
Concurrency and Objects Matter!
Disentangling the Fabric of Real

Operational Processes to Create Digital
Twins

Wil M. P. van der Aalst1,2(B)

1 Process and Data Science (Informatik 9), RWTH Aachen University,
Aachen, Germany

wvdaalst@pads.rwth-aachen.de
2 Fraunhofer-Institut für Angewandte Informationstechnik (FIT),

Sankt Augustin, Germany

Abstract. Process mining dramatically changed the way we look at
process models and operational processes. Even seemingly simple pro-
cesses like Purchase-to-Pay (P2P) and Order-to-Cash (O2C) are often
amazingly complex, and traditional hand-made process models fail to
capture the true fabric of such processes. Many processes are inherently
concurrent and involve interaction between different objects (customers,
suppliers, orders, items, shipments, payments, machines, workers, etc.).
Process mining uses event data to construct process models that can be
used to diagnose performance and compliance problems. If such models
reflect reality well, they can be used for forward-looking forms of pro-
cess mining, including predictive analytics, evidence-based automation,
and what-if simulation. The ultimate goal is to create a “digital twin
of an organization” that can be used to explore different improvement
actions. This paper provides a high-level overview of the different process
mining tasks followed by a more detailed discussion on concurrency and
object-centricity in process mining.

Keywords: Process mining · Event data · Concurrency · Digital twins

1 Towards a Digital Twin of an Organization

The desire to adequately describe operational processes has been around since
the 1890-ties when the field of scientific management emerged. Scientific man-
agement is also known as Taylorism, named after its pioneer Frederick Winslow
Taylor (1856–1915) who tried to systematically improve economic efficiency,
especially labor productivity. Taylor systematically observed how people work
and can be seen as the “first process miner” using pen and paper (see Fig. 1). In
1950 computers started to influence business processes. However, the systematic
use of data about operational processes is much more recent [1].

c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-85315-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-85315-0_1


4 W. M. P. van der Aalst

Data sheet used in Ɵme study 
to analyze performance of 
workers and to compare 

different approaches.

Detailed analysis of 
shoveling earth data

Fig. 1. Analyzing event data to improve operational processes is not that new. This is
illustrated by some of the tables in [33]. Frederick Winslow Taylor can be seen as the
first “process miner” using manually collected event data.

The desire to build computer models that mimic organizations and processes
is also not that new. Since the 1960-ties so-called discrete event simulation tools
have been available with SIMULA [11] as one of the first influential examples. In
discrete event simulation it is common to estimate parameters and distributions
based on observed data (e.g., service times and arrival rates). However, one still
needs to model the process by hand. The first comprehensive approaches to auto-
matically learn complete simulation models from event data became available
around 2008 [30,31]. Based on event logs, it is possible to learn a control-flow
model (transition system, Petri net, of BPMN model) that is enriched with infor-
mation about resources, data, and time using replay or alignment techniques
[30,31].

organizaƟon with 
mulƟple operaƟonal 

processes

event 
data process 

mining

diagnose, predict, improve

highly concurrent

many 
interacƟng 

objects

digital
twins

What if?

Fig. 2. Process mining provides a concrete approach to create a digital twin of an
organization and its operational processes. A key element is the creation of a model
based on event data that is able to mimic reality as well as possible. Such a model
needs to be able to capture concurrency and interacting objects (customers, workers,
products, orders, payments, shipments, etc.).

The notion of a digital twin is part of the Industry 4.0 development facilitated
through advanced data analytics (machine learning, process mining, etc.) and
the Internet of Things (IoT) connectivity [15,20]. The notion can be described



Concurrency and Objects Matter! 5

as an effortless integration of the “real reality” and a “modeled reality” in both
directions. The “modeled reality” is based on the “real reality”, but may also
influence the “real reality”. This is one of the key concepts in the Internet of
Production (IoP) developed at RWTH Aachen University [6]. In IoP, process
mining plays a key role. Gartner coined the term digital twin of an organization
to indicate that the desire to create a digital twin is not limited to specific
Industry 4.0 applications [19]. The goal is to create a virtual representation of an
organization and its operational processes (including assets such as architectures,
infrastructures, roles, responsibilities, products, etc.) to assess the impact of
change in a controlled environment. Note that this is only a vision that is still
far away from reality. However, it illustrates the role that models will need to
play in the future.

reality

digital
model

reality

digital
shadow

reality

digital
twin

manual/
offline

automaƟc/
real-Ɵme

(a) (b) (c)

Fig. 3. The difference between a digital model, a digital shadow, and a digital twin.

Figure 3 illustrates the difference between (a) a digital model, (b) a digital
shadow, and (c) a digital twin. Building a discrete event simulation model (using
e.g. Arena, AnyLogic, CPN Tools, FlexSim, Vensim, or Simul8) in a classical
way corresponds to the digital model notion in Fig. 3(a). The dashed lines show
that the model is created by hand. There is no automated connection between
reality and the digital model. Moreover, insights generated by the simulation
model do not automatically lead to concrete actions. The digital shadow notion
in Fig. 3(b) uses a model, driven by data automatically extracted from reality. If
such a connection is automated, it is often possible and desirable to update the
model continuously. If reality changes, also the model changes. However, insights
and diagnostics still need to be translated into actions manually. The digital twin
notion in Fig. 3(c) shows that there is an automated and real-time connection
between reality and the model(s) in both directions. As a result, the digital twin
directly influences reality, possibly without human intervention.

It is important to note that many of these ideas have been realized in the con-
text of process mining, albeit with a focus on individual processes in isolation [1].
Most process mining techniques aim to create a digital shadow, as indicated in
Fig. 3(b). This ranges from control-flow discovery (from mining directly follows



6 W. M. P. van der Aalst

graphs [2] to scalable inductive mining [23]) to automatically creating simula-
tion models (e.g., [30,31]). However, under the umbrella term of “operational
support” [1], process mining also aims to impact the process automatically in
real-time. An early example is the work presented in [32], where workflow tech-
nology is connected to process mining. In [32] YAWL is used as a workflow
management system, ProM as a process mining system, and CPN Tools as the
simulation engine. ProM is used to learn a faithful simulation model from the
event data of YAWL and/or the models in YAWL. At any point in time, the
current state of the YAWL workflow system can be loaded into the simulation
model and simulated using CPN Tools. This concept is termed short-term simu-
lation because rather than focusing on the steady-state behavior, the focus is on
transient behaviors and answering what-if questions. Commercial process mining
tools increasingly support what we call “action-oriented process mining”. This
means that diagnostics are turned into actions. The recent release of the Celo-
nis EMS (Execution Management System), which embeds a low-code workflow
management system, illustrates this trend.

The above shows that the idea of creating a digital twin was already realized
in the field of process mining long before the term became “in vogue”. However,
existing approaches typically focus on well-defined processes that are considered
in isolation. We are still far away from creating a realistic “digital twin of an
organization”. In this paper, we focus on two of the many challenges to create
such digital twins:

– Concurrency. Organizations are like distributed systems or social systems.
The different parts operate autonomously but need to synchronize at selected
points in time. Although most organizations and systems are highly concur-
rent, the dominant paradigm is still the highly sequential Turing machine
model created in 1936 which does not allow for concurrency. The von Neu-
mann architecture defined in 1945 is based on the Turing machine and also
views computation as a sequential process. Moreover, automata, transition
systems, Markov chains, and many other representations of behavior do not
support concurrency. If concurrency is supported, it is often added as an
afterthought. Representations that start from concurrency, like Petri nets,
are still the exception. Consider for example a Petri net without places and
just transitions. Even people familiar with Petri nets have difficulties to accept
that such a Petri net allows for any behavior (and that Petri nets are much
more declarative than commonly assumed). Although organizations are highly
concurrent, event logs are viewed as sequential (i.e., events are assumed to be
totally ordered). This complicates the creation of a digital twin from event
data.

– Object-centricity. Most of the modeling notations used (e.g., BPMN, Work-
flow Nets, UML activity diagrams, etc.) assume a single case notion. However,
events may involve a variety of objects. Consider for example batching where
in one event many objects are affected or an assembly step where a collec-
tion of objects is transformed into a new composite object. When drawing
for example a BPMN model one needs to pick one case notion (the process



Concurrency and Objects Matter! 7

instance). In many applications this is not so easy. Consider for example the
hiring process of new employees. Is the vacancy the case or the application?
One can also consider the classical example of ordering books from Amazon.
One order may include multiple books, a shipment may contain books of dif-
ferent orders, and an order may involved multiple shipments. Possible case
notions are order, book, and shipment. It is impossible to create a digital twin
of an organization without being able to represent the different objects and
their interactions.

For example, imagine a car factory producing hundreds of cars per day with
each car assembled from thousands of components. Process models that do not
allow for concurrency and object-centricity are clearly unable to describe such a
factory as a digital twin.

The remainder of this paper is organized as follows. Section 2 present a short
high-level introduction to process mining. Section 3 discusses event logs and the
importance of concurrency and object-centricity. Section 4 concludes this short
paper.

2 Process Mining: A Top-Down View

In recent years, we could witness an uptake in process mining. There used to be
a gap between process science (i.e., tools and techniques to improve operational
processes) and data science (i.e., tools and techniques to extract value from
data). Mainstream machine learning and data mining techniques do not consider
operational processes. Business Process Management (BPM) and Operations
Research (OR) tend to start from models rather than data. Process mining
bridges this gap [1].

Currently, there are over 35 commercial process mining vendors (ABBYY
Timeline, ARIS Process Mining, BusinessOptix, Celonis Process Mining,
Disco/Fluxicon, Everflow, Lana, Mavim, MPM, Minit, PAFnow, QPR, etc.)
and process mining is applied in most of the larger organizations in coun-
tries such as Germany and The Netherlands. Example application domains
include: finance (Rabobank, Hypovereinsbank, etc.), telecom (Deutsche Telekom,
Vodafone, etc.), logistics (Vanderlande, etc.), production (BMW, Siemens, Fiat,
Bosch, etc.), food (Edeka, etc.), fashion (Zalando, etc.), energy (E-on, etc.),
transport (Uber, DB, Lufthansa, etc.), healthcare (AstraZenica, Medtronic,
etc.), consulting (Deloitte, EY, KPMG, etc.), and IT systems (Dell, IBM, Ser-
viceNow, etc.).

Figure 4 shows a high-level overview of process mining. Event data need to
be extracted from information systems. Such data can be explored, filtered,
and cleaned. Process discovery tools transform event data into process mod-
els (e.g., BPMN, Petri nets, and UML activity diagrams). There are simple
approaches like creating so-called Directly-Follows-Graphs (DFGs) that do not
discover concurrency thus having obvious problems [2]. The Alpha algorithm was
the first to discover concurrent processes [7]. This approach provides some guar-
antees, but most processes do not satisfy the assumptions described in [7]. After



8 W. M. P. van der Aalst

discover

align
replay
enrich

apply
compare

information 
systems

extract

process 
models

explore select
filter
clean

conformance
performance 
diagnostics

predictions
improvements

transform

actshow
model
adapt

show
interpret
drill down

ML

+ +
event 
data

Fig. 4. Overview of the process mining pipeline.

the Alpha algorithm, dozens of more sophisticated algorithms were proposed
[1,9,21–23,34]. Using replay and alignment techniques it is possible to relate pro-
cess models (hand-made or discovered) with event data. This can be used to dis-
cover differences between reality and model [1,10,29]. Moreover, the model can
be extended with additional perspectives, e.g., organizational aspects, decisions,
and temporal aspects. This way, detailed performance analyses are possible.
Root-cause analysis can be performed for both conformance and performance
problems. It is always possible to relate observations to the original event data.
Such evidence-based diagnostics aid discussions about root-causes and possible
improvements. The right-hand side of Fig. 4 refers to forward-looking techniques
aimed at improving the processes. Process models extended with additional per-
spectives (organizational aspects, decisions, and temporal aspects) can be used
to predict conformance and performance problems. As described in [1], predic-
tions can be used to generate recommendations. Figure 4 shows that Machine
Learning (ML) techniques can be used in this step. These may range from novel
deep learning approaches (e.g., artificial recurrent neural networks like LSTM)
to more traditional approaches like logistic regression and decision-tree learning.

It should be noted that process mining techniques are different from main-
stream Machine Learning (ML) techniques. However, as Fig. 4 shows, process
mining can be used to generate ML problems. The current trend is to make
process mining techniques more action-oriented, e.g., automatically trigger a
corrective workflow when a problem emerges.

The process mining manifesto [17] published a decade ago lists 11 challenges.
Most of these challenges still exist and are still relevant. Figure 5 maps eight
challenges onto the overview used before (Fig. 4). These are partly overlapping
with the challenges listed in [17], e.g., basic tasks like data extraction and pro-
cess discovery remain challenging. The reader interested in applications of pro-
cess mining is recommended to read [26] with experience reports from Siemens,
BMW, Uber, ABB, Bayer, and several other organizations.



Concurrency and Objects Matter! 9

discover

align
replay
enrich

apply
compare

information 
systems

extract

process 
models

explore select
filter
clean

conformance
performance 
diagnostics

predictions
improvements

transform

actshow
model
adapt

show
interpret
drill down

ML

+ +
event 
data

1
2

3

Finding, extracƟng, and transforming event data is sƟll 
taking up to 80% of the Ɵme.
Most techniques focus on a single case noƟon (i.e., a single 
process), whereas problems may be caused by interacƟng or 
compeƟng processes.
Process discovery is not a solved problem despite powerful 
techniques like inducƟve mining. Concurrency is hard to 
discover from event data that provide only a sample.
There is a need to beƩer integrate mining and modeling 
(e.g., user-guided discovery).
Conformance checking is Ɵme-consuming and diagnosƟcs 
tend to be non-determinisƟc.
There is a need for techniques recommending process 
changes (i.e., moving beyond diagnosƟcs).
Machine Learning (ML) techniques tend to perform poorly 
because essenƟal aspects are missed (e.g., system load). 
Process mining results need to trigger automated acƟons 
(e.g., start a correcƟve workflow).

1
2

3

4

5
6

7
8

4
5

6

7

8

Fig. 5. Some of the challenges encountered when applying process mining.

The top-left corner and bottom-right corner show the interface between the
real systems and organization on the one hand and process mining technology
on the other hand. These correspond to the solid arrows in Fig. 3(c) used to
explain the notion of a digital twin. Using state-of-the-art process mining tools
it is possible to create a digital twin with limited scope (e.g., a single process).
Process mining is probably the most concrete technology available to create
digital twins. Most of the proposals are merely visions or application specific.

3 Process Mining: A Bottom-Up View

After providing a high-level view on process mining, we focus on concurrency and
object-centricity. These are essential to create digital twins that properly reflect
real organizations. To illustrate these concepts, we use Petri nets. However, it is
good to note that the ideas are generic and not notation-specific.

3.1 Petri Nets

Figure 6 shows an accepting labeled Petri net eight places (p1, p2, . . . , p8) and
seven transitions (t1, t2, . . . , t7) with initial marking [p1] and final marking
[p8]. We assume that the reader is familiar with the semantics of Petri nets
[5,13,25,27,28]. However, to make the paper more self-contained, we informally
explain the behavior of an accepting labeled Petri net. A transition t is enabled
in a marking if each of its input places contains at least one token. An enabled
transition t may fire, i.e., one token is removed from each of the input places
•t and one token is produced for each of the output places t•. This way the
Petri net can move from one marking to the next. For example, in the mark-
ing shown in Fig. 6 (with a token in p1) only t1 is enabled. Firing t1 means
the consumption of one token and the production of three tokens. The resulting
marking is [p2, p3, p4]. In this marking, four transitions are enabled: There is a
choice between t5 or t6 because both compete for the token in p4. The ordering
of t2, t4, and t5 or t6 is not fixed. The transitions in Fig. 6 are labeled, e.g.,



10 W. M. P. van der Aalst

executing t6 correspond to taking an X-ray. Moreover, next to the initial mark-
ing indicated by the black token in place p1, there is also a final target marking
with just a token in p8. We are interested in firing sequences leading from [p1]
to [p8]. Three examples are: σ1 = 〈t1, t2, t4, t5, t7〉, σ2 = 〈t1, t2, t4, t6, t7〉, and
σ3 = 〈t1, t2, t3, t2, t3, t2, t4, t6, t7〉. There are infinitely many firing sequences
due to the loop. If we block the loop and do not fire transition t3, there are 12
possible firing sequences.

t1

t3

t2

t7t4

iniƟal 
examinaƟon

final 
examinaƟon

t6

t5

CT scan

X-ray

lab tests

administer medicine

re-examinaƟon
p2

p3

p4

p5

p6

p7

p8p1

Fig. 6. An accepting labeled Petri net eight places (p1, p2, . . . , p8) and seven transitions
(t1, t2, . . . , t7).

Figure 7 shows three example runs of the accepting labeled Petri net. Places
in Fig. 7 correspond to tokens in Fig. 6, and transitions in Fig. 7 correspond
to transition firings in Fig. 6. A run of a Petri net corresponds to a partial
order. For example, r1 in Fig. 7 does not impose an ordering on the three middle
activities. The transition labels in Fig. 7 refer to the transitions in Fig. 6, e.g.,
t21, t22, and t23 in run r3 refer to transition t2 (administer medicine). For a
formal definition of the runs of a Petri net, we again refer to standard literature
[12,14,27]. Typically, the number of runs is much smaller than the number of
firing sequences. For example, if we block the loop and do not fire transition t3,
then there are only two runs (r1 and r2) whereas there where 12 possible firing
sequences (e.g., σ1 is one of the six firing sequences corresponding to run r1).
Run r3 corresponds 7 ∗ 6 = 42 firing sequences.

The fact that run r3 corresponds to 42 firing sequences illustrates the chal-
lenge of discovering concurrency. If we assume that t3 is executed at most 5
times, then there are 2(1 + 1 + 1 + 1 + 1 + 1) = 12 runs and 2(13 ∗ 12 + 11 ∗
10 + 9 ∗ 8 + 7 ∗ 6 + 5 ∗ 4 + 3 ∗ 2) = 812 firing sequences. Even when our event log
has information about thousands of traces, it is extremely unlikely that one can
witness all 812 variants (especially when not all variants have an equal probabil-
ity). This illustrates that one cannot ignore concurrency, because it will lead to
an explosion of possible interleavings of which just a fraction will be witnessed.



Concurrency and Objects Matter! 11

t11

t21

t71t41

iniƟal 
examinaƟon

final 
examinaƟon

t51

CT scan

lab tests

administer medicine

p21

p31

p41

p51

p61

p71

p81p11

t11

t21

t71t41

iniƟal 
examinaƟon

final 
examinaƟon

t61

X-ray

lab tests

administer medicine

p21

p31

p41

p51

p61

p71

p81p11

t11

t31t21

t71t41

iniƟal 
examinaƟon

final 
examinaƟon

t61

X-ray

lab tests

administer 
medicine

re-examinaƟon

p21

p31

p41

p53

p61

p71

p81p11

r1 r2

p51

t32t22

administer 
medicine

p52

re-examinaƟon

p23

t23

administer 
medicine

p22

r3

Fig. 7. Three example runs of the accepting Petri net: r1, r2, and r3. Run r3 corre-
sponds to 42 firing sequences.

3.2 Object-Centric Partially-Ordered Event Logs

Next to the problem of concurrency, we also need to deal with events referring
to collections of objects. This is analogous to moving from a classical Petri net
to a Colored Petri Net (CPN) [5,18]. In a CPN, tokens have values and can
present different objects. In a classical Petri net, tokens are indistinguishable
and transitions cannot consumer or produce a variable number of tokens.

Techniques to discover Petri nets from event data assume precisely one case
identifier per event [3,4]. These case identifiers are used to correlate events, and
the resulting discovered Petri net aims to describe the life-cycle of individual
cases. In reality, there are often multiple intertwined case notions, and it is
impossible to pick a single case notion to describe the whole process. For example,
events may refer to mixtures of orders, items, packages, customers, and products.
A package may refer to multiple items, multiple products, one order, and one
customer. Therefore, we need to assume that each event refers to a collection of
objects, each having a type (instead of a single case identifier). Such object-centric
event logs are closer to data in real-life information systems (e.g., SAP, Salesforce,
Oracle, etc.). From an object-centric event log, we want to discover an object-
centric Petri net with places that correspond to object types and transitions
that may consume and produce collections of objects of different types. Such
object-centric Petri nets visualize the complex relationships among objects of
different types.

In the remainder, we present object-centric event logs as defined in [3,4].
Note that this is a simplified version of the later OCEL standard (see ocel-



12 W. M. P. van der Aalst

standard.org) which also adds attributes to objects [16]. OCEL also provides
JSON/XML serializations of object-centric event logs and intends to overcome
the limitations of the XES standard [8]. Recall that is the official IEEE standard
for storing and exchanging event data assuming a single case notion.

Definition 1 (Universes). We define the following universes (based on [3,4]):

– Uei is the universe of event identifiers,
– Uact is the universe of activity names (also used to label transitions in an

accepting Petri net),
– Utime is the universe of timestamps,
– Uot is the universe of object types (also called classes),
– Uoi is the universe of object identifiers (also called entities),
– type ∈ Uoi → Uot assigns precisely one type to each object identifier,
– Uomap = {omap ∈ Uot �→ P(Uoi) | ∀ot∈dom(omap) ∀oi∈omap(ot) type(oi) = ot}

is the universe of all object mappings indicating which object identifiers are
included per type,1

– Uatt is the universe of attribute names,
– Uval is the universe of attribute values,
– Uvmap = Uatt �→ Uval is the universe of value assignments,2 and
– Uevent = Uei × Uact × Utime × Uomap × Uvmap is the universe of events.

An event e = (ei , act , time, omap, vmap) ∈ Uevent is characterized by a
unique event identifier ei , the corresponding activity act , the event’s timestamp
time, and two mappings omap and vmap for respectively object references and
attribute values.

Definition 2 (Event Projection). Given e = (ei , act , time, omap, vmap) ∈
Uevent , πei(e) = ei, πact(e) = act, πtime(e) = time, πomap(e) = omap, and
πvmap(e) = vmap.

πomap(e) ∈ Uot �→ P(Uoi) maps a subset of object types onto sets of object
identifiers for an event e. An object-centric event log is a collection of partially
ordered events. Event identifiers are unique, i.e., two events cannot have the same
event identifier.

Definition 3 (Object-Centric Event Log). L = (E,	E) is an event log with
E ⊆ Uevent and 	E ⊆ E × E such that:

– 	E defines a partial order (reflexive, antisymmetric, and transitive),
– ∀e1,e2∈E πei(e1) = πei(e2) ⇒ e1 = e2, and
– ∀e1,e2∈E e1 	E e2 ⇒ πtime(e1) ≤ πtime(e2).

1 P(Uoi) is the powerset of the universe of object identifiers, i.e., object types are
mapped onto sets of object identifiers. omap ∈ Uot �→ P(Uoi) is a partial function.
If ot �∈ dom(omap), then we assume that omap(ot) = ∅.

2
Uatt �→ Uval is the set of all partial functions mapping a subset of attribute names
onto the corresponding values.



Concurrency and Objects Matter! 13

po

in pi

sr

pa

co

place 
order

pick 
item

send 
invoice

pay 
order 

send 
reminder

mark as 
completed

o2

o1

i2

o3

i3

o4

i5

o5

i1

Order

Order

Order

Order

Order

i6

Item

Item

Item

Item

Item

st start 
route

en end 
route

r3

route

Item route

route

r1

r2i4

po

pi

co

place 
order

pick 
item

mark as 
completed

i2

i3

i5

i1

i6

Item

Item

Item

Item

Item

st start 
route

en end 
route

Item

i4

st start 
route

en end 
route

r3

route

route

route

r1

r2

po

in

sr

pa

co

place 
order

send 
invoice

pay 
order 

send 
reminder

mark as 
completed

o2

o1

o3

o4

o5

Order

Order

Order

Order

Order

100

100

100

100

50

100 500

500

500

500

500 10

10

10

500

100

100

100

500 10

500

50

100

100

10

10

5

5

50

50

50

505

5

1

1
1

1

1
1

1
1

1
1 1

1

1

1

1

1

Fig. 8. An Object-Centric Petri Net (OCPN) can be learned by first learning a classical
Petri net per object type and then merging the nets while correcting the multiplicities
using variable arcs (a detailed derivation of the process model was presented in [4]).

Definition 3 allows for partially ordered event logs. Many process mining
techniques require a total order, e.g., events are ordered based on timestamps
and when two events have the same timestamp we assume some order. However,
there are process discovery techniques that take into account causalities [3,24].
These can exploit such partial orders. There may be many reasons to use partially



14 W. M. P. van der Aalst

ordered event logs: efficiency, imprecise timing information, uncertainty, and
explicit partial order information (e.g., based on data flow analysis). As argued
before, it is unreasonable to assume that all possible interleavings will indeed be
present in the event log. Instead of a partial order one can also use the stricter
notion of a weak order. This is particularly suitable when one has imprecise
timestamps (e.g., events on the same day cannot be ordered).

3.3 Object-Centric Petri Nets

In this paper, we argued that concurrency and objects matter. To progress the
field of process mining, we cannot assume that events are totally ordered and
can be correlated using a single case notion. Hence, we need process mining
techniques and process model representations handling concurrency and object-
centricity as first-class citizens. In [4], we presented an approach to automatically
learn a so-called Object-Centric Petri Net (OCPN) given an object-centric event
log (e.g., in OCEL format [16]). A detailed explanation of the approach to dis-
cover OCPNs is beyond the scope of this short paper. Therefore, we only show
the example depicted in Fig. 8.

Let L = (E,	E) be an event log. The events in E refer to objects. Therefore,
given a specific object o of type ot, it is possible to create a partial order of all
events that refer to o. (Eo,	Eo

), with Eo = {e ∈ E | o ∈ πomap(e)(ot)} and
	Eo

=	E ∩(Eo × Eo), defines the corresponding partial order. Hence, we can
group all partial orders of events corresponding to objects of a given type ot to
get the required input for a standard process discovery algorithm. Note that the
same event may appear in multiple partial orders. Next, we can learn a process
model per object type. For simplicity, we assume that we discover a labeled
accepting Petri net per object type satisfying the constraint that labels of visible
transition are unique. There may be silent transitions (i.e., transitions that do
not refer to an activity). However, there cannot be two transitions referring to
the same activity.

The top part of Fig. 8 shows three labeled accepting Petri nets discovered for
100 orders, 500 items, and 10 routes. These three models happen to be sequential,
but could have been concurrent. The initial and final markings are denoted by
the places with the play and stop symbol. Next, the three labeled accepting Petri
nets are merged into an OCPN. Since the visible transitions are unique, merging
is trivial. However, the annotations need to be modified. In an OCPN there is a
one-to-one correspondence between transition firings and events. A single event
(i.e., transition occurrence) may involve a variable number of objects (e.g., one
order may have any number of items). This is indicated by the double arcs in
the lower part of Fig. 8. For example, on average one execution of place order
corresponds to five items and one order. On average one execution of start route
corresponds to 50 items and one route. For more details, we refer to [4].

The discovery Object-Centric Petri Nets (OCPNs) from object-centric event
logs in OCEL format is still in its infancy. However, the topic is important
because in most applications of process mining one faces the problem of one-
to-many and many-to-many relations between different types of objects relevant



Concurrency and Objects Matter! 15

for an organization. Processes are intertwined and difficult to separate. Figure 8
shows that it is possible to create one, more holistic, process model that is
showing the interactions between the different types of objects. Actually, the
term “process model” may be misleading in the context of OCPNs that may
represent collections of interacting processes.

4 Conclusion

To create a “digital twin of an organization” we need to disentangle the fabric
of real operational processes. Process mining provides many of the ingredients
to make such a step. In this paper, we provided a high-level overview of process
mining and linked it to historical developments in the field of scientific manage-
ment and simulation. As shown, there have been early examples of digital twins
(or at least digital shadows) in the field of process mining. We mentioned, for
example, the work combining the process mining framework ProM, the workflow
management system YAWL, and CPN Tools as the simulation engine [32]. This
enabled new forms of “short-term simulation” that can be used to see the effects
of decisions given the current state and historic information.

However, we are far away from fully capturing the fabric of real operational
processes in a single model. An important prerequisite is the proper handling
of concurrency and entangled objects. One event may refer to many objects
and organizations are highly concurrent. It is unrealistic to assume that one can
witness all interleavings of highly concurrent processes. Therefore, we elaborated
on Object-Centric Petri Nets (OCPNs) and OCEL as a format for exchanging
object-centric event logs [16].

Future research needs to address the challenges described in this paper. Com-
pared to the pen-and-paper analyses done by Frederick Winslow Taylor and col-
leagues more than a century ago, we have booked tremendous progress. The
detailed event data available today provide unprecedented opportunities to cre-
ate digital twins (provided we are able to concurrency and object-centricity
properly).

Acknowledgments. The author thanks the Alexander von Humboldt (AvH) Stiftung
for supporting his research.

References

1. van der Aalst, W.M.P.: Data science in action. In: Process Mining. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49851-4 1

2. van der Aalst, W.M.P.: A practitioner’s guide to process mining: limitations of the
directly-follows graph. In: International Conference on Enterprise Information Sys-
tems (Centeris 2019). Procedia Computer Science, vol. 164, pp. 321–328. Elsevier
(2019)

3. van der Aalst, W.M.P.: Object-centric process mining: dealing with divergence and
convergence in event data. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 3–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30446-1 1

https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1


16 W. M. P. van der Aalst

4. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fund.
Inform. 175(1–4), 1–40 (2020)

5. van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes: A Petri Net Ori-
ented Approach. MIT Press, Cambridge (2011)

6. van der Aalst, W.M.P., Brockhoff, T., Ghahfarokhi, A.F., Pourbafrani, M., Uysal,
M.S., van Zelst, S.J.: Removing operational friction using process mining: chal-
lenges provided by the Internet of Production (IoP). In: Hammoudi, S., Quix,
C., Bernardino, J. (eds.) DATA 2020. CCIS, vol. 1446, pp. 1–31. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-83014-4 1

7. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: dis-
covering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9),
1128–1142 (2004)

8. Acampora, G., Vitiello, A., Di Stefano, B., van der Aalst, W., Günther, C., Verbeek,
E.: IEEE 1849: the XES standard - the second IEEE standard sponsored by IEEE
Computational Intelligence Society. IEEE Comput. Intell. Mag. 12(2), 4–8 (2017)

9. Augusto, A., Conforti, R., Marlon, M., La Rosa, M., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251–284 (2019)

10. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking:
Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99414-7

11. Dahl, O.J., Nygaard, K.: SIMULA: an ALGOL based simulation language. Com-
mun. ACM 1, 671–678 (1966)

12. Desel, J.: Validation of process models by construction of process nets. In: van der
Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS,
vol. 1806, pp. 110–128. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45594-9 8

13. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)

14. van Dongen, B.F., Desel, J., van der Aalst, W.M.P.: Aggregating causal runs into
workflow nets. In: Jensen, K., van der Aalst, W.M., Ajmone Marsan, M., Frances-
chinis, G., Kleijn, J., Kristensen, L.M. (eds.) Transactions on Petri Nets and Other
Models of Concurrency VI. LNCS, vol. 7400, pp. 334–363. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-35179-2 14

15. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, chal-
lenges and open research. IEEE Access 8, 108952–108971 (2020)

16. Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.P.: OCEL Standard
(2021). www.ocel-standard.org

17. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28108-2 19

18. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Monographs in Theoretical Computer Science An EATCS Series, Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-642-60794-3

19. Kerremans, M., Kopcho, J.: Create a digital twin of your organization to opti-
mize your digital transformation program. Research Note G00379226 (2019). www.
gartner.com

20. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in man-
ufacturing: a categorical literature review and classification. IFAC-PapersOnLine
51(11), 1016–1022 (2018). 16th IFAC Symposium on Information Control Prob-
lems in Manufacturing INCOM 2018

https://doi.org/10.1007/978-3-030-83014-4_1
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/3-540-45594-9_8
https://doi.org/10.1007/3-540-45594-9_8
https://doi.org/10.1007/978-3-642-35179-2_14
www.ocel-standard.org
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1007/978-3-642-60794-3
www.gartner.com
www.gartner.com


Concurrency and Objects Matter! 17

21. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

22. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06257-0 6

23. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2018)

24. Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on par-
tially ordered event data. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP,
vol. 202, pp. 75–88. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15895-2 7

25. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

26. Reinkemeyer, L.: Process Mining in Action: Principles, Use Cases and Outlook.
Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-40172-6

27. Reisig, W.: Petri Nets: Modeling Techniques, Analysis, Methods, Case Studies.
Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-33278-4

28. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models. Lecture
Notes in Computer Science, vol. 1491. Springer, Berlin (1998). https://doi.org/10.
1007/3-540-65306-6

29. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

30. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering colored petri
nets from event logs. Int. J. Softw. Tools Technol. Transf. 10(1), 57–74 (2008)

31. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation
models. Inf. Syst. 34(3), 305–327 (2009)

32. Rozinat, A., Wynn, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.:
Workflow simulation for operational decision support. Data Knowl. Eng. 68(9),
834–850 (2009)

33. Taylor, F.W.: The Principles of Scientific Management. Harper and Bothers Pub-
lishers, New York (1919)

34. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Dis-
covering workflow nets using integer linear programming. Computing 100(5), 529–
556 (2018)

https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-15895-2_7
https://doi.org/10.1007/978-3-319-15895-2_7
https://doi.org/10.1007/978-3-030-40172-6
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/3-540-65306-6
https://doi.org/10.1007/3-540-65306-6

	Concurrency and Objects Matter! Disentangling the Fabric of Real Operational Processes to Create Digital Twins
	1 Towards a Digital Twin of an Organization
	2 Process Mining: A Top-Down View
	3 Process Mining: A Bottom-Up View
	3.1 Petri Nets
	3.2 Object-Centric Partially-Ordered Event Logs
	3.3 Object-Centric Petri Nets

	4 Conclusion
	References




