
On the Correctness Problem
for Serializability

Jürgen König1(B) and Heike Wehrheim2

1 Paderborn University, Paderborn, Germany
jkoenig@mail.upb.de

2 Carl von Ossietzky University of Oldenburg, Oldenburg, Germany

Abstract. Concurrent correctness conditions formalize the notion of
“seeming atomicity” in concurrent access to shared object state. For dif-
ferent sorts of objects (databases, concurrent data structures, software
transactional memory) different sorts of correctness conditions have been
proposed (serializability, linearizability, opacity). Decidability of concur-
rent correctness conditions studies two problems: the membership prob-
lem asks whether a single execution is correct; the correctness problem
asks whether all executions of a given implementation are correct.

In this paper we investigate decidability of Papadimitrious’s notion of
serializability for database transactions. Papadimitriou has proved the
membership problem for serializability to be NP-complete. For correct-
ness we consider a stricter version also proposed by Papadimitriou, which
requires an additional real time order constraint. We show this version
to be decidable given that all transactions are live.

1 Introduction

The purpose of concurrent correctness conditions is the definition of correct
concurrent access to shared state. Correctness therein typically means that con-
current accesses behave as though these were happening atomically. Technically,
this “seeming atomicity” is formalized by comparing concurrent executions (his-
tories) to serial ones. Today, several such correctness conditions exist for varying
sorts of objects, for example serializability [19] for database transactions, lin-
earizability [16] and quiescent consistency [6] for concurrent data structures and
opacity [14] for software transactional memories.

Implementations of such objects often employ intricate algorithms with fine-
grained concurrency and without explicit locking. Hence, research often works
towards finding model checking techniques to automatically check concurrent
correctness of implementations. The quest for such techniques starts with deter-
mining the decidability and complexity of concurrent correctness conditions.
Research in this area revolves around two problems: the membership problem
and the correctness problem. The membership problem studies the correctness

The authors are supported by DFG grant WE2290/12-1.

c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 47–64, 2021.
https://doi.org/10.1007/978-3-030-85315-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-85315-0_4

48 J. König and H. Wehrheim

of single executions, whereas the correctness problem looks at all executions gen-
erated by some implementation. In both cases, executions are compared to the
behaviour of serial specifications.

In this paper, we are concerned with the correctness problem for serializabil-
ity, the most frequently employed correctness condition for databases. Serializ-
ability was first defined by Papadimitriou [19]. Papadimitiriou has shown the
membership problem to be NP-complete. For the correctness problem, Alur and
McMillan [1] have studied a variant of serializability, called conflict serializabil-
ity [10], and have shown it to be decidable and in PSPACE. Later, Bouajjani
et al. [3] have shown the correctness problem for conflict serializability for an
unbounded number of processes to be in EXPSPACE. Conflict serializability
is based on a notion of conflict between events and (semi-)commutatibility of
non-conflicting events in histories. This differs from Papadimitriou’s original
definition of serializability.

Here, we study decidability of the correctness problem for a definition of seri-
alizability following Papadimitriou’s original idea (without a notion of conflict).
More precisely, we focus on a variant of serializability, called SSR in [19]. SSR
requires the reads-from relation of live transactions to be the same when com-
paring concurrent and serial histories as in the original definition proposed by
Papadimitriou. In addition it requires the real-time order of transactions to be
preserved. We prove SSR to be decidable under the assumption that all transac-
tions are live. In the further we present the related work in Sect. 2, present the
necessary notations and definitions in Sect. 3, our decidability result in Sect. 4,
and finally give a conclusion in Sect. 5.

2 Related Work

A number of works study decidability questions for concurrent correctness
conditions. A frequently studied correctness condition is conflict serializabil-
ity [10]. Conflict serializability is different from (view) serializability as defined
by Papadimitriou, as its equivalence definition is expressed via conflicts between
events which is not possible for view serializability. Several works are concerned
with the complexity of the membership and correctness problem for conflict seri-
alizability [1,3,10,19]. The correctness problem for conflict serializability is in
PSPACE for a finite amount of threads [1], while for an unbounded number of
threads it is EXPSPACE-complete [3]. Notably the proof for the latter result
uses the fact that only a finite amount of information, independent of history
length, is necessary to determine conflict serializability. Hence the basic idea
to prove decidability is similarly to ours. Furthermore, multiple model checking
approaches for conflict serializability have been published [5,9,11,13].

For sequential consistency, Alur and McMillan [1] have shown the correctness
problem to be undecidable; a result which we used for showing undecidability of
serializability. Automatic model checking techniques therefore typically work on
subclasses only [15,20].

For linearizability [16], there are again results both for the membership and
correctness problem [1,3,12]. Notably, the correctness problem for a bounded

On the Correctness Problem for Serializability 49

R1
t1(y)R

2
t2(x)W

2
t2(x)W

1
t1(x , y)R3

t1(x)W
3
t1(z)

Rtrw
t1 ()Wtrw

t1 (x , y , z)R1
t1(y)R

2
t2(x)W

2
t2(x)W

1
t1(x , y)R3

t1(x)W
3
t1(z)R

trr
t1 (x , y , z)Wtrr

t1 ()

R2
t2(x)W

2
t2(x)R

1
t1(y)W

1
t1(x , y)R3

t1(x)W
3
t1(z)

Fig. 1. Example histories. From top to bottom: he, he, hs.

number of threads is in EXSPACE, while the unbounded case is undecidable.
Bouajjani et al. proved that for the unbounded case linearizability is still decid-
able for a subclass of programs that are data independent [4]. There are fur-
thermore multiple works targetting automatic model checking of linearizabil-
ity [17,21–23].

Finally, for other correctness conditions like opacity or quiescent consistency
additional model checking approaches and theoretical results exist (see e.g. [2,
7,8,13,18]).

3 Background

We start by defining the correctness problem for serializability. Like other con-
current correctness conditions, serializability is based on the notion of histories.
Histories are sequences of events (reading of or writing to shared state by threads)
grouped into transactions. In the sequel, we mainly follow the original definition
by Papadimitriou [19].

A history is an interleaving of read and write events of a fixed number of
threads. Each read and write operates on a number of variables. The events of a
thread are grouped into transactions. A thread can execute several transactions.
Thus a history is a sequence of read and write events indexed both by their
threads and their transactions and parametrized by the set of accessed variables.
For readability, we omit the set brackets of variable sets in examples. We let T
be the finite set of threads, Var be the finite set of shared variables and Tr the
set of transactions.

Definition 1 (History). A history is a sequence of events ev0 . . . evn, where
for all i, 0 ≤ i ≤ n, either evi = Wt(V) or evi = Rt(V) with t ∈ T , V ⊆ Var.

Notation. The definition does not mention transactions since given a sequence
of events indexed by threads there is – up to isomorphism – only one way to
assign transaction identifiers to events – when transactions are well-formed (see
below). We let H be the set of all histories. The set of events Ev is divided into
read events Evrd and write events Evwr. The set of all transactions of a history
h is tr(h), and we write tr ∈ h if a transaction tr occurs in h. Events can be
indexed by their transaction tr which makes them unique, e.g. the event Rtr

t (V)
is a read by thread t of all variables in V within the transaction tr. If an event
occurs in a history h ∈ H, we write ev ∈ h. If the event ev is ordered before
another event ev′ in history h, we write ev <h ev′. For two histories (or more

50 J. König and H. Wehrheim

generally sequences of events) h and h′, we write h · h′ for the concatenation of
h and h′, h � h′ if h is a prefix of h′, and h � h′ if h is a subsequence of h′.

Histories have to be well-formed in the following sense:

1. A transaction consists of one or two events. If one, it is a read event. If two,
one is a read and the other a write event.

2. Both events are executed by the same thread.
3. The write event (if it exists) is ordered after the read event, and no event of

the same thread occurs in between the read and the write event.

The history he shown in Fig. 1 (top) is such a well-formed history.
The thread t of a transaction tr is denoted as t(tr), which without loss of

generality we assume to be identical for all histories, i.e., a fixed transaction
tr is always executed by the same thread. We say a transaction is unfinished
whenever it only has a read event in a history, and call it finished when it has
two events in a history. For a transaction tr and history h we denote the first
case as unfin(tr, h).

For serializability we furthermore need to define real time orders as well
as equivalence of histories. Two transactions tr1, tr2 are real time ordered in a
history h, tr1 ≺h tr2, when tr1 is finished and the write event of tr1 occurs
before the read event of tr2. The real time order of h, h.RT ⊆ Tr ×Tr , contains
all pairs (tr1, tr2) such that tr1 ≺h tr2. In he we for example have 1 ≺he

3 but
1 �≺he

2.
To define the notion of equivalence and finally serializability, we furthermore

need to define (a) the reads-from relation in a history, (b) the augmentation of
a history, and (c) liveness of transactions. A transaction tr1 reads v ∈ Var from
transaction tr2 in h whenever there exists a write event ev = Wtr2

t (V) and a
read event ev′ = Rtr1

t′ (V ′) (t, t′ ∈ T , V, V ′ ⊆ Var) in h and v ∈ V ∩ V ′ such
that ev <h ev′ and no other event writing to v exists in between ev and ev′. The
reads-from relation of h is denoted as h.RF ⊆ Tr × Tr × Var . For tr, tr′ ∈ tr(h)
and v ∈ Var , (tr, tr′, v) ∈ h.RF means that tr′ reads v from tr in h. In our
example we have (1, 3, x) ∈ he.RF and (2, 3, x) /∈ he.RF .

To ensure that all transactions can read from some writes and all variables
are read at the end, histories get augmented with additional transactions. The
augmented history h for a history h is the history where two transactions are
added, trw at the start and trr at the end of the history. The transaction trw
writes to each variable and reads from none, and trr reads all variables and
writes to none. For an example see the augmentation he of history he in Fig. 1
(additional transactions in grey). Then, a transaction tr in an augmented history
h is called live whenever it either is trr or for a live transaction tr′ and v ∈ Var ,
(tr, tr′, v) ∈ h.RF . A transaction is live in a non-augmented history h if it is live
in its augmented version h. In the example history he transaction 2 is not live
since the only variable x it writes to is never read in he. Note that this notion
of liveness is slightly different from the notion of transaction liveness in software
transactional memory (which corresponds more to being finished).

On the Correctness Problem for Serializability 51

q0 q1 q2 q3 q4
Rt1(x)

Rt2(x , y)

Wt2(x , y)
Wt2(x , y) Wt1(x)

Fig. 2. Implementation Automaton Example: Iex

Definition 2. Two well-formed histories h, h′ ∈ H are equivalent (h ≡ h′) iff

– they have the same set of transactions and
– for any live tr ∈ h and any tr′ ∈ h, (tr′, tr, v) ∈ h′.RF ⇔ (tr′, tr, v) ∈ h.RF.

In the example we have he ≡ hs. As noted by Papadimitriou [19], it is actually
sufficient for equivalency that both histories have the same set of live transac-
tions, but w.l.o.g. this is equivalent to assuming their transactions overall are
identical.

A history is serial whenever each read event either belongs to an unfinished
transaction or is directly followed by the write of its transaction. We let HS be
the set of serial histories. History hs in Fig. 1 is serial. We can now define strict
serializability for histories with multiple transactions per thread. The definition
mainly follows the one given by Papadimitriou1. Note it differs from the serial-
izability definition employed by Alur et al. which is conflict serializability [10].

Definition 3 (SSR+). A history h is serializable under SSR+ (or strictly seri-
alizable) iff there exists a serial history hs such that

1. h ≡ hs, and
2. h.RT ⊆ hs.RT (real time order preservation).

Note that the real time order contains the thread order. In our example, hs has
the same real time order as he. Thus overall he is serializable under SSR+.

Whenever for history h, a history hs as required by the above definitions
exists, we say h is serializable to hs under SSR+ or call hs an s-witness of h. Let hs

be a serial history and S be a set of serial histories. The set of histories serializable
to hs under SSR+ is denoted SSR+(hs). Additionally, SSR+(S) denotes the set
of histories h such that there exists a hs ∈ S such that h is serializable to hs

under SSR+.

Correctness Problem. With these definitions at hand, we can define the actual
problem we are interested in. The correctness problem is the problem of checking
whether each of the generated histories of an implementation I is serializable
to some serial history generated by a specification S. We assume that both
I and S – as common in the related literature [1,8] – are given as finite state
automata, and let L(A) be the language accepted by an automaton A. Figure 2 is
1 The difference lays in our introduction of transaction identifiers and the accompany-

ing requirement of thread order preservation, which is often assumed for traditional
memory models.

52 J. König and H. Wehrheim

an example of an implementation automaton. It generates (accepts) the language
L(Iex) = Rt1(x)

(
Rt2(x , y)Wt2(x , y)

)+
Wt1(x). Transaction identifiers can be

freely assigned to the events of the transactions of each word in this language.
We assume that both specification and implementation automaton only generate
well-formed histories.

Then the correctness problem for strict serializability is defined as follows.

Problem 1 (Correctness Problem for Strict Serializability). Given an implemen-
tation I and a specification S, determine whether L(I) ⊆ SSR+(L(S)) is true.

Assuming S to be an automaton producing every serial history (for given threads
T and variables Var), the automaton Iex is not correct according to the above
definition. It accepts the history R1

t1(x)R2
t2(x , y)W2

t2(x , y)W1
t1(x). This history

is not serializable under SSR+.

4 The Correctness Problem for SSR− Is Decidable

We look at the decidability of the correctness problem for strict serializability.
Here, we show decidability for a subclass of SSR+ (called SSR−) where the
assumption is that all transactions in a history are live or unfinished.

The decidability follows from the fact that we can construct a finite automa-
ton whose language is empty if and only if all histories generated by the imple-
mentation automaton are strictly serializable. The states of this automaton are
(approximations of) equivalence classes of histories where the equivalence cap-
tures the strict serializability of histories and their extensions.

The assumption of all transactions being live or unfinished guarantees prefix-
closedness of strict serializability and thus allows us to incrementally construct
the states of the equivalence class automaton.

Proposition 1. Let Hlive be the set of histories with live2 transactions only,
Hun,live be the set of histories where all transactions are either unfinished or live
and h ∈ Hlive . If h is not strictly serializable, so are all h′ ∈ Hun,live such that
h � h′.

In the following we assume (1) all histories to contain live or unfinished trans-
actions only and (2) an implementation automaton to only accept words (his-
tories) in which all transactions are finished. We can therefore employ a notion
of equivalence of histories meaning (a) same set of transactions and (b) same
reads-from relation (for all transactions, not just live ones). This is important for
the construction below because it allows us to directly check for the correctness
of reads-from relations when observing the next read, not needing to wait for
the transaction of this read to become finished. The notion of s-witness used in
the sequel is based on this adapted equivalence definition.

We furthermore assume checking strict serializability against the most general
specification automaton. The most general specification automaton generates all
2 Note that all live transactions have to be finished.

On the Correctness Problem for Serializability 53

q0(
ε{ ∅}) q1(

R1
t1(x){

R1
t1(x)

})

q2⎛
⎝ R1

t1(x)R
2
t2(x , y){

R1
t1(x)R

2
t2(x , y)

R2
t2(x , y)R1

t1(x)

}⎞
⎠

q3(
R1

t1(x)T
2
t2(x , y){

R1
t1(x)T

2
t2(x , y)

})

q1(
R1

t1(x)T
2
t2(x , y){

R1
t1(x)T

2
t2(x , y)

})

q2(
R1

t1(x)T
2
t2(x , y)R4

t2(x , y){
R1

t1(x)T
2
t2(x , y)R4

t2(x , y)
})

q4(
R1

t1(x)T
2
t2(x , y)W1

t1(x)
∅

)

q3(
R1

t1(x)T
2
t2(x , y)T4

t2(x , y){
R1

t1(x)T
2
t2(x , y)T4

t2(x , y)
})

q1(
R1

t1(x)T
2
t2(x , y)T4

t2(x , y){
R1

t1(x)T
2
t2(x , y)T4

t2(x , y)
})

q2(
R1

t1(x)T
2
t2(x , y)T4

t2(x , y)R6
t2(x , y){

R1
t1(x)T

2
t2(x , y)T4

t2(x , y)R6
t2(x , y)

}) q3(
R1

t1(x)T
2
t2(x , y)T4

t2(x , y)T6
t2(x , y){

R1
t1(x)T

2
t2(x , y)T4

t2(x , y)T6
t2(x , y)

})

q4(
R1

t1(x)T
2
t2(x , y)T4

t2(x , y)W1
t1(x)

∅
)

q4(
R1

t1(x)T
2
t2(x , y)T4

t2(x , y)T6
t2(x , y)W1

t1(x)
∅

)

Wt2(x , y)

Wt1(x)

Wt2(x , y)

Wt1(x)

Rt1(x)

Rt2(x , y)

Wt2(x , y)

Wt2(x , y)

Wt1(x)

Rt2(x , y)

Wt2(x , y)

Rt2(x , y)

Wt2(x , y)

Fig. 3. Excerpt of histories of Iex (of Fig. 2) and their s-witnesses

serial histories. Thus the specification automaton S does not play a role in the
following. Deciding strict serializability for specific automata S would require
additional tracking of states of S in the below given construction.

4.1 Compact Representation

We start by looking at a naive approach for generating all histories of an imple-
mentation automaton and explain how to compact these infinitely many histories
to some finite structure. Given an implementation automaton, a naive approach
would simply try to explore the entire state space of the implementation, i.e. to
generate all of its histories and check them for strict serializability. An excerpt
of the state space of implementation automaton Iex as a graph can be seen in

54 J. König and H. Wehrheim

Fig. 3. The upper half of each node shows the current state of the automaton and
the lower half the history of the events executed so far and its set of s-witnesses.
Note that an entire transaction of the form Rj

ti(x)Wj
ti(x) is for brevity denoted

as Tj
ti(x).

The obvious problem with this approach is that the state space of imple-
mentations can be infinite, as there are infinitely many histories. Our approach
is now to reduce the state space by merging nodes which behave similarly. In
the graph in Fig. 3, these are marked with the same filling pattern. For exam-
ple, consider the striped states (second column, second, fourth and sixth state):
Whenever we execute Wt2(x , y)Wt1(x) from a striped node, we end up in a node
with implementation state q4 and an empty s-witness, i.e. the current history is
not strictly serializable. Whenever we execute Wt2(x , y), we either end up in a
node with implementation state q3 or q2 where in both cases the corresponding
history is strictly serializable. So summarizing we consider two nodes as behaving
similarly whenever

– they contain the same implementation automaton state, and
– when appending identical events, both either keep or loose their strict serial-

izability.

Merging these two nodes into one does not change the accepted language of the
automaton. We show decidability by proving that such a graph with merged
nodes has (a) a finite number of nodes (and thus is representable as a finite
automaton) and (b) this automaton is effectively constructable.

We start by formalizing the above similarity on histories.

Definition 4 (SSR-extension equivalence). Two histories h, h′ ∈ H are
SSR-extension equivalent (h ≡ext h′) iff ∀n ∈ N,∀ev0 . . . evn ∈ Evn either

– h · ev0 . . . evn and h′ · ev0 . . . evn are both strictly serializable,
– or h · ev0 . . . evn and h′ · ev0 . . . evn are both not strictly serializable.

The question is how to determine whether two histories are SSR-extension equiv-
alent. The general idea is to reduce a history to the essential information needed
to determine whether appending events keeps the history strictly serializable or
not. This information is called SSR-data. Whenever two histories have the same
SSR-data, they are SSR-extension equivalent. Below we will show that there are
only finitely many different (valid) SSR-data which is key to our decidability
result.

Witness Extensions. Before we formalize SSR-data, we take a look at some
properties of histories, their s-witnesses and extensions with events. Figure 4
shows the first such property in a diagram. The upper level is a history h and its
extension h′ by one read event. The read event is (and can only be) appended
at the end. The lower level depicts one s-witness (hs) for h and one for h′ (h′

s).
Here, we see that the new read event is inserted in the middle of hs. What is
important, however, is that the new s-witness h′

s needs to be a supersequence

On the Correctness Problem for Serializability 55

of hs, i.e. we cannot reorder events already occurring in hs. This is due to the
requirements of strict serializability (equality of reads-from relation and subset
on real-time ordering). The same applies to extensions with write events. Hence,
we only have a limited amount of candidate s-witnesses when extending a history.

h = T1
t1(x)R

2
t2(x , y) h′ = T1

t1(x)R
2
t2(x , y)R5

t3(x)

h′
s = T1

t1(x)R
5
t3(x)R

2
t2(x , y)hs = T1

t1(x)R
2
t2(x , y)

append Rt3(x)

remove Rt3(x)

h′.RF = h′
s.RF

h′.RT ⊆ h′
s.RT

h.RF = hs.RF
h.RT ⊆ hs.RT

Fig. 4. Supersequence property for extensions of s-witnesses

h = T1
t1(x)R

3
t1(x)R

2
t2(x , y)

hs1 = T1
t1(x)R

2
t2(x , y)R3

t1(x)

hs2 = T1
t1(x)R

3
t1(x)R

2
t2(x , y)

h′ = T1
t1(x)R

3
t1(x)R

2
t2(x , y)W3

t1(x)

h′
s1 = T1

t1(x)R
2
t2(x , y)R3

t1(x)W
3
t1(x)

h′
s2 = T1

t1(x) R
3
t1(x)W

3
t1(x)R

2
t2(x , y)

Wt1(x)

insert Wt1(x)

insert Wt1(x)

Fig. 5. A history and its s-witnesses extended with a write event

Next, we need to be able to compute s-witness extensions (or at least, a
compact form of them). To this end, we need to determine which of the super-
sequence candidates can be kept and which are to be eliminated because they
are no valid s-witnesses for the extended history. For this, consider Fig. 5. The
history h (top) is strictly serializable and both the histories hs1 and hs2 are s-
witnesses. When history h is extended by event W3

t1(x), this event gets appended
at the end of the history. Similarly, we need to insert W3

t1(x) into the s-witnesses
to find a witness for h′.

As this is a write event, all serial candidates must have the write by trans-
action 3 directly follow the read event of 3. In Fig. 5 the write is thus inserted
directly after the last event of its thread in both cases. The resulting histories
are obviously serial. Second, we need to check whether h′

s1 and h′
s2 preserve the

real time order of h′. This is the case. Third, we need to check if the reads-from
orders of h′ and h′

s1 , h′
s2 , respectively, are identical. For h′

s1 this is the case as
well. For h′

s2 they are different: In hs2 transaction 1 writes to x which transac-
tion 2 reads with transaction 3 occuring in between. We say that x belongs to

56 J. König and H. Wehrheim

the write-before-read-after (short, wbra) variables of 3. Thus in h′
s2 the write of

transaction 3 is read (by transaction 2) which it is not in h′. Hence h′
s2 is not

an s-witness of h′ and this candidate needs to be eliminated.
The elimination can be determined by looking at the write-before-read-after

variables formalized with the help of the last-writer function.

Definition 5 (Last Writer). Given a history h = ev0 . . . en, the last writer
function for an event ev, lwev,h : Var → Tr ∪ {trini}3, determines the last
writer to a variable v, i.e. lwev,h(v) = tr iff

– tr ∈ h and tr contains a write event w writing to v,
– w <h ev (the write occurs before ev),
– and there is no write w′ to v such w <h w′ <h ev.

Note that it is not possible to use the reads-from relation here, as the last writer
function returns the last writer of a variable at arbitrary specified event of the
history, which does not have to be a read, reading that variable. When the event
ev is the last event in a history, we elide the index to lw.

The write-before-read-after variables of a transaction are all variables that get
written to before and read from after that transaction.

Definition 6 (Write-Before-Read-After Variables). Given a serial history
hs with unfinished transaction tr and read event ev, the write-before-read-after
function wbrah : Tr → 2Var of h determines the variables written before and
read after a transaction, i.e. v ∈ wbrah(tr) holds iff

– there exists a transaction tr1 s.t. lwev,h(v) = tr1 and
– a transaction tr2 with a read event ev′ s.t. ev <h ev′ and lwev′,h(v) = tr1.

If tr is finished, then wbrah(tr) = ∅.
Summarizing, for extensions with write events we get the following property: an
s-witness hs can be extended with a write event Wtr

t (V) if

wbrahs
(tr) ∩ V = ∅ . (1)

Next we look at extensions with read events. For a read the preservation of
the serial nature of an s-witness is trivial, as a new read does not violate it no
matter where it is added. Still all feasible candidates must have the additional
read located after the last write of the old s-witness. Otherwise the real time
order of the extended history is trivially not preserved. In Fig. 6 there are two
s-witnesses for h with different orders for the writing transactions. Note that
in every history except h we removed all empty reads for brevity. For hs1 two
successor candidates exist, h′

s1 where the read is added after R3
t1(x) and h′

s2 where
it is added before. Similary for hs2 two candidates exist. For both s-witnesses
both successor candidates preserve the real time order of h′.

3 We assume trini to be the transaction initializing all variables.

On the Correctness Problem for Serializability 57

h = R1
t1()R

2
t2()W

2
t2(x , y)W1

t1(x , z)R3
t1(y)

hs1 = W2
t2(x , y)W1

t1(x , z)R3
t1(y)

hs2 = W1
t1(x , z)W2

t2(x , y)R3
t1(y)

h′ = W2
t2(x , y)W1

t1(x , z)R3
t1(y)R

4
t2(x)

h′
s1 = W2

t2(x , y)W1
t1(x , z)R3

t1(y)R
4
t2(x)

h′
s2 = W2

t2(x , y)W1
t1(x , z)R4

t2(x)R
3
t1(y)

h′
s3 = W1

t1(x , z)W2
t2(x , y)R3

t1(y)R
4
t2(x)

h′
s4 = W1

t1(x , z)W2
t2(x , y)R4

t2(x)R
3
t1(y)

Rt2(x)

insert Rt2(x)

insert Rt2(x)

insert Rt2(x)

insert Rt2(x)

Fig. 6. A history and its s-witnesses extended with a read event

For the reads-from relation both successor candidates for hs1 are valid as the
new read event reads from transaction 1 in both cases. The candidates for hs2

differ in reads-from order, as the read event reads from transaction 2. This is
the case since in hs1 the last writer on x is transaction 1 which is identical to
that of h, but for hs2 transaction 2 is the last writer which is different from h.
The summary in such and similar cases is thus: an s-witness hs can be extended
with a read event Rtr

t (V) if for all variables v ∈ V , the last writer of v in h and
hs is the same:

∀v ∈ V : lwhs
(v) = lwh(v). (2)

These considerations lead us to keeping both the last writer and the wbra vari-
ables in the SSR-data.

SSR-Data. We can now take a look at the SSR-data and its extension for events
for an example (Fig. 7). Note that in the full state space of an implementation
automaton we would need to store a complete history and its set of s-witnesses.
Here we now apply two compression functions to the history and to each s-
witness, and only store their compressed versions together with the wbra vari-
ables. The compression works as follows: For each s-witness we remove every
finished transaction that is not a last writer; for the history we remove each
transaction that is finished and not a last writer in any (compressed) s-witness
of the history. The first compression function is denoted as sub (sub : H → H),
the latter as suball (suball : H × 2H → H). In suball(h,H), the set H is some
set of (possibly already compressed) s-witnesses. Both compression functions
generate strings which are subsequences of their (first) argument.

In the given example history T2
t2(x)T1

t1(x) (Fig. 7, top node) the first trans-
action is not the last writer of any variable, it is also finished, so it is removed
when extracting SSR-data. The wbra variables are shown as “−” as there is no

58 J. König and H. Wehrheim

unfinished transaction. In the one s-witness, transaction 1 is removed as it is fin-
ished. Then we see a number of extensions with events (transitions from left to
right) followed by compression steps (diagonal arrows from right to left). These
show how the SSR-data is first extended and then again compressed. When a
new event is appended to the history each compressed s-witness is expanded like
a normal s-witness, as discussed above. As all last writers are known (can be
seen from compacted s-witnesses and history) we can compare them. We can
also check whether a write is in conflict with the wbra variables of its transac-
tion (condition (1)). For each new s-witness the wbra set is generated from the
previous s-witness. After each extension the resulting tuple is compressed again.

T2
t2(x)T

1
t1(x){

T2
t2(x)T

1
t1(x)

}

(
T1

t1(x)
T1

t1(x), −
) (

T1
t1(x)R

3
t1(x)

T1
t1(x)R

3
t1(x), −

)

(
T1

t1(x)R
3
t1(x)

T1
t1(x)R

3
t1(x), −

) ⎛
⎜⎝

T1
t1(x)R

3
t1(x)R

2
t2(x)

T1
t1(x)R

3
t1(x)R

2
t2(x),wbra(3) = x

T1
t1(x)R

2
t2(x)R

3
t1(x),wbra(2) = x

⎞
⎟⎠

⎛
⎝ T1

t1(x)R
3
t1(x)R

2
t2(x)

T1
t1(x)R

3
t1(x)R

2
t2(x),wbra(3) = x

T1
t1(x)R

2
t2(x)R

3
t1(x),wbra(2) = x

⎞
⎠ (

T1
t1(x)R

3
t1(x)R

2
t2(x)W

2
t2(x , y)

T1
t1(x)R

3
t1(x)R

2
t2(x)W

2
t2(x , y),wbra(3) = x

)

(
R3

t1(x)R
2
t2(x)W

2
t2(x , y)

R3
t1(x)R

2
t2(x)W

2
t2(x , y),wbra(3) = x

) (
R3

t1(x)R
2
t2(x)W

2
t2(x , y)W3

t1(x)
ε, −

)

extract SSR-data

Rt1(x)

compr.

Rt2(x)

compr.

Wt2(x , y)

compr.

Wt1(x)

Fig. 7. Examples for the computation of successors of SSR-data; wbra variables only
shown if non-empty.

In general SSR-data are elements of the form H × 2HS×W , where W is the
set of all functions wbra : Tr → Var . We store a (compressed) history together
with a set of pairs containing (compressed) s-witnesses and their wbra functions.

Definition 7 (Validity of SSR-data). Let h ∈ H be a history and Hs its set
of s-witnesses. A pair (hc,HW) ∈ H × 2HS×W is valid SSR-data for h iff

– hc = suball(h,Hs) (compressed history), and
– HW = {(sub(hs),wbrahs

) | hs ∈ Hs} (pairs of compressed s-witnesses and
their wbra functions).

On the Correctness Problem for Serializability 59

Proposition 2. Let h ∈ H not be strictly serializable. Then its valid SSR-data
is (suball(h, ∅), ∅) where suball(h, ∅) �= ε.

Key to decidability is the fact that we only have a finite amount of different
valid SSR-data.

Lemma 1. The number of SSR-data valid for some history is bound in size by
O((|Var | · 22|Var | + |T | · 2|Var |)!).

We next formally define the successor computation (as in Fig. 7). The exten-
sion and compression step are unified into one function, which is composed out
of a function for appending a write and one for appending a read event ev.

ext((hc,HW), ev) =

{
extr((hc,HW), ev) if ev ∈ Evrd,

extw((hc,HW), ev) if ev ∈ Evwr.

We next define extw and extr starting with write extensions. For each com-
pressed s-witness of the input SSR-data, we need to check whether the writing
thread’s wbra variables contain any of the variables written to by the write event
(Condition (1)). If not, then both (compressed) s-witness and (compressed) his-
tory need to be extended with the write event and the wbra variables of all
transactions updated. Let ev(tr) denote the last element of transaction tr in the
context of a history.

Definition 8 (Extension with write). Let (hc,HW) be some SSR-data and
ev = Wtr

t (V) a write event.
Then extw((hc,HW), ev) = (h′

c,HW ′) where (h′
s, wbh′

s
) ∈ HW ′ iff there exists

some pair (hs, wbhs
) ∈ HW such that hs = ev0 . . . ev(tr) . . . evn and

– wbhs
(tr) ∩ V = ∅ (no writing of wbra variables),

– h′
s = sub(ev0 . . . ev(tr)ev . . . evn) (compression of extended s-witness),

– wbh′
s
(tr) = ∅ (wbra variables of finished transaction emptied),

– ∀tr′ �= tr ∈ Tr : wbh′
s
(tr′) = wbhs

(tr′) (wbra variables of other transactions
kept)

and h′
c = suball(hc · ev,HW ′) (history compressed w.r.t. new s-witnesses).

This write extension preserves validity of SSR-data.

Lemma 2. Let h be a history, (hc,HW) its valid SSR-data and ev a write event.
Then the SSR-data extw((hc,HW), ev) is valid for h · ev.

Next we define the extension with read events. For each s-witness we check if
its last writers for the variables read are identical with that of the compressed
history (condition (2)); if yes we generate all candidates where the new read
is placed after the last write. We then compress these and update the wbra
variables. Finally the compressed history is expanded and again compressed
using the information from the new s-witness set. Let lwr(h) denote the last
write event of history h.

60 J. König and H. Wehrheim

Definition 9 (Extension with reads). Let (hc,HW) be some SSR-data and
ev = Rtr

t (V) a read event.
Then extr((hc,HW), ev) = (h′

c,HW ′) where (h′
s, wbh′

s
) ∈ HW ′ iff there exists

some pair (hs, wbhs
) ∈ HW such that hs = ev0 . . . lwr(hs) . . . evn and

– ∀v ∈ V : lwhs
(v) = lwhc

(v) (last writers of history and s-witnesses agree),
– h′

s = sub(ev0 . . . lwr(hs) . . . ev . . . evn) (compression of extended s-witness,
read inserted somewhere after last write),

– ∀tr′ ∈ Tr : wbh′
s
(tr′) = wbhs

(tr′) ∪ wbrah′
s
(tr′) (wbra variables of all transac-

tions updated)

and h′
c = suball(hc · ev,HW ′).

This read extension preserves validity of SSR-data.

Lemma 3. Let h be a history, (hc,HW) its valid SSR-data and ev a read event.
Then the SSR-data extr((hc,HW), ev) is valid for h · ev.

For a sequence seq and some SSR-data (hc,HW), we write ext((hc,HW), seq)
for the consecutive extension of the SSR-data with the events of seq. Now given
an event sequence h, we can simply apply ext consecutively for each event, and
if none of the thus computed SSR-data contains ∅ as the second element of the
pair, the history h is strictly serializable.

SSR-Data and SSR-Extension Equivalence. As a last step in the definition of
SSR-data, we show the desired property about SSR-extension equivalence: if
two histories h and h′ have the “same” valid SSR-data, then they are SSR-
extension equivalent. Here we employ similarity up to transaction renamings,
i.e. transaction identifiers can be arbitrarily renamed via a bijective function
r : Tr → Tr when r preserves threads (for all tr, t(tr) = t(r(tr))). We write
(hc,HW) ≡data (h′

c,HW ′) if the two SSR-data are the same up to renaming of
transactions.

Theorem 1. Let h, h′ ∈ H be two histories and (hc,HW) and (h′
c,HW ′) their

valid SSR-data. If (hc,HW) ≡data (h′
c,HW ′), then h ≡ext h′.

The reverse implication does not hold: SSR-data is only approximating SSR-
extension equivalence. For the correctness of the automaton construction given
next this direction of the implication suffices.

4.2 Construction of Finite Automaton

In our decision procedure, we generate a finite automaton where the states are
pairs of implementation automaton states and SSR-data of histories. The infinite
state space obtained via the naive exploration strategy is thus collapsed into
a finite automaton. This automaton can be constructed by starting with the
SSR-data of an empty history and then generating new SSR-data according to
the events in the implementation automaton using the above given extension

On the Correctness Problem for Serializability 61

q0

ε, ∅, ∅)
start

q1(
R1

t1(x),
R1

t1(x), ∅, ∅
)

q2⎛
⎝ R1

t1(x)R
2
t2(x , y)),

(R1
t1(x)R

2
t2(x , y), {x, y}, ∅),

(R2
t2(x , y)R1

t1(x), ∅, {x})

⎞
⎠

q3(
R1

t1(x)T
2
t2(x , y),

(R1
t1(x)T

2
t2(x , y), {x, y}, ∅)

)

q1(
R1

t1(x)T
2
t2(x , y),

(R1
t1(x)T

2
t2(x , y), {x, y}, ∅)

)

q2(
R1

t1(x)T
2
t2(x , y)R4

t2(x , y),
R1

t1(x)T
2
t2(x , y)R4

t2(x , y), {x, y}, ∅
)

q4

R1
t1(x)T

2
t2(x , y)W1

t1(x), ∅, ∅)Rt1(x)

Rt2(x , y)

Wt2(x , y)

Wt2(x , y)

Wt1(x)

Rt2(x , y)Wt2(x , y)

Wt2(x , y)

Fig. 8. SSR-automaton of Iex (of Fig. 2)

function. As we only have a finite number of different SSR-data (as of Lemma 1)
such a construction terminates.

To formalize this construction, we let SSRT ,Var be the set of all SSR-data
with thread identifiers from T and variables from Var . We furthermore let
SSR∅T ,Var be the set of all SSR-data of the format (hc, ∅), where hc �= ε.

Definition 10. Let I = (Q, δ, q0, F) be an implementation automaton. The
SSR-automaton of I (E(I)) is the automaton (QE , δE , q0,E , FE) such that

– QE = Q × SSRT ,Var ,
– q0,E = (q0, (ε, ∅)),
– FE = F × SSR∅T ,Var

and ((q, ssr), ev, (q′, ssr′)) ∈ δE iff (q, ev, q′) ∈ δ and ext(ssr, ev) = ssr′.

The thus constructed automaton is a finite automaton since by Lemma1 we
only have finitely many different valid SSR-data. Furthermore, we can derive
strict serializability of the implementation automaton from the language of the
SSR-automaton.

Theorem 2. Let I be an implementation automaton. Then I is strictly serial-
izable iff L(E(I)) = ∅.
This finally gives us the decidability of SSR−.

62 J. König and H. Wehrheim

Corollary 1. The correctness problem for SSR− is decidable.

Figure 8 shows the result of the construction for our running example. The dia-
gram only depicts the reachable states. Note that the standardized naming of
transactions can lead to a “renaming” of transactions and does so for transac-
tion 3 in one case. We see that the language of the SSR-automaton is non-empty
(the state with the grid pattern is accepting), and hence not all histories of the
implementation automaton are strictly serializable. We also see that equivalence
of SSR-data only implies SSR-extension equivalence: there are still two striped
and two dotted states which are SSR-extension equivalent but have different
SSR-data, and thus could not be compacted to a single state.

5 Conclusion

In this paper we have studied the decidability of the correctness problem of seri-
alizability. We have proven a strenghtening of serializability with an additional
requirement of real-time order preservation to be decidable. As future work we
plan to investigate whether our assumption of liveness of transactions can be
removed while keeping the decidability result.

References

1. Alur, R., McMillan, K.L., Peled, D.A.: Model-checking of correctness conditions
for concurrent objects. Inf. Comput. 160(1–2), 167–188 (2000). https://doi.org/
10.1006/inco.1999.2847

2. Armstrong, A., Dongol, B., Doherty, S.: Reducing opacity to linearizability: a sound
and complete method. CoRR abs/1610.01004 (2016). http://arxiv.org/abs/1610.
01004

3. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs
against sequential specifications. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 290–309. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37036-6 17

4. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: On reducing linearizability to state
reachability. Inf. Comput. 261(Part), 383–400 (2018). https://doi.org/10.1016/j.
ic.2018.02.014

5. Cohen, A., O’Leary, J.W., Pnueli, A., Tuttle, M.R., Zuck, L.D.: Verifying correct-
ness of transactional memories. In: Formal Methods in Computer-Aided Design,
7th International Conference, FMCAD 2007, Austin, Texas, USA, 11–14 November
2007, Proceedings, pp. 37–44. IEEE Computer Society (2007). https://doi.org/10.
1109/FAMCAD.2007.40

6. Derrick, J., Dongol, B., Schellhorn, G., Tofan, B., Travkin, O., Wehrheim, H.:
Quiescent consistency: defining and verifying relaxed linearizability. In: Jones, C.,
Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 200–214. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 15

7. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying transactional memory. Formal Aspects Comput. 25(5), 769–799 (2013).
https://doi.org/10.1007/s00165-012-0225-8

https://doi.org/10.1006/inco.1999.2847
https://doi.org/10.1006/inco.1999.2847
http://arxiv.org/abs/1610.01004
http://arxiv.org/abs/1610.01004
https://doi.org/10.1007/978-3-642-37036-6_17
https://doi.org/10.1007/978-3-642-37036-6_17
https://doi.org/10.1016/j.ic.2018.02.014
https://doi.org/10.1016/j.ic.2018.02.014
https://doi.org/10.1109/FAMCAD.2007.40
https://doi.org/10.1109/FAMCAD.2007.40
https://doi.org/10.1007/978-3-319-06410-9_15
https://doi.org/10.1007/s00165-012-0225-8

On the Correctness Problem for Serializability 63

8. Dongol, B., Hierons, R.M.: Decidability and complexity for quiescent consistency.
In: Grohe, M., Koskinen, E., Shankar, N. (eds.) Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY,
USA, 5–8 July 2016, pp. 116–125. ACM (2016). https://doi.org/10.1145/2933575.
2933576

9. Emmi, M., Majumdar, R., Manevich, R.: Parameterized verification of transac-
tional memories. In: Zorn, B.G., Aiken, A. (eds.) Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2010, Toronto, Ontario, Canada, 5–10 June 2010, pp. 134–145. ACM (2010).
https://doi.org/10.1145/1806596.1806613

10. Eswaran, K.P., Gray, J., Lorie, R.A., Traiger, I.L.: The notions of consistency and
predicate locks in a database system. Commun. ACM 19(11), 624–633 (1976).
https://doi.org/10.1145/360363.360369

11. Farzan, A., Madhusudan, P.: Monitoring atomicity in concurrent programs. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 52–65. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-70545-1 8

12. Gibbons, P.B., Korach, E.: The complexity of sequential consistency. In: Proceed-
ings of the Fourth IEEE Symposium on Parallel and Distributed Processing, SPDP
1992, Arlington, Texas, USA, 1–4 December 1992, pp. 317–325. IEEE Computer
Society (1992). https://doi.org/10.1109/SPDP.1992.242728

13. Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional memo-
ries. Distrib. Comput. 22(3), 129–145 (2010). https://doi.org/10.1007/s00446-009-
0092-6

14. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Chat-
terjee, S., Scott, M.L. (eds.) Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP 2008, Salt Lake City,
UT, USA, 20–23 February 2008, pp. 175–184. ACM (2008). https://doi.org/10.
1145/1345206.1345233

15. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Verifying sequential consistency on
shared-memory multiprocessor systems. In: Halbwachs, N., Peled, D. (eds.) CAV
1999. LNCS, vol. 1633, pp. 301–315. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48683-6 27

16. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990). https://doi.
org/10.1145/78969.78972

17. Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 321–337.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3 21

18. O’Leary, J.W., Saha, B., Tuttle, M.R.: Model checking transactional memory with
spin. In: 29th IEEE International Conference on Distributed Computing Systems
(ICDCS 2009), Montreal, Québec, Canada, 22–26 June 2009, pp. 335–342. IEEE
Computer Society (2009). https://doi.org/10.1109/ICDCS.2009.72

19. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979). https://doi.org/10.1145/322154.322158

20. Qadeer, S.: Verifying sequential consistency on shared-memory multiprocessors by
model checking. IEEE Trans. Parallel Distrib. Syst. 14(8), 730–741 (2003). https://
doi.org/10.1109/TPDS.2003.1225053

21. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6 40

https://doi.org/10.1145/2933575.2933576
https://doi.org/10.1145/2933575.2933576
https://doi.org/10.1145/1806596.1806613
https://doi.org/10.1145/360363.360369
https://doi.org/10.1007/978-3-540-70545-1_8
https://doi.org/10.1109/SPDP.1992.242728
https://doi.org/10.1007/s00446-009-0092-6
https://doi.org/10.1007/s00446-009-0092-6
https://doi.org/10.1145/1345206.1345233
https://doi.org/10.1145/1345206.1345233
https://doi.org/10.1007/3-540-48683-6_27
https://doi.org/10.1007/3-540-48683-6_27
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-642-05089-3_21
https://doi.org/10.1109/ICDCS.2009.72
https://doi.org/10.1145/322154.322158
https://doi.org/10.1109/TPDS.2003.1225053
https://doi.org/10.1109/TPDS.2003.1225053
https://doi.org/10.1007/978-3-642-14295-6_40

64 J. König and H. Wehrheim

22. Vechev, M., Yahav, E., Yorsh, G.: Experience with model checking linearizability.
In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 261–278. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02652-2 21

23. Zhang, S.J.: Scalable automatic linearizability checking. In: Taylor, R.N., Gall,
H.C., Medvidovic, N. (eds.) Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, Waikiki, Honolulu, HI, USA, 21–28 May 2011,
pp. 1185–1187. ACM (2011). https://doi.org/10.1145/1985793.1986037

https://doi.org/10.1007/978-3-642-02652-2_21
https://doi.org/10.1145/1985793.1986037

	On the Correctness Problem for Serializability
	1 Introduction
	2 Related Work
	3 Background
	4 The Correctness Problem for SSR- Is Decidable
	4.1 Compact Representation
	4.2 Construction of Finite Automaton

	5 Conclusion
	References

