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29.1  Introduction

The field of medicine has become increasingly data-driven, 
with artificial intelligence (AI) and machine learning (ML) 
attracting much interest across disciplines [1–4]. While the 
implementation in patient care still lags behind, almost every 
type of clinician is predicted to use some form of AI technol-
ogy in the foreseeable future [3]. Evolving with the industri-
alization of AI, where the academic and industrial boundaries 
of AI-associated research are increasingly blurred, the num-
ber of ML-based algorithms developed for clinical and com-
mercial application within health care is continuously 
increasing. Realizing the accompanying rising ethical con-
cerns, many institutions, governments, and companies alike 
have since formulated sets of rules and principles to inform 
research and guide the implementation into clinical care [5]. 
More than 80 policies on “Ethical AI” have since been pro-
posed [6], including popular examples such as the European 
Commission’s AI strategy [7], the UK’s Royal College of 
Physicians’ Task Force Report [8], the AI Now Institute’s 
Report [9], as well as statements from major influences form 
the industry (e.g., Google, Amazon, IBM) [10]. Collectively, 
there appears to be a widespread agreement between the dis-
tinct proposals regarding meta-level aims, including the use 
of AI for the common good, preventing harm while uphold-
ing people’s rights, and following widely-respected values of 

privacy, fairness, and autonomy. Demonstrating consider-
able overlap, the suggested pillars building Ethical AI con-
verge to the principles of autonomy, beneficence, 
non-maleficence, justice and fairness, privacy, responsibility, 
and transparency [6]. While certain principles, generally 
describing the four bioethical principles of autonomy, benef-
icence, non-maleficence, and justice, are well-known in 
healthcare, AI-specific concerns arise regarding the auton-
omy, accountability, and need of explicability of AI-based 
systems.

Until now, there are relatively few neurosurgical papers 
implementing AI.  However, the recent trend demonstrates 
the growing interest in ML and AI in neurosurgery [11, 12]. 
From a clinician’s point of view, AI can be untransparent, 
and without methodological foundations, pose a severe risk 
to patients’ care. How can we make AI transparent for clini-
cians and patients? How do we choose which clinical deci-
sions are going to be delegated to AI? How do we prevent 
adverse events caused by AI algorithms? When the AI agent 
makes wrong decisions—who can be held responsible? 
There is a clear increase of directives and papers on AI ethics 
[6, 10] offering guidelines to these critical questions. This 
article non-exhaustively covers basic practical guidelines 
regarding AI-specific ethical aspects that will be useful for 
every ML or AI researcher, author, and reviewer aiming to 
ensure ethical innovation in AI-based medical research.

29.2  Transparency and Explicability

Research in AI systems rapidly advances across medical dis-
ciplines; however, the trust placed in developed applications 
lags behind [13]. Many proposals on ethical AI guidelines 
acknowledge the lack of algorithmic transparency and 
accountability as the most prevalent problems to address [6]. 
As humans and responsible clinicians, we must understand 
and interpret the outcome of an AI or ML model. With the 
European Union being at the forefront of shaping the 
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international debate on Ethical AI, the General Data 
Protection Regulation (GDPR) was introduced in 2018. 
Herein, articles 13–14 mandates “meaningful information 
about the logic involved” for all decisions made by artifi-
cially intelligent systems [14]. This right to an explanation 
of the directive implies that any clinician using AI-based 
decision-making is legally bound to convey patients with 
explanations to the applied ML and AI models’ inner work-
ings. Suppose the AI-based decision cannot be explained. In 
that case, the clinician ends up in the uncomfortable position 
of vouching for the application’s trustworthiness without 
being able to interpret its methodology and outcome. 
Unfortunately, many ML and AI models are considered 
“black boxes” that do not explain their predictions in a com-
prehensible way. The consequent lack of transparency and 
explicability of predictive models in medicine can have 
severe consequences [15, 16].

The precise lack of interpretability has been exacerbated 
with the rise and popularity of deep learning (DL) models. 
As a form of representation learning with multiple layers of 
abstraction, DL methods are extremely good at discovering 
intricate patterns in high-dimensional data [17, 18] that are 
beyond the human scope of perception. DL methods have 
produced promising results in speech recognition, visual 
object recognition, object detection, and many other domains 
such as drug discovery and genomics. They frequently out-
performed different ML algorithms in image recognition and 
computer vision [19–21], speech recognition [22, 23] and 
more. DL methods, including deep neural networks, are 
increasingly complex and challenging—if not impossible—
to interpret because the function relating the input data 
through multiple complex layers of neurons to the final out-
come vector is far too complex to comprehend. Fortunately, 
in the spirit of “Explainable AI” [24–26], approaches have 
been developed to address the black box problem. Broadly, 
Explainable AI involves creating a second (post hoc) model 
to explain the first black box model [26]. Successful analyti-
cal approaches to “open the black box” have since been pro-
posed. One example are local interpretable model-agnostic 
explanations (LIME), which can explain the predictions of a 
classifier in a comprehensible manner by learning an inter-
pretable model locally around the prediction [27]. Other 
implementations primarily rely on assessing variable impor-
tance, such as RISE (Randomized Input Sampling for 
Explanation), which probes deep image classification modes 
with a randomly masked version of the input image [28]. 
However, particularly in the clinical context, evidence to 
whether post hoc approximations can adequately explain 
deep models remains very limited [27, 29, 30].

With the increasing success of AI and, in particular, DL, a 
“myth of accuracy-interpretability trade-off” arise, meaning 
that complicated deep models are necessary for excellent 
predictive performance [26]. However, more complex mod-

els are often not more accurate, particularly when the data 
are structured with a good representation in terms of natu-
rally meaningful features. In DL, the inherent complexity 
scales to large datasets [17, 31]. Particularly successful 
examples of employed DL include studies on electronic 
health records, as demonstrated by Rajkomar and colleagues 
in >200,000 adult patients cumulating a total of >46.8 billion 
data points [32], and large prospective population cohort 
studies of >500,000 participants from the UK Biobank [33]. 
But even in the big-data omics fields, such as imaging or 
genomics, investigations in part question the superiority of 
DL compared to simple models based on available data. 
Schulz and colleagues showed that the increase in perfor-
mance of linear models in brain imaging does not saturate at 
the limit of current data availability, and DL is not beneficial 
at the currently exploitable sample sizes such as those based 
on the UK Biobank (>10,000 3D multimodal brain images 
[34]. In the prediction of genomic phenotypes, DL perfor-
mance was competitive to linear models but did not outper-
form linear models by a sizable margin (>100,000 participants 
with >500,000 features) [35]. Historically, linear models 
have long dominated data analysis, as complex transforma-
tions into rich high-dimensional spaces were computation-
ally infeasible. In small sample sizes particularly, complex 
methods with high variance such as many DL methods tend 
to overfit: the algorithm performs “too well” on training data 
to the extent that it negatively impacts the interpretation of 
new data. Less complex models such as general linear mod-
els are generally less prone to overfitting—especially with 
regularization strategies applied [36, 37].

The best practice recommendations on predictive model-
ing hence include considerations of the given structure on the 
input data, the choice of feature engineering, sample size and 
model complexity, and more [38–40] and should always be 
considered when selecting the appropriate models for a given 
predictive modeling task.

29.3  Fairness and Bias

There is global agreement that AI should be fair and just [6]. 
Herein, unfairness relates explicitly to the effect of unwanted 
bias and discrimination. While biased decision-making is 
hardly unique to AI and ML, research demonstrated that ML 
models tend to amplify societal bias in the available training 
data [41, 42]. Skewed training data is a major influence on 
bias amplification and can lead to severe adverse events aris-
ing from the lack of inclusion of ethical minorities. Esteva 
and colleagues used DL to identify skin cancer from photo-
graphs using 129,450 images (with only 5% of dark-skinned 
participants). While the classification works en par with 
expert knowledge on light skin, it fails to diagnose mela-
noma in people with dark skin colors [3, 43]. This highlights 

J. M. Kernbach et al.



259

the importance of deliberate data acquisition that is repre-
sentable and diverse (e.g., regarding race, gender), focusing 
on including minorities. Many of the ML applications avail-
able today can be considered “narrow AI,” that is, they help 
with specific tasks on specific types of data. An AI system 
trained on a certain patient cohort cannot unconsciously be 
used on an entirely different population. Therefore, the limits 
of generalizability should always be kept in mind. However, 
even in balanced data sets, bias may be amplified due to spu-
rious (mostly unlabeled) correlations. For example, in a bal-
anced picture data set of 50% men cooking and 50% women 
cooking, unlabeled influences, e.g., children, which co-occur 
more often with women, can be labeled cooking as well. 
Hence, more women will be associated with cooking [30]. 
To counteract unwanted bias in balanced data sets, adver-
sarial debiasing was proposed [30, 44, 45]. Models are 
trained adversarially to preserve task-specific information 
while eliminating, e.g., gender-specific cues in images. The 
removal of features associated with the protected variable 
(gender, ethnicity, age, or others) within the intermediate 
representation leads to less biased predictions in balanced 
data sets. Protected variables include gender, race, and socio-
economic status. Failure to address the societal bias could 
ultimately widen the present gap in health outcome [3, 46].

We welcome increasing diversity within a research group 
itself, which increases detection of possible (unconscious-
ness) biases. Nowadays, diversity is an important factor in 
obtaining European and national research funding [47]. For 
every AI application, it should clearly be outlined which 
patient characteristics within training were available. An 
extensive table with patient characteristics, including sex, 
age, ethical background, length, weight, and BMI, as well as 
detailed disease information should be included. Major 
sources of bias should be described within the limitation sec-
tion as well. It is important to realize that most biases are 
unintended and do not arise deliberately. Despite attempts to 
reduce biases, these can occur when not expected at all.

29.4  Liability and Legal Implications

While the important ethical issues mentioned above are still 
a matter of intensive and critical debate, the first steps toward 
structured and transparent software legalization using ML 
have been successfully made. The Medical Device Regulation 
(MDR, EU Regulation 2017/745) is an essential step toward 
better software use regulation, aiming at improved safety and 
transparency. MDR and the Guidance on Qualification and 
Classification of Software in Regulation (EU) 2017/745, 
which was endorsed by the Medical Device Coordination 
Group (MDCG), accurately address the definition of soft-
ware. Herein, software is regarded as a medical device, 
meaning that medical device software (MDSW) is any soft-

ware that is intended to be used alone or in combination for 
any purpose mentioned by the definition of medical device, 
i.e., used for diagnostic, prevention, prediction, prognosis or 
treatment of a disease (for a full report, c.f. to the EU 
2017/745). MDSW can be independent and still qualifies as 
such regardless of its physical localization (i.e., cloud).

Furthermore, the MDR defines software as a set of 
instructions that processes input data and creates output data. 
Thus, MDR encompasses to a full extend any use of AI tech-
nology. One needs to look more precisely at the decision 
steps assisting the qualification as MDSW.  Here, one will 
unmistakably find that if the software is not acting for the 
individual patient’s benefit, it is not covered by the MDR. A 
more critical interpretation of this part could suggest that 
software or AI technology, which is not used in a clinical 
setup, is not considered by the MDR. This is indeed the usual 
case when AI technology is used in an experimental and sci-
entific setting. However, in this setting, any discoveries or 
assistance by the AI technology should not be directly used 
to influence patients’ diagnostics or treatment. In the case of 
IBM Watson’s AI for Oncology program [15], the developed 
algorithm for the recommendation of treatment choices for 
patients with cancer frequently suggested harmful and erro-
neous treatment regimes. If the harmful algorithm were to be 
integrated into the actual clinical routine, many patients 
would have suffered preventable harm. Compared to errors 
on the single doctor-patient level, the faulty AI recommender 
would have inflicted harm on an exponentially higher level. 
Following this line of thought and embracing the ethical 
axiom of “primam non nocere,” one can argue that any soft-
ware, AI technology, or ML algorithm, which is intended to 
be used for clinical decision-making of any kind, needs to be 
CE or FDA approved. Although this is inevitably associated 
with considerable effort, it will guarantee that every software 
life cycle will include all the steps of paramount importance, 
such as hazard management and quality management. 
Although the software does not directly harm a patient, it 
still can create harmful situations by providing incorrect 
information. This gap has been successfully addressed by the 
Rule 11 of the MDR. Consequently, many software applica-
tions (including AI, ML, and statistical tools like risk calcu-
lators) will fall into Class IIa or Class IIb. Indeed, all these 
regulating measures may seem less progressive. Still, they 
try to solve the legal question of liability by introducing 
terms as the intended purpose and the use outside of it.

One further problem in AI liability is that the law, includ-
ing tort law, “is built on legal doctrines that are focused on 
human conduct, which when applied to AI, may not func-
tion” [48]. Moreover, until now, there is no clear legal defini-
tion of AI that can be used as a foundation for new laws 
regarding its use since existing definitions were created to 
understand AI instead of regulating it. The legal definitions 
are, therefore, often circular and/or subjective [49]. 
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Additionally, adopting AI applications that might influence 
clinical decision-making may “evolve dynamically in ways 
that are at times unforeseen by system designers” [50]. With 
adaptation, the AI system gains autonomy. But our definition 
of what is considered autonomous or intelligent is still ill- 
defined and will likely change over time due to rapid devel-
opments within the field of AI [49].

Until AI definitions and regulations are clearly defined, 
care should be warranted to use AI-assisted tools. Clinical 
decision-making algorithms could be allocated to research 
purposes only, which demands the approval of an ethical 
commission, patient insurance, and patients’ consent before 
its use. AI has already been proven very helpful—especially 
in making diagnoses and predicting prognosis and out-
come—also within the field of neurosurgery [11]. In the end, 
every outcome from an AI algorithm should be checked 
against the current medical gold-standard and clinical guide-
lines. For future considerations, the development of concise 
AI definitions and regulations is relevant to deflect potential 
harm.

29.5  Conclusion

With the continuously advancing field of AI, fostering trust 
in the clinical implementation of AI applications becomes 
imperative. Almost every type of clinician is predicted to 
use some form of AI technology in the foreseeable future, 
hence, shaping the ethical and regulatory use of AI becomes 
increasingly important. In the article, we reviewed trans-
parency and algorithmic explicability as the trade-off 
between complexity and available data, the mitigation of 
unwanted biases that even affect balanced data sets, and the 
legal considerations when advancing AI in health care. We 
introduce approaches, including post hoc models and 
adversarial attacks, to combat the above problems and fos-
ter Ethical AI.
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