lim inf
n

rn

n
log rn > 0 , lim sup

n

rn

n
logn <∞ , lim inf

n

r2
n

n1+β > 0 , (5.20)

we will ensure that for every p > 0

lim
n

rn

n
logP

(
max
k≤n+rn

|B(τk)− B(k)| > δ√rn
)

≤ −Cp (5.21)

where C is a constant independent of p, which will prove (5.14).
Now, the set of sufficient conditions (5.20) is equivalent to the condition:

0 < lim inf
n

rn

n
logn ≤ lim sup

n

rn

n
logn <∞ ,

which is exactly (5.10). �	
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