
Antonio Cerone
Peter Csaba Ölveczky (Eds.)

LN
CS

 1
28

19

Theoretical Aspects
of Computing – ICTAC 2021
18th International Colloquium
Virtual Event, Nur-Sultan, Kazakhstan, September 8–10, 2021
Proceedings

Lecture Notes in Computer Science 12819

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Antonio Cerone • Peter Csaba Ölveczky (Eds.)

Theoretical Aspects
of Computing – ICTAC 2021
18th International Colloquium
Virtual Event, Nur-Sultan, Kazakhstan, September 8–10, 2021
Proceedings

123

Editors
Antonio Cerone
Nazarbayev University
Nur-Sultan, Kazakhstan

Peter Csaba Ölveczky
Department of Informatics
University of Oslo
Oslo, Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-85314-3 ISBN 978-3-030-85315-0 (eBook)
https://doi.org/10.1007/978-3-030-85315-0

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
Chapter “Compositional Analysis of Protocol Equivalence in the Applied p-Calculus Using Quasi-open
Bisimilarity” is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0708-3721
https://doi.org/10.1007/978-3-030-85315-0
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the proceedings of the 18th International Colloquium on
Theoretical Aspects of Computing (ICTAC 2021), which was held during
September 8–10, 2021. The event was supposed to take place in Nur-Sultan,
Kazakhstan, but due to the pandemic it had to be held as a fully virtual event, organized
by Nazarbayev University.

The conference concerns all aspects of theoretical computer science and aims at
bringing together researchers and practitioners from academia, industry, and govern-
ment to present research and exchange ideas and experience, addressing challenges in
both theoretical aspects of computing and the exploitation of theory through methods
and tools for system development. ICTAC also aims to promote research cooperation
between developing and industrial countries.

ICTAC 2021 received 55 paper submissions. Almost all papers received at least
three reviews. Based on the reviews and extensive discussions, the program committee
decided to accept 20 papers. This volume contains the revised versions of these 20
papers, which cover a wide variety of topics, including: getting the best price for selling
your personal data; attacking Bitcoin; optimizing various forms of model checking;
synthesizing and learning algorithms; formalizing and verifying contracts, languages,
and compilers; analyzing the correctness and complexity of programs and distributed
systems; and finding connections from proofs in propositional logic to quantum pro-
gramming languages.

The conference also featured invited talks by Wil van der Aalst (RWTH Aachen
University, Germany), Alan Dix (Swansea University, UK), Kim Guldstrand Larsen
(Aalborg University, Denmark), and Grigore Rosu (University of Illinois at
Urbana-Champaign, USA). An abstract of the invited talk by Larsen and full papers
accompanying those by van der Aalst and Dix are included in this volume.

Many colleagues and friends contributed to ICTAC 2021. We thank the invited
speakers for accepting our invitations to give invited talks and the authors who sub-
mitted their work to ICTAC 2021. We are grateful to the members of the program
committee and the external reviewers for providing timely and insightful reviews, as
well as for their involvement in the post-reviewing discussions. We would also like to
thank the regional publicity chairs for their work attracting submissions and Springer
for sponsoring the Best Paper Award.

July 2021 Antonio Cerone
Peter Csaba Ölveczky

Organization

Program Chairs

Antonio Cerone Nazarbayev University, Kazakhstan
Peter Csaba Ölveczky University of Oslo, Norway

Steering Committee

Frank de Boer CWI, The Netherlands
Martin Leucker (Chair) University of Lübeck, Germany
Zhiming Liu Southwest University, China
Tobias Nipkow Technical University of Munich, Germany
Augusto Sampaio Federal University of Pernambuco, Brazil
Natarajan Shankar SRI International, USA
Tarmo Uustalu Tallinn University of Technology, Estonia

Program Committee

Erika Ábrahám RWTH Aachen University, Germany
Bernhard K. Aichernig Graz University of Technology, Austria
Musab A. Alturki Runtime Verification Inc., USA, and King Fahd

University of Petroleum and Minerals, Saudi Arabia
Étienne André Université de Lorraine, France
Ebru Aydin Gol Middle East Technical University, Turkey
Kyungmin Bae Pohang University of Science and Technology,

South Korea
Maurice ter Beek ISTI-CNR, Italy
Dirk Beyer Ludwig-Maximilian University Munich, Germany
Simon Bliudze Inria Lille, France
Roberto Bruni University of Pisa, Italy
Antonio Cerone Nazarbayev University, Kazakhstan
Manuel Clavel Vietnamese-German University, Vietnam
Adrian Francalanza University of Malta, Malta
Rob van Glabbeek Data61, CSIRO, Australia
Sergey Goncharov Friedrich-Alexander University Erlangen-Nürnberg,

Germany
Jan Friso Groote Eindhoven University of Technology, The Netherlands
Stefan Gruner University of Pretoria, South Africa
Osman Hasan National University of Sciences & Technology,

Pakistan
Klaus Havelund Jet Propulsion Laboratory, USA
Kim G. Larsen Aalborg University, Denmark

Axel Legay Université catholique de Louvain, Belgium
Martin Leucker University of Lübeck, Germany
Manuel Mazzara Innopolis University, Russia
Catherine Meadows Naval Research Laboratory, USA
Larissa Meinicke The University of Queensland, Australia
Hans de Nivelle Nazarbayev University, Kazakhstan
Kazuhiro Ogata JAIST, Japan
Peter Csaba Ölveczky University of Oslo, Norway
Catuscia Palamidessi Inria, France
Elaine Pimentel Federal University of Rio Grande do Norte, Brazil
José Proença Polytechnic Institute of Porto, Portugal
Riadh Robbana INSAT, Carthage University, Tunisia
Gwen Salaün University of Grenoble Alpes, France
Davide Sangiorgi University of Bologna, Italy, and Inria, France
Lutz Schröder Friedrich-Alexander University Erlangen-Nürnberg,

Germany
Volker Stolz Western Norway University of Applied Sciences,

Norway
Georg Struth The University of Sheffield, UK

Regional Publicity Chairs

Stefan Gruner University of Pretoria, South Africa
Kazuhiro Ogata JAIST, Japan
Elaine Pimentel Federal University of Rio Grande do Norte, Brazil
Riadh Robbana INSAT, Carthage University, Tunisia
Nikolay Shilov Innopolis University, Russia

Additional Reviewers

Yehia Abd Alrahman
Mario S. Alvim
Tomer Ashur
Giorgio Bacci
Marco Bernardo
Laura Bussi
Guillermina Cledou
Khanh Huu The Dam
Guillaume Dupont
Rick Erkens
Lorenzo Gheri
Imen Ben Hafaiedh
Andreas Hülsing
Peter Gjöl Jensen

Karam Kharraz
Michalis Kokologiannakis
Sandeep Kulkarni
Frédéric Lang
Thomas Lemberger
Anders Miltner
Carlos Olarte
Renato Neves
Andrea Pferscher
Johannes Åman Pohjola
Danny Bøgsted Poulsen
Adnan Rashid
Jose Ignacio Requeno
Martin Sachenbacher

viii Organization

Wendelin Serwe
Francesco Sica
Flip van Spaendonck
Daniel Thoma

Adele Veschetti
Olivier Verdier
Nico Weise

Sponsor

Organization ix

Model Checking and Machine Learning
Joining Forces in UPPAAL (Invited Paper)

Kim Guldstrand Larsen

Department of Computer Science, Aalborg University, Denmark

In the talk we offer a detailed presentation on how the symbolic model checking
techniques of Uppaal has joined forces with machine learning during the last 10 years.

The first step towards exploiting the efficiency of machine learning in UPPAAL was
made in the branch UPPAAL SMC. Here [5], UPPAAL SMC offers highly efficient sta-
tistical model checking capabilities in order to provide performance analysis for a rich
class of stochastic hybrid automata [10], and in a manner that consistently refines the
Boolean verdicts of the model checking capability of classical UPPAAL. During the last
10 years this effort includes development of a sound theoretical foundation (e.g. the
underlying stochastic semantics of timed automata [2]), the supporting algorithmic
analysis (e.g. sequential testing a’la Wald), the efficient tool implementation as well as
a long range of applications.

Most recently the SMC engine of UPPAAL has been considerably accelerated by
exploiting independencies of system components during generation of random runs. In
UPPAAL SMC , as in Gillespie’s algorithm for biochemical systems, components are
repeatedly racing against each other, calling for a resampling of all components after
each step. A challenge is to prove that resampling only step-dependent components
leave the probability distribution on runs unchanged. Another challenge is to develop
static analysis methods for identifying independencies. This in turn has significantly
reduced the complexity of run-generation (from quadratic to – in practice – linear),
allowing UPPAAL SMC to scale to millions of components, as witnessed by recent
applications to so-called Agent-based models for COVID19 analysis with millions of
components, e.g. one per citizen of Denmark [9]. In addition, using the SMC engine
may be used to generate synthetic data from stochastic hybrid automata in order to
learn Bayesian networks for infering beliefs of key observable and unobservable
properties in settings with scares data [8].

In the most recent branch UPPAAL STRATEGO [4, 3], symbolic techniques are com-
bined with reinforcement learning to efficiently obtain near-optimal yet safe strategies
for hybrid Markov decision processes. Taking as inputs 1) a hybrid Markov decision
process H, 2) a safe constraint / and 3) an objective function O to be optimized,
UPPAAL STRATEGO first provides a most permissive safety strategy guaranteeing that / is
fullfilled using a timed game abstraction of H. Here well-known symbolic model
checking techniques are used. Next, applying various learning methods, sub-strategies
(thus still safe) optimizing O are subsequently obtained. The talk will present new
(Q-, M-, ..) learning methods developed [7], preliminary results on their convergence
[6], the ability to learn and output small and explainable strategies using decision trees

[1], and the approach for taking partial observability into account. In addition the talk
will provide a demonstration of the new UPPAAL STRATEGO on the Smart Farming
Challenge of the Dagstuhl seminar “Analysis of Autonomous Mobile Collectives in
Complex Physical Environments” (October 2019). Also on-going applications of
UPPAAL STRATEGO on water-management, traffic-light control, energy-aware building ao
will be pointed out.

During the next five-year period the effort on combining model checking and
machine learning will continue in the newly granted Villum-Investigator Center S4OS1

of the speaker.

References

1. Ashok, P., Křetínský, J., Larsen, K. G., Le Coënt, A., Taankvist, J. H., Weininger, M.: SOS:
Safe, optimal and small strategies for hybrid markov decision processes. In: Parker, D.,
Wolf, V. (eds.) Quantitative Evaluation of Systems. QEST 2019. LNCS, vol. 11785,
pp. 147–164 Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30281-8_9

2. Bertrand, N., et al.: Stochastic timed automata. Log. Methods Comput. Sci., 10(4), 2014
3. David, A., et al.: On time with minimal expected cost!. In: Cassez, F., Raskin, J. F. (eds.)

Automated Technology for Verification and Analysis. ATVA 2014. LNCS, vol. 8837,
pp. 129–145. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_10

4. David, A., Jensen, P. G., Larsen, K. G., Mikučionis, M., Taankvist, J. H.: UPPAAL STRATEGO.
In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. TACAS 2015. LNCS, vol. 9035, pp. 206-211. Springer, Berlin, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0_16

5. David, A., Larsen, K. G., Legay, A., Mikucionis, M., Poulsen, D. B.: UPPAAL SMC tutorial.
Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

6. Jaeger, M., Bacci, G., Bacci, G., Larsen, K. G., Jensen, P. G.: Approximating euclidean by
imprecise markov decision processes. In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification and Validation: Verification Principles. ISoLA
2020. LNCS, vol. 12476, pp. 275–289. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-61362-4_15

7. Jaeger, M., Jensen, P. G., Guldstrand L. K., Legay, A., Sedwards, S., Taankvist, J. H.:
Teaching stratego to play ball: optimal synthesis for continuous space MDPs. In: Chen, Y.F.,
Cheng, C. H., Esparza, J. (eds.) Automated Technology for Verification and Analysis.
ATVA 2019. LNCS, vol. 11781, pp. 81–97. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31784-3_5

8. Jaeger, M., Larsen, K. G., Tibo, A.: From statistical model checking to run-time monitoring
using a bayesian network approach. In: Deshmukh, J., Ničković, D. (eds.) Runtime Veri-
fication. RV 2020. LNCS, vol. 12399, pp. 517–535. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-60508-7_30

1 S4OS: Scalable analysis and Synthesis of Safe, Small, Secure and Optimal Strategies for CPS.

xii K. G. Larsen

https://doi.org/10.1007/978-3-030-30281-8_9
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-030-61362-4_15
https://doi.org/10.1007/978-3-030-61362-4_15
https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1007/978-3-030-60508-7_30
https://doi.org/10.1007/978-3-030-60508-7_30

9. Jensen, P. G., Jørgensen, K. Y., Larsen, K. G., Mikučionis, M., Muñiz, M., Poulsen, D. B.:
Fluid Model-Checking in UPPAAL for Covid-19. In: Margaria, T., Steffen, B. (eds.) Lever-
aging Applications of Formal Methods, Verification and Validation: Verification Principles.
ISoLA 2020. LNCS, vol. 12476, pp. 385–403. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61362-4_22

10. Larsen, K. G.: Statistical model checking, refinement checking, optimization, … for
stochastic hybrid systems. In: Jurdziński, M., Ničković, D. (eds.) Formal Modeling and
Analysis of Timed Systems. FORMATS 2012. LNCS, vol. 7595, pp. 7–10. Springer, Berlin,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33365-1_2

Model Checking and Machine Learning Joining Forces in UPPAAL xiii

https://doi.org/10.1007/978-3-030-61362-4_22
https://doi.org/10.1007/978-3-030-61362-4_22
https://doi.org/10.1007/978-3-642-33365-1_2

Contents

Invited Papers

Concurrency and Objects Matter! Disentangling the Fabric
of Real Operational Processes to Create Digital Twins 3

Wil M. P. van der Aalst

Qualitative–Quantitative Reasoning: Thinking Informally About
Formal Things . 18

Alan Dix

Databases and Distributed Transactions

Some Aspects of the Database Resilience. 39
Luis Henrique Bustamante and Ana Teresa Martins

On the Correctness Problem for Serializability . 47
Jürgen König and Heike Wehrheim

Efficient Model Checking Methods

A Set Automaton to Locate All Pattern Matches in a Term 67
Rick Erkens and Jan Friso Groote

Accelerating SpMV Multiplication in Probabilistic Model Checkers
Using GPUs . 86

Muhammad Hannan Khan, Osman Hassan, and Shahid Khan

A Divide & Conquer Approach to Conditional Stable Model Checking 105
Yati Phyo, Canh Minh Do, and Kazuhiro Ogata

Formalization and Verification in Coq and Isabelle

Certifying Choreography Compilation . 115
Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti

A Mechanically Verified Theory of Contracts . 134
Stéphane Kastenbaum, Benoît Boyer, and Jean-Pierre Talpin

A Complete Semantics of K and Its Translation to Isabelle 152
Liyi Li and Elsa L. Gunter

Quantum Computing

A New Connective in Natural Deduction, and Its Application
to Quantum Computing . 175

Alejandro Díaz-Caro and Gilles Dowek

Security and Privacy

An Incentive Mechanism for Trading Personal Data in Data Markets. 197
Sayan Biswas, Kangsoo Jung, and Catuscia Palamidessi

Assessing Security of Cryptocurrencies with Attack-Defense Trees:
Proof of Concept and Future Directions . 214

Julia Eisentraut, Stephan Holzer, Katharina Klioba, Jan Křetínský,
Lukas Pin, and Alexander Wagner

Compositional Analysis of Protocol Equivalence in the Applied p-Calculus
Using Quasi-open Bisimilarity . 235

Ross Horne, Sjouke Mauw, and Semen Yurkov

Card-Based Cryptographic Protocols with a Standard Deck of Cards Using
Private Operations . 256

Yoshifumi Manabe and Hibiki Ono

Normalising Lustre Preserves Security . 275
Sanjiva Prasad and R. Madhukar Yerraguntla

Synthesis and Learning

Learning Probabilistic Automata Using Residuals . 295
Wenjing Chu, Shuo Chen, and Marcello Bonsangue

AlCons: Deductive Synthesis of Sorting Algorithms in Theorema 314
Isabela Drămnesc and Tudor Jebelean

Reactive Synthesis from Visibly Register Pushdown Automata 334
Ryoma Senda, Yoshiaki Takata, and Hiroyuki Seki

Systems Calculi and Analysis

COMPLEXITYPARSER: An Automatic Tool for Certifying Poly-Time
Complexity of Java Programs . 357

Emmanuel Hainry, Emmanuel Jeandel, Romain Péchoux,
and Olivier Zeyen

A Calculus for Attribute-Based Memory Updates . 366
Marino Miculan and Michele Pasqua

xvi Contents

A Proof Method for Local Sufficient Completeness of Term
Rewriting Systems . 386

Tomoki Shiraishi, Kentaro Kikuchi, and Takahito Aoto

Author Index . 405

Contents xvii

Invited Papers

Concurrency and Objects Matter!
Disentangling the Fabric of Real

Operational Processes to Create Digital
Twins

Wil M. P. van der Aalst1,2(B)

1 Process and Data Science (Informatik 9), RWTH Aachen University,
Aachen, Germany

wvdaalst@pads.rwth-aachen.de
2 Fraunhofer-Institut für Angewandte Informationstechnik (FIT),

Sankt Augustin, Germany

Abstract. Process mining dramatically changed the way we look at
process models and operational processes. Even seemingly simple pro-
cesses like Purchase-to-Pay (P2P) and Order-to-Cash (O2C) are often
amazingly complex, and traditional hand-made process models fail to
capture the true fabric of such processes. Many processes are inherently
concurrent and involve interaction between different objects (customers,
suppliers, orders, items, shipments, payments, machines, workers, etc.).
Process mining uses event data to construct process models that can be
used to diagnose performance and compliance problems. If such models
reflect reality well, they can be used for forward-looking forms of pro-
cess mining, including predictive analytics, evidence-based automation,
and what-if simulation. The ultimate goal is to create a “digital twin
of an organization” that can be used to explore different improvement
actions. This paper provides a high-level overview of the different process
mining tasks followed by a more detailed discussion on concurrency and
object-centricity in process mining.

Keywords: Process mining · Event data · Concurrency · Digital twins

1 Towards a Digital Twin of an Organization

The desire to adequately describe operational processes has been around since
the 1890-ties when the field of scientific management emerged. Scientific man-
agement is also known as Taylorism, named after its pioneer Frederick Winslow
Taylor (1856–1915) who tried to systematically improve economic efficiency,
especially labor productivity. Taylor systematically observed how people work
and can be seen as the “first process miner” using pen and paper (see Fig. 1). In
1950 computers started to influence business processes. However, the systematic
use of data about operational processes is much more recent [1].

c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-85315-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-85315-0_1

4 W. M. P. van der Aalst

Data sheet used in me study
to analyze performance of
workers and to compare

different approaches.

Detailed analysis of
shoveling earth data

Fig. 1. Analyzing event data to improve operational processes is not that new. This is
illustrated by some of the tables in [33]. Frederick Winslow Taylor can be seen as the
first “process miner” using manually collected event data.

The desire to build computer models that mimic organizations and processes
is also not that new. Since the 1960-ties so-called discrete event simulation tools
have been available with SIMULA [11] as one of the first influential examples. In
discrete event simulation it is common to estimate parameters and distributions
based on observed data (e.g., service times and arrival rates). However, one still
needs to model the process by hand. The first comprehensive approaches to auto-
matically learn complete simulation models from event data became available
around 2008 [30,31]. Based on event logs, it is possible to learn a control-flow
model (transition system, Petri net, of BPMN model) that is enriched with infor-
mation about resources, data, and time using replay or alignment techniques
[30,31].

organiza on with
mul ple opera onal

processes

event
data process

mining

diagnose, predict, improve

highly concurrent

many
interac ng

objects

digital
twins

What if?

Fig. 2. Process mining provides a concrete approach to create a digital twin of an
organization and its operational processes. A key element is the creation of a model
based on event data that is able to mimic reality as well as possible. Such a model
needs to be able to capture concurrency and interacting objects (customers, workers,
products, orders, payments, shipments, etc.).

The notion of a digital twin is part of the Industry 4.0 development facilitated
through advanced data analytics (machine learning, process mining, etc.) and
the Internet of Things (IoT) connectivity [15,20]. The notion can be described

Concurrency and Objects Matter! 5

as an effortless integration of the “real reality” and a “modeled reality” in both
directions. The “modeled reality” is based on the “real reality”, but may also
influence the “real reality”. This is one of the key concepts in the Internet of
Production (IoP) developed at RWTH Aachen University [6]. In IoP, process
mining plays a key role. Gartner coined the term digital twin of an organization
to indicate that the desire to create a digital twin is not limited to specific
Industry 4.0 applications [19]. The goal is to create a virtual representation of an
organization and its operational processes (including assets such as architectures,
infrastructures, roles, responsibilities, products, etc.) to assess the impact of
change in a controlled environment. Note that this is only a vision that is still
far away from reality. However, it illustrates the role that models will need to
play in the future.

reality

digital
model

reality

digital
shadow

reality

digital
twin

manual/
offline

automa c/
real- me

(a) (b) (c)

Fig. 3. The difference between a digital model, a digital shadow, and a digital twin.

Figure 3 illustrates the difference between (a) a digital model, (b) a digital
shadow, and (c) a digital twin. Building a discrete event simulation model (using
e.g. Arena, AnyLogic, CPN Tools, FlexSim, Vensim, or Simul8) in a classical
way corresponds to the digital model notion in Fig. 3(a). The dashed lines show
that the model is created by hand. There is no automated connection between
reality and the digital model. Moreover, insights generated by the simulation
model do not automatically lead to concrete actions. The digital shadow notion
in Fig. 3(b) uses a model, driven by data automatically extracted from reality. If
such a connection is automated, it is often possible and desirable to update the
model continuously. If reality changes, also the model changes. However, insights
and diagnostics still need to be translated into actions manually. The digital twin
notion in Fig. 3(c) shows that there is an automated and real-time connection
between reality and the model(s) in both directions. As a result, the digital twin
directly influences reality, possibly without human intervention.

It is important to note that many of these ideas have been realized in the con-
text of process mining, albeit with a focus on individual processes in isolation [1].
Most process mining techniques aim to create a digital shadow, as indicated in
Fig. 3(b). This ranges from control-flow discovery (from mining directly follows

6 W. M. P. van der Aalst

graphs [2] to scalable inductive mining [23]) to automatically creating simula-
tion models (e.g., [30,31]). However, under the umbrella term of “operational
support” [1], process mining also aims to impact the process automatically in
real-time. An early example is the work presented in [32], where workflow tech-
nology is connected to process mining. In [32] YAWL is used as a workflow
management system, ProM as a process mining system, and CPN Tools as the
simulation engine. ProM is used to learn a faithful simulation model from the
event data of YAWL and/or the models in YAWL. At any point in time, the
current state of the YAWL workflow system can be loaded into the simulation
model and simulated using CPN Tools. This concept is termed short-term simu-
lation because rather than focusing on the steady-state behavior, the focus is on
transient behaviors and answering what-if questions. Commercial process mining
tools increasingly support what we call “action-oriented process mining”. This
means that diagnostics are turned into actions. The recent release of the Celo-
nis EMS (Execution Management System), which embeds a low-code workflow
management system, illustrates this trend.

The above shows that the idea of creating a digital twin was already realized
in the field of process mining long before the term became “in vogue”. However,
existing approaches typically focus on well-defined processes that are considered
in isolation. We are still far away from creating a realistic “digital twin of an
organization”. In this paper, we focus on two of the many challenges to create
such digital twins:

– Concurrency. Organizations are like distributed systems or social systems.
The different parts operate autonomously but need to synchronize at selected
points in time. Although most organizations and systems are highly concur-
rent, the dominant paradigm is still the highly sequential Turing machine
model created in 1936 which does not allow for concurrency. The von Neu-
mann architecture defined in 1945 is based on the Turing machine and also
views computation as a sequential process. Moreover, automata, transition
systems, Markov chains, and many other representations of behavior do not
support concurrency. If concurrency is supported, it is often added as an
afterthought. Representations that start from concurrency, like Petri nets,
are still the exception. Consider for example a Petri net without places and
just transitions. Even people familiar with Petri nets have difficulties to accept
that such a Petri net allows for any behavior (and that Petri nets are much
more declarative than commonly assumed). Although organizations are highly
concurrent, event logs are viewed as sequential (i.e., events are assumed to be
totally ordered). This complicates the creation of a digital twin from event
data.

– Object-centricity. Most of the modeling notations used (e.g., BPMN, Work-
flow Nets, UML activity diagrams, etc.) assume a single case notion. However,
events may involve a variety of objects. Consider for example batching where
in one event many objects are affected or an assembly step where a collec-
tion of objects is transformed into a new composite object. When drawing
for example a BPMN model one needs to pick one case notion (the process

Concurrency and Objects Matter! 7

instance). In many applications this is not so easy. Consider for example the
hiring process of new employees. Is the vacancy the case or the application?
One can also consider the classical example of ordering books from Amazon.
One order may include multiple books, a shipment may contain books of dif-
ferent orders, and an order may involved multiple shipments. Possible case
notions are order, book, and shipment. It is impossible to create a digital twin
of an organization without being able to represent the different objects and
their interactions.

For example, imagine a car factory producing hundreds of cars per day with
each car assembled from thousands of components. Process models that do not
allow for concurrency and object-centricity are clearly unable to describe such a
factory as a digital twin.

The remainder of this paper is organized as follows. Section 2 present a short
high-level introduction to process mining. Section 3 discusses event logs and the
importance of concurrency and object-centricity. Section 4 concludes this short
paper.

2 Process Mining: A Top-Down View

In recent years, we could witness an uptake in process mining. There used to be
a gap between process science (i.e., tools and techniques to improve operational
processes) and data science (i.e., tools and techniques to extract value from
data). Mainstream machine learning and data mining techniques do not consider
operational processes. Business Process Management (BPM) and Operations
Research (OR) tend to start from models rather than data. Process mining
bridges this gap [1].

Currently, there are over 35 commercial process mining vendors (ABBYY
Timeline, ARIS Process Mining, BusinessOptix, Celonis Process Mining,
Disco/Fluxicon, Everflow, Lana, Mavim, MPM, Minit, PAFnow, QPR, etc.)
and process mining is applied in most of the larger organizations in coun-
tries such as Germany and The Netherlands. Example application domains
include: finance (Rabobank, Hypovereinsbank, etc.), telecom (Deutsche Telekom,
Vodafone, etc.), logistics (Vanderlande, etc.), production (BMW, Siemens, Fiat,
Bosch, etc.), food (Edeka, etc.), fashion (Zalando, etc.), energy (E-on, etc.),
transport (Uber, DB, Lufthansa, etc.), healthcare (AstraZenica, Medtronic,
etc.), consulting (Deloitte, EY, KPMG, etc.), and IT systems (Dell, IBM, Ser-
viceNow, etc.).

Figure 4 shows a high-level overview of process mining. Event data need to
be extracted from information systems. Such data can be explored, filtered,
and cleaned. Process discovery tools transform event data into process mod-
els (e.g., BPMN, Petri nets, and UML activity diagrams). There are simple
approaches like creating so-called Directly-Follows-Graphs (DFGs) that do not
discover concurrency thus having obvious problems [2]. The Alpha algorithm was
the first to discover concurrent processes [7]. This approach provides some guar-
antees, but most processes do not satisfy the assumptions described in [7]. After

8 W. M. P. van der Aalst

discover

align
replay
enrich

apply
compare

information
systems

extract

process
models

explore select
filter
clean

conformance
performance
diagnostics

predictions
improvements

transform

actshow
model
adapt

show
interpret
drill down

ML

+ +
event
data

Fig. 4. Overview of the process mining pipeline.

the Alpha algorithm, dozens of more sophisticated algorithms were proposed
[1,9,21–23,34]. Using replay and alignment techniques it is possible to relate pro-
cess models (hand-made or discovered) with event data. This can be used to dis-
cover differences between reality and model [1,10,29]. Moreover, the model can
be extended with additional perspectives, e.g., organizational aspects, decisions,
and temporal aspects. This way, detailed performance analyses are possible.
Root-cause analysis can be performed for both conformance and performance
problems. It is always possible to relate observations to the original event data.
Such evidence-based diagnostics aid discussions about root-causes and possible
improvements. The right-hand side of Fig. 4 refers to forward-looking techniques
aimed at improving the processes. Process models extended with additional per-
spectives (organizational aspects, decisions, and temporal aspects) can be used
to predict conformance and performance problems. As described in [1], predic-
tions can be used to generate recommendations. Figure 4 shows that Machine
Learning (ML) techniques can be used in this step. These may range from novel
deep learning approaches (e.g., artificial recurrent neural networks like LSTM)
to more traditional approaches like logistic regression and decision-tree learning.

It should be noted that process mining techniques are different from main-
stream Machine Learning (ML) techniques. However, as Fig. 4 shows, process
mining can be used to generate ML problems. The current trend is to make
process mining techniques more action-oriented, e.g., automatically trigger a
corrective workflow when a problem emerges.

The process mining manifesto [17] published a decade ago lists 11 challenges.
Most of these challenges still exist and are still relevant. Figure 5 maps eight
challenges onto the overview used before (Fig. 4). These are partly overlapping
with the challenges listed in [17], e.g., basic tasks like data extraction and pro-
cess discovery remain challenging. The reader interested in applications of pro-
cess mining is recommended to read [26] with experience reports from Siemens,
BMW, Uber, ABB, Bayer, and several other organizations.

Concurrency and Objects Matter! 9

discover

align
replay
enrich

apply
compare

information
systems

extract

process
models

explore select
filter
clean

conformance
performance
diagnostics

predictions
improvements

transform

actshow
model
adapt

show
interpret
drill down

ML

+ +
event
data

1
2

3

Finding, extrac ng, and transforming event data is s ll
taking up to 80% of the me.
Most techniques focus on a single case no on (i.e., a single
process), whereas problems may be caused by interac ng or
compe ng processes.
Process discovery is not a solved problem despite powerful
techniques like induc ve mining. Concurrency is hard to
discover from event data that provide only a sample.
There is a need to be er integrate mining and modeling
(e.g., user-guided discovery).
Conformance checking is me-consuming and diagnos cs
tend to be non-determinis c.
There is a need for techniques recommending process
changes (i.e., moving beyond diagnos cs).
Machine Learning (ML) techniques tend to perform poorly
because essen al aspects are missed (e.g., system load).
Process mining results need to trigger automated ac ons
(e.g., start a correc ve workflow).

1
2

3

4

5
6

7
8

4
5

6

7

8

Fig. 5. Some of the challenges encountered when applying process mining.

The top-left corner and bottom-right corner show the interface between the
real systems and organization on the one hand and process mining technology
on the other hand. These correspond to the solid arrows in Fig. 3(c) used to
explain the notion of a digital twin. Using state-of-the-art process mining tools
it is possible to create a digital twin with limited scope (e.g., a single process).
Process mining is probably the most concrete technology available to create
digital twins. Most of the proposals are merely visions or application specific.

3 Process Mining: A Bottom-Up View

After providing a high-level view on process mining, we focus on concurrency and
object-centricity. These are essential to create digital twins that properly reflect
real organizations. To illustrate these concepts, we use Petri nets. However, it is
good to note that the ideas are generic and not notation-specific.

3.1 Petri Nets

Figure 6 shows an accepting labeled Petri net eight places (p1, p2, . . . , p8) and
seven transitions (t1, t2, . . . , t7) with initial marking [p1] and final marking
[p8]. We assume that the reader is familiar with the semantics of Petri nets
[5,13,25,27,28]. However, to make the paper more self-contained, we informally
explain the behavior of an accepting labeled Petri net. A transition t is enabled
in a marking if each of its input places contains at least one token. An enabled
transition t may fire, i.e., one token is removed from each of the input places
•t and one token is produced for each of the output places t•. This way the
Petri net can move from one marking to the next. For example, in the mark-
ing shown in Fig. 6 (with a token in p1) only t1 is enabled. Firing t1 means
the consumption of one token and the production of three tokens. The resulting
marking is [p2, p3, p4]. In this marking, four transitions are enabled: There is a
choice between t5 or t6 because both compete for the token in p4. The ordering
of t2, t4, and t5 or t6 is not fixed. The transitions in Fig. 6 are labeled, e.g.,

10 W. M. P. van der Aalst

executing t6 correspond to taking an X-ray. Moreover, next to the initial mark-
ing indicated by the black token in place p1, there is also a final target marking
with just a token in p8. We are interested in firing sequences leading from [p1]
to [p8]. Three examples are: σ1 = 〈t1, t2, t4, t5, t7〉, σ2 = 〈t1, t2, t4, t6, t7〉, and
σ3 = 〈t1, t2, t3, t2, t3, t2, t4, t6, t7〉. There are infinitely many firing sequences
due to the loop. If we block the loop and do not fire transition t3, there are 12
possible firing sequences.

t1

t3

t2

t7t4

ini al
examina on

final
examina on

t6

t5

CT scan

X-ray

lab tests

administer medicine

re-examina on
p2

p3

p4

p5

p6

p7

p8p1

Fig. 6. An accepting labeled Petri net eight places (p1, p2, . . . , p8) and seven transitions
(t1, t2, . . . , t7).

Figure 7 shows three example runs of the accepting labeled Petri net. Places
in Fig. 7 correspond to tokens in Fig. 6, and transitions in Fig. 7 correspond
to transition firings in Fig. 6. A run of a Petri net corresponds to a partial
order. For example, r1 in Fig. 7 does not impose an ordering on the three middle
activities. The transition labels in Fig. 7 refer to the transitions in Fig. 6, e.g.,
t21, t22, and t23 in run r3 refer to transition t2 (administer medicine). For a
formal definition of the runs of a Petri net, we again refer to standard literature
[12,14,27]. Typically, the number of runs is much smaller than the number of
firing sequences. For example, if we block the loop and do not fire transition t3,
then there are only two runs (r1 and r2) whereas there where 12 possible firing
sequences (e.g., σ1 is one of the six firing sequences corresponding to run r1).
Run r3 corresponds 7 ∗ 6 = 42 firing sequences.

The fact that run r3 corresponds to 42 firing sequences illustrates the chal-
lenge of discovering concurrency. If we assume that t3 is executed at most 5
times, then there are 2(1 + 1 + 1 + 1 + 1 + 1) = 12 runs and 2(13 ∗ 12 + 11 ∗
10 + 9 ∗ 8 + 7 ∗ 6 + 5 ∗ 4 + 3 ∗ 2) = 812 firing sequences. Even when our event log
has information about thousands of traces, it is extremely unlikely that one can
witness all 812 variants (especially when not all variants have an equal probabil-
ity). This illustrates that one cannot ignore concurrency, because it will lead to
an explosion of possible interleavings of which just a fraction will be witnessed.

Concurrency and Objects Matter! 11

t11

t21

t71t41

ini al
examina on

final
examina on

t51

CT scan

lab tests

administer medicine

p21

p31

p41

p51

p61

p71

p81p11

t11

t21

t71t41

ini al
examina on

final
examina on

t61

X-ray

lab tests

administer medicine

p21

p31

p41

p51

p61

p71

p81p11

t11

t31t21

t71t41

ini al
examina on

final
examina on

t61

X-ray

lab tests

administer
medicine

re-examina on

p21

p31

p41

p53

p61

p71

p81p11

r1 r2

p51

t32t22

administer
medicine

p52

re-examina on

p23

t23

administer
medicine

p22

r3

Fig. 7. Three example runs of the accepting Petri net: r1, r2, and r3. Run r3 corre-
sponds to 42 firing sequences.

3.2 Object-Centric Partially-Ordered Event Logs

Next to the problem of concurrency, we also need to deal with events referring
to collections of objects. This is analogous to moving from a classical Petri net
to a Colored Petri Net (CPN) [5,18]. In a CPN, tokens have values and can
present different objects. In a classical Petri net, tokens are indistinguishable
and transitions cannot consumer or produce a variable number of tokens.

Techniques to discover Petri nets from event data assume precisely one case
identifier per event [3,4]. These case identifiers are used to correlate events, and
the resulting discovered Petri net aims to describe the life-cycle of individual
cases. In reality, there are often multiple intertwined case notions, and it is
impossible to pick a single case notion to describe the whole process. For example,
events may refer to mixtures of orders, items, packages, customers, and products.
A package may refer to multiple items, multiple products, one order, and one
customer. Therefore, we need to assume that each event refers to a collection of
objects, each having a type (instead of a single case identifier). Such object-centric
event logs are closer to data in real-life information systems (e.g., SAP, Salesforce,
Oracle, etc.). From an object-centric event log, we want to discover an object-
centric Petri net with places that correspond to object types and transitions
that may consume and produce collections of objects of different types. Such
object-centric Petri nets visualize the complex relationships among objects of
different types.

In the remainder, we present object-centric event logs as defined in [3,4].
Note that this is a simplified version of the later OCEL standard (see ocel-

12 W. M. P. van der Aalst

standard.org) which also adds attributes to objects [16]. OCEL also provides
JSON/XML serializations of object-centric event logs and intends to overcome
the limitations of the XES standard [8]. Recall that is the official IEEE standard
for storing and exchanging event data assuming a single case notion.

Definition 1 (Universes). We define the following universes (based on [3,4]):

– Uei is the universe of event identifiers,
– Uact is the universe of activity names (also used to label transitions in an

accepting Petri net),
– Utime is the universe of timestamps,
– Uot is the universe of object types (also called classes),
– Uoi is the universe of object identifiers (also called entities),
– type ∈ Uoi → Uot assigns precisely one type to each object identifier,
– Uomap = {omap ∈ Uot �→ P(Uoi) | ∀ot∈dom(omap) ∀oi∈omap(ot) type(oi) = ot}

is the universe of all object mappings indicating which object identifiers are
included per type,1

– Uatt is the universe of attribute names,
– Uval is the universe of attribute values,
– Uvmap = Uatt �→ Uval is the universe of value assignments,2 and
– Uevent = Uei × Uact × Utime × Uomap × Uvmap is the universe of events.

An event e = (ei , act , time, omap, vmap) ∈ Uevent is characterized by a
unique event identifier ei , the corresponding activity act , the event’s timestamp
time, and two mappings omap and vmap for respectively object references and
attribute values.

Definition 2 (Event Projection). Given e = (ei , act , time, omap, vmap) ∈
Uevent , πei(e) = ei, πact(e) = act, πtime(e) = time, πomap(e) = omap, and
πvmap(e) = vmap.

πomap(e) ∈ Uot �→ P(Uoi) maps a subset of object types onto sets of object
identifiers for an event e. An object-centric event log is a collection of partially
ordered events. Event identifiers are unique, i.e., two events cannot have the same
event identifier.

Definition 3 (Object-Centric Event Log). L = (E,	E) is an event log with
E ⊆ Uevent and 	E ⊆ E × E such that:

– 	E defines a partial order (reflexive, antisymmetric, and transitive),
– ∀e1,e2∈E πei(e1) = πei(e2) ⇒ e1 = e2, and
– ∀e1,e2∈E e1 	E e2 ⇒ πtime(e1) ≤ πtime(e2).

1 P(Uoi) is the powerset of the universe of object identifiers, i.e., object types are
mapped onto sets of object identifiers. omap ∈ Uot �→ P(Uoi) is a partial function.
If ot �∈ dom(omap), then we assume that omap(ot) = ∅.

2
Uatt �→ Uval is the set of all partial functions mapping a subset of attribute names
onto the corresponding values.

Concurrency and Objects Matter! 13

po

in pi

sr

pa

co

place
order

pick
item

send
invoice

pay
order

send
reminder

mark as
completed

o2

o1

i2

o3

i3

o4

i5

o5

i1

Order

Order

Order

Order

Order

i6

Item

Item

Item

Item

Item

st start
route

en end
route

r3

route

Item route

route

r1

r2i4

po

pi

co

place
order

pick
item

mark as
completed

i2

i3

i5

i1

i6

Item

Item

Item

Item

Item

st start
route

en end
route

Item

i4

st start
route

en end
route

r3

route

route

route

r1

r2

po

in

sr

pa

co

place
order

send
invoice

pay
order

send
reminder

mark as
completed

o2

o1

o3

o4

o5

Order

Order

Order

Order

Order

100

100

100

100

50

100 500

500

500

500

500 10

10

10

500

100

100

100

500 10

500

50

100

100

10

10

5

5

50

50

50

505

5

1

1
1

1

1
1

1
1

1
1 1

1

1

1

1

1

Fig. 8. An Object-Centric Petri Net (OCPN) can be learned by first learning a classical
Petri net per object type and then merging the nets while correcting the multiplicities
using variable arcs (a detailed derivation of the process model was presented in [4]).

Definition 3 allows for partially ordered event logs. Many process mining
techniques require a total order, e.g., events are ordered based on timestamps
and when two events have the same timestamp we assume some order. However,
there are process discovery techniques that take into account causalities [3,24].
These can exploit such partial orders. There may be many reasons to use partially

14 W. M. P. van der Aalst

ordered event logs: efficiency, imprecise timing information, uncertainty, and
explicit partial order information (e.g., based on data flow analysis). As argued
before, it is unreasonable to assume that all possible interleavings will indeed be
present in the event log. Instead of a partial order one can also use the stricter
notion of a weak order. This is particularly suitable when one has imprecise
timestamps (e.g., events on the same day cannot be ordered).

3.3 Object-Centric Petri Nets

In this paper, we argued that concurrency and objects matter. To progress the
field of process mining, we cannot assume that events are totally ordered and
can be correlated using a single case notion. Hence, we need process mining
techniques and process model representations handling concurrency and object-
centricity as first-class citizens. In [4], we presented an approach to automatically
learn a so-called Object-Centric Petri Net (OCPN) given an object-centric event
log (e.g., in OCEL format [16]). A detailed explanation of the approach to dis-
cover OCPNs is beyond the scope of this short paper. Therefore, we only show
the example depicted in Fig. 8.

Let L = (E,	E) be an event log. The events in E refer to objects. Therefore,
given a specific object o of type ot, it is possible to create a partial order of all
events that refer to o. (Eo,	Eo

), with Eo = {e ∈ E | o ∈ πomap(e)(ot)} and
	Eo

=	E ∩(Eo × Eo), defines the corresponding partial order. Hence, we can
group all partial orders of events corresponding to objects of a given type ot to
get the required input for a standard process discovery algorithm. Note that the
same event may appear in multiple partial orders. Next, we can learn a process
model per object type. For simplicity, we assume that we discover a labeled
accepting Petri net per object type satisfying the constraint that labels of visible
transition are unique. There may be silent transitions (i.e., transitions that do
not refer to an activity). However, there cannot be two transitions referring to
the same activity.

The top part of Fig. 8 shows three labeled accepting Petri nets discovered for
100 orders, 500 items, and 10 routes. These three models happen to be sequential,
but could have been concurrent. The initial and final markings are denoted by
the places with the play and stop symbol. Next, the three labeled accepting Petri
nets are merged into an OCPN. Since the visible transitions are unique, merging
is trivial. However, the annotations need to be modified. In an OCPN there is a
one-to-one correspondence between transition firings and events. A single event
(i.e., transition occurrence) may involve a variable number of objects (e.g., one
order may have any number of items). This is indicated by the double arcs in
the lower part of Fig. 8. For example, on average one execution of place order
corresponds to five items and one order. On average one execution of start route
corresponds to 50 items and one route. For more details, we refer to [4].

The discovery Object-Centric Petri Nets (OCPNs) from object-centric event
logs in OCEL format is still in its infancy. However, the topic is important
because in most applications of process mining one faces the problem of one-
to-many and many-to-many relations between different types of objects relevant

Concurrency and Objects Matter! 15

for an organization. Processes are intertwined and difficult to separate. Figure 8
shows that it is possible to create one, more holistic, process model that is
showing the interactions between the different types of objects. Actually, the
term “process model” may be misleading in the context of OCPNs that may
represent collections of interacting processes.

4 Conclusion

To create a “digital twin of an organization” we need to disentangle the fabric
of real operational processes. Process mining provides many of the ingredients
to make such a step. In this paper, we provided a high-level overview of process
mining and linked it to historical developments in the field of scientific manage-
ment and simulation. As shown, there have been early examples of digital twins
(or at least digital shadows) in the field of process mining. We mentioned, for
example, the work combining the process mining framework ProM, the workflow
management system YAWL, and CPN Tools as the simulation engine [32]. This
enabled new forms of “short-term simulation” that can be used to see the effects
of decisions given the current state and historic information.

However, we are far away from fully capturing the fabric of real operational
processes in a single model. An important prerequisite is the proper handling
of concurrency and entangled objects. One event may refer to many objects
and organizations are highly concurrent. It is unrealistic to assume that one can
witness all interleavings of highly concurrent processes. Therefore, we elaborated
on Object-Centric Petri Nets (OCPNs) and OCEL as a format for exchanging
object-centric event logs [16].

Future research needs to address the challenges described in this paper. Com-
pared to the pen-and-paper analyses done by Frederick Winslow Taylor and col-
leagues more than a century ago, we have booked tremendous progress. The
detailed event data available today provide unprecedented opportunities to cre-
ate digital twins (provided we are able to concurrency and object-centricity
properly).

Acknowledgments. The author thanks the Alexander von Humboldt (AvH) Stiftung
for supporting his research.

References

1. van der Aalst, W.M.P.: Data science in action. In: Process Mining. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49851-4 1

2. van der Aalst, W.M.P.: A practitioner’s guide to process mining: limitations of the
directly-follows graph. In: International Conference on Enterprise Information Sys-
tems (Centeris 2019). Procedia Computer Science, vol. 164, pp. 321–328. Elsevier
(2019)

3. van der Aalst, W.M.P.: Object-centric process mining: dealing with divergence and
convergence in event data. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 3–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30446-1 1

https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1

16 W. M. P. van der Aalst

4. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fund.
Inform. 175(1–4), 1–40 (2020)

5. van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes: A Petri Net Ori-
ented Approach. MIT Press, Cambridge (2011)

6. van der Aalst, W.M.P., Brockhoff, T., Ghahfarokhi, A.F., Pourbafrani, M., Uysal,
M.S., van Zelst, S.J.: Removing operational friction using process mining: chal-
lenges provided by the Internet of Production (IoP). In: Hammoudi, S., Quix,
C., Bernardino, J. (eds.) DATA 2020. CCIS, vol. 1446, pp. 1–31. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-83014-4 1

7. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: dis-
covering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9),
1128–1142 (2004)

8. Acampora, G., Vitiello, A., Di Stefano, B., van der Aalst, W., Günther, C., Verbeek,
E.: IEEE 1849: the XES standard - the second IEEE standard sponsored by IEEE
Computational Intelligence Society. IEEE Comput. Intell. Mag. 12(2), 4–8 (2017)

9. Augusto, A., Conforti, R., Marlon, M., La Rosa, M., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251–284 (2019)

10. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking:
Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99414-7

11. Dahl, O.J., Nygaard, K.: SIMULA: an ALGOL based simulation language. Com-
mun. ACM 1, 671–678 (1966)

12. Desel, J.: Validation of process models by construction of process nets. In: van der
Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS,
vol. 1806, pp. 110–128. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45594-9 8

13. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)

14. van Dongen, B.F., Desel, J., van der Aalst, W.M.P.: Aggregating causal runs into
workflow nets. In: Jensen, K., van der Aalst, W.M., Ajmone Marsan, M., Frances-
chinis, G., Kleijn, J., Kristensen, L.M. (eds.) Transactions on Petri Nets and Other
Models of Concurrency VI. LNCS, vol. 7400, pp. 334–363. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-35179-2 14

15. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, chal-
lenges and open research. IEEE Access 8, 108952–108971 (2020)

16. Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.P.: OCEL Standard
(2021). www.ocel-standard.org

17. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28108-2 19

18. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Monographs in Theoretical Computer Science An EATCS Series, Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-642-60794-3

19. Kerremans, M., Kopcho, J.: Create a digital twin of your organization to opti-
mize your digital transformation program. Research Note G00379226 (2019). www.
gartner.com

20. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in man-
ufacturing: a categorical literature review and classification. IFAC-PapersOnLine
51(11), 1016–1022 (2018). 16th IFAC Symposium on Information Control Prob-
lems in Manufacturing INCOM 2018

https://doi.org/10.1007/978-3-030-83014-4_1
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/3-540-45594-9_8
https://doi.org/10.1007/3-540-45594-9_8
https://doi.org/10.1007/978-3-642-35179-2_14
www.ocel-standard.org
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1007/978-3-642-60794-3
www.gartner.com
www.gartner.com

Concurrency and Objects Matter! 17

21. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

22. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06257-0 6

23. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2018)

24. Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on par-
tially ordered event data. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP,
vol. 202, pp. 75–88. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15895-2 7

25. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

26. Reinkemeyer, L.: Process Mining in Action: Principles, Use Cases and Outlook.
Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-40172-6

27. Reisig, W.: Petri Nets: Modeling Techniques, Analysis, Methods, Case Studies.
Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-33278-4

28. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models. Lecture
Notes in Computer Science, vol. 1491. Springer, Berlin (1998). https://doi.org/10.
1007/3-540-65306-6

29. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

30. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering colored petri
nets from event logs. Int. J. Softw. Tools Technol. Transf. 10(1), 57–74 (2008)

31. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation
models. Inf. Syst. 34(3), 305–327 (2009)

32. Rozinat, A., Wynn, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.:
Workflow simulation for operational decision support. Data Knowl. Eng. 68(9),
834–850 (2009)

33. Taylor, F.W.: The Principles of Scientific Management. Harper and Bothers Pub-
lishers, New York (1919)

34. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Dis-
covering workflow nets using integer linear programming. Computing 100(5), 529–
556 (2018)

https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-15895-2_7
https://doi.org/10.1007/978-3-319-15895-2_7
https://doi.org/10.1007/978-3-030-40172-6
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/3-540-65306-6
https://doi.org/10.1007/3-540-65306-6

Qualitative–Quantitative Reasoning:
Thinking Informally About Formal

Things

Alan Dix(B)

The Computational Foundry, Swansea University, Wales, UK
alan@hcibook.com

https://alandix.com/academic/papers/ICTCS-QQ-2021

Abstract. Qualitative–quantitative reasoning is the way we think infor-
mally about formal or numerical phenomena. It is ubiquitous in scientific,
professional and day-to-day life. Mathematicians have strong intuitions
about whether a theorem is true well before a proof is found – intu-
ition that also drives the direction of new proofs. Engineers use various
approximations and can often tell where a structure will fail. In compu-
tation we deal with order of magnitude arguments in complexity theory
and data science practitioners need to match problems to the appropri-
ate neural architecture or statistical method. Even in the supermarket,
we may have a pretty good idea of about how much things will cost
before we get to the checkout. This paper will explore some of the dif-
ferent forms of QQ–reasoning through examples including the author’s
own experience numerically modelling agricultural sprays and formally
modelling human–computer interactions. We will see that it is often the
way in which formal and mathematical results become useful and also
the importance for public understanding of key issues including Covid
and climate change. Despite its clear importance, it is a topic that is
left to professional experience, or sheer luck. In early school years pupils
may learn estimation, but in later years this form of reasoning falls into
the gap between arithmetic and formal mathematics despite being more
important in adult life than either. The paper is partly an introduction
to some of the general features of QQ-reasoning, and partly a ‘call to
arms’ for academics and educators.

Keywords: Informal reasoning · Estimation · Mathematical models ·
Order of magnitude · Covid models · Monotonicity

1 Motivation

When I first read Hardy and Wright’s Number Theory [15] I was captivated.
However, as much as the mathematics itself, one statement always stood out
for me. In the very first chapter they list a number of “questions concerning
primes”, the first of which is whether there is a formula for the nth prime.
c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 18–35, 2021.
https://doi.org/10.1007/978-3-030-85315-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_2&domain=pdf
http://orcid.org/0000-0002-5242-7693
https://doi.org/10.1007/978-3-030-85315-0_2

Qualitative–Quantitative Reasoning 19

Hardy and Wright explicitly say that this seems “unlikely” given the distribution
of the series is “quite unlike what we should expect on any such hypothesis.” I
think most number theorists would still agree with this assertion, indeed many
cryptographic techniques would collapse if such a formula were discovered. Yet
what is this sense that the structure of primes and the structure of formulae are
so different? It is not formal mathematics itself, else it would be a proof.

In engineering, computation, physics, indeed any quantitative or formal
domain, the precise and provable sits alongside an informal grasp of the nature
of the domain. This was certainly true in my own early and more recent work
on formal modelling of human computer interaction: sometimes, as in the case
of undo, one can make exact and faithful statements and proofs, but more often
in order to achieve formal precision, one resorts to simplistic representations
of real-life. However, despite their gap from the true phenomena, these modes,
however lacking in fidelity, still give us insight.

I’m sure this will be familiar to those working in other areas where theoret-
ical models are applied to practical problems. There is a quantum-like tension
between the complexity of the world and our ability to represent it, between
accuracy and precision, between fidelity and formality. Yet, we do learn about
real phenomena from these simplified models, and in many contexts, from pri-
mary school estimation to scientific research we use these forms of thinking – I
call this qualitative–quantitative reasoning.

This has become particularly important during Covid, when both simple
formulae and massive supercomputing models offer precise predictions of the
impact of specific interventions. However, even the most complex model embod-
ies simplifications and it is when the different models lead to qualitatively similar
behaviours that they are most trusted. Similar issues arise for climate change,
international economics and supermarket shopping.

Qualitative–quantitative reasoning is ubiquitous, but not often discussed –
almost a dirty secret for the formalist and yet what makes theory practical.
There are lessons for science and for schools, challenges for visualisation and
argumentation. I don’t know all of the answers, but by bringing this to the
surface I know there are exciting questions.

In the rest of this paper we’ll first move through a series of examples that each
exhibit different forms of QQ-reasoning. The final section will outline practical
and theoretical challenges.

2 Informal Insights from Formalism – The PIE Model

My first work as an academic centred on creating formal models of interactive
systems [9], notably the PIE model [8], a simple input–output model of inter-
action (see Fig. 1). Whilst cognitive models try to model the mental behaviour
of humans, the intention here was to model the systems that people use and to
formalise key properties that lead to a system being usable.

Some aspects of this are amenable to strong proofs. Notably undo, which is
expected to have predictable properties (really important it works!) but which
also has a relatively straightforward algebraic definition:

20 A. Dix

Fig. 1. The PIE model, a simple input–output model of interactive systems

∀c ∈ Commands : c � undo ∼ null (1)

(Here � means performing the commands one after each other and ∼ means
“has the same effect in all contexts”.)

There are slight nuances to this, occasionally commands (such as typing) are
clumped, and some purely presentation-level commands (such as scrolling) are
ignored. However, this is pretty solid. One core question though is whether undo
itself is undoable; that is:

undo � undo ∼ null (2)

Some systems appear to have this property, doing undo twice acts as a single-
step redo. This is often called flip undo. However, one of the early proofs in the
area showed that this was impossible for all but trivial systems [9]. To see this
consider two commands c1 and c2:

c1 ∼ c1 � (undo � undo)
= (c1 � undo) � undo

∼ null � undo

∼ (c2 � undo) � undo

= c2 � (undo � undo)
∼ c2

(3)

That is all commands have the same effect, which can only happen if the
system has no more than two states.

As well as being a theoretical result it had the practical application that one
should not attempt to ‘debug’ pure forms of flip undo to attempt to make undo
just like any other command – this is impossible. Instead we have to accept
that undo commands (undo, redo, etc.) have to be treated as a separate kind
of command. In later work, Mancini’s thesis used category theory to show that
with fairly minimal assumptions, there are only two kinds of consistent undo
system: forms of flip undo (but where undo is treated as a special command)
and stack-based undo–redo [6,18].

Qualitative–Quantitative Reasoning 21

However, these cases of complete proofs were comparatively rare. Many
aspects of interaction are far more complex.

The initial impetus for the PIE model came from Harold Thimbleby’s quest
for ‘Generative User-Engineering Principles’ (GUEPs) [25] and also the desire
for systems that were ‘what you see is what you get’. This was used to formalise
various forms of predictability and reachability properties, the former regarding
whether it was possible to infer the state of the system, and the effect of com-
mands from its display, and the latter how easy it was to get to desired states
(undo is related to this) (Fig. 2).

Fig. 2. A simple formulation of predictability in the PIE model – require a function
from the display to the final result.

In relatively simple cases, such as medical devices, these properties can be
verified by model checking [2], but this is impossible for larger systems. Even
more critical issues such as the special undo commands become increasingly
frequent: models that accurately model real systems rapidly become Baroque
and those that are clean enough to reason with do not model reality.

This is not just a problem for interactive systems, but a general issue for
modelling – complexity and simplicity at odds However, anyone who has created
a formal specification of a substantial system will tell you that it is usually not
so much the final specification that matters, but the understanding you gain
through the process. Similarly many theoretical treatments of issues are so far
from the real system that they cannot in any way be used to predict precise
behaviours, but nevertheless, the insights gained through theoretical analysis
and proofs yield understanding that may help in more practical situations.

3 Making Decisions – Electrostatically Charged
Agricultural Crop Sprays

Before modelling humans I modelled agricultural crop sprays.
Factory paint sprays often use electrostatically charged spray droplets, which

are then attracted to an earthed object, such as a car, ensuring a full coating
and less waste. By a similar principle if an agricultural spray is charged it is
attracted to the crop potentially leading to better coverage, less waste and less
environmentally damaging spray drift. The main centres researching this in the

22 A. Dix

early 1980s were ICI and the National Institute for Agricultural Engineering. At
the latter we created numerical simulations of the movement of charged sprays
in order to understand their behaviour and improve design choices [7].

Given computer speeds then were measured in KHz rather than GHz and
memory in 10 s of Kb, the models were, perforce, simple! However, even today
the complexity of a field of swaying wheat would challenge a super computer.
To make this tractable, the modelling was performed in two parts.

The first stage was to model the transport from crop sprayer to the top of
the crop (Fig. 3). Note that this has been flattened to two dimensions (effectively
assuming a infinitely long spray boom!) to make the computation tractable. This
is relatively simple, a point source for the spray, with an area held at high voltage
(to represent the sprayer itself) and the crop top treated as a flat earthed surface,
ignoring the fine structure. The output from this stage is the speed and density
of the drops as they enter the top of the crop.

Fig. 3. Agricultural spray above the canopy (left) model of electrostatic spray (right)
real sprayer (image right: Pauline Eccles (CC BY-SA 2.0); https://commons.wikimedia.
org/wiki/File:Crop spraying, Bromsash - geograph.org.uk - 1367703.jpg)

As is evident there are already several simplifications here. However, the
within canopy modelling is far more difficult. In reality crops have leaves, seed
heads and are different sizes. In the model these are treated as flat vertical lines
(Fig. 4). Furthermore this is also a 2D model, so the crop is effectively modelled
as infinitely long parallel metal plates. Indeed, for some experiments with real
spray, such plates were used with paper collectors in order to obtain physical
spray coverage data.

The speeds and density of drops entering the canopy from the above crop
model could be used to match the relevant within-crop model in order to create
an end-to-end model of how initial flow rates, drop size, charge etc. affect spray
deposition. The output data was copious, but was categorised into three classes
(Fig. 5):

https://commons.wikimedia.org/wiki/File:Crop_spraying,_Bromsash_-_geograph.org.uk_-_1367703.jpg
https://commons.wikimedia.org/wiki/File:Crop_spraying,_Bromsash_-_geograph.org.uk_-_1367703.jpg

Qualitative–Quantitative Reasoning 23

Fig. 4. Within the crop canopy (left) model of electrostatic spray (right) real wheat
(image right: Stephencdickson (CC BY-SA 2.0); https://commons.wikimedia.org/wiki/
File:Green wheat.jpg)

Class I – great penetration: spray misses crop and mostly ends up in the
earth

Class II – uniform deposit: spray creates a relatively even coverage
Class III – little penetration: spray ends up mostly at the top of the crop

Of these, it is (2) we want; both (1) and (3) effectively waste spray and may
leave untreated portions of crop.

Fig. 5. Electrostatic spray coverage (left, Class I) misses crop and ends on the ground;
(middle, Class II) good coverage of the crop; (right, Class III) too concentrated at the
top of the crop.

In rough terms looking at the inputs to the within canopy model, the first
class corresponds to fast or low charge droplets, and the last to slow or high
charge particles, but this simple correspondence is more complex when looking
at the complete above and within canopy models. High charge on small drops
can lead to high space charge of 10s of thousands of volts (rather like the way

https://commons.wikimedia.org/wiki/File:Green_wheat.jpg
https://commons.wikimedia.org/wiki/File:Green_wheat.jpg

24 A. Dix

a rain cloud builds up charge to create lightning) and this can then accelerate
the drops as they enter the canopy so counter intuitively mean they end on the
ground (Class I).

This knowledge itself was useful as it was hard to measure space charge.
However, part of the aim was to go beyond the scientific knowledge to practical
design advice. The mathematical model allowed one to make precise predictions
as to which class a particular set of input parameters would yield, but of course
the model was very far from reality. Instead dimensional analysis was used to
reduce the input set to two main dimensionless features (π1, π2), the modelling
runs were then plotted into the two dimensional design space and a map pro-
duced of how the input parameters corresponded to the classes, rather like the
phase space of a gas–liquid–solid for water (Fig. 6).

Fig. 6. ‘Phase space’ of different classes of spray pattern

While we had little confidence in the precise values of the modelling, the
overall shape of this map was useful. For example, if we were getting too much
spray on the ground (Class III), we might either try to increase dimensionless
parameter π1 or to reduce parameter π2, either of which could be manipulated
using different concrete parameters.

Note how the very precise, but massively over simplified numerical model
was used to create a qualitative understanding of the design space, which could
then be used to make useful engineering interventions.

Qualitative–Quantitative Reasoning 25

4 Orders of Magnitude – Climate Change and Complexity

4.1 Infinitesimals and Limits

I recall reading Conway’s “On numbers and games” [4] while still at school and
being transported by the sheer exuberance of the text. There can be a tendency
to skip to the second half (part one) a joyous exploration of the odd arithmetic
properties of games. However, the first half (part zero) is equally exciting dealing
with, what has become known as, ‘surreal numbers’ – both transfinite ordinal
arithmetic (fairly commonly taught in maths courses), but also (less commonly
taught) the way this can also give a formal treatment of infinitesimals.

Even if you’ve not come across these formal infinitesimals, you will have been
taught calculus using lots of εs and limit proofs:

f ′(x) = lim
ε→0

(f(x + ε) − f(x))/ε (4)

Crucially we learn that we can often ignore order of magnitude smaller terms:
ε terms when dealing with ‘ordinary’ sized numbers, or ε2 terms when dealing
with εs:

f(x + ε) − f(x) ≈ εf ′(x) (5)

4.2 Day-to-Day Reasoning

In everyday life we also understand this, we may say “it’s only a drop in the
ocean”. Formally we may use ‘much greater than’ (�) or ‘much less than (�),
but also informally we effectively use rules such as:

A � b ∧ b > c =⇒ A � c (6)

and:

A � b =⇒ A + b ≈ A (7)

Unfortunately, less well understood in day-to-day logic is that the ocean is
made up of drops, that is:

A � bi ∧ N is very large =⇒ A
≈ A +
N∑

i=1

bi (8)

In fact, there are ‘thrifty’ sayings that capture this: “many a mickle makes a
muckle’, or “mind the pennies and the pounds look after themselves”. However,
despite our best environmental or fair trade intentions, it is too easy when decid-
ing on purchases in the supermarket, or choosing whether to walk or jump in a
car, to simply think “it won’t make a difference”. For ten thousand years, human-
ity was able to think like that, assuming that our individual impact would be
absorbed by the vastness of land, sea and air. This underpins Locke’s “as much

26 A. Dix

and as good” proviso for the fair acquisition of land [17, Chap. V, para. 27],
effectively assuming that nature’s bounty is inexhaustible.

Of course, we now face the imminence of climate change, the ubiquity of
plastics in the oceans and, with Covid, the critical nature of thousands of per-
sonal precautions, each insignificant in themselves, yet between them allowing
or preventing the spread of disease. Looking back, we are also able to see that
these impacts, while ever-accelerating, are not entirely new; for example, it is
possible that the desertification of central Australia was due to slash-and-burn
farming by early settlers thousands of years ago [19].

4.3 Algorithmic Complexity

In complexity theory, we argue formally about such order of magnitude relations
using big and little ‘O’ notation. At a practical level we also get used to effectively
counting the levels of directly or indirectly embedded loops to get an idea of the
exponent r in O(Nr).

Just like with plastic waste, we can sometimes forget that these are about
theoretical limits and that in practice an O(N2) algorithm with a small constant
K, may actually be faster than an O(N logN) with large K.

An extreme example of this is the linear programming simplex algorithm
[5], one of the most successful early examples of operational research. Simple
linear programming problems consist of N linear constraints over M variables
(N > M). The optimal value of a linear objective function must lie at one of
the vertices (Fig. 7). The simplex algorithm is basically a form of hill–climbing
optimisation, moving from vertex to neighbouring vertex following the direction
of maximum gain.

Given a linear objective function, the simplex algorithm is guaranteed to
terminate after a finite number of steps, and in practice is linear in the number
of constraints N . I say ‘in practice’, because in theory it can be much worse.
Indeed it is possible to create Byzantine examples where the simplex algorithm
visits all CN

M vertices. That is its worst case behaviour is O(NN−M).

Fig. 7. Linear programming – the linear constraints create a polytope feasible region,
the optimal value of a linear objective is on one of the vertices (image https://commons.
wikimedia.org/wiki/File:Linear optimization in a 2-dimensional polytope.svg)

https://commons.wikimedia.org/wiki/File:Linear_optimization_in_a_2-dimensional_polytope.svg
https://commons.wikimedia.org/wiki/File:Linear_optimization_in_a_2-dimensional_polytope.svg

Qualitative–Quantitative Reasoning 27

In fact there are alternative algorithms for linear programming that have
better worst case behaviour (I once heard of one that was O(N logN), but not
been able to track it down). However, in practice they are all far slower in terms
of average case complexity.

4.4 Sorting

Furthermore, the real world is finite. For some graph/network problems, where
algorithms are often exponential or multiple-exponential, N more than five or six
is enough to end up in the theory ‘limits’. However, for other problems practical
limits may be more significant.

We all know that sorting is O(N logN), but in fact every real sorting algo-
rithm works on finite sized keys within a computer with finite disk space. When
sorting finite keys, in principle bucket-sorts give algorithms with time linear in
N . See, for example, the IBM Punch Card Sorter in action [23] – this required
just W passes to sort W -character keys, that is effectively an O(N W) algorithm.

You might wonder how this squares with the well-known information-theory-
based O(N logN) lower bound for sorting algorithm. First, the theoretical bound
depends on it being necessary to compare sufficient items to determine a total
order on the items. If W < logN there will be many equally placed items.
Second, the information theory bound is incredibly broad, even working with
magical oracles that tell you where to put items – effectively it is lower bound
on the time taken to read the result. Even with bucket sorts you need to output
the items! Finally, if there are N items the memory has to be at least big enough
for these and hence both memory accesses and addresses are (O(logN), pushing
real behaviour back into the O(N logN) territory (although note that by similar
arguments Quicksort is really O(N (logN)2)!

If you feel that these practical bit-twiddling examples feel a little contrived,
there is the story of a Google employee giving a talk at Cambridge. During the
presentation one of the eminent computer scientists in the audience did some
quick complexity calculations in their head, and at the end stood up and said,
“I like your algorithm, but unfortunately it doesn’t scale”. The Google employee
responded, “well it works for 10 billion web pages”.

4.5 What is Computation?

The lower bound result for sorting is relatively rare, and, as noted, is based
on information theory measures and hence works for oracles as well as ‘real’
computation. One of the reasons for this is that while we have had an abstract
measure of information content dating back more than 70 years [21,22], our
computational metrics are, in comparison, weak.

One of my own intuitions (albeit not as informed as Hardy and Wright’s!) is
that some variant of Galois theory may be a way to get traction. Of course, this
may simply be because the story of Évariste Galois is one of the great romances
of mathematics – writing in his garret, the night before the fatal duel “there is
no time, there is no time ...”.

28 A. Dix

Galois theory is about what numbers it is possible to construct using the
solution to particular equations [24] (for example square roots in geometric con-
structions). This is rather like non-existence proofs in computability such as the
halting problem.

Of course in computing we also want to know how many steps it takes. While
standard Galois theory does not address this, one can have variants where you
are allowed only finite numbers of extension operations. The resulting sets form
a tower (see Fig. 8) and have some nice mathematical properties:

∀a ∈ Qn(
√

2), b ∈ Qm(
√

2) : {a + b, a − b, a ∗ b, a/b} ⊂ Qn+m(
√

2) (9)

That is the sets are homomorphic to the semigroup of positive integers. If
one looks at more complex Galois extensions with multiple radicals, such as
Qn,m,s(

√
p,

√
q,

√
r); one ends up with a simple product semigroup if p, q and

r are co-prime, but may yield more complex semigroups if they have common
factors (e.g. 12, 50, 30).

As is evident this feels rather like counting computational steps of different
kinds, so may be a fruitful path. I have never moved beyond this stage myself;
perhaps a reader will be inspired to dig further!

5 Knowing What to Model – Covid Serial Interval

During the summer of 2020 an estimate I made of the potential impact of uni-
versity re-opening on Covid-19 deaths [10] was publicised and criticised as over-
stating the problem. In hindsight both later estimates by the UK Government
SAGE group and actual case data in September and October showed that in fact

Fig. 8. Computational Galois theory

Qualitative–Quantitative Reasoning 29

I had been optimistic. At one point in the summer, in a BBC Radio interview,
Kit Yates (University of Bath academic and popular science writer) had stated
that the time between infections (called the serial interval) used in the paper of
3.5 days was too short and the real figure should be 5.5 days. In fact the actual
modelling was independent of this figure (it just changes the time scale), but this
did bring my attention to the wide variation in estimates of the serial interval.

Yates was absolutely correct in that the WHO Covid-19 information at the
time used a 5.5 day estimate, however, at the same time the growth graphs
used by the BBC used a 3.5 day figure. Furthermore SAGE estimates of UK R
factor, when compared with the doubling time, were effectively using a 3.5 day
period (although this will have arisen out of detailed models). If one then looks
further at meta-analysis papers reviewing large numbers of studies, the range of
estimates varies substantially [20]. Why the discrepancy?

In part this may be due to the fact that, while R0 and the serial interval are
often stated as if they were fundamental parameters of the disease, they both
depend critically on many social and environmental factors: how many contacts
people have, whether indoors or outdoors, etc. In particular, R0 tends to be
higher and the serial interval shorter in densely populated areas in cold and
damp climates – as is typical in the UK, but R0 is lower and the serial interval
longer in more thinly populated areas as is the case in many parts of Africa and
the USA outside major cities (and even in the suburbs).

The above statement is already a qualitative–quantitative argument, but one
that is perhaps so obvious it doesn’t appear to be so.

A little less obvious is the complex, but comprehensible, way in which the
serial interval changes when either individual caution or statutory control mea-
sures modify the spread of disease.

1. If, when infected people become symptomatic, they take substantial self-
quarantining actions, this will mean less post-symptomatic contagion, but
have no impact on pre-symptomatic contacts. This therefore reduces the serial
interval.

2. For asymptomatic cases, some contacts are sporadic such as fellow passengers
on public transport. For these contacts the likelihood of contagion is lower,
but the average timing of those infected unlikely to be affected.

3. For asymptomatic cases, some contacts are frequent such as work colleagues
and family members. For these contacts, they will have some reduction in
the eventual probability of catching the disease, but crucially if they do catch
it, they are likely to take longer to do so. That is, for this group the serial
interval increases.

Note that effect (1) decreases the serial interval, effect (3) reduces it and
effect (2) makes no difference. This interplay of positive and negative effects is
not uncommon. One might be prompted to use further QQ-reasoning to compare
the effects – it is assumed that for Covid-19 asymptomatic infections are a major
driver of growth, so that might suggest (3) will be more significant than (1).
Alternatively one might use the analysis to perform more detailed and precise
modelling.

30 A. Dix

Finally there is a third sampling-based influence on the serial interval.
Figure 9 shows the distribution of serial times for 468 infection pairs from [12].
Note the large variation: once someone is infected they may pass it on to some
people straight away, but others only after a considerable period. It is the average
period that is usually quoted, but this hides considerable variation.

Fig. 9. Distribution of the serial interval from [12]. A is based on 468 pairs of cases and
B is a subset of the 122 most reliable infection pairs. Note the negative serial intervals
will be due to pre-symptomatic infections as the time measured is between the onset
of symptoms of the pair.

Imagine we have perfect retrospective knowledge so that we know who caught
the disease, from whom and when. There are two ways we could measure the
distribution.

1. Forward – consider each infectious person (source), who they infect and when.
This is the canonical serial interval.

2. Backward – consider each infected person, who they were infected by (source)
and how far into that source’s infection.

During a period of disease growth (R > 1), the number of infectious people
increases with time, meaning method (2) will encounter more people infected
recently and hence create a shorter estimate of the serial interval than method
(1). Similarly during a period of disease decline (R < 1) the serial interval
calculated by (2) will be longer than by (1).

The serial interval combines with R to give the exponential rate of growth.
If one uses the ‘true’ serial interval from (1) this ends up a little too large (when
R > 1), but estimate (2) is too short. The value that gives the exponential
approximation, the effective serial interval, is between the two.

If we wish to work out exactly how these estimates differ, we will need more
precise modelling. However, the QQ-reasoning suggests what we should be mod-
elling and directs us towards what we should be looking for in the modelling.

Qualitative–Quantitative Reasoning 31

6 Monotonic Reasoning – Change at the Shops
and the Impact of Automation

Some years ago I was in a charity shop, probably buying books, I usually am.
I gave the woman who was serving a ten pound note and she started to count
out change – more than ten pounds of change. I told her and we worked out the
right sum for the change. I think she had simply mistyped a figure into the till,
but the thing that surprised me was that she hadn’t noticed. This was probably
due to what is often called ‘automation bias’, the tendency to believe what a
computer tells us, even when patently wrong. Of course, automation errors, when
they happen, are often gross hence the importance of being able to have a broad
idea of what is a reasonable answer. In this case I was using a simple form of
monotonic reasoning:

b > 0 =⇒ A − b < A (10)

We may also do similar reasoning in two dimensions using the Poincaré prop-
erty – every closed non-self intersecting line in 2D space has an inside and an
outside. If you have crossed a city ring road going into the city and have not
re-crossed it, then you must still be inside. However, whether this is a logical
argument or more of a ‘gut’ knowledge about the world depends on spatial ability
... or perhaps learnt skill.

Many economic issues depend on more or less complex chains of monotonic
reasoning. Figure 10 shows two arguments for and against the value of automa-
tion. On the left hand side there is the ‘pro’ argument: automation leads to
increased productivity, hence increases overall prosperity and this makes people
better off. However, on the right-hand side is the counter argument that increased
automation leads to less need for labor, hence unemployment and poverty.

Fig. 10. Positive and negative impact of automation

Rather like the Covid examples, different arguments lead to positive and
negative effects. We might resolve this by estimating (more QQ-reasoning!) the
size of the effects. Perhaps more pertinently we might ask, “who benefits?”

32 A. Dix

Laying out an argument in this way also makes it easier to debate the steps
in the inferences, rather like argumentation systems such as IBIS (issue-based
information system) [3,16]. For example, the link that suggests that automa-
tion leads to less labour has been questioned using the example of Amazon,
which in 2016 installed 15,000 robots, but instead of reducing labour in fact
also increased their employees by 46% [13]. This has then been used to argue
that robots increase employment [14]. However, it is likely that the growth is
due to the left hand thread in Fig. 11: robots, improved competitiveness, helped
the company grow its sales and hence increased employment at Amazon. Seeing
this immediately brings to mind the right hand arc of the same figure, that the
growth of Amazon has probably shrunk other businesses and hence decreased
employment elsewhere.

Fig. 11. Does automation create jobs?

7 Formalising and Visualising QQ – Allen’s Interval
Calculus

Figures 10 and 11 are both a visualisation of the argument and also a type of
formal representation of the qualitative–quantitative reasoning about automa-
tion. It is a form of high-level argumentation, similar to safety cases used in the
nuclear and aviation industry. While the validity of each judgement step (‘this
increases that’) is a human one, given such lower-level judgements, the overall
reasoning can be verified:

given
increase in A leads to an increase in B (human judgement)

and
increase in B leads to an increase in C (human judgement)

conclude
increase in A leads to an increase in C (formal inference)

Qualitative–Quantitative Reasoning 33

We can find other examples of formalisation of QQ in the literature. Some
force you to make the informal judgements very precise, for example fuzzy logic
demands a precise shape for the uncertainty function and Bayesian statistics
require that you encode your belief as if it were a probability [11]. Other meth-
ods embrace the human-like reasoning more wholeheartedly, including various
representations of näıve physics or informal reasoning used in cognitive science
and artificial intelligence such as Allen’s Interval Calculus [1] for reasoning about
temporal events (see Fig. 12).

Fig. 12. Different temporal relations (from [1])

8 Discussion and Call to Action

We have seen a variety of examples of qualitative–quantitative reasoning. Some
were about gaining informal understanding from formal or theoretical models;
some were about rough sizes: monotonicity and orders of magnitude; and some
were about numerical modelling: how to guide what we model and how to turn
idealised or simplified models into representations that are useful for decision
making. While many of the examples were about academic or professional use,
others were about the general populace. Indeed, in a data-dominated world,
understanding numerical arguments is essential for effective citizenship.

We have also seen that there are existing methods and representations to help
with qualitative–quantitative reasoning, but relatively few given the criticality
in so many walks of life.

There are three lessons I’d like the reader to take away:

– recognise when you are using qualitative–quantitative reasoning so that you
can think more clearly about your own work, and perhaps make it more
accessible or practically useful.

34 A. Dix

– realise that it is a potential area to study theoretically in itself – are there
ways to formalise or visualise some of the informal reasoning we use about
formal things!

– seek methods and tools to help others think more clearly about this: in uni-
versities, industry and schools.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983). https://doi.org/10.1145/182.358434

2. Campos, J.C., Fayollas, C., Harrison, M.D., Martinie, C., Masci, P., Palanque, P.:
Supporting the analysis of safety critical user interfaces: an exploration of three
formal tools. ACM Trans. Comput.-Hum. Interact. 27(5), 1–48 (2020). https://
doi.org/10.1145/3404199

3. Conklin, J., Begeman, M.L.: GIBIS: a hypertext tool for exploratory policy discus-
sion. ACM Trans. Inf. Syst. 6(4), 303–331 (1988). https://doi.org/10.1145/58566.
59297

4. Conway, J.H.: On Numbers and Games. Academic Press (1976)
5. Dantzig, G.B.: Origins of the Simplex Method, pp. 141–151. Association for Com-

puting Machinery, New York (1990). https://doi.org/10.1145/87252.88081
6. Dix, A., Mancini, R., Levialdi, S.: The cube - extending systems for undo. In:

Proceedings of DSVIS 1997, pp. 473–495. Eurographics (1997). https://alandix.
com/academic/papers/dsvis97/

7. Dix, A.J., Marchant, J.A.: A mathematical model of the transport and deposition
of charged spray drops. J. Agric. Eng. Res. 30, 91–100 (1984)

8. Dix, A.J., Runciman, C.: Abstract models of interactive systems. In: Johnson,
P., Cook, S. (eds.) People and Computers: Designing the Interface, pp. 13–
22. Cambridge University Press (1985). https://alandix.com/academic/papers/
PIE85/PIE-paper.html

9. Dix, A.: Formal Methods for Interactive Systems. Academic Press (1991). https://
alandix.com/books/formal/

10. Dix, A.: Impact of a small number of large bubbles on COVID-19 transmission
within universities (2020). https://arxiv.org/abs/2008.08147

11. Dix, A.: Bayesian Statistics, chap. 2, pp. 141–151. Cambridge University Press
(2021)

12. Du, Z., Xu, X., Wu, Y., Wang, L., Cowling, B.J., Meyers, L.A.: The serial interval
of COVID-19 from publicly reported confirmed cases. medRxiv (2020). https://doi.
org/10.1101/2020.02.19.20025452. https://www.medrxiv.org/content/early/2020/
03/13/2020.02.19.20025452

13. González, A.: Amazon’s robot army grows by 50 percent. The Seattle Times (2016).
https://www.seattletimes.com/business/amazon/amazons-robot-army-grows/

14. Hamid, O.H., Smith, N.L., Barzanji, A.: Automation, per se, is not job elimination:
how artificial intelligence forwards cooperative human-machine coexistence. In:
2017 IEEE 15th International Conference on Industrial Informatics (INDIN), pp.
899–904 (2017). https://doi.org/10.1109/INDIN.2017.8104891

15. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 4th edn.
Oxford (1975)

https://doi.org/10.1145/182.358434
https://doi.org/10.1145/3404199
https://doi.org/10.1145/3404199
https://doi.org/10.1145/58566.59297
https://doi.org/10.1145/58566.59297
https://doi.org/10.1145/87252.88081
https://alandix.com/academic/papers/dsvis97/
https://alandix.com/academic/papers/dsvis97/
https://alandix.com/academic/papers/PIE85/PIE-paper.html
https://alandix.com/academic/papers/PIE85/PIE-paper.html
https://alandix.com/books/formal/
https://alandix.com/books/formal/
https://arxiv.org/abs/2008.08147
https://doi.org/10.1101/2020.02.19.20025452
https://doi.org/10.1101/2020.02.19.20025452
https://www.medrxiv.org/content/early/2020/03/13/2020.02.19.20025452
https://www.medrxiv.org/content/early/2020/03/13/2020.02.19.20025452
https://www.seattletimes.com/business/amazon/amazons-robot-army-grows/
https://doi.org/10.1109/INDIN.2017.8104891

Qualitative–Quantitative Reasoning 35

16. Kunz, W., Rittel, H.W.J., Messrs, W., Dehlinger, H., Mann, T., Protzen, J.J.:
Issues as elements of information systems. Technical report, University of Califor-
nia, Berkeley (1970). https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
134.1741

17. Locke, J.: Second Treatise of Government (1689). https://gutenberg.org/ebooks/
7370

18. Mancini, R.: Modelling Interactive Computing by Exploiting the Undo. Dottorato
di ricerca in informatica, ix–97-5, Università degli Studi di Roma “La Sapienza”
(1997). https://hcibook.net/people/Roberta/

19. Pearce, F.: Earth’s most important rivers are in the sky - and they’re drying
up. New Sci. 3254 (2019). https://www.newscientist.com/article/mg24432540-
600-earths-most-important-rivers-are-in-the-sky-and-theyre-drying-up/

20. Rai, B., Shukla, A., Dwivedi, L.: Estimates of serial interval for COVID-19: a sys-
tematic review and meta-analysis. Clin. Epidemiol. Glob. Health 157–161 (2021).
https://doi.org/10.1016/j.cegh.2020.08.007

21. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

22. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Uni-
versity of Illinois Press, Urbana (1949)

23. Shirriff, K.: IBM punched card sorter type 83, from 1955. https://www.youtube.
com/watch?v=AyO3n20SpoI

24. Stewart, I.N.: Galois Theory, 4th edn. Chapman and Hall/CRC (2015). https://
doi.org/10.1201/b18187. (First ed. 1973)

25. Thimbleby, H.: Generative user-engineering principles for user interface design. In:
INTERACT 1984, pp. 661–666 (1984)

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.1741
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.1741
https://gutenberg.org/ebooks/7370
https://gutenberg.org/ebooks/7370
https://hcibook.net/people/Roberta/
https://www.newscientist.com/article/mg24432540-600-earths-most-important-rivers-are-in-the-sky-and-theyre-drying-up/
https://www.newscientist.com/article/mg24432540-600-earths-most-important-rivers-are-in-the-sky-and-theyre-drying-up/
https://doi.org/10.1016/j.cegh.2020.08.007
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://www.youtube.com/watch?v=AyO3n20SpoI
https://www.youtube.com/watch?v=AyO3n20SpoI
https://doi.org/10.1201/b18187
https://doi.org/10.1201/b18187

Databases and Distributed Transactions

Some Aspects of the Database Resilience

Luis Henrique Bustamante1,2(B) and Ana Teresa Martins2

1 Federal University of Paráıba, Rio Tinto, Brazil
henrique@dcx.ufpb.br

2 Federal University of Ceará, Fortaleza, Brazil
ana@dc.ufc.br

Abstract. The resilience problem for a Boolean query in a database is
the task of finding a minimum set of tuples that, when deleted from the
database, turns the query evaluation false. We examine the parameter-
ized complexity of a particular version of this problem for fixed queries. A
natural parameter for this problem is the number of tuples needed to be
deleted. For this, we use a formal characterization of the solution set that
proves the W[1] membership for this parameter and a fixed-parameter
tractable result when considering the database treewidth.

Keywords: Database resilience · Parameterized complexity ·
Conjunctive query

1 Introduction

This work was motivated by the recent interest in the complexity of database
resilience problem [4,5,8,9]. The resilience problem for a boolean query in a
database is the task to find a set of tuples that, when deleted from the database,
turns the query evaluation on the database false.

“The resilience problem of a query” was formulated in [4] as a decision prob-
lem that simplifies and extends the analysis of previously studied research prob-
lems in the area of database theory like “deletion propagation” and “casual
responsibility”. These problems, for example, operate changes on input and con-
sider some expected behavior for query evaluation. In [4], for queries without self-
join (repetition of a relation symbol, named self-join-free queries), a dichotomy
result was obtained for tractability when a “cycle structure” (a triad) is absent
from the query. The presence of a triad in a self-join-free query implies NP-
completeness. The previous study allowed a better understanding of the com-
plexity of the related problems (deletion propagation etc.), while the antecedent
results for these problems characterized all as NP-complete problems.

In [5], they improve the analysis for conjunctive queries with single self-
joins (just one relation can be repeated) with two atoms with the same relation
symbol. For this case, some new structural properties were identified to classify

This research was supported by the Brazilian National Council for Scientific and Tech-
nological Development (CNPq) under the grant number 424188/2016-3.

c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 39–46, 2021.
https://doi.org/10.1007/978-3-030-85315-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_3&domain=pdf
http://orcid.org/0000-0002-3718-4988
https://doi.org/10.1007/978-3-030-85315-0_3

40 L. H. Bustamante and A. T. Martins

the resilience problem as NP-complete, and, again, a dichotomy complexity result
was obtained. They also consider a second case for queries with three atoms
with the same relation symbol. For this second case, they present a sequence
of complexity results that establish the NP-completeness for some particular
queries.

These results of increasing complexity motivate a more fine-grained study
of all parameters of the problem and a reflection of other possible sources of
hardness for resilience.

Parameterized complexity [3] is a subarea of computational complexity where
the analysis considers an additional term called parameter. A problem that
admits an algorithm with an arbitrary running time concerning the parameter
and polynomial in terms of the input size is called a fixed-parameter tractable
problem. This notion is one of the main concepts in the area with many essential
consequences and applications. However, many other problems cannot be clas-
sified in this way and, for these, there are a wide variety of intractable parame-
terized classes. The most representative of these classes is W[1] which has many
problems with natural parameterizations. Some examples of complete problems
for W[1] are the Clique problem when parameterized by the size of the clique
and evaluating conjunctive queries with the size of the query as a parameter.

In [8,9], the resilience problem for conjunctive queries was proved to be co-
W[1]-complete. To prove that the problem is in co-W[1], they reduce the problem
to a canonical W[1]-complete problem, the weighted satisfiability. For a nega-
tive instance of the resilience problem, they constructed a k-satisfiable proposi-
tional formula if and only if D does not have a contingency set. For hardness,
they obtained a reduction from the k-clique problem. In [8,9], the problem was
stated with three inputs: the database, the query, and a natural number that cor-
responds to the size of the solution. The parameterized analysis of this problem
considers the query size |ϕ| and the natural number k.

By taking a different perspective, we aim to identify the source of the com-
plexity of the resilience problem. Here, we explore the parameterized complexity
of the resilience problem for a conjunctive query in terms of the size of the solu-
tion set Γ and the treewidth of the database (Sect. 4). These results follow a
model theoretical approach (Sect. 3). For a fixed conjunctive query ϕ, we denote
the resilience problem for ϕ by Resϕ, and we can conclude that the problem is
in W[1] when parameterized by the size |Γ |. This result drives a formal char-
acterization of the contingency set in monadic second-order logic, leading to an
FPT algorithm due to Courcelle’s Theorem.

There is a important aspect in locate a problem within W[1], and it is related
to an algorithmic solvability faster than the exhaustive search over all

(
n
k

)
sub-

sets. For example, p-Clique, a W[1]-complete problem, has an algorithm that
runs in time O(n(ω/3)k) [10], achieved with the use of a n×n matrix multiplica-
tion algorithm with running time in O(nω) (best known value for ω is 2.3728639
[7]). For p-Dominating-set, a W[2]-complete problem, we cannot do anything
better than an algorithm running in O(nk+1) unless CNF satisfiability has an
2δn time algorithm for some δ < 1 [12].

Some Aspects of the Database Resilience 41

2 Preliminaries

We assume the reader has some knowledge in Mathematical Logic, Computa-
tional Complexity, Parameterized Complexity (see for example [1,3,11]). In the
following subsections, we give some basic definitions.

2.1 Conjunctive Query

Let τ be a relational vocabulary1 {R1, . . . , R�} each relation Ri, 1 ≤ i ≤ �, has
some natural number ri as its arity. The class of conjunctive queries is the set
of first-order formulas over τ of the form

ϕ(y1, . . . , yp) := ∃x1 . . . ∃xq(g1(z1) ∧ . . . ∧ gm(zm)),

where, each xi with 1 ≤ i ≤ q is an existential variable, the y are free variables,
and each gj , 1 ≤ j ≤ m, is an atom using a relation symbol from τ and variables
from zi ⊆ {x1, . . . , xq} ∪ {y1, . . . , yp}. However, we restrict our attention to the
class of boolean conjunctive queries, conjunctive queries without free variables.

As usual, these queries are evaluated into a database D, denoted here by a
relational τ -structure D = 〈{a1, . . . ad}, RD

1 , . . . , RD
� 〉 for some relational vocab-

ulary τ := {R1, . . . , R�}. The domain or universe of D, {a1, . . . ad}, is also called
the active domain, and the elements of the relations are called tuples of D.

2.2 Parameterized Complexity

A parameterized problem is a pair (Q,κ) over the alphabet Σ, such that Q ⊆ Σ∗

is a decision problem and κ is a polynomial time computable function from Σ∗

to natural numbers N, called the parameterization. For an instance x ∈ Σ∗ of Q
or (Q,κ), κ(x) = k is the parameter of x.

We say that a problem (Q,κ) is fixed-parameter tractable if there is an algo-
rithm that decides for all x ∈ Q in time f(κ(x)) · |x|O(1) for some computable
function f . The class of all fixed-parameter tractable problems is called FPT. We
can extend the notion of polynomial-time reductions to FPT-reductions, and, in
the same way, we can handle the notions of hardness and completeness.

The set of quantifier-free formulas is denoted by Σ0 and Π0. For t > 0, we
define Σt+1 as the class of formulas in the form ∃x1 . . . ∃xkϕ, such that ϕ ∈ Πt;
and Πt+1 as the class of all formulas of the form ∀x1 . . . ∀xkϕ, where ϕ ∈ Σt.

We define ϕ(X1, . . . Xl) as a first-order logic (FO) formula with X1, . . . Xl

as second-order free variables. Given a vocabulary τ of ϕ, and for all i ∈ [l], si

corresponds to the arity of Xi. A solution for ϕ in A is a tuple S̄ = (S1, . . . , Sl),
where, for each i ∈ [l], Si ⊆ Asi , such that A |= ϕ(S̄). Thus, ϕ(X) corresponds
to a formula in FO with a unique relation variable X. The weighted definability
problem for a formula ϕ, p-WDϕ, considers a structure A and k ∈ N as inputs,
and decides if exists S ⊆ As with |S| = k such that A |= ϕ(S).

1 Constants are allowed for relational vocabulary.

42 L. H. Bustamante and A. T. Martins

For a class of formulas Φ ⊆ FO, we define p-WD-Φ as the class of all problems
p-WDϕ such that ϕ ∈ Φ. Then, we characterize the W-Hierarchy in terms of p-
WD-Φ for fragments Πt. For all t ≥ 1, we define W [t] = [p-WD-Πt]fpt.

Due to the closure of the W-hierarchy classes, to show the membership within
some finite level, one has to produce2 a structure and a formula that satisfies it.

Monadic second-order logic (MSO) is an extension of FO with a quantifi-
cation over second-order variables ∃X and ∀X. The Courcelle’s Theorem says
that model checking for properties expressed in MSO has an algorithm in poly-
nomial time when parameterized by the treewidth of the graph. We can use the
generalized version of this theorem to any mathematical structure [2]. For these
definitions and results, consider [3].

2.3 Resilience Revisited

Let D be a database, and ϕ be a conjunctive query in some fixed vocabulary
τ . As stated in [4], the resilience problem takes D and ϕ and decides whether
there exists a minimum set Γ of tuples in D (a set of (ai1 . . . airj

) ∈ RD
j for

some j ∈ [�] and i1, . . . , irj
∈ [d]) that can be removed to make the query ϕ

false, i.e. D � ϕ. The set Γ is called a contingency set. A k-contingency set is a
contingency set of size k.

We denote different versions of the resilience problem that take the conjunc-
tive query as fixed or not. The first version of the resilience problem takes a fixed
conjunctive query ϕ, a database D, and a natural number k as its inputs.

p-Resϕ

Instance: A relational database D, and k ∈ N.
Parameter: k.
Problem: Decide whether D has a k-contingency set w.r.t ϕ.

The second version of the resilience problem is similar to what we know as the
“combined complexity” of model checking and considers a relational database
D, a conjunctive query ϕ, and a natural number k as inputs. We denote it by
p-Resilience.

p-RESILIENCE
Instance: A relational database D, a conjunctive query ϕ, and k ∈ N.
Parameter: k.
Problem: Decide whether D has a k-contingency set w.r.t ϕ.

2 This is the strategy applied in Theorem 2.

Some Aspects of the Database Resilience 43

Each different parameterization function κ can define a different problem
p-κ-Resilience. For example, a function that combines k and |ϕ| will define p-
[k, |ϕ|]-Resilience. In [8], the p-[k, |ϕ|]-Resilience problem for a conjunctive query
was proved to be co-W[1]-complete.

Theorem 1 [8]. p-[k, |ϕ|]-Resilience is co-W[1]complete.

3 Formal Characterization of the Contingency Set

For a more suitable description of the contingency set, we use another structure
to represent a database where the domain becomes a set of tuples and the active
domain. This new structure is similar to what a hypergraph does to a graph.

Let D be a relational database in τ = {R1, . . . , R�} with maximum arity
s = ar(τ). We introduce an auxiliary structure called the extended database
D of the database D in a different vocabulary σ, which is a relational σ-structure
with an universe constructed by the union of the elements of D, the tuples of
D (all t ∈ RD

i for all i ∈ [�]), and the natural numbers in [s] with a different
vocabulary σ = {TR1 , . . . , TR�

,Adom, Inc} consisting of unary relation symbols,
but Inc, a ternary relation symbol.

An extended database D is a three-sorted σ-structure

〈{a1, . . . , ad} ∪ {b1, . . . , bn} ∪ [s], TD
R1

, . . . , TD
R�

,AdomD, IncD〉,

where d := |D|, n is the number of tuples of D. Each bi is an element in

{tR,a | R ∈ τ, and a ∈ R}.

It follows that the number of tuples n is bounded by ds.

Proposition 1 (Extended Database) There exist polynomial time transfor-
mations that convert the database D in τ into an extended database D in σ, and
a first-order formula ϕ (conjunctive query) in τ to another first-order formula
ϕ′ (conjunctive query) in σ such that

D � ϕ ⇔ D � ϕ′.

The proof consists of a construction of an extended database D in σ =
{Adom, TR1 , . . . , TR�

, Inc}
Proof Let D be a relational database with universe {a1, . . . , ad}, in the vocab-
ulary τ = {R1, . . . , R�}, and ϕ, a conjunctive query in τ , in the form
∃x1 . . . ∃xq (g1(z1) ∧ . . . ∧ gm(zm)) such that zi ⊆ {x1, . . . xq} and each gi is an
atom.

We construct an extended database D in σ = {Adom, TR1 , . . . , TR�
, Inc}

from the relational database D.
To construct the universe of D, we add all elements of |D|, the tuples of D

represented by {tR,a | R ∈ τ, and a ∈ RD} and a set of naturals [s]. All elements

44 L. H. Bustamante and A. T. Martins

are pairwise distinct. So, the cardinality of the universe of D is essentially ‖D‖.
This process takes O(d + n) where n is the number of tuples.

To define the unary relations of D, we directly construct AdomD := |D| and
TD

Ri
:= {tR,a | a ∈ RD} for every R ∈ τ. Secondly, we construct the incidence

relation in terms of the following definition

IncD := {(a, i, tR,a) | R ∈ τ, a = (a1, . . . , ar) ∈ RD, and a = ai}.

To construct ϕ′, we will relativize all existential and universal quantifiers to
Adom, i.e., we will inductively replace, from the inner most quantifier, the ∃xψ
by ∃x(Adom(x)∧ψ), and the ∀xψ by ∀x(Adom(x) → ψ). After that, we replace
every atomic subformula Rx for R ∈ τ by ∃z(TR(z) ∧ ∧r

i=1 Inc(xi, i, z)) where
z is a new variable.

Assuming that D � ϕ, we can proof by induction on ϕ that D � ϕ′.

If we restrict our attention to conjunctive queries, we do not increase the
alternation of quantifiers. Then, after the translation of a conjunctive query ϕ,
the obtained formula ϕ′ is also a conjunctive query.

Example 1 (Translating a Conjunctive Query).
Let D be a database over a vocabulary τ = {R1, . . . , R�}, and let ϕ be a con-

junctive query over the same vocabulary τ in the form ∃x1 . . . ∃xq(Ri1(z1)∧ . . .∧
Rim

(zm)) for i1, . . . , im ∈ [�]. If D � ϕ, we can apply the previous conversions
for ϕ to obtain a different conjunctive query. First, we inductively relativize the
existential quantifiers to achieve the sentence

∃x1 . . . ∃xq

(
q∧

i=1

Adom(xi) ∧ ψ

)

,

where ψ := Ri1(z1) ∧ . . . ∧ Rim
(zm). Then we can replace each Rij

in ψ by
∃yj(TRij

(yj) ∧ ∧rij

p=1 Inc(xp, p, yj)), and our final formula in the prenex normal
form is

∃x1 . . . ∃xq∃y1 . . . ∃ym

⎛

⎝
q∧

i=1

Adom(xi) ∧
m∧

j=1

TRij
(yj) ∧

m∧

j=1

rij∧

p=1

Inc(xjp
, p, yj)

⎞

⎠ .

Using the construction in Proposition 1, we can prove the following equiva-
lence:

Lemma 1. p-Resilience is fpt-equivalent to the p-Resilience over the extended
vocabulary.

For a fixed ϕ and a corresponding formula ϕ′ with respect to Proposition 1,
we have the following consequence.

Corollary 1. p-Resϕ ≡fpt p-Resϕ′ .

For the next section, we both use the database D or an extended database
of D interchangeable.

Some Aspects of the Database Resilience 45

4 The “Data Complexity” of the Resilience Problem

In this section, we describe a universal sentence ψ that characterizes Γ in the
problem p-Resϕ using the previous definition and results.

We can then state that p-Resϕ is in W[1] when parameterized by the size k
of the contingency set Γ .

Theorem 2. For all conjunctive query ϕ, p-Resϕ is in W[1].

The proof of the Theorem 2 is the construction of the following sentence

ψres(X) := ∀x1 . . . ∀xq∀y1 . . . ∀ym
⎛

⎝

⎛

⎝
m∧

i=1

¬X(yi) ∧
q∧

i=1

Adom(xi) ∧
m∧

j=1

rij∧

p=1

Inc(xjp
, p, yj)

⎞

⎠ →
m∨

j=1

¬Tij
(yj)

⎞

⎠ ,

and that we can conclude that p-Resϕ is in p-WD-Π1.
For some conjunctive queries ϕ such that the resilience problem is in PTIME

[4,5], p-Resϕ is trivially fixed-parameter tractable. However, the Theorem2 gives
us a good upper bound for all ϕ.

By adding an existential quantifier, the contingency set Γ can be defined
in MSO by ∃Xψres(X). Using the Courcelle’s Theorem, we can check in FPT-
time if there is a contingency set of size at most k in a database with bounded
treewidth.

Theorem 3. p-Resϕ is in FPT when parameterized by the treewidth of the
database D.

Proof. Using the monadic formula, ∃Xϕres(X) such that ϕres(x) was previously
defined, we can evaluate it over the extended database D as input by an algo-
rithm that runs in FPT-time considering the treewidth of D and the size of the
formula [2].

5 Conclusion

By fixing the conjunctive query, we prove an upper bound within W[1] for p-
Resϕ when parameterized by the size of the contingency set. We do not know
yet whether the problem is hard for W[1].

We present a formal description of the problem, and we consider a particular
version of the resilience problem that differs from the analysis proposed by [8,9].
Then, we conjecture some further directions that could refine both views:

1. Can we use the formal description adopted here in this paper to improve the
analysis of p-Resilence? Is this problem fixed-parameter tractable considering
the tree-width of the underlying graph of the conjunctive query?

2. Can we show some optimally in the sense of [6] in terms of the tree-width?
Maybe by saying that the resilience problem becomes tractable for those
queries that have bounded tree-width structure?

46 L. H. Bustamante and A. T. Martins

References

1. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Springer, New York
(2013)

2. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM
(JACM) 49(6), 716–752 (2002)

3. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-29953-X

4. Freire, C., Gatterbauer, W., Immerman, N., Meliou, A.: The complexity of
resilience and responsibility for self-join-free conjunctive queries. Proc. VLDB
Endow. 9(3) (2015)

5. Freire, C., Gatterbauer, W., Immerman, N., Meliou, A.: New results for the com-
plexity of resilience for binary conjunctive queries with self-joins. In: Suciu, D., Tao,
Y., Wei, Z. (eds.) Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, PODS 2020, Portland, OR, USA, 14–19
June 2020, pp. 271–284. ACM (2020). https://doi.org/10.1145/3375395.3387647

6. Grohe, M., Schwentick, T., Segoufin, L.: When is the evaluation of conjunctive
queries tractable? In: Proceedings of the Thirty-Third Annual ACM Symposium
on Theory of Computing, pp. 657–666 (2001)

7. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation, pp.
296–303. ACM, New York (2014)

8. Miao, D., Cai, Z.: Parameterized complexity of resilience decision for database
debugging. In: Duan, Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol. 10610, pp. 332–
344. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68690-5 20

9. Miao, D., Li, J., Cai, Z.: The parameterized complexity and kernelization of
resilience for database queries. Theoret. Comput. Sci. 840, 199–211 (2020).
https://doi.org/10.1016/j.tcs.2020.08.018

10. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment.
Math. Univ. Carol. 26(2), 415–419 (1985)

11. Papadimitriou, C.H.: Computational Complexity. Wiley, New York (2003)
12. Pătraşcu, M., Williams, R.: On the possibility of faster sat algorithms. In: Proceed-

ings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1065–1075. SIAM, Austin (2010)

https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1145/3375395.3387647
https://doi.org/10.1007/978-3-319-68690-5_20
https://doi.org/10.1016/j.tcs.2020.08.018

On the Correctness Problem
for Serializability

Jürgen König1(B) and Heike Wehrheim2

1 Paderborn University, Paderborn, Germany
jkoenig@mail.upb.de

2 Carl von Ossietzky University of Oldenburg, Oldenburg, Germany

Abstract. Concurrent correctness conditions formalize the notion of
“seeming atomicity” in concurrent access to shared object state. For dif-
ferent sorts of objects (databases, concurrent data structures, software
transactional memory) different sorts of correctness conditions have been
proposed (serializability, linearizability, opacity). Decidability of concur-
rent correctness conditions studies two problems: the membership prob-
lem asks whether a single execution is correct; the correctness problem
asks whether all executions of a given implementation are correct.

In this paper we investigate decidability of Papadimitrious’s notion of
serializability for database transactions. Papadimitriou has proved the
membership problem for serializability to be NP-complete. For correct-
ness we consider a stricter version also proposed by Papadimitriou, which
requires an additional real time order constraint. We show this version
to be decidable given that all transactions are live.

1 Introduction

The purpose of concurrent correctness conditions is the definition of correct
concurrent access to shared state. Correctness therein typically means that con-
current accesses behave as though these were happening atomically. Technically,
this “seeming atomicity” is formalized by comparing concurrent executions (his-
tories) to serial ones. Today, several such correctness conditions exist for varying
sorts of objects, for example serializability [19] for database transactions, lin-
earizability [16] and quiescent consistency [6] for concurrent data structures and
opacity [14] for software transactional memories.

Implementations of such objects often employ intricate algorithms with fine-
grained concurrency and without explicit locking. Hence, research often works
towards finding model checking techniques to automatically check concurrent
correctness of implementations. The quest for such techniques starts with deter-
mining the decidability and complexity of concurrent correctness conditions.
Research in this area revolves around two problems: the membership problem
and the correctness problem. The membership problem studies the correctness

The authors are supported by DFG grant WE2290/12-1.

c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 47–64, 2021.
https://doi.org/10.1007/978-3-030-85315-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-85315-0_4

48 J. König and H. Wehrheim

of single executions, whereas the correctness problem looks at all executions gen-
erated by some implementation. In both cases, executions are compared to the
behaviour of serial specifications.

In this paper, we are concerned with the correctness problem for serializabil-
ity, the most frequently employed correctness condition for databases. Serializ-
ability was first defined by Papadimitriou [19]. Papadimitiriou has shown the
membership problem to be NP-complete. For the correctness problem, Alur and
McMillan [1] have studied a variant of serializability, called conflict serializabil-
ity [10], and have shown it to be decidable and in PSPACE. Later, Bouajjani
et al. [3] have shown the correctness problem for conflict serializability for an
unbounded number of processes to be in EXPSPACE. Conflict serializability
is based on a notion of conflict between events and (semi-)commutatibility of
non-conflicting events in histories. This differs from Papadimitriou’s original
definition of serializability.

Here, we study decidability of the correctness problem for a definition of seri-
alizability following Papadimitriou’s original idea (without a notion of conflict).
More precisely, we focus on a variant of serializability, called SSR in [19]. SSR
requires the reads-from relation of live transactions to be the same when com-
paring concurrent and serial histories as in the original definition proposed by
Papadimitriou. In addition it requires the real-time order of transactions to be
preserved. We prove SSR to be decidable under the assumption that all transac-
tions are live. In the further we present the related work in Sect. 2, present the
necessary notations and definitions in Sect. 3, our decidability result in Sect. 4,
and finally give a conclusion in Sect. 5.

2 Related Work

A number of works study decidability questions for concurrent correctness
conditions. A frequently studied correctness condition is conflict serializabil-
ity [10]. Conflict serializability is different from (view) serializability as defined
by Papadimitriou, as its equivalence definition is expressed via conflicts between
events which is not possible for view serializability. Several works are concerned
with the complexity of the membership and correctness problem for conflict seri-
alizability [1,3,10,19]. The correctness problem for conflict serializability is in
PSPACE for a finite amount of threads [1], while for an unbounded number of
threads it is EXPSPACE-complete [3]. Notably the proof for the latter result
uses the fact that only a finite amount of information, independent of history
length, is necessary to determine conflict serializability. Hence the basic idea
to prove decidability is similarly to ours. Furthermore, multiple model checking
approaches for conflict serializability have been published [5,9,11,13].

For sequential consistency, Alur and McMillan [1] have shown the correctness
problem to be undecidable; a result which we used for showing undecidability of
serializability. Automatic model checking techniques therefore typically work on
subclasses only [15,20].

For linearizability [16], there are again results both for the membership and
correctness problem [1,3,12]. Notably, the correctness problem for a bounded

On the Correctness Problem for Serializability 49

R1
t1(y)R

2
t2(x)W

2
t2(x)W

1
t1(x , y)R3

t1(x)W
3
t1(z)

Rtrw
t1 ()Wtrw

t1 (x , y , z)R1
t1(y)R

2
t2(x)W

2
t2(x)W

1
t1(x , y)R3

t1(x)W
3
t1(z)R

trr
t1 (x , y , z)Wtrr

t1 ()

R2
t2(x)W

2
t2(x)R

1
t1(y)W

1
t1(x , y)R3

t1(x)W
3
t1(z)

Fig. 1. Example histories. From top to bottom: he, he, hs.

number of threads is in EXSPACE, while the unbounded case is undecidable.
Bouajjani et al. proved that for the unbounded case linearizability is still decid-
able for a subclass of programs that are data independent [4]. There are fur-
thermore multiple works targetting automatic model checking of linearizabil-
ity [17,21–23].

Finally, for other correctness conditions like opacity or quiescent consistency
additional model checking approaches and theoretical results exist (see e.g. [2,
7,8,13,18]).

3 Background

We start by defining the correctness problem for serializability. Like other con-
current correctness conditions, serializability is based on the notion of histories.
Histories are sequences of events (reading of or writing to shared state by threads)
grouped into transactions. In the sequel, we mainly follow the original definition
by Papadimitriou [19].

A history is an interleaving of read and write events of a fixed number of
threads. Each read and write operates on a number of variables. The events of a
thread are grouped into transactions. A thread can execute several transactions.
Thus a history is a sequence of read and write events indexed both by their
threads and their transactions and parametrized by the set of accessed variables.
For readability, we omit the set brackets of variable sets in examples. We let T
be the finite set of threads, Var be the finite set of shared variables and Tr the
set of transactions.

Definition 1 (History). A history is a sequence of events ev0 . . . evn, where
for all i, 0 ≤ i ≤ n, either evi = Wt(V) or evi = Rt(V) with t ∈ T , V ⊆ Var.

Notation. The definition does not mention transactions since given a sequence
of events indexed by threads there is – up to isomorphism – only one way to
assign transaction identifiers to events – when transactions are well-formed (see
below). We let H be the set of all histories. The set of events Ev is divided into
read events Evrd and write events Evwr. The set of all transactions of a history
h is tr(h), and we write tr ∈ h if a transaction tr occurs in h. Events can be
indexed by their transaction tr which makes them unique, e.g. the event Rtr

t (V)
is a read by thread t of all variables in V within the transaction tr. If an event
occurs in a history h ∈ H, we write ev ∈ h. If the event ev is ordered before
another event ev′ in history h, we write ev <h ev′. For two histories (or more

50 J. König and H. Wehrheim

generally sequences of events) h and h′, we write h · h′ for the concatenation of
h and h′, h � h′ if h is a prefix of h′, and h � h′ if h is a subsequence of h′.

Histories have to be well-formed in the following sense:

1. A transaction consists of one or two events. If one, it is a read event. If two,
one is a read and the other a write event.

2. Both events are executed by the same thread.
3. The write event (if it exists) is ordered after the read event, and no event of

the same thread occurs in between the read and the write event.

The history he shown in Fig. 1 (top) is such a well-formed history.
The thread t of a transaction tr is denoted as t(tr), which without loss of

generality we assume to be identical for all histories, i.e., a fixed transaction
tr is always executed by the same thread. We say a transaction is unfinished
whenever it only has a read event in a history, and call it finished when it has
two events in a history. For a transaction tr and history h we denote the first
case as unfin(tr, h).

For serializability we furthermore need to define real time orders as well
as equivalence of histories. Two transactions tr1, tr2 are real time ordered in a
history h, tr1 ≺h tr2, when tr1 is finished and the write event of tr1 occurs
before the read event of tr2. The real time order of h, h.RT ⊆ Tr ×Tr , contains
all pairs (tr1, tr2) such that tr1 ≺h tr2. In he we for example have 1 ≺he

3 but
1 �≺he

2.
To define the notion of equivalence and finally serializability, we furthermore

need to define (a) the reads-from relation in a history, (b) the augmentation of
a history, and (c) liveness of transactions. A transaction tr1 reads v ∈ Var from
transaction tr2 in h whenever there exists a write event ev = Wtr2

t (V) and a
read event ev′ = Rtr1

t′ (V ′) (t, t′ ∈ T , V, V ′ ⊆ Var) in h and v ∈ V ∩ V ′ such
that ev <h ev′ and no other event writing to v exists in between ev and ev′. The
reads-from relation of h is denoted as h.RF ⊆ Tr × Tr × Var . For tr, tr′ ∈ tr(h)
and v ∈ Var , (tr, tr′, v) ∈ h.RF means that tr′ reads v from tr in h. In our
example we have (1, 3, x) ∈ he.RF and (2, 3, x) /∈ he.RF .

To ensure that all transactions can read from some writes and all variables
are read at the end, histories get augmented with additional transactions. The
augmented history h for a history h is the history where two transactions are
added, trw at the start and trr at the end of the history. The transaction trw
writes to each variable and reads from none, and trr reads all variables and
writes to none. For an example see the augmentation he of history he in Fig. 1
(additional transactions in grey). Then, a transaction tr in an augmented history
h is called live whenever it either is trr or for a live transaction tr′ and v ∈ Var ,
(tr, tr′, v) ∈ h.RF . A transaction is live in a non-augmented history h if it is live
in its augmented version h. In the example history he transaction 2 is not live
since the only variable x it writes to is never read in he. Note that this notion
of liveness is slightly different from the notion of transaction liveness in software
transactional memory (which corresponds more to being finished).

On the Correctness Problem for Serializability 51

q0 q1 q2 q3 q4
Rt1(x)

Rt2(x , y)

Wt2(x , y)
Wt2(x , y) Wt1(x)

Fig. 2. Implementation Automaton Example: Iex

Definition 2. Two well-formed histories h, h′ ∈ H are equivalent (h ≡ h′) iff

– they have the same set of transactions and
– for any live tr ∈ h and any tr′ ∈ h, (tr′, tr, v) ∈ h′.RF ⇔ (tr′, tr, v) ∈ h.RF.

In the example we have he ≡ hs. As noted by Papadimitriou [19], it is actually
sufficient for equivalency that both histories have the same set of live transac-
tions, but w.l.o.g. this is equivalent to assuming their transactions overall are
identical.

A history is serial whenever each read event either belongs to an unfinished
transaction or is directly followed by the write of its transaction. We let HS be
the set of serial histories. History hs in Fig. 1 is serial. We can now define strict
serializability for histories with multiple transactions per thread. The definition
mainly follows the one given by Papadimitriou1. Note it differs from the serial-
izability definition employed by Alur et al. which is conflict serializability [10].

Definition 3 (SSR+). A history h is serializable under SSR+ (or strictly seri-
alizable) iff there exists a serial history hs such that

1. h ≡ hs, and
2. h.RT ⊆ hs.RT (real time order preservation).

Note that the real time order contains the thread order. In our example, hs has
the same real time order as he. Thus overall he is serializable under SSR+.

Whenever for history h, a history hs as required by the above definitions
exists, we say h is serializable to hs under SSR+ or call hs an s-witness of h. Let hs

be a serial history and S be a set of serial histories. The set of histories serializable
to hs under SSR+ is denoted SSR+(hs). Additionally, SSR+(S) denotes the set
of histories h such that there exists a hs ∈ S such that h is serializable to hs

under SSR+.

Correctness Problem. With these definitions at hand, we can define the actual
problem we are interested in. The correctness problem is the problem of checking
whether each of the generated histories of an implementation I is serializable
to some serial history generated by a specification S. We assume that both
I and S – as common in the related literature [1,8] – are given as finite state
automata, and let L(A) be the language accepted by an automaton A. Figure 2 is
1 The difference lays in our introduction of transaction identifiers and the accompany-

ing requirement of thread order preservation, which is often assumed for traditional
memory models.

52 J. König and H. Wehrheim

an example of an implementation automaton. It generates (accepts) the language
L(Iex) = Rt1(x)

(
Rt2(x , y)Wt2(x , y)

)+
Wt1(x). Transaction identifiers can be

freely assigned to the events of the transactions of each word in this language.
We assume that both specification and implementation automaton only generate
well-formed histories.

Then the correctness problem for strict serializability is defined as follows.

Problem 1 (Correctness Problem for Strict Serializability). Given an implemen-
tation I and a specification S, determine whether L(I) ⊆ SSR+(L(S)) is true.

Assuming S to be an automaton producing every serial history (for given threads
T and variables Var), the automaton Iex is not correct according to the above
definition. It accepts the history R1

t1(x)R2
t2(x , y)W2

t2(x , y)W1
t1(x). This history

is not serializable under SSR+.

4 The Correctness Problem for SSR− Is Decidable

We look at the decidability of the correctness problem for strict serializability.
Here, we show decidability for a subclass of SSR+ (called SSR−) where the
assumption is that all transactions in a history are live or unfinished.

The decidability follows from the fact that we can construct a finite automa-
ton whose language is empty if and only if all histories generated by the imple-
mentation automaton are strictly serializable. The states of this automaton are
(approximations of) equivalence classes of histories where the equivalence cap-
tures the strict serializability of histories and their extensions.

The assumption of all transactions being live or unfinished guarantees prefix-
closedness of strict serializability and thus allows us to incrementally construct
the states of the equivalence class automaton.

Proposition 1. Let Hlive be the set of histories with live2 transactions only,
Hun,live be the set of histories where all transactions are either unfinished or live
and h ∈ Hlive . If h is not strictly serializable, so are all h′ ∈ Hun,live such that
h � h′.

In the following we assume (1) all histories to contain live or unfinished trans-
actions only and (2) an implementation automaton to only accept words (his-
tories) in which all transactions are finished. We can therefore employ a notion
of equivalence of histories meaning (a) same set of transactions and (b) same
reads-from relation (for all transactions, not just live ones). This is important for
the construction below because it allows us to directly check for the correctness
of reads-from relations when observing the next read, not needing to wait for
the transaction of this read to become finished. The notion of s-witness used in
the sequel is based on this adapted equivalence definition.

We furthermore assume checking strict serializability against the most general
specification automaton. The most general specification automaton generates all
2 Note that all live transactions have to be finished.

On the Correctness Problem for Serializability 53

q0(
ε{ ∅}) q1(

R1
t1(x){

R1
t1(x)

})

q2⎛
⎝ R1

t1(x)R
2
t2(x , y){

R1
t1(x)R

2
t2(x , y)

R2
t2(x , y)R1

t1(x)

}⎞
⎠

q3(
R1

t1(x)T
2
t2(x , y){

R1
t1(x)T

2
t2(x , y)

})

q1(
R1

t1(x)T
2
t2(x , y){

R1
t1(x)T

2
t2(x , y)

})

q2(
R1

t1(x)T
2
t2(x , y)R4

t2
(x , y){

R1
t1(x)T

2
t2(x , y)R4

t2
(x , y)

})

q4(
R1

t1(x)T
2
t2(x , y)W1

t1(x)
∅

)

q3(
R1

t1(x)T
2
t2(x , y)T4

t2
(x , y){

R1
t1(x)T

2
t2(x , y)T4

t2
(x , y)

})

q1(
R1

t1(x)T
2
t2(x , y)T4

t2
(x , y){

R1
t1(x)T

2
t2(x , y)T4

t2
(x , y)

})

q2(
R1

t1(x)T
2
t2(x , y)T4

t2
(x , y)R6

t2(x , y){
R1

t1(x)T
2
t2(x , y)T4

t2
(x , y)R6

t2(x , y)
}) q3(

R1
t1(x)T

2
t2(x , y)T4

t2
(x , y)T6

t2(x , y){
R1

t1(x)T
2
t2(x , y)T4

t2
(x , y)T6

t2(x , y)
})

q4(
R1

t1(x)T
2
t2(x , y)T4

t2
(x , y)W1

t1(x)
∅

)

q4(
R1

t1(x)T
2
t2(x , y)T4

t2
(x , y)T6

t2(x , y)W1
t1(x)

∅
)

Wt2(x , y)

Wt1(x)

Wt2(x , y)

Wt1(x)

Rt1(x)

Rt2(x , y)

Wt2(x , y)

Wt2(x , y)

Wt1(x)

Rt2(x , y)

Wt2(x , y)

Rt2(x , y)

Wt2(x , y)

Fig. 3. Excerpt of histories of Iex (of Fig. 2) and their s-witnesses

serial histories. Thus the specification automaton S does not play a role in the
following. Deciding strict serializability for specific automata S would require
additional tracking of states of S in the below given construction.

4.1 Compact Representation

We start by looking at a naive approach for generating all histories of an imple-
mentation automaton and explain how to compact these infinitely many histories
to some finite structure. Given an implementation automaton, a naive approach
would simply try to explore the entire state space of the implementation, i.e. to
generate all of its histories and check them for strict serializability. An excerpt
of the state space of implementation automaton Iex as a graph can be seen in

54 J. König and H. Wehrheim

Fig. 3. The upper half of each node shows the current state of the automaton and
the lower half the history of the events executed so far and its set of s-witnesses.
Note that an entire transaction of the form Rj

ti(x)Wj
ti(x) is for brevity denoted

as Tj
ti(x).

The obvious problem with this approach is that the state space of imple-
mentations can be infinite, as there are infinitely many histories. Our approach
is now to reduce the state space by merging nodes which behave similarly. In
the graph in Fig. 3, these are marked with the same filling pattern. For exam-
ple, consider the striped states (second column, second, fourth and sixth state):
Whenever we execute Wt2(x , y)Wt1(x) from a striped node, we end up in a node
with implementation state q4 and an empty s-witness, i.e. the current history is
not strictly serializable. Whenever we execute Wt2(x , y), we either end up in a
node with implementation state q3 or q2 where in both cases the corresponding
history is strictly serializable. So summarizing we consider two nodes as behaving
similarly whenever

– they contain the same implementation automaton state, and
– when appending identical events, both either keep or loose their strict serial-

izability.

Merging these two nodes into one does not change the accepted language of the
automaton. We show decidability by proving that such a graph with merged
nodes has (a) a finite number of nodes (and thus is representable as a finite
automaton) and (b) this automaton is effectively constructable.

We start by formalizing the above similarity on histories.

Definition 4 (SSR-extension equivalence). Two histories h, h′ ∈ H are
SSR-extension equivalent (h ≡ext h′) iff ∀n ∈ N,∀ev0 . . . evn ∈ Evn either

– h · ev0 . . . evn and h′ · ev0 . . . evn are both strictly serializable,
– or h · ev0 . . . evn and h′ · ev0 . . . evn are both not strictly serializable.

The question is how to determine whether two histories are SSR-extension equiv-
alent. The general idea is to reduce a history to the essential information needed
to determine whether appending events keeps the history strictly serializable or
not. This information is called SSR-data. Whenever two histories have the same
SSR-data, they are SSR-extension equivalent. Below we will show that there are
only finitely many different (valid) SSR-data which is key to our decidability
result.

Witness Extensions. Before we formalize SSR-data, we take a look at some
properties of histories, their s-witnesses and extensions with events. Figure 4
shows the first such property in a diagram. The upper level is a history h and its
extension h′ by one read event. The read event is (and can only be) appended
at the end. The lower level depicts one s-witness (hs) for h and one for h′ (h′

s).
Here, we see that the new read event is inserted in the middle of hs. What is
important, however, is that the new s-witness h′

s needs to be a supersequence

On the Correctness Problem for Serializability 55

of hs, i.e. we cannot reorder events already occurring in hs. This is due to the
requirements of strict serializability (equality of reads-from relation and subset
on real-time ordering). The same applies to extensions with write events. Hence,
we only have a limited amount of candidate s-witnesses when extending a history.

h = T1
t1(x)R

2
t2(x , y) h′ = T1

t1(x)R
2
t2(x , y)R5

t3(x)

h′
s = T1

t1(x)R
5
t3(x)R

2
t2(x , y)hs = T1

t1(x)R
2
t2(x , y)

append Rt3(x)

remove Rt3(x)

h′.RF = h′
s.RF

h′.RT ⊆ h′
s.RT

h.RF = hs.RF
h.RT ⊆ hs.RT

Fig. 4. Supersequence property for extensions of s-witnesses

h = T1
t1(x)R

3
t1(x)R

2
t2(x , y)

hs1 = T1
t1(x)R

2
t2(x , y)R3

t1(x)

hs2 = T1
t1(x)R

3
t1(x)R

2
t2(x , y)

h′ = T1
t1(x)R

3
t1(x)R

2
t2(x , y)W3

t1(x)

h′
s1 = T1

t1(x)R
2
t2(x , y)R3

t1(x)W
3
t1(x)

h′
s2 = T1

t1(x) R
3
t1(x)W

3
t1(x)R

2
t2(x , y)

Wt1(x)

insert Wt1(x)

insert Wt1(x)

Fig. 5. A history and its s-witnesses extended with a write event

Next, we need to be able to compute s-witness extensions (or at least, a
compact form of them). To this end, we need to determine which of the super-
sequence candidates can be kept and which are to be eliminated because they
are no valid s-witnesses for the extended history. For this, consider Fig. 5. The
history h (top) is strictly serializable and both the histories hs1 and hs2 are s-
witnesses. When history h is extended by event W3

t1(x), this event gets appended
at the end of the history. Similarly, we need to insert W3

t1(x) into the s-witnesses
to find a witness for h′.

As this is a write event, all serial candidates must have the write by trans-
action 3 directly follow the read event of 3. In Fig. 5 the write is thus inserted
directly after the last event of its thread in both cases. The resulting histories
are obviously serial. Second, we need to check whether h′

s1 and h′
s2 preserve the

real time order of h′. This is the case. Third, we need to check if the reads-from
orders of h′ and h′

s1 , h′
s2 , respectively, are identical. For h′

s1 this is the case as
well. For h′

s2 they are different: In hs2 transaction 1 writes to x which transac-
tion 2 reads with transaction 3 occuring in between. We say that x belongs to

56 J. König and H. Wehrheim

the write-before-read-after (short, wbra) variables of 3. Thus in h′
s2 the write of

transaction 3 is read (by transaction 2) which it is not in h′. Hence h′
s2 is not

an s-witness of h′ and this candidate needs to be eliminated.
The elimination can be determined by looking at the write-before-read-after

variables formalized with the help of the last-writer function.

Definition 5 (Last Writer). Given a history h = ev0 . . . en, the last writer
function for an event ev, lwev,h : Var → Tr ∪ {trini}3, determines the last
writer to a variable v, i.e. lwev,h(v) = tr iff

– tr ∈ h and tr contains a write event w writing to v,
– w <h ev (the write occurs before ev),
– and there is no write w′ to v such w <h w′ <h ev.

Note that it is not possible to use the reads-from relation here, as the last writer
function returns the last writer of a variable at arbitrary specified event of the
history, which does not have to be a read, reading that variable. When the event
ev is the last event in a history, we elide the index to lw.

The write-before-read-after variables of a transaction are all variables that get
written to before and read from after that transaction.

Definition 6 (Write-Before-Read-After Variables). Given a serial history
hs with unfinished transaction tr and read event ev, the write-before-read-after
function wbrah : Tr → 2Var of h determines the variables written before and
read after a transaction, i.e. v ∈ wbrah(tr) holds iff

– there exists a transaction tr1 s.t. lwev,h(v) = tr1 and
– a transaction tr2 with a read event ev′ s.t. ev <h ev′ and lwev′,h(v) = tr1.

If tr is finished, then wbrah(tr) = ∅.
Summarizing, for extensions with write events we get the following property: an
s-witness hs can be extended with a write event Wtr

t (V) if

wbrahs
(tr) ∩ V = ∅ . (1)

Next we look at extensions with read events. For a read the preservation of
the serial nature of an s-witness is trivial, as a new read does not violate it no
matter where it is added. Still all feasible candidates must have the additional
read located after the last write of the old s-witness. Otherwise the real time
order of the extended history is trivially not preserved. In Fig. 6 there are two
s-witnesses for h with different orders for the writing transactions. Note that
in every history except h we removed all empty reads for brevity. For hs1 two
successor candidates exist, h′

s1 where the read is added after R3
t1(x) and h′

s2 where
it is added before. Similary for hs2 two candidates exist. For both s-witnesses
both successor candidates preserve the real time order of h′.

3 We assume trini to be the transaction initializing all variables.

On the Correctness Problem for Serializability 57

h = R1
t1()R

2
t2()W

2
t2(x , y)W1

t1(x , z)R3
t1(y)

hs1 = W2
t2(x , y)W1

t1(x , z)R3
t1(y)

hs2 = W1
t1(x , z)W2

t2(x , y)R3
t1(y)

h′ = W2
t2(x , y)W1

t1(x , z)R3
t1(y)R

4
t2
(x)

h′
s1 = W2

t2(x , y)W1
t1(x , z)R3

t1(y)R
4
t2
(x)

h′
s2 = W2

t2(x , y)W1
t1(x , z)R4

t2
(x)R3

t1(y)

h′
s3 = W1

t1(x , z)W2
t2(x , y)R3

t1(y)R
4
t2
(x)

h′
s4 = W1

t1(x , z)W2
t2(x , y)R4

t2
(x)R3

t1(y)

Rt2(x)

insert Rt2(x)

insert Rt2(x)

insert Rt2(x)

insert Rt2(x)

Fig. 6. A history and its s-witnesses extended with a read event

For the reads-from relation both successor candidates for hs1 are valid as the
new read event reads from transaction 1 in both cases. The candidates for hs2

differ in reads-from order, as the read event reads from transaction 2. This is
the case since in hs1 the last writer on x is transaction 1 which is identical to
that of h, but for hs2 transaction 2 is the last writer which is different from h.
The summary in such and similar cases is thus: an s-witness hs can be extended
with a read event Rtr

t (V) if for all variables v ∈ V , the last writer of v in h and
hs is the same:

∀v ∈ V : lwhs
(v) = lwh(v). (2)

These considerations lead us to keeping both the last writer and the wbra vari-
ables in the SSR-data.

SSR-Data. We can now take a look at the SSR-data and its extension for events
for an example (Fig. 7). Note that in the full state space of an implementation
automaton we would need to store a complete history and its set of s-witnesses.
Here we now apply two compression functions to the history and to each s-
witness, and only store their compressed versions together with the wbra vari-
ables. The compression works as follows: For each s-witness we remove every
finished transaction that is not a last writer; for the history we remove each
transaction that is finished and not a last writer in any (compressed) s-witness
of the history. The first compression function is denoted as sub (sub : H → H),
the latter as suball (suball : H × 2H → H). In suball(h,H), the set H is some
set of (possibly already compressed) s-witnesses. Both compression functions
generate strings which are subsequences of their (first) argument.

In the given example history T2
t2(x)T1

t1(x) (Fig. 7, top node) the first trans-
action is not the last writer of any variable, it is also finished, so it is removed
when extracting SSR-data. The wbra variables are shown as “−” as there is no

58 J. König and H. Wehrheim

unfinished transaction. In the one s-witness, transaction 1 is removed as it is fin-
ished. Then we see a number of extensions with events (transitions from left to
right) followed by compression steps (diagonal arrows from right to left). These
show how the SSR-data is first extended and then again compressed. When a
new event is appended to the history each compressed s-witness is expanded like
a normal s-witness, as discussed above. As all last writers are known (can be
seen from compacted s-witnesses and history) we can compare them. We can
also check whether a write is in conflict with the wbra variables of its transac-
tion (condition (1)). For each new s-witness the wbra set is generated from the
previous s-witness. After each extension the resulting tuple is compressed again.

T2
t2(x)T

1
t1(x){

T2
t2(x)T

1
t1(x)

}

(
T1

t1(x)
T1

t1(x), −
) (

T1
t1(x)R

3
t1(x)

T1
t1(x)R

3
t1(x), −

)

(
T1

t1(x)R
3
t1(x)

T1
t1(x)R

3
t1(x), −

) ⎛
⎜⎝

T1
t1(x)R

3
t1(x)R

2
t2(x)

T1
t1(x)R

3
t1(x)R

2
t2(x),wbra(3) = x

T1
t1(x)R

2
t2(x)R

3
t1(x),wbra(2) = x

⎞
⎟⎠

⎛
⎝ T1

t1(x)R
3
t1(x)R

2
t2(x)

T1
t1(x)R

3
t1(x)R

2
t2(x),wbra(3) = x

T1
t1(x)R

2
t2(x)R

3
t1(x),wbra(2) = x

⎞
⎠ (

T1
t1(x)R

3
t1(x)R

2
t2(x)W

2
t2(x , y)

T1
t1(x)R

3
t1(x)R

2
t2(x)W

2
t2(x , y),wbra(3) = x

)

(
R3

t1(x)R
2
t2(x)W

2
t2(x , y)

R3
t1(x)R

2
t2(x)W

2
t2(x , y),wbra(3) = x

) (
R3

t1(x)R
2
t2(x)W

2
t2(x , y)W3

t1(x)
ε, −

)

extract SSR-data

Rt1(x)

compr.

Rt2(x)

compr.

Wt2(x , y)

compr.

Wt1(x)

Fig. 7. Examples for the computation of successors of SSR-data; wbra variables only
shown if non-empty.

In general SSR-data are elements of the form H × 2HS×W , where W is the
set of all functions wbra : Tr → Var . We store a (compressed) history together
with a set of pairs containing (compressed) s-witnesses and their wbra functions.

Definition 7 (Validity of SSR-data). Let h ∈ H be a history and Hs its set
of s-witnesses. A pair (hc,HW) ∈ H × 2HS×W is valid SSR-data for h iff

– hc = suball(h,Hs) (compressed history), and
– HW = {(sub(hs),wbrahs

) | hs ∈ Hs} (pairs of compressed s-witnesses and
their wbra functions).

On the Correctness Problem for Serializability 59

Proposition 2. Let h ∈ H not be strictly serializable. Then its valid SSR-data
is (suball(h, ∅), ∅) where suball(h, ∅) �= ε.

Key to decidability is the fact that we only have a finite amount of different
valid SSR-data.

Lemma 1. The number of SSR-data valid for some history is bound in size by
O((|Var | · 22|Var | + |T | · 2|Var |)!).

We next formally define the successor computation (as in Fig. 7). The exten-
sion and compression step are unified into one function, which is composed out
of a function for appending a write and one for appending a read event ev.

ext((hc,HW), ev) =

{
extr((hc,HW), ev) if ev ∈ Evrd,

extw((hc,HW), ev) if ev ∈ Evwr.

We next define extw and extr starting with write extensions. For each com-
pressed s-witness of the input SSR-data, we need to check whether the writing
thread’s wbra variables contain any of the variables written to by the write event
(Condition (1)). If not, then both (compressed) s-witness and (compressed) his-
tory need to be extended with the write event and the wbra variables of all
transactions updated. Let ev(tr) denote the last element of transaction tr in the
context of a history.

Definition 8 (Extension with write). Let (hc,HW) be some SSR-data and
ev = Wtr

t (V) a write event.
Then extw((hc,HW), ev) = (h′

c,HW ′) where (h′
s, wbh′

s
) ∈ HW ′ iff there exists

some pair (hs, wbhs
) ∈ HW such that hs = ev0 . . . ev(tr) . . . evn and

– wbhs
(tr) ∩ V = ∅ (no writing of wbra variables),

– h′
s = sub(ev0 . . . ev(tr)ev . . . evn) (compression of extended s-witness),

– wbh′
s
(tr) = ∅ (wbra variables of finished transaction emptied),

– ∀tr′ �= tr ∈ Tr : wbh′
s
(tr′) = wbhs

(tr′) (wbra variables of other transactions
kept)

and h′
c = suball(hc · ev,HW ′) (history compressed w.r.t. new s-witnesses).

This write extension preserves validity of SSR-data.

Lemma 2. Let h be a history, (hc,HW) its valid SSR-data and ev a write event.
Then the SSR-data extw((hc,HW), ev) is valid for h · ev.

Next we define the extension with read events. For each s-witness we check if
its last writers for the variables read are identical with that of the compressed
history (condition (2)); if yes we generate all candidates where the new read
is placed after the last write. We then compress these and update the wbra
variables. Finally the compressed history is expanded and again compressed
using the information from the new s-witness set. Let lwr(h) denote the last
write event of history h.

60 J. König and H. Wehrheim

Definition 9 (Extension with reads). Let (hc,HW) be some SSR-data and
ev = Rtr

t (V) a read event.
Then extr((hc,HW), ev) = (h′

c,HW ′) where (h′
s, wbh′

s
) ∈ HW ′ iff there exists

some pair (hs, wbhs
) ∈ HW such that hs = ev0 . . . lwr(hs) . . . evn and

– ∀v ∈ V : lwhs
(v) = lwhc

(v) (last writers of history and s-witnesses agree),
– h′

s = sub(ev0 . . . lwr(hs) . . . ev . . . evn) (compression of extended s-witness,
read inserted somewhere after last write),

– ∀tr′ ∈ Tr : wbh′
s
(tr′) = wbhs

(tr′) ∪ wbrah′
s
(tr′) (wbra variables of all transac-

tions updated)

and h′
c = suball(hc · ev,HW ′).

This read extension preserves validity of SSR-data.

Lemma 3. Let h be a history, (hc,HW) its valid SSR-data and ev a read event.
Then the SSR-data extr((hc,HW), ev) is valid for h · ev.

For a sequence seq and some SSR-data (hc,HW), we write ext((hc,HW), seq)
for the consecutive extension of the SSR-data with the events of seq. Now given
an event sequence h, we can simply apply ext consecutively for each event, and
if none of the thus computed SSR-data contains ∅ as the second element of the
pair, the history h is strictly serializable.

SSR-Data and SSR-Extension Equivalence. As a last step in the definition of
SSR-data, we show the desired property about SSR-extension equivalence: if
two histories h and h′ have the “same” valid SSR-data, then they are SSR-
extension equivalent. Here we employ similarity up to transaction renamings,
i.e. transaction identifiers can be arbitrarily renamed via a bijective function
r : Tr → Tr when r preserves threads (for all tr, t(tr) = t(r(tr))). We write
(hc,HW) ≡data (h′

c,HW ′) if the two SSR-data are the same up to renaming of
transactions.

Theorem 1. Let h, h′ ∈ H be two histories and (hc,HW) and (h′
c,HW ′) their

valid SSR-data. If (hc,HW) ≡data (h′
c,HW ′), then h ≡ext h′.

The reverse implication does not hold: SSR-data is only approximating SSR-
extension equivalence. For the correctness of the automaton construction given
next this direction of the implication suffices.

4.2 Construction of Finite Automaton

In our decision procedure, we generate a finite automaton where the states are
pairs of implementation automaton states and SSR-data of histories. The infinite
state space obtained via the naive exploration strategy is thus collapsed into
a finite automaton. This automaton can be constructed by starting with the
SSR-data of an empty history and then generating new SSR-data according to
the events in the implementation automaton using the above given extension

On the Correctness Problem for Serializability 61

q0

ε, ∅, ∅)
start

q1(
R1

t1(x),
R1

t1(x), ∅, ∅
)

q2⎛
⎝ R1

t1(x)R
2
t2(x , y)),

(R1
t1(x)R

2
t2(x , y), {x, y}, ∅),

(R2
t2(x , y)R1

t1(x), ∅, {x})

⎞
⎠

q3(
R1

t1(x)T
2
t2(x , y),

(R1
t1(x)T

2
t2(x , y), {x, y}, ∅)

)

q1(
R1

t1(x)T
2
t2(x , y),

(R1
t1(x)T

2
t2(x , y), {x, y}, ∅)

)

q2(
R1

t1(x)T
2
t2(x , y)R4

t2
(x , y),

R1
t1(x)T

2
t2(x , y)R4

t2
(x , y), {x, y}, ∅

)

q4

R1
t1(x)T

2
t2(x , y)W1

t1(x), ∅, ∅)Rt1(x)

Rt2(x , y)

Wt2(x , y)

Wt2(x , y)

Wt1(x)

Rt2(x , y)Wt2(x , y)

Wt2(x , y)

Fig. 8. SSR-automaton of Iex (of Fig. 2)

function. As we only have a finite number of different SSR-data (as of Lemma 1)
such a construction terminates.

To formalize this construction, we let SSRT ,Var be the set of all SSR-data
with thread identifiers from T and variables from Var . We furthermore let
SSR∅T ,Var be the set of all SSR-data of the format (hc, ∅), where hc �= ε.

Definition 10. Let I = (Q, δ, q0, F) be an implementation automaton. The
SSR-automaton of I (E(I)) is the automaton (QE , δE , q0,E , FE) such that

– QE = Q × SSRT ,Var ,
– q0,E = (q0, (ε, ∅)),
– FE = F × SSR∅T ,Var

and ((q, ssr), ev, (q′, ssr′)) ∈ δE iff (q, ev, q′) ∈ δ and ext(ssr, ev) = ssr′.

The thus constructed automaton is a finite automaton since by Lemma1 we
only have finitely many different valid SSR-data. Furthermore, we can derive
strict serializability of the implementation automaton from the language of the
SSR-automaton.

Theorem 2. Let I be an implementation automaton. Then I is strictly serial-
izable iff L(E(I)) = ∅.
This finally gives us the decidability of SSR−.

62 J. König and H. Wehrheim

Corollary 1. The correctness problem for SSR− is decidable.

Figure 8 shows the result of the construction for our running example. The dia-
gram only depicts the reachable states. Note that the standardized naming of
transactions can lead to a “renaming” of transactions and does so for transac-
tion 3 in one case. We see that the language of the SSR-automaton is non-empty
(the state with the grid pattern is accepting), and hence not all histories of the
implementation automaton are strictly serializable. We also see that equivalence
of SSR-data only implies SSR-extension equivalence: there are still two striped
and two dotted states which are SSR-extension equivalent but have different
SSR-data, and thus could not be compacted to a single state.

5 Conclusion

In this paper we have studied the decidability of the correctness problem of seri-
alizability. We have proven a strenghtening of serializability with an additional
requirement of real-time order preservation to be decidable. As future work we
plan to investigate whether our assumption of liveness of transactions can be
removed while keeping the decidability result.

References

1. Alur, R., McMillan, K.L., Peled, D.A.: Model-checking of correctness conditions
for concurrent objects. Inf. Comput. 160(1–2), 167–188 (2000). https://doi.org/
10.1006/inco.1999.2847

2. Armstrong, A., Dongol, B., Doherty, S.: Reducing opacity to linearizability: a sound
and complete method. CoRR abs/1610.01004 (2016). http://arxiv.org/abs/1610.
01004

3. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs
against sequential specifications. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 290–309. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37036-6 17

4. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: On reducing linearizability to state
reachability. Inf. Comput. 261(Part), 383–400 (2018). https://doi.org/10.1016/j.
ic.2018.02.014

5. Cohen, A., O’Leary, J.W., Pnueli, A., Tuttle, M.R., Zuck, L.D.: Verifying correct-
ness of transactional memories. In: Formal Methods in Computer-Aided Design,
7th International Conference, FMCAD 2007, Austin, Texas, USA, 11–14 November
2007, Proceedings, pp. 37–44. IEEE Computer Society (2007). https://doi.org/10.
1109/FAMCAD.2007.40

6. Derrick, J., Dongol, B., Schellhorn, G., Tofan, B., Travkin, O., Wehrheim, H.:
Quiescent consistency: defining and verifying relaxed linearizability. In: Jones, C.,
Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 200–214. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 15

7. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying transactional memory. Formal Aspects Comput. 25(5), 769–799 (2013).
https://doi.org/10.1007/s00165-012-0225-8

https://doi.org/10.1006/inco.1999.2847
https://doi.org/10.1006/inco.1999.2847
http://arxiv.org/abs/1610.01004
http://arxiv.org/abs/1610.01004
https://doi.org/10.1007/978-3-642-37036-6_17
https://doi.org/10.1007/978-3-642-37036-6_17
https://doi.org/10.1016/j.ic.2018.02.014
https://doi.org/10.1016/j.ic.2018.02.014
https://doi.org/10.1109/FAMCAD.2007.40
https://doi.org/10.1109/FAMCAD.2007.40
https://doi.org/10.1007/978-3-319-06410-9_15
https://doi.org/10.1007/s00165-012-0225-8

On the Correctness Problem for Serializability 63

8. Dongol, B., Hierons, R.M.: Decidability and complexity for quiescent consistency.
In: Grohe, M., Koskinen, E., Shankar, N. (eds.) Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY,
USA, 5–8 July 2016, pp. 116–125. ACM (2016). https://doi.org/10.1145/2933575.
2933576

9. Emmi, M., Majumdar, R., Manevich, R.: Parameterized verification of transac-
tional memories. In: Zorn, B.G., Aiken, A. (eds.) Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2010, Toronto, Ontario, Canada, 5–10 June 2010, pp. 134–145. ACM (2010).
https://doi.org/10.1145/1806596.1806613

10. Eswaran, K.P., Gray, J., Lorie, R.A., Traiger, I.L.: The notions of consistency and
predicate locks in a database system. Commun. ACM 19(11), 624–633 (1976).
https://doi.org/10.1145/360363.360369

11. Farzan, A., Madhusudan, P.: Monitoring atomicity in concurrent programs. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 52–65. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-70545-1 8

12. Gibbons, P.B., Korach, E.: The complexity of sequential consistency. In: Proceed-
ings of the Fourth IEEE Symposium on Parallel and Distributed Processing, SPDP
1992, Arlington, Texas, USA, 1–4 December 1992, pp. 317–325. IEEE Computer
Society (1992). https://doi.org/10.1109/SPDP.1992.242728

13. Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional memo-
ries. Distrib. Comput. 22(3), 129–145 (2010). https://doi.org/10.1007/s00446-009-
0092-6

14. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Chat-
terjee, S., Scott, M.L. (eds.) Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP 2008, Salt Lake City,
UT, USA, 20–23 February 2008, pp. 175–184. ACM (2008). https://doi.org/10.
1145/1345206.1345233

15. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Verifying sequential consistency on
shared-memory multiprocessor systems. In: Halbwachs, N., Peled, D. (eds.) CAV
1999. LNCS, vol. 1633, pp. 301–315. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48683-6 27

16. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990). https://doi.
org/10.1145/78969.78972

17. Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 321–337.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3 21

18. O’Leary, J.W., Saha, B., Tuttle, M.R.: Model checking transactional memory with
spin. In: 29th IEEE International Conference on Distributed Computing Systems
(ICDCS 2009), Montreal, Québec, Canada, 22–26 June 2009, pp. 335–342. IEEE
Computer Society (2009). https://doi.org/10.1109/ICDCS.2009.72

19. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979). https://doi.org/10.1145/322154.322158

20. Qadeer, S.: Verifying sequential consistency on shared-memory multiprocessors by
model checking. IEEE Trans. Parallel Distrib. Syst. 14(8), 730–741 (2003). https://
doi.org/10.1109/TPDS.2003.1225053

21. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6 40

https://doi.org/10.1145/2933575.2933576
https://doi.org/10.1145/2933575.2933576
https://doi.org/10.1145/1806596.1806613
https://doi.org/10.1145/360363.360369
https://doi.org/10.1007/978-3-540-70545-1_8
https://doi.org/10.1109/SPDP.1992.242728
https://doi.org/10.1007/s00446-009-0092-6
https://doi.org/10.1007/s00446-009-0092-6
https://doi.org/10.1145/1345206.1345233
https://doi.org/10.1145/1345206.1345233
https://doi.org/10.1007/3-540-48683-6_27
https://doi.org/10.1007/3-540-48683-6_27
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-642-05089-3_21
https://doi.org/10.1109/ICDCS.2009.72
https://doi.org/10.1145/322154.322158
https://doi.org/10.1109/TPDS.2003.1225053
https://doi.org/10.1109/TPDS.2003.1225053
https://doi.org/10.1007/978-3-642-14295-6_40

64 J. König and H. Wehrheim

22. Vechev, M., Yahav, E., Yorsh, G.: Experience with model checking linearizability.
In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 261–278. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02652-2 21

23. Zhang, S.J.: Scalable automatic linearizability checking. In: Taylor, R.N., Gall,
H.C., Medvidovic, N. (eds.) Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, Waikiki, Honolulu, HI, USA, 21–28 May 2011,
pp. 1185–1187. ACM (2011). https://doi.org/10.1145/1985793.1986037

https://doi.org/10.1007/978-3-642-02652-2_21
https://doi.org/10.1145/1985793.1986037

Efficient Model Checking Methods

A Set Automaton to Locate All Pattern
Matches in a Term

Rick Erkens(B) and Jan Friso Groote

Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands

r.j.a.erkens@tue.nl

Abstract. Term pattern matching is the problem of finding all pattern
matches in a subject term, given a set of patterns. Finding efficient algo-
rithms for this problem is an important direction for research [21]. We
present a new set automaton solution for the term pattern matching
problem that is based on match set derivatives where each function sym-
bol in the subject pattern is visited exactly once. The algorithm allows
for various traversal patterns over the subject term and is particularly
suited to search the subject term in parallel.

Keywords: Pattern matching · Set automaton · Parallel algorithm

1 Introduction

Given a set of term patterns and a subject term, we are interested in the sub-
term matching problem, which is to find all locations in the subject term where
a pattern matches. We restrict ourselves to linear patterns, that is, patterns in
which no variable occurs more than once. In term rewriting the subterm match-
ing problem corresponds to finding all redexes, given a left-linear rewrite system.
Typically, the matching operation must be performed for many subject terms
using the same pattern set, which makes it desirable that matching is efficient.
The costs of preprocessing the pattern set is less important as it is only done
once.

The subterm pattern matching problem should not be confused with the
root (pattern) matching problem. In the latter, only the matches at a specific
position in the subject term are needed. There are many solutions to the root
matching problem that are designed to efficiently deal with sets of patterns [21].
Moreover these solutions have been compared in the practical setting of theorem
proving [20]. A solution for the root matching problem can be applied to solve
the subterm matching problem by applying it to every position in a subject term.
But this solution can be expensive as many function symbols in the subject term
will be inspected multiple times.

In contrast to the root matching problem, efficient solutions to the subterm
matching problem are generally restricted to only a single pattern, and not
to a set as is common in term rewriting. They do not use an automaton and
c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 67–85, 2021.
https://doi.org/10.1007/978-3-030-85315-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_5&domain=pdf
http://orcid.org/0000-0002-5515-4854
http://orcid.org/0000-0003-2196-6587
https://doi.org/10.1007/978-3-030-85315-0_5

68 R. Erkens and J. F. Groote

process both the pattern and the subject term, which is expensive if the matching
problem needs to be solved for a huge number of subject terms. Existing solutions
for pattern sets are reductions from stringpath matching, which requires the
resulting stringpaths to be merged in order to yield a conclusive answer. The
algorithm that we propose is a mixture of an automaton and the match set
approach. It is explicitly formulated for an arbitrary number of patterns, operates
directly on the subject term in a top-down fashion, and directly outputs pattern-
position pairs instead of stringpath matches.

We present a solution using a so-called set automaton. In a set automaton
intermediate results are stored in a set and these stored results can be pro-
cessed independently using the same automaton. This is similar to a pushdown
automaton where intermediate results are stored on a stack to be processed at
a later moment. A set automaton allows for massive parallel processing. This is
interesting given the prediction that the next boost in computing comes from
developing algorithms that are more parallel in nature [19].

Given a pattern set L, we construct a deterministic automaton that prescribes
a traversal of subject terms t. The automaton is executed at some position p in
t, initially at the root. In each state a next transition is chosen based on the
function symbol f in t at a prescribed position, which is a sub-position of p.
Every function symbol of t is only inspected once. Each transition is labelled
with zero or more outputs of the form �@p′, announcing a match of pattern � at
some position p′ in the subject term.

Each transition ends in a set of configurations (state/position pairs) that
must be processed further. In case the resulting set always consists of one single
configuration, the set automaton behaves as an ordinary deterministic automa-
ton. The order in which the resulting configurations need to be processed is
undetermined, hence the name set automaton. In a sequential implementation a
stack or queue could be used to store these pairs giving depth-first or breadth-
first strategies. But more interestingly, the new state/position pairs can be taken
up by independent processors, exploring the subject term t in parallel. Note that
also when running in parallel the algorithm adheres to its main asset, namely
that every function symbol of t will only be inspected once.

The set automaton is generated by taking function symbol/position deriva-
tives of match goal sets, similar to how Brzozowski derivatives work for regular
expressions [2]. The derivatives are partitioned into independent classes, giving
rise to the set of next states. By shifting the match goal sets back, the relative
displacement through the subject term is derived allowing to calculate the posi-
tion where the next state must be evaluated. This keeps the automaton finite.

The paper is organized as follows. After some preliminaries we informally
discuss an example set automaton that matches associativity patterns in Sect. 3.
Section 4 is dedicated to the set automaton construction. In Sects. 5 we show that
the construction is a well-defined and terminating procedure, and in Sect. 6 we
prove that the obtained set automaton is indeed a correct and efficient solution
to the subterm matching problem. The details of the proofs can be found in [12].
In Sect. 7 we discuss the complexity of applying a set automaton and briefly

A Set Automaton to Locate All Pattern Matches in a Term 69

discuss some preliminary experiments on the size of set automata. Lastly in
Sect. 8 we share our thoughts on future work.

1.1 Related Work

Many solutions for the subterm pattern matching problem focus on the time
complexity or benchmarking of matching one pattern against one subject term.
See for example [4,8,10,24]. These methods are typically inefficient if there is
a large pattern set, and the subject terms that need to be matched against
the pattern set outnumber the subject term size and pattern size by orders
of magnitude. Especially in model checking tools that use term rewriting to
manipulate data [3,11], the pattern set size is usually a fixed parameter whereas
the amount of terms that need to be rewritten blows up according to state space
explosion. A better solution is to preprocess the pattern set into an automaton-
like data structure. Even though the preprocessing step is usually expensive, the
size of the pattern set does not appear as a parameter in the time complexity of
the matching time, as opposed to applying aforementioned solutions for every
pattern. This makes the subterm matching problem efficiently solvable against
a vast number of subject terms. To our knowledge, our approach is the first
top-down deterministic automata-based solution, that achieves this efficiency.

A literature study on related solutions is found in the taxonomy of [5,6].
Hoffmann and O’Donnell [18] convert a pattern into a set of stringpaths, after
which they create an Aho-Corasick automaton [1] that accepts this set of string-
paths. Cleophas, Hemerik and Zwaan report that this algorithm is closely related
to their algorithm, which constructs a tree automaton from a single pattern [7].
In [5], Algorithm 6.7.9, there is a version of this algorithm that supports multiple
patterns. The disadvantage of both approaches is that a subject term is scanned
for matching stringpaths, rather than term pattern matches. In order to yield a
conclusive answer to the term pattern matching problem, it is required to keep
track which stringpaths match for every pattern, at every position in the subject
term. Our set automata are built directly on the pattern set, which allows us
to output pattern-position pairs directly and avoid the postprocessing step of
merging stringpath matches.

Flouri et al. create a push-down automaton in [13] from a single pattern. This
approach is very similar to the construction of our set automaton in the sense
that match-sets are used in the automaton construction. Using such a push-
down automaton requires a bottom-up evaluation, and takes linear time in the
size of the subject term. Both traits are shared with Hoffman and O’Donnell’s
bottom-up algorithm [18].

Tree automata theory is a well-studied generalisation of string automata the-
ory [9]. It is known that subterm matching can be done with a nondeterministic
bottom-up tree automaton. Such automata can be made deterministic by means
of a powerset construction. It is also well-known that subterm matching can be
done with a nondeterministic top-down tree automaton, but using a determin-
istic top-down automaton is not possible. Intuitively, top-down tree automata
do not allow look-ahead. Upon taking an f -transition, all children of the f -node

70 R. Erkens and J. F. Groote

continue in a exactly one new configuration, which causes problems when there
are overlapping patterns. Formally one can show that every deterministic top-
down tree automaton that accepts the trees f(a, b) and f(b, a), will also accept
f(a, a) and f(b, b). Set automata are constructed by encoding the look-ahead in
the states, and only descend the subject term when it is allowed.

The notation and the fact that set automaton states are labelled with posi-
tions, have much in common with Adaptive Pattern Matching Automata [23],
which form a solution to the root pattern matching problem.

2 Preliminaries

A signature is a sequence of disjoint, finite sets of function symbols F0,F1, . . . ,Fn

where Fi consists of function symbols of arity i. We denote the arity of f by
#f . The set of constants is F0, the entire signature is defined by F =

⋃n
i=0 Fi

and the set of non-constants is denoted by F>0 =
⋃n

i=1 Fi Let T(F) be the
set of terms over F, defined as the smallest set that contains the variable ω,
every constant, and for all f ∈ F>0, whenever t1, . . . , t#f ∈ T(F), then also
f(t1, . . . , t#f) ∈ T(F). The set of closed terms TC(F) is defined similarly, but
without the clause ω ∈ TC(F). Since we only deal with linear patterns, that
is, patterns in which no variable occurs twice, it is unnecessary to distinguish
between the terms f(x) and f(y). Therefore we only use one variable ω.

A pattern over the signature F is a term in T(F)\{ω}. We use � to range
over patterns. A pattern is typically the ‘left-hand side’ of a rewrite rule. Given
a pattern � = f(t1, . . . , tn), its head symbol is given by hd(�) = f . A pattern set
is a finite, non-empty set of patterns. We use L to denote pattern sets.

A position is a list of non-zero natural numbers. We use P to denote the set
of all positions and we use ε to denote the empty list; it is referred to as the
root position. Given two positions p, q their concatenation is denoted by p.q. The
root position acts as a unit with respect to concatenation.

To alleviate the notation, we often denote a pair (x, p) in some set X × P by
x@p so that the pair may be read as ‘x at position p’. The term domain function
D : T(F) → P(P) maps a term to a set of positions. That is, D(ω) = {ε},
for all a ∈ F0 we have D(a) = {ε}, and for all f ∈ Fn with n > 0 we have
D(f(t1, . . . , tn)) = {ε} ∪ ⋃

i≤n{i.p | p ∈ D(ti)}.
Given a term t and a position p ∈ D(t), the subterm of t at position p is

denoted by t[p]. A pattern � matches term t on position p iff for all p′ ∈ D(�)
such that �[p′] �= ω we have that hd(t[p.p′]) = hd(�[p′]).

Let sub(t) be the subpatterns of t, given by {t[p] | p ∈ D(t) and t[p] �= ω}.
Since ω is not a pattern, it is excluded from this set on purpose. We extend D
and sub to sets of terms by pointwise union. That is, D(L) =

⋃
�∈L D(�), and

similarly for sub.

3 An Example Set Automaton

In this section we informally discuss the example set automaton in Fig. 1. It
can be used to solve the term matching problem for the associativity patterns

A Set Automaton to Locate All Pattern Matches in a Term 71

�1 = f(f(ω, ω), ω) and �2 = f(ω, f(ω, ω)). We work in a setting with one binary
function symbol f and one constant a.

Fig. 1. A set automaton for the associativity patterns.

We explain this automaton by applying it to the term t = f(f(a, f(a, a)), a).
The evaluation is done in a top-down fashion. That is, in order to inspect position
p.i we need to have inspected position p before. A configuration is a state paired
with a position. We start at (s0, ε), the initial state paired with the root position.
The automaton tells us which position in t to inspect, which pattern matches
are given as an output at which positions, and it tells at which configurations
the evaluation of the automaton must be continued.

The initial state s0 is labelled with the root position in the box on top of it.
This means that we have to inspect the function symbol in t at position ε relative
to the position p of the configuration. Since p = ε for the initial configuration,
we inspect the head symbol at t[ε.ε] which is f . There are two f -transitions from
state s0 in the automaton, which have been depicted graphically as an f -labelled
arrow, going to a black dot with two outgoing arrows. If a match is found, the
transition is labelled with �@p′ to indicate that pattern � matches at position p′

relative to the position p. In this case, no such label is present on the f -labelled
transition. Therefore no pattern match is reported. Furthermore, the arrows from
the black dots are labelled with a relative displacement p′′ indicating that the
new configuration must have the position p.p′′. In this case, the displacement
annotation ↓ ε prescribes that we continue the evaluation at position ε.ε. The
two transitions for f go to states s1 and s2 indicating that both states must
be evaluated independently, resulting in the configurations (s1, ε) and (s2, ε).
This can be done in parallel, but for simplicity we do a sequential traversal and
continue in state s1.

We are in configuration (s1, ε). The state label of s1 is 1, so we look at
position ε.1. In term t = f(f(a, f(a, a)), a) we observe hd(t[ε.1]) = f , so we take

72 R. Erkens and J. F. Groote

both f -transitions from s1. The arrow labelled by f , is accompanied by the label
�1@ε. This means that we announce a match for pattern �1 at position ε relative
to the configuration position. Since that position is still ε, we announce that
�1 matches t at position ε. From the black dot there are two outgoing arrows
with the label ↓ 1. This means that we continue in configurations (s1, ε.1) and
(s2, ε.1).

Continuing the evaluation in configuration (s2, 1), we find the state label
2 on top. So, we inspect t at position 2 relative to position 1 and find that
hd(t[1.2]) = f . We again follow both outgoing f -transitions. First we announce
a match for pattern �2 at position ε relative to position 1, so we get that t
matches �2 at position 1. Following the arrows from the bottom black dot, we
continue in configurations (s1, 1.2) and (s2, 1.2).

Now the configurations (s2, ε), (s1, 1), (s1, 1.2) and (s2, 1.2) still remain.
Inspecting t at each position p.L(s) where p is the configuration position and
L(s) is the state label, we find the constant a. Following any a-transition, the
evaluation ends up in the final state, denoted by ∅, which means that no new
configurations must be added for evaluation.

The algorithm provides the following answer to the question “at which posi-
tions do the patterns �1 = f(f(ω, ω), ω) and �2 = f(ω, f(ω, ω)) match the term
t = f(f(a, f(a, a)), a)?”. The pattern �1 matches t at the root position and �2
matches t at position 1. Observe that the algorithm inspected every position of t
exactly once. The construction of the automaton guarantees this efficiency, even
though at every inspection occurrence of a symbol f two independent evaluations
of the automaton were started.

4 Automaton Construction

We describe how to create a set automaton based on position-/function symbol
derivatives. To this end we first formally define the automaton, and in particular,
what kind of information should be encoded by states.

The sets of match obligations MO and match announcements MA are respec-
tively defined by

MO = P(sub(L) × P)\{∅} MA = L × P.

A match goal is a match obligation paired with a match announcement. To limit
the amount of parentheses, we often denote a match goal, i.e. a pair in MO×MA,
by �1@p1, . . . , �n@pn → �@p. Such a match goal should be read as: “in order to
announce a match for pattern � at position p, we are obliged to observe the
(sub)pattern �i on position pi, for all 1 ≤ i ≤ n”. We denote the positions of a
match obligation mo by pos(mo), defined by pos(mo) = {p ∈ P | (t, p) ∈ mo}.

A set automaton for the pattern set L is a tuple (S, s0, L, δ, η) where

– S ⊆ P(MO × MA)\{∅} is a finite set of states;
– s0 ∈ S is the initial state;
– L : S → P is a state labelling function;

A Set Automaton to Locate All Pattern Matches in a Term 73

– δ : S × F → P(S × P) is a transition function;
– η : S × F → P(L × P) is an output function.

The empty set serves as a final state, but it has no outgoing transitions and no
output. Furthermore, a match goal of the form �@p → �@p is called fresh, and a
match goal of the form mo → �@ε is called a root goal.

Example 1. Consider the pattern � = f(f(ω, g(ω)), g(ω)). Figure 2 is a set
automaton for the singleton pattern set {�}. It serves as a running exam-
ple throughout this section and the next. The state labels are given in the
small boxes on the top left of every state, and on the top right of every state
there is an identifier. We have L(s0) = ε and L(s3) = 1.2. Formally we have
δ(s3, f) = {(s0, 1.1), (s1, 1.2)}, which is depicted graphically as an f -labelled
arrow going to the black dot, with two outgoing position-labelled arrows to
s0 and s2. The only non-empty output set is η(s3, g) = {�@ε}. For all other
state/symbol pairs (s, h) we have η(s, h) = ∅. The final state ∅ has two incoming
transitions. For graphical purposes it is displayed twice.

Fig. 2. A set automaton for � = f(f(ω, g(ω)), g(ω)).

4.1 Initial State

Let L be a pattern set. We construct the automaton M = (S, s0, L, δ, η) by
starting with the initial state. It is labelled with the root position and its match
goals are all possible fresh root goals:

s0 = {�@ε → �@ε | � ∈ L} and L(s0) = ε.

74 R. Erkens and J. F. Groote

4.2 Function-Symbol-Position Derivatives

To define the transition relation, we introduce function-symbol-position deriva-
tives. This terminology is borrowed from Brzozowski derivatives of regular
expressions [2]. From a state s with L(s) = p, and a symbol f , we determine the
f -p-derivative of s by computing the reduced match obligations of s and adding
the fresh match goal �@p.i → �@p.i for every argument i of f and every pattern
� ∈ L. Based on observing function symbol f at position p, the match obligation
�1@p1, . . . , �n@pn can be altered in one of four ways.

– p = p1, n = 1 and �1 = f(ω, . . . , ω). Then f@p is the last observation that
was needed, so the obligation is fulfilled. The match announcement paired
with this obligation is presented as a pattern match.

– p = pi for some i and hd(�i) �= f . Then f@p contradicts with an expected
observation, so the match obligation is discarded.

– p �= pi for all i. Then f@p is unrelated, so the obligation remains unchanged
by this observation.

– otherwise p = pi for some i and hd(�i) = f , but f@p is only one of the many
expected observations. Then �i@pi is removed and the arguments of �i are
added as new match obligations.

Formally, the mapping reduce : MO × F × P → MO ∪ {∅} alters the match
obligation mo after the observation f@p by

reduce(mo, f, p) ={�@q ∈ mo | q �= p} ∪
{�[i]@p.i | �@p ∈ mo ∧ 1 ≤ i ≤ #f ∧ �[i] �= ω}.

Using the mapping reduce, we can define the f -derivative of state s by

deriv(s, f) = unchanged ∪ reduced ∪ fresh, where
unchanged = {mo → ma ∈ s | L(s) /∈ pos(mo)}

reduced = {reduce(mo, f, L(s)) → ma | mo → ma ∈ s ∧
∃�[�@L(s) ∈ mo ∧ hd(�) = f] ∧ reduce(mo, f, L(s)) �= ∅}

fresh = {�@L(s).i → �@L(s).i | � ∈ L ∧ 1 ≤ i ≤ #f}

Example 2. Recall the pattern � = f(f(ω, g(ω)), g(ω)) and the set automaton in
Fig. 2. Consider state s1. The parts of deriv(s1, g) are computed as follows:

unchanged = {f(f(ω, g(ω)), g(ω))@1 → �@1}
reduced = {f(ω, g(ω))@1 → �@ε}

fresh = {f(f(ω, g(ω)), g(ω))@2.1 → �@2.1}.

Note that the goal f(f(ω, g(ω)), g(ω))@2 → �@2 disappears completely since
there is a mismatch with the expected symbol g at position 2.

A Set Automaton to Locate All Pattern Matches in a Term 75

4.3 Derivative Partitioning

One application of deriv creates new match obligations with strictly lower posi-
tions. Repeated application of deriv therefore results in an automaton with an
infinite amount of states. To solve this problem we take two more steps after
computing the derivative. First, we partition the derivative into independent
equivalence classes. Then, in every equivalence class, we lower the positions of
all match goals as much as possible. These two measures suffice to create a finite
set automaton.

Note from Example 2 that the derivative has two match obligations at posi-
tion 1, and one match obligation at position 2.1. To obtain an efficient matching
algorithm, it is important that goals with overlapping positions stay together to
obtain an efficient matching algorithm. Conversely, sets of goals that are inde-
pendent from each other can be separated to form a new state with fewer match
goals. When evaluating a set automaton this creates the possibility of exploring
parts of the subject term independently.

Given a finite subset of match obligations X ⊆ MO , define the direct
dependency relation R on X for all mo1,mo2 ∈ X by mo1 R mo2, iff
pos(mo1) ∩ pos(mo2) �= ∅. Note that R is reflexive (since MO excludes the
empty set) and symmetric. But R is not transitive, since for the obligations

mo1 = {t1@1} mo2 = {t1@1, t2@2} mo3 = {t2@2}

we have mo1 R mo2 R mo3, but not mo1 R mo3. Denote the dependency relation
on X by ∼X , defined as the transitive closure of R. Two match obligations
are said to be dependent iff mo1 ∼X mo2. We extend ∼X to match goals by
(mo1 → ma1) ∼X (mo2 → ma2) iff mo1 ∼X mo2. The subscript X is mostly
omitted if the set is clear from the context, but note that it is necessary to
define this relation separately on every state. Defining it on the set of all match
obligations will simply result in the full relation MO × MO .

To determine the outgoing transitions we partition deriv(s, f) into equiv-
alence classes with respect to dependency ∼ on the match obligations. Each
equivalence class then corresponds to a new state. The set of equivalence classes
of the derivative is denoted by [deriv(s, f)]∼. We use the letter K to range over
equivalence classes.

Example 3. Consider the g-derivative of Example 2. Partitioning yields

K1 = {f(f(ω, g(ω)), g(ω))@1 → �@1f(ω, g(ω))@1 → �@ε}
K2 = {f(f(ω, g(ω)), g(ω))@2.1 → �@2.1}

Example 4. Consider the f -derivative of s2, which is exactly s3. Note that the
goals g(ω)@1.2 → �@ε and f(f(ω, g(ω)), g(ω))@1.1 → �@1.1 are not directly
dependent, but the goal f(ω, g(ω))@1.1, g(ω)@1.2 → �@1 is directly dependent
to both goals. Therefore we obtain a singleton partition.

76 R. Erkens and J. F. Groote

4.4 Lifting the Positions of Classes

Partitioning into smaller states is not enough to obtain a finite state machine
since the positions of match goals are increasing. As the last part of the construc-
tion, we shorten the positions of every equivalence class. This can be done due
to the following observation. Suppose that we are looking at term t on position
ε. If all match goals say something about position 1 or lower, we can remove
the prefix 1 everywhere, and start to look at term t from position 1. Inspecting
position 1.p from the root is the same as inspecting p from position 1.

Let posMA(K) denote the positions of the match announcements of K. We
want to ‘lift’ every position in every goal of K by the greatest common prefix of
posMA(K), which we denote by gcp(posMA(K)). To ease the notation we write
gcp(K) instead of gcp(posMA(K)). Since all positions in a state are of the form
gcp(K).p′, we can replace them by p′. Define lift(s) by lift(s) = {(lift(mo), �@p′) |
(mo, �@gcp(s).p′) ∈ s} where lift(mo) = {�@p′ | �@gcp(s).p′ ∈ mo}.

This concludes the construction of the transition relation. For a state s and a
function symbol f , we fix δ(s, f) = {(lift(K), gcp(K)) | K ∈ [deriv(s, f)]∼}. Note
that gcp(K) is also recorded in each transition since it tells us how to traverse
the term.

Example 5. Continuing in Example 3, we compute the greatest common prefix
and corresponding transition for the two equivalence classes. For K1 we have
gcp(K1) = gcp({1, ε}) = ε. Then lift(K1) = K1 = s2, and therefore (s2, ε) ∈
δ(s1, g). Class K2 has one goal with gcp(K2) = gcp({2.1}) = 2.1. Then lift(K2) =
{f(f(ω, g(ω)), g(ω))@ε → �@ε}, which yields the transition (s0, 2.1) ∈ δ(s1, g).

4.5 Output Patterns

The output patterns after an f -transition are simply the match announcements
that accompany the match obligations that reduce to ∅:

η(s, f) = {ma ∈ MA | f(ω, . . . , ω)@L(s) → ma ∈ s}.

Example 6. Consider state s3 in Fig. 2. The goal g(ω)@1.2 → �@ε can be com-
pleted upon observing g at position 1.2, so we fix η(s3, g) = {�@ε}.

4.6 Position Labels

For every state s there must be a position label L(s) in order to construct the
transitions from s. It makes sense to only choose a position from one of the match
obligations. We demand the extra constraint that this position should be part
of a root match goal. The construction guarantees that every state has a root
goal, which we prove in detail in the next section. Similar to Adaptive Pattern
Matching Automata [23], there might be multiple positions available to choose
from. Any of such positions can be chosen in the construction of the automaton,
but this position needs to be fixed when s is created.

A Set Automaton to Locate All Pattern Matches in a Term 77

4.7 Summary

The following is a summary of the construction of a set automaton.

– s0 = {�@ε → �@ε | � ∈ L};
– δ(s, f) = {(lift(K), gcp(K)) | K ∈ [deriv(s.f)]∼};
– η(s, f) = {ma ∈ MA | f(ω, . . . , ω)@L(s) → ma ∈ s}; and
– L(s) can be any p ∈ pos(mo) for some root match goal mo → �@ε ∈ s.

5 Validity of the Construction

In order to see that the construction algorithm of the set automaton works we
need to know whether the following two properties hold. Firstly, it is necessary
that L(s) is a position in the match obligation of some root goal, but it is not
immediately clear that every state has a root goal. Secondly, the algorithm needs
to terminate. In this section we show that these properties are valid.

First we need some extra preliminaries. In the previous section we used
gcp(P) to denote the greatest common prefix in a set of positions. This is a
lattice construct that requires more elaboration to do proofs.

Definition 1 (Position join-semilattice). Position p is said to be below posi-
tion q, denoted by p ≤ q, iff there is a position q′ such that p = q.q′. Position
p is strictly below q, denoted by p < q, if in addition q′ �= ε. This definition
makes the structure (P,≤) a join-semilattice. That is, ≤ is reflexive, transitive
and antisymmetric, and for each finite, non-empty set of positions P there is
a unique join

∨
P , which satisfies p ≤ ∨

P for all p ∈ P and whenever p ≤ r
for all p ∈ P then also

∨
P ≤ r. We call this join the greatest common prefix

gcp(P). We denote the join of two positions p and q by p ∨ q. Two positions p, q
are comparable if p ≤ q or q ≤ p.

Proposition 1. The following properties hold for (sets of) positions.

– For all p, q, r ∈ P we have p.q ≤ p.r ⇔ q ≤ r;
– For all p ∈ P, for all i ∈ N

+ we have p �≤ p.i;
– For all p, q, r ∈ P, if p ≤ q and p ≤ r then q and r are comparable;
– For all p, q ∈ P, if p and q are comparable then p ∨ q = p or p ∨ q = q; and
– For all finite P,Q ⊆ P we have gcp(P ∪ Q) = gcp(P) ∨ gcp(Q).

Lastly, consider the straightforward notion of reachable state. A state s is
reachable if there is a sequence of transitions to it from s0. That is, s0 is reachable
and whenever s is reachable and (s′, p) ∈ δ(s, f), then s′ is also reachable. The
following claims are useful in many places of the correctness proof.

Proposition 2. Let s be a reachable state.

– For all goals �1@p1, . . . , �n@pn → �@p in s we have that pi ≤ p for all i.
– For all distinct p, q ∈ posMO(s) the positions p and q are incomparable.

78 R. Erkens and J. F. Groote

– For all distinct p, q ∈ posMO(deriv(s, f)) the positions p and q are incompa-
rable.

First, we show that every reachable state always has an available root goal.
By definition of the transition function, the positions of all match goals in a
class K get shortened by gcp(K) after partitioning. The partitioning allows us
to show that gcp(K) is always in posMA(K).

Lemma 1. Let s be a reachable state. Then for all f ∈ F, if K ∈ [deriv(s, f)]∼
then there is a goal mo → �@gcp(K) in K.

Proof (Sketch). By induction on the size of K. The base case is trivial, and if
|K| ≥ 2 then K can be split into two non-empty classes with a dependency
between them. By using Propositions 1 and 2, and the induction hypothesis we
can show that one of the two smaller classes has a goal of the right form. ��
Corollary 1. Every reachable state has a root goal.

Next, we show that the construction terminates. There are two key observa-
tions to termination. Firstly, the lift operation always shortens the positions of
derivative partitions with respect to ≤. Secondly, every state label is a match
obligation position of some root goal in that state. This allows us to prove that
reachable states can only have match positions in some finite set.

Lemma 2. Let N be the largest arity of any function symbol in F, and define
the set of reachable positions by R = {p ∈ P | ∃q, r, i : q ∈ D(L) ∧ r ∈ P ∧ 1 ≤
i ≤ N ∧ r.p = q.i}. Then for all reachable states s we have that posMO(s) ⊆ R.

Intuitively, since there are only finitely many state labels, the longest position
in any match obligation is of the form L(s).i where i is bounded by N .

Corollary 2. There are finitely many reachable states.

6 Correctness of the Evaluation

The informal evaluation that was discussed in Sect. 3 describes how to apply an
automaton M to a subject term. Formally this procedure can be defined by the
mapping evalM : S × P × T(F) → P(L × P) given by

evalM (s, p, t) = {�@p.q | �@q ∈ η(s, f)} ∪
⋃

(s′,p′)∈δ(s,f)

eval(s′, p.p′, t)

where f = hd(t[p.L(s)]). Finding all pattern matches in a term t is the invocation
of evalM (s0, ε, t). The desired correctness property can then be stated as follows:

evalM (s0, ε, t) = {�@p ∈ L × P | � matches t at p}.

This property cannot be shown by a straightforward structural induction on
t. The set automaton does not necessarily allow every top-down traversal, as

A Set Automaton to Locate All Pattern Matches in a Term 79

opposed to tree automata. In this section we take a detour and prove an equiv-
alent correctness claim. The proof is sketched as follows. First, we add explicit
structure to the evaluation by computing an evaluation tree ETM (t) of a term
t. We prove a one-to-one correspondence between the nodes of ETM (t) and t. It
follows that this method of pattern matching is efficient in the sense that every
position of t is inspected exactly once. Soundness and completeness are shown
at the end of the section.

6.1 Evaluation Trees

Definition 2. An evaluation tree for an automaton M = (S, s0, L, δ, η) is a
tuple (N,→) where N ⊆ S × P is a set of nodes, and → ⊆ N × N is a set of
directed edges. With a closed term t we associate an evaluation tree ETM (t) =
(N,→) defined as the smallest evaluation tree such that

– there is a root (s0, ε) ∈ N ; and
– whenever (s, p) ∈ N and hd(t[p.L(s)]) = f then for every (s′, p′) ∈ δ(s, f)

there is an edge (s, p) → (s′, p.p′) with (s′, p′) ∈ N .

The successors of a node n are given by Suc(n) = {n′ ∈ N | n → n′}.
Example 7. Figure 3 shows the term t = f(g(a), f(f(a, g(a)), g(a))) and its eval-
uation tree ETM (t), given the set automaton M of Fig. 2. There is a one-to-one
correspondence between the positions of t and the nodes of the evaluation tree.

Fig. 3. The term t = f(g(a), f(f(a, g(a)), g(a))) on the left and its evaluation tree
ETM (t) on the right.

We prove that ETM (t) indeed corresponds to t in general. To this end, we
define for every node the set of positions that still has to be inspected. That is,
the set of work that still has to be done.

80 R. Erkens and J. F. Groote

Definition 3. Define the mapping W : N → P(D(t)) by

W(s, p) = {p.q ∈ D(t) | ∃r : r ∈ posMO(s) ∧ q ≤ r}.

By definition of s0 we have W(s0, ε) = D(t). Intuitively this makes sense, since
at the beginning of the evaluation, no work is done and all the positions still have
to be inspected. The mapping W fixes a correspondence between an evaluation
tree and D(t). This follows from the following lemma.

Lemma 3. Let ETM (t) = (N,→) and consider an arbitrary node (s, p) ∈ N .

1. For all successors (s′, p.p′) ∈ Suc(s, p) we have that p.L(s) /∈ W(s′, p.p′).
2. For all distinct successors (s1, p.p1), (s2, p.p2) ∈ Suc(s, p) we have that the

sets W(s1, p.p1) and W(s2, p.p2) are disjoint.
3. We have that W(s, p) = {p.L(s)} ∪ ⋃

n∈Suc(s,p) W(n).

By combining these properties, we get the following two corollaries.

Corollary 3. For all terms t, we have that ETM (t) = (N,→) is a finite tree.

Corollary 4. Define ϕ : N → D(t) by ϕ(s, p) = p.L(s). Then ϕ is a bijection.

It follows that the evaluation of a term terminates, and every position is
inspected exactly once. Whenever an evaluation tree node has multiple outgo-
ing edges, it means that parallellism is possible. This parallellism preserves the
efficiency of no observation being made twice.

6.2 Soundness and Completeness

First, consider the following evaluation function that takes an evaluation tree
node and traverses it until a leaf node is reached.

Definition 4. Given ETM (t) = (N,→), define evalM : N → P(L × P) by

evalM (s, p) = {�@p.q | �@q ∈ η(s, hd(t[p.L(s)]))}∪
⋃

(s′,p.p′)∈Suc(s,p)

evalM (s′, p.p′).

By Corollary 4, applying eval on the initial state from the root position is the
same as retrieving the output at every level of the evaluation tree.

evalM (s0, ε) =
⋃

(s,p)∈N

{�@p.q | �@q ∈ η(s, hd(t[p.L(s)]))}. (1)

In Theorem 1 we show that evalM (s0, ε) yields exactly all pattern matches of
a closed term. This correctness theorem consists of two claims. The soundness
claim is that whenever the evaluation yields an output, then it is indeed a correct
match. The completeness claim is that whenever some pattern matches at some
position, then the evaluation will output it at some point.

To understand soundness, consider that match goals carry history. Intuitively,
a match goal a@1, b@2 → f(a, b)@ε has a history of having seen f already. A
state with this goal can only be reached by evaluating a term with symbol f .
This notion can be formalised as follows.

A Set Automaton to Locate All Pattern Matches in a Term 81

Definition 5. The history of an evaluation tree node (s, p) respects t iff for
all goals mo → �@q ∈ s, for all r ∈ D(�) such that �[r] �= ω, if there is some
r′ ∈ pos(mo) with r �≤ r′ then hd(t[p.r]) = hd(�[r]).

With this definition, the following invariant is the key to soundness.

Lemma 4. Let ETM (t) = (N,→). The history of every node (s, p) respects t.

To understand completeness, observe that upon taking derivatives a fresh
match obligation is added for every new position. The partitioning then takes
care of grouping the fresh goals with other goals that have the same positions.

Proposition 3. Whenever a state has a match obligation on position p, then it
has the fresh match goal �@p → �@p for all � ∈ L as well.

The following invariant connects to Proposition 3. Intuitively, if a term
matches pattern � at position p.q, and the evaluation tree reaches a state with
some goal mo → �@q is a match announcement, then this announcement belongs
to some goal in some state visited by eval, until it is given as an output.

Lemma 5. If � matches t at p.q and there is a node (s, p) and a match goal
mo → �@q ∈ s then either �@q ∈ η(s, hd(t[p.L(s)]) or there is a node (s′, p.p′) ∈
Suc(s, p) such that s′ has some goal mo′ → �@q′ with q = p′.q′.

Theorem 1 (Correctness). For all closed terms t,

evalM (s0, ε) = {�@p ∈ L × D(t) | � matches t at p}.

Proof. As mentioned before, we show soundness and completeness.

⊆ By Eq. 1 it suffices to show that for all nodes (s, p), whenever �@q ∈
η(s, hd(t[p.L(s)])) then � matches t at p.q. Consider that hd(t[p.L(s)]) = f .
By definition of η, see Sect. 4.5, we have f(ω, . . . , ω)@L(s) → �@q ∈ s. By
Lemma 4, the history of node (s, p) respects t. Then for all positions r ∈ D(�)
with �[r] �= ω and r �= L(s) we have that hd(t[p.r]) = hd(�[r]). From the
additional observation hd(�[L(s)]) = f = hd(t[p.L(s)]) and Proposition 2 it
follows that � matches t at p.q.

⊇ Consider that � matches t at p. By Corollary 4, consider the node ϕ−1(p) =
(s, q). By definition of ϕ we have q.L(s) = p. Since L(s) ∈ posMO(s), the fresh
goal �@L(s) → �@L(s) is s by Proposition 3. Then the repeated application
of Lemma 5 yields a node (s′, q.q′) such that s′ has some goal mo′ → �@r with
L(s) = q′.r and �@r ∈ η(s′, hd(t[q.q′.L(s′)])). Then �@q.q′.r ∈ eval(s′, q.q′) by
definition of eval. Since q.q′.r = q.L(s) = p it follows that �@p ∈ eval(s′, q.q′).
By Eq. 1 we conclude �@p ∈ eval(s0, ε). ��

82 R. Erkens and J. F. Groote

7 Complexity and Automaton Size

Given an automaton M of pattern set L, the matching algorithm evalM (s0, t)
runs in O(d(n + m)) time where n is the number of function symbols in t, and
m is the amount of pattern matches in t, and d is the maximal depth of any
pattern in L. The factor d is due to the fact that observing a function symbol
on position L(s) takes |L(s)| time in general.

The size of a set automaton is exponential in the worst case, which is not sur-
prising due to similar observations concerning the root pattern matching prob-
lem. Gräf observed that a left-to-right pattern matching automaton is exponen-
tially large in the worst case [15]. Sekar et al. observed that adaptive pattern
matching automata are exponentially big in the worst case as well, although a
good traversal can reduce the automaton size exponentially in some cases [23].

A deterministic bottom-up finite tree automaton can be constructed for a
pattern set that recognises whether there is a pattern match in a term. Such
an automaton can have 2n−1 states, where n is the total amount of function
symbols in the pattern set [9, Exercise 1.1.10].

However, practical experiments with pattern sets show that the set automa-
ton size is small, which is in line with other forms of automata-based matching.
We generated set automata to match the left hand sides of rewrite systems used
in mCRL2 [16, Appendix B], see Table 1. In almost all cases the amount of states
in the set automaton does not exceed the number of patterns.

Table 1. The set automaton sizes for parts of the default mCRL2 specification.

Specification Signature size Amount of patterns Amount of states

int 22 50 27

pos 15 46 45

nat 37 91 117

fset 15 28 23

set 20 40 24

list 16 26 24

bool 9 27 14

bag 29 44 32

fbag 18 30 25

real 30 31 31

The degree of freedom in the choice of state labels strongly influences the set
automaton size. Consider for example the set of terms {tn}n∈N given by t0 = ω
and tn+1 = f(tn, g(ω)). The set automaton in Example 1 is generated for pattern
set {t2}. We found that the choice of state labels influences the automaton size
by a quadratic factor. By choosing the right-most available position one obtains

A Set Automaton to Locate All Pattern Matches in a Term 83

an automaton of size 2n for the pattern set {tn}. A left-most strategy yields an
automaton of size n2 + n for {tn}.

8 Future Work

The original motivation for this work is to construct a high performance term
rewriter suited for parallel processing, which can both work on a single large term
as well as on many small terms, repeatedly. This means that the matching effort
must be minimal, which is provided by the automaton, and it also requires that
the subject term is not transformed before matching commences. To enable term
rewriting, our matching algorithm must still be extended with term rewriting
along lines set out in [17]. We want to employ the knowledge that we have about
the structure of the right-hand side of a rewrite rule, minimizing inspecting
known parts of a newly constructed term. Fokkink et al. have a similar approach
in [14], based on Hoffmann and O’Donnell’s algorithm from [18].

Our algorithm has freedom in the position of the function symbol to be
selected, as well as in the next state/position pair that the evaluator chooses. It
is interesting to see whether with knowledge about the distribution of function
symbols in subject terms, this freedom can be exploited to construct a most
efficient set automaton. For instance, we may want to generate the first match as
quickly as possible. This is particularly interesting in combination with rewriting
where some sub-terms do not have to be inspected as they will be removed by
the rewriting rules.

Observe that the algorithm as it stands does not employ non-linear patterns
in line with matching algorithms such as [22]. But in term rewriting non-linear
patterns do occur and therefore an extension to support them is desired. An
extension that provides all matches in a setting where some symbols are known
to be associative and/or commutative would also be interesting.

Acknowledgement. We would like to thank Bas Luttik for discussion, and the anony-
mous referees, whose comments led to improvements of this paper.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975). https://doi.org/10.1145/360825.360855

2. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494
(1964). https://doi.org/10.1145/321239.321249

3. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

4. Chauve, C.: Tree pattern matching for linear static terms. In: Laender, A.H.F.,
Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 160–169. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-45735-6 15

5. Cleophas, L.G.: Tree algorithms: two taxonomies and a toolkit. Ph.D. thesis, Eind-
hoven University of Technology (2008)

https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/321239.321249
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/3-540-45735-6_15

84 R. Erkens and J. F. Groote

6. Cleophas, L.G., Hemerik, K.: Taxonomies of regular tree algorithms. In: Holub, J.,
Zdárek, J. (eds.) Proceedings of the Prague Stringology Conference 2009, Prague,
Czech Republic, 31 August–2 September 2009, pp. 146–159. Czech Technical Uni-
versity in Prague (2009). http://www.stringology.org/event/2009/p14.html

7. Cleophas, L.G., Hemerik, K., Zwaan, G.: Two related algorithms for root-to-
frontier tree pattern matching. Int. J. Found. Comput. Sci. 17(6), 1253–1272
(2006). https://doi.org/10.1142/S012905410600439X

8. Cole, R., Hariharan, R., Indyk, P.: Tree pattern matching and subset matching in
deterministic O(n log3 n)-time. In: Tarjan, R.E., Warnow, T.J. (eds.) Proceedings
of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore,
Maryland, USA, 17–19 January 1999, pp. 245–254. ACM/SIAM (1999). http://dl.
acm.org/citation.cfm?id=314500.314565

9. Comon, H., et al.: Tree automata techniques and applications (2007). http://www.
grappa.univ-lille3.fr/tata. Accessed 12 Oct 2007

10. Dubiner, M., Galil, Z., Magen, E.: Faster tree pattern matching. J. ACM 41(2),
205–213 (1994). https://doi.org/10.1145/174652.174653

11. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker.
Electron. Notes Theor. Comput. Sci. 71, 162–187 (2002). https://doi.org/10.1016/
S1571-0661(05)82534-4

12. Erkens, R., Groote, J.F.: A set automaton to locate all pattern matches in a term
(2021)

13. Flouri, T., Iliopoulos, C.S., Janousek, J., Melichar, B., Pissis, S.P.: Tree template
matching in ranked ordered trees by pushdown automata. J. Discrete Algorithms
17, 15–23 (2012). https://doi.org/10.1016/j.jda.2012.10.003

14. Fokkink, W.J., Kamperman, J., Walters, P.: Within arm’s reach: compilation of
left-linear rewrite systems via minimal rewrite systems. ACM Trans. Program.
Lang. Syst. 20(3), 679–706 (1998). https://doi.org/10.1145/291889.291903

15. Gräf, A.: Left-to-right tree pattern matching. In: Book, R.V. (ed.) RTA 1991.
LNCS, vol. 488, pp. 323–334. Springer, Heidelberg (1991). https://doi.org/10.1007/
3-540-53904-2 107

16. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Sys-
tems. MIT Press (2014). https://mitpress.mit.edu/books/modeling-and-analysis-
communicating-systems

17. Hoffmann, C.M., O’Donnell, M.J.: Interpreter generation using tree pattern match-
ing. In: Aho, A.V., Zilles, S.N., Rosen, B.K. (eds.) Conference Record of the Sixth
Annual ACM Symposium on Principles of Programming Languages, San Antonio,
Texas, USA, January 1979, pp. 169–179. ACM Press (1979). https://doi.org/10.
1145/567752.567768

18. Hoffmann, C.M., O’Donnell, M.J.: Pattern matching in trees. J. ACM 29(1), 68–95
(1982). https://doi.org/10.1145/322290.322295

19. Leiserson, C.E., et al.: There’s plenty of room at the top: what will drive computer
performance after Moore’s law? Science 368(6495) (2020). https://doi.org/10.1126/
science.aam9744. https://science.sciencemag.org/content/368/6495/eaam9744

20. Nieuwenhuis, R., Hillenbrand, T., Riazanov, A., Voronkov, A.: On the evaluation
of indexing techniques for theorem proving. In: Goré, R., Leitsch, A., Nipkow, T.
(eds.) IJCAR 2001. LNCS, vol. 2083, pp. 257–271. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45744-5 19

21. Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 Volumes), pp. 1853–
1964. Elsevier and MIT Press (2001). https://doi.org/10.1016/b978-044450813-3/
50028-x

http://www.stringology.org/event/2009/p14.html
https://doi.org/10.1142/S012905410600439X
http://dl.acm.org/citation.cfm?id=314500.314565
http://dl.acm.org/citation.cfm?id=314500.314565
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1145/174652.174653
https://doi.org/10.1016/S1571-0661(05)82534-4
https://doi.org/10.1016/S1571-0661(05)82534-4
https://doi.org/10.1016/j.jda.2012.10.003
https://doi.org/10.1145/291889.291903
https://doi.org/10.1007/3-540-53904-2_107
https://doi.org/10.1007/3-540-53904-2_107
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://doi.org/10.1145/567752.567768
https://doi.org/10.1145/567752.567768
https://doi.org/10.1145/322290.322295
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1126/science.aam9744
https://science.sciencemag.org/content/368/6495/eaam9744
https://doi.org/10.1007/3-540-45744-5_19
https://doi.org/10.1016/b978-044450813-3/50028-x
https://doi.org/10.1016/b978-044450813-3/50028-x

A Set Automaton to Locate All Pattern Matches in a Term 85

22. Ramesh, R., Ramakrishnan, I.V.: Nonlinear pattern matching in trees. J. ACM
39(2), 295–316 (1992). https://doi.org/10.1145/128749.128752

23. Sekar, R.C., Ramesh, R., Ramakrishnan, I.V.: Adaptive pattern matching. SIAM
J. Comput. 24(6), 1207–1234 (1995). https://doi.org/10.1137/S0097539793246252

24. Trávńıček, J., Janoušek, J., Melichar, B., Cleophas, L.: On modification of Boyer-
Moore-Horspool’s algorithm for tree pattern matching in linearised trees. Theor.
Comput. Sci. 830, 60–90 (2020)

https://doi.org/10.1145/128749.128752
https://doi.org/10.1137/S0097539793246252

Accelerating SpMV Multiplication in
Probabilistic Model Checkers Using

GPUs

Muhammad Hannan Khan1(B), Osman Hassan1, and Shahid Khan2

1 School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{hkhan.msee17seecs,osman.hasan}@seecs.edu.pk
2 Software Modeling and Verification, RWTH Aachen University, Aachen, Germany

shahid.khan@cs.rwth-aachen.de

Abstract. Probabilistic model checking is a prominent formal verifi-
cation technique for analyzing stochastic systems. Probabilistic model
checkers hinge upon the sparse matrix-vector (SpMV) multiplications to
compute reachability probabilities, i.e., the probability of reaching a tar-
get state from a given initial state. Being compute- and memory-intensive
task, SpMV is a bottleneck in using probabilistic model checking for ana-
lyzing scalable real-world case studies. This paper presents a method-
ology to accelerate SpMV multiplication in probabilistic model check-
ers using graphic processing units (GPUs). Since GPUs efficiently exe-
cute basic linear algebraic operations such as multiplication, one achieves
improvements in computation times. These improvements, however, are
not significant in the presence of memory transfer overheads. We apply
traditional optimization techniques and hide the memory transfers from
the host computer to the GPU inside the state-space-exploration stage.
This hiding significantly reduces the latency caused by memory transfers
during execution. We implemented the proposed acceleration approach
with CUDA-based cuSPARSE API and asynchronous multiple copy algo-
rithms in the probabilistic model checker Storm, with a focus on its
SpMV multiplier. In our experiments, we observed 16 times speed up on
average over the state-of-the-art.

Keywords: Probabilistic model checking · GPU · Storm · Sparse
matrix-vector multiplication

1 Introduction

Model Checking [11] is a widely used formal verification technique [23] that
exhaustively builds a behavioral model M of a given system for a given prop-
erty φ, and automatically verifies if the system exhibits the property M |= φ. A
model checker not only verifies the properties over a model but, in case of a failing
property, also provides counterexamples. These counterexamples help develop-
ers in understanding and rectifying the non-conforming behavior. As real-world
c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 86–104, 2021.
https://doi.org/10.1007/978-3-030-85315-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-85315-0_6

SpMV Multiplication Using GPUs 87

systems pervasively exhibit stochastic behavior, probabilistic model checking
(PMC) is an important extension of model checking [25]. PMC allows verify-
ing stochastic systems, modeled as Markov chains (MCs) or Markov decision
processes (MDPs), against probabilistic properties.

Scalability is a persistent issue for both steps of model checking: (1) model
building and (2) property verification. The scalability issue in the former step
leads to the infamous state-space explosion problem [38]. A promising technique
to mitigate the state space explosion problem is the lazy verification approach
where partial state space is explored to achieve the results of acceptable precision,
see [28]. The scalability issue in the later step is equally important. Internally, the
probabilistic model checkers represent the probabilistic behavioral model (state
space) as a sparse matrix, and property verification leads to repeated sparse
matrix-vector multiplication. As the size of the state-space is translated into
the dimensions of the said matrix, the growing size of state space contributes
to the complexity of performing arithmetic on such matrices. This increase in
complexity results in large computation costs and memory requirements.

Parallel model checking algorithms [3,4,37] traditionally rely on CPU clusters
to mitigate the property verification scalability issue, but GPUs have emerged
in recent years as the primary compute resource for the application and accel-
eration of such mathematics. Bosnacki et al. [8] used the Jacobi method in the
core sparse matrix and dense vector multiplication to speed up the Markov
chain model checking and demonstrated their results on Prism, a probabilistic
model checker, running on GPUs. This was further improved in [9] by enhancing
the parallelization of the algorithm, where the memory copying is identified as
the main bottleneck for GPU-based algorithms. Cormie-Bowins et al. [12] imple-
mented the matrix multiplication using the Jacobi and the BiCGStab method on
GPUs. They compared their work with Bosnacki’s advanced GPU-based Prism.
Wijs et al. [40] identified how the wrap-based segments and the modified sparse
row (MSR) format matrices improved the sparse matrix-vector multiplication
4.5 times on average. Bylina et al. [10] identified multiple formats for storing
sparse matrices to limit the memory footprint and discussed their applicability
in GPU-based sparse matrix-vector multiplication. Berger et al. [7] utilized the
CUSP library to obtain a significant speed-up when dealing with large models
that require multiple iterations to overcome the initial memory copy overhead in
Storm [17], a probabilistic model checker. They identified two main challenges:
(1) the memory transfer overheads consuming up to 99.96% of time in extreme
cases and (2) the lack of hardware support for double-precision floating-point
arithmetic. Wijs et al. [39] provided a comprehensive tool, called the GPU-
explore. This tool combines the maximum data inside the 32-bit integers and
stores information in the texture memory to mitigate the uncoalesced access
overheads. This approach targets only explicit-state model checking; hence, it
cannot be utilized for probabilistic models. Bell et al. [5] presented a generic
approach to SpMV multiplication on GPUs. They proposed fine-tuned kernels
for different storage types of sparse matrices. Moreover, they proposed bypassing
the memory latency and computing bottleneck by introducing large-scale GPU-

88 M. H. Khan et al.

based distributed systems. In all the above-mentioned works, we find latency—
delay due to copying data from a host to device—as the primary bottleneck
for GPU-based SpMV multiplication. This underscores the need for a generic
multiplication kernel that fully utilizes the available hardware resources.

This paper presents a methodology to further speed up the SpMV multipli-
cations. We investigate the SpMV multiplication in the context of probabilistic
reachability probability for discrete-time Markov chains (DTMCs). The method-
ology (1) leverages upon the traditional optimization methods, (2) hides the
memory transfers from the host to the GPU inside the state-space-exploration
stage and (3) benefits from the Storm framework-specific algorithms. We use
CUDA’s native cuSPARSE API and compare the results with the existing CUSP
and CPU-based implementations. We also identify some pitfalls and bottlenecks
that we encountered when accelerating such algorithms on GPUs. Our selection
of Storm is mainly motivated by its promising results [18,24] while maintaining
the space for improvement in SpMV multiplication.

2 Preliminaries

2.1 Behavioral Model

Definition 1 (Discrete Time Markov Chains). A discrete-time Markov
chain (DTMC) is a tuple M = (S,P, sinit, AP,L) [2], where: S is a set of
states; P : S × S → [0, 1] is the transition probability function such that ∀s:∑

s′∈S P(s, s′) = 1; sinit ∈ S is an initial distribution; AP is a set of atomic
propositions; and L : S → 2AP is a labeling function.

2.2 Reachability Probability

Reachability probability amounts to computing the probability to reach a pre-
defined set of states B ⊂ S from any s ∈ S \ B. Let xs = Pr{s |= ♦B} denote
the reachability probability for state s. xs is computed as:

xs =
∑

t∈S\B
P(s, t) · xt

︸ ︷︷ ︸
reach B via t�∈B

+
∑

u∈B

P(s, u)

︸ ︷︷ ︸
reach B in one step

. (1)

Equation 1 states that either a state s ∈ B is reached within one step or first
a state t ∈ S \ B is reached from which B is reached. If B is not reachable
from s, then xs = 0. If s ∈ B, then xs = 1, see [26] for details. For the vector
x = (xs)s∈S , where all set of states have a valid path to B, we get from Eq. 1

xs = Ax + b, (2)

where the matrix A contains the transitional probabilities and b contains the
probability of reaching B in one step. Using a (heterogeneous) linear equation
system, we rewrite Eq. 2 as:

(I − A) · x = b, (3)

SpMV Multiplication Using GPUs 89

where I is an identity matrix. The probability distribution of M being in a
state after n transitions, given that the computation starts with an initial state
vector sinit, is denoted by θM

n and computed as

θM
n = P · P · .. · P · sinit = Pn · sinit (4)

Since calculating the n power of the matrix is a computationally expensive oper-
ation [2], θM

n is calculated by recursive matrix-vector multiplications.

2.3 Sparse-Matrix Representations

The general sparse matrix-vector multiplication equation is y = αAx + βy,
where: A is the sparse matrix of size Cols×Rows; x (y) is a dense vector of size
Cols (Rows); and both α and β are scalars. The process of multiplication can,
therefore, be summarized by the following equation

yi =
∑

Ai,j �=0

Ai,j · xj + β · yi (5)

Equation 5 indicates that the operation to be performed at each Non-zero
value (VNNZ) of the sparse-matrix A results in an overall (VNNZ + Rows) · 2
floating point operations.

This paper utilizes the compressed sparse row (CSR) format due to (1) its
wide utilization in Storm and (2) its ability to provide a balanced computation
across matrices of different sizes and sparsity, as identified in [10,21]. The CSR
format divides the matrix into 3 arrays: (1) non-zero data values, (2) their column
indices, and (3) offsets of each row represented in the data.

2.4 GPU Programming

Graphical processing units (GPUs) are highly parallel programmable processors.
They specialize in accelerating the low-level algorithms, which have large compu-
tational requirements and are parallelizable. GPUs follow the single instruction
multiple data (SIMD) programming model, i.e., the GPU processes multiple data
elements in parallel using the same instruction.

Next, we describe two of the most widely used GPU accelerators and their
pros and cons. Both have their unique programming models and provide multiple
tools to allow optimizations and computations of algorithms.

OpenCL. The OpenCL [32] provides a cross-platform environment that can
be easily ported to multiple architectures like the CPUs, GPUs, digital signal
processors (DSPs), and even field-programmable gate arrays (FPGAs). Unfortu-
nately, due to this heterogeneous behavior, OpenCL is not device-specific; hence
it does not specialize in any particular hardware.

90 M. H. Khan et al.

CUDA. To cater for general-purpose computing on GPUs (GPGPU), NVIDIA
has developed the compute unified device architecture (CUDA) [36]. As the
scientific community is the primary user of this model, we have many off-the-
shelf APIs available that target most of the complex and commonly used tasks.

A survey of existing work considers CUDA as a better option due to the
availability of specialized APIs, like the CUBLAS and the cuSPARSE [13,34].
Our use of CUDA is mainly motivated by the following two reasons:

– Fang [19] shows that CUDA significantly outperforms OpenCL in arithmetic
computations but lacks in data movement,

– CUDA provides us with multiple open-source tools that reduce the time and
complexity of converting the existing code to the CUDA platform.

The GPU devices are typically mounted on the peripheral component inter-
connect express (PCIe) socket when connected as a co-processor. These devices
act as slaves while relying mostly on of tiny applications called kernels. Figure 1a
depicts this behavior of sequential executions in a CUDA application. All data,
which needs to be processed, must be transferred to the GPU via the PCIe
interface, as shown in Fig. 1b.

The CUDA programming model provides the user with an abstraction of this
parallel architecture in the form of directives governing the systems ability to call
the SIMD instructions, memory movement and thread synchronizations. At the
lowest level of a CUDA subsystem, we have a simple thread that performs the
task assigned by the kernel. A thread block is a batch of threads that share mem-
ory and perform a task either collectively or individually. The threads of multiple
blocks do not co-operate and require extensive synchronizations. Figure 1a shows
how various blocks can be combined to form a one, two, or three dimensional
units called grids.

3 Proposed Optimization Flow

This section outlines a strategy, based on conventional and non-conventional
methods, to reduce the compute requirements of a probabilistic model checker.
The overall approach is to determine a set of pre-requisites rules along with
system-specific techniques to optimize the SpMV multiplication, see Fig. 2.

Typically, in optimization problems, the whole system is kept intact and only
the problem set is cherry-picked for acceleration. Likewise, we identify possible
injection points in the system where we introduce the custom code. We introduce
Algorithm 1 that describes the proposed optimization strategy along with key
points of code injection.

3.1 Identification of the SpMV

As discussed in Sect. 2, the process of calculating the probabilities using the
matrix-vector multiplication involves very high computation requirements. In
the proposed approach, we identify algorithms that first build the model in

SpMV Multiplication Using GPUs 91

(a) CPU controlled GPU (b) Mem. transfer over
PCIe

Fig. 1. GPU programming model

terms of the sparse-matrix and then perform model checking. The approach is
in line with the Storm’s sparse and hybrid engine. This approach allows us to
shift the relatively sequential operation of state exploration on the CPU along
with a sparse matrix solver on the GPU. As the explored state of the model
is sparse, we use different sparse storage formats to further reduce the memory
footprint.

3.2 Introducing CUDA

We introduce a bottom-up technique where we first target and isolate the Storm
multiplier and replace it with CUDA based cuSPARSE API. CUSP [6] is another
open-source CUDA library that performs the SpMV multiplication. Our choice
of using cuSPARSE over CUSP is primarily based on the fact that cuSPARSE
has coalesced global memory accesses and provides better occupancy of GPUs.
Moreover, it allows asynchronous executions with respect to the host and may
return control back to the user before completion. Another reason is that, unlike
CUSP, cuSPARSE has been integrated into the CUDA toolkit. Thanks to this
integration, cuSPARSE is regularly updated and actively maintained with the
support for the state-of-the-art drivers, technology and CUDA enhancements,
such as using tensor cores [31], NVIDIA tool extension (NVTX), etc. We discuss,
in the experimental results section, how cuSPARSE was observed to be faster than
the CUSP implementation.

In Algorithm 1-Phase C, we create a multiplier that accepts the sparse-matrix
ACSR in the CSR format, initial vector xinit and N as the number of iterations
of the multiplier. The copying of data to and from the GPU is required before
processing any data. This is followed by calling the cuSPARSE’s single or double
precision SpMV function. Initially, we need to calculate the memory required for
the GPU using the equation:

92 M. H. Khan et al.

Fig. 2. Proposed methodology diagram

MReq = (PV al ·(||VNNZ ||+ ||xinit|| ·2)+(PInd ·(||OffsetRow||+ ||VNNZ ||))) (6)

where PV al is the precision of VNNZ , OffsetRow is the row offset vector of ACSR

and VNNZ is the vector of values in ACSR. The MReq is the maximum memory
that the GPU can accommodate without dividing the matrix into a subset to
compute the SpMV multiplication.

Another limiting factor is the PCIe interface of the GPUs. Table 1 presents an
overview of different PCIe interfaces available and their theoretical performance.

Table 1. PCIe types and data rates [1,20]

Interface Data-rate supported

PCIe x1 Gen 3 1 GB/s

PCIe x8 Gen 3 8 GB/s

PCIe x16 Gen 3 16 GB/s

PCIe x16 Gen 4 32 GB/s

SpMV Multiplication Using GPUs 93

Memory copy is the main source of latency in all GPU applications that are
generated as a consequence of the type of PCIe slot selected. Figure 4 illustrates
the ratio of the time spent on kernel compute vs memory transfers. We observed
that in the mobile versions of GPUs, the x8 PCIe interface is commonly used
due to the limited availability of space, and on the other hand, fast x16 interfaces
based on Gen 3, or more recently Gen 4, are used in desktop computers.

Algorithm 1 Complete optimized algorithm
Phase-A

1: procedure Building Sparse Matrix(M)
2: ...
3: procedure State Exploration(s, Cpmin)
4: ToExplore = {s0}
5: Discovered = { }
6: sold = { }
7: while ToExplore �= Null do
8: spicked ∈ ToExplore
9: sx = FindSuccessors(spicked)

10: Discovered = Discovered ∪ spicked
11: ToExplore = (ToExplore \ spicked) ∪ sx
12: if sx is ≥ Cpmin then � 1st insertion of CUDA
13: Copy-Asynchronous(VChunks(i)) = sx \ sold
14: sold = sx
15: Cpmin = Cpmin∗1.75
16: end if
17: end while
18: end procedure
19: ...
20: end procedure

Phase B

21: procedure Reassemble And Copy(VChunks, xinit) � 2nd insertion of CUDA
22: Copy-Asynchronous(xinit)Host→Device

23: for each item i in VChunks do
24: Copy-Optimized(VChunks(i) → ACSR)Device → Device
25: end for
26: end procedure

Phase C

27: procedure CUDA multiplier(ACSR, xinit, N) � 3rd insertion of CUDA
28: for values of N do
29: y = cuSPARSE SpMV(ACSR · xinit)
30: Swap pointers(xinit ← y)
31: end for
32: end procedure

94 M. H. Khan et al.

3.3 Basic Optimizations

Several possible optimizations can be considered, and at various levels, ranging
from overlapping data transfers with computation down to fine-tuning floating-
point operation sequences. NVIDIA provides a best practice guide [14] that
outlines all traditional optimization strategies. In our context, minimizing the
transfer of data between the host and the device is essential. This minimization
might lead to sacrificing the computations on GPU to run kernels that otherwise
exhibit similar performance on the host CPU.

Pinned Memory. Page-locked or pinned memory transfers attain the highest
bandwidth between the host and the device. Since the GPU is not able to access
the data directly from the pageable host memory, the CUDA driver must first
allocate a temporary page-locked, or “pinned” memory. The required data is
first copied to the pinned array and then transferred from the pinned array to
the device memory. On PCIe x16 Gen3 cards, for example, the pinned memory
can attain transfer rates of about 12 GB/s.

Async-Transfer. CudaMemcpy provides the basic data transfer between the
host and the device by blocking the execution control of the host thread until the
data transfer is complete. The asynchronous data transfer function, cudaMem-
cpyAsync, is a non-blocking variant of the cudaMemcpy in which the control
is returned immediately to the host thread. This allows the user to queue mul-
tiple copy commands to constantly engage the Copy-engine while the CPU is
free to perform other tasks. Utilizing async-transfers along with pinned memory
techniques, forms the “Copy-Asynchronous” procedure in Algorithm1.

Stream is a pipeline within the CUDA API that allows a sequence of operations
to be executed on the device in a given order, defined host-side. These streams,
while maintaining the order within the context they run, allow the execution
of multiple streams that can be interleaved or executed concurrently. Figure 3
shows how multiple streams can fully utilize hardware that remains unused when
a sequential flow is implemented.

Fig. 3. Stream allowing sequential operation into concurrent operations

Some other optimization techniques include batching small transfers together
in order to fully utilize the PCIe transfer speeds and handling of strided accesses
using coalesced reads from the global memory.

SpMV Multiplication Using GPUs 95

3.4 Hiding Memory Latency

While traditional optimization techniques provide multi-fold speed-ups, most
algorithms require custom optimizations that exploit the flow of the system
to create room for specific code insertion. It can be observed form Fig. 4 that
the bulk of memory latency comes from the copying of the three CSR vectors
replacing the transitional matrix. Therefore, minimizing the time taken for this
operation is of utmost importance.

Fig. 4. Memory latency generated when computing SpMV multiplication.

For repeated Yi = Axi + b, the value of xi is equal to Yi−1, this adds latency
due to the transfer of vector from device to device. In cases where two variables
of equal length within the CUDA environment needs to be copied, we swap their
memory pointers followed by reassigning the context through the cuSPARSE API.
Algorithm 1-C follows this logic in the “Swap pointers” procedure to remove the
copy overhead between xinit and y.

Storm uses its sparse-matrix builder utility to create the transitional matrix
A by state exploration for each successor state (sx) and assigns it as a row of
the matrix. Since these rows, depicting state transitions, are fixed, we propose
Algorithm 1-A as an extension of the state exploration process. We introduce
the variable VChunks(i) where each i is a pointer to memory containing rows
of matrix A. Since all memory copying is asynchronous, the control is handed
back to the API as soon as the command is executed, ensuring that the delay
in the state exploration is minimal. Algorithm 1-B shows how we efficiently
rearrange the pointers inside a contiguous memory, once all data is copied inside
the memory at the multiplication point.

Recalling Fig. 1a, all instructions to the GPU are directed by the CPU. When
the number of states and choices increase, the number of copy pointers and the
instructions required to rearrange them also increases, as shown in Fig. 5a. This
sequential execution is catered by utilizing the maximum streams, since there is
no limitation on the parallel copy operation internally in the device.

To optimize the copying speeds over the PCIe, it is typically recommended
to have large copy sizes [33] by batching small transfers together. We introduced
a limit Cpmin in Algorithm 1-A to ensure that the copy process groups multiple
rows of matrix A together. The number of rows is increased at every copy to
ensure that the algorithm adapts as the state-space increases to accommodate
the size of the end transitional matrix. Figure 5b shows a significant performance
upgrade after the application of both of the optimization strategies.

96 M. H. Khan et al.

(a) Sequential reassemble and copy (b) Reassemble and copy with multiple
streams and batched data

Fig. 5. Illustration of Nvidia’s Visual Profiler output showing memory copy and SpMV
compute

3.5 Profile and Evaluate

Profiling and evaluation is an essential step after each optimization strategy is
implemented. We use the NVIDIA Visual Profiler [16] for GPUs with compute
capability of less than 8.0 and NVIDIA compute [15] for compute capability
greater than or equal to 8.0. Another important factor in evaluating the quality
of optimization is the occupancy of the GPU, i.e., the amount of processor usage
by the hardware [22]. The quality of an optimization is proportional to the
occupancy per streaming multiprocessors (SMs).

For our experiments, we selected the same test vectors that were previously
used to evaluate the Prism model checker [29]. We focus on the NAND and
Herman case studies because they provide a wide range of test vectors with
varying size.

4 Experimental Evaluation

The standard Storm multiplier y = Multiplier(A, xinit, N) takes three param-
eters as input: (1) a sparse-matrix A, (2) a dense initial state vector xinit and
(3) number of times to perform multiplication N . The multiplier returns a dense
vector y depicting step-bounded readability probability of each state. For the
implementation of the SpMV, we randomized the dense vectors in the range
[0, 1] and increased the value of N .

We introduce the term “Complete CUDA” to collectively represent the basic
optimization techniques and hiding the memory transfers inside the state-space
exploration. The experiments are performed on three different combinations of
CPUs and GPUs each scaling in performance to accommodate technological
advances within each generation. The combinations are as follows:

1. Intel i7-7700 CPU @ 2.8 GHz with GTX 1050 PCIe 3rd Gen x8 lane;
2. Intel i7-6700 CPU @ 3.4 GHz with GTX 1080 PCIe 3rd Gen x16 lane;

SpMV Multiplication Using GPUs 97

3. AMD RYZEN 3970x 32-core @ 3.7 GHz with RTX 3090 PCIe 4th Gen x16
lane.

We present the results of combination 2 here, and more details for 1 and 3 can
be found in [27].

All systems run the standard Ubuntu 18.04 LTS with CUDA toolkit 11.2. We
compare our SpMV implementation with the Storm built-in multiplier function,
and the cuSPARSE implementation with the CUSP implementation. All tests are
conducted assuming a double precision with the multiplier count = 2, making the
worst-case scenario for GPUs due to such models’ requirements for low latency.
We provide the results for each benchmark as the value of N is increased. Finally,
we illustrate the difference between the cuSPARSE and CUSP.

4.1 NAND Case Study

This case study [35] concerns NAND multiplexing, which is a technique for
ensuring reliable computation using unreliable devices. There are two variables
that change the dynamics of the model: (1) N is the number of inputs in each
bundle and (2) K is the number of restorative stages. The experimental results
are depicted in Table 2 and Fig. 6a.

Table 2. NAND: comparing optimizations with Storm multiplier

NAND Size of Matrix Sparsity Basic Complete Storm Speed-up

constants CUDA CUDA Factor

N K % MS MS MS Storm
Complete

20 1 78332 × 78332 99.99802 0.382 0.27 3.1045 11.5

20 2 154942 × 154942 99.999001 0.69 0.424 4.019 10

20 3 231552 × 231552 99.99933 0.92 0.514 6.208 12

20 4 308162 × 308162 99.9995 1.21 0.69 8.2 11.9

40 1 1004862 × 1004862 99.99984 3.61 1.769 30.594 17.3

40 2 2003082 × 2003082 99.99992 6.91 3.391 54.716 16.1

40 3 3001302 × 3001302 99.99995 10.3 5.002 82.158 16.4

40 4 3999522 × 3999522 99.99996 13.68 6.66 112.76 17

60 1 4717592 × 4717592 99.99997 16.48 7.861 131.434 16.7

60 2 9420422 × 9420422 99.999983 43.33 15.614 265.969 17

60 3 14123252 × 14123252 99.999989 64.581 23.296 392.483 16.9

60 4 18826082 × 18826082 99.999992 79.22 31.142 528.142 17

The measurements against the Storm implementation show speed-up of 16
times on average with the Complete CUDA GPU implementation. In smaller
matrices, we observe the basic optimization strategy giving similar results as the
complete optimizations. This is expected since the latency is less significant with
smaller matrices.

98 M. H. Khan et al.

Table 3. Herman: comparing optimizations with Storm multiplier

Model Matrix Sparsity Basic Complete Storm Speed-up

Name Size CUDA CUDA factor

% MS MS MS Storm
Complete

Herman3 8 × 8 56.25 0.2 0.202 0.0015 0.007

Herman5 32 × 32 76.17 0.2 0.217 0.0025 0.012

Herman7 128 × 128 86.64 0.21 0.197 0.0070 0.036

Herman9 512 × 512 92.5 0.21 0.209 0.525 2.513

Herman11 2048 × 2048 95.8 0.31 0.242 4.624 19.11

Herman13 8192 × 8192 97.62 1.83 0.603 16.026 26.58

Herman15 32768 × 32768 98.66 15.19 3.573 125.495 35.12

4.2 Herman Case Study

The self-stabilizing algorithm Herman [30] operates synchronously in an oriented
ring, where the communication is unidirectional in the ring. In this protocol, the
number of processes in the ring must be odd. Our choice of Herman stems from
the fact that it exhibits lower sparsity in comparison to other benchmark models
and thus leads to a faster multiplication but this speed-up is compromised due
to an increase in the memory copy operations from the host to the device. We
also evaluate how using GPUs to solve small matrix-vector multiplication is
counter-intuitive since the setup cost of matrix multiplication is greater than
the complete multiplication on CPU. Execution times can be seen in Table 3
and comparisons are illustrated in Fig. 6b.

For the Herman model, the proposed approach initially performs worse than
the original Storm multiplier. We observe a minimum time of 0.2 ms for all
matrices and since the Storm multiplier can handle matrices of up to 512×512
in under 0.5 ms, it significantly decreases the speed-up factor but with models
greater than 2048 × 2048 we see an up to 35 times increase in performance in
the proposed approach.

Unlike the NAND model, which on average saw twice the performance gain
when comparing the basic with Complete CUDA optimizations, as shown in
Fig. 7a, we see a higher difference in favor of complete optimizations in the Her-
man model. This is due to lower sparsity, which creates a higher cost for memory
copying if the transfer time is not included in the state-space exploration.

SpMV Multiplication Using GPUs 99

(a) Speed-up factor in NAND model. (b) Speed-up factor in Herman model.

Fig. 6. Results from NAND and Herman model.

4.3 Increasing Value of N

All of the above observations have been made assuming a value of N = 2 denot-
ing that the matrix-vector multiplication is performed twice before termination.
With an increased value of N , the cost of performing SpMV multiplication once
can be computed as

Ration =
TimeN=1

TimeN=n
· n (7)

with n being the multiplication count. We observe from Table 4, that the time
taken for a single SpMV multiplication instance reduces with an increased value
of N in all models. This behavior, as illustrated in Fig. 7b, is expected since
GPUs traditionally use such tactics to compensate for the initial latency caused
by memory transfers [22].

Table 4. Execution time of SpMV multiplication for each value of N

Multiplication count - N

Name 1 4 6 10 50 100

Herman3 183 56.75 40.833 28.7 15.46 13.78

Herman5 180 55.5 41.667 29.9 15.96 14.24

Herman7 184 61 41.67 29.5 16.12 13.73

Herman9 188 62.5 40.167 29.2 15.66 13.84

Herman11 214 69 54.5 41.8 26.12 24.52

Herman13 467 207.5 177.3 155 127.34 122.92

Herman15 2633 1361 1219.67 1107.4 968.86 951.78

4.4 CUSP vs cuSPARSE

The CUSP vs cuSPARSE kernel comparison is performed for different matrices
and Table 5 shows a steady lag that CUSP maintains behind the cuSPARSE
library. We found that the resource utilization per streaming multiprocessor in
the cuSPARSE API resulted in a lower time to compute a kernel of the same
dimension and value as compared to the CUSP implementation.

100 M. H. Khan et al.

(a) Basic and complete optimizations
with the ratio of Basic/complete.

(b) Ration of each model with increased
value of N .

Fig. 7. Comparison results of optimizations and increased N .

Table 5. Kernel duration for the Herman model over CUSP and cuSPARSE

Model CUSP time cuSPARSE time CUSP
cuSPARSE

Herman3 18.23 10.312 1.768

Herman5 24.29 10.27 2.365

Herman7 32.56 9.69 3.36

Herman9 107.2 10.03 10.69

Herman11 437.7 22.65 19.32

Herman13 2836 123.44 22.98

Herman15 19720 956.78 20.61

4.5 Comparing GPUs

We also compared hardware on the basis of generation with the RTX-3090 being
the top-of-the-line GPU using PCIe 4.0 x16 lanes followed by the GTX-1080 and
GTX-1050 (x8 lane). From Table 6, we find that the RTX-3090 performs up to
228% faster on matrices that require a higher memory bandwidth, similar to
those of the Herman model, while on high sparsity matrices we see an improve-
ment of 137.5%.

For our results, we compare the output probabilities with the ones obtained
via Storm’s multiplier and found both of them to be identical. The results
identify that for small matrices, the GPU implementation is not recommended
since the time taken for such SpMV multiplications on CPU was observed to be
less than 100 ms. On the other hand, we see a significant performance gain of
up to 80 times on high-end GPUs with models that have large matrices and high
transitions per state, and up to 20 times on average in highly sparse matrices.
Furthermore, when applying the multiplication on the sparse-matrices with only
basic optimization techniques, we observe that, on average, 83% of the time is
spent on memory transfers while this ratio reduces to 65% when memory copy
latency is hidden inside the state-space exploration. This is due to CUDA’s
ability to allow multiple fast streams when copying data within the device as
compared to copies from the host. Finally, we see that older GPU generations

SpMV Multiplication Using GPUs 101

Table 6. Speed-up factor over different generations on Nand and Herman model

Model RTX-3090 GTX-1080 GTX-1050

(Gen.4–16 Lane) (Gen.3–16 Lane) (Gen.3–8 Lane)

NAND − 20,1 4.905 11.5 5.344

NAND − 20,2 9.871 10 6.205

NAND − 20,3 8.742 12 6.589

NAND − 20,4 15.75 11.9 7.059

NAND − 40,1 15.16 17.3 8.443

NAND − 40,2 17.56 16.1 8.352

NAND − 40,3 19.13 16.4 8.006

NAND − 40,4 19.16 17 8.090

NAND − 60,1 19.77 16.7 7.926

NAND − 60,2 21.60 17 7.846

NAND − 60,3 22.11 16.9 7.927

NAND − 60,4 22.63 17 8.249

Herman3 0.031 0.007 0.05

Herman5 0.061 0.012 0.108

Herman7 0.143 0.036 0.34

Herman9 0.73 2.513 2.67

Herman11 7.21 19.11 12.2

Herman13 37.49 26.58 16.08

Herman15 80.31 35.12 18.59

also provide speed-ups of up to 8 times in comparison to the Storm multiplier
on CPU.

5 Conclusion

This paper has presented a GPU-based methodology to optimize sparse-matrix
vector multiplications for probabilistic model checking. Significant improvements
in performance are achieved by enabling optimizations on the memory transfer
step and by using built-in CUDA APIs. Several aspects of the proposed approach
are studied. Experiments revealed a speed up of 16 times over the state-of-the-
art.

All GPU assisted applications are limited by their global memory utiliza-
tion. As state-of-the-art hardware crams maximum 80 Gigabytes of memory, the
next step towards the GPU aided model checkers will be to cater for matrix-
vector multiplications where the size of the variables exceed the limit of the GPU
memory. Abstraction techniques to reduce the size of model are generally applied
to merge multiple states with indistinguishable behaviour. Techniques such as

102 M. H. Khan et al.

bisimulation minimization could either be applied in the GPU or output of the
CPU-based implementation can be imported and merged in the GPU memory.
Extension to a more generic problem set, such as nested bounded probabilistic
model checking along with cross-platform comparison with other hardware accel-
erators and implementation of simulation algorithms such as statistical model
checking can be explored as possible future avenues. Another interesting future
direction will be to implement the state-space exploration inside the GPU. Since
this pre-processing step takes a significant amount of time, GPU-based explo-
ration can introduce a parallel implementation to find successor states. This
approach will also avoid repeated memory movement between the host and the
GPU; thus it will inherently preempt the primary latency factor.

References

1. Ajanovic, J.: PCI express 3.0 overview. In: Proceedings of Hot Chip: A Symposium
on High Performance Chips, vol. 69, p. 143 (2009)

2. Baier, C.: Principles of Model Checking. MIT press, Cambridge (2008)
3. Barnat, J., et al.: Parallel model checking algorithms for linear-time temporal

logic. In: Handbook of Parallel Constraint Reasoning, pp. 457–507. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63516-3 12

4. Barnat, J., Brim, L., Stř́ıbrná, J.: Distributed LTL model-checking in SPIN. In:
Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 200–216. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45139-0 13

5. Bell, N., Garland, M.: Efficient Sparse Matrix-Vector Multiplication on CUDA.
Tech. rep, Citeseer (2008)

6. Bell, N., Garland, M.: Cusp: Generic parallel algorithms for sparse matrix and
graph computations. Version 0.3. 0 35 (2012)

7. Berger, P.: GPU-aided model checking of Markov decision processes (2014)
8. Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: GPU-PRISM: An extension

of prism for general purpose graphics processing units. In: 2010 Ninth Interna-
tional Workshop on Parallel and Distributed Methods in Verification, and Second
International Workshop on High Performance Computational Systems Biology, pp.
17–19. IEEE (2010)

9. Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: Parallel probabilistic model
checking on general purpose graphics processors. Int. J. Softw. Tools Technol.
Transfer 13(1), 21–35 (2011)

10. Bylina, B., Bylina, J., Karwacki, M.: Computational aspects of GPU-accelerated
sparse matrix-vector multiplication for solving Markov models. Theor. Appl.
Inform. 23, 127–145 (2011)

11. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. (TOPLAS) 16(5), 1512–1542 (1994)

12. Cormie-Bowins, E.: A comparison of sequential and GPU implementations of itera-
tive methods to compute reachability probabilities. arXiv preprint arXiv:1210.6412
(2012)

13. Corporation, N.: The API reference guide for cuSPARSE (2021). https://docs.
nvidia.com/cuda/cusparse/index.html

14. Corporation, N.: Cuda c++ best practices guide (2021). https://docs.nvidia.com/
cuda/cuda-c-best-practices-guide/index.html

https://doi.org/10.1007/978-3-319-63516-3_12
https://doi.org/10.1007/3-540-45139-0_13
http://arxiv.org/abs/1210.6412
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

SpMV Multiplication Using GPUs 103

15. Corporation, N.: Nvidia nsight compute (2021). https://developer.nvidia.com/
nsight-compute

16. Corporation, N.: Nvidia visual profiler (2021). https://developer.nvidia.com/
nvidia-visual-profiler

17. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

18. Fabarisov, T., Yusupova, N., Ding, K., Morozov, A., Janschek, K.: The efficiency
comparison of the prism and storm probabilistic model checkers for error propa-
gation analysis tasks. Industry 4.0 3(5), 229–231 (2018)

19. Fang, J., Varbanescu, A.L., Sips, H.: A comprehensive performance comparison of
CUDA and OpenCL. In: 2011 International Conference on Parallel Processing, pp.
216–225. IEEE (2011)

20. Gonzales, D.: PCI express 4.0 electrical previews. In: PCI-SIG Developers Confer-
ence (2015)

21. Greathouse, J.L., Daga, M.: Efficient sparse matrix-vector multiplication on GPUs
using the CSR storage format. In: SC’14: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pp.
769–780. IEEE (2014)

22. Harris, M.: Optimizing cuda. SC07: High Performance Computing With CUDA 60
(2007)

23. Hasan, O., Tahar, S.: Formal verification methods. In: Encyclopedia of Information
Science and Technology, 3rd Edition, pp. 7162–7170. IGI Global (2015)

24. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. arXiv preprint arXiv:2002.07080 (2020)

25. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

26. Katoen, J.: The probabilistic model checking landscape. In: LICS, pp. 31–45. ACM
(2016)

27. Khan, H.: Storm-cuda (2021). https://github.com/khan-hannan/StoRM-CUDA
28. Khan, S., Katoen, J.-P., Volk, M., Bouissou, M.: Scalable reliability analysis by

lazy verification. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I.
(eds.) NFM 2021. LNCS, vol. 12673, pp. 180–197. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-76384-8 12

29. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: 9th
International Conference on Quantitative Evaluation of SysTems, pp. 203–204.
IEEE CS press (2012)

30. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic verification of Herman’s
self-stabilisation algorithm. Formal Aspects Comput. 24(4), 661–670 (2012)

31. Markidis, S., Der Chien, S.W., Laure, E., Peng, I.B., Vetter, J.S.: Nvidia tensor core
programmability, performance and precision. In: 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pp. 522–531. IEEE
(2018)

32. Munshi, A., Gaster, B., Mattson, T.G., Ginsburg, D.: OpenCL programming guide.
Pearson Education (2011)

33. Nambiar, P.P., Saveetha, V., Sophia, S., Sowbarnika, V.A.: GPU acceleration using
CUDA framework. Int. J. Innovative Res. Comput. Commun. Eng. 2(3), 200–205
(2014)

https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
http://arxiv.org/abs/2002.07080
https://doi.org/10.1007/978-3-540-24622-0_8
https://github.com/khan-hannan/StoRM-CUDA
https://doi.org/10.1007/978-3-030-76384-8_12
https://doi.org/10.1007/978-3-030-76384-8_12

104 M. H. Khan et al.

34. Naumov, M., Chien, L., Vandermersch, P., Kapasi, U.: Cusparse library. In: GPU
Technology Conference (2010)

35. Norman, G., Parker, D., Kwiatkowska, M., Shukla, S.: Evaluating the reliability
of NAND multiplexing with PRISM. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 24(10), 1629–1637 (2005)

36. Sanders, J., Kandrot, E.: CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional (2010)

37. Stern, Ulrich, Dill, David L..: Parallelizing the murφ verifier. In: Grumberg, Orna
(ed.) CAV 1997. LNCS, vol. 1254, pp. 256–267. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 26

38. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 21

39. Wijs, A., Neele, T., Bošnački, D.: GPUexplore 2.0: unleashing gpu explicit-state
model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 694–701. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 42

40. Wijs, A.J., Bošnački, D.: Improving GPU sparse matrix-vector multiplication for
probabilistic model checking. In: Donaldson, A., Parker, D. (eds.) SPIN 2012.
LNCS, vol. 7385, pp. 98–116. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31759-0 9

https://doi.org/10.1007/3-540-63166-6_26
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/978-3-319-48989-6_42
https://doi.org/10.1007/978-3-319-48989-6_42
https://doi.org/10.1007/978-3-642-31759-0_9
https://doi.org/10.1007/978-3-642-31759-0_9

A Divide & Conquer Approach to
Conditional Stable Model Checking

Yati Phyo , Canh Minh Do , and Kazuhiro Ogata(B)

School of Information Science, Japan Advanced Institute of Science
and Technology (JAIST), Nomi, Ishikawa 923-1211, Japan

{yatiphyo,canhdominh,ogata}@jaist.ac.jp

Abstract. We describe a stratified way to model check conditional sta-
ble properties expressed as ϕ1 � �ϕ2, where ϕ1, ϕ2 are state proposi-
tions, so as to alleviate the state space explosion problem. We prove a
theorem that the proposed technique is correct and design an algorithm
based on the theorem.

Keywords: Conditional stable properties · Linear temporal logic
(LTL) · Model checking.

1 Introduction

It is still challenging to alleviate the state space explosion problem in model
checking [2] reasonably well. To address the challenge, our research group came
up with a divide & conquer approach to model checking leads-to properties [4]
expressed as ϕ1 � ϕ2, where ϕ1, ϕ2 are state propositions, and eventual (or
eventually) properties [1] expressed as ♦ϕ, where ϕ is a state proposition. Our
research group also built a tool supporting the divide & conquer approach to
model checking leads-to properties [5], has been building a tool for eventual prop-
erties and expanding the technique so as to handle other LTL properties.

Fig. 1. SimpSys (or K)

This paper describes an ongoing work that
extends the technique so as to handle con-
ditional stable properties expressed as ϕ1 �
�ϕ2, where ϕ1, ϕ2 are state propositions. Con-
ditional stable properties informally say that
whenever something is true, it will eventually
happen that something else will be always true
(or will be stable). The properties can be used
to express desired properties self-stabilizing sys-
tems [3] should satisfy.

Let us outline the proposed technique with a simple system (or Kripke struc-
ture) called SimpSys (or K) as depicted in Fig. 1 so that you can intuitively
comprehend the technique. SimpSys has six states s0, . . . , s5, where s0 is the

This research was partially supported by JSPS KAKENHI Grant Number JP19H04082.

c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 105–111, 2021.
https://doi.org/10.1007/978-3-030-85315-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_7&domain=pdf
http://orcid.org/0000-0001-8388-0004
http://orcid.org/0000-0002-1601-4584
http://orcid.org/0000-0002-4441-3259
https://doi.org/10.1007/978-3-030-85315-0_7

106 Y. Phyo et al.

Fig. 2. Split of the state space of K into 3 layers

only initial state. There are
eight transitions depicted as
arrows in Fig. 1. Let us con-
sider two atomic propositions
a and b. The labeling func-
tion is defined as depicted in
Fig. 1. Let us take a � �b as
a property concerned. We can
straightforwardly check that
SimpSys satisfies the prop-
erty, namely SimpSys |= a �
�b, and then do not need
to use the proposed technique
for this model checking exper-
iment. We, however, use this
simple model checking exper-
iment to sketch the technique.

The left part of Fig. 2
shows the reachable state
space of SimpSys, while the
right part shows the six sub-state spaces (K1, . . . ,K6) obtained by splitting
the reachable state space into three layers. The proposed technique first checks
K1 |= �¬a. There is one counterexample s0, s3, s3, . . ., and then no check is done
for K3. The technique checks K2 |= �¬a, which has no counterexample, and
then checks K4 |= a � �b, which has no counterexample. The technique checks
K5 |= ♦�b and K6 |= ♦�b, both of which have no counterexample. Therefore,
the technique concludes that the property holds for SimpSys. The point is as
follows: the number of different states in K is six, while those in K1, . . . , K6

are 3, 2, 2, 1, 3 and 2, respectively. Because the number of different states in
each sub-state space can be less than the one in the original reachable state
space, the proposed technique may make it possible to check ϕ1 � �ϕ2 even
if any existing LTL model checker cannot because of the state space explosion
problem.

2 Preliminaries

Definition 1 (Kripke structures). A Kripke structure K � 〈S, I,T ,A,L〉
consists of a set S of states, a set I ⊆ S of initial states, a left-total binary
relation T ⊆ S × S over states, a set A of atomic propositions and a labeling
function L whose type is S → 2A . An element (s, s′) ∈ T is called a (state)
transition from s to s′ and may be written as s →K s′.

An infinite sequence s0, s1, . . . , si, si+1, . . . of states is called a path of K iff
for any natural number i, (si, si+1) ∈ T . Let π be s0, s1, . . . , si, si+1, . . . and
some notations on π are defined as follows: π(i) is si; πi is si, si+1, . . .; πi is

A Divide & Conquer Approach to Conditional Stable Model Checking 107

s0, s1, . . . , si, si, si, . . .; π(i,j) is si, si+1, . . . , sj , sj , sj , . . . if i ≤ j and si, si, si, . . .
otherwise; π(i,∞) is πi, where i, j are natural numbers. A path π of K is called a
computation of K iff π(0) ∈ I. Let PK be the set of all paths of K. Let P (K ,s)

be {π | π ∈ PK , π(0) = s}, where s ∈ S. Let P b
(K ,s) be {πb | π ∈ P (K ,s)},

where s ∈ S and b is a natural number. Note that P∞
(K ,s) is P (K ,s).

Definition 2 (Syntax of LTL). The syntax of linear temporal logic (LTL) is
as follows: ϕ ::= a | � | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ, where a ∈ A.

Definition 3 (Semantics of LTL). For any Kripke structure K, any path π
of K and any LTL formula ϕ, K, π |= ϕ is inductively defined as follows:

– K, π |= a iff a ∈ π(0)
– K, π |= �
– K, π |= ¬ϕ1 iff K, π �|= ϕ1

– K, π |= ϕ1 ∨ ϕ2 iff K, π |= ϕ1 and/or K, π |= ϕ2

– K, π |= © ϕ1 iff K, π1 |= ϕ1

– K, π |= ϕ1 U ϕ2 iff there exists a natural number i such that K, πi |= ϕ2 and
for each natural number j < i, K, πj |= ϕ1

where ϕ1 and ϕ2 are LTL formulas. Then, K |= ϕ iff K, π |= ϕ for all compu-
tations π of K.

⊥ � ¬� and some other connectives are defined as follows: ϕ1 ∧ϕ2 � ¬((¬ϕ1)∨
(¬ϕ2)), ϕ1 ⇒ ϕ2 � (¬ϕ1) ∨ ϕ2, ϕ1 ⇔ ϕ2 � (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1), ♦ϕ1 �
� U ϕ1, �ϕ1 � ¬(♦¬ϕ1) and ϕ1 � ϕ2 � �(ϕ1 ⇒ ♦ϕ2). ©, U , ♦, � and
� are called next, until, eventually, always and leads-to temporal connectives,
respectively. State propositions are LTL formulas such that they do not have any
temporal connectives. This paper focuses on properties that can be expressed
as ϕ1 � �ϕ2, where ϕ1, ϕ2 are state propositions. Such properties are called
conditional stable properties. Although it is unnecessary to directly define the
semantics for ϕ1 � �ϕ2, we can define it as follows:

– K, π |= ϕ1 � �ϕ2 iff there exists a natural number i (≥j) such that K, πi |=
�ϕ2 if there exists a natural number j such that K, πj |= ϕ1.

3 Multiple Layer Division of Conditional Stable Model
Checking

Lemma 1. Let ϕ be any state proposition of K. Let k be any natural number.
Then, (K, π |= �ϕ) ⇔ (K, πk |= �ϕ) ∧ (K, πk |= �ϕ).

Proof. Because ϕ is a state proposition, whether it holds only depends on the
first state of a given path. If (K, π |= �ϕ), then ϕ holds for π(i) for all i, and
vice versa. If K, πk |= �ϕ and K, πk |= �ϕ, then ϕ holds for π(i) for i = 0, . . . , k
and ϕ holds for π(i) for i = k, . . ., respectively, and therefore ϕ holds for π(i)
for all i, and vice versa. ��

108 Y. Phyo et al.

Lemma 2. Let ϕ1, ϕ2 be any state propositions of K. Let k be any natural
number. Then, (K, πk |= ♦�ϕ2) ⇒ (K, π |= ϕ1 � �ϕ2).

Proof. From the assumption, there exists i (≥ k) such that K, πi |= �ϕ2. Thus,
K, π |= ϕ1 � �ϕ2. ��
Lemma 3. Let ϕ1, ϕ2 be any state propositions of K. Let k be any natural
number. Then, (K, πk |= �¬ϕ1)∧(K, πk |= ϕ1 � �ϕ2) ⇒ (K, π |= ϕ1 � �ϕ2).

Proof. The case is split into two cases: (1) K, πk |= �¬ϕ1 and (2) K, πk �|=
�¬ϕ1. In (1), K, π |= �¬ϕ1 from the first conjunct of the assumption and
Lemma 1. Hence, K, π |= ϕ1 � �ϕ2. In (2), from the second conjunct of the
assumption, there exists i (≥ k) such that K, πi |= �ϕ2. Thus, K, π |= ϕ1 �
�ϕ2. ��
Lemma 4 (Two layer division of ϕ1 � �ϕ2). Let ϕ1, ϕ2 be any state
propositions of K. Let k be any natural number. Then,

(K, π |= ϕ1 � �ϕ2)
⇔ [(K, πk |= �¬ϕ1) ⇒ (K, πk |= ϕ1 � �ϕ2)] ∧

[(K, πk �|= �¬ϕ1) ⇒ (K, πk |= ♦�ϕ2)]

Proof. (1) Case “only if” (⇒): The case is split into two cases: (1.1) K, π |=
�¬ϕ1 and (1.2) K, π �|= �¬ϕ1. In (1.1), K, πk |= �¬ϕ1 from Lemma 1. There-
fore, K, πk |= ϕ1 � �ϕ2. In (1.2), there exists i such that K, πi |= ϕ1. Thus,
from the assumption, there exists j (≥ i) such that K, πj |= �ϕ2. Hence,
K, πk |= ϕ1 � �ϕ2 and K, πk |= ♦�ϕ2.

(2) Case “if” (⇐): The case is split into two cases: (2.1) K, πk |= �¬ϕ1

and (2.2)K, πk �|= �¬ϕ1. In (2.1), K, π |= ϕ1 � �ϕ2 from Lemma 3. In (2.2),
K, π |= ϕ1 � �ϕ2 from Lemma 2. ��
Definition 4 (CStableL). Let L be any non-zero natural number, k be any
natural number and d be any function such that d(0) is 0, d(x) is a natural
number for x = 1, . . . , L and d(L + 1) is ∞.

1. 0 ≤ k < L − 1

CStableL(K, π, ϕ1, ϕ2, k)
� [(K, π(d(k),d(k+1)) |= �¬ϕ1) ⇒ CStableL(K, π, ϕ1, ϕ2, k + 1)] ∧

[(K, π(d(k),d(k+1)) �|= �¬ϕ1) ⇒ (K, π(d(L),d(L+1)) |= ♦�ϕ2)]

2. k = L − 1

CStableL(K, π, ϕ1, ϕ2, k)
� [(K, π(d(k),d(k+1)) |= �¬ϕ1) ⇒ (K, π(d(k+1),d(k+2)) |= ϕ1 � �ϕ2)] ∧

[(K, π(d(k),d(k+1)) �|= �¬ϕ1) ⇒ (K, π(d(k+1),d(k+2)) |= ♦�ϕ2)]

Theorem 1 (L + 1 layer division of ϕ1 � �ϕ2). Let L be any non-zero
natural number. Let d(0) be 0, d(x) be any natural number for x = 1, . . . , L and
d(L + 1) be ∞. Let ϕ1, ϕ2 be any state propositions of K. Then,

(K, π |= ϕ1 � �ϕ2) ⇔ CStableL(K, π, ϕ1, ϕ2, 0)

A Divide & Conquer Approach to Conditional Stable Model Checking 109

Proof. By induction on L.

– Base case (L = 1): It follows from Lemma 4.
– Induction case (L = l + 1): We prove the following:

(K, π |= ϕ1 � �ϕ2) ⇔ CStablel+1(K, π, ϕ1, ϕ2, 0)

Let dl+1 be d used in CStablel+1(K, π, ϕ1, ϕ2, 0) such that dl+1(0) = 0,
dl+1(i) is an arbitrary natural number for i = 1, . . . , l+1 and dl+1(l+2) = ∞.
The induction hypothesis is as follows:

(K, π |= ϕ1 � �ϕ2) ⇔ CStablel(K, π, ϕ1, ϕ2, 0)

Let dl be d used in CStablel(K, π, ϕ1, ϕ2, 0) such that dl(0) = 0, dl(i) is
an arbitrary natural number for i = 1, . . . , l and dl(l + 1) = ∞. Because
dl+1(i) is an arbitrary natural number for i = 1, . . . , l + 1, we suppose that
dl+1(1) = dl(1) and dl+1(i + 1) = dl(i) for i = 1, . . . , l. Because π is any path
of K, π can be replaced with πdl(1). If so, we have the following as an instance
of the induction hypothesis:

(K, πdl(1) |= ϕ1 � �ϕ2) ⇔ CStablel(K, πdl(1), ϕ1, ϕ2, 0)

From Definition 4, CStablel(K, πdl(1), ϕ1, ϕ2, 0) is CStablel+1(K, π, ϕ1, ϕ2, 1)
because dl(0) = dl+1(0) = 0, dl(1) = dl+1(1) and dl(i) = dl+1(i + 1) for i =
1, . . . , l and dl(l + 1) = dl+1(l + 2) = ∞. Therefore, the induction hypothesis
instance can be rephrased as follows:

(K, πdl+1(1) |= ϕ1 � �ϕ2) ⇔ CStablel+1(K, π, ϕ1, ϕ2, 1)

From Definition 4, CStablel+1(K, π, ϕ1, ϕ2, 0) is

[(K, π(dl+1(0),dl+1(1)) |= �¬ϕ1) ⇒ CStableL(K, π, ϕ1, ϕ2, 1)] ∧
[(K, π(dl+1(0),dl+1(1)) �|= �¬ϕ1) ⇒ (K, π(dl+1(L),dl+1(L+1)) |= ♦�ϕ2)]

which is

[(K, π(dl+1(0),dl+1(1)) |= �¬ϕ1) ⇒ (K, πdl+1(1) |= ϕ1 � �ϕ2)] ∧
[(K, π(dl+1(0),dl+1(1)) �|= �¬ϕ1) ⇒ (K, π(dl+1(L),dl+1(L+1)) |= ♦�ϕ2)]

because of the induction hypothesis instance. From Lemma 4, this is equiva-
lent to K, π |= ϕ1 � �ϕ2. ��

110 Y. Phyo et al.

Algorithm 1. A divide & conquer approach to conditional stable model
checking
input : K – a Kripke structure

ϕ1, ϕ2 – State propositions
L – a non-zero natural number
d – a function such that d(x) is a non-zero natural number for
x = 1, . . . , L

output: Success (K |= ϕ1 � �ϕ2) or Failure (K �|= ϕ1 � �ϕ2)
1 NCxS ← I
2 CxS ← ∅
3 forall the l ∈ {1, . . . , L} do

4 NCxS′ ← {π(d(l)) | s ∈ NCxS, π ∈ P
d(l)

(K ,s)}
5 CxS′ ← {π(d(l)) | s ∈ CxS, π ∈ P

d(l)

(K ,s)}
6 forall the s ∈ NCxS do

7 forall the π ∈ P
d(l)

(K ,s) do

8 if K , π �|= �¬ϕ1 then
9 NCxS′ ← NCxS′ − {π(d(l))}

10 CxS′ ← CxS′ ∪ {π(d(l))}
11 NCxS ← NCxS′

12 CxS ← CxS′

13 forall the s ∈ NCxS do
14 forall the π ∈ P (K ,s) do
15 if K , π �|= ϕ1 � �ϕ2 then
16 return Failure

17 forall the s ∈ CxS do
18 forall the π ∈ P (K ,s) do
19 if K , π �|= ♦�ϕ2 then
20 return Failure

21 return Success

4 A Divide & Conquer Approach to Conditional Stable
Model Checking Algorithm

An algorithm can be constructed based on Theorem1, which is shown as Algo-
rithm1. Just after the first forall loop, NCxS ∪ CxS is the set of all states
located at the bottom of the Lth layer (or the top of the L + 1st layer); if there
exists a state s in a path fragment from an initial state to a state sL located
at the bottom of the Lth layer such that ϕ1 holds for s, sL is in CxS and
CxS consists of all such states located at the bottom of the Lth layer; NCxS
consists of all the other states located at the bottom of the Lth layer. The code
fragment at lines 13–16 checks ϕ1 � �ϕ2 for each path that starts with each
state in NCxS. The code fragment at lines 17 – 20 checks ♦�ϕ2 for each path
that starts with each state in CxS. The first forall loop generates the two sets
of states located at bottom of the Lth layer by checking �¬ϕ1 for some paths
obtained from intermediate layers (1st to Lth layers).

A Divide & Conquer Approach to Conditional Stable Model Checking 111

5 Future Directions

We will build a tool supporting the proposed technique and conduct case studies
demonstrating that the proposed technique and tool are useful. We will expand
the technique in order to handle other properties.

References

1. Aung, M.N., Phyo, Y., Do, C.M., Ogata, K.: A divide and conquer approach to even-
tual checking. Mathematics 9, 368 (2021). https://doi.org/10.3390/math9040368

2. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking.
Springer, Berlin, Heidelberg (2018). https://doi.org/10.1007/978-3-319-10575-8

3. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
4. Phyo, Y., Do, C.M., Ogata, K.: A divide and conquer approach to leads-to model

checking. Comput. J. (2021). https://doi.org/10.1093/comjnl/bxaa183
5. Phyo, Y., Do, C.M., Ogata, K.: A support tool for the L+1-layer divide and conquer

approach to leads-to model checking. In: Proceedings of COMPSAC 2021. IEEE
(2021). https://doi.org/10.1109/COMPSAC51774.2021.00118

https://doi.org/10.3390/math9040368
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1093/comjnl/bxaa183
https://doi.org/10.1109/COMPSAC51774.2021.00118

Formalization and Verification in Coq
and Isabelle

Certifying Choreography Compilation

Lúıs Cruz-Filipe(B) , Fabrizio Montesi , and Marco Peressotti

Department of Mathematics and Computer Science, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark

{lcfilipe,fmontesi,peressotti}@imada.sdu.dk

Abstract. Choreographic programming is a paradigm for developing
concurrent and distributed systems, where programs are choreographies
that define, from a global viewpoint, the computations and interactions
that communicating processes should enact. Choreography compilation
translates choreographies into the local definitions of process behaviours,
given as terms in a process calculus.

Proving choreography compilation correct is challenging and error-
prone, because it requires relating languages in different paradigms
(global interactions vs local actions) and dealing with a combinatorial
explosion of proof cases. We present the first certified program for chore-
ography compilation for a nontrivial choreographic language supporting
recursion.

Keywords: Choreographic programming · Formalisation ·
Compilation

1 Introduction

Choreographic programming is an emerging programming paradigm where the
desired communication behaviour of a system of communicating processes can be
defined from a global viewpoint in programs known as choreographies [25]. Then,
a provably-correct compiler can automatically generate executable code for each
process, with the guarantee that executing these processes together implements
the communications prescribed in the choreography [5,7]. The theory of such
compilers is typically called EndPoint Projection (EPP).

Choreographies are inspired by the “Alice and Bob” notation for security
protocols [27]. The key idea is to have a linguistic primitive for a communication
from a participant to another: statement Alice.e → Bob.x reads “Alice evaluates
expression e and sends the result to Bob, who stores it in variable x”. This syntax
has two main advantages. First, the desired communications are syntactically
manifest in a choreography, which makes choreographic programming suitable
for making interaction protocols precise. Second, it disallows writing mismatched
send and receive actions, so code generated from a choreography enjoys progress
(the system never gets stuck) [7].

Work partially supported by Villum Fonden, grant no. 29518.

c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 115–133, 2021.
https://doi.org/10.1007/978-3-030-85315-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_8&domain=pdf
http://orcid.org/0000-0002-7866-7484
http://orcid.org/0000-0003-4666-901X
http://orcid.org/0000-0002-0243-0480
https://doi.org/10.1007/978-3-030-85315-0_8

116 L. Cruz-Filipe et al.

The potential of choreographic programming has motivated the study of
choreographic languages and EPP definitions for different applications, including
self-adaptive systems [15], information flow [21], system integration [16], parallel
algorithms [10], cyber-physical systems [17,23,24], and security protocols [17].

EPP involves three elements: the source choreography language, the target
language, and the compiler. The interplay between these components, where a
single instruction at the choreographic level might be implemented by multiple
instructions in the target language, makes the theory of choreographic program-
ming error-prone: for even simpler approaches, like abstract choreographies with-
out computation, it has been recently discovered that a few key results published
in peer-reviewed articles do not hold and their theories required adjustments [28],
raising concerns about the soundness of these methods.

In this article, we present a certified program for EPP, which translates terms
of a Turing complete choreographic language into terms of a distributed pro-
cess calculus. Our main result is the formalisation of the hallmark result of
choreographic programming, the “EPP Theorem”: an operational correspon-
dence between choreographies and their endpoint projections. This is the first
time that this result has been formalised in a theorem prover, increasing our
confidence in the methodology of choreographies.

Structure and Related Work. Our formalisation is developed in Coq [4], and we
assume some familiarity with it. We start from a previous formalisation [13] of
a choreographic language (Core Choreographies [12]), which we recap in Sect. 2.
This formalisation only deals with the choreographic language and its properties;
in particular, the target calculus for EPP is not defined therein.

In Sect. 3, we define our target language: a distributed process calculus
inspired by the informal presentation in [26]. The calculus has communication
primitives that recall those commonly used for implementing choreography lan-
guages, e.g., as found in (multiparty) session types [20]. In Sect. 4, we define
merging [5]: a partial operator that addresses the standard problem (for chore-
ographies) of checking that each process implementation eventually agrees on the
choice between alternative behaviours in protocols [3,5]. Building on merging,
in Sect. 5, we define EPP. Then, in Sect. 6, we explore pruning [5]: a preorder
induced by merging that plays a key role in the EPP Theorem, proved in Sect. 7.

Choreographies are used in industry for the specification and definition of
web services and business processes [19,29]. These languages feature recursion
or loops, which are not present in the only other formalisation work on choreogra-
phies that we are aware of [18]. We have validated the theory of EPP from [26],
and made explicit several properties that are typically only implicitly assumed.
Our results show that the ideas developed by researchers on choreographies, like
merging, can be relied upon for languages of practical appeal.

2 Background

We use the choreographic language of [26], which is inspired by Core Choreogra-
phies (CC) [12]. So far, this is the only Turing complete choreographic language

Certifying Choreography Compilation 117

that has been formalised [13]. In this section, we recap this formalisation, which
our work builds upon. We refer the reader to [13] for a discussion of the design
options both behind the choreographic language and the formalisation. Some of
these are relevant for our development, and we explain them when needed.

CC is designed to model communication protocols involving several partici-
pants, called processes, each equipped with memory cells, identified by variables.
Communications are of two kinds: value communications, where a process evalu-
ates an expression using the values stored in its memory and sends the result to
a (distinct) process; and (label) selections, where a process selects from different
behaviours available at another process by means of an identifier (the label).
Selections are used to communicate local choices made by a process to other
processes. Recursive and infinite behaviour is achieved by defining procedures.

Syntax. The formalisation of CC is parametric on the types of processes (Pid,
ranged over by p), variables (Var, ranged over by x), expressions (Expr, ranged
over by e), values stored in memory (Value, ranged over by v), Boolean expres-
sions (BExpr, ranged over by b) and procedure names (RecVar, ranged over by X).
Equality on these types must be decidable. Labels, ranged over by l, are either
left or right, which is common in choreographies and session types [6,8,30].

The syntax of choreographies is defined by the following BNF grammar.

eta ::= p.e -> q.x | p -> q[l]
C ::= eta; C | If p.b Then Ct Else Ce | Call X | RT_Call X ps C | End

An eta is a communication action, where p.e -> q.x is a value communication1

and p -> q[l] is a label selection. Eta is the type of all communication actions.
Choreographies are ranged over by C. A choreography eta; C, can execute

a communication eta and continue as C. A conditional If p.b Then Ct Else Ce

evaluates the Boolean expression b in the memory of process p and continues
as Ct or Ce, according to whether b evaluates to true or false. Choreography
Call X is a call to a procedure X. Term RT_Call X ps C is a runtime term, discussed
below. Term End is the terminated choreography. We write Choreography for the
type of all choreographies.

This grammar is implemented as a Coq inductive type, e.g., eta; C stands for
Interaction eta C, where Interaction : Eta → Choreography → Choreography is a
constructor of type Choreography.

Example 1 (Distributed Authentication). The choreography C1 below describes
a multiparty authentication scenario where an identity provider ip authenticates
a client c, to server s (we name subterms for later use).

C1 := c.credentials -> ip.x; If ip.(check x) Then C1t Else C1e

C1t := ip -> s[left]; ip -> c[left]; s.token -> c.t; End
C1e := ip -> s[right]; ip -> c[right]; End

1 For readability, we use notations closer to the usual mathematical ones than in for-
malisation, where they are slightly different due to Coq’s restrictions on overloading.

118 L. Cruz-Filipe et al.

C1 starts with c communicating its credentials, stored in the local variable
credentials, to ip, which stores them in x. Then, ip checks if the credentials are
valid or not by evaluating the local expression check x, and signals the result to
s and c by selecting left when the credentials are valid (C1t) and right other-
wise (C1e). In the first case, the server communicates a token (stored in its local
variable token) to the client, otherwise the choreography ends.

Because the guard of the conditional is evaluated by ip, only this process
knows which branch of the choreography to execute. This is an instance of the
knowledge of choice problem. Label selections propagate this information to
processes whose behaviour depends on this choice (in this case, both s and c). �

A program is a pair (Procedures P,Main P):DefSet ∗ Choreography. Elements of
type DefSet (set of procedure definitions) map each X to a pair containing the
processes used in X (Vars P X) and the choreography to be executed (Procs P X).
These procedure definitions can then be called from each other and from Main P

(using term Call X), allowing for the definition of recursive behaviour.
Executing procedure calls generates runtime terms. Choreography Call X can

reduce by a process p entering X. It becomes RT_Call X ps C, where C is the defi-
nition of X and ps is the list of processes used in X (other than p). This term can
then either reduce by another process entering the procedure (and being removed
from ps), or by executing some action in C that does not involve processes in ps

(and C is updated). When the last process in ps calls X, RT_Call X ps C reduces
to C. The runtime term RT_Call X ps C is not meant to be used when writing a
choreography, and in particular it should not occur in procedure definitions. A
choreography that does not include any such term is called initial.

There are three kinds of restrictions when writing choreographies.

(i) Intended use of choreographies. Interactions must have distinct processes
(no self-communication), e.g., p.e -> p.x is disallowed.

(ii) Intended use of runtime terms. All choreographies Procs P X must be initial.
Main P may include subterms RT_Call X ps C, but ps must be nonempty and
include only process names that occur in Vars P X.

(iii) Design choices in the formalisation. Informally, Vars X contains the processes
that are used in Procs X. This introduces constraints that are encapsulated
in the definition of well-formed program.

The constraints in the last category are particularly relevant for the proof of the
EPP Theorem, so we discuss them in that context in Sect. 7.

Example 2. Let Defs:DefSet map FileTransfer to the pair consisting of the pro-
cess list c :: s :: nil and the following choreography.

s.(file, check) -> c.x; (* send file and check data *)

If c.(crc(fst(x))== snd(x)) (* cyclic redundancy check *)

Then c -> s[left]; End (* file received correctly, end *)

Else c -> s[right]; Call FileTransfer (* errors detected, retry *)

FileTransfer describes a file transfer protocol between a server s and a client c

using Cyclic Redundancy Checks (crc) to detect errors from a noisy channel. �

Certifying Choreography Compilation 119

Semantics. The semantics of CC is defined as a labelled transition system using
inductive types. It uses a state, which is a function mapping process variables to
their values: State:Pid → Var → Value.

The semantics is structured in three layers. The first layer specifies transitions
with the following relation, parameterised on a set of procedure definitions.

CCC_To : DefSet → Choreography → State

→ RichLabel → Choreography → State → Prop

Rules in this set include that p.e -> q.x;C in state s transitions to C in state s' ,
where s' coincides with s except that s' q x now stores the value obtained by
evaluating e at p in state s.2 RichLabel includes information about the executed
term – the above communication is labelled R_Com p v q x. There are also rules for
out-of-order execution: interactions involving distinct processes can be executed
in any order, reflecting concurrency. For example, p.e -> q.x;r -> s[left] can
execute as a communication from p to q followed by a label selection from r to
s, but also as the latter label selection followed by the former communication.

The second layer raises transitions to the level of programs, abstracting from
unobservable details. It is defined by a single rule: if CCC_To Defs C s t C' s' , then
({| Defs; C|}, s) —[forget t]−→ ({|Defs; C'|},s'). Here, {|Defs; C|} denotes the pro-
gram built from Defs and C, and forget removes unobservable details from tran-
sition labels (e.g., forget (R_Com p v q x) is L_Com p v q). Labels for conditionals
and procedure calls all simplify to L_Tau p, denoting an internal action at p. The
third layer defines the reflexive and transitive closure of program transitions.

Important properties of CC formalised in [13] include deadlock-freedom by
design (any program P such that Main P �= End reduces), confluence (if P can exe-
cute two different sequences of actions, then the resulting programs can always
reduce to a common program and state), and Turing completeness.

Example 3. Consider the program {|D; C1|} where C1 is the choreography in
Example 1 and D:DefSet is arbitrary (there are no recursive calls in C1).

{|D; C1|}, st1) —[L_Com c ip v1]−→ ({|D; If ip.(check x) Then C1t Else C1e|},st2)

where v1 is the evaluation of e at c in st1 and st2 updates the value of ip’s
variable x accordingly. If check x is true at ip in st2, then it continues as follows.

{|D; If ip.(check x) Then C1t Else C1e|}, st2) —[L_Tau ip]−→ {|D; C1t|}, st2)
—[L_Sel ip s left; L_Sel ip c left]−→∗ {|D; s.token -> c.t; End|}, st2)
—[L_Com s c v2]−→ {|D; End|}, st3)

where v2 is the evaluation of token at s in st2 and st3 updates st2 accordingly.
Otherwise, it continues as follows.

{|D; If ip.(check x) Then C1t Else C1e|}, st2) —[L_Tau ip]−→ {|D; C1e|}, st2)
—[L_Sel ip s right; L_Sel ip c right]−→∗ {|D; End|}, st2)

2 The semantics of CC only requires extensional equality of states, which is why s' is
quantified over rather than directly defined from s.

120 L. Cruz-Filipe et al.

In compound transitions, the actions in the label are executed in order. �

Example 4. Let Defs as in Example 2 and C be the body of FileTransfer. Con-
sider the program {|Defs; Call FileTransfer|} . The processes in the procedure
FileTransfer can start a call in any order as exemplified by the transitions below.

{|Defs; Call FileTransfer|},st) —[L_Tau c]−→
({| Defs; RT_Call FileTransfer s::nil C|},st) —[L_Tau s]−→ ({|Defs; C|},st)

{|Defs; Call FileTransfer|},st) —[L_Tau s]−→
({| Defs; RT_Call FileTransfer c::nil C|},st) —[L_Tau c]−→ ({|Defs; C|},st)

The state st is immaterial. �

3 Stateful Processes

Our first contribution is formalising SP (Stateful Processes), the process calculus
for implementing CC [26], which is inspired by the process calculi in [11,12].3

3.1 Syntax

SP is defined as a Coq functor with the same parameters as CC. Its syntax
contains three ingredients: behaviours, defining the actions performed by indi-
vidual processes; networks, consisting of several processes running in parallel;
and programs, defining a set of procedure definitions that all processes can use.

Behaviours. Behaviours are sequences of local actions – counterparts to the
terms that can be written in CC – defined by the following BNF grammar.

B ::= End | p!e;B | p?x;B | p⊕l;B | p&mBl//mBr | If b Then Bt Else Be | Call X

This grammar is again formalised as a Coq inductive type, called Behaviour.
Terms End, If b Then Bt Else Be and Call X are as in CC. Value communications
are split into p!e; B, which evaluates e, sends the result to p, and continues as B,
and by p?x; B, which receives a value from p, stores it at x, and continues as B.4

Label selections are divided into p⊕l; B – sending the label l to p and contin-
uing as B – and p & mBl // mBr, where one of mBl or mBr is chosen according to the
label selected by p. Both mBl and mBr have type option Behaviour (either None

or Some B, where B is a behaviour): a process does not need to offer behaviours

3 The choreography language CC is also inspired by the works [11,12], but formalising
it in Coq benefitted substantially from adopting a labelled transition system seman-
tics. This is discussed extensively in [13]. In this work, we made similar changes to the
process calculus not only for similar reasons, but also to keep a close correspondence
with the choreography language.

4 Processes communicate by name. In practice, names can be either process identifiers
(cf. actors), network addresses, or session correlation data.

Certifying Choreography Compilation 121

corresponding to all possible labels. Informally, branching terms are partial func-
tions from labels to behaviours; we capitalise on the fact that there are only two
labels to simplify the formalisation.

Many results about Behaviours are proved by structural induction, requiring
inspection of subterms of branching terms. The induction principle automatically
generated by Coq is not strong enough for this, and our formalisation includes
a stronger result that we use in later proofs.

Networks. Networks have type Pid → Behaviour. We define extensional equality
of networks, N== N', and show that it is an equivalence relation. To model prac-
tice, where networks are written as finite parallel compositions of behaviours, we
introduce some constructions: N|N' is the parallel composition of N and N' ; p[B] is
the network mapping p to B and all other processes to End; and N ∼∼ p denotes
network N where p is now mapped to End. The formalisation includes a number
of lemmas about extensional equality, for example that updating the behaviours
of two processes yields the same result independent of the order of the updates.

Programs. Finally, a Program is a pair (Procs P,Net P):DefSetB ∗ Network, where
DefSetB = RecVar → Behaviour maps procedure names to Behaviours.

Programs, networks and behaviours should satisfy well-formedness properties
similar to those of CC. However, these properties are automatically ensured when
networks are automatically generated from choreographies, so we do not discuss
them here. They are included in the formalisation.

Example 5. Consider the network N = c[Bc] | s[Bs] | ip[Bip] composed by the
behaviours below.

Bc := ip!credentials; ip & Some (s?t; End) // Some End

Bs := ip & Some (c!token; End) // Some End

Bip := c?x; Bip'
Bip' := If (check x) Then (s⊕left; c⊕left; End) Else (s⊕right; c⊕right; End)

This network implements the choreography in Example 1. �

3.2 Semantics

The semantics of SP is defined by a labelled transition system. Transitions for
communications match dual actions in two processes, while conditionals and
procedure calls simply run locally. We report the representative cases – the
complete definition can be found in the source formalisation [14]. For readability,
we first present them in the standard rule notation.

122 L. Cruz-Filipe et al.

v := eval_on_state e s p N p = q!e; B N q = p?x; B'
N' == N ∼∼ p ∼∼ q | p[B] | q[B'] s' == update s q x v

({| Defs; N|}, s) —[L_Com p v q]−→ ({|Defs; N'|}, s')
S_Com

N p = q⊕left; B N q = p & Some Bl // Br

N' == N ∼∼ p ∼∼ q | p[B] | q[Bl] s== s'

({| Defs; N|}, s) —[L_Sel p q left]−→ ({|Defs; N'|}, s')
S_LSel

N p = If b Then B1 Else B2 beval_on_state b s p = true

N' == N ∼∼ p | p[B1] s== s'

({| Defs; N|}, s) —[L_Tau p]−→ ({|Defs; N'|}, s')
S_Then

N p = Call X N' == N ∼∼ p | p[Defs X] s== s'
({| Defs; N|}, s) —[L_Tau X p]−→ ({|Defs; N'|}, s')

S_Call

Functions eval_on_state and beval_on_state evaluate a (Boolean) expression
locally, given a state, while update s q x v updates state s by changing the value
of q’s variable x to v. We write also == for extensional equality of states.

As for choreographies, the formalisation of these rules is done in two steps.
The first step defines a transition relation parameterised on the set of procedure
definitions, and includes richer transition labels (necessary for doing case analysis
on transitions). This relation is defined as an inductive type, whose first defining
clause is shown below.5

Inductive SP_To (Defs : DefSetB) :
Network → State → RichLabel → Network → State → Prop :=
| S_Com N p e B q x B' N' s s' : let v := (eval_on_state e s p) in

N p = (q!e; B) → N q = (p?x; B') → N' == N ∼∼ p ∼∼ q | p[B] | q[B'] →
s' == (update s q x v) → SP_To Defs N s (R_Com p v q x) N' s' (...)

This relation is then lifted to configurations just as for CC: if
SP_To Defs N s t N' s' , then ({| Defs; N|}, s) —[forget t]−→ ({|Defs; N'|},s'). Clo-
sure under reflexivity and transitivity (with similar notation) is again defined as
for choreographies.

Example 6. We illustrate the possible transitions of the network from Example 5.
We abbreviate the behaviours of processes that do not change in a reduction to
... to make it more clear what parts of the network are changed. Furthermore,
we omit trailing Ends in Behaviours.

The network starts by performing the transition

5 Coq’s type inference mechanism allows us to omit types of most universally quanti-
fied variables and parameters. We abuse this possibility to lighten the presentation.

Certifying Choreography Compilation 123

{|D; c[Bc] | s[Bs] | ip[Bip]|}, st1) —[L_Com c ip v1]−→
{|D; c[ip & Some (s?t) // Some End] | s[...] | ip[Bip']|}, st2)

where v1 and st2 are as in Example 3. If eval_on_state (check x) st2 ip is true,
it continues as follows

{|D; c[ip & Some (s?t) // Some End] | s[Bs] | ip[Bip'], st2)
—[L_Tau ip]−→ {|D; c[...] | s[...] | ip[s⊕left;c⊕left], st2)
—[L_Sel ip s left]−→ {|D; c[...] | s[c!token] | ip[c⊕left], st2)
—[L_Sel ip c left]−→ {|D; c[s?t] | s[...] | ip[End], st2)
—[L_Com s c v2]−→ {|D; c[End] | s[End] | ip[End], st3)

where v2 and st3 are again as in Example 3. Otherwise, it continues as follows.

{|D; c[ip & Some (s?t) // Some End] | s[Bs] | ip[Bip'], st2)
—[L_Tau ip]−→ {|D; c[...] | s[...] | ip[s⊕right;c⊕right], st2)
—[L_Sel ip s right]−→ {|D; c[...] | s[End] | ip[c⊕right], st2)
—[L_Sel ip c right]−→ {|D; c[End] | s[End] | ip[End], st2)

The labels in these reductions are exactly as in Example 3. �

Transitions are compatible with network equality and state equivalence.

Lemma SPP_To_eq : ∀ P s1 tl P' s2 s1' s2',
s1== s1' → s2== s2' → (P,s1) —[tl]−→ (P',s2) → (P,s1') —[tl]−→ (P',s2').

Lemma SPP_To_Network_eq : ∀ P1 P1' P2 s s' tl, (Net P1== Net P1') →
(Procs P1 = Procs P1') → (P1,s) —[tl]−→ (P2,s') → (P1',s) —[tl]−→ (P2,s').

These results are instrumental in some of the later proofs, and are proven for
the three levels of reductions. The following, related, result is also important.

Lemma SPP_To_Defs_stable : ∀ Defs' N N' tl s s',
{|Defs N,s|} —[tl]−→ {|Defs' N',s'|} → Defs = Defs'.

We also prove that transitions are completely determined by the label.

Lemma SPP_To_deterministic : ∀ P s tl P' s' P'' s' ' ,
(P,s) —[tl]−→ (P',s') → (P,s) —[tl]−→ (P'',s'') →
(Net P'== Net P'') ∧ Procs P' = Procs P'' ∧ (s' == s'').

Finally, we show that the semantics of SP is confluent. Although this is not
required for our main theorem, it is a nice result that confirms our expectations.

The formalisation of SP consists of 37 definitions, 80 lemmas, and 2000 lines.

4 Merging

Intuitively, process implementations are generated from choreographies recur-
sively, by projecting each action in the choreography to the corresponding pro-
cess action – for example, a value communication p.e -> q.x should be projected
as a send action q!e at p, as a receive action p?x at q, and not projected to any
other processes. However, this causes a problem with conditionals. Projecting a
choreography If p.b Then Ct Else Ce for any process other than p, say q, requires

124 L. Cruz-Filipe et al.

combining the projections obtained for Ct and Ce, such that q can “react” to
whichever choice p will make. This combination is called merging [5].

Merge is typically defined as a partial function mapping pairs of behaviours
to behaviours that returns a behaviour combining all possible executions of the
two input behaviours (if possible). For SP, two behaviours can be merged if they
are structurally similar, with the possible exception of branching terms: we can
merge branchings that offer options on distinct labels. For example, merging
p & (Some B) // None with p & None // (Some B') yields p & (Some B) // (Some B'),
allowing If p??b Then (p-> q[left];q.e -> p;End) Else (p-> q[right];End) to be
projected for q as p & Some (p!e; End) // Some End.

Since functions in Coq are total, formalising merging poses a prob-
lem. Furthermore, assigning type Behaviour → Behaviour → option Behaviour

to merging causes ambiguity, since branching terms have subterms of type
option Behaviour.6 Instead, we define a type XBehaviour of extended behaviours,
defined as Behaviour with an extra constructor XUndefined : XBehaviour. Thus,
an XBehaviour is a Behaviour that may contain XUndefined subterms.

The connection between Behaviour and XBehaviour is established by means
of two functions: inject : Behaviour → XBehaviour, which isomorphically injects
each constructor of Behaviour into the corresponding one in XBehaviour, and
collapse : XBehaviour → XBehaviour that maps all XBehaviours with XUndefined

as a subterm to XUndefined. The most relevant properties of these functions are:

Lemma inject_elim : ∀ B, ∃ B', inject B = B' ∧ B' �= XUndefined.
Lemma collapse_inject : ∀ B, collapse (inject B) = inject B.
Lemma collapse_char'' : ∀ B, collapse B = XUndefined → ∀ B', B �= inject B'.
Lemma collapse_∃ : ∀ B, collapse B �= XUndefined → ∃ B', B = inject B'.

Using this type, we first define XMerge on XBehaviours as below, where we
report only representative cases. (Pid_dec and Expr_dec are lemmas stating decid-
ability of equality on Pid and Expr, allowing us to do case analysis.)

Fixpoint Xmerge (B1 B2:XBehaviour) : XBehaviour := match B1, B2 with

| XEnd, XEnd ⇒ XEnd

| XSend p e B, XSend p' e' B' ⇒ if Pid_dec p p' && Expr_dec e e'
then match Xmerge B B' with XUndefined ⇒ XUndefined

| _ ⇒ XSend p e (Xmerge B B') end

else XUndefined

| XBranching p Bl Br, XBranching p' Bl' Br' ⇒ if Pid_dec p p'
then let BL := match Bl with None ⇒ Bl' | Some B ⇒

match Bl' with None ⇒ Bl | Some B' ⇒ Some (Xmerge B B') end end

in let BR := match Br with None ⇒ Br' | Some B ⇒
match Br' with None ⇒ Br | Some B' ⇒ Some (Xmerge B B') end end

in match BL, BR with Some XUndefined, _ ⇒ XUndefined

| _, Some XUndefined ⇒ XUndefined | _, _ ⇒ XBranching p BL BR end

else XUndefined (...)

Using XMerge we can straightforwardly define merging.
6 Essentially because it is not possible to distinguish if the behaviour assigned to a

label is None because it was not defined, or because a recursive call to merge failed.

Certifying Choreography Compilation 125

Definition merge B1 B2 := Xmerge (inject B1) (inject B2).

We show merge to be idempotent, commutative and associative. This last
proof illustrates the major challenge of this stage of the formalisation: it requires
a triple induction with 512 cases, of which 84 cannot be solved automatically.
These had to be divided in further subcases of different levels of complexity. The
final case, when all behaviours are branching terms, requires six (!) nested induc-
tions to generate the 64 possible combinations of defined/undefined branches,
which had to be done by hand. The total proof is over 500 lines.

The largest set of lemmas about merge deals with inversion results, such as:

Lemma merge_inv_Send : ∀ B B' p e X, merge B B' = XSend p e X →
∃ B1 B1', B = p ! e; B1 ∧ B' = p ! e; B1' ∧ merge B1 B1' = X.

The similar result for branching terms is much more complex, since there are
several cases for each branch (if it is None, then both B and B' must have None

in the corresponding branch, otherwise it may be from B, from B' , or a merge of
both), and its proof suffers from the same problems as the proof of associativity
(thankfully, not to such a dramatic level). Automation works better here, and
the effect of the large number of subcases is mostly felt in the time required by
the auto tactic. Still, the formalisation of merging consists of 6 definitions, 43
lemmas, and 2550 lines – giving an average proof length of over 50 lines.

5 EndPoint Projection

The next step is defining EndPoint Projection (EPP): a partial function that
maps programs in CC to programs in SP. The target instance of SP has the
same parameters as CC, except that the set of procedure names is RecVar ∗ Pid

– each procedure is implemented from the point of view of each process in it.
Partiality of EPP stems from the problem of choreography realisability [3].

A choreography such as If p.b Then (q.e -> r.x) Else End cannot be implemented
without additional communications between p, q and r, since the latter processes
need to know the result of the conditional to decide whether to communicate
(see also Example 1). We say that this choreography is not projectable [12].

We define EPP in several layers. First, we define a function bproj : DefSet →
Choreography → Pid → XBehaviour projecting the behaviour of a single process.
Intuitively, bproj Defs C p attempts to construct p’s behaviour as specified by
C; the parameter Defs is used for procedure calls, whose projections depend on
whether p participates in the procedure. Returning an XBehaviour instead of
an option Behaviour gives information about where exactly merging fails (the
location of XUndefined subterms), which can be used for debugging, providing
information to programmers, or for automatic repair of choreographies [2,12].

We show some illustrative cases of the definition of bproj.

Fixpoint bproj (Defs:DefSet) (C:Choreography) (r:Pid) : XBehaviour := match C with

| p.e -> q.x; C' ⇒
if Pid_dec p r then XSend q e (bproj Defs C' r)

else if Pid_dec q r then XRecv p x (bproj Defs C' r)

else bproj Defs C' r

126 L. Cruz-Filipe et al.

| p -> q[left]; C' ⇒
if Pid_dec p r then XSel q left (bproj Defs C' r)

else if Pid_dec q r then XBranching p (Some (bproj Defs C' r)) None

else bproj Defs C' r

| If p.b Then C1 Else C2 ⇒
if Pid_dec p r then XCond b (bproj Defs C1 r) (bproj Defs C2 r)

else Xmerge (bproj Defs C1 r) (bproj Defs C2 r)

| CCBase.Call X ⇒ if In_dec P.eq_dec r (fst (Defs X)) then XCall (X,r) else XEnd

(...)

The next step is generating projections for all relevant processes. We take
the set of processes as a parameter, and collapse all individual projections.

Definition epp_list (Defs:DefSet) (C:Choreography) (ps:list Pid)
: list (Pid ∗ XBehaviour) := map (fun p ⇒ (p, collapse (bproj Defs C p))) ps.

A choreography C is projectable wrt Defs and ps if epp_list Defs C ps does
not contain XUndefined, and Defs:DefSet is projectable wrt a set of procedure
names Xs if snd (Defs X) is projectable wrt Defs and fst (Defs X) for each X in
Xs. Projectability of programs is a bit more involved, and we present its Coq
formalisation before discussing it.

Definition projectable Xs ps P :=

projectable_C (Procedures P) ps (Main P) ∧ projectable_D Xs (Procedures P) ∧
(∀ p, In p (CCC_pn (Main P) (fun _ ⇒ nil)) → In p ps) ∧
(∀ p X, In X Xs → In p (fst (Procedures P X)) → In p ps) ∧
(∀ p X, In X Xs → In p (CCC_pn (snd (Procedures P X)) (fun _ ⇒ nil)) → In p ps).

The first two conditions simply state that Main P and Procedures P are projectable
wrt the appropriate parameters. The remaining conditions state that the sets ps

and Xs include all processes used in P and all procedures needed to execute P.
(These sets are not necessarily computable, since Xs is not required to be finite.
However, in practice, these parameters are known – so it is easier to include them
in the definition.) Function CCC_pn returs the set of processes used in a choreogra-
phy, given the sets of processes each procedure call is supposed to use.

We now define compilation of projectable choreographies (epp_C), projectable
sets of procedure definitions (epp_D), and projectable programs (epp). These defi-
nitions depend on proof terms whose structure needs to be explored, and are done
interactively; afterwards, we show them to be independent of the proof terms, and
that they work as expected. We give a few examples.

Lemma epp_C_wd : ∀ Defs C ps H H' , (epp_C Defs ps C H)== (epp_C Defs ps C H').
Lemma epp_C_Com_p : ∀ Defs ps C p e q x HC HC', In p ps →
epp_C Defs ps (p.e-> q.x;C) HC p = q!e; epp_C Defs ps C HC' p.

Lemma epp_C_Cond_r : ∀ Defs ps p b C1 C2 HC HC1 HC2 r, p �= r →
inject (epp_C Defs ps (If p.b Then C1 Else C2) HC r)
= merge (epp_C Defs ps C1 HC1 r) (epp_C Defs ps C2 HC2 r).

Projectability of C does not imply projectability of choreographies that C can
transition to. This is due to the way runtime terms are projected: RT_Call X ps C'
is projected as a call to (X,p) if p is in ps, and as the projection of C' otherwise. Our

Certifying Choreography Compilation 127

definition of projectability allows in principle for C to be unprojectable for a pro-
cess in ps, which would make it unprojectable after transition. That this situation
does not arise is a consequence of the intended usage of runtime terms: initially C'
is obtained from the definition of a procedure, and ps is the set of processes used
in this procedure. Afterwards ps only shrinks, while C' may change due to exe-
cution of actions outside ps. We capture these conditions in the notion of strong
projectability, whose representative case is:

Fixpoint str_projectable Defs (C:Choreography) (r:Pid) : Prop :=
match C with | RT_Call X ps C ⇒ str_projectable Defs C r ∧

(∀ p, In p ps → In p (fst (Defs X))
∧ Xmore_branches (bproj Defs (snd (Defs X)) p) (bproj Defs C p)) (...)

The relation Xmore_branches, explained in the next section, is a semantic charac-
terisation of how the projection of bproj Defs snd (Defs X) p may change due to
execution of actions not involving p in snd (Defs X).

Projectability and strong projectability coincide for initial choreographies.
Furthermore, we state and prove lemmas that show that strong projectability of
C imply strong projectability of any choreography that C can transition to.

6 Pruning

The key ingredient for our correspondence result is a relation on behaviours usu-
ally called pruning [5,7]. Pruning relates two behaviours that differ only in that
one offers more options in branching terms than the other; we formalise this rela-
tion with the more suggestive name of more_branches (in line with [26]), and we
include some illustrative cases of its definition.

Inductive more_branches : Behaviour → Behaviour → Prop :=
| MB_Send p e B B' : more_branches B B' → more_branches (p ! e; B) (p ! e; B')
| MB_Branching_None_None p mBl mBr :

more_branches (p & mBl // mBr) (p & None // None)
| MB_Branching_Some_Some p Bl Bl' Br Br' :

more_branches Bl Bl' → more_branches Br Br' →
more_branches (p & Some Bl // Some Br) (p & Some Bl' // Some Br') (...)

The need for pruning arises naturally when one considers what happens when a
choreography C executes a conditional at a process p. In the continuation, only
one of the branches is kept. However, no process other than p knows that this
action has been executed; therefore, if the projection of C executes the correspond-
ing action, both behaviours are still available for all processes other than p. Given
how merging is defined, this means that these processes’ behaviours may contain
more branches than those of the projection of the choreography after reduction.

Pruning is naturally related to merging, as stated in the following lemmas.

Lemma more_branches_char : ∀ B B', more_branches B B' ↔ merge B B' = inject B.
Lemma merge_more_branches :

∀ B1 B2 B, merge B1 B2 = inject B → more_branches B B1.

128 L. Cruz-Filipe et al.

Pruning is also reflexive and transitive. Further, if two behaviours have an
upper bound according to pruning, then their merge is defined and is their lub.

Lemma more_branches_merge : ∀ B B1 B2, more_branches B B1 →
more_branches B B2 → ∃ B', merge B1 B2 = inject B' ∧ more_branches B B'.

Finally, two behaviours with fewer branches than two mergeable behaviours
are themselves mergeable.

Lemma more_branches_merge_extend : ∀ B1 B2 B1' B2' B,
more_branches B1 B1' → more_branches B2 B2' → merge B1 B2 = inject B →
∃ B' , merge B1' B2' = inject B' ∧ more_branches B B'.

These two results are key ingredients to the cases dealing with conditionals in
the proof of the EPP Theorem. They require extensive case analysis (512 cases
for the last lemma, of which 81 are not automatically solved by Coq’s inversion

tactic even though most are contradictory). Analogous versions of some of these
lemmas also need to be extended to XBehaviours, which is straightforward.

Pruning extends pointwise to networks, which we denote as N � N'. The key
result is that, due to how the semantics of SP is defined, pruning a network cannot
add new transitions.

Lemma SP_To_more_branches_N : ∀ Defs N1 s N2 s' Defs' N1' tl,
SP_To Defs N1 s tl N2 s' → N1' � N1 → (∀ X, Defs X = Defs' X) →
∃ N2', SP_To Defs' N1' s tl N2' s' ∧ N2' � N2.

The reciprocal of this result only holds for choreography projections, and is proven
after the definition of EPP.

The formalisation of pruning includes 3 definitions, 25 lemmas, and 950 lines.
Some of these results are used for defining of EPP (previous section), but we
delayed their presentation as its motivation is clearer after seeing those definitions.

Example 7. The choreography C1 in Example 1 is projectable, yielding the net-
work in Example 5: bproj Defs C1 c = inject Bc, bproj Defs C1 s = inject Bs, and
bproj Defs C1 ip = inject Bip.

If we remove selections from C1, the resulting choreography is not projectable
on process c: projecting the conditional requires merging the projections at
c of the two branches (now simply s.token -> c.t; End and End), which fails
since bproj Defs C5 c = inject (s?t; End) and bproj Defs End c = inject End, but
merge (s?t; End) End = XUndefined. Likewise, merging would fail for s. �

7 EPP Theorem

We now prove the operational correspondence between choreographies and their
projections, in two directions: if a choreography can make a transition, then its
projection can make the same transition; and if the projection of a choreography
can make a transition, then so can the choreography. The results of the transitions
are not directly related by projection, since choreography transitions may elimi-
nate some branches in the projection; thus, establishing the correspondence for
multi-step transitions requires some additional lemmas on pruning.

Certifying Choreography Compilation 129

Preliminaries. Both directions of the correspondence depend on a number of
results relating choreography transitions and their projections. These results fol-
low a pattern: the results for communications state a precise correspondence; the
ones for conditionals include pruning in their conclusions; and the ones for proce-
dure calls require additional hypotheses on the set of procedure definitions.

Lemma CCC_To_bproj_Sel_p : ∀ Defs C s C' s' p q l, str_projectable Defs C p →
CCC_To Defs C s (CCBase.TL.R_Sel p q l) C' s' →
∃ Bp, bproj Defs C p = XSel q l Bp ∧ bproj Defs C' p = Bp.

Lemma CCC_To_bproj_Call_p : ∀ Defs C s C' s' p X Xs, str_projectable Defs C p →
(∀ Y, In Y Xs → str_projectable Defs (snd (Defs Y)) p) →
(∀ Y, set_incl_pid (CCC_pn (snd (Defs Y)) (fun X ⇒ fst (Defs X)))

(fst (Defs Y))) →
In X Xs → CCC_To Defs C s (CCBase.TL.R_Call X p) C' s' →
bproj Defs C p = XCall (X,p)
∧ Xmore_branches (bproj Defs (snd (Defs X)) p) (bproj Defs C' p).

These lemmas are simple to prove by induction on C. The tricky part is getting
the hypotheses strong enough that the thesis holds, and weak enough that any
well-formed program will satisfy them throughout its entire execution.

From these results, it follows that projectability is preserved by choreography
reductions. This property is needed even to state the EPP Theorem, since we can
only compute projections of projectable programs.

Lemma CCC_To_projectable : ∀ P Xs ps,
Program_WF Xs P → well_ann P → projectable Xs ps P →
(∀ p, In p ps → str_projectable (Procedures P) (Main P) p) →
(∀ p, In p (CCC_pn (Main P) (Vars P)) → In p ps) →
(∀ p X, In X Xs → In p (Vars P X) → In p ps) →
∀ s tl P' s' , (P,s) —[tl]−→ (P',s') → projectable Xs ps P'.

Some of the hypotheses from the previous lemmas are encapsulated in the
first two conditions: well-formedness of P, which ensures that any runtime term
RT_Call X qs C in Main P only includes processes in qs that are declared to be used
by X (this trivially holds if Main P is initial, and is preserved throughout execution);
and well-annotation of P, i.e., the processes used in any procedure are a subset
of those it declares.7 The remaining hypotheses state, as before, that Xs and ps

include all processes and procedures relevant for executing Main P.
Similarly, we prove that strong projectability is preserved by transitions.

Completeness. In the literature, completeness of EPP is proven by induction on
the derivation of the transition performed by the choreography C. For each case,
we look at how a transition for C can be derived, and show that the projection of C
can make the same transition to a network with more branches than the projection
of C ′. The proof is lengthy, but poses no surprises.

Lemma EPP_Complete : ∀ P Xs ps, Program_WF Xs P → well_ann P → ∀ HP,

7 Equality is not necessary, and it would make this property harder to prove.

130 L. Cruz-Filipe et al.

(∀ p, In p ps → str_projectable (Procedures P) (Main P) p) →
(∀ p, In p (CCC_pn (Main P) (Vars P)) → In p ps) →
(∀ p X, In X Xs → In p (Vars P X) → In p ps) →
∀ s tl P' s' , (P,s) —[tl]−→ (P',s') →
∃ N tl', (epp Xs ps P HP,s) —[tl']−→ (N,s')

∧ Procs N = Procs (epp Xs ps P HP) ∧ ∀ H, Net N � Net (epp Xs ps P' H).

By combining with the earlier results on pruning, we immediately obtain the gen-
eralisation for multi-step transitions.

Soundness. Soundness is proven by case analysis on the transition made by the
network, and then by induction on the choreography inside each case. For conve-
nience, we split this proof in separate proofs, one for each transition. We omit the
statements of these lemmas, since they include a number of technical hypotheses
(similar to those in e.g. SP_To_bproj_Com, which is used in the proof of the case of
communication, but more complex). By contrast with completeness, all these lem-
mas are complex to prove: each case requires around 300 lines of Coq code. The
proofs have similar structure, but are still different enough that adapting them
can not be done mechanically.

The last ingredient is a lemma of practical interest on procedure names: each
process only uses “its” copy of the original procedure names. This lemma is not
only crucial in the proof of the next theorem, but also interesting in itself: it shows
that the set of procedure definitions can be fully distributed among the processes
with no duplications.

Lemma SP_To_bproj_Call_name : ∀ Defs Defs' ps C HC s N' s' p X,
SP_To Defs' (epp_C Defs ps C HC) s (R_Call X p) N' s' →
∃ Y, X = (Y,p) ∧ X_Free Y C.

All these ingredients are combined in the proof of soundness of EPP.

Lemma EPP_Sound : ∀ P Xs ps, Program_WF Xs P → well_ann P → ∀ HP,
(∀ p, In p ps → str_projectable (Procedures P) (Main P) p) →
(∀ p, In p (CCC_pn (Main P) (Vars P)) → In p ps) →
(∀ p X, In X Xs → In p (Vars P X) → In p ps) →
∀ s tl N' s' , (epp Xs ps P HP,s) —[tl]−→ (N',s') →
∃ P' tl', (P,s) —[tl']−→ (P',s') ∧ ∀ H, Net N' � Net (epp Xs ps P' H).

Generalising this result to multi-step transitions requires showing that pruning
does not eliminate possible transitions of a network. This is in general not true,
but it holds when the pruned network is the projection of a choreography.

Lemma SP_To_more_branches_N_epp : ∀ Defs N1 s N2 s' tl Defs' ps C HC,
N1 � epp_C Defs' ps C HC → SP_To Defs N1 s tl N2 s' →
∃ N2', SP_To Defs (epp_C Defs' ps C HC) s tl N2' s' ∧ N2 � N2'.

The formalisation of EPP and the proof of the EPP theorem consists of 13 def-
initions, 110 lemmas, and 4960 lines of Coq code. The proof of the EPP Theorem
and related lemmas make up for around 75% of this size.

Certifying Choreography Compilation 131

8 Discussion and Conclusion

We have successfully formalised a translation from a Turing-complete choreo-
graphic language into a process calculus and proven its correctness in terms of an
operational correspondence. This formalisation showed that the proof techniques
used in the literature are correct, and identified only missing minor assumptions
about runtime terms that trivially hold when these are used as intended.

To the best of our knowledge, this is the first time such a correspondence
has been formalised for a full-fledged (Turing-complete) choreographic language.
Comparable work includes a preliminary presentation on a certified compiler
from choreographies to CakeML [18], which however deals only with finite
behaviours [22]. In the related realm of multiparty session types (where chore-
ographies do not include computation), a similar correspondence result has also
been developed independently [9].

The complexity of the formalisation, combined with the similarities between
several of the proofs, means that future extensions would benefit from exploiting
semi-automatic generation of proof scripts.

Combining these results with those from [13] would yield a proof that SP is also
Turing complete. Unfortunately, the choreographies used in the proof of Turing
completeness in [13] are not projectable, but they can be made so automatically,
by means of an amendment (repair) procedure [12]. In future work, we plan to
formalise amendment in order to obtain this result.

References

1. Albert, E., Lanese, I. (eds.): Formal Techniques for Distributed Objects, Compo-
nents, and Systems. LNCS, vol. 9688. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-39570-8

2. Basu, S., Bultan, T.: Automated choreography repair. In: Stevens, P., W ↪asowski, A.
(eds.) FASE 2016. LNCS, vol. 9633, pp. 13–30. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49665-7 2

3. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Field,
J., Hicks, M. (eds.) Procs. POPL, pp. 191–202. ACM (2012). https://doi.org/10.
1145/2103656.2103680

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Texts in Theoretical Computer Science, Springer (2004)

5. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8:1-8:78
(2012). https://doi.org/10.1145/2220365.2220367

6. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence gen-
eralises duality: A logical explanation of multiparty session types. In: Desharnais,
J., Jagadeesan, R. (eds.) Procs. CONCUR. LIPIcs, vol. 59, pp. 33:1–33:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2016)

7. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Giacobazzi, R., Cousot, R. (eds.) Procs. POPL, pp. 263–
274. ACM (2013). https://doi.org/10.1145/2429069.2429101

8. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. Distributed
Comput. 31(1), 51–67 (2018). https://doi.org/10.1007/s00446-017-0295-1

https://doi.org/10.1007/978-3-319-39570-8
https://doi.org/10.1007/978-3-319-39570-8
https://doi.org/10.1007/978-3-662-49665-7_2
https://doi.org/10.1007/978-3-662-49665-7_2
https://doi.org/10.1145/2103656.2103680
https://doi.org/10.1145/2103656.2103680
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/s00446-017-0295-1

132 L. Cruz-Filipe et al.

9. Castro-Perez, D., Ferreira, F., Gheri, L., Yoshida, N.: Zooid: a DSL for certified
multiparty computation: from mechanised metatheory to certified multiparty pro-
cesses. In: Freund, S.N., Yahav, E. (eds.) Procs. PLDI, pp. 237–251. ACM (2021).
https://doi.org/10.1145/3453483.3454041

10. Cruz-Filipe, L., Montesi, F.: Choreographies in practice. In: Albert and Lanese [1],
pp. 114–123. https://doi.org/10.1007/978-3-319-39570-8 8

11. Cruz-Filipe, L., Montesi, F.: Procedural choreographic programming. In: Bouajjani,
A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321, pp. 92–107. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-60225-7 7

12. Cruz-Filipe, L., Montesi, F.: A core model for choreographic programming. Theor.
Comput. Sci. 802, 38–66 (2020). https://doi.org/10.1016/j.tcs.2019.07.005

13. Cruz-Filipe, L., Montesi, F., Peressotti, M.: Formalising a Turing-complete chore-
ographic language in Coq. In: Cohen, L., Kaliszyk, C. (eds.) Procs. ITP. LIPIcs,
vol. 193, pp. 15:1–15:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.ITP.2021.15

14. Cruz-Filipe, L., Montesi, F., Peressotti, M.: A formalisation of a Turing-complete
choreographic language in Coq. https://doi.org/10.5281/zenodo.4548709

15. Preda, M.D., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic chore-
ographies: Theory and implementation. Log. Methods Comput. Sci. 13(2) (2017).
https://doi.org/10.23638/LMCS-13(2:1)2017

16. Giallorenzo, S., Lanese, I., Russo, D.: ChIP: a choreographic integration process. In:
Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman,
R. (eds.) OTM 2018. LNCS, vol. 11230, pp. 22–40. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-02671-4 2

17. Giallorenzo, S., Montesi, F., Peressotti, M.: Choreographies as objects. CoRR
abs/2005.09520 (2020)

18. Gomez-Londono, A., Aman Pohjola, J.: Connecting choreography languages with
verified stacks. In: Procs. of the Nordic Workshop on Programming Theory, pp. 31–
33 (2018)

19. Object Management Group: Business Process Model and Notation (2011). http://
www.omg.org/spec/BPMN/2.0/

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9 (2016). https://doi.org/10.1145/2827695, also: POPL, pp. 273–284
(2008)

21. Lluch Lafuente, A., Nielson, F., Nielson, H.R.: Discretionary information flow con-
trol for interaction-oriented specifications. In: Mart́ı-Oliet, N., Ölveczky, P.C., Tal-
cott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 427–450.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23165-5 20

22. Londoño, A.G.: Choreographies and cost semantics for reliable communicating sys-
tems (2020)

23. López, H.A., Heussen, K.: Choreographing cyber-physical distributed control sys-
tems for the energy sector. In: Seffah, A., Penzenstadler, B., Alves, C., Peng, X.
(eds.) Procs. SAC, pp. 437–443. ACM (2017). https://doi.org/10.1145/3019612.
3019656

24. López, H.A., Nielson, F., Nielson, H.R.: Enforcing availability in failure-aware com-
municating systems. In: Albert and Lanese [1], pp. 195–211. https://doi.org/10.
1007/978-3-319-39570-8 13

25. Montesi, F.: Choreographic Programming. Ph.D. Thesis, IT University of Copen-
hagen (2013)

26. Montesi, F.: Introduction to choreographies (2021). Accepted for publication by
Cambridge University Press

https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.1007/978-3-319-60225-7_7
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.5281/zenodo.4548709
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.1007/978-3-030-02671-4_2
https://doi.org/10.1007/978-3-030-02671-4_2
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-319-23165-5_20
https://doi.org/10.1145/3019612.3019656
https://doi.org/10.1145/3019612.3019656
https://doi.org/10.1007/978-3-319-39570-8_13
https://doi.org/10.1007/978-3-319-39570-8_13

Certifying Choreography Compilation 133

27. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large net-
works of computers. Commun. ACM 21(12), 993–999 (1978). https://doi.org/10.
1145/359657.359659

28. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL), 30:1–30:29 (2019). https://doi.org/10.1145/3290343

29. W3C: WS Choreography Description Language (2004). http://www.w3.org/TR/
ws-cdl-10/

30. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014).
https://doi.org/10.1017/S095679681400001X

https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/3290343
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1017/S095679681400001X

A Mechanically Verified Theory
of Contracts

Stéphane Kastenbaum1,2(B), Benôıt Boyer2, and Jean-Pierre Talpin1

1 Inria Rennes - Bretagne Atlantique, Rennes, France
stephane.kastenbaum@inria.fr

2 Mitsubishi Electric R&D Centre Europe, Rennes, France

Abstract. Cyber-physical systems (CPS) are assemblies of networked,
heterogeneous, hardware, and software components sensing, evaluating,
and actuating a physical environment. This heterogeneity induces com-
plexity that makes CPSs challenging to model correctly. Since CPSs often
have critical functions, it is however of utmost importance to formally
verify them in order to provide the highest guarantees of safety. Faced
with CPS complexity, model abstraction becomes paramount to make
verification attainable. To this end, assume/guarantee contracts enable
component model abstraction to support a sound, structured, and mod-
ular verification process. While abstractions of models by contracts are
usually proved sound, none of the related contract frameworks themselves
have, to the best of our knowledge, been formally proved correct so far.
In this aim, we present the formalization of a generic assume/guarantee
contract theory in the proof assistant Coq. We identify and prove the-
orems that ensure its correctness. Our theory is generic, or parametric,
in that it can be instantiated and used with any given logic, in partic-
ular hybrid logics, in which highly complex cyber-physical systems can
uniformly be described.

1 Introduction

With the rise of cyber-physical systems with growingly critical functions, it
becomes of the utmost importance to develop frameworks that support their
sound design and guarantee their safety. Currently, to design such systems,
engineers use informally specified tools such as Simulink [8]. Simulink is a very
convenient toolbox to connect components to form systems. From atomic com-
ponents, systems become components in larger systems that can be reused in
multiple places in a given design. As an effort to verify Simulink systems, for-
mal verification frameworks such as Mars translate Simulink design into a for-
mal specification language [7,12]. This approach alters the native hierarchy of
Simulink models in the specification but allows modularity to be reconstructed
afterward in the target formal language. Ideally, however, we would like to con-
serve the intended component hierarchy for the verification process, in order
to better support abstraction in places of the design. Contracts are a tool to
support the abstraction of subsystems in such specification formalisms.
c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 134–151, 2021.
https://doi.org/10.1007/978-3-030-85315-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-85315-0_9

A Mechanically Verified Theory of Contracts 135

Contracts help to design and to verify complex systems by abstracting com-
ponent models, using their assumptions and guarantees in place of their exact,
internal specification. A contract being more abstract than the specification of
a component makes the modular verification of large systems feasible.

In this paper, we first review the related works. We then give an overview of
the contract theory proposed by Benveniste et al. [3,4]. The subsequent section
presents the formalization of our theory in the proof assistant Coq. We then
illustrate its instantiation with a simple propositional logic. This gives us the
opportunity to discuss some design choices in the formalization. Finally, we out-
line future works and conclude.

2 Related Works

A recent interest in creating contract frameworks for cyber-physical systems
is appearing. The complexity of such systems and their interconnections make
the verification and validation process challenging, render traditional system
design methods inadequate, and call for more powerful frameworks to design
such complex systems [11,19].

Design by contracts was first proposed by Meyer for software program-
ming [14]. Hence, specification by contracts traditionally consists of pre- and
post-conditions, leaving the continuous timed variables extraneous of the spec-
ification. This is not practical when designing cyber-physical systems, where
time is intrinsically linked to the continuous behavior of the system. In con-
tracts for cyber-physical systems, we replace pre-conditions by assumption and
post-condition by guarantee, the main difference being that the assumption and
guarantee can express properties of continuous timed variables.

To design cyber-physical systems, numerous hybrid logics have been pro-
posed. Differential dynamic logic (commonly abbreviated as dL) defines hybrid
programs, a combination of discrete computation and differential equations to
model cyber-physical systems [18]. It is equipped with a proof assistant, Key-
maera X, to check and prove safety and reachability properties on the modeled
systems [10]. While the verification process supports decomposition, it does not
support parallelism hence modularity. Multiple approaches have therefore been
investigated to define contracts in dL [13,15]. Their goal is to define a com-
position theorem allowing to connect multiple components. Both approaches
conceptualize components as a design pattern on hybrid programs and design
contracts as abstract specifications around them.

Hybrid csp is an extension of csp with differential equations used to model
cyber-physical systems [5]. A language to describe the trace of executions, the
duration calculus, is used in conjunction with hcsp to verify properties of cyber-
physical systems [6,22]. This is done in the proof assistant Isabelle [16]. Since
csp supports composition, work to define contracts in hcsp have focused on the
composition of abstract specifications in the duration calculus [21].

Other approaches have been considered to define contracts for cyber-physical
systems. For example, contracts defined with Signal Temporal Logic were used
to ensure the safety of autonomous vehicles in [2].

136 S. Kastenbaum et al.

While slightly different from one another, all these definitions of contracts
have the same core ideas. Namely, a contract abstracts the specification of a
component in the same logic. These definitions also support the same usual
operators on contracts such as composition or refinement. A meta-theory of
contracts has been defined, aiming at unifying all theories of contracts [4]. The
theory of assume/guarantee contract instantiates the meta-theory and is generic
enough to bridge the gap between related definitions of contracts [1,3]. It was
used, for instance, to define contracts in heterogeneous logics and relate them
together [17]. It is given an overview in Sect. 3.

Foster et al. have proposed a mechanized theory of contracts in Isabelle and
the Unified Theory of Programming (UTP) using pre-, peri- and post-conditions
to abstract discretely timed systems [9].

Yet the meta-theory of contracts and the theory assume/guarantee of con-
tracts have, to the best of our knowledge, no formalized proof of correctness. In
the following sections, we propose a formalization of both of them in the proof
assistant Coq with the goal to instantiate them with a hybrid logic that could
be defined using that theorem prover [20].

3 Overview of the Meta-theory and the
Assume/Guarantee Theory of Contract

In this section, we recall the meta-theory of contracts introduced by Benveniste
et al. [4]. Then the definition of one of its implementation: the set-theoretic
assume/guarantee contract theory [3].

3.1 Meta-theory

In the meta-theory of contracts, there is only one notion, that of component.
That notion is kept abstract, it is not defined. In practice, it is meant to represent
an element of a system performing a specific task. In the remainder, components
are noted by the letter σ.

Components are subject to a relation of compatibility which, in the meta-
theory, is kept abstract as well. Two compatible components can be composed
to create a larger component or subsystem. Composition is akin to connecting
two elements of a system together. We note σ1 × σ2 for the composition of
components σ1 and σ2.

We call environment of σ any component that is compatible with σ. For
example, when considering the motor of a car, the other components interacting
with the motor form a sub-system: the environment of the motor. Conversely,
when considering the gearbox, the other components of the car, including the
motor, are the environment.

A contract is the specification of a task in a system. We model a contract
with a pair C = (E ,M) with M a set of components and E a set of environments
compatible with every component in M. Multiple components can perform that
same task, all must respect its contract. We say that a component σ implements

A Mechanically Verified Theory of Contracts 137

the contract C, if σ ∈ M. We use the notation σ � C for σ implements C. A
contract is also a specification of the environment. It describes any environment
in which the task can be achieved by the components. Dually, we note e �E C
to say that e provides the contracts, meaning e ∈ E .

The goal of a specification is to be an abstraction on actual components.
Multiple contracts can be the specifications of the same component on different
levels of abstraction. We introduce the refinement relation to describe that a
contract is the abstraction of another. Here C1 is the refined version of C2. This
means that any implementations of C1 can be used in place of an implementation
of C2.

Definition 1 (Refinement). C1 � C2 ≡ M1 ⊆ M2 ∧ E2 ⊆ E1

Sometimes, multiple specifications can be applied to the same component.
For example, we want a component to be fast and correct. There is both a spec-
ification for the speed of the component and one for the correctness. Therefore,
we want to regroup both specifications on the same contract. Any contract which
refines both contracts can be used, though it is more desirable to use the most
abstract contract. With this in mind, we define the conjunction of contracts as
the greatest lower bound of refinement.

Definition 2 (Conjunction). C1 � C2 is the greatest lower bound of contract
on refinement.

For now, we only have considered one component in its environment. Yet
most of the complexity of systems comes from the composition of multiple com-
ponents. The problem can be formulated as “If we have the specification of two
components, can we determine the specification of the composition of the com-
ponents?”. The subtlety is that each component is part of the environment for
the other. So the result of their specifications takes into account this point.

Definition 3 (Composition).

C1 ⊗ C2 ≡ min

⎧
⎨

⎩
C

∣
∣
∣
∣
∣

∀M1 � C1 M1 × M2 � C
∀M2 � C2 =⇒ E × M2 � C1

∀E �E C E × M1 � C2

⎫
⎬

⎭

The definition of quotient, lowest upper bound, compatibility, and consis-
tency of contracts are not relevant for our purposes. The interested reader is
directed toward their definitions in [4].

As much as this meta-theory gives us, it is not enough to be used. It only
allows us to understand what are the necessary tasks needed to define a con-
tract theory. The meta-theory is not constructive, for example, the min operator
used in the definition of composition doesn’t give us the actual contract. In the
next section, we define an actually usable contract theory, without losing any
generality.

138 S. Kastenbaum et al.

3.2 Assume/Guarantee Contract Theory

This section defines a contract theory by instantiating the meta-theory with
concrete definitions, starting with that of a component. We model a component
by the properties it guarantees on the system.

In this state-centered theory, there is no clear demarcation between inputs
and outputs. We note d the set of all variables. For simplification purposes, all
variables hold value the same domain B.

A state is a valuation of all the variables, that is to say, it is a surjective
function from d to B. The state space S : d → B is every configuration the
system can be in.

In system design, an assertion is a property of the state the system is in.
We use the duality of sets, it can be seen either as a collection of elements or
as a property that every element satisfies. Here, we consider the assertion as
every state that satisfies the property. This means, we define an assertion A as
a subset of the state space, noted A ⊆ S. A component is not only viewed as a
property it ensures on the variables but as every state satisfying this property.
Which means a component is a set of states.

Here every component is compatible with every other component. Meaning
every component can be composed, or connected, to any other component. The
composition of two components is simply the intersection of their assertions.
This means that every component can be seen as an environment for another.
We should mention that if a component is an empty set, it is a non-implementable
component.

Using contracts as defined in the meta-theory above is not practical, we use
another definition and will prove later that they’re equivalent. Here, contracts are
associations of assumption and guarantee. The assumption is the input accepted
by the component and the guarantee is properties ensured on the output of the
component.

A contract is an abstract specification of a component. The goal is to define
rules which restrain both the implementation of the component and the environ-
ment it needs to be in. Here, the assumption is the restriction on the environment
whereas the guarantee is the restriction on the component.

Definition 4 (Assume/guarantee contract). An assume/guarantee con-
tract is the combination of two assertions, one for the assumption (A) one for
the guarantee (G). For a contract c = (A,G) we define projections to get the
assumption and the guarantee

A(c) = A ; G(c) = G

.

Now, we define what it means for a state to satisfy a contract. A state satisfies
a contract if either it’s a state excluded from the contract’s assumption, or the
contract’s guarantee holds for the state.

A Mechanically Verified Theory of Contracts 139

Definition 5 (Satisfies).

s � c ≡ s ∈ A(c) ∪ G(c)

We can lift this definition to components. A component σ implements a
contract if every state in σ satisfies the contract.

Definition 6 (Implements).

σ � c ≡ ∀s ∈ σ, s � c

A environment e provides a contract if every state of e is included in the
assumption of the contract.

Definition 7 (Provides).

e �E c ≡ ∀s ∈ e, s ∈ A(c)

This leads to a particular point in assume/guarantee contracts. With the
above definition, we notice that multiple contracts can be implemented by the
same components and provided by the same environments. So we have a class of
contracts which are all equivalent, as they specify the same set of components
and environment. We define saturation an idempotent operation which doesn’t
change the set of components satisfying the contract, nor the set of environment
providing the contract. We then always use the saturated version of a contract.

Definition 8 (Saturation).

saturate(c) ≡ (A(c), A(c) ∪ G(c))

Next, we want to define the refinement relations between two contracts. There
is a simple definition of refinement. The most refined contract needs to have
stronger guarantee, and looser assumption. In the formalization, we prove that
it is equivalent to Definition 1.

Definition 9 (A/G refinement).

c1 � c2 ≡ A(c1) ⊇ A(c2) ∧ G(c1) ⊆ G(c2)

This definition is decidable if and only if ⊆ is decidable. We do want the refine-
ment relation to be decidable, hence we have to make sure that ⊆ is decidable.

To find the conjunction of contracts, (or the greatest lower bound of refine-
ment), we have the formula below. Contrary to Definition 2 in the meta-theory,
this definition is constructive.

Definition 10 (A/G conjunction).

c1 � c2 ≡ (A(c1) ∩ A(c2), G(c1) ∪ G(c2))

Composition of contracts is defined as followed, this definition is constructive.
It also is the min in the sens of refinement as expressed in Definition 3.

140 S. Kastenbaum et al.

Definition 11 (A/G composition).

c1 ⊗ c2 ≡ (A′, G′)

With
A′ ≡ A(c1) ∩ A(c2) ∪ G(c1) ∩ G(c2)

G′ ≡ G(c1) ∩ G(c2)

We now have two definitions of contracts. The key difference is the definition
of refinement, conjunction, and composition. The meta-theory has an intuitive
definition, while the assume/guarantee theory has more interesting properties.
In the next section, we formalize the assume/guarantee theory of contract and
prove that it is equivalent to the above meta-theory of contract.

4 Formalization of Assumption/Guarantee Contract
Theory

The meta-theory intends to provide a generic contract theory that can be instan-
tiated by several logics. Each logic presents some features that enable or facilitate
the verification of system properties. Proving that several logics implement the
same meta-theory is a way to unify them. Here, we formalize the assume/guar-
antee contract theory and prove it to correspond to the definitions given in the
meta-theory.

The contract theory relies on set-theoretic definitions. At this stage, we
assume the abstract type set : Type → Type which is equipped with the usual
set operators as ∪, ∩, ¬. We also assume the relations ∈ and ⊆ as well as the
set equivalence s1 == s2 which is extended to the standard equality s1 = s2 by
extensionality.

In this section, we give an overview of our formalization of the contract
theory. First, we consider every component to be defined on the same variables,
next, we see how to handle multiple variable sets.

4.1 Single Variable Set

For a given set of variables, the semantics of a contract is defined by the assertion
of its assumption and guarantee, each represented by a set of states. A state is
a valuation from variables to values, where the variables are a set of identifiers
as in the following:

Variable vars : set ident.
Definition var := { v : ident | v ∈ vars }.
Definition state := var → B.
Definition assertion := set state.
Definition component := assertion.
Definition environment := component.
Record contract : Type := mkContract { A : assertion ; G : assertion }.

A Mechanically Verified Theory of Contracts 141

The types ident and value are parameters of our theory and kept abstract, but
we require that identifiers must be discriminable and their membership to sets
must be decided. vars is the set of identifiers used in the system, and var is the
type of a variable, namely an identifier with the proof that it’s in vars. At this
stage of the development, we assimilate the concept of a component with its
behavior as in Sect. 3.2.

We define assertions as state predicates using the duality of sets, namely,
s ∈ q denotes that s satisfies the assertion q. Contracts are directly defined as
pairs of assertions relating the behavior expected from the environment (assump-
tion) with the behavior of the component (guarantee). The syntax c.A (and c.G)
denotes the assumption (respectively guarantee) of the contract c in the rest of
the paper1.

The semantics of the contract relies on the implementation of a contract by
a component. In order to define it, we first introduce the satisfiability of the
contract by a single state and the saturation principle.

Definition satisfies (s : state) (c : contract) : Prop :=
s ∈ ¬ c.A ∪ c.G.

Basically, a state satisfies a contract either if the state is discarded by the
assumption and nothing is guaranteed by the contract, or the state satisfies
both assumption and guarantee of the contract.

In the following code, we saturate contracts when necessary, indeed it’s eas-
ier to saturate a contract than to check if it’s already saturated. Whereas in
the mathematical definition it is easier to consider every contract to be sat-
urated than to saturate every time. In the code, we saturate contracts when
needed, whereas in the mathematical definition we have considered contracts to
be saturated.

Definition saturate (c : contract) : contract :=
{| A := c.A ;

G := ¬ c.A ∪ c.G |}.

The contract saturation is sound: the same states are characterized before
and after the saturation of any contract.

Theorem saturate_sound : forall (s : state) (c : contract),
satisfies s c ↔ satisfies s (saturate c).

We extend the contract satisfiability from states to components to define the
implementation relation. Additionally, we also need to characterize the relation-
ship between contract and environment.

Definition implements (σ : component) (c : contract) : Prop :=
forall s, s ∈ σ → satisfies s c.

Notation "σ � c" := (implements σ c).
Definition provides (e : environment) (c : contract) : Prop :=

e ⊆ c.A .

1 The Coq’s original syntax is c.(A) but we replaced it for the sake of readability.

142 S. Kastenbaum et al.

Then, we can define the refine relation on contracts. Here, it is important to
note that we are implementing the assume/guarantee theory of contracts. The
refinement and composition relation are defined differently in the meta-theory
and in the assume/guarantee theory.

Definition refines (c1 c2 : contract) : Prop :=
let (c1’ , c2’) := (saturate c1 , saturate c2) in

c2’. A ⊆ c1’.G ∧ c1’.G ⊆ c2’.G.
Notation "c1 	 c2" := (refines c1 c2).

Since refines is an order, we proved the usual properties: reflexivity, transitivity,
and antisymmetry. We also demonstrated that this set-theoretic definition is
equivalent to the more standard and meaningful Definition 1 of the refinement
given by the meta-theory.

Theorem refines_correct : forall (c1 c2 : contract),
c1 � c2 ↔
(forall σ: component, σ � c1 → σ � c2) ∧
(forall e: environment, provides e c2 → provides e c1).

The conjunction of contracts corresponds to the multiple views, one can have
on the same component. In the meta-theory, it is defined as the greatest lower
bound of refinement. So, we prove that our set definition is equivalent to the
meta-theoretical Definition 2.

Definition glb (c1 : contract) (c2 : contract) : contract :=
let c1’ := saturate c1 in let c2’ := saturate c2 in

mkContract (c1’.A ∪ c2’.A) (c1’.G ∩ c2’.G).
Notation "c1 � c2" := (glb c1 c2).

Theorem glb_correct : forall c1 c2 : contract,
(c1 � c2) � c1 ∧ (c1 � c2) � c2 ∧
(forall c, c � c1 → c � c2 → c � (c1 � c2)).

The central operator in contracts algebra is the composition. Two contracts
can be composed if they are defined on the same variables. The composition of
components aims to construct a contract specifying the composition of compo-
nents. We provide a set-theoretic definition and then show that it corresponds
to the meta-theory Definition 3.

Definition compose (c1 c2 : contract) : contract :=
let c1’ := saturate c1 in

let c2’ := saturate c2 in

let g := c1’. G ∩ c2’.G in

let a := (c1’. A ∩ c2’.A) ∪ ¬ g in

mkContract a g.
Notation "c1 ⊗ c2" := (compose c1 c2).

Here again, we give the proof that it corresponds to Definition 3 given in the
meta-theory.

A Mechanically Verified Theory of Contracts 143

Theorem compose_correct :
forall (c1 c2 : contract) (σ1 σ2 : component) (e : environment),
σ1 � c1 → σ2 � c2 → provides e (c1 ⊗ c2) →
(σ1 ∩ σ2 � c1 ⊗ c2 ∧ provides (e ∩ σ2) c1 ∧ provides (e ∩ σ1) c2).

Theorem compose_lowest : forall (c1 c2 c : contract),
(forall (σ1 σ2 : component) (e : environment),
σ1 � c1 → σ2 � c2 → provides e c →
(σ1 ∩ σ2 � c ∧ provides (e ∩ σ2) c1 ∧ provides (e ∩ σ1) c2)) →
c1 ⊗ c2 � c.

The above definitions all consider every state to be defined on the same
variables. Yet, it is highly improbable that every component needs every variable
to be defined. Thus, some components are defined on different sets of variables.
To define the composition of components defined on different sets of variables,
we need to extend their definitions to larger sets. We may also want to eliminate
variables out of contracts. If a component allows for every possible value of a
variable and doesn’t give any guarantee on it there is no need to have it in the
specification.

4.2 Alphabet Equalization

This section considers the case when contracts are defined over different domains
of variables. Two problems can occur in this situation. First, we may need to
compose two contracts that are not defined on the same variables. In that case,
we need a way to extend the two contracts on the union of their variables. Then,
some variables in a contract may be useless. For example, if a component provides
the input for another component, maybe the composition of the two contracts
specifying the components doesn’t need to specify this variable. In that case, we
need the elimination of variables.

In [3], the authors defined elimination of variables and extension of contracts.
The elimination of variables is defined in the following way.

Definition 12. For a contract c = (A,G), and a variable v in the contract. The
contract without v is :

[c]v ≡ (∀v A ; ∃v G)

This definition is not usable in our formalization. A and G are both sets, the
quantifier has no meaning for sets. To define this elimination of variable, the
authors consider assertions as logic formulas and bind free variables with quan-
tifiers. However, this shortcut cannot be taken with a formal proof assistant. The
definition of the extension of contracts was also eluded by considering assertion
as logic formulas.

In the following, we give a set-theoretic definition in Coq of the elimination
of variables in a contract and the definition of the extension of contracts. We
assume d1 and d2 two variable sets, with H12 : d1 ⊆ d2.

First, we define H’12 : var d1 → var d2, which takes a variable in d1 and
shows that it is also a variable in d2.

144 S. Kastenbaum et al.

Definition H’12 (v1 : var d1) : var d2 := let (i,H1) := v1 in exist _ i (H12 i H1).

Here, we use H12 to show that the ident i in d1 is also in d2. Indeed, the type of
H12 is forall v : ident, v ∈ d1 → v ∈ d2. Hence, H12 i H1 is of type i ∈ d2, and
exist _ v (H12 i H1) is of type var d2.

We define the projection of a single state on a smaller variable set.

Definition project (e2 : state d2) : state d1 :=
fun v1 ⇒ e2 (H’12 v1).

We extend the definition of projection of state to the projection of assertion.
Which is the projection of every state in it. If we consider the assertion as
the property it holds on variables, the projection is similar to the existential
quantifier. For example, the assertion P (x, y) projected on the variables {y} is
∃x, P (x, y).

Definition project_assertion (a : assertion d2) : assertion d1 :=
fun e1 ⇒ exists e2, e2 ∈ a ∧ project e2 = e1.

Then, we can define the inverse of the projection. Which for a state gives
the set of states that project to it. Notice that the extension of a state gives an
assertion. Multiple states defined on d2 have the same projection on d1.

Definition extend_state (e : state d1) : assertion d2 :=
fun e2 ⇒ project e2 = e.

Similar to the extension of states, extending an assertion a1 is done by taking
every state that projects to a state in a1.

Definition extend_assertion (a1 : assertion d1) : assertion d2 :=
fun e2 ⇒ project e2 ∈ a1.

Next, we need to define the strong projection of an assertion. Which is the set
of states where every extension of the states are in the assertion. The equivalent
of the strong projection when viewing assertion as property is the ∀ quantifier.
The strong projection of P (x, y) on {y} is ∀x, P (x, y).

Definition project_assertion_forall (a : assertion d2) : assertion d1 :=
fun e1 ⇒ extend_state e1 ⊆ a.

Finally, we can define the elimination of variables in a contract. Eliminating
variables is the same thing as projecting onto the other variables. We reuse
Definition 12 with the set definitions of projection.

Definition project_contract (c2 : contract d2) : contract d1 :=
let c2’ := saturate _ c2 in

mkContract _ (project_assertion_forall c2’.A)
(project_assertion c2’.G).

Extending a contract onto a bigger variable set is extending both the assump-
tion and the guarantee. In the set theory, this part is implicit. With the proof
assistant, we have to make it explicit.

A Mechanically Verified Theory of Contracts 145

Definition extend_contract (c1 : contract d1) : contract d2 :=
let c1’ := saturate _ c1 in

mkContract _ (extend_assertion (c1’.A) (extend_assertion (c1’.G)).

We can now define composition on two contracts defined on different vari-
ables. We assume d1 d2 and d3, with H1 : d1 ⊆ d2 and H2 : d2 ⊆ d3.

Definition extended_compose (c1 : contract d1) (c2 : contract d2) :
contract d3 :=
compose _ (extend_contract H1 c1) (extend_contract H2 c2).

We can partially verify the correction of the extended composition, though
we still need to find a satisfying correction theorem. For example, we verify
that the composition of contracts implements the composition of components on
different sets of variables.

Theorem extended_compose_correct : forall (c1 : contract d1) (c2 : contract d2)
(σ1 : component d1) (σ2 : component d2),
implements _ σ1 c1 → implements _ σ2 c2 →
implements _ (extend_assertion H1 σ1 ∪ extend_assertion H2 σ2)

(extended_compose c1 c2).

5 Instantiating the Assume/Guarantee Contract Theory

Our goal is to have a formally verified generic theory for contracts. With this
generic theory, one could define contracts with any propositional logic. The
requirement to use the contracts theory is to give the alphabet of variables
and the set of values. Three properties are also required: the set of values need
to be inhabited, and both equality and the ∈ relation must be decidable.

In a nutshell, one needs to instantiate this interface:

Class Theory := {
B : Type ;
ident : Type ;
any_B : B ;
eq_dec_ident : forall x y : ident, {x = y} + {x <> y} ;
in_dec_ident : forall (v : ident) (d : set ident), {v ∈ d} + {v �∈ d} ;

}.

Given these elements, the theory can be instantiated. The parameter ident

is the type of identifier of the variables. The parameter B is the type of values
the variables can yield. We need B to be inhabited, giving any value with any_B

is sufficient to verify it. We require equality and the ∈ relation to be decidable
for identifiers. Hence eq_dec_ident, in_dec_ident are required. This class is used
to define states, on which assertion, components, and contracts are defined.

When instantiating the class, the definitions provided suffice to define con-
tracts and components for a given logic. Yet, defining contracts this way may be
too tedious to be practical. Usually, a logic has a grammar to define formulas,
and a “satisfy” relation saying if a state satisfies a formula. So the workflow is

146 S. Kastenbaum et al.

to define the assertion in the language of the logic, then create the set of states
using the assertion and the satisfy function. We aim to simplify this workflow.

An idea is to define contracts and components in the logic, and then show
their equivalence with the contracts defined in the meta-theory. The following
example shows how to proceed.

5.1 Example with a Simple Propositional Logic

To demonstrate how this theory could be used to create a framework, we devel-
oped a simple propositional logic. We use Prop as the value type, and nat as the
identifier of variables. We instantiate the class as the following:

Instance theo : Theory := {
ident := nat ;
B := Prop ;
default_B := True ;
eq_dec_ident := eq_dec_nat ;
in_dec_ident := in_dec_nat ;

}.

Where eq_dec_nat and in_dec_nat are assumed. For this instance, we define our
states.

Definition state (d : set ident) : Type := forall x : variable d, B.

Then we define a formula algebra, with standard connectors and natural
numbers to identify variables. Notice that the formula type is dependent of the
variables it is defined on. We need this to define states properly.

Inductive expr {d : set ident} : Type :=
| f_tt : expr

| f_var : var d → expr

| f_not : expr → expr

| f_and : expr → expr → expr.

Inductive sat {d : set ident} : state d → expr d → Prop := . . .

To define a contract with two formulas a and g as assumption and guarantee,
we do:

Variable d : set ident.
Definition formula_to_assert (formula : expr) : assertion d :=

fun e ⇒ sat e formula.
Definition mkContractF (a g : expr d): contract d :=

mkContract d (formula_to_assert a) (formula_to_assert g).

5.2 Logic Specific Contracts

We may want to define contracts that are only defined in the logic, with a formula
as assumption and guarantee.

A Mechanically Verified Theory of Contracts 147

Record contractF :=
ContractF {A : expr d ; G : expr d}.

We can define refinesF, composeF and glbF, which are the same as the set
definitions, but we replace ∪, ∩ and ¬ by f_or, f_and and f_not. With the trans-
lation of logic contract to contract in set theory, we can check that the definition
of the operators are correct.

Definition c2c (cf : contractF) : contract d :=
mkContractF d (cf.A) (cf.G).

Theorem refinesF_correct : forall (cf1 cf2 : contractF),
refines d (c2c cf1) (c2c cf2) ↔ refinesF cf1 cf2.

Theorem composeF_correct : forall (cf1 cf2 : contractF),
c2c (composeF cf1 cf2) == compose d (c2c cf1) (c2c cf2).

Theorem glbF_correct : forall (cf1 cf2 : contractF),
c2c (glbF cf1 cf2) == glb _ (c2c cf1) (c2c cf2).

Here, == is the equivalence of contracts, defined by:

Definition equiv (c1 : contract) (c2 : contract) : Prop :=
refines c1 c2 ∧ refines c2 c1.

Notation "c1 == c2" := (equiv c1 c2).

We have now verified that our contracts are correctly instantiating the theory.
We could use them to design a system and verify properties on it.

6 Discussion

In this section, we justify certain design choices. We explored different ways to
define the theory, which we found inefficient for the reasons described below.

6.1 State as Function vs. State as Vector

A prior version of the formalization defined states as vectors of values. States
were defined on a vector of variables, and the index allowed to determine which
values corresponded to each variable.

Variable n : nat.
Definition state := Vector.t B n.
Definition vars := Vector.t ident n.
Definition assertion := sets state.
Record contract vars := Contract {

A : assertion ;
G : assertion ;

}.

The practical problem of this solution is that it is very difficult to add vari-
ables to a state. Vectors embed their length in the type, which makes composing
two contracts defined on different variables impossible.

If we have a contract c1 defined on the variables d1, and c2 defined on the
variables d2, the composed contract is defined on variables d3 = d1 ∪ d2. The size

148 S. Kastenbaum et al.

of d3 needs to be known before constructing the contract. But it is not possible,
because we don’t know the size of d1 ∩ d2.

Even though defining states as vector works on paper, it rises many problems
when using a proof assistant. In definitive, functions are sufficient to model
states. This is why we define states as functions in our formalization.

6.2 Variable Set as Type Parameter vs. Variable Set as Record
Field

In our definitions, every state, assertion, or contract depends on the variables
it is defined on. This is a situation where we use the power of dependent type
theory. Another solution would have been to hold the variable in a field of the
record.

Record contract := Contract {
d : set ident ;
A : assertion d ;
G : assertion d ;

}.

But the problem occurs when defining operators on contracts. We need con-
tracts to be defined on the same variables. If the contracts are defined on different
variables, we don’t have any definition of the operator. This means we should
have a partial function, returning an option type, namely, it returns the result
when it exists, and a default value when it does not. However, working with
partial functions means we have to always verify that the result exists when
proving theories about it. By parameterizing the type of contract we limit the
use of the operator to only contracts defined on the same variables. This means
the operator is a total function which is easier to work with, especially in proof
activity.

6.3 Extending Assertion on Another Set of Variables

We first defined the extension of assertion by using the union of the variables
it’s defined on, and another set of variables.

Definition extend_assertion {d1 d2 : set ident} (a1 : assertion d1) :
assertion (d1 ∪ d2) := ...

This definition adds a lot of problems when composing contracts defined on
variable sets that are equal but constructed differently. This leads to an assertion
defined on d1 ∪ d2, and another on d2 ∪ d1. The two sets are equal, thanks to
the union being commutative, but for instance, the types d1 ∪ d2 and d2 ∪ d1

are not the same in Coq. Since we parameterize the contracts type with their
variables of definition, the types contract (d1 ∪ d2) and contract (d2 ∪ d1) are
also different. Our composition operator requires the two contracts to be of the
same type, this means it is not possible to compose contracts that are not of the
same types. Composing these contracts is impossible, we need to change their
definitions.

A Mechanically Verified Theory of Contracts 149

One solution would be to define another extension function:

Definition extend_assertion_l {d1 d2 : set ident} (a2 : assertion d2) :
assertion (d1 ∪ d2) := ...

But it seems quite inelegant, every function needs to be defined two times. Our
solution is to use another set of variables as the final set.

Definition extend_assertion {H : d1 ⊆ d2} (a1 : assertion d1) :
assertion d2 := ...

This removes the problem altogether but changes the way we have to think about
the extension of assertion.

7 Conclusion

In this paper, we presented a formalization of the set-theoretical assume/guaran-
tee contracts in the proof assistant Coq, and showed how to instantiate it with a
given logic. To the best of our knowledge, it is the first mechanized formalization
of a theory of assume/guarantee contracts for system design. The formalization
gives us the assurance that the notion of assume/guarantee contract is a correct
instance of the meta-theory of contract. We also gave a set-theoretic definition
of extension and elimination of variables in a contract, which was not defined
in the original works. Finally, we demonstrated how to construct contracts in a
simple propositional logic and proved the refinement, conjunction, and compo-
sition rules correct. The complete implementation of our formalization in Coq is
available here.2

Ideally, the theory of contracts should help engineers struggle with the spec-
ification of contracts during system design. In this aim, having a tool to detect
contradictory contracts early could prove useful. For now, the composition oper-
ator does not certify that the resulting contract is compatible with any environ-
ment nor implementable by a component. This may lead to a problem in the
design process should the contradictory contracts be composed and incorrect
contracts be defined, leading to an unimplementable contract. We can detect
that a contract is unimplementable but it could be useful for a more efficient
process to be able to detect contradictory contracts before composing them.

While the formalization of the contract theory we made (in the proof assistant
Coq) may be of cumbersome use for realistically scaled design systems, this work
was not intended to provide a usable contract theory applicable to any logic. Each
logic features specific design choices that hint at the proper way contracts should
be combined with them. However, our formalization demonstrates that different
contract definitions fit the same global (meta) theory. Our aim is to prove that
their definitions of refinement, composition, and conjunction are equivalent. The
first step of this future work would be to implement a hybrid logic such as
differential dynamic logic or the duration calculus into the Coq proof assistant,
then formalize their contract theory. Finally, by instantiating our contract theory,

2 https://github.com/merce-fra/SKT-VerifedContractTheory.

https://github.com/merce-fra/SKT-VerifedContractTheory
https://github.com/merce-fra/SKT-VerifedContractTheory

150 S. Kastenbaum et al.

we could show the equivalence of their contracts, or pinpoint their differences if
they are not equivalent.

References

1. Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Programm. Lang.
Syst. 15(1), 73–132 (1993). https://doi.org/10.1145/151646.151649

2. Aréchiga, N.: Specifying safety of autonomous vehicles in signal temporal logic.
In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 58–63 (2019). https://doi.
org/10.1109/IVS.2019.8813875

3. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.:
Multiple viewpoint contract-based specification and design. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp.
200–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92188-2
9

4. Benveniste, A., et al.: Contracts for systems design: theory. Report, INRIA, July
2015

5. Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In: Alur,
R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530.
Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020972

6. Chaochen, Z., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid
real-time systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.)
HS 1991-1992. LNCS, vol. 736, pp. 36–59. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-57318-6 23

7. Chen, M., et al.: MARS: a toolchain for modelling, analysis and verification of
hybrid systems. In: Hinchey, M.G., Bowen, J.P., Olderog, E.-R. (eds.) Provably
Correct Systems. NMSSE, pp. 39–58. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-48628-4 3

8. Dabney, J.B., Harman, T.L.: Mastering Simulink. Pearson, Upper Saddle River
(2003)

9. Foster, S., Cavalcanti, A., Canham, S., Woodcock, J., Zeyda, F.: Unifying theories
of reactive design contracts. Theor. Comput. Sci. 802, 105–140 (2020). https://
doi.org/10.1016/j.tcs.2019.09.017

10. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

11. Graf, S., Quinton, S., Girault, A., Gössler, G.: Building correct cyber-physical
systems: why we need a multiview contract theory. In: Howar, F., Barnat, J. (eds.)
FMICS 2018. LNCS, vol. 11119, pp. 19–31. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00244-2 2

12. Liebrenz, T., Herber, P., Glesner, S.: Deductive verification of hybrid control sys-
tems modeled in simulink with KeYmaera X. In: Sun, J., Sun, M. (eds.) ICFEM
2018. LNCS, vol. 11232, pp. 89–105. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02450-5 6

13. Lunel, S., Mitsch, S., Boyer, B., Talpin, J.-P.: Parallel composition and modular
verification of computer controlled systems in differential dynamic logic. In: ter
Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp.
354–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8 22

https://doi.org/10.1145/151646.151649
https://doi.org/10.1109/IVS.2019.8813875
https://doi.org/10.1109/IVS.2019.8813875
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/BFb0020972
https://doi.org/10.1007/3-540-57318-6_23
https://doi.org/10.1007/3-540-57318-6_23
https://doi.org/10.1007/978-3-319-48628-4_3
https://doi.org/10.1007/978-3-319-48628-4_3
https://doi.org/10.1016/j.tcs.2019.09.017
https://doi.org/10.1016/j.tcs.2019.09.017
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-030-00244-2_2
https://doi.org/10.1007/978-3-030-00244-2_2
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-030-30942-8_22

A Mechanically Verified Theory of Contracts 151

14. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51 (1992). https://
doi.org/10.1109/2.161279

15. Müller,A.,Mitsch,S.,Retschitzegger,W.,Schwinger,W.,Platzer,A.:Tacticalcontract
composition for hybrid system component verification. Int. J. Softw. Tools Technol.
Transf. 20(6), 615–643 (2018). https://doi.org/10.1007/s10009-018-0502-9

16. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Lecture Notes in Computer Science. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45949-9

17. Nuzzo, P.: Compositional design of cyber-physical systems using contracts. Ph.D.
thesis, UC Berkeley (2015)

18. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

19. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming Dr. Frankenstein:
contract-based design for cyber-physical systems*. Eur. J. Control 18(3), 217–238
(2012). https://doi.org/10.3166/ejc.18.217-238

20. Team, T.C.D.: The Coq proof assistant, version 8.7.2. Zenodo, February 2018.
https://doi.org/10.5281/zenodo.1174360

21. Wang, S., Zhan, N., Guelev, D.: An assume/guarantee based compositional calculus
for hybrid CSP. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS,
vol. 7287, pp. 72–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29952-0 13

22. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: an interactive theorem
prover for hybrid systems. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 382–399. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 25

https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/s10009-018-0502-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.3166/ejc.18.217-238
https://doi.org/10.5281/zenodo.1174360
https://doi.org/10.1007/978-3-642-29952-0_13
https://doi.org/10.1007/978-3-642-29952-0_13
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1007/978-3-319-25423-4_25

A Complete Semantics of K and Its
Translation to Isabelle

Liyi Li1(B) and Elsa L. Gunter2

1 Department of Computer Science, University of Maryland, College Park, USA
liyili2@umd.edu

2 Department of Computer Science, University of Illinois at Urbana-Champaign,
Champaign, USA

egunter@illinois.edu

Abstract. K [46] is a rewrite-based executable semantic framework
in which programming languages, type systems and formal analysis
tools can be defined using configurations, computations and rules.
Isabelle/HOL [41] is a generic proof engine which allows mathematical
formulas to be built into a formal language and provides tools to prove
those formulas in a logical calculus. In this paper we define IsaK, a refer-
ence semantics for K, which was developed through discussions with the
K team to meet their expectations for a semantics for K. Previously, we
defined the static semantics for K [28]; thus, this paper mainly focuses
on its dynamic semantics. More importantly, we investigate a way to
connect K and Isabelle by building a translation framework, TransK,
to translate programming languages defined in K into theories defined
in Isabelle, which can not only allow programmers to define their pro-
gramming languages easily in K but also have the ability to reason about
their languages in Isabelle. In order to show a well-established transla-
tion, we prove that the K specification is sound and relatively complete
with respect to the translated Isabelle theory by TransK. To the best of
our knowledge, IsaK is the first complete formal semantics defined for K,
while TransK is the first complete translation from a real-world, order-
sorted algebraic system to a many-sorted one. All the work is formalized
in Isabelle/HOL at https://github.com/liyili2/KtoIsabelle.

1 Introduction

K is a domain specific language that takes a language specification as an input
and generates an interpreter for it, including an execution engine to show the
trace behaviors of executing a program in the specification. There is a rich body
of published work on K itself [44], and specifications given in K, such as the work
listed in Sect. 6. Despite the success of K, there are issues. While there have been
a number of papers published concerning theories about K [8,18,43,46,47,49],
there is no source that sufficiently defines the complete syntax and semantics
of K or allows for rigorous proofs of the properties of the languages defined
in K. In addition, while K supports specific tools for analyzing programs in

c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 152–171, 2021.
https://doi.org/10.1007/978-3-030-85315-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_10&domain=pdf
https://github.com/liyili2/KtoIsabelle
https://doi.org/10.1007/978-3-030-85315-0_10

A Complete Semantics of K and Its Translation to Isabelle 153

a language defined in K, it provides very little support for formal reasoning
about the language itself. Even though K has been used in the definitions of
an impressive number of programming languages, the support it offers users for
language definitions is still fairly limited. Other than an interpreter generator
and a small tool to prove properties about a specific program, there are no
built-in tools for doing inductive proofs about a language specification. Finally,
because early versions of K had features that were dropped in intermediate
versions, only to be reintroduced in later versions, and because different versions
displayed different behaviors, it is clear that there is not a consensus among the
K community on what K is.

Our contribution, a full, formal language specification of K, called IsaK,
addresses these concerns and forms the foundation of tools for the maintenance,
revision, and expansion of K. We also define a shallow embedding of K into
Isabelle (Sect. 4), named TransK, and prove that the embedded K specification
in Isabelle bi-simulates it original K specification in IsaK (Sect. 5) for any IsaK
specification. From this, we now can define a language specification in K and
prove theories about the specification in Isabelle. Previously, we defined the
IsaK static semantics [28]. We focus on the IsaK dynamic semantics in this
paper (Sect. 3).

Several benefits accrue from our work. To the best of our knowledge, IsaK is
the first complete semantics of K. Other than the two simple descriptions of K

[46,49], there are no resources discussing its syntax or semantics. Indeed, all K

implementations contain some undesirable behaviors, so it is hard for one to learn
the exact meanings of K operators. In the process of defining K, we needed to
constantly interview the K team to understand the meanings of the K operators
and look at the Java source code of the K implementation to understand how K

was being defined. The definition of IsaK provides a K standard for users, and
save their time of learning K.

To the best of our knowledge, TransK is the first translation implementa-
tion from an order-sorted algebraic system (K) to a many-sorted one (Isabelle).
Previous work only defined the general and theoretical concepts for translat-
ing order-sorted terms into many-sorted ones [25,36]. The result of translating
specifications defined in K into Isabelle theories introduces the ability to bring
general theorem proving to the K language specifications. Now, we are able to
define a formal language specification and learn about the formal meaning of
the language in IsaK, then translate it into an Isabelle theory through TransK
and prove properties about the whole language in Isabelle (currently K lacks
such ability). Before TransK, no K tools were able to handle this job. We want
to define language specifications in K because of the rapid prototyping concise
nature in K than in Isabelle, extra tools that K offers, and the usage of several
complete real-world specifications [5,13,14,17,40] in K. We want to prove theo-
rems about such specifications in the theory translated by TransK because it is
a lot simpler and clearer than the representations of these specifications directly
in the deep embedding system (IsaK). All IsaK and TransK programs and

154 L. Li and E. L. Gunter

theorems have been formalized and proved in Isabelle, and the implementation
of TransK is provided in Ocaml that is directly exported from Isabelle.

2 Overview

We briefly discuss K’s current semantic layout. The formal semantics as it is
presented in IsaK is divided into two parts: static and dynamic semantics.
The static semantics takes as input the frontend-AST (FAST) representation
of a user-defined language specification (K/IsaK theory) or programs that are
allowed by a specification. Through the translation process in the static seman-
tics, which performs computations that can be done statically (referred to as
compile-time operations), the K/IsaK theory in FAST is processed and trans-
lated into a representation in backend-AST format (BAST) with validity and
type checks. The IsaK static process is given in [28]. Here, we mainly introduce
the IsaK dynamic semantics (based on BAST) in Sect. 3 and its translation to
Isabelle in Sect. 4.

Fig. 1. The structure of IsaK

As indicated in Fig. 1, the operational behavior of the K specification contains
four major steps: parsing, language compilation, sort checking, and semantic
rewriting. Parsing itself comes in two phases: one to learn the grammar of the
object language (the programming language being defined), and the other to
incorporate that grammar into the grammar of K to parse the definitions of the
rules and semantic objects defining the executable behavior of programs in the
object language. The parsers translate the concrete syntax for K and the object
languages that describe therein to FAST, eliminating mixfix syntax and other
syntactic sugar in the process. Language compilation and sort checking are the
steps in the static semantics, which is introduced in [28].

An example of specifications defined in the K BAST form is in Fig. 2. A more
concrete example (FAST) is given in [27]. Here are some key points.

Syntax in a K Theory. In K, the keyword syntax introduces a finite set of
syntactic definitions, separated by “ |”, such as the definition of the sort Exp.
Each syntactic definition is a list of names. The names in Sans Serif font are
non-terminals (sorts), while the names in TT font are terminals. A syntactic
definition (e.g. Exp ::= Var) introducing only a singleton sort defines a relation
that subsorts the singleton sort (Var) to the target sort (Exp). A definition that

A Complete Semantics of K and Its Translation to Isabelle 155

Fig. 2. A briefing of K

subsorts sorts to KResult (e.g. KResult ::= Int) defines the evaluation result sorts
in a specification. Other kinds of syntactic definitions introduce user defined
terms that express rules and programs. Every “real” syntactic definition (not
subsorting) creates a prefix AST format like KLabel (KList), where the KLabel
term acts as a constructor automatically generated by the terminals and the
structure of the definition, and the KList term is the argument list generated
from the non-terminals of the definition. The syntax definitions in a K theory
are compiled by the IsaK static semantics into a sort set, a symbol table, a
subsort relation and several heating/cooling rules as inputs for the IsaK dynamic
semantics (Sect. 3).

K Attributes in Syntax in FAST are Equal to Semantic Rules in BAST. K

allows users to define attributes in a syntactic definition (written in brackets
e.g. [strict], in Fig. 2), some of which have semantic meanings. For example, a
syntactic definition with a strict(1) attribute generates a pair of heating/cool-
ing rules for the first non-terminal position in a term whose top-most constructor
matches the definition. In K, heating rules are to break down a term into sub-
terms and let other semantic rules evaluate them, while the meaning of a cooling
rule is to merge an evaluated subterm to the right position (�) of the term. Rule
(heat) in Fig. 2 is an example heating rule generated for the attribute in (syn).
“�” is a list concatenation operator for connecting the computation sequence in
a k cell, while “�” is a special builtin operation in K representing the removal of
a redex subterm from a term and the creation of a “hole” waiting to be filled.

K Configurations. Allowing users to define a global initial configuration for
every K theory is a key K feature. The initial configuration of a specification is an
algebraic structure of the program states, which are organized as nested, labeled
cells. Cells are in XML formats (like 〈...〉 T) that hold semantic information,
including the program itself (prefixed by the $ operator in Fig. 2). While the order
of cells in a configuration is irrelevant, the contextual relations between cells
are relevant and must be preserved by rules defined by users and subsequently
“completely filled” in the compilation step in K according to the configuration.
In a trace evaluation, each step of the computations should produce a result
state (configuration) that “matches” the structure of the initial configuration,
meaning that the names, sorts, and structural relations of the cells are preserved

156 L. Li and E. L. Gunter

in the result and initial configuration. Leaf cells represent pieces of the program
state, like computation stacks or continuations (e.g., k), environments (e.g., env),
heaps (e.g., heap), etc. The content of each cell in an initial configuration has
dual roles: it establishes the initial value of the computation and also defines the
sort of the cell content. For example, the key cell in the configuration (Fig. 2) is
defined as 0 and sort Int; during an evaluation, the cell’s initial value is 0, and
in every state of the evaluation, its content has a sort that subsorts to Int.

Semantic Rules in a K Theory in BAST. In this paper, we focus on the
dynamic semantics of K. All these unconventional configuration rules are
assumed to be compiled to a standard form (BAST) by the IsaK static semantics
[28], and the dynamic semantics definitions are based on the compiled format.
Figure 2 also contains a set of BAST rules. The simplest form of the rules, such
as rule (heat) (K rules), describe behaviors that can happen in a k cell (repre-
senting the computation list in a thread), without mentioning any other cells.
They describe behaviors that can happen in a k cell, especially how the current
executing expression is changed and the relationships among different positions
in the computation list. The most complicated form of rules, such as rule (bagr),
are typical configuration rules (Bag rules) in K, and they describe interactions
among different device/state components in a system. In K, Bag rules are also
powerful enough to manipulate language device resources. For example, since the
class cell is marked as “∗”, one is allowed to write a rule to add a class data entry
in the classes cell (details are in [27]). K also allows users to write equational
rules, named function rules. The format is like the fresh definition in Fig. 2. Its
syntactic definition (fresh) is labeled by an attribute function, and then the
rules whose left-hand top-most constructor is the same as the KLabel ’s term syn-
tactic definition are recognized by K to be the function rules under the function
definition. The left-hand-side of a valid function rule has argument sorts that
subsort to the argument sorts defined in the function definition, and the target
sort of the right-hand-side subsorts to the target sort of the definition.

IsaK Static Semantics. The static semantics [28] is a process for translating
an IsaK theory or a program belonging to the theory from FAST to BAST. It
involves the compilation of syntactic definitions from an IsaK theory to a symbol
table, which is for keeping syntactic information. Static semantics also gathers
sort and subsort information, generates rules that users specify as attributes
in the FAST syntactic definitions, and performs validity checks on the input
IsaK theory. One of the most important steps it performs on a theory is sort
checking. The type system we developed for IsaK is simple, similar to one in
a simple typed lambda calculus, with additional subsorting relations. We have
shown that the type preservation theorem in IsaK (see Sect. 3.2).

3 The IsaK Dynamic Semantics

Here we introduce the IsaK dynamic semantics, which is defined in Isabelle,
based on the BAST terms transformed from the static semantics in [28]. Given

A Complete Semantics of K and Its Translation to Isabelle 157

an IsaK theory and a program belonging to the theory, the IsaK dynamic
semantics produces the program execution trace according to the semantic rules
in the theory. The development of K was based on the footprint of Rewriting
Logic [22]. IsaK theories and programs are similar to Rewriting Logic theories
and ground terms.

To facilitate the presentation, we have some relations derived from a relation
(R), including the reflexive (R?), transitive (R+), and reflexive-transitive (R∗)
closures. [A] is the identity relation for a set A. A × B is the cross product of
sets A and B, and × binds tighter than ∪. Some notational conventions in the
paper are provided in Fig. 3 and [27]. For example, s ranges over sorts and c
ranges over KLabel , etc. In the figure, every name in Chancery font represents a
type in Isabelle we defined for an IsaK component; every name in Sans-Serif font
represents a sort or configuration (of type CName) in an IsaK theory; everything
in TT font is a construct (including program variables) programmers write in
a program belonging to a theory, and everything in Italics is a meta-variable
representing a term in IsaK.

Fig. 3. Part of IsaK syntactic components in isabelle

3.1 Syntactic Component Highlights in BAST

We first briefly introduce some BAST syntactic features of an IsaK theory or
program of the theory while the full BAST syntax is described in [27]. Every
IsaK theory is expressed as a tuple of (Ψ,�, Υ,Δ), where Ψ is a set of sort
names, (Ψ,�) is a poset representing sorts and subsorts for terms, Υ is a symbol

158 L. Li and E. L. Gunter

table and Δ is a set of Rule terms. � is a subsort relation built on pairs of sorts
in Ψ . We show restrictions on Ψ and � in Fig. 3.

Sorts and Subsorts. Every sort is disjointly either a user-defined sort (UsrSort) or
a built-in sort (BuiltinSort). Each sort in ResultSort is either Bool, or a user-defined
sort that can be the result sort of a computation, like Int. There are several
restrictions on �. For example, sort K is the upper bound of UsrSort , while KItem
is the supremum of the same set. The elements in {KList, List,Set,Map,Bag} do
not have subsort relations other than reflexive relations in �.

The reason to have these different kinds of sorts in IsaK is that terms with
different sorts have different kinds of implicit equational properties in the pat-
tern matching phase of a semantic evaluation step (see Sect. 3.2). Each term in
IsaK is associated with exactly one kind of sort. Any user-defined sort term,
like all valid terms for the Exp definition in Fig. 2, is subsorted to KItem and rep-
resented by the KItem term in Fig. 3, and has no implicit equational properties;
while BuiltinSort terms have different representations (in Isabelle) and might be
associated with implicit equational properties. For example, a Map term, like the
terms representing heap in the configuration and the rules in Fig. 2, has a set of
equational rules that are associated for enforcing its idempotent property and
also for being functional. Since all BuiltinSort terms have at least associative and
identitive equational properties, IsaK implements them as lists in Isabelle, such
as the Bag and K definitions in Fig. 3, to avoid the implementation of these two
properties in the pattern matching algorithm.

Additionally, when a result sort is declared in the original K, the sort is
subsorted to the special sort KResult. This formalization causes a problem in
the type (sort) soundness: a term with a result sort can be rewritten to another
result-sorted term, but the position holding the term is only defined to hold
the original sort. For example, assume that x has the value true in the heap,
and we want to compute the expression x/1. This is ill-formed but the original
K sort system cannot detect it, if we subsort both Bool and Int to KResult
(Fig. 2). In IsaK, we discard the KResult sort and view the sorts subsorting to
KResult as defining a Boolean predicate for a set of result sorts. We use the
predicate isKResult, whose meaning is membership in ResultSort . We replace
every definition in a K theory that subsorts a term to KResult with an isKResult
predicate for the term. Thus, the subsort relation of KResult in a K theory is
replaced in IsaK by isKResult that checks a property on terms. An example is
given as the heat rule in Fig. 2.

Syntactically Valid Terms, Rules, and Configurations. A syntactically valid
term (with or without meta-variables) in IsaK is defined with the same term
validity definitions as Rewriting Logic [22] (see [27]). In IsaK, a valid term is
constructed through constructs whose syntactic information is stored as an entry
in the symbol table Υ , which contains a constructor (symbol) name (a KLabel
term), a list of argument sorts, a target sort, and a flag of a construct. The flag
indicates if the constructor is a function one. As we have mentioned in Sect. 2, an
IsaK function is defined through a function constructor syntax definition and
a set of rules for which the left-hand-side top-most constructor being the exact

A Complete Semantics of K and Its Translation to Isabelle 159

function constructor, such as the fresh function in Fig. 2. Moreover, IsaK adds
a � term, that represents an evaluation context hole (like the ones in (heat) in
Fig. 2), for every sort (except sort KList and Bag).

The above description is for terms, but an IsaK theory usually contains
syntactic definitions and semantic rules (Δ). The syntax for Rule terms is defined
in Fig. 3. Every rule in BAST has the form (Pat ⇒ Exp when Exp). In a rule,
the left-hand-side term (left of ⇒) is called a pattern, while the right-hand-
side and the condition term are called expressions. Like Rewriting Logic and
the traditional functional programming languages, the terms that are allowed to
be patterns are more restricted than those for expressions. Details are in [27].
As we mentioned in Sect. 2, there are only three kinds of rules in a theory: K,
Bag, and function rules. K rules describe the transition behaviors in a k cell (a
place for storing a sequence of instructions to be executed). Bag rules describe
the interactions between program instructions in a k cell and other program
state components (represented by Bag terms). We implement function terms for
different sorts in Isabelle as separate syntactic definitions. Note, for example,
the differences in the definitions for MapItem and MapItem ′ in Fig. 3.

Finally, an actual “program” that an IsaK theory (BAST) is interpreted/ex-
ecuted on is an initial configuration like the one in Fig. 2. It is a user-defined
sequence of instructions (in a k cell) with the filling of the initial state compo-
nents defined in the initial configuration.

3.2 The Definition of the Dynamic Semantics

Here we introduce the IsaK evaluation semantics on a configuration of an IsaK
theory Θ = (Ψ,�, Υ,Δ). Any initial configuration for Θ is represented as a
ground term configuration (C0) that has the type Bag . The evaluation of an
initial configuration (C0) in Θ produces a set of traces, each of which contains a
sequence of configurations, where the (i+1)-th configuration (Ci+1) is the result
of applying a rule from Δ to the i-th configuration (Ci). We first introduce
procedures that are common to every evaluation step.

Common Evaluation Procedures. There are three consecutive procedures
that every evaluation step in IsaK needs. We introduce them separately. The first
one is the pattern matching procedure (match). The pattern matching algorithm
in IsaK is a normal top-most pattern matching procedure. Given a rule rl and
ground term t, the procedure match(rl, t) pattern-matches the pattern side of rl
(the left-hand side) with t, and generates a map from the meta-variables on the
left side of rl to subterms in t or ⊥ if there is no match. Pattern-matching here
means that for a pattern of the form (p, t) with p = c(p1, ..., pn) and ground term
t = c′(t1, ..., tm), we have c = c′, n = m, and σi is the result of matching pi with
ti, then the result is

⋃
i σi so long as for all meta-variables x ∈ (dom(σi)∩dom(σj))

we have σi(x) = σj(x), and for a pattern that is a meta-variable x, the result
of the match is {x �→ t}. For simplicity, we define match(Θ, t) to find the rule
rl in the rule set of Θ whose left-hand side matches term t and which generates
a mapping. In Isabelle, we utilize its builtin pattern matching algorithm (with

160 L. Li and E. L. Gunter

the list pattern matching). The second common procedure is the substitution
procedure (subs). Given a term p with meta-variables x1, ..., xn and map m
from the meta-variables to ground terms, subs(m, p) substitutes the ground
term m(xi) for the occurrences of every meta-variable xi (1 ≤ i ≤ n) in p. In
Isabelle, we faithfully implement a substitution function, for any possible terms
in IsaK, which can be extracted to Ocaml.

The third procedure is the term normalization procedure (norm). Normaliza-
tion only applies to the whole ground term configuration C. norm(C) searches
every subterm in C and rewrites it to a canonical form. Mainly, there are two
properties that a canonical form guarantees, and they both deal with implicit
equational properties in BuiltinSort terms. First, for a Set , Bag , and Map term,
which is implemented as a list in Isabelle, we give an order for elements in the
list and ensure that every such list is sorted by this order during every step
of computation. This is a normal practice for implementing the commutative
pattern matching equational property for terms, which can be found in many
literatures [20,23]. Second, for Set and Map terms, we merge identical elements
and ensure a Map term being functional. For example, in Fig. 2, after a rewrite,
the heap state may be 〈(x�→1)(x�→1)〉 heap, then the term is canonicalized to
〈x�→1〉 heap with one of the element (x�→1) being removed. However, if the heap
state is 〈(x�→1)(x�→2)〉 heap, the whole configuration results in a global error
state because the map is not functional.
Semantics for Different Rules. We first define two kinds of configuration
contexts. The first one is the configuration context C[]sf as a Bag term with
exactly one � subterm described in Sect. 3.1, whose sort s is defined as s ∈
UsrSort ∪ {KItem,K, List,Map,Set}. The configuration redex for the context is a
term c(kl)::s, where a valid combination of the context and redex (C[c(kl)::s]sf)
is a Bag term C derived by replacing the � subterm with the redex c(kl)::s, and
the sort for the � matches the sort s. The second kind of configuration context
is a BagItem term, and the second context-redex pair is defined as C[]k and a
K term tk, such that C[]k has a unique � subterm (type BagItem) and C[tk]k
replaces the � subterm with the BagItem term (bConstr(k, tk)) whose cell name
(CName) is k and the K type subterm is tk. The first context-redex pair represents
the process of pulling out a function term from a subpart of a configuration for
evaluation, while the second context-redex pair represents the process of pulling
out the content of a k cell for evaluation.

Any IsaK evaluation (−→Θ) can be viewed as an application of one of three
different rules: function rule applications (−→Θ

B,f ; (1) and (2) in Fig. 4), K
rule applications (−→Θ

k ; (3) in Fig. 4), and configuration (Bag) rule applications
(−→Θ

B ; (4) in Fig. 4). In these rules, right is a function to get the expression
side of a rule, while cond is to get the condition expression of a rule. The term
true is a built-in Boolean term in IsaK representing the true value. The Kleene
star (∗) in Fig. 4 represents applying the arrow-rule inside the parentheses mul-
tiple times until a final result (like true) shows up or there are no more such
arrow-rules to apply. The basic evaluation strategy of these rule applications is
to split the current configuration C into context-redex pairs mentioned above,

A Complete Semantics of K and Its Translation to Isabelle 161

Fig. 4. IsaK semantics for different rules

apply a rule to rewrite the redex, and insert the new redex back into the con-
text. The (group) definition in Fig. 4 represents a typical combination of rule
applications in forming different K tools, mainly, the krun and ksearch tools.
The krun tool is defined as (=⇒Θ)∗ or (=⇒Θ)n if users specify the number of
trace steps n they want to see. The ksearch tool is defined by a set transition
from a singleton set of a configuration to a set of configurations in the form
({C} �Θ Cl)∗, where the set configuration transition has the property:

Cl �Θ Cl′ � (∀C ∈ Cl. C =⇒Θ C′ ⇒ C′ ∈ Cl′) ∧ (∀C′ ∈ Cl′, ∃C ∈ Cl. C =⇒Θ C′)

With the IsaK dynamic semantics and the IsaK sort system shown previ-
ously [28], we have the following type preservation property (proof sketch in [27]
and formalization in Isabelle). Note that the IsaK type system does not satisfy
the type progress property, since K allows users to define language semantics
incrementally. It is fine in a K theory to define a language syntax without defin-
ing its semantics.

Theorem 1. For a type correct theory (Θ), for any type correct configuration
C , if a sub-component e in C has type t, then the result of evaluating C has a
type t′ for the sub-component, where t′ is a subtype of t.

4 TransK: Translation from K to Isabelle

Here, we introduce TransK, a translation from an IsaK theory to an Isabelle
theory. The input of the translation is a deeply embedded IsaK specification
(theory) (Sect. 3) in a functional system (Isabelle). A such specification contains
a sort set (Ψ), subsort relation (�), symbol table (Υ), and a set of transition
rules (Δ). The output translation of the specification by TransK is a shallowly
embedded Isabelle theory containing a list of Isabelle datatypes, a list of quotient
types with proofs, and a list of Isabelle rules translated from rules in the input
IsaK specification.

162 L. Li and E. L. Gunter

4.1 Translating Datatypes

For a given IsaK theory Θ = (Ψ,�, Υ,Δ), we first translate the tuple (Ψ,�, Υ)
to a pair of a finite quotient type set and a finite set of Isabelle proofs (Ωq,Π) in
the translated Isabelle theory (Ξ), such that all relations in � are removed in Ξ,
but their functionalities are combined in Ωq. The way to achieve this is to utilize
Isabelle quotient types: we first translate the IsaK datatype tuples (Ψ,�, Υ) to
a finite Isabelle datatype set Ω by explicitly coercing every pair in �; and then
we translate Ω to a quotient type set Ωq with a finite set of proofs (Π), one
for each target sort in Ωq, to show that each quotient type in Ωq defines an
equivalence relation over all of the syntax defined in Ω. We briefly describe the
two processes with examples below. The detailed translation is found in [27].

Translation from K Datatypes to Isabelle Datatypes. The translation step
from the tuple (Ψ,�, Υ) to an Isabelle datatype set Ω has two parts: adding
builtin datatypes (corresponding to terms in BuiltinSort in Fig. 3) and translating
user defined datatypes (corresponding to terms in UsrSort in Fig. 3). In [27], we
show a complete datatype translation for a small language. The builtin datatypes
that are additionally generated are in a one-to-one correspondence with the IsaK
datatypes in Fig. 3, except for KLabel /KList , which represent constructors and
their arguments in K and which become implicit in Isabelle. We implement the
builtin K , List , Set , Map, and Bag datatypes as type synonyms for Isabelle builtin
lists of corresponding singleton item datatypes, e.g. the KItem list for K . The
reason is to capture the aspect that some builtin datatypes have implicit equa-
tional properties associated with them (listed in Fig. 3). By representing these
datatypes as Isabelle list structures and representing a connection operation in
IsaK (e.g. the set concatenation operation in K) as an Isabelle list concatena-
tion operation (@), we are able to capture the implicit associative and identitive
equational properties on these datatypes without extra effort. This strategy can
be generalized to deal with any datatypes with implicit associative and identitive
equational properties. The other implicit equational properties are dealt with by
quotient types. The translation of user-defined datatypes (from K to Isabelle)
is to add explicit coercions for all subsort relation pairs in �, e.g. the construc-
tor Var_Exp coerces a term in sort Var to an Exp term (Fig. 2). This excludes
all function constructs (e.g. fresh in Fig. 2), which are translated directly into
inductive relations without having datatype definitions in Isabelle (Sect. 4.2).
Additionally, we add an extra constructor (like Exp_Hole) for each sort that
contains some syntactic definitions with [strict] attributes. The constructor
represents the � term in IsaK (Sect. 3).

From Datatypes to Quotient Types. Here we translate the Isabelle datatype
set Ω to the quotient type set Ωq with a set of proofs Π. A quotient type is com-
posed of a set of terms, with a fixed target sort, whose elements are equivalence
classes that partition the whole term domain by a given set of equations. Some
datatypes in Ω are only translated to “trivial” quotient types, meaning a quotient
type with Isabelle’s builtin = operation as its equivalence relation. For example,
the translation of a sort Int term to a quotient type is a trivial one, and its trans-

A Complete Semantics of K and Its Translation to Isabelle 163

lation and the quotient type proof in Isabelle are given as the one line statement
(quotient_type intq = "int" / "(=)" by (rule identity_equivp)).

For any datatype subset of Ω indexed by a specific target sort, there are
four cases requiring non-trivial quotient type translations. The general strategy
for translating non-trivial cases is to define inductive relations to capture the
equivalence relations defined for the quotient types, and to prove that these really
are such relations. Then, to ensure that the definitions are equivalence relations,
we encode explicitly the reflexive (rlx), symmetry (sym), and, transitive (trans)
rules for each possible relation of the four kinds of non-trivial translations. For
example, for handling the communicative equational property (comeq) in Bag
terms and the idempotent equational property (idmeq) in Map and Set terms
(the first two cases), we have the following translation:

inductive comeq where
com: "comeq (x@y) (y@x)"
| recur: "comeq u v

=⇒ comeq (x@u@y) (x@v@y)"
| rlx: "comeq x x"
| sym: "comeq x y

=⇒ comeq y x"
| trans:"�comeq x y;comeq y z�

=⇒ comeq x z"

inductive idmeq where
idem: "set x = set y

=⇒ idmeq x y
| rlx: "idmeq x x"
| sym: "idmeq x y

=⇒ idmeq y x"
| trans:"�idmeq x y;idmeq y z�

=⇒ idmeq x z"

apply (simp add:
equivp_reflp_symp_transp)

apply (rule conjI)
apply (simp add:reflp_def)
apply (simp add:rlx)
apply (rule conjI)
apply (simp add:

symp_def,clarsimp)
apply (simp add:sym)
apply (simp add:

transp_def,clarsimp)
apply (simp add:trans)

The above figure introduces two kinds (comeq and idmeq) of non-trivial quo-
tient type translations. The Isabelle proof pattern listed in the right column
is a general quotient type proof pattern for every quotient type translation in
TransK. Obviously, the header signatures for different kinds of the quotient
types are different. For example, the signature for introducing the quotient type
Bagq is: (quotient_type Bagq = "Bag" / "comeq"), while the quotient type
Setq has the signature: (quotient_type Setq = "Set" / "idmeq").

The other two kinds of non-trivial quotient type translations relate to the
translation of subsorts in order-sorted algebras to explicit coercions in many-
sorted algebras. In doing explicit coercions, when there is a chain of subsort
relations for an IsaK term with the possibility of multiple paths from one end
to the other, it is necessary to equalize all of the different paths. There are
apparently only two kinds of explicit coercion patterns to take care.

s1

s2

s3

fun s1 _eqfun where
"s1 _eqfun

(s2_s1 (s3_s2 x))
(s3_s1 y)

= s1 _eqfun x y"
...

s1

s2s3

s4

fun s1 _eqfun where
"s1 _eqfun

(s3_s1 (s4_s3 x))
(s2_s1 (s4_s2 y))

= s1 _eqfun x y"
...

inductive s1 _eq where
base: "s1 _eqfun x y =⇒ s1 _eq x y
| rlx: "s1 _eq x x"
| sym: "s1 _eq x y =⇒ s1 _eq y x"
| trans: "�s1 _eq x y;s1 _eq y z�

=⇒ s1 _eq x z"
quotient_type s1

q = "s1 " / "s1 _eq"

164 L. Li and E. L. Gunter

The first kind of pattern is listed in the left above. If there is a sort s1,
and it has a subsort s2 that has a subsort s3, we need to create a equivalence
relation capturing that the consecutive coercions from s3 to s2 to s1 is the
same as the single coercion from s3 to s1. For example, in Fig. 2, the sorts
KItem, Exp, and Int follow this pattern, and so we need to add the equivalence
relation: Int_Exp (Exp_KItem x) = Int_KItem x. The second kind is listed in
the middle column above. If there is a sort s1, and two sorts s2 and s3 subsort to
it, and then a fourth sort s4 subsorts to both s2 and s3, then we need to capture
the equivalence relation of the subsorts from s4 to s1 through two different
paths – s2 and s3, respectively. In Isabelle, the relations generated for the two
kinds of patterns are similar to the one listed in the right column above. They
both add relations for the sort at the top (s1) only. The only difference is their
implementations of s1_eqfun. For each s1 sort that might have these two kinds
of patterns, we need to generate one eqfun. For each function (sort s1), we need
to list all of the equivalence relations that captures the two kinds. In above, we
list two different functions, each of which has one listed equivalence relation.

4.2 Translating K Terms and Rules

Here we discuss the translation of IsaK terms and rules. For an IsaK theory
(Ψ,�, Υ,Δ), the translation algorithm for user defined terms simply walks down
the ASTs of the terms by adding explicit coercions according to the syntactic
translations described in Sect. 4.1. The translation algorithm is straightforward,
following the symbol table Υ in determining the sort for every cell/construct in
a configuration/term. In addition, the deeply embedded IsaK theory has the
KLabel and KList terms, which are translated to constructors and argument lists
in a term, respectively. The detailed translation is in [27].

A rule translation is to translate the rule set Δ to a new set of rules Δi,
whose elements are all represented as inductive relations in Isabelle. The trans-
lated relations are all quantifier-free, with all meta-variables represented as uni-
versally quantified meta-variables in Isabelle. In Sect. 3, we introduced the IsaK
rewriting system by dividing rules into three categories: function, K, and config-
uration rules. The rule translation deals with these groups separately.

Translating Function Rules. We first investigate the translation of function
rules. Each rule translation is divided into two parts: a translated inductive
relation in Isabelle that captures the meaning of the function rule, and a defini-
tion using the Hilbert’s choice operator to produce the output of the relation. In
K, a function has a syntactic definition with several function rewrite rules, whose
format is shown as the example in Sect. 3.1. Each function, with possibly many
rules, is translated to a single inductive relation, with possibly many cases, as
well as a definition created using Hilbert’s choice operator. Given a subset (Υf)
of the symbol table Υ containing only function constructs, and a subset (Δf) of
Δ containing only function rules, we produce a set (Δi

f) of inductive relations
in Isabelle that contains the translated results of Δf .

A Complete Semantics of K and Its Translation to Isabelle 165

fresh(SetItem(n::Int) S, m)
⇒ fresh(S, n) when m <Int n

...

inductive fresh_ind where
�m < n; fresh_ind (S, n) x1 �
=⇒ fresh_ind ([SConstr [Int_KItem n]@S, m) x1
...
definition fresh where
"fresh e = (SOME x . fresh_ind e x)"

In translating the fresh function in Fig. 2, we first look at all function rules in
Δf whose top-most constructors of the rule patterns are fresh. The translation
of each single rule for the function label fresh results in an inductive relation
case in the relation fresh_ind (like the example rule translation above). The
rule pattern ((SetItem(n:Int) S, m)) is translated to the first argument of
fresh_ind with the correct coercions. The translation of the rule expression
depends on if the expression contains recursion. In above example, since the
expression contains a recursion step (fresh(S, n)), we then need to generate
a variable (x1) to represent the result of the recursion and put the recursion
expression in the conditions of the inductive case. The rule condition is also
translated to the conditions in the inductive case. After we construct all of the
inductive cases for the function (or inductive relations for a set of mutually
recursive functions), we create a definition with the Hilbert’s choice operator
SOME to force the inductive relation to output terms with the same type as the
target sort of the fresh function defined in Fig. 2.

Translating K and Configuration Rules. The general strategies for translating
a K rule or a configuration rule are very similar. We briefly introduce the K rule
translation by an example. Further details are provided in [27].

v:Exp � � / y � tl
⇒ v / y � tl when isKResult(v)

inductive k_rule where
...
�t = abs_K((Exp_KItem v)#((Div x Exp_Hole)#tl));
isKResult((Exp_KItems v)); t′ = abs_K((Div x v)#tl)�

=⇒ k_rule t t′

...

All K rules in a theory are translated to cases in an inductive relation in
Isabelle, while Bag rules are translated to cases in another inductive relation.
The K rule translation is very similar to the translation of function rules, except
that all translated terms of the former are quotient type terms, so we need to use
a variable to suggest that an equivalent term to the quotient type term can also
be applied by the rule. An example is the term t in the above figure. We use t to
indicate that it is a quotient type term (by using abs_K) of the translation of the
pattern term (v:Exp � � / y � tl). Translating configuration rules is similar
to translating K rules. The only difference is that the translated Bag inductive
relation needs to contain transition cases for collecting all of the transitions that
occur in K rule and function rule applications. Besides these rule translations,

166 L. Li and E. L. Gunter

the final translated Isabelle theory also contains a top level transition relation
capturing possible global error states, as mentioned in Sect. 3.2.

5 IsaK and TransK Bisimulations

Fig. 5. Soundness and completeness of IsaK and TransK

Here we discuss the relationship between IsaK and TransK. Figure 5 describes
the general relation diagrams between them (proof sketch in [27] and formaliza-
tion in Isabelle). The IsaK deep embedding and TransK shallow embedding
are implemented in Isabelle. We also implement a small Isabelle system (Isab)
in Isabelle. TransK translates an IsaK theory to an Isabelle theory in Isab. the
rewriting semantics of the Isabelle system (Isab) supporting necessary features
for the translation proof is a simple typed λ-μ calculus with Hilbert’s choice
operator and quotient types. Isab is based on the λ-μ calculus developed by
Matache et al. [32], and extended to support the rewriting theories of inductive
relations and definitions using Hilbert’s choice operator.

To prove soundness/completeness, we have to prove the soundness and com-
pleteness of the functions rules separately from the ones for K/configuration rules
(Fig. 5). The problem is that the function rules are translated to a definition of
inductive relations in the big-step format, and its execution can be infinite. The
soundness and completeness proofs for function rules have to assume that every
rewrite of the function rule application on the conditional expression terminates
in a finite sequence whose length is n. Additionally, a function rule application
deals with terms that are the translated datatypes not quotient types. Thus, a
function rule is applied to a representative term in a given equivalence class,
which is transitioned to another term as a representative in the resulting equiv-
alence class, as described by the existential operation in the first diagram of
Fig. 5. The term t3 is a representative of the class tq1 which is translated from
the K term t1. The function soundness/completeness theorems are listed below.

Theorem 2. (Soundness) In IsaK, assume that a sequence of function rules
rlf1 , ..., rlfn applied to a term t1 terminates in n steps and results in term t2, and
tq1 and tq2 are quotient type terms in Isab translated by TransK, there exists a
term t3 in tq1 transitioning through sequence of corresponding rule applications
TransK(rlf1), ..., TransK(rl

f
n) to term t4, such that t4 is in the quotient type

class tq2, which is a translation from t2.

A Complete Semantics of K and Its Translation to Isabelle 167

(Completeness) If there exist quotient type terms tq1 and tq2, such that a
representative t3 of tq1 is transitioned to t4 in tq2 through a sequence of function
rule applications rlf

′
1 , ..., rlf

′
n , and tq1 = TransK(t1), tq2 = TransK(t2), and rlf

′
1 =

TransK(rlf1), ..., rl
f ′
n = TransK(rlfn), then t1 is transitioned to t2 through the

sequence of function rule applications rlf1 , ..., rlfn.

The soundness and completeness for K/configuration rule applications are
described in the second diagram in Fig. 5 and below.

Theorem 3. (Soundness) In IsaK, assume that a configuration C1 is transi-
tioned to C2 through a K (or configuration) rule rlc, and Cq

1 is a quotient type
term translated from C1, then Cq

2 is translated from C2 by rule TransK(rlc).
(Completeness) If there exist quotient type configurations Cq

1 and Cq
2 , such

that Cq
1 transitions to Cq

2 through a rule rl′c, Cq
1 = TransK(C1), and rl′c =

TransK(rlc), then C2 is transitioned from C1 by rule rlc and Cq
2 = TransK(C2).

6 Related Work

Order-sorted algebras were first introduced systematically by Goguen et al. [15].
Many people defined rewriting strategies, unifications and equational rules on
top of order-sorted algebras and further extended the operational semantics of
order-sorted algebras [1,6,16,22,35]. Based on order-sorted algebras, Meseguer
et al. [31,33] developed rewriting logic. The biggest contribution of rewriting
logic is to contain the operational semantics of order-sorted algebras and dis-
tinguish equations from rewriting rules – equations partition terms into equiv-
alence classes while rewriting rules act like traditional transition rules in struc-
tural operational semantics. Maude [29] implemented the syntax and semantics
of rewriting logic and provided several useful tools and applications [11,12,34].
Another implementation of an order-sorted algebra is PROTOS(L) [3], which
has an operational semantics based on a polymorphic, order-sorted resolution.
K [43,46], based on rewriting logic, is executable semantic framework in which
programming languages, type systems and formal analysis tools can be defined
using configurations, computations and rules. Matching Logic [47] is a logic sys-
tem that is built on top of K for reasoning about structures. An invention recently
developed from Matching Logic is Reachability Logic [9,10,45]. It is a seven rule
proof system that is language independent. It generalizes transitions of opera-
tional language specifications defined by users and the Hoare triples of axiomatic
semantics [19] to prove properties about programs in the specifications, so that
users do not need to define the axiomatic semantics of a specification. In an
ongoing project, Moore [38] is transferring the K specifications to Coq [7] and
plans to prove properties of the programs of the specifications in Coq. At this
time, Moore has managed to define a useful co-induction tool in Coq and prove
some properties by defining small language specifications in Coq. Big language
specifications have been defined in K, including C [13], PHP [14], JavaScript
[40], Java [5], and LLVM [26]. They are executable, have been validated by test

168 L. Li and E. L. Gunter

banks, and, with the addition of some formal analysis tools produced by K, have
shown usefulness. On the other hand, the study of many sorted algebras has a
long history. Their logic system was explored by Wang [48]. Many well-known
programming languages such as C, Java, LLVM, and Python are based on them.
One of the most prominent many-sorted programming language specifications is
Standard ML by Milner, Tofte, Harper, and Macqueen [37], whose formal and
executable specifications were given by Lee, Crary, and Harper [24], VanInwegen
and Gunter [21], and Maharaj and Gunter [30]. The simple type systems of the
two famous theorem provers Isabelle/HOL [41] and Coq [7] are also based on
them. There have been a number of formal language specifications given in HOL
and Coq. For example, A small step semantics of C in HOL was specified by
Norrish [39], who proved substantial meta-properties, but the specification has
not been tested for conformance with implementations. Blazy and Leroy [4] in
the CompCert project verified an optimizing compiler based on CLight, includ-
ing compilation steps and C-like modular systems. They used Coq to generate a
compiled code behaving exactly as described by the specification of the language.
Other projects based on CompCert include Appel’s, which combined program
verification with a verified compilation software tool chain [2]. Goguen et al. [15]
introduced a way of translating solely initial free (algebras that have no equa-
tions or rules) order-sorted algebras to many-sorted ones. One recent attempt at
translating order-sorted algebras into many-sorted ones was made by Meseguer
and Skeirik [36]. Their translation still focused on initial free order-sorted alge-
bras, and only provided a naive framework to translate order-sorted equations
and rules to many-sorted ones by generating potentially exponentially many new
copies of transition rules for each of the sorts subsorting to sorts in the origi-
nal transition rules. In addition, Li and Gunter [25] provided a new translation
method to translate order-sorted algebras into many-sorted ones, which is the
theoretical foundation of our paper.

7 Conclusion and Future Work

In this paper, we proposed IsaK, a formal semantics of K in Isabelle. We mainly
focused on the dynamic behavior that occurs when a K theory is executed on
an input program. We also defined TransK, the shallow embedding of a K

specification into an Isabelle theory, and showed that the execution of a program
in the K specification is bisimilar to its Isabelle theory translated by TransK.
For future work, we will endeavor to make the system solid enough to translate
some real-world specifications from K into Isabelle, such as the LLVM semantics
in K [26], so that we can prove theorems like semantic preservation properties of
compiler optimizations based on the LLVM semantics translated in Isabelle. We
can also link reachability logic [9,10,45], the new program logic being derived
by the K team, with traditional program logics such as Hoare Logic [19] and
Separation Logic [42].

A Complete Semantics of K and Its Translation to Isabelle 169

References

1. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A modular order-sorted equa-
tional generalization algorithm. Inf. Comput. 235, 98–136 (2014)

2. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,
vol. 6602, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19718-5_1 http://dl.acm.org/citation.cfm?id=1987211.1987212

3. Beierle, C., Meyer, G.: Run-time type computations in the Warren Abstract
Machine. J. Log. Program. 18(2), 123–148 (1994)

4. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language.
J. Autom. Reason. 43(3), 263–288 (2009)

5. Bogdănaş, D., Roşu, G.: K-Java: a complete semantics of Java. In: Proceedings of
the 42nd Symposium on Principles of Programming Languages (POPL 2015), pp.
445–456. ACM, January 2015

6. Comon, H.: Equational formulas in order-sorted algebras. In: Paterson, M.S. (ed.)
ICALP 1990. LNCS, vol. 443, pp. 674–688. Springer, Heidelberg (1990). https://
doi.org/10.1007/BFb0032066

7. Corbineau, P.: A declarative language for the Coq proof assistant. In: Miculan,
M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007. LNCS, vol. 4941, pp. 69–84.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68103-8_5

8. Şerbănuţă, T.F., Roşu, G.: K-Maude: a rewriting based tool for semantics of pro-
gramming languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp.
104–122. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-
4_8

9. Ştefănescu, A., Ciobâcă, Ş, Mereuta, R., Moore, B.M., Şerbănută, T.F., Roşu, G.:
All-path reachability logic. In: Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp.
425–440. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08918-8_29

10. Ştefănescu, A., Park, D., Yuwen, S., Li, Y., Roşu, G.: Semantics-based program ver-
ifiers for all languages. In: Proceedings of the 31th Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2016), pp. 74–91.
ACM, November 2016

11. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.: Pathway logic:
executable models of biological networks. In: Fourth International Workshop on
Rewriting Logic and Its Applications (WRLA 2002). Electronic Notes in Theoret-
ical Computer Science, Pisa, Italy, 19–21 September 2002, vol. 71. Elsevier (2002).
http://www.elsevier.nl/locate/entcs/volume71.html

12. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker
and its implementation. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS,
vol. 2648, pp. 230–234. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-44829-2_16 http://dl.acm.org/citation.cfm?id=1767111.1767127

13. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2012), pp. 533–544. ACM, January 2012

14. Filaretti, D., Maffeis, S.: An executable formal semantics of PHP. In: Jones, R.
(ed.) ECOOP 2014. LNCS, vol. 8586, pp. 567–592. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44202-9_23

15. Goguen, J.A., Jouannaud, J.-P., Meseguer, J.: Operational semantics for
order-sorted algebra. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194,
pp. 221–231. Springer, Heidelberg (1985). https://doi.org/10.1007/BFb0015747
http://dl.acm.org/citation.cfm?id=646239.683375

https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1
http://dl.acm.org/citation.cfm?id=1987211.1987212
https://doi.org/10.1007/BFb0032066
https://doi.org/10.1007/BFb0032066
https://doi.org/10.1007/978-3-540-68103-8_5
https://doi.org/10.1007/978-3-642-16310-4_8
https://doi.org/10.1007/978-3-642-16310-4_8
https://doi.org/10.1007/978-3-319-08918-8_29
http://www.elsevier.nl/locate/entcs/volume71.html
https://doi.org/10.1007/3-540-44829-2_16
https://doi.org/10.1007/3-540-44829-2_16
http://dl.acm.org/citation.cfm?id=1767111.1767127
https://doi.org/10.1007/978-3-662-44202-9_23
https://doi.org/10.1007/BFb0015747
http://dl.acm.org/citation.cfm?id=646239.683375

170 L. Li and E. L. Gunter

16. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Comput.
Sci. 105(2), 217–273 (1992)

17. Hathhorn, C., Ellison, C., Roşu, G.: Defining the undefinedness of C. In: Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2015), pp. 336–345. ACM, June 2015

18. Hills, M., Roşu, G.: Towards a module system for K. In: Corradini, A., Montanari,
U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 187–205. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03429-9_13

19. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

20. Hullot, J.M.: Associative commutative pattern matching. In: Proceedings of the
6th International Joint Conference on Artificial Intelligence, IJCAI 1979, vol. 1,
pp. 406–412. Morgan Kaufmann Publishers Inc., San Francisco (1979)

21. Inwegen, M.V., Gunter, E.L.: HOL-ML. In: Proceedings of the 6th International
Workshop on Higher Order Logic Theorem Proving and Its Applications, HUG
1993, Vancouver, BC, Canada, 11–13 August 1993, pp. 61–74 (1993)

22. Kirchner, C., Kirchner, H., Meseguer, J.: Operational semantics of OBJ-3. In:
Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 287–301. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-19488-6_123

23. Krebber, M.: Non-linear associative-commutative many-to-one pattern matching
with sequence variables. ArXiv abs/1705.00907 (2017)

24. Lee, D.K., Crary, K., Harper, R.: Towards a mechanized metatheory of Standard
ML. SIGPLAN Not. 42(1), 173–184 (2007)

25. Li, L., Gunter, E.: A method to translate order-sorted algebras to many-sorted
algebras. In: Proceedings of the Fourth International Workshop on Rewriting Tech-
niques for Program Transformations and Evaluation, WPTE 2017. EPTCS (2017)

26. Li, L., Gunter, E.: K-LLVM: a relatively complete semantics of LLVM IR. In:
Donaldson, A.F. (ed.) 34rd European Conference on Object-Oriented Program-
ming, ECOOP 2020. LIPIcs, Berlin, Germany, 13–17 July 2020. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020)

27. Li, L., Gunter, E.: Tech Report for a Complete Semantics of K and Its Transla-
tion to Isabelle (2021). https://github.com/liyili2/KtoIsabelle/blob/master/tech-
report.pdf

28. Li, L., Gunter, E.L.: IsaK-Static: a complete static semantics of K. In: Bae, K.,
Ölveczky, P.C. (eds.) FACS 2018. LNCS, vol. 11222, pp. 196–215. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02146-7_10

29. Clavel, M., Eker, S., Lincoln, P., Meseguer, J.: Principles of maude. In: Meseguer,
J. (ed.) Electronic Notes in Theoretical Computer Science, vol. 4. Elsevier Science
Publishers (2000)

30. Maharaj, S., Gunter, E.: Studying the ML module system in HOL. In: Melham,
T.F., Camilleri, J. (eds.) HUG 1994. LNCS, vol. 859, pp. 346–361. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-58450-1_53

31. Martí-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theor.
Comput. Sci. 285(2), 121–154 (2002). Rewriting Logic and Its Applications.
http://www.sciencedirect.com/science/article/pii/S0304397501003577

32. Matache, C., Gomes, V.B.F., Mulligan, D.P.: The LambdaMu-calculus. Archive of
Formal Proofs 2017 (2017). https://www.isa-afp.org/entries/LambdaMu.html

33. Meseguer, J.: Research directions in rewriting logic. In: Berger, U., Schwichtenberg,
H. (eds.) Computational Logic. NATO ASI Series, vol. 165, pp. 347–398. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-642-58622-4_10

https://doi.org/10.1007/978-3-642-03429-9_13
https://doi.org/10.1007/3-540-19488-6_123
https://github.com/liyili2/KtoIsabelle/blob/master/tech-report.pdf
https://github.com/liyili2/KtoIsabelle/blob/master/tech-report.pdf
https://doi.org/10.1007/978-3-030-02146-7_10
https://doi.org/10.1007/3-540-58450-1_53
http://www.sciencedirect.com/science/article/pii/S0304397501003577
https://www.isa-afp.org/entries/LambdaMu.html
https://doi.org/10.1007/978-3-642-58622-4_10

A Complete Semantics of K and Its Translation to Isabelle 171

34. Meseguer, J.: Software specification and verification in rewriting logic. In: Nato
Science Series Sub Series III Computer and Systems Sciences, vol. 191, pp. 133–
194 (2003)

35. Meseguer, J., Goguen, J.A., Smolka, G.: Order-sorted unification. J. Symb. Com-
put. 8(4), 383–413 (1989)

36. Meseguer, J., Skeirik, S.: Equational formulas and pattern operations in initial
order-sorted algebras. Formal Aspects Comput. 29(3), 423–452 (2017). https://
doi.org/10.1007/s00165-017-0415-5

37. Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT Press,
Cambridge (1997)

38. Moore, B., Roşu, G.: Program verification by coinduction. Technical report, Uni-
versity of Illinois, February 2015. http://hdl.handle.net/2142/73177

39. Norrish, M.: C formalised in HOL. Technical report, Computer Laboratory, Uni-
versity of Cambridge (1998)

40. Park, D., Ştefănescu, A., Roşu, G.: KJS: a complete formal semantics of JavaScript.
In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2015), pp. 346–356. ACM, June 2015

41. Paulson, L.C.: Isabelle: the next 700 theorem provers. In: Odifreddi, P. (ed.) Logic
and Computer Science, pp. 361–386. Academic Press (1990)

42. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pp.
55–74, July 2002

43. Roşu, G.: K: a rewriting-based framework for computations - preliminary version.
Technical report, Department of Computer Science UIUCDCS-R-2007-2926 and
College of Engineering UILU-ENG-2007-1827, University of Illinois at Urbana-
Champaign (2007). Previous versions published as technical reports UIUCDCS-R-
2006-2802 in December 2006, UIUCDCS-R-2005-2672 in 2005. K was first intro-
duced in the context of Maude in Fall 2003 as part of a programming language
design course (technical report UIUCDCS-R-2003-2897)

44. Roşu, G.: K Publications (2017). http://www.kframework.org/index.php/K_
Publications

45. Roşu, G., Ştefănescu, A., Ciobâcă, C., Moore, B.M.: One-path reachability logic.
In: Proceedings of the 28th Symposium on Logic in Computer Science (LICS 2013),
pp. 358–367. IEEE, June 2013

46. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Log.
Algebraic Program. 79(6), 397–434 (2010)

47. Roşu, G., Ştefănescu, A.: Matching logic: a new program verification approach. In:
Proceedings of the 2010 Workshop on Usable Verification (UV 2010). Microsoft
Research (2010)

48. Wang, H.: Logic of many-sorted theories. J. Symb. Log. 17(2), 105–116 (1952).
https://doi.org/10.2307/2266241

49. Şerbănuţă, T.F., Arusoaie, A., Lazar, D., Ellison, C., Lucanu, D., Roşu, G.: The K
primer (version 3.3). Electron. Notes Theor. Comput. Sci. 304(Supplement C), 57–
80 (2014). Proceedings of the Second International Workshop on the K Framework
and Its Applications (K 2011). http://www.sciencedirect.com/science/article/pii/
S1571066114000395

https://doi.org/10.1007/s00165-017-0415-5
https://doi.org/10.1007/s00165-017-0415-5
http://hdl.handle.net/2142/73177
http://www.kframework.org/index.php/K_Publications
http://www.kframework.org/index.php/K_Publications
https://doi.org/10.2307/2266241
http://www.sciencedirect.com/science/article/pii/S1571066114000395
http://www.sciencedirect.com/science/article/pii/S1571066114000395

Quantum Computing

A New Connective in Natural Deduction,
and Its Application to Quantum

Computing

Alejandro Dı́az-Caro1,2(B) and Gilles Dowek3

1 DCyT, Universidad Nacional de Quilmes, Bernal, Argentina
2 ICC, CONICET–Universidad de Buenos Aires, Buenos Aires, Argentina

adiazcaro@icc.fcen.uba.ar
3 Inria, ENS Paris-Saclay, Gif-sur-Yvette, France

gilles.dowek@ens-paris-saclay.fr

Abstract. We investigate an unsuspected connection between non-
harmonious logical connectives, such as Prior’s tonk, and quantum com-
puting. We argue that non-harmonious connectives model the informa-
tion erasure, the non-reversibility, and the non-determinism that occur,
among other places, in quantum measurement. We introduce a propo-
sitional logic with a non-harmonious connective sup and show that its
proof language forms the core of a quantum programming language.

1 Introduction

We investigate an unsuspected connection between non-harmonious logical con-
nectives, such as Prior’s tonk, and quantum computing. We argue that non-
harmonious connectives model the information erasure, the non-reversibility, and
the non-determinism that occur, among other places, in quantum measurement.

More concretely, we introduce a propositional logic with a non-harmonious
connective � (read: “sup”, for “superposition”) and show that its proof language
forms the core of a quantum programming language.

1.1 Insufficient, Harmonious, and Excessive Connectives

In natural deduction, to prove a proposition C, the elimination rule of a connec-
tive � requires a proof of A � B and a proof of C using, as extra hypotheses,
exactly the premises needed to prove the proposition A � B, with the introduc-
tion rules of the connective �. This principle of inversion, or of harmony, has
been introduced by Gentzen [10] and developed, among others, by Prawitz [16]
and Dummett [8] in natural deduction, by Miller and Pimentel [12] in sequent
calculus, and by Read [18–20] for the rules of equality.

Founded by STIC-AmSud 21STIC10, ECOS-Sud A17C03, and the IRP SINFIN.

c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 175–193, 2021.
https://doi.org/10.1007/978-3-030-85315-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-85315-0_11

176 A. Dı́az-Caro and G. Dowek

For example, to prove the proposition A ∧ B, the introduction rule, in the
usual additive style, of the conjunction requires proofs of A and B

Γ � A Γ � B
Γ � A ∧ B

∧-i

Hence, to prove a proposition C, the generalized elimination rule of the conjunc-
tion [14,15,21] requires a proof of A∧B and one of C, using, as extra hypotheses,
the propositions A and B

Γ � A ∧ B Γ,A,B � C

Γ � C
∧-e

Here we say that the extra hypotheses A and B are provided by the elimination
rule, as they appear in the left-hand side of the premise. In the same way, the
propositions A and B are required by the introduction rule, as they appear in
the right-hand side of the premises.

This principle of inversion can thus be formulated as the fact that the propo-
sitions required by the introduction rule are the same as those provided by the
elimination rule. It enables the definition of a reduction process where the proof

π1

Γ � A

π2

Γ � B
Γ � A ∧ B

∧-i π3

Γ,A,B � C

Γ � C
∧-e

reduces to (π1/A, π2/B)π3, that is the proof π3 where the use of the axiom rule
with the propositions A and B has been replaced with the proofs π1 and π2.

In the same way, to prove the proposition A ∨ B, the introduction rules of
the disjunction require a proof of A or a proof of B

Γ � A
Γ � A ∨ B

∨-i1 Γ � B
Γ � A ∨ B

∨-i2

hence, to prove a proposition C, the elimination rule of the disjunction requires a
proof of A∨B and two proofs of C, one using, as extra hypothesis, the proposition
A and the other the proposition B

Γ � A ∨ B Γ,A � C Γ,B � C

Γ � C
∨-e

and a proof reduction process can be defined in a similar way.
The property that the elimination rule provides exactly the propositions

required by the introduction rules can be split in two properties that it pro-
vides no more and no less (called “harmony” and “reversed harmony” in [11]).

A New Connective in Natural Deduction 177

We can also imagine connectives that do not verify this inversion principle,
either because the elimination rule provides propositions not required by the
introduction rule, or because the introduction rule requires propositions not
provided by the elimination rule, or both. When the propositions provided by
the elimination rule are not all required by the introduction rule, we call the
connective insufficient. When the propositions provided by the elimination rule
are required by the introduction rule, but some propositions required by the
introduction rule are not provided by the elimination rule we call it excessive.

An example of an insufficient connective is Prior’s tonk [17] whose introduc-
tion rule requires the proposition A, but whose elimination rule provides the
proposition B, which is not required by the introduction rule

Γ � A
Γ � A tonk B

tonk-i
Γ � A tonk B Γ,B � C

Γ � C
tonk-e

Because of this insufficiency, the following proof cannot be reduced
π1

Γ � A
Γ � A tonk B

tonk-i
π2

Γ,B � C

Γ � C
tonk-e

An example of an excessive connective is the connective • whose introduction
rule requires the propositions A and B, but whose elimination rule provides the
proposition A, but not B, although, both are required by the introduction rule

Γ � A Γ � B
Γ � A • B

•-i Γ � A • B Γ,A � C

Γ � C
•-e

This connective has the same introduction rule as conjunction, but a different
elimination rule. Using the more common elimination rules of conjunction, it
could be defined as having only one among its two elimination rules. For such
connectives, a proof reduction process can be defined, for example the proof

π1

Γ � A

π2

Γ � B
Γ � A • B

•-i π3

Γ,A � C

Γ � C
•-e

can be reduced to (π1/A)π3.
Another example is the connective � that has the introduction rule of the

conjunction and the elimination rule of the disjunction

Γ � A Γ � B
Γ � A � B

�-i
Γ � A � B Γ,A � C Γ,B � C

Γ � C
�-e

178 A. Dı́az-Caro and G. Dowek

In this case also, proofs can be reduced. Moreover, several proof reduction pro-
cesses can be defined, exploiting, in different ways, the excess of the connective.
For example, the proof

π1

Γ � A

π2

Γ � B
Γ � A � B

�-i
π3

Γ,A � C

π4

Γ,B � C

Γ � C
�-e

can be reduced to (π1/A)π3, it can be reduced to (π2/B)π4, it also can be
reduced, non-deterministically, either to (π1/A)π3 or to (π2/B)π4. Finally, to
keep both proofs, we can add a rule “parallel”

Γ � A Γ � A
Γ � A

par

and reduce it to
(π1/A)π3

Γ � C

(π2/B)π4

Γ � C
Γ � C

par

A final example is the quantifier

Æ

, which has the introduction rule of the
universal quantifier and the elimination rule of the existential quantifier

Γ � A
Γ � Æ

x A

Æ

-i x not free in Γ
Γ � Æ

x A Γ,A � C

Γ � C

Æ

-e x not free in Γ, C

The quantifier ∇ [13], defined in sequent calculus rather than natural deduction,
may also be considered as an excessive quantifier, as it has the right rule of the
universal quantifier and the left rule of the existential one. But it involves a
clever management of variable scoping, which we do not address here.

1.2 Information Loss

With harmonious connectives, when a proof is built with an introduction rule,
the information contained in the proofs of the premises of this rule is preserved.
For example, the information contained in the proof π1 is present in the proof
π

π1

Γ � A

π2

Γ � B
Γ � A ∧ B

∧-i

in the sense that π1 is a subproof of π. But it is moreover accessible. We say
that a subproof π′ at tree-position p in π is accessible, if there exists a context

A New Connective in Natural Deduction 179

κ, such that for all proofs π′′, putting the proof π[π′′]p where π′′ is grafted at
tree-position p in π, in the context κ yields a proof κ[π[π′′]p] that reduces to π′′.
Indeed, putting the proof

π1

Γ � A

π2

Γ � B
Γ � A ∧ B

∧-i in the context
[]

Γ � A ∧ B Γ,A,B � A
ax

Γ � A
∧-e

yields the proof
π1

Γ � A

π2

Γ � B
Γ � A ∧ B

∧-i
Γ,A,B � A

ax

Γ � A
∧-e

that reduces to π1. And the same holds for the proof π2.
The situation is different with an excessive connective: the excess of infor-

mation, required by the introduction rule, and not returned by the elimination
rule in the form of an extra hypothesis in the required proof of C is lost. For
example, the information contained in the proof π2 is present in the proof π

π1

Γ � A

π2

Γ � B
Γ � A • B

•-i

but it is inaccessible as there is no context such that, for all π2, putting the
proof

π1

Γ � A

π2

Γ � B
Γ � A • B

•-i

in that context yields a proof that reduces to π2.
The information contained in the proofs π1 and π2 is present in the proof

π1

Γ � A

π2

Γ � B
Γ � A � B

�-i

but its accessibility depends on the way we decide to reduce the proof

π1

Γ � A

π2

Γ � B
Γ � A � B

�-i
π3

Γ,A � C

π4

Γ,B � C

Γ � C
�-e

180 A. Dı́az-Caro and G. Dowek

If we reduce it systematically to (π1/A)π3, then the information contained in
π1 is accessible, but that contained in π2 is not. If we reduce it systemati-
cally to (π2/B)π4, then the information contained in π2 is accessible, but not
that contained in π1. If we reduce it not deterministically to (π1/A)π3 or to
(π2/B)π4, then the information contained in both π1 and π2 is accessible, but
non-deterministically. If we reduce it to

(π1/A)π3

Γ � C

(π2/B)π4

Γ � C
Γ � C

par

then the information contained in both π1 and π2 is inaccessible.
Indeed, the information contained in the proof π1 is present in the proof

π1

Γ � A

π2

Γ � A
Γ � A

par

but it is inaccessible as there is no context such that for all π1 putting the proof

π1

Γ � A

π2

Γ � A
Γ � A

par

in that context yields a proof that reduces to π1. The same holds for π2.
Note that, when the proof

π1

Γ � A

π2

Γ � B
Γ � A � B

�-i
π3

Γ,A � C

π4

Γ,B � C

Γ � C
�-e

is reduced, non-deterministically, to (π1/A)π3 or to (π1/A)π3, the information
contained in π1 or that contained in π2 is erased. It is not even present in the
reduct. When it is reduced to

(π1/A)π3

Γ � C

(π2/B)π4

Γ � C
Γ � C

par

then the information is inaccessible, but it remains present in the proof.
So, while harmonious connectives model information preservation, reversibil-

ity, and determinism, these excessive connectives model information era-
sure, non-reversibility, and non-determinism. Such information erasure, non-
reversibility, and non-determinism, occur, for example, in quantum physics,

A New Connective in Natural Deduction 181

where the measurement of the superposition of two states does not yield both
states back.

The introduction rules alone do not define the meaning of such non-
harmonious connectives, and neither do the elimination rules alone. The dis-
crepancy between the meaning conferred by the introduction rules and the elim-
ination rules, and the information loss it implies, are part of the meaning of such
connectives.

1.3 Quantum Physics and Quantum Languages

Several programming languages have been proposed to express quantum algo-
rithms, for example [1–3,6,9,22,23]. The design of such quantum programming
languages raises two main questions. The first is to take into account the lin-
earity of unitary operators and for instance avoid cloning, and the second is to
express the information erasure, non-reversibility, and non-determinism of mea-
surement. The � connective gives a new solution to this second problem. Qubits
can be seen as proofs of the proposition � � �, in contrast with bits which are
proofs of � ∨ �, and measurement can be easily expressed with the elimination
rule of � (Sect. 4.4).

In previous work, we have attempted to formalize superposition in the λ-
calculus. The calculus Lambda-S [9] contains a primitive constructor + and a
primitive measurement symbol π, together with a rule reducing π(t + u) non-
deterministically to t or to u. The superposition t + u can be considered as the
pair (t, u). Hence, it should have the type A ∧ A. In other words, it is a proof-
term of the proposition A ∧ A. In System I [4], various type-isomorphisms have
been introduced, in particular the commutativity isomorphism A ∧ B ≡ B ∧ A,
hence t + u ≡ u + t. In such a system, where A ∧ B and B ∧ A are identical, it
is not possible to define the two elimination rules as the two usual projections
rules π1 and π2 of the λ-calculus. They were replaced with a single projection
parametrized with a proposition A: πA, such that if t : A and u : B then πA(t+u)
reduces to t and πB(t + u) to u. When A = B, hence t and u both have type
A, the proof-term πA(t + u) reduces, non-deterministically, to t or to u, like a
measurement operator.

These works on Lambda-S and System I brought to light that the pair super-
position/measurement, in a quantum programming language, behaves like a pair
introduction/elimination, for some connective, in a proof language, as the suc-
cession of a superposition and a measurement yields a term that can be reduced.
In System I, this connective was assumed to be a commutative conjunction, with
a modified elimination rule, leading to a non-deterministic reduction.

But, as the measurement of the superposition of two states does not yield
both states back, this connective should probably be excessive. Moreover, as, to
prepare the superposition a|0〉+ b|1〉, we need both |0〉 and |1〉 and the measure-
ment, in the basis |0〉, |1〉, yields either |0〉 or |1〉, this connective should have the
introduction rule of the conjunction, and the elimination rule of the disjunction.
Hence, it should be the connective �.

182 A. Dı́az-Caro and G. Dowek

Fig. 1. The deduction rules of propositional logic with �

In this paper, we present a propositional logic with the connective �, a lan-
guage of proof-terms, the �-calculus (read: “the sup-calculus”), for this logic,
and we prove a proof normalization theorem (Sect. 2). We then extend this cal-
culus, introducing scalars to quantify the propensity of a proof to reduce to
another (Sect. 3) and show (Sect. 4) that its proof language forms the core of a
quantum programming language. A vector (a

b) will be expressed as the proof
a. ∗ +b.∗ of � � �, where ∗ is the symbol corresponding to the introduction rule
of �, + that of �, and a and b are scalars.

So, although propositional logic with � is not a logic to reason about quantum
programs, some of its propositions can be seen as types of quantum programs.

2 Propositional Logic with �
We consider a constructive propositional logic with the usual connectives �, ⊥,
⇒, ∧, and ∨, (as usual, negation is defined as ¬A = (A ⇒ ⊥)), and the extra
connective �. The syntax of this logic is

A = � | ⊥ | A ⇒ A | A ∧ A | A ∨ A | A � A

and its deduction rules are given in Fig. 1.

2.1 Proof Normalization

Reducible expressions (redexes) in this logic are the usual ones for the connectives
⇒, ∧, and ∨

π1

Γ,A � B

Γ � A ⇒ B
⇒-i

π2

Γ � A
Γ � B

⇒-e

that reduces to (π2/A)π1

A New Connective in Natural Deduction 183

π1

Γ � A

π2

Γ � B
Γ � A ∧ B

∧-i π3

Γ,A,B � C

Γ � C
∧-e

that reduces to (π1/A, π2/B)π3

π1

Γ � A
Γ � A ∨ B

∨-i1 π2

Γ,A � C

π3

Γ,B � C

Γ � C
∨-e

that reduces to (π1/A)π2

and
π1

Γ � B
Γ � A ∨ B

∨-i2 π2

Γ,A � C

π3

Γ,B � C

Γ � C
∨-e

that reduces to (π1/B)π3

and the redex for the connective �
π1

Γ � A

π2

Γ � B
Γ � A � B

�-i
π3

Γ,A � C

π4

Γ,B � C

Γ � C
�-e

that reduces, in some cases, non-deterministically, to (π1/A)π3 or to (π2/B)π4,
erasing some information, and in others, preserving information, to

(π1/A)π3

Γ � C

(π2/B)π4

Γ � C
Γ � C

par

Adding rules, such as the parallel rule, permits to build proofs that cannot be
reduced, because the introduction rule of some connectives and its elimination
rule are separated by the parallel rule, for example

π1

Γ � A

π2

Γ � B
Γ � A ∧ B

∧-i
π3

Γ � A

π4

Γ � B
Γ � A ∧ B

∧-i
Γ � A ∧ B

par
π5

Γ,A,B � C

Γ � C
∧-e

Reducing such a proof requires rules to commute the parallel rule either with
the elimination rule below or with the introduction rules above.

184 A. Dı́az-Caro and G. Dowek

As the commutation with the introduction rules above is not always possible,
for example in the proof

π1

Γ � A
Γ � A ∨ B

∨-i1
π2

Γ � B
Γ � A ∨ B

∨-i2
Γ � A ∨ B

par

the commutation with the elimination rule below is often preferred. In this paper,
we favor the commutation of the parallel rule with the introduction rules, rather
than with the elimination rules, whenever it is possible, that is for all connectives
except disjunction. For example the proof

π1

Γ � A

π2

Γ � B
Γ � A ∧ B

∧-i
π3

Γ � A

π4

Γ � B
Γ � A ∧ B

∧-i
Γ � A ∧ B

par

reduces to
π1

Γ � A

π3

Γ � A
Γ � A

par

π2

Γ � B

π4

Γ � B
Γ � B

par

Γ � A ∧ B
∧-i

Such a commutation yields a stronger introduction property for the considered
connective (Theorem 2.2).

2.2 Proof-Terms

We introduce a term language, the �-calculus, for the proofs of this logic. Its
syntax is

t = x | t ‖ u | ∗ | δ⊥(t)
| λx t | t u | (t, u) | δ∧(t, [x, y]u)
| inl(t) | inr(t) | δ∨(t, [x]u, [y]v)

| t + u | δ�(t, [x]u, [y]v) | δ
‖
�(t, [x]u, [y]v)

The variables x express the proofs built with the axiom rule, the terms t ‖ u
those built with the parallel rule, the term ∗ that built with the �-i rule, the
terms δ⊥(t) those built with the ⊥-e rule, the terms λx t those built with the
⇒-i rule, the terms t u those built with the ⇒-e rule, the terms (t, u) those built
with the ∧-i rule, the terms δ∧(t, [x, y]u) those built with the ∧-e rule, the terms
inl(t) those built with the ∨-i1 rule, the terms inr(t) those built with the ∨-i2
rule, the terms δ∨(t, [x]u, [y]v) those built with the ∨-e rule, the terms t+u those

A New Connective in Natural Deduction 185

Fig. 2. The typing rules of the �-calculus

built with the �-i rule, and the terms δ�(t, [x]u, [y]v) and δ
‖
�(t, [x]u, [y]v) those

built with the �-e rule.
The proofs of the form ∗, λx t, (t, u), inl(t), inr(t), and t + u are called

introductions, and those of the form δ⊥(t), t u, δ∧(t, [x, y]u), δ∨(t, [x]u, [y]v),
δ�(t, [x]u, [y]v), or δ

‖
�(t, [x]u, [y]v) eliminations. Variables and terms of the form

t ‖ u are neither introductions nor eliminations. Free and bound variables are
defined as usual. A proof-term is closed if it contains no free variables.

The typing rules of the �-calculus are given in Fig. 2 and its reduction rules
in Fig. 3. The reduction relation is defined as usual as the smallest contextual
relation that contains σl −→ σr, for all rules l −→ r and substitutions σ.

The following two theorems are proved in the long version arXiv’ed at [5].

Theorem 2.1 (Termination). If Γ � t : A, then t strongly terminates.

Theorem 2.2 (Introduction). Let t be a closed irreducible proof of A.

– If A has the form �, then t has the form ∗.
– The proposition A is not ⊥.
– If A has the form B ⇒ C, then t has the form λx : B u.
– If A has the form B ∧ C, then t has the form (u, v).
– If A has the form B ∨ C, then t has the form inl(u), inr(u), or u ‖ v.
– If A has the form B � C, then t has the form u + v.

186 A. Dı́az-Caro and G. Dowek

Fig. 3. The reduction rules of the �-calculus

3 Quantifying Non-determinism

When we have a non-deterministic reduction system, we often want to quantify
the propensity of a proof to reduce to another. To do so, we enrich the term
language with scalars, so that sums become linear combinations. Our set S of
scalars can be any set containing an element 1 and equipped with addition and
multiplication, such as R or C.

We define the �S-calculus (read: “the sup-S-calculus”), by extending the
grammar of proofs, adding a category for weighted proofs

φ = a.t

where a is a scalar and modifying the category of proofs as follows

t = x | φ ‖ χ | ∗ | δ⊥(t)
| λx t | t u | (t, u) | δ∧(t, [x, y]u)
| inl(t) | inl(r) | δ∨(t, [x]u, [y]v)

| φ + χ | δ�(t, [x]u, [y]v) | δ
‖
�(t, [x]u, [y]v)

where the arguments of ‖ and + are weighted proofs. Note that even in the case
where there is a scalar 0, we need a proof t of A to build the weighted proof 0.t.

For example, the only irreducible proof of the proposition � � � was ∗ + ∗.
Now, the irreducible proofs of this proposition will be all the proofs of the form
a. ∗ +b.∗, for instance 1√

2
. ∗ + 1√

2
.∗, 1. ∗ +1.∗, 1. ∗ +0.∗, etc. For this, the typing

rules are those of Fig. 2 extended with an extra rule for weighted proofs

Γ � t : A
Γ � a.t : A

A New Connective in Natural Deduction 187

Fig. 4. The reduction rules of the �S-calculus

The reduction rules are those of Fig. 3 enriched with the scalars. They are
given in Fig. 4. All these rules reduce proofs, except the last one that reduces
weighted proofs. Note that the proof a.t ‖ b.t is irreducible: only the weighted
proof 1.(a.t ‖ b.t) reduces to (a + b).t.

The termination proof of the �-calculus extends directly to the �S-calculus:
it suffices to define a translation ◦ from the �S-calculus to the �-calculus, erasing
the scalars, and check that if t −→ u in the �S-calculus, then t◦ −→ u◦ in the
�-calculus.

We can now use the scalars a and b to assign probabilities to the reductions

δ�(a.t + b.u, [x]v, [y]w) −→ (t/x)v δ�(a.t + b.u, [x]v, [y]w) −→ (u/y)w

For instance, if the scalars are complex numbers, we can assign the probabilities
|a|2/(|a|2 + |b|2) and |b|2/(|a|2 + |b|2) to these two reductions. But other choices
are possible, as we shall see in Sect. 4.

4 Application to Quantum Computing

We now show that the �C-calculus, with a reduction strategy allowing to reduce
the proofs of the form δ�(t, [x]u, [y]v) only when t is closed and irreducible,
contains the core of a small quantum programming language. Requiring t to
be closed and irreducible to reduce the proof δ�(t, [x]u, [y]v) permits to assign
probabilities to the reductions of this proof.

In the examples below, we focus on algorithms on one and two qubits. The
generalization to algorithms on n qubits is straightforward. Note that the binary
connective � is always used with two identical propositions: A � A.

188 A. Dı́az-Caro and G. Dowek

4.1 Bits

Definition 4.1 (Bit). Let B = � ∨ �. The proofs 0 = inl(∗) and 1 = inr(∗)
are closed irreducible proofs of B.

Remark 4.1. The proofs inl(∗) and inr(∗) are not the only closed irreducible
proofs of B, for example 1.inl(∗) ‖ 1.inr(∗) also is.

Definition 4.2 (Test). We let If (t, u, v) = δ∨(t, [x]u, [y]v) where x and y are
variables not occurring in u and v. We have If (0, u, v) −→ u and If (1, u, v) −→
v.

Boolean operators on B can be easily defined, for example, the exclusive or
is the proof ⊕ = λxλy If (x, y, If (y,1,0)) of B ⇒ B ⇒ B.

Definition 4.3 (2-bit). Let B2 = B ∧ B. The closed irreducible proofs of B2,
(0,0), (0,1), (1,0), and (1,1) are written 00, 01, 10, and 11.

4.2 Qubits

Definition 4.4 (Qubit). Let Q = � � �. A qubit a|0〉 + b|1〉 is expressed as
the proof a. ∗ +b.∗ of Q.

Remark 4.2. If the qubits |ψ〉 = a|0〉+ b|1〉 and |ψ′〉 = a′|0〉+ b′|1〉 are expressed
as proofs of Q, then the qubit c|ψ〉 + d|ψ′〉, that is (ca + da′)|0〉 + (cb + db′)|1〉,
cannot be expressed in the �C-calculus with a linear combination a.|ψ〉 + b.|ψ′〉,
as the result would be a proof of Q � Q, and not of Q. In contrast, the linear
combination c.|ψ〉 ‖ d.|ψ′〉 is a proof of Q and it reduces, in several steps, to
(ca + da′). ∗ +(cb + db′).∗.

Definition 4.5 (2-qubit). Let Q⊗2 = (� � �) � (� � �). A 2-qubit a|00〉 +
b|01〉+ c|10〉+ d|11〉 is expressed as the proof 1.(a. ∗+b.∗)+1.(c. ∗+d.∗) of Q⊗2.

For instance the 2-qbit |01〉, that is |0〉 ⊗ |1〉, is expressed as the proof 1.(0. ∗
+1.∗) + 1.(0. ∗ +0.∗) and the entangled 2-qbit 1√

2
|00〉 + 1√

2
|11〉 is expressed as

the proof 1.(1√
2
. ∗ +0.∗) + 1.(0. ∗ + 1√

2
.∗).

4.3 Probabilities

If t is a closed irreducible proof of Q of the form a. ∗+b.∗, where a and b are not
both 0, then we assign the probability

|a|2
|a|2+|b|2 to the reduction δ�(a. ∗ +b.∗, [x]v, [y]w) −→ (∗/x)v

and |b|2
|a|2+|b|2 to the reduction δ�(a. ∗ +b.∗, [x]v, [y]w) −→ (∗/y)w.

If a = b = 0, we associate any probability, for example 1
2 , to both reductions.

If t is a closed irreducible proof of Q⊗2 of the form 1.(a.∗+b.∗)+1.(c.∗+d.∗)
where a, b, c, and d are not all 0, then we assign the probability

A New Connective in Natural Deduction 189

Fig. 5. Measurement operators

|a|2+|b|2
|a|2+|b|2+|c|2+|d|2 to the reduction

δ�(1.(a. ∗ +b.∗) + 1.(c. ∗ +d.∗), [x]v, [y]w) −→ ((a. ∗ +b.∗)/x)v

and |c|2+|d|2
|a|2+|b|2+|c|2+|d|2 to the reduction

δ�(1.(a. ∗ +b.∗) + 1.(c. ∗ +d.∗), [x]v, [y]w) −→ ((c. ∗ +d.∗)/y)w

If a, b, c, and d are all 0, we associate any probability to these reductions.

4.4 Measure

The information erasing, non-reversible, and non-deterministic proof constructor
δ� permits to define several measurement operators in Fig. 5.

If t is an irreducible proof of Q of the form a. ∗ +b.∗, where a and b are not
both 0, then the proof π(a.∗+b.∗) of the proposition B reduces, with probabilities

|a|2
|a|2+|b|2 and |b|2

|a|2+|b|2 , to 0 and to 1. It is the result of the measurement. The
proof π′(a. ∗ +b.∗) of the proposition Q reduces, with the same probabilities as
above, to 1. ∗ +0.∗ and to 0. ∗ +1.∗. It is the state after the measure. The proof
π′′(a. ∗ +b.∗) of the proposition B ∧ Q reduces, with the same probabilities as
above, to (0, 1. ∗ +0.∗) and to (1, 0. ∗ +1.∗). It is the pair formed by the result
of the measurement and the state after the measure.

If t is an irreducible proof of Q⊗2 of the form 1.(a. ∗ +b.∗) + 1.(c. ∗ +d.∗)
where a, b, c, and d are not all 0, then the proof π2(t) of the proposition B
reduces, with probabilities |a|2+|b|2

|a|2+|b|2+|c|2+|d|2 and |c|2+|d|2
|a|2+|b|2+|c|2+|d|2 , to 0 and to

1. It is the result of the partial measurement of the first qubit. The proof π′
2(t)

of the proposition Q⊗2 reduces, with the same probabilities as above, to 1.(a. ∗
+b.∗) + 1.(0. ∗ +0.∗) and 1.(0. ∗ +0.∗) + 1.(c. ∗ +d.∗)). It is the state after the
partial measure of the first qubit. The proof π′′

2 (t) of the proposition B ∧ Q⊗2

reduces, with the same probabilities as above, to (0, 1.(a. ∗+b.∗)+ 1.(0. ∗+0.∗))
and to (1, 1.(0. ∗+0.∗)+1.(c. ∗+d.∗))). It is the pair formed by the result of the
measurement and the state after the partial measure of the first qubit.

Once we introduce the matrices, it will be possible to measure in a non-
cannonical basis by changing basis, measuring, and changing basis again.

190 A. Dı́az-Caro and G. Dowek

4.5 Matrices

The information erasing, non-reversible, and non-deterministic measurement
operators are expressed with δ�. The information preserving, reversible, and
deterministic unitary operators are expressed with δ

‖
�.

Definition 4.6 (Matrix in Q). A matrix is a proof of B ⇒ Q, that is a
function mapping bits to qubits. The matrix M = (m00 m01

m10 m11) mapping 0 to M0 =
m00. ∗ +m10.∗ and 1 to M1 = m01. ∗ +m11.∗ is expressed as

M = λx If (x,M0,M1)

Note that M0 −→ If (0,M0,M1) −→ M0. Similarly, M1 −→∗ M1.

In Lineal [2], a matrix λx t, mapping canonical base vectors to arbitrary
vectors, extends to an arbitrary vector a.|0〉+b.|1〉 as follows. When reducing the
term (λx t) (a.|0〉 + b.|1〉), the term λx t distributes over the linear combination
a.|0〉 + b.|1〉, yielding the term a.(λx t) |0〉 + b.(λx t) |1〉 where, as the terms |0〉
and |1〉 are base vectors, the β-redexes (λx t) |0〉 and (λx t) |1〉 can be reduced.
So the whole term reduces to a.(|0〉/x)t + b.(|1〉/x)t.

In the �C-calculus, β-reduction is not restricted to base vectors, but the
application of a matrix to a vector can be defined.

Definition 4.7 (Application of a matrix to a vector in Q). We let

App = λMλt δ
‖
�(t, [x]M 0, [y]M 1)

If M : B ⇒ Q, then the proof App M (a.∗+b.∗) reduces to a.(M 0) ‖ b.(M 1).
Therefore if M is the expression of the matrix (m00 m01

m10 m11), as in Definition 4.6,
we have App M (a. ∗ +b.∗) −→∗ (am00 + bm01). ∗ +(am10 + bm11).∗.

Definition 4.8 (Matrix in Q⊗2). A matrix is a proof of B2 ⇒ Q⊗2, that is
a function mapping 2-bits to 2-qubits. The matrix M = (mij)ij is expressed as

M = λx δ∧
(
x, [y, z]If (y, If (z,M0,M1), If (z,M2,M3))

)

where Mi = 1.(m0i. ∗ +m1i.∗) + 1.(m2i. ∗ +m3i.∗) is the i-th column of M .
Note that M00 −→∗ M0, M01 −→∗ M1, M10 −→∗ M2, and M11 −→∗ M3.

Definition 4.9 Taking mii = 1 and mij = 0 for i �= j yields the proof Qubits
of B2 ⇒ Q⊗2 mapping each 2-bit to the corresponding 2-qubit. For example

Qubits 10 →∗ 1.(0. ∗ +0.∗) + 1.(1. ∗ +0.∗)

Definition 4.10 (Application of a matrix to a vector in Q⊗2). We let

App2 = λMλt δ
‖
�(t, [y]δ‖

�(y, []M 00, []M 01), [z]δ‖
�(z, []M 10, []M 11))

Hence, if |ψ〉 = 1.(a. ∗ +b.∗) + 1.(c. ∗ +d.∗) and M : B2 ⇒ Q⊗2, we have

App2 M |ψ〉
−→∗ 1.

(
(am00 + bm01 + cm02 + dm03). ∗ +(am10 + bm11 + cm12 + dm13).∗

)

+ 1.
(
(am20 + bm21 + cm22 + dm23). ∗ +(am30 + bm31 + cm32 + dm33).∗

)

A New Connective in Natural Deduction 191

4.6 An Example: Deutsch’s Algorithm

Deutsch’s algorithm allows to decide whether a 1-bit to 1-bit function f is con-
stant or not, applying an oracle Uf , implementing f , only once. It is an algo-
rithm operating on 2-qubits. It proceeds in four steps. (1) Prepare the initial
state |+−〉 = 1

2 |00〉− 1
2 |01〉+ 1

2 |10〉− 1
2 |11〉. (2) Apply to it the unitary operator

Uf , defined by Uf |x, y〉 = |x, y ⊕ f(x)〉 for x, y ∈ {0, 1}, where ⊕ is the exclusive

or. (3) Apply to it the unitary operator H ⊗ I = 1√
2

(
1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

)
. (4) Measure

the first qubit. The output is |0〉, if f is constant and |1〉 if it is not.
In the �C-calculus, the initial state is |+−〉 = 1.(12 .∗+−1

2 .∗)+1.(12 .∗+−1
2).∗

the operator mapping f to Uf is expressed as in Definition 4.8

U = λf λx δ∧
(
x, [y, z]If (y, If (z,M0,M1), If (z,M2,M3))

)

with M0 = Qubits (0,⊕ 0 (f 0)) M2 = Qubits (1,⊕ 0 (f 1))
M1 = Qubits (0,⊕ 1 (f 0)) M3 = Qubits (1,⊕ 1 (f 1))

where Qubits is defined in Definition 4.9 and the exclusive or ⊕ in Sect. 4.1. The
operator H ⊗I is expressed as in Definition 4.8 with m00 = m20 = m11 = m31 =
m02 = m13 = 1√

2
, m22 = m33 = − 1√

2
, and all the other mij are 0.

Finally, Deutsch’s algorithm is the proof of (B ⇒ B) ⇒ B
Deutsch = λf π2(App2 (H ⊗ I) (App2 (U f) |+−〉))

Given a constant function proof of B ⇒ B, we have Deutsch f →∗ 0, while if f
if not constant, Deutsch f →∗ 1.

5 Conclusion

We have defined the notions of insufficient and excessive connectives in natural
deduction, extended propositional logic with an excessive connective �, and
investigated the properties of the proof language of the obtained logic. We leave
open the question of the interpretation of this logic in a model, in particular a
categorical one, besides the obvious Lindenbaum algebra.

These notions of insufficient and excessive connectives are not specific to
natural deduction and similar notions could be defined, for instance, in sequent
calculus. In sequent calculus however, harmony can be defined in a stronger
sense, that includes, not only the possibility to normalize proofs, but also to
reduce the use of the axiom rule on non-atomic propositions to smaller ones
[12]: an analog of the η-expansion, but generalized to arbitrary connectives.

The �C-calculus, the proof language of this logic, can express all quan-
tum circuits, as it can express matrices and measurement operators. How-
ever, it is not restricted to only quantum algorithms, since the � connective
addresses the question of the information erasure, non-reversibility, and non-
determinism of measurement, but not that of linearity. We leave for future

192 A. Dı́az-Caro and G. Dowek

work the restriction of the calculus to linear operators, forbidding, for exam-
ple, the non-linear proof of the proposition Q ⇒ Q⊗2, that expresses cloning:
λx δ

‖
�(x, []δ‖

�(x, []|00〉, []|01〉), []δ‖
�(x, []|10〉, []|11〉)), where |00〉 is a notation

for Qubits 00, etc.
It is also possible to restrict to the fragment of the language where proofs of

Q ⇒ Q have the form λx (App M x), for some proof M of B ⇒ Q. Then, we
can also enforce unitarity, following the methods of [1,6,7].

Acknowledgements. The authors want to thank Jean-Baptiste Joinet, Dale Miller,
Alberto Naibo, and Alex Tsokurov for useful discussions.

References

1. Altenkirch, T., Grattage, J.: A functional quantum programming language. In:
Proceedings of LICS 2005, pp. 249–258. IEEE (2005)

2. Arrighi, P., Dowek, G.: Lineal: a linear-algebraic lambda-calculus. Log. Methods
Comput. Sci. 13(1) (2017)

3. Coecke, B., Kissinger, A.: Picturing Quantum Processes: A First Course in Quan-
tum Theory and Diagrammatic Reasoning. Cambridge University Press, Cam-
bridge (2017)

4. Dı́az-Caro, A., Dowek, G.: Proof normalisation in a logic identifying isomorphic
propositions. In: Geuvers, H. (ed.) 4th International Conference on Formal Struc-
tures for Computation and Deduction (FSCD 2019). Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 131, pp. 14:1–14:23. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2019)

5. Dı́az-Caro, A., Dowek, G.: A new connective in natural deduction, and its appli-
cation to quantum computing. arXiv:2012.08994 (2020)

6. Dı́az-Caro, A., Guillermo, M., Miquel, A., Valiron, B.: Realizability in the unitary
sphere. In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2019), pp. 1–13 (2019)

7. Dı́az-Caro, A., Malherbe, O.: Quantum control in the unitary sphere: lambda-S1

and its categorical model. arXiv:2012.05887 (2020)
8. Dummett, M.: The Logical Basis of Metaphysics. Duckworth (1991)
9. Dı́az-Caro, A., Dowek, G., Rinaldi, J.P.: Two linearities for quantum computing

in the lambda calculus. Biosystems 186, 104012 (2019)
10. Gentzen, G.: Untersuchungen über das logische Schliessen. In: Szabo, M. (ed.) The

Collected Papers of Gerhard Gentzen, North-Holland, pp. 68–131 (1969)
11. Jacinto, B., Read, S.: General-elimination stability. Stud. Log. 105, 361–405 (2017)
12. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof

systems. Theoret. Comput. Sci. 474, 98–116 (2013)
13. Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. Comput.

Log. 6, 749–783 (2005)
14. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press,

Cambridge (2008)
15. Parigot, M.: Free deduction: an analysis of “computations” in classical logic. In:

Voronkov, A. (ed.) RCLP -1990. LNCS, vol. 592, pp. 361–380. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55460-2 27

16. Prawitz, D.: Natural Deduction. A Proof-Theoretical Study. Almqvist & Wiksell
(1965)

http://arxiv.org/abs/2012.08994
http://arxiv.org/abs/2012.05887
https://doi.org/10.1007/3-540-55460-2_27

A New Connective in Natural Deduction 193

17. Prior, A.N.: The runabout inference-ticket. Analysis 21(2), 38–39 (1960)
18. Read, S.: Identity and harmony. Analysis 64, 113–119 (2004)
19. Read, S.: General-elimination harmony and the meaning of the logical constants.

J. Philos. Log. 39, 557–576 (2010)
20. Read, S.: Identity and harmony revisited (2014). https://www.st-andrews.ac.uk/

∼slr/identity revisited.pdf
21. Schroeder-Heister, P.: A natural extension of natural deduction. J. Symb. Log.

49(4), 1284–1300 (1984)
22. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical

control. Math. Struct. Comput. Sci. 16(3), 527–552 (2006)
23. Zorzi, M.: On quantum lambda calculi: a foundational perspective. Math. Struct.

Comput. Sci. 26(7), 1107–1195 (2016)

https://www.st-andrews.ac.uk/~slr/identity_revisited.pdf
https://www.st-andrews.ac.uk/~slr/identity_revisited.pdf

Security and Privacy

An Incentive Mechanism for Trading
Personal Data in Data Markets

Sayan Biswas(B), Kangsoo Jung, and Catuscia Palamidessi

Inria and École Polytechnique, Palaiseau, France
{sayan.biswas,gangsoo.zeong}@inria.fr, catuscia@lix.polytechnique.fr

Abstract. With the proliferation of the digital data economy, digital
data is considered as the crude oil in the twenty-first century, and its
value is increasing. Keeping pace with this trend, the model of data
market trading between data providers and data consumers, is starting
to emerge as a process to obtain high-quality personal information in
exchange for some compensation. However, the risk of privacy violations
caused by personal data analysis hinders data providers’ participation in
the data market. Differential privacy, a de-facto standard for privacy pro-
tection, can solve this problem, but, on the other hand, it deteriorates the
data utility. In this paper, we introduce a pricing mechanism that takes
into account the trade-off between privacy and accuracy. We propose
a method to induce the data provider to accurately report her privacy
price and, we optimize it in order to maximize the data consumer’s profit
within budget constraints. We show formally that the proposed mecha-
nism achieves these properties, and also, validate them experimentally.

Keywords: Data market · Differential privacy · Incentive
mechanism · Game theory

1 Introduction

Nowadays, digital data is becoming an essential resource for the information
society, and the value of personal data is increasing. In the past, data broker
companies such as Acxiom collected personal data and sold them to companies
that needed them. However, as the value of personal data is becoming clear to
the data providers, and concern about their privacy is increasing among them,
people are less and less willing to let their data to be collected for free. In this
scenario, the model of data market is starting to emerge, as a process to obtain
high-quality personal information in exchange of a compensation. Liveen [1] and
Datacoup [2] are examples of prototypes of data market services, where the
data providers can obtain additional revenue from selling their data, and the
consumers can collect the desired personal data.

The problem of privacy violation by personal data analysis is one of the major
issues in such data markets. As the population becomes more and more aware of
the negative consequences of privacy breaches, such as the Cambridge Analytica
c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 197–213, 2021.
https://doi.org/10.1007/978-3-030-85315-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-85315-0_12

198 S. Biswas et al.

scandal, people are reluctant to release their data, unless they are properly sani-
tised. In order to solve this problem, techniques like noise insertion [3], synthetic
data [4], secure multi-party computation (SMC) [5], and homomorphic encryp-
tion [6] are being actively studied. Differential privacy [3], a de-facto standard
for privacy protection, is one of the techniques to prevent privacy violations in
the data market.

Differential privacy provides a privacy protection framework based on solid
mathematical foundations, and enables quantified privacy protection according
to the amount of noise insertion. However, like all privacy-protection methods, it
deteriorates the data utility. If the data provider inserts too much noise because
of privacy concern, the data consumer cannot proceed with the data analysis with
the required performance. This trade-off between privacy and utility is a long-
standing problem in differential privacy. The privacy protection and data utility
depend on the amount of noise insertion while applying differential privacy, and
the amount of noise insertion is determined by the noise parameter ε. Thus,
determining the appropriate value of the parameter ε is a fundamental problem
in differential privacy. It is difficult to establish the appropriate ε value because it
depends on many factors that are difficult to quantify, like the attitude towards
privacy of the data provider, which may be different from person to person.

We propose an incentive mechanism to encourage the data providers to join in
the data market and motivate them to share more accurate data. The amount
of noise insertion depends on the data providers’ privacy preference and the
incentives provided to them by data consumers, and the data consumers decide
on incentives to pay to the data provider by considering the profit to be made
from the collected data. By sharing some of the consumers’ profit with the
data provider as incentive, the data provider can get fair prices for providing
her data. The proposed mechanism consists of the truthful price report mecha-
nism and an optimization method within budget constraints. The truthful price
report mechanism guarantees that the data provider takes the optimal profit
when she reports her privacy price to the data consumer honestly. Based on a
data provider’s reported privacy price, a data consumer can maximize her profit
within a potential budget constraint.

1.1 Contribution

The contributions of this paper are as follows:

(i) Truthful price report mechanism: We propose an incentive mechanism that
guarantees that the data provider maximizes her benefit when she reports
her privacy price honestly.

(ii) Optimized incentive mechanism within the budget constraints: We propose
an optimization method to maximize the data consumer’s profit and infor-
mation gain in the setting where the data consumer has a fixed financial
budget for data collection.

(iii) Optimized privacy budget splitting mechanism: We propose a method of
splitting the privacy budget for the data providers, that allows them to

An Incentive Mechanism for Data Markets 199

maximize her utility-gain within a fixed privacy budget, in a multiple data
consumer environment.

The properties of our methods are both proved formally and validated through
experiments.

1.2 Structure of the Paper

The structure of this paper is as follows: we explain the related works and pre-
liminaries in Sects. 2 and 3, respectively. We describe the proposed incentive
mechanism in Sect. 4 and validate the proposed incentive mechanism through
experiments in Sect. 5. Our conclusion and some potential directions of future
work are discussed in Sect. 6.

2 Related Work

2.1 Methods for Choosing ε

In differential privacy concept, parameter ε is the knob to control the privacy-
utility trade off. The smaller the ε, the higher is the privacy protection level
and the more it deteriorates the data utility. Conversely, a larger ε decreases the
privacy protection level and enhances the data utility. However, there is no gold
standard to determine the appropriate value of ε. Apple has been promoting the
use of differential privacy to protect user data since iOS 10 was released, but the
analysis of [7] showed the ε value was set at approximately 10 without any par-
ticular reason. The work of [8] showed that the privacy protection level set by an
arbitrary ε can be infringed by inference using previously disclosed information
and proposed an ε setting method considering posterior probability. This matter
is the main factor that undermines the claim that personal information is pro-
tected by differential privacy. Much research have been conducted to study and
solve this problem [9–12]. Although a lot of research is being done in this area,
the problem of determining a reasonable way of choosing an optimal value for ε
still remains open, as there are many factors to consider in deciding the value
of ε, and more studies are still needed. In this paper, we propose a technique to
determine an appropriate value of ε by setting a price of the privacy of the data
provider.

2.2 Pricing Mechanism

One of the solutions to find an appropriate value of ε is to price it according
to the data accuracy [13–18]. In [13], strength of the privacy guarantee and the
accuracy of the published results are considered to set the ε value, and a simple
ε setting model that can satisfy data providers and consumers was suggested.
In [14], the author proposed a compensation mechanism via auction in which
data providers are rewarded based on data accuracy and data consumer’s budget
when they provide data with differential privacy. It is the most similar work to
our study. The main differences between our paper and Ghosh and Roth’s work
are as follows:

200 S. Biswas et al.

(i) We define a truthful price report mechanism that a data provider get a best
profit when she reports her privacy price honestly, and prove it.

(ii) We propose an optimized incentive mechanism to maximize the data con-
sumer’s profit with a fixed expense budget, and a privacy budget splitting
method to maximize the data provider’s utility-gain in a multi-data con-
sumer environment.

In [17] the authors design a mechanism that can estimate statistics accurately
without compromising the user’s privacy. They propose a Bayesian incentive and
privacy-preserving mechanism that guarantees privacy and data accuracy. The
study of [18] proposes a Stackelberg game to maximize mobile users who provides
their trajectory data.

Several techniques for pricing data assuming a data market environment have
been studied in [19–26].

In [19] the authors suggested a data pricing mechanism to make the bal-
ance between privacy and price in data market environment. In [20], the authors
propose the data market model in the IoT environment and show the proposed
pricing model has a global optimal point. In [21] the authors proposed a theoret-
ical framework for determining prices to noisy query answer in the differentially
private data market. However, this research cannot flexibly reflect the require-
ments of the data market. In the study of [23], the author proposed an ε-choosing
method based on Rubinstein bargaining and assumes a market manager that
mediates a data provider and consumer in the data trading.

It is realistic to consider personal data as a digital asset, and reasonable to
attempt to find a bridge between privacy protection level and price according
to the value of ε in differential privacy, as has been done in this paper. Exist-
ing studies are attempting to find an equilibrium between data providers and
consumers under the assumption that both are reasonable individuals. In this
paper, we follow a research direction similar to existing studies, and focus on
the incentive mechanism that motivates a data provider report her privacy price
honestly. In particular, we consider that the value of differentially private data
increases non-linearly with respect to the increase of the value of ε.

3 Preliminaries

In this section, we explain the basic concepts of differential privacy. Differential
privacy is a mathematical model that guarantees the privacy protection at a
specified level ε. For all datasets D1 and D2 differing exactly at a single element,
it is defined to satisfy ε-differential privacy, if the probability distribution differ-
ence of the result of a specific query K on two databases is less than or equal to
the threshold eε. The definition of the differential privacy is as follows:

Definition 1 (Differential privacy [3]). A randomized function K provides
ε-differential privacy if all datasets, D1 and D2, differing by one only element,
and all subsets, S ⊆ Range(K),

P[K(D1) ∈ S] ≤ eε
P[K(D2) ∈ S]

An Incentive Mechanism for Data Markets 201

The Laplace mechanism [3] is one of the most common methods for achieving
the ε-differential privacy.

One of the important properties of differential privacy is the compositionality
that allows query composing to facilitate modular design [3].

Sequential compositionality. For any database D, let we query on the ran-
domization mechanism K1 and K2 which is independent for each query. The
results of K1(D) and K2(D) whose guarantees are the ε1 and ε2-differential
privacy, is (ε1 + ε2)-differentially private.

Parallel compositionality. Let A and B be the partition of any database
D(A∪B = D,A∩B = φ). Then, the result of the query on the randomization
mechanism K1(A) and K2(B), is the max(ε1, ε2)-differentially private.

Recently, a variant of differential privacy called local differential privacy has
been proposed [27–30]. In this model, data providers obfuscate their own data
by themselves. Local differential privacy has an advantage that it does not need
a trusted third party to satisfy the differential privacy. The properties of parallel
and sequential compositionality hold for the local model as well.

In the rest of this paper, we consider the local model of differential privacy.

4 Incentive Mechanism for Data Markets

4.1 Overview of the Proposed Technique

The data market aims at collecting personal data legally with the consent of the
provider. A data provider can sell her own data and get paid for it, and a data
consumer can collect the personal data for analysis by paying a price, resulting
in a win-win situation.

Naturally, the data consumer wants to collect personal data as accurately as
possible at the lowest possible price, and the data provider wants to sell her data
at a price as high as possible while protecting sensitive information. In general,
every effective protection technique affects the utility of the data negatively. In
the particular case of differential privacy, the levels of utility and privacy are
determined by the parameter ε; thus, the data price is affected directly by the
value of ε.

Determining the appropriate value of ε and the actual price of the data are
critical to the success of the data market. However this is not an easy task, also
because each data provider has different privacy needs [30].

We propose an incentive mechanism to find the price of the data and the
value of ε that can satisfy both the data provider and the data consumer. The
proposed method consists of two parts: an incentive mechanism encouraging the
data provider to report her privacy price honestly to the data consumer, and an
optimization scheme to maximize both the data consumer and provider’s profit
within a budget constraint.

We consider a scenario with n data providers, u1, . . . , un, and m data con-
sumers, D1, . . . , Dm, and where each provider and consumer proceeds with the

202 S. Biswas et al.

deal independently (we use the term “data provider” and “data producer” inter-
changeably, in the same sense). The term “ε unit price” (e.g., 1$ per ε value
0.1) will be used to express the price, where ε is the parameter of differential
privacy, which is a measure of the accuracy of information. We recall that, as ε
increases, the data becomes less private and more information can be obtained
from it, and vice versa. Thus, the price per unit ε represents the “value” of
the provider’s information1. The price of ε is expected to differ from one data
provider to another, because each individual has a different privacy need. We
denote the ε unit price reported by ui as pi and her true ε unit price as πi.

Fig. 1. An example of data trading process. In this figure, ui means the ith data
provider and Dj means the jth data consumer.

Figure 1 illustrates how the process works. At first, every data consumer
broadcasts a function f to the data providers, which represents the amount of
data (expresses in ε units) the consumer is willing to buy for a given ε unit
price. Each consumer has her own such function, and it can differ from one
consumer to another. We will call it ε-allocating function. We assume f to be
monotonically decreasing, as the consumers naturally prefer to buy more data
from those data producers who are willing to offer them for less. Note that
the product pif(pi) represents the total amount that will be payed by the data
producer to the consumer if they agree on the trade. The function f however
has also a second purpose: as we shown in Sect. 4.2, it is designed to encourage
providers to demand the price that they really consider the true price of their
privacy, rather than asking for more.

Then, thanks to the truthful price report mechanism (cf. Sect. 4.2), the data
providers report the prices of their data honestly to the data consumers in accor-
dance with the published f . In the example in Fig. 1, u1 reports her ε price per
1 The ε unit price can be of any form, including a monetary one. The method we

propose is independent from the nature of the price, so we do not need to specify it.

An Incentive Mechanism for Data Markets 203

0.1 as 1$ and u2 reports her ε price per 0.1 as 2$. Finally, the data consumer
checks the price reported by the data provider and determines the total price
and value of ε to be obtained from each provider using f . In this example, the
data consumer D1 determines ε1 to be 0.7 and ε2 to be 0.4.

Then, the data providers select the consumers to whom to sell their data in
order to maximize their profits, and confirm with them the values of their ε and
the total price they would receive. In the example in Fig. 1, D1 pays 7$ to u1

and 8$ to u2. Finally, the data providers add noise to their data based on the
determined ε and share the sanitized data with the respective consumers, and the
consumers pay the corresponding prices to the providers. We assume that data
providers and consumers keep the promise of the value of ε and compensation
decided in the deal, once confirmed.

This process can be repeated until the data consumers exhaust all their
budget or achieve the targeted amount of information. The task of allocating a
suitable budget in each round and the how to determine the amount of needed
information are also important topics, but they are out of the scope of this paper
and are left for future work.

4.2 Truthful Price Report Mechanism

For the correct functioning of the data trading, the data provider should be
honest and demand her true privacy price. However, she may be motivated
to report a higher price, in the hope to persuade the data consumer that the
information is “more valuable”, and be willing to pay more. Note also that the
true privacy price of each data provider is a personal information that only the
provider herself knows and is not obliged to disclose.

To solve this problem, we propose a truthful price report mechanism to ensure
that the data providers report their ε unit prices honestly. The purpose of the
mechanism is to provide incentive so that the providers are guaranteed to get
the greatest profit when they report their true price.

When the data provider reports her price pi, the data consumer determines
the amount of ε to purchase using f(pi), where f is the ε-allocating function
introduced in Sect. 4.1. We recall that f is a monotonically decreasing function,
chosen by the consumer. We assume that the domain of f , the ε price unit,
is normalized to take values in the interval [0, 1]. The total price for the data
estimated by the consumer is the product of the ε price unit and the amount
to be purchased, namely, pif(pi). To this value, the consumer adds an incentive∫ ∞

pi
f(z) dz, the purpose of which is to make convenient for the data producer

to report the true price (we assume that the data producer knows f and the
strategy of the consumer in advance). The consumer should of course choose f
so to be happy with the incentive. In particular, the incentive should be finite,
so the contribution of f(z) should vanish as z goes to ∞. An example of such a
function is illustrated in Fig. 2.

Thus the data consumer sets the offer μ(pi) to the provider ui as follows:

204 S. Biswas et al.

Definition 2 (Payment offer). The offer μ(pi) is defined as:

μ(pi) = pif(pi) +
∫ ∞

pi

f(z) dz

Fig. 2. An example of a monotonically decreasing function f(z). Let c be a parameter
representing the “reported value-to-admitted ε value” ratio. For z ≥ 0, we set f(z) as
f(z) = ln(e − cz) if (e − cz) ≤ 1, and f(x) = 0 otherwise.

We now illustrate how this strategy achieves its purpose of convincing the
consumer to report her true price. We start by defining the utility that the data
provider obtains by selling her data as the difference between the offer and the
true price of her data, represented by the product of the true ε unit price and
the amount to be sold, namely πif(pi):

Definition 3 (Utility of the data provider). The utility ρ(pi), of the
provider ui, for the reported price pi, is defined as:

ρ(pi) = μ(pi) − πif(pi)

We are now going to show that he proposed mechanism guarantees truthful-
ness. The basic reason is that each provider ui achieves the best utility when
reporting the true price. Namely, ρ(πi) ≥ ρ(pi) for any pi ∈ R

+, where we recall
that πi is the true price of the provider ui. The only technical condition is that
the function f is monotonically decreasing. Under this assumption, we have the
following results (see also Fig. 3 to get the intuition of the proof):

Lemma 1. If ui reports a price greater than her true price, i.e., pi ≥ πi, then
her utility will be less than the utility for the true price, i.e., ρ(pi) ≤ ρ(πi).

Proof. The proof can be found in the full version of this paper, available at [31].

Lemma 2. If ui reports a price smaller than her true price, i.e., pi ≤ πi, then
her utility will be less than the utility for the true price, i.e., ρ(pi) ≤ ρ(πi).

An Incentive Mechanism for Data Markets 205

Fig. 3. Graphical illustration of Theorem 1. We prove that ρ(πi) (blue hatching area)
is always larger than ρ(pi) (blue rectangle area+red hatching area−green rectangle
area).

Proof. The proof can be found in the full version of this paper, available at [31].

Combining Lemma 1 and Lemma 2 gives the announced result. We assume of
course that each data producer is a rational individual, i.e., capable of identifying
the best strategy to maximize her utility.

Theorem 1. If every data producer acts rationally, then the proposed incentive
mechanism guarantees the truthfulness of the system.

Proof. Immediate from Lemma 1 and Lemma 2. 	

4.3 Optimizing the Incentive Mechanism

In this section, we propose an optimization mechanism to identify an optimal
function f for the data consumer with respect to the following two desiderata:

(i) Maximum Information: maximize the total information gain of the data
consumer with a fixed budget.

(ii) Maximum Profit: maximize the total profit of the data consumer with a
fixed budget.

By “budget” here we mean the budget of the data consumer to pay the data
providers.

We start by introducing the notions of total information and profit for the
consumer. Note that, by the sequential compositionality of differential privacy,
the total information is the sum of the information obtained from each data
provider.

Definition 4 (Total information). The total information I(u) obtained by
the data consumer by concluding trades with each of the data providers of the
tuple u = (u1, . . . , un) is defined as

I(u) =
n∑

i=1

f(pi)

206 S. Biswas et al.

As for the profit, we can reasonably assume to be monotonically increas-
ing with the amount of information obtained, and that the total profit is the
sum of the profits obtained with each individual trading. The latter is naturally
defined as the difference between the benefit (aka payoff) obtained by re-selling
or processing the data, and the price payed to the data provider.

Definition 5 (Payoff and profit).

• The payoff function for the data consumer, denoted by τ(·), is the benefit that
the data consumer receives by processing or selling the information gathered
from the different data providers. The argument of τ(·) is ε, the amount of
the information received. We assume τ(ε) to be monotonically increasing with
ε.

• The total profit for the data consumer is given by
∑n

i=1(τ(εi) − μ(εi)), where
εi = f(pi), i.e., the ε-value allocated to ui.

We will consider a family of functions F indexed by a parameter c, to which
the ε-allocating function f belongs. The parameter c reflects the data consumer’s
will to collect the information and, for technical reasons, we assume f to be
continuous, differentiable and concave with respect to it. For each data provider,
different values of c will give different f , that, in turn, will give rise to a different
incentive-curve as per equation (2), which the data consumer should adhere to
for compensating for the information obtained from that data provider.

As described in previous sections, the ε-allocating functions should be mono-
tonically decreasing with the ε unit price, as the consumer is motivated to buy
more information from the consumers that offer it at a lower price. This property
also ensures, by Theorem 1, that the prices reported by the data producers will
be their true prices. Hence we impose the following constraint on F :

F ⊆ {f(·, ·) : c, p ∈ R
+, f(c, p) is continuous, differentiable

and concave on c, and decreasing with p}.
(1)

Note that we have added the parameter c as an additional argument in f , so f
has now two arguments.

Example 1. An example of such class F is that of Fig. 2:

F = {ln(e − cp) : c ∈ R
+} .

Example 2. Another example is:

F = {1 − cp : c ∈ R
+} .

After the prices p1, . . . , pn have been reported by the data producers
u1, . . . , un, the data consumer will try to choose an optimal c maximizing her
profit. Figure 4 illustrates an example with two data provider’s incentive graph
and payoff for data consumer.

We will analyse the possibility to choose an optimal c, that, in turn, leads to
an optimal f(c, ·) addressing scenarios (i) and (ii).

An Incentive Mechanism for Data Markets 207

Fig. 4. Illustrating the payoff for c and the incentive-plots for the data consumer involv-
ing two data providers reporting p1, p2. The Y-intercept of μ1 is

∫ ∞
p1

f(z)dz and that

for μ2 is
∫ ∞
p2

f(z)dz.

In the context of differential privacy, we may assume that τ (the data con-
sumer’s payoff function) is additive, i.e.,

Additivity τ(a + b) = τ(a) + τ(b) for every a, b ∈ R
+ . (2)

This is a reasonable assumption that goes well along with the sequential com-
positionality property of differential privacy, at least for small values of ε2.

We start by showing that the two desiderata (i) and (ii) are equivalent:

Theorem 2. If τ(·) is additive, then maximizing information and maximizing
profit (desiderata (i) and (ii)) are equivalent, in the sense that a ε-allocating
function f(·, ·) that maximizes the one, maximizes also the other.

Proof. The proof can be found in the full version of this paper, available at [31].

Corollary 1. If τ(·) is additive, then the optimal choice of f(·, ·) w.r.t. the
selected family of functions will maximize both the information gain and the
profit for the data consumer.

Proof. Immediate from Theorem 2. 	

We now consider the complexity problem for finding the optimal f(·, ·). Due

to the assumptions made in Eq. 1, and to the additivity of τ , we can apply the
method of the Lagrangians to find such f(·, ·) (cf. Appendix A of the full version
of this paper, available at [31]).

Theorem 3. If τ is additive, then there exists a c that gives an optimal profit-
maximizing function f(c, ·) ∈ F , for a fixed budget, and we can derive such c
via the method of the Lagrangians.
2 From a technical point of view, the additive property holds also for large values of

ε. However, from a practical point of view, for large values of ε, for instance 200
and 400, then the original information is almost entirely revealed in both cases, and
would not make sense to pay twice the price of 200 ε units to achieve 400 ε units.

208 S. Biswas et al.

Proof. The proof can be found in the full version of this paper, available at
[31]. 	

Theorem 4. There exists a c that gives an optimal information-maximizing
function f(c, ·) ∈ F , for a fixed budget, and we can derive such c via the method
of the Lagrangians.

Proof. The proof can be found in the full version of this paper, available at [31].

To demonstrate how the method works, we show how to compute the specific
values of c on the two classes F of Examples 1 and 2. Such c gives the optimal ε-
allocating function f(c, ·), maximizing I(u) for a given budget. The derivations
are described in detail in the full version of this paper, available at [31]. In each
example, pi is the reported ε unit price of ui.

Example 3. Let F = {ln(e − cp) : c ∈ R
+}. The optimal parameter c is the

solution of the equation ln(
∏n

i=1 epi(e − cpi)
e
c) = B + n(e−1)

c .

Example 4. Let F = {1 − cp : c ∈ R
+}. The optimal parameter c is the solution

of the equation c2
∑n

i=1 p2i + 2Bc − n = 0.

4.4 Discussion

In our model, for the scenario we have considered so far, the parameter c is
determined by the number of providers and the budget. We observe that, in
both Examples 3 and 4, if n increases than c increases, and vice versa. This
seems natural, because in the families of both these example c the incentive that
the consumer is going to propose decreases monotonically with c. This means
that the larger is the offer, the smaller is the incentive that the consumer needs
to be paying. In other words, the examples confirm the well known market law
according to which the price decreases when the offer increases, and vice versa.

We note that we have been assuming that there is enough offer to satisfy the
consumer’s demand. If this hypothesis is not satisfied, i.e., if the offer is smaller
than the demand, then the situation is quite different: now the data producer
can choose to whom to sell hid data. In particular, the data consumer who sets
a lower c will have a better chance to buy data because, naturally, the provider
prefers to sell her data to the data consumers who give a higher incentive. In
the next section we explore in more detail the process, from the perspective of
the data provider, in the case in which the demand is higher than the offer.

4.5 Optimized Privacy Budget Splitting Mechanism for Data
Providers

After optimizing an incentive mechanism for a given data consumer dealing
with multiple data providers, we focus on the flip side of the setup. We assume a

An Incentive Mechanism for Data Markets 209

scenario in which a given data provider has to provide her data to multiple data
consumers, and that there is enough demand so that she can sell all her data.

Let there be m data consumers, D1, . . . , Dm seeking to obtain data from the
user u. By truthful price report mechanism, as discussed in Sect. 4.2, u reports
her true price to each Di. As discussed in Sect. 4.3, Di computes her optimal
ε-allocating function fi and requests data from u, differentially privatized with
ε = fi(π). After receiving f1, . . . , fm, u would like to provide her data in such a
way that maximizes her utility received after sharing her data.

Definition 6. We say that the data provider has made a deal with the data
consumer Di if, upon reporting the true per-unit price of her information, π, she
agrees to share her data privatized with privacy parameter ε = fi(π).

It is important to note here that u is not obliged to deal with any data
consumer Di, even after receiving fi. Realistically, u has a privacy budget of
εtotal, which she would not exceed at any price. Let S = {i1, . . . , ik} be an
arbitrary subset {1, . . . , m}. By the sequential composition property of differen-
tial privacy, the final privacy parameter achieved by u by sharing her data to
an arbitrary set of data consumers Di1 , . . . , Dik is εS =

∑
j∈S fj(π). u’s main

intention is to share her data in such a way that ensures εS ≤ εtotal for all subset
S of {1, . . . , n}, while maximizing

∑
j∈S ρi(π, fj), i.e., the total utility received.

Reducing it down to the 0/1 knapsack problem, we propose that u should be
dealing with {Di1 , . . . , Dik} where S∗ = {i1, . . . , ik} ⊆ {1, . . . , m}, chosen as

S∗ = arg max
S

{ ∑

j∈S

ρ(π, fj)|S ⊆ {1, . . . ,m},
∑

j∈S fj(π) ≤ εtotal} (3)

We show the pseudocode for the ε allocation algorithm and the entire process
in Algorithms 1 and 2.

Algorithm 1: Optimized privacy budget splitting algorithm
Input: {ε1, . . . , εn} stored in array w, {p1, . . . , pn} stored in array v, εtotal ;
Output: List of data consumer {D1 . . . Dk} that is selected to sell data;
initiate Two-dimension array m;
while i ≤ n do

while j ≤ εtotal do
if w[i] > εtotal then

m[i, j] := m[i-1, j]
else

m[i, j] := max(m[i-1, j], m[i-1, j-w[i]] + v[i])
end

end

end
backtrack using the final solution m and find the index of the data consumer ;
return List of selected data consumer ;

210 S. Biswas et al.

Algorithm 2: The proposed data trading process
Input: the data provider {u1, . . . , un},the data consumer {D1, . . . , Dm};
Output: List of the data provider and consumer pair that trade is completed;
while i ≤ m do

Di calculate the parameter c to optimize the fi(·);
Di inform the fi(·) to the data provider

while j ≤ n do
uj report price pj to the data consumer

while i ≤ m do
while j ≤ n do

Di calculate the εj based on pj ;
Di inform the εj to the uj

while j ≤ n do
uj perform the Optimized ε allocation algorithm to maximize the utility

5 Experimental Results

In this section we perform some experiments to verify that the proposed opti-
mization method can find the best profit for the data consumer. For the experi-
ments, we consider the families F of Examples 3 and 4, namely F = {ln(e−cp) :
c ∈ R

+} and F = {1 − cp : c ∈ R
+}. For these two families the optimal parame-

ter c is also derived formally, as shown in Appendix B of the full version of this
paper, available at [31].

The experimental variables are set as follows: we assume that there are 10
data consumers, and the total number of data providers n is set from 1000 to
2000 at an interval of 500. The data provider’s ε unit price is distributed normally
with mean 1 and standard deviation 1, i.e., N (1, 1), and convert ε unit price less
than 0 or more than 2 to 0 and 2 respectively. We set the unit value ε to 0.1, and
the maximum ε value of data provider to 3. We set the budgets as 60, 90, and 120
and the number of the data provider as 1, 000, 1, 500, 2, 000. We assumed that
the data consumer earned a profit of 10 per 0.1 epsilon and set the parameter c
to 1 and 10 for comparison.

The results are shown in Fig. 5. For instance, in the case of the log family
ln(e − cp), the optimal parameter c is 5.36, and in the case of the linear family
1 − cp, the optimal parameter c is 4.9. It is easy to verify that the optimal
values of c correspond to those determined by solving Equations (8) and (13)
in Appendix B of the full version of this paper, available at [31], of Examples 3
and 4, respectively.

An Incentive Mechanism for Data Markets 211

Fig. 5. Experimental result of profit under a fixed budget. Log function is the family
ln(e−cp) and Linear function is the family 1−cp. We let the parameter c range from 0
to 1. The red bin represents the optimal value of c, namely the c that gives maximum
information.

6 Conclusion and Future Work

As machine learning and data mining are getting more and more deployed, indi-
viduals are becoming increasingly aware of the privacy issues and of the value of
their data. This evolution of people’s attitude towards privacy induces compa-
nies to develop new approaches to obtain personal data. We envision a scenario
where data consumers can trade private data directly from the data provider
by paying the price for the respective data, which has the potential to obtain
personal information that could not be obtained in the traditional manner. In
order to ensure a steady offer in the data market, it is imperative to provide
the privacy protection that the data providers deem necessary. Differential pri-
vacy can be applied to meet this requirement. However, the lack of standards
for setting an appropriate value for the differential privacy parameter ε, that
determines the levels of data utility and privacy protection, makes it difficult to
apply this framework in the data market.

In order to address this problem, we have developed a method, based on
incentives and optimization, to find an appropriate value for ε in the process of
data trading. The proposed incentive mechanism motivates every data provider
to report her privacy price honestly in order to maximize her benefit, and the
proposed optimization method maximizes the profit for the data consumer under
a fixed financial budget. Additionally, in an environment involving multiple data
consumers, our mechanism suggests an optimal way for the data providers to
split the privacy budgets, maximizing their utility. Through experiments, we

212 S. Biswas et al.

have verified that the proposed method provides the best profits to the provider
and consumer.

Along the lines of what we have studied in this paper, there are many inter-
esting research issues still open in this area. In future work, we plan to study
the following issues:

1. Mechanism for a fair incentive share in an environment where the data
providers make a federation for privacy protection

2. Maximization of the data consumers’ profits by estimating privacy price dis-
tribution of the data providers in an environment where demand of the data
providers may change dynamically.

References

1. Liveen. https://www.liveen.com/
2. Datacoup. https://datacoup.com/
3. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.

Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)
4. Bowen, C., Snoke, J.: Comparative study of differentially private synthetic data

algorithms from the NIST PSCR differential privacy synthetic data challenge, pp.
1–32. arXiv preprint arXiv:1911.12704 (2019)

5. Volgushev, N., et al.: Conclave: secure multi-party computation on big data. In:
Proceedings of the 14th EuroSys Conference, pp. 1–18 (2019)

6. Acar, A., et al.: A survey on homomorphic encryption schemes: theory and imple-
mentation. ACM Comput. Surv. (CSUR) 51(4), 1–35 (2018)

7. Tang, J., et al.: Privacy loss in Apple’s implementation of differential privacy on
macOS 10.12, pp. 1–12. arXiv preprint arXiv:1709.02753 (2017)

8. Lee, J., Clifton, C.: How much is enough? Choosing ε for differential privacy. In:
Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 325–340. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24861-0 22

9. Chen, Y., et al.: Truthful mechanisms for agents that value privacy. ACM Trans.
Econ. Comput. 4(3), 1–30 (2016)

10. Ligett, K., Roth, A.: Take it or leave it: running a survey when privacy comes
at a cost. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 378–391.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35311-6 28

11. Xiao, D.: Is privacy compatible with truthfulness? In: Proceedings of the 4th Con-
ference on Innovations in Theoretical Computer Science, pp. 67–86 (2013)

12. Nissim, K., Orlandi, C., Smorodinsky, R.: Privacy-aware mechanism design. In:
Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 774–789
(2012)

13. Hsu, J., et al.: Differential privacy: an economic method for choosing epsilon. In:
Proceedings of the 27th IEEE Computer Security Foundations Symposium, pp.
1–29 (2014)

14. Ghosh, A., Roth, A.: Selling privacy at auction. Games Econ. Behav. 91(1), 334–
346 (2015)

15. Dandekar, P., Fawaz, N., Ioannidis, S.: Privacy auctions for recommender systems,
pp. 1–23 (2012). https://arxiv.org/abs/1111.2885

16. Roth, A.: Buying private data at auction: the sensitive surveyor’s problem. ACM
SIGecom Exch. 11(1), 1–8 (2012)

https://www.liveen.com/
https://datacoup.com/
http://arxiv.org/abs/1911.12704
http://arxiv.org/abs/1709.02753
https://doi.org/10.1007/978-3-642-24861-0_22
https://doi.org/10.1007/978-3-642-35311-6_28
https://arxiv.org/abs/1111.2885

An Incentive Mechanism for Data Markets 213

17. Fleischer, L.K., Lyu, Y.H.: Approximately optimal auctions for selling privacy
when costs are correlated with data. In: Proceedings of the 13th ACM Conference
on Electronic Commerce, pp. 568–585 (2012)

18. Li, W., Zhang, C., Liu, Z., Tanaka, Y.: Incentive mechanism design for
crowdsourcing-based indoor localization. IEEE Access 6, 54042–54051 (2018)

19. Nget, R., Cao, Y., Yoshikawa, M.: How to balance privacy and money through pric-
ing mechanism in personal data market, pp. 1–10. arXiv preprint arXiv:1705.02982
(2018)

20. Oh, H., et al.: Personal data trading scheme for data brokers in IoT data market-
places. IEEE Access 7(2019), 40120–40132 (2019)

21. Li, C., Li, D.Y., Miklau, G., Suciu, D.: A theory of pricing private data. ACM
Trans. Database Syst. 39(4), 34–60 (2013)

22. Aperjis, C., Huberman, B.A.: A market for unbiased private data: paying individu-
als according to their privacy attitudes, pp. 1–17 (2012). SSRN: https://ssrn.com/
abstract=2046861

23. Jung, K., Park, S.: Privacy bargaining with fairness: privacy-price negotiation sys-
tem for applying differential privacy in data market environments. In: Proceedings
of the International Conference on Big Data, pp. 1389–1394 (2019)

24. Krehbiel, S.: Choosing epsilon for privacy as a service. Proc. Priv. Enhanc. Technol.
2019, 192–205 (2019)

25. Zhang, T., Zhu, Q.: On the differential private data market: endogenous evo-
lution, dynamic pricing, and incentive compatibility, pp. 1–30. arXiv preprint
arXiv:2101.04357 (2021)

26. Jorgensen, Z., Yu, T., Cormode, G.: Conservative or liberal? Personalized dif-
ferential privacy. In: Proceedings of the 31St International Conference on Data
Engineering, pp. 1023–1034. IEEE (2015)

27. Erlingsson, U., Pihur, V., Korolova, A.: Rappor randomized aggregatable privacy-
preserving ordinal response. In: Proceedings of International Conference on Com-
puter and Communications Security, pp. 1054–1067 (2014)

28. Cormode, G., et al.: Privacy at scale: local differential privacy in practice. In:
Proceedings of the International Conference on Management of Data, pp. 1655–
1658 (2018)

29. Thông, T.N., Xiaokui, X., Yin, Y., et al.: Collecting and analyzing data from smart
device users with local differential privacy, pp. 1–11. https://arxiv.org/abs/1606.
05053 (2016)

30. Kasiviswanathan, S.P., et al.: What can we learn privately. SIAM J. Comput.
40(3), 7903–8826 (2011)

31. Biswas, S., Jung, K., Palamidessi, C.: An incentive mechanism for trading personal
data in data markets, pp. 1–22. https://arxiv.org/abs/2106.14187 (2021)

http://arxiv.org/abs/1705.02982
https://ssrn.com/abstract=2046861
https://ssrn.com/abstract=2046861
http://arxiv.org/abs/2101.04357
https://arxiv.org/abs/1606.05053
https://arxiv.org/abs/1606.05053
https://arxiv.org/abs/2106.14187

Assessing Security of Cryptocurrencies
with Attack-Defense Trees: Proof of

Concept and Future Directions

Julia Eisentraut1(B), Stephan Holzer2, Katharina Klioba3, Jan Křet́ınský1,
Lukas Pin4, and Alexander Wagner5

1 Technical University of Munich, Munich, Germany
julia.kraemer@in.tum.de

2 Massachusetts Institute of Technology, Cambridge, USA
3 Hamburg University of Technology, Hamburg, Germany

4 Humboldt University of Berlin, Berlin, Germany
5 University of Heidelberg, Heidelberg, Germany

Abstract. Cryptocurrencies such as Bitcoin have been one of the new
major technologies of the last decade. In this paper, we assess the secu-
rity of Bitcoin using attack-defense trees, an established formalism to
evaluate the security of systems. In this paper, our main contributions
are as follows: (1) We provide an extended attack-defense tree model for
attacks on Bitcoin. (2) We demonstrate the general usability of existing
analysis methods for attack-defense trees in this context. (3) We high-
light further research directions necessary to extend attack-defense trees
to a full-fledged overarching model for security assessment.

1 Introduction

During the last decade, cryptocurrencies like Bitcoin and other applications
of distributed ledger technologies (DLT) attracted a lot of attention. However,
investments in Bitcoin and other cryptocurrencies have repeatedly been lost
due to malicious attacks. Hence, for investors, customers, and retailers to take
well-justified business decisions, it is crucial to reliably assess their individual
financial and reputational risks when investing in applications of DLT. For these
investors, a mere technical analysis of the theoretical security of DLT protocols
is by far not enough. Successful hacks on DLT – and thus loss of money – have
ranged from attacks on exchanges1 over stolen private keys2 to user mistakes.
A reliable individual threat modeling and risk assessment must thus holistically
subsume these aspects.

In this paper, we model these risks by attack(-defense) tree models, e.g., see
[22,27,39].
1 https://money.cnn.com/2018/06/11/investing/coinrail-hack-bitcoin-exchange/

index.html, 04/04/2020.
2 https://www.wired.com/story/blockchain-bandit-ethereum-weak-private-keys/,

04/04/2020.

c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 214–234, 2021.
https://doi.org/10.1007/978-3-030-85315-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_13&domain=pdf
https://money.cnn.com/2018/06/11/investing/coinrail-hack-bitcoin-exchange/index.html
https://money.cnn.com/2018/06/11/investing/coinrail-hack-bitcoin-exchange/index.html
https://www.wired.com/story/blockchain-bandit-ethereum-weak-private-keys/
https://doi.org/10.1007/978-3-030-85315-0_13

Assessing Security of Crypto-Currencies with Attack-Defense Trees 215

With the Bitcoin risk assessment as example, we demonstrate that DLT are
exceptionally well-suited for quantitative model checking approaches, since prob-
abilities and costs of events can be derived or estimated reliably from known real-
world information with statistical methods such as time series analysis. While
the analysis cannot be complete (we discuss reasons and the extent in Sect. 6),
already the various aspects of risk we include demonstrate the holistic ability
of attack-defense trees. Indeed, we argue that these models can play out their
strengths as a meta-framework for a holistic risk assessment approach, combining
results of various technical analyses. For that, we show how to estimate probabil-
ities of successful attacks (see Subsect. 5.1) and how to obtain unknown courses
of known attacks (Subsect. 5.2). Thus, we combine the analysis results of various
attack vectors covering far more than mere technological aspects, ranging from
exploiting software bugs to insider attacks and social engineering.

Finally, DLT turn out to be an especially valuable case study as it leads us to
pointing out several directions of future research still necessary to turn attack-
defense tree models into a full-fledged formalism for real-world risk analysis and
threat modeling.

To summarize, our contributions are as follows:

– We provide an attack-defense tree model for attacks on Bitcoin and their
risk assessment available for download at https://www.model.in.tum.de/
∼kraemerj/upload/. The general approach is discussed in Sect. 4.

– We demonstrate the general usability of existing analysis methods for attack-
defense trees in this context. Deriving success probabilities is demonstrated
in Subsect. 5.1 and the usage of strategy synthesis in Subsect. 5.2.

– We highlight further research directions necessary to extend attack-defense
trees to a full-fledged overarching model for security assessment in Sect. 7.

2 Related Work

Information necessary to construct our models is taken from several surveys on
security (and privacy) issues for Bitcoin [10,30], blockchain and DLT in gen-
eral [25,32]. However, none of these surveys provide a comprehensive model
overarching different analyses. Here we suggest that attack trees can serve as
such an approach if currently open research questions are addressed.

Attack Trees and Their Extensions. Attack Trees were introduced two
decades ago [39]. For an extensive overview, we refer the interested reader
to [28] and [43]. An overview on graphical security models can be found in [23].
Recently, special focus has been put on providing extensions to attack trees and
their semantics to deal with resources such as costs, probabilities and penal-
ties [3], sequential behavior [2,24], defense mechanisms [6,29] and combinations
thereof [22,35].

Case studies for attack trees so far comprise SCADA systems [34], online
banking [12], ATMs [14], virtual reality learning environment applications [19]
and connected vehicles [26], among many smaller examples. Bitcoin and other

https://www.model.in.tum.de/~kraemerj/upload/
https://www.model.in.tum.de/~kraemerj/upload/

216 J. Eisentraut et al.

DLT-techniques were not previously analyzed using attack-defense trees. Here,
we propose them as another valuable source for realistic case studies.

DLT in Formal Methods. While attack trees and formal approaches to attack
tree analysis have not been used to analyze DLT previously, verification of DLTs
using formal methods in general has gained attention recently. For instance,
numerous approaches mainly focusing on functional correctness of smart con-
tracts are surveyed in [18]. In [9], smart contracts are analyzed by providing a
simplified programming language for smart contracts, which can be automati-
cally translated to a state-based game and then analyzed. Markov decision pro-
cesses (MDP) have been used in [40] to explore conditions under which Bitcoin is
resilient to selfish mining. MDP have also been used to deepen the understanding
of double spending attacks in Bitcoin in [42]. In [8], ergodic mean-payoff games
are used to study economic aspects of security violations.

3 Attack-Defense Trees

Intuitively, attack trees in their basic form are and-or trees, hierarchically decom-
posing a complex attack (in the root) into its simpler components. Attack-defense
trees (ADT) as defined in [22] extend upon attack trees and other versions of
attack-defense trees in various aspects, which turn out very helpful in modeling,
as e.g., in Fig. 2.

Each node of the underlying tree structure is labeled with an event. The event
at the root represents the overall attack goal (e.g., transfer Bitcoin in Fig. 2); all
other events represent steps taken towards the attack goal; leaves of the tree
are labeled by basic events, which represent atomic and unique happenings in
the real world. In Fig. 2, we have, for instance, the basic events outsider attack
(10) or encrypt storage (5). These basic events are either governed by one of the
players (Attacker or Defender) or driven by a counter (Time-driven).

In our setting, at any time, every event has a unique value – it has been either
not attempted yet (uu) or successfully (tt) or unsuccessfully (ff) attempted. This
three-valued logic approach allows us to capture the evolution of events over time.
Initially, all basic events have not been attempted and thus receive value uu. They
change their value if either a player tries to execute the event or if the counter
has run out of time.

We call all remaining events composed. Operators specify how events con-
tribute to a composed event being successfully attempted. The logic opera-
tors AND, OR and NOT have the standard logical meaning. In Fig. 2, most composed
events are labeled by OR to represent various attack vectors. AND and OR are used
to depict the defender’s countermeasures. SAND and SOR, which stem from [22],
are sequential variants of AND and OR: additionally, they require their subgoals
to be attempted in a specific order. In graphical representations, the order is
from left to right. Attack-defense trees also allow specifying costs of delaying or
executing basic events. In the formalism we use, costs are accumulated in specific
cost variables. The operator COST is equipped with a cost constraint over these

Assessing Security of Crypto-Currencies with Attack-Defense Trees 217

variables and turns to tt if the valuation of the cost variables satisfy the cost
constraint upon the subgoal turning true.

Additionally, we have two operators to modify the status of basic events,
namely TR and RE. In general, we distinguish triggerable and non-triggerable
basic events. A triggerable basic event causally depends on another event being
successfully attempted, non-triggerable events do not. Thus, a player can attempt
a triggerable basic event only if the event it depends on has previously been
successfully attempted. We call this process triggering. Composed events labeled
with TR propagate the values of their input. Whenever the input of an event e
labeled by TR turns to true, the basic events which are triggered by event e
become available for execution.

Furthermore, we distinguish resettable and non-resettable basic events. Non-
resettable basic events can happen at most once, resettable basic events might
happen several times or even periodically. They are set back to their initial
value uu upon another event being successfully attempted, and we call this pro-
cess resetting. Composed events labeled with RE propagate the values of their
input. Whenever the input of an event e labeled by RE turns to true, the basic
events which are resetted by event e are set back to their initial value.

Graphical Conventions. A small attack-defense tree using these graphical
conventions can be found in Fig. 3. Triangular nodes represent basic events.
Time-driven basic events (basic events (2), (5), (6) and (8) in Fig. 3) are gray
and dotted, basic events of the Attacker are red and horizontally striped (basic
events (1), (4), (7) and (9)), and basic events of the Defender are green and ver-
tically striped (basic event (3)). Each basic event is of one of these three types,
i.e., each basic event is either gray, red or green.

Composed events are boxes labeled by an operator. The goal event is the only
composed event which is also red and horizontally striped (like IFN in Fig. 3). We
have three different edge relations: plain arrows −→ are (transitively) oriented
from basic events to the root, i.e., the start vertex of the edge is the subgoal of
the end vertex. Thus, basic event (9) is a subgoal of the subsequent composed
event labeled with TR. Squiggled edges � represent triggering, i.e., these edges
point from a composed event labeled by TR to the triggered basic events (such as
basic event (7)). Finally, dashed edges ��� represent resetting, i.e., these edges
point from a composed event labeled by RE to the resetted basic events. While
we do not use the operator RE in Fig. 3, an example can be found in Fig. 4. Here,
RE has reset edges to all basic events, i.e., it resets all basic events upon turning
true.

4 Overall Structure of the Model

We present an ADT model for Bitcoin exploits. While our model encompasses a
broad range of attack vectors including their quantitative aspects, our intention
here is not to provide a full-fledged risk assessment model for a specific stake-
holder. We consider it rather a template for such modeling. For a comprehensive

218 J. Eisentraut et al.

assessment, our model would have to be completed by the internal process details
of the stakeholder who, by intention, remains abstract throughout the paper.

Our full model comprises three different attack vectors to exploit Bitcoin,
previously reported in [10,25,30,32]:

User attacks are discussed in Subsect. 5.1. With this submodel, we exemplify
the derivation of success probabilities from real-world statistics.

Vendor attacks are discussed in Subsect. 5.2. In this submodel, our attention
focuses on deriving new courses of known attacks.

Network attacks are part of the full model, but do not add a new technical
aspect to the analysis.

Figure 1 provides a schematic overview.3

To construct our models, we mostly used descriptions of attacks on Bitcoin
published in the last few years (and refer to these papers in the respective sec-
tions). Additionally, we take news reports into account, which document attacks
on Bitcoin, and link to the respective news websites in footnotes.

We discuss the limits of our analysis in Sect. 6. In Sect. 7, we show open
challenges preventing an analysis of the full model.

Fig. 1. Schematic model overview. User Attacks can be found in Fig. 2 and Vendor
Attacks in Fig. 3. The third part of the model does not highlight any new analysis
techniques. Thus, we omit it in this paper.

5 Modeling and Analysis of Attacks

5.1 User Attacks: Deriving Success Probabilities

Quantitative model checking can utilize quantitative knowledge such as prob-
abilities, costs and time to compute how likely certain attacks are, how much
cost/damage attacks may cause or how long attacks might take. First, we demon-
strate how to derive success probabilities in the area of DLT using time series
3 The full model is available for download at https://www.model.in.tum.de/

∼kraemerj/upload/.

https://www.model.in.tum.de/~kraemerj/upload/
https://www.model.in.tum.de/~kraemerj/upload/

Assessing Security of Crypto-Currencies with Attack-Defense Trees 219

analysis [20]. Second, we show how to compute success probabilities for complex
attacks applying existing analysis methods to the model in Fig. 2.

Our main source for deriving success probabilities are various statistics,
tracked and made publicly available for cryptocurrencies such as Bitcoin and
Ethereum. We obtain, for instance, the following statistics for the Bitcoin
blockchain:

– the total number of blocks is 18,702,068,4

– we have 7 m 43 s as average block time (see Footnote 4),
– one Bitcoin can be traded to $55,816.45 (see Footnote 4),
– the number of active exchanges (i.e. exchanges, where money has been traded

in the last 24 h) is 695 and
– the number of reported hacks, for instance, on major exchanges, is at least

40 since the first launch of Bitcoin.6

With such information at hand, we can compute the probability that a spe-
cific attack vector is successful within a certain time frame, for instance, at the
next Bitcoin block or within the next year. This paper focuses on predicting the
success probability for the next year since most data is tracked yearly. Any more
extended time frame in the future will lead to too unreliable results.

Remarkably, the discretized time model that ADT come with suits the DLT
setting perfectly, as within Blockchain, time is naturally discretized by blocks.
With this regard, the DLT use case stands out from many other use cases, where
time discretization is an imposed abstraction from actual continuous time behav-
ior. In our example model, we exemplarily demonstrate how to use this informa-
tion to assess the probability that a successful attack on exchanges occurs within
the year 2020. In this way, we can compare the number of attacks we predicted
for 2020 and the number of attacks that actually occurred in 2020.

Figure 2 shows the submodel for user attacks, which subsumes attacks in
which Bitcoin are stolen from the user. We refine the goal maliciously transfer
Bitcoin from a user’s account into three disjoint attack vectors (which correspond
to the three vertices at level 2 of the tree) – attacks on the individual user’s wallet,
on Bitcoin exchanges and using fake services7 or the Bitcoin protocol itself.8 The
model depicts many of the ways Bitcoin users have lost Bitcoin as reported in
the user study presented in [30]. Additionally, we include various potential ways
to steal Bitcoin discussed among Bitcoin practitioners on top of attacks reported
in the research community and credit the respective discussions in footnotes.

4 https://www.blockchain.com/en/stats and https://bitinfocharts.com/bitcoin/, last
visited 07/05/2021.

5 https://coin.market/exchanges, last visited 07/05/2021.
6 https://coiniq.com/cryptocurrency-exchange-hacks/, https://selfkey.org/list-of-

cryptocurrency-exchange-hacks/ and https://blog.idex.io/all-posts/a-complete-list-
of-cryptocurrency-exchange-hacks-updated/#2020, last visited 13/12/2020.

7 See https://bitcoin.org/en/scams, last visited 13/12/2020.
8 See https://en.bitcoin.it/wiki/Common Vulnerabilities and Exposures, last visited

13/12/2020.

https://www.blockchain.com/en/stats
https://bitinfocharts.com/bitcoin/
https://coin.market/exchanges
https://coiniq.com/cryptocurrency-exchange-hacks/
https://selfkey.org/list-of-cryptocurrency-exchange-hacks/
https://selfkey.org/list-of-cryptocurrency-exchange-hacks/
https://blog.idex.io/all-posts/a-complete-list-of-cryptocurrency-exchange-hacks-updated/#2020
https://blog.idex.io/all-posts/a-complete-list-of-cryptocurrency-exchange-hacks-updated/#2020
https://bitcoin.org/en/scams
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures

220 J. Eisentraut et al.

3
Bitcoin

unencrypted

4
steal from
cold wallet

5
encrypt storage

6
use external storage

1
printout

2
token

OR user’s computer

NOT NOT

AND AND

OR theft7
bug ECSDA

8
quantum
computing

OR
attack
key9

insider
attack

10

outsider
attack

OR
attack
wallet

11

insider
attack

12

outsider
attack

OR
attack

exchange

13

fake
services

14

bug in
blockchain code

OR
attack
service

OR

transfer Bitcoin

Fig. 2. A subtree representing attacks on the user side

Time Series Analysis. To reliably estimate the probabilities for successful
attacks within the next year to come, we use exponential smoothing to compute
the probabilities for basic events. Then, we compute the overall success probabil-
ity in the ADT model using standard bottom-up approaches [24,27,33] for ADT.
Exponential smoothing is a statistical method used in time series analysis that
allows to predict the likelihood of future occurrences of an event at a specific
point in time from the history of past occurrences. The further an occurrence
lies in the past, the less influence it has on the forecast. In fact, its weight in the
computation decays exponentially over time, so more recent occurrences have a
much higher impact. For our model, this means that attacks only common in
the early stage of Bitcoin have a significantly smaller success probability than
currently popular attacks.

Since information on attacks has been only recorded annually and not at
block level, we approximate the probability of occurrence of a basic event b per
block within a given year k by

Fb,k :=
#attacks b in year k

#blocks in year k
h

Assessing Security of Crypto-Currencies with Attack-Defense Trees 221

From the given information of the years 2010 to 2020, we predict the occur-
rence probabilities of events for all years until 2021. In the following, let
k ∈ {1, 0,−1, . . . ,−10}, with k = 1 corresponding to the year 2021 (the pre-
dicted year) and 0 to −10 to the years 2020 to 2010, respectively.

Now, considering Fb,k as a time series, we can compute an estimate of Fb,1,
i.e. for the year 2021, using exponential smoothing.

Let F∗
b,k denote the estimate of Fb,k. Then, we define for k ∈ {1, 0, . . . ,−9},

(following the standard definition of exponential smoothing),

F∗
b,k := ηFb,k−1 + (1 − η)F∗

b,k−1 = F∗
b,k−1 + η(Fb,k−1 − F∗

b,k−1) (1)

with initial estimate F∗
b,−10 := Fb,−10. Note that this equation can be seen as

updating the estimate by adding a fraction of the estimation error in each time
step.

Additionally, we need to choose a suitable smoothing parameter η ∈ (0, 1).
Overfitting can be avoided by choosing a smaller smoothing parameter, whereas
choosing η closer to 1 gives more weight to recent data, thus avoiding underfit-
ting. The optimal smoothing parameter can be chosen by minimizing the mean
squared error (MSE) or the mean absolute error (MAE) of past predictions com-
pared to the actual data. For the following data sets, we have used a grid search
determining the optimal smoothing parameter η both with respect to the MSE
and the MAE. To avoid over- or underfitting, the value closer to 0.5 is chosen as
the final smoothing parameter.

Predicting Success Probabilities for Attacks on Exchanges. A typical
event for which success probabilities can be predicted with this method are
attacks on exchanges. From the statistics in Table 1 and the predictions derived
using Eq. (1), we can satisfactorily forecast a success probability as follows.
Assuming an average block time of 7 m 43 s, there are roughly 365·24·60

7.7 ≈ 68260
blocks per year. Assuming the hacks occur independently, we arrive at the
approximate success probability of 8.434

68260·69 ≈ 1.79 · 10−6 per block for a suc-
cessful hack in 2021 (assuming all money is stored in only one of the 69
active exchanges). For the year 2021, we arrive at the success probability of
1 − (1 − (8.434

68260·69))68260 ≈ 0.115 for a successful hack. As publicly available data
does not allow to sufficiently distinguish between inside and outside attacks
in this case, we predict the success probability for the composed event attack
exchanges.

Predicting Success Probabilities for Bugs in Blockchain Code. Another
attack vector of the model, where success probabilities can adequately be pre-
dicted from statistics with exponential smoothing, is using bugs in the Bitcoin
blockchain implementations (basic event bugs in blockchain code (event (15) in
Fig. 2). In fact, more than 40 bugs were found during the past nine years (detailed
statistics can be found in Table 2). Using statistics on common vulnerabilities

222 J. Eisentraut et al.

Table 1. Number of hacks per year on major exchanges since the launch of Bitcoin
and our (rounded) prediction using exponential smoothing with η = 0.612 minimizing
the MSE (where the actual number of 2020 counts events until September)

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Prediction 0 1.224 3.535 3.820 7.602 6.010 4.780 4.915 8.639 10.696 8.434

Actual 0 2 5 4 10 5 4 5 11 12 7

in Bitcoin9 and exponential smoothing, we estimate the success probability per
block for a bug to occur by 4.695

68260 ≈ 6.88 · 10−5. Per year, the chance that a bug
occurs is almost 1. However, none of the bugs so far have been exploited.

Table 2. Number of bugs per year in the bitcoin protocol since the launch of Bitcoin
and our (rounded) prediction using exponential smoothing with η = 0.423 minimizing
the MAE (where the actual number of 2020 counts events until December)

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Predicition 5 3.308 5.293 7.707 5.293 3.900 3.519 2.877 3.352 4.472 4.695

Actual 5 1 8 11 2 2 3 2 4 6 5

Success Probability for Human Errors. Another category of basic events
in Fig. 2 includes all those in which human inadvertencies or misconduct play a
critical role. For instance, people may fall for fraud, fake service (event (14)), act
unsafely (printout of keys or insecure storage of the security token (events (1)
and (2))), or insider and outsider attacks are conducted. Here, on the one hand,
we can rely on recent insight in the field of software psychology (for an overview,
see [17]) for the modeling process. On the other hand, internal statistics or
estimates of the client need to provide additional information. As our model
is a proof-of-concept and not tailored towards a specific client, we set these
probabilities to 0.

Success Probabilities for Remaining Events. To quantify the success prob-
ability of the remaining basic events (combination of events (9) and (10) to attack
wallet) in this category, we mostly rely on a survey among 990 Bitcoin users con-
ducted in 2016 by [30] (to the best of our knowledge, there is no more recent user
experience study also assessing security issues). It reports that 22.5% of users
have already experienced Bitcoin loss until 2016. Most Bitcoin losses are due to
user faults such as a formatted hard drive or lost keys, followed by hardware
and software failures, which we do not consider here. However, about 18% of
9 https://en.bitcoin.it/wiki/Common Vulnerabilities and Exposures, visited

13/12/2020.

https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures

Assessing Security of Crypto-Currencies with Attack-Defense Trees 223

the users who have lost Bitcoin claim that their loss is the result of hacks or
malware.

Additionally, in our example, an attacker might get access to the wallet by
retrieving the private key used for signing transaction messages. With it, they
can pretend to be the legitimate user, controlling their credit without them even
knowing. Similarly, quantum computing can be used to attack the Elliptic Curve
Digital Signature Algorithm (ECDSA) (event (8)), i.e., the algorithm that is used
to sign transactions in Bitcoin.

Digital signatures in Bitcoin are very vulnerable to quantum attacks since
their security relies on discrete logarithms. With Shor’s algorithm [41] discrete
logarithms can be solved in polynomial runtime on quantum computers, provid-
ing an exponential speed-up in comparison to classical computers. In general, the
probability that such an attack actually happens within a specific time frame
cannot be quantified reliably, as the technological development cannot be fore-
cast precisely enough. In our example, we assume a probability of 0 that within
one year practical quantum computing attacks on ECDSA happen.

Overall Analysis of Success Probabilities. While we computed the success
probabilities of single basic events using time series analysis by hand, we use
the bottom-up analysis of the ADTool 2.0 [15] to compute the overall success
probability.10 In this way, we have predicted the overall success probability that
Bitcoin are stolen from a user within the next year. For 2021, we predict a chance
of 0.07 to be a victim of a successful attack. Assuming the success probability
to be 0.07 in every year since 2010, the success probability for an attack within
these 10 years is even 1 − (1 − 0.07)10 ≈ 0.52. So even the comparatively small
success probabilities for each basic event per block creation reduce the long-term
security of an investment in Bitcoin drastically.

Quantitative Validation. The predicted 7% chance of being affected by an
attack in 2021 thus translates to the probability of not being a victim of a
successful attack within one year being (1−0.07)1 = 0.93 and within three years
(1 − 0.07)3 = 0.80. As discussed above, the only survey querying users for never
being a victim of a successful attack is [30] with most users using Bitcoin between
one and three years in 2015, reporting 0.95. While this number indicates slightly
higher security than the predicted interval [0.8, 0.93], this is to be expected since
the number of hacks was lower back in 2013–2015. Unfortunately, we cannot
give our “prediction” for the 2015 setting (to faithfully compare to [30]) since
our prediction heavily depends on the number of active exchanges, which is only
available for the current moment but not (publicly) archived for past years. For
a more reliable validation, either the old statistics or a new survey would be
needed.

10 To unify the representation of the attack-defense trees, we replaced countermeasure
relations used in the ADTool with the operators AND and NOT.

224 J. Eisentraut et al.

Discussion. Various assumptions are underlying the findings in this section.
Firstly, we assumed the input data (in this case the probabilities, but the same
might hold true for costs) to be perfect. However, exponential smoothing and
other statistical methods in general do not yield perfect estimates. The best we
can hope for is to quantify the uncertainty. In Sect. 8, we discuss how bounding
uncertainty on attack trees might work and what kind of future work remains
open.

5.2 Vendor Attacks: Deriving Different Courses of Known Attacks

In security analyses, discovering new attacks plays a crucial role. A widespread
criticism of model-based analyses is that models cannot be used to detect com-
pletely unknown bugs or attacks (since one can only analyze what has been
thought of previously). We believe that attack trees still have their merits here
because a lot of the recent infamous hacks were not carried out with new zero-
day exploits but rather with known attacks applied in different contexts. Attack
trees might help here to detect known vulnerabilities in new systems. Addition-
ally, attack trees can also be used to derive different courses of known attacks.

Description of Double Spending Attack. So-called Double Spending Attack
perfectly illustrates our point: In the course of two years, several variations of
double spending attacks have been found and published independently of each
other, while in fact they are – from a modeling perspective – the same attack.
We think ADT modeling and analysis can make a contribution here in the future
by speeding up the discovery of attacks significantly. Since ADT are a formalism
that can also be used by domain experts who are not formal methods experts
this insight is all the more important.

Double Spending Attacks are aimed towards vendors and have the goal to
obtain goods without paying for them, i.e., tricking the vendor into accepting
an illegal transaction. In general, they follow the course of actions which is rep-
resented in Fig. 3. First, the attacker issues a transaction t1 (event (1)), for
instance, to a vendor, and this transaction is then confirmed by some miners
(event (2)). Since it is confirmed, the vendor provides its service to the attacker
(event (3)). The attacker issues a second transaction t2, in which the same Bit-
coin as in t1 are spent (event (9)). The transaction is added to a new block to the
blockchain. This either happens by some other miners accepting t2, who include
the transaction in their next block (events (5) and (6)), or by the attacker him-
self proposing a new block (event (7)). It is important that the transaction t2
is confirmed after the vendor provides its service. The whole attack can only
succeed if no block containing t1 is added to the blockchain (event (8)). The
vertex labeled with IFN11 represents the overall goal.

We omitted a trigger relation from the vertex labeled with TR∗ to event (8)
for a clearer graphical representation. To construct the model, we only used
11 Notational sugar for an event that turns out true if its first input turns true and the

second one is either attempted unsuccessfully or not attempted at all.

Assessing Security of Crypto-Currencies with Attack-Defense Trees 225

1

2

3

5

4

6 7

8

9

TR

TR∗

TR

TR

TR

SAND

OR

IFN

Event
1 issue t1
2 miners accept t1
3 provide service
4 send t2 to miners
5 miners accept t2
6 block including t2
7 mine block including t2
8 block including t1
9 issue t2

Fig. 3. A subtree representing double spending attacks, where the vendor corresponds
to the defender and miners accepting transactions are purely time-driven.

the general description of how to perform a Double Spending Attacks from [10]
and several variants on how to add blocks containing certain transactions to the
blockchain.

In [10], several variants of double spending such as the Finney Attack and the
Brute-Force Attack are discussed. The authors state that a (plain) Double Spend-
ing Attack occurs if two conflicting transactions (events (1) and first (9), then (4))
are issued in rapid succession, some miners accept t1 and others accept t2, but
finally a block containing t2 is added in the main blockchain. For the Finney
attack, transaction t1 is issued, but the attacker privately premines a block con-
taining t2, never plays event (4) and hopes to be able to issue it before a block
containing t1 is added to the blockchain. Finally, for a Brute-Force Attack the
attacker privately mines on a larger blockchain fork, i.e., still issues transaction t1
first, but would repetitively execute event (9) and (7) and does not play (4).

Qualitative Validation. In the model, the Double Spending Attack and the
Finney attack are just different winning strategies (for the attacker), i.e., when
using a timed approach like [4,13]12 to compute winning strategies, by modeling
one of these attacks (together with basic Bitcoin functionality), we obtain the
other attack by enumerating several winning strategies. Hence, strategy compu-
tation can be used to detect different variants of attacks.

12 The approach in [4] is applicable to models containing TR since both operators rely
on causal effects, a straight-forward restructuring is sufficient.

226 J. Eisentraut et al.

6 Current Limits of Modeling Economic Risks with ADT

To fully comprehend the economic risk when investing in Bitcoin, the analy-
sis methodology needs to incorporate aspects which currently cannot be repre-
sented satisfactorily with ADT. In this section, we exemplarily discuss three such
limitations. First, we discuss how satisfactorily detailed models cannot be suffi-
ciently analyzed. Then, we show how real-world instabilities in exchange courses
threaten the validity of our results. Finally, we present different interdependen-
cies, which cannot be expressed in ADT so far.

Refinement of Events. Models can be made more precise by taking further
information into account. For instance, the neutral events (2) and (5) in Fig. 3
can be replaced with a more detailed ADT considering how hardware acquisition
and distribution of computing power influence the overall acceptance probability
of new Bitcoin forks. For details and an example, see Appendix B. While more
detailed models can be more accurate, they are also larger and, in particular, fea-
ture more basic events. Consequently, scalability issues may arise. In particular,
the game-theoretic approach, which is needed to derive different winning strate-
gies and thus different courses of attacks, currently does not scale well with the
increasing number of basic events. As a cheaper alternative, the standard bottom-
up analysis may be used to compute at least the sets of basic events leading to
a successful attack, which might be sufficient in simpler contexts [24,27,33].

Financial Instability. A cryptocurrency-based monetary system is subject to
the same forces of financial instability as the current fiat system. When analyz-
ing the effects of the global financial crises on cryptocurrencies, one needs to
differentiate between short-term and long-term effects. At the beginning of the
financial crisis, people would try to sell their cryptocurrencies to, instead, buy
as many tangible goods as possible. However, in the long term, the value of cryp-
tocurrencies might increase due to the public’s lost trust in both the banks and
the government, and strive for decentralization; which is one of the very reasons
why Bitcoin was invented [11].

Due to this instability, any approach to quantify the total loss in terms of any
fiat currency (such as dollars) rather than Bitcoin (the number of Bitcoin lost
due to an attack is dependent on the attack, but not the value of Bitcoin) needs
to be repeatedly monitored. Additionally, changes in the exchange rate of Bitcoin
might change the success probability of some attack steps such as bribing miners
or bugs if their execution poses the threat of losing the block reward. Hence, the
instability leads to a situation in which real-world events should (automatically)
trigger a rerun of the analysis, which has not been studied so far to the best of
our knowledge.

Malicious Network Providers. Having access to all technical parts of a net-
work, the network provider can control the communication channels and thus

Assessing Security of Crypto-Currencies with Attack-Defense Trees 227

deprive certain users from participating in the blockchain by excluding them
from the communication with other users. Thus, the provider might effectively
deny users access to necessary information. Such an intervention can facilitate
51%-attacks (see Appendix B) if honest nodes are excluded from the blockchain
(since a lower number of malicious nodes is sufficient to form a majority).

To counter this attack, it is necessary to choose network providers wisely.
However, the definition of a wise choice itself might be a complex economic
decision (trade-off between costs for a suitable network provider vs. projected
long-term loss through this attack). Hence, these two events have an interdepen-
dency, which attack trees are not capable of representing.

7 Future Challenges

In this section, we discuss what kind of future work remains open to build a
complete methodology around attack trees and their extensions incorporating
specific domain knowledge.

Overarching Notation for a Holistic Security Analysis. Model-based secu-
rity analyses allow taking security into account right from the beginning and anal-
ysis results can be used to secure the structure of the system. For DLT, checking
the design of new applications against all known vulnerabilities in this area can
improve their security. To this end, an overarching notation like attack trees
can facilitate analysis and verification of security-critical systems by providing
a domain-independent, extensible model which can be used to verify the system
design. In Sect. 4, we combined the results of papers, each addressing one spe-
cific security issue and text-based reviews giving an overview on the most recent
developments into just a few models. For us, these models served as an overar-
ching notation which allows to combine the results of these previous approaches
into one overall result. However, we have identified the following points that need
to be addressed first to make the notation really convenient. Manual construc-
tion of models can be tedious and error-prone, which is already stated in [16].
We believe that automated generation of attack trees needs to tackle existing
sources such as common vulnerability and exposure (CVE) databases, natural-
language security guidelines or protocol specifications. Any kind of learning some
other sort of models – as suggested in [16] – just defers the workload for the
construction of the model.

Compositional and Interdependent Analysis of Attack Trees. Composi-
tional and incremental attack tree analyses need to be extended, allowing us, for
instance, to carry forward results if models slightly change. This extends the idea
of refinement-aware models of [16] to the analysis side (rather than to the gener-
ation side only). Compositional semantics are already quite frequent [1,2,22,31].
However, to the best of our knowledge, there is no work on incremental attack
tree analysis taking the results of previous analyses on similar attack trees into
account. Additionally, we identified event interdependencies beyond clear causal
relations such as trigger and reset, which cannot be represented satisfactorily

228 J. Eisentraut et al.

in most attack trees or their extensions. In more detail, these relations require
to model that trade-off decisions at one vertex in the tree influence trade-off
decision at another vertex and vise-versa. We discussed an example of these
interdependencies in Sect. 6.

Building upon iterative and incremental attack tree analysis, there is also the
need for automatic recomputations and changes to quantitative values triggered
by outside events.

Bounding Uncertainty. In practice, there can be various sources of uncertainty
in attack tree models. In quantitative approaches, quantitative inputs are often
used to model one kind of uncertainty. While information on the cost, block
time, exchange courses and attacks are closely tracked for Bitcoin and other
cryptocurrencies, the success probabilities and costs we presented in Subsect. 5.1
are only estimates. Hence, there is a second kind of uncertainty. The best we can
hope for is to quantify the uncertainty of the quantitative inputs. The authors
of [16] mention that data validation is important in quantitative analysis. We see
a need for more than just data validation and a need for bounding uncertainty
in qualitative analyses. We can enhance quantitative analysis, for instance, by
using probably approximately correct data or by using fuzzy numbers as in fault
trees [38] to aggregate conflicting estimates of quantitative data. However, there
are only a few approaches dealing with uncertainty [7,36,37] in attack trees. None
of these methods can give formal guarantees on the degree of uncertainty and
deal with uncertain inputs. To make attack trees and other risk analysis methods
more amenable for practice, bounding uncertainty in attack tree analysis needs
to be addressed further.

Even if there are no quantities, uncertainty may play a role, for instance,
if the precise structure of the tree or the effect of successful attack steps are
unknown. In fault trees, there has been work done on noisy gates [5] capturing
these uncertainties. However, to the best of our knowledge, there is no compara-
ble work for attack trees. If domain (but non-security) experts (for Bitcoin, for
instance, traders) need to contribute to the attack tree to capture the complete
security-critical system, noisy gates or trees might be important to systematically
include expert knowledge from non-security experts.

Detailed Attack Statistics. To bound uncertainty, a clear tracking of potential
attack steps and of successful attacks (at best, in a blockwise fashion) is neces-
sary, too. Our derivations, for instance, of the success probability for attacks on
exchanges in Subsect. 5.1 suffered from such a lack of well-documented attacks.

Human Comprehensibility. Human interactions with computer systems play
a crucial role in security because insider attacks or human mistakes (like choosing
weak passwords) always represent a security threat. To effectively communicate
boundary conditions for the security of the system, attack trees might serve
as one easily understandable human-readable notation. To verify this hypothe-
sis, user studies are necessary. These studies might also reveal further ideas for
improvements on readability. [16] discusses these aspects in detail. An additional
challenge (not discussed in [16]) for any security methodology using attack trees

Assessing Security of Crypto-Currencies with Attack-Defense Trees 229

is how to deal with assumptions, which need to be met for the analysis to be valid.
It is not only unclear how assumptions can be systematically derived but also
how to represent them understandably. The first issue arises since practitioners
need to become aware of these assumptions in the first place. Hence, we also need
user studies determining a good process to derive and examine understandable
representations.

8 Conclusion

In this paper, we provided a proof-of-concept model for the security analysis of
DLT using attack-(defense) trees. We demonstrated how realistic success proba-
bilities for basic attacks can be derived from available statistics using time series
analysis. Additionally, we demonstrated how to derive unknown courses of known
attacks using strategy synthesis. While ADT represent attacks sufficiently in gen-
eral, challenges arise for practical holistic security analyses: Firstly, automated
generation of attack-defense trees from DLT protocols is necessary to facilitate
the analysis of further DLT applications. Additionally, attack statistics need to
be more detailed for reliable prediction. Secondly, user studies need to be con-
ducted to find out how to make attack trees even more accessible for domain (but
non-security) experts. Additionally, reliable surveys and user studies need to be
done to obtain quantitative information on common user mistakes. These results
will be applicable to other attack-defense tree models. Finally, more research on
bounding the uncertainty in attack-defense tree analysis needs to be done.

Acknowledgments. This research was funded in part by the Studienstiftung des
deutschen Volkes project “Formal methods for analysis of attack-defence diagrams”,
the Software Campus project “ProSec” and the German Research Foundation (DFG)
project KR 4890/2-1 “Statistical Unbounded Verification”.

A Eclipse Attacks

Eclipse Attacks are a form of attack studied in [21]. A malicious party monop-
olizes all incoming and outgoing connections of a single node, which isolates
the node from the rest of the network. Since the Bitcoin blockchain is saved in a
decentralised way on many different nodes and needs exchange to become a valid
Bitcoin view, the attacker can now let the victim believe in other Bitcoin forks,
which are not generally agreed on or even use the victim’s computing power for
its own malicious behaviour. The authors of [21] estimate the likelihood of such
an attack. Sybil Attack describes the process, in which an attacker creates fake
identities who appear to be unique users to all other instances in the network,
but in fact are controlled by a single malicious node with enough computing
power. The malicious user can then influence democratic decisions within the
network through additional voting power. This is not a problem for Bitcoin.
However, these fake or sybil nodes may disconnect honest users from the net-
work and thus, facilitate double spending attacks. Routing Attacks are another

230 J. Eisentraut et al.

form of attacks performed on the network level. They are mainly based on an
attacker intercepting with route advertisement on the network itself. Routing
attacks also aim at isolating certain nodes from the network.

B Detailed Description of 51% Attacks

In this section, we give a detailed ADT for the 51% Attack, which refers to a
scenario in which the attacker controls more than 50% of the network’s overall
hashing rate. This power can be used to delay confirmation of specific trans-
actions on purpose and to facilitate double spending. In Fig. 4, we depict one
possible way to model a 51% attack. We use event (1) due as a replacement
for several events corresponding to bribing the biggest mining pools. To bribe a
miner, the bribe must be higher than the expected block reward and transaction
reward within the time frame.

Additionally, miners group up in pools to combine their hash power and
thereby reduce the volatility of their income in exchange for a small fee paid
to the pool manager. This behavior counteracts the concept of decentralization
Bitcoin is founded on and increases its vulnerability to attacks such as DoS
attacks and 51% attacks (event (3) in Fig. 4). About 80% of all blocks are mined
by Chinese miner pools13 and the biggest mining pool BTC.com accomplishes
15% of Bitcoin blocks14. This concentration of miners renders Bitcoin susceptible
to Chinese regulation and energy policy. Power outages (event (4)) and the loss of
the internet (event (5)) connection thus facilitate 51% attacks (if many miners
are out of service, an attacker might suddenly possess more than 50% of the
overall computing power across all active miners). Depending on the downtime,
an attacker can more easily issue double-spending attacks by confirming his
own malicious transactions. Since about 80% of the overall computing power is
hold by Chinese miners, we have overestimated the increase in computing power
by taking the computer power of the largest mining pools outside of China if
all Chinese mining pools cannot contribute to the Bitcoin blockchain anymore.
This is a clear overestimate since most of the mining pools have servers and
contributors outside of China.

Chip Miners buy their chips based on two major criteria: the Hashrate and
power consumption since the first determines how often miners might find a
nonce while the other determines the money computing costs. Miners buy what-
ever is available on the market and based on the best performance regarding
those two criteria. A possibility is that big chip companies, e.g. Asic, already
are in possession of better chips than the chips they are currently selling. If
companies held back inventions and use those for mining, they could control the
network and issue a 51% attack (event (2)). However, companies are unlikely
to conduct this procedure as they, likely, earn high revenues by selling their
products.

13 https://www.buyBitcoinworldwide.com/mining/pools/, visited 17/04/2019.
14 https://www.blockchain.com/en/pools?timespan=4days, visited 17/04/2019.

https://www.buyBitcoinworldwide.com/mining/pools/
https://www.blockchain.com/en/pools?timespan=4days

Assessing Security of Crypto-Currencies with Attack-Defense Trees 231

We use two cost variables – one to accumulate the money an attacker needs
to spend for a successful attack and one to accumulate the computing power he
has acquired so far. Hence, we label basic events not only with costs, but also
with a second cost resource corresponding to the percentage of computing power
the attacker gains. Various defender’s and random events may also influence
this variable – such as power outages or failures on the internet connection
of large mining pools, which we discuss further down. Advances in quantum
computing change the likelihood of 51% attacks since the Grover Algorithm [44]
provides a quadratic speed-up in comparison to classical computers in inverting
cryptographic hash functions by performing a faster search through unsorted
lists. Hence, nonces can be found more efficiently.

1

bribe miner,
0.07M,<20

2

mining hardware,
15M,?

3

join pools,
?,50

4

power outage,
1M,52

5

internet connection,
1M,52

COST

C > 50

NOT

REOR

Fig. 4. A subtree depicting how to acquire more than 50% of the overall network
computing power, where each vertex is labeled with its monetary cost as well as the
fraction of computing power C acquired. We mark values that we cannot reliably
estimate, with a question mark.

References

1. André, É., Lime, D., Ramparison, M., Stoelinga, M.: Parametric analyses of attack-
fault trees. In: 2019 19th International Conference on Application of Concurrency
to System Design (ACSD), pp. 33–42. IEEE (2019)

2. Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis
of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 285–
305. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-8 16

3. Aslanyan, Z., Nielson, F.: Model checking exact cost for attack scenarios. In: Maf-
fei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 210–231. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6 10

4. Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of
attack-defence scenarios. In: CSF, pp. 105–119 (2016). https://doi.org/10.1109/
CSF.2016.15

https://doi.org/10.1007/978-3-642-54792-8_16
https://doi.org/10.1007/978-3-662-54455-6_10
https://doi.org/10.1109/CSF.2016.15
https://doi.org/10.1109/CSF.2016.15

232 J. Eisentraut et al.

5. Bobbio, A., Portinale, L., Minichino, M., Ciancamerla, E.: Improving the analysis
of dependable systems by mapping fault trees into Bayesian networks. Reliab. Eng.
Syst. Saf. 71(3), 249–260 (2001)

6. Bossuat, A., Kordy, B.: Evil twins: handling repetitions in attack–defense trees. In:
Liu, P., Mauw, S., Stølen, K. (eds.) GraMSec 2017. LNCS, vol. 10744, pp. 17–37.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74860-3 2

7. Buoni, A., Fedrizzi, M., Mezei, J.: A Delphi-based approach to fraud detection
using attack trees and fuzzy numbers. In: Proceeding of the IASK International
Conferences, pp. 21–28 (2010)

8. Chatterjee, K., Goharshady, A.K., Ibsen-Jensen, R., Velner, Y.: Ergodic mean-
payoff games for the analysis of attacks in crypto-currencies. arXiv preprint
arXiv:1806.03108 (2018)

9. Chatterjee, K., Goharshady, A.K., Velner, Y.: Quantitative analysis of smart con-
tracts. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 739–767. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89884-1 26

10. Conti, M., Kumar, E.S., Lal, C., Ruj, S.: A survey on security and privacy issues
of bitcoin. Commun. Surv. Tutor. 20(4), 3416–3452 (2018)

11. Danielsson, J.: Cryptocurrencies: policy, economics and fairness. Systemic Risk
Centre Discussion Paper 86 (2018)

12. Edge, K.S., Raines, R.A., Grimaila, M.R., Baldwin, R.O., Bennington, R.W.,
Reuter, C.E.: The use of attack and protection trees to analyze security for an
online banking system. In: Systems Science (HICSS), p. 144 (2007). https://doi.
org/10.1109/HICSS.2007.558

13. Eisentraut, J., Křet́ınský, J.: Expected cost analysis of attack-defense trees. In:
Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 203–221. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30281-8 12

14. Fraile, M., Ford, M., Gadyatskaya, O., Kumar, R., Stoelinga, M., Trujillo-Rasua,
R.: Using attack-defense trees to analyze threats and countermeasures in an ATM:
a case study. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP,
vol. 267, pp. 326–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48393-1 24

15. Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S., Trujillo-Rasua, R.:
Attack trees for practical security assessment: ranking of attack scenarios with
ADTool 2.0. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp.
159–162. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4 10.
http://dx.doi.org/10.1007/978-3-319-43425-4 10

16. Gadyatskaya, O., Trujillo-Rasua, R.: New directions in attack tree research: catch-
ing up with industrial needs. In: Liu, P., Mauw, S., Stølen, K. (eds.) GraMSec 2017.
LNCS, vol. 10744, pp. 115–126. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74860-3 9

17. Gheyas, I.A., Abdallah, A.E.: Detection and prediction of insider threats to cyber
security: a systematic literature review and meta-analysis. Big Data Anal. 1(1), 6
(2016). https://doi.org/10.1186/s41044-016-0006-0

18. Grishchenko, I., Maffei, M., Schneidewind, C.: Foundations and tools for the static
analysis of ethereum smart contracts. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10981, pp. 51–78. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96145-3 4

19. Gulhane, A., et al.: Security, privacy and safety risk assessment for virtual real-
ity learning environment applications. In: Consumer Communications Networking
Conference (CCNC), pp. 1–9, January 2019. https://doi.org/10.1109/CCNC.2019.
8651847

https://doi.org/10.1007/978-3-319-74860-3_2
http://arxiv.org/abs/1806.03108
https://doi.org/10.1007/978-3-319-89884-1_26
https://doi.org/10.1109/HICSS.2007.558
https://doi.org/10.1109/HICSS.2007.558
https://doi.org/10.1007/978-3-030-30281-8_12
https://doi.org/10.1007/978-3-319-48393-1_24
https://doi.org/10.1007/978-3-319-48393-1_24
https://doi.org/10.1007/978-3-319-43425-4_10
http://dx.doi.org/10.1007/978-3-319-43425-4_10
https://doi.org/10.1007/978-3-319-74860-3_9
https://doi.org/10.1007/978-3-319-74860-3_9
https://doi.org/10.1186/s41044-016-0006-0
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1109/CCNC.2019.8651847
https://doi.org/10.1109/CCNC.2019.8651847

Assessing Security of Crypto-Currencies with Attack-Defense Trees 233

20. Hamilton, J.D.: Time Series Analysis, vol. 2. Princeton University Press, Princeton
(1994)

21. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: 24th USENIX Security Symposium (USENIX Security
15), pp. 129–144 (2015)

22. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence dia-
grams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 163–185.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-0 9. http://
dx.doi.org/10.1007/978-3-662-49635-0 9

23. Hong, J.B., Kim, D.S., Chung, C.J., Huang, D.: A survey on the usability and
practical applications of graphical security models. Comput. Sci. Rev. 26, 1–16
(2017)

24. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

25. Joshi, A.P., Han, M., Wang, Y.: A survey on security and privacy issues of
blockchain technology. Math. Found. Comput. 1(2), 121–147 (2018)

26. Karray, K., Danger, J.-L., Guilley, S., Abdelaziz Elaabid, M.: Attack tree con-
struction and its application to the connected vehicle. In: Koç, Ç.K. (ed.) Cyber-
Physical Systems Security, pp. 175–190. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-98935-8 9

27. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19751-2 6 http://dl.acm.org/citation.cfm?id=1964555.1964561

28. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: don’t miss the forest for the attack trees. CoRR abs/1303.7397 (2013).
http://arxiv.org/abs/1303.7397

29. Kordy, B., Wide�l, W.: On quantitative analysis of attack–defense trees with
repeated labels. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp.
325–346. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6 14

30. Krombholz, K., Judmayer, A., Gusenbauer, M., Weippl, E.: The other side of
the coin: user experiences with bitcoin security and privacy. In: Grossklags, J.,
Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 555–580. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54970-4 33

31. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: HASE, pp. 25–32 (2017). https://doi.org/10.1109/HASE.2017.12

32. Lin, I.C., Liao, T.C.: A survey of blockchain security issues and challenges. IJ Netw.
Secur. 19(5), 653–659 (2017)

33. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17. http://dx.doi.org/10.1007/11734727 17

34. McQueen, M.A., Boyer, W.F., Flynn, M.A., Beitel, G.A.: Quantitative cyber risk
reduction estimation methodology for a small SCADA control system. In: Confer-
ence on System Sciences (HICSS), HICSS 2006, Washington, DC, USA, p. 226.
IEEE Computer Society (2006). https://doi.org/10.1109/HICSS.2006.405. http://
dx.doi.org/10.1109/HICSS.2006.405

35. Mediouni, B.L., Nouri, A., Bozga, M., Legay, A., Bensalem, S.: Mitigating security
risks through attack strategies exploration. In: Margaria, T., Steffen, B. (eds.)

https://doi.org/10.1007/978-3-662-49635-0_9
http://dx.doi.org/10.1007/978-3-662-49635-0_9
http://dx.doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-98935-8_9
https://doi.org/10.1007/978-3-319-98935-8_9
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
http://dl.acm.org/citation.cfm?id=1964555.1964561
http://arxiv.org/abs/1303.7397
https://doi.org/10.1007/978-3-319-89722-6_14
https://doi.org/10.1007/978-3-662-54970-4_33
https://doi.org/10.1109/HASE.2017.12
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
http://dx.doi.org/10.1007/11734727_17
https://doi.org/10.1109/HICSS.2006.405
http://dx.doi.org/10.1109/HICSS.2006.405
http://dx.doi.org/10.1109/HICSS.2006.405

234 J. Eisentraut et al.

ISoLA 2018. LNCS, vol. 11245, pp. 392–413. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03421-4 25

36. Mezei, A.B., Mario Fedrizzi, J.: Combining attack trees and fuzzy numbers in a
multi-agent approach to fraud detection. Int. J. Electron. Bus. 9(3), 186–202 (2011)

37. Pekergin, N., Tan, S., Fourneau, J.-M.: Quantitative attack tree analysis: stochas-
tic bounds and numerical analysis. In: Kordy, B., Ekstedt, M., Kim, D.S. (eds.)
GraMSec 2016. LNCS, vol. 9987, pp. 119–133. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46263-9 8

38. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

39. Salter, C., Saydjari, O.S., Schneier, B., Wallner, J.: Toward a secure system engi-
neering methodology. In: New Security Paradigms (NSPW), New York, NY, USA,
pp. 2–10. ACM (1998). https://doi.org/10.1145/310889.310900. http://doi.acm.
org/10.1145/310889.310900

40. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

41. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

42. Sompolinsky, Y., Zohar, A.: Bitcoin’s security model revisited. arXiv preprint
arXiv:1605.09193 (2016)

43. Wide�l, W., Audinot, M., Fila, B., Pinchinat, S.: Beyond 2014: formal methods for
attack tree-based security modeling. ACM Comput. Surv. 2(4), 75:1–75:36 (2019).
https://doi.org/10.1145/3331524. http://doi.acm.org/10.1145/3331524

44. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60, 2746–
2751 (1999). https://doi.org/10.1103/PhysRevA.60.2746. https://link.aps.org/doi/
10.1103/PhysRevA.60.2746

https://doi.org/10.1007/978-3-030-03421-4_25
https://doi.org/10.1007/978-3-030-03421-4_25
https://doi.org/10.1007/978-3-319-46263-9_8
https://doi.org/10.1007/978-3-319-46263-9_8
https://doi.org/10.1145/310889.310900
http://doi.acm.org/10.1145/310889.310900
http://doi.acm.org/10.1145/310889.310900
https://doi.org/10.1007/978-3-662-54970-4_30
http://arxiv.org/abs/1605.09193
https://doi.org/10.1145/3331524
http://doi.acm.org/10.1145/3331524
https://doi.org/10.1103/PhysRevA.60.2746
https://link.aps.org/doi/10.1103/PhysRevA.60.2746
https://link.aps.org/doi/10.1103/PhysRevA.60.2746

Compositional Analysis of Protocol Equivalence
in the Applied π-Calculus Using Quasi-open

Bisimilarity

Ross Horne , Sjouke Mauw , and Semen Yurkov(B)

Department of Computer Science, University of Luxembourg,
Esch-sur-Alzette, Luxembourg
semen.yurkov@uni.lu

Abstract. This paper shows that quasi-open bisimilarity is the coarsest bisim-
ilarity congruence for the applied π-calculus. Furthermore, we show that this
equivalence is suited to security and privacy problems expressed as an equiva-
lence problem in the following senses: (1) being a bisimilarity is a safe choice
since it does not miss attacks based on rich strategies; (2) being a congruence it
enables a compositional approach to proving certain equivalence problems such
as unlinkability; and (3) being the coarsest such bisimilarity congruence it can
establish proofs of some privacy properties where finer equivalences fail to do so.

Keywords: Cryptographic calculi · Bisimilarity · Security · Privacy ·
Compositionality

1 Introduction

The applied π-calculus [2,5] is a generalisation and extension of the π-calculus [37]
useful for verifying security and privacy properties of cryptographic protocols. Some
security and privacy properties may be expressed as an equivalence problem, for
instance by comparing the actual protocol to an idealised specification that trivially sat-
isfies the desired property [8,23,24,28,33]. This paper employs good-practice princi-
ples for designing process equivalences for cryptographic calculi. We define two equiv-
alences: one based on testing and another based on labelled transitions. The two equiv-
alences are proven to coincide; thereby establishing that observables represented by the
labels on transitions capture all relevant information about all testing contexts. This
paradigm is suited to cryptographic calculi, where the testing environment contains
attackers that can be inserted into a network without direct access to key material and
other secrets, yet may violate security and privacy requirements of a protocol. By using
an equivalence based on labelled transitions for cryptographic calculi we learn that we
do not need to know all details of such malicious agents, and that to characterise such
attackers it is sufficient to look only at the input and output actions of honest agents

S. Yurkov is supported by the Luxembourg National Research Fund through grant
PRIDE15/10621687/SPsquared.

c© The Author(s) 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 235–255, 2021.
https://doi.org/10.1007/978-3-030-85315-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_14&domain=pdf
http://orcid.org/0000-0003-0162-1901
http://orcid.org/0000-0002-2818-4433
http://orcid.org/0000-0002-9200-4601
https://doi.org/10.1007/978-3-030-85315-0_14

236 R. Horne et al.

modelled in the specification of the protocol. Considering only the inputs and outputs
of honest agents makes the formulation of process equivalence problems in terms of
labelled transitions easier to check, compared to checking all malicious agents in full.

Amongst the most powerful testing equivalences proposed over the years is open
barbed bisimilarity [41], and its equivalent mild simplification saturated bisimilar-
ity [13], which were inspired by dynamic bisimilarity [38]. These testing equivalences
consider all contexts at every execution step, hence, by definition, we obtain a con-
gruence – an equivalence relation preserved in all contexts. Considering all contexts at
every execution step reflects that new knowledge about the environment may be discov-
ered during execution. Such testing equivalences have been used to inform the design
of labelled transition systems and their corresponding notions of labelled equivalence
for a range of process calculi including the π-calculus, which led to the emergence of
quasi-open bisimilarity [29,41] – the notion of labelled bisimilarity that coincides with
open barbed bisimilarity for the π-calculus.

In this work, we make use of the testing regime offered by open barbed bisimilar-
ity to design a labelled transition system and notion of quasi-open bisimilarity for the
applied π-calculus. We argue here that employing a bisimilarity that coincides with the
testing regime offered by open barbed bisimilarity, is a win-win choice for the applied
π-calculus: not only is such an equivalence well-designed according to good-practice
process-design principles; but also it is useful for verifying security and privacy prop-
erties. We should always be inclined to select an equivalence that is a congruence over
one that is not a congruence without a compelling reason not to; and, in the setting of
the applied π-calculus, having a congruence relation opens up new proof techniques,
such as the ability to reason about equivalence problems compositionally.

It is possible to design other congruence relations for the applied π-calculus, such
as the more famous open bisimilarity [28,40]. What we found to be fascinating about
quasi-open bisimilarity is that, although, in order to be both a congruence relation and a
bisimilarity relation, it is necessary that we obtain a finer equivalence compared to the
more common early bisimilarity [5] that is not a congruence, the notion of equivalence
is not too fine for security and privacy problems. Moving from early bisimilarity to
quasi-open bisimilarity for security and privacy problems that can be formulated as
equivalence problems, such as unlinkability, strong secrecy (non-interference), voter
privacy, anonymity, does not appear to invalidate established properties. While it is
impossible to check and anticipate all possible security and privacy problems that can be
formulated as an equivalence problem in the applied π-calculus, there is the following
compelling reason why we are confident in making this claim. Despite being finer than
early bisimilarity, quasi-open bisimilarity still treats classically the important content
of security and privacy problems, which is the treatment of private information such as
nonces and keys. In contrast, this is not the case for the finer open bisimilarity, since
we, in this paper, will demonstrate a representative example of a scenario in which open
bisimilarity discovers a spurious attack, whereas quasi-open bisimilarity discovers the
expected proof. Indeed, we are yet to encounter a disadvantage of using open barbed
bisimilarity rather than observational equivalence for privacy problems.

Outline of Paper. Section 2 provides motivation and explains minimal examples illus-
trating why quasi-open bisimilarity is an objective choice of bisimilarity congruence.

Compositional Analysis of Protocol Equivalence 237

The rest of the paper develops a theory of quasi-open bisimilarity for the applied π-
calculus. Section 3 introduces open barbed bisimilarity, which is, by definition, the
greatest bisimilarity congruence (we focus on the strong variant). Section 4 introduces
an open variant of labelled bisimilarity called quasi-open bisimilarity and proves that it
coincides with open barbed bisimilarity. A technical report provides further details [27].

2 Motivating Quasi-open Bisimilarity for the Applied π-Calculus

In the paper, we target properties expressed as a process equivalence. Whether a system
satisfies such properties depends not only on the system but also on the choice of equiv-
alence relation, and this choice in fact contributes to the attacker model [28]. In this
motivating section, we present the advantages of employing the coarsest bisimilarity
congruence and present motivating examples to justify our proposal.

2.1 A Finer Equivalence Discovers Spurious Attacks

Below we provide an example of a property expressed as an equivalence and show that
a finer relation can fail to reflect a real attack on the system. Our running example is
a cut-down variant of a classic private server example [3,22]. We express the privacy
property as an equivalence between the “real” and the “ideal” behaviours.

Consider a server Server A that responds with an encrypted message only when it
receives a particular public key. Otherwise, it responds with a nonce, indistinguishable
from a ciphertext. We assume an attacker knows public key pk(k) but does not know
private key k or nonce r.

Server A can be modelled formally in the applied π-calculus as follows.

Server A : νk.s〈pk(k)〉.!νa.c〈a〉.a(x).νr.
ifx = pk(k) then a〈aenc(〈m, r〉,pk(k))〉else a〈r〉

In Server A, the prefix νk.s〈pk(k)〉 stands for announcing a public key. The prefix
!νa.c〈a〉.a(x).νr represents the start of an unbounded number of sessions on a fresh
channel awhere, in each session, an input is received and a nonce r is freshly generated.
In each session, one of the following decisions is made, based on the input received. If
an input is a public key output previously, Server A responds with a message-nonce
pair encrypted with the public key a〈aenc(〈m, r〉,pk(k))〉. Otherwise, Server A sends
a dummy random message r indistinguishable from a random cyphertext.

Note that in this minimal formulation of the problem, we refrain from modelling the
clients (possibly knowing key k). Of course, the fact that clients transmit their public
keys in plaintext may introduce further privacy concerns, which we do not model in this
minimal illustration.

We approach the problem of proving that the privacy of the owner of secret key k
is preserved by providing a reference specification. The reference specification models
how the private server should ideally behave from the perspective of an attacker. The
specification, defined as Server B below, differs from Server A in that it transmits a
nonce regardless of the message received.

Server B : νk.s〈pk(k)〉.!νa.c〈a〉.a(x).νr.a〈r〉

238 R. Horne et al.

Server A and Server B are indistinguishable to an external observer – the attacker.
An attacker cannot learn that Server A responds in a special way to input pk(k). The
idea is that an attacker without private key k cannot learn that Server A serves some data
m to the owner of k. Thus the privacy of the intended recipient of the data is preserved.

We can verify this privacy property by showing Server A and Server B are bisimilar.
The point is that there is a warning: we must take care about which bisimilarity we
employ. If we employ the famous open bisimilarity (which also is a congruence), the
processes are not equivalent.

Using a suitable labelled transition system [28], Server A can reach the following
state, at which point open bisimilarity still allows x (a free variable representing an
input) to be instantiated with the message bound to u (i.e., pk(k)), representing a pre-
viously output message.

νk, a1, r1.
({

pk(k),a1/u,v

}
| ifx = pk(k) then a1〈aenc(〈m, r1〉,pk(k))〉else a1〈r1〉
| !νa.c〈a〉.a(x).νr.

ifx = pk(k) then a〈aenc(〈m, r〉,pk(k))〉else a〈r〉
)

Thus, we have not yet committed to x = pk(k) or x �= pk(k), and hence we cannot
proceed until we provide more information about x. Therefore the guard in the if-then-
else statement above cannot yet be resolved; but Server B cannot reach an equivalent
state, since it can only reach a state which is immediately ready to perform an action
regardless of whether x = pk(k) or x �= pk(k). Note we do not assume x = pk(k) ∨
x �= pk(k) holds, which would be an instance of the law of excluded middle; hence
we are in an intuitionistic setting [6,7]. The presented distinguishing strategy, does not
correspond to a real attack on the privacy of Server A; hence open bisimilarity is not
sufficiently coarse to verify this privacy property.

Fortunately, we will see in this paper that quasi-open bisimilarity addresses the
above limitation of open bisimilarity. Quasi-open bisimilarity is also intuitionistic [29].
It handles open terms (with free variables) intuitionistically; but handles private mes-
sages that an attacker cannot interfere with more subtly. Private information, such as
pk(k) (bound to u in the above state), can only be received eagerly by an input action;
the effect being that messages such as pk(k) in the above example are treated classi-
cally. Thereby, after receiving the input either x = pk(k) or x �= pk(k) holds; from
which we establish that Server A and Server B are indeed quasi-open bisimilar.

The example above, elaborated on in the body of the paper, is selected as a minimal
explanation for why quasi-open bisimilarity defines an appropriate attacker model.

A Still More Sophisticated Argument. Those that are not yet satisfied with the above
illustration, may question whether the limitation of open bisimilarity is due to a partic-
ular lifting of open bisimilarity to the applied π-calculus. This is not the case. There
are several possible definitions of open bisimilarity for the applied π-calculus that are,
firstly, conservative with respect to the original definition of open bisimilarity for the π-
calculus [40] and, secondly, also a congruence relation. However, none of them would
be able to prove the privacy property illustrated above. The problem lies with mismatch

Compositional Analysis of Protocol Equivalence 239

(the else branches in the above example), which is exactly the problem isolated and
explored in related work [29].

We illustrate the argument, by drawing attention to two possible ways of conserva-
tively extending open bisimilarity to the applied π-calculus (which features mismatch
or else branches). One approach is to extend the histories in the past (see Sect. 5 [29]);
while another is to add explicit inequality constraints [28]. Each of these approaches
provide different expressive power, as illustrated by the following pair of processes.

Server C � νk.νl.s〈pk(k)〉.s〈pk(l)〉.P (k) v.s. Server D � νk.νl.s〈pk(k)〉.s〈pk(l)〉.P (l)

where P (t) � νa.c〈a〉.a(x).νr.ifx = pk(t) then a〈aenc(〈m, r〉,pk(t))〉else a〈r〉

When we specify that Server C and Server D should be equivalent, we specify that
two servers that respond to different keys (the first or second output) should be indis-
tinguishable. This differs from our previous private server example, where, recall, the
specification is stipulated in terms of another private server, Server B, that has no infor-
mation to leak. Surprisingly, the above processes are equivalent under the notion of
open bisimilarity obtained by extending histories [29], yet are not equivalent under
the notion of open bisimilarity with inequality constraints [28]. Furthermore, processes
Server A and Server B from the previous sections are not equivalent under either of the
notions of open bisimilarity described, and hence neither extension of open bisimilarity
is sufficiently coarse to verify that privacy property.

The fundamental insight is that open bisimilarity is heavily tied to the way it sym-
bolically represents constraints, which gives rise to equivalences that differ for technical
reasons which have little to do with the semantics of protocols. Quasi-open bisimilar-
ity however is canonical, as we prove in this work via a completeness result that is
independent of any internal constraint system. Finally, quasi-open bisimilarity supports
proofs of privacy properties that we expect to hold, as illustrated by the equivalence of
Server A and Server B (Sect. 4.2), making it a robust choice that enables compositional
reasoning without introducing spurious attacks.

2.2 Too Coarse an Equivalence Misses Real Attacks

Above we have seen an example when a finer property leads to a spurious attack.
The situation is mirrored, however, if we attempt to formulate a property using too
coarse equivalence: real attacks may be missed. Recent work [26,28], comprehensively
explains an attack on ePassports that allows unauthorised observers to track movements
of the holder. This attack was overlooked by trace equivalence, which is strictly coarser
than bisimilarity. Thus, taking into consideration both ends of the spectrum, we find
that quasi-open bisimilarity is neither too coarse, since it is a bisimilarity, nor too fine,
since it does not introduce spurious attacks.

2.3 A Congruence Enables Compositional Reasoning

To illustrate the importance of the presented equivalence being a congruence we briefly
introduce a discussion on unlinkability, that is the incapability of determining rela-
tionships between two observed protocol sessions. The state-of-the-art approach to

240 R. Horne et al.

unlinkability developed in [28] is as follows. If the process System, reflecting the actual
behaviour of the protocol, is equivalent to the process Spec, which specifies the ideal
behaviour (from the attacker’s perspective), we say that such a protocol is unlinkable.

Consider an abstract authentication protocol with two roles: C and T . The agent
playing role C holds credentials signed by the secret key s of the certification authority
CA and wants to be able to assume the same identity multiple times without the risk of
being reidentified. The goal of the agent playing T is to verify these credentials using
the public key pk(s) of the CA and authenticate C. The real-world behaviour of the
system can be modelled as follows.

System � νs.
(
!νa.!νchc.cC〈chc〉.C(s, chc, a) | out〈pk(s)〉.!νcht.cT〈cht〉.T (pk(s) , cht)

)

Initially, the CA’s secret key s is created. The first parallel component above defines
agents with identity a that can participate in an arbitrary number of sessions of the
protocol. Each session begins with advertising a fresh session channel chc on the pub-
lic channel cC , modelling a new connection to a new session. The leftmost replication
models that any number of agents can exist in the system, while the subsequent repli-
cation is what allow an agent to appear with the same identity across multiple sessions.
The second parallel component above makes the public key pk(s) of the CA available
to the environment via the output on the public channel out. After that, the role T is
specified which tries to authenticate a genuine agent in role C making use of pk(s).
Such sessions in role T also begin by advertising a fresh session channel on public
channel cT . The processes C(s, cht) and T (pk(s) , cht) can be instantiated to model
various protocols.

On the other hand, the ideal system is obtained from System by removing the sec-
ond replication, which means that the agent with the identity a can participate in one
protocol run only.

Spec � νs.
(
!νa.νchc.cC〈chc〉.C(s, chc, a) | out〈pk(s)〉.!νcht.cT〈cht〉.T (pk(s) , cht)

)

The definition of unlinkability is as follows.

Definition 1 (unlinkability). The system satisfies unlinkability if System ≈ Spec holds,
where ≈ is weak early bisimilarity.

The fact that quasi-open bisimilarity is a congruence allows us to verify an equiva-
lence property for a smaller system and extend the proof to a larger system. Consider a
smaller system comprising only agents playing the role C.

Small System � νs. out〈pk(s)〉.!νa.!νchc.cC〈chc〉.C(s, chc, a)

The corresponding, smaller version of the idealised specification where there is one
session per identity is as follows.

Small Spec � νs. out〈pk(s)〉.!νa.νchc.cC〈chc〉.C(s, chc, a)

We are ready now to prove that if we prove properties using the smaller specification
with one role then they hold in the more traditional specification with two roles.

Compositional Analysis of Protocol Equivalence 241

Theorem 1. If Small System ∼ Small Spec, where ∼ is quasi-open bisimilarity,
then System ≈ Spec.

Proof. Consider the following context, where out′ is a fresh variable.

C{ · } � νout.
(

{ · } | out(pks).out’〈pks〉.!νcht.cT〈cht〉.T (pk(s) , cht)
)

Firstly,
C{Small System}{out/out′} ∼ τ.System and C{Small Spec}{out/out′} ∼ τ.Spec
hold. Furthermore, by the assumption, Small System ∼ Small Spec and the fact
that since quasi-open bisimilarity is a congruence (Theorem 2), the following holds.

C{Small System} ∼ C{Small Spec}

Furthermore, since quasi-open bisimilarity is closed under substitutions involving free
variables (by definition) we have that the following holds.

C{Small System}
{

out/out′
}

∼ C{Small Spec}
{

out/out′
}

Hence, since quasi-open bisimilarity is an equivalence relation, we have the following.

τ.Spec ∼ τ.System

Thus there exists a quasi-open bisimulation R such that τ.Spec R τ.System. Hence,
since τ.Spec τ � Spec it must be the case that τ.System τ � System and Spec R
System. Therefore Spec ∼ System. Finally, since ∼⊆≈ we have Spec ≈ System. 	

The key difficulty is, of course, to prove that Small System ∼ Small Spec, but
studying a smaller system significantly reduces the amount of work. This approach
to verifying unlinkability for a subsystem was taken in [30], where authors study key
agreement for contactless payments and employ only honest cards in their model of
unlinkability.

3 The Coarsest Bisimilarity Congruence

This section concerns the coarsest (strong) bisimilarity congruence – open barbed
bisimilarity. Open barbed bisimilarity is a natural choice of bisimilarity, being, by
definition, the greatest bisimilarity congruence. Since open barbed bisimilarity has an
objective language-independent definition, there are no design decisions – there is only
one reasonable definition as explored in this section.

3.1 An Example Message Term Language and Equational Theory

In the applied π-calculus messages can be defined with respect to any message lan-
guage subject to any equational theory (=E). The example equational theory we pro-
vide in Fig. 1 is for the purpose of providing meaningful examples. Further theories can

242 R. Horne et al.

Fig. 1. The applied π-calculus can be instantiated with any message language and equational
theory for messages. This example message theory is provided only to provide meaningful exam-
ples.

also be devised not limited to: sub-term convergent theories [1]; blind signatures and
homomorphic encryption [20]; and locally stable theories with inverses [9].

The example theory provided in Fig. 1 covers asymmetric encryption. A message
encrypted with public key pk(k) can only be decrypted using private key k. The theory
includes a collision-resistant hash function, with no equations. This theory assumes we
have the power to detect whether a message is a pair, but cannot distinguish a failed
decryption from a random number.

3.2 Active Substitutions and Labelled Transitions

We define a syntax for the applied π-calculus. The syntax is similar to the π-calculus,
except messages and channels can be any term rather than just variables. There is no
separate syntactic class of terms for names – names are variables bound by new name
binders. In addition to processes, extended processes are defined, which allow active
substitutions, denoted σ, to float alongside processes and in the scope of new name
binders, defined in Fig. 2.

Extended processes in normal form νx.(σ | P) are subject to the restriction that
the variables in dom(σ) are fresh for x, fv(P) and fv(yσ), for all variables y (i.e., σ
is idempotent, and substitutions are fully applied to P). We follow the convention that
operational rules are defined directly on extended processes in normal form up to α-
conversion. This avoids numerous complications caused by the structural congruence in
the original definition of bisimilarity for the applied π-calculus. The set of free variables
and α-conversion are as standard, where νx.P and M(x).P bind x in P .

Intuitionistic mismatch. Mismatch requires special attention. Mismatch models the
else branch of an if-then-else statement with an equality guard. Hence we can
encode a conditional branching statement if M =N then P else Q using pro-
cess [M = N]P + [M �= N]Q.

As uncovered in related work [29], the trick for handling mismatch such that we
obtain a congruence is to treat mismatch intuitionistically. Intuitionistic negation enjoys
the property that it is preserved under substitutions; a property that fails for classi-
cal negation in general. E.g., there are substitutions under which [x �= h(y)]a(z) can
perform an input transition and others where it cannot, hence neither x = h(y) nor
x �= h(y) holds in the intuitionistic setting until more information is provided about the

Compositional Analysis of Protocol Equivalence 243

Fig. 2. Syntax of extended processes and an open early labelled transition system.

244 R. Horne et al.

environment. In order to define intuitionistic negation, we require the notion of a fresh
substitution.

Definition 2 (fresh). Consider a set of variables z. We say z is fresh for set of vari-
ables y, whenever z ∩y = ∅. Given a term, say P , we say z is fresh for P , whenever z
is fresh for the free variables of P . Given a substitution σ, we say z is fresh for σ when-
ever z is fresh for dom(σ), and, for all y �∈ z, we have z is fresh for yσ. Freshness
extends point-wise to lists of entities and is denoted u, v, . . . # M,N, σ,

We say entailment z |= M �= N holds whenever there is no σ such that z # σ and
Mσ =E Nσ.

Consider the following examples that hold or fail to hold for different reasons. Entail-
ment ∅ |= x �= h(x) holds, since there exists no unifier, witnessed by a simple occurs
check. In contrast, ∅ |= x �= h(y) does not hold, since there exists substitution

{
h(y)/x

}
unifying messages x and h(y), so it is still possible the messages could be equal; thus,
there is insufficient information to decide whether the messages are equal or not. By
extending the environment such that y is a private name, entailment y |= x �= h(y)
holds, since y is not fresh for the most general unifier

{
h(y)/x

}
– an observer who can

influence x, cannot make x equal to h(y) without access to y.
To define open barbed bisimilarity, we require the labelled transition system for

the applied π-calculus in Fig. 2. It is an early labelled transition system due to the way
inputs are treated, and open early, since it does not assume that free variables are ground
names, unless stated so explicitly in the name environment to the left of the transition
relation. There are three types of label: τ representing internal progress due to commu-
nication; bound output M(x) representing that something bound to x is sent on channel
M ; and free input M N representing that we receive N on channel M .

The MISMATCH and RES Rules. The MISMATCH rule is defined in terms of entail-
ment in Definition 2. The RES rule can also influence mismatches by introducing fresh
names. For example, the following derivation shows an input is enabled.

INP
y : z(w) z w� 0 y |= x �= h(y)

MISMATCH
y : [x �= h(y)]z(w) z w� 0 y # z w

RES
∅ : νy.[x �= h(y)]z(w) z w� νy.0

Notice, the bound variable y is added to the set of names, enabling y |= x �= h(y).

Active Substitutions and Labels. For a non-trivial example where the active substitu-
tion affects the label, observe that the following transition is derivable.

fst(〈m,n〉) =E m
INP

m :
{

〈m,n〉/w
}

| m(x) fst(w) x�
{

〈m,n〉/w
}

| 0 m # fst(w)x
RES

∅ : νm.
({

〈m,n〉/w
}

| m(x)
)

fst(w) x� νm.
({

〈m,n〉/w
}

| 0
)

The conditions on the RES rule ensure bound name m cannot appear in the terms on the
label. Fortunately, the INP rule allows m to be expressed in terms of extruded variable

Compositional Analysis of Protocol Equivalence 245

w. Since we have m =E fst(〈m,n〉) and the equational theory can be applied in
rule INP, the above input action is enabled, where message fst(w) indirectly refers to
channel m.

The OUT Rule. The OUT rule for the applied π-calculus does not record the message
sent on the label; instead, the message is recorded in an active substitution. The domain
of the active substitution is chosen to be a fresh variable appearing as the bound variable
in the output action on the label.

In the following example a message is sent using the OUT rule, then the RES rule is
applied such that the private name n in the active substitution remains bound after the
transition.

n, k : a〈aenc(n,pk(k))〉.n(x) a(w)�
{
aenc(n,pk(k))/w

}
| n(x)

k : νn.a〈aenc(n,pk(k))〉.n(x) a(w)� νn.
({

aenc(n,pk(k))/w

}
| n(x)

)

Observe, by rule INP, the following input action is enabled.

k : a(w).adec(w, k)〈a〉 a aenc(n,pk(k))� adec(aenc(n,pk(k)) , k)〈a〉
Hence, by CLOSE-L and the above input and output transitions, the following interac-
tion is enabled; and RES is used to bind the key k.

k : νn.a〈aenc(n,pk(k))〉.n(x) | a(w).adec(w, k)〈a〉 τ � νn.(n(x) | n〈a〉)
RES

∅ : νk.
(
νn.a〈aenc(n,pk(k))〉.n(x) | a(w).adec(w, k)〈a〉

)
τ � νk.νn.(n(x) | n〈a〉)

Note this labelled approach to interaction follows closely how interaction tradition-
ally works in the π-calculus. Thus this formulation of labelled transitions facilitates
the lifting of results from the π-calculus to the applied π-calculus. An advantage of
our labelled transition system is strong, weak, and other variants of bisimilarity can be
studied. In contrast, the original system proposed for the applied π-calculus [2] used a
hybrid labelled/reduction system that can only be used to formalise weak equivalences.
Furthermore, avoiding a structural congruence avoids having to consider all transitions
up to an associative-commutative theory (which can make proofs cumbersome). Also,
the use of REP-ACT and REP-CLOSE for defining replication, respects image-finiteness
(up to α-conversion) [39].

Note, trying to obtain strong bisimilarity by naı̈vely restricting the original defi-
nition of labelled bisimilarity [2] such that every τ -transition is matched by exactly
one τ -transition results in an ill-formulated notion of strong bisimilarity. Doing so,
would allow processes, such as Server A and Server B from Sect. 2, to be wrongly dis-
tinguished by counting the number of τ -transitions induced by branching statements.
The rule SUM-L and its counterpart SUM-R avoid this problem.

3.3 A Testing Regime Defining a Bisimilarity Congruence

A barb represents the ability to observe an input or output action on a channel. Barbs are
typically used to define barbed equivalence, or observational equivalence [36]. How-
ever, barbed equivalence is a congruence but not a bisimilarity; while observational

246 R. Horne et al.

equivalence is a bisimilarity but not a congruence. For this reason, we prefer open
barbed bisimilarity [41], which is, by definition, both a bisimilarity and a congruence.
We adopt the convention of writing A π � B whenever ∅ : A π � B. We say process

P has barb M , written P ↓M , whenever, for some A, P
M(z)� A, or P M N� A.

Definition 3 (open barbed bisimilarity). An open barbed bisimulation R is a sym-
metric relation over processes such that whenever P R Q holds the following hold:

– For all contexts C{ · }, C{P} R C{Q}.
– If P ↓M then Q↓M .
– If P τ � P ′, there exists Q′ such that Q τ � Q′ and P ′ R Q′ holds.

Open barbed bisimilarity � is the greatest open barbed bisimulation. More specifically,
processes P and Q are open barbed bisimilar, written P � Q, whenever there exists an
open barbed bisimulation R such that P R Q.

The power of open barbed bisimilarity comes from closing by all contexts at every
step, not only at the beginning of an execution. Closing by all contexts at every step
ensures the robustness of open barbed bisimilarity even if the environment is extended
at runtime; i.e., we stay within a congruence relation at every step of the bisimulation
game.

Recall that a congruence is an equivalence relation preserved in all contexts. Sym-
metry and context closure of open barbed bisimilarity are immediate from the definition.
Reflexivity is trivial since the identity relation is an open barbed bisimulation. Transi-
tivity is only slightly more involved, proven by checking that the composition of two
open barbed bisimulation relations is an open barbed bisimulation.

Open barbed bisimilarity is concise – the definition requires only the open labelled
transition system in Fig. 2 and the three clauses in Definition 3. Furthermore, it is the
coarsest bisimilarity congruence, in the objective sense that it is defined to be a con-
gruence and defined independently of the content of the messages sent and received.
Notice, due to the independence of the information on the labels, open barbed bisim-
ilarity applies to any language; indeed open barbed bisimilarity is a generalisation of
dynamic observational equivalence [38], that, historically, was used to objectively iden-
tify the greatest bisimulation congruence for CCS. Related work also uses the term sat-
urated bisimilarity for such a reference bisimilarity congruence [13,14], which shows
that a single barb, say ok suffices.

For the above reasons, open barbed bisimilarity is an ideal reference definition.
However, it is unwieldy due to closure of the definition under all contexts. This leads
us to the notion of quasi-open bisimilarity, defined in the next section.

4 Quasi-open Bisimilarity for the Applied π-Calculus

As highlighted in the previous section, open barbed bisimilarity has a concise and objec-
tive definition but is difficult to check, due to the quantification over all contexts. An
open variant of labelled bisimilarity, called quasi-open bisimilarity, avoids quantify-
ing over all contexts; and furthermore, coincides with open barbed bisimilarity. In this
section, we define quasi-open bisimilarity for the applied π-calculus, generalising estab-
lished results for the π-calculus [29,41].

Compositional Analysis of Protocol Equivalence 247

4.1 Introducing Quasi-open Bisimilarity for the Applied π-Calculus

To extend quasi-open bisimilarity to the applied π-calculus the notion of static equiva-
lence is required. Static equivalence is defined over the static information in an extended
process – the active substitutions and name restrictions.

Definition 4 (static equivalence). Two extended processes νx.(σ | P) and νy.(θ | Q)
are statically equivalent whenever for all messages M and N such that x,y # M,N ,
we have Mσ =E Nσ if and only if Mθ =E Nθ.

In the above definition, messages M and N represent two different “recipes” for pro-
ducing messages. Two extended processes are distinguished by static equivalence only
when the two recipes produce equivalent messages under one substitution, but distinct
messages under the other substitution. The concept of static equivalence is no different
from original work on the applied π-calculus [5].

Static Equivalence Example. For example, the following extended processes are not
statically equivalent.

νk.
({

aenc(x,pk(k)), aenc(x,pk(k))/v, w

}
| 0

)
is distinct from νk.

({
aenc(x,pk(k)), aenc(z,pk(k))/v, w

}
| 0

)

The above are distinguished by messages v and w. Notice
v
{
aenc(x,pk(k)), aenc(x,pk(k))/v, w

}
and w

{
aenc(x,pk(k)), aenc(x,pk(k))/v, w

}
are both equal

to aenc(x,pk(k)); but the following messages are distinct:
v
{
aenc(x,pk(k)), aenc(z,pk(k))/v, w

}
vs. w

{
aenc(x,pk(k)),aenc(z,pk(k))/v,w

}
.

In order to define quasi-open bisimilarity, we require the notion of an open relation
between extended processes. An open relation is preserved under substitutions (respect-
ing bound names, including the domain of active substitution) and extensions of the
active substitutions and names in environment. In the following, θ�D is the restriction
of a substitution to a set D.

Definition 5 (open). A relation over extended processes R is open whenever we have
that if νx.(θ1 | P) R νy.(θ2 | Q) and there exist idempotent substitutions σ, ρ and
variables z such that: x,y # σ, ρ and z # dom(ρ) ,x,y and dom(θi) # σ, ρ,z for
i ∈ {1, 2}, we have the following:

νz,x.
(
(θ1 ◦ σ)�dom(θ1) ◦ ρ | Pσ

)
R νz,y.

(
(θ2 ◦ σ)�dom(θ2) ◦ ρ | Qσ

)

Given the definition of an open relation, static equivalence, and the labelled transi-
tion system, we can provide the following concise definition of quasi-open bisimilarity
for the applied π-calculus.

Definition 6 (quasi-open bisimilarity). An open symmetric relation between extended
processes R is a quasi-open bisimulation whenever, if A R B then the following hold:

– A and B are statically equivalent.
– If A π � A′ there exists B′ such that B π � B′ and A′ R B′.

Processes P and Q are quasi-open bisimilar, written P ∼ Q, whenever P R Q for
some quasi-open bisimulation R.

248 R. Horne et al.

The keyword in the definition above is “open” in the sense of Definition 5. Without
ensuring that properties are preserved under reachability, the above definition would
simply be a strong version of the classical labelled bisimilarity for the applied π-
calculus [5]. We illustrate the impact of insisting on an open relation and allowing
messages as channels in the following examples.

Remark 1. The definition of quasi-open bisimilarity above is arguably simpler than in
the setting of the π-calculus [41]. In contrast to the original definition, since private
names are recorded in extended processes, all types of action are handled by one clause.
The π-calculus definition maintains an additional index of extruded private names.

Mobility Example. This work builds on a recent evolution of the applied π-calculus [5],
which allows processes such as νz.x〈z, y〉.z(w) and νz.x〈z, y〉 to be evaluated. These
processes should not be equivalent, since they are polyadic π-calculus processes [35]
(the π-calculus with tuples), and the applied π-calculus should be conservative with
respect to the polyadic π-calculus, which was not the case for older definitions of bisim-
ilarity for the applied π-calculus [2]. The trick to allow processes such as the above to
be evaluated is simple: allow channels to be messages. This way, a message, such as
fst(u), can be used to indirectly refer to channels. To see why we can distinguish
these processes, firstly, consider the following two transitions with matching actions.

νz.x〈z, y〉.z(w) x(v)� νz.
({

〈z,y〉/v
}

| z(w)
)

νz.x〈z, y〉 x(v)� νz.
({

〈z,y〉/v
}

| 0
)

The labelled transition νz.
({〈z,y〉/v

}
| z(w)

) fst(v)x� νz.
({〈z,y〉/v

}
| 0

)
is enabled

for the process on the left. The process on the right above νz.
({〈z,y〉/v

}
| 0

)
is dead-

locked, so cannot match this transition. Notice the use of message fst(v) on the input
label to refer to the private channel output at the first step.

Example Showing Impact of an Open Relation on Static Equivalence. By insisting that
a quasi-open bisimulation is an open relation (Definition 5), static equivalence must
also be preserved by all fresh substitutions. This has an impact on examples such as the
following.

Processes νx.a〈aenc(x, z)〉 and νx.a〈aenc(〈x, y〉, z)〉 are labelled bisimilar
but not quasi-open bisimilar. To see why, observe both processes can perform
a a(v)-transition to the respective extended processes νx.

({
aenc(x,z)/v

}
| 0

)
and

νx.
({

aenc(〈x,y〉,z)/v
}

| 0
)
. These extended process are statically equivalent (recall z

cannot be used to decrypt these cyphertexts in asymmetric cryptography). How-
ever, since a quasi-open bisimulation must be preserved under fresh substitutions
and v #

{
pk(w)/z

}
, we check static equivalence for νx.

({
aenc(x,z)/v

}
| 0

){
pk(w)/z

}
and νx.

({
aenc(〈x,y〉,z)/v

}
| 0

){
pk(w)/z

}
. After applying the substitution, the extended

processes are no longer statically equivalent, witnessed by distinguishing recipes
snd(adec(v, w)) and y. Thus the processes are not quasi-open bisimilar.

Note that the fact that the attack succeeds above suggests the attacker has the
power to influence the message bound to z, in order to stage an attack. In the above
example the message chosen is a public key pk(w) for which the attacker knows the

Compositional Analysis of Protocol Equivalence 249

Fig. 3. Relation S defining a quasi-open bisimulation verifying the anonymity of Server A in the
case for a single session, without replication.

secret key w. For another such example, νk.a〈aenc(x,pk(k))〉.a〈aenc(y,pk(k))〉
and νk.a〈aenc(x,pk(k))〉.a〈aenc(z,pk(k))〉 are labelled bisimilar (which assumes
x, y, z are distinct names), but not quasi-open bisimilar (which instead assumes x, y, z
are variables). To see why, observe the above processes can reach the extended processes
νk.

({
aenc(x,pk(k)),aenc(y,pk(k))/v,w

}
| 0

)
and νk.

({
aenc(x,pk(k)),aenc(z,pk(k))/v,w

}
| 0

)
, at

which point the attacker has the power to set x = y, thereby reaching a scenario
explained after Definition 4, where the attacker can observe the same message is output
twice for the process on the left but not for the process on the right. This feature of
quasi-open bisimilarity is related to the security property of strong secrecy [11], where
the open nature of secrets represents that the attacker may interfere with messages at
runtime.

4.2 Running Example of a Privacy Property

We now have the mechanisms to verify the minimal privacy example from Sect. 2. For
greater clarity, firstly consider the case of a single session, i.e., with replication removed.
The equivalence of running examples Server A and Server B for the single session case
(without replication) can be established by taking the least symmetric open relation
satisfying the constraints in Fig. 3. The critical observation is that message n in Fig. 3
ranges over all permitted inputs. Since n = u is permitted, we have the following pair
in relation S.

νk, a, r.
({

pk(k),a/u,v
} | a〈r〉) S νk.a, r.

({
pk(k),a/u,v

} | ifpk(k) = pk(k) then

a〈aenc(〈m, r〉,pk(k))〉else a〈r〉
)

250 R. Horne et al.

In the above, observe the branch sending an encrypted message is enabled. In contrast
to the above, if n is any message term not equivalent to u then we have k, a, r |=
n
{
pk(k),a/u,v

}
�= pk(k) since if n were a message term such that k, a, r # n such that

n
{
pk(k),a/u,v

}
= pk(k), then n must be equivalent to u. Thus in all other cases the

else branch is enabled.
Notice νk, a, r.

({
pk(k),a,aenc(〈m,r〉,pk(k))/u,v,w

}
|0

)
and νk, a, r.

({
pk(k),a,r/u,v,w

}
|0

)
are statically equivalent, reachable when n =E u. To see why, observe that an attacker
neither has the key k to decrypt aenc(〈m, r〉,pk(k)), nor can an attacker reconstruct
the message 〈m, r〉, without knowing r.

For the unbounded case, consider the least symmetric open relation T satisfying
the constraints in Fig. 4. This generalises the finite case by defining all scenarios where
there are l parallel sessions that are either in the state of having just announced the
communication channel a, having just received a message, or have responded already.
This definition is closed under all transitions and reachability, as required to establish
that T is a quasi-open bisimulation. Indeed T is a quasi-open bisimulation such that
Server A T Server B. Hence the desired privacy property of Server A, first mentioned
in Sect. 2, is verified.

Fig. 4. Relation T verifying Server B ∼ Server A in the unbounded case.

A subtlety is that T is not the least quasi-open bisimulation witnessing Server A ∼
Server B, since we over approximated by allowing inputs to possibly use outputs from
the future. This over approximation is correct, since we can always have additional
redundant terms in a bisimulation set, as long as they are also closed under the rele-
vant conditions. Indeed, this illustrates a practical benefit of bisimilarity – we can find
abstractions that reduce the amount of verification work.

Compositional Analysis of Protocol Equivalence 251

4.3 Quasi-open Bisimilarity is Sound and Complete

As illustrated in the previous sub-section, a core guarantee offered by quasi-open bisim-
ilarity is that it is a congruence relation. We prove quasi-open bisimilarity is preserved
by all contexts, notably under input prefixes; and, furthermore, coincides exactly with
open barbed bisimilarity, which is the coarsest (strong) bisimilarity congruence.

Theorem 2 (contexts). If P ∼ Q then for all contexts C{ · }, we have C{P} ∼ C{Q}.

The most involved cases of Theorem 2 are those showing quasi-open bisimilarity
is preserved under parallel composition and replication; while the most novel case is
for mismatch, which relies on the notion of an open relation given in Definition 5.
Given Theorem 2, the soundness of quasi-open bisimilarity with respect to open barbed
bisimilarity follows immediately.

Corollary 1 (soundness). If P ∼ Q then P � Q.

Completeness, expressed in Theorem 3, supports our claim that quasi-open bisimi-
larity in Definition 6 is a correct and canonical (strong) bisimilarity congruence for the
applied π-calculus. This theorem is the fundamental property of quasi-open bisimilarity
that does not hold for open bisimilarity.

Theorem 3 (completeness). Quasi-open bisimilarity coincides with open barbed
bisimilarity.

It is interesting to compare the proof of Theorem 3 to the corresponding proof for
the π-calculus [41]. In the corresponding proof for the π-calculus checks are built into
bound output transitions to ensure extruded private names are fresh. In the proof of
Theorem 3 no such checks are required for output transitions; such checks are subsumed
by checking static equivalence.

Strong v.s. Weak Bisimilarity. Observe Theorem 3 is for a strong formulation of quasi-
open bisimilarity. The weak/strong dimension [44] (as with other dimensions such as
interleaving v.s. true concurrency [45], for instance) is a perpendicular issue to the focus
of this paper. Quasi-open variants of various equivalences and preorders can also be
defined, so this scientific discussion on attacker models should not be limited to strong
bisimilarity. Sometimes weak equivalences can be avoided. For example, for privacy
properties, such as unlinkability of ePassports, the traditional formulation in terms of a
weak bisimilarity problem [8] has been shown to be reducible to an equivalent strong
bisimilarity problem that is easier to check, since we have image finiteness [28], i.e.,
for any label π each process has finitely many π-labelled transitions.

5 Comparison to Related Work on Observational Equivalence

Most notions of bisimilarity previously introduced for cryptographic calculi (e.g.,
hedged bisimilarity, labelled bisimilarity, early bisimilarity) coincide with observational
equivalence [2,4,5,10,15–17,31,32,34]. Observational equivalence is a restriction of
open barbed bisimilarity (Definition 3), considering only contexts of the form { · } | P

252 R. Horne et al.

that add a new process in parallel at every step of the bisimulation game. This makes
the equivalence strictly coarser than open barbed bisimilarity, however observational
equivalence is not a congruence relation. Intermediate results on symbolic bisimula-
tions [18,25] also closely approximate observational equivalence.

The gap between observational equivalences and open barbed bisimilarity is thor-
oughly explored in the context of the π-calculus [7,29,40,41]. Open barbed bisimilarity
is finer than observational equivalence since, π.P + π.Q is observationally equiva-
lent to π.P + π.Q + π.ifx = y thenP elseQ, but these processes are not open
barbed bisimilar in general. Yet these processes are equivalent if we take barbed equiv-
alence [36], which is the largest congruence contained within observational equiva-
lence, lying strictly between open barbed bisimilarity and observational equivalence.
In Sect. 4.1, we did mention there are examples of noninterference properties that can
be formulated using a congruence. However, it remains an open question whether there
exists a realistic privacy property, as opposed to the toy equation immediately above,
that cannot be verified using open barbed bisimilarity but can be analysed using barbed
equivalence.

If one does insist that a property is defined in terms of observational equivalence,
we may still use quasi-open bisimilarity as an under-approximation. If an attack is dis-
covered, we can check whether an attack is also valid classically (possibly making use
of modal logic intuitionistic FM described in the extended technical report [29]). If the
attack is also classically valid it is also a counterexample for observational equivalence.
This methodology was used to resolve the problem of whether there is an attack on
the BAC protocol for ePassports [26,28], as originally stated in terms of observational
equivalence [8].

6 Conclusion

This paper justifies the bisimilarity congruence quasi-open bisimilarity as a method
for reasoning about protocols expressed using the applied π-calculus. The equivalence
we converge on, quasi-open bisimilarity, can be seen as an enhancement of existing
methods, balancing between the strengths of labelled bisimilarity [4,10,15–17,31,32,
34] and open bisimilarity.

The bisimilarity congruence, open bisimilarity, has previously been introduced for
the spi-calculus [19,42,43]. However, the spi-calculus could not verify privacy prop-
erties demanding mismatch, and is less abstract, being hard-wired with a fixed mes-
sage theory; which were problems addressed in recent work that lifts open bisimi-
larity to the more general setting of the applied π-calculus [28]. By moving to the
coarser equivalence quasi-open bisimilarity we are able to verify more privacy prop-
erties, such as the typical privacy-preserving protocol in Sect. 2, involving if-then-else
with a guard depending on private information. Some equivalences, such as differen-
tial equivalence [12,21], which compares two structurally identical processes that dif-
fer only in the terms they exchange, are incomplete and hence may report attacks that
trivially do not exist. Hence when differential equivalence reports an attack, it may
not exist for trivial reasons – a problem minimised by the fact that quasi-open bisimi-
larity adheres to a completeness criterion for observational congruences (Theorem 3).

Compositional Analysis of Protocol Equivalence 253

Equivalences coarser than quasi-open bisimilarity are either not congruences or are not
bisimilarities, meaning that some corresponding proof techniques cannot be applied.

The gap between quasi-open bisimilarity and classical labelled bisimilarity is
small—we insist on an open relation (Definition 2). However, the gap is significant,
since we obtain a complete congruence. In an extended version of this paper in a tech-
nical report [27], we go further by demonstrating that we are able to logically charac-
terise quasi-open bisimilarity, using an intuitionistic modal logic useful for describing
attacks.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories.
Theor. Comput. Sci. 367(1–2), 2–32 (2006). https://doi.org/10.1016/j.tcs.2006.08.032

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL,
pp. 104–115 (2001). https://doi.org/10.1145/360204.360213

3. Abadi, M., Fournet, C.: Private authentication. Theor. Comput. Sci. 322(3), 427–476 (2004).
https://doi.org/10.1016/j.tcs.2003.12.023

4. Abadi, M., Gordon, A.D.: A bisimulation method for cryptographic protocols. Nord. J. Com-
put. 5(4), 267–303 (1998)

5. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: mobile values, new names,
and secure communication. J. ACM 65(1), 1–41 (2017). https://doi.org/10.1145/3127586

6. Ahn, K.Y., Horne, R., Tiu, A.: A characterisation of open bisimilarity using an intuitionistic
modal logic. In: Meyer, R., Nestmann, U. (eds.) 28th International Conference on Concur-
rency Theory, CONCUR 2017, 5–8 September 2017, Berlin, Germany, vol. 85 of LIPIcs, pp.
7:1–7:17 (2017). https://doi.org/10.4230/LIPIcs.CONCUR.2017.7

7. Ahn, K.Y., Horne, R., Tiu, A.: A characterisation of open bisimilarity using an intuitionistic
modal logic. Log. Meth. Comp. Sci. (2021). https://arxiv.org/abs/1701.05324. In press

8. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and anonymity using
the applied pi calculus. In 23rd IEEE Computer Security Foundations Symposium, pp. 107–
121 (2010). https://doi.org/10.1109/CSF.2010.15

9. Ayala-Rincón, M., Fernández, M., Nantes-Sobrinho, D.: Intruder deduction problem for
locally stable theories with normal forms and inverses. Theor. Comput. Sci. 672, 64–100
(2017). https://doi.org/10.1016/j.tcs.2017.01.027

10. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for mobile pro-
cesses with nominal data and logic. Log. Meth. Comp. Sci. 7(1) (2011). https://doi.org/10.
2168/LMCS-7(1:11)2011

11. Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: 2004 Proceedings
of IEEE Symposium on Security and Privacy, pp. 86–100. IEEE (2004). https://doi.org/10.
1109/SECPRI.2004.1301317

12. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equivalences for
security protocols. J. Log. Algebr. Program. 75(1), 3–51 (2008). https://doi.org/10.1016/j.
jlap.2007.06.002

13. Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In: 21th
IEEE Symposium on Logic in Computer Science (LICS 2006), 12–15 August 2006, Seattle,
WA, USA, Proceedings, pp. 69–80. IEEE Computer Society (2006). https://doi.org/10.1109/
LICS.2006.46

14. Bonchi, F., Gadducci, F., Monreale, G.V.: A general theory of barbs, contexts, and labels.
ACM Trans. Comput. Log. 15(4), 35:1-35:27 (2014). https://doi.org/10.1145/2631916

https://doi.org/10.1016/j.tcs.2006.08.032
https://doi.org/10.1145/360204.360213
https://doi.org/10.1016/j.tcs.2003.12.023
https://doi.org/10.1145/3127586
https://doi.org/10.4230/LIPIcs.CONCUR.2017.7
https://arxiv.org/abs/1701.05324
https://doi.org/10.1109/CSF.2010.15
https://doi.org/10.1016/j.tcs.2017.01.027
https://doi.org/10.2168/LMCS-7(1:11)2011
https://doi.org/10.2168/LMCS-7(1:11)2011
https://doi.org/10.1109/SECPRI.2004.1301317
https://doi.org/10.1109/SECPRI.2004.1301317
https://doi.org/10.1016/j.jlap.2007.06.002
https://doi.org/10.1016/j.jlap.2007.06.002
https://doi.org/10.1109/LICS.2006.46
https://doi.org/10.1109/LICS.2006.46
https://doi.org/10.1145/2631916

254 R. Horne et al.

15. Boreale, M., De Nicola, R., Pugliese, R.: Proof techniques for cryptographic processes.
SIAM J. Comput. 31(3), 947–986 (2001). https://doi.org/10.1137/S0097539700377864

16. Borgström, J.: A complete symbolic bisimilarity for an extended Spi calculus. Electron.
Notes Theor. Comput. Sci. 242(3), 3–20 (2009). https://doi.org/10.1016/j.entcs.2009.07.078

17. Borgström, J., Nestmann, U.: On bisimulations for the Spi calculus. Math. Struct. Comput.
Sci. 15(3), 487–552 (2005). https://doi.org/10.1017/S0960129505004706

18. Borgström, J., Briais, S., Nestmann, U.: Symbolic bisimulation in the Spi calculus. In: Gard-
ner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 161–176. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-28644-8 11

19. Briais, S., Nestmann, U.: Open bisimulation, revisited. Theor. Comput. Sci. 386(3), 236–271
(2007). https://doi.org/10.1016/j.tcs.2007.07.010

20. Bursuc, S., Comon-Lundh, H., Delaune, S.: Deducibility constraints and blind signatures.
Inf. Comput. 238, 106–127 (2014). https://doi.org/10.1016/j.ic.2014.07.006

21. Cheval, V., Blanchet, B.: Proving more observational equivalences with ProVerif. In: Basin,
D., Mitchell, J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 226–246. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36830-1 12

22. Cheval, V., Comon-Lundh, H., Delaune, S.: A procedure for deciding symbolic equivalence
between sets of constraint systems. Inf. Comput. 255(Part 1), 94–125 (2017). https://doi.org/
10.1016/j.ic.2017.05.004

23. Cortier, V., Smyth, B.: Attacking and fixing Helios: an analysis of ballot secrecy. In: 2011
IEEE 24th Computer Security Foundations Symposium, pp. 297–311, June 2011. https://doi.
org/10.1109/CSF.2011.27

24. Delaune, S.: Analysing privacy-type properties in cryptographic protocols. In: Kirchner, H.
(ed.) 3rd International Conference on Formal Structures for Computation and Deduction
(FSCD 2018), volume 108 of LIPIcs, Dagstuhl, Germany, pp. 1:1–1:21. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.FSCD.2018.1

25. Delaune, S., Kremer, S., Ryan, M.D.: Symbolic bisimulation for the applied pi calculus. J.
Comput. Secur. 18(2), 317–377 (2010). https://doi.org/10.3233/JCS-2010-0363

26. Filimonov, I., Horne, R., Mauw, S., Smith, Z.: Breaking unlinkability of the ICAO 9303
standard for e-passports using bisimilarity. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.)
ESORICS 2019. LNCS, vol. 11735, pp. 577–594. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-29959-0 28

27. Horne, R.: A bisimilarity congruence for the applied pi-calculus sufficiently coarse to verify
privacy properties. Arxiv, arXiv:1811.02536, pp. 1–31 (2018.). https://arxiv.org/abs/1811.
02536

28. Horne, R., Mauw, S.: Discovering ePassport vulnerabilities using bisimilarity. Logical Meth-
ods in Computer Science 17(2), 24:1-24:52 (2021). https://doi.org/10.23638/LMCS-17(2:
24)2021

29. Horne, R., Ahn, K.Y., Lin, S., Tiu, A.: Quasi-open bisimilarity with mismatch is intuition-
istic. In: Dawar, A., Grädel, E. (eds.) Proceedings of LICS 2018: 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2018), Oxford, United Kingdom, 9–12
July 2018, p. 10 (2018). https://doi.org/10.1145/3209108.3209125

30. Horne, R., Mauw, S., Yurkov, S.: Breaking and fixing unlinkability of the key agreement
protocol for 2nd gen EMV payments (2021). https://arxiv.org/abs/2105.02029

31. Johansson, M., Bengtson, J., Victor, B., Parrow, J.: Weak equivalences in psi-calculi. In:
2010 25th Annual IEEE Symposium on Logic in Computer Science, pp. 322–331, July 2010.
https://doi.org/10.1109/LICS.2010.30

32. Johansson, M., Victor, B., Parrow, J.: Computing strong and weak bisimulations for psi-
calculi. J. Logic Algebraic Program. 81(3), 162–180 (2012). https://doi.org/10.1016/j.jlap.
2012.01.001

https://doi.org/10.1137/S0097539700377864
https://doi.org/10.1016/j.entcs.2009.07.078
https://doi.org/10.1017/S0960129505004706
https://doi.org/10.1007/978-3-540-28644-8_11
https://doi.org/10.1016/j.tcs.2007.07.010
https://doi.org/10.1016/j.ic.2014.07.006
https://doi.org/10.1007/978-3-642-36830-1_12
https://doi.org/10.1016/j.ic.2017.05.004
https://doi.org/10.1016/j.ic.2017.05.004
https://doi.org/10.1109/CSF.2011.27
https://doi.org/10.1109/CSF.2011.27
https://doi.org/10.4230/LIPIcs.FSCD.2018.1
https://doi.org/10.3233/JCS-2010-0363
https://doi.org/10.1007/978-3-030-29959-0_28
https://doi.org/10.1007/978-3-030-29959-0_28
http://arxiv.org/abs/1811.02536
https://arxiv.org/abs/1811.02536
https://arxiv.org/abs/1811.02536
https://doi.org/10.23638/LMCS-17(2:24)2021
https://doi.org/10.23638/LMCS-17(2:24)2021
https://doi.org/10.1145/3209108.3209125
https://arxiv.org/abs/2105.02029
https://doi.org/10.1109/LICS.2010.30
https://doi.org/10.1016/j.jlap.2012.01.001
https://doi.org/10.1016/j.jlap.2012.01.001

Compositional Analysis of Protocol Equivalence 255

33. Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied pi calculus.
In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31987-0 14

34. Liu, J., Lin, H.: A complete symbolic bisimulation for full applied pi calculus. Theor. Com-
put. Sci. 458, 76–112 (2012). https://doi.org/10.1016/j.tcs.2012.07.034

35. Milner, R.: The polyadic π-calculus: a tutorial. In: Bauer, F.L., Brauer, W., Schwichtenberg,
H. (eds.) Logic and Algebra of Specification. NATOASI Series, vol. 94, pp. 203–246 (1993).
https://doi.org/10.1007/978-3-642-58041-3 6

36. Milner, R., Sangiorgi, D.: Barbed bisimulation, pp. 685–695 (1992). https://doi.org/10.1007/
3-540-55719-9 114

37. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part I and II. Inf. Comput.
100(1), 1–100 (1992). https://doi.org/10.1016/0890-5401(92)90008-4

38. Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for CCS. Fun-
dam. Inf. 16(2), 171–199 (1992)

39. Sangiorgi, D.: On the proof method for bisimulation. In: Wiedermann, J., Hájek, P. (eds.)
MFCS 1995. LNCS, vol. 969, pp. 479–488. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-60246-1 153

40. Sangiorgi, D.: A theory of bisimulation for the π-calculus. Acta Inf. 33(1), 69–97 (1996).
https://doi.org/10.1007/s002360050036

41. Sangiorgi, D., Walker, D.: On barbed equivalences in π-calculus. In: Larsen, K.G., Nielsen,
M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 292–304. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44685-0 20

42. Tiu, A.: A trace based bisimulation for the Spi calculus: an extended abstract. In: Shao, Z.
(ed.) APLAS 2007. LNCS, vol. 4807, pp. 367–382. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-76637-7 25

43. Tiu, A., Nguyen, N., Horne, R.: SPEC: an equivalence checker for security protocols. In:
Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp. 87–95. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-47958-3 5

44. Glabbeek, R.J.: The linear time—branching time spectrum II. In: Best, E. (ed.) CONCUR
1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993). https://doi.org/10.1007/3-
540-57208-2 6. ISBN 3-540-57208-2

45. van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for concurrent
systems. Acta Inf. 37(4/5), 229–327 (2001). https://doi.org/10.1007/s002360000041

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-540-31987-0_14
https://doi.org/10.1016/j.tcs.2012.07.034
https://doi.org/10.1007/978-3-642-58041-3_6
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1007/3-540-60246-1_153
https://doi.org/10.1007/3-540-60246-1_153
https://doi.org/10.1007/s002360050036
https://doi.org/10.1007/3-540-44685-0_20
https://doi.org/10.1007/978-3-540-76637-7_25
https://doi.org/10.1007/978-3-540-76637-7_25
https://doi.org/10.1007/978-3-319-47958-3_5
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/s002360000041
http://creativecommons.org/licenses/by/4.0/

Card-Based Cryptographic Protocols
with a Standard Deck of Cards Using

Private Operations

Yoshifumi Manabe(B) and Hibiki Ono

Kogakuin University, Shinjuku, Tokyo 163–8677, Japan
manabe@cc.kogakuin.ac.jp

Abstract. This paper shows new kinds of card-based cryptographic pro-
tocols with a standard deck of cards using private operations. They are
multi-party secure computations executed by multiple players without
computers. Most card-based cryptographic protocols use a special deck
of cards that consists of many cards with two kinds of marks. Though
these protocols are simple and efficient, the users need to prepare such
special cards. Few protocols were shown that use a standard deck of
playing cards. Though the protocols with a standard deck of cards can
be easily executed in our daily life, the numbers of cards used by these
protocols are larger than the ones that use the special deck of cards. This
paper shows logical AND, logical XOR, and copy protocols for a stan-
dard deck of cards that use the minimum number of cards. Any Boolean
functions can be calculated with a combination of the above protocols.
The new protocols use private operations that are executed by a player
where the other players cannot see. The results show the effectiveness of
private operations in card-based cryptographic protocols.

Keywords: Multi-party secure computation · Card-based
cryptographic protocols · Private operations · Logical computations ·
Copy · Playing cards

1 Introduction

Card-based cryptographic protocols [13,34,36] were proposed in which physi-
cal cards are used instead of computers to securely calculate values. They can
be used when computers cannot be used or users cannot trust the software
on the computer. Also, the protocols are easy to understand, thus the proto-
cols can be used to teach the basics of cryptography [4,28]. den Boer [2] first
showed a five-card protocol to securely calculate logical AND of two inputs.
Since then, many protocols have been proposed to realize primitives to calcu-
late any Boolean functions [7,12,17,37,48,57] and specific computations such as
a class of Boolean functions [1,23,24,29,33,42,43,45,50,51,55,62,64], million-
aires’ problem [25,39,46], realizing Turing machines [6,15], voting [31,40,44,63],
random permutation [8,10,11,38], grouping [9], ranking [60], lottery [58], proof
c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 256–274, 2021.
https://doi.org/10.1007/978-3-030-85315-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_15&domain=pdf
http://orcid.org/0000-0002-6312-257X
https://doi.org/10.1007/978-3-030-85315-0_15

Card-Based Cryptographic Protocols with a Standard Deck of Cards 257

of knowledge of a puzzle solution [3,5,21,26,27,49,52–54], and so on. This paper
considers calculations of logical AND and logical XOR functions and copy oper-
ation since any Boolean function can be realized with a combination of these
calculations.

Most of the above works are based on a two-color card model. In the two-
color card model, there are two kinds of cards, ♣ and ♥ . Cards of the same
marks cannot be distinguished. In addition, the back of both types of cards is
? . It is impossible to determine the mark in the back of a given card of ? .
Though the model is simple, such special cards are not available in our daily life.
When the players make the special cards using white cards and a printer, the
person who prints the marks to cards might add tiny marks on the cards for the
person to distinguish the cards and obtain secret data. Thus, hand-made cards
are not so easy to realize.

To solve the problem, card-based cryptographic protocols using a standard
deck of playing cards were shown [14,18,19,30,41,56]. Playing cards are available
at many houses and easy to buy. Niemi and Renvall first showed protocols that
use a standard deck of playing cards [41]. They showed logical XOR, logical
AND, and copy protocols since any Boolean functions can be realized by a
combination of these protocols. Their protocols are ‘Las Vegas’ type protocols,
that is, the execution times of the protocols are not limited. The protocols are
expected to terminate within a finite time, but if the sequence of the random
numbers is bad, the protocols do not terminate forever. Mizuki showed fixed
time logical XOR, logical AND, and copy protocols [30]. Though the number of
cards used by the XOR protocol is the minimum, the ones used by the logical
AND and copy protocols are not the minimum. Koch et al. showed a four-card
‘Las Vegas’ type AND protocol and it is impossible to obtain four-card finite
time protocol with the model without private operations [14]. Koyama et al.
showed a three-input ‘Las Vegas’ type AND protocol with the minimum number
of cards [18]. Koyama et al. showed an efficient ‘Las Vegas’ type copy protocol
[19]. Shinagawa and Mizuki showed protocols to calculate any n-variable function
using a standard deck of playing cards and a deck of UNO1 cards [56].

Randomization or a private operation is the most important primitive in
these card-based protocols. If every primitive executed in a card-based protocol
is deterministic and public, the relationship between the private input values
and output values is known to the players. When the output value is disclosed,
the private input value can be known to the players from the relationship. Thus,
all protocols need some random or private operation.

First, public randomization primitives have been discussed and then recently,
private operations are considered. Many protocols use random bisection cuts
[37], which randomly execute swapping two decks of cards or not swapping. If
the random value used in the randomization is disclosed, the secret input value
is known to the players. If some player privately brings a high-speed camera,
the random value selected by the randomization might be known by analyzing
the image. Though the size of a high-speed camera is very large, the size might

1 https://www.letsplayuno.com.

https://www.letsplayuno.com

258 Y. Manabe and H. Ono

become very small shortly. To prepare for the situation, we need to consider
using private operations.

Operations that a player executes in a place where the other players cannot
see are called private operations. These operations are considered to be exe-
cuted under the table or in the back. Private operations are shown to be the
most powerful primitives in card-based cryptographic protocols. They were first
introduced to solve millionaires’ problem [39]. Using three private operations
shown later, committed-input and committed-output logical AND, logical XOR,
and copy protocols can be achieved with the minimum number of cards on the
two-color card model [48]. Another class of private operations is private input
operations that are used when a player inputs a private value [20,46,59,63].
These operations are not discussed in this paper since the protocols need the
players to know the input values. The protocols without private input opera-
tions can be used when the players do not know private input values.

So the research question is whether we can achieve the minimum number of
cards for a standard deck of cards if we use private operations. We show positive
results to the question. This paper shows new logical AND and copy protocols
with a standard deck of playing cards that achieves the minimum number of
cards by using private operations. The results show that the private operations
are also effective for a standard deck of cards.

Note that in this paper, all players are assumed to be semi-honest. Few
works are done for the case when some players are malicious or make mistakes
[16,22,32,35,61].

In Sect. 2, basic notations and the private operations introduced in [48] are
shown. Section 3 shows logical AND, copy, and logical XOR protocols. Then,
protocols to calculate any n-variable Boolean function are shown. Section 4 con-
cludes the paper.

2 Preliminaries

2.1 Basic Notations

This section gives the notations and basic definitions of card-based protocols
with a standard deck of cards. A deck of playing cards consists of 52 distinct
mark cards, which are named as 1 to 52. The number of each card (for example,
1 is the ace of spade and 52 is the king of club) is common knowledge among
the players. The back of all cards is the same ? . It is impossible to determine
the mark in the back of a given card of ? .

One bit data is represented by two cards as follows: i j = 0 and j i = 1
if i < j.

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is
called a commitment of x, and denoted as commit(x). It is written as ? ?

︸ ︷︷ ︸

x

.

The base of a commitment is the pair of cards used for the commitment. If card
i and j(i < j) are used to set commit(x) (That is, set i j if x = 0 and set

Card-Based Cryptographic Protocols with a Standard Deck of Cards 259

j i if x = 1), the commitment is written as commit(x){i,j} and written as
? ?
︸ ︷︷ ︸

x{i,j}

. When the base information is obvious or unnecessary, it is not written.

Note that when these two cards are swapped, commit(x̄){i,j} can be obtained.
Thus, logical negation can be calculated without private operations.

A set of cards placed in a row is called a sequence of cards. A sequence of
cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card
of the sequence. S = ?

︸︷︷︸

s1

?
︸︷︷︸

s2

?
︸︷︷︸

s3

. . . , ?
︸︷︷︸

sn

. A sequence whose length is even is

called an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by two players, Alice and Bob. The players are

semi-honest, that is, they obey the rule of the protocols but try to obtain secret
values. There is no collusion between Alice and Bob, otherwise private input data
can be easily revealed. The inputs of the protocols are given in a committed
format, that is, the players do not know the input values. The output of the
protocol must be given in a committed format so that the result can be used as
an input to further calculation.

A protocol is secure when the following two conditions are satisfied: (1) If
the output cards are not opened, each player obtains no information about the
private input values from the view of the protocol for the player (the sequence
of the cards opened to the player). (2) When the output cards are opened, each
player obtains no additional information about the private input values other
than the information by the output of the protocol. For example, if the output
cards of an AND protocol for input x and y are opened and the value is 1, the
players can know that x = 1 and y = 1. If the output value is 0, the players
must not know whether the input (x, y) is (0, 0), (0, 1), or (1, 0).

The following protocols use random numbers. Random numbers can be gen-
erated without computers using coin-flipping or some similar methods. During
the protocol executions, cards are sent and received between the players. The
communication is executed by handing the cards between the players to avoid
information leakage during the communication. If the players are not in the
same place during the protocol execution, a trusted third party (for example,
post office) is necessary to send and receive cards between players.

2.2 Private Operations

We show three private operations introduced in [48]: private random bisection
cuts, private reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut)
A private random bisection cut is the following operation on an even sequence

S0 = s1, s2, . . . , s2m. A player selects a random bit b ∈ {0, 1} and outputs

S1 =
{

S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

260 Y. Manabe and H. Ono

The player executes this operation in a place where the other players cannot see.
The player must not disclose the bit b.

Note that if the private random cut is executed when m = 1 and S0 =
commit(x), given S0 = ? ?

︸ ︷︷ ︸

x

, The player’s output S1 = ? ?
︸ ︷︷ ︸

x⊕b

, which is ? ?
︸ ︷︷ ︸

x

or ? ?
︸ ︷︷ ︸

x

.

Note that a private random bisection cut is the same as the random bisection
cut [37], but the operation is executed in a hidden place.

Primitive 2 (Private reverse cut, Private reverse selection)
A private reverse cut is the following operation on an even sequence S2 =

s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =
{

S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player must not disclose b.

Note that the bit b is not newly selected by the player. This is the difference
between the primitive in Primitive 1, where a random bit must be newly selected
by the player.

Note that in some protocols below, selecting left m cards is executed after
a private reverse cut. The sequence of these two operations is called a private
reverse selection. A private reverse selection is the following procedure on an
even sequence S2 = s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =
{

s1, s2, . . . , sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1

Primitive 3 (Private reveal). A player privately opens a given committed bit.
The player must not disclose the obtained value.

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on

commit(x) and Bob executes a private reveal on the bit. Since the committed
bit is randomized by the bit b selected by Alice, the opened bit is x ⊕ b. Even
if Bob privately opens the cards, Bob obtains no information about x if b is
randomly selected and not disclosed by Alice. Bob must not disclose the obtained
value. If Bob discloses the obtained value to Alice, Alice knows the value of the
committed bit.

2.3 Opaque Commitment Pair

An opaque commitment pair is defined as a useful situation to design a secure
protocol using a standard deck of cards [30]. It is a pair of commitments whose

Card-Based Cryptographic Protocols with a Standard Deck of Cards 261

bases are unknown to a player. Let us consider the following two commitments
using cards i, j, i′ and j′. The left(right) commitment has value x (y), respec-
tively, but it is unknown that (1) the left (right) commitment is made using i
and j (i′ and j′), respectively, or (2) the left (right) commitment is made using i′

and j′ (i and j), respectively. Such pair of commitment is called an opaque com-
mitment pair and written as commit(x){i,j},{i′,j′}||commit(y){i,j},{i′,j′}. Note
that there is a case when Alice thinks a pair is an opaque commitment pair but
Bob knows the base, especially when Bob privately makes the pair of commit-
ments with the knowledge of x and y. For example, Bob randomly selects a bit
b ∈ {0, 1} and

S =
{

commit(x){i,j}||commit(y){i′,j′} if b = 0
commit(x){i′,j′}||commit(y){i,j} if b = 1

then S = commit(x){i,j},{i′,j′}||commit(y){i,j},{i′,j′} for Alice.

2.4 Space and Time Complexities

The space complexity of card-based protocols is evaluated by the number of
cards. Minimizing the number of cards is discussed in many works.

The number of rounds was proposed as a criterion to evaluate the time com-
plexity of card-based protocols using private operations [47]. The first round
begins from the initial state. The first round is (possibly parallel) local execu-
tions by each player using the cards initially given to each player. It ends at
the instant when no further local execution is possible without receiving cards
from another player. The local executions in each round include sending cards
to some other players but do not include receiving cards. The result of every
private execution is known to the player. For example, shuffling whose result is
unknown to the player himself is not executed. Since the private operations are
executed in a place where the other players cannot see, it is hard to force the
player to execute such operations whose result is unknown to the player. The
i(> 1)-th round begins with receiving all the cards sent during the (i − 1)-th
round. Each player executes local executions using the received cards and the
cards left to the player at the end of the (i − 1)-th round. Each player executes
local executions until no further local execution is possible without receiving
cards from another player. The number of rounds of a protocol is the maximum
number of rounds necessary to output the result among all possible inputs and
random values.

Let us show an example of a protocol execution, its space complexity, and
time complexity with the conventional two-color card model. In the two-color
card model, there are two kinds of marks, ♣ and ♥ . One bit data is represented
by two cards as follows: ♣ ♥ = 0 and ♥ ♣ = 1.

Protocol 1 (AND protocol in [48])
Input: commit(x) and commit(y).
Output: commit(x ∧ y).

262 Y. Manabe and H. Ono

1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice sends commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob privately sets

S2 =
{

commit(y)||commit(0) if x′ = 1
commit(0)||commit(y) if x′ = 0

and sends S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b generated in the

private random bisection cut. Let the obtained sequence be S3. Alice outputs
S3.

The AND protocol realizes the following equation.

x ∧ y =
{

y if x = 1
0 if x = 0

The correctness of the protocol is shown in [48]. The number of cards is four,
since the cards of commit(x′) are re-used to set commit(0).

Let us consider the time complexity of the protocol. The first round ends
at the instant when Alice sends commit(x′) and commit(y) to Bob. The second
round begins at receiving the cards by Bob. The second round ends at the instant
when Bob sends S2 to Alice. The third round begins at receiving the cards by
Alice. The number of rounds of this protocol is three.

Since each operation is relatively simple, the dominating time to execute
protocols with private operations is the time to sending cards between players
and setting up so that the cards are not seen by the other players. Thus the
number of rounds is the criterion to evaluate the time complexity of card-based
protocols with private operations.

2.5 Problems with a Standard Deck of Cards

The above AND protocol cannot be executed as it is with a standard deck of
cards.

The protocol uses the property that all ♥ cards (♣ cards) are indistin-
guishable. Even if the final cards are opened to see the result, it is impossible
to know that the opened cards are the cards of commit(y) or commit(0). If it is
possible to detect the above information, the value of x is known to the players.

First, let us consider a simple encoding using a standard deck of a playing
card that heart and diamond cards mean ♥ and all club and spade cards mean
♣ . With this simple encoding, let us consider the case when the aces of diamond
and spade are used to set commit(x) and the aces of heart and club are used to
set commit(y).

Suppose that x = 1 and y = 0. In this case, the result is commit(y), thus
the result is correct since y = 0. At step 2 of the protocol, aces of diamond and
spade are re-used to set commit(0). Since x = 1, the result is commit(y). When
the cards are opened to see the result, the cards are the aces of heart and club.

Card-Based Cryptographic Protocols with a Standard Deck of Cards 263

The players can know that y is selected as the output, thus x must be 1. The
execution reveals the information of inputs from the cards used to set the input
commitments.

Next, consider the case when the encoding rule i j = 0, j i = 1 if i < j is
used to the standard deck of playing cards. Suppose again that x = 1 and y = 0.
When two inputs are given as commit(x){1,2} and commit(y){3,4}, commit(0)
and commit(y) are set as commit(0){1,2} and commit(y){3,4}, respectively at
Step 2. Since x = 1, the result is commit(y){3,4}. When the cards are opened
to see the result, the cards are 3 and 4. The players can know that y is selected
as the output, thus x must be 1. This execution also reveals the information of
inputs from the base of the commitments.

When we design a protocol with a standard deck of cards, we must consider
the information leakage from the base of the commitment.

3 AND, XOR, and Copy with a Standard Deck of Cards

This section shows our new protocols for AND, and copy with the minimum
number of cards using private operations. We also show XOR protocol using
private operations to show the minimum number of cards can also be achieved
using private operations. Before we show the protocols, we show subroutines to
change the base of a given commitment.

3.1 Base Change Protocols

A base change protocol changes the base of a commitment without changing the
value of the commitment. A base change protocol is also shown in [30], but the
protocol uses a public shuffle, thus we show a new protocol that uses private
operations.

Protocol 2 (Base change protocol (1))
Input: commit(x){1,2} and two new card 3 and 4.
Output: commit(x){3,4}.

1. Bob executes a private random bisection cut on commit(x){1,2}. Let
b ∈ {0, 1} be the bit Bob selected. The result is S1 = commit(x ⊕ b){1,2}.
Bob sends S1 to Alice.

2. Alice executes a private reveal on S1. Alice sees x ⊕ b. Alice makes S2 =
commit(x ⊕ b){3,4} and sends S2 to Bob.

3. Bob executes a private reverse cut using b on S2. The result is commit(x){3,4}.

The protocol is three rounds. The security of the protocol is as follows. When
Alice sees the cards at Step 2, the value is x ⊕ b. Since b is a random value
unknown to Alice, Alice has no information about x by the reveal. Bob sees no
open cards, thus Bob has no information about x. Note again that Bob must
not disclose b to Alice.

Another base change protocol from an opaque commitment pair can be con-
sidered. In the following protocol, the second input value ⊥ is random and mean-
ingless to Alice.

264 Y. Manabe and H. Ono

Protocol 3 (Base change protocol (2))
Input: commit(x){1,2},{3,4}||commit(⊥){1,2},{3,4}.
Output: commit(x){1,2}.

1. Bob executes a private random bisection cut on the
left pair, commit(x){1,2},{3,4}. Let b ∈ {0, 1} be the bit Bob selected. The
result S1 = commit(x ⊕ b){1,2},{3,4}||commit(⊥){1,2},{3,4}. Bob sends S1 to
Alice.

2. Alice executes a private reveal on S1. Alice sees x ⊕ b. If the base of the
left pair is {1, 2}, Alice just faces down the left pair and the cards, S2, be
the result. Otherwise, the base of the right pair is {1, 2}. Alice makes S2 =
commit(x ⊕ b){1,2} using the right cards. Alice sends S2 to Bob.

3. Bob executes a private reverse cut using b on S2. The result is commit(x){1,2}.

In this protocol, Alice knows the bases of the input commitments. The pro-
tocol can be used only when this information leakage does not cause a security
problem, for example, the bases are randomly set by Bob. The security of the
input value x is just the same as the first base change protocol.

3.2 And Protocol

In the following AND, copy, and XOR protocols, the bases of the output com-
mitments are fixed to avoid information leakage from the bases when the outputs
are opened.

Protocol 4 (AND protocol)
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x ∧ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} and
commit(y){3,4} using two different bits b1 and b2. Alice sends the results,
S1 = commit(x ⊕ b1){1,2} and S2 = commit(y ⊕ b2){3,4}, to Bob.

2. Bob executes private reveals on S1 and S2. Bob sees x ⊕ b1 and y ⊕ b2. Bob
randomly selects bit b3 ∈ {0, 1}. Bob privately sets

S3,0 =
{

commit(x ⊕ b1){1,2} if b3 = 0
commit(x ⊕ b1){3,4} if b3 = 1

and

S3,1 =
{

commit(y ⊕ b2){3,4} if b3 = 0
commit(y ⊕ b2){1,2} if b3 = 1

S3,0 = commit(x⊕b1){1,2},{3,4} and S3,1 = commit(y⊕b2){1,2},{3,4} for Alice.
Bob sends S3,1 to Alice.

3. Alice executes a private reverse cut using b2 on S3,1. The result S′
3,1 =

commit(y){1,2},{3,4}. Alice sends S′
3,1 to Bob.

Card-Based Cryptographic Protocols with a Standard Deck of Cards 265

4. Bob executes a private reveal on S3,0 and sees x⊕ b1. Bob privately sets cards

S4 =
{

commit(0){1,2},{3,4}||S′
3,1 if x ⊕ b1 = 0

S′
3,1||commit(0){1,2},{3,4} if x ⊕ b1 = 1

Note that the cards used for S3,0 are reused to set commit(0). Since S3,0 =
commit(·){1,2},{3,4}, the result is commit(0){1,2},{3,4} for Alice. Bob sends S4

to Alice.
5. Alice executes a private reverse selection on S4 using b1. Let S5 be the result

and the remaining two cards be S6. The result S5 = commit(y){1,2},{3,4} if
(b1 = 0 and x ⊕ b1 = 1) or (b1 = 1 and x ⊕ b1 = 0). The condition equals to
x = 1.
S5 = commit(0){1,2},{3,4} if (b1 = 0 and x⊕b1 = 0) or (b1 = 1 and x⊕b1 = 1).
The condition equals to x = 0. Thus,

S5 =
{

commit(y){1,2},{3,4} if x = 1
commit(0){1,2},{3,4} if x = 0

= commit(x ∧ y){1,2},{3,4}

Alice sends S5 and S6 to Bob.
6. Bob executes a private random bisection cut on S6 to erase the value to Alice.

Let b′ be the random bit selected by Bob and S′
6 be the result.

Bob and Alice execute Protocol 3 (Base change protocol (2)) to S5||S′
6. Then

they obtain commit(x ∧ y){1,2}.

The protocol is eight rounds since the first round of the base change protocol
can be executed in the sixth round of AND protocol by Bob. The number of cards
is four. Since four cards are necessary to input x and y, the number of cards is
the minimum. The correctness of the output value is shown in the protocol, thus
we show the security.

Theorem 1. The AND protocol is secure.

Proof. First, we show the security for Bob. Though Bob sees cards at Step 2
and 4, the cards, S1 = commit(x ⊕ b1){1,2} and S2 = commit(y ⊕ b2){3,4}, are
randomized by b1 and b2. Thus Bob obtains no information about the input
values.

Alice sees cards at the second step of the base change protocol. At Step 3
after the private reverse selection by Alice,

S′
3,1 =

{

commit(y){3,4} if b3 = 0
commit(y){1,2} if b3 = 1

and commit(y) (commit(0)) is finally selected as S5 if x = 1 (x = 0), respectively.
The value is then randomized using b as commit(y ⊕ b) (commit(b)) at Step 1
of the base change protocol (2).

S6 =
{

commit(0){1,2},{3,4} if x = 1
commit(y){1,2},{3,4} if x = 0

266 Y. Manabe and H. Ono

S6 is also randomized at Step 6 using b′.
Thus at Step 2 of the base change protocol (2), Alice sees the randomized

cards of S5||S6, which are
⎧

⎪
⎪
⎨

⎪
⎪
⎩

commit(b){1,2}||commit(y ⊕ b′){3,4} if b3 = 0 and x = 0
commit(y ⊕ b){3,4}||commit(b′){1,2} if b3 = 0 and x = 1
commit(b){3,4}||commit(y ⊕ b′){1,2} if b3 = 1 and x = 0
commit(y ⊕ b){1,2}||commit(b′){3,4} if b3 = 1 and x = 1

Therefore, Alice sees
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

commit(0){1,2}||commit(0){3,4}

if (b3 = 0 ∧ x = 0 ∧ b = 0 ∧ y ⊕ b′ = 0) ∨ (b3 = 1 ∧ x = 1 ∧ y ⊕ b = 0 ∧ b′ = 0)

commit(0){1,2}||commit(1){3,4}

if (b3 = 0 ∧ x = 0 ∧ b = 0 ∧ y ⊕ b′ = 1) ∨ (b3 = 1 ∧ x = 1 ∧ y ⊕ b = 0 ∧ b′ = 1)

commit(1){1,2}||commit(0){3,4}

if (b3 = 0 ∧ x = 0 ∧ b = 1 ∧ y ⊕ b′ = 0) ∨ (b3 = 1 ∧ x = 1 ∧ y ⊕ b = 1 ∧ b′ = 0)

commit(1){1,2}||commit(1){3,4}

if (b3 = 0 ∧ x = 0 ∧ b = 1 ∧ y ⊕ b′ = 1) ∨ (b3 = 1 ∧ x = 1 ∧ y ⊕ b = 1 ∧ b′ = 1)

commit(0){3,4}||commit(0){1,2}

if (b3 = 0 ∧ x = 1 ∧ y ⊕ b = 0 ∧ b′ = 0) ∨ (b3 = 1 ∧ x = 0 ∧ b = 0 ∧ y ⊕ b′ = 0)

commit(0){3,4}||commit(1){1,2}

if (b3 = 0 ∧ x = 1 ∧ y ⊕ b = 0 ∧ b′ = 1) ∨ (b3 = 1 ∧ x = 0 ∧ b = 0 ∧ y ⊕ b′ = 1)

commit(1){3,4}||commit(0){1,2}

if (b3 = 0 ∧ x = 1 ∧ y ⊕ b = 1 ∧ b′ = 0) ∨ (b3 = 1 ∧ x = 0 ∧ b = 1 ∧ y ⊕ b′ = 0)

commit(1){3,4}||commit(1){1,2}

if (b3 = 0 ∧ x = 1 ∧ y ⊕ b = 1 ∧ b′ = 1) ∨ (b3 = 1 ∧ x = 0 ∧ b = 1 ∧ y ⊕ b′ = 1)

Let Pij(i ∈ {0, 1}, j ∈ {0, 1}) be the probability when x = i and y = j.
The probabilities P (b = 0), P (b = 1), P (b′ = 0), P (b3 = 0), and P (b3 =
1) are 1/2, thus the probabilities when Alice sees commit(v){i,i+1}||commit
(w){4−i,5−i}(v, w ∈ {0, 1}, i ∈ {1, 3}) are the same value (P00+P01+P10+P11)/8.
Thus, Alice obtains no information from the cards she sees. �	

The comparison of AND protocols is shown in Table 1.

3.3 Copy Protocol

Next, we show a new copy protocol. Note that the protocol is essentially the
same as the one in [48] for the two-color card model. The number of cards is the
minimum.

Card-Based Cryptographic Protocols with a Standard Deck of Cards 267

Table 1. Comparison of AND protocols with a standard deck of cards.

Article # of cards Note

Niemi et al. [41] 5 Las Vegas algorithm

Koch et al. [14] 4 Las Vegas algorithm

Mizuki [30] 8 Fixed time algorithm

This paper 4 Fixed time algorithm

Table 2. Comparison of copy protocols with a standard deck of cards

Article # of cards Note

Niemi et al. [41] 6 Las Vegas algorithm

Koyama et al. [19] 6 Las Vegas algorithm

Mizuki [30] 6 Fixed time algorithm

This paper 4 Fixed time algorithm

Protocol 5 (Copy protocol)
Input: commit(x){1,2} and two new cards 3 and 4.
Output: commit(x){1,2} and commit(x){3,4}

1. Alice executes a private random bisection cut on commit(x){1,2}. Let b the
random bit Alice selects. Alice sends the result, commit(x ⊕ b){1,2}, to Bob.

2. Bob executes a private reveal on commit(x ⊕ b){1,2} and sees x ⊕ b. Bob
privately makes commit(x ⊕ b){3,4}. Bob sends commit(x ⊕ b){1,2} and
commit(x ⊕ b){3,4} to Alice.

3. Alice executes a private reverse cut on each of the pairs using b. The result
is commit(x){1,2} and commit(x){3,4}.

The protocol is three rounds.

Theorem 2. The copy protocol is secure.

Proof. Since Alice sees no open cards, Alice obtains no information about the
input value. Though Bob sees x⊕ b, input x is randomized by b and Bob obtains
no information about x. �	

The comparison of copy protocols are shown in Table 2.
The number of rounds can be decreased to two if we use six cards using the

protocol in [47] for the two-color card model.

3.4 XOR Protocol

Though the minimum number of cards is already achieved in [30], the protocol
uses public shuffles. We show a new protocol that uses private operations. The
protocol is essentially the same as the one in [47] for the two-color card model.

268 Y. Manabe and H. Ono

Table 3. Comparison of XOR protocols with a standard deck of cards.

Article # of cards Note

Niemi et al. [41] 4 Las Vegas algorithm

Mizuki [30] 4 Fixed time algorithm

This paper 4 Fixed time algorithm

Protocol 6 (XOR protocol)
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x ⊕ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} and
commit(y){3,4} using the same random bit b ∈ {0, 1}. The result is
commit(x ⊕ b){1,2} and commit(y ⊕ b){3,4}. Alice sends these cards to Bob.

2. Bob executes a private reveal on commit(y ⊕ b){3,4}. Bob sees y ⊕ b. Bob
executes a private reverse cut on commit(x ⊕ b){1,2} using y ⊕ b. The result
is commit((x ⊕ b) ⊕ (y ⊕ b)){1,2} = commit(x ⊕ y){1,2}.

The protocol is two rounds. The protocol uses four cards. Since any protocol
needs four cards to input x and y, the number of cards is the minimum.

Note that if Bob sends commit(y ⊕ b){3,4} to Alice and Alice executes a
private reverse cut using b, an input commit(y){3,4} can be obtained without
additional cards. This protocol is called an input preserving XOR and it is used
in Sect. 3.5.

Theorem 3. The XOR protocol is secure.

Proof. Since Alice sees no open cards, Alice obtains no information about the
input values. Though Bob sees y⊕b, input y is randomized by b and Bob obtains
no information about y. �	

The comparison of XOR protocols is shown in Table 3.

3.5 Any Boolean Function

We show two kinds of protocols to calculate any n-variable Boolean function. The
first one uses many cards but the number of rounds is constant. The second one
uses fewer cards but needs many rounds. Let f(x1, x2, . . . , xn) be an n-variable
Boolean function.

Protocol 7 (Protocol for any n-variable Boolean function (1))
Input: commit(xi){2i−1,2i}(i = 1, 2, . . . , n).
Output: commit(f(x1, x2, . . . , xn)){1,2}.

1. Alice executes a private random bisection cut on commit(xi){2i−1,2i}(i =
1, 2, . . . , n). Let the output be commit(x′

i)
{2i−1,2i}(i = 1, 2, . . . , n). Note that

one random bit bi is selected for each xi(i = 1, 2, . . . , n). x′
i = xi ⊕ bi(i =

1, 2, . . . , n). Alice sends commit(x′
i)

{2i−1,2i}(i = 1, 2, . . . , n) to Bob.

Card-Based Cryptographic Protocols with a Standard Deck of Cards 269

2. Bob executes a private reveal on commit(x′
i)

{2i−1,2i}(i = 1, 2, . . . , n). Bob
selects a random bit b ∈ {0, 1}. Bob privately makes 2n commitments
Sa1,a2,...,an

(ai ∈ {0, 1}, i = 1, 2, . . . , n) as Sa1,a2,...,an
= commit(f(a1 ⊕

x′
1, a2 ⊕ x′

2, . . . , an ⊕ x′
n) ⊕ b) using card 3, 4, . . . , 2n+1 + 1, 2n+1 + 2. Note

that the cards used to set each commitment are randomly selected by Bob.
Bob executes a private random bisection cut on commit(·){1,2} to erase the
value. Bob sends these commitments to Alice.

3. Alice privately reveals Sb1,b2,...,bn . Alice sees f(b1⊕x′
1, b2⊕x′

2, . . . , bn⊕x′
n)⊕b =

f(x1, x2, . . . , xn)⊕ b, since x′
i = xi ⊕ bi(i = 1, 2, . . . , n). Alice privately makes

S = commit(f(x1, x2, . . . , xn) ⊕ b){1,2} and sends S to Bob.
4. Bob executes a private reverse cut using b on S. The result is

commit(f(x1, x2, . . . , xn)){1,2}. Bob outputs the result.

Note that Bob can re-use cards of 3, 4, . . . , 2n−1, and 2n to set Sa1,a2,...,an
. The

protocol uses 2n+1 + 2 cards. The number of rounds is four.

Theorem 4. The Protocol 7 is secure.

Proof. Bob sees x′
i = xi ⊕ bi, but the input xi is randomized by bi and Bob

obtains no information about xi. Alice sees f(x1, x2, . . . , xn) ⊕ b, but the value
is randomized by b and Alice obtains no information about f(x1, x2, . . . , xn).
Alice obtains no information from the base of the commitment since the base is
randomly selected by Bob. �	

The main idea of the other protocol is the same as the one in [48] for the
two-color card model, which uses an input preserving AND protocol. After the
AND protocol, the unused pair of cards has g = x̄ ∧ y [48]. Let h = x ∧ y.
The last step of AND protocol (the first step of the base change protocol) is
changed so that Alice sets commit(h ⊕ b){1,2} and commit(g ⊕ b′){3,4}. By the
private reverse cut by Bob, Bob obtains commit(h){1,2} and commit(g){3,4}.
Execute the input preserving XOR protocol to g and h so that h is preserved.
The output g ⊕ h = x ∧ y ⊕ x̄ ∧ y = y, thus we can obtain commit(x ∧ y){1,2}

and commit(y){3,4}. Therefore, one input can be preserved without additional
cards by the AND protocol.

Any Boolean function f(x1, x2, . . . , xn) can be represented as follows:
f(x1, x2, . . . , xn) = x̄1∧x̄2∧· · · x̄n∧f(0, 0, . . . , 0)⊕x1∧x̄2∧· · · x̄n∧f(1, 0, . . . , 0)⊕
x̄1 ∧ x2 ∧ · · · x̄n ∧ f(0, 1, . . . , 0) ⊕ · · · ⊕ x1 ∧ x2 ∧ · · ·xn ∧ f(1, 1, . . . , 1).

Since the terms with f(i1, i2, . . . , in) = 0 can be removed, this function f can
be written as f =

⊕k
i=1 v

i
1 ∧ vi2 ∧ · · · ∧ vin, where vij = xj or x̄j . Let us write

Ti = vi1 ∧ vi2 ∧ · · · ∧ vin. The number of terms k(< 2n) depends on f .

Protocol 8 (Protocol for any n-variable Boolean function (2))
Input: commit(xi){2i+3,2i+4}(i = 1, 2, . . . , n).
Output: commit(f(x1, x2, . . . , xn)){1,2}.
The additional four cards (two pairs of cards) 1,2,3, and 4 are used as follows.
1 and 2 store the intermediate value to calculate f .
3 and 4 store the intermediate value to calculate Ti.

270 Y. Manabe and H. Ono

Table 4. Comparison of protocols to calculate any n-variable Boolean function with a
standard deck of cards.

Article # of cards Note

Shinagawa et al. [56] 2n + 8 Fixed time algorithm

This paper’s Protocol 7 2n+1 + 2 Fixed time algorithm

This paper’s Protocol 8 2n + 4 Fixed time algorithm

Execute the following steps for i = 1, 2, . . . , k.

1. Copy vi1 from the input commit(x1) as commit(vi1)
{3,4}. (Note that if vi1 is

x̄1, NOT is taken after the copy).
2. For j = 2, . . . , n, execute the following procedure: Execute the input preserving

AND protocol to commit(·){3,4} and commit(vij) so that input commit(vij) is
preserved. The result is stored as commit(·){3,4}. (Note that if vij is x̄j, NOT
is taken before the AND protocol and NOT is taken again for the preserved
input.)
At the end of this step, Ti is obtained as commit(vi1 ∧ vi2 ∧ · · · ∧ vin){3,4}.

3. If i = 1, copy commit(·){3,4} to commit(·){1,2}. If i > 1, apply the XOR
protocol between commit(·){3,4} and commit(·){1,2}. The result is stored as
commit(·){1,2}.

At the end of the protocol, commit(f(x1, x2, . . . xn)){1,2} is obtained.

The comparison of protocols to calculate any n-variable Boolean function is
shown in Table 4.

The number of additional cards in [56] with a standard deck of cards is 8.
Thus the number of additional cards is reduced using private operations.

4 Conclusion

This paper showed AND, XOR, and copy protocols that use a standard deck of
cards. The numbers of cards used by the protocols are the minimum. The results
show the effectiveness of private operations. One of the remaining problems is
obtaining protocols when a player is malicious.

Acknowledgements. The authors would like to thank anonymous referees for their
careful reading of our manuscript and their many insightful comments and suggestions.

References

1. Abe, Y., Hayashi, Y.I., Mizuki, T., Sone, H.: Five-card and computations in com-
mitted format using only uniform cyclic shuffles. New Gener. Comput. 1–18 (2021)

Card-Based Cryptographic Protocols with a Standard Deck of Cards 271

2. den Boer, B.: More efficient match-making and satisfiability The Five Card Trick.
In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434,
pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-
4 23

3. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T.,
Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 8

4. Cheung, E., Hawthorne, C., Lee, P.: CS 758 project: secure computation with
playing cards (2013). http://cdchawthorne.com/writings/secure playing cards.pdf

5. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.:
Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z.,
Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26176-4 14

6. Dvořák, P., Kouckỳ, M.: Barrington plays cards: the complexity of card-based
protocols. arXiv preprint arXiv:2010.08445 (2020)

7. Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary
and sufficient numbers of cards for securely computing two-bit output functions.
In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 193–211.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61273-7 10

8. Hashimoto, Y., Nuida, K., Shinagawa, K., Inamura, M., Hanaoka, G.: Toward
finite-runtime card-based protocol for generating hidden random permutation
without fixed points. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
101-A(9), 1503–1511 (2018)

9. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure group-
ing protocol using a deck of cards. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. 101(9), 1512–1524 (2018)

10. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a
random permutation without fixed points. In: Proceedings of 3rd International
Conference on Mathematics and Computers in Sciences and in Industry (MCSI
2016), pp. 252–257 (2016)

11. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21819-9 16

12. Kastner, J., et al.: The minimum number of cards in practical card-based protocols.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 126–155.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 5

13. Koch, A.: The landscape of optimal card-based protocols. IACR Cryptology ePrint
Archive, Report 2018/951 (2018)

14. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal ver-
ification. N. Gener. Comput. 39(1), 115–158 (2021)

15. Koch, A., Walzer, S.: Private function evaluation with cards. Cryptology ePrint
Archive, Report 2018/1113 (2018). https://eprint.iacr.org/2018/1113

16. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In:
Proceedings of 10th International Conference on Fun with Algorithms (FUN 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

17. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 32

https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/978-3-030-03232-6_8
http://cdchawthorne.com/writings/secure_playing_cards.pdf
https://doi.org/10.1007/978-3-030-26176-4_14
http://arxiv.org/abs/2010.08445
https://doi.org/10.1007/978-3-319-61273-7_10
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-70700-6_5
https://eprint.iacr.org/2018/1113
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32

272 Y. Manabe and H. Ono

18. Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input AND proto-
col with a standard deck of minimal cards. In: Santhanam, R., Musatov, D. (eds.)
CSR 2021. LNCS, vol. 12730, pp. 242–256. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-79416-3 14

19. Koyama, H., Toyoda, K., Miyahara, D., Mizuki, T.: New card-based copy proto-
cols using only random cuts. In: Proceedings of the 8th ACM on ASIA Public-
Key Cryptography Workshop, APKC 2021, pp. 13–22. Association for Computing
Machinery, New York (2021). https://doi.org/10.1145/3457338.3458297

20. Kurosawa, K., Shinozaki, T.: Compact card protocol. In: Proceedings of 2017 Sym-
posium on Cryptography and Information Security (SCIS 2017), pp. 1A2-6 (2017).
(in Japanese)

21. Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A physical ZKP for
Slitherlink: how to perform physical topology-preserving computation. In: Heng,
S.-H., Lopez, J. (eds.) ISPEC 2019. LNCS, vol. 11879, pp. 135–151. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34339-2 8

22. Manabe, Y., Ono, H.: Secure card-based cryptographic protocols using private
operations against malicious players. In: Maimut, D., Oprina, A.-G., Sauveron, D.
(eds.) SecITC 2020. LNCS, vol. 12596, pp. 55–70. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-69255-1 5

23. Manabe, Y., Ono, H.: Card-based cryptographic protocols for three-input functions
using private operations. In: Flocchini, P., Moura, L. (eds.) IWOCA 2021. LNCS,
vol. 12757, pp. 469–484. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-79987-8 33

24. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. IACR
Cryptology ePrint Archive, Report 2015/1031 (2015)

25. Miyahara, D., Hayashi, Y.I., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of Yao’s millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020)

26. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Pro-
ceedings of 10th International Conference on Fun with Algorithms (FUN 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

27. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge
proof for kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 102(9),
1072–1078 (2019)

28. Mizuki, T.: Applications of card-based cryptography to education. In: IEICE Tech-
nical Report ISEC2016-53, pp. 13–17 (2016). (in Japanese)

29. Mizuki, T.: Card-based protocols for securely computing the conjunction of mul-
tiple variables. Theor. Comput. Sci. 622, 34–44 (2016)

30. Mizuki, T.: Efficient and secure multiparty computations using a standard deck of
playing cards. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp.
484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0 29

31. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS,
vol. 7956, pp. 162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39074-6 16

32. Mizuki, T., Komano, Y.: Analysis of information leakage due to operative errors in
card-based protocols. In: Iliopoulos, C., Leong, H.W., Sung, W.-K. (eds.) IWOCA
2018. LNCS, vol. 10979, pp. 250–262. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94667-2 21

33. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–
606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 36

https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1145/3457338.3458297
https://doi.org/10.1007/978-3-030-34339-2_8
https://doi.org/10.1007/978-3-030-69255-1_5
https://doi.org/10.1007/978-3-030-69255-1_5
https://doi.org/10.1007/978-3-030-79987-8_33
https://doi.org/10.1007/978-3-030-79987-8_33
https://doi.org/10.1007/978-3-319-48965-0_29
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-319-94667-2_21
https://doi.org/10.1007/978-3-319-94667-2_21
https://doi.org/10.1007/978-3-642-34961-4_36

Card-Based Cryptographic Protocols with a Standard Deck of Cards 273

34. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via
abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2014)

35. Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Ferro, A., Luccio,
F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 313–324. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07890-8 27

36. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic proto-
cols and its applications. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
100(1), 3–11 (2017)

37. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

38. Murata, S., Miyahara, D., Mizuki, T., Sone, H.: Efficient generation of a card-based
uniformly distributed random derangement. In: Uehara, R., Hong, S.-H., Nandy,
S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 78–89. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-68211-8 7

39. Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve mil-
lionaires’ problem with two kinds of cards. N. Gener. Comput. 39(1), 73–96 (2021)

40. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-
based three-input voting protocol utilizing private permutations. In: Shikata, J.
(ed.) ICITS 2017. LNCS, vol. 10681, pp. 153–165. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-72089-0 9

41. Niemi, V., Renvall, A.: Solitaire zero-knowledge. Fundamenta Informaticae 38(1,
2), 181–188 (1999)

42. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any
Boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS,
vol. 9076, pp. 110–121. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17142-5 11

43. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input
functions with eight cards. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 98(6), 1145–1152 (2015)

44. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority
function with eight cards. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B., Vega-
Rodŕıguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-45008-2 16

45. Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols
using unequal division shuffles. Soft. Comput. 22(2), 361–371 (2018)

46. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the million-
aires’ problem using private input operations. In: Proceedings of 13th Asia Joint
Conference on Information Security (AsiaJCIS 2018), pp. 23–28 (2018)

47. Ono, H., Manabe, Y.: Card-based cryptographic protocols with the minimum num-
ber of rounds using private operations. In: Pérez-Solà, C., Navarro-Arribas, G.,
Biryukov, A., Garcia-Alfaro, J. (eds.) DPM/CBT -2019. LNCS, vol. 11737, pp.
156–173. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31500-9 10

48. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private
operations. N. Gener. Comput. 39(1), 19–40 (2021)

49. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical ZKP for
connectivity: applications to Nurikabe and Hitori. In: De Mol, L., Weiermann, A.,
Manea, F., Fernández-Duque, D. (eds.) CiE 2021. LNCS, vol. 12813, pp. 373–384.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80049-9 37

https://doi.org/10.1007/978-3-319-07890-8_27
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-030-68211-8_7
https://doi.org/10.1007/978-3-319-72089-0_9
https://doi.org/10.1007/978-3-319-72089-0_9
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-642-45008-2_16
https://doi.org/10.1007/978-3-030-31500-9_10
https://doi.org/10.1007/978-3-030-80049-9_37

274 Y. Manabe and H. Ono

50. Ruangwises, S., Itoh, T.: AND protocols using only uniform shuffles. In: van Bev-
ern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 349–358. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-19955-5 30

51. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with
2n cards. In: Chen, J., Feng, Q., Xu, J. (eds.) TAMC 2020. LNCS, vol. 12337, pp.
25–36. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59267-7 3

52. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and
k vertex-disjoint paths problem. N. Gener. Comput. 39(1), 3–17 (2021)

53. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. In: Uehara,
R., Hong, S.-H., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 296–
307. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8 24

54. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for sudoku. Theor. Comput. Sci. 839, 135–142 (2020)

55. Shinagawa, K., Mizuki, T.: The six-card trick: secure computation of three-input
equality. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 123–131. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-12146-4 8

56. Shinagawa, K., Mizuki, T.: Secure computation of any Boolean function based
on any deck of cards. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS,
vol. 11458, pp. 63–75. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
18126-0 6

57. Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based compu-
tation of any Boolean circuit. Discret. Appl. Math. 289, 248–261 (2021)

58. Shinoda, Y., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based covert
lottery. In: Maimut, D., Oprina, A.-G., Sauveron, D. (eds.) SecITC 2020. LNCS,
vol. 12596, pp. 257–270. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-69255-1 17

59. Shirouchi, S., Nakai, T., Iwamoto, M., Ohta, K.: Efficient card-based crypto-
graphic protocols for logic gates utilizing private permutations. In: Proceedings
of 2017 Symposium on Cryptography and Information Security(SCIS 2017), p.
1A2-2 (2017). (in Japanese)

60. Takashima, K., et al.: Card-based protocols for secure ranking computations.
Theor. Comput. Sci. 845, 122–135 (2020)

61. Takashima, K., Miyahara, D., Mizuki, T., Sone, H.: Actively revealing card attack
on card-based protocols. Natural Comput. 1–14 (2021)

62. Toyoda, K., Miyahara, D., Mizuki, T., Sone, H.: Six-card finite-runtime XOR pro-
tocol with only random cut. In: Proceedings of the 7th ACM Workshop on ASIA
Public-Key Cryptography, pp. 2–8 (2020)

63. Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-
based majority voting protocols with three inputs using three cards. In: Proceed-
ings of 2018 International Symposium on Information Theory and Its Applications
(ISITA), pp. 218–222. IEEE (2018)

64. Yasunaga, K.: Practical card-based protocol for three-input majority. IEICE Trans.
Fundam. Electron. Commun. Comput. Scie. E103.A(11), 1296–1298 (2020).
https://doi.org/10.1587/transfun.2020EAL2025

https://doi.org/10.1007/978-3-030-19955-5_30
https://doi.org/10.1007/978-3-030-59267-7_3
https://doi.org/10.1007/978-3-030-68211-8_24
https://doi.org/10.1007/978-3-030-12146-4_8
https://doi.org/10.1007/978-3-030-18126-0_6
https://doi.org/10.1007/978-3-030-18126-0_6
https://doi.org/10.1007/978-3-030-69255-1_17
https://doi.org/10.1007/978-3-030-69255-1_17
https://doi.org/10.1587/transfun.2020EAL2025

Normalising Lustre Preserves Security

Sanjiva Prasad(B) and R. Madhukar Yerraguntla

Indian Institute of Technology Delhi, New Delhi, India
{sanjiva,madhukar.yr}@cse.iitd.ac.in

Abstract. The synchronous reactive data flow language Lustre is an
expressive language, equipped with a suite of tools for modelling, sim-
ulating and model-checking a wide variety of safety-critical systems. A
critical intermediate step in the formally certified compilation of Lus-
tre involves translation to a well-behaved sub-language called “Nor-
malised Lustre” (NLustre). Recently, we proposed a simple Denning-
style lattice-based secure information flow type system for NLustre,
and proved its soundness by establishing that security-typed programs
are non-interfering with respect to the co-inductive stream semantics.

In this paper, we propose a similar security type system for unre-
stricted Lustre, and show that Bourke et al.’s semantics-preserving
normalisation transformations from Lustre to NLustre are security-
preserving as well. A novelty is the use of refinement security types
for node calls. The main result is the preservation of security types by
the normalisation transformations. The soundness of our security typ-
ing rules is shown by establishing that well-security-typed programs are
non-interfering, via a reduction to type-preservation (here), semantics-
preservation (Bourke et al.) and our previous result of non-interference
for NLustre.

Keywords: Synchronous reactive data flow · Lustre · Compiler
transformation · Security type system · Non-interference · Security
preservation

1 Introduction

The synchronous reactive data flow language Lustre [6,11] is an expressive
language with an elegant formal semantics. Its underlying deterministic, clocked
model makes it a versatile programming paradigm, with diverse applications
such as distributed embedded controllers, numerical computations, and complex
Scade 6 [7] safety-critical systems. It is also equipped with a suite of tools,
comprising: (a) a certified compilation framework from the high-level model into
lower-level imperative languages [2,3]; (b) model-checkers [13,18] (c) simulation
tools [12] for program development.

The development of a formally certified compiler from Lustre to an imper-
ative language is the subject of active research [2,3]. A critical intermediate step
involves the translation from Lustre to a well-behaved sub-language called
c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 275–292, 2021.
https://doi.org/10.1007/978-3-030-85315-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_16&domain=pdf
http://orcid.org/0000-0001-5887-1237
http://orcid.org/0000-0001-8219-925X
https://doi.org/10.1007/978-3-030-85315-0_16

276 S. Prasad and R. M. Yerraguntla

“Normalised Lustre” (NLustre), presented in [3]. A recent paper (in French,
graciously shared by the authors) defines the normalisation transformations
from Lustre to NLustre, and establishes formally that they are semantics-
preserving with respect to the stream semantics [4] (see Theorems 2 and 3).

Recently we proposed a Denning-style lattice-based secure information flow
(SIF) type system for NLustre, and proved its soundness by establishing that
securely-typed programs are non-interfering with respect to the co-inductive
stream semantics [17]. The main ideas underlying the security type system are (i)
that each stream is assigned (w.r.t. assumptions on variables) a symbolic security
type, (ii) equations induce constraints on security types of the defined variables
and of the defining expressions, and (iii) the output streams from a node have
security levels at least as high as those of the input streams on which they depend.
The symbolic constraint-based formulations allows us to infer constraints that
suffice to ensure security. The rules are simple, intuitive and amenable to being
incorporated into the mechanised certified compilation [15] already developed
for Lustre [5]. In this paper, we propose a similar secure-information-flow type
system for unrestricted Lustre (Sect. 3). The main innovation is formulating
symbolic constraint-based refinement (sub)types. These are necessitated by the
presence in Lustre of nested node calls (in NLustre, direct nesting is disal-
lowed).

The security type system is shown by reduction to be sound with respect to
Lustre’s co-inductive stream semantics. While it is possible to do so directly
by establishing that well-security-typed programs exhibit non-interference [10]
using exactly the approach in [17], here we do so via a sound compiler transfor-
mation: We show that the semantics-preserving normalisation transformations
(de-nesting and distribution, and explicit initialisation of fby) from Lustre to
NLustre proposed in [4] preserve security types as well (Theorem 1 in Sect.
4). In particular, there is a strong correspondence at the level of node defini-
tions. The preservation of security signatures of node definitions is established
via Lemma 3 in Sect. 3. The main idea is to remove local variable types via a
substitution procedure simplify (Fig. 9), showing that this maintains satisfiability
of type constraints. Since these transformations preserve operational behaviour
as well as security types of nodes, and since we have already established non-
interference for the target language NLustre [17, Theorem 5], non-interference
holds for well-security-typed Lustre programs as well (Theorem 5 in Sect. 5).

Although this paper is intimately dependent on results of earlier work, we
have endeavoured to keep it self-contained. The reader interested in the complete
stream semantics of Lustre, as well as other auxiliary definitions and examples,
may refer to the appendices of a fuller version of this paper [16].

Related Work. We mention only the immediately relevant work here; a fuller
discussion on related work can be found in [17]. The formalisation of Lustre
semantics and its certified compilation are discussed in detail in [1–3]. The nor-
malisation transformations examined here are proposed in [4]. Our lattice-based
SIF framework harks back to Denning’s seminal work [9]. The idea of type sys-
tems for SIF can be found in e.g., [20]. That work also expressed soundness of

Normalising Lustre Preserves Security 277

a SIF type system in terms of the notion of non-interference [10]. Our previous
work [17] adapted that framework to a declarative data flow setting, showing
that it is possible to infer minimal partial-ordering constraints between sym-
bolic types. The idea of type-preservation under the rewriting of programs is
commonplace in logic and proof systems (where it is called “subject reduction”).

2 Lustre and NLustre

Fig. 1. Lustre syntax Fig. 2. NLustre syntax

Fig. 3. Common syntax of nodes and clocks

A Lustre program describes a synchronous network with clocked streams of
data flowing between operators and nodes. A program consists of a set of node
definitions, each parameterised by clocked input and output flows. A clock is a
boolean stream – either a base clock or one derived from another clock when a
variable takes a specific (boolean) value (on x = k, where k ∈ {T, F}).

Each node comprises a set of (possibly mutually recursive) equations, which
define local variables and output flows in terms of flow expressions. Such defini-
tions are unique, and may appear in any order. Lustre satisfies the definition

278 S. Prasad and R. M. Yerraguntla

and substitution principles, namely that the context does not determine the
meaning of an expression and that referential transparency holds. Nodes do not
have free variables. Nodes cannot make recursive calls; therefore, the dependency
order on nodes forms a DAG. All expressions and equations can be annotated
with a clock, following a static analysis to determine clock dependencies.

Figures 1, 2 and 3 present the syntax of Lustre and NLustre.
Lustre expressions (Fig. 1) include flows described by constants, variables,

unary and binary operations on flows, as well as the flows obtained by sam-
pling when a variable takes a particular boolean value (when), interpolation
based on a boolean variable flow (merge), and conditional combinations of flows
(if_then_else). Of particular interest are flows involving guarded delays (fby)
and those involving node calls.

NLustre is a sub-language into which Lustre can be translated, from which
subsequent compilation is easier. The main differences between Lustre and
NLustre are (i) the former supports lists of flows (written #»e) for conciseness,
whereas in the latter all flows are single streams; (ii) NLustre requires that
conditional and merge “control” expressions are not nested below unary and
binary operators or sampling; (iii) node call and delayed flows (fby) are treated
as first-class expressions, whereas in NLustre, they can appear only in the
context of equations; (iv) Lustre permits nested node calls, whereas nesting
in disallowed in NLustre; (v) finally, the first argument of fby expressions in
NLustre must be a constant, to enable a well-defined initialisation that can be
easily implemented.

The translation from Lustre to NLustre [4] involves distributing constructs
over the individual components of lists of expressions, and de-nesting expressions
by introducing fresh local variables (See Sect. 4). The reader can see an example,
adapted from [4], of a Lustre program and its translation into NLustre in
Fig. 12 (ignoring for the moment the security type annotations therein).

2.1 Stream Semantics

The semantics of Lustre and NLustre programs are synchronous: Each vari-
able and expression defines a data stream which pulses with respect to a clock.
A clock is a stream of booleans (CompCert/Coq’s [8,15] true and false in Vélus).
A flow takes its nth value on the nth clock tick, i.e., some value, written ‹v›, is
present at instants when the clock value is true, and none (written ‹›) when it is
false. The temporal operators when, merge and fby are used to express the com-
plex clock-changing and clock-dependent behaviours of sampling, interpolation
and delay respectively.

Formally the stream semantics is defined using predicates over the program
graph G, a (co-inductive) stream history (H∗ : Ident → value Stream) that asso-
ciates value streams to variables, and a clock bs [3,4,17]. Semantic operations
on (lists of) streams are written in blue sans serif typeface. Streams are written
in red, with lists of streams usually written in bold face. All these stream oper-
ators, defined co-inductively, enforce the clocking regime, ensuring the presence
of a value when the clock is true, and absence when false.

Normalising Lustre Preserves Security 279

The predicate G,H∗, bs � e ⇓e es relates an expression e to a list of streams,
written es. A list consisting of only a single stream es is explicitly denoted as
[es]. The semantics of equations are expressed using the predicate G,H∗, bs � # »eqi,
which requires consistency between the assumed and defined stream histories in
H∗ for the program variables, induced by the equations # »eqi. Finally, the semantics
of a node named f in program G is given via a predicate G s

̂f(xs)� ys, which
defines a stream history transformer ̂f that maps the list of streams xs to the
list of streams ys.

We discuss here only some constructs which relate to the normalisation trans-
formations (see [16] for a complete account).

H∗(x) = xs
(LSvar)

G,H∗, bs � x ⇓e [xs]

Rule (LSvar) associates a variable x to the stream given by H∗(x).

∀i : G,H∗, bs � e0i ⇓e e0si ∀j : G,H∗, bs � ej ⇓e esj

̂fbyL (�(
»
e0si)) (�(# »esj)) = os

(LSfby)
G,H∗, bs � # »

e0i fby #»ej ⇓e os

A delay operation is implemented by e0 fby e. The rule (LSfby) is to be read as
follows. Let each expression e0i denote a list of streams e0si, and each expression
ej denote a list of streams esj . The predicate ̂fbyL maps the predicate fbyL to
act on the corresponding components of lists of streams, i.e.,

̂fbyL xs ys = zs abbreviates
∧

i∈[1,m]

fbyL xsi ysi = zsi

(Similarly for the predicates ̂when, m̂erge, and ̂ite.) The operation �(_) flattens a
list of lists (of possibly different lengths) into a single list. Flattening is required
since expression ei may in general denote a list of streams esi. The output list of
streams os consists of streams whose first elements are taken from each stream
in �(

»
e0si) with the rest taken from the corresponding component of �(# »esj).

∀i ∈ [1, .., k] G,H∗, bs � ei ⇓e esi [H∗(x1), . . . , H∗(xn)] = �(# »esi) (LSeq)
G,H∗, bs � #»xj = #»ei

The rule (LSeq) for equations checks the consistency between the assumed mean-
ings for the defined variables xj according to the history H∗ with the correspond-
ing components of the tuple of streams �(# »esi) to which a tuple of right-hand side
expressions evaluates.

{

name = f; in = #»x ; var = #»z ;
out = #»y ; eqs = #»eq

}

∈ G H∗(f.in) = xs

H∗(f.out) = ys base-ofxs = bs ∀eq ∈ #»eq : G,H∗, bs � eq
(LSndef)

G s
̂f(xs)� ys

280 S. Prasad and R. M. Yerraguntla

The rule (LSndef) presents the meaning given to the definition of a node
f ∈ G as a stream list transformer. If history H∗ assigns lists of streams to the
input and output variables for a node in a manner such that the semantics of the
equations #»eq in the node are satisfied, then the semantic function ̂f transforms
input stream list xs to output stream list ys. The operation base-of finds an
appropriate base clock with respect to which a given list of value streams pulse.

G,H∗, bs � #»ei ⇓e es G s
̂f(es)� os

(LSncall)
G,H∗, bs � f(#»ei) ⇓e os

The rule (LSncall) applies the stream transformer semantic function ̂f defined
in rule (LSndef) to the stream list es corresponding to the tuple of arguments
#»ei, and returns the stream list os.

Stream Semantics for NLustre. The semantic relations for NLustre are either
identical to (as in constants, variables, unary and binary operations) or else the
singleton cases of the rules for Lustre (as in merge, ite, when). The main
differences lie in the occurrences of fby (now in a restricted form) and node call,
which can only be in the context of (clock-annotated) equations (Fig. 4).

Fig. 4. Stream semantics of NLustre nodes and equations

The (NSfby’) rule for fby in an equational context uses the semantic opera-
tion fbyNL, which differs from fbyL in that it requires its first argument to be a
constant rather than a stream. The (NSndef’) rule only differs from (LSndef) in
that after clock alignment during transcription, we have an additional require-
ment of H∗ being in accordance with the base clock bs, enforced by respects-clock.
Finally, the rule rule (NSncall’) for node call, now in an equational context, is
similar to (LSncall) combined with (LSeq), with the condition that base clock
of the input flows annotates the equation.

Normalising Lustre Preserves Security 281

3 A Security Type System for Lustre

We define a secure information flow type system, where under security-level type
assumptions for program variables, Lustre expressions are given a symbolic
security type, and Lustre equations induce a set of ordering constraints over
security types.

Syntax. Security type expressions (α, β ∈ ST) for Lustre are either (i) type
variables (written δ) drawn from a set STV, or (ii) of the form α � β where
� is interpreted as an associative, commutative and idempotent operation. (iii)
The identity element of � is ⊥. While this idempotent abelian monoid structure
suffices for NLustre, node calls in Lustre require (iv) refinement types α{|ρ|},
where type expression α is subject to a symbolic constraint ρ. Constraints on
security types, typically ρ, are (conjunctions of) relations of the form α	β.
The comparison 	 is defined in terms of the equational theory: α	β exactly
when α � β = β. Our proposed security types and their equational theory are
presented in Fig. 5. The security types for NLustre and their equational theory
[17] are highlighted in grey within the diagram. This congruence on NLustre
types (henceforth ≡NL), which is given in the highlighted second line of Fig. 5,
is significantly simpler since it does not involve refinement types!

Fig. 5. Security types, constraints and their properties

We write α[θi/δi] for i = 1, . . . , k to denote the (simultaneous) substitution
of security types θi for security type variables δi in security type α. The notation
extends to substitutions on tuples (#»α [θi/δi]) and constraints ((α 	β)[θi/δi]).

Semantics. Security types are interpreted with respect to a complete lattice
〈SC,	,�,⊥〉 of security levels [9]. Given a ground instantiation s : STV → SC,
security type expressions and tuples are interpreted according to its homomor-
phic extension: s(⊥) = ⊥, s(α � β) = s(α)� s(β), s(#»α) =

»

s(αi), and constraints
are interpreted according to the lattice ordering: s(α 	β) = s(α) 	 s(β). The
“refinement types” are interpreted as: s(α{|ρ|}) = s(α) if s(ρ) holds wrt SC, i.e.,
if “s satisfies ρ”, else is undefined.

282 S. Prasad and R. M. Yerraguntla

Lemma 1 (Soundness). The equational theory induced by the equalities in
Fig. 5 is sound with respect to any ground instantiation s, i.e., (i) α = β implies
s(α) = s(β), and (ii) ρ1 = ρ2 implies s(ρ1) is satisfied iff s(ρ2) is.

The following facts are useful since we often want to reason about equality of
security types or about constraints independently of any given security lattice.

Lemma 2 (Confluence). All equations other than those of associativity and
commutativity (AC) can be oriented (left-to-right) into rewriting rules. The
rewriting system is confluent modulo AC. Equal types (respectively, equal con-
straints) can be rewritten to a common form modulo AC.

Proof sketch. The equational theory ≡NL trivially yields a convergent rewrit-
ing system modulo AC. The rules in lines 3 and 4 of Fig. 5 can all be ori-
ented left to right. We use Knuth-Bendix-completion [14] to introduce rules
α1{|ρ1|} � α2 −→ (α1 � α2){|ρ1|}, when α2 is not a refinement type. Type equal-
ity and constraints are efficiently decided using the theory of strongly coherent
rewriting modulo AC [19]. �

3.1 Security Typing Rules

Assume typing environment Γ : Ident ⇀ ST, a partial function associating a
security type to each free variable x in a Lustre program phrase. Expressions

and clocks are type-checked using the predicates: Γ
e

�e : #»α and Γ
ck

�ck : α respec-
tively. These are read as “under the context Γ mapping variables to security
types, e and ck have security types #»α and α”. The types for tupled expressions
are (flattened) tuples of the types of the component expressions. For equations,

we use the predicate: Γ
eqn

� eq :> ρ, which states that under the context Γ , equa-
tion eq when type-elaborated generates constraints ρ. Elementary constraints for
equations are of the form α 	 β, where β is the security type of the defined vari-
able, and α the security type obtained from that of the defining expression joined
with the clock’s security type. Since every flow in Lustre is defined exactly once,
by the Definition Principle, no further security constraints apply.

The security typing rules for Lustre are presented in Figs. 6, 7 and 8, plus
the rules for node definition and node call. These rules generalise those in [17] to
handle expressions representing lists of flows, and nested node calls. The rules
for NLustre expressions other than node call and fby are just the singleton
cases. Node call and fby are handled by the rule for equations.

Fig. 6. Lustre security typing rules for clocks

Normalising Lustre Preserves Security 283

Fig. 7. Lustre security typing rules for expressions

Fig. 8. Lustre security typing rules for equations

In (LTbase), we assume Γ maps the base clock base to some security variable
(γ by convention). In (LTon), the security type of the derived clock is the join
of the security types of the clock ck and that of the variable x.

Constants have security type ⊥, irrespective of the context (rule (LTcnst)).
For variables, in rule (LTvar), we look up their security type in the context Γ .
Unary operations preserve the type of their arguments (rule (LTunop)). Binary
(⊕, when and fby) and ternary (if-then-else and merge) operations on flows
generate a flow with a security type that is the join of the types of the operand
flows (rules (LTbinop), (LTwhn), (LTmrg), (LTite), and (LTfby). In operations
on lists of flows, the security types are computed component-wise. There is an
implicit dependency on the security level of the common clock of the operand
flows for these operators. This dependence on the security level of the clock is
made explicit in the rule for equations. In general, the security type for any
constructed expression is the join of those of its components (and of the clock).

Node Call. Node calls assume that we have a security signature for the node
definition (described below). We can then securely type node calls by instanti-
ating the security signature with the types of the actual arguments (and that of
the base clock). Note that the rule (LTncall) creates refinement types consisting
of the output types βi constrained by ρ′, i.e., the instantiated set of constraints
ρ taken from the node signature:

Node

� Node f (#»α)γ
ρ−→ #»

β Γ
e

� #»e :
#»

α′ Γ (base) = γ′ ρ′ = ρ[γ′/γ][
#»

α′/ #»α]
(LTncall)

Γ
e

�f(#»e) :
#»

β {|ρ′|}

284 S. Prasad and R. M. Yerraguntla

Node Definition. A node definition is given a signature
Node

� Node f (#»α)γ
ρ−→ #»

β ,
which is to be read as saying that the node named f relates the security types #»α
of the input variables (and γ, that of the base clock) to the types of the output
variables

#»

β , via the constraints ρ.
Let α1, . . . , αn, δ1, . . . δk, β1, . . . βm, γ be distinct fresh type variables. Assume

these to be the types of the input, local and output variables, and that of the base
clock. We compute the constraints over these variables induced by the node’s
equations. Finally, we eliminate, via substitution using procedure simplify, the
type variables δi given to the local program variables, since these should not
appear in the node’s interface. The security signature of a node definition is
thus given as:

G(f) = n : {in = #»x , out = #»y , var = #»z , eqn = #»eq}
ΓF := { #»x �→ #»α, #»y �→ #»

β , base �→ γ} ΓL := { #»z �→ #»

δ }
ΓF ∪ ΓL

eqn

� #»eq :> ρ′ (_, ρ) = simplify (_, ρ′)
#»

δ
(LTndef)

Node

� Node f (#»α)γ
ρ−→ #»

β

The node signature (and call) rules can be formulated in this step-wise and
modular manner since Lustre does not allow recursive node calls and cyclic
dependencies. Further, all variables in a node definition are explicitly accounted
for as input and output parameters or local variables, so no extra contextual
information is required.

Fig. 9. Eliminating local variables’ security type constraints

Observe that in the (LTndef) rule, δi are fresh security type variables assigned
to the local variables. Since there will be exactly one defining equation for any
local variable zi, note that in constraints ρ′, there will be exactly one constraint
in which δi is on the right, and this is of the form νi	δi. Procedure simplify
(Fig. 9) serially (in some arbitrary but fixed order for the δi) eliminates such
type variables via substitution in the types and type constraints. Our definition
of simplify here generalises that given for the types of NLustre in [17].

Lemma 3 (Correctness of simplify (#»α, ρ)
#»

δ). Let ρ be a set of constraints
such that for a security type variable δ, there is at most one constraint of the
form μ 	 δ. Let s be a ground instantiation of security type variables wrt a
security class lattice SC such that ρ is satisfied by s.

Normalising Lustre Preserves Security 285

1. If ρ = ρ1 ∪ {ν 	 δ}, where variable δ is not in ν, then ρ1[ν/δ] is satisfied by
s. (Assume disjoint union).

2. If ρ = ρ1 ∪ {ν � δ 	 δ}, where variable δ is not in ν, then ρ1[ν/δ] is satisfied
by s. (Assume disjoint union).

Lemma 3 is central to establishing that the type signature of a node does
not change in the normalisation transformations of Sect. 4, which introduce
equations involving fresh local program variables.

Revisiting Fig. 12, the reader can see the type system at work, with the
security types and constraints annotated. Also shown is the simplification of
constraints using simplify.

4 Normalisation

We now present Bourke et al.’s “normalisation transformations” , which de-nest
and distribute operators over lists (tuples) of expressions, and finally transform
fby expressions to a form where the first argument is a constant.

Normalising an n-tuple of Lustre expressions yields an m-tuple of Lustre
expressions without tupling and nesting, and a set of equations, defining fresh
local variables (Fig. 10). We denote the transformation as

([e′
1, . . . , e

′
m]α1,...,αm , eqsρ) ← �e1, ..., en�

where we have additionally decorated the transformations of [4] with security
types for each member of the tuple of expressions, and with a set of type con-
straints for the generated equations. We show that the normalisation transfor-
mations are indeed typed transformations. Our type annotations indicate why
security types and constraints of well-security-typed Lustre programs are pre-
served (modulo satisfaction), as in Theorem 1.

The rules (Xcnst)-(Xbinop) for constants, variables, unary and binary oper-
ators are obvious, generating no new equations. In rule (Xwhn), where the sam-
pling condition is distributed over the members of the tuple, the security type
for each expression is obtained by taking a join of the security type αi of the
expression e′

i with γ, i.e., that of the variable x.
Of primary interest are the rules (Xfby) for fby and (Xncall) for node call,

where fresh variables xi and their defining equations are introduced. In these
cases, we introduce fresh security type variables δi for the xi, and add appropri-
ate constraints. The rules (Xite) and (Xmrg) resemble (Xfby) in most respects.
In rule (Xncall), the constraints are obtained from the node signature via sub-
stitution.

The rules (Xbase) and (Xon) for clocks also introduce no equations. The
rules (Xtup) for tuples (lists) of expressions and (Xeqs) for equations regroup the
resulting expressions appropriately. The translation of node definitions involves
translating the equations, and adding the fresh local variables.

286 S. Prasad and R. M. Yerraguntla

Fig. 10. Lustre to NLustre normalisation

Normalising Lustre Preserves Security 287

Fig. 11. Explicit fby initialisation

Theorem 1 (Preservation of security types). Let f ∈ G be a node in

Lustre program G. If the node signature for f in G is
Node

� Node f (#»α)γ
ρ−→

#»

β , correspondingly in �G� it is
Node

� Node f (#»α)γ
ρ′
−→ #»

β , and for any ground
instantiation s, s(ρ) implies s(ρ′).

The proof is on the DAG structure of G. Here we rely on the modularity of
nodes, and the correctness of simplify (Lemma 3). The proof employs induction
on the structure of expressions. For the further explicit initialisation of fby
(Fig. 11), the preservation of security via simplify is easy to see.

Semantics Preservation. We recall the important results from [4], which establish
the preservation of stream semantics by the transformations.

Theorem 2 (Preservation of semantics. Theorem 2 of [4]). De-nesting
and distribution preserve the semantics of Lustre programs. (La passe de désim-
brication et distributivité préserve la sémantique des programmes.)

∀G f xs ys : G s
̂f(xs)� ys =⇒ �G� s

̂f(xs)� ys

Theorem 3 (Preservation of semantics. Theorem 3 of [4]). The explicit
initialisations of fby preserve the semantics of the programs. (L’explicitation des
initialisations préserve la sémantique des programmes.)

∀G f xs ys : G s
̂f(xs)� ys =⇒ �G�fby s

̂f(xs)� ys

4.1 Example

We adapt an example from [4] to illustrate the translation and security-type
preservation. The re_trig node in Fig. 12 uses the cnt_dn node (see Fig. 21
in [16] for details) to implement a count-down timer that is explicitly triggered
whenever there is a rising edge (represented by edge) on i. If the count v expires
to 0 before a T on i, the counter isn’t allowed restart the count. Output o
represents an active count in progress.

We annotate the program with security types (superscripts) and constraints
for each equation (as comments), according to the typing rules. cnt_dn is assumed

to have security signature
Node

� Node cnt_dn (α1, α2)γ
{γ�α1�α2 � β}−−−−−−−−−−→ β.

288 S. Prasad and R. M. Yerraguntla

Using simplify to eliminate the security types δ′
1, δ

′
2, δ

′
3, and δ′

6, of the local vari-
ables edge, ck, v and nested call to cnt_dn respectively from the constraints (in
lines 8, 11, 16–17, 19 on the left), we get the constraint {γ′ � α′

1 � α′
2 	β′}.

Normalisation introduces local variables (v21,v22,v24) with security types
δ′
4, δ

′
5, δ

′
6 (see lines 7, 12, 16 on the right). (Identical names have been used to show

the correspondence.) The δ′
i are eliminated by simplify, and the refinement type

δ′
6{|ρ′|} for the node call in the Lustre version becomes an explicit constraint ρ5

(line 19) in NLustre. Observe that due to simplify, the security signature remains
the same across the translation.

Fig. 12. Example: Security analysis and normalisation. when ck and when not ck abbre-
viate when ck = T and when ck = F.

5 Security and Non-Interference

We first recall and adapt concepts from our previous work [17].

Normalising Lustre Preserves Security 289

Lemma 4 (Security of Node Calls; cf. Lemma 3 in [17]). Assume the fol-
lowing, for a call to a node with the given security signature

Node

� Node f (#»α)γ
ρ−→ #»

β Γ
e

� #»e :
#»

α′ Γ
e

�f(#»e) :
#»

β′ Γ
ck

�ck : γ

where ck is the base clock underlying the argument streams #»e . Let s be a ground
instantiation of type variables such that for some security classes #»

t , w ∈ SC:
s(

#»

α′) = #»
t and s(γ) = w.

Now, if ρ is satisfied by the ground instantiation { #»α �→ #»
t ,

#»

β �→ #»u , γ �→ w}, then
the s(

#»

β′) are defined, and s(
#»

β′) 	 s(
#»

β {|ρ|}).
Lemma 4 relates the satisfaction of constraints on security types generated during
a node call to satisfaction in a security lattice via a ground instantiation. Again we
rely on the modularity of nodes—that no recursive calls are permitted, and nodes
do not have free variables.

Definition 1 (Node Security; Definition III.1 in [17]). Let f be a node in

the program graph G with security signature
Node

� Node f (#»α)γ
ρ−→ #»

β . Let s be a
ground instantiation that maps the security type variables in the set {(α1, . . . αn)}∪
{(β1, . . . βm)} ∪ {γ} to security classes in lattice SC.
Node f is secure with respect to s if (i) ρ is satisfied by s; (ii) For each node g′ on
which f is directly dependent, g′ is secure with respect to the appropriate ground
instantiations for each call to g′ in f as given by Lemma 4.

This definition captures the intuition of node security in that all the constraints
generated for the equations within the node must be satisfied, and that each inter-
nal node call should also be secure.

The notion of non-interference requires limiting observation to streams whose
security level is at most a given security level t.

Definition 2 ((t)-projected Stream; Definition IV.1 in [17]). Suppose
t ∈ SC is a security class. Let X be a set of program variables, Γ be security type
assumptions for variables in X, and s be a ground instantiation, i.e., Γ ◦ s maps
variables in X to security classes in SC. Let us define X�t = {x ∈ X | (Γ ◦s)(x) 	
t}. Let H∗ be a Stream history such that X ⊆ dom(H∗). Define H∗|X�t

as the
projection of H∗ to X�t, i.e., restricted to those variables that are at security level
t or lower:

H∗|X�t
(x) = H∗(x) for x ∈ X�t.

Theorem 4 (Non-interference forNLustre; Theorem5 in [17]). Let f ∈ G
be a node with security signature

Node

� Node f #»αγ ρ−→ #»

β

which is secure with respect to ground instantiation s of the type variables.
Let eqs be the set of equations in f . Let X = fv(eqs) − dv(eqs), i.e., the input

290 S. Prasad and R. M. Yerraguntla

variables in eqs.
Let V = fv(eqs) ∪ dv(eqs), i.e., the input, output and local variables.

Let Γ (and s) be such that Γ
eqn

� eqs :> ρ and ρ is satisfied by s. Let t ∈ SC be any
security level. Let bs be a given (base) clock stream.
Let H∗ and H ′

∗ be such that

1. for all eq ∈ eqs: G,H∗, bs � eq and G,H ′
∗, bs � eq, i.e., both H∗ and H ′

∗ are
consistent Stream histories on each of the equations.

2. H∗|X�t
= H ′

∗|X�t
, i.e., H∗ and H ′

∗ agree on the input variables which are at a
security level t or below.

Then H∗|V�t
= H ′

∗|V�t
, i.e., H∗ and H ′

∗ agree on all variables of the node f that
are given a security level t or below.

Theorem 5 (Non-interference for Lustre). If program G is well-security-
typed in Lustre, then it exhibits non-interference with respect to Lustre’s stream
semantics.

Proof sketch. Let G be well-security-typed in Lustre. This means that each
node f ∈ G is well-security-typed. By induction on the DAG structure of G,
using Theorem 1, �G� is well-security-typed. By Theorem 4, �G� exhibits non-
interference. By Theorems 2 and 3, �G� and G have the same extensional seman-
tics for each node. Therefore, G exhibits non-interference.

6 Conclusions

We have presented a novel security type system for Lustre using the notion
of constraint-based refinement (sub)types, generalising the type system of [17].
Using security-type preservation and earlier results, we have shown its semantic
soundness, expressed in terms of non-interference, with respect to the language’s
stream semantics. We are developing mechanised proofs of these results, which
can be integrated into the Velús verified compiler framework [5].

While Lustre’s value type system is quite jejune, this security type system
is not. It is therefore satisfying to see that it satisfies a subject reduction prop-
erty1. A difficult aspect encountered during the transcription phase [4] concerns
alignment of clocks in the presence of complex clock dependencies. We clarify that
our type system, being static, only considers security levels of clocks, not actual
clock behaviour, and therefore is free from such complications. Further, the clocks
induce no timing side-channels since the typing rules enforce, a fortiori, that the
security type of any (clocked) expression is at least as high as that of its clock.

Acknowledgements. This work was initiated under an Indo-Japanese project
DST/INT/JST/P-30/2016(G) Security in the IoT Space, DST, Govt of India.

1 At SYNCHRON 2020, De Simone asked Jeanmaire and Pesin whether the termi-
nology “normalisation” used in their work [4] was related in any way to notions of
normalisation seen in, e.g., the λ-calculus. We’ve shown it is!.

Normalising Lustre Preserves Security 291

References

1. Auger, C.: Certified compilation of SCADE/LUSTRE. Theses, Université Paris Sud
- Paris XI (2013)

2. Bourke, T., Brun, L., Dagand, P.-E., Leroy, X., Pouzet, M., Rieg, L.: A formally
verified compiler for Lustre. In: Proceedings of the 38th ACM SIGPLANConference
on Programming Language Design and Implementation, PLDI 2017, pp. 586–601.
Association for Computing Machinery, New York (2017)

3. Bourke, T., Brun, L., Pouzet, M.: Mechanized semantics and verified compilation for
a dataflow synchronous language with reset. Proc. ACM Program. Lang. 4(POPL),
1–29 (2019)

4. Bourke, T., Jeanmaire, P., Pesin, B., Pouzet, M.: Normalisation vérifiée du langage
Lustre. In: Regis-Gianas, Y., Keller, C. (eds.) 32ièmes Journées Francophones des
Langages Applicatifs (JFLA 2021) (2021)

5. Brun, L., Bourke, T., Pouzet, M.: Vélus compiler repository (2020). https://github.
com/INRIA/velus. Accessed 20 Jan 2020

6. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative language
for programming synchronous systems. In: Proceedings of 14th Symposium on Prin-
ciples of Programming Languages (POPL 1987). ACM (1987)

7. Colaço, J., Pagano, B., Pouzet, M.: SCADE 6: A formal language for embedded
critical software development (invited paper). In 2017 International Symposium on
Theoretical Aspects of Software Engineering (TASE), pp. 1–11, September 2017

8. Coq Development Team. The Coq proof assistant reference manual (2020). https://
coq.inria.fr/distrib/V8.9.1/refman/. Accessed 20 June 2021

9. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

10. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26–28 April 1982, pp. 11–
20. IEEE Computer Society (1982)

11. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow pro-
gramming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

12. Jahier, E.: The Lurette V2 user guide, V2 ed. Verimag, October 2015. http://www-
verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lurette/doc/lurette-man.pdf

13. Kind 2 group. Kind 2 User Documentation, version 1.2.0 ed. Department of Com-
puter Science, The University of Iowa, April 2020. https://kind.cs.uiowa.edu/
kind2_user_doc/doc.pdf

14. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon (1970)

15. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115
(2009)

16. Prasad, S., Yerraguntla, R.M.: Normalising Lustre preserves security. CoRR
abs/2105.10687 (2021)

17. Prasad, S., Yerraguntla, R.M., Sharma, S.: Security types for synchronous data flow
systems. In: 2020 18th ACM-IEEE International Conference on Formal Methods
and Models for System Design (MEMOCODE), pp. 1–12 (2020)

18. Raymond, P.: Synchronous program verification with Lustre/Lesar. In: Modeling
and Verification of Real-Time Systems: Formalisms and Software Tools, pp. 171–
206. Wiley (2010)

https://github.com/INRIA/velus
https://github.com/INRIA/velus
https://coq.inria.fr/distrib/V8.9.1/refman/
https://coq.inria.fr/distrib/V8.9.1/refman/
http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lurette/doc/lurette-man.pdf
http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lurette/doc/lurette-man.pdf
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf

292 S. Prasad and R. M. Yerraguntla

19. Viry, P.: Equational rules for rewriting logic. Theoret. Comput. Sci. 285(2), 487–517
(2002)

20. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis. J.
Comput. Secur. 4(2–3), 167–187 (1996)

Synthesis and Learning

Learning Probabilistic Automata Using
Residuals

Wenjing Chu1(B), Shuo Chen2, and Marcello Bonsangue1

1 Leiden Institute of Advanced Computer Science, Leiden University,
Leiden, The Netherlands

chuw@liacs.leidenuniv.nl
2 Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

s.chen3@uva.nl

Abstract. A probabilistic automaton is a non-deterministic finite
automaton with probabilities assigned to transitions and states that
define a distribution on the set of all strings. In general, there are distri-
butions generated by automata with a non-deterministic structure that
cannot be generated by a deterministic one. There exist several meth-
ods in machine learning that can be used to approximate the probabil-
ities of an automaton given its structure and a finite number of strings
independently drawn with respect to an unknown distribution. In this
paper, we efficiently construct a probabilistic automaton from a sample
by first learning its non-deterministic structure using residual languages
and then assigning appropriate probabilities to the transitions and states.
We show that our method learns the structure of the automaton precisely
for a class of probabilistic automata strictly including deterministic one
and give some experimental results to compare the learned distribution
with respect to other methods. To this end, we present a novel algo-
rithm to compute the Euclidean distance between two weighted graphs
effectively.

Keywords: Probabilistic automata · Residual finite state automata ·
Learning automata · L2 distance between discrete distributions

1 Introduction

Probabilistic models like hidden Markov models and probabilistic finite automa-
ton (PFA) are widely used in the field of machine learning, for example, in
computational biology [2], speech recognition [1,14,15], and information extrac-
tion [20]. It has become increasingly clear that learning probabilistic models is
essential to support these downstream tasks.

Passively learning a probabilistic automaton aims at constructing an approx-
imation of a finite representation of an unknown distribution D through a finite
number of strings independently drawn with respect to D. Many passive learn-
ing algorithms for probabilistic automata have been proposed. Still, most of
them concentrate only on the restricted class of deterministic probabilistic finite
c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 295–313, 2021.
https://doi.org/10.1007/978-3-030-85315-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_17&domain=pdf
http://orcid.org/0000-0003-3746-3618
https://doi.org/10.1007/978-3-030-85315-0_17

296 W. Chu et al.

automata (DPFA). The most famous algorithm is ALERGIA [4] based on state
merging and folding given a positive sample. ALERGIA has been extended to
deal with deterministic probabilistic automata [8,23], and at the limit, it char-
acterizes the original distribution. However, because of the underlying determin-
ism, the resulting automata are often very large (exponential on the size of the
sample), so that it may easily become impractical.

In this paper, we propose a more efficient representation using non-
determinism. We first learn from a finite sample the non-deterministic structure
of the support of the distribution using residual languages and then add prob-
abilities to the transitions solving non-determinism by a fair distribution of the
probabilities. As such, the algorithm also approximates distributions generated
by probabilistic automata that cannot be generated by deterministic ones [12].

There are not so many algorithms for learning general probabilistic automata.
The most well known is the Baum-Welch algorithm [3] that constructs a fully
connected graph on the estimated number of states needed and is therefore not
very practical. Our work is based on the learning algorithm for residual automata
introduced in [10]. The residual (also called derivative) of a language L with
respect to a word u is the set of words v such that uv is in L. Residual automata
are non-deterministic automata that can be used to learn efficiently any regular
language. In the probabilistic setting, a learning algorithm using probabilistic
residual distributions has been proposed in [13]. The starting point of their work
is very similar to ours, but the resulting algorithm assumes, differently from
ours, precise probabilities for each word in the sample.

To compare the goodness of our algorithm, we adapted the algorithm for
computing the L2 distance between two distributions presented in [18] in the
context of weighted automata, i.e. automata transitions and states labeled with
weights from a field (or more generally semirings) instead of probabilities. The
novelty is in the computation of the shortest distance algorithm for weighted
graphs using a weaker condition than the original one. This step was necessary
in order to be able to apply it to classical probabilistic automata. The L2 distance
is used in few experiments to compare our algorithm with ALERGIA and with
learning through k-testable languages [5]. The latter are language that can be
accepted by an automaton that can see at most k many symbols. We also use
other metrics in this comparison, such as accuracy, precision and sensitivity
weighted with a confidence factor to recognize the probabilistic nature of the
experiments.

2 Preliminaries

Let Σ be a finite alphabet and Σ∗ be the set of all finite strings over Σ, with
ε denoting the empty string. A language L is a subset of Σ∗. For any string u
and any language L, we define Pref(u) = {v ∈ Σ∗|∃w ∈ Σ∗, vw = u} to be the
set of prefixes of u and Pref(L) =

⋃
u∈L Pref(u) to be the prefix closure of L.

Definition 1. Non-deterministic finite automaton. A non-deterministic
finite automaton (NFA) is a 5-tuple A = 〈Σ,Q, I, F, δ〉, where

Learning Probabilistic Automata Using Residuals 297

– Σ is a finite alphabet,
– Q is a finite set of states,
– I : Q → 2 is characterizing the set of initial states,
– F : Q → 2 is characterizing the set of final states,
– δ : Q × Σ → 2Q is the transition function.

The transition function δ can be naturally extended from symbol in Σ to
arbitrary strings by defining the extended transition function δ∗ : Q × Σ∗ → 2Q

inductively as follows:

– For every q ∈ Q, δ∗(q, ε) = q,
– For every q ∈ Q, x ∈ Σ∗, and a ∈ Σ, δ∗(q, xa) =

⋃{δ(p, a)|p ∈ δ∗(q, x)}.

A string x ∈ Σ∗ is accepted by a NFA A from a state q ∈ Q if δ∗(q, x) ∩ F �= ∅.
We denote by L(A, q) the set of all those strings. The language L(A) accepted
by A is the set of all strings accepted by A from some q0 ∈ I. A language L is
called regular if there is a NFA A that accepts exactly the language L [17].

For a NFA A, an accepting path π for a string x = a1 . . . an is a sequence of
states q0 . . . qn such that qi+1 ∈ δ(qi, ai+1) for all 0 ≤ i ≤ n− 1, starting from an
initial state, i.e. I(q0) = 1, and ending in a final state, i.e. F (qn) = 1. We denote
by Paths(x) the set of all accepting paths for a given string x. Note that the
set Paths(x) is finite. An accepting path contains a cycle if there is a repeating
state. That is, there exists different i and j such that qi = qj .

For any language L and for any string u ∈ Σ∗, the residual language of L
associated with u is defined by the u-derivative Lu = {x ∈ Σ∗|ux ∈ L}, and we
call u a characterizing word for Lu. A language L′ ⊆ Σ∗ is a residual language
of L if there exists a string u ∈ Σ∗ such that L′ = Lu. The number of residual
languages of a language L is finite if and only if L is regular [11]. This implies
that there exists a finite set of strings B(L) such that x ∈ B(L) if Lx is a residual
language of a regular language L. The set B(L) can be constructed depending on
the representation of the language L. For example, if L is the language accepted
by a trimmed NFA A (i.e., minimal and with all states reachable from an initial
state), then B(L) can be constructed as a finite set of minimal length strings
reaching all states of A from some initial state.

Definition 2. Residual finite state automaton [7]. A residual finite state
automaton (RFSA) is a NFA A = 〈Σ,Q,Q0, F, δ〉 such that, for each state q ∈ Q,
L(A, q) is a residual language of L(A).

In other words, a RFSA A is a non-deterministic automaton whose states
correspond exactly to the residual languages of the language recognized by A.

Non-deterministic automata can be generalized to frequency and probabilis-
tic automata. Frequency finite automata associate a positive rational number to
each transition, initial states and final ones representing the ‘number of occur-
rences’ of a transition or state.

Definition 3. Frequency finite automaton. A frequency finite automaton
(FFA) is a 5-tuple A = 〈Σ,Q, If , Ff , δf 〉, where:

298 W. Chu et al.

– Σ is a finite alphabet,
– Q is a finite set of states,
– If : Q → Q+,
– Ff : Q → Q+,

– δf : Q × Σ → Q+Q

such that for every state q ∈ Q the weight of the incoming transitions is equal to
the weight of the outgoing transitions:

If (q) +
∑

q′∈Q,a∈Σ

δf (q′, a)(q) = Ff (q) +
∑

q′∈Q,a∈Σ

δf (q, a)(q′).

Intuitively, the above condition says that frequency is preserved by passing
through states. Note that we allowed weights to be positive rational numbers
instead of positive integers. This is for technical convenience, but has no effect on
the definition. Frequency automata are strictly related to probabilistic automata.
Recall that a probabilistic language over Σ∗ is a function D : Σ∗ → [0, 1] that
is also a discrete distribution, that is:

∑

x∈Σ∗
D(x) = 1.

An interesting class of probabilistic languages can be described by a generaliza-
tion of non-deterministic automata with probabilities as weight on states and
transitions.

Definition 4. Probabilistic finite automaton. A probabilistic finite automa-
ton (PFA) is a 5-tuple A = 〈Σ,Q, Ip, Fp, δp〉, where:
– Σ is a finite alphabet,
– Q is a finite set of states,
– Ip : Q → (Q ∩ [0, 1]) is the initial probability such that

∑
q∈Q Ip(q) = 1,

– Fp : Q → (Q ∩ [0, 1]),
– δp : Q × Σ → (Q ∩ [0, 1])Q is the transition function such that ∀q ∈ Q,

Fp(q) +
∑

a∈Σ,q′∈Q

δp(q, a)(q′) = 1.

We define the support of a PFA A = 〈Σ,Q, Ip, Fp, δp〉 is the NFA supp(A) =
〈Σ,Q, I, F, δ〉, where I = {q | Ip(q) > 0}, F = {q | Fp(q) > 0}, and δ(q, x)(q′) =
1 iff δp(q, x)(q′) > 0.

Given a string x = a1 · · · an ∈ Σ∗ of length n, an accepting (or valid) path π
for x is a sequence of states q0 · · · qn such that:

– Ip(q0) > 0,
– δp(qi, ai+1)(qi+1) > 0 for all 0 ≤ i < n, and
– Fp(qn) > 0.

We denote by Pathsp(x) the set of all accepting paths for a string x. Note that
this set is necessarily finite. A probabilistic automaton is said to be unambiguous
if for any string x ∈ Σ∗ there is at most one path for x. Examples of unam-
biguous probabilistic automata are the deterministic ones, restricting the initial
probability and the transition function to have a support of at most one state:

Learning Probabilistic Automata Using Residuals 299

Definition 5. Deterministic probabilistic finite automaton. A PFA A =
〈Σ,Q, Ip, Fp, δp〉 is called deterministic probabilistic finite automaton (DPFA) if

– |{q | Ip(q) > 0}| ≤ 1 (at most one single initial state),
– ∀q ∈ Q, ∀a ∈ Σ, |{q′ | δp(q, a)(q′) > 0}| ≤ 1 ((at most one next state).

Basically, a DPFA is deterministic if its support is a DFA. All deterministic
probabilistic automata are unambiguous, but not all unambiguous automata
are deterministic because they can have more that one next state leading to a
non-accepting path.

Given a path π = q0 · · · qn for a string x = a1 · · · an, we denote by ip(π)
the probability Ip(q0) of its initial state q0, by ep(π) the probability Fp(qn) of
the last state qn of π, and by δp(π) the product of all probabilities along the
transitions in the path, that is δp(π) = 1 if x is the empty string and otherwise

δp(π) = Πn−1
i=0 δp(qi, ai+1)(qi+1) .

Note that ip(π), ep(π) and δp(π) are always strictly positive for an accepting path
π. Given a probabilistic automaton A, the probability of a path π ∈ Pathsp(x)
is given by ip(π) ·δp(π) ·ep(π), while the probability of a string x ∈ Σ∗ is defined
by:

[[A]](x) =
∑

π∈Pathsp(x)

ip(π) · δp(π) · ep(π). (1)

A PFA is said to be consistent if all its states appear into at least one accepting
path. If a PFA A is consistent then it is easy to show [12] that [[A]] gives a
distribution on Σ∗, that is

∑
x∈Σ∗ [[A]](x) = 1. A distribution D is called regular

if it is generated by a PFA A, that is D = [[A]].
The language L(A) accepted by a probabilistic automaton A is the support

of its distribution and is given by all strings x with a strictly positive prob-
ability [[A]](x). In other words, L(A) is the language of the support of A. A
language is regular if and only if it is accepted by a (deterministic) probabilistic
finite automaton. However, differently, than for ordinary automata, the class of
distributions characterized by DPFAs is a proper subclass of the regular ones,
characterized by PFAs [12].

The following lemma will be useful later stating that if an accepting path
contains a cycle then we can pump that cycle to obtain infinitely many other
accepting paths.

Lemma 1. For a probabilistic automaton A, the probability of an accepting path
π with a cycle is strictly smaller than 1.

A useful tool for proving that a regular distribution generated by a PFA A
cannot be expressed by a DPFA, is given by the function ρA : Σ∗ → [0, 1] defined
by

ρA(x) =

{
[[A]](x)

[[A]](x)
if [[A]](x) > 0

0 otherwise.

300 W. Chu et al.

where [[A]](x) is the probability of generating in the automaton A a (possibly
infinite) string with finite prefix x ∈ Σ∗:

[[A]](x) =
∑

π∈Pathsp(x)

ip(π) · δp(π)

Note that the above definition does not make use of the final probability F of the
automaton A, and as such can be considered as a generator of prefixes of finite
and infinite strings. Important here is that if A is a DPFA, the set {ρ(x)|x ∈ Σ∗}
is necessarily finite and bound by the number of states q with Fp(q) > 0 [12].

3 Learning Probabilistic Languages Using Residuals

A sample (S, f) consists of a finite set of strings S ⊆ Σ∗ together with a frequency
function f : S → N assigning the number of occurrences of each string in the
sample. The frequency function f partitions the strings in S into positive samples
and negative ones. We denote by S+ = {x | f(x) > 0} the set of positive samples
and by S− = {x | f(x) = 0} the set of negative samples. A simple sample is
a sample (S, f) such that f(x) ≤ 1 for every x ∈ S. In other words, a simple
sample consists only of a set of strings that must be accepted together with a
set of strings that should not be accepted.

A NFA A = 〈Σ,Q, I, F, δ〉 is consistent with respect to a sample (S, f), if
every positive sample is accepted by A and every negative sample is not, i.e.
S+ ⊆ L(A) and S− ∩ L(A) = ∅.

A sample (S, f) is complete with respect to a regular language L if there
exists a finite characteristic set B(L) ∈ Σ∗ such that

– the positive samples cover the language, that is, both x and xa are in Pref(S+) for
every x ∈ B(L) and a ∈ Σ,

– the positive samples contain enough strings of L, that is, Pref(S+) ∩ L ⊆ S+,
– distinguishable strings in the language are distinguishable in the sample too, that is,

for every u, v ∈ Pref(S+), if Lu � Lv then there exists x ∈ Σ∗ such that ux ∈ S+

but vx ∈ S−.

The first condition guarantees that prefixes of strings in S+ are enough to reach
all residual languages of L and to cover all possible transitions from it. The
second condition is about requiring all characteristic strings of the residual lan-
guages to be in S+. And the third condition ensures that S− is large enough to
distinguish different residual languages.

Learning a regular language L from a simple sample (S, f) means building a
non-deterministic finite automaton A consistent with the sample and such that if
the sample is complete with respect to L, then L(A) = L. Of course, one should
consider time and space complexity bounded on the two steps above, which are
typically required to be polynomial on the number of strings in the sample and
of the model representing the language L [7].

Learning a regular distribution D from a sample (S, f) of finite strings inde-
pendently drawn with a frequency f according to the distribution D means

Learning Probabilistic Automata Using Residuals 301

building a probabilistic finite automaton A with a support learning the lan-
guage of the support of D and with a distribution associated with A that gets
arbitrarily closer to D when the size of the sample (S, f) increases. In general, we
cannot realistically expect to get exact information on the learned distribution
with respect to the target one.

Next, we present our algorithm to learn an unknown regular distribution D
from a sample (S, f). The idea is to first learn the non-deterministic structure
of the automaton underlying D using residual languages, and then labelling the
transitions consistently with the frequency of the sample using a fair distribution
when needed.

In our first step, we use Algorithm 1 below to build a RFSA from a simple
sample (S, f). The algorithm is similar to that presented in [9] but approximates
the inclusion relation between residual languages by calculating on the fly the
transitivity and right-invariant (with respect to concatenation) closure ≺tr of
the following relation. For u, v ∈ Pref(S+), we define:

– u ≺ v if there is no string x such that ux ∈ S+ and vx ∈ S−,
– u 	 v if u ≺ v and v ≺ u.

The idea is to characterize all distinguishable states (seen as prefixes of the
positive samples). Intuitively, u ≺tr v is an estimate for the inclusion between
the residuals Lu ⊆ Lv, and if the sample is complete with respect to the unknown
language L, this is indeed the case.

Initially, the set of states Q of the automaton is empty. All prefixes of S+ are
explored, and only those which are distinguishable are added to the Q. States
below ε with respect to ≺ are set to be initial states, while states that belong to
S+ are final ones. Finally, a transition δ(u, a) = v is added when v ≺ ua, where
a ∈ Σ. The algorithm ends either when u is the last string in Pref or when the
learned automaton is consistent with the sample.

Example 1. Given a sample (S, f) with f(ε) = 3, f(aa) = f(ba) = 2, f(bb) =
f(abb) = f(bab) = 1 and f(a) = f(b) = f(ab) = f(abb) = 0 we have S+ =
{ε, aa, ba, bb, abb, bab} and S− = {a, b, ab, aab}. The Algorithm 1 terminates in
three iterations:

– First, the state ε is added. Since ε ≺tr ε, the state ε is an initial state, and it
is also an accepting state because ε ∈ S+. No transitions will be added yet,
since a and b are not in S− and thus distinguishable from ε

– In the next iteration, a is added to the states as a �tr ε. Clearly, a is neither an
initial state nor an accepting one. However, a ≺ εa, ε ≺ aa, so two transitions
δ(ε, a) = a and δ(a, a) = ε are added. As the automaton is not consistent with
the sample, another iteration is needed.

– Finally, the state b is added because b �tr ε and b �tr a. Also, b is neither
initial nor final state because b ∈ S−. Six transitions are added to the automa-
ton, as a ≺ εb, b ≺ εb, ε ≺ ba, ε ≺ bb, b ≺ ab and b ≺ ba. These transitions
are δ(ε, b) = a, δ(ε, b) = b, δ(b, a) = ε, δ(b, b) = ε, δ(a, b) = b and δ(b, a) = b.
Since the automaton constructed so far is consistent with the sample, the
algorithm terminates.

302 W. Chu et al.

Algorithm 1: Building a RFSA from a simple sample
Input: A simple sample (S, f)
Output: A RFSA 〈Σ, Q, I, F, δ〉
1: Pref := Pref(S+) ordered by length-lexicographic order
2: Q := I := F := δ := ∅
3: u := ε
4: loop
5: if ∃u′ ∈ Q such that u �tr u′ then
6: Pref := Pref \uΣ∗
7: else
8: Q := Q ∪ {u}
9: if u ≺tr ε then

10: I := I ∪ {u}
11: if u ∈ S+ then
12: F := F ∪ {u}
13: for u′ ∈ Q and a ∈ Σ do
14: if u′a ∈ Pref and u ≺tr u′a then
15: δ := δ ∪ {δ(u′, a) = u}
16: if ua ∈ Pref and u′ ≺tr ua then
17: δ := δ ∪ {δ(u, a) = u′)}
18: if u is the last string of Pref or 〈Σ, Q, I, F, δ〉 is consistent with S then
19: exit loop
20: else
21: u := next string in Pref
22: return 〈Σ, Q, I, F, δ〉

The resulting automaton is shown in Fig. 1a.

Once we have learned the structure of a RFSA from a sample (S, f), the next
step is adding frequencies to get a FFA based on the frequency information of
the sample. This step will not change the structure of the automaton, so Σ and
Q are the same as the ones resulting from Algorithm 1. Frequency is distributed
fairly by dividing it among non-deterministic transitions.

Algorithm 2: Building a FFA from a RFSA
Input: A RFSA 〈Σ, Q, I, F, δ〉 consistent with a sample (S, f)
Output: A FFA 〈Σ, Q, If , Ff , δf 〉
1: If (q) := 0 for all q ∈ Q
2: Ff (q) := 0 for all q ∈ Q
3: δf (q, a) := 0 for all q ∈ Q and a ∈ Σ.
4: for a1 · · · an ∈ S+ do
5: compute Paths(x)
6: for every π := q0 . . . qn ∈ Paths(x) do

7: If (q0) := If (q0) +
f(x)

|Paths(x)|
8: Ff (qn) := Ff (qn) +

f(x)
|Paths(x)|

9: for i := 0, i := i + 1, i ≤ n − 1 do

10: δf (qi, ai+1)(qi+1) := δf (qi, ai+1)(qi+1) +
f(x)

|Paths(x)|
11: return 〈Σ, Q, If , Ff , δf 〉

It is not hard to prove that the resulting automaton is indeed a FFA, satis-
fying the frequency preservation condition when passing through states.

Learning Probabilistic Automata Using Residuals 303

Example 2. Continuing from the previous example, let us consider the case of
ba ∈ S+. Two paths are accepting this string, namely ε a ε and ε b ε. As they
both start from and end to the same state, If (ε) and Ff (ε) are incremented by
2, respectively. However, the frequency f(ba) = 2 is divided equally between the
two b-transitions from state ε, incrementing each of them by 1. After all strings
in S+ are treated, we get the FFA shown in Fig. 1b.

Fig. 1. Three automata learned from the sample (S, f), with f(ε) = 3, f(aa) = f(ba) =
2, f(bb) = f(abb) = 1 = f(bab) = 1, and f(a) = f(b) = f(ab) = f(abb) = 0.

The last step is the standard for building a PFA from a given FFA. Again,
the structure is not modified, but frequencies labelling the transitions and the
states are used to calculate the probabilities. In the algorithm below, FREQ(q)
denotes the number both of strings either passing through a state q or ending
in it, and SUMI denotes the number of strings entering all initial states. For
every state q in Q, the probability of being initial state is If (q)

SUMI
and of being

final state is Ff (q)
FREQ(q) , while the probability associated to each transition from

q to q′ with input a is δf (q,a)(q′)
FREQ(q) .

Algorithm 3: Building a PFA from a FFA
Input: A FFA 〈Σ, Q, If , Ff , δf 〉
Output: A PFA 〈Σ, Q, Ip, Fp, δp〉
1: for q ∈ Q do
2: FREQ(q) := Ff (q) +

∑
a∈Σ,q′∈Q δf (q, a)(q′)

3: Fp(q) :=
Ff (q)

FREQ(q)

4: for a ∈ Σ1, q′ ∈ Q do

5: δp(q, a)(q′) := δf (q,a)(q′)
FREQ(q)

6: SUMI :=
∑

q∈Q If (q)

7: for q ∈ Q do

8: Ip(q) :=
If (q)

SUMI

9: return 〈Σ, Q, Ip, Fp, δp〉

304 W. Chu et al.

When the input is a FFA, the above algorithm returns a probabilistic automa-
ton.

Example 3. The probabilistic automaton A resulting from the FFA in Fig. 1b is
shown in Fig. 1c. The support automaton is consistent with the sample (S, f).

4 Metrics for Probabilistic Automata

In the previous section, we have presented an algorithm to learn a distribution
presented via a PFA. The support of the learned automaton learns the support
language of the original distribution. Precise learning of the distribution itself is
not realistic, so next, we consider the problem of computing how close the result-
ing distribution is to the original one. We consider two methods: one when the
original distribution is presented via a PFA itself and another to compute easily
understandable metrics such as accuracy, precision, or recall when comparing
the learned automaton against a sample.

4.1 The L2 Distance Between Probabilistic Automata

There are many standard distances that can be used to compare regular dis-
tributions by means of their representations as probabilistic automata. Here we
will concentrate on Lp metrics using a variation of the algorithm presented in [6]
for stochastic weighted automata. The Lp distance between two distributions D1

and D2 on Σ∗ is defined as

Lp(D1,D2) = (
∑

x∈Σ∗
|D1(x) − D2(x)|p) 1

p .

Examples include the Euclidean distance L2 and the ‘Manhattan’ distance L1.
Another useful distance is the L∞, adapted from the L1 by substituting the sum
with the supremum. In general, the problem of computing L2p+1 and L∞ given
two probabilistic automata is shown to be NP-hard [6,16], even for automata
without cycles.

In this paper we restrict to L2 using an adaptation of the algorithm to com-
pute it for probabilistic automata by [6]. The basic idea is that

(L2(A1, A2)) = (
∑

x∈Σ∗
|[[A1]](x) − [[A2]](x)|2) 1

2

= (
∑

x∈Σ∗
([[A1]](x) − [[A2]](x))2)

1
2

= (
∑

x∈Σ∗
[[A1]](x)2 − 2[[A1]](x)[[A2]](x) + [[A2]](x))2)

1
2

= (
∑

x∈Σ∗
[[A1]](x)2 − 2

∑

x∈Σ∗
[[A1]](x)[[A2]](x) +

∑

x∈Σ∗
[[A2]](x)2)

1
2 .

(2)

In the second equality, the absolute values can be removed since they are squared.
The last three summations can be computed separately via a shortest distance

Learning Probabilistic Automata Using Residuals 305

algorithm for weighted graphs (see below). In general, we consider three different
situations.

First, when A1 and A2 are acyclic, those summations are finite and can be
computed directly.

Second, when A1, A2 are deterministic probabilistic automata, we compute
their intersection automaton A using the product construction. To avoid com-
puting three intersections, we can keep the label of each transition

δp((q1, q2), a)(q′
1, q

′
2)

as a pair (δp1(q1, a)(q′
1), δp2(q2, a)(q′

2)), where δp1 is the transition function of A1

and δp2 is the one of A2. When calculating [[Ai]](x)2, we only need to square the i-
th component of the pair, while we will multiply the two components to calculate
[[A1]](x)[[A2]](x). This is possible because, for any string x ∈ Σ∗, there is at most
one accepting path in A1 and A2. In the end, we use the shortest distance
algorithm over the intersection automaton with weight modified as described
above to compute

∑
x∈Σ∗([[A1]](x))i([[A2]](x))2−i for i = 0, 1 and 2.

Third, when A1 and A2 are arbitrary automata, there may be multiple paths
with the same label, which means we cannot avoid performing three different
intersection automata: one of A1 with itself, another of A1 with A2, and the
last of A2 with itself. As before, we use the shortest distance algorithm over the
intersection automaton to compute

∑
x∈Σ∗([[A1]](x))i([[A2]](x))2−i for i = 0, 1

and 2.

A Shortest Distance Algorithm for Weighted Graphs. Classical shortest
paths problems compute the shortest paths from one set of source vertices to
all other vertices in a weighted graph. The classical shortest paths problem has
been generalized to the weighted graph [18]: The shortest distance from a set of
vertices I to a vertex F is the sum of the weights of all paths from nodes in I to
nodes in F [18] presented a generic algorithm to compute single-source shortest
distances for a directed graph with weight in a semiring. Termination of the
algorithm depends on the graph being k-closed, a condition that unfortunately
is not satisfied by our probabilistic automata (or their intersection). Therefore we
have to adapt the algorithm so as to work with a weaker condition, boundness.

A weighted graph 〈Σ,Q, I, F, δ〉 consists of a finite alphabet Σ, a finite set of
states, an initial weight I : Q → Q, a final weight F : Q → Q, and a transition
function δ : Q × Σ → QQ. It is similar to a probabilistic automaton, but it
does not need to satisfy its restriction. In fact every probabilistic automaton
is a weighted graph, and also the intersection of two probabilistic automata
as defined in the previous section is a weighted graph (but, in general, not a
probabilistic automaton).

Definition 6. A weighted graph 〈Σ,Q, I, F, δ〉 is bounded, if for any cycle π
there exists a k ∈ Q such that:

∞∑

n=1

δ(π)n = k

306 W. Chu et al.

For example, every probabilistic automaton 〈Σ,Q, Ip, Fp, δp〉 is bounded
because the probability of a path with a cycle is always strictly less than 1.
It follows that

∑∞
n=1 δp(π) = r

1−r , where δp(π) = r < 1. Also, the intersection
of two probabilistic automata is a bounded weighted graph, but not necessarily
a probabilistic automaton because weights need to normalized.

Next, we provide a shortest distances algorithm for bounded weighted graphs.
The pseudo-code is given in Algorithm 4.

Algorithm 4: A shortest distance algorithm for weighted graphs
Input: A bounded weighted graph 〈Σ, Q, I, F, δ〉
Output: A rational number d, the shortest distance between I and F
1: Let S and M be an empty set
2: for q ∈ Q do
3: if Ip(q) �= 0 then
4: d[q] := Ip(q)
5: r[q] := Ip(q)
6: M [q] := {q}
7: add state q to S
8: else
9: d[q] := 0

10: r[q] := 0
11: while S �= ∅ do
12: q := S[0]
13: remove q from S
14: add q to P
15: r′ := r[q]
16: r[q] := 0
17: for all a ∈ Σ, q′ ∈ Q do
18: if δp(q, a)(q′) �= 0 then
19: if q′ is not in M [q] then
20: M [q′] := M [q] + aq′
21: d[q′] := d[q′] + (r′ × δp(q, a)(q′))
22: r[q′] := r[q′] + (r′ × δp(q, a)(q′))
23: if q′ /∈ S then
24: add q′ to S
25: else
26: find cyclic subsequence q′xq′ in M[q] and store it Re
27: remove alphabet symbols from q′xq′ and store the resulting path in π
28: if Re /∈ M [q′] then
29: l := δp(π)

30: k := l
1−l

31: d[q′] := d[q′] + (r′ × k)
32: r[q′] := r[q′] + (r′ × k)
33: for q ∈ Q do
34: d[q] := d[q] × Fp[q]
35: return d

The algorithm uses a set S to maintain the set of next states after transitions
and M to store the sequence of transitions visited. S is initialized as a set of
initial states. d[q] is the total weight from an initial state to the current state q,
r[q] is the weight of the current transition from an initial state to state q.

In the while loop from line 11 to 31, each time we extract a state q from set
S, then store the value of r[q] in r′ and set r[q] to 0. Lines 17–31 is calculating
distances. First, for all transitions starting from state q, if next state q′ does not

Learning Probabilistic Automata Using Residuals 307

exist in M [q], update M [q′] and the value of d[q′] and r[q′]. If next state q′ is
not in S, add q′ into S. If next state q′ exists in M [q], find path π of repetition
part, then update d[q]. When q is the last state in set S, and there are no more
transitions, the while loop ends. In the end, for each state q, d[q] is multiplied
by the final weight of the state.

4.2 Metrics Using the Sample

In practice, we usually don’t know the target distribution of its PFA representa-
tion. So we often metric such as Accuracy, Precision, or Sensitivity when testing
a PFA against a sample. To measure the similarity or dissimilarity of strings
from the sample and ones from the learned automaton, the learned strings are
categorized in terms of a confusion matrix [21], as shown in Table 1.

Table 1. Confusion matrix

Classification by sample Classification by learned automaton
ω ∈ L(A) ω /∈ L(A)

ω ∈ S+ True Positive (TP) False Negative (FN)
ω ∈ S− False Positive (FP) True Negative (TN)

Since the confusion matrix only takes into account the support of a proba-
bilistic language, we propose a generalization of true positive and false negative
weighted by a confidence measure, based on the L1 distance between the sample
and the distribution of the learned automaton. This leads to a new definition of
precision, sensitivity and accuracy for probabilistic automata:

Precision =
cTP

|TP | + cFP
, Sensitivity =

cTP

|TP | + cFN
,

Accuracy =
|TP | + |TN |

|TP | + |TN | + |FP | + |FN | .

where cTP =
∑

x∈TP 1 − |Ps(x) − [[A]](x)|, and cFN =
∑

x∈FN Ps(x). Here
Ps(x) = f(x)∑

y∈S f(y) , is the probability of the string x given the sample S. Similarly,
we could define the confidence false positive cFP =

∑
x∈FP [[A]](x). We do not

weight TN with a confidence value, as the probability of not belonging to the
sample and to the language of A is both 0, and therefore have 0 distance. Also,
note the asymmetry between |TP | and cFP in the denominator of Precision and
Sensitivity (TP does not use the confidence extensions). This is because |TP |
simply refers to the total number of samples and is needed to average cTP .

When the distribution of the learned automaton coincides with that of the
sample, cTP = |TP | = |S+|, |TN | = |S−|, and |FP | = |FN | = 0. In this
case, precision, sensitivity and accuracy will be all 1. On the other opposite,

308 W. Chu et al.

when there are no true positive but only false positive and false negative, then
cTP = |TP | = |TN | = 0, |FP | = |S−|, |FN | = |S+| and cFP = cFN = 1
meaning that the precision, sensitivity and accuracy will be 0.

5 Experimental Results

We used the metrics introduced above to study the performance of our algorithm
for learning probabilistic languages. We used different sizes of samples indepen-
dently draw according to a distribution presented by four different probabilistic
automata depicted in Fig. 2: one DPFA, one PFA, one RFSA and one PFA that
cannot be expressed by a DPFA. First, we generate a set S of size n of strings
from the alphabet by length-lexicographic order and assign the probability of
each strings according to the target automaton. Given a fixed number of total
occurrences m, we then calculate the frequency of each string in the sample based
on its assigned probability. Note that samples generated in this way need not to
be complete. All target automata we consider have 3 to 5 states, for which we
generate a sample set of size n < 50 and total number of occurrences m varying
between 10 to 200.

Fig. 2. The four target automata for our experiments

We compare our algorithm to ALERGIA [4] and k-testable algorithms [5].
Contrary to our algorithm presented here, the performance of these other algo-
rithms may be impacted by a parameter setup. For ALERGIA we choose two

Learning Probabilistic Automata Using Residuals 309

different parameters α = 0.9 and α = 0.1. For k-testable algorithms, we set k to
be 2, 3, 4 and 5.

For the case of the DPFA A1, the distribution found by all algorithms con-
verges with respect to the L2 distance rather quickly towards the original one.
The 5-testable algorithm has the highest precision and sensitivity and the small-
est L2 distance, but it needs 19 states to learn an automaton of 3. Our algorithm
has the best accuracy and is the only one learning the same structure as the orig-
inal automata (Fig. 3).

0

0.05

0.1

0.15

0.2

0.25

0.3

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(a) L2 distance

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(b) Precision

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(c) Sensitivity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 50 70 100 200

A_0.9 A_0.1 k=2 k=3 k=4 k=5 RFSA

(d) Accuracy

Fig. 3. Results of learning A1

A similar situation happens when learning the RFSA A3. In this case, our
algorithm learns a distribution that cannot be described by any DPFA (see
appendix for proof that the distribution generated by A3 cannot be generated
by any DFPA). We omit the tables here because of a lack of space.

When considering the PFA A2, our algorithm, ALERGIA and 5-testable
algorithm outperform all the others, see Fig. 4. Only our algorithm can learn the
same number of states but with few more transitions. Accuracy is 1 again. Some
errors are introduced because of the fair distribution among non-deterministic
transitions.

Finally, we considered the PFA A4 that cannot be expressed by any DPFA,
and that does not have an equivalent RFSA as support, either. All algorithms
cannot learn the same structure as the target automaton. Nevertheless, our algo-
rithm achieves the best performance. The L2 distance is smallest, precision is
highest, sensitivity is second highest, and accuracy is always 1 (something not
true for all other algorithms). Even if we perform better because the RFSA we
learn has the same structure as the support of target distribution, our algorithms
will never be able to identify it. We omit the tables here because of a lack of
space.

310 W. Chu et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(a) L2 distance

0.78

0.83

0.88

0.93

0.98

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(b) Precision

0.78

0.83

0.88

0.93

0.98

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(c) Sensitivity

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 50 70 100 200

A_0.9 RFSA A_0.1 k=2 k=3 k=4 k=5

(d) Accuracy

Fig. 4. Results of learning A2

6 Conclusion

We proposed a new algorithm to learn regular distributions using residual lan-
guage and adapted existing metrics to evaluate its performance. Our experimen-
tal results show that our algorithm can learn the structure of the target automa-
ton efficiently, but distributing probabilities fairly among non-deterministic tran-
sitions can cause problems in learning the target distribution at the limit.
Other techniques could be used to alleviate this problem and finding a better
approximating solution. For example, we will investigate the use of evolution-
ary computing, and machine learning to better distribute probabilities among
non-deterministic transition. Alternatively, we will investigate the use of iterative
methods for polynomial constraint solving. Contrary to most existing algorithms,
we have shown that our method can learn some PFA with a RFSA support that
does not generate a deterministic regular distribution. Furthermore, it would be
interesting in having larger samples so to experiment, for example, the impact
of passive learning of probabilistic automata in model checking [19,22]. It would
also be interesting to have a deeper analysis of the distance algorithm and the
new metrics we introduced. We leave both these points for future work.

A Appendix

In this appendix we prove that the probabilistic language described automaton
A3 cannot generated by any deterministic automata.

Learning Probabilistic Automata Using Residuals 311

Proof. For A3, we have

ρA(a2n) =
[[A]](a2n)
[[A]](a2n)

=

∑
π∈Pathp(a2n) δp(π) · ep(π)
∑

π∈Pathp(a2n) δp(π)

=

∑
π0∈Pathp(a2n) δp(π0)0.5 +

∑
π1∈Pathp(a2n) δp(π1)0

∑
π0∈Pathp(a2n) δp(π0) +

∑
π0∈Pathp(a2n) δp(π1)

=

∑
π0∈Pathp(a2n) δp(π0)

2[
∑

π0∈Pathp(a2n) δp(π0) +
∑

π0∈Pathp(a2n) δp(π1)]

(3)

where π0 is the path for the string x ending at state q0, and π1 is a path for the
string string x ending at state q1. Let r2n denote

∑
π0∈Pathp(a2n) δp(π0), and s2n

denote
∑

π0∈Pathp(a2n) δp(π1). Then [[A]](a2n)

[[A]](a2n)
= 3r2n

4(r2n+s2n)
. Suppose [[A]](a2n)

[[A]](a2n)
=

[[A]](a2(n+1))

[[A]](a2(n+1))
, we can get:

[[A]](a2n)
[[A]](a2n)

=
[[A]](a2(n+1))
[[A]](a2(n+1))

3r2n

4(r2n + s2n)
=

3
4

r2n · 0.15 · 0.5 + s2n · 0.5 · 0.2
r2n(0.15 · 0.5 + 0.15 · 0.2) + s2n(0.2 · 0.5 + 0.2 · 0.2 + 0.5 · 0.15)

r2n

r2n + s2n
=

0.075r2n + 0.1s2n

0.105r2n + 0.215s2n
r2n
s2n

r2n
s2n

+ 1
=

0.075 r2n
s2n

+ 0.1
0.105 r2n

s2n
+ 0.215

(4)
Since r2n

s2n
is greater than 0, we get r2n

s2n
= 29.6125.

r2n

s2n
=

0.075r2(n−1) + 0.1s2(n−1)

0.03r2(n−1) + 0.04s2(n−1)
(5)

It is easy to find that r2(n−1)

s2(n−1)
is strictly smaller than 29.6125, so the set {ρ(a2n) |

n > 0} cannot be finite. Therefore, the automaton show as Fig. 2c cannot be
expressed as deterministic probabilistic automaton.

��

References

1. Bahl, L.R., Brown, P.F., de Souza, P.V., Mercer, R.L.: Estimating hidden Markov
model parameters so as to maximize speech recognition accuracy. IEEE Trans.
Speech Audio Process. 1(1), 77–83 (1993)

2. Baldi, P., Brunak, S., Bach, F.: Bioinformatics: The Machine Learning Approach.
MIT Press, Cambridge (2001)

312 W. Chu et al.

3. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains. Ann. Math.
Stat. 41(1), 164–171 (1970)

4. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS,
vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58473-0 144

5. Chu, W., Bonsangue, M.: Learning probabilistic languages by k-testable machines.
In: 2020 International Symposium on Theoretical Aspects of Software Engineering
(TASE), pp. 129–136. IEEE (2020)

6. Cortes, C., Mohri, M., Rastogi, A.: LP distance and equivalence of probabilistic
automata. Int. J. Found. Comput. Sci. 18(04), 761–779 (2007)

7. De La Higuera, C.: Characteristic sets for polynomial grammatical inference. Mach.
Learn. 27(2), 125–138 (1997)

8. De La Higuera, C., Oncina, J.: Identification with probability one of stochastic
deterministic linear languages. In: Gavaldá, R., Jantke, K.P., Takimoto, E. (eds.)
ALT 2003. LNCS (LNAI), vol. 2842, pp. 247–258. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39624-6 20

9. Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSA. In:
Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS, vol. 2225, pp. 348–
363. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45583-3 26

10. Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. Fund. Inform.
51(4), 339–368 (2002)

11. Denis, F., Lemay, A., Terlutte, A.: Some classes of regular languages identifiable
in the limit from positive data. In: Adriaans, P., Fernau, H., van Zaanen, M.
(eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 63–76. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45790-9 6

12. Dupont, P., Denis, F., Esposito, Y.: Links between probabilistic automata and
hidden Markov models: probability distributions, learning models and induction
algorithms. Pattern Recogn. 38(9), 1349–1371 (2005)

13. Esposito, Y., Lemay, A., Denis, F., Dupont, P.: Learning probabilistic residual
finite state automata. In: Adriaans, P., Fernau, H., van Zaanen, M. (eds.) ICGI
2002. LNCS (LNAI), vol. 2484, pp. 77–91. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45790-9 7

14. Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge
(1997)

15. Lee, K.F.: Large-vocabulary speaker-independent continuous speech recognition:
the SPHINX system. Carnegie Mellon University (1988)

16. Lyngsø, R.B., Pedersen, C.N.: The consensus string problem and the complexity
of comparing hidden Markov models. J. Comput. Syst. Sci. 65(3), 545–569 (2002)

17. Martin, J.C.: Introduction to Languages and the Theory of Computation, vol. 4.
McGraw-Hill, New York (1991)

18. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems. J.
Autom. Lang. Comb. 7(3), 321–350 (2002)

19. Nouri, A., Raman, B., Bozga, M., Legay, A., Bensalem, S.: Faster statistical model
checking by means of abstraction and learning. In: Bonakdarpour, B., Smolka, S.A.
(eds.) RV 2014. LNCS, vol. 8734, pp. 340–355. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11164-3 28

20. Seymore, K., McCallum, A., Rosenfeld, R., et al.: Learning hidden Markov model
structure for information extraction. In: AAAI-99 Workshop on Machine Learning
for Information Extraction, pp. 37–42 (1999)

https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/978-3-540-39624-6_20
https://doi.org/10.1007/3-540-45583-3_26
https://doi.org/10.1007/3-540-45790-9_6
https://doi.org/10.1007/3-540-45790-9_7
https://doi.org/10.1007/3-540-45790-9_7
https://doi.org/10.1007/978-3-319-11164-3_28
https://doi.org/10.1007/978-3-319-11164-3_28

Learning Probabilistic Automata Using Residuals 313

21. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009)

22. Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L*-
based learning of Markov decision processes (extended version). arXiv preprint
arXiv:1906.12239 (2019)

23. Thollard, F., Dupont, P., De La Higuera, C., et al.: Probabilistic DFA inference
using Kullback-Leibler divergence and minimality. In: ICML, pp. 975–982 (2000)

http://arxiv.org/abs/1906.12239

AlCons : Deductive Synthesis of Sorting
Algorithms in Theorema

Isabela Drămnesc1(B) and Tudor Jebelean2

1 Department of Computer Science, West University, Timişoara, Romania
Isabela.Dramnesc@e-uvt.ro

2 RISC, Johannes Kepler University, Linz, Austria
Tudor.Jebelean@jku.at

https://staff.fmi.uvt.ro/~isabela.dramnesc

https://risc.jku.at/m/tudor-jebelean

Abstract. We describe the principles and the implementation of
AlCons (Algorithm Constructor), a system for the automatic proof–
based synthesis of sorting algorithms on lists and on binary trees, in the
frame of the Theorema system. The core of the system is a dedicated
prover based on specific inference rules and strategies for constructive
proofs over the domains of lists and of binary trees, aimed at the auto-
matic synthesis of sorting algorithms and their auxiliary functions from
logical specifications. The specific distinctive feature of our approach is
the use of multisets for expressing the fact that two lists (trees) have the
same elements. This allows a more natural expression of the properties
related to sorting, compared to the classical approach using the permu-
tation relation (a list is a permutation of another). Moreover, the use of
multisets leads to special inference rules and strategies which make the
proofs more efficient, as for instance: expand/compress multiset terms
and solve meta-variables using multiset equalities. Additionally we use
a Noetherian induction strategy based on the relation induced by the
strict inclusion of multisets, which facilitates the synthesis of arbitrary
recursion structures, without having to indicate the recursion schemes in
advance. The necessary auxiliary algorithms (like, e.g., for insertion and
merging) are generated by the same principles from the synthesis con-
jectures that are automatically produced during the main proof, using
a “cascading” method, which in fact contributes to the automation of
theory exploration. The prover is implemented in the frame of the Theo-
rema system and works in natural style, while the generated algorithms
can be immediately tested in the same system.

Keywords: Deductive synthesis · Sorting · Lists · Binary trees ·
Multisets · Noetherian induction

1 Introduction

Automatic synthesis of algorithms is an interesting and challenging problem in
automated reasoning, because algorithm invention appears to be difficult even
c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 314–333, 2021.
https://doi.org/10.1007/978-3-030-85315-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_18&domain=pdf
http://orcid.org/0000-0003-4686-2864
http://orcid.org/0000-0002-2247-2151
https://doi.org/10.1007/978-3-030-85315-0_18

AlCons : Synthesis of Sorting Algorithms 315

for the human intellect. Synthesis of sorting algorithms is especially challenging
because the content and structure of the specification appears to be completely
different from the expression of the algorithms. Thus case studies and automation
attempts for synthesis of sorting algorithms have the potential of increasing our
knowledge about possible general methods for algorithm synthesis.

We address the automated synthesis of algorithms which satisfy certain given
specifications1. The specification is transformed into a synthesis conjecture from
whose constructive proof a main algorithm is extracted. Usually this main algo-
rithm needs some auxiliary algorithms, whose synthesis conjectures are produced
during the main proof and then additional synthesis proofs are performed – the
process may repeat as by “cascading” [4]. Our focus is on automating proofs
for such conjectures, on the mechanical generation of the synthesis conjectures
for the necessary auxiliary algorithms, and on the automatic extraction of the
algorithms from the proofs. Cascading also constitutes a contribution to the
automation of theory exploration2 [3].

The implementation of the synthesis methods constitutes the automated
proof–based synthesizer AlCons for sorting algorithms on lists and on binary
trees using multisets, built as a prover in the Theorema system [7,36] (based on
Mathematica3). In order to illustrate the principles of the prover we present in
this paper a summary of our experiments on binary trees. (Experiments on lists
are presented in [16]).

The prover uses general inference rules and strategies for predicate logic, as
well as domain-specific rules and strategies, which make the proof search more
efficient.

1.1 Main Contribution

The novelty of this work consists of: the use of multisets and the proof techniques
related to them on binary trees, nested use of cover sets, the use of cover sets
on meta-variables, the systematic principle for generating synthesis conjectures
for the auxiliary functions (cascading), and the first description of the technical
implementation in the current version of Theorema .

Multisets allow a very natural expression of the fact that two lists (trees)
have the same objects4. More importantly, the use of multisets triggers some
new proof techniques which make the proof search more efficient. Crucially for
our current approach, we can use the Noetherian ordering on the domains of
lists and of trees induced by the strict inclusion of the corresponding multisets,
which is conveniently reflected at object level by the strict inclusion of multisets

1 This ensures the correctness of algorithms and it is dual to algorithm verification,
where the algorithms are first created and then checked.

2 Theory exploration is the generation of interesting statements following from a cer-
tain set of axioms and/or for the purpose of developing certain proofs or algorithms.

3 https://www.wolfram.com/mathematica.
4 In other approaches one uses the permutation notion, which must be expressed by

specific algorithmic definitions, and whose properties are more difficult to infer.

https://www.wolfram.com/mathematica

316 I. Drămnesc and T. Jebelean

of constants and variables occurring in the list/tree terms, and this allows a
dynamic creation of concrete induction hypotheses according to the needs of
the proof. Both lists and binary trees are addressed by AlCons with the same
proof techniques5, which demonstrates the possibility of generalization of such
techniques to new domains, and also allows future work on algorithms combining
lists and trees.

Cover Sets and Dynamic Induction. Induction is implicitly realized using
cover sets. A cover set [34] for a certain domain is a set of possibly non-ground
terms whose set of ground instances covers the whole domain. From the algo-
rithmic point of view the cover set represents a recipe for decomposing the input
in order to be processed (technically it is applied to a certain Skolem constant),
thus the synthesis will produce an equality (rewrite rule) for every cover set term
– therefore we use mutually exclusive6 terms. Every term from the cover set is
used to generate an induction conclusion over a certain ground term (the target
object). During the proof of this induction conclusion, the necessary induction
hypotheses are generated dynamically by instantiating the induction conclusion
with terms representing domain objects which are smaller in the Noetherian
ordering than the current target object. Nested use of cover sets is novel w. r. t.
the simple use of cover sets for realizing induction: while this technique allows
to discover concrete induction principles by generating appropriate induction
hypotheses during the proof, nested use of cover sets allows the discovery of
nested recursions, which is rarely present in synthesized algorithms.

We extend the use of cover sets to meta–variables7 in a similar way. Cover
sets on meta–variables implement the algorithmic idea of combining intermediate
results according to a certain “recipe” (because meta–variables represent the
output of the computation). This is complementary to the use of cover–sets for
Skolem constants, which implement the algorithmic idea of decomposing the
input in a certain way (because the Skolem constants represent the input). In
this way algorithmic ideas can be represented by proof techniques.

Cascading. Using specific heuristics, the prover decides when the current goal
should be used for the creation of a conjecture for the synthesis of one or more
auxiliary algorithms. This is proven separately and leads to the synthesis of
one or more algorithms in the general context of the theory of lists/trees, thus
it discovers some possibly interesting functions (therefore it contributes to the
automation of theory exploration). The process can repeat in the new proofs,
leading to more new functions. The synthesis conjectures for the auxiliary algo-
rithms are generated by a novel strategy which: detects the need of an auxiliary
function, produces the conjecture itself using the current proof situation, adds
the appropriate property which allows new auxiliary function to be used later
5 However some fine tuning of the implementation has been necessary, since trees have

a more complex structure.
6 Every element of the inductive domain is a ground instance of exactly one term from

the cover set.
7 Meta–variables designate terms (witnesses for existential goals) which are unknown

at the current stage of the proof.

AlCons : Synthesis of Sorting Algorithms 317

in the proof, and changes the current goal by inserting the new function calls at
the appropriate places.

Implementation. The prover is implemented in the frame of the Theorema
system, which offers a flexible and intuitive user interface, construction of the-
ories and development of proofs in natural style, as well as direct execution of
the synthesized algorithms, as they are produced in form of a set of (condi-
tional) equalities. The implementation principles in the frame of Theorema 2.0
are in many respects different from the implementation in the previous version
of Theorema and in the same time more powerful both from the point of view of
interface as well as performance and readability. The prover is appropriate for
the synthesis of sorting algorithms both for lists as well as for binary trees, how-
ever in this paper we describe only experiments on binary trees. An extensive
presentation of experiments on lists is presented in [16].

1.2 Related Work and Originality

The problem of algorithms synthesis, including the synthesis of sorting algo-
rithms is well-studied in the literature, but full automation of synthesis con-
stitutes still a challenge. An overview of the most common approaches used to
tackle the synthesis problem is given in [33]. Most approaches are based on spe-
cial techniques for transformation of expressions (for program instance program
transformation, Hoare-like or tableaux-like calculae). In contrast our approach
emphasizes proving in natural style, and intuitive inference rules. Most synthesis
methods use certain algorithm templates, or explicit induction schemas, while we
use cover sets and dynamic induction instead. No other approaches use multisets,
and only few address a systematic method for generating auxiliary algorithms.

Significant work has been done in the synthesis of sorting algorithms8. Six
versions of sorting algorithms are derived in [10] by applying transformation
rules. An extension of this work is in [1], see also [21]. Some specific transforma-
tion techniques which complement the ones in [10] are used by [19]. [26] classifies
sorting algorithms.

[27] introduces deductive techniques for constructing recursive algorithms.
[35] applies manually the techniques in [27] and derives several sorting algorithms
in the theories of integers and strings. Later implementations using some of these
principles are in [24,32]. We follow some of the principles from [27,35].

Systematic methods for generating auxiliary algorithms are also presented
in [27,29]. We use a different cascading strategy which transforms the failing
goal together with the current assumptions into a new conjecture. [25] applies
deductive tableau techniques [27], uses some heuristics and rippling [8] for the
automated synthesis of several functions in Lisp in the theory of integers and
lists. [25] shows how to prepare induction hypotheses to be used in the rippling
proofs by using deductive rules.

[30] implemented the tool Synquid which is able to automatically synthesize
several recursive algorithms operating on lists (including sorting algorithms)
8 We presented a more detailed survey of the synthesis methods in [11].

318 I. Drămnesc and T. Jebelean

and operations on trees (but not sorting), except the automatic synthesis of
auxiliary functions. This work was extended by [20], using a technique based on
some given templates in order to synthesize algorithms on lists and binary trees
(e.g., converting a binary tree to a list, or a list to a binary search tree) together
with some auxiliary functions. In [22] the authors describe an approach that
combines deductive synthesis with cyclic proofs for automatically synthesizing
recursive algorithms with recursive auxiliary functions and mutual recursion.
They implement the tool Cypress and they synthesize algorithms operating on
lists (including some sorting algorithms), and on trees (e.g., flattening a tree
into a list, insertion, deletion, etc.). Their approach complements the one in [20]
by considering a proof-driven approach instead of template-driven approach for
synthesizing auxiliary functions. However, the synthesis of sorting algorithms on
trees is not approached.

A valuable formalization, in a previous version of Theorema [6], of the syn-
thesis of sorting algorithms is in [5], where an algorithm scheme is given together
with the specification of the desired function. In contrast, AlCons uses cover–set
decomposition and no algorithm scheme.

The theory of multisets (also called bags) is well studied in the literature,
including computational formalizations, see e.g. [28]. The theory of multisets
and a detailed survey of the literature related to multisets and their usage is
presented in [2] and some interesting practical developments are in [31].

A systematic formalization of the theory of lists using multisets the correct-
ness proofs of various sorting algorithms is mechanized in Isabelle/HOL9, but
it does not address algorithm synthesis. The use of multisets and of the special
techniques related to them, as well as the systematic approach to the generation
of synthesis conjectures for the auxiliary algorithms and the use of cover set
induction constitute also significant improvements w. r. t. our previous work on
this problem [11,17].

Most related to this paper are our recent case studies on sorting algorithms
for lists [13–16], and some of the auxiliary algorithms on binary trees [12,18].
The current paper presents the main principles and techniques resulting from
these case studies, integrating all methods and improving them in order to realize
a comprehensive tool, which works for both lists and binary trees. Also [12,18]
complement the current presentation with illustrative fragments of synthesis
proofs of the auxiliary algorithms on binary trees. [12] applies explicit induc-
tion in order to derive some auxiliary algorithms, [18] extends [12] by applying
cover sets and dynamic induction instead of explicit induction, and some dif-
ferent proof techniques for deriving several more auxiliary algorithms on binary
trees. Complementary, the current paper presents the synthesis of several ver-
sions of sorting algorithms on binary trees and the synthesis of two more auxiliary
algorithms (SmallerEq,Bigger), including Insert by using cover sets instead of
explicit induction, and refines the proof techniques.

A prover for algorithm synthesis on lists [11] and another one for binary
trees [17] was implemented in a previous version of Theorema [6]. There we

9 https://isabelle.in.tum.de/library/HOL/HOL-Library/Sorting Algorithms.html.

https://isabelle.in.tum.de/library/HOL/HOL-Library/Sorting_Algorithms.html

AlCons : Synthesis of Sorting Algorithms 319

use different synthesis methods and we do not use multisets. The novel system
AlCons works both on lists and on binary trees.

Except for the previous work using the Theorema system, a distinctive feature
of our approach is the use of natural style proving, and except for our own
previous work, there is no approach in the literature to the direct sorting of
binary trees.

2 Algorithm Synthesis

2.1 Context and Notation

Terms and Formulae. Brackets are used for function and predicate application
(like f [x], P [a]). Quantifiers are denoted like ∀

X
and ∃

Y
. Metavariables are starred

(e.g., T ∗, T ∗
1 , Z∗) and Skolem constants have integer indices (e.g., X0, X1, a0).

Objects and Theories. We consider three types: simple objects (elements) and
composite objects (finite binary trees and finite multisets). Both in this presen-
tation and in the prover typing is implicit, based on the notation conventions
specified below.

Elements (denoted by a, b, c) are objects from a total ordered domain. The
ordering on elements (notation ≤ and <) is extended to orderings between an
element and a composite object and between composite objects, by requiring
that all elements of the composite object observe the ordering relation10.

Binary trees (denoted by L,R, S, T) are objects from an inductive domain:
either ε (empty) or a triplet 〈L, a,R〉, where L and R are the left and right
subtrees, and a is the root element.

Multisets (denoted by A,B,C) are objects whose elements can occur repeat-
edly. ∅ is the empty multiset, {{a}} denotes the multiset containing the element
a with multiplicity 1, and M[T] denotes the multiset of elements of a binary
tree T . The union of multisets is additive � like in [23]. Some inference rules use
implicitly the properties of union (commutativity, associativity, and unit ∅).

Knowledge. This contains the main properties of union of multisets, the definition
of multisets of a tree, etc. For illustration the definition of sorted trees is:

∀
a,L,R

(
IsSorted[ε]

IsSorted[〈L, a,R〉] ⇐⇒ (IsSorted[L] ∧ IsSorted[R] ∧ L ≤ a ≤ R)

)

2.2 Approach

The specification consists in an input condition I[X,X ′, . . .] applied to the
inputs and an output condition O[Y,X,X ′, . . .] applied to the output Y and
the same inputs. For the sorting problem the input condition is True (thus it

10 Note that this introduces certain exceptions to antisymmetry and transitivity when
the empty composite object is involved.

320 I. Drămnesc and T. Jebelean

is missing), but it may be present in the specification of some auxiliary algo-
rithms. The output condition for sorting is: M[Y] = M[X] ∧ IsSorted[Y], and
for the auxiliary functions is similar, but it typically contains some additional
requirements. The conjecture corresponding to the specification is

∀
X,X′,...

(I[X,X ′, . . .] =⇒ ∃
Y
O[Y,X,X ′, . . .]).

In some experiments we use a conjecture of the form:

∀
X,X′,...

(I[X,X ′, . . .] =⇒ O[F [X,X ′, . . .],X,X ′, . . .]),

where F is the name of the function to be synthesized.
The proof is developed by applying the techniques (inference rules and

strategies) described in the sequel, and it generates one or more algorithms
and possibly some conjectures for further synthesis (cascading).

The algorithm for a function F [X,X ′, . . .] is presented as a set of conditional
equalities of the form:

Q[Y, Y ′, . . .] ⇒ F [P [Y, Y ′, . . .], P ′[Y, Y ′, . . .], . . .] = T [Y, Y ′, . . .],

where P [Y, Y ′, . . .], P ′[Y, Y ′, . . .], . . . are patterns11, Q is a formula, and T is a
term. These conditional equalities can be applied as rewrite rules in order to
compute F.

The theoretical basis and the correctness of this proof based synthesis scheme
is well–known, see [9,27] and was used in some recent publications by [11,17],
see also [12,13,16].

3 Proof Techniques

By proof techniques we understand inference rules, which describe one step of
the proof, and strategies, which describe how to group several inference rules.

AlCons uses some of the common natural style inference rules, which are
already implemented in Theorema : split assumed conjunction, Skolemization
of the universal goal (but not of the existential assumptions), meta–variable for
the existential goal (but not of the universal assumptions), rewriting by equality,
matching and instantiation for forward and backward inferences, etc.

Some of the inference rules and strategies were first introduced in [12,13,16],
and there we illustrate them on concrete examples on sorting and auxiliary
algorithms on lists and on auxiliary algorithms on binary trees, however here
they are first comprehensively integrated in one system and applied to synthesize
sorting algorithms on binary trees.

We describe in the sequel only those techniques which are specific to AlCons
and are very important for synthesis on binary trees.
11 In our context, a pattern is a term possibly containing variables, whose ground

instantiations define an injective function into the domain.

AlCons : Synthesis of Sorting Algorithms 321

3.1 Inference Rules

IR-1: Reduce Composite Argument. Transform an atom of a goal (which is
typically a conjunction of atoms) or an assumption (when it is an atom) into
simpler atoms whose arguments do not contain function symbols. For the goal
generate possibly few atoms, for the assumptions possibly many, because then
some of the assumed atoms will match and cancel some of the goal atoms.
Example 1: a ≤ Concat[L0, R0] becomes a ≤ L0 ∧ a ≤ R0.
Example 2: IsSorted[〈T1, a, T2〉] becomes IsSorted[T1] ∧ T1 ≤ a ∧ a ≤ T2 ∧
IsSorted[T2].

IR-2: Simple Goal as Condition. When the target metavariable already has a
solution and the goal (after all possible reductions) is ground and contains only
constant time functions and predicates12, then this goal is taken as a condition
and with the current solution to the metavariable it becomes a clause of the
synthesized algorithm (see the partial proof in Fig. 2).

IR-3: Use Equivalence. The equivalence relation between composite objects
induced by the equality of the corresponding multisets is used to rewrite parts
of the goal (or of the assumptions) by replacing composite objects with equivalent
ones, when they occur in equality atoms or in ordering atoms.
Example 1: The goal M[〈Sort[T ∗

1], a∗,Sort[T ∗
2]〉] = M[T ∗]∧Sort[T ∗

1] ≤ a∗ ∧a∗ ≤
Sort[T ∗

2] becomes M[〈T ∗
1 , a∗, T ∗

2 〉] = M[T ∗] ∧ T ∗
1 ≤ a∗ ∧ a∗ ≤ T ∗

2 .
Example 2: The goal is b ≤ S1 is transformed into b ≤ L0 ∧ b ≤ a∧ b ≤ R0 using
the assumption: M[S1] = M[L0] � {{a}} � M[R0].

IR-4: Expand Multiset. This rule expands a multiset term in the goal into
several multiset terms. This is useful because then different groupings can be
performed.
Example: The goal M[T ∗] = M[〈L0, a, R0〉]�M[S0], becomes M[T ∗] = M[L0]�
{{a}} � M[R0] � M[S0].

IR-5: Compress Multiset. This rule is the dual of the previous one, and it
typically applies when the arguments contain terms which correspond to the
recursive calls of the desired function. Example: if a part of the goal is M[T ∗] =
M[T1]�{{a}}�M[T2]� . . . , then on one alternative branch13 this part becomes
M[T ∗] = M[〈T1, a, T2〉] � By repeated application this rule one reaches the
situation of IR-6, as described in ST-4.

IR-6: Solve Metavariable. When a part of the goal is M[X∗] = M[T] for a
ground term T , obtain the substitution {X∗ → T } and continue the proof with
the remaining goal. In order to ensure the soundness, the prover keeps track of
the order in which Skolem constants and metavariables have been introduced,
and allows the use in a solution for a metavariable only the Skolem constants
which have been generated before that metavariable.

12 This is just a matter of efficiency, the goal could contain anything as long as the
currently synthesized function is not involved.

13 The rule generates proof alternatives for different groupings of the multiset terms.

322 I. Drămnesc and T. Jebelean

IR-7: Forward Inference. This rule is applied in order to produce new assump-
tions. If a ground atomic assumption matches a part of another (typically uni-
versal) assumption, instantiate the later and replace in it the resulting copy of
the ground assumption by the constant True, then simplify truth constants to
produce a new assumption.

IR-8: Backward Inference. Transform the goal using some assumption or a
specific logical principle. If a ground atomic assumption matches a part of a
ground or existential goal, instantiate the goal and replace in it the resulting copy
of the ground assumption by the constant True, then simplify truth constants
to produce a new goal.

3.2 Strategies

ST-1: Cover Set. This strategy organizes the structure of each synthesis conjec-
ture proof and the extraction of the synthesized algorithm, as in fact implements
the Noetherian induction based on the ordering between objects induced by strict
inclusion of multisets.

Each conjecture for the synthesis of a target function is a quantified statement
over some main universal variable. A cover set is a set of universal terms14 which
represent the domain of the main universal variable, as described in [17].

We project this concept on Skolem constants: first the main universal varia-
ble is Skolemized (“arbitrary but fixed”)—we call this the target constant, and
we call the corresponding Skolemized goal the target goal – and then the corres-
ponding cover–set terms are also grounded by Skolemization, we call these the
cover-set terms and the corresponding constants the cover-set constants. The
proof starts with a certain cover set (typically the one suggested by the recur-
sive definition of the domain), and starts a proof branch for each ground term
(“proof by cases”). On each proof branch the input conditions of the function
are assumed, and then the existential variable corresponding to the output value
of the function is transformed into a metavariable whose value (the “witness”)
will be found on the respective branch of the proof. Finally the algorithm will be
generated as a set of [conditional] equalities: the terms of the cover set become
arguments (“patterns”) on the LHS of the equalities, and the corresponding wit-
nesses become the RHS of these, after replacing back the Skolem constants by
variables. The strategy can be applied in a nested way, by choosing a new target
constant among the Skolem constants of the goal. Using this nesting scheme one
can synthesize algorithms with nested recursion (see, e.g., Algorithm 9) as well
as with recursion on several arguments, as for instance in the case of merging of
lists in the merge-sort algorithm for lists (see [16], Algorithm 15).

Furthermore we use cover sets in a novel way also on meta–variables: this
generates a certain structure for the synthesized algorithm by imposing on the

14 Terms containing universally quantified variables, such that for every element of the
domain there exists exactly one term in the set which instantiates to that element.

AlCons : Synthesis of Sorting Algorithms 323

result the structure of the corresponding term of the cover set (see for instance
Algorithm 5 for sorting).

ST-2: Dynamic Induction. (described in more detail in [13]) is used to dyna-
mically generate induction hypotheses during the proof. When a ground term t
represents an object which is smaller than the target constant X0 of the target
goal P [X0], then P [t] is added as a new assumption, but modified by inserting
the corresponding call of the target function instead of the existential variable.

This strategy is applied in a similar manner to metavariables, when they
occur in the goal. When a metavariable Y ∗ represents an object which is smaller
than the target constant X0, then P [Y ∗] may be added as new assumption.

ST-3: Cascading. This strategy consists in proving separately a conjecture for
synthesizing the algorithm for some auxiliary functions needed in the current
proof. The Skolem constants from the current goal become universal variables
x, x′, . . . , the metavariables from the current goal become existential variables
y, y′, . . . , and the conjecture has the structure15:

∀
x
∀
x′

. . . (P [x, x′, . . .] =⇒ ∃
y
∃
y′

. . . Q[x, x′, . . . , y, y′, . . .]) (1)

P [x, x′, . . .] is composed from the assumptions which contain only the Skolem
constants present in the goal, and Q[x, x′, . . . , y, y′, . . .] is composed from the
goal. A successful proof of the conjecture generates the functions f [x, x′, . . .],
f ′[x, x′, . . .], . . . , which have the property:

∀
x
∀
x′

. . . (P [x, x′, . . .] =⇒ Q[x, x′, . . . , f [x, x′, . . .], f ′[x, x′, . . .], . . .]) (2)

The current proof continues after adding this property to the assumptions16,
thus if some of the generated functions are necessary later in the proof, they
can be used without a new cascading step. The new assumption will trigger the
simplification of the current goal by inserting the auxiliary function.

ST-4: Group Multisets. This strategy uses IR-5 and applies when the goal
contains an equality of the form: M[Y ∗] = M[t1] � M[t2] � . . . , where Y ∗ is
the metavariable we need to solve, and t1, t2, . . . are ground terms. The flow of
the proof consists in transforming the union on the RHS of the equality into a
single M[t], because this gives the solution Y ∗ → t. The prover groups pairs
or triplets of operands of � together (no matter whether they are contingent or
not, because commutativity) and creates an alternative for each group. On each
alternative the multiset term which equals the union of the group is constructed
by application of the appropriate function in one of the following ways:

1. the auxiliary function is already known, the proof works by predicate logic;
2. induction can be applied (if the target function has the same structure);
3. a separate synthesis proof of the function is necessary by ST-3 (cascading).
15 By local convention, here x, x′, y, y′ represent any kind of objects.
16 Note that these kind of new assumptions are global: they can be used on any branch

of the current proof.

324 I. Drămnesc and T. Jebelean

3.3 Implementation

In the Theorema system, the proof develops as a tree of proof situations, each
consisting of a set of assumptions and a goal, and also other various informa-
tion which may be prover specific. Every proof situation is transformed into
one or more proof situations by applying an inference rule, which creates or
modifies the goal and/or one or more assumptions, and thus extends the proof
tree. When several proof situations are created, there are two types of proof
tree nodes: the AND nodes (all subproofs must succeed), and the OR nodes (at
least one subproof must succeed – these are “proof alternatives”). Many infer-
ence rules produce alternatives (e.g. compress multiset, backward chaining), from
which some may be unsuccessful. Each successful alternative has typically sev-
eral AND branches, each of them corresponding to a clause in the definition of
the synthesized algorithm. Since the cover set strategy is applied in a nested way,
the proof tree is theoretically infinite, and may produce an arbitrary number of
algorithms. The concrete proofs are however finite because we limit the depth
of the proof tree.

As it is usual in the Theorema system, our prover consists of a collection of
rewrite rules which correspond to the intended inferences. Each rule rewrites the
proof situation into new one, and produces additionally a proof information (a list
of elements necessary for the presentation of the proof). The proof information
is language independent and is aggregated in a tree which represents finally the
whole proof: the proof object. Using a set of language-dependent rewrite rules
corresponding to the proof steps, the proof object is finally transformed in a
Mathematica notebook explaining the proof.

In our case the proof object also contains the information relevant for the
synthesized algorithm, which is extracted automatically at the end of the proof.

Contextual Information. Besides the current goal and the list of the current
assumptions, which are the core elements of the proof situation, the prover uses
certain contextual information for guiding the realization of the inference rules
and strategies. The contextual information is split into global and local.

The global context consists of constants which are available to the prover
on all branches of the proof. This contains among other: the table with the
names of the variables assigned to the different types, the table with the cover
sets corresponding to lists and to trees, and the list of rewrite rules for the
simplification of truth constants.

The local context consists of information which is specific to every branch
of the proof, and it is dynamically updated. This contains: the type table, which
indicates the type of each item; the target goal, the target Skolem constant and
the target meta-variable used for the realization of the strategy ST-1 (cover set);
the table of the Noetherian relation between Skolem constants, used for induc-
tion; and the table of rewrite rules corresponding to the current assumptions
(see below), etc.

In order to ease the use of the current assumptions, they are reflected in
certain rewrite rules in a special table of the local context. When new goals

AlCons : Synthesis of Sorting Algorithms 325

[assumptions] are produced, the prover tries to simplify them using these rules,
depending on the situation in the proof.

The tables composing the local context are implemented as associative
memory structures: each element or group of elements is associated with a tex-
tual keyword. This makes it easy to access an element by using the rewrite
mechanism provided by Mathematica, and also to write inference rules based on
pattern matching.

Both the global and the local contexts are implemented in a generic way,
both the structures and the manipulating functions are type independent, thus
any relevant information (like, e.g., cover set information) can be added to the
context and maintained by the functions provided, without having to change the
implementation.

The Theorema system17 and an example of the prover usage18 are available
online.

4 Experiments on Binary Trees

In order to illustrate the proof techniques of AlCons we summarize in this
section our experiments on binary trees. (The experiments on lists are detailed
in [16].) The synthesized algorithms relevant to binary trees are:

(i) sorting algorithms (not yet presented in our papers): Algorithm 1 (which uses
Insert, Concat), Algorithm 2, Algorithm 3, Algorithm 4 (which use Insert,
Merge), Algorithm 5 (which uses Concat, SmallerEq, Bigger), Algorithm 6
(which uses Merge, SmallerEq, Bigger), as well as some similar versions of
them;

(ii) auxiliary algorithms: Insert (Algorithm 7) [12], derived here by different
techniques; numerous versions of Concat : the synthesis of Algorithm 8 and
first three similar versions of it are presented in [12], and other twenty ver-
sions in [18]; four versions of Merge: the synthesis of the first two (Algorithm
9, Algorithm 10) is presented in [12], and the other two in [18]; novel: Small-
erEq (Algorithm 11) and Bigger (Algorithm 12).

The algorithms presented also in [12] are generated using explicit induction (thus
the user has to anticipate the structure of the algorithm), and the algorithms
1 to 4 can also be derived in this way. In contrast, by using cover sets and
dynamic induction, all algorithms mentioned above are synthesized without any
prior anticipation of the algorithm structure. Moreover, algorithms 5 and 6 (and
their similar versions), as well as the selection auxiliary functions SmallerEq and
Bigger are consequent to the use of the novel paradigm of applying cover sets
to meta-variables.

The following subsections illustrate the process of synthesis by describing
some parts of the proofs.

17 https://www.risc.jku.at/research/theorema/software/.
18 https://www.risc.jku.at/people/tjebelea/AlCons.html.

https://www.risc.jku.at/research/theorema/software/
https://www.risc.jku.at/people/tjebelea/AlCons.html

326 I. Drămnesc and T. Jebelean

4.1 Sorting Algorithms

The synthesis conjecture is:

Conjecture 1. ∀
X

∃
T
(M[T] = M[X] ∧ IsSorted[T]).

The goal after Skolemization and introduction of the meta–variable is:

M[T ∗] = M[X0] ∧ IsSorted[T ∗]. (3)

Strategy ST-1 (cover set) starts two branches: on the Skolem constant and on
the meta-variable.

Branch 1. Strategy ST-1 applies to X0 using the cover set {ε, 〈L0, a0, R0〉} and
generates two cases:

Case 1.1 : X0 = ε is trivial and the solution is {T ∗ → ε}.

Case 1.2 : X0 = 〈L0, a0, R0〉. The goal becomes:

M[T ∗] = M[〈L0, a0, R0〉] ∧ IsSorted[T ∗]. (4)

This is expanded by IR-4 (expand multiset) into:

M[T ∗] = M[L0] � {{a0}} � M[R0] ∧ IsSorted[T ∗]. (5)

Strategy ST-4 (pair multisets) applies on goal (5) and then strategy ST-3 (cas-
cading) generates the conjectures corresponding to the synthesis of Concat, and
Merge (see details in [12]) on two different cases, adds the assumptions express-
ing the properties of these auxiliary functions, and rewrites the goal in each case
by using Concat and Merge, respectively.

Case 1.2.1. Goal (5) becomes:

M[T ∗] = {{a0}} � M[Concat[L0, R0]] ∧ IsSorted[T ∗]. (6)

Strategy ST-2 (induction) uses Concat[L0, R0], which is smaller in the Noethe-
rian ordering than 〈L0, a0, R0〉, to produce the assumption:

M[Sort[Concat[L0, R0]]] = M[Concat[L0, R0]] ∧
IsSorted[Sort[Concat[L0, R0]]].

(7)

Goal (5) is rewritten using (7) into:

M[T ∗] = {{a0}} � M[Sort[Concat[L0, R0]]] ∧ IsSorted[T ∗]. (8)

ST-4 applied to {{a0}} and M[Sort[Concat[L0, R0]]] uses ST-3 to produce Con-
jecture 2 for the synthesis of Insert. By s ST-3 the generated assumption is:

∀
X

(
IsSorted[X] =⇒

∀
a

(
M[Insert[a,X]] = {{a}} � M[X] ∧ IsSorted[Insert[a,X]]

))
.

(9)

AlCons : Synthesis of Sorting Algorithms 327

and goal (5) becomes

M[T ∗] = M[Insert[a0,Sort[Concat[L0, R0]]]] ∧ IsSorted[T ∗]. (10)

The solution for T ∗ is Insert[a0,Sort[Concat[L0, R0]]]. The proof succeeds on this
branch and the extracted algorithm is:

Algorithm 1. Sorting trees, version 1.

∀
a,L,R

(
Sort[ε] = ε

Sort[〈L, a,R〉] = Insert[a,Sort[Concat[L,R]]]

)

Case 1.2.2. Goal (5) becomes:

M[T ∗] = {{a0}} � M[Merge[L0, R0]] ∧ IsSorted[T ∗]. (11)

Strategy ST-2 uses Merge[L0, R0] (which is smaller than 〈L0, a0, R0〉) to produce
the assumption:

M[Merge[Sort[L0],Sort[R0]]] = M[Merge[L0, R0]] ∧
IsSorted[Merge[Sort[L0],Sort[R0]]].

(12)

Goal (5) is rewritten using (12) into:

M[T ∗] = {{a0}} � M[Merge[Sort[L0],Sort[R0]]] ∧ IsSorted[T ∗]. (13)

Strategy ST-4 applied to {{a0}} and M[Merge[Sort[L0],Sort[R0]]] uses now the
already known function Insert to update the goal into:

M[T ∗] = Insert[a0,Merge[Sort[L0],Sort[R0]]] ∧ IsSorted[T ∗]. (14)

This gives a solution for T ∗ and the algorithm:

Algorithm 2. Sorting trees, version 2. Insert[a,Merge[Sort[L],Sort[R]]]

∀
a,L,R

(
Sort[ε] = ε

Sort[〈L, a,R〉] = Insert[a,Merge[Sort[L],Sort[R]]]

)

Remark: Since for all sorting algorithms the base case is the same, as well as the
LHS of the recursive equality, we to state only its RHS for the other algorithms.

The proof is similar for two other cases produced by ST-4 from goal (5) by
grouping first the unit multiset with another, and generates:

Algorithm 3. Sorting trees, version 3. Merge[Sort[L], Insert[a,Sort[R]]]

Algorithm 4. Sorting trees, version 4. Merge[Insert[a,Sort[L]],Sort[R]]

Branch 2. ST-1 applies to T ∗ using the cover set {ε, 〈L∗, a∗, R∗〉} and two cases
are generated:

Case 2.1 : T ∗ = ε is trivial.

328 I. Drămnesc and T. Jebelean

Case 2.2 : T ∗ = 〈L∗, a∗, R∗〉. The goal becomes:

M[〈L∗, a∗, R∗〉] = M[〈L0, a0, R0〉] ∧ IsSorted[T ∗]. (15)

This is transformed by IR-4 (expand multiset) and IR-1 (reduce composite
argument on IsSorted) into:

M[L∗] � {{a∗}} � M[R∗] = M[L0] � {{a0}} � M[R0] ∧
IsSorted[L∗] ∧ IsSorted[R∗] ∧ L∗ ≤ a∗ < R∗.

(16)

Using the equality the prover computes the partial solution a∗ = a0 and reduces
the goal correspondingly, and then ST-4 starts two alternatives:

Case 2.2.1. By pairing M[L0],M[R0] using Concat the goal becomes:

M[L∗] � M[R∗] = M[Concat[L0, R0]] ∧
IsSorted[L∗] ∧ IsSorted[R∗] ∧ L∗ ≤ a0 < R∗.

(17)

By ST-2 (dynamic induction) Concat[L0, R0] is replaced by Sort[Concat[L0,
R0]], and then ST-3 generates Conjecture 6 for the synthesis of SmallerEq and
Bigger, adds the corresponding properties of them to the global assumptions,
and updates the goal to:

M[L∗] � M[R∗] =
M[SmallerEq[a0,Sort[Concat[L0, R0]]]] � M[Bigger[a0,Sort[Concat[L0, R0]]]] ∧

IsSorted[L∗] ∧ IsSorted[R∗] ∧ L∗ ≤ a0 < R∗.
(18)

This gives the obvious solutions to L∗, R∗ and the algorithm:

Algorithm 5. Sorting trees, version 5.

∀
a,L,R

(
Sort[〈L, a,R〉] =

〈SmallerEq[a,Sort[Concat[L,R]]], a,Bigger[a,Sort[Concat[L,R]]]〉

)

(In an efficient implementation Sort[Concat[L,R]] must be computed only once.)

Case 2.2.1. In a similar way but with different pairing of multiset terms, and
using the already known selection functions, one obtains the algorithm:

Algorithm 6. Sorting trees, version 6.

∀
a,L,R

⎛
⎜⎜⎜⎝

Sort[〈L, a,R〉] =
〈Merge[SmallerEq[a,Sort[L]],SmallerEq[a,Sort[R]]]],

a,

Merge[Bigger[a,Sort[L]],Bigger[a,Sort[R]]]]〉

⎞
⎟⎟⎟⎠

Several similar versions of the latest two algorithms are generated by ST-4 per-
muting the multiset terms corresponding to L and R.

AlCons : Synthesis of Sorting Algorithms 329

4.2 Auxiliary Algorithms

Insert. Inserts an element in a sorted tree such that the result remains sorted.

Conjecture 2. ∀
a
∀
X

(
IsSorted[X] =⇒ ∃

S

(
M[S] = {{a}} � M[X] ∧ IsSorted[S]

))
is used in the practical experiment as:

Conjecture 3.
∀
X

(
IsSorted[X] =⇒ ∀

a

(
M[Insert[a,X]] = {{a}} � M[X] ∧ IsSorted[Insert[a,X]]

))
Figure 1 shows the formalization of the conjecture in Theorema and the

graphical user interface of the prover.

Fig. 1. Setup for proving Conjecture 3.

The proof uses the cover set {ε, 〈L0, b0, R0〉} for the Skolem constant X0 and
generates the algorithm:

Algorithm 7. Insertion in a sorted tree.

∀
a,b,L,R

⎛
⎜⎝

Insert[a, ε] = 〈ε, a, ε〉

Insert[a, 〈L, b,R〉] =

{
〈Insert[a, L], b, R〉, if a ≤ b

〈L, b, Insert[a,R]〉, if b < a

⎞
⎟⎠

Figure 2 shows a part of the proof of the conjecture, with the successful
generation of the first clause of the algorithm.

This algorithm was derived with different methods in [17] and by explicit
induction in [12] instead of using cover sets.

Concat. Combine two [unsorted] trees into an [unsorted] tree.

330 I. Drămnesc and T. Jebelean

Fig. 2. Part of the generated proof of Conjecture 3 and the proof tree.

Conjecture 4. ∀
X

∀
Y
∃
Z

(
M[Z] = M[X] � M[Y]

)
From the proof of this conjecture 24 versions of Concat algorithm are extracted.
The first 4 versions are also derived in [12] and the other 20 are in [18].

Algorithm 8. Concatenation of trees, version 1.

∀
a,L,R,S

(
Concat[ε, S] = S

Concat[〈L, a,R〉, S] = 〈L, a,Concat[R,S]〉

)

The other generated versions are essentially the same but permute L,R, S
and the two main branches of the resulting tree.

Merge. Combine two sorted trees into a sorted tree.

Conjecture 5.
∀
X

∀
Y

(
(IsSorted[X] ∧ IsSorted[Y]) =⇒ ∃

Z

(
M[Z] = M[X] � M[Y] ∧ IsSorted[Z]

))
From the proof of this the following two versions of Merge are extracted [12]:

Algorithm 9. Merge sorted trees, version 1.

∀
a,L,R,S

(
Merge[ε, S] = S

Merge[〈L, a,R〉, S] = Merge[L,Merge[R, Insert[a, S]]]

)

Algorithm 10. Merge sorted trees, version 2 (the inductive step).
∀

a,L,R,S

(
Merge[〈L, a,R〉, S] = Merge[Concat[L,R], Insert[a, S]]]

)
as well as (by applying cover sets to meta-variables), the following two versions
described in [18], which have in the second equality:

AlCons : Synthesis of Sorting Algorithms 331

〈SmallerEq[a,Merge[L, S]], a,Bigger[a,Merge[R,S]]〉,
〈Merge[L,SmallerEq[a, S]], a,Merge[R,Bigger[a, S]]〉.

SmallerEq and Bigger. Select from a sorted tree the elements that are smaller,
respectively bigger than a given element.

Conjecture 6. ∀
X

(
IsSorted[X] =⇒ ∀

a
∃
T1

∃
T2

(
M[X] = M[T1] � M[T2] ∧

T1 ≤ a ∧ a < T2 ∧ IsSorted[T1] ∧ IsSorted[T2]
))

.

Algorithm 11

∀
a,b,L,R

⎛
⎜⎜⎜⎝

SmallerEq[a, ε] = ε

SmallerEq[a, 〈L, b,R〉]=

⎧⎪⎨
⎪⎩

〈SmallerEq[a, L], a,SmallerEq[a,R]〉 if a = b

SmallerEq[a, L], if a < b

〈L, b,SmallerEq[a,R]〉, if b < a

⎞
⎟⎟⎟⎠

Algorithm 12

∀
a,b,L,R

⎛
⎜⎝

Bigger[a, ε] = ε

Bigger[a, 〈L, b,R〉] =

{
〈Bigger[a, L], b, R〉, if a < b

Bigger[a,R], if b ≤ a

⎞
⎟⎠

5 Conclusions and Further Work

This paper gives the description of AlCons , a powerful system for proof–based
algorithm synthesis on lists and binary trees using multisets. The proofs genera-
ted by AlCons are easy to understand (similar to human proofs) and they are
generated in a few seconds.

The most important proof strategies are: use cover sets together with multiset
based Noetherian induction, pairing of multisets, and cascading. By using cover
sets, no algorithm scheme and no concrete induction principles are needed in
advance, as they are dynamically produced during the proof, and even nested
induction algorithms can be generated automatically.

As future work one can extend AlCons to generate algorithms which com-
bine operations on both lists and trees (e.g., algorithms for transforming a tree in
a sorted list, transforming a non–sorted list into a balanced binary search tree),
as well as more complex algorithms for sorting and searching – for instance on
balanced trees. Moreover one can extend the prover with capabilities for auto-
matic analysis of time and space complexity of the synthesized algorithms.

References

1. Barstow, D.R.: Remarks on “A synthesis of several sorting algorithms” by John
Darlington. Acta Inf. 13, 225–227 (1980)

2. Blizard, W.D.: Multiset theory. Notre Dame J. Formal Log. 30(1), 36–66 (1989).
https://doi.org/10.1305/ndjfl/1093634995

https://doi.org/10.1305/ndjfl/1093634995

332 I. Drămnesc and T. Jebelean

3. Buchberger, B.: Theory exploration with Theorema. Analele Univ. Din Timisoara
Ser. Mat.-Inf. XXXVIII(2), 9–32 (2000)

4. Buchberger, B.: Algorithm invention and verification by lazy thinking. Analele
Univ. din Timisoara Ser. Mat. - Inf. XLI, 41–70 (2003)

5. Buchberger, B., Craciun, A.: Algorithm synthesis by lazy thinking: Using problem
schemes. In: Proceedings of SYNASC 2004, pp. 90–106 (2004)

6. Buchberger, B., et al.: The Theorema project: A progress report. In: Calculemus
2000, pp. 98–113. A.K. Peters, Natick (2000)

7. Buchberger, B., Jebelean, T., Kutsia, T., Maletzky, A., Windsteiger, W.: Theorema
2.0: Computer-assisted natural-style mathematics. J. Formal. Reason. 9(1), 149–
185 (2016). https://doi.org/10.6092/issn.1972-5787/4568

8. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level Guidance for
Mathematical Reasoning. Cambridge University Press, Cambridge (2005)

9. Bundy, A., Dixon, L., Gow, J., Fleuriot, J.: Constructing induction rules for
deductive synthesis proofs. Electron. Notes Theor. Comput. Sci. 153, 3–21 (2006).
https://doi.org/10.1016/j.entcs.2005.08.003

10. Darlington, J.: A synthesis of several sorting algorithms. Acta Inf. 11, 1–30 (1978)
11. Dramnesc, I., Jebelean, T.: Synthesis of list algorithms by mechanical proving. J.

Symb. Comput. 68, 61–92 (2015). https://doi.org/10.1016/j.jsc.2014.09.030
12. Drămnesc, I., Jebelean, T.: Automatic synthesis of merging and inserting algo-

rithms on binary trees using multisets in Theorema. In: Slamanig, D., Tsigari-
das, E., Zafeirakopoulos, Z. (eds.) MACIS 2019. LNCS, vol. 11989, pp. 153–168.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43120-4 13

13. Dramnesc, I., Jebelean, T.: Proof-based synthesis of sorting algorithms using mul-
tisets in Theorema. In: FROM 2019, pp. 76–91. EPTCS 303 (2019). https://doi.
org/10.4204/EPTCS.303.6

14. Dramnesc, I., Jebelean, T.: Deductive synthesis of bubble-sort using multisets. In:
SAMI 2020, pp. 165–172. IEEE (2020). https://doi.org/10.1109/SAMI48414.2020.
9108725

15. Dramnesc, I., Jebelean, T.: Deductive synthesis of min-max-sort using multisets.
In: SACI 2020, pp. 165–172. IEEE (2020). https://doi.org/10.1109/SACI49304.
2020.9118814

16. Dramnesc, I., Jebelean, T.: Synthesis of sorting algorithms using multisets in The-
orema. J. Log. Algebraic Methods Programm. 119(100635) (2020). https://doi.
org/10.1016/j.jlamp.2020.100635

17. Dramnesc, I., Jebelean, T., Stratulat, S.: Mechanical synthesis of sorting algorithms
for binary trees by logic and combinatorial techniques. J. Symb. Comput. 90, 3–41
(2019). https://doi.org/10.1016/j.jsc.2018.04.002

18. Dramnesc, I., Jebelean, T.: Synthesis of merging algorithms on binary trees using
multisets in Theorema. In: SACI 2021, pp. 497–502. IEEE (2021). https://doi.org/
10.1109/SACI51354.2021.9465619

19. Dromey, R.G.: Derivation of sorting algorithms from a specification. Comput. J.
30(6), 512–518 (1987)

20. Eguchi, S., Kobayashi, N., Tsukada, T.: Automated synthesis of functional pro-
grams with auxiliary functions. In: Ryu, S. (ed.) APLAS 2018. LNCS, vol. 11275,
pp. 223–241. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02768-
1 13

21. Howard, B.T.: Another iteration on “A synthesis of several sorting algorithms”
Technical report KSU CIS 94–8. Kansas State University, Department of Comput-
ing and Information Sciences (1994)

https://doi.org/10.6092/issn.1972-5787/4568
https://doi.org/10.1016/j.entcs.2005.08.003
https://doi.org/10.1016/j.jsc.2014.09.030
https://doi.org/10.1007/978-3-030-43120-4_13
https://doi.org/10.4204/EPTCS.303.6
https://doi.org/10.4204/EPTCS.303.6
https://doi.org/10.1109/SAMI48414.2020.9108725
https://doi.org/10.1109/SAMI48414.2020.9108725
https://doi.org/10.1109/SACI49304.2020.9118814
https://doi.org/10.1109/SACI49304.2020.9118814
https://doi.org/10.1016/j.jlamp.2020.100635
https://doi.org/10.1016/j.jlamp.2020.100635
https://doi.org/10.1016/j.jsc.2018.04.002
https://doi.org/10.1109/SACI51354.2021.9465619
https://doi.org/10.1109/SACI51354.2021.9465619
https://doi.org/10.1007/978-3-030-02768-1_13
https://doi.org/10.1007/978-3-030-02768-1_13

AlCons : Synthesis of Sorting Algorithms 333

22. Itzhaky, S., Peleg, H., Polikarpova, N., Rowe, R.N.S., Sergey, I.: Cyclic program
synthesis. In: PLDI 2021, pp. 944–959. ACM (2021). https://doi.org/10.1145/
3453483.3454087

23. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. 3 edn. Addison-Wesley (1998). https://doi.org/10.1137/1012065

24. Korukhova, Y.: Automatic deductive synthesis of lisp programs in the system
ALISA. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA
2006. LNCS (LNAI), vol. 4160, pp. 242–252. Springer, Heidelberg (2006). https://
doi.org/10.1007/11853886 21

25. Korukhova, Y.: An approach to automatic deductive synthesis of functional pro-
grams. Ann. Math. Artif. Intell. 50(3–4), 255–271 (2007). https://doi.org/10.1007/
s10472-007-9079-9

26. Lau, K.K.: Top-down synthesis of sorting algorithms. Comput. J. 35, A001–A007
(1992)

27. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM
Trans. Programm. Lang. Syst. 2(1), 90–121 (1980). https://doi.org/10.1145/
357084.357090

28. Manna, Z., Waldinger, R.: The Logical Basis for Computer Programming, vol. 1:
Deductive Reasoning. Addison-Wesley (1985). https://doi.org/10.2307/2275898

29. Manna, Z., Waldinger, R.: Fundamentals of deductive program synthesis. IEEE
Trans. Softw. Eng. 18(8), 674–704 (1992). https://doi.org/10.1109/32.153379

30. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. In: PLDI 2016, pp. 522–538 (2016). https://doi.org/10.1145/
2908080.2908093

31. Radoaca, A.: Properties of multisets compared to sets. In: SYNASC 2015, pp.
187–188 (2015). https://doi.org/10.1109/SYNASC.2015.37

32. Smith, D.R.: KIDS: a semiautomatic program development system. IEEE Trans.
Softw. Eng. 16(9), 1024–1043 (1990). https://doi.org/10.1109/32.578788

33. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program syn-
thesis. SIGPLAN Not. 45(1), 313–326 (2010). https://doi.org/10.1145/1707801.
1706337

34. Stratulat, S.: A general framework to build contextual cover set induction provers.
J. Symb. Comput. 32, 403–445 (2001)

35. Traugott, J.: Deductive synthesis of sorting programs. J. Symb. Comput. 7(6),
533–572 (1989). https://doi.org/10.1016/S0747-7171(89)80040-9

36. Windsteiger, W.: Theorema 2.0: A system for mathematical theory exploration.
In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 49–52. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2 9

https://doi.org/10.1145/3453483.3454087
https://doi.org/10.1145/3453483.3454087
https://doi.org/10.1137/1012065
https://doi.org/10.1007/11853886_21
https://doi.org/10.1007/11853886_21
https://doi.org/10.1007/s10472-007-9079-9
https://doi.org/10.1007/s10472-007-9079-9
https://doi.org/10.1145/357084.357090
https://doi.org/10.1145/357084.357090
https://doi.org/10.2307/2275898
https://doi.org/10.1109/32.153379
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1109/SYNASC.2015.37
https://doi.org/10.1109/32.578788
https://doi.org/10.1145/1707801.1706337
https://doi.org/10.1145/1707801.1706337
https://doi.org/10.1016/S0747-7171(89)80040-9
https://doi.org/10.1007/978-3-662-44199-2_9

Reactive Synthesis from Visibly Register
Pushdown Automata

Ryoma Senda1(B), Yoshiaki Takata2, and Hiroyuki Seki1

1 Graduate School of Informatics, Nagoya University,
Furo-cho, Chikusa, Nagoya 464-8601, Japan

ryoma.private@sqlab.jp, seki@i.nagoya-u.ac.jp
2 Graduate School of Engineering, Kochi University of Technology, Tosayamada,

Kami City, Kochi 782-8502, Japan
takata.yoshiaki@kochi-tech.ac.jp

Abstract. The realizability problem for a given specification S is to
decide whether there exists an implementation satisfying S. Although
the problem is important in the field of reactive synthesis of recur-
sive programs, the problem has not been studied yet when specification
and implementation are given by pushdown computational models. This
paper investigates the realizability problem for the cases that a specifica-
tion and an implementation are given by a pushdown automaton (PDA)
and a pushdown transducer (PDT), and a register pushdown automata
(RPDA) and a register pushdown transducer (RPDT).

1 Introduction

Reactive synthesis is a method of synthesizing a system that satisfies a given
specification representing the input-output relation of the system. A specifica-
tion is formally a subset of an infinite alternate sequences of input and output
symbols. When an environment or a user gives inputs i0, i1, . . . in this order to
a system, the latter is required to emit a sequence of outputs o0, o1, . . . such
that (i0, o0)(i1, o1) · · · ∈ S. The realizability problem is to decide whether for a
given specification S, there exists a reactive system satisfying S, and if exists,
to generate such a system (called an implementation of S).

Studies on reactive synthesis have their origin in 1960s and have been one
of central topics in formal methods [11]. Among them, Büchi and Landweber
[8] showed EXPTIME-completeness of the problem when a specification is given
by a finite ω-automaton (a finite automaton on infinite words). Pnueli and Ros-
ner [28] showed 2EXPTIME-completeness of the problem when a specification
is given by an LTL formula. We can find an excellent tutorial and survey of the
previous studies on the synthesis problem in [2]. The standard approach to the
problem is as follows. Assume that, for example, a specification is given as a
deterministic ω-automaton A. We convert A to a tree automaton (or equiva-
lently, a parity game) B by separating the input and output streams. Then, we
test whether L(B) �= ∅ (or equivalently, there is a winning strategy for player I

c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 334–353, 2021.
https://doi.org/10.1007/978-3-030-85315-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-85315-0_19

Reactive Synthesis from Visibly Register Pushdown Automata 335

in B). The answer to the problem is affirmative if and only if L(B) �= ∅, and any
t ∈ L(B) (or any winning strategy for B) is an implementation of the specifica-
tion.

Classical models such as a finite automaton cannot deal with objects from an
infinite set (called data values). However, when we add an ability of manipulating
data values to such a classical model, the model easily becomes Turing-complete
and basic problems become undecidable. Register automaton (RA) is an exten-
sion of finite automaton by adding limited ability of manipulating data values
[7,21,27,30]. An RA has a finite number of registers for storing data values taken
from an input word and it can compare the contents of its registers with the cur-
rent input data value to determine the next transition. RA inherits some good
properties from finite automaton such as the closure under some language opera-
tions. The membership and emptiness are decidable for RA while the universality
is undecidable. With the increase of interest in RA, the realizability problem for
register models has been investigated recently [16,19,22,23]. A specification is
given by an RA and an implementation is represented by a register transducer
(abbreviated as RT).

Pushdown automaton (PDA) is a simple model for recursive programs. Model
checking algorithms for pushdown systems (PDA without input) has been exten-
sively studied [6,17,18,20,36]. Extensions by adding registers are also done for
PDA [12,26,33], called register pushdown automaton (RPDA). Since many real-
world programs are recursive and also manipulate data values, it is important
to investigate the realizability problem for PDA/RPDA.

This paper first extends the realizability problem to PDA and pushdown
transducer. A pushdown transducer (PDT) is a deterministic PDA with output.
PDT serves as a model of a recursive program that emits outputs according to
the inputs given from its environment. The main difficulties to solve the realiz-
ability problem in this setting come from the facts that the class of languages
recognized by nondeterministic PDA (NPDA) (i.e., context-free languages) does
not have the closure properties under some set operations and some relevant
decision problems such as the universality are undecidable for PDA. To avoid
these difficulties, this paper mainly considers deterministic PDA (DPDA). (Note
that, PDT is deterministic by definition.) In Sect. 4, we show that the realizabil-
ity problem for DPDA is decidable while the problem is undecidable for NPDA.
The former is proved by using the well-known property that the (two-players
zero-sum parity) pushdown game is decidable and a winning strategy of the
game can be constructed as a PDT [36].

Then, the paper moves to the realizability problem for RPDA and register
PDT. In Sect. 5, we introduce RPDA and register PDT (RPDT). Both RPDA
and RPDT read a data word, which is an infinite sequence of a pair (a, d) of a
symbol a from a finite alphabet and a data value d from an infinite set. We show
that the projection of the language recognized by a nondeterministic RPDA
onto the finite alphabet can be recognized by a nondeterministic PDA, when we
assume the freshness of input data values [35] for RPDA.

336 R. Senda et al.

In Sect. 6, we discuss the realizability problem for deterministic RPDA
(DRPDA) and RPDT. Our approach is to reduce the problem for DRPDA to
the problem for DPDA. In this reduction, we want to convert a given DRPDA
to a DPDA that recognizes the projection onto the finite alphabet of the former
language by using the method in Sect. 5. For this purpose, we further assume
that a given DPDA has the visibility on the guard condition inherited from the
DRPDA as well as the visibility of stack operation (see [1] for the visibility of
stack operation). Finally, we show that the realizability problem is decidable for
visibly DRPDA and RPDT.

Related Work. RA is frequently used as computation models for querying
structured data such as XML documents and graph databases [24,25]. LTL with
the freeze quantifier (LTL↓) [14,15] is an extension of LTL by adding the ability
of memorizing and comparing data values. LTL↓ has the strong relationship with
two-way alternate extension of RA. Two-variable first-order logic on data words
[3] is another famous logic for data values, whose expressive power is incom-
parable with LTL↓. Other extensions of RA are found in [4,5,9,13]. Nominal
automaton [4] is an extension of finite automaton by using nominal sets, which
are infinite sets having finite orbits of group actions and equivariant functions
among them.

When considering the realizability for RA, the difficulty is to identify the
number of registers needed for implementing the specification, i.e., the number
of registers of RT. If the upperbound of the registers of RT is not given as an
input, the realizability problem is undecidable for both of nondeterministic and
universal RA [19]. If the upperbound of the registers is a priori known, the
problem (called the bounded realizability problem) is shown to be decidable in
EXPTIME for universal RA [22]. In [19], it is shown that the bounded realizabil-
ity problem remains undecidable for nondeterministic RA (NRA) and becomes
decidable in 2EXPTIME for a subclass called test-free NRA.

Extensions by adding registers are also done for PDA [12,26,33] and context-
free grammar [10,31,32], called register pushdown automaton (RPDA) and regis-
ter context-free grammar (RCFG), respectively. The expressive powers of RPDA
and RCFG are the same. RPDA is a natural model for recursive programs with
data values while RCFG has an advantage such that explicit representation of
pushdown stack is not needed. For other extensions of PDA and verification of
them, see [29,34,37].

2 Preliminaries

Let N = {1, 2, . . .}, N0 = {0} ∪ N and [n] = {1, · · · , n} for n ∈ N. For a set A,
let P(A) be the power set of A, let A∗ and Aω be the sets of finite and infinite
words over A, respectively. We denote A+ = A∗ \ {ε} and A∞ = A∗ ∪ Aω. For
a word α ∈ A∞ over a set A, let α(i) ∈ A be the i-th element of α (i ≥ 0),
α(i : j) = α(i)α(i + 1) · · · α(j − 1)α(j) for i ≤ j and α(i :) = α(i) · · · for
i ≥ 0. Let 〈u,w〉 = u(0)w(0)u(1)w(1) · · · ∈ A∞ for words u,w ∈ A∞ and
〈B,C〉 = {〈u,w〉 | u ∈ B,w ∈ C} for sets B,C ⊆ A∞. By |β|, we mean the

Reactive Synthesis from Visibly Register Pushdown Automata 337

cardinality of β if β is a set and the length of β if β is a finite sequence. For a
function f : A → B from a set A to a set B, let f(w) = f(w(0))f(w(1)) . . . for
a word w ∈ A∞ and let f(L) = {f(w) | w ∈ L} for a set L ⊆ A∞ of words. Let
fst and snd be the functions such that fst((a, b)) = a and snd((a, b)) = b for any
pair (a, b). Let id be the identity function; i.e., id(a) = a for any a.

2.1 Transition Systems

Definition 1. A transition system (TS) is S = (S, s0, A,E,→S , c) where

– S is a (finite or infinite) set of states,
– s0 ∈ S is the initial state,
– A,E are (finite or infinite) alphabets such that A ∩ E = ∅,
– →S ⊆ S×(A∪E)×S is a transition relation, written as s →a s′ if (s, a, s′) ∈

→S and
– c : S → [n] is a coloring function where n ∈ N.

An element of A is an observable label and an element of E is an internal label.
A run of TS S = (S, s0, A,E,→S , c) is a pair (ρ,w) ∈ Sω×(A∪E)ω that satisfies
ρ(0) = s0 and ρ(i) →w(i) ρ(i+1) for i ≥ 0. Let mininf : Sω → [n] be the minimal
coloring function such that mininf(ρ) = min{m | there exist an infinite number
of i ≥ 0 such that c(ρ(i)) = m}. We call S deterministic if s →a s1 and s →a s2
implies s1 = s2 for all s, s1, s2 ∈ S and a ∈ A ∪ E.

For w ∈ (A ∪ E)ω, let ef (w) = a0a1 · · · ∈ A∞ be the sequence obtained from
w by removing all symbols belonging to E. Note that ef (w) is not always an
infinite sequence even if w is an infinite sequence. We define the language of S as
L(S) = {ef (w) ∈ Aω | there exists a run (ρ,w) such that mininf(ρ) is even}. For
m ∈ N0, we call S an m-TS if for every run (ρ,w) of S, w contains no contiguous
subsequence w′ ∈ E∗ such that |w′| > m.

Consider two TSs S1 = (S1, s01, A1, E1,→S1 , c1) and S2 = (S2, s02, A2,
E2,→S2 , c2) and a function σ : (A1 ∪ E1) → (A2 ∪ E2). We call R ⊆ S1 × S2 a
σ-bisimulation relation from S1 to S2 if R satisfies the followings:

(1) (s01, s02) ∈ R.
(2) For any s1, s

′
1 ∈ S1, s2 ∈ S2, and a1 ∈ A1∪E1, if s1 →a1

S1
s′
1 and (s1, s2) ∈ R,

then ∃s′
2 ∈ S2 : s2 →σ(a1)

S2
s′
2 and (s′

1, s
′
2) ∈ R.

(3) For any s1 ∈ S1, s2, s
′
2 ∈ S2, and a2 ∈ A2∪E2, if s2 →a2

S2
s′
2 and (s1, s2) ∈ R,

then ∃s′
1 ∈ S1, ∃a1 ∈ A1 ∪ E1 : σ(a1) = a2 and s1 →a1

S1
s′
1 and (s′

1, s
′
2) ∈ R.

(4) If (s1, s2) ∈ R, then c1(s1) = c2(s2).

We say S1 is σ-bisimilar to S2 if there exists a σ-bisimulation relation from S1

to S2. We call R a bisimulation relation if R is an id -bisimulation relation. We
say S1 and S2 are bisimilar if S1 is id -bisimilar to S2.

The following lemma can be proved by definition.

Lemma 2. If S1 = (S1, s01, A1, E1,→S1 , c1) is σ-bisimilar to S2 = (S2, s02, A2,
E2,→S2 , c2) for a function σ : (A1 ∪ E1) → (A2 ∪ E2) that satisfies a ∈ A1 ⇔
σ(a) ∈ A2 for any a ∈ A1 ∪ E1, then σ(L(S1)) = L(S2).

338 R. Senda et al.

3 Pushdown Transducers, Automata and Games

In this section, we review definitions of pushdown automaton (PDA), pushdown
transducer (PDT) and pushdown game (PDG), together with a well-known prop-
erty of PDG. The next section discusses the realizability problem for PDA as
specifications and PDT as implementations. As described in the introduction, the
approach to solve the realizability problem is as follows. We first convert a given
specification (PDA) to a PDG B by separating the input and output streams.
The answer to the realizability problem is affirmative if and only if there is a
winning strategy for player I in B. An implementation of the specification is
easily obtained as a PDT from any winning strategy for B.

We assume that disjoint sets Σi, Σo and Γ are given as a (finite) input alpha-
bet, an output alphabet and a stack alphabet, respectively, and Σ = Σi ∪ Σo.
Let Com(Γ) = {pop, skip} ∪ {push(z) | z ∈ Γ} be the set of stack commands
over Γ .

3.1 Pushdown Transducers

Definition 3. A pushdown transducer (PDT) over Σi, Σo and Γ is T =
(P, p0, z0,Δ) where P is a finite set of states, p0 ∈ P is the initial state, z0 ∈ Γ
is the initial stack symbol and Δ : P × Σi × Γ → P × Σo × Com(Γ) is a finite set
of deterministic transition rules having one of the following forms:

– (p, a, z) → (q, b, pop) (pop rule)
– (p, a, z) → (q, b, skip) (skip rule)
– (p, a, z) → (q, b, push(z)) (push rule)

where p, q ∈ P , a ∈ Σi, b ∈ Σo and z ∈ Γ .

For a state p ∈ P and a finite sequence representing stack contents u ∈ Γ ∗,
(p, u) is called a configuration or instantaneous description (abbreviated as ID) of
PDT T . Let IDT denote the set of all IDs of T . For u ∈ Γ+ and com ∈ Com(Γ),
let us define upds(u, com) as upds(u, pop) = u(1 :), upds(u, skip) = u and
upds(u, push(z′)) = z′u.

For two IDs (p, u), (q, u′) ∈ IDT , a ∈ Σi and b ∈ Σo, ((p, u), ab, (q, u′)) ∈ ⇒T ,
written as (p, u) ⇒ab

T (q, u′), if there exist a rule (p, a, z) → (q, b, com) ∈ Δ such
that z = u(0) and u′ = upds(u, com). If T is clear from the context, we abbreviate
⇒ab

T as ⇒ab. We will use similar abbreviations for the other models defined later.
Note that there is no transition from an ID with empty stack. We define a run
and the language L(T) ⊆ (Σi · Σo)ω of PDT T as those of deterministic 0-TS
(IDT , (q0, z0), Σi ·Σo, ∅,⇒T , c) where c(s) = 2 for all s ∈ IDT . In this paper, we
assume that no run of PDT reaches an ID whose stack is empty. We can realize
this assumption by specifying a unique stack bottom symbol z⊥ and forcing that
every rule (q, a, z⊥) → (q′, com) ∈ δ satisfies com �= pop. Let PDT be the class
consisting of all PDT.

Reactive Synthesis from Visibly Register Pushdown Automata 339

Fig. 1. States and transitions of T1 (left) and A1 (right). Labels a, b → c, d and a, b → c
from q to q′ mean (q, a, b) → (q′, c, d) ∈ Δ and (q, a, b) → (q′, c) ∈ δ, respectively.

Example 4. Let us consider a PDT T1 = ({p}, p, z,Δ) over {0, 1}, {a, b}
and {z} where Δ = {(p, 0, z) → (p, a, skip), (p, 1, z) → (p, b, push(z))}. (See
Fig. 1, left.) We can see a pair of sequences (ρ,w) where ρ = (p, z)(p, z)
(p, zz)(p, zz)(p, zzz)(p, zzz) · · · and w = (0a1b)ω is a run of T1. Also, L(T1) =
({0a} ∪ {1b})ω.

3.2 Pushdown Automata

Definition 5. A nondeterministic pushdown automata (NPDA) over Σi, Σo

and Γ is A = (Q,Qi, Qo, q0, z0, δ, c) where Q, Qi, Qo are finite sets of states such
that Q = Qi ∪ Qo and Qi ∩ Qo = ∅, q0 ∈ Qi is the initial state, z0 ∈ Γ is the
initial stack symbol, c : Q → [n] is the coloring function where n ∈ N is the
number of priorities and δ : Q × (Σ ∪ {τ}) × Γ → P(Q × Com(Γ)) is a finite set
of transition rules having one of the following forms:

– (qx, ax, z) → (qx, com) (input/output rules)
– (qx, τ, z) → (q′

x, com) (τ rules, where τ /∈ Σ)

where (x, x) ∈ {(i, o), (o, i)}, qx, q
′
x ∈ Qx, qx ∈ Qx, ax ∈ Σx, z ∈ Γ and com ∈

Com(Γ).

We define IDA = Q×Γ ∗ and the transition relation �A⊆ IDA×(Σ∪{τ})×IDA
as ((q, u), a, (q′, u′)) ∈ �A iff there exist a rule (q, a, z) → (q′, com) ∈ δ and a
sequence u ∈ Γ ∗ such that z = u(0) and u′ = upds(u, com). We write (q, u) �a

A
(q′, u′) iff ((q, u), a, (q′, u′)) ∈ �A. We define a run and the language L(A) of
A as those of TS SA = (IDA, (q0, z0), Σ, {τ},�A, c′) where c′((q, u)) = c(q) for
every (q, u) ∈ IDA. We call a PDA A deterministic if SA is deterministic. We
call A an m-NPDA (or m-DPDA when A is deterministic) if SA is an m-TS. We
abbreviate 0-NPDA (0-DPDA) as NPDA (DPDA). Let DPDA and NPDA be
the classes of DPDA and NPDA, respectively.

Example 6. Let us consider a DPDA A1 = ({q, p0, p1}, {q}, {p0, p1}, q, z, δ, c)
over {0, 1}, {a, b} and {z} where c(q) = c(p0) = c(p1) = 2 and δ =
{(q, 0, z) → (p0, skip), (q, 1, z) → (p1, skip), (p0, a, z) → (q, push(z)), (p0, b, z) →
(q, push(z)), (p1, b, z) → (q, push(z))}. (See Fig. 1, right.) We can see a pair of
sequences (ρ,w) where ρ = (q, z)(p0, z)(q, zz)(p1, zz) · · · and w = (0a1b)ω is a
run of A1. Also, L(A1) = ({0a} ∪ {0b} ∪ {1b})ω.

340 R. Senda et al.

The following lemma states that the class of languages recognized by m-
DPDA and 0-DPDA are the same for a fixed m.

Lemma 7. For a given m-DPDA A, we can construct a 0-DPDA A′ such that
L(A) = L(A′)

Proof Sketch. We define the stack alphabet Γ ′ of A′ as Γ ′ = Γm. We can
simulate m-steps with consecutive push rules (or pop rules) of A by a single step
with a push (or pop) rule of A′.

3.3 Pushdown Games

Definition 8. A pushdown game of DPDA A = (Q,Qi, Qo, q0, z0, δ, c) over
Σi, Σo and Γ is GA = (V, Vi, Vo, E,C) where V = Q × Γ ∗ is the set of ver-
tices with Vi = Qi × Γ ∗, Vo = Qo × Γ ∗, E ⊆ V × V is the set of edges defined
as E = {(v, v′) | v �a v′for somea ∈ Σi ∪ Σo} and C : V → [n] is the coloring
function such that C((q, u)) = c(q) for all (q, u) ∈ V .

The game starts with (q0, z0) ∈ Vi. When the current vertex is v ∈ Vi,
Player II chooses a successor v′ ∈ Vo of v as the next vertex. When the current
vertex is v ∈ Vo, Player I chooses a successor v′ ∈ Vi of v. Formally, a finite or
infinite sequence ρ ∈ V ∞ is valid if ρ(0) = (q0, z0) and (ρ(i − 1), ρ(i)) ∈ E for
every i ≥ 1. A play of GA is an infinite and valid sequence ρ ∈ V ω. Let PL be
the set of plays. A play ρ ∈ PL is winning for Player I iff min{m ∈ [n] | there
exists an infinite number of i ≥ 0 such that c(ρ(i)) = m} is even. Note that by
definition, a play ρ is winning for Player I iff (ρ,w) is an accepting run of A for
some w.

Since A is deterministic, the following lemma holds.

Lemma 9. Let f1 : PL → (Q × Com(Γ))ω and f2 : (Σi · Σo)ω → PL be the
functions defined as follows:

– f1(ρ) = (q0, com0)(q1, com1) · · · ∈ (Q × Com)ω where ρ = (q0, u0)(q1, u1) · · · ∈
PL and ui+1 = upds(ui, comi) for all i ≥ 0 and

– f2(w) = ρ where ρ = (q0, u0)(q1, u1) · · · ∈ PL and ρ(i) �w(i) ρ(i + 1) for all
i ≥ 0.

Then, f1 and f2 are well-defined, f1 is an injection and f2(L(A)) is the set of
all the winning plays of Player I.

Theorem 10 [36]. If player I has a winning strategy of GA, we can construct
a PDT T over Qi × Com(Γ), Qo × Com(Γ) and a stack alphabet Γ ′ that gives a
winning strategy of GA. That is, ρ ∈ PL is winning for Player I if f1(ρ) ∈ L(T).

By Lemma 9, a winning strategy can be also given as a subset of sequences
w ∈ (Σi · Σo)ω such that the play f2(w) is winning for Player I. Thus, we can
obtain the following lemma in a similar way to Theorem 10.

Corollary 11. If player I has a winning strategy of GA, we can construct a
PDT T over Σi, Σo and a stack alphabet Γ ′ that gives a winning strategy of GA.
That is, f2(w) ∈ PL is winning for Player I if w ∈ L(T).

Reactive Synthesis from Visibly Register Pushdown Automata 341

4 Realizability Problems for PDA and PDT

For a specification S and an implementation I, we write I |= S if L(I) ⊆ L(S).

Definition 12. Realizability problem Real(S, I) for a class of specifications S
and of implementations I: For a specification S ∈ S, is there an implementation
I ∈ I such that I |= S ?

Example 13. By Examples 4 and 6, L(T1) ⊆ L(A1) holds for PDT T1 and DPDA
A1 defined in the examples. Thus, T1 |= A1 holds.

Theorem 14. Real(DPDA, PDT) is in EXPTIME.

Proof. Let A be a given DPDA. By definitions, w ∈ L(A) iff f2(w) is a winning
play for Player I of GA. By Corollary 11, if Player I has a winning strategy, we
can construct a PDT T such that f2(w) is a winning play of GA if w ∈ L(T).
Hence, T |= A holds. If Player I does not have a winning strategy, there is no T
such that T |= A. Because there is an EXPTIME algorithm for constructing T
(if exists) in [36], Real(DPDA, PDT) is in EXPTIME.

Theorem 15. Real(NPDA, PDT) is undecidable.

Proof. We prove the theorem by a reduction from the universality problem
of NPDA, which is undecidable. For a given NPDA A = (Q,Qi, Qo, q0, z0, δ, c)
over Σi, Σo and Γ , we can construct an NPDA A′ = (Q × [2], Q × {1}, Q ×
{2}, q0, z0, δ

′, c′) over Σ′
i , Σ

′
o and Γ where Σ′

i = Σi ∪ Σo, Σ′
o is an arbi-

trary (nonempty) alphabet, c′((q, 1)) = c′((q, 2)) = c(q) for all q ∈ Q and
((q, 1), a, z) → ((q′, 2), com) ∈ δ′ iff (q, a, z) → (q′, com) ∈ δ, and ((q′, 2), b, z) →
((q′, 1), skip) ∈ δ′ for all b ∈ Σ′

o and z ∈ Γ .
We show L(A) = (Σ′

i)
ω iff there exists T such that T |= A. By the

construction of A′, L(A′) = 〈L(A), (Σ′
o)

ω〉 holds. If L(A) = (Σ′
i)

ω, then
L(A′) = 〈(Σ′

i)
ω, (Σ′

o)
ω〉 and thus T |= A holds for every T . Assume that

L(A) �= (Σ′
i)

ω. Then, there exists a word w ∈ (Σ′
i)

ω such that w /∈ L(A).
For any PDT T and any u ∈ (Σ′

i)
ω, there is v ∈ (Σ′

o)
ω such that 〈u, v〉 ∈ L(A′).

On the other hand, 〈w, v〉 /∈ L(A′) holds for any v ∈ (Σ′
o)

ω. Hence, T �|= A′ holds
for any PDT T . This completes the reduction and the realizability problem for
NPDA and PDT is undecidable.

5 Register Pushdown Transducers and Automata

5.1 Data Words and Registers

We assume a countable set D of data values. For finite alphabets Σi, Σo, an
infinite sequence (ai

1, d1)(a
o, d′

1) · · · ∈ ((Σi × D) · (Σo × D))ω is called a data
word. We let DW(Σi, Σo,D) = ((Σi × D) · (Σo × D))ω. We define the projection
Lab : Σ × D → Σ as Lab((a, d)) = a for (a, d) ∈ Σ × D. For k ∈ N0, a mapping
θ : [k] → D is called an assignment (of data values to k registers). Let Θk denote

342 R. Senda et al.

the collection of assignments to k registers. We assume ⊥ ∈ D as the initial data
value and let θk

⊥ ∈ Θk be the initial assignment such that θk
⊥(i) = ⊥ for all

i ∈ [k].
We denote Tstk = P([k] ∪ {top}) and Asgnk = P([k]) where top /∈ N

is a unique symbol that represents a stack top value. Tstk is the set of guard
conditions. For tst ∈ Tstk, θ ∈ Θk and d, e ∈ D, we denote (θ, d, e) |= tst if
(θ(i) = d ⇔ i ∈ tst) and (e = d ⇔ top ∈ tst) hold. In the definitions of register
pushdown transducer and automaton in the next section, the data values d and
e correspond to an input data value and a stack top data value, respectively.
Asgnk is the set of assignment conditions. For asgn ∈ Asgnk, θ ∈ Θk and d ∈ D,
let θ[asgn ← d] be the assignment θ′ ∈ Θk such that θ′(i) = d for i ∈ asgn and
θ′(i) = θ(i) for i /∈ asgn.

5.2 Register Pushdown Transducers

Definition 16. A register pushdown transducer with k registers (k-RPDT) over
finite alphabets Σi, Σo and Γ is T = (P, p0, z0,Δ) where P is a finite set of
states, p0 ∈ P is the initial state, z0 ∈ Γ is the initial stack symbol and Δ :
P × Σi × Tstk × Γ → P × Σo × Asgnk × [k] × Com(Γ × [k]) is a finite set of
deterministic transition rules.

For u ∈ (Γ×D)+, θ′ ∈ Θk and com ∈ Com(Γ×[k]), let us define upds(u, θ′, com) as
upds(u, θ′, pop) = u(1 :), upds(u, θ′, skip) = u and upds(u, θ′, push((z, j′))) =
(z, θ′(j′))u. Let IDT = P ×Θk×(Γ ×D)∗ and ⇒T ⊆ IDT ×((Σi×D)·(Σo×D))×
IDT be the transition relation of T such that ((p, θ, u), (a, di)(b, do), (q, θ′, u′)) ∈
⇒T iff there exists a rule (p, a, tst, z) → (q, b, asgn, j, com) ∈ Δ that satisfies the
following conditions: (θ, di, snd(u(0))) |= tst, θ′ = θ[asgn ← di], θ′(j) = do, z =
fst(u(0)) and u′ = upds(u, θ′, com), and we write (p, θ, u) ⇒(a,di)(b,do)

T (q, θ′, u′).
A run and the language L(T) of T are those of deterministic 0-TS

(IDT , (q0, θk
⊥, (z0,⊥)), (Σi × D) · (Σo × D), ∅,⇒T , c) where c(s) = 2 for all

s ∈ IDT . In this paper, we assume that no run of RPDT reaches an ID
whose stack is empty. Let RPDT[k] be the class of k-RPDT and RPDT=⋃

k∈N0
RPDT[k].

5.3 Register Pushdown Automata

Definition 17. A nondeterministic register pushdown automaton with k regis-
ters (k-NRPDA) over Σi, Σo and Γ is A = (Q,Qi, Qo, q0, z0, δ, c), where Q is a
finite set of states, Qi ∪ Qo = Q,Qi ∩ Qo = ∅, q0 ∈ Q is the initial state, z0 ∈ Γ
is the initial stack symbol, c : Q → [n] where n ∈ N is the number of priorities
and δ : Q× (Σ ∪{τ})×Tstk ×Γ → P(Q×Asgnk ×Com(Γ × [k])) is a transition
function having one of the forms:

– (qx, ax, tst, z) → (qx, asgn, com) (input/output rule)
– (qx, τ, tst, z) → (q′

x, asgn, com) (τ rules, where τ /∈ Σ)

Reactive Synthesis from Visibly Register Pushdown Automata 343

Fig. 2. A figure of T2 (left) and the run (ρ, w) of T2 (right). A label a, tst →
b, asgn, 1, com means (p, a, tst) → (p, b, asgn, 1, com) ∈ Δ

where (x, x) ∈ {(i, o), (o, i)}, qx, q
′
x ∈ Qx, qx ∈ Qx, ax ∈ Σx, tst ∈ Tstk, z ∈ Γ ,

asgn ∈ Asgnk and com ∈ Com(Γ × [k]).

Let IDA = Q × Θk × (Γ × D)∗. We define the transition relation �A ⊆
IDA × ((Σ ∪ {τ}) × D) × IDA as ((q, θ, u), (a, d), (q′, θ′, u′)) ∈ �A, written as
(q, θ, u) �(a,d)

A (q′, θ′, u′), iff there exists a rule (p, a, tst, z) → (q, asgn, com) ∈ δ
such that (θ, d, snd(u(0))) |= tst, θ′ = θ[asgn ← d], z = fst(u(0)) and
u′ = upds(u, θ′, com). For s, s′ ∈ IDA and w ∈ ((Σi × D) · (Σo × D))m, we
write s �w s′ if there exists ρ ∈ IDm+1

A such that ρ(0) = s, ρ(m) = s′, and
ρ(0) �w(0) · · · �w(m−1) ρ(m).

A run and the language L(A) of k-DRPDA A are those of TS SA =
(IDA, (q0, θk

⊥, (z0,⊥)), Σ × D, {τ} × D,�A, c′) where c′((q, θ, u)) = c(q) for all
(q, θ, u) ∈ IDA. We call A deterministic, or k-DRPDA, if SA is deterministic.
We call A an (m, k)-NRPDA (or an (m, k)-DRPDA when A is deterministic)
if SA is an m-TS. We abbreviate (0, k)-NRPDA ((0, k)-DPDA) as k-NRPDA
(k-DRPDA). Let DRPDA and NRPDA be the unions of k-DRPDA and k-
NRPDA for all k ∈ N0, respectively.

For simplicity, we assume that the set of stack alphabet Γ is the singleton
{z}. We abbreviate k-RPDT T = (P, p0, z0,Δ) as T = (P, p0,Δ), the set of
all IDs of k-RPDT P × Θk × (Γ × D)+ as P × Θk × D+, the stack command
Com(Γ × [k]) as Com([k]), every rule (p, a, tst, z) → (q, b, asgn, j, com) of T as
(p, a, tst) → (q, b, asgn, j, com′) where com ∈ Com(Γ × [k]) and com′ ∈ Com([k])
such that com′ = com if com = pop or skip and com′ = push(j′) if com′ =
push(z, j′) for some j′ ∈ [k]. except in the proof of Theorem 24. We apply a
similar abbreviation to those of RPDA.

Example 18. Let us consider a 1-RPDT T2 = ({p}, p,Δ) over {a}, {b} and {z}
where Δ = {(p, a, {1, top}) → (p, b, ∅, 1, skip), (p, a, ∅) → (p, b, {1}, 1, push(1))}.
(See Fig. 2.) Let ρ = (p, [⊥],⊥)(p, [d1], d1⊥)(p, [d1], d1⊥)(p, [d2], d2d1⊥) · · ·
where [d] ∈ Θ1 is the assignment such that [d](1) = d, and w = (a, d1)
(b, d1)(a, d1)(b, d1)(a, d2)(b, d2) · · · . Then (ρ,w) is a run of T2.

344 R. Senda et al.

5.4 Visibly RPDA

Let Comv = {pop, skip, push} and v : Com([k]) → Comv be the function such
that v(push(j)) = push for j ∈ [k] and v(com) = com otherwise. We say that
a k-DRPDA A over Σi, Σo and Γ visibly manipulates its stack (or a stack-
visibly RPDA) if there exists a function vis : Σ → Comv such that every rule
(q, a, tst) → (q′, asgn, com) of A satisfies vis(a) = v(com). We also define a
stack-visibly PDA in a similar way. Stack-visibility of RPDA will be used in the
proof of Lemma 22 in order to take the intersection of the two DRPDA.

Also, we say that A is a test-visibly DRPDA if there exists a function
vist : Σ → Tstk such that every rule (q, a, tst) → (q′, asgn, com) of A sat-
isfies vist(a) = tst. In the next subsection, we prove that the projection of the
language recognized by an NRPDA A onto the finite alphabets can be recognized
by an NPDA A′, and if A is a test-visibly DRPDA, A′ is deterministic.

If A is a stack-visibly and test-visibly DRPDA, we call A a visibly DRPDA.
Let DRPDAv be the union of visibly k-DRPDA for all k ∈ N0, respectively.

5.5 PDA Simulating RPDA

In this subsection, we show that we can construct an NPDA A′ from a given
k-NRPDA A over Σi, Σo, Γ such that Lab(L(A)) = L(A′).

Let Φk be the set of equivalence relations over the set of 2k + 1 symbols
Xk = {x1, x2, . . . , xk, x′

1, x
′
2, . . . , x

′
k, xtop}. We write a ≡φ b and a �≡φ b to mean

(a, b) ∈ φ and (a, b) /∈ φ, respectively, for a, b ∈ Xk and φ ∈ Φk. Intuitively,
each φ ∈ Φk represents the equality and inequality among the data values in the
registers and the stack top, as well as the transfer of the values in the registers
between two assignments. Two assignments θ, θ′ and a value d at the stack top
satisfy φ, denoted as θ, d, θ′ |= φ, if and only if for i, j ∈ [k],

xi ≡φ xj ⇔ θ(i) = θ(j), xi ≡φ xtop ⇔ θ(i) = d,

xi ≡φ x′
j ⇔ θ(i) = θ′(j), x′

j ≡φ xtop ⇔ θ′(j) = d,

x′
i ≡φ x′

j ⇔ θ′(i) = θ′(j).

Let φ⊥ ∈ Φk be the equivalence relation satisfying a ≡φ⊥ b for any a, b ∈ Xk.
For tst ⊆ [k] ∪ {top} and asgn ⊆ [k], define a subset Φtst,asgn

k of Φk as:

Φtst,asgn
k = {φ ∈ Φk | (∀i ∈ tst : ∀j ∈ [k] ∪ {top} : j ∈ tst ⇔ xi ≡φ xj),

(∀i ∈ asgn : ∀j ∈ [k] ∪ {top} : j ∈ tst ⇔ xj ≡φ x′
i),

(∀i, j ∈ asgn : x′
i ≡φ x′

j), (∀i ∈ [k] \ asgn : xi ≡φ x′
i)}.

For j ∈ [k], define Φ=,j
k = {φ ∈ Φk | xtop ≡φ xj , ∀i ∈ [k] : xi ≡φ x′

i}. By
definition, θ, e, θ′ |= φ for φ ∈ Φ

tst,asgn
k iff (θ, d, e) |= tst and θ′ = θ[asgn ← d]

for some d ∈ D. Similarly, θ, e, θ′ |= φ for φ ∈ Φ=,j
k iff θ′ = θ and θ(j) = e.

Let � and �T be binary predicates over Φk defined as:

φ1 � φ2 :⇔
(
x′

i ≡φ1 x′
j ⇔ xi ≡φ2 xj for i, j ∈ [k]

)
.

φ1 �T φ2 :⇔
(
φ1 � φ2 and (x′

i ≡φ1 xtop ⇔ xi ≡φ2 xtop for i ∈ [k])
)
.

Reactive Synthesis from Visibly Register Pushdown Automata 345

Below we will define the composition of two equivalence relations, and φ1 � φ2

means that φ1 and φ2 are composable. For φ ∈ Φk and Φ′ ⊆ Φk, let φ � Φ′ =
{φ′ ∈ Φ′ | φ � φ′} and φ �T Φ′ = {φ′ ∈ Φ′ | φ �T φ′}. By definition, φ �T Φtst,asgn

k

consists of at most one equivalence relation for any φ ∈ Φk, tst ⊆ [k] ∪ {top},
and asgn ⊆ [k]. Similarly, φ � Φ=,j

k consists of exactly one equivalence relation
for any φ ∈ Φk and j ∈ [k].

For φ1, φ2 ∈ Φk with φ1�φ2, the composition φ1◦φ2 of them is the equivalence
relation in Φk that satisfies the followings:

xi ≡φ1 xj ⇔ xi ≡φ1◦φ2 xj for i, j ∈ [k] ∪ {top},

x′
i ≡φ2 x′

j ⇔ x′
i ≡φ1◦φ2 x′

j for i, j ∈ [k],

(∃l ∈ [k] : xi ≡φ1 x′
l ∧ xl ≡φ2 x′

j) ⇔ xi ≡φ1◦φ2 x′
j for i ∈ [k] ∪ {top}, j ∈ [k].

By definition, ◦ is associative. We say that θ1, d1, θ2, θ3 satisfy the freshness prop-
erty if for every i, j ∈ [k],

(
θ1(i) �= θ2(l) for all l ∈ [k] implies θ1(i) �= θ3(j)

)
and(

d1 �= θ2(l) for all l ∈ [k] implies d1 �= θ3(j)
)
. By definition, if θ1, d1, θ2 |= φ1 and

θ2, d2, θ3 |= φ2 and θ1, d1, θ2, θ3 satisfy the freshness property, then θ1 d1, θ3 |=
φ1◦φ2. We extend the freshness property to a sequence θ0, d0, θ1, d1, . . . , dn−1, θn.
This sequence satisfies the freshness property if θi, di, θl, θj satisfy the property
for every i, l, j such that 0 ≤ i < l < j ≤ n.

Similarly, we define φ1 ◦T φ2 for φ1, φ2 ∈ Φk with φ1 �T φ2 as follows:

xi ≡φ1 xj ⇔ xi ≡φ1◦Tφ2 xj for i, j ∈ [k] ∪ {top},

x′
i ≡φ2 x′

j ⇔ x′
i ≡φ1◦Tφ2 x′

j for i, j ∈ [k],
(
(∃l ∈ [k] : xi ≡φ1 x′

l ∧ xl ≡φ2 x′
j)

∨ (xi ≡φ1 xtop ∧ xtop ≡φ2 x′
j)

)
⇔ xi ≡φ1◦Tφ2 x′

j for i ∈ [k] ∪ {top}, j ∈ [k].

2 By definition, ◦T is associative.
Let A = (Q,Qi, Qo, q0, δ, c) be a k-NRPDA over Σi, Σo, and Γ . As mentioned

in Sect. 5.3, we assume that Γ is a singleton and use the simplified definition of
δ for readability. Note that we can extend the following results to arbitrary Γ
by replacing Φk used as the stack alphabet of the constructed PDA with Γ ×Φk.
From A, we construct a PDA A′ = (Q′, Q′

i, Q
′
o, q

′
0, φ⊥, δ′, c′) over Σi, Σo, and Φk,

where Q′ = Q×Φk, Q′
i = Qi ×Φk, Q′

o = Qo ×Φk, q′
0 = (q0, φ⊥), c′((q, φ)) = c(q)

for any q ∈ Q and φ ∈ Φk, and for any (q, φ2) ∈ Q′, a ∈ Σ ∪ {τ}, and φ1 ∈ Φk,
δ′((q, φ2), a, φ1) is the smallest set satisfying the following inference rules:

δ(q, a, tst) � (q′, asgn, skip), φ1 � φ2, φ3 ∈ φ2 �T Φtst,asgn
k

δ′((q, φ2), a, φ1) � ((q′, φ2 ◦T φ3), skip)
(1)

δ(q, a, tst) � (q′, asgn, pop), φ1 � φ2, φ3 ∈ φ2 �T Φ
tst,asgn
k

δ′((q, φ2), a, φ1) � ((q′, φ1 ◦ (φ2 ◦T φ3)), pop)
(2)

δ(q, a, tst) � (q′, asgn, push(j)), φ1 � φ2, φ3 ∈ φ2 �T Φtst,asgn
k , φ4 ∈ φ3 � Φ=,j

k

δ′((q, φ2), a, φ1) � ((q′, φ4), push(φ2 ◦T φ3))
(3)

346 R. Senda et al.

Note that if A is a test-visibly DRPDA, A′ is deterministic. The number of
equivalence relations in Φk equals the (2k + 1)th Bell number and is 2O(k log k).
When constructing δ′, we choose arbitrary φ1 and φ2 for each transition rule of
A in general, and thus the size of A′ is exponential to the one of A.

The main idea of this construction is as follows: A′ simulates A without
keeping data values in the stack. When pop is performed, A′ must know whether
or not the data value in the new stack top of A equals the current value of
each register. For this purpose, A′ keeps an abstract “history” of the register
assignments in the stack, which tells whether each of the data values in the stack
of A equals the current value of each register. The precise meanings of the stack
of A′ will become clear by considering the Lab-bisimulation relation shown in
the proof of Lemma 19 below.

Let SA′ = (IDA′ , (q′
0, φ⊥), Σ, {τ},�A′ , cA′) be the TS that represents the

semantics of A′. We define a TS Saug
A = (IDaug

A , (q0, θ⊥, (⊥, θ⊥)), Σ × D, {τ} ×
D,�Aaug , cA) where IDaug

A = Q × Θk × (D × Θk)∗, cA((q, θ, u)) = c(q) for any
(q, θ, u) ∈ IDaug

A , and �Aaug is defined as follows: (q, θ, u) �(a,d)
Aaug (q′, θ′, u′) iff

δ(q, a, tst) � (q′, asgn, com), (θ, d, fst(u(0))) |= tst, θ′ = θ[asgn ← d], and
u′ = u(1:), u, or (θ′(j′), θ′)u if com = pop, skip, or push(j′), respectively. Saug

A
is essentially the same as the TS SA for A, but Saug

A “saves” the current reg-
ister assignment in the stack when performing push. The saved assignments
do not take part in transitions and thus the behavior of Saug

A is the same as
SA. Additionally, we define the freshness property of Saug

A as follows: A tran-
sition (q, θ, u) �(a,d)

Aaug (q′, θ′, u′) of Saug
A by a rule δ(q, a, tst) � (q′, asgn, com)

with tst = ∅ and asgn �= ∅ is allowed only when d does not appear in any
saved assignment in u. Intuitively, this property means that when tst desig-
nates a data value not in the registers or the stack top, the RPDA chooses
a fresh data value that has never been used before. We assume that Saug

A
satisfies the freshness property. This assumption guarantees that for every
(q, θn, (dn−1, θn−1) . . . (d1, θ1)(d0, θ0)) ∈ IDaug

A reachable from the initial state
of Saug

A , (i) the sequence θ0, d0, θ1, d1, . . . , dn−1, θn satisfies the freshness prop-
erty; (ii) for θ′ = θn[asgn ← d] where d is a data value chosen by the RPDA
to satisfy θn, d, dn−1 |= tst, θn−1, dn−1, θn |= φ1 and θn, dn−1, θ

′ |= φ2 imply
θn−1, dn−1, θ

′ |= φ1 ◦T φ2.
Each equivalence relation in the stack of A′ represents the relation among

each data value in the stack and two adjacent saved assignments of Saug
A , which

yields Lab-bisimilarity from Saug
A to SA′ , as shown in the following lemma.

Lemma 19. If Saug
A satisfies the freshness property, then Saug

A is Lab-bisimilar
to SA′ .

Proof sketch. Let R ⊆ IDaug
A ×IDA′ be the relation that satisfies for every q ∈

Q, u = (dn−1, θn−1) . . . (d1, θ1)(d0, θ0) ∈ (D ×Θk)∗, and v = φn−1 . . . φ1φ0 ∈ Φ∗
k,

((q, θn, u), ((q, φn), v)) ∈ R iff (q, θn, u) is reachable from the initial state of Saug
A ,

∀i ∈ [n] : θi−1, di−1, θi |= φi and θ⊥,⊥, θ0 |= φ0. If ((q, θn, u), ((q, φn), v)) ∈ R

and (q, θn, u) �(a,d)
Aaug (q′, θ′, u′), then by the definition of δ′, ((q, φn), v) �a

A′

((q′, φ′), v′) such that ((q′, θ′, u′), ((q′, φ′), v′)) ∈ R. Conversely, if ((q, θn, u),

Reactive Synthesis from Visibly Register Pushdown Automata 347

((q, φn), v)) ∈ R and ((q, φn), v) �a
A′ ((q′, φ′), v′), then by the definition of δ′,

there must be a transition of A that enables (q, θn, u) �(a,d)
Aaug (q′, θ′, u′) such that

((q′, θ′, u′), ((q′, φ′), v′)) ∈ R. Therefore, R is a Lab-bisimulation relation from
Saug

A to SA′ .
By Lemmas 2 and 19, we obtain the following theorem.

Theorem 20. For a given (m, k)-NRPDA (resp. test-visibly (m, k)-DRPDA)
A, we can construct an m-NPDA (resp. m-DPDA) A′ such that Lab(L(A)) =
L(A′), if we assume the freshness property on the semantics of A.

6 Realizability Problems for RPDA and RPDT

6.1 Finite Actions

In [19], the abstraction of the behavior of k-register transducer (k-RT), called
finite actions, was introduced to reduce the realizability problem for register
automata (RA) and RT to the problem on finite alphabets. We extend the idea
of [19] and define the finite actions of k-RPDT.

For k ∈ N0, we define the set of finite input actions as Ai
k = Σi × Tstk and

the set of finite output actions as Ao
k = Σo × Asgnk × [k] × Com([k]). Note that

Com([k]) appearing in the definition of Ao
k is not the abbreviation of Com(Γ × [k]).

Finite actions have no information on finite stack alphabet Γ even if Γ is not a
singleton. A sequence w = (ai

0, d
i
0)(a

o
0, d

o
0) · · · ∈ DW(Σi, Σo,D) is compatible with

a sequence a = (ai
0, tst0)(a

o
0, asgn0, j0, com0) · · · ∈ (Ai

k · Ao
k)ω iff there exists a

sequence (θ0, u0)(θ1, u1) · · · ∈ (Θk × D∗)ω, called a witness, such that θ0 = θk
⊥,

u0 = ⊥, (θi, d
i
i, ui(0)) |= tsti, θi+1 = θi[asgni ← dii], θi+1(ji) = doi and ui+1 =

upds(ui, θi+1, comi). Let Comp(a) = {w ∈ DW(Σi, Σo,D) | w is compatible with
a}. For a specification S ⊆ DW(Σi, Σo,D), we define WS,k = {a | Comp(a) ⊆ S}.

For a data word w ∈ DW(Σi, Σo,D) and a sequence a ∈ (Ai
k · Ao

k)ω such
that for each i ≥ 0, there exists a ∈ Σ and we can write w(i) = (a, d) and
a(i) = (a, tst) if i is even and a(i) = (a, asgn, j, com) if i is odd, we define
w ⊗ a ∈ DW(Ai

k, Ao
k,D) as w ⊗ a(i) = (a(i), d) where w(i) = (a, d).

6.2 Decidability and Undecidability of Realizability Problems

Lemma 21. Lk = {w ⊗ a | w ∈ Comp(a)} is definable as the language of a
(2, k + 2)-DRPDA.

Proof sketch. Let (2, k + 2)-DRPDA A1 = (Q1, Q
i
1, Q

o
1, p, δ1, c1) over Ai

k, Ao
k

and Γ where Q1 = {p, q}∪(Asgnk × [k]×Com([k]))∪ [k], Qi
1 = {p}, Qo

1 = Q1 \Qi
1,

c1(s) = 2 for every s ∈ Q and δ1 consists of all the rules of the form

(p, (ai, tst), tst ∪ tst′) → (q, {k + 1}, skip) (4)
(q, (ao, asgn, j, com), tst′′) → ((asgn, j, com), {k + 2}, skip) (5)

((asgn, j, com), τ, {k + 1} ∪ tst′′) → (j, asgn, com) (6)
(j, τ, {j, k + 2} ∪ tst′′) → (p, ∅, skip) (7)

348 R. Senda et al.

for (ai, tst) ∈ Ai
k, (ao, asgn, j, com) ∈ Ao

k, tst′ ⊆ {k + 1, k + 2} and tst′′ ∈
Tstk+2. As in Fig. 3, A1 checks whether an input sequence satisfies the conditions
of compatibility by nondeterministically generating a candidate of a witness of
the compatibility step by step.

Fig. 3. An example of transitions of Ak.

Lemma 22. For a specification S defined by some visibly k′-DRPDA, LS,k =
{w⊗a | w ∈ Comp(a)∩S} is definable as the language of a (4, k+k′+4)-DRPDA.

Proof sketch. Let LS = {w ⊗ a | w ∈ S, a ∈ (Ai
k · Ao

k)ω}. Because the class
of languages defined by visibly DRPDA is closed under the complement, we can
construct a visibly k′-DRPDA A2 = (Q2, Q

i
2, Q

o
2, q

0
2 , δ2, c2) over Ai

k, Ao
k and Γ

such that L(A2) = LS . Let A1 be the (2, k + 2)-DRPDA such that L(A1) = Lk,
which is given in Lemma 21. Because LS,k = LS ∩ Lk, we will construct a
(4, k + k′ + 4)-DRPDA A over Ai

k, Ao
k and Γ such that L(A) = L(A1) ∩ L(A2).

We use the properties of A1 that c1(q) is even for every q ∈ Q1 and δ1 consists
of several groups of three consecutive rules having the following forms:

(q1, a, tst1) → (q2, asgn1, skip) (5’)
(q2, τ, tst2) → (q3, asgn2, com1) (6’)
(q3, τ, tst3) → (q4, asgn3, skip). (7’)

Note that vis(a) = v(com1) always holds for such three consecutive rules. (5’),
(6’) and (7’) correspond to (5), (6) and (7), respectively, and (4) is also converted
to three consecutive rules like (5’)–(7’) by adding dummy τ rules.

We let k1 = k + 2 and k2 = k′. We construct (4, k1 + k2 + 2)-DRPDA A =
(Qi∪Qo∪{q0}, Qi∪{q0}, Qo, q0, δ, c) where Qi = Qi

1×Qi
2×[5], Qo = Qo

1×Qo
2×[5].

c is defined as c(q0) = 1 and c((q1, q2, i)) = c2(q2) for all (q1, q2, i) ∈ Q. δ has a
τ rule (q0, τ, [k] ∪ {top}) → ((p, q20 , 1), push(1)). For all rules (5’), (6’), (7’) in δ1

Reactive Synthesis from Visibly Register Pushdown Automata 349

and (q, a, tst) → (q′, asgn, com) ∈ δ2 (8) such that v(com1) = v(com) (= vis(a))
for a ∈ Ai

k ∪ Ao
k, we construct the rules in δ that can do the transitions as

in Fig. 4. The figure illustrates an example of transitions of A from (q1, q, 1)
to (q4, q′, 1) with updating contents of its registers and stack. The first to k1-th
registers simulate the registers of A1, (k1+1)-th to (k1+k2)-th registers simulate
the registers of A2 and (k1 + k2 + 1)-th and (k1 + k2 + 2)-th registers are for
keeping the first and second stack top contents, respectively. The stack contents
of A simulates those of A1 and A2 by restoring the contents of stacks of A1 and
A2 alternately. The transition rules from (q1, q, 1) to (q1, q, 3) are for moving
the two data values at the stack top to (k1 + k2 + 1)-th and (k1 + k2 + 2)-th
registers. The transition rule from (q1, q, 3) to (q2, q′, 4) is for updating states,
registers and stacks by simulating the rules (5’) and (8) The transition rules
from (q2, q′, 4) to (q4, q′, 1) simulate the rules (6’) and (7’), respectively. We can
show L(A) = L(A1) ∩ L(A2) by checking the simulation in Fig. 4 is correct.

Fig. 4. An example of transitions of A with vis(a) = push.

Lemma 23. WS,k = Lab(LS,k).

Proof. For every a ∈ (Ai
kAo

k)ω, a /∈ WS,k ⇔ Comp(a) �⊆ S ⇔ ∃w.w ∈ Comp(a)∩
S ⇔ ∃w.w ⊗ a ∈ LS,k ⇔ a ∈ Lab(LS,k). Thus, WS,k = Lab(LS,k) holds.

Theorem 24. For all k ≥ 0, Real(DRPDAv, RPDT[k]) is in 2EXPTIME.

Proof. By Lemma 22 and Theorem 20, WS,k is definable by a 4-DPDA Af .
By Lemma 7, we can construct a 0-DPDA A′

f where L(A′
f) = L(Af). By the

construction of A in Lemma 22, the stack height of the current ID increases by
two during the transitions from (q1, q, 1) to (q4, q′, 1) in Fig. 4 if vis(a) = push,
does not change if vis(a) = skip and decreases by two if vis(a) = pop. Thus, A′

f

is a stack-visibly DPDA, that is, every transition rule (p, a, z) → (q, com) of A′
f

satisfies vis(a) = v(com). We show the following two conditions are equivalent.

350 R. Senda et al.

– There exists a k-RPDT T such that L(T) ⊆ S.
– There exists a PDT T ′ such that L(T ′) ⊆ WS,k.

Assume that a k-RPDT T over Σi, Σo and Γ satisfies L(T) ⊆ S. Then,
consider the PDT T ′ over Ai

k, Ao
k and Γ such that (q, (a, tst), z) → (q′,

(b, asgn, j, com), com′) is a rule of T ′ iff (q, a, tst, z) → (q′, b, asgn, j, com) is a
rule of T where com′ = com if v(com) = pop or skip and com′ = push(z′) if
com = push(z′, j′) for some j′ ∈ [k]. For a ∈ L(T ′), every w ∈ Comp(a) has a
witness (see Sect. 6.1) and thus w ∈ L(T) holds. By the assumption L(T) ⊆ S,
Comp(a) ⊆ S holds and thus a ∈ WS,k. Hence, we obtain L(T ′) ⊆ WS,k.

Conversely, assume there exists a PDT T ′ over Ai
k, Ao

k and Γ that sat-
isfies L(T ′) ⊆ WS,k. We can in particular construct a PDT T ′′ such that
L(T ′′) ⊆ WS,k and every rule (q, (a, tst), z) → (q′, (b, asgn, j, com), com′) sat-
isfies vis(b) = v(com′) (note that vis(a) = skip always holds) by the con-
struction algorithm in [36]. In the rule, v(com) = v(com′) holds because A′

f

is a stack-visibly PDA and thus vis(b) = v(com) holds. Consider the k-
RPDT T over Σi, Σo and Γ such that (q, a, tst, z) → (q′, b, asgn, j, com′′) is
a rule of T iff (q, (a, tst), z) → (q′, (b, asgn, j, com), com′) is a rule of T ′′ where
com′′ = com′ if com′ = pop or skip and com′′ = push(z′, j′) if com′ = push(z′)
and com = push(j′). Further, assume w ∈ L(T), and let a ∈ (Ai

k · Ao
k)ω be the

sequence with which w is compatible. Then, by the definition of T , a ∈ L(T ′′).
By the assumption L(T ′′) ⊆ WS,k, every a ∈ L(T ′′) satisfies Comp(a) ⊆ S, and
thus w ∈ S holds. Hence, we obtain L(T) ⊆ S.

By the equivalence, we can check Real(DPDA, PDT) for A′
f , which is

shown to be EXPTIME in Theorem 14, instead of checking Real(DRPDAv,
RPDT[k]). Because the size of A′

f is exponential to k + k′, Real(DRPDAv,
RPDT[k]) is in 2EXPTIME.

Theorem 25. For all k ≥ 0, Real(NRPDA, RPDT[k]) is undecidable.

Proof. We can easily reduce the Real(NPDA, PDT), whose undecidability
is proved in Theorem 15, to this problem.

7 Conclusion

We have discussed the realizability problem whose specification and implemen-
tation are DPDA (NPDA) and PDT in Sect. 4. By using the result in [36], we
show Real(DPDA,PDT) is in EXPTIME. We also show the undecidability of
Real(NPDA,PDT) by a reduction from the universality problem of NPDA.
In Sect. 5, we have defined RPDT, RPDA and shown a way to recognize the
label of the language of RPDA by PDA. We have introduced the notions of
stack-visibly [1] and test-visibly to discuss the decidability of realizability for
RPDA and RPDT. We show that the behavior of registers and stack of RPDT
can be simulated by the finite alphabets defined as finite actions, and prove that
Real(DRPDAv,RPDT[k]) can be reduced to Real(DPDA,PDT) and is in
2EXPTIME.

Reactive Synthesis from Visibly Register Pushdown Automata 351

It is still unknown whether the realizability problem is decidable in several
cases such as a specification is given by a universal PDA, DRPDA has no restric-
tion on visibility and the number of registers of RPDT is not given. Investigating
these cases are future work.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: 36th ACM Symposium
Theory of Computing (STOC 2004) (2004)

2. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis.
In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking, pp. 921–962. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8 27

3. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Logic 12(4) (2011)

4. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Logical
Methods Comput. Sci. 10(3:4), 1–44 (2014)

5. Bollig, B., Cyriac, A., Gastin, P., Narayan Kumar, K.: Model checking languages
of data words. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 391–405.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9 26

6. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0 10

7. Bouyer, P.: A logical characterization of data languages. Inform. Process. Lett.
84(2), 75–85 (2002)

8. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Am. Math. Soc. 138, 295–311 (1969)

9. Chen, Y.-F., Lengál, O., Tan, T., Wu, Z.: Register automata with linear arithmetic.
In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
2017) (2017)

10. Cheng, E.Y.C., Kaminski, M.: Context-free languages over infinite alphabets. Acta
Informatica 35, 245–267 (1998)

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2001)

12. Clemente, L., Lasota, S.: Reachability analysis of first-order definable pushdown
systems. In: 24th EACSL Annual Conference on Computer Science Logic (CSL
2015), pp. 244–259 (2015)

13. D’Antoni, L., Ferreira, T., Sammartino, M., Silva, A.: Symbolic register automata.
In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 3–21. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 1

14. Demri, S., Lazić, R.: LTL with freeze quantifier and register automata. ACM Trans.
Comput. Logic 10(3) (2009)

15. Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint LTL: decid-
ability and complexity. Inform. Comput. 205(1), 2–24 (2007)

16. Ehlers, R., Seshia, S.A., Kress-Gazit, H.: Synthesis with identifiers. In: McMil-
lan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 415–433. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54013-4 23

https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-642-28729-9_26
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/978-3-030-25540-4_1
https://doi.org/10.1007/978-3-642-54013-4_23

352 R. Senda et al.

17. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722167 20

18. Esparza, J., Kučera, A., Schwoon, S.: Model checking LTL with regular valuations
for pushdown systems. Inform. Comput. 186(2), 355–376 (2003)

19. Exibard, L., Filiot, E., Reynier, P.-A.: Synthesis of data word transducers. In: 30th
International Conference on Concurrency Theory (CONCUR 2019) (2019)

20. Greibach, S.A.: A note on pushdown store automata and regular systems. Proc.
Am. Math. Soc. 18, 263–268 (1967)

21. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134,
322–363 (1994)

22. Khalimov, A., Kupferman, O.: Register-bounded synthesis. In: 30th International
Conference on Concurrency Theory (CONCUR 2019) (2019)

23. Khalimov, A., Maderbacher, B., Bloem, R.: Bounded synthesis of register transduc-
ers. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 494–510.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 29

24. Libkin, L., Tan, T., Vrgoč, D.: Regular expressions for data words. J. Comput.
Syst. Sci. 81(7), 1278–1297 (2015)

25. Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: 15th Interna-
tional Conference on Database Theory (ICDT 2012), pp. 74–85 (2012)

26. Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: Reachability in pushdown register
automata. J. Comput. Syst. Sci. 87, 58–83 (2017)

27. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Logic 5(3), 403–435 (2004)

28. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: 16th ACM
Symposium on Principles of Programming Languages (POPL 1989), pp. 179–190
(1989)

29. Rot, J., de Boer, F., Bonsangue, M.: Pushdown system representation for
unbounded object creation, Technical report KIT-13, Karlsruhe Institute of Tech-
nology, pp. 38–52 (2010)

30. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006).
https://doi.org/10.1007/11874683 3

31. Senda, R., Takata, Y., Seki, H.: Complexity results on register context-free gram-
mars and register tree automata. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018.
LNCS, vol. 11187, pp. 415–434. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02508-3 22

32. Senda, R., Takata, Y., Seki, H.: Generalized register context-free grammars. In:
13th International Conference on Language and Automata Theory and Applica-
tions (LATA 2019), pp. 259–271 (2019). Revised version: IEICE Trans. Inf. Syst.
E103-D(3), 540–548 (2020)

33. Senda, R., Takata, Y., Seki, H.: Forward regularity preservation property of register
pushdown systems. IEICE Trans. Inf. Syst. E104-D(3), 370–380 (2021)

34. Song, F., Touili, T.: Pushdown model checking for malware detection. TACAS
2012. Extended version. Int. J. Softw. Tools. Tehchnol. Transfer 16, 147–173 (2014)

https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/978-3-030-01090-4_29
https://doi.org/10.1007/11874683_3
https://doi.org/10.1007/978-3-030-02508-3_22
https://doi.org/10.1007/978-3-030-02508-3_22

Reactive Synthesis from Visibly Register Pushdown Automata 353

35. Tzevelekos, N.: Fresh-register automata. In: 36th ACM Annual Symposium on
Principles of Programming Languages (POPL 2009), pp. 295–306 (2009)

36. Walukiewicz, I.: Pushdown processes: games and model-checking. In: 8th Interna-
tional Conference on Computer Aided Verification (CAV 1996), pp. 62–74 (1996).
Revised version: Inform. Comput. 164, 234–263 (2001)

37. Cai, X., Ogawa, M.: Well-structured pushdown systems. In: D’Argenio, P.R., Mel-
gratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 121–136. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40184-8 10

https://doi.org/10.1007/978-3-642-40184-8_10

Systems Calculi and Analysis

ComplexityParser: An Automatic Tool
for Certifying Poly-Time Complexity

of Java Programs

Emmanuel Hainry(B), Emmanuel Jeandel, Romain Péchoux, and Olivier Zeyen

Project Mocqua, CNRS, Inria, LORIA, Université de Lorraine, Nancy, France
Emmanuel.Hainry@loria.fr

Abstract. ComplexityParser is a static complexity analyzer for Java
programs providing the first implementation of a tier-based typing dis-
cipline. The input is a file containing Java classes. If the main method
can be typed and, provided the program terminates, then the program
is guaranteed to do so in polynomial time and hence also to have heap
and stack sizes polynomially bounded. The application uses antlr to
generate a parse tree on which it performs an efficient type inference:
linear in the input size, provided that the method arity is bounded by
some constant.

1 Introduction

Motivations. The use of tiering techniques to certify program complexity was
kick-started by the seminal works of Bellantoni-Cook [4] and Leivant-Marion [22],
that provide sound and complete characterizations of the class of functions com-
putable in polynomial time FP. Tiering was later adapted to several other com-
plexity classes such as FPSPACE [23], NC [8,21,28], or L [28].

Despite these numerous theoretical results, tiering, until now, had no practi-
cal application in automatic complexity analysis because of a lack of expressive
power. Indeed, the tiering discipline severely constrains the way first order func-
tional programs can be written. This problem has been solved by the corner-
stone work of [25] that has exhibited and studied the relations between tiering
and non-interference on imperative programs. It has been extended to fork pro-
cesses [13], object-oriented programs [14,15,24], and type-2 polynomial time [12],
hence showing its portability and paving the way for practical implementations.

The core idea is the design of a type discipline ensuring polynomial time
termination. The type system, inspired by non-interference, splits program vari-
ables, expressions, and statements in two disjoint tiers, denoted 0 and 1, and
enforces constraints on the data flow, the control flow and sizes:

– Data flow. Data flows from tier 0 to tier 1 are prohibited, e.g. if x is of tier 0
and y is of tier 1 then the statement y = x; cannot be typed, and data flows
from tier 1 to tier 0 are prevented for non-primitive data. It forbids tier 1
data from increasing by side effects.

c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 357–365, 2021.
https://doi.org/10.1007/978-3-030-85315-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_20&domain=pdf
https://doi.org/10.1007/978-3-030-85315-0_20

358 E. Hainry et al.

– Control flow. Loop control flows depending on tier 0 data are forbidden. I.e.
in a while(e){c} statement, the expression e is enforced to be of tier 1. This
implies that all the variables of e are of tier 1.

– Size control. Tier 1 data cannot make the memory size increase, e.g. if x is
of tier 1 then x = x-1; is typable but x = x+1; and x = new C(x); are not
typable.

Theorem 1 ([15]). If a program is typable and terminates on input d then its
runtime, heap space, and stack space are polynomially bounded in the size of d.

Contribution. This paper describes the architecture of ComplexityParser,
a tier-based automatic cost analyzer for Java programs implementing the type
system of [14,15] in Java, built using Maven, and whose source code is fully avail-
able at https://gitlab.inria.fr/hainry/complexityparser. The application receives
as input a text file program and infers a type (called tier) as output. If the type
inference succeeds and the analyzed program terminates then: the program is
certified to have a worst case execution time bounded polynomially, by The-
orem 1. Even in case the full program cannot be typed, the success of typing
some methods will be indicated, giving a complexity certificate for those methods
provided they terminate.

ComplexityParser is, to our knowledge, the first implementation of a tier-
based technique to a realistic programming language: the analysis can deal with
an expressive fragment of Java programs with while loops, recursive methods,
exception handlers, and inheritance (including overriding methods) and allowing
the programmer to define inductive and cyclic data (List and Ring for example).
This application is, with RAJA [18,19] and RaML [17], one of the first practical
type-based approaches for certifying program complexity. It provides the first
implementation of a complete technique with respect to polynomial time. Its
code is open source (Apache 2.0 license), and its performance is good: the type
analysis is linear in the size of the input program in practice. Moreover, it is fully
automatic as types (tiers) are inferred and do not need to be explicitly provided
by the programmer.

The implemented analyses [14,15,25] are complete for the class of polynomial
time computable functions, i.e. capture all functions. However they can yield
false negatives, i.e. programs running in polynomial time that cannot pass the
type inference, which cannot be avoided as the problem of knowing if a program
computes a polytime function is not decidable [16].

Related Works. We know of few alternative tools studying the complexity of
Object Oriented programs.

– AProVE [9], initially a termination tool, was expanded to treat complexity
by translating constraints into integer constraints, then using an external
integer programming solver. AProVE works on Java bytecode and supports
most features of the language except recursion. It outputs O(nk) bounds.

https://gitlab.inria.fr/hainry/complexityparser

ComplexityParser 359

– costa [1,2] infers symbolic costs upper bounds on Java bytecode by gener-
ating recurrence equations relatively to a chosen cost measure and then by
finding an upper bound on a solution to these equations. The upper bounds
it computes are combinations of polynomials and logarithms.

– raja [19] automatically computes linear bounds on the heap space used by a
Featherweight Java program. It translates the memory constraints into graphs
and solves linear cases. Exceptions, overloading and variable shadowing are
also not treated. Note that this tool captures LinSpace.

– speed [10,11] infers symbolic complexity bounds on the number of state-
ments executed by a C++ program. It relies on integer counters inserted in
the program by the programmer. As such, it is not fully automatic and does
not treat objects as first class citizens.

– TcT [3,27] is a generic complexity tool which, for what interests us analyzes
Jinja bytecode. It translates code into term rewriting systems for which it uses
integer programming techniques. Jinja bytecode does not support recursion
and cyclic data but otherwise has all language features we checked.

A summary of the above tools’ features is presented in the following table. For
each tool, we check language features support (recursion, exceptions, inheritance,
cyclic data), whether it gives explicit bounds, whether it works on a High-Level
language (HLL) or on bytecode, and last if it is fully automatic.

Tool Recursion Exceptions Inheritance Cyclic Bounds HLL Auto

ComplexityParser Yes Yes Yes Yes No Yes Yes

AProVE No Yes Yes Yes Yes No Yes

costa Yes Yes Yes No Yes No Yes

raja Yes No Partial Yes Yes Yes Yes

speed Yes No No No Yes Yes No

TcT No Yes Yes No Yes No Yes

2 ComplexityParser Overview

ComplexityParser concretizes the principles presented in Sect. 1. It is imple-
mented in Java with around 5000 lines. To illustrate the analyzed language, a
reduced example is given in Fig. 1. More examples are available in the reposi-
tory1.

Example 1. Figure 1 implements a BList class (representing binary numbers as
lists of booleans). It is annotated with the tiers inferred by the type system. For
methods, the tier is of the form α0 × · · · × αn → α to denote that the current
object is of tier α0, the n arguments have tiers αi, for i ≥ 1, and the output has
tier α.
1 https://gitlab.inria.fr/hainry/complexityparser/-/tree/master/examples.

https://gitlab.inria.fr/hainry/complexityparser/-/tree/master/examples

360 E. Hainry et al.

Fig. 1. Binary numbers as lists (extract from example11.txt)

– Getters have two possible tier signatures: 0 → 0 or 1 → 1, illustrating the
fact that if the current object is of tier α, its fields are of tier α;

– setTail modifies a field, hence current object and argument must have the
same tier. Since it can make the current object grow, this tier must be 0;

– length is recursive hence input tiers must be 1;
– isEqual iterates on the current object and on other they must be of tier 1.
– Variables b1, b2 created inside the #init block automatically get tier 1;
– The next lines of method main check, except the last one (line 35) which tries

to apply isEqual on an object of tier 0 instead of tier 1.

ComplexityParser 361

ComplexityParser’s behavior is described by the state diagram of Fig. 2.
We will describe this behaviour in detail in the rest of this section.

antlrinput

Table of symbols
Typing listener
Call graph

1st stage 2nd stage 3rd stage output
visit()

visit()

loops while method tiers
are modified

visit(ctx)

Fig. 2. Program state diagram

Input and Parse Tree Generation. The input is a string encoding of a text file
containing a collection of Java classes. As illustrated in Fig. 1, some statements
in the main method can be encompassed between #init tags to be treated as
the input data of the complexity analysis. No tier-based complexity analysis is
performed on these statements and, consequently, they are not subject to the
typing constraints described in Sect. 1. While this block is necessarily fixed in
our textual examples, it should be understood as a modifiable block: it is the
way for the user to build the input on which the program should run. We chose
this somewhat clunky way of representing input instead of simply passing them
as arguments of the main method because Java only allows String arrays as
arguments and translating such inputs would blur the point. The program uses
antlr2, a lexer/parser generator, and creates a new parser instance based on
the full Java grammar described in [29] extended with an input tag #init, a
declassification tag #declass, and variable tier declarations (e.g. int<0> x;).

Stages of Type Inference. Tiers and typing judgments of [15] are implemented
in an object hierarchy. The class Tier contains the constants T0, T1 and None
for representing the tiers 0, 1, and “undefined”, plus some useful static methods
on tiers. A method can have several types that will depend on its caller context
(encoded in an environment tier field env). When typing a method, the tiers of
the this object and of input arguments should be mapped to the tier of the
output.

Type inference is performed in 3 stages (see Fig. 2) to compute the admissible
method tiers and finally visiting the parse tree to check if the whole program
types. The methods’ admissible tier list, which is initialized as all the combina-
torial possible tiers for each input and output in the 1st stage, is progressively
reduced to encompass only the set of admissible tiers in the 2nd stage. The 3rd

stage checks for admissible constructor tiers.
The typing discipline is performed using visitors that are specialized for each

node type of the parse tree. For example, the code of the while statement
visitor is provided in Fig. 3. It implements the following rule (rephrased rule

2 www.antlr.org.

www.antlr.org

362 E. Hainry et al.

1 public Object visitStatement_while (... ctx) {

2 visitChildren (ctx);

3 Tier t = getTier(ctx.expression ());

4 Tier env = getEnvironmentTier (ctx.expression ());

5 incrementWhileCount ();

6 Tier res;

7 if (getRecursiveCallsCount() != 0) {

8 res = Tier.None;

9 env = Tier.None;

10 }

11 if (t == Tier.T1 && env != Tier.None){

12 Tier st = getTier(ctx. statement ());

13 if (st == Tier.None || st == null) {

14 res = Tier.None;

15 } else { res = Tier.T1;}

16 } else { res = Tier.None ;}

17 putTier(ctx , res , Tier.T1);

18 return res;

19 }

Fig. 3. Visitor method for while statements in BaseStatementVisitor

(Wh) from [15]) enforcing any while statement to be controlled by a tier T1
expression:

Γ �env ctx.expression() : T1 Γ � ctx.statement() : st env, st ∈ {T0, T1}
Γ � while(ctx.expression()){ctx.statement()} : T1

Output. The output consists in the GUI displaying the “Final result”, the
tier of main method body. 0 and 1 represent success and entail, by Theorem 1,
that if the program terminates then its runtime is polynomial. The final result
can also be None, indicating a failure to type. This latter case does not imply
that the main method complexity is not polynomial as there are false negatives.
However some other method declarations in the program may have typed, which
guarantees their complexity to be polytime under the termination assumption.

Complexity. Type inference for tier-based typing disciplines was shown to be
linear in the size of the input program using a reduction to 2-SAT [13,15].
However ComplexityParser’s inference algorithm is based on a brute force
implementation that remains linear in practice but is exponential in theory.

Let |p| be the size (i.e. number of symbols) of the Java program given as input
and ar(p) be the maximal number of parameters of a method in the program p.

The first part of our algorithm builds the parse tree of the considered program
using the antlr ALL(*) algorithm that is in O(|p|4) in theory [30] and produces
a parse tree of size linear in the size of the input program.

Then, the 3 stages of Fig. 2 visit the parse tree nodes linearly often. In the
1st stage, when visiting a method declaration node, all admissible tier combina-
tions are added to the typing environment, costing O(2n), for a method with n

ComplexityParser 363

parameters. Searching fixpoints in the 2nd stage has a WCET in O(2ar(p)|p|): at
each step, either the list of possible tier combinations is decremented or the envi-
ronment is unchanged and the program jumps to the 3rd stage. Typing recursive
methods relies on computing the strongly connected components of a graph using
the standard Kosaraju DFS algorithm [32] which also has linear complexity. The
3rd stage performs in O(|p|) as it simply type-checks constructor bodies.

Putting all together, the complexity of the analysis is in O(2ar(p)|p| + |p|4).
We argue that ar(p) should be a small constant independent of the program.
Indeed, following [7], it is a good practice to “avoid long parameter lists. As
a rule, three parameters should be viewed as a maximum, and fewer is better.”
The O(|p|4) part is due to antlr’s complexity which, according to its authors,
“performs linearly on grammars used in practice”, such as the Java grammar.
Finally, we claim that the whole analysis also has linear complexity in practice,
as highlighted by our tests on sample programs.

3 Conclusion

ComplexityParser is an efficient and automatic high level complexity ana-
lyzer for Java programs. The analysis can deal with most well-known Java con-
structs. There are still some syntactic restrictions on the expressive power of the
analysis such as not treating for loops. Plans for future work include the treat-
ment of threads as in [26], and symbolic computation of the polynomial bounds
as in [15] on execution time, heap space, and stack space. Unfortunately, due to
object data controlling the flow, tight bounds are difficult to infer. Our approach
requires a termination certificate (see Theorem 1). This issue can be overcome
by combining our tool with existing termination techniques, e.g. [20,31] or loop
invariant generation techniques, e.g. [5,6,33]. We also consider interfacing with
existing termination analyzers working on Java such as Julia [34], or other com-
plexity analyzers that prove termination like AProVE or costa.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
Java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 12

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theoret. Comput. Sci. 413(1), 142–159 (2012)

3. Avanzini, M., Moser, G., Schaper, M.: TcT: tyrolean complexity tool. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 407–423. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 24

4. Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the poly-
time functions. Comput. Complex. 2, 97–110 (1992)

5. Ben-Amram, A.M., Genaim, S.: On the linear ranking problem for integer linear-
constraint loops. In: 2013 Principles of Programming Languages (POPL), pp. 51–62
(2013)

https://doi.org/10.1007/978-3-540-71316-6_12
https://doi.org/10.1007/978-3-662-49674-9_24

364 E. Hainry et al.

6. Ben-Amram, A.M., Hamilton, G.W.: Tight worst-case bounds for polynomial loop
programs. In: 2019 Foundations of Software Science and Computation Structure
(FoSSaCS), pp. 80–97 (2019)

7. Bloch, J.J.: Effective Java. The Java Series ... from the Source, 2nd edn. Addison-
Wesley, Boston (2008)

8. Bonfante, G., Kahle, R., Marion, J.Y., Oitavem, I.: Two function algebras defining
functions in NCk boolean circuits. Inf. Comput. 248, 82–103 (2016)

9. Frohn, F., Giesl, J.: Complexity analysis for Java with AProVE. In: Polikarpova,
N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 85–101. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66845-1 6

10. Gulwani, S.: SPEED: symbolic complexity bound analysis. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 51–62. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4 7

11. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: precise and efficient static esti-
mation of program computational complexity. In: 2009 Principles of Programming
Languages (POPL), pp. 127–139 (2009)

12. Hainry, E., Kapron, B.M., Marion, J.Y., Péchoux, R.: A tier-based typed pro-
gramming language characterizing feasible functionals. In: 2020 Logic in Computer
Science (LICS), pp. 535–549 (2020)

13. Hainry, E., Marion, J.-Y., Péchoux, R.: Type-based complexity analysis for fork
processes. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 305–320.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5 20

14. Hainry, E., Péchoux, R.: Objects in polynomial time. In: Feng, X., Park, S. (eds.)
APLAS 2015. LNCS, vol. 9458, pp. 387–404. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26529-2 21

15. Hainry, E., Péchoux, R.: A type-based complexity analysis of object oriented pro-
grams. Inf. Comput. 261, 78–115 (2018)

16. Hájek, P.: Arithmetical hierarchy and complexity of computation. Theoret. Com-
put. Sci. 8, 227–237 (1979)

17. Hoffmann, J., Aehlig, K., Hofmann, M.: Resource aware ML. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 781–786. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7 64

18. Hofmann, M., Rodriguez, D.: Efficient type-checking for amortised heap-space anal-
ysis. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 317–331.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04027-6 24

19. Hofmann, M., Rodriguez, D.: Automatic type inference for amortised heap-space
analysis. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp.
593–613. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-
6 32

20. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: 2001 Principles of Programming Languages (POPL), pp. 81–92
(2001)

21. Leivant, D.: A characterization of NC by tree recurrence. In: Foundations of Com-
puter Science 1998, pp. 716–724. IEEE (1998)

22. Leivant, D., Marion, J.-Y.: Lambda calculus characterizations of poly-time. In:
Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 274–288. Springer,
Heidelberg (1993). https://doi.org/10.1007/BFb0037112

23. Leivant, D., Marion, J.-Y.: Ramified recurrence and computational complexity
II: substitution and poly-space. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994.
LNCS, vol. 933, pp. 486–500. Springer, Heidelberg (1995). https://doi.org/10.1007/
BFb0022277

https://doi.org/10.1007/978-3-319-66845-1_6
https://doi.org/10.1007/978-3-642-02658-4_7
https://doi.org/10.1007/978-3-642-37075-5_20
https://doi.org/10.1007/978-3-319-26529-2_21
https://doi.org/10.1007/978-3-319-26529-2_21
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-04027-6_24
https://doi.org/10.1007/978-3-642-37036-6_32
https://doi.org/10.1007/978-3-642-37036-6_32
https://doi.org/10.1007/BFb0037112
https://doi.org/10.1007/BFb0022277
https://doi.org/10.1007/BFb0022277

ComplexityParser 365

24. Leivant, D., Marion, J.-Y.: Evolving graph-structures and their implicit compu-
tational complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D.
(eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 349–360. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39212-2 32

25. Marion, J.Y.: A type system for complexity flow analysis. In: 2011 Logic in Com-
puter Science (LICS), pp. 123–132. IEEE (2011)

26. Marion, J.-Y., Péchoux, R.: Complexity information flow in a multi-threaded
imperative language. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds.)
TAMC 2014. LNCS, vol. 8402, pp. 124–140. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-06089-7 9

27. Moser, G., Schaper, M.: From Jinja bytecode to term rewriting: a complexity
reflecting transformation. Inf. Comput. 261, 116–143 (2018)

28. de Naurois, P.J.: Pointers in recursion: exploring the tropics. In: 2019 Formal Struc-
tures for Computation and Deduction (FSCD), pp. 29:1–29:18 (2019)

29. Parr, T.: The definitive ANTLR 4 reference. Pragmatic Bookshelf (2013)
30. Parr, T., Harwell, S., Fisher, K.: Adaptive LL(*) parsing: the power of dynamic

analysis. In: 2014 Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), pp. 579–598 (2014)

31. Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termina-
tion. ACM Trans. Program. Lang. Syst. 29(3), 15 (2007)

32. Sharir, M.: A strong-connectivity algorithm and its applications in data flow anal-
ysis. Comput. Math. Appl. 7(1), 67–72 (1981)

33. Shkaravska, O., Kersten, R., van Eekelen, M.C.J.D.: Test-based inference of poly-
nomial loop-bound functions. In: 2010 Principles and Practice of Programming in
Java (PPPJ), pp. 99–108 (2010)

34. Spoto, F., Mesnard, F., Payet, É.: A termination analyzer for java bytecode based
on path-length. ACM Trans. Program. Lang. Syst. 32(3), 1–70 (2010)

https://doi.org/10.1007/978-3-642-39212-2_32
https://doi.org/10.1007/978-3-319-06089-7_9
https://doi.org/10.1007/978-3-319-06089-7_9

A Calculus for Attribute-Based
Memory Updates

Marino Miculan and Michele Pasqua(B)

Department of Mathematics, Computer Science and Physics,
University of Udine, Udine, Italy

{marino.miculan,michele.pasqua}@uniud.it

Abstract. In this paper, we present AbU a new ECA-inspired calculus
with attribute-based communication, an interaction model recently intro-
duced for coordinating large numbers of nodes. Attribute-based commu-
nication is similar to broadcast, but the actual receivers are selected “on
the fly” by means of predicates over nodes’ attributes.

After having defined syntax and formal semantics of AbU, with some
examples, we give sufficient conditions on AbU systems to guarantee ter-
mination of internal steps. Then we show how to encode into AbU com-
ponents written in AbC, the archetypal calculus with attribute-based
communication, and we prove the correctness of such encoding.

Keywords: ECA rules · Attribute-based communication · Distributed
systems · Formal methods · Autonomic computing

1 Introduction

Event Condition Action (ECA) languages are an intuitive and powerful paradigm
for programming reactive systems. The fundamental construct of ECA lan-
guages are rules of the form “on Event if Condition do Action” which means:
when Event occurs, if Condition is verified then execute Action. ECA systems
receive inputs (as events) from the external environment and react by performing
internal actions, updating the node’s local memory, or external actions, which
influence the environment itself. Due to their reactive nature, ECA languages
are well-suited for programming smart systems, in particular in IoT scenar-
ios [11,17]. Indeed, this paradigm can be found in various commercial frame-
works like IFTTT, Samsung SmartThings, Microsoft Power Automate, Zapier,
etc.

In most cases, the rules are stored and executed by a central computing
node, possibly in the cloud: the components of the adaptive system do not com-
municate directly, and the coordination is demanded to the central node/cloud
service. Although simple, such a centralized architecture does not scale well to

Work supported by the Italian MIUR project PRIN 2017FTXR7S IT MATTERS
(Methods and Tools for Trustworthy Smart Systems).

c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 366–385, 2021.
https://doi.org/10.1007/978-3-030-85315-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-85315-0_21

A Calculus for Attribute-Based Memory Updates 367

large systems, and the central node/cloud service is a Single Point Of Failure,
hindering availability. Thus, in these situations we may prefer to move compu-
tation closer to the edge of the network, akin fog computing : the ECA rules
should be stored and executed directly in the nodes, in a truly distributed set-
ting. This approach reduces data transfers between the edge and the center of
the network—in fact, there can be no center at all, thus increasing scalability
and resilience—but, on the other hand, it requires a distributed coordination
and communication of these components.

In order to model these issues, in this paper we introduce AbU (for
“Attribute-based Updates”), a new calculus aiming at merging the simplicity
of ECA programming with distributed coordination mechanisms in the spirit
of attribute-based communication. Attribute-based communication is a time-
coupled, space-uncoupled interaction model recently introduced for coordinating
large numbers of components and subsuming several interaction paradigms used
in “smart systems”, such as channels, agents, pub/sub, broadcast and multi-
cast [2,4,5]. The key aspect of attribute-based communication is that the actual
receivers are selected “on the fly” by means of predicates. Using a syntax sim-
ilar to AbC [5] (the archetypal calculus for attribute-based communication),
〈e@Π〉.P means “send (the value of) e to all nodes satisfying Π, then continue
as P”; dually, (x |Π).P means “when receiving a message x such that Π holds,
continue as P”.

Integrating attribute-based communication in the ECA paradigm is not obvi-
ous. One could try to add some primitives similar to AbC’s, but this would
yield a disharmonious patchwork of different paradigms, i.e., message-passing
vs. memory-based events. Instead, in AbU we choose a different path: commu-
nications are reduced to events of the same kind ECA programs already deal
with, that is, memory updates. For instance, a AbU rule like the following:

accessT @(role = logger) : log ← log + accessT

means “when (my local) variable accessT changes, add its value to the variable
log of all nodes whose variable role has value logger”. Clearly, the update of
log may trigger other rules on these (remote) nodes, and so on. We call this
mechanism attribute-based memory updates, since it can be seen as the memory-
based counterpart of attribute-based (message-passing) communication.

This smooth integration of communication within the ECA paradigm makes
easier to extend to the distributed setting known results and techniques. As an
example, we will provide a simple syntactic check to guarantee stabilization, i.e.,
that a chain of rule executions triggered by an external event will eventually
terminate. Furthermore, we will discuss how implementations can leverage well-
known optimization strategies for ECA rules, like the RETE algorithm [12].

Synopsis. After a summary of related work in Sect. 2, in Sect. 3 we introduce
AbU, the new ECA-inspired calculus with attribute-based memory updates.
After its syntax and operational semantics, we give a simple termination crite-
rion based on a syntactic condition. Then, in Sect. 4 we show how to encode AbC

368 M. Miculan and M. Pasqua

components in AbU, providing encoding correctness and examples. In Sect. 5 we
discuss some issues concerning the distributed implementation of AbU. Conclu-
sions and directions for future work are in Sect. 6. Full proofs of the results can
be found in the companion technical report [29].

2 Related Work

To the best of our knowledge, no work in literature aims at merging the two
programming paradigms taken into consideration in the present paper. An app-
roach close in spirit to ours is that based on associative memories, that is tuple
spaces, as in the Linda language [18] and the KLAIM calculus [20]. In fact, also
tuple spaces have events (insertion or deletion of tuples) that can be notified to
nodes. Furthermore, tuple spaces can be inspected via pattern matching, which
can be seen as a restricted form of attribute-based lookup. Despite these analo-
gies, tuple spaces and AbU differ on many aspects: the latter is based on ECA
rules, attribute-based communication is implemented by means of remote mem-
ory updates (and hence transparent to the nodes involved in the distributed
system) and the logic for predicating over attributes is more expressive than
simple pattern matching.

Concerning ECA programming, [14,19] introduce IRON, a language based
on ECA rules for the IoT domain. Following other work about ECA languages,
[30,31] present verification mechanisms to check properties on IRON programs,
such as termination, confluence, redundant or contradicting rules. Other work
proposes approaches to verify ECA programs by using Petri Nets [27] and BDD
[13]. In [16,17], the authors present a tool-supported method for verifying and
controlling the correct interactions of ECA rules. All these works do not deal
with distributed systems, hence communication is not taken into account.

AbC has been introduced and studied in [2,4,5] as a core calculus for SCEL
[22], a language à la KLAIM with collective communication primitives. Focusing
on the attribute-based communication model, AbC is well-suited to model Col-
lective Adaptive Systems (CAS) [10] from a process standpoint (as opposed to
Multi-Agents Systems (MAS) that follow a logical approach [32]; we refer to [4]
for more details). Various extensions of AbC has been proposed [3,6], as well as
correct implementations in Erlang [21] and Golang [1,24]. AbC, and its parent
languages, adopt a message-passing communication mechanism and a sequential,
process-like, execution flow, which are orthogonal with respect to the ECA rules
setting. Since the goal of the present work is to extend the ECA programming
style with attributed-based communication mechanisms, we will focus on the
most fundamental primitives of AbC, omitting features not strictly necessary.

Some work combining message-passing primitives and shared-memory mech-
anisms have been recently proposed [8,9]. In particular, the m&m model of [8]
allows processes to both pass messages and share memory. This approach is
increasingly used in practice (e.g., in data centers), as it seems to have great
impact on the performance of distributed systems. An example application is
given by Remote Direct Memory Access (RDMA) [9], that provides processes

A Calculus for Attribute-Based Memory Updates 369

primitives both for send/receive communication, and for direct remote memory
access. This mixed approach has been recently applied also in the MAS con-
text [7], where the local behavior of agents is based on shared variables and the
global behavior is based on message-passing. These results could be very helpful
for the implementation of AbU, since a message-passing with shared-memory
approach perfectly fits the attribute-based memory updates setting.

3 The AbU Calculus

We present here AbU, a calculus following the Event Condition Action
(ECA) paradigm, augmented with attribute-based communication. This solu-
tion embodies the programming simplicity prerogative of ECA rules, but it
is expressive enough to model complex coordination scenarios, typical of dis-
tributed systems.

3.1 Syntax

A AbU system S is either a node, of the form R〈Σ,Θ〉, or a parallel composition
S1 ‖ S2 of systems. A state Σ ∈ X −→ V, is a map from resource (names) in X

to values in V, while an execution pool Θ ⊆
⋃

n∈N
U

n is a set of updates. An
update upd is a finite list of pairs (x, v) ∈ U, meaning that the resource x will
take the value v after the execution of the update. Each node is equipped with
a non-empty finite list R of ECA rules, generated by the following grammar.

rule ::= evt � act, task cnd ::= ϕ | @ϕ

evt ::= x | evt evt ϕ ::= ⊥ |
 | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ε �� ε

act ::= ε | x ← ε act | x ← ε act ε ::= v | x | x | ε ⊗ ε

task ::= cnd : act x ∈ X v ∈ V

A ECA rule evt � act, task is guarded by an event evt, which is a non-empty
finite list of resources. When one of these resources is modified, the rule is fired :
the default action act and the task are evaluated. Evaluation does not change
the resource states immediately; instead, it yields update operations which are
added to the execution pools, and applied later on.

An action is a finite (possibly empty) list of assignments of value expressions
to local x or remote x resources. The default action can access and update only
local resources. On the other hand, a task consists in a condition cnd and an
action act. A condition is a boolean expression, optionally prefixed with the
modifier @. If @ is not present, the task is local : all resources in the condition
and in the action refer to the local node (thus variables of the form x cannot
occur). So, the condition is evaluated locally; if it holds, the action is evaluated.
Otherwise, if @ is present, then the task is remote: the task @ϕ : act reads as “for
all external nodes where ϕ holds, do act”. On every node where the condition
holds, the action is evaluated yielding an update to be added to that node’s pool.
So, in remote tasks each assignment in act is on remote resources only, but still

370 M. Miculan and M. Pasqua

they can use values from the local node. As an example, the task @
 : x ← x+x
means “add the value of this node’s x to the x of every other node”.

In the syntax for boolean expressions ϕ and value expressions ε we let implicit
comparison operators, e.g., �� ∈ {<,≤, >,≥,=, �=}, and binary operations, e.g.,
⊗∈ {+,−, ∗, /}. In expressions we can have both local and remote instance of
resources, although the latter can occur only inside remote tasks.

When we have a rule of the form evt�ε, task, namely when we have rules with
empty default action, we write more concisely evt task in place of evt � ε, task.

3.2 Semantics

Given a list R of rules and a set X of resources that have been modified, we
define the set of active rules as Active(R,X) � {evt � act, task ∈ R | evt ∩ X �=
∅}, namely the rules in R that listen on resources in X and, hence, that may
be fired. Given an action act, its evaluation �act� in the state Σ returns an
update. Formally: �x1 ← ε1 . . . xn ← εn�Σ � (x1, �ε1�Σ) . . . (xn, �εn�Σ). The
evaluation semantics for value expressions ε is standard. As we will see in a
moment, the semantic function �·� is applied only to local actions, that do not
contain instances of external resources x.

The default updates are the updates originated from the default actions of
active rules in R, namely:

DefUpds(R,X,Σ) � {�act�Σ | ∃evt � act, task ∈ Active(R,X)}

The local updates are the updates originated from the tasks of the active rules
in R that act only locally (@ is not present in the tasks’ condition) and that
satisfy the task’s condition, namely:

LocalUpds(R,X,Σ) � {�act2�Σ | ∃evt � act1, ϕ : act2 ∈ Active(R,X) . Σ |= ϕ}

The satisfiability relation is defined as: Σ |= ϕ � �ϕ�Σ = tt (the evaluation
semantics for boolean expressions ϕ is standard as well).

When we have a task containing the modifier @, an external node is needed to
evaluate the task’s condition. In our semantics, when a node needs to evaluate a
task involving external nodes, it partially evaluates the task (with its own state)
and then it sends the partially evaluated task to all other nodes. The latter,
receive the task and complete the evaluation, potentially adding updates to their
pool. In particular, the partial evaluation of tasks works as follows. With {|task|}Σ
we denote the task obtained from task with each occurrence of x in the task’s
condition and the right-hand sides of the assignments in task’s action replaced
with the value Σ(x). After that, each instance of x in the task’s action is replaced
with x and each instance of x in the task’s action is replaced with x (this happens,
in case, only on the left-hand sides of the assignments of the task’s action). For
instance, {|@(x ≤ x) : y ← x + y|}[x �→ 1 y �→ 0] = @(1 ≤ x) : y ← 1 + y. Note
that, once the task is partially evaluated and sent to other nodes, then it becomes
“syntactically local” for the receiving nodes1. Finally, we define the external tasks
1 This means that we can evaluate the task’s action with the semantic function �·�.

A Calculus for Attribute-Based Memory Updates 371

Fig. 1. AbU semantics for nodes and systems.

as ExtTasks(R,X,Σ) � {|task1|}Σ . . . {|taskn|}Σ such that for each i ∈ [1..n] there
exists a rule evt � act, taski ∈ Active(R,X) such that taski = @ϕ : act, namely
the tasks of active rules in R whose condition contains @ (i.e., tasks that require
an external node to be evaluated).

The (small-step) semantics of a AbU system is modeled as a labeled transition
system S1

α−� S2 whose labels are given by α ::= T | � T | � T where T is a
finite list of tasks. A transition can modify the state and the execution pool of
the nodes. The semantics is distributed, in the sense that each node’s semantics
does not have a global knowledge about the system. The rules are in Fig. 1. A
rule (Exec) executes an update picked from the pool; while a rule (Input) models
an external modification of some resources. The execution of an update, or the
change of resources, may trigger some rules of the nodes. Hence, after updating
a node’s state, the semantics of a node launches a discovery phase, with the goal
of finding new updates to add to the local pool (or some pools of remote nodes),
given by the activation of some rules. The discovery phase is composed by two
parts, the local and the external one. A node R〈Σ,Θ〉 performs a local discovery
by means of the functions DefUpds and LocalUpds, that add to the local pool
Θ all updates originated by the activation of some rules in R. Then, by means
of the function ExtTasks, the node computes a list of tasks that may update
external nodes and sends it to all nodes in the system. This is modeled with
the labels � T , produced by the rule (Exec), and � T , produced by the rule
(Input). On the other side, when a node receives a list of tasks (executing the
rule (Disc) with a label T) it evaluates them and adds to its pool the actions
generated by the tasks whose condition is satisfied.

Finally, the rule (Step) completes (on all nodes in the system) a discovery
phase launched by a given node. Note that, not necessarily all nodes have to
modify their pool (indeed, a task’s condition may not hold in an external node).

372 M. Miculan and M. Pasqua

At the same time, the rule synchronizes the whole discovery phase, originated
by a change in the state of a node in the system. When a node executes an
action originating only local updates, the rule (Step) is applied with S′

2 = S2,
producing the label � ε or the label � ε (i.e., with an empty tasks’ list). The
parallel composition of systems ‖ is associative and commutative.

Note that, in order to start the computation for a system of nodes, an input
(i.e., an external modification of the environment) is needed since, at the begin-
ning, all pools of all nodes in the system are empty.

Wave Semantics. A AbU system S = R1〈Σ1, Θ1〉 ‖ . . . ‖ Rn〈Σn, Θn〉 is stable
when no more execution steps can be performed, namely when all execution
pools Θi, for i ∈ [1..n], are empty. We will use R〈Σ〉 as a shorthand for R〈Σ, ∅〉.
So, a system is stable when it is of the form R1〈Σ1〉 ‖ . . . ‖ Rn〈Σn〉. In the
case of a stable system, only the rule (Input) can be applied, i.e., an external
environment change is needed to (re)start the computation.

We can define a big-step semantics S � S′ between stable systems, dubbed
wave semantics, in terms of the small-step semantics. Let −�∗ be the transitive
closure of −�, without occurrences of labels of the form � T , namely −�∗ denotes
a finite sequence of internal execution steps (with the corresponding discovery
phases), without interleaving input steps. The wave semantics for a system S is:

(Wave)
S = R1〈Σ1〉 ‖ . . . ‖ Rn〈Σn〉 S

�T−−� S′′ −�∗ S′ S′ = R1〈Σ′
1〉 ‖ . . . ‖ Rn〈Σ′

n〉
S � S′

The idea is that a (stable) system reacts to an external stimulus by executing
a series of tasks (a “wave”), until it becomes stable again, waiting for the next
stimulus. Note that, in the wave semantics inputs do not interleave with internal
steps: this leaves the system the time to reach stability before the next input. If
we allow arbitrary input steps during the computation, possibly a system may
never reach stability since the execution pools could be never emptied. This
assumption has a practical interpretation: in the IoT context, usually, external
changes (in sensors) take much more time than internal computation steps [15].

3.3 A Working Example

Let us consider the scenario sketched in the Introduction, where an “access”
node aims at sending its local access time to all “logger” nodes in the system. In
other words, this node is activated when accessT changes, namely when a new
user performs access. Suppose now that the node, together with the time-stamp,
aims at sending the IP address of the user and the name of the accessed resource.
On the other side, the logger nodes record the access time, the IP address and
the resource’s name. Furthermore, suppose that these nodes contain a black-
list of IP addresses. This list can be updated at run-time, by external entities
communicating with logger nodes, so it may be the case that different logger
nodes have different black-lists. A logger node that notices an access from a
black-listed IP is in charge of notifying an intrusion detection system (IDS).

A Calculus for Attribute-Based Memory Updates 373

The system is formalized in AbU as follows. We suppose to have two access
nodes and two logger nodes. We also suppose that log is a structured type, i.e., a
list of records of the form |IP ; accessT ; res|. An append to the list log is given by
append log |IP ; accessT ; res|, with |IP ; accessT ; res|.IP we denote the access
of the field IP , and tail[log] returns the last record inserted in the list log.
S1 � Ra〈Σ1, ∅〉 = Ra〈[IP �→ε accessT �→00:00:00 res �→camera], ∅〉
S2 � Ra〈Σ2, ∅〉 = Ra〈[IP �→ε accessT �→00:00:00 res �→lock], ∅〉
S3 � Rl〈Σ3, ∅〉 = Rl〈[role �→logger log �→ε Blist �→ε IDS �→ε], ∅〉
S4 � Rl〈Σ4, ∅〉 = Rl〈[role �→logger log �→ε Blist �→167.123.23.2; IDS �→ε], ∅〉
Ra � accessT @(role = logger) : log ← append log |IP ; accessT ; res|
Rl � log (tail[log].IP ∈ Blist) : IDS ← tail[log]

At the beginning, the AbU system S1 ‖ S2 ‖ S3 ‖ S4 is stable, since all pools
are empty. At some point, an access is made on the resource camera, so the
rule (Input) is applied on S1, namely Ra〈Σ1, ∅〉 �T−−� Ra〈Σ′

1, ∅〉, where Σ′
1 =

[accessT �→15:07:00 res �→camera IP �→167.123.23.2] and

T = @(role = logger) : log ← append log |167.123.23.2; 15:07:00; camera|

Now, a discovery phase is performed on all other nodes. In particular, we have:
Ra〈Σ2, ∅〉 T−� Ra〈Σ2, ∅〉, Rl〈Σ3, ∅〉 T−� Rl〈Σ3, Θ〉, and Rl〈Σ4, ∅〉 T−� Rl〈Σ4, Θ〉.
Here, the pool Θ is the set {(log, |167.123.23.2; 15 : 07 : 00; camera|)}. Now, let
S′
1 = Ra〈Σ′

1, ∅〉, S′
3 = Rl〈Σ′

3, Θ〉 and S′
4 = Rl〈Σ′

4, Θ〉. The derivation tree for the
resulting system S′

1 ‖ S2 ‖ S′
3 ‖ S′

4 is depicted in Fig. 2[top]. For space reasons,
we abbreviate rules’ names and we omit the premises of leaf rules.

Now, the third and the fourth nodes can apply an execution step, since
their pools are not empty. Suppose the third node is chosen, namely we have
Rl〈Σ3, Θ〉 �ε−−� Rl〈Σ′

3, ∅〉, by applying the rule (Exec), and Σ′
3 = [role �→logger

log �→ |167.123.23.2; 15 : 07 : 00; camera| Blist �→ ∅ IDS �→ ε]. Note that, in this
case, no rule is triggered by the executed update. Since there is nothing to dis-
cover, all the other nodes do not have to update their pool and the derivation
tree for the resulting system S′

1 ‖ S2 ‖ S′′
3 ‖ S′

4, where S′′
3 = Rl〈Σ′

3, ∅〉, is
given in Fig. 2[bottom]. Finally, the fourth node can execute, namely we have
that Rl〈Σ4, Θ〉 �ε−−� Rl〈Σ′

4, Θ
′〉, by applying the rule (Exec). Here, Σ′

4 = [role �→
logger log �→ |167.123.23.2; 15 : 07 : 00; camera| Blist �→167.123.23.2; IDS �→ε]
and Θ′ = {(IDS, |167.123.23.2; 15 : 07 : 00; camera|)}. In this case, the execu-
tion of the update triggers a rule of the node but the rule is local so, also in
this case, the discovery phase does not have effect. The derivation tree for this
step is analogous to the derivation tree for the previous one. Finally, with a
further execution on the fourth node, we obtain the system S′

1 ‖ S2 ‖ S′′
3 ‖ S′′

4 ,
where S′′

4 = Rl〈Σ′′
4 , ∅〉 and Σ′′

4 = [role �→ logger log �→ |167.123.23.2; 15 : 07 :
00; camera| Blist �→ 167.123.23.2; IDS �→ |167.123.23.2; 15 : 07 : 00; camera|].
Since all pools are empty, the resulting system is stable. This means that we can
perform a wave semantics step:

374 M. Miculan and M. Pasqua

(Wave)

S1 ‖ S2 ‖ S3 ‖ S4
�T−−� S′

1 ‖ S2 ‖ S′
3 ‖ S′

4

S′
1 ‖ S2 ‖ S′

3 ‖ S′
4

�ε−−� S′
1 ‖ S2 ‖ S′′

3 ‖ S′
4

�ε−−� . . .
�ε−−� S′

1 ‖ S2 ‖ S′′
3 ‖ S′′

4

S1 ‖ S2 ‖ S3 ‖ S4 � S′
1 ‖ S2 ‖ S′′

3 ‖ S′′
4

. . .(I)
Ra Σ1, ∅

T−− Ra Σ1, ∅

. . .(D)
Ra Σ2, ∅

T− Ra Σ2, ∅
(S)

S1 S2
T−− S1 S2

. . .(D)
Rl Σ3, ∅

T− Rl Σ3, Θ
(S)

S1 S2 S3
T−− S1 S2 S3

. . .(D)
Rl Σ4, ∅

T− Rl Σ4, Θ
(S)

S1 S2 S3 S4
T−− S1 S2 S3 S4

. . .(E)
Rl Σ3, Θ

ε−− Rl Σ3, ∅

. . .(D)
Ra Σ1, ∅

ε− Ra Σ1, ∅(S)
S3 S1

ε−− S3 S1

. . .(D)
Ra Σ2, ∅

ε− Ra Σ2, ∅
(S)

S3 S1 S2
ε−− S3 S1 S2

. . .(D)
Rl Σ4, Θ

ε− Rl Σ4, Θ
(S)

S3 S1 S2 S4
ε−− S3 S1 S2 S4

Fig. 2. Derivation trees for AbU semantic steps: (Input) [top] and (Exec) [bottom].

3.4 Termination Guarantee

The wave semantics (and, hence, a AbU system) may exhibit internal divergence:
once an input step starts the computation, the subsequent execution steps may
not reach a stable system, even if intermediate inputs are not performed.

Consider the case of the book “The Making of a fly”, that reached the stel-
lar selling price of $23,698,655.93 on Amazon, in 20012. Two Amazon retailers,
profnath and bordeebook, used Amazon’s automatic pricing primitives to set
the price of their book’s copy, depending the competitor’s book price. The strat-
egy of profnath was to automatically set the price 0.99 times the bordeebook’s
price; conversely, the strategy of bordeebook was to set the price 1.27 times the
profnath’s price. Each retailer was not aware of the competitor’s strategy. This
scenario can be modeled with the following ECA rules:

when bordeebook-price changes, set profnath-price to bordeebook-price ∗ 0.99
when profnath-price changes, set bordeebook-price to profnath-price ∗ 1.27

It is easy to see that these rules generate a loop, leading to an uncontrolled
raise of the book’s price (as it happened). In order to prevent these situations,
we define a simple syntactic condition on the rules that guarantees (internal)
termination. In other words, each system satisfying the condition eventually
becomes stable, after an initial input and without further interleaving inputs.
This condition can be checked before the rules are deployed in the system.

The output resources of a AbU rule, namely the resources involved in the
actions performed by the rule, are given by the resources assigned in the default
2 https://www.michaeleisen.org/blog/?p=358.

https://www.michaeleisen.org/blog/?p=358

A Calculus for Attribute-Based Memory Updates 375

action and in the rule’s task. The output resources of an action act are the set
Out(act) � {x | ∃i ∈ N . act[i] = x ← ε ∨ act[i] = x ← ε}. So, the output
resources of a rule are Out(evt � act1, cnd : act2) � Out(act1) ∪ Out(act2).

The input resources of a AbU rule are the resources that the rule listen on,
namely the set In(evt � act, task) � {x | ∃i ∈ N . evt[i] = x}. Given a list R of
AbU rules, its output resources Out(R) are the union of the output resources of
all rules in the list. Analogously, its input resources In(R) are the union of the
input resources of all rules in the list.

Definition 1 (ECA dependency graph). Given a AbU system S such that
S = R1〈Σ1, Θ1〉 ‖ . . . ‖ Rn〈Σn, Θn〉, the ECA dependency graph of S is a
directed graph (N,E) where the nodes N and the edges E are:

N �
⋃

i∈[1..n] In(Ri) ∪ Out(Ri) E �
{

(x1, x2)
∣
∣
∣
∣
∃i ∈ [1..n]∃j ∈ [1..k] . Ri = rule1 . . . rulek

∧x1 ∈ In(rulej) ∧ x2 ∈ Out(rulej)

}

The sufficient syntactic condition for the termination of the wave semantics
(i.e., stabilization) consists in the acyclicity of the ECA dependency graph.

Proposition 1 (Termination of the wave semantics). Given a AbU system
S, if the ECA dependency graph of S is acyclic, then there exists a system S′

such that S � S′.

Therefore, a naive termination enforcing mechanism consists in computing
the transitive closure E+ of E and to check if it contains reflexive pairs, i.e.,
elements of the form (x, x), for a resource identifier x. If there are no reflexive
elements then the graph is acyclic and the condition is fulfilled.

4 Encoding Attribute-Based Communication

To showcase the generality of our calculus, in this section we encode the archety-
pal calculus AbC [5] in AbU. Our aim is not to prove that AbU subsumes AbC:
the two calculi adopt different programming paradigms, with different peculiari-
ties, that fit different application scenarios. Our goal here is to show that we can
model within the ECA programming style the attribute-based communication.

4.1 The AbC Calculus

We focus on a minimal version of AbC [5], for which we define an operational
semantics, on the line of [4]. As already pointed out, we do not aim at a full-
fledged version of AbC, since the aim of this section is to encode in AbU the
essence of the attribute-based communication, comprehensively expressed by the
core version of AbC that we will present in the following paragraphs.

A AbC component C may be a process paired with an attribute environment,
written Γ : P , or the parallel composition of two components, written C1 ‖ C2.
An attribute environment Γ is a map from attribute identifiers a ∈ A to values
v ∈ V. Our syntax of AbC processes is as follows.

376 M. Miculan and M. Pasqua

P ::= 0 | (x | Π).P | 〈e @ Π〉.P | [a := e]P | [Π]P | Pa + Pb | K
Π ::= ff | tt | Π1 ∨ Π2 | Π1 ∧ Π2 | ¬Π | e �� e with �� ∈ {<,≤, >,≥,=, �=}
e ::= v | a | x | this.a | e ⊗ e with ⊗ ∈ {+,−, ∗, /}

In particular, the input (x | Π) receives a message from components that satisfy
the predicate Π, saving the message in the variable x. The output 〈e @ Π〉 sends
(the evaluation of) the expression e to all components that satisfy the predicate
Π. The awareness process [Π]P waits until Π is satisfied and then continues
the execution as P . The other constructors are as in [5] (the inactive process
0, non-deterministic choice between Pa + Pb and process calls K). Predicates Π
and expressions e are standard. The reader can refer to [5] for more details.

We now briefly explain the semantics for AbC. �e�(Γ) evaluates an expression
e in the environment Γ and yields a value, while �Π�(Γ) evaluates a predicate
Π in Γ and yields tt or ff. Their formal definition is straightforward, the only
interesting cases are: �a�(Γ) = �this.a�(Γ) = Γ (a). When �Π�(Γ) is tt we say
that Γ satisfies Π, written Γ |= Π. We assume that processes do not have
free variables, i.e., x is always under the scope of an input (x | Π). Finally, in
{|Π|}(Γ) we substitute expressions of the form this.a with Γ (a). The semantics
for processes (Fig. 3[top]) and for components (Fig. 3[bottom]) is given by a
labeled transition system, where a process label δ is of the form Π〈v〉 (output)
or Π(v) (input) and a component label λ can be either a process label δ or a silent
action τ (i.e., a communication to a false predicate). Transitions rules in Fig. 3
are self-explanatory (symmetric rules are omitted). The parallel composition of
components ‖ is associative and commutative. The inactive process semantics is

modeled as a communication on false, i.e., Γ : 0
ff〈0〉−−−→ Γ : 0.

Note that, if the rule (Comm) is applicable then Π cannot be false, since
the rule (Rcv) cannot be applied with false predicates. When Π is false, (Int) is
applied, representing an internal execution step of C1. This rule applies also when
C2 is not ready (or it does not want) to communicate, allowing C1 to progress.

4.2 Encoding AbC in AbU

Given a AbC component Γ1 : P1 ‖ . . . ‖ Γn : Pn, we define a AbU system
R1〈Σ1〉 ‖ . . . ‖ Rn〈Σn〉 composed by n nodes, where the state Σi of the ith node
is given by the ith attribute environment Γi (with some modifications). All nodes’
pools are initially empty. In order to simulate process communication, we add
to each node a special resource msg. If a node wants to communicate a message,
it has to update the msg resource of all the selected communication partners.
The execution of each AbC component is inherently sequential while AbU nodes
follow an event-driven architecture. In order to simulate AbC’s causality, we
associate each generated AbU rule with a special resource, a rule flag, whose
purpose is to enable and disable the rule. The sequential execution flow of an
AbC component is reconstructed modifying the active flag of the rules: this
simulates a “token” that rules have to hold in order to be executed. Formally,

A Calculus for Attribute-Based Memory Updates 377

Fig. 3. AbC semantics for processes [top] and components [bottom].

the state of the ith nodes is augmented as follows:

Σi = Γi ∪ {(msg, 0)} ∪
⋃

j∈[1..n]Rj(Pj)

A rule is generated for each process instance present in the AbC component
to be encoded. To this end, each node is augmented with all rule flags, of all
rules, given by the translation of all processes of the AbC component. Rule flags
are resource of the form Phri, with h ∈ [1..n] and i ≥ 0, representing the ith

rule generated from the component h. The function Rh, given a process of the
component h, with h ∈ [1..n], computes the resources to add to the nodes3.

Rh returns ∅ for the inactive process and for process calls, i.e., Rh(0) �
Rh(K) � ∅, and nothing is added. For the other processes, it returns Rh(P) �
{(Phr0,ff)} ∪ Rh(P, 0). The flag Phr0 is the starting point of the computation,
indeed it does not represent any actual rule, and it is set to tt in order to start
the computation. The function Rh(P, i), for i ≥ 0, is defined inductively on the
structure of P . In the base cases P = 0 and P = K, it returns ∅ (i.e., nothing
is added), otherwise it is defined as follows, where the auxiliary function Next
generates a fresh index for the next rule to add.

If the process is an input P = (x |Π).P ′, we add the flag for the current rule
and another resource for the variable x: {(x, 0), (Phrj ,ff)} ∪ Rh(P ′, j), given
Next(i) = j. If the process is a non-deterministic choice, i.e., P = Pa + Pb,
we add two flags, one for each branch, that will originate two different rules:
{(Phrj ,ff), (Phrk,ff)}∪Rh(Pa, j)∪Rh(Pb, k), given Next(i) = j,Next(j) = k. In

3 Rh is parametric in h, since rules are binded to the component generating them.

378 M. Miculan and M. Pasqua

all other cases, i.e., P = [Π]P ′, P = [a := e]P ′ or P = 〈e @ Π〉.P ′, we add the
flag for the current rule: {(Phrj ,ff) ∪ Rh(P ′, j), given Next(i) = j.

Concerning AbU rules, we adopt the following mechanism. The ith generated
rule, of the component h, listens on the rule flag Phri: when the latter becomes
tt, the rule can execute. Its execution disables Phri (it is set to ff) and enables the
next rule, setting the flag Phrj , with j = Next(i), to tt. In this way, the execution
token can be exchanged between rules. The function T h, given a process of the
component h, with h ∈ [1..n], generates the rules to add to the translation.
It relies on Next, that outputs a fresh index for the next rule to generate. We
assume that Next in T h is consistent with Next in Rh, i.e., they have to produce
the same sequence of indexes given a specific process. The function T h(P, i), for
i ≥ 0, is defined inductively on the structure of P . In the base case P = 0, it
returns ε (i.e., nothing is added), otherwise it is defined as follows.

If the process is a call to K, a new call rule is added. This rule enables the
first flag (the dummy rule r0) of the called process, defined by K.

P = K K � Pk

Phri (Phri =
) : Phri ← ⊥Pkr0 ←

If the process is an input x on the predicate Π, a new receive rule is added.

The rule checks the condition given by the translation of the predicate Π. Here,
Repl replaces, in a given AbU boolean expression, every instance of a specific
service (x in this case) with msg. As an example, the predicate Π = x < n is
translated to Repl(T (Π), x) = msg < n. When the condition is satisfied, the
rule saves the value msg received from the sender (in the resource x), ends the
communication and enables the next rule.

P = (x | Π).P ′ Next(i) = j

Phri (Phri =
 ∧ Repl(T (Π), x)) : x ← msg Phri ← ⊥ Phrj ←
 T h(P ′, j)
If the process is a non-deterministic choice between Pa and Pb, two new

choice rules are added. Both rules listen to the same flag, so the scheduler can
choose non-deterministically the one to execute. The action of the first choice
rule enables the next rule given by the translation of Pa, while the action of the
second choice rule enables the next rule given by the translation of Pb.

P = Pa + Pb Next(i) = j, Next(j) = k

Phri (Phri =
) : Phri ← ⊥ Phrj ←
 T h(Pa, j)
Phri (Phri =
) : Phri ← ⊥ Phrk ←
 T h(Pb, j)

If the process is waiting on the predicate Π (awareness), a new awareness rule
is added, that listens on the resources contained in Π. The latter are retrieved
by the function Vars that inspects the predicate Π and returns a list of resource
identifiers. In particular, variables x are left untouched, while AbC expressions
a and this.a are both translated to the resource a. The condition in the rule’s
task is the translation of Π. When it is satisfied, the next rule is enabled.

P = [Π]P ′ Next(i) = j

Phri Vars(Π) (Phri =
 ∧ T (Π)) : Phri ← ⊥ Phrj ←
 T h(P ′, j)

A Calculus for Attribute-Based Memory Updates 379

Fig. 4. Communication: a receive phase (right) after a send phase (left).

If the process updates the attribute a with the expression e, an update rule is
added, assigning the translation of e to a and enabling the next rule.

P = [a := e]P ′ Next(i) = j

Phri (Phri =
) : a ← T (e) Phri ← ⊥ Phrj ←
 T h(P ′, j)
If the process is an output of the expression e on the predicate Π, a new

send rule is added. The rule checks the condition given by the translation of the
predicate Π. Note that, in the AbC semantics, the predicate is partially evaluated
before the send, namely expressions of the form this.a are substituted with Γ (a).
To simulate this mechanism in AbU we use an auxiliary transformation Ext that
takes a AbC predicate Π and returns its translation T (Π) where each instance
(in Π) of an attribute a not prefixed by this. is translated to a. As an example,
the predicate Π = this.n < n is translated to Ext(Π) = n < n. For each
external node satisfying the predicate Π, the rule writes the translation of e to
the external node resource msg (with msg ← T (e)). Outputs are non-blocking,
so the rule has a default code, executed without caring about the satisfaction of
the condition. It disables the current rule and enables the next one.

P = 〈e @ Π〉.P ′ Next(i) = j

Phri � Phri ← ⊥ Phrj ←
,@(Phri =
 ∧ Ext(Π)) : msg ← T (e) T h(P ′, j)
Finally, the translation of predicates T (Π) and expressions T (e) is recur-

sively defined on Π and e, respectively. Its definition is straightforward, the
only interesting cases are: T (this.a) � T (a) � a. To start the execution of the
translated system, an (Input) is needed, enabling all rule flags Phr0, of all nodes.

In Fig. 4 we graphically explain how an attribute-based communication is
performed in AbU, by means of attribute-based memory updates. The node
node1 aims to send the value v to nodes node2 and node3, since they satisfy
ϕ1 = Ext(Π1). So, it updates with v the resource msg on the remote nodes node2
and node3. On the other side, node2 and node3 check if some node aims to com-
municate and node1 is indeed selected. Since node1 satisfies ϕ2 = Repl(T (Π2), x)
and does not satisfy ϕ3 = Repl(T (Π3), x), only node2 accepts the value v, saving
it in the resource x, while node3 ignores the communication.

380 M. Miculan and M. Pasqua

In the following, we denote with T (C) the AbU encoding of C, where node
states are defined as explained above, node pools are empty and nodes’ ECA
rules are generated by T (given a process of C).

Encoding Example. Given N agents, each associated with an integer in [1..N],
we wish to find one holding the maximum value. This problem can be modeled
in AbC by using one component type P with two attributes: s, initially set to
1, indicating that the current component is the max; and n, that stores the
component’s value. Formally, the process P (with Max � P) is:

P = [s = 1] (〈n @ n ≤ this.n〉 .Max + (x | x ≥ this.n) . [s := 0]0)

P waits until s becomes 1 and then either: it sends its own value n to all other
components with smaller n; or it receives (on x) a value from another component
with a greater n and sets s to 0. Supposing N = 3, the problem is modeled in
AbC with the component Cmax = [s �→ 1 n �→ 1] : P ‖ [s �→ 1 n �→ 2] : P ‖ [s �→
1 n �→ 3] : P . This AbC component translates to AbU as follows.

R〈[msg �→0 n �→1 x �→0 s �→0 P1r0 �→ff . . . P1r6 �→ff]〉
R〈[msg �→0 n �→2 x �→0 s �→0 P1r0 �→ff . . . P1r6 �→ff]〉
R〈[msg �→0 n �→3 x �→0 s �→0 P1r0 �→ff . . . P1r6 �→ff]〉
R = P1r0 (P1r0 =
 ∧ s = 1) : P1r0 ← ⊥ P1r1 ←
 aware rule

P1r1 (P1r1 =
) : P1r1 ← ⊥ P1r2 ←
 choice1 rule
P1r1 (P1r1 =
) : P1r1 ← ⊥ P1r3 ←
 choice2 rule
P1r2 � P1r2 ← ⊥ P1r4 ←
,@(P1r2 =
 ∧ n ≤ n) : msg ← n send rule
P1r4 (P1r4 =
) : P1r4 ← ⊥ P1r0 ←
 call rule
P1r3 (P1r3 =
 ∧ msg ≥ n) : x ← msg P1r3 ← ⊥ P1r5 ←
 receive rule
P1r5 (P1r5 =
) : s ← 0 P1r5 ← ⊥ P1r6 ←
 update rule

4.3 Correctness of the Encoding

Since a AbU node contains auxiliary resources, in addition to those correspond-
ing to AbC attributes, we have to establish a notion of compatibility between
AbU node states and AbC attribute environments. Given a AbU node state Σ
and a AbC attribute environment Γ , we say that Σ is compatible with Γ , writ-
ten Σ � Γ , when for each (a, v) ∈ Γ there exists (a, v) ∈ Σ (i.e., Γ ⊆ Σ). This
basically means that Σ agrees, at least, on all attributes of Γ . This notion can
be extended to systems and components. Given a AbC component C = Γ1 : P1 ‖
. . . ‖ Γn : Pn and a AbU system S = R1〈Σ1, Θ1〉 ‖ . . . ‖ Rn〈Σn, Θn〉, we say that
S is compatible with C, written S � C, when Σi � Γi, for each i ∈ [1..n].

Recall that, the AbU translation T (C) of C yields n (one for each process)
initial rule flags P1r0, . . . , Pnr0, initially set to ff. In order to start the compu-
tation of T (C), the latter have to be initialized (i.e., set to tt). In this regards,
we assume an initial input phase, comprising n AbU (Input) steps, enabling all
initial rule flags (without interleaving execution steps). Let −�∗ be the transitive
closure of −� without occurrences of labels of the form � T . In other words,

A Calculus for Attribute-Based Memory Updates 381

AbU node

Device drivers Distribution

ECA Rules Engine

sensors/actuators
other AbU nodesnetwork

Communication layerIoT interface

Attribute-based memory updatesDistributed discovery

Fig. 5. High-level view of a AbU node implementation.

−�∗ denotes a finite sequence of internal input steps (with the corresponding
discovery phases), without interleaving execution steps.

Now we are ready to state the correctness of the AbC encoding. The following
Theorem 1 says that if a AbC component performs some computation steps,
producing a residual component C ′, then the AbU translation of C, after an
initial input phase, is able to perform an arbitrary number of computation steps,
yielding a residual system attribute compatible with C ′. This basically means
that T (C) is able to “simulate” each possible execution of C.

Theorem 1 (AbC to AbU correctness). Consider a AbC component C and
its corresponding AbU encoding S = T (C). Then, for all C ′ such that C �∗ C ′

there exists S′ such that S −�∗�∗ S′ and S′ � C ′.

5 Towards a Distributed Implementation

In impementing AbU, we can basically follow two approaches. We can imple-
ment the calculus from scratch, dealing with all the problems related to a dis-
tributed infrastructure; or we can extend an existing distributed language with
an abstraction layer to support ECA rules and their event-driven behavior. The
latter approach can be less efficient, but more suitable for fast prototyping.

In any case, we have to deal with the intrinsic issues of distributed systems.
In particular, by the CAP theorem [23] we cannot have, at the same time, con-
sistency, availability and partition-tolerance. Hence, some compromises have to
be taken, depending on the application context. For instance, in a scenario with
low network traffic we can aim for correctness, implementing a robust, but slow,
communication protocol. Vice versa, when nodes exchange data at a high rate
(or when the network is not stable), communication should take very short time,
hence we may prefer to renounce to consistency in favour of eventual consistency.

For these reasons, a flexible and modular implementation is mandatory, where
modules can be implemented in different ways, depending on the application con-
text. Hence, we present a modular architecture suitable to implement AbU nodes
(see Fig. 5). A AbU node consists in a state (mapping resources to values), an
execution pool (a set of updates to execute) and a list of ECA rules (modeling
the node’s behavior). A ECA rules engine module is in charge of executing the
updates in the pool and to discover new rules to trigger, potentially on external

382 M. Miculan and M. Pasqua

nodes (distributed discovery). This module also implements the attribute-based
memory updates mechanism and deals with IoT inputs (from sensors) and out-
puts (to actuators), which are accessed by means of a dedicated interface. A
separate Device drivers module translates low-level IoT devices primitives to
high-level signals for the rule engine and vice versa. The Distribution module is
in charge of joining a cluster of AbU nodes and exchanging messages with them.
It embodies all distributed infrastructure-related aspects, that can be tuned to
meet the desired context-related requirements. Moreover, it provides the commu-
nication APIs needed by the rule engine to implement the (distributed) discovery
phase (and, in turn, attributed-based memory updates). For instance, the labels
� T and � T of the AbU semantics generate a broadcast communication.

In some respects, AbU is quite close to AbC, so we can borrow from one
of its implementation the mechanisms that can be easily adapted to AbU. In
particular, we can exploit the GoAt [1,24] library, in order to implement the
Distribution module. GoAt is written in Golang, so we can delegate the commu-
nication layer to a Go routine, encapsulating the send and receive primitives of
AbC and the cluster infrastructure, both provided by GoAt. Finally, the Device
drivers module can be built on top of GOBOT [25], a mature Go library for the
IoT ecosystem, with a great availability of IoT device drivers. In Fig. 5, we show
a diagram describing the structure of a AbU node (here, the Device drivers and
the Distribution modules can exploit GOBOT and GoAt, respectively). At the
time of writing, we are developing a prototype implementation for the AbU cal-
culus, written in Golang and following the modular architecture sketched above.
The Distribution module is now based on HashiCorp’s Memberlist [26], a popular
Go library for cluster membership and failures detection that uses a gossip-based
protocol. We plan to integrate the module with GoAt in the near future.

6 Conclusion

In this paper we have introduced AbU, a new calculus merging the simplicity of
ECA programming with attribute-based memory updates. This new time-coupled,
space-uncoupled interaction mechanism can be seen as the memory-based coun-
terpart of attribute-based communication hinged on message-passing, and fits
neatly within the ECA programming paradigm. We have shown how AbC com-
ponents can be encoded in AbU systems; this result is not meant to prove that
AbU subsumes AbC, but to highlight that it is possible to encode attribute-based
communication within the ECA rules programming paradigm. Furthermore, we
have provided a syntactic termination criterion for AbU systems, in order to
assure that a AbU system does not exhibit divergent behaviors due to some
cyclic interactions between nodes rules. Finally, we have discussed how the pro-
posed calculus can be implemented, in a fully-distributed and IoT-ready setting.

Future Work. The present work is the basis for several research directions. First,
we plan to encode in AbU a real-world ECA language like IRON (in particu-
lar, its core version presented in [15]), similarly to what we have done for AbC.

A Calculus for Attribute-Based Memory Updates 383

Then, we are interested in porting to AbU the verification techniques developed
for IRON and other ECA languages [27,30,31]. Efficient distributed implemen-
tations of AbU could be obtained by extending the RETE algorithm [12] with
the attribute-based memory updates mechanism. The latter can be implemented
using RPCs or message-passing, taking inspiration from the implementations of
AbC [1,21,24], as discussed in Sect. 5. Another interesting issue is distributed
runtime verification and monitoring, in order to detect violations at runtime of
given correctness properties, e.g., expressed in temporal logics like the μ-calculus
[28]. These would be useful, for instance, to extend (and refine) the termination
criterion presented in Sect. 3. Similarly, we can define syntactic criteria and cor-
responding verification mechanisms to guarantee confluence. Indeed, in some
practical IoT scenarios, it is important to ensure that execution order does not
impact the overall behavior (which is, basically, a sort of rule determinism).
Finally, we can think of defining suitable behavioural equivalences for AbU sys-
tems, e.g., based on bisimulations, to compare systems with their specifications.

References

1. Abd Alrahman, Y., De Nicola, R., Garbi, G.: GoAt: Attribute-based interaction
in Google Go. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018, Part III. LNCS,
vol. 11246, pp. 288–303. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03424-5 19

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based
communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 1

3. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus for collective-adaptive
systems and its behavioural theory. Inf. Comput. 268, 104457 (2019). https://
www.sciencedirect.com/science/article/pii/S0890540119300732

4. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collec-
tive adaptive systems by relying on attribute-based communication. Sci. Comput.
Program. 192, 102428 (2020). https://doi.org/10.1016/j.scico.2020.102428

5. Abd Alrahman, Y., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Proceedings of the 30th Annual ACM Sympo-
sium on Applied Computing, pp. 1840–1845. ACM, New York (2015). https://doi.
org/10.1145/2695664.2695668

6. Abd Alrahman, Y., Garbi, G.: A distributed API for coordinating AbC programs.
Int. J. Softw. Tools Technol. Transf. (2020). https://doi.org/10.1007/s10009-020-
00553-4

7. Abd Alrahman, Y., Perelli, G., Piterman, N.: Reconfigurable interaction for MAS
modelling. In: Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS 2020, pp. 7–15. International Founda-
tion for Autonomous Agents and Multiagent Systems, Richland (2020)

8. Aguilera, M.K., Ben-David, N., Calciu, I., Guerraoui, R., Petrank, E., Toueg, S.:
Passing messages while sharing memory. In: Proceedings of the 2018 ACM Sympo-
sium on Principles of Distributed Computing, PODC 2018, pp. 51–60. ACM, New
York (2018). https://doi.org/10.1145/3212734.3212741

9. Aguilera, M.K., Ben-David, N., Guerraoui, R., Marathe, V., Zablotchi, I.: The
impact of RDMA on agreement. In: Proceedings of the 2019 ACM Symposium on

https://doi.org/10.1007/978-3-030-03424-5_19
https://doi.org/10.1007/978-3-030-03424-5_19
https://doi.org/10.1007/978-3-319-39570-8_1
https://www.sciencedirect.com/science/article/pii/S0890540119300732
https://www.sciencedirect.com/science/article/pii/S0890540119300732
https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.1145/2695664.2695668
https://doi.org/10.1145/2695664.2695668
https://doi.org/10.1007/s10009-020-00553-4
https://doi.org/10.1007/s10009-020-00553-4
https://doi.org/10.1145/3212734.3212741

384 M. Miculan and M. Pasqua

Principles of Distributed Computing, PODC 2019, pp. 409–418. ACM, New York
(2019). https://doi.org/10.1145/3293611.3331601

10. Anderson, S., Bredeche, N., Eiben, A., Kampis, G., van Steen, M.: Adaptive col-
lective systems: herding black sheep (2013)

11. Balliu, M., Merro, M., Pasqua, M., Shcherbakov, M.: Friendly fire: Cross-app inter-
actions in IoT platforms. ACM Trans. Priv. Secur. 24(3) (2021). https://doi.org/
10.1145/3444963

12. Berstel, B.: Extending the RETE algorithm for event management. In: Proceedings
of 9th International Symposium on Temporal Representation and Reasoning, pp.
49–51. IEEE (2002)

13. Beyer, D., Stahlbauer, A.: BDD-based software verification. Int. J. Softw. Tools
Tech. Transf. 16(5), 507–518 (2014). https://doi.org/10.1007/s10009-014-0334-1

14. Cacciagrano, D.R., Culmone, R.: Formal semantics of an IoT-specific language. In:
32nd International Conference on Advanced Information Networking and Applica-
tions Workshops (WAINA), pp. 579–584 (2018). https://doi.org/10.1109/WAINA.
2018.00148

15. Cacciagrano, D.R., Culmone, R.: IRON: Reliable domain specific language for pro-
gramming IoT devices. Internet Things 9, 100020 (2020). https://doi.org/10.1016/
j.iot.2018.09.006

16. Cano, J., Delaval, G., Rutten, E.: Coordination of ECA rules by verification and
control. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459,
pp. 33–48. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43376-
8 3

17. Cano, J., Rutten, E., Delaval, G., Benazzouz, Y., Gurgen, L.: ECA rules for IoT
environment: A case study in safe design. In: Proceedings of the 8th Int. Conf.
on Self-Adaptive and Self-Organizing Systems Workshops (SASOW), pp. 116–121.
IEEE Computer Society, USA (2014). https://doi.org/10.1109/SASOW.2014.32

18. Carriero, N., Gelernter, D.: The S/Net’s Linda kernel (extended abstract). In:
Proceedings of the 10th ACM Symposium on Operating Systems Principles, SOSP
1985, p. 160. ACM, New York (1985). https://doi.org/10.1145/323647.323643

19. Corradini, F., Culmone, R., Mostarda, L., Tesei, L., Raimondi, F.: A constrained
ECA language supporting formal verification of WSNs. In: 2015 IEEE 29th Inter-
national Conference on Advanced Information Networking and Applications Work-
shops, pp. 187–192 (2015). https://doi.org/10.1109/WAINA.2015.109

20. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998). https://
doi.org/10.1109/32.685256

21. De Nicola, R., Duong, T., Loreti, M.: Provably correct implementation of the AbC
calculus. Sci. Comput. Programm. 202, 102567 (2021). http://www.sciencedirect.
com/science/article/pii/S0167642320301751

22. De Nicola, R., et al.: The SCEL language: Design, implementation, verification.
In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for
Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16310-9 1

23. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM SIGACT News 33(2), 51–59 (2002).
https://doi.org/10.1145/564585.564601

24. giulio-garbi.github.io: GoAt. https://giulio-garbi.github.io/goat/
25. gobot.io: GOBOT. https://gobot.io/
26. hashicorp.com: Memberlist. https://github.com/hashicorp/memberlist/

https://doi.org/10.1145/3293611.3331601
https://doi.org/10.1145/3444963
https://doi.org/10.1145/3444963
https://doi.org/10.1007/s10009-014-0334-1
https://doi.org/10.1109/WAINA.2018.00148
https://doi.org/10.1109/WAINA.2018.00148
https://doi.org/10.1016/j.iot.2018.09.006
https://doi.org/10.1016/j.iot.2018.09.006
https://doi.org/10.1007/978-3-662-43376-8_3
https://doi.org/10.1007/978-3-662-43376-8_3
https://doi.org/10.1109/SASOW.2014.32
https://doi.org/10.1145/323647.323643
https://doi.org/10.1109/WAINA.2015.109
https://doi.org/10.1109/32.685256
https://doi.org/10.1109/32.685256
http://www.sciencedirect.com/science/article/pii/S0167642320301751
http://www.sciencedirect.com/science/article/pii/S0167642320301751
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1145/564585.564601
https://giulio-garbi.github.io/goat/
https://gobot.io/
https://github.com/hashicorp/memberlist/

A Calculus for Attribute-Based Memory Updates 385

27. Jin, X., Lembachar, Y., Ciardo, G.: Symbolic verification of ECA rules. In: Moldt,
D. (ed.) Proceedings of the International Workshop on Petri Nets and Software
Engineering (PNSE 2013), Milano, Italy, 24–25 June 2013, vol. 989, pp. 41–59.
CEUR-WS.org (2013). http://ceur-ws.org/Vol-989/paper17.pdf

28. Miculan, M.: On the formalization of the modal µ-calculus in the calculus of induc-
tive constructions. Inf. Comput. 164(1), 199–231 (2001). https://doi.org/10.1006/
inco.2000.2902

29. Miculan, M., Pasqua, M.: A Calculus for Attribute-based Memory Updates (sup-
plementary material), July 2021. https://doi.org/10.5281/zenodo.5057165

30. Vannucchi, C., et al.: vIRONy: A tool for analysis and verification of ECA rules
in intelligent environments. In: 2017 International Conference on Intelligent Envi-
ronments, IE 2017, Seoul, Korea (South), 21–25 August 2017, pp. 92–99. IEEE
(2017). https://doi.org/10.1109/IE.2017.32

31. Vannucchi, C., et al.: Symbolic verification of event-condition-action rules in intel-
ligent environments. J. Reliab. Intell. Environ. 3(2), 117–130 (2017). https://doi.
org/10.1007/s40860-017-0036-z

32. Wooldridge, M.: Reasoning About Rational Agents. Intelligent Robotics and
Autonomous Agents. The MIT Press, Cambridge/London (2000)

http://ceur-ws.org/Vol-989/paper17.pdf
https://doi.org/10.1006/inco.2000.2902
https://doi.org/10.1006/inco.2000.2902
https://doi.org/10.5281/zenodo.5057165
https://doi.org/10.1109/IE.2017.32
https://doi.org/10.1007/s40860-017-0036-z
https://doi.org/10.1007/s40860-017-0036-z

A Proof Method for Local Sufficient
Completeness of Term Rewriting Systems

Tomoki Shiraishi1, Kentaro Kikuchi2(B), and Takahito Aoto1

1 Niigata University, Niigata, Japan
shiraishi@nue.ie.niigata-u.ac.jp, aoto@ie.niigata-u.ac.jp

2 Tohoku University, Sendai, Japan
kentaro.kikuchi@riec.tohoku.ac.jp

Abstract. A term rewriting system (TRS) is said to be sufficiently com-
plete when each function yields some value for any input. In this paper,
we present a proof method for local sufficient completeness of TRSs,
which is a generalised notion of sufficient completeness and is useful for
proving inductive theorems of non-terminating TRSs. The proof method
is based on a sufficient condition for local sufficient completeness of TRSs
that consist of functions on natural numbers and (possibly infinite) lists
of natural numbers. We also make a comparison between the proof abili-
ties of the methods by the sufficient condition and by a derivation system
introduced in previous work.

1 Introduction

Term rewriting is a computational model based on equational logic. A term
rewriting system (TRS) is said to be sufficiently complete when each function
yields as a result of computation some value for any input, where a value means
a term consisting only of constructors. Sufficient completeness has an important
role in automated inductive theorem proving of TRSs. One of the sufficient con-
ditions of sufficient completeness of a TRS is that it is terminating (strongly
normalising) and quasi-reducible. For terminating TRSs, various decision proce-
dures of sufficient completeness have been proposed [2,9,11].

On the other hand, little is known about automated proof methods for
sufficient completeness of non-terminating TRSs. Besides, in the case of non-
terminating TRSs, it is appropriate to consider not all ground terms as the
starting points of computations, but only terms of specific form, specific sort,
etc. The property with such modifications has been introduced in [10], called
local sufficient completeness. In fact, a framework for proving inductive theo-
rems based on local sufficient completeness has been proposed in [10].

In this paper, we present a proof method for local sufficient completeness that
is applicable to non-terminating TRSs. Specifically, we give a sufficient condi-
tion for local sufficient completeness of TRSs that consist of functions on natural
numbers and (possibly infinite) lists of natural numbers. Using this sufficient con-
dition, we can prove local sufficient completeness for various functions including
c© Springer Nature Switzerland AG 2021
A. Cerone and P. C. Ölveczky (Eds.): ICTAC 2021, LNCS 12819, pp. 386–404, 2021.
https://doi.org/10.1007/978-3-030-85315-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85315-0_22&domain=pdf
https://doi.org/10.1007/978-3-030-85315-0_22

A Proof Method for Local Sufficient Completeness 387

ones for which the property is difficult to show by means of the derivation system
introduced in [10].

One of the difficulties in proving local sufficient completeness comes from
the fact that the property is not closed under the subterm relation, in con-
trast to the cases of termination and usual sufficient completeness on all ground
terms. As a consequence, the measure for a proof by induction is not necessarily
compatible with the subterm relation. To cope with this difficulty, our suffi-
cient condition uses a partition of function symbols into several kinds: ones for
which the property holds, ones for which it does not hold, and ones for which
it holds by a hypothesis. Other ingredients of our proof of the correctness of
the sufficient condition include novel notions of ω-sufficient completeness and
ω-quasi-reducibility; the latter plays such a role as quasi-reducibility does in the
case of terminating TRSs.

In this paper, we restrict our attention to TRSs that are defined on natural
numbers and lists of natural numbers. They are representative examples of data
types defined inductively and coinductively, and in this setting we analyse how
to prove local sufficient completeness of non-terminating TRSs.

Related Work. The notion of sufficient completeness was originally introduced
in [6,7]. Since then, numerous works have treated the property in the fields of
algebraic specification and term rewriting. In the literature, sufficient complete-
ness has often been defined not w.r.t. reduction but w.r.t. conversion. Sufficient
completeness w.r.t. reduction, as in the present paper, was introduced in [11].
In most cases, efforts have been devoted to TRSs consisting of those functions
for which computations are always terminating.

In [15], Toyama studied sufficient completeness w.r.t. reduction in the light
of a more general notion of ‘reachability’. He also gave a proof method for reach-
ability, and applied it to some examples of left-linear non-terminating TRSs.
The method was applied not to local sufficient completeness in general, but to
special cases of ground terms in which function symbols are restricted. Some of
the conditions for applying the method are not suitable to automation.

In [4,5], Gnaedig and Kirchner studied sufficient completeness w.r.t. reduc-
tion (called C-reducibility) of possibly non-terminating TRSs. However, they
studied only usual sufficient completeness, and did not address any kind of local
sufficient completeness. Accordingly, their proof method is essentially different
from the case of local sufficient completeness (as remarked above).

In [13], Nakamura et al. studied related notions of sort reducible operation
symbols and correctness on a set of sorts in the frame work of context-sensitive
rewriting [12]. However, they did not introduce a corresponding notion of local
sufficient completeness and did not relate it to inductive theorem proving.

Organisation of the Paper. The paper is organised as follows. In Sect. 2, we
explain basic notions and notations of term rewriting. In Sect. 3, we present a
sufficient condition for local sufficient completeness. In Sect. 4, we prove the cor-
rectness of the sufficient condition. In Sect. 5, we give some examples of applying
the sufficient condition and discuss applicability of the condition. In Sect. 6, we
compare our method to previous work, and conclude in Sect. 7.

388 T. Shiraishi et al.

2 Preliminaries

In this section, we introduce some notations and notions from the field of term
rewriting. For detailed information about term rewriting, see, e.g. [1,14].

A many-sorted signature is given by a non-empty set S of sorts and a set F of
function symbols; each f ∈ F is equipped with its sort declaration f : α1 × · · ·×
αn → α0 where α0, . . . , αn ∈ S (n ≥ 0). We also use f : α1 × · · · × αn → α0 to
mean that f is equipped with the sort declaration, or to denote such a function
symbol f itself. We use V to denote the set of variables where F ∩ V = ∅ and
each x ∈ V has a unique sort α ∈ S. The set of variables with sort α is denoted
by Vα. Then the set Tα(F ,V) of terms of sort α is defined inductively as follows:

1. If x ∈ Vα then x ∈ Tα(F ,V).
2. If f ∈ F , f : α1 × · · · × αn → α and ti ∈ Tαi(F ,V) for each i (1 ≤ i ≤ n)

then f(t1, . . . , tn) ∈ Tα(F ,V).

We define T (F ,V) =
⋃

α∈S Tα(F ,V), and sort(t) = α for each t ∈ Tα(F ,V).
For a term t = f(t1, . . . , tn), its root symbol f is denoted by root(t). The

sets of function symbols and variables in a term t are denoted by F(t) and V (t),
respectively. A term t is ground if V (t) = ∅; the set of ground terms is denoted
by T (F). A term t is linear if each variable occurs at most once in t.

Positions are finite sequences of positive integers. The empty sequence is
denoted by ε. The set of positions in a term t, denoted by Pos(t), is defined
as follows: Pos(x) = {ε}; Pos(f(t1, . . . , tn)) =

⋃
i{ip | p ∈ Pos(ti)} ∪ {ε}. The

subterm of t at a position p ∈ Pos(t) is written as t|p. We use s� t to mean that
s is a subterm of t. The depth of a position p is the length of p, denoted by |p|.
The height of t, denoted by height(t), is defined as max{|p| | p ∈ Pos(t)}.

A context is a term C ∈ T (F ∪{�α | α ∈ S},V) where F ∩{�α | α ∈ S} = ∅
and the special symbol �α, called a hole, is a term of sort α. We write � for �α

when the sort is understood, and also write {�} for the set {�α | α ∈ S}. For a
context C, the holes are assumed not to be included in F(C). A context C with
only one hole is denoted by C[], and C[t] denotes the term obtained by filling
the hole with a term t of the same sort.

A substitution is a mapping θ : V → T (F ,V) such that sort(x) = sort(θ(x))
for every x ∈ V , and dom(θ) = {x ∈ V | θ(x) 	= x} is finite. A substitution θ
is ground if θ(x) ∈ T (F) for every x ∈ dom(θ). The term obtained by applying
a substitution θ to a term t is written as tθ. If θg is a ground substitution and
V (t) ⊆ dom(θg), the ground term tθg is called a ground instance of t.

A rewrite rule, written as l → r, is an ordered pair of terms l and r such that
l /∈ V , V (r) ⊆ V (l) and sort(l) = sort(r). A term rewriting system (TRS, for
short) is a finite set of rewrite rules. Let R be a TRS . The binary relation →R
on T (F ,V) is defined by s →R t iff s = C[lθ] and t = C[rθ] for some l → r ∈ R,
some context C[] and some substitution θ. The reflexive transitive closure of
→R is denoted by ∗→R. A term s is in normal form if s →R t for no term t. The
set of terms in normal form is denoted by NF (R).

A TRS R is terminating if there exists no infinite sequence t0 →R t1 →R · · · .
Let R1 and R2 be TRSs. The binary relation →R1/R2 on T (F ,V) is defined by

A Proof Method for Local Sufficient Completeness 389

→R1/R2 = ∗→R2◦→R1◦ ∗→R2 . We say that R1 is relatively terminating over R2 if
there exists no infinite sequence t0 →R1/R2 t1 →R1/R2 · · · . Note that it disallows
infinite applications of →R1 . We use SN (R1/R2) to denote that R1 is relatively
terminating over R2. The set of terms s such that s →R1/R2 t for no term t is
denoted by NF (R1/R2).

Let R be a TRS. The set D of defined symbols is given by D = {root(l) | l →
r ∈ R}, and the set C of constructors is given by C = F\D. Terms in T (C,V)
are called constructor terms, and terms in T (C) are called ground constructor
terms. For R′ ⊆ R, we define DR′ = {root(l) | l → r ∈ R′}.

Next we define the notion of sufficient completeness w.r.t. reduction.

Definition 1 (Sufficient completeness). A TRS R is (globally) sufficiently
complete if for every ground term tg ∈ T (F), there exists a ground constructor
term sg ∈ T (C) such that tg

∗→R sg.

A TRS R is said to be quasi-reducible if f(t1, . . . , tn) /∈ NF (R) for every
f(t1, . . . , tn) ∈ T (F) with f ∈ D and t1, . . . , tn ∈ T (C). The next proposi-
tion provides a criterion of sufficient completeness of R. (For its proof, see, e.g.
Proposition 2.4 of [10]).

Proposition 1. Let R be a terminating TRS. Then, R is sufficiently complete
if and only if R is quasi-reducible.

3 A Sufficient Condition for Local Sufficient
Completeness

In this section, we propose a sufficient condition under which a given TRS is
locally sufficiently complete. The proposed condition consists of conditions on
the signature (Definition 3) and on the rewrite rules (Definition 9).

First, we give a definition of local sufficient completeness [10].

Definition 2 (Local sufficient completeness). Let R be a TRS, and let
T ⊆ T (F) and t ∈ T (F ,V). Then LSC (T, t) denotes that for every ground
instance tθg of t with θg : V → T , there exists a ground constructor term
sg ∈ T (C) such that tθg

∗→R sg. We say that R is locally sufficiently com-
plete for t if LSC (T (F), t), and that R is locally sufficiently complete for f ∈ F
if LSC (T (F), f(x1, . . . , xn)) where x1, . . . , xn are distinct variables.

The next example illustrates how different the notions of global and local
sufficient completeness are.

Example 1. Consider a signature with S = {N,L} and

F =

⎧
⎪⎪⎨

⎪⎪⎩

sum : N × L → N, + : N × N → N,
nat : L, inc : L → L,
0 : N, [] : L,
s : N → N, :: : N × L → L

⎫
⎪⎪⎬

⎪⎪⎭
.

390 T. Shiraishi et al.

Let R be the following TRS where sum(n, ts) computes the summation of the
first n elements of a (possibly infinite) list ts of natural numbers:

R =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sum(0, xs) → 0
sum(s(x), []) → 0
sum(s(x), y :: ys) → +(y, sum(x, ys))
nat → 0 :: inc(nat)
inc([]) → []
inc(x :: xs) → s(x) :: inc(xs)
+(0, y) → y
+(s(x), y) → s(+(x, y))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

R is not terminating since nat →R 0 :: inc(nat) ∗→R 0 :: s(0) ::
inc(inc(nat)) ∗→R · · · . R is not globally sufficiently complete either since u /∈ T (C)
for any u with nat ∗→R u. However, it can be shown that R is locally sufficiently
complete for sum (cf. Examples 4 and 5). �

Henceforth, we fix a TRS R to discuss its local sufficient completeness. We
also fix a function symbol for which local sufficient completeness is expected to
be proved, like sum of Example 1, and denote it by ftar (representing the target
function symbol).

Definition 3 (Conditions on the signature). We assume the following con-
ditions S1–S4 on the signature of R.

S1. S = {N,L}, where N denotes the sort of natural numbers, and L denotes
the sort of lists of natural numbers. The sets N and L of function symbols
are defined by N = {f ∈ F | f : α1×· · ·×αn → N, α1, . . . , αn ∈ S, n ≥ 0}
and L = {f ∈ F | f : α1 × · · · × αn → L, α1, . . . , αn ∈ S, n ≥ 0}. The sets
of defined symbols in N and L (i.e. the sets N ∩ D and L ∩ D) are denoted
by ND and LD, respectively.

S2. The set C = F\D of constructors is given by

C =
{
0 : N, [] : L,
s : N → N, :: : N × L → L

}

.

S3. (a) The sets ND and LD are partitioned as follows: ND = NG � NH and
LD = LG � LH � LB. (We use � for the disjoint union).

(b) The set G of function symbols is defined by G = NG ∪ LG ∪ C.
(c) The set H of defined symbols is defined by H = NH ∪LH, and it satisfies

ftar ∈ H.
S4. For every g ∈ NG , if g : α1 × · · · × αn → N then α1 = · · · = αn = N .

NG and LG denote sets of defined symbols for which local sufficient com-
pleteness (on T (C)) hold, like + and inc of Example 1, while LB denotes a set
of defined symbols for which local sufficient completeness does not hold, like
nat of Example 1. The set H contains ftar and other defined symbols for which

A Proof Method for Local Sufficient Completeness 391

local sufficient completeness is supposed to hold when applying the sufficient
condition recursively.

To prove local sufficient completeness for ftar , which can have an arbitrary
sort declaration with N and L, we basically assume that computation on N is
always possible. The condition S4 of Definition 3, which might seem to be strict,
requires that every function symbol in ND whose argument has sort L must be
in NH. For more discussions on this restriction, see Sect. 5.

Next we introduce some key notions for proving the correctness of the suffi-
cient condition. The notion of ω-sufficient completeness is a very weak form of
sufficient completeness which only requires reachability to ground terms whose
root symbols are constructors.

Definition 4 (ω-sufficient completeness). Let R′ ⊆ R and T ⊆ T (F). Then
R′ is ω-sufficiently complete on T , denoted by SCω(T,R′), if for every ground
term tg ∈ T , there exists a ground term sg ∈ T such that tg

∗→R′ sg and
root(sg) ∈ C.

To define the notion of ω-quasi-reducibility, we give two auxiliary definitions.

Definition 5 (Covered with constructors to depth n). Let t ∈ T (F ,V).
We say that t is covered with constructors to depth n if for every position p ∈
Pos(t) with |p| ≤ n, root(t|p) ∈ C.

We define a function that gives the maximum height of the arguments of
rewrite rules.

Definition 6 (hc). Let R′ ⊆ R. We define hc(R′) by hc(R′) = max{height(li) |
l → r ∈ R′, l = f(l1, . . . , ln)}.

Intuitively, ω-quasi-reducibility expresses that each function application is
reducible if the arguments are covered with constructors to some depth.

Definition 7 (ω-quasi-reducibility). Let R′ ⊆ R. We say that R′ is ω-quasi-
reducible, denoted by QRω(R′), if the following holds:

For every f(t1, . . . , tn) ∈ T (F ,V) with f ∈ DR′ , if either hc(R′) = 0 or
each ti (1 ≤ i ≤ n) is covered with constructors to depth hc(R′) − 1, then
f(t1, . . . , tn) /∈ NF (R′).

Example 2. Consider the following TRS Rsum which is a subset of the TRS R
of Example 1:

Rsum =

⎧
⎨

⎩

sum(0, xs) → 0
sum(s(x), []) → 0
sum(s(x), y :: ys) → +(y, sum(x, ys))

⎫
⎬

⎭
.

It can be seen that Rsum is ω-quasi-reducible. Indeed, hc(Rsum) = 1, and for each
t1, t2 covered with constructors to depth hc(Rsum)−1 = 0, we have sum(t1, t2) /∈
NF (Rsum) because none of sum(0, []), sum(s(x), []), sum(0, y :: ys) and sum(s(x),
y :: ys) is in normal form. �

392 T. Shiraishi et al.

Next we introduce a special kind of contexts, which are used in the conditions
on the rewrite rules. The idea is that, assuming local sufficient completeness
for the defined symbols in H, the problem turns into how the reducibility to
a ground constructor term is affected by the remaining part that consists of
variables (which may be instantiated by arbitrary ground terms) and function
symbols except those in H. Based on this observation, we introduce the function
ConH̄ which assigns a special context to each term.

Definition 8 (ConH̄). For each t ∈ T (F ,V), we define ConH̄(t) as follows:

ConH̄(t) =

⎧
⎪⎨

⎪⎩

x if t = x ∈ V ,
f(ConH̄(t1), . . . ,ConH̄(tn)) if t = f(t1, . . . , tn) and f /∈ H,
� if t = f(t1, . . . , tn) and f ∈ H.

Example 3. Let +(y,×(s(0), x)) ∈ T (F ,V) and H = {×}. Then we have

Con ¯{×}(+(y,×(s(0), x))) = +(Con ¯{×}(y),Con ¯{×}(×(s(0), x)))
= +(y,�).

�
We show some lemmas on ConH̄.

Lemma 1. For every t ∈ T (F ,V), H ∩ F(ConH̄(t)) = ∅.
Proof. By induction on the structure of t. �
Lemma 2. If H ∩ F(t) = ∅ then ConH̄(t) = t.

Proof. By induction on the structure of t. �
Lemma 3. Let θ be a substitution. Suppose that θc is a substitution defined by
θc(x) = ConH̄(xθ). Then, for every t ∈ T (F ,V), ConH̄(tθ) = ConH̄(t)θc.

Proof. By induction on the structure of t.

1. t = x ∈ V . Then by the definition of ConH̄, we have ConH̄(x) = x. On the
other hand, by the definition of θc, we have xθc = ConH̄(xθ). Hence we have
ConH̄(xθ) = ConH̄(x)θc.

2. t = f(t1, . . . , tn) and f /∈ H. Then we have

ConH̄(f(t1, . . . , tn)θ) = ConH̄(f(t1θ, . . . , tnθ))
= f(ConH̄(t1θ), . . . ,ConH̄(tnθ)) (by def. of ConH̄)
= f(ConH̄(t1)θc, . . . ,ConH̄(tn)θc) (by ind. hyp.)
= f(ConH̄(t1), . . . ,ConH̄(tn))θc

= ConH̄(f(t1, . . . , tn))θc. (by def. of ConH̄)

3. t = f(t1, . . . , tn) and f ∈ H. Then by the definition of ConH̄, we have
ConH̄(tθ) = � = �θc = ConH̄(t)θc. �

A Proof Method for Local Sufficient Completeness 393

Now we give the conditions on the rewrite rules. The necessity of these con-
ditions as well as the conditions of Definition 3 are discussed in Sect. 5.

Definition 9 (Conditions on the rewrite rules). Let R be partitioned into
the following three sets Rftar

, RN and RL of rewrite rules:

Rftar
=

{
l → r ∈ R | root(l) = ftar

}
,

RN =
{

l → r ∈ R | sort(l) = N, root(l) 	= ftar
}

,

RL =
{

l → r ∈ R | sort(l) = L, root(l) 	= ftar
}

.

In what follows, we denote the set RN ∪ RL by RN,L. We assume the following
conditions R1–R6 on the rewrite rules of R.

R1. SN (Rftar
/RN,L).

R2. SCω(T (F \ {ftar}),RN,L).
R3. QRω(Rftar

).
R4. For every g ∈ G, LSC (T (C), g(x1, . . . , xn)).
R5. For every f ∈ H \ {ftar}, LSC (T (F \ {ftar}), f(x1, . . . , xn)).
R6. For every l → r ∈ R, the following hold.

(a) If l → r ∈ Rftar
then F(ConH̄(r)) ⊆ G and V (ConH̄(r)) ⊆ VN .

(b) If l → r ∈ RN,L and root(l) ∈ G ∪ H then
F(ConH̄(r)) ⊆ G and V (ConH̄(r)) ∩ VL ⊆ V (ConH̄(l)).

Now the correctness of our sufficient condition for local sufficient complete-
ness is stated as follows.

Theorem 1. Suppose that R satisfies the conditions on the signature (Defini-
tion 3) and the conditions on the rewrite rules (Definition 9). Then, R is locally
sufficiently complete for ftar .

A proof of this theorem is given in the next section.

Example 4. The TRS R of Example 1 can be partitioned into the following three
sets of rewrite rules:

Rsum =

⎧
⎨

⎩

sum(0, xs) → 0
sum(s(x), []) → 0
sum(s(x), y :: ys) → +(y, sum(x, ys))

⎫
⎬

⎭
,

RN =
{

+(0, y) → y
+(s(x), y) → s(+(x, y))

}

,

RL =

⎧
⎨

⎩

nat → 0 :: inc(nat)
inc([]) → []
inc(x :: xs) → s(x) :: inc(xs)

⎫
⎬

⎭
.

We check that the conditions R1–R6 of Definition 9 are satisfied. Let ftar = sum,
H = {sum} and G = {+, inc}∪C where C = {0, s, [], :: }. The condition R1 can be

394 T. Shiraishi et al.

shown by a proof method for relative termination [3] (cf. Lemma 5 of [8]). The
condition R2 can be proved by induction on the ground terms in T (F \ {sum}).
The condition R3 was seen in Example 2. The condition R4 holds by termination
and quasi-reducibility of the rewrite rules for + and inc. The condition R5 holds
since H \ {sum} = ∅. The condition R6 can be checked according to the forms
of the rewrite rules. �

4 Correctness of the Sufficient Condition

In this section, we give a proof of Theorem 1. Throughout this section, we sup-
pose that the TRS R satisfies the conditions on the signature (Definition 3) and
the conditions on the rewrite rules (Definition 9).

A brief outline of the proof is as follows. First we aim to find, for each ground
term ftar (t1, . . . , tn), a ground term sk such that ftar (t1, . . . , tn) = s0

∗→R sk

and ftar /∈ F(sk). This is achieved by the conditions R1–R3. Then we show that
the property ConH̄(si) ∈ T (G ∪ {�}) is preserved during the reduction steps
s0

∗→R sk. Finally we show sk
∗→R ug for some ground constructor term ug.

In the following, we show a series of lemmas. The first two lemmas are con-
sequences of ω-sufficient completeness and ω-quasi-reducibility.

Lemma 4. Let n be an arbitrary natural number. Then, for every ground term
tg ∈ T (F) with ftar /∈ F(tg), there exists a ground term sg ∈ T (F) such that
tg

∗→RN,L
sg and sg is covered with constructors to depth n.

Proof. By induction on n.

– n = 0. Then it suffices to show that there exists a ground term sg ∈ T (F)
such that tg

∗→RN,L
sg and root(sg) ∈ C. This holds since we have SCω(T (F \

{ftar}),RN,L) by the condition R2 of Definition 9.
– Suppose that the claim holds for n−1. From SCω(T (F \{ftar}),RN,L), there

exist f ∈ C and u1, . . . , um ∈ T (F\{ftar}) such that tg
∗→RN,L

f(u1, . . . , um).
By the induction hypothesis, for each i (1 ≤ i ≤ m), there exists ûi ∈ T (F)
such that ui

∗→RN,L
ûi and ûi is covered with constructors to depth n − 1.

Hence we have tg
∗→RN,L

f(u1, . . . , um) ∗→RN,L
f(û1, . . . , ûm) ∈ T (F) and

f(û1, . . . , ûm) is covered with constructors to depth n. �
Lemma 5. Let tg ∈ T (F) with tg ∈ NF (Rftar

/RN,L). Then, for every u � tg,
root(u) 	= ftar .

Proof. Suppose that there exists u such that u � tg and root(u) = ftar , and
take a minimal such u = ftar (u1, . . . , un). Then by the minimality, ftar /∈⋃

1≤i≤n F(ui). By Lemma 4, for each i (1 ≤ i ≤ n), there exists ûi such
that ui

∗→RN,L
ûi and ûi is covered with constructors to depth hc(Rftar

) − 1
(or we set ûi = ui when hc(Rftar

) = 0). Hence ftar (u1, . . . , un) ∗→RN,L

ftar (û1, . . . , ûn) /∈ NF (Rftar
), since QRω(Rftar

) by the condition R3 of Def-
inition 9. Thus for the context C[] with tg = C[u], we have tg =
C[ftar (u1, . . . , un)] ∗→RN,L

C[ftar (û1, . . . , ûn)] →Rftar
s for some s. This con-

tradicts tg ∈ NF (Rftar
/RN,L). �

A Proof Method for Local Sufficient Completeness 395

Next we show some properties on ConH̄(t). The following is about the case
where the sort of t is N .

Lemma 6. Let tg ∈ T (F) with sort(tg) = N . Then, ConH̄(tg) ∈ T (G ∪ {�}).

Proof. By induction on the structure of tg.

1. tg = x ∈ V . This case is impossible since tg ∈ T (F).
2. tg = f(t1, . . . , tn).

(a) f ∈ C(⊆ G). If f = 0, i.e. tg = 0, then ConH̄(tg) = 0 ∈ T (G ∪{�}). Let us
consider the case f = s. Let tg = s(t1). Then sort(t1) = N and t1 ∈ T (F)
since tg ∈ T (F). So by the induction hypothesis, ConH̄(t1) ∈ T (G∪{�}).
Hence we have ConH̄(tg) = ConH̄(s(t1)) = s(ConH̄(t1)) ∈ T (G ∪ {�}).

(b) f ∈ NG(⊆ G). By the condition S4 of Definition 3, we have sort(ti) = N
for each i (1 ≤ i ≤ n). Also, we have ti ∈ T (F) since tg ∈ T (F). So by the
induction hypothesis, ConH̄(ti) ∈ T (G∪{�}). Hence we have ConH̄(tg) =
ConH̄(f(t1, . . . , tn)) = f(ConH̄(t1), . . . ,ConH̄(tn)) ∈ T (G ∪ {�}).

(c) f ∈ NH(⊆ H). Then we have ConH̄(f(t1, . . . , tn)) = � ∈ T (G ∪ {�}). �
A key lemma for proving the theorem is Lemma 9, which states that the

property ConH̄(tg) ∈ T (G ∪ {�}) is preserved under reduction. Before proving
the lemma, we show two auxiliary lemmas.

Lemma 7. Let r ∈ T (F ,V) with F(ConH̄(r)) ⊆ G and V (ConH̄(r)) ⊆ VN .
Then, for every ground instance rθg , ConH̄(rθg) ∈ T (G ∪ {�}).

Proof. By induction on the structure of r.

1. r = x ∈ V . By assumption, V (ConH̄(r)) ⊆ VN , so sort(x) = N . Then for
every ground instance xθg , sort(xθg) = N . Hence by Lemma 6, ConH̄(xθg) ∈
T (G ∪ {�}).

2. r = f(r1, . . . , rn) and f /∈ H. Then ConH̄(r) = f(ConH̄(r1), . . . ,ConH̄(rn)).
Since F(ConH̄(r)) ⊆ G, we have f ∈ G and F(ConH̄(ri)) ⊆ G for each i (1 ≤
i ≤ n). Also, since V (ConH̄(r)) ⊆ VN , we have V (ConH̄(ri)) ⊆ VN for each
i (1 ≤ i ≤ n). Hence by the induction hypothesis, for every ground instance
riθg , we have ConH̄(riθg) ∈ T (G ∪ {�}). Thus for every ground instance rθg ,
ConH̄(rθg) = ConH̄(f(r1θg , . . . , rnθg)) = f(ConH̄(r1θg), . . . ,ConH̄(rnθg)) ∈
T (G ∪ {�}).

3. r = f(r1, . . . , rn) and f ∈ H. Then ConH̄(rθg) = ConH̄(f(r1θg , . . . , rnθg)) =
� ∈ T (G ∪ {�}). �

Lemma 8. Let l → r ∈ RN,L. Then, for every ground instances lθg and rθg , if
ConH̄(lθg) ∈ T (G ∪ {�}) then ConH̄(rθg) ∈ T (G ∪ {�}).

Proof. Suppose ConH̄(lθg) ∈ T (G ∪ {�}). Then, if root(l) /∈ H then root(l) =
root(ConH̄(lθg)) ∈ G. Hence root(l) ∈ H ∪ G, and so by the condition R6(b) of
Definition 9, we have

(1) F(ConH̄(r)) ⊆ G, and

396 T. Shiraishi et al.

(2) V (ConH̄(r)) ∩ VL ⊆ V (ConH̄(l)).

Now let θc be a substitution defined by θc(x) = ConH̄(xθg). Then by Lemma 3,
we have ConH̄(lθg) = ConH̄(l)θc and ConH̄(rθg) = ConH̄(r)θc. Since ConH̄(lθg)
∈ T (G ∪ {�}), we have ConH̄(l)θc ∈ T (G ∪ {�}). Hence θc(x) ∈ T (G ∪ {�}) for
every x ∈ V (ConH̄(l)). From this and (2) above, we have θc(x) ∈ T (G ∪ {�})
for every x ∈ V (ConH̄(r)) ∩ VL. On the other hand, by Lemma 6, we have
θc(x) = ConH̄(xθg) ∈ T (G ∪ {�}) for every x ∈ V (ConH̄(r)) ∩ VN . From these
and (1) above, we have ConH̄(rθg) = ConH̄(r)θc ∈ T (G ∪ {�}). �

Now we prove the announced lemma.

Lemma 9. Let sg, tg ∈ T (F) with sg →R tg. Then, ConH̄(sg) ∈ T (G ∪ {�})
implies ConH̄(tg) ∈ T (G ∪ {�}).

Proof. We show that for every l → r ∈ R, every context C[], and every ground
instances lθg and rθg , if ConH̄(C[lθg]) ∈ T (G ∪{�}) then ConH̄(C[rθg]) ∈ T (G ∪
{�}). We prove this by induction on C[].

1. C[] = �. Suppose ConH̄(lθg) ∈ T (G ∪ {�}). We distinguish two cases.
(a) l → r ∈ Rftar

. Then root(lθg) = ftar , and so ConH̄(lθg) = �. Hence by
Lemma 7 and the condition R6(a) of Definition 9, we have ConH̄(rθg) ∈
T (G ∪ {�}).

(b) l → r ∈ RN,L. Then by Lemma 8, we have ConH̄(rθg) ∈ T (G ∪ {�}).
2. C[] = f(t1, . . . , C ′[], . . . , tn) and f /∈ H. Suppose ConH̄(C[lθg]) ∈ T (G∪{�}).

Since

ConH̄(C[lθg]) = ConH̄(f(t1, . . . , C ′[lθg], . . . , tn))
= f(ConH̄(t1), . . . ,ConH̄(C ′[lθg]), . . . ,ConH̄(tn)),

we have f ∈ G, ConH̄(C ′[lθg]) ∈ T (G ∪ {�}) and ConH̄(ti) ∈ T (G ∪ {�})
for each i (1 ≤ i ≤ n). So by the induction hypothesis, ConH̄(C ′[rθg]) ∈
T (G ∪ {�}). Hence we have

ConH̄(C[rθg]) = ConH̄(f(t1, . . . , C ′[rθg], . . . , tn))
= f(ConH̄(t1), . . . ,ConH̄(C ′[rθg]), . . . ,ConH̄(tn)))
∈ T (G ∪ {�}).

3. C[] = f(t1, . . . , C ′[], . . . , tn) and f ∈ H. Then we have ConH̄(C[rθg]) =
ConH̄(f(t1, . . . , C ′[rθg], . . . , tn)) = � ∈ T (G ∪ {�}). �
The next lemma shows that every ground term without ftar has a nice prop-

erty.

Lemma 10. Let sg ∈ T (F) with ftar /∈ F(sg) and ConH̄(sg) ∈ T (G ∪ {�}).
Then, there exists a ground constructor term ug ∈ T (C) such that sg

∗→R ug.

Proof. By induction on the structure of sg.

A Proof Method for Local Sufficient Completeness 397

1. sg = x ∈ V . This case is impossible since sg ∈ T (F).
2. sg = f(s1, . . . , sn) and f /∈ H. Then we have ConH̄(sg) = f(ConH̄(s1), . . . ,

ConH̄(sn)). Since ConH̄(sg) ∈ T (G ∪ {�}), we have f ∈ G and ConH̄(si) ∈
T (G ∪ {�}) for each i (1 ≤ i ≤ n). Also, since ftar /∈ F(sg), we have ftar /∈
ConH̄(si) for each i (1 ≤ i ≤ n). Hence by the induction hypothesis, for
each i, there exists ŝi ∈ T (C) such that si

∗→R ŝi. Now by the condition
R4 of Definition 9, we have LSC (T (C), f(x1, . . . , xn)). Hence we have sg =
f(s1, . . . , sn) ∗→R f(ŝ1, . . . , ŝn) ∗→R ug for some ug ∈ T (C).

3. sg = f(s1, . . . , sn) and f ∈ H. Since sg ∈ T (F) and ftar /∈ F(sg), we have
f ∈ H \ {ftar} and s1, . . . , sn ∈ T (F \ {ftar}). Now by the condition R5
of Definition 9, we have LSC (T (F \ {ftar}), f(x1, . . . , xn)). Hence we have
sg = f(s1, . . . , sn) ∗→R ug for some ug ∈ T (C). �
Now we are ready to prove the theorem on the correctness of our sufficient

condition for local sufficient completeness.

Proof (of Theorem 1). It suffices to show that for every ftar (t1, . . . , tn) ∈ T (F),
there exists a ground constructor term ug ∈ T (C) such that ftar (t1, . . . , tn) ∗→R
ug. Let s0 = ftar (t1, . . . , tn). By the condition R1 of Definition 9, we have
SN (Rftar

/RN,L), so there is a rewrite sequence s0 →Rftar /RN,L
s1 →Rftar /RN,L

· · · →Rftar /RN,L
sk ∈ NF (Rftar

/RN,L). Since root(s0) = ftar ∈ H, we have
ConH̄(s0) = � ∈ T (G ∪ {�}). Hence by Lemma 9 and s0

∗→R sk, we have
ConH̄(sk) ∈ T (G ∪ {�}). Since sk ∈ NF (Rftar

/RN,L), we have ftar /∈ F(sk) by
Lemma 5. Thus by Lemma 10, we have s0

∗→R sk
∗→R ug for some ug ∈ T (C). �

Observing the above proof of Theorem1, we note that the existence of sk

such that s0
∗→Rftar /RN,L

sk ∈ NF (Rftar
/RN,L) rather than SN (Rftar

/RN,L) is
sufficient. However, we adopt SN (Rftar

/RN,L) as the condition R1, since it is
suitable to automated verification.

5 Applicability of the Sufficient Condition

In this section, we give some examples of applying the sufficient condition for
local sufficient completeness. We also give an example where the sufficient con-
dition cannot be applied. Furthermore, we discuss the difficulty of proving local
sufficient completeness without the conditions of Definitions 3 and 9.

Example 5. Consider the TRS R of Example 1. With ftar = sum, H = {sum}
and G = {+, inc} ∪ C where C = {0, s, [], :: }, we see that R satisfies the conditions
on the signature and the conditions on the rewrite rules (cf. Example 4). Hence
by Theorem 1, R is locally sufficiently complete for sum. �
Example 6. Consider a signature with S = {N,L} and F = {take : N × L →
L, ones : L} ∪ C. Let R be the following TRS where take(n, ts) computes the

398 T. Shiraishi et al.

list consisting of the first n elements of a (possibly infinite) list ts of natural
numbers:

R =

⎧
⎪⎪⎨

⎪⎪⎩

(1) take(0, xs) → []
(2) take(s(x), []) → []
(3) take(s(x), y :: ys) → y :: take(x, ys)
(4) ones → s(0) :: ones

⎫
⎪⎪⎬

⎪⎪⎭

.

Let ftar = take, H = {take} and G = C. Then we see that R satisfies the
conditions on the signature. Next, let R = Rtake � RN � RL where Rtake =
{(1), (2), (3)}, RN = {} and RL = {(4)}. We check that the conditions R1–R6
of Definition 9 are satisfied. The condition R1 can be shown by a proof method
for relative termination. Also, it is easy to see that the conditions R2–R6 are
satisfied. Hence by Theorem 1, R is locally sufficiently complete for take. �

In the next example, we apply the sufficient condition recursively in H.

Example 7. Consider a signature with S = {N,L} and F = {takeones : N →
L, take : N × L → L, ones : L} ∪ C. Let R be the TRS consisting of the rules
(1)–(4) of Example 6 and the following rule:

(5) takeones(x) → take(x, ones).

Let ftar = takeones, H = {takeones, take} and G = C. Then we see that R
satisfies the conditions on the signature. Next, let R = Rtakeones � RN � RL

where Rtakeones = {(5)}, RN = {} and RL = {(1), (2), (3), (4)}. We check that
the conditions R1–R6 of Definition 9 are satisfied. The condition R1 can be shown
by a proof method for relative termination. It is easy to see that the conditions R2
and R4 hold. The condition R3 holds since takeones(t) /∈ NF (Rtakeones) for any
term t. The condition R5 holds since LSC (T (F \ {takeones}), take(x1, . . . , xn))
as we saw in Example 6. The condition R6 can be checked according to the forms
of the rewrite rules. Hence by Theorem 1, R is locally sufficiently complete for
takeones. �

In the next example, the sufficient condition cannot be applied because of
failure of the condition R1 of Definition 9.

Example 8. Let R be the TRS obtained from R of Example 1 by replacing the
rules

nat → 0 :: inc(nat)
inc([]) → []
inc(x :: xs) → s(x) :: inc(xs)

by
from(x) → x :: from(s(x))

where from : N → L. We consider the condition R1 to show that R is locally
sufficiently complete for sum. Then we have

from(sum(0, [])) ∗→RN,L
sum(0, []) :: from(s(sum(0, [])))

→Rsum 0 :: from(s(sum(0, [])))
∗→RN,L

0 :: s(sum(0, [])) :: from(s(s(sum(0, []))))
→Rsum 0 :: s(0) :: from(s(s(sum(0, []))))
∗→RN,L

· · · .

A Proof Method for Local Sufficient Completeness 399

Therefore SN (Rsum/RN,L) does not hold. Hence we cannot apply Theorem 1 to
show local sufficient completeness for sum. �

Next we discuss the necessity of some conditions of Definitions 3 and 9 for
proving local sufficient completeness.

Example 9. Let R be the TRS obtained from R of Example 1 by adding the
following rules

len([]) → 0
len(x :: xs) → +(s(0), len(xs))

where len : L → N . Then R is not locally sufficiently complete for len since
u /∈ T (C) for any u with len(nat) ∗→R u. To make matters worse, R is not locally
sufficiently complete for sum any more because u /∈ T (C) for any u such that
sum(s(0), len(nat) :: []) ∗→R u.

Under the conditions S1–S3 of Definition 3, the function symbol len cannot
be in NH since otherwise it contradicts the condition R5 of Definition 9. Hence
len has to be in NG . Then it satisfies the requirement of the condition R4, but
it does not satisfy the requirement of the condition S4 of Definition 3.

This explains that the condition S4 of Definition 3 is necessary for proving
local sufficient completeness for ftar . �

The problem above is caused by the fact that variables in rewrite rules may
be instantiated by arbitrary ground terms of the same sort; Considering a case
where a variable is instantiated by a ground term with its root symbol for which
local sufficient completeness does not hold, it is difficult to show local sufficient
completeness for a function that is defined using the variable outside functions
in H. The conditions R6(a) and R6(b) of Definition 9 are also designed carefully
so that similar problems can be avoided (cf. the remark before Definition 8).

6 Comparison to Previous Work

In [10], a proof method for local sufficient completeness has been proposed, based
on a derivation system. In this section, we survey the proof method to compare
it to the method introduced in the present paper.

The derivation system acts on a set of guarded terms (Definition 11). Each
guarded term is accompanied with a set of annotated terms, which, together
with a partial order and the notion of skeleton, are used to check availability of
an induction hypothesis in derivation rules.

First we introduce some notations used in this section. A (strict) partial
order is a binary relation that is irreflexive and transitive. A partial order �
on terms is stable if it is closed under substitution, i.e. s � t implies sθ � tθ
for every substitution θ; it is well-founded if there exists no infinite descending
chain t0 � t1 � · · · ; it has the subterm property if s � t and s 	= t implies t � s.
Another ordering on terms used in our derivation system is the subsumption
ordering �, which is defined by: s � t iff sθ = t for some substitution θ.

Next we introduce the notions of annotation and skeleton which are heavily
used in the derivation system.

400 T. Shiraishi et al.

Definition 10 (Annotated term, Skeleton).

1. Let F = {f : α1 × · · · × αn → α | f : α1 × · · · × αn → α ∈ F} be a set of
new function symbols; more precisely, for each f ∈ F , prepare a new function
symbol f equipped with the same sort declaration as f . The underline of f
is called the annotation for f . The set ATα(F ∪ F ,V) of annotated terms of
sort α is defined inductively as follows:
(a) If t ∈ Tα(F ,V) then t ∈ ATα(F ∪ F ,V);
(b) If f ∈ F , f : α1 × · · · × αn → α and ti ∈ ATαi(F ∪ F ,V) for each i

(1 ≤ i ≤ n) then f(t1, . . . , tn) ∈ ATα(F ∪ F ,V).
We set AT (F ∪ F ,V) =

⋃
α∈S ATα(F ∪ F ,V).

2. We denote by t the annotated term obtained from t ∈ T (F ,V) by putting
annotation for each function symbol occurrence in t.

3. For each annotated term t ∈ AT (F ∪ F ,V), its skeleton skel(t) ∈ T (F ,V) is
defined as follows: when t ∈ Tα(F ,V), skel(t) = x (∈ Tα(F ,V)); otherwise,
skel(f(t1, . . . , tn)) = f(skel(t1), . . . , skel(tn)). Here, we assume that a fresh
variable x is taken for each time when a variable is required.

Clearly, we have t ∈ T (F ,V) for each term t, and skeletons of annotated
terms are linear terms without any annotation.

Example 10. Let F = {0, s,+}. Then F = {0, s,+}. Then, t = s(x)+ 0 is an
annotated term. Its skeleton skel(t) = x1 +x2. For t′ = s(x) + 0, we have t′ =
s(x)+ 0.

The derivation system acts on a set of guarded terms, which are defined as
follows.

Definition 11 (Guarded term). A guarded term, denoted by t|H, consists of
a linear term t and a set H of linear annotated terms.

Now we are ready to define the notion of a derivation of the system.

Definition 12 (Derivation). Let R be a TRS, and let � be a well-founded
stable partial order with the subterm property over the set T (F ,V).

1. The derivation rules of the system are listed in Fig. 1. It derives from a set of
guarded terms (given at upper side) to a set of guarded terms (given at lower
side) if the side condition is satisfied.

2. The relation � between annotated terms is the same as the one after erasing
all annotations.

3. We use a new unary function symbol �t for each linear term t; we extend
the order � by �t(s) � u iff s � u or s = u, and the notion of skeleton by
skel(�t(u)) = t.

4. For sets Γ, Γ ′ of guarded terms, we write Γ � Γ ′ if Γ ′ is derived from Γ by
one of the derivation rules. The reflexive transitive closure of � is written as
∗�.

A Proof Method for Local Sufficient Completeness 401

Fig. 1. Derivation rules for proving local sufficient completeness

Theorem 2 ([10]). Let R be a TRS and t a linear term. If {t|∅} ∗� { } for
some well-founded stable order � with the subterm property, then LSC (T (F), t),
i.e., R is locally sufficiently complete for t.

A well-founded stable order � with the subterm property is a particular case
of a simplification order, and many methods for constructing such an order are
known, e.g. lexicographic path order, multiset path order, Knuth-Bendix order,
etc. (cf. [1,14]).

Example 11. Let R be the TRS given in Example 6. We show that R is locally
sufficiently complete for take(x, ones). For this, take � as the lexicographic path
ordering based on some precedence (e.g. take > ones > :: > s > [] > 0). In Fig. 2,
we give a derivation of {take(n, ones)|∅} ∗� { }. The final Delete step follows by

skel(take(s(x), ones)) = take(x1, ones)
� take(x, ones)
≺ take(s(x), ones)

Thus we conclude that R is locally sufficiently complete for take(n, ones). �
As seen in the above example, the derivation system can deal with local suf-

ficient completeness not only for a function symbol f (i.e. for a term of the form
f(x1, . . . , xn) where x1, . . . , xn are distinct variables) but also for an arbitrary
linear term t. This is a main reason for introducing annotations and skeletons,
which would not be necessary if one treated global sufficient completeness only.

402 T. Shiraishi et al.

Fig. 2. A derivation for LSC (T (F), take(x, ones)) in R of Example 6

Fig. 3. A derivation for LSC (T (F), sum(x, xs)) in R of Example 8

The derivation system can handle the last example in the previous section,
where the sufficient condition cannot be applied.

Example 12. Let R be the TRS given in Example 8. We show that R is locally
sufficiently complete for sum. For this, take � as the lexicographic path ordering
based on some precedence (e.g. sum > from > + > :: > s > [] > 0). In Fig. 3,
we give a derivation of {sum(x, xs)|∅} ∗� { }, where Γ = {+(x, z)|{sum(x, xs)}}
and in the last step, each of the remaining three guarded terms is removed by
�Start ◦ �Expand ◦ ∗�Simplify ◦ ∗�Decompose ◦ �Delete. �

On the other hand, the running example in the present paper is difficult to
handle by the derivation system.

Example 13. Let R be the TRS given in Example 1. To construct a derivation for
local sufficient completeness for sum, a series of guarded terms sum(s(x′), xs)|H,
sum(s(x′), inc(xs ′))|H ′, . . . as seen in Fig. 4 has to be eventually removed. �

A Proof Method for Local Sufficient Completeness 403

Fig. 4. A failing derivation for LSC (T (F), sum(x, xs)) in R of Example 1

The sufficient condition we proposed in the present paper successfully resolves
this problem using the notions of ω-sufficient completeness, ω-quasi-reducibility
and relative termination, which are all suitable to automated verification.

7 Conclusion

We have presented a sufficient condition for local sufficient completeness of TRSs
that are defined on natural numbers and lists of natural numbers, and proved
its correctness. The condition consists of conditions on the signature and on the
rewrite rules, which are suitable to automation. Using the sufficient condition,
we showed local sufficient completeness of TRSs that are non-terminating and
not globally sufficiently complete. We also compared the proof abilities of the
sufficient condition and the derivation system introduced in [10].

The TRSs handled by the sufficient condition have restrictions such as a sort
is either one of natural numbers and lists of natural numbers. In future work,
we lighten those restrictions so that the proof method will be widely applicable.

Acknowledgements. We are grateful to the anonymous referees for valuable
comments. This work was partly supported by JSPS KAKENHI Grant Numbers
JP19K11891, JP20H04164 and JP21K11750.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

2. Comon, H., Jacquemard, F.: Ground reducibility is EXPTIME-complete. Inf. Com-
put. 187(1), 123–153 (2003)

3. Geser, A.: Relative termination. Ph.D. thesis, Universität Passau (1990). Available
as technical report 91–03

4. Gnaedig, I., Kirchner, H.: Computing constructor forms with non terminating
rewrite programs. In: Proceedings of the 8th PPDP, pp. 121–132. ACM (2006)

404 T. Shiraishi et al.

5. Gnaedig, I., Kirchner, H.: Proving weak properties of rewriting. Theoret. Comput.
Sci. 412(34), 4405–4438 (2011)

6. Guttag, J.V.: The specification and application to programming of abstract data
types. Ph.D. thesis, University of Toronto (1975)

7. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types.
Acta Inf. 10(1), 27–52 (1978)

8. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J.
Autom. Reason. 47(4), 481–501 (2011)

9. Kapur, D., Narendran, P., Zhang, H.: On sufficient-completeness and related prop-
erties of term rewriting systems. Acta Inf. 24(4), 395–415 (1987)

10. Kikuchi, K., Aoto, T., Sasano, I.: Inductive theorem proving in non-terminating
rewriting systems and its application to program transformation. In: Proceedings
of the 21st PPDP, pp. 13:1–13:14. ACM (2019)

11. Lazrek, A., Lescanne, P., Thiel, J.J.: Tools for proving inductive equalities, relative
completeness, and ω-completeness. Inf. Comput. 84(1), 47–70 (1990)

12. Lucas, S.: Context-sensitive computations in functional and functional logic pro-
grams. J. Funct. Log. Programm. 1998(1) (1998)

13. Nakamura, M., Ogata, K., Futatsugi, K.: Reducibility of operation symbols in
term rewriting systems and its application to behavioral specifications. J. Symb.
Comput. 45(5), 551–573 (2010)

14. Terese: Term Rewriting Systems. Cambridge University Press (2003)
15. Toyama, Y.: How to prove equivalence of term rewriting systems without induction.

Theoret. Comput. Sci. 90(2), 369–390 (1991)

Author Index

Aalst, Wil M. P. van der 3
Aoto, Takahito 386

Biswas, Sayan 197
Bonsangue, Marcello 295
Boyer, Benoît 134
Bustamante, Luis Henrique 39

Chen, Shuo 295
Chu, Wenjing 295
Cruz-Filipe, Luís 115

Díaz-Caro, Alejandro 175
Dix, Alan 18
Do, Canh Minh 105
Dowek, Gilles 175
Drămnesc, Isabela 314

Eisentraut, Julia 214
Erkens, Rick 67

Groote, Jan Friso 67
Gunter, Elsa L. 152

Hainry, Emmanuel 357
Hassan, Osman 86
Holzer, Stephan 214
Horne, Ross 235

Jeandel, Emmanuel 357
Jebelean, Tudor 314
Jung, Kangsoo 197

Kastenbaum, Stéphane 134
Khan, Muhammad Hannan 86
Khan, Shahid 86
Kikuchi, Kentaro 386

Klioba, Katharina 214
König, Jürgen 47
Křetínský, Jan 214

Li, Liyi 152

Manabe, Yoshifumi 256
Martins, Ana Teresa 39
Mauw, Sjouke 235
Miculan, Marino 366
Montesi, Fabrizio 115

Ogata, Kazuhiro 105
Ono, Hibiki 256

Palamidessi, Catuscia 197
Pasqua, Michele 366
Péchoux, Romain 357
Peressotti, Marco 115
Phyo, Yati 105
Pin, Lukas 214
Prasad, Sanjiva 275

Seki, Hiroyuki 334
Senda, Ryoma 334
Shiraishi, Tomoki 386

Takata, Yoshiaki 334
Talpin, Jean-Pierre 134

Wagner, Alexander 214
Wehrheim, Heike 47

Yerraguntla, R. Madhukar 275
Yurkov, Semen 235

Zeyen, Olivier 357

	Preface
	Organization
	Model Checking and Machine Learning Joining Forces in Uppaal (Invited Paper)
	Contents
	Invited Papers
	Concurrency and Objects Matter! Disentangling the Fabric of Real Operational Processes to Create Digital Twins
	1 Towards a Digital Twin of an Organization
	2 Process Mining: A Top-Down View
	3 Process Mining: A Bottom-Up View
	3.1 Petri Nets
	3.2 Object-Centric Partially-Ordered Event Logs
	3.3 Object-Centric Petri Nets

	4 Conclusion
	References

	Qualitative–Quantitative Reasoning: Thinking Informally About Formal Things
	1 Motivation
	2 Informal Insights from Formalism – The PIE Model
	3 Making Decisions – Electrostatically Charged Agricultural Crop Sprays
	4 Orders of Magnitude – Climate Change and Complexity
	4.1 Infinitesimals and Limits
	4.2 Day-to-Day Reasoning
	4.3 Algorithmic Complexity
	4.4 Sorting
	4.5 What is Computation?

	5 Knowing What to Model – Covid Serial Interval
	6 Monotonic Reasoning – Change at the Shops and the Impact of Automation
	7 Formalising and Visualising QQ – Allen's Interval Calculus
	8 Discussion and Call to Action
	References

	Databases and Distributed Transactions
	Some Aspects of the Database Resilience
	1 Introduction
	2 Preliminaries
	2.1 Conjunctive Query
	2.2 Parameterized Complexity
	2.3 Resilience Revisited

	3 Formal Characterization of the Contingency Set
	4 The ``Data Complexity'' of the Resilience Problem
	5 Conclusion
	References

	On the Correctness Problem for Serializability
	1 Introduction
	2 Related Work
	3 Background
	4 The Correctness Problem for SSR- Is Decidable
	4.1 Compact Representation
	4.2 Construction of Finite Automaton

	5 Conclusion
	References

	Efficient Model Checking Methods
	A Set Automaton to Locate All Pattern Matches in a Term
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 An Example Set Automaton
	4 Automaton Construction
	4.1 Initial State
	4.2 Function-Symbol-Position Derivatives
	4.3 Derivative Partitioning
	4.4 Lifting the Positions of Classes
	4.5 Output Patterns
	4.6 Position Labels
	4.7 Summary

	5 Validity of the Construction
	6 Correctness of the Evaluation
	6.1 Evaluation Trees
	6.2 Soundness and Completeness

	7 Complexity and Automaton Size
	8 Future Work
	References

	Accelerating SpMV Multiplication in Probabilistic Model Checkers Using GPUs
	1 Introduction
	2 Preliminaries
	2.1 Behavioral Model
	2.2 Reachability Probability
	2.3 Sparse-Matrix Representations
	2.4 GPU Programming

	3 Proposed Optimization Flow
	3.1 Identification of the SpMV
	3.2 Introducing CUDA
	3.3 Basic Optimizations
	3.4 Hiding Memory Latency
	3.5 Profile and Evaluate

	4 Experimental Evaluation
	4.1 NAND Case Study
	4.2 Herman Case Study
	4.3 Increasing Value of N
	4.4 CUSP vs cuSPARSE
	4.5 Comparing GPUs

	5 Conclusion
	References

	A Divide & Conquer Approach to Conditional Stable Model Checking
	1 Introduction
	2 Preliminaries
	3 Multiple Layer Division of Conditional Stable Model Checking
	4 A Divide & Conquer Approach to Conditional Stable Model Checking Algorithm
	5 Future Directions
	References

	Formalization and Verification in Coq and Isabelle
	Certifying Choreography Compilation
	1 Introduction
	2 Background
	3 Stateful Processes
	3.1 Syntax
	3.2 Semantics

	4 Merging
	5 EndPoint Projection
	6 Pruning
	7 EPP Theorem
	8 Discussion and Conclusion
	References

	A Mechanically Verified Theory of Contracts
	1 Introduction
	2 Related Works
	3 Overview of the Meta-theory and the Assume/Guarantee Theory of Contract
	3.1 Meta-theory
	3.2 Assume/Guarantee Contract Theory

	4 Formalization of Assumption/Guarantee Contract Theory
	4.1 Single Variable Set
	4.2 Alphabet Equalization

	5 Instantiating the Assume/Guarantee Contract Theory
	5.1 Example with a Simple Propositional Logic
	5.2 Logic Specific Contracts

	6 Discussion
	6.1 State as Function vs. State as Vector
	6.2 Variable Set as Type Parameter vs. Variable Set as Record Field
	6.3 Extending Assertion on Another Set of Variables

	7 Conclusion
	References

	A Complete Semantics of K and Its Translation to Isabelle
	1 Introduction
	2 Overview
	3 The IsaK Dynamic Semantics
	3.1 Syntactic Component Highlights in BAST
	3.2 The Definition of the Dynamic Semantics

	4 TransK: Translation from K to Isabelle
	4.1 Translating Datatypes
	4.2 Translating K Terms and Rules

	5 IsaK and TransK Bisimulations
	6 Related Work
	7 Conclusion and Future Work
	References

	Quantum Computing
	A New Connective in Natural Deduction, and Its Application to Quantum Computing
	1 Introduction
	1.1 Insufficient, Harmonious, and Excessive Connectives
	1.2 Information Loss
	1.3 Quantum Physics and Quantum Languages

	2 Propositional Logic with
	2.1 Proof Normalization
	2.2 Proof-Terms

	3 Quantifying Non-determinism
	4 Application to Quantum Computing
	4.1 Bits
	4.2 Qubits
	4.3 Probabilities
	4.4 Measure
	4.5 Matrices
	4.6 An Example: Deutsch's Algorithm

	5 Conclusion
	References

	Security and Privacy
	An Incentive Mechanism for Trading Personal Data in Data Markets
	1 Introduction
	1.1 Contribution
	1.2 Structure of the Paper

	2 Related Work
	2.1 Methods for Choosing
	2.2 Pricing Mechanism

	3 Preliminaries
	4 Incentive Mechanism for Data Markets
	4.1 Overview of the Proposed Technique
	4.2 Truthful Price Report Mechanism
	4.3 Optimizing the Incentive Mechanism
	4.4 Discussion
	4.5 Optimized Privacy Budget Splitting Mechanism for Data Providers

	5 Experimental Results
	6 Conclusion and Future Work
	References

	Assessing Security of Cryptocurrencies with Attack-Defense Trees: Proof of Concept and Future Directions
	1 Introduction
	2 Related Work
	3 Attack-Defense Trees
	4 Overall Structure of the Model
	5 Modeling and Analysis of Attacks
	5.1 User Attacks: Deriving Success Probabilities
	5.2 Vendor Attacks: Deriving Different Courses of Known Attacks

	6 Current Limits of Modeling Economic Risks with ADT
	7 Future Challenges
	8 Conclusion
	A Eclipse Attacks
	B Detailed Description of 51% Attacks
	References

	Compositional Analysis of Protocol Equivalence in the Applied -Calculus Using Quasi-open Bisimilarity
	1 Introduction
	2 Motivating Quasi-open Bisimilarity for the Applied -Calculus
	2.1 A Finer Equivalence Discovers Spurious Attacks
	2.2 Too Coarse an Equivalence Misses Real Attacks
	2.3 A Congruence Enables Compositional Reasoning

	3 The Coarsest Bisimilarity Congruence
	3.1 An Example Message Term Language and Equational Theory
	3.2 Active Substitutions and Labelled Transitions
	3.3 A Testing Regime Defining a Bisimilarity Congruence

	4 Quasi-open Bisimilarity for the Applied -Calculus
	4.1 Introducing Quasi-open Bisimilarity for the Applied -Calculus
	4.2 Running Example of a Privacy Property
	4.3 Quasi-open Bisimilarity is Sound and Complete

	5 Comparison to Related Work on Observational Equivalence
	6 Conclusion
	References

	Card-Based Cryptographic Protocols with a Standard Deck of Cards Using Private Operations
	1 Introduction
	2 Preliminaries
	2.1 Basic Notations
	2.2 Private Operations
	2.3 Opaque Commitment Pair
	2.4 Space and Time Complexities
	2.5 Problems with a Standard Deck of Cards

	3 AND, XOR, and Copy with a Standard Deck of Cards
	3.1 Base Change Protocols
	3.2 And Protocol
	3.3 Copy Protocol
	3.4 XOR Protocol
	3.5 Any Boolean Function

	4 Conclusion
	References

	Normalising Lustre Preserves Security
	1 Introduction
	2 Lustre and NLustre
	2.1 Stream Semantics

	3 A Security Type System for Lustre
	3.1 Security Typing Rules

	4 Normalisation
	4.1 Example

	5 Security and Non-Interference
	6 Conclusions
	References

	Synthesis and Learning
	Learning Probabilistic Automata Using Residuals
	1 Introduction
	2 Preliminaries
	3 Learning Probabilistic Languages Using Residuals
	4 Metrics for Probabilistic Automata
	4.1 The L2 Distance Between Probabilistic Automata
	4.2 Metrics Using the Sample

	5 Experimental Results
	6 Conclusion
	A Appendix
	References

	AlCons : Deductive Synthesis of Sorting Algorithms in Theorema
	1 Introduction
	1.1 Main Contribution
	1.2 Related Work and Originality

	2 Algorithm Synthesis
	2.1 Context and Notation
	2.2 Approach

	3 Proof Techniques
	3.1 Inference Rules
	3.2 Strategies
	3.3 Implementation

	4 Experiments on Binary Trees
	4.1 Sorting Algorithms
	4.2 Auxiliary Algorithms

	5 Conclusions and Further Work
	References

	Reactive Synthesis from Visibly Register Pushdown Automata
	1 Introduction
	2 Preliminaries
	2.1 Transition Systems

	3 Pushdown Transducers, Automata and Games
	3.1 Pushdown Transducers
	3.2 Pushdown Automata
	3.3 Pushdown Games

	4 Realizability Problems for PDA and PDT
	5 Register Pushdown Transducers and Automata
	5.1 Data Words and Registers
	5.2 Register Pushdown Transducers
	5.3 Register Pushdown Automata
	5.4 Visibly RPDA
	5.5 PDA Simulating RPDA

	6 Realizability Problems for RPDA and RPDT
	6.1 Finite Actions
	6.2 Decidability and Undecidability of Realizability Problems

	7 Conclusion
	References

	Systems Calculi and Analysis
	ComplexityParser: An Automatic Tool for Certifying Poly-Time Complexity of Java Programs
	1 Introduction
	2 ComplexityParser Overview
	3 Conclusion
	References

	A Calculus for Attribute-Based Memory Updates
	1 Introduction
	2 Related Work
	3 The AbU Calculus
	3.1 Syntax
	3.2 Semantics
	3.3 A Working Example
	3.4 Termination Guarantee

	4 Encoding Attribute-Based Communication
	4.1 The AbC Calculus
	4.2 Encoding AbC in AbU
	4.3 Correctness of the Encoding

	5 Towards a Distributed Implementation
	6 Conclusion
	References

	A Proof Method for Local Sufficient Completeness of Term Rewriting Systems
	1 Introduction
	2 Preliminaries
	3 A Sufficient Condition for Local Sufficient Completeness
	4 Correctness of the Sufficient Condition
	5 Applicability of the Sufficient Condition
	6 Comparison to Previous Work
	7 Conclusion
	References

	Author Index

